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Benefit of Exercise Training ThErapy and cardiac Resynchronization in 
Heart Failure patients  

(BETTER-HF) 
 

Benefício da Terapêutica Treino de Exercício de Exercício e 
Ressincronização Cardíaca em doentes com Insuficiência Cardíaca 

(BETTER-HF) 
 
 

 
1. RESUMO 

 

Introdução 
 
A insuficiência cardíaca crónica é conhecida como síndrome complexa, associada a 

elevada mortalidade e incapacidade, envolvendo múltiplos mecanismos fisiopatológicos, 

neuro-hormonais, endoteliais e inflamatórios. 

Além da terapêutica médica optimizada, a terapêutica não farmacológica, como a 

ressincronização cardíaca e o treino de exercício, assume um papel fundamental. 

Na insuficiência cardíaca avançada, doentes com critérios para terapêutica de 

ressincronização cardíaca (CRT) têm sido exaustivamente estudados, apesar da maioria 

dos estudos não se ter dedicado à diversidade de efeitos e mecanismos fisiopatológicos 

envolvidos, nos doentes mais gravemente sintomáticos.  

Nesta população com insuficiência cardíaca avançada tratada com CRT, estudos relativos 

aos efeitos e mecanismos do treino de exercício, especificamente exercício intervalado 

de alta intensidade, são ainda poucos e de pequena dimensão. 

 

Hipótese 

 

Hpótese principal formulada: 

Existe benefício em associar um programa de treino de exercício de alta intensidade, de 

longa duração, após ressincronização cardíaca em doentes com insuficiência cardíaca 

avançada. 

Hipótese secundária: 
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Estão envolvidos vários mecanismos fisiopatológicos, contribuindo diferentemente para o 

benefício do treino de exercício após CRT e para o benefício de CRT sem programa de 

exercício subsequente, em doentes com insuficiência cardíaca avançada. 

 

Objectivos 

 

O objectivo primário desta tese foi determinar os efeitos do programa de exercício 

intervalado de alta intensidade (HIIT), de longa duração, sobre a classe funcional clínica, 

qualidade de vida, capacidade funcional de exercício, função cardíaca e remodelagem 

ventricular, em doentes com insuficiência cardíaca avançada após implante do 

ressincronizador. 

O objectivo secundário pretendeu avaliar o papel potencial de diferentes mecanismos 

fisiopatológicos nos benefícios do treino de exercício após CRT, HIIT, e após CRT sem 

exercício subsequente: função endotelial, função do sistema nervoso autónomo, 

processo inflamatório e apoptose. 

 

Metodologia 

 

Efectuámos um ensaio controlado aleatorizado para determinar os efeitos da 

intervenção de exercício, HIIT, em doentes com insuficiência cardíaca avançada após 

CRT. 

Os critérios de inclusão foram, doentes com insuficiência cardíaca estável, em classe III-

IV (NYHA), sob terapêutica farmacológica optimizada, referenciados para CRT pelas 

recomendações actuais presentes, etiologia isquémica e não isquémica, com idade 

superior a 18 anos. Os critérios de exclusão incluiram insuficiência cardíaca instável, 

doença ortopédica ou muscular incapacitante para exercício e residência 

geograficamente distante do hospital. 

Os doentes que preencheram os critérios de inclusão foram aleatorizados para treino de 

exercício intervalado de alta intensidade ou para grupo controlo (EXTG e CG, 

respectivamente). 
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A aleatorização, realizada por um investigador independente, foi estratificada, baseada 

na idade (<65 ou >65 anos), sexo, etiologia (isquémica e não isquémica) e gravidade de 

disfunção ventricular esquerda (fracção de ejecção ventricular esquerda <20 ou >20%). 

Os doentes com os mesmos critérios de inclusão, que não aceitaram a intervenção 

exercício ou que viviam longe, sem os restantes critérios de exclusão, foram 

adicionalmente estudados como cohort prospectivo para avaliação dos efeitos e 

mecanismos da intervenção CRT.  

Durante o periodo de Janeiro 2012 a Março 2015, todos os doentes com insuficiência 

cardíaca e critérios para ressincronização cardíaca elegíveis foram estudados. 

O programa de treino de exercício foi iniciado 1 mês após implante de 

cardioressincronizador e durou 6 meses com frequência bissemanal, consistindo em 

sessões de 60 minutos, realizadas no hospital, monitorizadas e supervisionadas. Incluiu 

treino aeróbio intervalado de alta intensidade (HIIT), adaptado a partir do protocolo de 

Wisloff, e exercícios de resistência, flexibilidade e coordenação. 

Os momentos do estudo usados para avaliação das variáveis independentes foram: 

momento basal, pré implante do ressincronizador (M1), aos 3 meses após exercício, 

correspondendo a 4 meses após implante (M2) e aos 6 meses após exercício, 

correspondendo a 7 meses após implante (M3).  

As variáveis dependentes estudadas foram: classe functional clínica (NYHA), scores de 

qualidade de vida (questionário HeartQol), parâmetros de função cardíaca e 

remodelagem reversa (determinadas por ecocardiografia e doseamento plasmático de 

péptido natriurético, BNP), de capacidade funcional de exercício (determinadas por 

prova de esforço cardio-respiratória, CPT), de função do sistema nervoso autonómico, 

SNA (por cintigrafia cardíaca com 123I-MIBG, prova de esforço cardio-respiratória e 

análise da variabilidade da frequência cardíaca no Holter-24 horas), de função endotelial 

e rigidez arterial (determinada por doseamento de NO, óxido nítrico, e por PAT,  

tonometria arterial periférica), marcadores de inflamação e apoptose (medição de 

proteína C reactiva de alta sensibilidade, hs-CPR, factor de necrose tumoral alfa, TNF-α, 

interleucina-6, IL-6, fracção solúvel do cluster de diferenciação 40, sCD40, fracção solúvel 

do ligando Fas, sFasL) e frequência de eventos major cardiovasculares aos 6 meses de 

exercício. 
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As excepções aos 3 momentos de avaliação foram: 123I-MIBG cintigrafia cardíaca, 

realizada antes do CRT (M1) e aos 6 meses de exercício (M3), análise de variabilidade da 

frequência cardíaca por estudo Holter-24horas, realizado apenas basal, pre-CRT (M1) e 

frequência de eventos, avaliada em M3.  

A segurança do treino de exercício HIIT foi avaliada.  

A resposta ecocardiográfica foi definida pelo aumento de pelo menos 5% da fracção de 

ejecção ventricular esquerda (LVEF), em valor absoluto e a resposta clínica como 

melhoria de pelo menos 1 classe funcional clínica (NYHA).  A resposta funcional foi 

definida como o aumento de pelo menos 1 ml/kg/min de VO2p. 

 

Resultados 

 

A partir de um cohort inicial de 121 doentes com insuficiência cardíaca selecionados 

para CRT, foram aleatorizados 62 doentes. Realizaram programa de treino de exercício 

HIIT, 22 doentes (EXTG), idade média 67,5±9,8%, 22,7% do sexo feminino, 40% 

isquémicos, LVEF basal 26,68±6,21%, enquanto 28 doentes foram incluídos no grupo 

controlo (CG). As características demográficas e clínicas basais foram idênticas 

estatisticamente. 

No grupo aleatorizado (n=50), todos os doentes tiveram benefício significativo, aos 6 

meses após início do exercício, relativamente a: diminuição da classe clínica de NYHA (p 

<0,001), melhoria do score de qualidade de vida HeartQol (p <0,001), aumento da LVEF, 

fracção de ejecção ventricular esquerda (p <0,005), diminuição dos volumes 

ventriculares esquerdos, LVED, tele-diastólico (p < 0,05) e LVES, tele-sistólico (p <0,02). 

Verificou-se uma diferença significativa da classe funcional clínica (NYHA), nos dois 

grupos aleatorizados, com maior diminuição no EXTG (p=0,034). Apenas no EXTG, se 

encontrou um aumento significativo da duração da prova de esforço cardio-respiratória, 

aos 3 meses (p=0,017) e aos 6 meses (p=0,008). O tempo para o limiar anaeróbio, VAT, 

aumentou significativamente no EXTG aos 3 meses (p= 0,006)  e aos 6 meses (p=0,004), 

sendo significativamente diferente do CG aos 3 meses (p=0,006) e apresentando uma 

tendência para significado estatístico aos 6 meses (p=0,064), momento em que a 

variação foi também significativa no CG. O TNF-α diminuiu significativamente apenas no 

EXTG, aos 6 meses (p=0,016), com uma diferença estatística significativa em relação ao 



5 

 

CG (p=0,008). Não se verificaram diferenças significativas nas variações dos parâmetros 

ecocardiográficos entre os dois grupos aleatorizados. Relativamente ao número de 

respondedores, no grupo de treino de exercício foram identificados mais respondedores 

clínicos (95%) e ecocardiográficos (81,8%) que no grupo controlo (78,5% e 72,7%, 

respectivamente), após 6 meses de exercício. A diferença no número de respondedores 

entre os 2 grupos aleatorizados, não atingiu contudo significado estatístico 

(provavelmente pela dimensão da amostra), mas com uma tendência para mais 

respondedores clínicos no grupo de exercício. A diferença no numero de respondedores 

funcionais, apesar de em numero tendencialmente superior no grupo de exercício 

(77,2%) não foi significativa.  O programa HIIT mostrou ser seguro, sem eventos major ou 

minor durante o exercício. Aos 6 meses de exercício (7 meses após implantação do 

ressincronizador), registaram-se 9% de eventos no grupo exercício e 10,7% no grupo 

controlo. Verificou-se ocorrência de morte ou internamento hospitalar em 1/22 doentes 

(4,5%) do grupo de exercício e em 3/28 doentes (10,7%) do grupo controlo. A única 

morte nos doentes aleatorizados ocorreu no grupo controlo, 1/28 doentes (3,5%). 

No total do cohort de doentes com CRT verificou-se um benefício significativo após 7 

meses de implantação: redução da classe funcional NYHA (p <0,001), aumento do score 

HeartQol (p <0,001), aumento da LVEF (p < 0,001), diminuição do volume tele-sistólico 

ventricular esquerdo (p=0,001), aumento do valor absoluto de GLS, strain global 

longitudinal, (p=0,003), relação E/e’, rácio entre onda E do fluxo de câmara de entrada 

do ventrículo esquerdo e e’ médio de doppler tecidular do anel mitral, (p=0,009), 

redução da massa ventricular esquerda (p=0,026), redução do VE/VCO2 slope, declive da 

razão entre ventilação minuto e produção de CO2, (p=0,003), aumento da duração do 

teste cardiopulmonar (p=0,002), aumento do tempo para VAT, limiar anaeróbio 

(p=0,001), redução do HRR1 (frequência cardíaca de recuperação ao primeiro minuto), 

(p=0,015), redução do HRR6 (frequência cardíaca de recuperação ao 6º minuto), 

(p=0,033) e aumento do VO2p, consumo de oxigénio pico, (p=0,04). Na amostra total dos 

doentes insuficientes cardíacos com CRT (incluindo 18% dos doentes submetidos a 

exercício) 75,6% foram respondedores clínicos, 63,9% respondedores ecocardiográficos 

e 62,8% respondedores funcionais. Os respondedores ecocardiográficos ao CRT tinham 

diferenças significativas nos parâmetros de base e na variação de alguns parâmetros: 

M1, menores volumes ventriculares esquerdos, maior TAPSE, maior SDNN (standard 
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deviation NN interval), maior heart-mediastinum ratio precoce (HMRe) e tardio (HMRl); 

M3-M1, maior aumento de LVEF, maior redução de volume LVES, maior aumento do 

valor absoluto de GLS e tendência para maior aumento de VO2p. Os respondedores 

tiveram menor número de eventos major registados em M3. 

Analizando todos os doentes com CRT, valores de 123MIBG HMRl>1,5 identificaram mais 

respondedores ecocardiográficos (probabilidade 2 vezes superior), apenas em não 

isquemicos. 

Os eventos aos 7 meses após CRT, M3, morte ou admissão hospitalar ou arritmia 

ocorreram em 14,8% da população total e em 16,1% dos doentes não submetidos a 

exercício.A morte ocorreu em 4,9% no grupo total e em 6% do grupo não submetido a 

exercício. 

 

Conclusão  

 

No presente ensaio aleatorizado e controlado, realizado numa amostra de doentes com 

insuficiência cardíaca avançada, referenciada para CRT, o exercício HIIT após implante do 

ressincronizador provou ser benéfico e seguro, associado a um maior número de 

respondedores ecocardiográficos e clínicos, acompanhado de uma melhoria clínica mais 

significativa, evidenciando o benefício adicional ao CRT. A melhoria do componente 

periférico da insuficiência cardíaca condicionada pelo exercício foi demonstrada pelo 

aumento  significativo da capacidade funcional ao esforço e do tempo para VAT, 

acompanhada de maior número de respondedores funcionais, tendo-se verificado um 

efeito modulatório sobre a inflamação que poderá ter contribuído para este efeito. Não 

foram demonstrados benefícios do exercício na função endotelial, no sistema nervoso 

autonómico e na apoptose. Ocorreram menos eventos major aos 6 meses em doentes 

submetidos a HIIT. 

A avaliação adicional dos doentes com CRT no estudo observacional demonstrou 

melhoria clínica, de qualidade de vida e de função ventricular sistólica e diastólica 

significativa, mesmo excluindo aqueles que fizeram treino de exercício. O efeito central 

do CRT na remodelagem cardíaca demonstrou ser crucial, com melhoria das diversas 

variáveis ecocardiográficas. Contrariamente, não se demonstraram efeitos periféricos 

benéficos do CRT, VO2p, duração CPT ou tempo VAT, aos 7 meses, uma vez excluídos os 
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doentes que fizeram programa de exercício. O sistema nervoso autónomo demonstrou 

ser um mecanismo relevante na resposta ao CRT, mas apenas em insuficientes cardíacos 

não isquémicos. Não foram demonstrados efeitos benéficos do CRT na função 

endotelial, inflamação ou apoptose. Registaram-se mais eventos em doentes sem 

terapêutica de exercício.  

Dos resultados desta tese, que verificam as hipóteses colocadas, podemos salientar que 

em doentes com insuficiência cardíaca avançada a intervenção de treino de exercício 

intervalado de alta intensidade, supervisionado, , após implantação de ressincronizador 

cardíaco é uma terapêutica não farmacológica segura e tem benefício adicional 

demonstrado relativo à CRT, resultando em menor número de doentes não 

respondedores. Esta intervenção não teve efeito deletério sobre a remodelagem reversa 

e alguns resultados apontam para potencial benefício. Os mecanismos envolvidos estão 

ligados particularmente ao componente periférico da insuficiência cardíaca, resultando 

em diminuição da gravidade dos sintomas clínicos, melhoria da capacidade funcional e 

modulação positiva da resposta fisiopatológica inflamatória.  

 

2. SUMMARY 

 

Introduction 

 

Chronic heart failure is known to be a complex syndrome, associated to high mortality 

and disability, involving multiple pathophysiologic mechanisms, neuro-hormonal, 

endothelial and inflammatory. 

Besides optimized medication, the nonpharmacologic therapy, like cardiac 

resynchronization and exercise training, plays a fundamental role. 

In advanced heart failure, patients with criteria for cardiac resynchronization therapy 

(CRT) have been studied extensively, though most of the studies were not dedicated to 

the diversity of effects and involved pathophysiologic mechanisms, in most severely 

symptomatic patients.  

In this advanced heart failure population treated with CRT, studies regarding exercise 

training effects and mechanisms, specifically high intensity interval exercise, are still few 

and small-sized. 
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Hypothesis 

 

Main hypothesis formulated: 

It is beneficial to associate a high intensity interval training exercise program, long 

duration, after cardiac resynchronization in advanced Heart Failure Patients.   

Secondary hypothesis: 

Several pathophysiologic mechanisms are involved, contributing differently to the 

exercise training benefit after CRT and to the benefit of CRT without subsequent exercise 

program in advanced HF patients.  

 

Aims 

 

The primary aim of this thesis was to determine the effects of a long-term High Intensity 

Interval Exercise Training (HIIT) program on clinical functional class, quality of life, 

exercise functional capacity, cardiac function and remodeling, in advanced heart failure 

patients after cardiac resynchronizer implant.  

Secondary aim intends to evaluate the potential role of different pathophysiologic 

mechanisms in the benefits of exercise training after CRT, HIIT, and of CRT without 

subsequent exercise: endothelial function, autonomic nervous system function, 

inflammatory process and apoptosis. 

 

Methodology 

 

A randomized controlled trial was performed to determine the effects of exercise 

intervention, HIIT, in advanced heart failure patients after CRT.  

The inclusion criteria considered patients with stable heart failure, class III-IV (NYHA), 

receiving optimal pharmacologic therapy, assigned to CRT by present guidelines, 

ischemic and non ischemic etiology, older than 18 years. Exclusion criteria included 

unstable HF patients, exercise incapacitating orthopedic or muscular disease and 

geographically long distance living.  
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Patients who fulfilled the inclusion criteria were randomized for long duration high 

intensity interval exercise training or for control group (EXTG and CG, respectively). 

Randomization, performed by an independent investigator, was stratified, based on age 

(<or≥65 years), gender, etiology (ischemic and non ischemic) and severity of left 

ventricular dysfunction (left ventricular ejection fraction <20% or ≥20%). 

Patients with the same inclusion criteria, who did not accept exercise intervention or 

living far, without other exclusion criteria were additionally studied as a prospective 

cohort for evaluation of CRT intervention effects and mechanisms. 

During the period from January 2012 to March 2015, all patients with chronic heart 

failure and criteria for cardiac resynchronization were evaluated. 

The exercise training program started 1 month after cardiac resynchronizer implant and  

lasted 6 months, twice a week, consisting of 60 minutes hospital-based, monitored, 

supervised sessions, starting at 1 month after CRT onset. It included aerobic high 

intensity interval training (HIIT), adapted from Wisloff protocol, and exercises of 

resistance, flexibility and coordination. 

