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Abstract 

Bacillus subtilis is involved in the enzymatic degradation of plant biomass, namely 

polysaccharides with a high content in arabinose, one of the most abundant pentose in nature. The operon 

araABDLMNPQ-abfA of Bacillus subtilis, is responsible for arabinan utilization and arabinose 

catabolism, however the role of two genes, araL and araM, in this context is still elusive. AraM is a 

dehydrogenase and AraL a phosphatase but they are not necessary for arabinose utilization. 

Transcription of the metabolic operon is induced by arabinose and negatively regulated by AraR. In an 

araR-null mutant, addition of arabinose to an exponentially growing culture results in immediate 

cessation of growth. In this study to investigate the role of both genes in the toxic effect caused by 

arabinose, in-frame deletions of araL and araM were constructed and their impact analyzed. The results 

strongly suggest that araL and araM do not participate in this phenomenon. In addition, AraL, which 

belongs to the haloacid dehalogenase HAD superfamily, was biochemically characterized and substrate 

screening showed AraL to have low specificity and catalytic activity towards several sugar phosphates. 

Thus, we propose a putative physiological role of AraL in detoxification of accidental accumulation of 

phosphorylated metabolites. AraL production is regulated by a structure in the translation initiation 

region of the mRNA, which probably blocks access to the ribosome-binding site, preventing protein 

synthesis. 

Accumulation of sugar phosphate is known to be toxic for the majority of prokaryotic and 

eukaryotic cells, however the mechanisms that underlie toxicity are yet to be fully understood. Here, we 

investigated the growth arrest phenotype displayed in the presence of arabinose by B. subtilis strains 

lacking the regulator AraR. The current hypothesis is that the bacteriostatic effect observed could be due 

to an increased intracellular level of arabinose, which consequently arise the concentration of the 

metabolic sugar phosphates intermediates that are toxic to the cell. Analysis of both wild-type and 

mutant strains by quantification of mRNA levels, phosphorylated metabolites, accumulation of 

cytotoxic methylglyoxal, and ATP depletion, suggests distinct mechanisms underlying toxicity. This 

study highlights the importance of a secondary metabolic pathway regulator in the optimal growth of an 

industrial relevant species, B. subtilis, and how its deletion may negatively impact the overall central 

carbon metabolism. 

 

 

 

Keywords: Bacillus subtilis; sugar phosphatase; Haloacid Dehalogenase; phosphosugar 

toxicity; arabinose metabolism; methylglyoxal 
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Resumo 

Bacillus subtilis é uma bactéria Gram-positiva envolvida na degradação enzimática da biomassa 

vegetal nomeadamente polissacáridos com elevado conteúdo em arabinose, uma das pentoses mais 

abundantes na natureza. Em B. subtilis o operão araABDLMNPQ-abfA é responsável pela utilização de 

arabinano e arabinose, ainda que a função de dois dos seus genes, araL e araM, nesse contexto seja 

pouco clara. AraM é uma desidrogenase e AraL uma fosfatase, sendo ambas dispensáveis para a 

utilização de arabinose. A transcrição do operão metabólico é induzida pela arabinose e negativamente 

regulada pela proteína AraR. Num mutante nulo araR, a adição de arabinose a uma cultura em 

crescimento exponencial resulta numa paragem imediata no crescimento. Neste trabalho, para avaliar o 

papel dos dois genes no efeito tóxico causado pela arabinose foram construídas deleções em grelha de 

leitura dos genes araL e araM e o seu efeito analisado. Os resultados indicam que nem araL nem araM 

se encontram envolvidos neste fenómeno de toxicidade. 

AraL, o produto do gene araL, pertencente à superfamília de proteínas HAD, foi bioquimicamente 

caracterizado e uma análise de substratos mostrou que AraL possui baixa especificidade e actividade 

catalítica em relação a vários açúcares fosforilados, podendo AraL ter uma função na destoxificação de 

metabolitos fosforilados que acumulem na célula. A produção de AraL é regulada por uma estrutura 

secundária ao nível do mRNA, situada na região de início de transcrição, bloqueando o acesso ao local 

de ligação ribossómico e impedindo a síntese proteica. 

A acumulação de açúcares fosforilados é tóxica para a maioria dos organismos, no entanto os 

mecanismos associados a esta toxicidade não são ainda totalmente compreendidos. Aqui investigou-se 

o fenótipo de paragem de crescimento de uma cultura em fase exponencial após adição de arabinose 

num mutante de B. subtilis desprovido do regulador AraR. A hipótese actual assenta no pressuposto de 

o efeito bacteriostático ser causado por um aumento na concentração intracelular de arabinose, e 

consequente aumento na concentração intracelular de intermediários fosforilados, sendo estes tóxicos 

para a célula. A análise de uma estirpe selvagem e de estirpes mutantes através da quantificação de 

níveis de mRNA, determinação da acumulação do metabolito citotóxico metilglioxal e comparação dos 

níveis de ATP, aponta para mecanismos distintos na base desta toxicidade. Este trabalho realça a 

importância de um regulador de uma via metabólica secundária no crescimento de um microrganismo 

industrialmente relevante, como B. subtilis, e como a sua deleção pode ter um impacto negativo no 

metabolismo central de carbono. 

 

Palavras-chave: Bacillus subtilis; fosfatase de açúcares; Desalogenase Haloácida; toxicidade de 

açúcares fosforilados; metabolismo da arabinose; metilglioxal 

 

  



xvi 

 



xvii 

 

Thesis Outline 

 

This thesis is organized in five chapters. Chapter I is an introduction to Bacillus subtilis, and 

carbohydrate uptake by this organism. Main carbohydrate utilization pathways, glycolysis, pentose 

phosphate pathway and tricarboxylic acid cycle are described, as well as general mechanisms of carbon 

catabolite control. This chapter also focuses on L-arabinose metabolism and regulation of arabinose 

utilization genes, followed by an overview of HAD phosphatases and sugar phosphate toxicity in 

bacteria.  

Chapter II emphasizes the role of both araL and araM genes in the context of the arabinose 

operon, as they are not necessary for L-arabinose utilization. This chapter describes experiments to 

investigate their role in the phenomenon of toxicity caused by arabinose in a strain deregulated for 

arabinose utilization. The results strongly suggest that araL and araM do not play a role in the toxic 

effect of arabinose observed in an araR-null mutant. 

Chapter III explains the cloning, overexpression, and biochemical characterization of AraL from 

B. subtilis. The enzyme displays phosphatase activity, low specificity and catalytic activity towards 

several sugar phosphates, which are metabolic intermediates of the glycolytic and pentoses phosphate 

pathways. Moreover, results evidence the existence a genetic regulatory mechanism controlling AraL 

production at the mRNA level, with formation of a secondary structure in the translation initiation 

region of the mRNA. The putative role of AraL in the context of arabinose utilization is discussed here. 

Chapter IV focuses on sugar phosphate toxicity studies in bacteria, using B. subtilis as a model 

organism. Arabinose is toxic to a mutant lacking the negative regulator of the arabinose operon, AraR. 

By combining different techniques, it is shown that arabinose-sensitivity of the mutant strain is 

accompanied by an increase in gene expression concomitant with an increase in the levels of 

arabinose-degrading enzymes, as well as accumulation of several phosphorylated intermediates from 

the pentose phosphate and glycolytic pathways and the cytotoxic compound methylglyoxal, and a drop 

in ATP. 

Finally, Chapter V includes concluding remarks and future perspectives on the work. 
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Bacillus subtilis: a Gram-positive model organism  

Identified in the early 19th century by German naturalist Christian Gottfried Ehrenberg and 

rediscovered in 1872 by Ferdinand Cohn (Skerman et al., 1989), Bacillus subtilis rose to prominence 

after the description of the wild (non-domesticated) B. subtilis Marburg strain in 1930, and subsequent 

isolation of X-ray induced mutants of a domesticated strain, related to B. subtilis Marburg, in the late 

1940’s (Burkholder & Giles, 1947; Conn, 1930; Zeigler et al., 2008). Domestication of several of those 

mutagenized strains and their adaptation to laboratory life allowed researchers, in the early stages of 

genetic engineering studies, to use them to study the development of a competent state for exogenous 

naked-DNA uptake (Anagnostopoulos & Spizizen, 1960; Spizizen, 1958) and sporulation. At the dawn 

of the molecular biology era, B. subtilis amenability for genetic engineering emerged as a powerful tool, 

turning this mesophilic, rod-shaped Gram-positive endospore-forming bacterium in one of the most 

studied microorganisms in the scientific community, along with its Gram-negative counterpart, 

Escherichia coli, and the eukaryotic microorganism Saccharomyces cerevisiae. Development of 

competence, production and secretion of hydrolytic enzymes, non-pathogenicity and endospore 

formation were driving forces in the study of biochemistry, genetics and physiology of B. subtilis, 

bringing this bacterium into the spotlight of academic research, being used for the development of 

recombinant DNA techniques, such as cell transformation or construction of cloning vectors 

(integrational, replicative and shuttle vectors) some of which were used to maximize expression of 

native and heterologous proteins (Harwood, 1992).  Furthermore, B. subtilis was among the first 

microorganisms to have its genome fully sequenced by a consortium in 1997 (Kunst et al., 1997). 

B. subtilis and other Bacillus species left the exclusivity of wet labs in academia and entered the 

industrial setting (Harwood, 1992), which took advantage of their genetic manipulation amenability, 

coupled with their secretion capacity, remarkable fermentation properties, high product yields (van Dijl 

& Hecker, 2013; Westers et al., 2004) and interesting properties of their spore (Cutting, 2011; Hong et 

al., 2005). Considered a GRAS organism by the FDA or QPS by the European Commission (McNeil et 

al., 2013), Bacillus species, such as B. subtilis, B. amyloliquefaciens, B. licheniformis, B. thuringiensis 

are used for the production of industrial enzymes (e.g. proteases, α-amylases, restriction enzymes), 

which are often improved by protein engineering, fine biochemicals (hypoxantine, riboflavin), 

antibiotics (bacilysin, subtilin) and insecticides. 

As of 2004, over 60% of all commercially available enzymes originated from Bacillus species 

(Westers et al., 2004). Commercial proteases from Bacillus are usually alkaline or neutral (Rao et al., 

1998; Schallmey et al., 2004) , turning them suitable for use in food and detergent industry. Detergent 

proteases commonly found in household detergents are subtilisins, Bacillus spp. serine proteases. 
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Another type of enzymes of industrial interest are B. subtilis hemicellulases, namely for 

biotechnological purposes focused on cellulose hydrolysis from lignocellulosic substrates, which have 

potential as renewable energy source for bioethanol production (Araújo & Ward, 1990; Várnai et al., 

2011). Ethanol-producing processes require release of cellulose and hemicellulose from their complex 

with lignin, depolymerization of cellulose and hemicellulose to obtain free sugars, and fermentation of 

mixed hexose and pentose sugars to produce ethanol (Lee, 1997). B. subtilis hemicellulases, such as 

mannanases and galactanases can be used to synergistically breakdown lignin (Araújo & Ward, 1990) 

and its arabinofuranosidases degrade hemicellulosic homopolysaccharides (branched and debranched 

arabinans) and heteropolysaccharides (arabinoxylans, arabinogalactans). The release of 

monosaccharides such as arabinose, xylose and galactose, is accomplished together with β-xylosidases 

and β-galactosidases (Inácio et al., 2008; Shallom & Shoham, 2003). Improvement of lignocellulose 

conversion to ethanol via metabolic and evolutionary engineering techniques can bypass the scarcity of 

microorganisms that can efficiently convert hexoses and pentoses to ethanol, although efficient sugar 

utilization coupled with high yield ethanol production is yet be achieved (Wiedemann & Boles, 2008). 

For example, the studies of Boles and co-workers attempt at enhancement of an efficient biomass-to-

ethanol fermentation process using metabolic engineering of a high-yield ethanol producer S. cerevisiae. 

The substrate utilization range of the yeast was increased by establishing an L-arabinose utilization 

pathway from bacteria, namely B. subtilis (Becker & Boles, 2003; Subtil & Boles, 2011; Wiedemann & 

Boles, 2008). The genetic and physiological characteristics of Bacillus species and especially B. subtilis 

allowed it to be widely used in basic and applied research as a model organism for Gram-positive 

bacteria, as well as an industrial workhorse for over 60 years. 

Carbohydrate metabolism of Bacillus subtilis in its natural habitat 

Bacillus subtilis natural habitat. Gut or soil? 

In order to delve into B. subtilis carbohydrate utilization, we first must establish the bacterium’s 

natural habitat. This Gram-positive endospore-forming microorganism can be found either in terrestrial 

or in aquatic environments, and its spores have been isolated from the gastrointestinal tract of several 

animals, including humans (Hong et al., 2009; Tam et al., 2006). B. subtilis has been historically 

classified as a soil saprophyte involved in the common effort of degrading plant biomass, with the soil 

as primary reservoir, entering the gastrointestinal tract of animals by ingestion whilst associated to 

vegetal biomass. Recent work, however, has been evidencing its role not as a transient passenger of the 

gastrointestinal tract but as having adapted to carry out their entire life cycle, i.e. germinate and 

sporulate, within this environment (Tam et al., 2006). As such, an intricate network of metabolic routes 

for biosynthesis of the building blocks of proteins, nucleic acids, lipids and carbohydrates, as well as 

different forms catabolism of various compounds to fuel cellular processes, emerged. 
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Whether in the gastrointestinal tract of animals or in the soil, B. subtilis is an active participant in 

plant cell wall degradation, possessing several intra and extracellular enzymes able to break down 

complex sugar molecules (i.e. pectin, cellulose, and hemicellulose). The genome encodes numerous 

genes involved in pathways for the utilization of plant-derived molecules (Barbe et al., 2009; Earl et al., 

2008; Kunst et al., 1997), and it secretes a vast number of polysaccharide-backbone-degrading enzymes, 

which yield oligosaccharides. The complete breakdown of these oligosaccharides is carried out by cell-

associated or intracellular enzymes.  

B. subtilis often encounters a mixture of different and transient carbon sources that can potentially 

be used. Mechanisms have evolved, enabling selective uptake and metabolism of carbon sources that 

allow rapid growth and yield best success whilst competing with other microorganisms for survival. 

Central Carbon Metabolism in Bacillus subtilis 

Glycolysis, or the Embden-Meyerhof-Parnas Pathway 

The three major metabolic pathways for carbon oxidation in B. subtilis are glycolysis, the pentose 

phosphate pathway and the tricarboxylic acid cycle. Like most heterotrophic bacteria, B. subtilis 

preferred carbon source is glucose, which is metabolized via glycolysis. Glycolysis is defined as a 

sequence of reactions that metabolize one molecule of glucose to two molecules of pyruvate, producing 

two adenosine triphosphate (ATP) molecules along the way (Berg et al., 2011). 

In eukaryotes, glucose catabolism occurs through the Embden-Meyerhof-Parnas pathway (EMP), 

in order to oxidize glucose to pyruvate with the concomitant production of oxidized nicotinamide 

adenine dinucleotide (NADH). The majority of prokaryotes have similar mechanisms to oxidize 

glucose, although, due to microbial diversity, some of them metabolize glucose through unique 

pathways found only in Bacteria, like the Entner-Doudoroff (ED) pathway, found in Zymomonas mobilis 

and phosphoketolase (PK) pathway, found in lactic acid bacteria like Lactobacillus 

spp. or Bifidobacterium spp. (Kim & Gadd, 2008; Wolfe, 2015). Archaeal glycolysis presents major 

variations mainly in its upper branch, concerning the steps from glucose to 3-phosphoglycerate. 

Modified EMP and ED pathways are quite common in Archaea (Kim & Gadd, 2008; Verhees et al., 

2003).  

B. subtilis presents the most common glycolytic route, the EMP pathway, where glucose is 

catabolized to pyruvate (reviewed in Deutscher et. al. 2002) . EMP starts with the phosphorylation of 

glucose, followed by the isomerization to fructose 6-phosphate and a second phosphorylation (to 

fructose 1,6-bisphosphate - FBP), the aldol cleavage of FBP and phosphorylation of glyceraldehyde 3-

phosphate (GA3P), further converted into pyruvate (Figure 1.1). 
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Figure 1.1. Embden–Meyerhof–Parnas pathway (EMP). Schematization of the conversion of glucose 

into pyruvate. Here represented are the two branches of glycolysis: Stage I, where 6C glucose is metabolized to 

triose phosphates (3C) and Stage II, where ATP and NADH are formed. Single-head arrows indicate irreversible 

enzymatic reactions and double-head arrows represent reversible enzymatic reactions. 
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Usually in the literature glycolysis is divided in two parts: the upper branch where glucose (6C) 

is converted to triose phosphates (3C), and where energy is consumed i.e. using ATP to energize the 

sugars, and the lower branch where there is a gain in energy through formation of reduction equivalents 

i.e. NADH (Commichau et al., 2009). 

In B. subtilis glucose enters the cell via group translocation, through the glucose-specific 

phosphotransferase system (PTS), which, in turn, is encoded by the ptsGHI operon. The phosphate 

donor in this transport system is phosphoenolpyruvate (PEP), a glycolytic intermediate and sugar 

translocation occurs via two PTS enzymes, enzyme I (EI) and a histidine-containing phosphocarrier 

protein (HPr), enzyme II (EII), the latter being sugar-specific (Stülke et al., 1997). Glucose can also be 

phosphorylated to glucose 6-phosphate (G6P) by the cell glucokinase, GlcK, as unphosphorylated 

glucose may accumulate in the cytoplasm, resulting from disaccharide hydrolysis. 

The following steps in EMP are the isomerization of G6P to fructose 6-phosphate (F6P) 

(reversible reaction) and the phosphorylation of F6P to FBP, which is the first non-reversible step in the 

pathway. The enzyme catalyzing this reaction is phosphofructokinase (Pfk), which is the most important 

control element in the glycolytic pathway, phosphorylating F6P at a second site irreversibly. This 

allosteric enzyme is inhibited by ATP and F6P, thus regulating the glycolytic flux (Berg et al., 2011; 

Byrnes et al., 1994). 

The aldol cleavage of FBP by fructose-1,6-bisphosphate aldolase yields two triose phosphate 

molecules, dihydroxyacetone phosphate (DHAP) and GA3P. This cleavage is reversible, as this enzyme 

is also active during gluconeogenesis, when B. subtilis is using less preferred carbon sources such as 

malate or succinate. Because various degradation pathways feed into glycolysis at many different points, 

glycolysis or portions of it run in the forward or reverse direction, depending on the carbon source being 

utilized, in order to satisfy the cell need for precursor metabolites and energy. 

The interconversion of DHAP together with the synthesis of phosphoenolpyruvate (lower branch 

of glycolysis) plays a central role in the metabolic network not only because it yields ATP, but also 

because it generates reducing power and important metabolic precursors for carbohydrate catabolism, 

linking metabolites from the upper branch of glycolysis and from the pentose phosphate pathway to the 

tricarboxylic acid cycle (Krebs cycle), namely G6P, Ribose 5-Phosphate (R5P) and Glycerol 3-

Phosphate (glycerol-3P) (Doan & Aymerich, 2003). 

Pentose Phosphate Pathway 

The Pentose Phosphate Pathway (PPP) is another of the major metabolic pathways for carbon 

oxidation in Bacteria, and specifically in B. subtilis. The Pentose Phosphate Pathway becomes important 

as an entry point for several pentoses commonly found in nature, like xylose, arabinose or ribose. This 
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pathway is also comprised by two phases: oxidative generation of reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) and non-oxidative interconversion of sugars. 

The first phase, oxidative PPP is a major source of reductant (namely NADPH) for biosynthetic 

processes, such as fatty-acid synthesis and the assimilation of inorganic nitrogen, maintaining the redox 

potential necessary to protect against oxidative stress by oxidizing G6P to R5P. In this phase, the three 

steps necessary for the conversion of G6P to R5P are irreversible.  R5P and its derivatives are the source 

of carbon skeletons for the synthesis of major cell components, like DNA and proteins, through synthesis 

of nucleotides, aromatic amino acids, phenylpropanoids and others (Berg et al., 2011; Kim & Gadd, 

2008; Moat et al., 2002). 

The second phase of PPP is a non-oxidative phase (Figure 1.2) comprising reversible reactions, 

which interconverts phosphorylated sugars. Combination of two C5 sugars, glycolytic intermediates that 

can be readily used in glycolysis or gluconeogenesis, depending on the cell metabolic state. 

  

Figure 1.2. Non-oxidative reactions of the Pentose Phosphate Pathway (PPP). Single-head arrows 

indicate irreversible enzymatic reactions and double-head arrows represent reversible enzymatic reactions. Most of 

the reactions are reversible, meaning that the rearrangement of several sugar phosphates in the non-oxidative phase 

of the PPP allows intermediaries to be used for catabolism (F6P, DHAP, GA3P) and ATP production or to generate 

riboses from glycolytic intermediates for biosynthesis (R5P, E4P). 
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The transketolase accepts a 2C fragment from a 5C ketose (xylulose 5-phosphate, X5P) and then 

transfers this fragment to a 5C aldose (R5P), forming a 7C ketose (sedoheptulose 7-phosphate, S7P). 

Abstraction of 2 carbons from X5P yields a 3C-aldose, GA3P. Both molecules (S7P and GA3P) are then 

combined by transaldolase, yielding erythrose 4-phosphate (E4P) and F6P. E4P enters the chorismate 

biosynthesis pathway, which ultimately leads to aromatic amino acid formation (Light et al., 2012). 

GA3P and F6P are phosphorylated sugars that can enter the lower part of glycolysis. PPP can either feed 

riboses into glycolysis for catabolism and ATP production or generate riboses from glycolytic 

intermediates for biosynthesis. 

Tricarboxylic Acid Cycle 

Under aerobic conditions, pyruvate resulting from glycolysis is converted into acetyl-CoA, which 

readily enters the Tricarboxylic Acid Cycle (TCA) (Figure 1.3), where ATP is generated and several 

building blocks for biosynthesis originate from. An example is α-ketoglutarate for glutamate synthesis 

or oxaloacetate, which can be converted to amino acids similar to aspartate (Bartholomae et al., 2014). 

The oxidative decarboxylation of pyruvate (and other acetyl groups from different sources, such as 

succinate, fumarate or malate) to form acetyl-CoA is the link between glycolysis and the TCA; this 

irreversible channeling of the product of glycolysis into the TCA is catalyzed by the pyruvate 

dehydrogenase complex, encompassing a series of redox reactions that result in the oxidation of two 

molecules of acetyl-CoA to two molecules of CO2 (Berg et al., 2011; Cohen, 2011; Kim & Gadd, 2008). 

In summary, the TCA cycle starts with the irreversible oxidative decarboxylation of pyruvate to 

acetyl-CoA by the pyruvate dehydrogenase complex concomitant with NAD+, NADP+ and flavin 

adenine dinucleotide (FAD)  reduction (Commichau et al., 2009). 

Citrate synthase (encoded by citZ) irreversibly condenses acetyl-CoA with oxaloacetate, yielding 

a 6C tricarboxylic acid (citric acid), which aconitase (citB) isomerizes to isocitrate. Isocitrate is 

oxidatively decarboxylated by isocitrate dehydrogenase (icd), which occurs simultaneously with the 

reduction of NADP+ and the release of CO2. The resulting five-carbon compound (α-ketoglutarate) is 

also oxidatively decarboxylated by enzymes of the α-ketoglutarate dehydrogenase complex (odhA and 

odhB) to yield a four-carbon thioester compound (succinyl-CoA). Succinyl-CoA synthetase (sucC) 

couples the cleavage of the high-energy succinyl-CoA into succinate to the synthesis of ATP from ADP 

+ Pi. In order to complete the cycle, succinate must be converted to oxaloacetate, which is accomplished 

by the three following reactions: dehydrogenation of succinate to fumarate by succinate dehydrogenase 

complex (sdhABC), one of which is a FAD-containing subunit, meaning FAD is reduced to FADH2 

(Sousa et al., 2013); hydration of fumarate to malate by fumarase (citG); and finally, the closing reaction 
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of the cycle, regeneration of oxaloacetate from malate by malate dehydrogenase (mdh) and reduction of 

NAD+ to NADH (Bartholomae et al., 2014). 

