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Abstract 

Diatoms are a large and widespread group of phytoplankton with an important role in 

ecosystems as primary producers. They are of great use in biostratigraphic and paleoclimatic 

studies, namely in the Bering Sea, where they are abundantly preserved in sediments.  Proboscia 

barboi, Proboscia curvirostris and Thalassiosira jouseae are Plio-Pleistocene centric diatoms of 

mid to high latitudes of the North Pacific and North Atlantic Oceans, and are important 

biostratigraphic markers and datums in these regions. In this study, the biostratigraphy of these 

species at IODP Site U1340 (Bowers Ridge, Bering Sea) is refined and their abundance record 

interpreted in light of the paleoclimatic context of the North Pacific during the Plio-Pleistocene, 

using environmental information from the diatom assemblage in order to better understand the 

ecology of these extinct species. On a morphological approach, T. jouseae and its close related 

species Thalassiosira nidulus are described based on specimens of Site U1340 and their 

differences discussed. In addition, evidence for the evolutionary link between P. barboi and P. 

curvirostris is provided and discussed.  

 

Keywords: diatoms, Bering Sea, Site U1340, Proboscia curvirostris, Proboscia barboi, 
Thalassiosira jouseae 
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Resumo 

As diatomáceas são um grande grupo de fitoplâncton com uma distribuição global, que 

desempenha um papel importante nos ecossistemas como produtores primários. Têm uma 

aplicação fundamental em estudos de biostratigrafia e paleoclimatologia, nomeadamente no 

Mar de Bering, onde se encontram abundantemente preservados nos sedimentos. Proboscia 

barboi, Proboscia curvirostris e Thalassiosira jouseae são diatomáceas cêntricas de latitudes 

média-altas do Pacífico Norte e Atlântico Norte, e importantes marcadores e datums 

biostratigráficos nestas regiões. Neste estudo, a biostratigrafia destas espécies na sondagem do 

IODP U1340A (Bowers Ridge, Mar de Bering) é refinada e o seu registo de abundância 

interpretado no contexto paleoclimático do Pacífico Norte durante o Plio-Plistocénico e 

recorrendo a espécies de diatomáceas indicadoras de ambiente, de maneira a estudar sua 

ecologia. De uma perspectiva morfológica, T. jouseae e uma espécie taxonomicamente próxima 

Thalassiosira nidulus, são descritas com base em exemplares da sondagem U1340A e as suas 

diferenças discutidas. Adicionalmente, a relação evolutiva entre P. barboi e P. curvirostris é 

evidenciada.   

 

Termos chave: diatomáceas, Mar de Bering, Sondagem U1340A, Proboscia curvirostris, 
Proboscia barboi, Thalassiosira jouseae 
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1 Introduction 

1.1 Diatoms 

Diatoms are a large group of unicellular phototrophic algae with sizes ranging from 10 to 

200 µm, which inhabit a wide range of aquatic and semi-aquatic environments. The most 

distinguishing feature of diatoms is the silica shell or exoskeleton - frustule - which consist of a 

highly differentiated cell wall heavily impregnated with silica. The frustule is characterized for 

its diverse shapes and ornamentations and has been since the first microscopic observations in 

the XVIII century, the main source of taxonomic characters. Diatoms often establish colonies by 

a variety of means e.g. producing mucus threads, and thereby forming chains of several 

millimetres. 

Being photosynthetic microorganisms, diatoms are restricted to aquatic and semi-aquatic 

environments with sufficient light exposure. They commonly live as part of the phytoplankton 

community in the surface water (down to 200 m) or have a benthic lifestyle, and as such have 

an important role in ecosystems as primary producers. In fact, they are the dominant marine 

primary producers, being responsible for 40-45% of ocean’s primary production (Mann, 1999). 

Also, production of biogenic silica in the ocean is mainly attributed to diatoms which therefore 

play an important role in the ocean’s silica cycle, in addition to the carbon cycle (Tréguer and De 

La Rocha, 2013). In coastal, equatorial and high latitude upwelling regions, diatoms dominate 

the phytoplankton communities and typically exhibit bloom-and-bust cycles where their 

numbers exponentially increase when nutrients and light become available, and upon depletion 

of nutrients (e.g. Si), sinking rates increase, spores may form and eventually fall to the sediment. 

In some cases in the past, such massive quantities of diatoms were deposited on the sea floor 

that through diagenetic processes, the deposits turned into diatomite, a rock entirely formed of 

frustules that today is of great commercial interest. Thus diatoms play a key role as producers 

and regulators of the ocean’s both silica and carbon cycles. 

Diatoms belong to Division Chrysophyta, class Bacillariophyceae and are organized in two 

orders based on symmetry (Abrantes and Gil, 2007):  

- Pennales; pennate diatoms 

- Centrales; centric diatoms 
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Pennate diatoms have bilateral symmetry and mostly live in freshwater, soil or attached 

to a substrate (e.g. sand grains, plants). Many pennate diatoms bear an unsilicified groove along 

the apical axis of the valve, called the raphe, which is involved in the secretion of mucus that 

aids locomotion. The raphe is exclusive to pennate diatoms. Centric diatoms have radial 

symmetry and often live in marine waters as phytoplankton.   

The oldest diatom fossils date back to the Early Jurassic and consist of centric forms, 

while pennate diatoms are a more recent group, only appearing in the Late Cretaceous from a 

radiation of centric diatoms. However, genomic studies suggest an earlier origin for diatoms, 

during the Mesozoic (Armstrong and Brasier, 2013; Sims et al., 2006). 

1.2 The frustule 

The frustule is the silica exoskeleton of the diatom cell and during its lifetime, is covered 

by a thin organic coat. Although characterized for its diverse morphology, the frustule has a basic 

composition, organization and morphologic features common to all diatoms. 

The frustule is a multipartite structure composed of two valves, the epivalve and the 

hypovalve, which are connected by a series of thinner linking structures called the girdle 

elements. These surround the region in between the two valves and are collectively named 

girdle or cincture. The girdle elements associated with the epivalve are termed epicingulum, 

which together with the epivalve form the epitheca, while the hypovalve together with the 

hypocingulum forms the hypotheca. The organization of the frustule resembles the two halves 

of a petri-dish in the sense that the hypotheca underlies the edge of the epitheca (fig. 1.1). All 

components of the frustule fit together very closely and enclose the cytoplasm, allowing 

communication with the exterior, mainly via pores and slits in the wall components. 

The frustule may be observed in two main orientations: the valve view, where the valve 

face is fully visible and the girdle view, when the frustule is visualized in profile. The diatom cell 

often has different outlines depending on the orientation. The valve view generally provides 

more features for identification and therefore is preferred for identification of diatom 

specimens. Pennate diatoms have an elliptical or rectangular outline in valve view, while centric 

diatoms are generally circular, triangular or quadrate in valve view, and rectangular or ovate in 

girdle view (Armstrong and Brasier, 2013; Round et al., 1990). 
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Figure 1.1 - Gross morphology of the frustule in cross section view. (Hasle et al., 1996). 

The valve is regularly perforated by areolae or pores, whose arrangement forms a 

pattern (i.e. areolation) which is an important taxonomic feature. Rows of areolae form striae 

and the non-perforated areas of the valve surface between striae are called interstriae or costae. 

The valve mantle is the marginal area or edge of the valve (Round et al., 1990). 

1.3 Reproduction 

Diatoms reproduce vegetatively by binary fission, forming two individuals within the 

frustule of the parent cell. As a consequence of this type of cell division, with the formation of 

new siliceous components inside the parent cell, the cell size of each generation progressively 

diminishes. Maximal cell size is restored by auxospore formation, a process usually linked to 

sexual reproduction. It is also a size dependent process which usually occurs when a cell reaches 

about a third of its maximal size and cannot take place below this threshold. Small cells unable 

to develop auxospores keep dividing until division is no longer viable. This in turn, means that 

certain species are not found beyond a certain size range, and again, are a diagnostic feature 

used in taxonomic identification. 

Diatoms are diplont algae. While centric diatoms are usually oogamous with flagellated 

male gametes, most pennate diatoms are isogamous and lack a flagellated stage. The 

development of the auxospore begins right after plasmogamy between the two gametes when 

the cell is at a binuclear stage, which may be transient or last many hours until the nuclei have 

fused. The first step is the formation of an organic wall which in some centric genera may bear 

siliceous scales. The auxospore then expands; a process that may be more or less isometrical, 

depending on the symmetry of the cell. In centric taxa with simple radial symmetry the 
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expansion is nearly spherical whereas in pennate taxa expansion is usually bipolar. Once this 

process finishes, the initial thecae are synthesized. The initial valves may have a modified, more 

rounded shape than the valves of vegetative cells due to the constraints inside the auxospore 

and sometimes have a simpler morphology, lacking structures such as spines as in Melosira and 

Stephanodiscus (Hasle et al., 1996; Round et al., 1990) 

1.4 Resting spores 

Diatoms, like some other microorganisms have the capacity to enter a dormant phase 

in their life cycle when unfavourable environmental conditions arise. Some freshwater 

planktonic species enter a resting stage, which does not differ morphologically from the 

vegetative cell except for the thicker cell walls and cytoplasmic content. In most cases however, 

dormancy is associated with the formation of morphologically distinct cells, called resting 

spores. Formation of resting spores is a common occurrence in centric diatoms and occurs 

mostly in species with a distribution in coastal waters and upwelling regions but also at ice fronts 

(Hargraves, 1986). 

Although usually the morphology of the resting spore fairly resembles that of the 

vegetative cell (e.g. Coscinodiscus furcatus; Syvertsen, 1985), some resting spores differ so 

drastically that they could be classified as a different genus, family or order (e.g. Chaetoceros 

spp.; Hargraves, 1986). Resting spores are generally characterized for their heavily silicified cell 

walls which usually results in alteration or loss of wall perforations, often coarser areolation and 

sometimes loss of cingulum bands. There are three main types of resting spores based on the 

relationship of the mature resting spore to the parent cell i.e. whether the spore is enclosed by 

the vegetative cell: exogenous, semi-endogenous and endogenous. The same species may 

produce all types of resting spore as observed in clonal cultures of Thalassiosira nordenskioeldii 

Cleve (Hasle et al., 1996).  

Resting spores also occur in fossil species and typically can account for the majority of 

the fossil assemblage, due to a greater resistance to dissolution (Barron, 1985; Tsukazaki et al., 

2013). The resting or vegetative spores of extinct species are often difficult to associate with 

their initial valve, unless examples of resting cell division are found (e.g. Suto, 2004). 

1.5 Application in biostratigraphy and paleoclimatology 

Diatoms, like other microfossil groups, are widely employed as biostratigraphic markers 

for dating stratigraphic sequences, and as datums in the establishment of diatom zonations, 

which consists in the division, categorizing and characterization of zones of a given studied 

stratigraphic sequence (often recovered from deep sea drill holes), based on its diatom 
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associations. These zonations are generally applicable to a broad geographical range but may 

differ according to latitude and global region. For instance, a diatom zonation for the North 

Pacific high latitudes (e.g. Yanagisawa and Akiba, 1998) may not be very suitable in the North 

Atlantic. As in the following pages diatom zones are frequently mentioned, the main zonations 

of the North Pacific are presented below (figs. 1.2 and 1.3; Akiba, 1986; Barron, 1980; Barron 

and Gladenkov, 1995; Koizumi, 1973; Schrader, 1973; Yanagisawa and Akiba, 1998). The location 

of the main drill hole sites considered in this study are also presented below (figs. 1.4 and 1.5). 

Diatoms can also be used to better understand the environment and ecological 

parameters such as sea surface temperature during a given geological time. By knowing the 

ecology of a given species or group of close related species, this can be used to reconstruct past 

environments and as a proxy for a given environmental parameter (Sancetta, 1982; von 

Quillfeldt, 2000, 2001). 
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Figure 1.2 - Correlation between high latitude North Pacific diatom zonations. Dotted lines 
represent indirect correlation between magnetostratigraphy and diatom biohorizons. Adapted 
from Yanagisawa and Akiba (1998). 
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Figure 1.3 - Correlation of the diatom zonation of Schrader (1973) with Barron (1980) and 
Koizumi (1975b). Adapted from Barron (1980). 
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Figure 1.4 - Location of the main Drilling Sites in the North Pacific. Red – IODP Exp. 323; Black – 
DSDP Leg 19 (Koizumi, 1973); Blue – ODP Leg 145 (Barron and Gladenkov, 1995); Green – Akiba, 
1986, Akiba and Yanagisawa, 1986 and Yanagisawa and Akiba, 1998 (DSDP Leg 87 and 57); 
Yellow – Schrader, 1973 (Leg 18 DSDP). Map generated by Ocean Data View 4.0. 