Moments of the study used for the evaluation of independent variables were baseline, 

before cardioresynchronizer implant (M1), at 3 months of exercise, corresponding to 4 

months after CRT (M2) and at 6 months (M3) after exercise, corresponding to 4 months 

(M2) and 7 months, corresponding to 7 months after CRT (M3).  

Dependent variables studied were: clinical functional class (NYHA), quality of life  scores 

(HeartQol questionnaire), parameters of cardiac function and reverse remodeling 

(determined by echocardiography and BNP, plasmatic brain natriuretic peptide, 

measurement), of functional exercise capacity (determined by cardiopulmonary exercise 

testing, CPT), of autonomic nervous system function, ANS (determined by 123I-MIBG 

cardiac scintigraphy, cardiopulmonary exercise testing and 24-hours-holter heart rate 

variability analysis), of endothelial function and arterial stiffness (determined by NO, 

plasmatic Nitric Oxide measurement and PAT, peripheral arterial tonometry), 

inflammation and apoptosis (by measurement of high sensitivity C reactive protein, hs-

CPR, Tumor Necrosis Factor alpha, TNF-α, Interleukin-6, IL-6, soluble cluster of 

differentiation 40, sCD40, soluble ligand of Fas, sFasL) and frequency of major cardiac 

events identification at 6 months of exercise. 
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Exceptions to the 3 moments were, 123I-MIBG cardiac scintigraphy, which was performed 

before CRT (M1) and at 6 months after exercise (M3), 24hours-holter heart rate 

variability study, performed only baseline, pre-CRT (M1) and cardiac events evaluation at 

M3. 

The safety of HIIT exercise was evaluated.  

CRT echocardiographic response was defined by the increase of at least 5% of left 

ventricular ejection fraction (absolute value) and clinical response was defined as the 

improvement of at least 1 clinical functional class (NYHA). Functional response was 

defined as the increase of at least 1 mg/kg/min VO2p. 

 

Results 

 

From the initial cohort sample of 121 heart failure patients selected for CRT, 62 patients 

were ramdomized. Exercise training program HIIT was performed by 22 patients (EXTG), 

mean age 67.5+9.8 years old, 22.7% female, 40% ischemic, baseline LVEF 26.68+6.21%, 

while 28 patients were assigned to the control group (CG). Demographic and baseline 

clinical characteristics were statistically identical.  

In the randomized sample (n=50), all patients had significant benefit, at 6 months after 

exercise onset (M3), regarding: NYHA, New York Heart Association, decrease (p< 0.001), 

HeartQol score improvement (p<0.001), LVEF, left ventricular ejection fraction increase 

(p<0.005), LVED, left ventricular end-diastolic volume (p< 0.05) and LVES, left ventricular 

end-systolic volume decrease (p<0.02). There was a significant difference in the decrease 

of clinical functional class of NYHA in the two randomized groups, greater in EXTG 

(p=0.034). 

Only in EXTG, there was a significant CPT (cardiopulmonary testing) duration increase at 

3 months (p=0.017) and at 6 months (p=0.008). VATtime (time to ventilatory anaerobic 

threshold) significantly increased in EXTG at 3 months (p=0.006) and at 6 months 

(p=0.004), being significantly different regarding the CG at 3 months (p=0.006) and 

showing a tendency to statistical significance at 6 months (p=0.064), when variation was 

also significant in CG. TNF-α decreased significantly, only in EXTG, at 6 months (p=0.016) 

with a statistical difference from CG (p=0.008). There were no significant differences in 

echocardiographic parameters between the two randomized groups. Regarding the 
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number of CRT responders, in the exercise group, there were more CRT clinical (95%) , 

echocardiographic (81.8%) and functional (77.2%) responders than in the control group 

(78.5%, 72.7% and 53.8%, respectively), after 6 months of exercise. The difference in the 

number of responders in the two randomized groups, however, did not reach statistical 

significance (probably because of the sample size), but revealed a tendency for greater 

number of clinical and functional responders in the exercise group.  

HIIT program turned out to be safe, without any major or minor events during exercise. 

At 6 months after exercise (7 months after CRT device implant), death or hospital cardiac 

admission occurred in 1/22 patients (4.5%) of the exercise group and in 3/28 patients 

(10.7%) of the control group. The only death in the randomized patients occurred in the 

control group, 1/28 patients (3.5%).  

In the total CRT patients cohort there was a significant benefit after cardiac 

resynchronizer implant, at 7 months: functional NYHA decrease (p<0.001), HeartQol 

score increase (p<0.001), LVEF increase (p<0.001), LVES volume decrease (p=0.001), GLS 

(left ventricular global longitudinal strain) absolute value increase (p=0.003), E/e’ (ratio 

between E wave from pulsed Doppler left ventricular inflow wave and tissue Doppler 

mitral annular mean e’ decrease (p=0.009), LVM, left ventricular mass decrease 

(p=0.026), VE/VCO2 slope, minute ventilation to carbon dioxide production ratio slope 

decrease (p=0.003), cardiopulmonary testing duration increase (p=0.002), VATtime 

increase (p=0.001), HRR1, Heart Rate Recovery at 1st minute decrease (p=0.015), HRR6, 

Heart rate recovery at 6th minutes decrease (p=0.033) and VO2p, peak oxygen 

consumption increase (p=0.04).   

In total HF patients sample, after CRT (including 18% of the patients submitted to 

exercise), 75.6% were clinical responders, 63.9% were echocardiographic responders 

and 62.8% were functional responders.  

CRT echocardiographic responders had significant differences in baseline parameters 

and in the variation of some parameters: M1, smaller left ventricular volumes, greater 

TAPSE, greater SDNN (standard deviation NN interval), greater heart-mediastinum ratio, 

early  (HMRe) and late (HMRl); M3-M1, greater increase of LVEF, greater reduction of 

LVES volume, greater increase in GLS absolute value and tendency for greater increase in 

VO2p. Responders had less major events registered at M3. 



12 

 

Analyzing the total HF-CRT patients, values of HMR late>1.5 identified more CRT 

echocardiographic responders (2-fold probability), only in nonischemic.  

Events at 7 months after CRT, M3, cardiac death or hospital admission or arrhythmia 

occurred in 14.8% of total population and in 16.2% of nonrandomized patients. Death 

occurred in 4.9% in total group and in 6% in nonrandomized group. 

 

Conclusion 

 

In this controlled randomized trial, performed in a sample of advanced HF patients 

referred to CRT, HIIT exercise after cardiac resynchronizer implant proved to be 

beneficial and safe, associated to an increased number of clinical and echocardiographic 

responders and with more significant clinical improvement, suggesting an additional 

benefit to CRT. The improvement of the peripheral component of heart failure caused by 

exercise was demonstrated by CPT duration and time to VAT significant increase, 

associated with more functional responders, along with positive modulation of 

inflammation, which might have contributed to this effect. No significant effects were 

demonstrated in endothelial or autonomic nervous system function. Less major events 

occurred in the HIIT group after the 6 months of training.  

The additional evaluation of CRT patients in the observational study of the total HF 

sample, showed a beneficial effect on symptoms severity, quality of life and systolic and 

diastolic LV function, even excluding those who performed exercise. Central effect of 

CRT on cardiac remodeling demonstrated to be crucial, with echocardiographic 

improvement of several variables. Once EXTG patients were excluded, the restant CRT 

patients did not show significant improvement at 7 months of VO2p, CPT duration or time 

to VAT, meaning CRT had no effect on HF peripheral component. Autonomic nervous 

system demonstrated to be a relevant mechanism for CRT response, but only in 

nonischemic HF.   

No beneficial effects of CRT were noticed in endothelial function, inflammation or 

apoptosis. More events were registered in patients who did not exercise. 

From these thesis results, we may accept, in advanced heart failure patients, exercise 

(HIIT) as safe and beneficial nonpharmacologic therapy with demonstrated additional 

benefit, regarding CRT, resulting in fewer patients with CRT nonresponse. This 
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intervention had no deleterious effect on reverse remodeling and some results point out 

to a potential benefit. The involved mechanism especially regards the peripheral 

component of HF, manifested by the decrease in clinical symptoms severity, 

improvement in functional capacity and positive modulation of pathophysiologic 

inflammatory response. (FCT PTDC/DES/120249/2010) 

 

 

 

  



14 

 

 

3. INTRODUCTION 

 

Chronic heart failure (HF) is known for long as a clinical syndrome, including reduced 

exercise tolerance (dyspnea and/or fatigue), which is based on complex 

pathophysiology. It is usually characterized by left ventricular (LV) systolic dysfunction 

leading to systemic and pulmonary congestion and elevated peripheral vascular 

resistance, though it may occur with preserved LV ejection fraction, HFpEF1. Several 

pathophysiologic mechanisms are involved and play an important role in HF negative 

progression. Optimized pharmacologic therapy, intervening on these mechanisms, led 

to a decrease in mortality2.  

Non pharmacologic therapy, including devices, has evolved more recently. 

Cardiac resynchronization therapy (CRT) manages to improve HF patient’s prognosis3.4. 

Besides decreasing mortality4, it has improved symptoms and left ventricular function 

(LV) in most patients5, however at least 30% of the patients do not respond to this 

therapy, as demonstrated in all major trials6.  

CRT responders show a significant LV end-systolic volume (LVESVol) decrease, LV 

ejection fraction (LVEF) and 6-minute walk test (6MWT) increase and improvemement 

of clinical functional class (NYHA), quality of life (QOL) and endothelial function5,7,8. 

Identifying the nonresponders, at higher risk of death, and those who most likely may 

benefit from currently available therapeutic technologies, remains a challenge. 

In the last 20 years, there has been a growing consensus on exercise training (EXT) 

beneficial effects in HF patients9,10. The benefits of moderate EXT have been 

demonstrated by significant improvements in exercise capacity, quality of life (QOL) and 

reduction of hospitalizations in HF patients11,16, with rare and minor adverse events, 

during the training and after in the follow-up17,18.  

The rationale of EXT in patients with internal cardiac defibrillator (ICD) and CRT is based 

on its favorable documented effects on functional capacity, autonomic balance, 

myocardial perfusion and LV function, already described in stable HF patients19. 

It has also been demonstrated, in ICD and in CRT patients that, besides beneficial effects 

on functional capacity associated to quality of life and outcome, EXT is safe20.   
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EXT corrects most of the peripheral abnormalities encountered in HF and decreases 

neurohormonal stimulation without a deleterious effect on LV remodeling10.  As we are 

aware, abnormalities in endothelium- and flow-depend vasodilatation are a key factor in 

mortality and morbidity of patients with depressed LV ejection fraction  

(LVEF) and prolonged QRS, who are moderate to severely symptomatic, despite optimal 

medical therapy. EXT enables the improvement of both basal endothelial nitric oxide 

formation (NO) and agonist-mediated endothelial-dependent vasodilatation of the 

skeletal muscle vasculature in HF patients. The correction of endothelial dysfunction 

(endothelium-dependent change in peripheral blood flow) was associated with a 

significant improvement in exercise capacity evidenced by peak oxygen uptake 

increase21,22. These findings are of major importance, once HF patients with the greatest 

sympathetic activation and the most reduced endothelial function will have the poorest 

prognosis and are in most need for intervention. 

Importantly, it has to be noticed that most of the studies of EXT performed in HF have 

been conducted in patients without severe functional impairment. Very little 

information is currently available on patients in NYHA class III-IV and these are the ones 

who mostly will require ICD/CRT and may need additional intervention, like exercise 

training, especially if they turned to be CRT nonresponders.  

It is not well known how HF patients, with more severe functional limitation, respond to 

EXT and, more importantly, what are the physiologic mechanisms and how can they 

explain the improvements in HF, as a consequence of EXT.    

This lack of scientific information is urgent to fulfill, since this is the group of patients 

(NYHA class III-IV) who normally is targeted for CRT.  

It is not clearly established if, adding an exercise training (EXT) program after cardiac 

resynchronizer implant, provides better clinical outcome than CRT alone.  

Prior studies on CRT and EXT, preliminary in nature, employed only 3-months EXT 

programs, suggesting small improvements in functional capacity23, although not 

providing information on potential mechanisms.  

We proposed, in this thesis, to evaluate in a population of advanced HF on optimized 

pharmacologic therapy, the effects and subjacent mechanisms of nonpharmacologic 

intervention: a program of long duration (6 months) of high intensity interval training 

after CRT (HIIT), in comparison with cardiac resynchronization therapy alone (CRT) . 
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The study intended mainly to determine whether a long-term high intensity interval 

exercise training program provides additional benefits, with better clinical outcomes, 

than CRT alone, namely in CRT nonresponders, and to identify the mechanisms of the 

hypothetized improvement. 

Understanding the potential mechanisms associated with clinical, echocardiographic, 

and functional improvements is essential to ameliorate the rehabilitative process and 

develop new innovative therapies in this high risk population.   
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4. BACKGROUND 

 
4.1. Heart failure and pathophysiologic mechanisms  

 

Heart failure (HF) is defined as a clinical syndrome that develops in consequence to a 

cardiac injury, causing decline in heart function, systolic or diastolic.  

Many definitions of HF have been put over the last years24, highlighting one or several 

features of this complex syndrome24-27, such as hemodynamics, oxygen consumption or 

exercise capacity. In recent years, most definitions have emphasized the need for both 

the presence of symptoms, dyspnea and fatigue, which may limit exercise tolerance, 

and physical signs of fluid retention, peripheral edema and/or pulmonary and/or 

splanchnic congestion. Because not all the patients present symptoms or signs of 

volume overload, the term “heart failure” is preferred over “congestive heart failure”25.  

Multiple etiologies are behind HF, including coronary artery disease, hypertension, 

myocarditis, valve or congenital disease, not always identified, like in idiopathic 

cardiomyopathy25. 

The prevalence of the HF syndrome has significantly increased during the last years, 

remaining a substantial health burden28. Heart failure is the leading cause of 

hospitalization in people aged 65 years or older29,30 and associates to other negative 

outcomes, including disability, poor quality of life, polipharmacy side effects and 

increase in morbidity and mortality 31,32. Over the past 50 years, survival after HF onset 

has improved, probably due to more effective treatment of hypertension, coronary 

artery disease, valve disease and to the increasing use of  pharmacologic therapies33. 

Also, HF annual mortality has been reduced due to HF optimized pharmacologic 

therapy34. 

A complex pathophysiology underlies, usually characterized by left ventricular (LV) 

dysfunction (more frequently systolic), resulting from any structural or functional 

impairment of ventricular filling or ejection of blood and leading to systemic and 

pulmonary congestion and elevated peripheral vascular resistance35. From a 

pathophysiologic point of view, HF is characterized by a continuous interplay between 

the underlying myocardial dysfunction and the compensatory neurohumoral 
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mechanisms, which are initially able to compensate for the decreased myocardial 

function, supporting cardiac output, in response to the reduced heart function, and 

preserving cardiovascular equilibrium.  Contrarily, at long-term, these exert deleterious 

effects on cardiac structure and performance, which lead to cardiac decompensation 

and progressive aggravation of left ventricular dysfunction. Progressive left ventricular 

remodeling and left ventricular dysfunction become at some moment self-sustained36. 

The main neurohumoral mechanisms involved consist of elevated activities of the 

adrenergic (or sympathetic) autonomic nervous system (ANS), of the renin–angiotensin–

aldosterone system (RAAS) and of several cytokines35.  

 

Autonomic Nervous System 

 

Autonomic Nervous System function 
 
Most of the data about the role of ANS in the development and prognosis of HF were 

obtained from studies with dilated ventricles and reduced LVEF37. 

Activation of ANS, probably the most proeminent neurohumoral mechanism of HF, is 

the first response to myocardial injury or to changes in cardiac loading37. It is 

responsible for a wide variety of cardiovascular effects: positive chronotropy (heart rate 

acceleration, arrhythmia predisposition), positive inotropy (increase in cardiac 

contractility), positive lusitropy (accelerated cardiac relaxation), venous capacitance 

decrease, resistance and cutaneous vessels constriction. These effects, intend to 

improve cardiac performance, preparing the body for fight-or-flight response36. 

Cardiovascular ANS activation leads to the release of norepinephrine (NE) and 

epinephrine, the neurotransmitters that mediate its effects, by several mechanisms36: 

1-Norepinephrine release by cardiac sympathetic nerve terminals located in the right 

stellate ganglion reach the sinus and atrioventricular nodes (increase in heart rate and 

shortening of atrioventricular conduction) and in the left stellate ganglion reach the left 

ventricle (increase in contractile strength), although norepinephrine release and 

reuptake can occur throughout the heart;  

2- Epinephrine (and norepinephrine to much lesser extent) release into the circulation 

by the adrenal medulla, affecting both the myocardium and peripheral vessels;  
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3- Norepinephrine and epinephrine local release by various autonomic peripheral nerve 

terminals, which can synthesize and release these catecholamines in an 

autocrine/paracrine manner, located in blood vessels and in cardiac myocytes 

themselves38,39. 

Norepinephrine and epinephrine, mediate their effects in cells and tissues by binding to 

specific cell surface adrenergic receptors (ARs), which belong to the superfamily of G-

protein-coupled receptors (GPCRs), to the 7 transmembrane-spanning receptors or to 

heptahelical receptors. The norepinephrine transporter type 1 recycles approximately 

80% of norepinephrine released by autonomic nerve terminals, whereas the remainder 

spills over into the circulation40.  

The receptors for both ANS catecholamines (AR) are divided into 3 types and 9 total 

different subtypes41, as follows:  

 3 α1AR subtypes - α1A, α1B, α1D  

 3 α2AR subtypes - α2A, α2B, α2C 

 3 βAR subtypes - β1, β2, β3  

All AR primarily signal through heterotrimeric G proteins. The human heart contains all 3 

βAR subtypes42.  

In the healthy myocardium β1AR is the predominant subtype, representing 75% to 80% 

of total βAR density, followed by β2AR, which comprises ≈15% to 18% of total 

cardiomyocyte βARs, and the remaining 2% to 3% is β3ARs43.  