 

Carbohydrate Uptake and Global Regulation of Carbohydrate Utilization 

Sugar uptake is mediated by facilitator molecules, primary and secondary active transporters, and 

the PTS system (Postma et al., 1993; Saier et al., 2002; Simoni et al., 1967). 

Molecules like glucose or fructose, among others, are transported via a PTS system, a protein 

complex comprising the general proteins enzyme I (EI), the intermediate phosphoryl donor protein HPr 

and the substrate-specific complex protein enzyme II (EII). This complex translocates and 

simultaneously phosphorylates the substrate (reviewed in Stülke & Hillen 2000; Deutscher et. al. 2002). 

Other sugar molecules are transported by ATP-binding cassette (ABC) transport systems. Their 

organization comprises two hydrophobic transmembrane domains (TMDs) coupled to two cytosolic 

nucleotide-binding domains (NBDs), or ATP-binding cassettes, responsible for ATP binding and 

hydrolysis-driven conformational changes for substrate translocation. The majority of NBDs is encoded 

in close proximity to their partner TMDs, although there are exceptions (Ferreira & Sá-Nogueira, 2010; 

Figure 1.3. Tricaboxylic Acid Cycle. Also known as the Krebs cycle, this pathway yields ATP, reducing power 

and biosynthetic intermediaries, such as α-oxoglutarate, a precursor for glutamate and derivatives, oxaloacetate, a 

precursor of aspartate and succinyl-CoA. Relevant enzymes and enzymatic complexes are shown in bold, while 

genes encoding for those enzymes are italicized in grey. OGDC stands for oxoglutarate dehydrogenase complex 

and SDHC stands for succinate dehydrogenase complex. 
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Quentin et al., 1999). A functional ABC system associates itself to a solute binding protein (SBP), 

responsible for substrate recognition and internalization (Higgins, 2001; Quentin et al., 1999). For 

example, oligosaccharides up to four L-arabinosyl units, such as α-1,5-arabinotetraose, resulting from 

arabinan degradation, are  transported by the ABC-type importer AraNPQ (Ferreira & Sá-Nogueira, 

2010). 

Some molecules are translocated into the cell via a permease, like arabinose, transported by AraE 

(Krispin & Allmansberger, 1998a; Sá-Nogueira & Ramos, 1997), myo-inositol transported by IolT and 

IolF (major and minor transporter) (Morinaga et al., 2010; Yoshida et al., 2002) or gluconate, 

transported by GntP (Fujita & Fujita, 1989; Reizer et al., 1991). So far, glycerol is the only carbohydrate 

known to enter the cell via the aquaporin-like carbohydrate facilitator, GlpF (Beijer et al., 1993) 

(reviewed in Deutscher et. al. 2002). 

Control of central carbon metabolism in bacteria has several control levels to regulate the use of 

carbon sources using global regulators. Some of these global regulators are also integrated into a larger 

regulatory network by which B. subtilis coordinates the metabolic flow through important metabolic 

intersections, namely carbon and nitrogen metabolism, in response to few signaling metabolites 

(reviewed in Sonenshein 2007). An example of such regulatory network is the carbon catabolite 

regulation. 

B. subtilis thrives in many carbon sources, and as permanent expression of all transporters would 

consume valuable cellular resources and occupy limited membrane space, cells selectively express 

transport systems on the basis of extracellular and intracellular signals. The regulatory mechanism by 

which cells coordinate the metabolism of carbon and energy sources to maximize its efficiency is 

referred to as carbon catabolite control or regulation (CCR) (reviewed in Fujita 2009). Bacteria in 

general, and B. subtilis in particular, can preferentially use the carbon sources that are most easily 

accessible and allow fastest growth, which results in diauxic growth – immediate consumption of the 

most favored carbon source (i.e. glucose, hence the name glucose repression being usually interchanged 

with carbon catabolite repression) and only after its exhaustion the other carbon sources present in the 

medium will be used. CCR is defined as a regulatory phenomenon by which the expression genes 

encoding enzymes necessary for the use of secondary carbon sources are reduced in the presence of a 

preferred carbon source (Görke & Stülke, 2008; Singh et al., 2008) 

Carbon catabolite repression has been extensively studied in model organisms like E. coli and B. 

subtilis: although the outcome is similar, the mechanisms underlying CCR are quite different.  

In E. coli, glucose is transported into the cell via a PTS system. Upon substrate translocation, 

Enzyme I (EI) is autophosphorylated and the phosphate group of phosphoenolpyruvate is sequentially 

transferred to the His15 residue in HPr. HPr then donates the phosphoryl group to a histidine residue in 
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the A domains of the various substrate-specific transporters or Enzyme II (EIIs). Finally, the phosphoryl 

group is transferred to a residue in the EIIB domain and from there to glucose during its uptake through 

the membrane domain. Because there is glucose in the medium, the concentration of phosphorylated 

EIIA decreases and it cannot activate membrane-bound enzyme adenylate cyclase. Low intracellular 

cyclic adenosine monophosphate (cAMP) concentration does not trigger the formation of a complex 

between cAMP and cAMP receptor protein (CRP), which is necessary for promoter activation of 

catabolic genes. RNA polymerase binding to the promoters subjected to CCR and formation of the open 

transcription complex required for transcription only occurs at the promoters if they are previously 

activated (reviewed in Deutscher et. al. 2006; Görke & Stülke 2008). In the absence of glucose, EII-P 

stimulates adenylate cyclase activity, increasing [cAMP] in the cell, which bind to CRP, thus activating 

promoters from catabolic operons responsible for the use of less favored carbon sources.  

Carbon catabolite control in B. subtilis differs from the one used in E. coli, despite having the 

same outcome. Global regulation of carbon catabolite control occurs when the catabolite control protein 

A (CcpA) and histidine-containing phosphocarrier protein (HPr) phosphorylated at Ser46 (HPr-Ser46-P) 

complex bind to sequences known as catabolite responsive elements (cre), present in approximately 300 

target operons (Fujita 2009 and references there in). B. subtilis HPr can be phosphorylated at two sites: 

the PEP-dependent phosphorylation of a histidine residue at position 15 (HPr-His15-P), which serves 

sugar translocation purposes, and the ATP-dependent phosphorylation of a serine at position 46 

(HPr-Ser46-P), which serves regulatory purposes. Presence of glucose results in HPr-His15-P. A 

consequent increase in glycolytic metabolites from glucose metabolization, especially FBP, in the cell 

stimulates the ATP-dependent HPr kinase/phosphatase-catalyzed phosphorylation of HPr at serine 46 

(Reizer et al., 1998) (reviewed in Stülke & Hillen 2000; Deutscher et. al. 2002; Deutscher et. al. 2006; 

Fujita 2009). HPr-Ser46-P is able to form a complex with CcpA, binding to cre sites (Schumacher et 

al., 2007) (Figure 1.4).In B. subtilis roughly 10% of the genome is under the control of CcpA mediated 

regulation, and the majority of those genes are repressed by CcpA (Blencke et al., 2003; Moreno et al., 

2001). If the cre sites are located upstream of the -35 region, global regulation is achieved through 

activation of the promoters by interaction with RNA polymerase, thus originating carbon catabolite 

activation (CCA). Contrastingly, if the cre sites are located in the promoter region, binding of CcpA 

causes transcription repression, preventing RNA polymerase binding to the promoter, which results in 

carbon catabolite repression. 
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Similarly, if the cre site is located downstream of the transcription initiation site, CcpA binding 

causes transcription roadblock, prompting RNA polymerase release from DNA. The presence of two 

cre elements in an operon, synergistically contributing for CCR is not uncommon in B. subtilis – one of 

the elements prevents RNA polymerase binding whilst the other engages in a roadblocking mechanism 

– and can be found in the gnt (Miwa et al., 1997), iol (Miwa & Fujita, 2001) and ara operons (Inácio et 

al., 2003). 

Global carbon catabolite control is also hierarchically achieved with substrates other than glucose, 

or non-PTS sugars. In B. subtilis, glycerol, fructose and mannitol also cause catabolite repression, as 

well as sucrose. Sugars like ribose or arabinose also contribute to CCR, although to a very little extent 

(Singh et al., 2008). This phenomenon is not exclusive to B. subtilis and has been described in 

Clostridium acetobutylicum (Aristilde et al., 2015) and in E. coli (Bettenbrock et al., 2007).  

Figure 1.4. Carbon Catabolite Regulation in Bacillus subtilis. Uptake of a PTS-sugar (eg. glucose) leads 

to an increase in the intracellular [FBP], triggering ATP-dependent HPr kinase/phosphatase-catalyzed 

phosphorylation of HPr and Crh at Ser46. Only the Ser46-P forms of HPr and Crh bind to CcpA. The HPr-Ser46-P 

/CcpA and Crh-Ser46-P /CcpA complexes can bind to the catabolite responsive elements, cre, to cause Carbon 

Catabolite Repression or Carbon Catabolite Activation, depending on the position of the cre. Adapted from 

Deutscher et al. 2002 and Fujita 2009. 
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CCR is also achieved in a CcpA-independent manner: catabolite control can be mediated by 

CcpB, a homolog protein of CcpA (Chauvaux et al., 1998), CcpC, CcpN, or CggR (reviewed in Fujita, 

2009). CcpC is known to be involved in TCA genes regulation, such as aconitase (citB) activation and 

repression in response to citrate levels (Mittal et al., 2013), whereas CcpN has been described as an 

additional mediator of CCR in B. subtilis, acting on genes encoding gluconeogenic enzymes (Tännler et 

al., 2008). CggR regulates the gapA operon (Ludwig et al., 2001) CodY is also involved in global 

regulation, namely in the synthesis of leucine and isoleucine (BCAAs), histidine and arginine and 

transporters for amino acids, peptides and sugars, as well as regulation of transcription of carbon-

overflow pathways and guanine nucleotide synthesis (Sonenshein 2007 and references therein). 

Another mechanism involved in carbon catabolite regulation is inducer exclusion. In E. coli, for 

instance, dephosphorylation of enzyme IIAGlc by G6P causes inhibition of uptake of a number of non-

PTS carbon sources, namely lactose, melibiose or glycerol; dephosphorylated EIIGlc can bind to a 

number of enzymes involved in the metabolism of non-PTS carbon sources, inhibiting their utilization 

by the cell (Hogema et al., 1998a, b). In B. subtilis cells metabolizing a PTS sugar, the glycerol kinase, 

GlpK, is not phosphorylated, causing a slow uptake of glycerol. Insufficient phosphorylation and low 

GlpK activity towards glycerol was hypothesized as the basis for the CcpA-independent CCR 

mechanism of inducer exclusion (Darbon et al., 2002). 

Additionally, B. subtilis and other Bacilli encode a paralogue of HPr, catabolite repression HPr 

protein (Crh), which bears over 40% sequence identity to HPr. Crh lacks the His15 site, but is 

phosphorylated at Ser46 (Galinier et al., 1997; Landmann et al., 2011; Singh et al., 2008). Crh is known 

to repress citM when B. subtilis is grown on succinate and citrate as carbon sources (Warner & Lolkema, 

2003) , but it is considered to have a weak contribution to global CCR, mainly due to its much lower 

levels in the cell and its lower binding affinity for CcpA as compared with HPr(Ser~P) (Görke et al., 

2004). In its phosphorylated form, this protein is also known to inhibit glyceraldehyde 3-phosphate 

dehydrogenase (GapA) activity in vitro (Pompeo et al., 2007), and work by Inácio & De Sá-Nogueira 

2007 indicated that Crh might be more important for CCR during the transition to stationary phase. An 

additional regulatory role for Crh was also proposed, as non-phosphorylated Crh binds to and inhibits 

activity of the metabolic enzyme methylglyoxal synthase, MgsA, in B. subtilis, initiating a glycolytic 

bypass (Landmann et al., 2011). Despite not having a strong contribution for CCR, Crh seemingly 

regulates glycolytic flux through interaction with two metabolic enzymes, MgsA and GapA (Landmann 

et al., 2012; Pompeo et al., 2007). 

 

Arabinose metabolism in Bacillus subtilis 

In nature B. subtilis often encounters a mixture of different and transient carbon sources that can 

potentially be used. During its permanence either in the gastrointestinal tract of animals or in the soil, 

contributing to plant biomass degradation, B. subtilis encounters complex polymers comprising 
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lignocellulosic materials, namely hemicellulose and cellulose. Unlike cellulose, hemicellulose is a 

heteropolymer comprised of a wide variety of sugars and acids, like β-D-xylose, α-L-arabinose, 

β-D-mannose, β-D-glucose, α-D-galactose, α-D-glucuronic, α-D-4-O-methylgalacturonic and 

α-D-galacturonic acids and, to a lesser extent, α-L-rhamnose and α-L-fucose. Presence and prevalence 

of these carbon sources in the hemicellulose structure varies with the origin of plant biomass, yielding 

different types of structures: glucuronoxylans, galactoglucomannans, arabinoglucuronoxylans, 

xyloglucans and arabinoxylans. L-Arabinose, the second most abundant pentose in nature, is found in 

significant amounts not only in arabinoxylans and arabinogalactans, but also in homopolysaccharides, 

branched and debranched arabinans (Gírio et al., 2010; Inácio & Sá-Nogueira, 2008).  

The pathway for the utilization of arabinose in B. subtilis was described in 1967 (Lepesant & 

Dedonder, 1967), and studies with mutants unable to use arabinose led to the identification and mapping 

of three genes encoding arabinose catabolizing enzymes, organized in an operon (Lepesant & Dedonder, 

1967; Paveia & Archer, 1992). araA encodes an arabinose isomerase, which converts arabinose into 

L-ribulose, araB encodes L-ribulose 5-phosphate kinase, which phosphorylates L-ribulose and, finally 

araD encodes an epimerase that catalyzes the conversion of R5P to X5P. D-xylulose 5-phosphate is then 

metabolized in the pentose phosphate pathway (Sá-Nogueira et al., 1997) (Figure 1.5). 

The ara loci of B. subtilis 

The complete genome sequence of B. subtilis, together with the arabinose operon sequence was 

released in 1997 (Kunst et al., 1997; Sá-Nogueira et al., 1997). Work by Sá-Nogueira and colleagues 

established araABD as part of a larger transcriptional unit of about 11kb (ara operon) located at about 

Figure 1.5. Genetic organization of the arabinose operon (A) and pathway for the utilization of 

arabinose in Bacillus subtilis (B). Operon genes, as well as the repressor and permease genes are 

represented by an arrow. Promoters ( ) and terminators (   ) are also represented. 
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256o in the B. subtilis chromosome, whose expression is directed by one σA-type promoter (Para). While 

araABD encode the enzymes required for intracellular conversion of arabinose into D-xylulose 

5-phosphate, the remaining six genes are not necessary for arabinose utilization: araL encodes a 

phosphatase, araM encodes a glycerol 1-phosphate dehydrogenase, araNPQ encode components of an 

ABC-type transporter involved in the uptake of α-1,5-arabinooligosaccharides and abfA encodes an 

arabinofuranosidase (Ferreira & Sá-Nogueira, 2010; Godinho & Sá-Nogueira, 2011; Guldan et al., 

2008; Sá-Nogueira et al., 1997). 

In a different location of the B. subtilis chromosome, at about 294o, two open reading frames with 

divergently arranged promoters are found: araR encodes the negative regulatory protein of the operon, 

AraR, and the other, araE, encoding the AraE permease (Mota et al., 1999; Sá-Nogueira & Ramos, 

1997). 

In addition to the arabinose degrading-enzymes, B. subtilis also encodes four enzymes devoted to 

the degradation of arabinan and arabinose-containing polysaccharides, which release arabinose and 

arabinosyl oligomers from these substrates. The abfA gene is part of the metabolic operon 

araABDLMNPQ-abfA and the abf2 gene is located 23 kb downstream from the operon. Both genes 

encode α-L-arabinofuranosidases. The abnA gene, positioned immediately upstream from the metabolic 

operon, encodes an endo-α-1,5-arabinanase, an enzyme also encoded by the abn2 gene, located in a 

different region of the chromosome. All genes, except for abn2, are under the negative regulation exerted 

by AraR (Inácio & Sá-Nogueira, 2008; Inácio et al., 2008; Raposo et al., 2004). 

ara regulon 

The arabinose regulon is comprised by thirteen genes under the control of the AraR transcription 

factor. In the absence of arabinose, AraR binds to palindromic sequences in the promoter regions of 

such genes, named ara boxes (operators - OR). AraR binds cooperatively to two in phase operators in 

the araABDLMNPQ-abfA (ORA1 and ORA2), araE (ORE1, ORE2) and abf2 (ORX1, ORX2) promoters, 

causing the formation of a small loop in the DNA strand, achieving a higher level of repression. Binding 

to only one operator is observed in self-regulation (araR gene - ORR3) and in the promoter of the abnA 

gene (ORB1), allowing a more flexible control of transcription. 

The effector molecule arabinose causes a change in AraR conformation, preventing DNA binding. 

Thus, its mode of action is predominantly the result of protein-DNA interactions, although the 

cooperative binding involves protein-protein interactions. The AraR DNA contacting domain comprises 

a helix-turn-helix motif similar to that of the GntR family, while its C terminal domain presents 

homology to the LacI/GalR family (Correia et al., 2014; Franco et al., 2006, 2007; Mota et al., 1999, 

2001; Sá-Nogueira & Mota, 1997). 
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Negative regulation by AraR was first described by Sá-Nogueira & Mota 1997, as an insertion-

deletion mutation in araR caused constitutive expression of the araABDLMNPQ-abfA operon. 

Moreover, sensitivity to the presence of arabinose was observed since the addition of this sugar to an 

early-exponentially growing culture of this mutant resulted in immediate cessation of growth (Sá-

Nogueira & Mota, 1997).  

Other than negative regulation by AraR, the arabinose regulon genes are also under CCR. Several 

cre are involved in the arabinan and arabinose utilization genes, namely two cre sites found in the region 

of the araABDLMNPQ-abfA operon (one located between the promoter region of the catabolic operon 

and the araA gene, and one located 2kb downstream within the araB gene), and one cre site found in 

the promoter region of araE, abf2, abnA, and abn2 (Inácio & Sá-Nogueira, 2008; Inácio et al., 2003; 

Raposo et al., 2004). A roadblocking mechanism of CcpA was shown to operate in CCR of the operon 

(Inácio et al., 2003). 

Genes of unknown function in the context of the arabinose operon 

The function of two genes present in the arabinose operon is still unclear in the context of 

arabinose utilization. AraM, which constitutes the first identified glycerol 1-phosphate dehydrogenase 

(G1PDH) from bacteria, has been proposed to generate glycerol 1-phosphate for the synthesis of 

phosphoglycerolipids in Gram-positive bacterial species (Guldan et al., 2008). AraM catalyzes the 

NADPH-dependent reduction of DHAP to glycerol 1-phosphate, displaying a similar catalytic 

efficiency to its archaeal homologues, but its activity is dependent on the presence of Ni2+ instead of 

Zn2+. The glycerol moiety of archaeal lipids is derived from sn-glycerol-1-phosphate, which is the 

enantiomer of sn-glycerol-3-phosphate, the precursor for bacterial/eukaryotic glycerolipids. The 

structural differences between archaeal and bacterial/eukaryotic lipids are believed to cause their 

distribution between these domains. These unique characteristics define what is called the “Lipid 

Divide”, and no exception to this pattern has been observed to date (Koga, 2014; Yokoi et al., 2012).  

AraL was initially annotated as a pNPPase with sequence homology to sugar phosphatases members 

of he HAD superfamily (Sá-Nogueira et al., 1997). Recent work (see Chapter III) has established AraL 

as a sugar phosphatase belonging to the HAD superfamily, displaying a wide range of substrate 

specificity (Godinho & Sá-Nogueira, 2011). 

 

Haloacid Dehydrogenase Superfamily 

Phosphoryl group transfer is a widely used process for energy transduction, regulation and for cell 

signaling in all organisms and phosphate transfer mechanisms are often part of strategies used to respond 

to different external and internal stimuli, having evolved many times in different circumstances. Cellular 

enzymes responsible for phosphoryl transfer and phosphate-ester hydrolysis evolved in several 
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superfamilies, developing successful strategies despite their distinct evolution and different structural 

topologies (Allen & Dunaway-Mariano, 2004), such as P-loop NTPases, the RNase H fold of ATPases  

the DDH, HD, PHP, calcineurin-like, synaptojanin-like, the Receiver domain and HAD superfamilies 

(Burroughs et al., 2006). 

One of the most successful and widely distributed enzyme superfamilies is the Haloacid 

Dehalogenase Superfamily (HADSF), originally named after the archetypal enzyme L-2-haloacid 

dehalogenase. Members of this family are related by their ability to form covalent enzyme-substrate 

intermediates via a conserved active site aspartic acid (D), which facilitates cleavage of C-Cl, P-C or 

P-O bonds. Interestingly, this superfamily is dominated by putative phosphatases (~79%) and ATPases 

(~20%), which are more prevalent, and also includes phosphonatases and phosphomutases, rather than 

by enzymes like the one it was named after (Allen & Dunaway-Mariano, 2009; Aravind et al., 1998; 

Burroughs et al., 2006). 

HAD superfamily members are structurally characterized by the occurrence of a highly conserved 

α/β catalytic core domain. This α/β architecture adopts the topology of a typical Rossmanoid fold, a 

protein structural motif which alternates β strands with α helices (also called a βαβ fold). The scaffold 

of the core catalytic domain of the HADSF contains a three- layered α/β sandwich comprised of 

repeating β strand (S1 to S5) and α helix units, adopting the typical topology of a βαβ fold. This fold 

differs from related Rossmanoid folds in two key structural motifs: a nearly complete α-helical turn, the 

“squiggle”, and a β-hairpin turn, the “flap” (Burroughs et. al. 2006; Lu et. al. 2008; Allen & 

Dunaway-Mariano 2009). Both structural motifs not only distinguish a HAD Rossmanoid fold from 

other Rossman folds, but also play an important role in HADSF catalysis (Figure 1.6). 

  

In addition to the occurrence of the squiggle and the flap, HADSF members present four highly 

conserved sequence motifs, the loops constituting the active site (S1 to S4). These motifs constitute a 

Figure 1.6. Topology diagram of the typical 

Rossmanoid-like fold from the HAD 

superfamily. Conserved core strands are in blue, 

non-conserved elements are depicted in grey. 

Broken lines indicate secondary structures that may 

not be present in all family members. The initial 

strand containing the conserved D residue is 

rendered in yellow, and C1 and C2 cap insertion 

points are depicted in green and orange, 

respectively. The α-helical turn (pink) and the 

β-hairpin turn (two blue strands projecting from the 

core of the domain, downstream from the 

“squiggle”) (adapted from Burroughs et al. 2006).  
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catalytic scaffold that positions the catalytic residues involved in metallic cofactor (Mg2+) and substrate 

binding and acid-base and nucleophilic catalysis, using active site aspartate residues in nucleophilic 

catalysis.  S1 to S5 position important residues that are conserved throughout the HADSF and that 

pinpoint HADSF members in amino-acid sequence alignments. Motif sequence I is located on S1 and it 

presents the DxD signature (where x is any amino acid). The two aspartates coordinate the Mg2+ cofactor 

and the first Asp residue is directly responsible for nucleophilic catalysis (Allen & Dunaway-Mariano, 

2009). Motif II corresponds to the S2 strand, where a highly conserved serine or threonine is present, 

binding the substrate phosphoryl group. Motif III comprises a conserved arginine or lysine at the 

beginning of the helix located upstream of the S4 strand, and strand S4 itself, as well as its conserved 

acidic residues located on the end of the strand (Asp), account for motif IV. These residues display one 

of three basic signatures: DD, GDxxxD, or GDxxxxD, and together with the Asp residues from motif I 

they help coordinate the Mg2+ cofactor (Allen & Dunaway-Mariano, 2004, 2009; Burroughs et al., 2006; 

Lu et al., 2005). Most HAD phosphohydrolases present a highly conserved α/β core domain with a 

sequence insert which forms a mobile cap domain (cap). The cap accounts for substrate recognition and 

simultaneously divides the family into three generic subfamilies – cap insertion between motifs I and II 

typifies subfamily I (C1), whereas an α/β domain insertion between motifs II and III typifies subfamily 

II (C2). Subfamily III members do not possess a cap domain (C0) (Burroughs et al., 2006; Peisach et 

al., 2004; Selengut, 2001). There are two major evolutionary distinct, unrelated types of classical C2 

caps (C2a and C2b) which further divide subfamily II in two types A and B. Both present an α/β domain, 

but while subfamily IIA presents an αβαββαβαβ topology, subfamily IIB displays an αββ(αβαβ)αββ 

topology (Burroughs et al., 2006; Lu et al., 2005; Peisach et al., 2004).  