 

 

Figure 1.5 - Location of mentioned ODP Sites in the North Atlantic. Map generated by Ocean 
Data View 4.0. 
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2 Regional Setting 

2.1 Bering Sea Oceanography 

The Bering Sea is a marginal sea in the North Pacific with 2.29x106 km2 of surface area, 

making it the third largest marginal sea in the world. It is bounded by Siberia and Alaska, semi-

enclosed by the Aleutian Islands in the South, and connected to the Arctic Ocean through the 

Bering Strait in the North. The Bering Sea is characterized by its extensive eastern continental 

shelf, which covers roughly half of its area from northwest to southeast, creating a vast neritic 

area (<200 m; fig. 2.1). The central and southern area consists of the Aleutian basin (3500 m) 

with two main structural highs: the Bowers Ridge (which extends from the Aleutian Island arc 

into the Aleutian Basin), and the Shirshov Ridge (extending from Kamchatka, Siberia). Three 

major rivers discharge into the Bering Sea waters: Koskokwin and Yukon draining Central Alaska 

and Anadyr River draining Siberia (Takahashi, 2005). 

 

 

Figure 2.1 - Map of the Bering Sea with the location of Site U1340 (red star) and other sites of 
the IODP Expedition 323 (red dots). Surface water currents are illustrated by the black arrows. 
On the right is a scale for the water depth. Map generated by Ocean Data View 4.0.  
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2.2 Surface Water Currents 

The Alaskan Stream (AS) flows westward along the Aleutian Islands and is the main 

source of water input to the Bering Sea. When combined with part of the Subarctic current 

joining the northward flow to the Bering Sea, the AS results in a total of 11x106 m3/s (Ohtani, 

1973; Takahashi, 2005). The warm waters of the AS enter the Bering Sea through various 

Aleutian passes and flow eastward to become the Aleutian North Slope Current (ANSC), then 

flowing north-westward along the shelf break of the eastern continental shelf as the Bering 

Slope Current (BSC; fig. 2.1). AS waters enter the Bering Sea mostly through the Amchitka Strait, 

Near Strait and the Kamchatka Strait while other shallower passes only allow a less significant 

water exchange (fig. 2.2). The water input is balanced by the outflow, mainly through the 

Kamchatka Strait. A limited amount of water also flows out unidirectionally through the Bering 

Strait into the Arctic Ocean. The surface water circulation of the Bering Sea basin follows a large-

scale anti-clockwise motion, being thereby commonly described as a cyclonic gyre, except in the 

Bowers basin where surface water circulation is clockwise. On the eastern Bering Sea shelf water 

circulation is generally northwestward and despite being important to the Arctic Ocean and 

global water circulation, it has virtually no influence on the circulation in the Bering Sea basin 

(Stabeno et al., 1999).  

 

Figure 2.2 - Volume transport in the corresponding main Aleutian Passes and in the Bering Strait. 
(Takahashi, 2005). 

Flow in and out of the Bering Sea has changed in the past as a consequence of 

glaciations. During glacial intervals, the eustatic sea level drop limited the amount of water 

exchange through the Aleutian Passes as these became shallower and in some cases closed off 

with the help of sea ice build-up, diminishing the influence of the AS in the Bering Sea (Katsuki 

and Takahashi, 2005). Likewise, the Bering Strait, during these periods, became aerially exposed 
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and closed, cutting the connection to the Arctic Ocean and affecting global water circulation, 

heat and salt balance (Takahashi, 2005). 

2.3 Ecosystem productivity 

The Bering Sea is a very productive and rich ecosystem from the basal producers up to 

the higher trophic levels of the food web. The edge of the Eastern continental shelf is commonly 

called the Green Belt for being a highly productive area of the Bering Sea, due to upwelling along 

the Bering Slope, among other physical processes (Springer et al., 1996).  

Sea ice is also a fundamental element to ecosystem dynamics and productivity of the 

Bering Sea. Melting at the ice edge changes the seawater’s physical and chemical properties, 

such as increasing water column stratification and stability, altering water salinity and 

temperature. These changes in the water column near the ice-edge may enhance and prolong 

spring blooms, and therefore significantly contribute to the annual primary productivity in the 

eastern Bering Sea (Alexander and Niebauer, 1981). Sea ice forms seasonally, first in northern 

Bering Sea in November, moving southward and covering hundreds of kilometres of the Eastern 

continental shelf, whereas it is rarely present in the southwestern areas (Niebauer et al., 1999). 

Sea ice is part of the ecology of many diatom species. Epontic diatoms live attached to the 

underside of sea ice cover or within brine channels in the ice and bloom in the spring, when 

enough sunlight penetrates the ice. Another type of bloom, named marginal ice zone bloom 

occurs when sea ice begins to break up on the Bering Sea shelf, releasing nutrients and 

freshwater from the ice and thereby promoting the bloom (Caisse, 2012). 

2.4 Site U1340 

Core U1340A was recovered during Expedition 323 of the Integrated Ocean Drilling 

Project (IODP), which carried extensive drilling throughout the Bering Sea with the aim of 

studying paleoceanography, and the climate and glaciation history during the Plio-Pleistocene 

period. Expedition 323 drilled sites on the Bowers Ridge and on the eastern shelf slope and 

adjacently (fig. 2.1). Site U1340 is located on the eastern flank of the southern part of the Bowers 

Ridge, at 1295 m water depth, and is more exposed to basin circulation than the neighbouring 

Site U1341. The Bowers Ridge is greatly influenced by the warm Alaskan Stream waters, which 

enter the Bering Sea through the adjacent Amchitka Pass and the less significant and more 

distant Amukta and Buldir passes. Presently, the Bowers Ridge is beyond sea ice extent but it 

was affected by sea ice or iceberg transportation during glacial periods (e.g. Sancetta and 

Silvestri, 1986; Katsuki and Takahashi, 2005). There is evidence that during the last glacial 

maximum, circulation into the Bering Sea was diverted through the western passes of the 
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Aleutian Islands (e.g. Buldir Pass) due the closure or restriction of the eastern passes (e.g. 

Amchitka Pass) as consequence of sea level drop. The reduced influence of warmer AS waters 

resulted in a greater sea ice extent in the eastern Bering Sea, from the Umnak Plateau to the 

crest of the Bowers Ridge. On the other hand, the western slope of the Bowers Ridge was not 

substantially covered by sea ice (Katsuki and Takahashi, 2005; Takahashi et al., 2011a). 
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3 Fossil diatoms of the Bering Sea 

3.1 Proboscia  

Family Probosciaceae Jordan and Ligowski, 2004 
Genus Proboscia Sundström, 1986 

3.1.1 Introduction 

Proboscia is a recent genus of rhizosolenioid diatoms which includes a number of species 

transferred from Rhizosolenia, following the taxonomic reviews of this genus (Glezer et al., 1988; 

Round et al., 1990; Simonsen, 1979; Sundström, 1986; Takahashi et al., 1994). Rhizosolenia alata 

Brightwell was the first species moved to Proboscia and was set as the holotype species 

(Sundström, 1986). Since then several other extinct and extant species of Rhizosolenia, some of 

them sub-taxa of Rhizosolenia alata were moved to Proboscia (Takahashi et al., 1994).  

Rhizosolenioid is a general term used for diatoms of the family Rhizosoleniaceae and 

historically related taxa such as the recent family Probosciaceae. Generally, rhizosolenioid 

diatoms are adapted to stratified waters with a strong nutricline and thermocline, as they are 

able to vertically migrate between the nutrient rich deeper layers of the water column and the 

euphotic zone. Some taxa within the Rhizosolenia genus, have been found to host an 

endosymbiotic Nitrogen-fixing cyanobacteria. Species with this ecology are commonly called 

shade flora and include other species such as: Thalassiothrix spp., Coscinodiscus spp., 

Stephanopyxis palmeriana and Proboscia alata. The cumulative production by shade flora 

diatoms during periods of stratified waters, generally during summer, and subsequent sinking 

and sedimentation in autumn/winter (i.e. “Fall dump”), when mixing breaks down the nutricline, 

accounts for a significant proportion of export production, comparable or even superior to that 

yielded by spring blooms (Kemp et al., 2000). The sedimentation of shade flora diatoms may 

form laminae in the sediments and thus may also be referred to as mat-forming species (Kemp 

et al., 2000; Sukhanova et al., 2006).  

3.1.2 Morphology of Proboscia 

Proboscia, Rhizosolenia and other rhizosolenioid diatoms share many common 

morphologic features (fig. 3.1). The cells are cylindrical with unipolar valve symmetry. The girdle 

is composed of several repeating elements i.e. segments, bands or copula. The distal ends of the 

frustule bear special structures involved in forming chains of frustules namely, the external 

process - a pointy structure on the tip of the distal end of the valve. Species of Proboscia, which 

formerly belonged to the genus Rhizosolenia - a genus with a typical external process - lack this 

structure, and possess a proboscis instead. The proboscis is a tubular extension of the valve, 
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often curved, distinct from the external process, and is diagnostic of Proboscia (Hasle et al., 

1996; Medlin and Priddle, 1990). 

 

 

Figure 3.1 - General morphology of Rhizosolenia spp. (Hasle et al., 1996). 

The frustule of Proboscia is cylindrical and the valves are subconical. The ends of the 

valves lack the external process and terminate into the tubular structure known as proboscis 

(fig. 3.2). The distal end of the proboscis usually bears spinulae (i.e. short spines; e.g. P. alata) 

and/or spines (P. curvirostris and P. barboi). Many species form chains of individual cells by 

attaching the terminal end of the proboscis to the groove formed by clasper-like structures of 

the host cell and thereby binding to its ventral side (i.e. the contiguous area). Species such as P. 

subarctica (= Rhizosolenia alata Brightwell f. curvirostris Gran, 1900), not bearing these 

morphologic features, characteristic of chain-forming species, are either solitary or form chains 

through other mechanisms (Hasle et al., 1996; Takahashi et al., 1994). In fossil species, the basal 

portion of the valve is missing; therefore it is not possible to know whether they formed chains 

as do extant species, although alternative mechanisms may have been present. Auxospores are 

terminal, in contrast to the lateral position of auxospores of Rhizosolenia. The proboscis usually 

bears a longitudinal slit on the dorsal side at the distal end which, in extant species is longer and 

closer to the tip in comparison to fossil species. 

Extant species are also characterized for having spring and winter forms. In the latter, 

the proboscis is much longer and the valve may lack claspers. The winter form proboscis of 

extant species (e.g. P. truncata, 30 µm; P. subarctica 70 µm), are significantly shorter than the 

proboscis of fossil species which is usually longer than 100 µm (Jordan and Priddle, 1991; 

Takahashi et al., 1994). 
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Figure 3.2 – SEM images of P. alata. Scale bar: a, b - 10 µm; c – 1 µm. Adapted from Takahashi 
et al. (1994) 

3.1.3 Ecology 

Extant Proboscia have a wide distribution, with species distributed from the subarctic 

(e.g. P. subarctica) and antarctic (e.g. P. truncata and P. inermis) to tropical environments (e.g. 

P. indica; Hernández-Becerril, 1995; Jordan and Priddle, 1991; Sunesen and Sar, 2007). P. alata 

is common in polar waters but also found in tropical and subtropical waters (Hernández-Becerril, 

1995; Jordan and Ligowski, 2004) although this widespread distribution may be due to P. alata 

actually being a complex of cryptic species (Jordan and Ligowski, 2004; Sundström, 1986). P. 

alata has been considered a key “fall dump” species in the Gulf of Alaska, and in the Walvis 

Ridge, South Atlantic (Kemp et al., 2000; Takahashi et al., 1994; Treppke et al., 1996). In the 

Bering Sea shelf, P. alata is one of the dominant contributors to phytoplankton biomass and 

abundance from late May to early September, with the highest peak in August, during a period 

typified by stratified waters. However, in subtropical/tropical regions such the Arabian Sea and 

off the Somalian coast, P. alata along with Rhiziosolenia spp. is a dominant species prior to or 

early in the upwelling season (Gordon and Seckbach, 2012; Kohning et al., 2001; Smith, 2001). 