The principal role of βARs in the heart is the regulation of cardiac rate and contractility 

in response to norepinephrine and epinephrine43.  

Stimulation of β1ARs (mainly) and stimulation of β2ARs (to a lesser extent) increase 

cardiac contractility (positive inotropic effect), frequency (positive chronotropic effect), 

and rate of relaxation (lusitropic effect), as well as accelerates impulse conduction 

through the atrioventricular node (positive dromotropic effect) and pacemaker activity 

from the sinoatrial node44.  

β3ARs are predominantly inactive during normal physiological conditions45, however, 

their stimulation seems to produce a negative inotropic effect, opposite to that induced 

by β1ARs and β2ARs, involving the nitric oxide synthase pathway46, thus acting as a fuse 

against cardiac adrenergic overstimulation47. 
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Agonist-induced activation of βARs catalyzes the exchange of GTP for GDP on the Gα 

subunit of heterotrimeric G proteins, resulting in the dissociation of the heterotrimer 

into active Gα and free Gβγ subunits (always associated together, a heterodimer that 

functions essentially as a monomer), which can transduce intracellular signals 

independently of each other48. The most powerful physiological mechanism to increase 

cardiac performance is activation of cardiomyocyte β1ARs and β2ARs, which, in turn, 

activate Gs proteins (stimulatory G proteins). Gs-protein signaling stimulates the 

effector adenylate cyclase, that converts ATP to the second messenger adenosine 3′,5′-

monophosphate or cAMP, which in turn binds to and activates the cAMP-dependent 

protein kinase (protein kinase A[PKA]). PKA is the major effector of cAMP (there is also 

Epac, exchange protein directly activated by cAMP, which can be activated by cAMP 

independently of PKA), and by phosphorylating a variety of substrates, it ultimately 

results in significant increase in free intracellular Ca2+ concentration, which is the 

master regulator of cardiac muscle contraction49.  

There are some important genetic polymorphisms in human βAR and αAR genes, which 

were associated with HF phenotypes and interaction with β-blocker therapy (a mainstay 

of HF standard of care) and can significantly influence cardiac function50. AR genetic 

polymorphisms may prove to be useful tools in guiding the individual tailoring of HF 

therapy in the future51-53.  

The delicate balance between hyperstimulation and hypostimulation of the above 

mentioned 9 types of adrenergic receptors in the various forms and stages of HF 

remains to be explored. Additional agonists and antagonists that are specific for each of 

these receptors remain to be discovered54.  

ANS hyperactivity is evidenced by increased plasma norepinephrine and epinephrine 

levels, elevated (central) sympathetic outflow, and heightened norepinephrine spillover 

from activated cardiac sympathetic nerve terminals into the circulation55. Cardiac 

norepinephrine spillover in untreated HF patients can reach until 50-fold higher levels 

than those of healthy individuals under maximal exercise conditions56.  

In HF with preserved left ventricular ejection fraction, the information on chronic ANS 

activation is limited. ANS hyperactivity in patients with hypertension may contribute to 

the development of left ventricular diastolic dysfunction and thus increase HF risk57.  
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In systolic HF, patients actually may have ANS neuronal density and function decreased, 

resulting in diminished norepinephrine concentration within the heart, in addition to 

decreased postsynaptic βAR density, due to depletion of cardiac ANS neuronal 

norepinephrine storage and decreased norepinephrine presynaptic reuptake secondary 

to norepinephrine transporter downregulation58,59.  

The elevated ANS outflow and norepinephrine and epinephrine levels in chronic HF lead 

to chronically elevated stimulation of the cardiac βAR system, which has detrimental 

repercussions for the failing heart.  

Cardiac βAR dysfunction in human HF is characterized at the molecular level by selective 

reduction of β1AR density at the plasma membrane (downregulation) and by 

uncoupling of the remaining membrane β1ARs and β2ARs from G proteins (functional 

desensitization)60. Importantly, myocardial levels and activities of the most important, 

versatile, and ubiquitous GRKs, GRK2 and GRK5, are elevated both in humans and in 

animal models of HF61-65.  

The current consensus is that in chronic HF the excessive amount of ANS, derived 

catecholamines hitting cardiac βARs extracellularly, triggers the GRK2 upregulation 

inside the cardiomyocytes, thus leading to a reduction in cardiac βAR density and 

responsiveness and resulting in cardiac inotropic reserve depletion66,67. This GRK2 

elevation possibly serves as a homeostatic protective mechanism aimed at defending 

the heart against excessive catecholaminergic toxicity. However, several studies refuted 

this assumption, demonstrating that GRK2 upregulation is detrimental for the heart and 

causes the functional uncoupling of βARs in vivo65. This finding prompted investigations 

of the role GRK2 plays in cardiac function, which revealed that cardiac GRK2 is an 

absolutely critical regulator of cardiac βAR–dependent contractility and function. 

Specifically, cardiomyocyte-restricted overexpression of GRK2 to the same level of 

upregulation found in human HF (ie, 3-fold to 4-fold) markedly attenuated βAR signaling 

and contractile reserve, showing that GRK2 is the main culprit for the functional 

desensitization of cardiac βARs in HF68. On the down side, loss of cardiac GRK2 can 

predispose the heart to catecholamine toxicity, exactly because it works, in essence, as 

a positive inotropic therapy69.  

In summary, the elevated ANS activity in chronic HF causes enhanced GRK2–mediated 

cardiac β1AR and β2AR desensitization and β1AR down regulation, which leads to the 
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progressive loss of the adrenergic and inotropic reserves of the heart, the molecular 

abnormality hallmark of this disease70. With regard to the other major AR type 

expressed in the heart, α1ARs in HF may function in a compensatory fashion to maintain 

cardiac inotropy, but their involvement in cardiac pathophysiology appears limited to 

situations of cardiac hypertrophy that ultimately lead to HF71. In the presence of 

pressure overload, cardiac α1AARs get activated and promote cardiomyocyte survival, 

blocking apoptosis and protecting against adverse remodeling and decompensation to 

HF 72,73. 

 

Imaging of Autonomic Nervous System 

 
A noninvasive imaging tool, that directly assesses cardiac sympathetic neuronal activity, 

is 123I-MIBG cardiac scintigraphy. This technique, not only displays the presence of 

noradrenergic innervation, but also its functional capability74-76. 

 123I-MIBG is a radio-labelled analogue of the potent neuron-blocking agent 

guanethidine, that acts selectively on sympathetic nerve endings. Uptake of 123I-MIBG 

into the neurons is achieved mainly through the uptake-1 mechanism, an homeostatic 

system responsible for the NE reuptake. Unlike NE, 123I-MIBG is not metabolized, 

allowing imaging. The uptake-1 mechanism is one of the main NE disposal systems, and 

its malfunction may lead to abnormal catecholamine concentration in the synaptic 

cleft77. Cardiac scintigraphy and positron emission tomography are the only imaging 

techniques with sufficient sensitivity to assess processes at picomolar concentrations in 

the human heart78.  

A complete cardiac 123I-MIBG scintigraphy imaging protocol typically includes anterior 

planar scintigraphic images, obtained 15 to 30 minutes (early acquisition) and 3 to 4 

hours (late acquisition), after intravenous injection of 111 to 370 MBq (3 to 10 mCi) 123I-

MIBG and SPECT images. Myocardial uptake and distribution is first visually assessed. 

After setting regions of interest (ROI) over the heart (H) and background mediastinum 

(M), for obtaining the mean count in each ROI, 123I-MIBG uptake is semi quantified by 

calculating an early and late heart to mediastinum ratio (HMR). This approach provides a 

highly reproducible index of cardiac sympathetic activity78. The 123I-MIBG myocardial 

washout rate (WOR) can be derived by comparing early and late 123I-MIBG activities, 
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providing a parameter that reflects retention of norepinephrine by sympathetic 

neurons79.  

Early HMR reflects the integrity of presynaptic nerve terminals and uptake-1 function 

and late HMR combines information on neuronal function from uptake to release 

through the storage vesicles at the nerve terminals80. 

 Normal values of these indices have been calculated performing 123I-MIBG scintigraphy 

in control patients and are different between various institutions, depending on the 

acquisition conditions 81,82. It was reported the value of 2.2 ± 0.3 as a normal value for 

H/M ratio and 1.6 (2 standard deviations below the mean) was considered as a 

threshold ratio below which the risk of adverse events would increase8. 123I-MIBG WOR 

may reflect the turnover of catecholamines, attributable to the sympathetic drive, and 

measures the ability of myocardium to retain 123I-MIBG. A normal value has been 

reported to be 10% ± 9%, with sicker patients having higher values83. Increased 

sympathetic activity in HF is associated with high myocardial 123I-MIBG WOR and low 

myocardial early and delayed HMR75,77,83. Since semiquantitative analysis of cardiac 123I-

MIBG uptake is characterized by a low interindividual and a within-subject variability82, 

semiquantitative indices of 123I-MIBG scintigraphy have become valuable tools to 

provide information regarding the potential and actual benefit of therapeutic 

interventions in patients with HF84. 

In HF patients, with ischemic and nonischemic cardiomyopathy, cardiac 123I-MIBG 

activity is a very powerful predictor of survival.   A meta-analysis performed on 18 

studies, with a total of 1,755 patients, provided further confirmation that patients with 

HF and decreased late HMR or increased myocardial WOR have a worse prognosis, 

when compared to those with normal semi-quantitative myocardial 123I-MIGB 

parameters85.  

ADMIRE-HF86, an important multicenter study, aimed to look at the prognostic value of  

123I-MIBG scintigraphy  in HF patients, in class II-III (NYHA), with LV ejection fraction 

moderately to severely depressed, demonstrated that those who had late HMR > 1.6 

had a better prognosis, comparing to those with <  1.6. Preserved neuronal uptake of 

123I-MIBG identified a very low-risk HF population, with late H/M ≥1.60 (21% of trial 

subjects) associated with <1%/year incidence of cardiac death. In contrast, among the 

10% of subjects with H/M <1.20, annual rate of cardiac mortality (9.6%) was 10-fold 
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greater. The predictive negative value of late HMR >1.6 was 98.2% for cardiac death at 2 

years. Two-year event rate was more than twice higher in patients with H/M <1.60 

(37%) compared to those with H/M > 1.60  (15%).  

It is still crucial to better understand the positive and negative predictive accuracy of  

123I-MIBG scintigraphy. The assessment of cardiac sympathetic neuronal activity by this 

technique can improve the knowledge of the mechanisms responsible for increased 

sympathetic activity in CHF, and how sympathetic overactivity exerts its deleterious 

action. 

 

Other techniques of ANS Evaluation 
 

24-hour Holter monitoring 
 

A good tool for autonomic nervous system evaluation is 24 hours-Holter monitoring, 

using the analysis in time and frequency domains of heart rate variability (HRV), which 

consists in the beat-to-beat variations in the R-R interval on the ECG. The HRV 

represents the autonomic balance between the sympathetic and parasympathetic 

pathways action on the intrinsic rhythm of the sinoatrial node of the heart87.88.  

It is known that variability reduction is a negative prognostic parameter, associated with 

increased mortality in patients with myocardial infarction and systolic heart failure89.90. 

Decreased HRV results from a relative decrease in parasympathetic activity in relation to 

sympathetic activity, and this facilitates arrhythmogenesis91.  

A variety of methods have been devised to quantify HRV, ranging from simple statistical 

descriptions to complex nonlinear mathematical algorithms.  

Spectral analysis of HRV is a widely used method to assess ANS function. In a continuous 

electrocardiographic (ECG) record, each QRS complex is detected, and the so-called 

normal-to-normal (NN) intervals (meaning all intervals between adjacent QRS 

complexes resulting from sinus node depolarizations), or the instantaneous heart rate is 

determined. Simple time–domain variables calculated include the mean NN interval, the 

mean heart rate, the difference between the longest and shortest NN interval, the 

difference between night and day heart rate, and more. The simplest variable to 

calculate is the standard deviation of the NN interval (SDNN), meaning the square root 
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of variance. Since variance is mathematically equal to the total power of spectral 

analysis, SDNN reflects all the cyclic components responsible for variability in the period 

of recording. In many studies, SDNN is calculated over a 24-h period and thus 

encompasses both short-term high frequency variations, as well as the lowest frequency 

components seen in a 24-h period87. Other commonly used index is SDANN (SD of the 

average of RR intervals over each 5 minutes period), RMSSD (root mean square of the 

differences in the adjacent RR intervals differences) and pNN50 (% of adjacent RR 

intervals that are >50 msec apart)87,88. 

 

 

Exercise Testing 
 

 

During exercise, heart rate increases, mediated by sympathetic activation and, after 

exercise suspension, heart rate recovery is mediated by vagal reactivation. The rate at 

which HR declines appears to reflect the sympathetic drive recovery, which was 

necessary during exercise92. Increased vagal activity associated with a faster HR 

recovery, has been shown to be associated with a decrease in risk of death93,94. For this 

reason, several recent studies have looked at HR recovery after exercise as a prognostic 

tool. Consideration has been given to the role of HR in recovery as a predictor of 

mortality. Cole et al.95 looked at 2,428 adults who had been referred for exercise cardiac 

scintigraphy over six years. They found that using a drop of 12 beats/min at 1 min after 

exercise as the definition of an abnormal response, a relative risk for death of 4.0 was 

observed. The group with a value ≤12 had a mortality of 19%, while the group with a HR 

decrease >12 had a mortality of 5% over a six-year period. The study employed the 

symptom-limited Bruce protocol with a 2-min cool-down walk. Patients on betablockers 

were included in the study and no difference was seen in the ability of the test to 

discriminate between low and high-risk patients in those patients on therapy. The 

authors used all-cause mortality and performed survival analysis with and without 

censoring of interventions (coronary artery bypass grafting and percutaneous 

transluminal coronary angioplasty) and found no difference in results.  



27 

 

These investigators also studied a different population of asymptomatic patients, 

enrolled in the Lipid Research Clinics Prevalence study, who underwent exercise testing 

using Bruce protocol. Heart rate recovery, measured at 2 minutes after exercise, 

continued to be a strong predictor of all-cause mortality: patients with a  value ≤ 42 

bpm had a mortality rate of 10%, while patients with >42 had a mortality rate of 4%, at 

12 years of follow-up96. Given the differences in methods, direct comparisons between 

the two studies were not possible, but this second study confirmed HR recovery as a 

powerful prognostic measurement.  

To further elucidate the power of HR recovery in distinct populations, the group of 

Nishime and Cole published another study using patients referred for standard exercise 

treadmill testing. Using the same methods as the original study, they found similar 

results. Patients with an abnormal HR recovery <12 bpm at 1st minute after exercise had 

8% mortality at 5.2 years97.  

Shetler et al.98 in order to validate the best cut-off for HRR, found, in 2993 male 

patients, with or without prior MI, no prior bypass surgery, referred for clinical exercise 

testing, without cool-down walk but instead with prompt supine placement, that a HR 

drop inferior to 22 beats/minute at 2 minutes recovery  identified a high-risk group of 

patients. They considered this parameter validated at 1 or 2 minutes of recovery, as a 

prognostic treadmill measurement, and therefore advised that it should be recorded as 

part of all treadmill tests. They also considered that the prognostic power of this 

measurement does not appear to be affected by beta-blockade, but its cut-point is most 

likely affected by the selected population and protocol. A score including HR recovery, 

METs, age and history of typical angina pectoris was superior to cardiac catheterization 

data for predicting prognosis. 

Interestingly, Arena et al.99 demonstrated, in HF patients that, HRR1 appeared to 

outperform peak VO2, LVEF, and HF etiology in predicting risk of death or hospitalization, 

adding significantly to the prognostic value of the VE/VCO2 slope. They confirmed that 

HRR may therefore provide important additive information to traditional exercise test 

variables during the clinical examination of patients diagnosed with HF. 

Evidence from these studies suggest that the rate at which parasympathetic tone 

increases after the cessation of exercise appears to heavily influence the time course of 

HRR and undoubtly to prognosis. 
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Renin–angiotensin–aldosterone system 

 

Hiperactivity of the renin-angiotensin-aldosterone system (RAAS) occurs in patients with 

heart failure. Alterations in blood volume, arterial pressure, and cardiac and vascular 

structure and function can be expected. Adaptive mechanisms may be helpful, in the 

short term, in maintaining suddenly decreased cardiac function but, in the long term, 

chronic stimulation of the RAAS leads to adverse cardiovascular effects and progression 

of heart failure. The actions of angiotensin II (Ang II) include vasoconstriction, cardiac 

remodeling, fibrosis, endothelin generation and sympathetic activation100. For 

therapeutic purposes, inhibition of the RAAS can be performed at many levels. 

As cardiac function becomes less efficient, decreased renal perfusion and sympathetic 

stimulation result in increased secretion of renin by the juxtaglomerular apparatus in 

the kidney. Renin is a circulating aspartic proteinase that cleaves a peptide bond in 

angiotensinogen, converting it into the decapeptide angiotensin I (Ang I). Renin is a 

highly specific catalyst for this first, rate-limiting step of the RAAS. Danser et al. have 

demonstrated elevated renin activity and prorenin levels in hearts from patients with 

dilated cardiomyopathy (DCM)101.  Cardiac level of angiotensinogen, inversely correlated 

with renin concentration, was one third of the level of control hearts. Cardiac renin and 

angiotensinogen levels were high and cardiac tissue and plasma levels of renin were 

closely correlated, suggesting that renin was taken up by the circulation. In a dog model, 

it was shown that RAAS was upregulated in heart failure. Ventricular pacing led to 

increased levels of renin, angiotensinogen and angiotensin-converting enzyme (ACE), 

with increased p53 binding to angiotensinogen and AT1-receptors102.  

Immunofluorescence studies have identified a renin receptor that binds to the 

mesangium of the kidney and to the subendothelium of the coronary arteries in man. 

The binding of renin to its receptor induced an increase in the efficiency of conversion 

of angiotensinogen to Ang I, providing a mechanism for intracellular and interstitial Ang 

II formation103. 