Cap domains in the HADSF are intrinsically linked to substrate specificity. Both the modularity of 

the phosphoryl-transfer core domain and the specificity-conferring cap domain are considered to be the 

structural basis for the adaptation of the scaffold to a wide range of phosphate esters whilst maintaining 

catalytic efficiency - numerous C1 and C2 members show substrate ambiguity with a broad substrate 

range, while C0 members generally show a narrow substrate range. 

Figure 1.7. Schematic representation of the three HAD superfamily subfamilies. Ribbon diagrams, 

from left to right: Subfamily I, β-phosphoglucomutase; subfamily IIA, NagD; subfamily IIB, 

Phosphoglycolatephosphatase and subfamily III, magnesium dependent phosphatase 1. The common domain to 

all subfamilies is rendered in green, while the different cap domains are colored in purple. Adapted from Lu et al. 

2005. 
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This broad range in substrate specificity is consistent with the role HADSF members in diverse 

physiological functions in primary and secondary metabolism, membrane transport, signal transduction, 

metabolic homeostasis and nucleic-acid repair  HADSF members have the ability to hydrolyze a wide 

range of phosphorylated metabolites, including carbohydrates, nucleotides, organic acids, coenzymes, 

and small phosphodonors. HAD family phosphatases play important roles in carbohydrate utilization 

and metabolic homeostasis. (Allen & Dunaway-Mariano, 2009; Godinho & Sá-Nogueira, 2011; 

Kuznetsova et al., 2006; Lu et al., 2005; Pandya et al., 2014; Papenfort et al., 2013; Park et al., 2015; 

Tremblay et al., 2006). 

The Sugar Phosphate Toxicity Phenomenon 

The sugar phosphate toxicity phenomenon is not new to scientists working with bacterial cells. 

Various studies starting in the late 1950’s have described toxicity associated with sugar phosphates and 

its accumulation in bacteria, namely in E. coli (Englesberg et al., 1962; Kadner et al., 1992; Yarmolinsky 

et al., 1959), with bacteriostatic (Englesberg et al., 1962) or bactericidal effects (Irani & Maitra, 1977; 

Yarmolinsky et al., 1959). 

Although not new, this phenomenon remains largely uncharacterized, as well as its regulatory 

circuits or bypass mechanisms that help circumvent it. Most studies are focused on mutant strains that 

lack specific metabolic enzymes and, as a result, accumulate phosphorylated sugar intermediates 

upstream of the pathway (Mitchell et al., 1987). At crossroads of metabolic pathways there are 

intermediary metabolites whose imbalances cause stress that send signals to genes to rectify the stress 

and achieve homeostasis (Lee et al., 2009). 

Sugar Phosphate Toxicity in Escherichia coli 

Sugar phosphate toxicity phenomenon in E. coli has been extensively documented and was first 

described by researchers working with galactose-sensitive mutants. The authors reported abnormal 

sensitivity to galactose in E. coli strains due to a defective galactose 1-phosphate uridyl transferase 

(Kurahashi & Wahba, 1958; Yarmolinsky et al., 1959). Authors stated that the presence of a functional 

galactokinase was a pre-requisite for growth inhibition, and that double mutants in the galactokinase 

and galactose-1-phosphate-transferease enzymes did not show this growth inhibition. At the time 

addition of glucose to the medium resulted in an almost resumption of growth, most likely due to what 

we now know to be catabolite repression exerted by glucose (Yarmolinsky et al., 1959). 

Similar studies were later published focusing on toxicity of UDP-glucose (Sundararajan et al., 

1962), α-glycerol-phosphate (Cozzarelli et al., 1965) and arabinose (Englesberg et al., 1962). The 

studies of Englesberg and collaborators in 1962 detected arabinose sensitive mutants, which were 

deficient in L-ribulose-5-phosphate epimerase, thus accumulating the phosphorylated metabolite 
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L-ribulose 5-phosphate. Growth of sensitive mutants in medium with L-arabinose originated L-

arabinose-resistant mutants which were frequently deficient in both L- ribulose 5-phosphate 4-epimerase 

and L-ribulokinase (Englesberg et al., 1962). 

More recent studies on E. coli, however have focused on phosphosugar stress of PTS sugars, 

namely glucose. In this particular case, it is known that the mechanism involves a small non coding 

RNA (sRNA), SgrS, which appears to be dedicated to sugar phosphate stress and it is only induced by 

the accumulation of glucose-6-phosphate (G6P) or the non-metabolizable G6P analog, α-methyl 

glucoside 6-phosphate (αMG6P), and not by other phosphosugars (Vanderpool & Gottesman, 2004; 

Vanderpool, 2007). Like glucose, αMG (α-methyl glucoside) is transported and concomitantly 

phosphorylated by the PTS to αMG6P. Researchers observed that when G6P accumulated in strains 

lacking glucose 6-phosphate isomerase or in wild-type cells that were exposed to αMG and subsequently 

accumulate αMG6P intracellularly, the post-transcriptional regulation of ptsG (encoding the membrane-

bound, glucose specific permease of the system) resulted in a marked destabilization of its mRNA under 

those stress conditions (Kimata et al., 2001). This post-translational regulation exerted by SgrS directly 

promotes RNase E-dependent degradation of ptsG mRNA during glucose-phosphate stress. As 

phosphosugar levels rise, SgrS levels increase, full-length ptsG mRNA is depleted and RNA degradation 

products accumulate. SgrS then represses the ptsG mRNA at the level of translation, sequestering its 

ribosome binding site (RBS), helping relieve the phosphoglucose stress (Kawamoto et al., 2006; 

Vanderpool & Gottesman, 2007). Authors presented evidence that glucose-phosphate stress results from 

depletion of glycolytic intermediates. Addition of glycolytic compounds like G6P and fructose-6-

phosphate rescues the growth defect of an sgrS mutant caused by α-MG, making depletion of glycolytic 

intermediates the metabolic root of glucose-phosphate stress (Richards et al., 2013). Regulatory circuits 

responsible for the control of disruptive glucose and PTS sugars influx have remained elusive. In recent 

work, the role of regulatory RNAs, like SgrS has become evident, highlighting a robust regulatory circuit 

that adjusts sugar influx to cell needs through repression of major sugar importers and upregulation of 

genes involved in phosphate-removal from phosphosugars. (Papenfort et al., 2013). 

Sugar Phosphate Toxicity in Bacillus subtilis 

Although less documented in literature, sugar phosphate toxicity in B. subtilis was reported in the 

early 1970’s. While working with glucose 6-phosphate dehydrogenase and phosphoglucose isomerase 

mutants of B. subtilis, Prasard & Freese in 1974 described cell lysis concomitant with intracellular 

glucose 1-phosphate accumulation, inhibiting N-acetyl glucosamine-6-phosphate synthesis (Prasad & 

Freese, 1974).  

Subsequent studies also determined that addition of galactose is toxic for galE-negative B. 

subtilis, since it results in lethal intracellular concentration of UDP-galactose. This growth arrest 
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phenotype is reduced in cells lacking a phosphatase (encoded by galK) and/or a galactose 1-phosphate 

uridyltransferase (encoded by galT), which allow for the metabolization of galactose in UDP-galactose. 

Moreover, glucose is also toxic for galE-negative strains in the long run (late log phase). Lethal 

intracellular concentration of UDP-glucose was estimated to be 0.2 µM (Krispin & Allmansberger, 

1998b). More recent studies have established a close relationship between the galactose metabolism and 

exopolysaccharide (EPS) formation (a key component of biofilm), as EPS production has been shown 

to relieve UDP-galactose toxicity in galE-negative strains (Chai et al., 2012). 

Sugar phosphate toxicity studies in B. subtilis focused on glycolytic intermediates (glucose and 

its epimer galactose) accumulating in strains with some deficiency in one of the metabolic genes 

encoding enzymes necessary for the downstream utilization of phosphorylated glycolytic sugars. Sugar 

phosphate toxicity of non-PTS sugars in B. subtilis, was described by Paveia & Archer, 1992 that 

characterized arabinose sensitive mutants, which were deficient in L-ribulose-5-phosphate epimerase, 

thus accumulating L- ribulose 5-phosphate (Paveia & Archer, 1992). Later, Sá-Nogueira et. al, reported 

pentose toxicity in an B. subtilis strain deficient in the regulator AraR (Sá-Nogueira et al., 1997). Unlike 

glucose 1-phosphate and UDP-galactose toxicity, which was observed awhile after sugar addition in 

strains with defects in catabolic genes, arabinose toxicity was observed immediately after sugar addition 

to a repressor-null mutant in complex medium (Sá-Nogueira et al., 1997). 
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Abstract 

The operon araABDLMNPQ-abfA of Bacillus subtilis, is responsible for arabinan utilization and 

arabinose catabolism, however the role of two genes, araL and araM, in this context is still elusive. In 

a strain deregulated for arabinose utilization, lacking the transcription factor AraR, addition of arabinose 

to an exponentially growing culture results in immediate cessation of growth. The toxic effect is 

suppressed by a large deletion of all genes downstream of araD. Since neither araNPQ nor abfA were 

considered to contribute to the toxic effect, due to its assigned function, the potential candidates are the 

genes araL and araM. To investigate their role in the phenomenon of toxicity caused by arabinose, we 

used two distinct and complementary approaches: in-frame deletions of araL and araM were constructed 

and analyzed in different genetic backgrounds, and in addition the effect of an ectopic and controlled 

expression of araL and araM was characterized. The results strongly suggest that araL and araM do not 

play a role in the toxic effect of arabinose observed in an araR-null mutant. 

 Introduction 

Complete bacterial genome sequencing data obtained to date has revealed that close to half of all 

bacterial ORFs identified have no assigned functions. Bacillus subtilis, a model organism for 

Gram-positive bacteria, including the human pathogens Bacillus anthracis, Listeria monocytogenes, 

Clostridium difficile, Streptococcus pneumoniae and Staphylococcus aureus, has its genome sequenced 

since 1997, however about 870 genes, one-fifth of its genes, have unknown function (Arrieta-Ortiz et 

al., 2015; Kunst et al., 1997). 

B. subtilis is able to utilize L-arabinose as sole carbon and energy source. The enzymes necessary 

to catabolize arabinose, AraA, AraB and AraD, which convert L-arabinose to D-xylulose 5-phosphate 

are encoded by the first three genes of the transcriptional unit araABDLMNPQ-abfA (Sá-Nogueira et 

al., 1997).  All the genes of the operon have an assigned function in the context of arabinose utilization 

except araL and araM. However it was shown that all open reading frames downstream from araD are 

not essential for L-arabinose utilization (Sá-Nogueira et al., 1997), although araNPQ and abfA are 

involved in arabinosyl oligomers uptake and catabolism (Ferreira & Sá-Nogueira, 2010; Inácio et al., 

2008).  

The purified product of the araM gene displays activity of a glycerol-1-phosphate dehydrogenase 

Ni2+ dependent. The exact function of this enzyme in B. subtilis is unknown, as it was the first 

glycerol-1P dehydrogenase to be identified in Gram-positive organisms (Guldan et al., 2008). AraL is 

characterized as a phosphatase from the HAD superfamily (see Chater III; Godinho & Sá-Nogueira 

2011). Both gene products remain elusive in their biological role in the context of the arabinose operon. 

The araL and araM genes are present across several Bacillus species - B. subtilis (araL and araM), B. 

amyloliquefaciens (araL and araM), B. licheniformis (araM), B. halodurans (araM), as well as in 
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Geobacillus stearothermophilus, where araL and araM are part of gene cluster involved in arabinan 

degradation. In the later, it is speculated that araL and araM might play a role in an alternative arabinose-

utilization pathway (Shulami et al., 2011), similar to that described first in Azospirillum brasiliensis 

(Watanabe et al., 2006a, b). A. brasiliensis was the first bacterium in which an alternative pathway for 

L-arabinose degradation was described: arabinose is initially oxidized to L-arabino-ϒ-lactone, by a 

NAD(P)+-dependent dehydrogenase, and is subsequently metabolized to α-ketoglutarate, which enters 

the TCA  (Watanabe et al., 2006b). Similarly, in Archaea, examples of L-arabinose pathways involving 

dehydrogenases have also been described (reviewed in Bräsen et. al. 2014), such as an oxidative pathway 

involving L-arabinose metabolization to α-ketoglutarate in Haloferax volcanii (Johnsen et al., 2013). 

Fungal pathways for arabinose utilization are based on an unique oxidoreductive pathway, which 

converts L-arabinose via L-arabinitol (L-arabinose reductase), L-xylulose (L-arabinitol dehydrogenase) 

and xylitol (L-xylulose reductase) to D-xylulose (xylitol dehydrogenase) and finally to D-xylulose 

5-phosphate (xylulokinase) (Seiboth & Metz, 2011). 

Previous work by Sá-Nogueira and collaborators documented that addition of arabinose to an 

early-exponentially growing culture of an araR-null mutant strain resulted in immediate cessation of 

growth in a complex medium. The authors speculated that this effect could be due an increased 

intracellular level of arabinose which consequently caused an increase in the concentration of the toxic 

intermediates to the cell (Sá-Nogueira & Mota, 1997). Interestingly, the authors showed that this toxic 

effect of arabinose was suppressed by a deletion of all genes downstream of araD (Sá-Nogueira et al., 

1997). Since neither araNPQ nor abfA were considered to contribute to the toxic effect, due to nature 

of their function (transmembrane protein components and arabinofuranosidase, respectively), the 

potential candidates for this effect are the products of the genes araL and araM. 

To ascertain the role of the araL and araM gene products in the toxic effect of arabinose observed 

in the araR-null mutant, we generated in-frame deletions of araL and araLM in the B. subtilis 

chromosome. The effect of these deletions was analyzed in different genetic backgrounds.  In addition, 

we expressed the araL, araM and araLM ectopically by placing the genes under the control of an 

inducible promoter derived from Pspac. The results obtained indicate that araL and araM do not 

contribute to the toxic effect of arabinose in B. subtilis araR-null mutant strains. 

Materials and Methods 

Substrates. All substrates were purchased from Sigma-Aldrich Co, St. Louis, MO, USA. 

Bacterial strains and growth conditions. Strains used in this work are listed in Table 3.1. B. 

subtilis strains were grown on LB medium (Miller, 1972), SP medium (Anagnostopoulos & Spizizen, 

1960) or minimal C medium supplemented with casein hydrolysate 1% (w/v) (Pascal et al., 1971). 
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Chloramphenicol (5 μg.mL-1), kanamycin (25 μg.mL-1), spectinomycin (50 μg.mL-1) or erythromycin (1 

μg.mL-1), L-arabinose (0.4% (w/v)), IPTG (1 mM) and X-Gal (40 μg.mL-1) were added as appropriate. 

Solid medium was made with LB, or Sugar Free Agar Medium (LabM) containing 1.6% (w/v) agar 

(LabM). The amyE phenotype was tested in plates of solid LB medium containing 1% (w/v) potato 

starch; after overnight incubation, plates were flooded with a solution of 0.5% (w/v) I2-5.0% (w/v) KI 

for detection of starch hydrolysis. Escherichia coli strain DH5 (Gibco BRL) was used for routine 

molecular cloning work. Ampicillin (100 μg.mL-1), chloramphenicol (25 μg.mL-1), kanamycin (30 

μg.mL-1), tetracycline (12 μg.mL-1) and IPTG (100mM) were added as appropriate. 

Growth kinetic parameters of the wild-type and mutant B. subtilis strains were determined in C 

medium (Pascal et al., 1971) supplemented with 1% (w/v) casein hydrolysate (Sá-Nogueira et al., 1997). 

Arabinose 0.4% (w/v) and IPTG (100mM) were added when appropriate. Cultures were grown on an 

Aquatron® Waterbath rotary shaker (Infors HT, Bottmingen, Switzerland), at 37 °C (unless stated 

otherwise) and 180 rpm, and OD600nm was monitored in an Ultrospec™ 2100pro UV⁄ Visible 

Spectrophotometer (GE Healthcare Life Sciences, Uppsala, Sweden). 

DNA manipulation, PCR amplification, and sequencing. DNA manipulations were carried out 

as described by (Joseph Sambrook & David W. Russel, 2001). Restriction enzymes were purchased 

from MBI Fermentas or New England Biolabs and were used according to the manufacturer’s 

instructions. DNA ligations were performed using T4 DNA Ligase (MBI Fermentas). DNA was eluted 

from agarose gels with GFX Gel Band Purification kit (GE Healthcare), and plasmids were purified 

using the QIAGEN® Plasmid Midi kit (Qiagen) or QIAprep® Spin Miniprep kit (Qiagen). DNA 

sequencing was performed with ABI PRIS BigDye Terminator Ready Reaction Cycle Sequencing kit 

(Applied Biosystems). PCR amplifications were done using high-fidelity Phusion® DNA polymerase 

from Finnzymes. 

Plasmid construction. Plasmid pLG1 was constructed by subcloning a 2240 bp NsiI-EcoRI 

DNA fragment from pDR111 (gift from David Rudner and Federico Gueiros Filho, Harvard University) 

between the NsiI and EcoRI sites of pPL82 (Quisel et al., 2001). pLG2 was obtained by amplification 

of the araL rbs and coding sequence, from the wild-type strain B. subtilis168T+, with oligonucleotides 

ARA253 and ARA424 (Table 3.2), which add unique restriction sites XbaI and SphI, and cloning this 

fragment between the NheI and SphI sites of pLG1. To construct pLG3, rbs and coding sequences of 

araL and araM were amplified with the ARA253 and ARA425 pair of primers, and then digested with 

HindIII, to yield only the araM rbs and coding sequence. This fragment was then cloned in the HindIII 

and SphI sites of pLG1. pLG4 was obtained with the insertion of the araLM sequence amplified with 

the primers ARA253 and ARA425, in the NheI and SphI sites of pLG1. To obtain pLG7, the arabinose 

promoter sequence from pLM32 (Mota et al., 1999) was amplified using the primers ARA28 and 

ARA451, introducing EcoRI and HindIII sites, respectively, and it was subsequently cloned in the EcoRI 
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and HindIII sites of pLG1. pLG8 is a pLG7 derivative constructed by amplification or the araLM 

sequence with the pair of primers ARA253 and ARA452, which carry XbaI and BamHI sites, 

respectively, and inserting this fragment in pLG7 was digested with NheI and BamHI after removing a 

1362bp that contained the lacI gene (schematic representation of transcription fusion in Figure 2.1).  

In-frame deletion of araL and araLM  using pMAD. The pMAD vector (Arnaud et al., 2004) 

was used to successfully delete the araL and araLM genes from the B. subtilis chromosome. To delete 

the araL gene, DNA fragments corresponding to the upstream region of araL (extending from positions 

-557 to +84 relatively to the araL start codon site) and downstream region of araL (extending from 

positions -72 and +586 relatively to the stop codon of araL) were amplified using two pairs of 

oligonucleotides, ARA444 and ARA458 (upstream) and ARA459 and ARA460 (downstream). The 

resulting PCR DNA fragments were purified by agarose electrophoresis gel, and equal amounts of both 

fragments were used as template for a new polymerase chain reaction, using the oligonucleotide pair 

ARA444 and ARA460. The resulting 1262bp fragment was purified, restricted with the enzymes BamHI 

and EcoRI, and cloned in the same sites of the pMAD vector. The recombinant pMADΔaraL vector was 

named pLG9. To delete both the araL and araM genes, DNA fragments corresponding to the upstream 

region of araL (extending from positions -557 to +84 relatively to the araL start codon site) and 

downstream region of araM (extending from positions -18 and +597 relatively to the stop codon of 

araM) were amplified using two pairs of oligonucleotides, ARA444 and ARA445 (upstream) and 

ARA446 and ARA447 (downstream). The PCR DNA fragments were purified on an agarose 

electrophoresis gel, and equal amounts of both fragments were used as template for a new polymerase 

chain reaction, using the oligonucleotide pair ARA444 and ARA447. The resulting 1275bp fragment 

was purified on an agarose electrophoresis gel, and was then restricted with the enzymes BamHI and 

Figure 2.1. Schematic representation of transcription fusion in pLG8. Plasmid pLG8 harbors a 

transcriptional fusion of the arabinose promoter with the araL and araM genes. Promoter elements -10 and -

35 regions are represented (     ), as well as the +1 site, cre and beginning of araA coding sequence (     ), araL 

rbs (     ) and beginning of the araL coding sequence (     ). Some restriction enzymes are indicated. 
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EcoRI and cloned in the same sites of the pMAD vector. The recombinant pMADΔaraLM vector was 

named pLG10.  

Gene replacement in B. subtilis. B. subtilis strains 168T+ and IQB215 were transformed with 

pLG9 and pLG10 derivatives of the pMAD vector (Figure 2.2). After addition of plasmid DNA to the 

cell culture, growth temperature was decreased from 37 oC to 30 oC, and transformation was carried out 

for 2 hours, at 180 rpm. 100 μL of cell suspension were plated on erythromycin plates, supplemented 

with X-Gal (80 μg.mL-1), and incubated at 30 oC for 48 hours. One blue colony was selected and 

inoculated in 20mL of LB medium supplemented with erythromycin for 1 hour at 30 oC, 150 rpm. After 

1 hour the temperature was gradually increased to 42 oC, and incubation proceeded during 6 hours. 

Dilutions 10-1, 10-2, 10-3 and 10-4 were made and 100 μL of each dilution was plated on solid LB medium 

supplemented with erythromycin and X-Gal (50 μg.mL-1), and incubated at 42 oC overnight. The 

integration of the plasmid into the chromosome by a single recombination event is achieved during 

growth at a non-permissive temperature (42 oC) – co-integrate mutants. At a lower and permissive 

temperature (30 oC) another single recombination event takes place, which allows the plasmid to be 

excised from the chromosome, deleting the target gene in the process The next day, 10 blue colonies 

were isolated and plated in the same conditions overnight. From these 10, 4 clones were selected and 

inoculated together in 20 mL of LB medium, without antibiotics. Growth was carried for 8 to 9 hours, 

at 30 oC, 150 rpm, and then the culture was diluted 1:1000 in the same medium and incubated overnight 

at 37 oC, 150 rpm. This procedure was repeated for two days, resulting in an overall of 6 cultures. The 

last culture overnight culture incubated at 37 oC was diluted 10-5, 10-6 and 10-7, and 100 μL of each 

dilution plated in duplicate in plates supplemented with X-Gal (50 μg.mL-1), and incubated overnight at 

37 oC. Ten white colonies were then re-isolated on LB solid medium plates supplemented with X-Gal 

(50 μg.mL-1) and the appropriate antibiotics and incubated at 37 oC overnight. 
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Extraction of B. subtilis chromosomal DNA. Clones re-isolated at the end of the gene 

replacement protocol were grown overnight in 3mL of LB medium, supplemented with the appropriate 

antibiotics, at 37 oC and 150 rpm. A 2.2 mL volume of culture was subjected to centrifugation at 11 000 

g for 5 minutes, and the supernatants were discarded. Cell pellets were resuspended in 2.2 mL of 50 mM 

Tris, 5 mM EDTA, pH 8, and centrifuged again at 11 000 g for 5 minutes. The resulting pellets were 

then resuspended in 175 μL of 50 mM Tris, 5mM EDTA, RNaseA 20 μg.mL-1, lysozyme 1 mg/mL, pH 

8, and incubated at 37 oC for 30 minutes. The tubes were vigorously vortexed for 5 minutes and 

incubated again at 37 oC for 15 minutes. Centrifugation was then carried out at 11 000 g for 10 minutes, 

and the supernatants were recovered to a new tube. 1 μL from each supernatant containing the 

chromosomal DNA was then used as template in a PCR reaction, to confirm the deletions. 

Oligonucleotide pairs ARA472 and ARA478 were used to confirm ΔaraL and ARA472 and ARA473 

were used to confirm ΔaraLM. 