The ability to adjust their buoyancy allows these species to migrate to deeper layers bellow the 

euphotic zone and reach the nutrients during the onset of upwelling events, before other 

species (Koning et al., 2001; Villareal, 1988).  

The seasonal life cycle of P. subarctia on the other hand differs from that of P. alata. Its 

flux peak, studied at the same stations as P. alata occurs during spring and slowly decreases 
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towards winter, indicating that this species proliferates under high nutrient and low light 

conditions (Takahashi et al., 1994), and so does not appear to fit in the fall dump annual cycle.  

3.1.4 Proboscia barboi and Proboscia curvirostris: phylogenetic relation 

Proboscia extends back from Late Cretaceous to the present day. Taxa with long 

proboscis, particularly the winter forms, bear the closest resemblance to the fossil taxa. 

P. barboi and P. curvirostris were two former Cenozoic Rhizosolenia extinct species. 

Akiba and Yanagisawa (1986) assumed from the strong morphologic similarities, that P. barboi 

which proceeded from P. praebarboi, evolved into P. curvirostris, thereby forming a continuous 

evolutionary lineage. However, Jordan and Priddle (1991) remark that the existence of previous 

species with curved probosces and bearing terminal spines argue against the hypothesis of that 

evolutionary sequence. Furthermore, Hajós (1976) suggests that P. interposita is an 

intermediate species between P. cretacea and P. curvirostris and shows “close affinity” with the 

latter species. Therefore, the evolutionary hypothesis presented by Akiba and Yanagisawa 

(1986) is not consensual and needs more evidence. 

It has also been remarked in the literature that P. subarctica, whose morphology is quite 

different from other extant species namely due to the absence of contiguous area and claspers, 

bears a striking similarity to P. barboi and P. curvirostris (Donahue, 1970; Jordan and Priddle, 

1991; Takahashi et al., 1994).  

3.2 Proboscia curvirostris (Jousé) Jordan and Priddle, 1991 

Original description: Jousé, 1968, p. 19, pl. 3, fig. 2.  
Synonymy: Rhizosolenia curvirostris, Akiba, 1986; Akiba and Yanagisawa, 1986 

3.2.1 Geographic distribution and stratigraphic range 

P. curvirostris is an extinct species found in Pleistocene sediments of both the North 

Atlantic and North Pacific with a mid to high latitude distribution. Only the proboscis of the valve 

is preserved in the sediments. Being a dissolution-resistant species and having a short 

stratigraphic span makes it a good Pleistocene biostratigraphic marker. 

In the North Pacific, P. curvirostris makes its evolutionary appearance in NPD10 (fig. 1.2), 

at 1.37-1.42 in the Bowers Ridge (IODP U1341; Onodera et al., 2013), 1.58 Ma in the Western 

Subarctic (ODP Sites 881 to 884 and 887; Barron and Gladenkov, 1995), and 1.7 Ma on the Bering 

Slope (IODP Site U1343; Teraishi et al., 2013). In the North Atlantic, its FO is also observed at 

ODP Site 983 around the same age at 1.53 Ma (Koç et al., 1999), which means this FO is relatively 

synchronous between the two oceans. 
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The LO of P. curvirostris defines the top of the Proboscia curvirostris Zone (NPD11) and 

varies between 0.26 and 0.35 in the North Pacific although it reveals some diachroneity 

according to location (Barron and Gladenkov, 1995; Koizumi and Tanimura, 1985; Yanagisawa 

and Akiba, 1998; Onodera et al., 2013; Teraishi et al., 2013). In Northernmost Emperor 

Seamount it is dated at 0.26 Ma (Katsuki and Takahashi, unpublished data, in Takahashi et al., 

2011b) and in the Bowers Ridge at 0.28 Ma +-0.02 (IODP Site U1341; Onodera et al., 2013; fig. 

3.4). The extinction of P. curvirostris and the subsequent replacement by the cold water species 

R. hebetata Bailey in the North Pacific is related to the Mid-Brunhes event and a transition to 

more extreme glacial conditions (Jansen et al., 1986; Sancetta and Silvestri, 1984).  

In the North Atlantic, its extinction is latitudinally diachronous through MIS 9-8. It first 

disappeared in the northern areas which are more sensitive to climatic forcing at 0.31 Ma 

(Irminger Basin, ODP 919) and survived in the mid latitudes, approximately 40°N until 0.26 Ma. 

The overlap in age between the North Atlantic and North Pacific strongly suggests that the LO 

of P. curvirostris is relatively synchronous in both oceans (Koç et al., 2001). 

3.2.2 Description  

The proboscis of P. curvirostris consists of a long hollow tube, cylindrical in shape and is 

characterized by a conspicuous dorsal spine (i.e. dorsal fin) with a flat triangular shape at or near 

the maximum curvature of the valve, which is 80° to 160° (fig. 3.3; Donahue, 1970). The distal 

end of the valve terminates with a flattened top plate on which two spines are displayed: the 

dorsal spine nearly parallel to the top plate and the ventral spine perpendicular to it. The top 

plate is elliptical in outline and the rest of its periphery bears spinulae. The valve is hyaline except 

for two kinds of striations and a small slit only discernible by SEM: several long longitudinal rows 

of striae lining the dorsal and ventral sides, terminating at a short distance from the apex and 

several rows of short longitudinal striae restricted to the apex region, positioned between the 

longer rows of striae. Like many extant Proboscia species (e.g. P. alata, P. eumorpha and P. 

subarctica; Takahashi et al., 1994), the valve displays a short longitudinal slit near the apex. The 

dorsal fin is diagnostic and distinguishes this species from P. barboi (Akiba and Yanagisawa, 

1986; Jordan and Priddle, 1991). 



18 
 

 

Figure 3.3 – SEM images of Proboscia curvirostris (a) and its distal end (b). Arrow indicates 
longitudinal slit. Scale bar: a - 10 µm; b - 5 µm (Akiba and Yanagisawa, 1986). 

3.3 Proboscia barboi (Brun) Jordan and Priddle, 1991 

Original description: Brun, 1894, p. 87, pl.5, figs. 16-17, 23 as Pyxilla (Rhizosolenia?) barboi Brun. 
Synonymy: Rhizosolenia curvirostris var. inermis Jousé, 1971  

3.3.1 Geographic distribution and biostratigraphy 

P. barboi is an extinct species found in Miocene-Pleistocene sediments of both the North 

Atlantic and North Pacific with a high- to middle-latitude distribution. Like P. curvirostris, this 

species is known from the valves’ probosces that are preserved on the sediments.  

In the North Pacific, the FO of P. barboi goes back to the Upper Middle Miocene (NPD5B; 

Akiba and Yanagisawa, 1986). Contrary to P. curvirostris, the LO of P. barboi is more variable, 

depending on location (fig. 3.4). The LO of P. barboi is divided into two main ages: close to 0.3 

Ma, at the same time P. curvirostris disappears or close to the FO P. curvirostris (1-2 Ma). In 

many locations such as the Bowers Ridge (IODP Site U1341), P. barboi disappears a little earlier 

than P. curvirostris, at 0.42-0.47 Ma (Onodera et al., 2013), at IODP Site U1343 (Teraishi et al., 

2013) the LO is roughly at 0.6 Ma (age corresponding to 140 m depth; fig. 4.2), and in  the 

Northwest Pacific, off Japan’s east coast, it occurs at the same age as P. curvirostris (0.3 Ma; 

Yanagisawa and Akiba, 1998). However, the LO of P. barboi at Site U1343 was determined on 

supplementary data of Teraishi et al. (2013), and may not be robust, as the occurrences of P. 

barboi, become scant and sparse from 1.6 Ma upwards (380 m depth; fig. 5.2). This species and 

its LO are never mentioned in Teraishi et al. (2013). In the Alaskan Gulf and off the coast of 

Northern California, P. barboi disappears at the same age as P. curvirostris appears. The 

synchronous LO of P. barboi and FO of P. curvirostris (together with the LO of Thalassiosira 

antiqua), were used to define the base of NPD Zone IV (Schrader, 1973). The compiled 

stratigraphic ranges for the Bering Sea and Northern Pacific Ocean (DSDP Sites 183 to 192, Leg 

19; Koizumi, 1973), mark the LO of P. barboi near the LO of P. curvirostris (top of Rhizosolenia 
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curvirostris zone, ~0.3 Ma). Nevertheless, on the South side of the Aleutian Islands Arc (Sites 183 

and 192) and on the Western flank of Bowers Ridge (Site 188), the LO of P. barboi approximately 

matches the FO of P. curvirostris near the top, ~1 Ma; bottom, ~2 Ma; and middle, ~1.5 Ma of 

Actinocyclus oculatus zone, correspondingly.It is odd that while sites 188 and U1341 are both 

located in the same region (Western flank of the Bowers Ridge), they have such a large age 

discrepancy on the LO of P. barboi.  

In the Atlantic Ocean on the Iceland Plateau (Site 907), P. barboi disappears at 3.3 Ma, 

approximately 3 Ma earlier than the extinction of P. curvirostris (Koç and Scherer, 1996).   

 

Figure 3.4 – Stratigraphic ranges of P. barboi and P. curviostris in several sites of the North 
Pacific. P. barboi either disappears near the LO or FO of P. curvirostris, varying with site. Dashed 
line indicates scarce occurrences. Blue – P. barboi; Red – P. curvirostris. 

3.3.2 Description  

Proboscia barboi is almost identical to P. curvirostris, the main differences being its 

bigger and bulkier size, the less marked curvature and most importantly, the lack of dorsal fin 

(fig. 3.5). The distal end of the tube bears two large spines. In the SEM the top plate of the distal 

end is ovate to elliptical in outline with one large spine at each pole and spinulae on the rest of 

the periphery. In many cases, the orientation of one of the spines makes 90° with the distal end 

and the other extends distally. The morphologic ultrastructural features (the longitudinal rows 

of striae and the longitudinal slit) described for P. curvirostris are also present in P. barboi and 

equally applicable (Akiba and Yanagisawa, 1986). 
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Figure 3.5 – SEM images of Proboscia barboi (a) and its distal end (b). Arrow indicates 
longitudinal slit. Scale bar: a – 5 µm; b – 1 µm (Akiba and Yanagisawa, 1986). 

3.4 Thalassiosira  

Family Thalassiosiraceae (Lebour) Hasle, 1973 
Genus Thalassiosira (Cleve) Hasle, 1973 

3.4.1 Introduction 

Thalassiosira is a large genus of marine diatoms, with more than 100 species. Cells are 

discoid or cylindrical and form chains by connecting organic threads. Thalassiosira species are 

found in a wide variety of environmental settings including sea ice, upwelling zones, highly 

stratified waters, cold, and warm waters. The type species is Thalassiosira nordenskioeldii Cleve, 

a species part of the spring bloom in the marginal ice zone (Caisse, 2012; von Quillfeldt et al., 

2003). 

The classification of the genus and its species is mostly based on the strutted, occluded 

and labiate processes present on the valve face, that are either isolated or in ring formations, 

and are best observed by electron microscopy. These structures are openings in the valve face 

consisting of tubes that differ in their internal structure. The first two mentioned structures are 

diagnostic of Thalassiosiraceae. The number, arrangement and position of these structures are 

important characters of the genus’ taxonomy, while the valve size and areolae density are not 

as taxonomically diagnostic as they vary considerably within the species rank. The strutted 

processes are involved in colony formation by extruding threads that link frustules together 

(Hasle et al., 1996; Makarova, 1980). Resting spores occur in Thalassiosira and have been fairly 

well studied (Hasle et al., 1996).  
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3.4.2 Thalassiosira jouseae Akiba, 1986 

Description: Akiba, 1986, p. 440, pl. 6, figs. 8-10 

Synonym: Thalassiosira nidulus (Tempère and Brun) Jousé, 1961, p. 63, pl. 3, figs. 4-5; 
Thalassiosira nidulus (Tempère and Brun) Jousé var. nidulus (nomen nudum), Barron, 1980a, p. 
673, pl. 6, fig. 5. 

3.4.2.1 Geographic distribution and biostratigraphy 

Thalassiosira jouseae is a species with a mid to high latitude distribution in the Pacific 

and Atlantic Oceans. It appears in the uppermost Miocene (Yanagisawa and Akiba, 1998), and 

becomes extinct approximately at 0.3 Ma in the North Pacific (fig. 3.8), the same age as P. 

curvirostris (Onodera et al., 2013; Teraishi et al., 2013; Yanagisawa and Akiba, 1998). Its LO is a 

secondary biohorizon defining the top of zone NPD11 (Akiba, 1986), and is synchronous in both 

North Pacific and North Atlantic Oceans (Koç et al., 2001). 