Some insight into the importance of renin in cardiovascular disease can be obtained 

from experience with renin inhibitors104,105,.  
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The role of renin inhibition in prevention of cardiovascular mortality and morbidity is 

not yet known, but the possibility that it may provide more complete blockade of tissue 

RAS than ACE inhibition opens up intriguing possibilities105. 

A major question regarding the role of angiotensin II (Ang II) in the pathophysiology of 

heart failure has been whether other enzymes, in addition to angiotensin-converting 

enzyme (ACE), could contribute to the local production of Ang II in the heart. 

Specifically, there was a controversy as to whether the major Ang II-forming enzyme 

within the heart is ACE or chymase, a chymotrypsin-like serine protease that is 

synthesized and stored in the cardiac mast cells and is not affected by ACE inhibitors. 

According to a paper from Kokkonen106, the role of chymase Ang II is generated, not 

only by ACE, but also by chymase, a chymotrypsin-like serine protease which catalyses 

the conversion of Ang I to Ang II, 20 times faster than ACE, and not affected by ACE 

inhibitors100. While in vitro experiments have suggested that chymase is the main source 

of Ang II, in vivo experiments more than 70% of Ang II formation was shown to be 

inhibited by an ACE-I. For chymase to exert its action in the heart, the cardiac mast cells, 

inside which chymase is stored in secretory granules) must be stimulated to 

degranulate106.  

Cardiac mast cells density and mediator release were compared in heart tissue from 

patients with idiopathic dilated and ischaemic cardiomyopathy and in normal control 

subjects without cardiovascular disease, by Patella et al107. They found that mast cells 

density was much higher in the hearts of cardiomyopathy patients, and that their 

histamine and tryptase content was higher than in control hearts. There is mounting 

evidence to link mast cells and chymase with extracellular matrix remodeling in heart 

failure.  

Several studies have been performed with AngII inhibitors. Sukenaga and colleagues 

found that administration of the chymase inhibitor NIC3201 caused potent inhibition of 

the inflammatory response, tissue Ang II formation and fibrosis108. Matsumoto et al. 

used the highly specific chymase inhibitor SUNC8257 to test the role of chymase in a 

dog model of tachycardia-induced heart failure109. Dogs treated with the chymase 

inhibitor during pacing had significantly less collagen deposition, their left ventricular 

diastolic function was better and their cardiac mast cells density was decreased 

compared to the control group. The chymase inhibitor reduced Ang II levels by 18% and 
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collagen volume fraction (representing the level of fibrosis) by 60%, suggesting that 

chymase-mediated tissue fibrosis cannot be due solely to its Ang II-forming potential. 

These inhibitors may help to define the role of mast cells and mast cells chymase in 

heart failure. The presence of functionally active chymase could explain the observation 

that plasma Ang II levels can return to normal during long-term treatment with ACEIs. 

This idea is supported by Petrie’s finding of an increased inhibition of conversion of Ang 

I to Ang II in resistance arteries from patients with heart failure with the combination of 

chymostatin and ACE-I compared with ACE-I alone110. 

Aldosterone is synthesized from cholesterol, predominantly in the adrenal cortex.  

Cytochrome P-450 enzyme (2 forms) catalyse the final step of these synthetic 

pathways111. P-450 11ß-hydroxylase (11ß-OHase) synthezises corticosterone from 11-

deoxycorticosterone (DOC) in the zona fasciculata and reticularis and is mainly 

regulated by adrenocorticotropic hormone (ACTH). P-450 aldosterone (Aldo)-synthase, 

which catalyses synthesis of aldosterone from DOC, is present only in the zona 

glomerulosa. Its activity is mainly controlled by Ang II and potassium and more weakly 

by ACTH and sodium112,113). While prolonged administration of ACTH causes a decrease 

in aldosterone synthesis, it is also a potent stimulator of its synthesis in some acute 

conditions114. 

Aldosterone used to be thought of exclusively as a hormone that acted on the kidneys 

to retain sodium, excrete potassium, and increase systemic blood pressure. However, 

since the 1990s, there has been a revolution in our understanding of the physiology and 

biology of aldosterone. The first novel finding was the discovery of, extra-adrenal sites 

of aldosterone synthesis115, including the brain, vascular tissue, and the 

myocardium116,117. In heart failure, myocardial tissue synthesizes even more 

aldosterone. The second novel finding was that mineralocorticoid receptors (MR) 

activated by aldosterone are widespread in the body including the brain, vascular tissue, 

and the myocardium. This means that aldosterone may act in a paracrine fashion in 

many tissues, meaning locally synthesised aldosterone may act on local aldosterone 

receptors to mediate local (mostly adverse) effects. These range from vascular 

endothelial dysfunction to inflammation widespread tissue injury and repair118. 

From the evidence in animal studies, it has long been recognized that high blood 

pressure can damage tissues in the brain, kidneys, and heart, but we know now that Ang 
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II and aldosterone can also damage tissues, independent of their effects on blood 

pressure. In other words, Ang II and aldosterone produce tissue damage in two ways: 

directly and also by increasing blood pressure. Rocha et al.119 have shown that selective 

aldosterone blockade, at doses of aldosterone blockers that do not alter the blood 

pressure, or adrenalectomy markedly reduce tissue damage in saline drinking, 

spontaneously hypertensive rats. The most striking data in this regard are from a recent 

study in which eplerenone (a selective aldosterone blocker), at a dose that does not 

affect the systolic blood pressure, reduced brain injury in these animals and prolonged 

their survival. This tissue damage is not unique to the brain because it has also been 

shown in renal tissue and, more recently, in the heart. 

 

Aldosterone mechanisms related to HF are synthesized, as following: 

 ANS imbalance – decreased parasympathetic and increased sympathetic activity 

 Endothelial dysfunction – interference with nitric oxide (NO) production 

 Vascular effects – direct action on muscle layer and adventicia (besides 

endothelium), increased angiotensine vascular response 

 Coronary dysfunction – altered responsiveness of bradychinin and acethylcoline 

 Myocardial Fibrosis – stimulated myocardial fibrosis 

 

A harmful effect of aldosterone is the reduction of parasympathetic activity. The 

evidence for this is threefold. Wang et al.120 showed conclusively, in animal studies, that 

aldosterone directly reduces baroreceptor discharge from the carotid sinus and reduces 

the heart rate response to changes in blood pressure. Yee and Struthers121 found 

confirmatory evidence in humans in that aldosterone halved the reflex bradycardic 

response to pressor stimuli. Macfadyen et al.122 found, in their studies of HF patients, 

that spironolactone reduced heart rate and increased heart rate variability, which is a 

strong evidence for aldosterone having parasympatholytic effects.  

A hypothesis regarding sympathovagal imbalance is that vascular NO might be a key 

regulator of autonomic balance. The observation that Nω-monomethyl-L-arginine (L-

NMMA) produces baroreceptor dysfunction in humans is in favor of this concept. It 

could turn out that the autonomic effects of aldosterone may also be attributable to 
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aldosterone’s vascular effects and, in particular, its ability to reduce vascular NO. Not 

only aldosterone decreases parasympathetic activity, but also increases cardiac 

sympathetic activity. This is particularly relevant because the parasympathetic nervous 

system is believed to oppose the arrhythmogenic effects of the sympathetic nervous 

system123. Indeed, the UK heart trial has shown clearly that autonomic dysfunction, as 

measured by heart rate variability, is a strong independent predictor of mortality in 

heart failure124. 

Aldosterone is also related to endothelial dysfunction. Ikeda et al.125 showed that 

aldosterone interferes with nitric oxide production in animals. Farquharson and 

Struthers126 showed that spironolactone improves endothelial dysfunction in patients 

with HF by increasing endogenous vascular NO.  

Rajagopalan et al.127, in animal models of atherosclerosis, presented a similar result with 

the specific aldosterone blocker, eplerenone. Eplerenone was demonstrated to 

decrease nicotinamida adenina dinucleótido hidreto/nicotinamide adenine dinucleotide 

phosphate-oxidase (NADH/NADPH oxidase) dependent free radical production and has 

potential anti-atherosclerotic effects. The concept of the anti-atherosclerotic effect of 

aldosterone blockade is further strengthened by the recent studies in apolipoprotein E-

deficient (E(0)) mice. Aldosterone administration to E(0) mice was shown to increase 

macrophage oxidative stress and atherosclerotic lesion development, while blocking of 

the MR and inhibition of tissue ACE and/or the angiotensin receptor-1 reduced 

aldosterone deleterious pro-oxidative and pro atherogenic effects128.  

Most results have been obtained after chronic aldosterone blockade by spironolactone 

or eplerenone. In patients with heart failure, spironolactone improved acetylcholine-

mediated endothelium-dependent vasodilatation and increased NO bioactivity125. 

Bauersachs et al.129 demonstrated that the addition of spironolactone to ACE inhibition 

in rats with heart failure resulted in improvement in endothelial vasomotor dysfunction 

that can be attributed to the normalization of NO-mediated relaxation through the 

beneficial modulation of NO balance and superoxide anion formation. One of the main 

mechanisms, which is thought to account for aldosterone blockade producing its 

benefits in Randomized Aldactone Evaluation Study (RALES)130 and Eplerenone Post–

Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS)131, is 

that it improves endothelial/vascular function132. This was shown, not only in moderate 
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HF patients, but also in mild HF patients on all standard therapies (ACEIs, betablockers, 

statins, aspirin)133. A number of animal and human studies have suggested that changes 

in potassium concentrations may directly improve endothelial function by NO pathway, 

as the study of Tadei et al. 134. The beneficial effect of aldosterone blockade was also 

shown by Farquharson and Struthers135 to be independent of the effect of ENaC 

function and the associated increase in plasma potassium concentrations. These authors 

went on to show that endothelial-derived vasorelaxation was also blunted when normal 

volunteers were acutely infused with aldosterone at a dose that does not alter blood 

pressure136. Therefore, evidence supports the idea that there is an interaction between 

aldosterone and NO, such that aldosterone reduces NO bioactivity while aldosterone 

blockade increases NO bioactivity. This suggests that aldosterone induced tissue fibrosis 

may be a repair process after aldosterone has produced tissue injury due to endothelial 

dysfunction possibly causing tissue micro infarcts. Regarding vascular effects, there are 

suggestions that aldosterone may act not only on endothelium of blood vessels, but also 

on the smooth muscle layer, and perhaps even on the perivascular adventitial layer137. It 

now appears that aldosterone can increase vascular angiotensin responses, enhancing 

the binding to Ang II, to its receptors, amplifying the Ang II response138.  

Another prime adverse effect of aldosterone is its ability to stimulate fibrosis in the 

myocardium. Brilla et al. 139 showed that aldosterone induces biventricular fibrosis in 

rats and that myocardial fibrosis could be prevented by spironolactone at a dose too 

low to change the blood pressure.  

Studying myocardial fibrosis in humans is difficult, but investigators have recently 

proposed that plasma levels of pro-collagen type III amino-terminal peptide (PIIINP) may 

be an useful index of myocardial collagen turnover 140.. 

 Zannad et al.141 found that, in the RALES trial, spironolactone had its main effect in 

those patients who had high initial levels of, which were reduced by spironolactone. 

This evidences that beneficial effects on cardiac death for aldosterone blockade are 

mediated, at least to some extent, by myocardial collagen reduction. Therefore, it is 

likely that aldosterone causes patchy myocardial fibrosis, which could lower the 

threshold for malignant ventricular arrhythmias in HF. This was the major reason for 

spironolactone reducing mortality in the RALES trial. It is not known how much of this 

fibrosis is a direct effect of aldosterone and how much is a result of aldosterone-induced 
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vasculopathy causing tissue ischemia and injury. However, reducing left ventricular 

fibrosis is not the only beneficial effect of aldosterone blockade on left ventricular 

abnormalities. It appears that aldosterone blockade also reduces left ventricular 

hypertrophy and improves left ventricular dilatation/dysfunction142. Importantly, these 

beneficial effects occur in HF and in hypertension. Therefore, a large part of the 

beneficial effect of aldosterone blockade could be the result of its effects on left 

ventricular hypertrophy, left ventricular dysfunction, and left ventricular fibrosis. 

Bradykinin (BK) has also plays a role. ACE catalyzes the degradation of bradykinin to 

inactive metabolite. Thus ACEIs block BK inactivation, so the concept that BK may have 

an important role in cardiovascular function and disease gained credence with the 

observation that the beneficial effects of ACE inhibition are obtained despite normal 

Ang II levels. BK inhibition has been indicated to attenuate the hypotensive effect of ACE 

inhibitors143-145.  

The activated RAAS contributes to left ventricular remodeling, alteration in ventricular 

mass, size and shape resulting from myocardial injury or overload. At the cellular level, 

myocyte hypertrophy, fibroblast hyperplasia and increased collagen deposition may be 

observed146. On the contrary, the inhibition of the RAAS mitigates left ventricular 

remodeling in the failing heart147,148. AT1-receptor blockade may have additional effects 

on limiting left ventricular remodeling when co-administered with an ACE-I.   

Ang II induces the expression of genes for collagen and fibronectin, integrins and focal 

adhesion kinase phosphorylation, and increases of plasminogen activator inhibitor (PAI-

1) and TGF-β expression in fibroblasts149. These effects appear to be mediated through 

the AT1-receptors. In terms of AT2-receptors, recent findings demonstrate that these 

mediate cell growth inhibition150 cell differentiation151 and tissue regeneration152,153. The 

extracellular matrix is partially maintained by the matrix metalloproteinases (MMPs) 

that degrade collagen by  tissue inhibitors of matrix metalloproteinases (TIMPs) that 

inhibit them and plasminogen activator inhibitor (PAI-1) that prevents MMP 

activation154.  

Ang II has been shown to increase PAI-1 and TGF-β production from cardiac 

fibroblasts155 and to increase TIMP-1 production from endothelial cells156. Thus the 

RAAS regulates homoeostasis of the extracellular matrix. Ang II elicits complex and 

highly regulated cascades of intracellular transduction in the heart.  
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A great deal of work has beeing carried out into the genetics and molecular biology of 

the various components of RAAS and this may offer in the near future new therapeutic 

possibilities.  

 

Inflammation 

 
Citokynes 
 
Increased circulating and intracardiac levels of pro-inflammatory cytokines have been 

associated with chronic heart failure157-160. Coronary artery disease (CAD) and non 

ischemic dilated cardiomyopathy (DCM), the most frequent HF etiologies, are believed 

to have an inflammatory pathogenic basis161. 

Cytokines are low molecular weight proteins, which function as mediators of immune 

and inflammatory reactions. They are involved in recruiting cells to inflammatory sites 

and stimulating cell division, proliferation and differentiation162. Following an initial 

insult, the increased production of pro-inflammatory cytokines, including TNF-α, IL-6, IL-

1, and IL-18, jeopardizes the surrounding tissue through propagation of the 

inflammatory response and direct effects on the cardiac myocyte structure and 

function. Citokines increased levels show a positive correlation with disease severity157-

160. In response to injurious insults, cardiac structural cells contribute further to 

production of pro-inflammatory cytokines160. Cardiac myocyte hypertrophy, contractile 

dysfunction, cardiac myocyte apoptosis, and extracellular matrix remodeling contribute 

enormously to the development and progression of chronic heart failure163-165. 

To introduce novel therapeutic strategies that modulate the inflammatory response in 

the context of the failing heart, it is of prime importance to determine the contributions 

of TNF-α, IL-6, IL-1, and IL-18 in mediating cardiac adaptive and maladaptive responses, 

as well as delineating their downstream intracellular signaling pathways and their 

potential therapeutic implications161. 

 

Tumor Necrotic Factor - TNF-α 
 

Tumor Necrotic Factor, TNF-α (157-amino acid cytokine), is produced by a variety of 

immune and non immune cells in response to inflammatory and infectious stimuli161. 
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Cardiac cells are capable of producing it, when submitted to adequate mechanical, 

ischemic or infectious stimuli166-170. 

TNF-α has both physiological and pathological effects. In physiological concentration, it 

regulates local defense mechanisms and provokes regional tissue homeostasis171-173. It 

exerts subsequently protective effects, as an autocrine or paracrine mediator174. At 

higher concentrations, acts in an endocrine manner, resulting in cachexia175, 

contributing to multiple organ failure176, intravascular coagulation and thrombosis177 

and septic shock178. 

TNF-α acts biologically through two membrane receptors: tumor necrosis factor 

receptor type 1 (TNFR1), which is expressed dominantly and mediates the majority of 

cytotoxic and deleterious effects, and type 2 (TNFR2), which mediates the 

cytoprotective effects of the heart179. The cytoprotective effects of TNF-α might be due 

to induction of manganous superoxide dismutase (MnSOD), which neutralizes and 

detoxifies the cytotoxic oxygen free radicals180,181. 

Maladaptative responses to TNF-α are cardiac myocyte hypertrophy, contractile 

dysfunction, cardiac myocyte apoptosis and extracellular matrix remodeling161. 

TNF-α can influence the expression of IL-1 and IL-6182, which then stimulates the 

hypertrophic growth response183,184. 

 

InterleuKin – IL-6 
 

Interleucin-6, IL-6 cytokines, including IL-6, IL-1, LIF and others, are pleiotropic cytokines 

with redundant properties. All members of the IL-6 superfamily share gp130 

dimerization that triggers several downstream signaling cascades. These cytokines are 

expressed in a wide variety of tissues and organs, mediating proliferation, growth, 

differentiation, survival and apoptosis signals185-188. 

Activation of gp130 exerts cytoprotective effects and improves survival via inhibition of 

apoptotic signaling pathways187-188. Current evidence points out the importance of 3 

major signaling cascades as the mediator and regulator of gp130-induced cytoprotective 

effects, although their exact contributions are not clear161. 

IL-6 related cytokines, with subsequent activation of gp130 signaling, contribute to 

cardiac myocyte hypertrophic growth response187,188. IL-6 is also a potent mediator of 
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myocardial depression, which in turn potentiates the cardiodepressant effects of TNF-α 

and IL-1189.  