Figure 2.2. Schematic representation the two-step procedure used to obtain gene replacement 

recombination with pMAD. Areas labeled L and M represent DNA sequences located upstream and 

downstream from araL and araM genes. The crossed lines indicate crossover events. The integration of pMAD 

via homologous sequences can take place in area L or M. The co-integrate undergoes a second recombination 

event, regenerating the pMAD plasmid. Gene replacement occurs only if the second recombination event occurs 

in area M, as shown (adapted from Arnaud et al. 2004). 
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Table 2.1. List of plasmids used in this study 

 

Table 2.2. List of oligonucleotides (Primers) used in this study 

 

Primer Sequence (5’  3’) (Restriction sites are underlined) 

ARA28 CCTATTGAATTCAAAAGCCGG 

ARA253 TAACCCCAATCTAGACAGTCC 

ARA424 GATACGATGCATGCCAGAATCC 

ARA425 ATTCGAGGTGCATGCTATTC 

ARA431 TACGGATCCAAGCTTCAAGAGCATCAGCTG 

ARA444 CGGGATCCACCGTGAAAAAGAAAGAATTGTC 

ARA445 GTTGATCAGCGTTTTGTTTTCGTCCAAGTCAATCAGAATGCCAGCCGGTGACAC 

ARA446 GTGTCACCGGCTGGCATTCTGATTGACTTGGACGAAAACAAAACGCTGATCAAC 

ARA447 CTTCCCGAATTCTTTGCGCACTTTCTGTCC 

ARA451 GAATTCATAAAGAAGCTTTGTCTGAAGC 

ARA452 TTGGATCCGCGGGCTATTCATATAG 

ARA458 CTCAGCCAATTTGGTTACATCCTTGTCCAAGTCAATCAGAATGCCAGCCGGTGCCAC 

ARA459 GTGTCACCGGCTGGCATTCTGATTGACTTGGACAAGGATGTAACCAAATTGGCTGAG 

ARA460 CGTGAATTCACCGAGCATGTCACCAAAGCC 

ARA472 CCAACCTGAAGCTTCAAGAG 

ARA473 GTTGCGGAATCATTTCTTTCC 

ARA478 TGAACGATCTTAGCTCCTGC 

 

 

Plasmids Relevant construction 
Source or 

reference 

pPL82 contains the Pspac(hy) promoter Quisel et. al. 2001 

pDR111 
derivative of the Pspac(hy) plasmid pJQ43; contains an additional lacO 

binding site 
David Rudner 

pLM32 plasmid containing the arabinose operon promoter region Mota et. al. 1999 

pLG1 
contains the Pspank(hy) promoter and  lacI gene from pPL82 and cat 

gene and ori from pDR111 
This work 

pLG2 pLG1 derivative, with araL  under the control of Pspank(hy) This work 

pLG3 pLG1 derivative, with araM  under the control of Pspank(hy) This work 

pLG4 pLG1 derivative, with araLM under the control of Pspank(hy) This work 

pLG8 pLG1 derivative, with araLM  under the control of  Para This work 
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Table 2.3. List of strains used in this study. Arrows indicate transformation and point from donor DNA to 

recipient strain. 

 

Strain Relevant genotype Sources or Reference 

E. coli strains   

DH5 
fhuA2 Δ(argF-lacZ) U169 phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 
Gibco BRL 

B. subtilis strains   

168T+ Prototroph (wild-type) F. E. Young 

IQB215 ΔaraR::km Sá-Nogueira & Mota 1997 

IQB206 ΔaraL-abfA::spc Sá-Nogueira et. al. 1997 

IQB565 ΔaraL-abfA::spc ΔaraR::km pLM8 → IQB206 

IQB816 ΔaraL-abfA::spc ΔaraR::km amyE::Pspank(hy)-araL pLG3 → IQB565 

IQB817 ΔaraL-abfA::spc ΔaraR::km amyE::Pspank(hy)-araM pLG2 → IQB565 

IQB818 ΔaraL-abfA::spc ΔaraR::km amyE::Pspank(hy)-araLM pLG4 → IQB565 

IQB819 amyE::Pspank(hy)-araL pLG2 → 168T+ 

IQB820 amyE::Pspank(hy)-araM pLG3 → 168T+ 

IQB821 amyE::Pspank(hy)-araLM pLG4 → 168T+ 

IQB822 ΔaraR::km amyE::Pspank(hy)-araL pLG2 → IQB215 

IQB823 ΔaraR::km amyE::Pspank(hy)-araM pLG3 → IQB215 

IQB824 ΔaraR::km amyE::Pspank(hy)-araLM pLG4 → IQB215 

IQB825 ΔaraL-abfA::spcΔaraR::km amyE::Pspank(hy) pLG1 → IQB565 

IQB827 ΔaraL-abfA::spc ΔaraR::km amyE:: Para-araLM pLG8 → IQB565 

IQB829 ΔaraR::kmΔaraLM pLG9 → IQB215 

IQB830 ΔaraLM pLG9 → 168T+ 

IQB831 ΔaraR::kmΔaraL pLG10 → IQB215 

IQB832 ΔaraL pLG10 → 168T+ 

Results and Discussion 

In-frame deletions of araL and araLM 

 The addition of arabinose to the araR-null mutant IQB215 results in growth arrest (Sá-Nogueira 

& Mota 1997), most probably due to the over-expression of the araABDLMNPQ-abfA operon. However, 

a deletion of all the genes downstream from araD in an araR null mutant, suppresses the toxic effect — 

strain  IQB565 (Sá-Nogueira et al., 1997). Since the deletion of genes araL, araM, araN, araP, araQ 

and abfA reverts the toxicity, it is reasonable to believe that it was the over-expression of one or more 
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than one of these genes may cause the toxic effect. The two more likely candidates are araL and araM 

encoding a phosphatase and a dehydrogenase, respectively. Due to their location in the middle of the 

transcriptional unit, we generated in-frame deletion to minimize the polar effect on the downstream 

genes.  The deletion mutations were generated using the pMAD vector (Arnaud et al., 2004), and 

followed a three-week protocol described in Materials and Methods. In the last step, ten clones were 

selected to confirm the in frame deletion, from which 50% were expected to bear the ΔaraL or ΔaraLM. 

The chromosomal DNA was extracted and the deletion was confirmed by PCR, using primers that 

hybridize outside of the deleted region, and by sequencing of the deletion regions (Figure 2.3). Strains 

IQB215 (araR::km) and 168T+ were transformed with the pMAD derivatives containing the deletions 

ΔaraL and ΔaraLM (pLG9 and pLG10, respectively). The resulting strains are schematically 

represented in Figure 2.3. Growth kinetics parameters were determined for the different strains and are 

summarized in Table 2.4. 

 

Table 2.4. Effect of distinct mutations in the growth kinetics of B. subtilis strains. Doubling times 

(minutes) for different strains in liquid minimal medium (C) supplemented with casein hydrolysate in the presence 

or absence of arabinose. Results are the averages of three independent assays and their respective standard 

deviations. 

  

 

 

 

 

 

 

 Doubling Time (minutes) 

Strain (Relevant genotype) No sugar arabinose 0.4% 

168T+ (wild-type) 46.79±2.14 42.84±1.81 

IQB215 (ΔaraR::km) 46.44±3.93 No growth 

IQB829 (ΔaraR::km ΔaraLM) 60.03±3.11 No growth 

IQB830 (ΔaraLM) 47.25±5.31 45.94±3.14 

IQB831 (ΔaraR::km ΔaraL) 52.60±9.12 No growth 

IQB832 (ΔaraL) 46.44±2.93 43.63±3.82 
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Figure 2.3. Schematic representation of the relevant genotype in B. subtilis strains 168T+, IQB215 

and IQB829, 830, 831 and 832 genotypes. The sequence of the deleted region originated by integration of 

the pMAD derivatives is shown. Nucleotide and amino acid sequence are represented according to the following 

color code: green (araD – AraD), blue (araL – AraL), red (araM – AraM) and purple (araN - AraN). 
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The results indicate that in frame deletion of araL and araLM in strains IQB831 (ΔaraR::km 

ΔaraL), and IQB829 (ΔaraR::km ΔaraLM) does not suppress the toxic effect of arabinose caused by 

absence of AraR, as observed with IQB565 (ΔaraR::km ΔaraL-abfA::spc) when compared to IQB215 

(ΔaraR::km). These observations indicate that the products of araL and araM do not play a role in the 

toxic phenomenon.  

Ectopic expression of araL and araLM under the control of an inducible promoter 

In parallel, to elucidate the role of araL and araM in the toxicity of arabinose, we constructed 

strains for ectopic expression of these genes. The genes were placed at the amyE locus under the control 

of an inducible promoter. If AraL, and/or AraM participate in the toxicity, one would expect that its 

ectopic expression in strain IQB565 (ΔaraR::km ΔaraL-abfA::spc) would re-establish growth arrest.  

In previous experiments (Sá-Nogueira, unpublished results) araL and araM were placed under 

the control of the IPTG inducible Pspac promoter (Yansura & Henner, 1984), and integrated in the amyE 

locus of the B. subtilis chromosome of strain IQB565 (ΔaraR::km ΔaraL-abfA::spc), however, after 

IPTG induction in the presence of arabinose, the toxic effect was not re-established. Since the arabinose 

operon promoter is very strong, a reportedly stronger promoter was assayed. Pspac(hy) is a Pspac 

derivative carrying a point mutation, which raised the expression level of Pspac 10 to 20 fold, without 

affecting the fold induction by IPTG (Quisel et al., 2001). The Pspac promoter is known to be leaky 

(Jana et al., 2000; Lindow et al., 2002) thus, further improvement of Pspac(hy) was accomplished by 

inserting an additional lacO binding site, which allows better repression; the resulting promoter was 

named Pspank(hy) (D. Rudner and F. G. Filho, Harvard University). 

For ectopic expression of araL, araM, and araLM, under the control of the Pspank(hy) promoter, 

plasmids pLG2, pLG3 and pLG4 were constructed and transformed into B. subtilis strains IQB565 

(ΔaraR::km ΔaraL-abfA::spc) and into the wild-type strain. In addition a plasmid, pLG8, was 

constructed for ectopic expression of araLM under the control of the arabinose promoter, Para, which 

is a very strong promoter. Growth kinetics parameters of the B. subtilis strains were determined and the 

results are summarized in Table 2.5.  
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Table 2.5. Growth kinetics of distinct B. subtilis strains harboring ectopic expression of 

araL, araM, and araLM. Doubling times (minutes) for different strains in liquid minimal medium (C) 

supplemented with casein hydrolysate and IPTG in the presence and absence of arabinose. Results are the averages 

of three independent assays and their respective standard deviations. 

 

 

Analysis of growth kinetics of strains IQB816 (ΔaraR::km ΔaraL-abfA::spc amyE::Pspank(hy)-

araL), IQB817 (ΔaraR::km ΔaraL-abfA::spc amyE::Pspank(hy)-araM), IQB18 (ΔaraR::km ΔaraL-

abfA::spc amyE::Pspank(hy)-araLM), and IQB827 (ΔaraR::km ΔaraL-abfA::spc amyE:: Para-araLM) 

indicate that ectopic expression of araL, araM or araLM under the control of either the Spank(hy) 

promoter or the arabinose promoter fails to re-establish the growth arrest observed in strain IQB215 

(ΔaraR::km). These observations corroborate the results obtained in the characterization of the in frame 

deletion mutants, which concluded that the toxic effect of arabinose in strain IQB215 is not due to the 

deregulated expression of araL and/or araM genes.  

By two complementary approaches we showed that the araL and araM are not involved in this 

phenomenon of toxicity. Firstly, in frame deletion mutations in both araL and araM genes were 

constructed in a araR-null mutant and failed to suppress the toxic effect of arabinose (Table 2.4). 

Secondly, ectopic expression of both araL and araM in a strain carrying an araR-null mutation and a 

deletion of all genes downstream of araD failed to re-establish the toxic effect (Table 2.5). Nevertheless 

 Doubling Time (min) 

Strain (Relevant Genotype) No sugar Arabinose 0.4% 

168T+ (prototroph) 46.79±2.14 42.84±1.81 

IQB215 (ΔaraR::km) 46.44±3.93 No growth 

IQB565 (ΔaraR::km ΔaraL-abfA::spc) 50.08±3.66 56.52±2.65 

IQB816 (ΔaraR::km ΔaraL-abfA::spc amyE::Pspank(hy)-araL) 56.22±3.97 65.06±2.75 

IQB817 (ΔaraR::km ΔaraL-abfA::spc  amyE::Pspank(hy)-araM) 51.85±5.33 66.27±5.06 

IQB818 (ΔaraR::km ΔaraL-abfA::spc  amyE::Pspank(hy)-araLM) 48.68±6.16 66.37±3.79 

IQB819 (amyE::Pspank(hy)-araL) 49.31±1.59 43.25±1.21 

IQB820 (amyE::Pspank(hy)-araM) 59.80±6.01 51.49±4.67 

IQB821 (amyE::Pspank(hy)-araLM) 51.69±2.56 43.61±0.96 

IQB825 (ΔaraR::km ΔaraL-abfA::spc amyE::Pspank(hy) 67.08±6.38 56.88±2.36 

IQB827 (ΔaraR::km ΔaraL-abfA::spc amyE:: Para-araLM) 52.80±4.63 65.21±1.54 
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one cannot exclude the possibility that these constructs may result in low levels of AraL accumulation 

in the cell (see Chapter III). Neither araL or araM are responsible for the toxic effect, thus the hypothesis 

that the toxic effect could be due an increased intracellular level of arabinose in the araR- null mutant, 

caused by deregulation of all arabinose responsive genes, and consequently cause an increase in the 

concentration of the metabolic sugar phosphates intermediates that are toxic to the cell is still valid. 

Likewise, the suggestion that the large deletion in the genes downstream from araD may cause upstream 

mRNA destabilization which consequently causes a decrease in the concentration of the enzymes 

involved in the catabolism of arabinose leading to a lower the concentration of the sugar phosphates 

intermediates, thus suppressing the toxic effect (Chapter IV). 
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Abstract 

AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, 

superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified 

to homogeneity.  The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 

65°C.  Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic 

activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and 

pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose 

metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of 

phosphorylated metabolites has been proposed. The ability of AraL to catabolize several related 

secondary metabolites requires regulation at the genetic level. Here, by site-directed mutagenesis, we 

show that AraL production is regulated by a structure in the translation initiation region of the mRNA, 

which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members 

of HAD subfamily IIA and IIB are characterized by a broad-range and overlapping specificity that 

anticipated the need for regulation at the genetic level. In this study we provide evidence for the 

existence of a genetic regulatory mechanism controlling AraL production.  

Introduction 

Phosphoryl group transfer is a widely used signaling transfer mechanism in living organisms, 

from bacteria to animal cells. Phosphate transfer mechanisms are often part of strategies used to respond 

to different external and internal stimuli, and protein degradation (Dzeja, 2003). Phosphoryl-transfer 

reactions, catalyzed by phosphatases, remove phosphoryl groups from macromolecules and metabolites 

(Knowles, 1980). It is estimated that about 35-40% of the bacterial metabolome is composed of 

phosphorylated metabolites (Kuznetsova et al., 2006). The majority of cellular enzymes responsible for 

phosphoryl transfer belong to a rather small set of superfamilies, all evolutionary distinct and with 

different structural topologies, but almost exclusively restricted to phosphoryl group transfer.  

The HAD superfamily is one of the largest and most ubiquitous enzyme families identified to 

date (about 61435 sequences reported; http://pfam.xfam.org/clan/CL0137), and it is highly represent in 

individual cells. The family was named after the archetypal enzyme haloacid dehalogenase, which was 

the first family member structurally characterized (Aravind et al., 1998; Koonin & Tatusov, 1994).  This 

family, however, comprises a wide range of HAD-like hydrolases, like phosphatases (~79%), and 

ATPases (20%), the majority of which involved in phosphoryl group transfer to an active site aspartate 

residue (Allen & Dunaway-Mariano, 2004, 2009; Burroughs et al., 2006). HAD phosphatases are 

involved in variety of essential biological functions, such as primary and secondary metabolism, 

maintenance of metabolic pools, housekeeping functions and nutrient uptake (Allen & Dunaway-

Mariano, 2009). The highly conserved structural core of the HAD enzymes’ consists on a -β domain 
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that adopts the topology typical of the Rossmann /β folds, housing the catalytic site, and is 

distinguished from all other Rossmanoid folds by two unique structural motifs: a nearly complete -

helical turn, named the “squiggle”, and a β-hairpin turn, termed the “flap” (Allen & Dunaway-Mariano, 

2009; Burroughs et al., 2006; Lu et al., 2008). The HAD superfamily can be divided into three generic 

subfamilies based on the existence and location of a cap domain involved in substrate recognition. 

Subfamily I possesses a small -helical bundle cap between motifs I, and II, subfamily II displays a cap 

between the second and third motifs and subfamily III members present no cap domain (Lu et al., 2005). 

Subfamily IIA, based on the topology of the cap domain can be further divided into two subclasses, 

subclass IIA and subclass IIB (Lu et al., 2005). 

Presently, about 19000 sequences are assigned to HAD subfamily IIA, which cover humans, 

other eukaryotes, Gram-positive and Gram-negative bacteria 

(http://www.ebi.ac.uk/interpro/IEntry?ac=IPR006357). The Escherichia coli NagD (Peri et al., 1990) 

and the Bacillus subtilis putative product AraL (Sá-Nogueira et al., 1997) typify this subfamily. NagD 

is a nucleotide phosphatase, encoded by the nagD gene, which is part of the N-acetylglucosamine operon 

(nagBACD). The purified enzyme hydrolyzes a number of phosphate containing substrates, and it has 

high specificity for nucleotide monophosphates, and in particular UMP and GMP. The structure of NagD 

has been determined and the occurrence of NagD in the context of the nagBACD operon suggested its 

involvement in the recycling of cell wall metabolites (Tremblay et al., 2006). Although, this subfamily 

is widely distributed only few members have been characterized.  

Here we report, the over production, purification and characterization of the AraL enzyme from 

B. subtilis.  AraL is shown to be a phosphatase displaying activity towards different sugar phosphate 

substrates. Furthermore, we provide evidence that in both E. coli and B. subtilis production of AraL is 

regulated by the formation of an mRNA secondary structure, which sequesters the ribosome-binding 

site and consequently prevents translation. AraL is the first sugar phosphatase belonging to the family 

of NagD-like phosphatases characterized at the level of gene regulation. 

 

Materials and Methods 

Substrates. p-nitrophenyl phosphate (pNPP) was purchased from Apollo Scientific Ltd., and 

D-xylulose 5-phosphate, Glucose-6-phosphate, Fructose 6-phosphate, Fructose 1,6-bisphosphate, ribose 

5-phosphate, D-arabinose 5-phosphate, Galactose 1-phosphate glycerol 3-phosphate, pyridoxal 5-

phosphate, thiamine monophosphate, adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate 

(ADP), Adenosine monophosphate (AMP) from Sigma-Aldrich Co, St. Louis, MO, USA. 

 



Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, 

AraL, from Bacillus subtilis 

 

43 

 

Bacterial strains and growth conditions. E. coli strains XL1Blue (Stratagene, La Jolla, CA, 

USA) or DH5α (Gibco-BRL, Carlsbad, CA, USA) were used for molecular cloning work and E. coli 

BL21 (DE3) pLysS used for overproduction of AraL (Table 2.3). E. coli strains were grown in LB 

medium (Miller, 1972) or in auto-induction medium (Studier, 2005). Ampicillin (100 μg.mL-1), 

chloramphenicol (25 μg.mL-1), kanamycin (30 μg.mL-1), tetracycline (12 μg.mL-1) and IPTG (100mM) 

were added as appropriate. B. subtilis was grown in liquid LB medium, LB medium solidified with 1.6% 

(w/v) agar with chloramphenicol (5 μg.mL-1), erythromycin  (1 μg.mL-1), and X-Gal (50 μg.mL-1) being 

added as appropriate. Growth kinetics parameters of the wild-type and mutant B. subtilis strains were 

determined in CSK liquid minimal medium (Debarbouillé et al., 1990) as previously described (Inácio 

et al., 2008). Cultures were grown on an Aquatron® Waterbath Rotary Shaker, at 37 oC (unless stated 

otherwise), 180 rpm, and OD was measured at 600 nm in an Ultrospec™ 2100 pro UV/Visible 

Spectrophotometer (GE Healthcare Life Sciences, Uppsala, Sweden).  

DNA manipulation and sequencing. DNA manipulations were carried out as described by 

Sambrook et. al. (Joseph Sambrook & David W. Russel, 2001). Restriction enzymes were purchased 

from MBI Fermentas, Vilnius, Lithuania or New England Biolabs, United Kingdom, and used according 

to the manufacturer’s instructions. DNA ligations were performed using T4 DNA Ligase (MBI 

Fermentas, Vilnius, Lithuania). DNA was eluted from agarose gels with GFX Gel Band Purification kit 

(GE Healthcare Life Sciences, Uppsala, Sweden), and plasmids purified using the QIAGEN® Plasmid 

Midi kit (Qiagen, Hilden, Germany) or QIAprep® Spin Miniprep kit (Qiagen, Hilden, Germany). DNA 

sequencing was performed with ABI PRIS BigDye Terminator Ready Reaction Cycle Sequencing kit 

(Applied Biosystems, Carlsbad, CA, USA). PCR amplifications were conducted using high-fidelity 

Phusion® DNA polymerase from Finnzymes, Espoo, Finland. 

Plasmid constructions 

Plasmids pLG5, pLG11 and pLG12 are pET30a (+) derivatives (Table 3.1), which harbor 

different versions of araL bearing a C-terminal His6-tag, under the control of T7 inducible promoter. 

The coding sequence of araL was amplified by PCR using chromosomal DNA of the wild-type strain 

B. subtilis 168T+ as template and different sets of primers. To construct pLG5, oligonucleotides ARA439 

and ARA440 (Table 3.2) were used and introduced unique NdeI and XhoI restriction sites at the 5’ and 

3’ end, respectively, and the resulting PCR product inserted into pET30a (+) digested with the same 

restriction enzymes. Using the same procedure, primers ARA457 and ARA440 (Table 2.2) generated 

pLG11. ARA457 introduced mutation, which substitutes Val at position 8 to Met (Figure 2.1). Plasmid 

pLG12 was constructed with primers ARA456 and ARA440. Primer ARA456 inserted an NdeI 

restriction site in the araL sequence at the second putative start codon (Figure 3.1).  
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Site-Directed Mutagenesis. Vector pLG12 was used as template for site-directed mutagenesis 

experiments using the mutagenic oligonucleotides set ARA486 and ARA487 (Table 3.3). This pair of 

primers generated a GA substitution in the 5’ end of the araL coding region (Figure 3.1). This 

substitution originated a mutation in the residue at position 12 (Gly to Asp) in the resulting plasmid 

pLG13. A polymerase chain reaction was carried on using 1x Phusion® GC Buffer (Finnzymes, Espoo, 

Finland), 0.2 μM primers, 200 μM dNTPs, 3% DMSO, 0.4 ng.μL-1 pLG12 DNA and 0.02 U.μL-1 of 

Phusion® DNA polymerase in a total volume of 50 μL. The PCR product was digested with 10 U of 

DpnI, at 37 oC, overnight. The mutation was confirmed by sequencing. 

Overproduction and purification of recombinant AraL proteins in E. coli. Small scale growth 

of E. coli BL21 (DE3) pLysS cells harboring pLG5, pLG11, pLG12 and pLG13 was performed to assess 

the overproduction and solubility of the recombinant proteins. Cells were grown at 37 oC, 180 rpm and 

1 mM IPTG was added at OD600nm=0.6. Cultures were then grown for an additional 3 hours at 37 oC, 

180 rpm. Whenever protein solubility was not observed, an auto-induction regime for the 

overproduction of AraL recombinant proteins was used (Studier, 2005). To prepare the cell-free extracts, 

the cells were resuspended in lysis buffer (20 mM sodium phosphate buffer, pH 7.4, 62.5 mM NaCl, 10 

mM imidazole, glycerol 10%) and disrupted in the presence of lysozyme (1 mg.ml–1) by three cycles of 

freezing in liquid N2 and thawing for 5 min at 37 °C, followed by incubation with benzonase nuclease 

(Novagen®, Darmstadt, Germany). After 15 min centrifugation at 16 000g and 4°C the soluble and 

insoluble fractions of the crude extract were obtained. 