3.4.2.2 Description  

T. jouseae (fig. 3.6, 3.7b and 3.9) has a circular valve with 9-29 µm in diameter. The valve 

is sparsely areolated in the central part of the valve face. Areolae are quadrangular, more or less 

isolated from each other, 8-10 areolae in 10 µm. The most distinguishing feature of the valve is 

the conspicuous sub-marginal tapering spines that form a crown-like structure by uniting their 

basal parts (Akiba, 1986). These structures correspond to the marginal strutted processes. 

 

Figure 3.6 - Schematics of Thalassiosira jouseae (valve view). Legend: 1 – valve face; 2 – sub-
marginal spine; 3 – base of sub-marginal spines; 4 – marginal rim; 5 – marginal ribs; 6 – margin. 
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Figure 3.7 - Holotypes of T. nidulus (Tempère and Brun) Jousé (a) and T. jouseae Akiba (b). 
Magnification 1500x. (Akiba, 1986). 

3.4.2.3 Thalassiosira nidulus: taxonomy and biostratigraphy 

Akiba (1986) discovered and described T. jouseae based on specimens that had been 

assigned to Thalassiosira nidulus by Jousé (1961). The latter species has an older taxonomic 

history. It was originally described as Stephanopyxis nidulus Tempère and Brun in Brun and 

Tempère (1889), and then transferred to the genus Thalassiosira by Jousé (1961). Akiba (1986) 

places T. nidulus (Tempère and Brun) Jousé 1961, as a synonym of T. jouseae. However, the 

author is only referring to T. nidulus of plate 3, figs. 4-5 of Jousé (1961) and not the other 

specimens (plate 1, figs. 3-4). Therefore, the taxon T. nidulus represents a real species and 

should not be used interchangeably with T. jouseae.  

T. nidulus (fig. 3.7a and 3.10) appears in the Upper Miocene (DSDP Hole 438A; Akiba, 

1986) and in North Atlantic in the Lower Pliocene (ODP Site 907; Koç and Scherer, 1996). The LO 

of T. nidulus is synchronous with that of T. jouseae although from the end of the Miocene epoch 

onwards its occurrences become rare or sporadic (DSDP Hole 584; Akiba, 1986). In the North 

Atlantic, T. nidulus has a shorter stratigraphic range, within the lower-middle Pliocene (ODP Site 

907; Koç and Scherer, 1996). 

Barron (1980) actually seems to precede Akiba (1986) by distinguishing a variation 

“nidulus” of T. nidulus (Tempère and Brun) Jousé from the Pacific subarctic, although not 

accompanied with a description. Akiba (1986) listed said variation as a synonym of T. jouseae. 

Indeed T. nidulus var. nidulus Barron looks identical to T. jouseae and both LOs match very 

closely, defining the top of Zone Rhizosolenia/Proboscia curvirostris (Barron, 1980; Yanagisawa 

and Akiba, 1998). Barron (1980) also considers T. nidulus of Schrader (1973, pl. 11, figs. 1-7) as 

T. nidulus var. nidulus which would imply that T. nidulus (Schrader, 1973) are actually T. jouseae. 

However, Akiba (1986) does not include T. nidulus (Schrader, 1973) in the synonymy of T. 

jouseae, possibly because of the different stratigraphic ranges. 
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Figure 3.8 - Stratigraphic ranges of T. jouseae, T. nidulus and variations in North Pacific Sub-
arctic, and T. nidulus (Koç and Scherer, 1996) in North Atlantic Sub-arctic. Note: T. nidulus var. 
nidulus = T. jouseae Akiba; T. nidulus var. delicata = Thalassiosira delicata Akiba. Dashed line 
indicates rare to sporadic occurrences. 

The LO of T. nidulus (Schrader, 1973) was established in lower NPD Zone III (0.92-1.3 Ma) 

somewhat earlier than the LO of Rhizosolenia curvirostris which defines the top of NPD Zone II 

(Schrader, 1973), whereas in the literature the LO of T. jouseae occurs later (~0.3) and is 

coincident with the LO of P. curvirostris (fig. 3.8). 

3.4.3.3 Distinguishing Thalassiosira jouseae from Thalassiosira nidulus 

The original description of T. nidulus (Jousé, 1961) is not accessible by most means, 

which complicates its recognition and contributes to the confusion with T. jouseae. 

Nevertheless, Akiba (1986) remarks that T. jouseae is distinguished from T. nidulus by the 

“united basal parts of sub-marginal spines, smaller valve, and sparser areolae on valve face” 

(fig.3.7b; Akiba, 1986). 

By observing the SEM images of T. jouseae (Koç et al., 1999; DSDP Site 983A, late 

Pliocene) and T. nidulus (Koç and Scherer, 1996; ODP Site 907A, late Pliocene) it is possible to 
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notice significant differences between them. The former images show a T. jouseae specimen 

(fig. 3.9; 10 µm valve diameter) with a convex valve face and areolation restricted to the central 

area, leaving the periphery hyaline. The striated margin displays the ribs connecting to the 

marginal rim. On the other hand, in the T. nidulus specimen (fig. 3.10; 17 µm valve diameter) 

the valve face is flat and the areolation covers all of its area till the base of the sub-marginal 

spines. The areolae are also arranged closer to each other. The marginal rim seems to be missing, 

leaving only the ribs. The sub-marginal spines of T. nidulus do not seem to have united basal 

parts and thus can be said to have separate spines, whereas the spines of T. jouseae have united 

basal parts as noted by Akiba (1986).  

In the TEM images of Akiba (1986), the holotype of T. nidulus is densely areolated, with 

contiguous irregularly sized areolae covering all of the valve face and arranged in (imperfect) 

concentric rows (fig. 3.7a). 

Although T. jouseae and T. nidulus are fairly distinguishable on these SEM images, the 

identification of T. jouseae on LM is often ambiguous. In the morphology chapter, T. jouseae and 

T. nidulus are described based on specimens from U1340A samples of the Pleistocene. 

 

 

Figure 3.9 - SEM image of T. jouseae in valve view (Koç et al., 1999). 

 

Figure 3.10 - SEM image of T. nidulus in valve view (Koç and Scherer, 1996). 
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4 Methodology 

4.1 Samples  

The studied core samples were obtained from International Drilling Program (IODP) 

repository from selected intervals from Core U1340A. The Site is located at 53°24.0008’ N, 

179°31.2973’ W, on the eastern flank of the southern part of Bowers Ridge in the Bering (fig. 

2.1). Four holes were drilled during IODP Expedition 323 in 2009, and cored with the advanced 

piston (APC) and extended core barrel (XCB) coring systems at a water depth of 1294.7 m. All 

analysed samples are from Hole U1340A, which was cored to 604.6 m drilling depth below 

seafloor (DSF) using both APC and XCB coring systems. Diatom biostratigraphy at Site U1340 was 

based on core catcher samples from Hole A and a biostratigraphic zonation was constructed 

until the lowermost Pliocene, ca. 5 Mya (Subzone NPD 7Bb; Yanagisawa and Akiba, 1998; 

Takahashi et al., 2011b). The age models of Site U1340 (hole A) and other IODP Exp. 323 Sites 

are presented bellow (fig. 4.1 and 4.2). 

 

Figure 4.1 - Age-depth plot for core U1340A showing biostratigraphic datums based on diatoms 
and other microfossil groups. Paleomagnetic events are also shown. (Takahashi et al., 2011b). 
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Figure 4.2 - Age-depth plot for Sites U1339-U1345 (Takahashi et al., 2011a). 

4.2 Method 

In order to study the biostratigraphy and morphology of P. barboi, P. curvirostris and T. 

jouseae, a total of 43 samples were used (3H-CC, 23.12 m to 28H-3, 238.55 m; table 4.1), 

covering an age interval from 0.18 to 1.63 Ma, roughly encompassing the stratigraphic span of 

P. curvirostris. The observed samples and slides are the same as the ones previously used for the 

biostratigraphy of core U1340A (Stroynowski et al., 2015). Counts of the three mentioned 

species were performed on light microscope (LM; Nikon eclipse 80i) under x1000 (or under x600, 

when suitable) magnification, by running transects on the first slide of each sample.  

The productivity of each species was calculated by applying the following formula (Abrantes 

et al., 2005): 

No. valves/gram = ((N*(S/s))*(V/v))/W  

N - number of valves counted 

S - area of the evaporation tray (mm2) 

S - observed area of the slide (mm2) 

V - volume of solution in the beaker (ml) 

V - aliquot or volume of solution put into the evaporation tray (ml)  

W - weight of raw sample (g) 

Radius (slide) = 10 mm 

Radius (evaporation tray) = 55 mm 
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The area observed on each slide was calculated considering the shape of each transect 

as approximately that of a rectangle. Thus the observed area is the sum of the areas of all 

transects run on the slide. The height of one transect is equal to the diameter of the field of view 

(FOV), which depends of the microscope used. The FOV diameters (D) of each magnification are: 

D1000x = 0.22 mm; D600x = 0.40 mm; D400x = 0.61 mm 

Table 4.1 - Area (mm2) observed for each sample. Note: counts of T. jouseae on samples 24H-5 
and 25H-5 were performed on 40.66 mm2 and 39.23 mm2 respectively. 

Core U1340A sample #  Mid-depth (cm) Depth (Mid CSF m) Area observed (mm2) 

3H-CC 0.5 23.12 314.16 

4H-3 135.5 25.75 314.16 

4H-5 135.5  28.75 314.16 

4H-CC 0.5 32.56 628.32 

5H-CC 0.5 42.13 314.16 

6H-CC 0.5 51.68 314.16 

7H-CC 0.5 61.2 314.16 

8H-3 135.5 65.25 314.16 

8H-5 135.5 68.25 314.16 

8-CC 0.5 70.69 314.16 

9H-3 135.5 75.95 314.16 

9H-5 135.5 77.75 314.16 

9H-CC 0.5 80.11 40.46 

10H-3 135.5 84.26 314.16 

10H-5 135.5 87.25 40.06 

10H-CC 0.5 89.63 157.08 

11H-5 135.5 96.75 34.21 

11H-CC 0.5 99.17 38.72 

12H-CC 0.5 108.61 37.22 

13H-5 135.5 115.75 37.55 

13H-CC 0.5 118.06 36.28 

14H-3 105.5 121.95 40.94 

14H-6 135.5 126.75 38.28 

15H-5 150 134.89 37.60 

16H-5 150 144.39 41.14 

17H-3 150 150.89 36.76 

17H-5 150 153.89 36.26 

18H-3 150 160.39 39.25 

18H-5 150 163.39 39.78 

19H-3 136 169.75 35.42 

19H-5 137 172.76 28.09 

20H-3 136 179.25 33.64 

20H-5 136 182.25 33.84 

23H-3 136 191.04 34.67 

23H-5 136 194.04 37.69 

24H-3 136 200.54 36.87 

24H-5 136 203.54 90.40 

25H-3 136 210.04 157.08 

25H-5 136 213.04 93.61 

26H-3 136 219.55 45.63 

26H-5 136 222.55 314.16 

27H-3 137 229.06 314.16 

28H-3 136 238.55 314.16 
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4.3 Proboscia curvirostris and Proboscia barboi 

4.3.1 Identification 

Identification of these species was based on the presence or absence of the dorsal fin. 

Heavily dissolved frustules but with distinguishable remains of the dorsal fin and intermediate 

specimens between P. barboi and P. curvirostris with a dorsal fin were counted as P. curviostris.  

4.3.2 Measurements 

In order to study the intermediate specimens of P. barboi and P. curvirostris, 13 

specimens from sample 11H-CC and 14H-3 respectively, were measured as well as 13 specimens 

considered to be intermediate, from sample 24H-5. The samples were selected for containing 

fairly well preserved and morphologically average specimens of P. barboi and P. curvirostris, 

suitable for the measurements. Although a larger sampling would be necessary to make a 

rigorous morphometric study, this number of specimens allows to have a reference point to 

which the intermediate specimens can be compared, which was the main purpose. 

Apart from the dorsal fin, two main features were used to distinguish the P. curvirostris 

and P. barboi: the width and curvature of the tube. The width (µm) was measured at the region 

between the maximum curvature and the tip of the tube (fig. 4.3), closer to the former, as the 

tube in some specimens appears to become narrower towards the apex. The curvature of the 

tube was measured on the ventral side. The employed method consisted in drawing two straight 

lines (on the ventral side), one parallel to the direction of the tube’s distal end and another 

parallel to its more proximal part and afterwards measuring the angle of the two lines (fig. 4.4). 