Il-6 and leukemia inhibitor factor (LIF) significantly reduce collagen synthesis and total 

collagen content in adult cardiac fibroblasts, respectively190. 

  
Role of Inflammation in HF 
 
Enhanced expression and release of inflammatory cytokines such as TNFα, 

interleukin (IL)-1, IL-6, IL-18, cardiotrophin-1, adhesion molecules and Fas- ligand, 

as well as several chemokines in the failling heart191-196. have shown that there is an 

important role for inflammation in the pathophysiology of systolic HF. 

Plasma levels of inflammatory cytokines and chemokines appear to be elevated in 

direct proportion to deterioration of functional class (NYHA classification) and to 

cardiac performance (left ventricular ejection fraction)192,197.  

Several of these mediators have been found to give prognostic information beyond 

that of traditional risk markers198. 

A series of experimental studies have revealed that the biological effects of 

cytokines may explain several aspects of the syndrome of chronic HF. The 

pathogenic role of inflammatory cytokines in chronic HF is supported by various 

transgenic mouse models. Notably, systemic administration of TNF-α in 

concentrations comparable to those found in the circulation of HF patients has 

been shown to induce a dilated cardiomyopathy-like phenotype in animal 

models199. Cardiac-specific overexpression of TNF-α has been found to promote a 

phenotype mimicking several features of clinical HF such as cardiac hypertrophy, 

ventricular dilation and fibrosis, as well as several biochemical and cellular 

dysfunctions200.  

In myocardial contractility depression, TNF-α plays a central role201-204. It induces  

apoptosis in cardiac myocytes, which contributes to the progressive LV wall thinning and 

adverse cardiac remodeling199,200,205. At the molecular level, sustained overexpression of 

TNF-α activates both intrinsic and extrinsic apoptotic pathways and leads to progressive 

loss of anti-apoptotic proteins206. 

Alterations in the collagen quantity and quality have been crucial in cardiac remodeling 

and progressive LV dysfunction207,208. Importantly,TNF-α decreases collagen synthesis 
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and pro-collagen mRNA in rats, in vitro, and causes imbalance between extracellular 

matrix (ECM) synthesis and degradation through dysregulation of the degradative 

enzymes, matrix metalloproteinases (MMPs) and the multifunctional endogenous tissue 

inhibitors of MMPs (TIMPs), major determinant of pathological ECM remodeling209.  

Studies in gene-modified mice have also shown a link between IL-6 and its receptor 

subunit glycoprotein (gp) 130, which is common to several cytokines in the IL-6 

family and the development of HF185.  

Inflammatory cytokines may modulate myocardial functions by a variety of 

mechanisms including stimulation of hypertrophy and fibrosis through direct effects 

on cardiomyocytes and fibroblasts, impairment of myocardial contractile function 

through direct effects on intracellular calcium transport and signal transduction 

through β-adrenergic receptors, induction of apoptosis and stimulation of genes 

involved in myocardial remodeling. Inflammatory mediators may also contribute 

more indirectly to the progression of HF through impairment of bone marrow 

function with secondary anemia, inappropriate endothelial cell activation and 

impairment of peripheral muscle with secondary induction of systemic inflammation 

and reflex abnormalities in HF157.  

While the excess of these mediators is maladaptive, too little may also be harmful, 

illustrating the challenges for imunomodulating therapy in HF. 

 

Endothelial Function 

 

Endothelial vasodilator function is a surrogate for endothelial health210. 

Endothelial dysfunction is commonly defined as the inability of the artery to sufficiently 

dilate in response to an appropriate endothelial stimulus. It is considered an early 

predictor of cardiovascular disease211-213 and might be the causal pathological 

mechanism of various metabolic diseases, referred to as “the common soil 

hypothesis”214. Endothelial dysfunction has been shown to be impaired in type II 

diabetes mellitus, hypertension, hypercholesterolemia, obesity, renal failure and 

coronary artery disease215-219, being these conditions associated with considerable 



40 

 

morbidity and mortality. As a consequence, it is expected to gain interest as a potential 

target for intervention. 

Endothelial function mechanisms 
 
The knowledge on endothelial function has been slowly evolved over recent decades 

Previously, endothelial dysfunction was thought to be limited to impaired endothelial 

NO production and bioavailability in response to physiologic stimuli, thereby resulting in 

impaired vasodilatation. In addition to this initial idea of primary impaired NO signaling 

pathways, it is now known that the diagnosis of endothelial dysfunction also takes into 

account dysfunction of many other autocrine and paracrine signaling pathways leading 

to miscommunication between endothelial cells (EC) and cardiomyocyte (CM)220. 

Stressors, such as diabetes221, hyperlipidemia/atherosclerosis222, hemodynamic stress 

(shear stress)223, inflammatory cytokines224, and ischemia/coronary artery disease225, can 

alter endothelial function and thereby actively affect EC-CM communication and 

ultimately lead to cardiac failure226. Therapeutic intervention to prevent the adverse 

outcomes of endothelial dysfunction and EC-CM miscommunication, ultimately 

preventing HF, is subject of intense clinical investigation.  

Cardiac endothelial cells (EC) rely on diverse routes of communication. Endocardial EC 

and capillary EC share an active blood-heart barrier and influence neighboring 

cardiomyocyte (CM) through juxtacrine and paracrine signaling, whereas coronary 

vascular EC act indirectly on CM through changes in coronary vasomotor tone and 

consequent alteration of blood flow227. Interestingly, either cell can initiate 

communication; CM can act as secretory cells and are the source of many paracrine 

signals that affect EC. Among these are endothelin-1 (ET1), fibroblast growth factors, 

adenosine, and heme oxygenases—which regulate vascular tone—thus coordinating 

myocardial metabolic requirements228. Additionally, CM paracrine signaling, namely 

vascular endothelial growth factors, affects growth and development of coronary 

vessels. Myocardial ischemia and heart failure (HF) require vascular growth to match the 

increased energy demands229, and failure of vascular adaption leads to progressive 

cardiac dysfunction 228. Likewise, EC play pivotal roles in the bidirectional interactions 

between these two major cell types. 
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EC act as sensors for shear stress to regulate vascular tone. Cardiac EC can regulate 

contractile properties of CM. Several autocrine and paracrine signaling molecules are 

responsible for this important physiologic mechanism. They produce NO, endothelin-1 

and neuroregulin-1220. 

 Nitric oxide, produced from L-arginine by three different NO synthase isoenzymes, is a 

pivotal signaling molecule between EC and CM. Under physiologic conditions, neuronal 

(nNOS) and endothelial (eNOS) NO synthase produce the majority of NO. During 

inflammation, inducible NO-synthase (iNOS) significantly augments NO production230. 

Interestingly, oxygen free radicals produced during ischemia-reperfusion limit NO 

bioavailability without significantly affecting NOS activity231. Similar to its effects on 

smooth muscle, NO affects the onset of ventricular relaxation, allowing for optimization 

of ventricular pump function232. Although CM express both nNOS and eNOS, the vast 

majority of NO production comes from the EC, exceeding that of CM by greater than 

4:1233.  

The role of NO in healthy myocardium, as well as the adaptive changes during pathology, 

have been widely published234. Furthermore, studies in mice have provided substantial 

evidence that eNOS derived NO attenuates ischemia-reperfusion injury235,236, and 

ultimately improves survival during HF237. 

NO bioavailability is also necessary for a vast majority of cardioprotective effects and 

interventions. Ischemic preconditioning238 perfectly exemplifies such an NO-dependent 

cardioprotective intervention234. Interestingly, several drugs used for the treatment of 

hypercholesterolemia239,240 or even erectile dysfunction241 improve NO bioavailability 

and are cardioprotective. 

NO, generated in the endothelial cells, is one of the most important factors regulating 

vascular function242. There are 3 isoforms of NO, generated by NO-synthase: neuronal 

NOS, inducible NOS and endothelial NOS (eNO). This last one is the most important in 

endothelial cells to regulate vascular tone. It is responsible for vasodilation, which 

results in the lowering of peripheral resistance and increase of perfusion. eNOS 

expression was significantly reduced in animal models of HF243,244. Its activity is 

upregulated by an increase in flow-mediated shear stress associated with physical 

exercise due to a complex pattern of intracellular regulation: acetylation245, 

phosphorylation246, translocation to the caveolae247. 
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After animal248 and culture studies249, exercise or shear-stress was demonstrated to 

upregulate eNOS activity in humans250. 

The glycocalyx on the luminar side of endothelial cells seem to play an important role in 

signal transduction of increased shear stress and eNOS activation251,252. In addition, 

vascular endothelial growth factor receptor 2 leads to eNOS phosphorilation and higher 

eNOS production253. HDL is another factor known to modulate eNOS via 

phosphorylation254. This HDL-induced activation is impaired in patients with HF255, but 

also in CAD256, diabetes257 and an ET program of 12 weeks is able to restore the HDL-

mediated eNOS activation255. 

The bioavailability of NO not only depends on generation but also is influenced by ROS 

(reactive oxygen species)-mediated breakdown258. eNOS also generates itself ROS in the 

vascular system259. NOS uncoupling has been implicated in heart failure260, 

arteriosclerosis261 and diabetes 262. 

 

Endothelial dysfunction and the failing heart 
 

Coronary and peripheral endothelial dysfunction are present in both, ischemic and non-

ischemic, HF263-265. Independently of the initial underlying HF etiopathology, EC 

dysfunction plays a major role in the progression of the disease and has important 

prognostic value on clinical outcomes266-268. 

During HF, endothelial dysfunction is present, not only in coronary EC, but also in the 

arteries of skeletal muscles, explaining the early fatigue and exercise intolerance in 

HF269. EC-mediated vasoconstriction contributes to the increased peripheral vascular 

resistance in chronic HF270. In addition, dysfunctional endothelium has been observed in 

renal, mesenteric, and pulmonary vasculature, which is consistent with the notion that 

global EC dysfunction plays an important role in HF271 . 

Both, preclinical and human studies, emphasize the importance of coronary endothelial 

dysfunction during HF. In particular, the identification of impaired vasodilatory 

responses supported the notion that decreased NO impairs myocardial perfusion and 

indirectly contributes to the progression of HF263,272. Yet, cardiac endothelial dysfunction, 

similar to coronary vascular endothelial dysfunction, is an early event in the progression 

to fulminant HF273. Indeed, high concentrations of neurohormones cause selective 
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damage to cardiac EC, and depress mechanical performance of the adjacent 

myocardium. Moreover, secretion of traditional paracrine/autocrine factors is 

indispensable for EC-CM communication, and, such secretion is altered during acute, 

progressing, and stable HF274,275. Recent evidence has shown that the activation of the 

β1-adrenergic- protein kinase A pathway and the ET-1-protein kinase C pathway is 

crucial in positively modulating full developed force-frequency response (FFR) in cardiac 

muscle (276), and dysregulation of FFR is a hallmark of HF277. Thus, our silo-style view of 

vascular vs. cardiomyocyte dysfunction requires reevaluation. 

 
Clinical Assessment of Endothelial Function and impact of interventions 
 
Endothelial function plays a key role in vascular health and endothelial dysfunction is an 

early event in atherogenesis, making endothelial function testing, a mean for 

cardiovascular risk stratification, a valuable tool for clinicians278. Presently, there is no 

test to evaluate directly the impact of EC-CM interactions on cardiovascular health.  The 

goal of developing a non-invasive and effective test for endothelial function has proven 

to be challenging279. Several investigational methods are mentioned in the next 

paragraphs. 

The impact of exercise on endothelial function has been studied280. Arterial-level shear 

stress (>15 dyne/cm2) at the outer edges of vessel bifurcations can stimulate the 

vasculature to produce factors ultimately promoting an atheroprotective gene 

expression profile281. Non-invasive techniques to further assess the impact of exercise on 

endothelial function are being intensively studied, including magnetic resonance 

imaging282. 

As another potential non-invasive measurement of endothelial function283, some have 

used positron emission tomography scanning to identify increased vascular 

inflammation. Chronic inflammation is a well-known risk factor for cardiovascular 

disease284,285. Many groups investigated the potential impact of anti-inflammatory drugs 

(like non steroid anti-inflammatory drugs, NSAIDs) on endothelial function. A salicylate 

reduces vascular inflammation, and increases brachial artery flow-mediated dilatation in 

overweight/obese patients in a NFκ B-dependent manner286. Concerns, however, have 
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been raised about NSAIDs risks287. Further studies need to evaluate the safety of anti-

inflammatory therapy on the cardiovascular system. 

Endothelial dysfunction, commonly described as the inability of the artery to sufficiently 

dilate in response to an appropriate endothelial stimulus, can presently be assessed by 

the measurement of flow-mediated dilation (FMD) of the brachial artery after occlusion 

of the blood flow or by measurement of the arterial pulse wave at a finger artery. 

High resolution ultrasonographic imaging of the brachial artery assesses endothelium-

dependent flow-mediated vasodilation. Although the exact mechanisms causing FMD 

are not entirely known, the main mechanism inducing FMD is thought to be an increase 

in shear stress, leading to the release of nitric oxide from endothelial cells which causes 

blood vessel dilation288. This technique allows  estimation of various interventions 

effectiveness289. A recent study used this method to test the relative effectiveness of 

two different endothelial-directed drugs and found that the technique was, indeed, 

effective290. It has been widely used and shown to be a suitable tool to assess 

endothelial dysfunction. However, the method has several disadvantages: it is operator 

dependent291, and as FMD is measured at one arm only, there are no possibilities to 

correct for potential measurement-induced changes in the systemic hemodynamics, 

such as those resulting from alterations in the autonomous nervous system tone.   

To overcome these problems, the EndoPAT (Itamar, Israel) was developed. This device 

allows non-invasive measurement of vasoreactivity without the disadvantages of 

conventional ultrasound measurement. The EndoPAT detects plethysmographic pressure 

changes in the finger tips, caused by the arterial pulse, and translates these to a 

peripheral arterial tone (PAT). Endothelium-mediated changes in vascular tone after 

occlusion of the brachial artery are reflecting a downstream hyperemic response, which 

is a measure for arterial endothelial function292. Measurements on the contralateral arm 

are used to control for concurrent nonendothelium-dependent changes in vascular tone. 

In addition, the EndoPAT provides also a measure for arterial stiffness: the augmentation 

index (AI). The rationale for AI is the following: as a pressure wave moves through the 

arterial tree, it encounters impedance resulting in a reflected wave that moves back 

toward the heart and may augment peak systolic pressure293. Arterial stiffness increases 

pulse wave velocity, causing early reflection of this waveform294. The EndoPAT-derived 
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augmentation index (AI) provides a measure of arterial stiffness by considering the 

timing and magnitude of this wave reflection in the digital pulse295. 

Calculated from baseline resting pulse waves, AI represents the relative contribution of 

augmented pressure due to wave reflection to the pressure wave form. The software 

automatically identifies inflection points distinguishing the systolic peak (P1) and the 

reflected peak (P2) for the calculation of this ratio and converts it into a percentage (P1–

P2/P1*100)294. Because AI is inversely related to heart rate296, values are sometimes 

mathematically adjusted to represent arterial stiffness at a standard heart rate of 75 

beats per minute (AI@75). PAT arterial stiffness measures are associated with abnormal 

ventricular-vascular coupling294 and correlate well with AI measures from other 

devices297. In theory, the EndoPAT appears to be a useful device in clinical research, as 

the test is easy to perform, not operator-dependent, and with comprehensive automatic 

analysis. In a group of 89 adult patients suffering from chest pain, peripheral arterial 

tone correlated positively with FMD292. The evaluation of cross-sectional relations of 

digital vascular function to cardiovascular risk factors, in the Framingham Heart Study, 

showed a significant inverse relation between endothelial function, as determined by 

the EndoPAT (“EndoScore” or reactive hyperemia index, RHI), and multiple 

cardiovascular risk factors (male sex, body mass index, total/HDL cholesterol, diabetes, 

smoking, and lipid-lowering treatment)298. The EndoScore was reported to be 

significantly decreased in patients with coronary artery disease, hypertension, 

hyperlipidemia, diabetes, glucose intolerance, and tobacco users (group sizes of 15 to 70 

subjects)292,299-303. Several EndoPAT studies have demonstrated an improvement in 

endothelial function as a result of lifestyle modification (smoking cessation, and dietary 

change)304-307 or prolonged pharmacological intervention308-309. 

Generally, augmentation index, calculated from carotid, aortic, or radial artery pressure 

waves using conventional techniques, is a reliable and a reproducible measure to define 

arterial stiffness310. However, the influence of variables such as heart rate and 

vasomotor tone of the arterial system can affect the variability of the technique311. 

When using the EndoPat, the intraindividual variability in AI is substancial (coefficient of 

variation of 37%), which limits its usefulness to assess interventions312. Compared to 

arterial stiffness, RHI proved to be a more stable measure over time (coefficient of 

variation 13%). Interestingly McCrea et al.313
 showed for the first time that PAT 
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measures of endothelial function are highly repeatable across intervals greater than 1 

week, in healthy adults.  

 

Left ventricular remodeling 

 
Cardiac remodeling is considered to be implicated in the pathophysiology of HF 

progression314-318. The term ventricular remodeling refers to alteration in ventricular 

architecture, with gradual increases in end-diastolic and end-systolic left ventricular 

volumes, wall thinning, and chamber geometry change to a more spherical, less 

elongated shape, usually associated with continuous LV ejection fraction decline. In 

clinical practice, changes in ejection fraction, LV end-diastolic and end-systolic volumes, 

LV mass, and sphericity index are usually used as surrogate parameters for remodeling 

or reverse remodeling evaluation.  

This process is driven on a histologic level by a combination of pathologic myocyte 

hypertrophy, myocyte apoptosis, myofibroblast proliferation, and interstitial fibrosis319-

321.  

The concept of cardiac remodeling was initially developed to describe changes which 

occur in the days and months following myocardial infarction, extending to nonischemic 

cardiomyopathies, such as idiopathic dilated cardiomyopathy, suggesting common 

mechanisms for the progression of cardiac dysfunction322-323. 