For overproduction and purification of recombinant AraL-His6, E. coli BL21(DE3) pLysS cells 

harboring pLG11 were grown in 100 mL of auto-induction medium (Studier, 2005). Cells were 

harvested by centrifugation at 4 °C, 6000g, 10 min. All subsequent steps were carried out at 4 °C. The 

harvested cells were resuspended in Start Buffer (Tris-HCl 100 mM buffer, pH 7.4, 62.5 mM NaCl, 10 

mM imidazole, glycerol 10%) and lysed by passing three times through a French pressure cell. The 

lysate was centrifuged for 1 hour at 13 500 g and the proteins from the supernatant were loaded onto a 1 

mL Histrap Ni2+- NTA affinity column (GE Healthcare Life Sciences, Uppsala, Sweden). The bound 

proteins were eluted with a discontinuous imidazole gradient and the fractions containing AraL that were 

more than 95 % pure were dialyzed overnight against storage buffer (Tris-HCl 100 mM buffer, pH 7.4, 

100 mM NaCl, glycerol 10%) and then frozen in liquid N2 and kept at -80 °C until further use. 

Protein analysis. Analysis of production, the homogeneity, and the molecular mass of the enzyme 

was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), using 

broad-range molecular weight markers (Bio-Rad Laboratories, Hercules, CA, USA) as the standards. 

The degree of purification was determined by densitometric analysis of Coomassie blue-stained 

SDS-PAGE gels. The protein content was determined by using the Bradford reagent (Bio-Rad 

Laboratories, Hercules, CA, USA) with bovine serum albumin as the standard. 
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Enzyme assays. Phosphatase activity assays were performed using the general substrate 

p-nitrophenyl phosphate (pNPP). The reaction mixture containing 100 mM Tris-HCl buffer, pH 7 

containing 15 mM MgCl2 and appropriately diluted enzyme (20 μg) was incubated at 37 °C for 5 

minutes. Addition of 20 mM of pNPP started the reaction and the mixture was further incubated for one 

hour. The reaction was stopped by adding 1 mL of 0.2 M NaOH, the tubes were centrifuged at 16 000 

g for 1 min and 1 mL of the supernatant was recovered for measurement of OD405nm. Calibration curve 

for phosphatase activity assays using pNPP as a substrate was performed using various concentrations 

(mg.mL-1) of p-nitrophenol, within the measuring range of the method (Huggins & Smith, 1947). 

Negative controls were made using 20 μg of BSA, and blanks had no protein added. Enzymatic activity 

was also determined in the presence of 15 mM EDTA, using the same conditions. 1 unit of AraL 

hydrolyses 1 μmol of substrate per min. Both optimum temperature and pH for enzymatic activity of 

AraL-His6 were determined as described above. The effect of temperature was tested in 100 mM 

Tris-HCl buffer, pH 7 containing 15 mM MgCl2, at temperatures ranging from 25 to 70 °C. The effect 

of pH on the activity was assayed at 65°C in a series of Britton-Robinson buffers (0.1 M boric acid 0.1 

M acetic acid and 0.1 M phosphoric acid (pH 3 to 6) and Tris-HCl buffers (pH 7.0 to 9.0). 

Continuous Activity Assays. All continuous assays were carried out at 37 °C in 100 mM Tris-HCl 

buffer, pH 7 containing 15 mM MgCl2, unless stated otherwise. Glucose production from G6P was 

monitored by measure of the glucose dehydrogenase catalyzed reduction of NADP. The initial velocity 

of glucose formation by dephosphorylation of G6P in reaction solutions initially containing 20 µg AraL, 

0.7 unit of G6P dehydrogenase, 0.2 mM NADP, 1-15 mM α-G6P, and 15 mM MgCl2 in 0.5 mL of 100 

mM Tris-HCl (pH 7.5, 37 °C) was determined by monitoring the increase in the absorbance levels at 

340 nm. 

Discontinuous Assays. Initial phosphate hydrolysis for all substrates used in substrate screening 

was assessed to detect total phosphate release using the Malachite Green Phosphate Detection Kit (R&D 

Systems, Minneapolis, MN, USA) according to manufacturer’s instructions. The 150 µL assay mixture, 

containing 100 mM Tris-HCl buffer (pH 7) containing 15 mM MgCl2, was incubated for 1 h at 37 °C. 

Background phosphate levels were monitored in parallel using a control reaction without the AraL 

enzyme. The absorbance at 620 nm was measured. Steady-state kinetics was carried out using 20 µg 

AraL with varying concentrations of substrates. Kinetic parameters were determined using the enzyme 

kinetics software program GraphPad Prism version 5.00 for Windows (GraphPad Software). 
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In-frame deletion of araL in B. subtilis. To create B. subtilis mutant strains with an in-frame 

deletion of araL plasmid pLG10 was constructed using pMAD (Table 3.1). Regions immediately 

upstream and downstream of araL were amplified by two independent PCR experiments, from 

chromosomal DNA of B. subtilis 168T+, using primers ARA444 and ARA458 (PCR1) and ARA459 

and ARA460 (PCR2). The products were joined by overlapping PCR, with primers ARA444 and 

ARA460 (Table 3.2) and the resulting 1262 bp fragment digested with BamHI and EcoRI and cloned 

into pMAD BamHI-EcoRI yielding pLG10. This plasmid harboring an in-frame deletion of araL was 

used for integration and generation of a clean deletion in the B. subtilis chromosome following the 

published procedure described by Arnaud et. al. (Arnaud et al., 2004). The in-frame deletion then 

confirmed by DNA sequencing and the resulting strain named IQB832. Transformation of B. subtilis 

was performed according to the method described by Anagnostopoulos & Spizizen (Anagnostopoulos 

& Spizizen, 1960). 

Construction of an in-frame araL’-‘lacZ fusion and integration at an ectopic site. To 

construct plasmid pLG25 the arabinose operon promoter region (- 81 to +129, relative to the 

transcriptional start site) was amplified from chromosomal DNA of the B. subtilis wild-type strain 168T+ 

using oligonucleotides ARA28 and ARA451 (Table 3.2). The primers introduced unique EcoRI and 

HindIII restriction sites and the resulting fragment was sub-cloned into the same sites of the cloning 

vector pLG1 (see chapter II for details on this vector). Sequentially the araL 5’-end region comprising 

the rbs (position +3910 to +4020, relative to the transcriptional start site of the operon) was amplified 

from the wild-type strain with oligonucleotides ARA253 and ARA477 (Table 3.2), which carry unique 

XbaI and BamHI restriction sites and allow insertion of this fragment between the NheI and BamHI 

sites of pLG1. In the resulting plasmid, a deletion of the araA rbs and araA start site present in the 

arabinose promoter region (Para) was performed by overlapping PCR using two set of primers ARA358 

and ARA514, and ARA515 and ARA516 (Table 3.2). The resulting fragment of 216 bp, comprises the 

arabinose promoter region (Para) from -81 to +80 fused to the araL 5’-end region from +3952 to + 4007, 

was inserted into the vector pAC5 (Table 3.1), yielding pLG25. Plasmid pLG25 carries a translational 

fusion between codon 10 of araL and codon 7 of E. coli lacZ.  pLG25 was used as template for 

site-directed mutagenesis experiments using the mutagenic oligonucleotides set ARA509 and ARA510 

(Table 3.2), as described above. This pair of primers generated a CA substitution in the 5’ end of the 

araL coding region (Figure 3.2 and Figure 3.6A). The substitution originated a mutation in the residue 

at position 9 (Thr to Lys) in the resulting plasmid pLG26. pLG26 was then used as template for 

site-directed mutagenesis using primers ARA549 and ARA550, which allowed a C  G substitution 

(Thr to Arg) in position 9, thus originating pLG28. Oligonucleotide set ARA551 and ARA552 

introduced a double point mutation in the 5’ end of araL coding sequence. Using pLG26 as template, 

the set of primers caused T  C (Arg to Pro) and C  G (Thr to Arg) mutations in the 2nd and 9th 

positions, respectively, yielding pLG27. Translation vector pLG29 was obtained by site-directed 
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mutagenesis from pLG26, using the oligonucleotide pair ARA553 and ARA554, originating a G  T 

substitution (Arg to Leu) in position 2. The constructions were confirmed by DNA sequencing. 

DNA from plasmids pLG25 and pLG26, carrying the different araL’-‘lacZ translational fusions, 

was used to transform B. subtilis strains (Table 3.3) and the fusions ectopically integrated into the 

chromosome via double recombination with the amyE gene back and front sequences. This event led to 

the disruption of the amyE locus and was confirmed as described previously (Sá-Nogueira & Mota, 

1997). 

-Galactosidase activity assays. Strains of B. subtilis harboring the transcriptional lacZ fusions 

were grown were grown in liquid C minimal medium (Sá-Nogueira & Mota, 1997) supplemented with 

casein hydrolysate 1% (w/v) and arabinose was added to the cultures when necessary at a final 

concentration of 0.4% (w/v), as previously described (Sá-Nogueira & Mota, 1997). Samples of cell 

culture were collected two hours (exponential growth phase) after induction and the level of accumulated 

-galactosidase activity determined as previously described (Sá-Nogueira & Mota, 1997). 

In-frame point mutation in the araL locus of B. subtilis. The allelic replacement vector pMAD 

was again used to introduce a single point mutation already tested in the -Galactosidase activity assays, 

using the in-frame araL’-‘lacZ fusion integration at an ectopic site pLG26. The araDLM fragment from 

B. subtilis 168T+ was amplified using oligos ARA472 and ARA461. This fragment was then cloned in 

the SmaI site of pBKS II (+), originating a vector with suitable size for site-directed mutagenesis, which 

was performed using mutagenic oligos ARA509 and ARA510, as described previously. The 

mutagenized araDLM region was then subcloned in pMAD in the EcoRI and BamHI sites, resulting in 

plasmid pLG30, and the allelic exchange procedure was carried on as mentioned above. Both plasmid 

and resulting strain IQB869 were sequenced to confirm the point mutation. 

Immunoblotting of cell extracts. B. subtilis strains were grown as described for the 

-galactosidase assays (see above), and 8 mL of cell culture was harvested 2 h after induction. After 

resuspension in lysis buffer (500 mM KCl, 20 mM HEPES- K+, 10 mM EDTA, 1 mM dithioerythritol, 

10% glycerol), lysozyme was added to the cell suspension at a final concentration of 1 mg.mL-1, 

following an incubation at 37 °C for 10 min. Cells were subjected to 3 cycles of freezing in liquid N2 

and thawing at 37 °C. PMSF and benzonase were added, and incubation was continued for 10 min. 

Samples were rapidly frozen in liquid N2 and then stored at -80 °C. Samples containing 10 µg of protein 

were resolved on 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. Gels were 

transferred for 1h at 100 V to nitrocellulose membranes. Immunoblotting was performed with rabbit 

polyclonal anti-AraL serum (1:1000, Eurogentec, Liège, Belgium) and immunoblot detection was done 

with horseradish peroxidase-conjugated goat anti-rabbit antibody (1:10 000, Thermo Scientific, Pierce 
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Antibody Products, Rockford, IL, USA) by use of an ECL detection system (Western Lightning Plus 

ECL from Perkin Elmer, Waltham, MA, USA) as described by the manufacturer. Protein concentration 

was determined as described above. 

 

Table 3.1. List of plasmids used in this study. 

Plasmid Relevant construction Source 

pET30a (+) 
Expression vector allowing N- or C- terminal His6 tag 

insertion; T7 promoter, kan 
Novagen 

pBKS II (+) Standard cloning vector for E. coli, bla Stratagene 

pMAD 
Plasmid used for allelic replacement in Gram-positive bacteria, 

bla, erm 
(Arnaud et al., 2004) 

pAC5 
Plasmid used for generation of lacZ translational fusions and 

integration at the B. subtilis amyE locus, bla, cat 
Weinrauch et. al. 1991 

pLG5 
araL sequence with the first putative araL start codon cloned in 

the pET30a (+) vector 
Present study 

pLG10 pMAD derivative with an in-frame deletion ΔaraL Present study 

pLG11 
araL sequence with mutated GTG codon (valine at position 8) 

to ATG (methionine) cloned in the pET30a (+) vector 
Present study 

pLG12 
araL sequence with the putative second araL start codon 

cloned in the pET30a (+)  vector 
Present study 

pLG13 
A pLG12 derivative with a mutation in the araL sequence 

GGC to GAC (Gly12 to Asp) 
Present study 

pLG25 
A pAC5 derivative that contains a translational fusion of araL 

to the lacZ gene under the control of the Para 
Present study 

pLG26 
A pLG25 derivative with a mutation in the araL sequence 

ACG to AAG (Thr9 to Lys) 
Present study 

pLG30 
pMAD derivative with a point mutation in the araL sequence 

ACG to AAG (Thr9 to Lys) 
Present study 
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Table 3.2. List of oligonucleotides (Primers) used in this study. Restriction sites are underlined, as are 

single-nucleotide point mutations 

 

Primer Sequence (5’  3’) 

ARA28 CCTATTGAATTCAAAAGCCGG 

ARA253 TAACCCCAATCTAGACAGTCC 

ARA358 CTGCTGTAATAATGGGTAGAAGG 

ARA439 GGAATTCCATATGCGTATTATGGCCAG 

ARA440 TATTTACTCGAGAATCCCCTCCTCAGC 

ARA444 CGGGATCCACCGTGAAAAAGAAAGAATTGTC 

ARA451 GAATTCATAAAGAAGCTTTGTCTGAAGC 

ARA456 CGGCGCGTCATATGGCCAGTCATGATA 

ARA457 TGATACGCATATGTCACCGGCTGGC 

ARA458 CTCAGCCAATTTGGTTACATCCTTGTCCAAGTCAATCAGAATGCCAGCCGGTGCCAC 

ARA459 GTGTCACCGGCTGGCATTCTGATTGACTTGGACAAGGATGTAACCAAATTGGCTGAG 

ARA460 CGTGAATTCACCGAGCATGTCACCAAAGCC 

ARA461 CGAACCGACTGCGATCATGAC 

ARA472 CCAACCTGAAGCTTCAAGAG 

ARA477 AATCAGAATGGGATCCGGTGA 

ARA486 CGGCTGACATTCTGATTGACTTGGACGG 

ARA487 CAATCAGAATGTCAGCCGGTGACACAGG 

ARA509 CCAGTCATGATAAGCCTGTGTCACCG 

ARA510 CGGTGACACAGGCTTATCATGACTGG 

ARA514 TAATACGCATTTGCTCCGTGTTTTCGTCATAAAATAAAACGCTTTCAAATAC 

ARA515 GTATTTGAAAGCGTTTTATTTTATGACGAAAACACGGAGCAAATGCGTATTA 

ARA516 CACCACGCTCATCGATAATTTCACC 

ARA549 GGCCAGTCATGATAGGCCTGTGTCACC 

ARA550 GGTGACACAGGCCTATCATGACTGGCC 

ARA551 GCAAATGCCTATTATGGCCAGTCATGATAGGCCTGTGTC 

ARA552 GACACAGGCCTATCATGACTGGCCATAATAGGCATTTGC 

ARA553 CGGAGCAAATGCTTATTATGGCCAGTC 

ARA554 GACTGGCCATAATAAGCATTTGCTCCG 
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Table 3.3. List of strains used in this study. Arrows indicate transformation and point from donor DNA to 

recipient strain. 

 

Strain Relevant Genotype Source 

E. coli Strains   

DH5α 
fhuA2 Δ(argF-lacZ) U169 phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 
Gibco - BRL 

XL1 Blue 
(recA1 endA1 gyrA96 thi-1 hsdr17 supE44 relA1 lac 

[F’ proAB lacIq ZΔM15 Tn10 (TetR)] 
Stratagene 

BL21 (DE3) pLysS F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pLysS (CmR) (Studier et al., 1990) 

B. subtilis strains   

168T+ Prototroph (Sá-Nogueira et al., 1997) 

IQB832 ΔaraL Chapter II – Table 2.3 

IQB831 ΔaraL ΔaraR::km Chapter II – Table 2.3 

IQB215 ΔaraR::km (Sá-Nogueira & Mota, 1997) 

IQB847 amyE:: Para-araL’-‘lacZ cat pLG25 → 168T+ 

IQB848 ΔaraR::km amyE:: Para-araL’-‘lacZ cat pLG25 →IQB215 

IQB849 amyE:: Para-araL’ (CA) -‘lacZ cat pLG26 → 168T+ 

IQB851 amyE:: ‘lacZ cat pAC5 → 168T+ 

IQB853 amyE:: Para-araL’ (TC CG) -‘lacZ cat pLG27 → 168T+ 

IQB855 amyE:: Para-araL’ (CG) -‘lacZ cat pLG28 → 168T+ 

IQB857 amyE:: Para -araL’ (GT) -‘lacZ cat pLG29 → 168T+ 

IQB869 araL (C→A) T6K pLG30 → 168T+ 

IQB870 ΔaraR::km araL (C→A) T6K pLG30 → IQB215 

http://www.novagen.com/life-science-research/bl21de3plyss-glycerol-stock/EMD_BIO-69388/p_52yb.s1OQ1MAAAEj7Bt9.zLX
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Results and Discussion 

The araL gene in the context of the B. subtilis genome and in silico analysis of AraL 

The araL gene is the fourth cistron of the transcriptional unit araABDLMNPQ-abfA 

(Sá-Nogueira et. al. 1997). This operon is mainly regulated at the transcriptional level by induction in 

the presence of arabinose and repression by the regulator AraR (Mota et al., 1999; Sá-Nogueira & Mota, 

1997).  To date, araL is the only uncharacterized open reading frame comprised in the operon (Figure 

3.1). The putative product of araL displays some similarities to p-nitrophenyl phosphate-specific 

phosphatases from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe (Kaneko et 

al., 1989; Yang et al., 1991) and other phosphatases from the HAD superfamily, namely the NagD 

protein from E. coli (Tremblay et al., 2006). Although the yeast enzymes were identified as 

phosphatases, no biologically relevant substrate could be determined, and both enzymes appeared to be 

dispensable for vegetative growth and sporulation.  The purified NagD hydrolyzes a number of 

nucleotide and sugar phosphates. 

The araL gene contains two in-frame ATG codons in close proximity (within 6 bp; Figure 3.1). 

The sequence reported by Sá-Nogueira et. al. (Sá-Nogueira et al., 1997), assumed as initiation codon 

the second ATG, placed further downstream (Figure 3.1), as the putative start codon for the araL gene 

because its distance relative to the ribosome-binding site is more similar to the average distance, 5 to 11 

bp, observed in Bacillus (Rocha et al., 1999). However, in numerous databases the upstream ATG is 

annotated as the initiation codon (Kunst et al., 1997). Assuming the second ATG the araL gene encodes 

a protein of 269 amino acids with a molecular mass of 28.9 kDa. 

Figure 3.1. Schematic representation of the araL genomic context in B. subtilis. White arrows pointing 

in the direction of transcription represent the genes in the arabinose operon, araABDLMNPQ-abfA. The araL gene 

is highlighted in grey and the promoter of the transcriptional unit depicted by a black arrow. Above is displayed 

the coding sequence of the araL 5’-end. The putative ribosome-binding site, rbs, is underlined. The 5´-end of araL 

present in the different constructs pLG5, pLG11, pLG12 and pLG13, is indicated by an arrow above the sequence. 

Mutations introduced in the construction of pLG11, pLG13 and pLG26 are indicated below de DNA sequence and 

the corresponding modification in the primary sequence of AraL depicted above. 
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HAD family members are identified in amino acid alignments by four active site loops which 

form the mechanistic gear for phosphoryl transfer (Allen & Dunaway-Mariano, 2009). The key residues 

are an aspartate in motif I (D), a serine or threonine motif II (S/T), an arginine or lysine motif III (K/Y) 

and an aspartate or glutamate motif IV (D/E). The NagD family members display a unique α/β cap 

domain involved in substrate recognition, located between the motifs II and III (Burroughs et al., 2006). 

This family is universally spread, however only a few members have been characterized, such as NagD 

from E. coli (Burroughs et al., 2006; Peri et al., 1990). NagD members are divided in different 

subfamilies, like the AraL subfamily (Burroughs et al., 2006), but all proteins present a GDxxxxD motif 

IV (Figure 3.2). 

Homologues of the B. subtilis AraL protein are found in different species of Bacteria and 

Archea, genes encoding proteins with more than 50% amino acid identity to AraL are present in Bacillus 

and Geobacillus species clustered together with genes involved in arabinose catabolism. An alignment 

of the primary sequence of AraL with other members of the NagD family from different organisms, 

NagD from E. coli (27% identity), HdpA (formerly cgR_2128) from Corynebacterium glutamicum 

(28% identity) (Jojima et al., 2012),  the p-nitrophenyl phosphatases (pNPPases) from S. cerevisiae 

(24% identity), Sz. pombe (30% identity), and Plasmodium falciparum (31% identity), highlights 

similarities and divergence (Figure 2.2). AraL displays the conserved key catalytic residues that unify 

HAD members: the Asp at position 9 (motif I) that together with Asp 218 (motif IV) bind the cofactor 

Mg2+, and Ser 52 (motif II) jointly with Lys 193 (motif III) bind the phosphoryl group (Figure 2.2). The 

cap domain is responsible for substrate binding/specificity, thus the uniqueness or similarity of the 

amino acid sequence in this domain may determine enzyme specificity or the lack of (Lahiri et al., 2004; 

Lu et al., 2005; Tremblay et al., 2006). AraL like the other members of the NagD family share two Asp 

residues in the cap domain (Figure 3.2). To date the number of characterized members of this family is 

scarce. Here we showed that AraL possesses activity towards different sugar phosphates. The NagD 

enzyme was observed to have a nucleotide phosphohydrolase activity coupled with a sugar 

phosphohydrolase activity (Tremblay et al., 2006). The P. falciparum enzyme displayed nucleotide and 

sugar phosphatase activity together with ability to dephosphorylate the vitamin B1 precursor thiamine 

monophosphate, TMP (Knöckel et al., 2008). The yeast’s enzymes are p-nitrophenyl phosphatases 

however, natural substrates were not found (Kaneko et al., 1989; Yang et al., 1991).  
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Figure 3.2. Alignment of AraL with other pNPPases members of the HAD superfamily (sub family 

IIA). The amino acid sequences of HdpA (formerly cgR_2128) from Corynebacterium glutamicum, AraL from 

Bacillus subtilis, NagD from Escherichia coli , the p-nitrophenyl phosphatases (pNPPases) from Plasmodium 

falciparum (A5PGW7,) Saccharomyces cerevisiae, and Schizosaccharomyces pomb were aligned using 

CLUSTAL W2 (Larkin et al., 2007). Similar (.,:) and identical (*) amino acids are indicated. Gaps in the amino 

acid sequences inserted to optimize alignment are indicated by a ‘-’. The Motifs I, II, III and IV of the HAD 

superfamily and the cap domain C2 are boxed. Open arrowheads point to the catalytic residues in motifs I-IV. 

Identical residues in all five sequences are highlighted in dark grey. 

HdpA_CGLU 

HdpA_CGLU 

HdpA_CGLU 

HdpA_CGLU 

HdpA_CGLU 

HdpA_CGLU 



Chapter III 

54 

 

The majority of the enzymes displayed in this alignment show activity to overlapping sugar phosphates 

(Papagianni et al., 2007; Tremblay et al., 2006) and it is tempting to speculate that is related to 

similarities in the cap domain. On the other hand, the variability and dissimilarity observed in this region 

may determine preference for certain substrates (Figure 3.2). 

Over-production and purification of recombinant AraL 

The full-length of araL coding region, starting at both the first and second putative initiation 

codon ATG and were separately cloned in the expression vector pET30a (+) (Table 3.1), which allows 

the insertion of a His6-tag at the C-terminus. The resulting plasmids, pLG5 and pLG12 (Figure 3.1), 

bearing the different versions of recombinant AraL, respectively, under the control of a T7 promoter, 

were introduced into E. coli BL21(DE3) pLysS (Table 3.1) for the over-expression of the recombinant 

proteins. The cells were grown in the presence and absence of the inducer IPTG, soluble and insoluble 

fractions were prepared as described in Experimental Procedures and analyzed by SDS-PAGE. In both 

cases production of AraL was not detected although different methodologies for over-expression have 

been used (discussed below).  