 

 

Figure 4.3 - Measurement of the tube’s width.  
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Figure 4.4 - Measurement of the tube’s curvature. 

4.4 Thalassiosira jouseae 

4.4.1.1 Identification 

Identification was based on Akiba (1986) and the identification of T. nidulus relied on 

Akiba (1986) and SEM imaging of Koç and Scherer (1996). A few T. nidulus valves were included 

under T. jouseae during the counting process, although not in a sufficient number that would 

undermine the counts.   

4.4.1.2 Description 

The description of T. jouseae was made based on a sizeable number of specimens more 

than a hundred, from samples U1340A-4H-CC (32.56 Mid CSF m) to 40H-1 (343.28 Mid CSF m) 

which corresponds to a 2.13-0.26 Ma time interval in the Pleistocene Epoch. It is merely a 

qualitative description of T. jouseae with the purpose of complementing the original description 

by Akiba (1986). Likewise, T. nidulus was also described based on a few specimens from samples 

U1340A-20H-3, 19H-5, 9H-5, 9H-3 and 8H-3, where this species was identified.  

4.5 Paleoecology – used counts and data  

In the paleoecology subchapter, the relative abundance and productivity graphics were 

constructed using the counts and data of Stroynowski et al. (2015) and thus the interpretation 

of P. curvirostris, P. barboi and T. jouseae abundance records is based on said publication. The 

counts of P. barboi on samples U1340A-18H-3, 18H-5, 19H-3 and the counts of P. curvirostris on 

sample U1340A-25H-5 are not considered, as in the counting process of this study the referred 

species were not identified on said samples (fig. 5.1). 
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4.6 Environmental proxies 

The environmental proxies used in this study are summarized in the following table.  

 

Table 4.2 - List of the environmental proxies according to Sancetta (1982) and von Quillfeldt 

(2000, 2001). 

Proxy group Species 
Environmental 

factor 

Neodenticula 
spp. 

Neodenticula kamtschatika, Neodenticula koizumii and 
Neodenticula seminae 

Alaskan Stream 

Sea ice 
species 

Thalassiosira gravida, Thalassiosira antiqua, Thalassiosira 
nordenskioeldii, Thalassiosira hyalina, Stellarima microtrias, 
Porosira glacialis, Paralia sol, Paralia sulcata, Nitzschia sp., 
Fossula arctica, Fragilariopsis curta, Fragilariopsis cylindrus 

Presence or 
influence of sea 

ice  
(e.g. iceberg 

transportation) 

Chaetoceros 
spp. 

- Productivity 

Mat-forming 
shade flora  

species 

Rhizosolenia hebetata f. hebetata, Rhizosolenia hebetata f. 
hiemalis, Rhizosolenia hebetata f. seminspina, Rhizosolenia 
stylisformis, Coscinodiscus marginatus 

water 
stratification 

Rhizosolenia 
spp. 

Rhizosolenia hebetata f. hebetata, Rhizosolenia hebetata f. 
hiemalis, Rhizosolenia hebetata f. seminspina, Rhizosolenia 
stylisformis. 

water 
stratification 
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5 Results and Discussion 

5.1 Biostratigraphy  

At U1340, the LO of P. curvirostris, T. jouseae and P. barboi occur at 0.33-0.26 Ma 

(sample U1340A-5H-CC), at 0.26-0.23 Ma (sample U1340A-4H-CC) and at 1.39-1.37 Ma sample 

24H-5, respectively (table 5.1; fig. 5.1b). In samples up-core from the observed LO of P. barboi 

at sample U1340A-24H-5, no P. barboi valves were found except for samples 23H-3 (191.04 m; 

one valve), 11H-CC (99.17 m; 21 valves) and 4H-CC (32.56 m; 1 valve). Specimens of P. barboi in 

sample 11H-CC were well preserved, while P. curvirostris is absent which may indicate that these 

events in the same sample are not a mere coincidence and not a result of reworking. Hence, an 

alternative LO for P. barboi could be set at 0.67-0.65 Ma (sample U1340A-11H-CC, 99.17 m), 

which is also approximately the same age when this species disappears at Site U1343. However, 

the LO of P. barboi was set at sample 24H-5 due to the great scarcity of occurrences after this 

sample. On the other hand, in Takahashi et al. (2011b) the LOs of these species both occur at 

0.3 Ma (sample U1340A-5H-CC). The previously established LOs of these species in core U1340A 

are all set at 0.3 Ma (Takahashi et al., 2011b) differing on the LOs of T. jouseae and P. barboi.  

Table 5.1 - Datums of P. curvirotris, P. barboi and T. jouseae of core U1340A (this work). 

  Age (Ma) Sample  Depth (mid CSF m) #valves counted 

P. curvirostris 

LO 0.33-0.26  U1340A-5H-CC 42.13  94 

FO 1.52-1.56   U1340A-26H-5 222.55 1 

FCO 1.44-1.39  U1340A-24H-5 203.54  60 

P. barboi 
LO 1.39-1.37 U1340A-24H-5 203.54  4 

LCO 1.44-1.39  U1340A-25H-3 210.04  30 

T. jouseae 
LO 0.26-0.23  U1340A-4H-CC 32.56  4 

LCO 0.38-0.33  U1340A-6H-CC 51.68  51 

An important observation in core U1340A is that the occurrences of P. barboi and P. 

curvirostris do not overlap and are mutually exclusive, that is, both species virtually never occur 

in the same sample. In sample 11H-CC, when there is an abundance spike of P. barboi, P. 

curvirostris becomes abruptly absent. In the few samples where both species co-occur (samples 

23H-3 and 24H-5) the quantity of one of the species is negligible and the specimens found are 

dubious.  

The counts performed in this study match well those of Stroynowski et al. (2015) despite 

the lower values of productivity which might be due to the higher area observed (fig. 5.1). 

Nevertheless, at approximately 160 m depth (mid CSF), a few valves of P. barboi were found 

(samples U1340A-18H-3, 18H-5, 19H-3) and some valves of P. curvirostris were counted around 
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213 m depth mid CSF (sample U1340A-25H-5; Stroynowski et al., 2015) which were not observed 

during the counts of this study.  

5.2 Paleoecology 

Note: the following discussion of the paleoecology of the studied species is made in reference to 
fig. 5.6 unless otherwise indicated.  

5.2.1 Proboscia barboi 

P. barboi appears at 2.7 Ma, when the first signs of sea ice diatoms subtly increase at 

Bowers Ridge (Site U1340) and also coinciding with the inception of Northern Hemisphere 

Glaciation (NHG; Takahashi et al., 2011; Maslin et al., 1996). At this time in the Bering Sea, 

diatom biodiversity and productivity increased with a marked change in the diatom assemblage, 

indicating enhanced seasonality and stratification (Stroynowski et al., 2015). Fluctuations of 

relative abundances (RA) of P. barboi show an increasing trend starting from 2.1 Ma, coinciding 

with a long term progressive increase of sea ice assemblages in Site U1340, up to 10%-20% of 

the total respective assemblage (Takahashi et al., 2011). From 2 to 1.2 Ma, the Bering Sea is 

characterized by stratified and nutrient-depleted summer waters as indicated by the absence 

and reduced presence of the high-productivity indicators Chaetoceros (resting and vegetative 

spores) and Thalassiothrix longissima (Stroynowski et al., 2015). The authors suggest that the 

most likely cause of stratification is by ice melt. Rhizosolenia spp. (R. hebetata f. hebetata; R. 

hebetata f. hemialis; R. hebetata f. semispina and R. styliformis), which are shade flora species, 

also began to appear with more frequency after 2.0 Ma (Stroynowski et al., 2015), and their RA 

fluctuations show good correlation with P. barboi (fig. 5.3). The fairly coincident rise and positive 

correlation of Rhizosolenia spp. and P. barboi, together with the positive responses to sea ice 

influence and resultant water stratification, support the notion of P. barboi being a shade flora 

species that proliferated colder waters. 

P. barboi disappears from Site U1340 geological record at 1.4 Ma, being replaced at the 

same time by P. curvirostris, despite the curious isolated abundance spike of P. barboi 

resurfacing at 0.7 Ma (sample 11H-CC). The RA of P. barboi generally do not exceed 8% across 

its stratigraphic span and have a mean value of 1.6 % (fig. 5.4; table 5.2). 
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Figure 5.1 - a) Productivity of Proboscia barboi, P. curvirostris and Thalassiosira jouseae plotted with depth (blue, this work) superimposed with the 
productivity of Stroynowski, 2015; Values higher than 107 valves/g were clipped off. b) Productivity and biostratigraphic events of the same species (this 
work). Red asterisk: peaks not considered. 
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As discussed above, the LO’s of P. barboi vary depending on location and may be divided 

into two groups: sites where both the LO of P. barboi and P. curvirostris co-occur, and sites where 

the LO of P. barboi occur around the same time as the FO of P. curvirostris. At Site U1340, the 

LO of P. barboi belongs to the latter group as P. barboi disappears at 1.4 Ma where the FO of P. 

curvirostris is established. Whereas at Site U1341, P. barboi disappeared at 0.42-0.47 Ma 

(Onodera et al., 2013), although its RA somewhat decreases after the FO of P. curvirostris. Hence, 

at two close locations, one on the western flank and the other on the south-eastern part of the 

Bowers Ridge, P. barboi disappears at different ages, which suggest differences in the 

environmental conditions affecting P. barboi. However, at Site 188 (Koizumi, 1973) which is in 

the vicinity of Site U1341 (fig. 1.4), the LO of P. barboi does not match that of the latter Site, as 

it occurs near the FO of P. curvirostris and therefore the stratigraphic range of P. barboi in this 

region should be further investigated.  

5.2.2 Proboscia curvirostris 

P. curvirostris appearance around 1.4 Ma is marked by a large peak of 14% RA and 

coincides with a peak of  AS marker species Neodenticula spp. (56 %) and a drop in sea ice species 

(1%), which indicates that its appearance occurred in a relatively warm period under relatively 

high influence of AS waters. It is also not a particularly nutrient-abundant period with frequent 

upwelling as can be observed by the low abundance of Chaetoceros spp. Furthermore, the FCO 

of P. curvirostris is the largest RA peak which indicates that the environmental conditions 

referred above were favourable or at least tolerable when P. curvirostris appeared.  

The abundance record shows a general tendency for a progressive decline in the 

amplitude of peaks of P. curvirostris which may be a reflection of the progressive intensification 

of the NHG. However, in neighbouring Site U1341, an opposite trend, with an increase of the RA 

peaks is observed (fig. 5.2). The first peak occurs at 150 m depth with 8 % RA, followed by 

another peak of 10 % at 97 m depth, and lastly a peak of 16 % at 70 m depth. As discussed above, 

during the past 270 kyr, the western and eastern sides of the Bowers Ridge faced different 

influence of AS waters and consequently sea ice as the eastern Aleutian passes (e.g. Amchitka 

Pass), were more restricted during glacial periods (Katsuki and Takahashi, 2005). Extending this 

reasoning to an earlier time interval, it is possible that the opposite trends in RA of P. curvirostris 

at sites U1340 (eastern side of Bowers Ridge) and U1341 (western side) were due to a higher 

influence of AS waters in the western side of the Bowers Ridge mitigating the effects of the NHG 

and allowing higher abundances of P. curvirostris in the western side of the Bowers Ridge 

compared to the eastern side. 
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Figure 5.2 - RA of P. barboi, P. curvirostris and T. jouseae in cores U1341B and U1343E. Green 
arrow denotes the increase in RA of P. curvirostris. Plots constructed with the supplementary 
data of Onodera et al. (2013) and Teraishi et al. (2013); Chaetoceros considered. 

The sudden absence of P. curvirostris at ~0.7 coincides well with a big 40% drop of N. 

seminae (from 50% to 7% RA), a large peak of sea ice species (31%) and a  peak of Chaetoceros 

spp. (17%) which indicate a cold period with enhanced sea ice influence and somewhat nutrient 

rich waters. The RA of other mat-forming shade flora (MFSF) species also drops. The 

combination of these environmental factors, especially the cold/sea ice factor may well be the 

cause for the short absence of P. curvirostris. Curiously at the same time, P. barboi unexpectedly 

resurfaces. The absence of P. curvirostris was registered in 2 consecutive samples (U1340A-12H-

CC, 108.61 mid CSF m; 11H-CC, 99.17 Mid CSF m) while P. barboi re-appears in a single sample 

(11H-CC).  