The process of cardiac remodeling is influenced by hemodynamic load, neurohumoral 

activation, and other factors, still under investigation. The myocyte is the major cardiac 

cell involved in the remodeling process. Other components include the interstitium, 

fibroblasts, collagen, and coronary vasculature; relevant processes also include 

ischemia, cell necrosis and apoptosis318 Due to continuous maladaptive remodeling, 

myocardial dysfunction with increasing LV volumes is usually a progressive condition, 

where even mild initial dysfunction may develop to severe heart failure over a time 

course of months to years, independently of the initial cause324-326. Functional 

polymorphisms in modifier genes relevant for disease progression may impact on the 

remodeling process. The results of cardiac remodeling include progressive worsening of 

systolic and diastolic function, development of mitral regurgitation, and increased 

propensity for arrhythmias. A hallmark in remodeling is alteration in the phenotype of 
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the myocytes with reexpression of a fetal gene program, defective excitation–

contraction coupling, and disturbed intracellular Ca2+ handling. Despite myocyte 

hypertrophy, this leads to defective contractile function, which may contribute to 

further progression of myocardial remodeling327. 

Very little information, concerning subcellular remodeling in the development of heart 

failure is available in the literature. Since subcellular remodeling in different 

experimental models of HF is dependent upon the species of animals employed, as well 

as the different stage and type of HF326-328, it is difficult to implicate remodeling of any 

particular organelle in the genesis of cardiac dysfunction. Since some studies329-336 have 

indicated progressive alterations in extracellular matrix, sarcolemma membrane, 

sarcoplasmic reticulum, and myofibrils at early, moderate, and late stages of HF, in both 

cardiomyopathic hamsters and myocardial infarction in rats, it is likely that remodeling 

of these subcellular organelles is involved in the progression of HF. Some investigators 

have suggested the role for remodeling of extracellular matrix, cytoskeletel system, and 

myofilaments in heart failure and dilated cardiomyopathy337-339, whereas others have 

shown remodeling of sarcoplasmic reticulum, at early stage, and of myofibrils, at late 

stage of heart failure340. Likewise, Ca2+-handling abnormalities due to remodeling of 

sarcoplasmic reticulum and sarcolemma membrane, as well as changes in extracellular 

matrix and responses of myofibrils to Ca2+, have been observed in both systolic and 

diastolic forms of human heart failure341-343. Remodeling of one or more subcellular 

organelles may explain the transition of compensatory cardiac hypertrophy to heart 

failure344-345. Ding et al.346 have reported that the transition from cardiac hypertrophy to 

heart failure due to volume overload is associated with altered intracellular Ca2+ 

homeostasis as a consequence of sarcoplasmic reticulum remodeling. 

Prevention of remodeling has been documented in coronary artery disease. It is much 

less clear whether remodeling may be reversed, once it has developed.  

In the case of myocardial infarction, the most effective strategy to prevent pathological 

remodeling is immediate reperfusion during acute phase to minimize myocardial 

damage. The strategy of late reperfusion is controversial347, although some studies 

showed reduction in infarct expansion and pathological remodeling, both in animal 

models348 and in humans349.  Subsequent early initiated pharmacological therapy with 
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ACE inhibitors328 and beta-blockers350 may prevent or slow ventricular remodeling after 

myocardial infarction.  

In fact, as mentioned, in view of the lack of sufficient information, it is difficult to 

confirm the involvement of any particular subcellular organelle in ventricular 

remodeling for LV systolic or diastolic dysfunction. This knowledge could lead to 

specifically directed therapies for inhibiting remodeling progression. Preventing or 

reversing maladaptive remodeling, implicated in HF progression, is an accepted 

therapeutic target, reason why it is so important to continue investigating subcellular 

remodeling.  

 

4.2. Heart Failure - pharmacologic and non pharmacologic therapy 

 

The evolution of therapy for heart failure has become increasingly complex. 

It began by pharmacological therapy, with various developments, although more 

recently, non pharmacological treatment, like internal cardiac defibrillator and 

resynchronization therapy, mitral valve intervention, cardiac transplant, left ventricular 

assistance and exercise therapy have been introduced351  

Despite pharmacologic efficacious regimens and mechanical interventions, HF remains 

among the leading causes of mortality in the world. 

 

Pharmacologic Therapy 

 

The 2012 European Society of Cardiology (ESC) guidelines26, 2013 American College of 

Cardiology/American Heart Association (ACC/AHA) updated guidelines352 and the 2010 

Heart Failure Society of American (HFSA) guidelines353 with varying levels of evidence, 

recommend the following: 

 Diuretics (to reduce edema by reduction of blood volume and venous pressures) and 

salt restriction (to reduce fluid retention) in patients with current or previous heart 

failure symptoms and reduced left ventricular ejection fraction (LVEF) for 

symptomatic relief  
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 Angiotensin-converting enzyme inhibitors (ACEIs) for neurohormonal modification, 

vasodilatation, improvement in LVEF, and survival benefit  

 Angiotensin receptor blockers (ARBs) for neurohormonal modification, 

vasodilatation, improvement in LVEF, and survival benefit  

 Hydralazine and nitrates to improve symptoms, ventricular function, exercise 

capacity, and survival in patients who cannot tolerate an ACEI/ARB or as an add-on 

therapy to ACEI/ARB and beta-blockers in the black population for survival benefit  

 Beta-adrenergic blockers for neurohormonal modification, improvement in 

symptoms and LVEF, survival benefit, arrhythmia prevention, and control of 

ventricular rate  

 Aldosterone antagonists, as an adjunct to other drugs for additive diuresis, heart 

failure symptom control, improved heart rate variability, decreased ventricular 

arrhythmias, reduction in cardiac workload, improved LVEF, and increase in survival  

 Digoxin, which can lead to a small increase in cardiac output, improvement in heart 

failure symptoms, and decreased rate of heart failure hospitalizations  

 Anticoagulants to decrease the risk of thromboembolism  

 Inotropic agents to restore organ perfusion and reduce congestion 

 Ivabradine is indicated in stable, symptomatic chronic heart failure patients with 

LVEF of 35% or lower, in sinus rhythm with resting heart rate of 70 bpm or higher, 

and either on maximally tolerated doses of beta-blockers or with contraindication to 

beta-blocker use, leading to 18% drop in the risk for cardiovascular death or 

hospitalization for worsening heart failure  

Antiarrhythmic agents and calcium channel blockers may be used, as necessary, 

carefully. These drugs can have cardiodepressant effects and may promote arrhythmia, 

with only amiodarone and dofetilide shown as not adversely affect survival.  

Calcium channel blockers can worsen heart failure and may increase the risk of 

cardiovascular events; only the vasoselective calcium channel blockers have been 

shown not to adversely affect survival. 

Reverse remodeling in heart failure with medical therapy 
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Both ACE inhibitors and beta-blockers have been shown to slow, or even temporarily 

reverse, remodeling in heart failure333. Initial results with ACE inhibitors clearly indicated 

benefit, but were controversial with respect to true reverse remodeling: Captopril did 

not lead to a reduction in LV volume, but attenuated progressive LV dilatation, in 59 

patients after anterior myocardial infarction and ejection fraction  inferior to 45%. In 

contrast, compared to placebo, captopril produced a significant reduction in LV end-

systolic volume and an increase in ejection fraction after 3 months of therapy in 100 

patients after myocardial infarction328. Substudies of the SOLVD trial evaluated the 

effect of enalapril versus placebo on serial changes in left ventricular volumes and 

ejection fraction. Despite the small numbers included, these studies demonstrated early 

and sustained reduction in left ventricular volumes after initiation of ACE inhibition in 

both asymptomatic and symptomatic patients326,329. In the larger echo substudy of the 

Studies of Left Ventricular Dysfunction (SOLVD) trial, enalapril treatment prevented 

further LV enlargement, associated with a slight reduction in LV mass, over a follow-up 

period of 12 months330. However, in the Survival And Ventricular Enlargement (SAVE) 

trial, captopril attenuated LV dilatation within the first year after myocardial infarction, 

but not in the second year of follow-up354. These results indicate that patients may 

escape from the beneficial effects of ACE inhibition on maladaptive remodeling after 

prolonged periods of time. Taken together, ACE inhibitors attenuate or prevent further 

remodeling, and may induce modest reverse remodeling in subgroups of HF patients. 

Whether more complete inhibition of the RAAS system by combining ACE inhibitors with 

AT1 antagonists and aldosterone receptor blockers is more effective for induction of 

reverse remodeling awaits clarification. The large Valsartan Heart Failure (ValHeFT) 

trial332 demonstrated that the combination therapy of AT1 receptor antagonist 

Valsartan with ACE inhibitor was more effective than ACE inhibitor therapy alone to 

induce reverse remodeling, in patients with symptomatic systolic heart failure. Both, 

ejection fraction increased and left ventricular end-diastolic dimension decreased 

significantly, more with combined RAAS blockade, during prolonged ( 24 months) 

periods of time. Compared to ACE inhibitors, even more pronounced effects on reverse 

remodeling may be observed with beta-blockers, in heart failure patients333. Hall et 

al.334 reported a progressive increase in ejection fraction, regression of dilatation and 

hypertrophy, and restoration of a more elliptical chamber shape, in patients treated 
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with metoprolol over a time course of 3–18 months. Reverse remodeling with β1-

adrenoceptor blockade was confirmed in a substudy of the Metoprolol CR/XL 

Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF trial), where 

patients treated with metoprolol CR/XL were followed by magnetic resonance imaging. 

Significant decreases in LV volumes, and increases in ejection fraction were observed 

after 6 months, compared to the placebo group355.  

Similarly, using the non-selective adrenoceptor blocker carvedilol, Olsen et al.336 

reported reverse remodeling associated with improved symptoms in chronic heart 

failure.  

In the echo substudy of the Australia–New Zealand trial in patients with ischemic 

cardiomyopathy and severely depressed LV function337, carvedilol treatment over 12 

months was associated with smaller LV end-diastolic and end-systolic volumes and LV 

increased ejection fraction. A meta-analysis of all available beta-blocker trials showed 

an average of 29% relative increase in ejection fraction, irrespective of the etiology of 

heart failure338.  

In these studies, with selective or non-selective beta-blockers, reverse remodeling was 

observed, even in the presence of baseline therapy with an ACE inhibitor. These data 

support the hypothesis that the prognostic benefit of beta-blocker therapy in heart 

failure is related to the potential to prevent and reverse left ventricular remodeling. 

Reverse remodeling with beta-blocker therapy has also been documented on the 

subcellular level in isolated human myocardium. Some beta-blockers may increase the 

number of β-adrenergic receptors, which are downregulated in heart failure339.  

Lowes et al.340 demonstrated an association between normalization of myocardial gene 

expression for SERCA2a and α- and β-myosin heavy chains and improvement in ejection 

fraction and clinical status in patients with idiopathic dilated cardiomyopathy under 

beta-blocker therapy. Reiken et al.341 showed that beta-blocker therapy partially 

restored diastolic filling, β-adrenergic responsiveness, and ryanodine release channel 

function in patients with dilated or ischemic cardiomyopathy. These data provide insight 

into subcellular mechanisms for reverse remodeling with beta-blockers. 

Novel pharmacological approaches for reverse remodeling in heart failure have been 

developed, like pharmacological blockade of the sarcolemmal sodium/hydrogen 

exchanger, which may prevent or reverse maladaptive remodeling342. Cariporide 
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prevented fibrosis and heart failure in β1-adrenergic transgenic mice343 and reversed 

isoproterenol-induced hypertrophy in rats344. Another sarcolemmal sodium/hydrogen 

exchanger isoform 1 (NHE1) inhibitor, EMD-87580, induced reverse remodeling in a rat 

model of post-myocardial infarction heart failure345.  

Taken together, ACE inhibitors and even more pronounced, beta-blockers, induce 

reverse remodeling in heart failure, and this may in part explain improved clinical 

outcome. In the future, more complete blockade of neuroendocrine activation, e.g. by 

addition of AT1-antagonists and aldosterone receptor blockers, possibly in combination 

with complementary pharmacological approaches, may be even more effective for 

reverse remodeling327. 

 

Non pharmacologic Therapy: Cardiac Resynchronization  

 

CRT history and trials 
 
Electric stimulation of the heart goes back for more than two and a half centuries356. 

Ten years after Zoll357, who used closed chest external stimulation to treat patients with 

cardiac arrest for complete atrioventricular block, transvenous permanent pacing was 

developed358. Despite the success, it became clear that both dual-chamber pacing and 

single-chamber pacing often conduced to impairment of cardiac function, which 

required correction. Optimization of the time interval between atrial and ventricular 

stimulation in dual-chamber pacing improved ventricular performance. After that, 

attention was directed to the synchronicity of ventricular contraction. It had long been 

appreciated that patients with HF and intraventricular conduction defects, particularly 

left bundle–branch block, were poorly responsive to the usual HF therapy and that their 

prognosis was especially poor54.  

Some years later, aware that univentricular pacing impaired intraventricular conduction 

and caused QRS prolongation and dyssynchrony of ventricular contraction, Bakker et 

al.359,  reported the beneficial hemodynamic and clinical effects of biventricular pacing 

in 5 patients with severe HF and left bundle–branch block.  

Later, in 1998, Daubert et al. 360, describing a completely transvenous CRT implantation, 

with over-the-wire technique from Auricchio361, opened a new era for CRT. 
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In 2001, the safety and efficacy of CRT were first addressed by the Multisite Stimulation 

in Cardiomyopathies (MUSTIC) trial362 and Pacing Therapies in Congestive Heart Failure 

(PATH-CHF)363  study. 

In the Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE –ICD), the first 

study which explored the addition of CRT-D to ICD, the benefit on quality of life and 

clinical NYHA class was demonstrated364. 

The Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure 

(COMPANION) trial365, the first trial to compare CRT-P and CRT-D with OPT, 

demonstrated a 20% reduction in death or hospitalization from any cause. Total 

mortality was inferior with CRT-D. In an outcome study regarding the patients of 

COMPANION366, mortality in NYHA class IV patients, however, was not reduced, by 

either CRT-P or CRT-D.  

Two large randomized controlled trials (COMPANION)365 and Cardiac Resynchronization 

in Heart Failure Study (CARE-HF) 4, involving patients with severe HF, showed that CRT 

resulted in the reduction of symptoms and HF hospital admissions and in increased 

survival. These trials established CRT as a treatment for HF NYHA III-IV, impaired LV 

function and enlarged QRS. Device treated patients had similar characteristics in both 

studies, however in COMPANION the control group patients were on optimized 

pharmacologic therapy (OPT) and ICD and in the CARE-HF wer only on OPT. 

While CRT is now widely used for the treatment of patients with advanced HF, LV 

dysfunction and QRS >150 ms, clinical investigators have been seeking to extend the 

indications. 

Efficacy of CRT-D in mild HF was suggested by CONTAK CD study, which demonstrated 

LV reverse remodeling in classes II-IV, NYHA367. 

In MIRACLE ICD II study 368, which included patients of class II, NYHA, CRT-D induced LV 

reverse remodeling compared with ICD. 

In Multicenter Automatic Defibrillator Implantation Trial (MADIT) 369, randomizing 

patients in class I and II to CRT-D or ICD , demonstrated that CRT-D reduced combined 

event total mortality or HF events by 34% (no difference in total mortality) . 

In the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction 

(REVERSE) study 370, patients in class I-II with primary prevention ICD indications were 

randomized to CRT-on/off.  CRT-on improved LVEF and reduced HF hospitalizations. 
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The Resynchronization/ Defibrillation for Ambulatory Heart Failure Trial (RAFT)371, 

similarly to REVERSE, compared CRT-D with ICD in class II-III patients. Total mortality or 

HF hospitalization occurred in 33.2% in CRT-D vs 40.3% in ICD group (hazard 

ratio:0.75;95% confidence interval:0.64-0.87). 

Due to the low mortality, MADIT-CRT and REVERSE studies did not demonstrate 

independent effect on mortality in class I and II patients369,370. Also, the 5-year follow-up 

of REVERSE study showed low mortality in patients randomized to CRT-on372. These 

data, as that from the RAFT study371, provided evidence regarding CRT in the early 

stages of HF. 

In the registry Improve the Use of Evidence-based Heart Failure Therapies in the 

Outpatient Setting (IMPROVE HF)373, that device therapy was shown to add incremental 

survival value to OPT in advanced HF.  

In CARE-HF study4, for patients in the non-CRT group, annual mortality rate was 12.6%, 

worse than in many cancers. 

Despite some authors369-371have demonstrated that CRT can retard disease progression 

in mild HF, we know that CRT uptake is low in this population374. 

Despite the cost of the device, the cost-effectiveness of CRT-P and CRT-D, based on the 

evaluation of several studies375 proved identical to many medical interventions. 

Presently, CRT is an accepted treatment for patients with moderate-to-severe HF and 

intra-ventricular conduction delay, identified by a QRS interval of 120 msec or more on a 

12-lead electrocardiogram (ECG). This prolonged QRS interval occurs in up to a third of 

the patients with severe systolic HF and is associated with dyssynchronous LV 

contraction, leading to impaired emptying and, in some patients, to mitral regurgitation. 

Abnormal atrioventricular coupling (prolonged PR interval) and interventricular 

dissynchrony, identified by echocardiography, may also occur. CRT with atrial-

synchronized biventricular pacing often improves cardiac performance immediately, by 

increasing stroke volume (SV) and reducing mitral regurgitation.  

This intervention has led to a significant reduction in mortality and morbidity, in  

selected patients, as reviewed in multiple trials375. On the basis of these trials, current 

European guidelines376 recommend CRT for patients with severe symptoms (NYHA class 

III or IV) despite optimized pharmacologic therapy,  ejection fraction (EF) persistently 

35% or less, sinus rhythm, and QRS duration of 120 msec or more (class I 
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recommendation). More recently, it has expanded to other HF groups, despite not being 

recommended as a first class indication. Questions remain, regarding the possible 

benefits of CRT  in patients with milder degrees of HF and QRS prolongation, as well as 

in HF without QRS prolongation, eventhough with echocardiographic dyssynchrony377.  