Based on the alignment of the primary sequence of AraL and NagD, we constructed in 

pET30a(+) a truncated version of AraL, with a small deletion at the N-terminus (pLG11; Figure 3.1).  

Production of this truncated version of AraL was achieved in E. coli BL21 (DE3) pLysS cells harboring 

pLG12, after IPTG induction, but the protein was obtained in the insoluble fraction.  Thus, over-

production was attempted using the auto-induction method described by Studier (Studier, 2005). In the 

soluble and insoluble fraction of IPTG-induced cells harboring pLG11 a protein of about 29 kDa was 

detected, which matched the predicted size for the recombinant AraL (Figure 3.3A).  The protein was 

purified to more than 95% homogeneity by Ni-NTA agarose affinity chromatography (Figure 3.3B). 

Characterization of AraL 

AraL phosphatase activity was measured using the synthetic substrate 4-nitrophenyl phosphate 

(pNPP).  AraL is characterized as a neutral phosphatase with optimal activity at pH 7 (Figure 3.4). 

Although, at pH 8 and 9 the activity was considerably lower than that observed at pH 7, the values are 

higher than that observed at pH 6, and no activity was measured below pH 4. The optimal temperature 

was analyzed over a range of temperatures from 25 to 70 °C. The enzyme was most active at 65 °C and 

at 25 °C no activity was detected (Figure 3.4). These biophysical AraL properties fall into the range 

found for other characterized phosphatases from B. subtilis: pH 7-10.5 and 55 to 65 oC (Hulett et al., 

1990; Ishikawa et al., 2002; Mijakovic et al., 2005; Sugahara et al., 1991; Tye et al., 2002). 
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HAD superfamily proteins typically employ a divalent metal cation in catalysis and 

phosphatases, particularly those belonging to the subclass IIA, frequently use Mg2+ as cofactor (Allen 

& Dunaway-Mariano, 2009; Burroughs et al., 2006; Kuznetsova et al., 2006; Tremblay et al., 2006). 

The effect of divalent ions (Mg2+, Zn2+, Mn2+, Ni2+, Co2+) in AraL activity was tested and the results 

indicated that catalysis absolutely requires the presence of Mg2+ (Figure 3.4).  Addition of EDTA to a 

reaction containing MgCl2, prevented AraL activity. 

 

Figure 3.3. Over-production and purification of recombinant AraL-His6. A.  Analysis of the soluble (S) 

and insoluble (P) protein fraction (20 μg total protein) of induced cultures of E. coli BL21 (DE3) pLysS harboring 

pET30a (control) and pLG11 (AraL-His6). B. Analysis of different fractions of purified recombinant AraL eluted 

with 300 mM of imidazole. The proteins were separated by SDS-PAGE 12.5% gels and stained with Coomassie 

blue. A white arrowhead indicates AraL-His6. The size, in kDa, of the broad range molecular mass markers (Bio-

Rad Laboratories, Hercules, CA, USA) are indicated. 
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Figure 3.4. Effect of pH, temperature, and co-factor concentration on AraL activity. Enzyme activity 

was determined using pNPP as substrate, at 65 ˚C, pH 7 and 15 mM MgCl2 unless stated otherwise. The results 

represent the average of three independent experiments. 

 

AraL is a sugar phosphatase 

AraL is a phosphatase displaying activity towards the synthetic substrate pNPP but there is no 

evidence that pNPPase activity is physiologically relevant. The context of araL within the arabinose 

metabolic operon araABDLMNPQ-abfA involved in the transport of L-arabinose oligomers, further 

intracellular degradation, and catabolism of L-arabinose (Ferreira & Sá-Nogueira, 2010; Inácio et al., 

2008; Sá-Nogueira et al., 1997) suggests a possible role as a phosphatase active towards sugar phosphate 

intermediates in L-arabinose catabolism, such as D-xylulose 5-phosphate.  Based on both this clue and 

the observation that many HAD members display phosphatase activities against various intermediates 

of the central metabolic pathways, glycolysis and the pentose phosphate pathway (Kuznetsova et al., 

2006), we tested AraL activity towards glucose-6-P, fructose 6-P, fructose 1,6-bisphosphate, 

3-phosphoglycerate, ribose 5-phosphate, D-xylulose 5-phosphate, and galactose-1-phosphate. Although, 

B. subtilis does not utilize D-arabinose the activity towards D-arabinose 5-phosphate was also assayed. 

In addition, the nucleotides AMP, ADP, ATP, pyridoxal 5-phosphate and thiamine monophosphate were 
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also screened (Table 3.4). Although the optimal temperature for enzyme activity is 65 °C the kinetics 

parameters were measured at 37 °C, the B. subtilis optimal growth temperature. It is noteworthy, that in 

these conditions the KM determined for pNPP is 50 mM (Table 3.4) compared to 3 mM obtained at 65 

°C. 

 

Table 3.4. Kinetic constants form AraL against various substrates. Assays were performed at pH 7 and 

37 °C as described in experimental procedures.  The results are the mean value and standard deviation of triplicates. 

The following substrates were also tested, but no activity was detected: ATP, ADP, AMP, ribose-5-phosphate, 

glycerol-3-phosphate, pyridoxal-5-phosphate and thiamine monophosphate. 

 

 

The AraL enzyme showed reactivity with D-xylulose-5-phosphate, D-arabinose 5-phosphate, 

galactose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate and fructose 1,6-bisphosphate 

(Table 3.4). 

The KM values are high (~30 mM) and above the range of the known bacterial physiological 

concentrations. In E. coli the intracellular concentration of ribose 5-phosphate, glucose-6-phosphate, 

fructose 6-phosphate and fructose 1,6-bisphosphate, is 0.18 - 6 mM (Kuznetsova et al., 2006) , and in 

B. subtilis the measured concentration of fructose 1,6-bisphosphate when cells were grown in the 

presence of different carbon sources, including arabinose, varies within the range 1.8 - 14.1 mM (Singh 

et al., 2008). However, we cannot rule them out as feasible physiological substrates because in certain 

conditions the intracellular concentration of glucose-6-phosphate, fructose 6-phosphate and fructose 

1,6-bisphosphate, may reach concentrations of 20 - 50 mM, as reported for Lactococcus lactis 

(Papagianni et al., 2007).  Nevertheless, the mean value of the substrate specificity constant kcat/KM is 

Substrate 
KM 

(mM) 

kcat  

(s-1) 

kcat/KM 

(s-1 M-1) 

D-xylulose 5-phosphate 29.14 ± 4.87 2.75 ± 0.26 0.943 x 102 

Glucose 6-phosphate 24.96 ± 4.08 2.49 ± 0.26 0.998 x 102 

D-arabinose 5-phosphate 27.36 ± 1.8 2.92 ± 0.10 1.06 x 102 

Fructose 6-phosphate 34.89 ± 4.51 2.817 ± 0.22 0.807 x 102 

Fructose 1,6-bisphosphate 40.78 ± 11.40 1.49 ± 0.26 0.365 x 102 

Galactose 1-phosphate 40.74 ± 6.03 4.28 ± 0.40 1.02 x 102 

pNPP 50.00 ± 23.32 0.012 ± 0.0006 0.24  
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low (1 x 102 M-1 s-1), thus the ability of AraL to distinguish between these sugar phosphate substrates 

will be limited. The results obtained for AraL are comparable to those obtained for other members of 

HAD from subfamilies IIA and IIB, which have in common a low substrate specificity and catalytic 

efficiencies (kcat/KM < 1 x 105 M-1 s-1) and lack defined boundaries of physiological substrates (Lu et al., 

2005; Tremblay et al., 2006). These features point to enzymes functioning in secondary metabolic 

pathways. 

Production of AraL in E. coli is subjected to regulation 

In silico DNA sequence analysis of pLG12 and pLG5 detected the possible formation, in both 

plasmids, of an mRNA secondary structure, which sequesters the ribosome-binding site. Both, hairpin 

structures, display low free energy -17.5 kcal mol-1 (Figure 3.5A) and -22.7 kcal mol-1, respectively, and 

could impair translation preventing the production of AraL observed in these constructs (see above). In 

plasmid pLG11, carrying the truncated version of AraL, overproduction was successful (Figure 3.3). 

The deletion of the araL gene 5’-end caused an increase of the free energy of the putative mRNA 

secondary structure (-11.8 kcal mol-1). To test the potential involvement of the mRNA secondary 

structure in the lack of production of the recombinant AraL versions constructed in plasmids pLG12 and 

pLG5, site directed mutagenesis was performed using pLG12 as template. A single-base substitution 

GA introduced at the 5´end of the gene (Figure 3.1) was designed in order to increase the free energy 

of the mRNA secondary structure in the resulting plasmid pLG13. This point mutation increased the 

free energy from -17.5 kcal mol-1 to -13.1 kcal mol-1 (Figure 3.5A). In addition, this modification caused 

the substitution of a glycine to an aspartate at position 12 in AraL (G12D; Figure 3.1) however, based 

on the structure of NagD from E. coli (Tremblay et al., 2006) this amino acid substitution close to the 

N-terminus it is not expected to cause major interference in the overall protein folding. Cell extracts of 

induced E. coli Bl21 (DE3) pLysS cells carrying pLG13 were tested for the presence of AraL. A strong 

band with an estimated size around 29 kDa, was detected (Figure 3.5B) strongly suggesting that 

recombinant AraL is produced in E. coli when the mRNA secondary structure is destabilized. This 

observation indicates that production of AraL is modulated by a secondary mRNA structure placed at 

the 5’-end of the araL gene.  
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A 
 

Figure 3.5. Site-directed mutagenesis in the 5’-end araL and over-production of recombinant 

AraL-His6. A. The secondary structure of the araL mRNA in pLG12 (left) and pLG13 (right), which bears a 

single nucleotide change. An arrowhead highlights the mutated nucleotide located at the beginning of the araL 

coding region. The ribosome-binding site, rbs, and the initiation codon (ATG) are boxed. Position relative to the 

transcription start site is indicated. The free energy of the two secondary structures, calculated by DNAsis v 3.7 

(©Hitachi Software Engineering Co. Ltd), is shown. B. Over-production of recombinant AraL-His6. Analysis of 

the soluble (S) and insoluble (P) protein fraction (20 μg total protein) of induced cultures of E. coli BL21 (DE3) 

pLysS harboring pLG12 (AraL-His6) and pLG113 (AraL-His6 G→A). The proteins were separated by SDS-PAGE 

12.5% gels and stained with Coomassie blue. A white arrowhead indicates AraL-His6. The sizes, in kDa, of the 

broad range molecular mass markers (Bio-Rad Laboratories, Hercules, CA, USA) are indicated. 

B 
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Regulation and putative role of AraL in B. subtilis 

In B. subtilis the formation of a similar hairpin structure at the same location is possible and 

displays a free energy of -21.4 kcal mol-1 (Figure 3.6A). To determine its role in the regulation of araL 

expression a translational fusion of the araL 5’-end to the lacZ reporter gene from E. coli was 

constructed and integrated into the B. subtilis chromosome, as single copy, at an ectopic site. The 

construct comprises the araL ribosome-binding site, initiation codon, and a fusion between codon 10 of 

araL and codon 7 of E. coli lacZ. The araL’-‘lacZ translational fusion is under the control of the strong 

promoter (Para) of the araABDLMNPQ-abfA operon (Figure 3.6A). However, expression from the 

araL’-‘lacZ fusion in the presence of arabinose (inducer) is very low as determined by measuring the 

levels of accumulated -galactosidase activity in strain IQB847 (Figure 3.6). In contrast, strain IQB849 

carrying a single-base substitution C→A introduced in the hairpin region displayed an augment in 

araL’-‘lacZ expression of about 30-fold in the presence of inducer (Figure 3.6B). This point mutation 

increased the free energy of the mRNA secondary structure from -21.4 kcal mol-1 to -15.4 kcal mol-1 

(Figure 3.6A).  

 

Figure 3.6. Regulation of araL in B. subtilis. A. Site-directed mutagenesis in the 5’-end araL. The 

secondary structure of the araABDLMNPQ-abfA mRNA in the 5’-end araL region is depicted. An arrow highlights 

the mutated nucleotide (circled) located at the beginning of the araL coding region. The ribosome-binding site, 

rbs, is boxed. The free energy of the wild-type (WT) and mutated (mut CA) secondary structures, calculated by 

DNAsis v 3.7 (©Hitachi Software Engineering Co. Ltd), are shown. B. Expression from the wild-type and 

mutant araL´-lacZ translational fusion.  The B. subtilis strains IQB847 (Para-araL’-‘lacZ) and IQB849 

(Para-araL’ (CA) -‘lacZ) were grown on C minimal medium supplemented with casein hydrolysate in the 

absence (non-induced) or presence (induced) of arabinose. Samples were analyzed 2 h after induction. The levels 

of accumulated -galactosidase activity represent the average ± standard deviation of three independent 

experiments each performed with triplicate measurements. 
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In order to determine if the mutation introduced ectopically in strain IQB849 also influenced 

the protein production of AraL in vivo we introduced that same mutation in the araL locus, obtaining 

strain IQB869 (mut CA, AraL Thr6Lys). Both the wild-type strain and IQB869 were grown in the 

same conditions and we were able to detect differences in AraL production in the presence and absence 

of inducer. Additionally, we analyzed the effect of the single point mutation in the absence of the 

regulator (AraR-null mutant background – strain IQB870) and the results show in increase in 

intracellular accumulation of AraL, which is not dependent of AraR (Figure 3.7): 

 

These results clearly show that the hairpin structure play an active role in the control of araL 

expression in vivo. The regulatory mechanism operating in this situation is most probably sequestration 

of the ribosome binding by the mRNA secondary structure, which consequently prevents translation, 

although premature transcription termination by early RNA polymerase release cannot be excluded. 

Translational attenuation by mRNA secondary structure comprising the initiation region is present in 

many systems of Bacteria, including B. subtilis (Grundy & Henkin, 2006). Due to the nature of the NagD 

family members displaying low specificity and catalytic activities and lacking clear boundaries defining 

physiological substrates, regulation at the genetic level was anticipated (Tremblay et al., 2006). 

The AraL enzyme encoded by the arabinose metabolic operon araABDLMNPQ-abfA, was 

previously shown dispensable for arabinose utilization in a strain bearing a large deletion comprising all 

genes downstream from araD. However this strain displayed some growth defects (Sá-Nogueira et al., 

1997). To confirm this hypothesis an in-frame deletion mutation in the araL gene was generated by 

allelic replacement, to minimize the polar effect on the genes of the araABDLMNPQ-abfA operon 

located downstream of araL (Figure 1.5, Figure 2.3. See Chapter II). The physiological effect of this 

knock-out mutation in B. subtilis (strain IQB832 ΔaraL; Table 3.3) was assessed by determination of 

the growth kinetics parameters using glucose and arabinose as the sole carbon and energy source. In the 

Figure 3.7. AraL accumulation in the cell determined by Western Immunoblot analysis. Equal 

amounts of the soluble fractions of cell extracts (10 µg of protein) obtained from B. subtilis cultures harboring a 

wild-type or mutant araL allele and grown in the absence (-) or presence (+) of inducer (arabinose) were prepared 

as described in Materials and Methods. (A)  Wild-type strain 168T+ (B) Wild-type strain 168T+ in the presence 

of arabinose (C) araR-null mutant strain IQB215 (D) Strain IQB869, bearing the CA, AraL Thr6Lys mutation 

(E) Strain IQB869, bearing the CA, AraL Thr6Lys mutation in the presence of arabinose (F) Strain IQB870, 

bearing the CA, AraL Thr6Lys mutation in an araR-null mutant background. 

(D) 
araL CA 

 (-) 

  

(E) 
araL CA 

(+) 

  

 

(C) 
ΔaraR 

(-) 

 

(B) 

WT 

(+) 

 

(A) 

WT 

(-) 
  

(F) 
ΔaraR 

araL CA 

(-)  
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presence of glucose and arabinose the doubling time of the mutant, 49.7 ± 0.3 and 52.4 ± 0.1 min, 

respectively, is comparable to that of the wild-type strain, 46.6 ± 0.4 and 52.2 ± 0.5 min, respectively, 

indicating both the stability of the strain bearing the in-frame deletion, and that the AraL enzyme is not 

involved in L-arabinose utilization. The substrate specificity of AraL points to a biological function 

within the context of carbohydrate metabolism. The location of the araL gene in the arabinose metabolic 

operon together with the observation that AraL is active towards D-xylulose 5-phosphate, a metabolite 

resultant from arabinose catabolism, suggests that AraL has a wide substrate utilization profile and low 

substrate specificity, which is consistent with other members of HAD phosphatase superfamily, possibly 

helping the cell to get rid of phosphorylated metabolites that accidentally accumulate via stalled 

pathways (Guggisberg et al., 2014; Kim et al., 2015; Kuznetsova et al., 2006; Pandya et al., 2014). The 

arabinose operon is under the negative control of the transcription factor AraR and in an araR-null 

mutant expression of the operon is constitutive. In previous work, it was observed that addition of 

arabinose to an early-exponentially growing culture of this mutant resulted in immediate cessation of 

growth. It is believed that this effect could be due an increased intracellular level of arabinose, which 

would consequently cause an increase in the concentration of the metabolic sugar phosphates 

intermediates that are toxic to the cell (Sá-Nogueira & Mota, 1997). One hypothesis is that there is a 

possibility of the AraL playing a role in the dephosphorylation of substrates related with the arabinose 

metabolism, namely L-ribulose phosphate and/or D-xylulose phosphate. In addition, due to its capacity 

to catabolize other related secondary metabolites this enzyme needs to be regulated. Moreover, the araL 

gene is under the control of the operon promoter, which is a very strong promoter and basal expression 

in the absence of inducer is always present (Sá-Nogueira & Mota, 1997). The second level of regulation 

within the operon that operates in araL expression acts to drastically reduce the production of AraL.  
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Abstract 

Accumulation of sugar phosphate is known to be toxic for the majority of prokaryotic and 

eukaryotic cells, however the mechanisms that underlie toxicity are yet to be fully understood. 

Conversely, little is known concerning the mechanisms utilized by the cells to adapt to sugar phosphate 

toxicity, or sugar phosphate stress. 

Arabinose is one of the most abundant pentose in plant biomass. In Bacillus subtilis the ability to 

metabolize arabinose is dependent on three intracellular enzymes encoded by the araA, araB and araD 

genes that convert L-arabinose to D-xylulose 5-phosphate, which enters the pentose phosphate pathway. 

The transcription of these genes is induced by arabinose and negatively controlled by AraR, a repressor 

allosterically regulated by arabinose. In addition to the catabolism AraR also controls the uptake of 

arabinose. In an araR-null mutant, addition of arabinose to an exponentially growing culture results in 

immediate cessation of growth. The current hypothesis is that the observed bacteriostatic effect could 

be due to an increased intracellular level of arabinose, which consequently increases the concentration 

of the metabolic sugar phosphates intermediates that are toxic to the cell.  

Here we used this model to address unanswered questions regarding the physiology of 

arabinose-induced stress, including the cellular signals and targets involved. Analysis of both wild-type 

and mutant strains by quantification of mRNA levels, phosphorylated metabolites, accumulation of 

cytotoxic methylglyoxal, and ATP depletion, suggests distinct mechanisms underlying toxicity. 

Furthermore, our study highlights the importance of a secondary metabolic pathway regulator in the 

growth of an industrial relevant species, like B. subtilis, and how its deletion negatively impacts the 

overall central carbon metabolism. 

 

Introduction 

The use of the Bacillus genus members is frequent in the industrial setting, either for the 

production of recombinant proteins, diverse secondary metabolites or as probiotic agent. As of 2004 

about 60% of the commercially available enzymes are produced by Bacillus species (Westers et al., 

2004). Bacillus subtilis has been one of the Gram-positive pioneering hosts for recombinant protein 

production and it is still one of the preferred hosts for industrial bioprocesses due to both accumulated 

know-how on B. subtilis genetics and physiology and the increasing number of tools for genetic 

engineering adapted to this organism. The screening of different B. subtilis mutant strains is a promising 

route for the development of better production systems assisted by expanding systems metabolic 

engineering and synthetic biology tools (Küppers et al., 2014). 
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The occurrence of metabolic bottlenecks either for protein expression or secondary metabolite 

production is well known (Breitling et al., 2013; Westers et al., 2004). Metabolomics is one of the tools 

researchers have been using to minimize and circumvent issues such as the accumulation of unwanted 

or toxic side products and intermediates, or the depletion of precursors necessary for certain reactions 

(Breitling et al., 2013). Metabolic engineering and synthetic biology tools applied to strain enhancement 

must be used carefully, as bottlenecks causing either depletion of precursors or accumulation of toxic 

products can be a result of said enhancement, such as accumulation of sugar phosphate in cells. 

The toxicity caused by the intracellular accumulation of phosphorylated sugars intermediates has 

been observed in bacteria, yeasts, insects, animal cells, and humans.  Although not new to scientists 

working with bacterial cells, the mechanisms underlying this phenomenon are apparently different in 

each case-study or remain uncharacterized. Research conducted decades ago described toxicity 

associated with sugar phosphates and its accumulation in bacteria, namely in Escherichia coli 

(Englesberg et al., 1962; Kadner et al., 1992; Yarmolinsky et al., 1959). However, the majority of these 

studies are focused on mutant strains that lack specific catabolic enzymes and as consequence 

accumulate phosphorylated sugar intermediates of the metabolic pathway. Methylglyoxal (MG) is a 

toxic byproduct known to accumulate in bacterial cells, when there is a sudden increase in carbohydrate 

uptake, causing an imbalance between flux through the upper branch of glycolysis and the capacity of 

the lower branch of the Embden-Meyerhof-Parnas pathway. Synthesis of MG is thought to function as 

an overflow mechanism that prevents accumulation of phosphorylated intermediates (Cooper & 

Anderson, 1970; Landmann et al., 2011)  Methylglyoxal, however, is highly cytotoxic, reacting with 

DNA, lipids and proteins and was shown to inhibit growth in bacteria including B. subtilis (Nguyen et 

al., 2009). In the case of E.coli sensitivity to accumulation of phosphoglucose, researchers presented 

evidence that glucose-phosphate stress is the result of glycolytic intermediates depletion rather than 

accumulation of the known toxic byproduct methylglyoxal (Kadner et al., 1992; Richards & 

Vanderpool, 2011; Richards et al., 2013) 

Fermentation of lignocellulosic material is industrially relevant and requires microorganisms that 

have the ability to use pentoses, such as xylose or arabinose (Garcia Sanchez et al., 2010). Arabinose is 

one of the most abundant pentoses found in lignocellulosic feedstocks, like agricultural wastes and 

hardwoods, in the form of hemicellulose and pectin. The AraR protein is a negative regulator involved 

in arabinose-inducible expression of the B. subtilis araABDLMNPQ-abfA metabolic operon and of the 

araR/araE transcriptional unit. The presence of arabinose induces a conformational change in AraR 

such that recognition and binding to DNA is no longer possible and the ara genes are expressed (Mota 

et al., 1999; Sá-Nogueira & Mota, 1997; Sá-Nogueira & Ramos, 1997). Addition of arabinose to a 

culture of a B. subtilis araR-null mutant causes immediate cessation of growth. A direct correlation 

between the cessation of growth of the araR mutant cells and the minimal L-arabinose concentration, 

which corresponds to full induction of the araABDLMNPQ-abfA operon promoter in the wild-type 
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strain, was established (Sá-Nogueira & Mota, 1997). Since the arabinose uptake system is under the 

negative control of AraR and the deficiency of repressor induces a two-fold increase in the expression 

from the metabolic operon promoter, it was hypothesized that the absence of AraR could lead to an 

intracellular increase of arabinose, consequently causing an increase in the concentration of the 

metabolic sugar phosphates intermediates which are toxic to the cell (Sá-Nogueira & Mota, 1997). In 

this study we examined this bacteriostatic effect to gain insight into the mechanisms that underlie 

bacterial cell toxicity of sugar-phosphates. By using quantification of mRNA levels, Nuclear Magnetic 

Resonance (NMR) analysis of phosphorylated metabolites, accumulation of cytotoxic methylglyoxal, 

and ATP depletion, we established a correlation between growth arrest of the arabinose-sensitive araR-

null mutant strain and increased level of mRNA encoding the arabinose catabolic enzymes, as well as 

of several phosphorylated intermediates of the pentose phosphate pathway. Furthermore, associated with 

the bacteriostatic effect, an increased level of the cytotoxic compound methylglyoxal is detected together 

with intracellular depletion of ATP. 