The LO of P. curvirostris occurs at 0.3 Ma, in agreement with the other North Pacific 

sites. Close to the extinction of P. curvirostris, the Rhizosolenia MFSF group (mostly comprised 

of R. hebetata f. hebetata) shows a significant increase up to 27% (fig. 5.3), equivalent to its rise 

in the Subarctic, where Sancetta and Silvestri (1984) suggested that R. hebetata “ecologically 

replaces” P. curvirostris and suggested that the intensification of glacial conditions wiped out P. 

curvirostris and created a new or expanded niche which allowed R. hebetata to flourish. 

The RA of P. curvirostris and P. barboi at Site U1341 are comparatively similar to Site 

U1340, while northward at the Bering Slope Site U1343 they are significantly lower (fig. 5.4). 
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Mean values of RAs of P. barboi and P. curvirostris at Site U1340 are about 4 times higher than 

at Site U1343 (fig. 5.4; table 5.2). The low abundances of P. curvirostris and P. barboi at Site 

U1343 suggest that they do not have a particular preference for the upwelling regimes or sea 

ice influence of the Bering Slope and fits into the likely shade flora ecology of P. curvirostris and 

P. barboi, since Proboscia in high latitudes are generally not associated with upwelling or part of 

the sea ice community (Takahashi et al., 1994). 

At the Southern Bering Sea sites as well as the North Subarctic Pacific where the Alaskan 

Current is the dominant water current (Leg 19 DSDP), RA of both Proboscia species vary between 

0.5% and 2.5% and less often between 3% and 9.5% in a 200 total valve count (Chaetoceros not 

counted; Koizumi, 1973). Their low abundance in the Alaskan Stream domain requires further 

investigation, however it does suggest an ecological preference for colder, less saline waters. 

 

Figure 5.3 - RA of P. barboi and P. curvirostris compared with RA of Rhizosolenia spp. Red area 
denotes the rise of Rhizosolenia spp. (mainly R. hebetata). 
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5.2.3 Thalassiosira jouseae 

Subtle occurrences of T. jouseae started at around 2.5 Ma, and can be considered part 

of the diatom assemblage reorganization and enhanced productivity that began circa. 2.7 Ma, 

coinciding with the onset of NHG (Stroynowski et al., 2015). With the exception of the sudden 

abundance spike at 0.65 Ma (24.3% at sample 10H-CC), the RA of T. jouseae remained low and 

at relatively stable fluctuations below 4% with no apparent long term trend which shows that T. 

jouseae over the long term, did not respond to the progressive trend of seasonally stratified 

waters (Stroynowski et al., 2015), nor the development of glacial/interglacial cycles. Hence, 

water stratification does not seem to be a very important part of the ecology of T. jouseae. 

Strong negative correlation with Neodenticula spp. also supports a preference for colder waters 

and positive response to cold periods.  

The RA of T. jouseae are similar to neighbouring Bowers Ridge Site U1341, but not at 

Site U1343, where its RAs are considerably higher, with mean values of 5.5%, more than five 

times than in the Bowers Ridge Sites (fig. 5.4; table 5.2). The Bering Slope region is part of the 

Green Belt and therefore characterized for high productivity, regular upwelling regimes and by 

annual fluctuations in sea-ice cover (the extent of which also vary on the glacial and interglacial 

time scale) so the high abundances of T. jouseae in the Bering Slope strongly suggest that this 

species was well adapted to upwelling regimes and/or sea ice of the Bering Slope and has a 

neritic distribution. Comparison with the RA and productivity record (fig. 5.5) of the sea ice group 

shows no clear correlation, that is, there is no consistent correlation pattern throughout the 

abundance record. On the other hand comparison with the RA and productivity of Chaetoceros 

spp. generally shows positive correlation which indicates a preference for neritic and nutrient 

rich waters. Whether, T. jouseae may be related to sea ice is not conclusive but since the Bering 

Slope is affected by sea ice cover, it is plausible that, together with upwelling, sea ice is part of 

the ecology of T. jouseae. 
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Figure 5.4 - Average RA of P. barboi, P. curvirostris and T. jouseae at Sites U1341, U1340 and 
U1343; Chaetoceros considered. 

 
Table 5.2 - Mean percentages and range of RA of P. barboi, P. curvirostris and T. jouseae of 
coresU1341B, U1340A and U1343E. The depth interval considered for the calculations is also 
shown. Chaetoceros considered. 
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Core U1341B  

(Onodera et al., 
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(Stroynowski et 

al., 2015) 

Core U1343E  
(Teraishi et al., 

2013) 

%P. barboi 

Average 1.9 1.6 0.4 

Range (min. – max.) 0-12.3 0 - 15.1 0 - 8.0 

depth interval (m) 51.15-532.65 99.17-489.27 139.73-777.34 

%P. 
curvirostris 

Average 4.3 3 0.8 

Range (min. – max.) [0 - 18.0] [0 - 14.6] 0 - 4.8 

depth interval (m) 41.64-157.99 42.13-213.04 81.45-505.79 

%T. 
jouseae 

Average 0.6 1 5.5 

Range (min. – max.) 0 - 7.0 0 -24.3 0-27.0 

depth interval (m) 35.15-599.95 42.13-424.93 71.74-777.34 
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Figure 5.5 – T. jouseae compared with the sea ice species and Chaetoceros sp. records in RA (a) and productivity (b). Values above 107 were clipped off.  
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Figure 5.6 - RA of P. barboi, P. curvirostris and T. jouseae juxtaposed with selected environmental proxies. The green bar marks the FCO of P. curvirostris and 
the LO of P. barboi. Red bar marks the sudden disappearance and resurface of P. curvirostris and P. barboi, respectively. Red arrow denotes the progressive 
decrease in RA of P. curvirostris. MPT – Mid Pleistocene Transition.  
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5.3 Morphology 

5.3.1 Intermediate specimens of Proboscia 

P. curvirostris generally has a lower tube width and a lower curvature angle than P. 

barboi (Akiba and Yanagisawa, 1986). The measurements also show this morphometric 

difference (table 5.3; pl. 1, figs. 1, 2, 3, 4). 

Table 5.3 - Measurements of specimens of P. curvirostris (SpC) and P. barboi (SpB). 

P. curvirostris P. barboi 

SpC width (µm) curvature (°) SpB width (µm) curvature (°) 

1 6.7 97 1 12.0 114 

2 8.9 104 2 14.2 115 

3 7.0 133 3 9.3 112 

4 9.3 105 4 11.1 104 

5 9.3 100 5 9.3 132 

6 7.4 120 6 11.1 124 

7 7.7 98 7 9.3 123 

8 7.4 103 8 13.0 117 

9 8.5 125 9 13.0 119 

10 8.1 97 10 12.3 116 

11 9.3 110 11 8.0 111 

12 6.7 114 12 13.0 121 

13 10.0 93 13 13.0 108 

Mean  8.2 107.6 Mean 11.4 117 

 

A number of intermediate specimens were found on sample U1340A-24H-5, on which 

the FCO of P. curvirostris and LO of P. barboi occur. The specimens (table 5.4; pl. 1 and 2) were 

considered intermediate for being bigger and bulkier than the average P. curvirostris, often the 

same size as P. barboi (e.g. pl. 1, fig. 5; pl. 2, fig. 3), or/and bearing an unusual dorsal fin, lower 

and longer (pl. 2, figs. 1, 4), “over developed” (pl. 2, fig. 2) or “under developed” (pl. 1, fig. 5; pl. 

2, figs. 5, 6), sometimes reduced to a small “bump” (pl. 2, fig. 6). Also, whereas the dorsal fin of 

P. curvirostris points toward the tip of the tube, in these intermediate specimens the dorsal fin 

is often not oriented (pl. 2, figs. 1, 5). It could be argued that these shapes are simply the result 

of bad preservation and dissolution of the dorsal fin but since the specimens were well 

preserved and were relatively recurrent on sample U1340A-24H-5, it is likely not the case.  

The fact that these intermediate specimens occur on the sample of the LO of P. barboi 

and FCO of P. curvirostris also suggests that said specimens are the evidence of the evolutionary 

transition from P. barboi to P. curvirostris.  
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Table 5.4 - Measurements of intermediate specimens (SpI). 

 Intermediate specimens 

SpI width (µm) curvature (°) 

1 9.3 98 

2 11.7 106 

3 12.3 114 

4 9.9 96 

5 10.5 103 

6 11.7 109 

7 8.6 111 

8 8.0 91 

9 8.6 89 

10 8.6 86 

11 8.0 100 

12 11.1 97 

13 9.3 84 

Mean 9.8 98.8 

 

5.3.2 Description of Thalassiosira jouseae and Thalassiosira nidulus  

5.3.2.1 Thalassiosira jouseae 

The size of T. jouseae varies between 9-31 µm. The areolae are generally distributed 

sparsely on the valve face, sometimes relatively uniformly (plate 3, figs. 1, 2, 7). Bigger valves (> 

15 µm), often display a pattern of radial and sub-radial rows (pl. 4, fig. 1). The areolation often 

seems to be confined to a central area or disc, leaving the outermost periphery of the valve face 

hyaline (pl. 3, figs. 1, 2, 5, 7; pl. 4, fig 1), although some exceptions occur where areolation covers 

the valve face till the very base of the sub-marginal spines (pl. 3, figs. 3, 4; pl. 4, figs. 5, 6). The 

valve face is usually convex, to varying extents. These features are best observed in more 

preserved and silicified valves (pl. 3, figs. 1, 2, 3, 4, 7, 8; pl. 4, fig. 1), which were often 

encountered and really stand out in relation to the other T. jouseae valves. The less preserved 

valves (which have a grainy or coarse appearance) tend to display areolae arranged more closely 

together (pl. 3, figs. 5, 6), often tightly close (pl. 4, figs. 5, 6). The arrangement is often in radial 

and sub-radial rows or more aptly termed, concentric rows (pl. 4, figs. 5, 6). Like the more 

silicified type, the periphery of the valve face can be mostly free of areolation but more often is 

the areolation covering the whole valve face. In some of these valves, it is possible to observe 

the areolae arrangement of the holotype specimen (pl. 3, fig. 5) which seems like a central 

“aggregate” of areolae. 

The sub-marginal spines of highly silicified valves are conspicuous and long, and it is easy 

to discern the connection between the basal parts of each spine, which gives the characteristic 
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appearance of a crown (pl. 3, figs. 4, 8; pl. 4, figs. 1). In other valves, the spines are much shorter 

and the basal parts are not as distinctively united (pl. 3, figs. 5, 6; pl. 4, figs. 5, 6). 

The margin is striated and slanting relative to the valve face. It is formed by several ribs 

projecting from the girdle, outward to a circular marginal rim (pl. 4, figs. 2, 3, 4). While, more 

silicified valves have a clear marginal rim, in other valves this structure is thinner and sometimes 

poorly discernible. 

The observations showed that the morphology of T. jouseae is considerably variable 

regarding the areolation and the sub-marginal spines. Two main morphological types can be 

recognized:  

- Type I; usually sparse areolae which in bigger valves tend to be arranged in the radial 

and sub-radial rows pattern, conspicuous medium to long sub-marginal spines and 

united bases of the spines easily discernible. This type is highly silicified and distinct 

when observed at LM. 

- Type II; more common; areolae arranged more closely together, small sub-marginal 

spines and basal parts not so distinctly united. The marginal rim is sometimes poorly 

discernible. The areolation of the holotype specimen can be often recognized in type 

II. The valves have a coarser appearance due to lower silicification and preservation. 

Naturally, at the LM one can come across many intermediates between the two types but 

nonetheless, any given T. jouseae valve can be attributed to one of them (unless it is some 

morphologic variation).  

5.3.2.2 Thalassiosira nidulus 

T. nidulus is within the size range of T. jouseae. It is densely areolated, with areolae 

covering all the valve face, from the centre to the base of the sub-marginal spines in concentric 

rows. None of the specimens observed displayed the areolation restricted to the central area of 

the valve face, as often happens in T. jouseae. The valve face is usually mostly flat. The sub-

marginal spines look in fact separate from each other as had already been noted (Akiba, 1986). 