 

CRT mechanisms 
 

Patients with HF often have an associated delay in electrical conduction that leads to 

discoordinate contraction of the heart. Whether identified by QRS duration or 

echocardiography, dyssynchrony is an independent predictor of increased mortality in 

patients with HF378,379.  

Remodeling involves both global cardiac dysfunction and regional stress disparities 

within the left ventricle, with relative unloading of the early activated (typically septal) 

region and high load in the late (lateral) contracting regions380. Late systolic stretch of 

the early stimulated wall reduces net ejection and can worsen functional mitral 

regurgitation381.  

While it is intuitive that a synchronized ventricular contraction should be superior to a 

dyssynchronized one, it remains to be determined whether or not there is also a 

molecular basis for the observed improvement in ventricular function with CRT. Kirk and 

Kass382 reviewed systematically the evidence for and against specific cellular and 

molecular changes that occur with ventricular dyssynchrony and how these changes 

respond to CRT. Biventricular pacing has been shown to cause reverse ventricular 

remodeling, with reduction in biomarkers, including NT-proBNP and markers of 

extracellular matrix metabolism383.  

Findings from animal models of LV dyssynchrony384 revealed regional variations in 

myocyte hypertrophy, blood flow, and oxygen consumption. Cardiac resynchronization 

therapy, during which biventricular stimulation is applied, was developed to counter this 

pathophysiology. Resynchronization therapy induces reverse remodeling on the cellular 

and organ level. 

Patients with heart failure and asynchronous wall motion due to intraventricular 

conduction delay are at increased risk for exacerbated pump failure. Biventricular and 

left ventricular cardiac resynchronization therapy can re-coordinate contraction, 
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thereby acutely improving systolic ventricular function and energetic efficiency. CRT 

acutely improves net systolic function without affecting diastolic volume377.  

Yu et al.385 provided the first evidence that CRT induces reverse remodeling when they 

showed that LV end-systolic and end-diastolic volumes decreased already after 1 month, 

and continued over a period of several months of CRT. These authors also demonstrated 

that this adaptation persisted some time, even if pacing was temporarily suspended. 

Transitory suspension of pacing for 3 months, led to acute decrease in systolic 

contractile function, but without enlargement of ventricular volumes. However, if 

pacing was maintained off for one more month, chamber dilatation and remodeling 

restarted. 

Results of subsequent randomized trials, already presented, demonstrated that these 

changes were associated with improved clinical outcome. CRT has been shown to 

improve symptom class, exercise capacity, and quality of life even in patients already 

receiving optimal pharmacological therapy. Albeit the mechanisms of benefit remain 

poorly understood, reverse remodeling of the failing ventricles may be considered a 

major factor.  

In another small trial using radionuclide scintigraphy, Toussaint et al. 386 reported an 

immediate, albeit not significant effect of resynchronization on ejection fraction (from 

17.8±6.3 to 19.9±8.3), which further increased (to 24.2±10.8%;p<0.05) after 1 year of 

CRT. These data indicate that CRT has both immediate and long-term effects on 

ventricular function, the latter possibly associated with reverse remodeling.  

Larger, chronic and blinded/controlled studies have confirmed the reverse remodeling 

effects of CRT on chamber geometry387. Recently, reverse remodeling with CRT was also 

observed in the MIRACLE study7. In this trial, the effect of CRT on chamber geometry 

and remodeling was assessed by Doppler echocardiography in 323 HF patients (mean 

EF, 24±7%) on optimized medical heart failure therapy including ACE inhibitors (>90%) 

and beta-blockers (>55%). 172 patients were randomized to CRT-on and 151 patients to 

CRT-off. CRT induced significant and progressive reverse remodeling over 6 months: left 

ventricular end-diastolic and end-systolic volumes as well as mitral regurgitation 

decreased, associated with an increase in ejection fraction. In addition, LV mass 

decreased and myocardial performance and left ventricular sphericity index improved. 

Reverse remodeling was associated with improved NYHA functional class, exercise 
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capacity, and quality of life. It occurred regardless of the cause of heart failure, but 

more extensively in patients with a nonischemic origin. This observation was confirmed 

in the echocardiographic substudy of the MUltisite STimulation In Cardiomyopathies 

(MUSTIC) trial388.  

The mechanisms for reverse remodeling with CRT may comprise:  reduced wall stress 

due to reduced inhomogeneities in regional contractile activation382, decreased 

sympathetic nerve activity389 and increased metabolic efficiency390.  

Penicka et al.391 identified pulse-wave tissue Doppler derived intraventricular and 

interventricular asynchrony as the best predictive factors for reverse remodeling of the 

left ventricle during CRT. Nevertheless, reverse remodeling was less likely to occur in the 

presence of rather dilated chambers: Stellbrink et al.392 identified CRT non-responders 

with respect to reverse remodeling to have significantly higher baseline LVED volume, as 

compared to responders (351±52 vs 234±74ml). This is consistent with the observation 

that patients with large ventricles may be non-responders to medical therapy regarding 

reverse remodeling393.  

The real importance of evaluating reverse remodeling in HF patients as an endpoint 

after therapy relates to the fact that death rate in recent HF trials, with optimal 

pharmacologic therapy, is low when there is reverse remodeling. Regression of 

maladaptive remodeling might serve as a surrogate marker for morbidity and mortality 

and success of therapy. This hypothesis is supported by the analysis and review of 

several studies327,394. Nevertheless, most of the major heart failure trials to date have 

only correlated treatment and cardiac function and have not directly demonstrated a 

causal relationship between improvement in cardiac function and improvement in long-

term health outcomes.  

Autonomic nervous system function significance, as a mechanism for CRT benefits, was 

addressed. Several studies have shown that cardiac resynchronization therapy (CRT) 

improves sympathetic function in patients with HF accompanied by reduced systolic 

function. CRT improves β-adrenergic function and up regulates presynaptic receptor 

function. Also, biventricular pacing was shown to reduce muscle sympathetic nerve 

activity when compared with right ventricular pacing390 or right atrial pacing395. These 

beneficial effects persisted at 6 months after resynchronization therapy396. Cha et al.397 

examined the effect of CRT on neuro-hormonal integrity by studying cardiac presynaptic 
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sympathetic function, as determined by nuclear cardiac imaging modalities (123I-MIBG 

scintigraphy), in patients with HF who received CRT and found that CRT reverses cardiac 

autonomic remodeling by up-regulating presynaptic receptor function, as evidenced by 

increased 123I-MIBG heart/mediastinum ratio and attenuated heart/mediastinum 

washout rate, with concomitantly improved HRV397. Najem et al.398 found that 

sympathetic inhibition induced by chronic CRT was acutely reversed when patients were 

shifted from a synchronous to a nonsynchronous mode. This was observed only in 

patients who responded to CRT, even more than an year after initiation of the therapy. 

The mechanism by which CRT inhibits sympathetic activity is intriguing because 

correction of the electric and mechanical dyssynchrony with biventricular pacing does 

not directly block the sympathetic nervous system. It is probable that biventricular 

pacing improves cardiac function over time and thus reduces sympathetic drive37.  

Besides the effect on ANS, CRT has been shown to reverse the apoptosis caused by 

dyssynchrony399 and to enhance a variety of mitochondrial enzymes associated with the 

augmentation of ATP production400. Also, it has been demonstrated that CRT 

significantly improves endothelial function through the improvement of cardiac output 

in HF patients, compared to optimal medical therapy401. 

While new therapeutic strategies, such as miniaturized impeller pumps for chronic 

unloading, gene therapy, or stem cell therapy, in reverse remodeling awaits 

characterization, resynchronization therapy undoubtly induces reverse remodeling on 

the cellular and organ level in selected patients. 

CRT Response Definition 

The definition of CRT response varies widely between studies, with numerous criteria to 

define a positive response in the literature.  

“Echocardiographic response” is typically assessed by quantifying the change in left 

ventricular ejection fraction402-405 or left ventricular end-systolic volume 406-411, usually 3 

to 6 months after CRT implantation. We know, however, that some patients may 

respond later386. 

“Clinical response” is defined by the improvement in New York Heart Association 

functional class403,412-414   or increase in the distance walked in 6 minutes414, 3 to 6 

months after CRT implantation. 
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Some studies have defined response to CRT as a combination of several clinical 

measures416-418 or as a combination of both clinical and echocardiographic measures419. 

The heterogeneous approach to defining response to CRT severely limits the ability to 

generalize results over multiple studies and it constitutes a potential barrier to progress 

in the field. Fornwalt has addressed this issue by investigating the agreement among the 

numerous published CRT response criteria420, which are the following: 

 

 

 

 

 

Echocardiographic  

 Var. LVEF >5 units 

 Var. LVEF>15% (relative) 

 Var. LVESV>10%, no HF, no death 

 Var. LVESV>15%  

 LVESV >115% baseline 

 Var. LVEDV>15%  

 Stroke volume>15% 

  

 

Clinical  

 NYHA >1  

 NYHA >1, no HF, no death 

 NYHA >1 and 6MWT>25% 

 NYHA >1 and 6MWT>25%, no HF death 

 6MWT>10%, no HF death, no transplant 

 Two of the following:NYHA >1, 6MWD>50 m, QOL>15 

  

 

Clinical composite score  

 Combined LVEF>5 units or 6MWT>50 m and NYHA>1 or QOL>10 

 

 

The poor agreement found among these response criteria severely decreases the ability 

to generalize results from multiple studies. The authors applied different criteria to the 
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426 patients enrolled in the Predictors of Response to Cardiac Resynchronization 

Therapy (PROSPECT) study411. The major findings of this analysis were: the 26 most-

cited publications on predicting response to CRT used 17 different primary response 

criteria, and the level of agreement, independent to chance, among 15 of these 

response criteria was poor, in 75% of the times, and strong in only 4%, in the PROSPECT 

study  patients; agreement between echocardiographic and clinical response criteria 

was poor and nearly equal to the level of agreement expected by chance; the 

percentage of patients defined as having a positive response to CRT ranged from 32% to 

91% for the 15 response criteria; 99% of patients were classified as responders by at 

least 1 of the 15 criteria, whereas 94% were classified as a nonresponders by at least 1 

criterion420. 

Similarly to Fornwalt et al., Aaronaes et al. assessed response criteria to CRT421. 

Different response criteria to CRT gave response rates ranging from 33–96% and 31–

94% at six and 12 months, respectively. Other previous studies had previously reported 

different rates of response to CRT when different definitions of response were used, 

within the same population. Even looking at the PROSPECT study411, which reported 

56% of patients as echocardiographic responders (reduction in LVESV of at least 15%), 

whereas 69% as clinical responders (improvement in the clinical composite score), 

which are not necessarily coincident patients, we understand poor agreement of 

response.  

Facing this, which method should we use in the future to determine whether a patient 

benefited from CRT?  

Because heart failure is a debilitating life-threatening disease, an effective heart failure 

therapy should treat both symptoms and quality/duration of life. Measures of 

“response” to CRT should either directly measure outcomes or have a surrogate 

relationship with benefits in heart failure symptoms, quality of life, and duration of life. 

The clinical composite score422 is a measure of response that accounts for all of these 

factors and may be the best overall choice for defining response in future CRT trials. 

Other inconsistencies in defining response to CRT is the length of follow-up period after 

which a patient is deemed either a responder or a nonresponder. Some studies focused 

on short-term, 1 to 2 days, response 402.405,423,438,424, whereas most focused on 3-

months406-416,419 or 6-months 403-405, 411-418, 392, 425-429 response. However, CRT has been 
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shown to have persistent, increasing benefits with a longer mean follow-up period of 

29.5 months430. 

Another issue is about mortality: whether death should be considered a nonresponse to 

CRT.  

There are at least 3 different methods that authors have used for death as response 

criteria: death due to worsening HF included in the nonresponder group415-418,425,429; 

death due to any cause included in the nonresponder group426; death excludes patients 

from analysis392,404,406,407,409,410. Moreover, numerous publications fail to specify how 

death was incorporated into response criteria despite enrolling consecutive patients and 

following them for a 3 to 6-months period403,412-414,419. 

Although inclusion of all-cause mortality, as a criterion for nonresponse, may not be 

appropriate, a patient who dies of progressive heart failure should, objectively, be 

classified as a nonresponder. Regardless, there is no consistent method for 

incorporating mortality into the definition of response to CRT, and this needs to be 

standardized. 

In resume, as expressed before, many different methods, used in the literature to define 

a positive response to CRT, show poor agreement among each other. 

Although it is clear that cardiac resynchronization improves prognosis4,430,431, all major 

trials demonstrated that at least one third of the patients are nonresponders to CRT 

432,433, depending the CRT response of the definition used in the trials. 

Besides the problem of nonresponse, CRT implies a relatively high additional finantial 

cost initially and is an invasive procedure, not exempt of complications.  

Identifying patients in higher risk of death and those most likely to benefit from 

currently available treatment technologies, remains a challenge.  

Although CRT is well established in the therapeutic armamentarium, it still offers many 

opportunities for research. It is important to determine what is the best criterion to 

define CRT response, what is the optimal time to evaluate it and how can we best 

predict these responders. The defined criteria should be used in a uniform and 

consistent basis in order to comparative analysis being possible. 
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Non pharmacologic Therapy: Exercise  
 
 

Exercise effects in heart failure 
 

Several years ago, exercise was considered noxious to the heart and even contra-

indicated in heart failure. Presently, it is known that individuals with cardiac disease 

seem to be at a greater risk for sudden cardiac arrest during vigorous exercise (such as 

jogging) than are healthy individuals434. The incidence of major cardiovascular 

complications during outpatient cardiac exercise programs has been estimated to be 1 

in 60 000 participant-hours435. Activities performed with continuous ECG monitoring 

have the lowest rates of sudden cardiac arrest compared with those that are 

unmonitored or only intermittently monitored434. 

Myocardial infarction is another risk associated with participation in exercise and is 

more likely to occur than sudden cardiac death. Approximately 4% to 20% of myocardial 

infarctions occur during or soon after exertion436-438. The adjusted relative risk, however, 

has been found to be greater in people who do not regularly participate in physical 

activity436-437. From the analysis of 21 exercise training studies conducted in a total of 

467 patients with chronic HF19, the overall adverse event rate seems to be low. The 

most common events in such patients include postexercise hypotension, atrial and 

ventricular arrhythmias, and worsening HF symptoms. These findings points to the need 

for careful patient selection, monitoring and follow-up.  

Questions have been raised about possible detrimental effects of regular exercise on LV 

remodeling in patients after myocardial infarction. One small, nonrandomized study has 

shown that patients with >18% asynergy after first anterior Q-wave infarction 

experienced a further increase in asynergy and a decrease in EF after 12 weeks of 

exercise training when compared with nonexercising controls439. However, 2 

subsequent randomized controlled trials of moderate- to high-intensity exercise training 

patients after large myocardial infarction have not demonstrated adverse effects on 

regional wall motion, LV systolic function, or LV chamber dimensions after several 

months of exercise440,441. In the larger Exercise in Anterior Myocardial Infarction (EAMI) 

trial441, exercise training in patients after first anterior Q-wave infarction did not result 

in any significant changes in global or regional LV size for the group as a whole. Among 
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patients with EF <40%, spontaneous global and regional LV dilatation was seen similarly 

in both the exercise and control groups but was not influenced by exercise training. In 

another study440 of 25 patients with reduced LV function (mean EF 32%), serial LV 

measurements obtained from MRI indicated no detrimental effects from 2 months of 

moderate-intensity cycle exercise training on LV volume or EF. Musculoskeletal injuries 

are common and include direct injuries such as bruises, sprains, and strains and indirect 

problems such as arthritis and back pain. Low-impact exercises (walking, cycling, and 

swimming) cause little stress on bones and joints, whereas high-impact exercises 

(running and aerobic dancing) cause repeated impact on the knees, ankles, and feet. 

Studies of injuries during exercise indicate that intensity and biomechanical impact of 

the activity performed are the two most important factors in determining the frequency 

of injuries434. 

Presently, exercise training is undoubtedly considered safe, with specific care in stable 

HF, and proven to be beneficial to heart failure patients in terms of physical fitness and 

quality of life improvement9,442 although a clear survival benefit has yet to be 

demonstrated443
. Regarding this issue, as pointed by Smart444, the results of previously 

published exercise training trials may have been affected by different factors: exercise 

adherence is often not ideal, leading to much smaller improvements than expected; 

studies may have been affected by crossover to the exercise intervention in up to one-

third of sedentary controls, which was the case in HF-ACTION (Heart Failure: A 

Controlled Trial Investigating Outcomes of Exercise Training)443; moderate intensity 

continuous exercise has been the cornerstone of exercise programming, although a 

small volume of recent work has shown high-intensity interval exercise training to be 

superior for eliciting improvements in peak VO2 and systolic heart function445,446.  

In HF-ACTION trial, the largest randomized controlled multicentre clinical trial of 

exercise training in patients with HF and reduced LV function, moderate continuous 

exercise training provided a nonsignificant reduction in the risk of the primary end point 

of all-cause mortality or all-cause hospitalization, despite the safety demonstration, 

quality of life improvement and reduction of combined endpoint of all-cause mortality 

and hospitalization443. Even the size of these benefits was modest compared to results 

published in smaller studies and meta-analyses. 
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Guidelines have been developed on the relatively large volume of data from clinical 

exercise training trials of moderate-intensity continuous exercise (MICE). 

MICE therapy has preferably been used in people considered to be medium to high risk 

for cardiovascular events.  Well-known reasons for this choice of exercise are the fact 

that the stimulus from MICE to health benefits is considered sufficient, the tolerance of 

MICE by most people is seen as good, not suspected to detract from exercise adherence 

and the risk of MICE serious medical events considered is acceptably low, whereas the 

considered by many high risk of high-intensity exercise444. 