 

Materials and Methods 

Substrates. All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), with the 

exception of X-Gal, purchased from Apollo Scientific (Stockport, UK). 

Bacterial strains and growth conditions. Escherichia coli strains XL1Blue (Stratagene, La 

Jolla, CA, USA) or DH5α (Gibco-BRL, Carlsbad, CA, USA) were used for molecular cloning work. E. 

coli strains were grown in LB medium (Miller, 1972). Ampicillin (100 µg.mL-1), and tetracycline (12 

µg.mL-1) were added as appropriate. B. subtilis was grown in liquid LB medium, LB medium solidified 

with 1.6% (w/v) agar, with chloramphenicol (5 µg.mL-1), kanamycin (10 µg.mL-1), erythromycin (1 

µg.mL-1), spectinomycin (100 µg.mL-1) and X-Gal (50 µg.mL-1 or 80 µg.mL-1) being added as 

appropriate. Specific growth rates of the wild-type and mutant B. subtilis strains were determined in C 

medium [70 mM K2HPO4 30 mM KH2PO4 5.25 mM (NH4)2SO4 0.5 mM MgSO4 0.1 mM ferric 

ammonium citrate 22 µg/mL (Pascal et al., 1971)] supplemented with 1% (w/v) casein hydrolysate 

(Sá-Nogueira et. al. 1997). Arabinose 0.4% (w/v) or ribitol 0.4% (w/v) were added when appropriate. 

Cultures were grown on an Aquatron® Waterbath rotary shaker (Infors HT, Bottmingen, Switzerland), 

at 37 °C (unless stated otherwise) and 180 rpm, and OD600nm was monitored in an Ultrospec™ 2100pro 

UV⁄ Visible Spectrophotometer (GE Healthcare Life Sciences, Uppsala, Sweden). 

DNA manipulation and sequencing. DNA manipulations were carried out as described 

previously by Sambrook et. al. (Joseph Sambrook & David W. Russel, 2001). Restriction enzymes were 

purchased from Thermo Fisher Scientific (Waltham, MA, USA) and used in accordance with the 
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manufacturer’s instructions. DNA ligations were performed using T4 DNA Ligase from Thermo Fisher 

Scientific (Waltham, MA, USA). DNA was eluted from agarose gels with GFX Gel Band Purification 

kit (GE Healthcare Life Sciences, Uppsala, Sweden) and plasmids were purified using the Qiagen® 

Plasmid Midi kit (Qiagen, Hilden, Germany) or NZYMiniprep from NZYTech, Lda. - Genes and 

Enzymes (Lisboa, Portugal). DNA sequencing was performed with ABI PRIS Big-Dye Terminator 

Ready Reaction Cycle Sequencing kit (Applied Biosystems, Carlsbad, CA, USA). PCR amplifications 

were conducted using high-fidelity Phusion® DNA polymerase from Thermo Fisher Scientific 

(Waltham, MA, USA). 

Plasmid constructions and in-frame deletions in B. subtilis. Plasmids pMO1 and pMO2 were 

used to introduce a small in-frame deletion of selected residues in the araB and araD, genes of B. 

subtilis, respectively. To construct pMO1, regions immediately upstream and downstream of araB were 

amplified by two independent PCR experiments, from chromosomal DNA of B. subtilis 168T+, using 

primers ARA570 and ARA571 (PCR1) and ARA572 and ARA573 (PCR2). The products were joined 

by overlapping PCR, with primers ARA570 and ARA573 and the resulting fragment was cloned into 

pMAD (Arnaud et al., 2004) digested with SmaI, yielding pMO1. pMO2 was obtained in the same way 

as pMO1, but using oligonucleotides ARA574 and ARA575 to amplify the upstream region of araD 

and oligonucleotides ARA576 and ARA577 to amplify the downstream region of araD. ARA574 and 

ARA577 were used to obtain the overlap PCR. The resulting fragment was cloned in pMAD using the 

SmaI site. Both plasmids were sequenced. pLG32 was obtained for the construction of an in-frame 

deletion of the araLMNPQ genes (ΔaraLMNPQ). Regions immediately upstream and downstream of 

araL and araQ were amplified by two independent PCR experiments, from chromosomal DNA of B. 

subtilis IQB830 (ΔaraLM, Chapter II). Primers used for PCR1 were ARA665 (introduction of a BglII 

site) and ARA448. Primers for PCR2 were ARA449 and ARA666 (introduction of a SalI site). This 

fragment was cloned in pMAD between the BglII and SalI sites. The in-frame deletion was sequenced. 

Plasmid pLG39 was used to insert an in-frame deletion of the methylglyoxal synthase gene (mgsA) in 

the B. subtilis chromosome. Primers ARA750 (BglII site) and ARA751 were used for PCR1 and oligos 

ARA752 and ARA753 (SalI site) were used for PCR2. ARA750 and ARA753 were used for the overlap 

PCR. The overlap PCR was then digested with BglII and SalI and the insert was cloned in the same sites 

of pMAD. Insertion of the in-frame deletions was sequenced. B. subtilis transformation with plasmid 

DNA was performed as previously described (Anagnostopoulos & Spizizen, 1960) and all strains were 

sequenced for the in-frame deletion. 

Total RNA extraction B. subtilis strains were grown in C minimal medium supplemented with 

1% (w/v) of casein hydrolysate in the presence and absence of 0.4% (w/v) arabinose, as previously 

reported (Sá-Nogueira & Mota, 1997). Cells were collected 2 h after the addition of arabinose and cell 

pellets were frozen at -80°C. Total RNA extraction was performed using the Absolutely RNA Miniprep 
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Kit (Agilent Technologies – Stratagene, La Jolla, CA, USA), according to the manufacturer’s 

instructions. RNA quantification was determined on a Thermo Scientific NanoDrop™ ND-1000 

Spectrophotometer (NanoDrop Technologies, LLC, USA). 

Real-time PCR Experiments. One set of primers targeting araB, was used in the experiments 

(ARA581 and ARA582). An additional pair of primers targeting the housekeeping gene 16S rRNA was 

used as internal control (ARA583 and ARA584). Primers were designed with the help of an internet-

based interface, Primer3 (Rozen and Skaletsky, 2000), and are listed in Table 4.1. Real time 

amplification was performed in a Corbett Research Rotor-Gene RG6000 (Cambridgeshire, UK) using 

the SensiFAST™ SYBR® No-ROX One-Step Kit (Bioline Reagents Ltd., London, UK). Each reaction 

contained: 6.25 μl of the SensiFAST™ SYBR® No-ROX One-Step Kit, 0.5 μl of forward and reverse 

primers (100nM each), 0.125 μl of reverse transcriptase, 0.25 μl of RiboSafe RNase inhibitor and 40 ng 

of total RNA, to a final volume of 12.5 μl, adjusted with DEPC-treated H2O. The reaction conditions 

were as follows: 10 min at 45 °C, followed by 2 min at 95 °C and then 40 cycles of 5 s at 95 °C and 10 

s at 55 °C. PCR reaction for each sample was carried out in triplicate. NTC, no-template control (reagent 

alone without template) was included in each assay to detect any possible contamination of the PCR 

reagents. Following the final cycle, melting curve analysis was performed to assess the specificity in 

each reaction tube (absence of primer dimers and other nonspecific products). Results were analyzed 

using the Pfaffl mathematical model (Hellemans et al., 2007; Pfaffl, 2001). Statistical analyses were 

performed with GraphPad Prism version 5.00 for Windows (GraphPad Software) using Ct values 

obtained from three independent assays. p values were determined using an unpaired two-tailed t test. 

Methylglyoxal assay. To determine accumulation of methylglyoxal in the medium, B. subtilis 

cells were grown as described above. The methylglyoxal concentration was determined by the reaction 

of methylglyoxal with 2,4-dinitrophenylhydrazine as described previously (Cooper, 1974; Huynh et al., 

2000; Landmann et al., 2011). The cells were removed by centrifugation and various volumes (120 µl 

or 320 µl) of the supernatant were incubated with 120 µl of 2, 4- dinitrophenyl hydrazine (10 mg.ml-1 

in 2 M HCl) for 15 min at 30 °C. Then, 560 µl of 10% (w/v) NaOH was added and the mixture was 

further incubated for 10 min at room temperature. Subsequently, the Abs550nm was determined. An 

absorbance of 1.64 corresponds to 0.1 mmol of methylglyoxal present in the reaction mixture. 

Cold Ethanolic Extracts of B. subtilis cultures. Cell were grown in C minimal medium 

supplemented with 1% (w/v) of casein hydrolysate in the presence and absence of 0.4% (w/v) 

L-arabinose, as described above. Cells were collected 2 h after the addition of arabinose and cell pellets 

were frozen at -80 °C. Each cell pellet as re-suspended in 70 mL of cold ethanol 70% (previously chilled 

at -20 °C), and then stirred vigorously in an ice bath for 30 minutes. The re-suspended cell pellets were 

centrifuged at 27000 g for 45 min at 4 °C using the SS34 rotor in a Sorvall RC-5C Plus centrifuge 

(Thermo Scientific®, Waltham, MA, USA). The supernatants (cell extracts) were transferred to round 
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bottom flasks and ethanol was evaporated using a rotary evaporator. The cell extracts were then 

lyophilized from 6 hours to overnight and re-suspended in MilliQ H2O. 

Identification of phosphorylated metabolites by NMR spectroscopy.  Freeze-dried extracts 

were dissolved in MilliQH2O and analyzed by 31P- nuclear magnetic resonance (NMR). NMR spectra 

were acquired in a Bruker Avance II 500-MHz spectrometer (Bruker BioSpin GmbH) using a 5-mm 

31P-selective probe head at 25 °C and a standard Bruker program. The presence of each metabolite was 

confirmed by adding a small amount of standard solution to the extract. Calibration and quantification 

were performed using di-myo-inositol-1,3′-phosphate (DIP) of known concentration, with a resonance 

at -0.57 ppm (Rodrigues et al., 2009). 

Quantification of intracellular ATP. Intracellular ATP was quantified by using the 

BacTiter-Glo™ Microbial Cell Viability Assay Kit (Promega, Madison, WI, USA). B. subtilis strains 

were grown in C minimal medium supplemented with 1% (w/v) of casein hydrolysate in the presence 

and absence of 0.4% (w/v) arabinose, as described above. Cells were collected 2 h after the addition of 

arabinose and the OD600 was normalized to the lowest OD600 obtained. 100 µl of cells were mixed with 

an equal volume of the BacTiter-Glo™ reagent and incubated for 5 min, according to the manufacturer’s 

instructions. The emitted luminescence was detected by using a GloMax® 96 Microplate Luminometer 

from Promega (Madison, WI, USA) and was expressed as relative luminescence units (RLU).  

 

Table 4.1. List of plasmids used in this study 

Plasmid Relevant Construction Source 

pMAD Plasmid used for allelic replacement in Gram-positive bacteria, bla, erm Arnaud et. al. 2004 

pMO1 
In-frame deletion of 3 residues directly involved in the catalytic mechanism 

of the L-ribulokinase, AraB 
Present study 

pMO2 
In-frame deletion of 5 residues directly involved in the catalytic mechanism 

of the L-ribulose 5 phosphate epimerase, AraD 
Present study 

pLG32 In-frame deletion of the araLMNPQ genes ( ΔaraLMNPQ) Present study 

pLG39 In-frame deletion of the methylglyoxal synthase gene (ΔmgsA) Present study 
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Table 4.2. List of oligonucleotides (Primers) used in this study. Restriction sites are underlined. 

Primers Sequence (5’  3’) 

ARA448 GATAAAGTACTTTTCGAAAAAAGTCATTTTTTTCATCTGCGTTACCCCTTC 

ARA449 GAAGGGGTAACGCAGATGAAAAAAATGACTTTTTTCCAAAAGTACTTTATC 

ARA570 CCTTCCTATTGACAGCAGGG 

ARA571 GACGCGCGGTACCGAAACTACATTGGCAACAACCGCAAC 

ARA572 GTTGCGGTTGCCAATGTAGTTTCGGTACCGGCGGTC 

ARA573 CATACGCATAAATCTGCATG 

ARA574 GAAAACCATGTCATGAAGCG 

ARA575 AAATTCCGTCGGAAGCTGCTGGTTTAAGCGAGCCTTCGACGACC 

ARA576 GGTCGTCGAAGGCTGGCTTAAACCTACCCATGTTTATCTATAAA 

ARA577 GTGATTATTCACGAGCACAC 

ARA581 TGGAACACACCATTCCGTCT 

ARA582 TGCGGCTCCTCTTCATATTC 

ARA583 TCGCGGTTTCGCTGCCCTTT 

ARA584 AAGTCCCGCAACGCGCGCAA 

ARA665 GGAGATCTCGGCATTCACCGT 

ARA666 GGCAGTCGACTGTTTGAGCTG 

ARA750 TTGCATTAGAGATCTGAGTCCGTC 

ARA751 TTATACATTCGGCTCTTCTCCCCGAGCAATTTTCATTGTTTATCCCCC 

ARA752 GGGGGATAAACAATGAAAATTGCTCGGGGAGAAGAGCCGAATGTATAA 

ARA753 GTAGGCGTCGACGCTTTGTTTCTT 
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Table 4.3. List of strains used in this study. Arrows indicate transformation and point from donor DNA to 

recipient strain 

 

 
 

Results and Discussion 

Analysis of arabinose sensitivity in different Bacillus subtilis mutant strains  

In previous studies, to characterize the role of the araR gene in the catabolism of L-arabinose, an 

araR-null mutant strain was constructed (IQB215 ΔaraR::km). This strain was unable to grow on 

minimal medium with arabinose as the sole carbon and energy source and presented constitutive 

expression of the arabinose metabolic genes, araA, araB, and araD on rich medium (Sá-Nogueira & 

Mota, 1997). In liquid minimal C medium supplemented with casein hydrolysate, in which B. subtilis 

cell are utilizing casamino acids as source of carbon and energy, addition of arabinose during 

early-exponential-phase growth causes immediate cessation of growth. A direct correlation between the 

growth arrest of the ΔaraR mutant cells and the minimal arabinose concentration in the medium was 

established, which corresponds to full induction of the araABDLMNPQ-abfA operon promoter in the 

wild-type strain (Sá-Nogueira & Mota, 1997). Moreover, a strain bearing a large deletion downstream 

Strain Relevant Genotype Source 

E. coli Strains   

DH5α 
fhuA2 Δ(argF-lacZ) U169 phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 
Gibco - BRL 

XL1 Blue 
(recA1 endA1 gyrA96 thi-1 hsdr17 supE44 relA1 lac [F’ 

proAB lacIq ZΔM15 Tn10 (TetR)] 
Stratagene 

B. subtilis strains   

168T+ Prototroph (wild-type) F.E. Young 

IQB206 ΔaraLMNPQ-abfA::spc Sá-Nogueira et. al. 1997 

IQB565 ΔaraLMNPQ-abfA::spc  ΔaraR::km 
Sá-Nogueira, unpublished 

results 

IQB861 araB- pMO1 → 168T+ 

IQB862 ΔaraR::km araB- pMO1 → IQB215 

IQB865 araD- pMO2 → 168T+ 

IQB866 ΔaraR::km araD- pMO2 → IQB215 

IQB871 ΔaraLMNPQ-in-frame pLG32 → 168T+ 

IQB872 ΔaraLMNPQ-in-frame  ΔaraR::km pLG32 → IQB215 

IQB875 ΔmgsA pLG39 → 168T+ 

IQB876 ΔmgsA ΔaraR::km pLG39 → IQB215 
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of araD, which replaced the sequences of the araLMNPQ genes and the majority of the abfA gene with 

the spectinomycin resistance gene (strain IQB206, ΔaraLMNPQ-abfA::spc), was able to grow on 

arabinose as the sole carbon an energy source. However, it was noticed that the specific growth rate of 

this strain, when fully induced by arabinose, was slightly affected by the large deletion when compared 

to the wild-type strain (Sá-Nogueira et. al., 1997; Table 4.4). 

Interestingly, it was shown that the toxic effect of arabinose was suppressed by introduction of 

the insertion-deletion mutation in an araR-null mutant background (strain IQB565, ΔaraR::km 

ΔaraLMNPQ-abfA::spc) (Sá-Nogueira et. al. unpublished results; Table 4.4). These observations, 

together with the data obtained in Chapter II, led us to speculate that the growth cessation phenotype 

observed in the ΔaraR strain was most likely due to accumulation of phosphorylated sugars derived 

from arabinose metabolism, and that recovery from growth arrest in the double mutant strain was 

probably caused by destabilization of mRNA of the operon, which was also previously hypothesized to 

explain the decrease in specific growth rate in the insertion-deletion mutant strain IQB206 

(ΔaraLMNPQ-abfA::spc), when compared to the wild-type strain in the presence of arabinose. 

To test this hypothesis we constructed new strains by generating a marker-free in-frame deletion 

of genes araLMNPQ in the wild-type and araR-null mutant background, strains IQB871 (ΔaraLMNPQ 

in-frame) and IQB872 (ΔaraR::km ΔaraLMNPQ in-frame), respectively. The growth kinetic parameters 

of the strains were determined in liquid minimal C medium supplemented with casein hydrolysate in the 

presence and absence of arabinose and the results are summarized in Table 4.4. The strain bearing the 

in-frame deletion IQB871 (ΔaraLMNPQ in-frame) displayed a doubling time very similar to the 

wild-type. Furthermore, contrary to that observed in the strain bearing the insertion-deletion mutation 

(strain IQB565, ΔaraR::km ΔaraLMNPQ-abfA::spc), in strain IQB872 (ΔaraR::km ΔaraLMNPQ in-

frame) the in-frame deletion did not revert the growth arrest phenotype observed in an araR-null mutant 

background (Table 4.4). These results are consistent with instability of the message of the operon, 

namely of the araA, araB and araD mRNA, caused by the insertion of the spectinomycin resistance 

gene. Thus to confirm this results the mRNA levels of these strains were determined in the presence and 

absence of arabinose. 
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Table 4.4. Growth kinetics of B. subtilis wild-type and mutant strains in complex medium. Cells 

were grown in C minimal medium supplemented with casein hydrolysate in the presence of arabinose or ribitol 

and in the absence of sugar. Results are the averages of three independent assays and their respective standard 

deviations. 

 

 Doubling Time  (min) 

Strain 0.4% arabinose 0.4% ribitol No sugar 

168T+ (wild-type) 42.84 ± 1.81 53.08 ± 6.00 46.79 ± 2.14 

IQB215 (ΔaraR::km) No growth No growth 46.44 ± 3.93 

IQB565 (ΔaraR::km ΔaraLMNPQ::spc) 56.52 ± 2.65 No growth 50.08 ± 3.66 

IQB861 (araB -) 47.23 ± 1.04 46.81 ± 2.33 47.27 ± 4.01 

IQB862 (ΔaraR::km araB -) 48.99 ± 0.24 47.10 ± 1.84 49.45 ± 2.13 

IQB866 (ΔaraR::km araD -) No growth No growth 48.84 ± 5.29 

IQB865 (araD -) No growth after 30 min 46.86 ±3.00 46.87 ± 3.00 

IQB872 (ΔaraR::km ΔaraLMNPQ in-frame) No growth No growth 51.05 ± 5.01 

IQB871 (ΔaraLMNPQ in-frame)  43.33 ± 5.94 44.87±1.93 48.05 ± 5.64 

IQB875 (ΔmgsA) 51.49 ± 3.43 61.35 ± 4.23 63.81 ± 1.37 

IQB876 (ΔaraR::km ΔmgsA) No growth No growth 67.23 ± 4.83 

 

mRNA levels of the operon were relatively quantified by real-time PCR using the araB gene. The 

analysis showed that in the presence of arabinose the levels of messenger RNA in the strains bearing the 

insertion-deletion mutation decrease considerably when compared to the wild-type strain fully induced 

(Table 4.5). 
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Table 4.5. Measurement of araB mRNA levels in different B. subtilis strains by qRT-PCR. The 

results represent the fold-change of the expression in the target conditions versus the control conditions. Cells were 

grown in minimal C medium supplemented with 1% (w/v) of casein hydrolysate in the presence (+) and absence 

(-) of arabinose. Statistical analyses were performed with GraphPad Prism version 5.00 for Windows (GraphPad 

Software) using Ct values obtained from three independent assays. p values were determined using an unpaired 

two-tailed t test (ns, non-significant difference; *, p < 0.05; **, p < 0.01; ***, p < 0.001). 

 

 

Growth kinetic experiments in the presence of arabinose together with real-time PCR analysis of 

the mRNA levels allowed us to conclude that the recovery from growth arrest displayed by strain 

IQB565 (ΔaraR::km ΔaraLMNPQ-abfA::spc) in the presence of this sugar was due to a decrease in the 

concentration of arabinose catabolic enzymes, hence decreasing the levels of phosphorylated sugar 

intermediates of arabinose catabolism.  

The wild-type B. subtilis strain 168T+ is not able to utilize the pentose alcohol ribitol as sole 

carbon an energy source; however, it can be phosphorylated by the ribulokinase AraB, originating ribitol 

phosphate (ribitol-P). We determined the growth kinetics parameters of the mutant strains in the 

presence of ribitol in the same conditions as described above. Addition of 0.4% ribitol resulted in 

immediate growth arrest in the araR-null mutant strains IQB565 (ΔaraR::km ΔaraLMNPQ-abfA::spc) 

and IQB872 (ΔaraR::km ΔaraLMNPQ-in-frame) (Table 4.4), similarly to that observed in strain 

IQB215 (ΔaraR::km), thus sustaining the hypothesis of toxicity caused by sugar-phosphate 

accumulation. 

In addition, we constructed and tested strains with small in-frame deletions in the catabolic genes 

of the operon, namely araB and araD, targeting residues directly involved in the catalytic mechanism 

of the enzymes encoded by these genes, preventing their ribulokinase and epimerase activity, 

respectively. The mutations were generated by in-frame marker-free deletions in order to minimize polar 

 Target Situation 

Control 

Situation 

IQB215 

ΔaraR::km 

(-) 

IQB206 

ΔaraLMNPQ-

abfA::spc 

(+) 

IQB565 

ΔaraR::km 

ΔaraLMNPQ-

abfA::spc 

(+) 

IQB871 

ΔaraLMNPQ 

(+) 

IQB872 

ΔaraR::km 

ΔaraLMNPQ 

(-) 

168T+ (+) 
3.78 ± 0.19 

*** 
0.65 ± 0.127 * 0.025 ± 0.01 ** 0.90 ± 0. 21 * 4.84 ± 1.26 ** 
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effects in the downstream genes yielding the following strains, IQB861 (araB-), IQB862 (ΔaraR::km 

araB-), IQB865 (araD-) and IQB866 (ΔaraR::km araD-). For the araB- strains we introduced a small 

mutation in the araB gene, which deleted 3 residues directly involved in the catalytic mechanism of the 

L-ribulose kinase. In the resulting strain, this mutation reverted the toxic effect of arabinose and ribitol 

addition in the araR-null mutant. Both strains, araB - and ΔaraR::km araB- were able to grow in the 

presence of both sugars (Table 4.4). In parallel, the introduction of a small mutation in the araD gene 

that deleted 5 residues directly involved in the catalytic mechanism of the L-ribulose 5-phosphate 

epimerase, resulted in growth arrest in both strains in the presence of arabinose.  However, addition of 

arabinose to strain IQB865 (araD-) did not cause immediate growth arrest, as observed in the araR-null 

mutant strain IQB866 (ΔaraR::km araD-) – cessation of growth occurs approximately 30 minutes after 

sugar addition to the medium. The presence of ribitol does not affect growth, since it is not an inducer 

of the arabinose-responsive promoter. In the araR-null strain, ΔaraR::km araD-, addition of both ribitol 

and arabinose result in immediate growth arrest, as a result of an increase in AraA, AraB and AraD 

concentration, caused by the de-repression of the Para promoter in the absence of the AraR (Table 4.4). 

These results further support that the bacteriostatic effect is due to the intracellular accumulation of 

sugar-phosphates. 