However, this can also be said of many valves of T. jouseae type II. In addition, the spines seem 

to have a different shape when compared to T. jouseae looking triangle-shaped and less tapering 

(pl. 4, fig. 7; fig. 5.7), although this needs further investigation. The marginal rim is usually absent 

or poorly discernible (pl. 4, fig. 8). Although valves of T. jouseae type II (pl. 4; figs. 5, 6) are often 

quite ambiguously similar to T. nidulus, the latter species still has a distinct overall appearance 

(pl. 4, fig. 7). Thus, the most relevant differences of T. nidulus in relation to T. jouseae are the 
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dense areolation covering all of the valve face, the triangle-shaped separate sub-marginal 

spines, and more secondarily the absence or not easily discernible marginal rim (pl. 4, figs. 7, 8). 

 

Figure 5.7 - Suggested shapes of the sub-marginal spines of T. jouseae (best observed in type I; 
a) and T. nidulus (b). 
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6 Conclusions 

- The LOs of P. curvirostris, T. jouseae and P. barboi at Site U1340 were identified at 

0.33-0.26 Ma, 0.26-0.23 Ma, and 1.39-1.37 Ma, respectively. 

- Proboscia barboi and P. curvirostris do not co-occur in the stratigraphic record of core 

U1340A. 

- The very low abundance of P. barboi and P. curvirostris at Site U1343, located in the 

Bering Slope, a region characterized by regular upwelling and sea ice influence, 

suggests that this species is not adapted to these environments and fits into its 

assumed preference for water stratification. 

- The significantly higher abundance of Thalassiosira jouseae at Site U1343 (Bering 

Slope), compared to Sites U1340 and U1341 (Bowers Ridge) suggests that T. jouseae 

is a neritic species adapted to high productivity waters and upwelling regimes. The 

positive correlation of the RAs of T. jouseae and Chaetoceros spp. (Site U1340) also 

supports this hypothesis. Furthermore, being the Bering Slope region a region of high 

sea ice influence it is plausible that T. jouseae may have been adapted to sea ice 

although correlation of its RA with that of the sea ice group was inconclusive. 

-  Intermediate specimens between P. barboi and P. curvirostris were found and are 

characterized for having sizes comparable to P. barboi and a dorsal fin, often smaller 

and/or with atypical shapes. 

- T. jouseae was described and two morphological types characterized based on the 

areolation, sub-marginal spines and marginal rim. 

- T. nidulus was described and can be distinguished from T. jouseae by its dense 

areolation covering all of the valve face, the triangle-shaped separate sub-marginal 

spines, and more secondarily the absence or not easily discernible marginal rim. 
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Plate 1 - Scale bar = 10 µm. All figures are light microscope (LM) images at 1000x or 600x magnifications. 1, 2 – Proboscia 
curvirostris (same specimen; 1000x; sample U1340A-14H3, 121.95 m); 3 – Proboscia barboi (distal end; 1000x; sample U1340A-
11H-CC, 99.17 m); 4 – P. barboi (600x; sample U1340A-11H-CC, 99.17 m); 5, 6 – Intermediate specimens (600x; sample U1340A-
24H-5, 203.54 m). Arrows denote incipient “dorsal fins”. 
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Plate 2 - Scale bar = 10 µm. All figures are LM images of intermediate specimens at 600x magnification (sample U1340A-24H5, 

203.54 m). Arrows denote incipient “dorsal fins”. 

 

 

 

6 



54 
 

  
1 2 

  
3 4 

  
5 6 

  
7 8 

Plate 3 – Scale bar = 10 µm. All figures are LM images of Thalassiosira jouseae at 1000x magnification. 1, 2 – Sample U1340A-

10H-CC, 89.63 m (same specimen); 3, 4 – Sample U1340A-7H-CC, 61.20 m (same specimen); 5, 6 – Sample U1340A-10H-3, 84.26 

m (same specimen); 7, 8 – sample U1340A-15H5, 134.89 m (same specimen). 
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Plate 4 - Scale bar = 10 µm. All figures are LM images of Thalassiosira jouseae (except for 7 and 8) at 1000x magnification. 1 – 

Sample U1340A-14H6, 126.75 m; 2, 3, 4 – Sample U1340A-10H-CC, 89.63 m (girdle view; 3 and 4 same specimen); 5, 6 - Sample 

U1340A-15H5, 134.89 m (same specimen); 7, 8 – Thalassiosira nidulus, Sample U1340A-9H-3, 75.95 m (same specimen).
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Annex 

9 Diatom study of the Miocene of the Lower Tagus Basin 
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Introduction 

The study of Portuguese diatoms began in the late XIX century, most works consisting 
of identification and cataloguing of living specimens. Perhaps the most prolific naturalist in this 
field was Carlos Zimmermann who catalogued and compiled hundreds of diatom species from 
1906 to 1910. Concerning fossil diatoms few systematic studies were made, being noteworthy 
to mention “Diatomáceas Fósseis de Portugal - Jazigos de Rio-Maior, Óbidos e Alpiarça” of 
Alfredo da Silva (1946), which consists in a literature review of previous works and a contribution 
to the discovery of diatom taxa of Portugal. This present study covers the diatoms of the 
Belverde Borehole and a couple of samples from the Penedo Norte outcrop, which have not yet 
been studied in this borehole. 

The Cenozoic of the Lower Tagus Basin 

The Lower Tagus Basin is a Cenozoic basin that occupies a large area of approximately 
260 Km long and 80 Km wide) in central south Portugal, extending SW-NE from the coastal region 
of Lisboa-Setúbal, beyond the border with Spain near Castelo Branco (Pais et al., 2012). Since at 
least the XVIII century, it has been object of various geologic and paleontologic studies and 
presents a fairly complete Neogene sedimentary record that includes marine and continental 
facies and a diverse and abundant paleontologic content. The LTB is furthermore characterized 
by its privileged geographic position allowing comparison between the Atlantic and 
Mediterranean domains. Thus, the LTB stands as a good reference to other European Cenozoic 
basins regarding Stratigraphy, Paleontology and other geologic fields.  

The LTB can be divided in three main sectors:  

- the distal sector, in the regions of Setubal Peninsula and Lisboa;   
- the intermediate sector, occupying a broad area in Ribatejo and part of Alto 

Alentejo; 
- the proximal sector, in Southern Beira Baixa, crossing the border with Spain. 

Throughout all the Neogene Era, the LTB suffered tectonic phenomena and underwent 
several cyclic marine transgressions and regressions, which resulted in geographic changes and 
shifts between continental and marine sedimentary systems, mainly in the distal sector, but also 
affecting the intermediate sector. The basal infill of the LTB dates back to Middle Eocene and is 
comprised of poorly sorted alluvial materials, originating from the nearby Hesperian Massif, 
often accumulated through alluvial fans. During the Paleogene, sedimentation in the LTB basin 
is solely endorheic (i.e. continental) and lithologies are characterized by coarse conglomeratic 
materials interbedded with sandstone layers and occasionally lacustrine or marsh limestones. In 
Lisboa-Setubal Peninsula these deposits constitute the Benfica formation. 

The first marine transgression only took place in the Aquitanian, about 24 Ma, when the 
Atlantic invaded the distal sector from the South, thereby forming a narrow and penetrative 
gulf. A high sea bed oriented N-S, approximately coincident with the existing shoreline protected 
the inner sector of the gulf and likely favored the establishment of a coralline barrier from at 
least Belverde to Lisboa. Thereafter, sedimentation in the LTB occurred at the continent-ocean 
interface; The areas of the basin farther from the coast receiving more materials from the fluvial 
system (i.e. Pre-Tejo River) running from NE to SW  and coastal marine sedimentation in the 
distal sector and to some extent the intermediate sector. The shoreline and geographic extent 
of the gulf suffered considerable oscillations according to the eustatic cycles. The most 
expressive transgressions occurred in middle Burdigalian (~18 Mya), late Langhian (~ 14 Mya) 
and early Tortonian (~ 11 Mya). During the middle Burdigalian and late Langhian transgressions, 
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the waters advanced circa 100 km into the basin and reached the vicinities of Santarem in the 
intermediate sector (Pais et al., 2012). 

Geologic setting of the distal sector  

The Miocene deposits of the distal sector form a sucession from the Aquitanian to the 
Tortonian and are integrated in the Albufeira Syncline, which encompasses the area from the 
Arrábida Chain to North Lisbon (fig. 1). In terms of thickness, the Miocene sucession does not 
exceed 300 m in Lisboa, while in the Barreiro and Montijo regions (Setúbal), the Neogene 
reaches 1200 m, 50 m belonging to the Pliocene. This Miocene sucession is separated from the 
underlying deposits (Lower Cretaceous, the Vulcanic Complex of Lisboa-Mafra or the Benfica 
Formation) by an angular unconformity and is strongly eroded by the Pliocene (Legoinha, 2001). 

Figure 1 – Geologic profile of the Setubal Peninsula. 1- alluvia (Holocene); 2- aeolic dunes (Holocene); 3- 
Formação de Marco Furado (Plio-Quaternary); 4- Pliocene; 5- Miocene (A- Aquitanian, B- Burdigalian, L- 
Langhian, S- Serravalian, T- Tortonian); 6- Paleogene; 7- Vulcanic complex of Lisboa (Upper Cretaceous); 
8- Mesozoic. (Legoinha, 2001). 

Paleoenvironmental remarks 

 Since the Aquitanian, tropical conditions and warm waters were predominant in marine 
areas as evidenced by fossil remains of corals. Maximum temperatures comparable to the 
present day Gulf of Guinea were reached in the late Burdigalian and Langhian rapidly decreasing 
to temperatures similar to those of the present day Moroccan coast. Fauna and vegetation 
assemblages indicate alternating episodes of aridity and humidity, the dryest one during the 
Langhian (Antunes and Pais, 1984; Antunes, 1993; Pais, 2012). 

Water depth oscillated frequently throughout the Miocene, having marine 
environments shifted from littoral (i.e. intertidal) to infra-littoral depths and attaining a circa-
littoral depth during the Serravalian. Paleobathymetry studies employing benthic foraminifera 
of samples from the Penedo Norte section indicate a circa-litoral environment during Late 
Burdigalian (145 m +/- 40), a rise in water depth in Laghian-Serravalian (170 m +/- 45) and a 
shallower depth in Early Tortonian (65 m +/- 15; Legoinha and Corbi, 2012) 

Sondagem de Belverde 

The Belverde drilling project started in 2001 by a research team from Centro de Estudos 
Geológicos (UNL) coordinated by M. T. Antunes and aimed to obtain the most continuous record 
of the Neogene deposits of Setúbal Peninsula (distal sector of LTB) in order to perform 
stratigraphic studies and uncover the past environmental and geographic conditions of the 
region (Pais et al., 2003; Legoinha et al., 2004). Location: Península de Setúbal, coordinates: 38° 
35' 54, 1’’ N; 9° 8' 24, 7’’ W). 

The borehole attained 619, 77 m depth crossing 130 of Plio-Pleistocene continental 
deposits, 460 m of Miocene deposits (from 130-590 m), and also reached the topmost Paleogene 
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deposits (fig. 2). The main Miocene lithologies are fine sands, marls and biocalcarenites. Coral 
reefs were recognized in the Aquitanian, Burdigalian and Langhian (Legoinha et al., 2004).  

Figure 2 – Sedimentary sequence of the Belverde core displaying the 87Sr/86Sr ages and biostratigraphy 
of foraminifera and nanofossils (Legoinha and Flores, 2014). 
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Penedo Norte section 

This outcrop consists of the North cliff of Penedo beach in Sesimbra, Setubal Peninsula. 
Military coordinates (folha 464-Sesimbra, Carta Militar de Portugal, 1:25 000, Serviços 
Cartográficos do Exército) of the sampling location: M – 107.650 Km and P – 167.200 Km; 
Coordinates GPS: 38º 27’ 46’’ N; 9º 11’ 31’’ W. (Legoinha, 2001) 

 
Figure 3 – Penedo Norte section. Samples studied highlighted in green. Adapted from Legoinha (2001). 

The Penedo Norte section (fig. 3) spans from Burdigalian to Holocene and is divided in 
three sequences separated by disconformities: B2 (Upper Burdigalian), S1 (Langhian-
Serravalian) and T1 (Lower Tortonian). The Samples PN30 and PN33 were recovered from layer 
1 (grey micaceous clayey silts) and 7 (grey sandstone) and roughly correspond to 350-360 m and 
243 m deep in the Belverde core, respectively.  
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Methods 

This study is based on 41 samples of sediment from the Belverde drill core plus 2 samples 
(PN30 and PN33) taken from the Penedo Norte outcrop (Table 1). Sampling was performed by 
selecting sediments from all across the core’s Miocene record, giving preference to darker 
facies, which are indicative of higher organic content. The core samples range from 141 m 
(Upper Miocene) to 557 m (Lower Miocene) in depth. The outcrop samples were collected from 

the North Cliff of the Penedo beach, Setubal Peninsula (GPS coordinates: 38° 27' 46" N; 9° 11' 
31" W; Legoinha, 2001). 