Production of methylglyoxal by mutant B. subtilis strains 

Methylglyoxal (also known as 2-oxopropanal or as pyruvaldehyde) is a typical cellular 

2-oxoaldehyde and a known by-product of metabolic pathways in living organisms. Toxicity of 

methylglyoxal accumulation is a well-established phenomenon (Chandrangsu et al., 2014; Cooper & 

Anderson, 1970; Inoue & Kimura, 1995; Kadner et al., 1992; Landmann et al., 2011; Nguyen et al., 

2009; Subedi et al., 2008). When there is an increase in the uptake of carbohydrates into the cell, an 

asymmetry is caused between flux through the upper branch of the Embden-Meyerhof-Parnas pathway 

(glycolysis) and the capacity of its lower branch (tricarboxylic acid cycle), and synthesis of 

methylglyoxal is thought to function as an overflow mechanism that prevents accumulation of 

phosphorylated intermediates (Cooper & Anderson, 1970; Inoue & Kimura, 1995; Kadner et al., 1992). 

The way methylglyoxal (MG) is further processed in the cell, resulting in D-lactate production or being 

excreted to the medium, was recently investigated in B. subtilis (Chandrangsu et al., 2014).  

Since the results discussed above pointed towards an increase in phosphorylated metabolites as a 

consequence of the upregulation of the araABD genes in the absence of the repressor AraR, most 

probably the accumulation of dihydroxyacetone phosphate (DHAP) originating from the pentose 

phosphate pathway is directed to MG production by action of the methylglyoxal synthase (MgsA) 

enzyme. Consequently, accumulation of MG might be playing a role in growth arrest of strains lacking 

AraR. To test this hypothesis we measured MG production in the wild-type and mutant strains grown 

as described above in the presence of arabinose, or ribitol, and in the absence of sugars (Fig. 4.1). 
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Figure 4.1. Methylglyoxal production in B. subtilis strains. Methylglyoxal presence in the medium 

was measured in the absence of sugar (white bars), in the presence of arabinose (black bars) and in the presence 

of ribitol (grey). Error bars represent the standard deviation of at least three independent experiments and 

differences were considered statistically significant. Unpaired Two-tailed t test and GraphPad Prism version 5.00 

for Windows (GraphPad Software) were used for statistical analysis. 

 

The data show that accumulation of MG in the culture medium is higher in strains lacking AraR, 

thus strains producing more MG cease growth upon arabinose addition to the medium and display higher 

levels of mRNA for the arabinose catabolic genes in the same conditions (2 h after arabinose addition). 

Moreover the amount of MG measured in these cases correlates to results obtained by other authors 

reporting growth arrest of B. subtilis cells at similar concentrations of MG (Landmann et al., 2011). As 

expected, strains unable to synthesize DHAP, such as IQB865 (araD-) and IQB866 (ΔaraR::km araD-) 

do not present significant accumulation of MG, as well as strains lacking the MgsA gene, IQB875 

(ΔmgsA) and IQB876 (ΔaraR::km ΔmgsA). The results obtained in the determination of the growth 

kinetics parameters (Table 4.4) showed that strains IQB865 (araD-) IQB866 (ΔaraR::km araD-) and 
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IQB876 (ΔaraR::km ΔmgsA) are unable to grow in the presence of arabinose, however no significant 

accumulation of MG in the growth medium is detected when compared to the ΔaraR::km strains bearing 

an intact arabinose catabolic pathway (IQB215 and IQB872). Most interesting is to verify the statistical 

significance of the decrease of accumulated MG in strain IQB565 vs IQB872 (insertion-deletion and in-

frame deletion). 

Accumulation of MG in the presence of ribitol is not significant, which is in agreement with the 

non-catabolization of ribitol phosphate by the PPP in all strains derived from the wild-type 168T+. Thus, 

in strains unable to grow in the presence of ribitol, namely IQB215 (ΔaraR::km), (IQB565 (ΔaraR::km 

ΔaraLMNPQ-abfA::spc), IQB872 (ΔaraR::km ΔaraLMNPQ-in-frame) and IQB876 (ΔaraR::km 

ΔmgsA) growth arrest is independent from MG accumulation, and may be due to depletion of cellular 

phosphate upon accumulation of phosphosugars, like L-ribulose 5-phosphate (in strains araD- and 

ΔaraR::km araD-) or ribitol phosphate. 

Accumulation of phosphosugars is a major driving force of arabinose toxicity in the 

absence of AraR 

Then we analyzed cell extracts of B. subtilis by 31P-nuclear magnetic resonance (NMR), to 

identify which metabolites were accumulating in the araR-null mutant strains when compared to the 

wild-type strain.  Cold ethanolic cell extracts of cultures grown in identical conditions as described 

above in the previous analysis were used in the study to detect if those metabolites correlate, in any way, 

with metabolites from the arabinose degrading pathway, the pentose phosphate pathway or even from 

glycolysis.  

The acquired 31P-NMR spectra display a significant difference in peak number and typology in 

the wild-type and the mutant strain IQB215 ΔaraR::km when arabinose is present (Panels A and C, 

respectively, Figure 4.2). The occurrence of phosphate monoesters (phosphosugars) in the wild-type 

strain in the presence and absence of arabinose (panels A and B, respectively, Figure 4.2) indicated that 

full induction of the arabinose catabolizing genes does not generate accumulation of phosphorylated 

metabolites. Yet, spectra analysis of the deregulated araR-null mutant strain in the presence and absence 

of arabinose (panels C and D, respectively, Figure 4.2) showed a substantial difference, as several peaks 

corresponding to phosphorylated metabolites are identifiable in the presence of arabinose. 

The location of the peaks in the spectra (in ppm) allowed us to conclude that phosphorylated 

sugars are indeed accumulating in the mutant strain. Furthermore, we were able to identify the majority 

of the peaks present in the phosphate monoester region as phosphosugars belonging to both the pentose 

phosphate pathway and glycolysis (Figure 4.3). It was possible to assign the existence of L-ribulose 

5-phosphate (R5P), D-xylulose 5-Phosphate (X5P), fructose 1,6-bisphosphate (FBP), fructose 
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6-phosphate (F6P), glucose 6-phosphate (G6P), 6-phosphogluconate (6PG) in the ΔaraR::km mutant 

strain sample obtained in the presence of arabinose (Figure 4.3). 

Figure 4.2. 31P-NMR analysis of B. subtilis cell extracts. Freeze-dried extracts were dissolved in 

MilliQH2O and analyzed by 31P- nuclear magnetic resonance (NMR). NMR spectra were acquired in 

a Bruker Avance II 500-MHz spectrometer. On the left, NMR spectra of the wild-type strain 168T+ acquired 

in the presence (A) and in the absence (B) of arabinose. On the right, NMR spectra of the mutant araR-null 

strain IQB215 acquired in the presence (C) and in the absence (D) of arabinose. Accumulation of several 

phosphate monoesters, between 1.5 and 3.5 ppm,  corresponding to phosphorylated sugars can be seen in C, 

when compared to A, B or D). 

Figure 4.3. Metabolite Identification of Phosphorylated Sugars by 31P-NMR. 31P-NMR spectrum 

of freeze-dried extract of the mutant araR-null strain IQB215 acquired in the presence of arabinose. Pi is visible 

at 0.5 ppm, while the identified metabolites all fall in the phosphate monoester region, between 1.5 and 3.5 

ppm. Arrows point towards the phosphosugars, namely L-ribulose 5-phosphate (Ribulose5P), D-xylulose 

5-Phosphate (Xylulose5P), fructose 1,6-bisphosphate (FBP), glucose 6-phosphate (Glucose6P), 

6-phosphogluconate (6PG). Although identified through spiking, fructose 6-phosphate (F6P) is not shown 

here, as its signal is masked by the stronger FBP signal. 
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Other substrates tested, namely glyceraldehyde 3-phosphate, 2-phosphoglycerate, ribose 5-

phosphate, phosphoenol pyruvate and acetyl phosphate, were not found in the mutant strain. 

The largest peak found in sample corresponds to accumulation of FBP and could be a result of 

the interconversion of several metabolites found in both the PPP and glycolysis (Figure 4.4). This 

observation correlates with the results we obtained for methylglyoxal accumulation in strains depleted 

of AraR (Figure 4.1), as high FBP levels lead to an increase in MG production (Landmann et al., 2011).  

 

Imbalance of ATP in the cell plays a role in arabinose toxicity in B. subtilis 

ATP is the universal currency of free energy in biological systems, as it is the free-energy-donor 

in most energy-requiring processes, due to its two phosphoanydre bonds, which release a large amount 

of free energy when ATP is hydrolyzed. ATP is generated in the breakdown of sugars as the oxidation 

energy of carbon atoms is transformed into phosphoryl transfer potential. 

However, phosphorylated metabolites arising from the PPP are phosphorylated using ATP 

(namely L-ribulose 5-phosphate), thus ATP molecules are being invested in the phosphorylation of 

Figure 4.4. Interconnection between the pentose phosphate pathway and glycolysis. Dashed arrows 

indicate entry points of PPP metabolites in the glycolytic pathway, namely F6P and GA3P. Also indicated are the 

enzymes that catalyze PPP and glycolysis reactions: AraD - L-ribulose 5-phosphate epimerase; Tkt – transketolase; 

YwjH – transaldolase; Tpi – triose phosphate isomerase; GlcK – glucose kinase; Pgi - glucose-6-phosphate 

isomerase; PfkA – phosphofructokinase; FbaA – fructose 1,6-bisphosphate aldolase. 
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sugars while less ATP molecules are generated via the lower branch of glycolysis, because metabolism 

is stalled at the production of FBP in strains that cease growth upon arabinose addition. So, the 

uncontrolled phosphorylation of metabolites resulting from arabinose catabolism may function as an 

ATP sink depleting the available ATP pool. To evaluate intracellular ATP depletion, we measured the 

relative intracellular ATP using the BacTiter-Glo™ Microbial Cell Viability Assay Kit (Promega), 

which allows generation of a luminescent signal proportional to the amount of ATP present in the 

sample. The results obtained in the wild-type and mutant strains grown in the presence of arabinose or 

ribitol, and absence of sugar are summarized in Figure 4.5.  

 

Our results show that in the presence of arabinose the ATP levels of the araR-null mutant strains 

(IQB215 and IQB866) and the araD- strain (IQB865) decrease when compared to the values obtained 

in the absence of sugar. Moreover, there is a significant drop in intracellular ATP detected in 

arabinose-sensitive strains when compared to the wild-type strain. This could be caused, as we 

hypothesize above, by a stalled metabolism in FBP, which originates from DHAP and G3P by action of 

fructose-1,6-bisphosphate aldolase (FbaA, Figure 4.4), a constitutively expressed enzyme from 

glycolysis (Ludwig et al., 2001).  FBP is produced simultaneously from phosphorylation of F6P by the 

Figure 4.5. Relative ATP quantification in B. subtilis cell cultures. The bars represent the relative 

luminescence units (RLU) and are means of data obtained from at least three independent experiments each 

conducted in triplicate. Cell number was normalized previous to assay. Error bars represent the standard deviation. 

Unpaired two-tailed t test and GraphPad Prism version 5.00 for Windows (GraphPad Software) was used for 

statistical analysis. 
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phosphofructokinase enzyme (Pfk, Figure 4.4) that has an increased activity when the ATP/AMP ratio 

decreases (Berg et al., 2011; Byrnes et al., 1994). When the concentration of ATP lowers, Pfk detects 

an energy deficit in the cell and phosphorylates FBP to proceed with ATP and NADH generation via 

the lower branch of glycolysis and TCA cycle allowing growth. In addition, growth cessation in the 

araR-null mutant strains caused by ribitol is also associated with a decrease in ATP concentration, 

although intracellular concentration is not as low as detected in the presence of arabinose. Although 

ribitol is not catabolized by the B. subtilis strains used in this study, ribitol phosphate is formed by the 

action of ribulokinase constitutively expressed in the araR-null mutant strains, therefore contributing to 

ATP depletion.   

Growth arrest phenotype in an araR-null mutant strain of B. subtilis is caused by multiple 

factors 

The data indicate that there is no one single or simple cause that leads to growth arrest in an 

araR-null mutant strain in the presence of arabinose. The mutant strain IQB215 (ΔaraR::km) displays 

arabinose-sensitivity and accumulates not only MG but also several phosphorylated sugars, namely 

FBP, and displays a decrease in intracellular ATP when compared to cells grown in the absence of sugar, 

or compared to the wild-type strain grown in the presence of arabinose. Decrease on intracellular ATP 

content is concomitant with an increase in phosphofructokinase activity in the cell (Berg et al., 2011; 

Byrnes et al., 1994), which phosphorylates F6P to FBP. Additionally, an increase in FBP levels in the 

cell leads to phosphorylation of Crh, a paralogue protein of HPr, responsible for controlling the 

methylglyoxal bypass in the MG pathway (Landmann et al., 2011). The enzyme MgsA converts DHAP 

to MG initiating a glycolytic bypass that prevents the deleterious accumulation of phospho-sugars under 

carbon overflow conditions. The non-phosphorylated form of Crh interacts with MgsA and inhibits its 

activity. Phosphorylation of Crh impairs its binding to MgsA, thus coupling high activity of the MG 

pathway to high intracellular levels of FBP, reflecting overflow of carbon sources. Thus, bacteria 

produce a toxic substance to get rid of phospho-sugar stress and, on the other hand, MgsA activity 

restores inorganic phosphate levels. 

Strains with an impaired arabinose catabolic pathway, namely araD- strains, IQB865 (araD-) and 

IQB866 (ΔaraR::km araD -) do not accumulate MG in the growth medium but still display a decrease 

in intracellular ATP content in the presence of arabinose. This result could be due to ATP molecules 

being invested in the phosphorylation L-ribulose and no ATP being generated via the lower branch of 

glycolysis, mainly from 1,3-bisphosphoglycerate, because the metabolism has come to a stop at 

L-ribulose 5-phosphate. As such, growth arrest could be attributed mostly to the intracellular decrease 

of ATP, which can have major implications in the redox balance of the cell disrupting the NADH/NAD+ 

ratio. 
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Similarly, the presence of ribitol causes immediate cessation of growth of strains bearing a 

deletion in araR but does not result in MG accumulation in the medium, although an intracellular ATP 

decrease is observed (Table 4.4, Figure 4.1 and Figure 4.4, respectively). Since ribitol-phosphate 

accumulates in the cell (data not shown) and is not further metabolized by the cells, these observations 

might be explained as discussed above in the case of strains unable to catabolize L-ribulose phosphate. 

 

Additionally, we observed that the effect of arabinose-sensitivity, growth arrest phenotype, is 

bacteriostatic rather than bactericidal implying that the cells eventually find mechanisms to cope with 

an overflow of carbon source that originates a variety of toxic stimuli. We performed growth 

experiments in the same conditions described above but incubation proceeded for an extended period 

and the results obtained with the araR-null strain showed that the toxic effect of arabinose and ribitol 

was, in fact, transient rather than permanent (Figure 4.6).  

  

 

 

 

Figure 4.6. Recovery of growth of B. subtilis araR-null mutant strains in complex medium.  Black 

arrow indicates time of arabinose or ribitol addition to an early exponential growing culture of B. subtilis. 

Strains IQB215 (ΔaraR::km) and IQB 876 (ΔaraR::km ΔmgsA) were tested to ascertain recovery from growth 

arrest upon arabinose or ribitol addition. 
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In the presence of arabinose, the araR-null mutant took longer to resume growth than in the 

presence of ribitol. We hypothesize that this could be due to the known cell toxicity effect of MG, since 

no significant production of MG was detected when the strains were grown in the presence of ribitol 

(Figure 4.1). So, we examined the behavior of the ΔaraR::km ΔmgsA double mutant strain in identical 

conditions (presence of arabinose and ribitol) and the data revealed that this strain restarted growth 

phenotype much earlier than the single araR-null mutant (Figure 4.6). This observation is most probably 

due to the lack of MgsA, and consequent absence of MG in the cell, thus allowing the double mutant 

strain to recover growth more rapidly than the single mutant strain. The mechanisms involved in the 

capacity of the strains to recovery from growth arrest is unknown, however one possible explanation is 

that the selective pressure applied by sugar-phosphates stress favors the proliferation of cells carrying 

spontaneous mutations in the araB gene encoding the L-arabinose ribulokinase, which is able to 

phosphorylate both substrates arabinose and ribitol.  

Also, addition of ribitol to IQB215 (ΔaraR::km) and IQB866 (ΔaraR::km araD-) causes 

immediate cessation of growth, but does not result in MG accumulation in the medium nor in 

intracellular ATP decrease. We know that ribitol-phosphate accumulates, at least, in IQB215 (data not 

shown). Thus, if ribitol phosphorylation does not result in significant intracellular ATP decrease as we 

expected, we can hypothesize that accumulation of ribitol-P in our araR-null mutant strains could be 

impairing cell wall biosynthesis, due to action of enzymes involved in that process that may have affinity 

to ribitol-P, disrupting cell wall biosynthesis processes. 
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Concluding Remarks and Future Perspectives 

 

In this work, investigated the role of araL and araM in the toxic effect observed upon addition of 

arabinose to an early-exponentially growing culture of an araR-null mutant. Previous results obtained 

in our laboratory showed that the toxic effect of arabinose verified in an araR-null mutant is suppressed 

by a deletion of all genes downstream of araD. Neither araNPQ nor abfA gene products are considered 

to contribute to the toxic effect, due to the nature of their function, leaving as potential candidates for 

this effect the genes araL and araM. By two complementary approaches we showed that araL and araM 

are not involved in this phenomenon of toxicity. First, in-frame deletion mutations in both araL and 

araM genes constructed in an araR-null mutant failed to suppress the toxic effect of arabinose addition. 

Then, ectopic expression of both araL and araM under the control of an inducible promoter in a strain 

carrying an araR-null mutation and a deletion of all genes downstream of araD failed to re-establish the 

toxic effect. Neither araL or araM are responsible for the toxic effect, so the most plausible explanation 

is that the toxic effect could be due an increased intracellular level of arabinose in the araR- null mutant, 

caused by deregulation of all arabinose responsive genes, consequently leading to an increase in the 

concentration of the metabolic sugar phosphates intermediates that are toxic to the cell.  

Furthermore, we demonstrate that the large deletion in the genes downstream from araD, 

constructed by an insertion-deletion mutation leads to destabilization of the upstream mRNA. The 

generation of markerless in-frame deletions of araLMNPQ combined with quantitative analysis of 

mRNA showed that in the strain carrying the insertion deletion mutation a lower level of araABD mRNA 

is present resulting in a decrease in the concentration of the enzymes involved in the catabolism of 

arabinose and consequently to a minor the concentration of the sugar phosphates intermediates. 

We prove that the araL gene encodes a phosphatase, with activity towards several phosphorylated 

sugars. Over production, purification and biochemical characterization of a recombinant version of AraL 

was successful. Experimental data indicates that AraL is a magnesium dependent alkaline phosphatase 

functioning at high temperatures, with optimal temperature at 65 oC. Substrate specificity of AraL points 

to a biological function within the context of carbohydrate metabolism – like other members of the HAD 

superfamily, it displays a wide substrate utilization profile and low substrate specificity. Because 

nonspecific HAD enzymes have broad and low substrate specificities and do not participate in specific 

metabolic pathways, we proposed that these enzymes detoxify sugar phosphates that accidentally 

accumulate at metabolic bottlenecks. 

We have also shown, for the first time, that a genetic regulatory mechanism controls 

expression/production of a member of the HADSF, NagD family. The araL gene is under the control of 

the operon promoter, which is very strong promoter and basal expression in the absence of inducer is 

always present. A second level of regulation that involves sequestering of the araL ribosome binding 

site and consequently drastically reduces production of AraL is observed, as demonstrated by gene 

reporter fusion assays and immunoblotting experiments. 
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In an araR-null mutant growth arrest caused by accumulation of phosphosugars was tested by 

inserting small in-frame deletions of specific codons in the arabinose catabolic genes araB and araD. 

Targeting residues directly involved in the catalytic mechanism of the enzymes, their activity was 

abolished whilst limiting a polar effect at the mRNA level. Strains lacking AraB (kinase) activity were 

successful in the reestablishment of the growth phenotype in the presence of arabinose, whereas strains 

deficient in AraD (epimerase) activity were still unable to grow in the presence of arabinose due to 

accumulation of ribulose 5-phosphate. In order to identify the metabolites building-up in the araR-null 

mutant strain, as opposed to the wild-type strain, we used 31P-NMR and were able to identify the 

majority of the peaks present in the phosphate monoester region as phosphosugars from both the pentose 

phosphate pathway and glycolysis. Enhanced levels of ribulose 5-phosphate, xylulose 5-phosphate, 

fructose 1,6-bisphosphate, fructose 6-phosphate, glucose 6-phosphate and 6-phosphogluconate were 

found. 

Our studies led to the conclusion that the major driving forces for arabinose toxicity in a strain 

lacking araR are accumulation of phosphorylated sugars, together with accumulation of methylglyoxal 

and ATP depletion. Synthesis of methylglyoxal is widely accepted as an overflow mechanism that 

prevents accumulation of phosphorylated intermediates, despite its cytotoxicity. Accumulation of 

methylglyoxal in the growth medium was higher in the araR-null mutant, which draw a parallel with 

the growth kinetics results: strains accumulating more methylglyoxal stop growth after arabinose 

addition and display higher levels of mRNA for the arabinose catabolic genes in the same conditions. 

These observations together with relative ATP quantification, enable the establishment of a correlation 

between growth arrest phenotype (arabinose-sensitivity), methylglyoxal accumulation and drop in ATP 

level in the araR-null mutant when compared to the wild-type strain. Metabolites arising from the PPP 

are phosphorylated using ATP, while less ATP molecules are generated via the lower branch of 

glycolysis, because metabolism is stalled at the production of FBP, as shown by the 31P-NMR 

experiments.  

Decrease on intracellular ATP content is concomitant with an increase in phosphofructokinase 

activity in the cell, phosphorylating F6P and yielding FBP. An increase in FBP levels in the cell leads 

to phosphorylation of Crh which impairs binding to MgsA, coupling high activity of the methylglyoxal 

pathway to high intracellular levels of FBP. Strains with an impaired arabinose catabolic pathway, araD- 

strains, do not accumulate MG in the growth medium but still display a decrease in intracellular ATP 

content in the presence of arabinose. This could be due to ATP molecules being invested in the 

phosphorylation L-ribulose and no ATP being generated via the lower branch of glycolysis, because the 

pathway is stalled at L-ribulose 5-phosphate. Similarly, the presence of ribitol causes immediate 

cessation of growth of strains bearing a deletion in araR but does not result in methylglyoxal 

accumulation in the medium, although an intracellular ATP decrease is observed. Since 

ribitol-phosphate accumulates in the cell and is not further metabolized by the cells there is an 

investment of ATP molecules in the phosphorylation of ribitol. In the case of these strains, growth arrest 
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could be attributed to the decrease in intracellular ATP, which ultimately may have implications in the 

redox balance of the cell, disrupting the NADH/NAD+ ratio.  

Our study clearly shows that inactivation of a regulatory protein responsible for controlling the 

utilization of a secondary carbon source can have a major impact in central carbon metabolism. 

Understanding how secondary carbon sources can be used in major pathways (like glycolysis) is key to 

further understand fermentation of these secondary carbon sources like pentoses, which are industrially 

relevant, as strain enhancement can lead to bottlenecks causing either depletion of precursors or 

accumulation of toxic products. 

While AraL apparently does not play a role in the toxic effect described, it is worth mentioning a 

study focusing on the role of a HAD phosphatase (YigL) in carbon efflux for glucose homeostasis in E. 

coli (Papenfort et al., 2013). The phosphatase is regulated post-transcriptionally by a small RNA SgrS 

and was shown to possibly remove phosphorylated 2-deoxyglucose and the glucose analog 

α-methyl-glucoside as an immediate response to reduce intracellular stress. AraL production is also 

post-transcriptionally regulated although by a different mechanisms involving a secondary structure in 

the mRNA which sequesters the ribosome binding site. No signal for the disruption of this hairpin-like 

structure has yet been identified and no definite physiological role for AraL has been assigned thus is 

plausible to speculate that AraL may also play a role in the detoxification and carbon efflux, in a way 

similar to YigL. 
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