In order to attain an overview of the diatom content of the samples, a total of 51 smear 
slides were prepared. Preliminary observations indicated that none to very little diatomaceous 
content is present on the smear slides. Taking this into account, the bulk sediment used in the 
cleaning treatments was doubled to 2 g, instead of the standard 1 g, to increase the likelihood 
of finding diatoms on the slides.  

The sample cleaning method used is derived from Barron’s procedure for rapid sample 
preparation at sea (Barron, 1985), adapted and modified by Abrantes et al. (2005). This 
treatment eliminates all clay minerals, carbonates and organic matter from the sediments so 
that the siliceous material is concentrated and more easily observed on the final slides. 

Cleaning procedure  

Approximately 2 g of bulk sediment was weighed and treated in 250 ml cups with the 
following solutions: 

 25 ml 0.33% calgon water softener to disperse the clays and disaggregate the sediment.  

 25 ml 10% HCl to destroy the carbonates.  

 Add 25 ml 30% H2O2 to destroy organic matter. 

Afterwards, samples went through the washing process, which removes the clay minerals in 
suspension and leaves behind the siliceous material as the former takes much less time to settle. 
The material was filled to the 250 ml mark. After an 8 hour settling period, the clay in suspension 
was removed using vacuum pump suction. This procedure was repeated for approximately two 
weeks until solutions had a clear and transparent appearance, free from clays. 

Slide preparation 

Slide preparation was performed following the Battarbee’s method (1973) in which a 
known volume of homogenized solution (i.e. aliquot; Table 1) was poured into circular trays 
previously set with 4 cover slips and covered in water. Subsequently, the trays were left to rest 
in an undisturbed environment so the particles in suspension could randomly settle on the cover 
slips. After the trays were completely dry, cover slips were mounted on slides using Norland 
Optical Adhesive. 

Microscope observations 

All samples were thoroughly scanned for siliceous microfossils at 1000x magnification. 
Microscope used: Nikon eclipse 80i. 
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Table 1 – Samples (Belverde Borehole and Penedo Norte, correspondent core depth, weight of treated 
sediment, and aliquot poured into the circular tray. Depth values were rounded to the first decimal place. 

Samples Core depth (m) Weight (g)  Aliquot (ml) 

1 141.5 2.0601 3 

2 142.4 2.6569 4 

3 154.0 2.3006 3 

4 170.8 2.2857 5 

5 179.7 2.3346 7 

6 193.8 2.1796 6 

7 213.5 2.2891 8 

8 214.0 2.1791 10 

9 217.0 2.6439 10 

10 218.6 2.1370 4 

11 219.3 2.5437 5 

12 230.3 2.3777 6 

13 239.0 2.2277 4 

14 239.8 2.7299 9 

15 241.3 2.4882 9 

16 243.5 2.6218 4 

17 252.3 2.2853 5 

18 255.9 2.6815 6 

19 259.6 6.8552 4 

20 273.5 2.6523 6 

21 305.0 2.1004 3 

22 336.1 2.5839 3 

23 338.7 2.6523 3 

24 352.4 2.6447 4 

25 353.4 2.4931 2 

26 379.8 2.2849 3 

27 382.6 2.4626 3 

28 384.7 2.4833 3 

29 390.9 2.5663 8 

30 404.8 2.3123 2 

31 412.2 2.2484 2 

32 445.3 2.4516 1 

33 448.4 2.2481 3 

34 455.1 2.4160 1 

35 491.2 2.4513 2 

36 503.8 2.2188 3 

37 515.8 2.1471 1 

38 521.7 2.6542 5 

39 522.3 2.2795 4 

40 529.0 2.5075 4 

41 557.9 2.6428 9 

PN30 - 2.4826 3 

PN33 - 2.5492 2 
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Results 

No microfossils whatsoever were found in any of the samples, except for sample PN33 
in which small raphid pennate diatoms occur, although very rarely. A few other structures were 
found such as hexagonal-shaped structures. The following genera were identified: 

Mastogloia sp. 

Mastogloia is a large genus of epipelic and epiphytic diatoms found in marine and freshwater 
environments. The diagnostic feature of this genus is the row of chambers (partecta) usually 
running longitudinally along the interior valve wall. Only one specimen of this genus was found 
(fig. 4) and the position of the partecta, being apparently dislocated towards the centre of the 
valve, indicates that this specimen belongs to group Paradoxae (sensu Hustedt, 1985) of 
Mastogloia.  

 
Figure 4 – Mastogloia sp. in valve view. Scale bar = 10 µm. 

Epithemia sp. 

Epithemia is an exclusively freshwater genus of epiphytic and epipelic diatoms. Only one frustule 
belonging to this genus can be assuredly identified. In the right-hand valve of the specimen, it 
can be observed the V-shaped raphe which is diagnostic of the genus (fig. 5). In other similar 
frustules, 2 of them found in association with the Epithemia frustule, the V-shaped raphe is 
either not visible or lacking. In the latter case, these frustules most likely belong to Rhopalodia 
sp. 

 
Figure 5 – Frustules of Epithemia sp. with the V-shaped raphe. Scale bar = 10 µm. 



64 
 

Rhopalodia sp.  

Rhopalodia is a genus of epipelic and epiphytic diatom of fresh and marine waters. In this genus, 
the raphe runs along the dorsal margins of the valves. In some specimens it is possible to 
distinguish a striated pattern along the dorsal margin which probably corresponds to the raphe.  
Some specimens also display a small notch in the middle of the dorsal margin of the valves, a 
feature often observed in Rhopalodia species (fig. 6). Several frustules belonging to either 
Epithemia or Rhopalodia were recurrent but no exact identification was possible.  

 

Figure 6 – Frustules of Rhopalodia sp. Scale bar = 10 µm. 

Amphora sp. 

Amphora is a genus of pennate diatoms, mainly of marine waters, with some freshwater species. 
The frustule is wedge-shaped like an orange segment and is usually observed in girdle view. The 
only specimen found can be observed along the narrow edge of the frustule, which is a rather 
unusual view (fig. 7). 

 

Figure 7 – Amphora sp. (girdle view). Scale bar = 10 µm. 

Naviculoid valve fragment 

One valve fragment belonging to genus Navicula or a related genus was found (fig. 8). Navicula 

is a genus of marine and freshwater epipelic diatoms.   
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Figure 8 – Valve fragment of a naviculoid diatom. Scale bar = 10 µm 

Raphid pennate diatoms 

Some frustules could not be identified further than raphid pennate diatoms (fig. 9 and 10; 

different species). Only one specimen like the one of figure 9 was found. Specimens similar to 

figure 10 were somewhat recurrent.  

  
Figure 9 – Raphid pennate diatom                                 Figure 10 – Rhaphid pennate diatom (girdle view). 

(girdle view). Scale bar = 10 µm Scale bar = 10 µm 

Hexagonal structures 

Hexagonal structures (fig. 11, 12, 13 and 14), with 10 µm or less, morphologically variable, were 
as recurrent as diatoms. The nature of these structures is uncertain although they are not diatom 
valves nor derive from diatom structures. Pollen grains can also be excluded as they have a larger 
size.  Possibly, they are some kind of phytoliths of higher plants (siliceous structures found in 
plant tissues), although phytoliths do not have such well-defined hexagonal outlines as the 
specimens found. Therefore, the identification of these structures remains open. 

  
Figure 11 – Hexagonal structure. Seems  
organic and contains a circular body 
in the interior. Scale bar = 10 µm. 

 

Figure 12 – Hexagonal structure. Interior seems 
to contain another hexagonal outline. Scale bar = 
10 µm. 
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Figure 13 – Hexagonal structure. At least  
two faint lines crossing from the edge  
to the centre. Scale bar = 10 µm. 

 

Figure 14 – Three adjacent hexagonal structures. 
Scale bar = 10 µm. 

 

Discussion 

The absence of microfossils in the drill core samples can be attributed to low 
sedimentation rates and poor preservation during and after deposition in the sediments of the 
LTB. Only sample PN33, from the Penedo Norte outcrop, contained diatoms and other siliceous 
structures. For a number of reasons the diatoms found are likely a result of in situ contamination. 
One strong reason, is the presence of at least one Epithemia frustule, an exclusively freshwater 
genus, which is highly unlikely in a marine deposit during the Serravalian transgression. 
Furthermore, only pennate benthic specimens were present in the sample, whereas no 
planktonic species were found, which does not represent a marine diatom assemblage. Lastly, 
the presence of complete frustules (with both valves and connecting girdle bands) is unlikely in 
material as old as Miocene material. 
 

Conclusions 

- The Belverde borehole is barren of siliceous microfossils. 

- Only sample PN33, from the Penedo Norte outcrop yielded benthic raphid pennate 

diatoms and some unidentified hexagonal structures. 

- The diatoms found in sample PN33 are most likely a result of in situ contamination 

as they not represent well a marine diatom assemblage and also due to the presence 

of Epithemia sp. (a fresh water genus). 

- Identified genera: Mastogloia sp., Epithemia sp., Rhopalodia sp., Amphora sp. 

References  

Abrantes, F., Gil, I., Lopes, C. and Castro, M., 2005. Quantitative diatom analyses—a faster 
cleaning procedure. Deep Sea Research Part I: Oceanographic Research Papers, 52(1), pp. 189-
198. 

Andrade da Silva A., 1946. Diatomáceas fósseis de Portugal - Jazigos de Rio Maior, Óbidos e 
Alpiarça. Boletim da Sociedade Geológica de Portugal, VI (I e II), pp. 5-166. 

Antunes M.T. and Pais J., 1984. Climate during Miocene in Portugal and its evolution. Paléobiol. 
Continent 14(2): 75–89. 

Antunes, M.T. and Pais, J., 1993. The Neogene of Portugal. Ciências da Terra 12, pp. 7–22. 



67 
 

Barron, J., 1985. Late Eocene to Holocene diatom biostratigraphy of the equatorial Pacific Ocean, 
Deep Sea Drilling Project Leg 85. Initial Reports of the Deep Sea Drilling Project. US Government 
Printing Office, Washington, 85 (OCT), pp. 413–456. 

Battarbee, R., 1973. A new method for estimating absolute microfossil numbers with special 
reference to diatoms. Limnology and Oceanography, 18, 647–653. 

Hustedt, F., 1985. The Pennate Diatoms. Koeltz Scientific Books, Hirschberg, Germany. 

Legoinha, P., Sousa, L., Pais, J., Ferreira, J., Amado, A.R. and Ribeiro, I., 2004. Miocene 
lithological, foraminiferal and palynological data from the Belverde borehole (Portugal). Revista 
Española de Paleontología, 11(2), pp. 243-250. 

Legoinha, P. and Corbi, H., 2012. Benthic foraminifera and palaeodepth assessment of the Late 
Burdigalian, Langhian Serravallian and Early Tortonian transgressions in the Lower Tagus Basin, 
Portugal. Libro de Resúmenes, pp. 79-81. 

Legoinha, P. and Flores, A. J., 2014. Refinement of the biostratigraphy and biochronology of the 
Belverde borehole (Setúbal Peninsula, Portugal) using calcareous nannofossil data. R. Rocha et 
al. (eds), STRATI 2013, Springer Geology, pp. 1119-1122. 

Pais, J., Cunha, P.P., Pereira, D., Legoinha, P., Dias, R., Moura, D., da Silveira, A.B., Kullberg, J.C. 
and González-Delgado, J.A., 2012. The Paleogene and Neogene of Western Iberia (Portugal): A 
Cenozoic Record in the European Atlantic Domain. Springer. Berlin, Heidelberg, pp. 138. 

Pais J., Silva Lopes, C., Legoinha, P., Ramalho, E., Ferreira, J., Ribeiro, I., Amado, A. R., Sousa, L., 
Torres, L., Baptista, R. and Reis, R. P., 2003 – Sondagem de Belverde (Bacia do Baixo Tejo, 
península de Setúbal, Portugal). VI Cong Nacional Geologia, Ciências da Terra (UNL), nº esp. V: 
13, CDRom A99-A102.  
 

 

 