More recently, and applying the knowledge obtained in sports medicine, there have 

been a number of high-intensity intermittent exercise (HIIE) studies and study protocols 

published in the scientific literature. A reference study of HIIE for clinical populations 

was the work of Wisloff et al.445 in heart failure patients, which produced great clinical 

improvements, including a 46% improvement in peak VO2, parameter regarded as the 

best predictor of prognosis in these patients.  These authors demonstrated a superior 

cardiovascular effect of HIIT compared to MICE in HF patients. Wisloff et al. 445study was 

conducted in a small sample size of 3 groups of 9 patients, and therefore, some 

clinicians remain unconvinced of the potential benefits of HIIE or that these programs 

are safe and well tolerated. The success of HIIE studies is that interval exercise allows 

for rest periods that make it possible for patients with heart failure to perform the total 

work of exercise at high intensity, being these bouts of exercise at high intensity the 

major determinant of adaptation. In Wisloff et al.445 work, the comparison (continuous 

exercise) group completed exactly the same amount of work, thus removing ambiguity 

over dose responses. 

Interval training consists of periods of high-intensity exercise alternated by periods of 

relative rest, which turns out possible for patients to complete short work periods at 

higher intensities. From a physiological point of view, high intensity interval training 

stimulates cardiac contractility and poses a larger impact on the endothelium and 

skeletal muscle mitochondrial function compared to continuous training at moderate 

intensity (MCT), which could add to a more favourable effect on peak VO2
445. 

Interest in clinical HIIE programs have been growing, and the SMARTEX group 

(Controlled Study of Myocardial Recovery After Exercise Training in Heart Failure)447 is 

testing the  hypothesis that a program comprising interval training at high relative 
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intensity would yield significantly larger effects in terms of left ventricular remodeling 

compared to moderate continuous exercise training.  

Initial evidence indicated that HIIT results in greater improvements in left ventricular 

function, endothelial function and skeletal muscle, when compared to MICE, with 

similar adverse events during training, eventhough with rigorous screening and 

supervision448. Other groups of investigators published results on the safety of HIIT in 

cardiac patients, however not exclusively HF patients449. 

A meta-analysis on 7 randomized trials comparing HIIT with MICE450 the investigators 

came to the conclusion that in clinically stable HF patients, HIIT is more effective than 

MICE in improving peak VO2, but no difference is obvious with respect to altering LV 

remodeling, at least regarding the improvement of rest left ventricular ejection fraction 

(450). This meta-analysis is only based on 180 patients in total (mean LVEF 32%), with all 

studies using a single-center design, so we must be cautious in the interpretation of 

conclusions. Larger multicenter trials comparing the different training intensities are 

needed, like SMARTEX. Contrarily to the expected HIIT benefits in HF patients for the 

just mentioned trial, the recently published multicenter trial SAINTEX-CAD451, performed 

in a CAD population (most patients with no systolic LV dysfunction), demonstrated that 

a 12-week HIIT and MICE intervention equally improve peak VO2, peripheral endothelial 

function, QoL and some cardiovascular risk factors in CAD patients. In addition, both 

programs seemed to be safe for CAD patients.  

Resistance training, previously thought as deleterious for cardiovascular system, only 

recently is being considered in HF programs, besides the already used aerobic modality. 

For this reason not as substantial as the amount of studies regarding aerobic exercise 

training, resistance training (RT) has shown evidence to support the inclusion in a EXT 

program. HF patients have a reduction of muscle strenght and endurance, resulting 

from skeletal muscle abnormalities, including reduced oxidative capacity and cross-

sectional area452-454. Improvements in muscular strenght (15-50%), endurance (18-

299%), as well as peak oxygen consumption (10-18%) and 6-min walk distance (5-49%) 

are achievable455-457. RT proved to be safe and does not negatively alter LV function 

when prescribed at moderate intensity454. 

Several studies have been done in low to moderate risk patients, but those in high risk 

are the most at need, in order to live an independent life. 
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Mechanisms of Exercise in HF 
 

Long-term moderate exercise training has been shown to induce reverse remodeling in 

patients with stable chronic heart failure, and this was associated with significant 

increases in work capacity and peak oxygen uptake458. The first large prospective 

randomized study to provide evidence for a training-induced reverse remodeling came 

from Hambrecht et al.459, who demonstrated that endurance training led to reverse left 

ventricular (LV) remodeling, with modest improvements in LVEF from 30% to 35%, as 

well as reductions of LV end-diastolic diameter.  

The results of these studies were confirmed in 2 meta-analyses performed in 2007460 and 

2012461), which showed that aerobic training, especially greater than 6 months duration, 

significantly reversed LV remodeling, whereas strength training alone or combined with 

aerobic training had no effect on reverse remodeling. 

One of the first prospective studies on EXT, in HF, demonstrated that 4-6 months 

training did not worse LVEF and tended to improve cardiac output11. The extent of 

cardiac changes did not, however, explain completely the 23% improvement of peak 

VO2. Posteriorly, the systematic review of Smart and Marwick9, confirmed the 

meaningful improvement of 17% (average) in the most objective reported measure of 

functional capacity, peak V02 (VO2peak). This effect was related to peripheral changes in 

limb perfusion related to endothelium dysfunction and oxidative muscle metabolism, 

neurohormonal adaptation and ventilatory function improvement, besides reverse 

remodeling21,462.   

Submaximal exercise capacity (SmaxExC) is also improved, as assessed by significant 

increase in ventilatory anaerobic threshold (VAT) and in 6-MWT distance.  In HF patients 

(NYHA II-III), SmaxExC improvement probably is due to peripheral training adaptations 

in skeletal muscle mass, SMM463. Theoretically, by improving SMM strength, a lower 

percentage of maximal contraction would be used to do a similar amount of work 

following training, producing less blood lactate, thereby decreasing CO2 elimination 

needs and thus increasing VAT. VAT improvement allows patients to exercise longer and 

harder without a negative effect on ventricular dynamics and could possibly improve 

the ischemic threshold. In severe HF patients, the true meaning of a SmaxExC 
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improvement, after ET program, is related to quality of life (QoL), since daily activities 

do not demand peak aerobic performances464. Tasks, such as pulling, pushing and lifting, 

require SMM and the strength of upper and lower limbs.  

 

Endothelial adaptations 

 

Endothelium- and flow-dependent vasodilatation (FMD) abnormalities are a key 

phenomenon in HF blunted vasodilator response. A significant improvement in 

endothelium-dependent relaxation has been observed in trained patients21,22. ExT 

enables the improvement of both basal endothelial nitric oxide (NO) formation and 

agonist-mediated endothelial-dependent vasodilatation of the skeletal muscle 

vasculature in HF. The correction of endothelial dysfunction (endothelium-dependent 

change in peripheral blood flow) is associated with a significant improvement in exercise 

capacity, evidenced by a 26% increase in peak oxygen uptake, as mentioned before21.   

The impaired availability of nitric oxide (NO), responsible for the impaired endothelium-

dependent relaxation of peripheral resistance and conduit arteries also contribute to 

the reduced exercise capacity in HF and other severe symptoms465. Also, endothelium-

independent vasodilatation abnormalities may relate to a combination of impaired 

smooth muscle responsiveness to NO, impaired NO diffusion to the smooth muscle and 

structural alterations in arterial compliance associated with HF466-469.   

It is understandable that HF patients with the most reduced endothelial function 

associated with the greatest sympathetic activation have a poor prognosis and need the 

greatest intervention.  

Mechanisms of exercise training in HF, explaining reverse remodeling, have been 

studied. In the absence of myocardial biopsies for molecular analysis of myocardial 

changes induced by training, most investigators interpreted this favorable training effect 

as secondary to afterload reduction with reduced resting blood pressure due to 

improved endothelial function21,441,458,459. Animal models reveal, however, that there 

are direct myocardial effects of training that are related to signaling pathways of 

myocardial hypertrophy and fibrosis437. 
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Neurohormonal adaptations 

 

EXT corrects most peripheral abnormalities encountered in HF, decreasing 

neurohormonal stimulation without deleterious effect on LV remodeling10.   

Previous studies with HF showed that EXT reduces norepinephrine (NE) levels at rest 

and during exercise12,460,464 and decreases central sympathetic nerve outflow, measured 

by microneurography.  EXT also enhances vagal control, improving heart rate variability 

(HRV) and heart rate recovery (HRR), with return to better sympathetic-vagal balance 

(10).  Compared to healthy controls, LV dysfunctional myocardium is characterized by a 

significant reduction of pre-synaptic NE uptake and post-synaptic beta-adrenoceptor (B-

rec) density470. This might contribute to LV remodeling process. It is consistent with the 

finding that down-regulation of myocardial B-rec density, measured using positron 

emission tomography (PET) with 11C-CGP-12177, soon after acute MI, is predictive of  LV 

dilatation at follow-up471. Myocardial B-rec density appears to be reduced in HF with 

dilated cardiomyopathy472 and down-regulation of myocardial B-rec is more pronounced 

in patients with hypertrophic cardiomyopathy who proceed to LV dilation and HF473. 

Therefore, B-receptors down-regulation may be a general nonspecific response to stress 

and could be due to locally increased synaptic cleft  NE. The sustained SA hyperactivity 

observed in HF is the consequence of several mechanisms, including increased central 

sympathetic outflow, modified neuronal NE reuptake and facilitated cardiovascular 

response to sympathetic stimulation by angiotensin II474.  

Studies in experimental HF have shown that exercise training in animals improves 

cardiac β-AR signaling and function, increases adrenergic and inotropic reserves of the 

heart and helps restoring normal SNS activity/outflow and circulating catecholamine 

levels475. Exercise training is known to increase resting vagal tone and to decrease 

sympathetic drive in healthy individuals. Coats et al.12 showed that a similar beneficial 

change could be induced in HF with a 16% reduction of radiolabeled norepinephrine 

secretion after 8 weeks of EXT with peak oxygen uptake  reduction . 
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Braith et al.and coworkers467,477 described a 25% to 30% reduction of angiotensin II, 

aldosterone, arginine vasopeptide, and atrial natriuretic peptide after 4 months of 

walking training in patients with HF.  

In a rat model of ischemic HF, the beneficial training effects on local neurohumoral 

balance were analyzed in the noninfarcted LV myocardium. Xu et al.478  found a 

significant reduction of myocardial angiotensin-converting enzyme mRNA expression 

and angiotensin II, type 1, receptor expression after 8 weeks of treadmill EXT. This 

finding is of special importance given that approximately 90% of angiotensin II is 

produced locally in the myocardium and implies that local angiotensin II levels are 

significantly reduced by EXT. This reduction also translates into reduced fibrogenesis, as 

indicated by reduced tissue inhibitor of metalloproteinase-1 expression with un-

changed matrix metalloproteinase (MMP)-1 expression and reduced collagen volume 

fraction in the exercised animals478. 

Inflammatory response 

 

During HF, a derangement in inflammatory factors is evident479. EXT acts positively on 

inflammation in HF. It reduces significantly local cytokines such as TNFα and IL-6 and 

inducible nitric oxide synthase (iNOS) in the SMM of HF patients480 and has a beneficial 

effect on peripheral inflammatory markers reflecting monocyte/macrophage-

endothelial cell interaction481. These local anti-inflammatory effects of ET may attenuate 

the catabolic process associated to CHF progression. This is an important issue, since 

inflammatory responses play a pathogenic role in the development and progression of 

HF.  

 

Nonpharmacologic Therapy: Exercise associated to CRT 
 

Presently, little is known about EXT for advanced HF patients, with or without devices, 

as these patients are normally excluded from cardiac rehabilitation programs and HF 

studies, as happens with elderly HF patients, women and patients with comorbidities 

and multiple chronic conditions.  
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The number of HF patients implanted with an electrical device (ICD or CRT) is steadily 

increasing, although the beneficial exercise training effects, mechanisms and best ET 

protocol, for these patients, are not completely identified.  

Vanhees et al.482 evaluated the effect of a 3-months training programme in 92 ICD 

patients, compared with a control group. A total of 68% of ICD patients had a LVEF 

below 40%, compared with 13% of the control group (p < 0.001). The training 

programme resulted in VO2 peak 21% increase in the ICD group, with only one 

inappropriate ICD shock reported.  

Conraads et al.483 studied the effect of endurance training after CRT implantation in 17 

patients (mean age 59 ± 9 years) with HF and dyssynchrony. Patients were randomized 

to CRT with (n = 8) or without (n = 9) exercise training. The observed increase in 

VO2peak was significantly greater in the trained CRT patients versus untrained (40% 

versus 16%; p = 0.005), thus demonstrating an additive effect of CRT and exercise 

training.  

Prior preliminary studies on CRT and ExT484,485 suggested small improvements in 

functional capacity, like the one performed by Patwala23. He studied 50 HF (NYHA class 

III) randomized patients who were selected to CRT, with an exercise protocol starting at 

3 months after CRT and lasting 3 months. He reported, after the increased VO2peak and 

improved skeletal muscle mass performance at 3 months after CRT, that functional 

capacity further improved by addition of ET to CRT device implant, as well as 

hemodynamic measures and QoL. Exercise showed additional improvements to CRT in 

these patients. No information on ANS or other potential mechanisms was provided23.   

Belardinelli et al.20 evaluated the effects of a moderate aerobic exercise training 

program on functional capacity, quality of life and hospital readmission rate in HF 

patients, class II and III, with ICD and CRT. Moderate exercise looked safe and had 

beneficial effects after ICD and especially after CRT: improvement of peak VO2, 

endothelium-dependent dilation of the brachial artery and quality of life. Hospital 

readmission was lower in the group of exercise. Also, patients who exercised did not 

have any shocks, while untrained patients had 8 shocks, during the 24 months of follow-

up.   

The importance of the effect of anxiety on arrhythmias was demonstrated in a 

prospective study of van den Broeck and colleagues486, who have shown that anxiety 
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predicted a 70% increase in the risk of arrhythmias in type D (or distressed) patients 

with an ICD. Exercise training, apart from the favourable effect on functional capacity, 

may also have a positive effect on anxiety in ICD patients as well, however this effect 

was considered still on debate in a review paper from Isaksen K et al. 487, including nine 

studies of ET in CRT/ICD patients.  

The combination of EXT to CRT has not been largely investigated, yet. It is currently not 

completely confirmed if adding an exercise training (ExT) program following CRT 

provides better clinical outcomes than CRT alone.   

Regarding the matter of exercise training protocol, previous experience with coronary 

artery disease patients488, and  data in patients with HF489 showed that an EXT program 

combining aerobic exercise (AE) and resistance exercise (RE) training are more effective 

than an AE program alone. Also, the aerobic interval training high intensity (HIIT) 

showed better improvements than continuous endurance training (moderate intensity), 

according to Wisloff445. 

It is crucial to understand the potential additional benefit of a determined type of 

exercise protocol applied to these patients over the probable beneficial effect of CRT, 

including the effect of EXT on CRT nonresponders, which might even be more 

important. Moreoever, there is a need to understand the underlying mechanisms 

regarding the positive and negative response to this non pharmacological exercise 

therapy in HF. 

Another important issue is the fact that most EXT studies in HF have been conducted in 

patients with less severe functional impairment. Very little or no information is available 

on NYHA class III-IV patients. It is unknown how HF with more severe functional 

limitations respond to EXT and, more importantly, how physiologic mechanisms can 

explain the improvements as a consequence of EXT. This lack of scientific information 

needs urgently to be overcome since this is the group of patients (NYHA class III-IV) 

normally targeted for CRT.  
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5. HYPOTHESIS AND AIMS 

 

5.1. Hypothesis 

 

The ain hypothesis formulated in this thesis is: 

 It is beneficial to associate a high intensity interval training exercise program, long 

duration, after cardiac resynchronization in advanced Heart Failure Patients;  

Secondarly, it was hypothetized: 

Several pathophysiologic mechanisms involved contribute differently to the benefit of 

exercise training after CRT and of CRT independently of exercise. 

 

5.2. Aims  

 

The primary aim of this thesis is to determine the additional effects of a long-term 

intervalic exercise training program on clinical functional NYHA class, quality of life, 

exercise functional capacity, cardiac function and reverse remodeling and major cardiac 

events in advanced heart failure patients after cardiac resynchronizer implant.  

Secondary aim intends to evaluate the potential role and contribution of different 

pathophysiologic mechanisms involved in the hypothesis of exercise training 

intervention after CRT and of CRT by itself: endothelial function, autonomic nervous 

system (ANS) function, inflammatory process and apoptosis. 

 

Primary end points were defined as:  

 Clinical symptoms severity 

 Quality of life 

 Exercise functional capacity 

 Cardiac function and remodeling  

 Major cardiac events at 6 months after HIIT 

 

Secondary endpoints were defined as: 

 Autonomic nervous system function 
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 Endothelial function 

 Inflammation and Apoptosis  
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6. METHODS 

 

6.1. Study Design 

 

This study was designed as a controlled randomized clinical trial,  performed in one 

single centre, using a longitudinal approach with 3 moments in time for patients 

assessment, before CRT implant (M1), at 3 (M2) and at 6-month (M3) after the 

experimental therapy, long-term exercise training (EXT), which was initiated 1 month 

after cardiac resynchronizer implant. Consecutive stable advanced HF patients who 

were admitted for CRT implantation in the Cardiology Service of Hospital Santa Marta 

(January 2012 - March 2015) were initially screened for inclusion and exclusion criteria. 

Patients who accepted to perform EXT and did not live far from the hospital were 

accepted for randomization.  

Controlled blind randomization process to experimental exercise intervention (EXT) or 

not (control group, CG) was performed, based on patients stratification, according to 4 

variables: 

 Age : >65 or <65 years old 

 Gender: male or female 

 Etiology : ischemic or not 

 LV systolic dysfunction severity : LVEF > 20% or <20% 

 

Moments of assessment in time were, as indicated: 

 M1: Baseline, before cardiac implant, in the previous 4 days 

 M2: at 3 months after exercise training program (4 months after CRT onset) 

 M3: at 6 months after exercise training program (7 months after CRT onset) 

 

The inclusion of a 3-months assessment moment, besides the 6-months, was based on 

the importance for earlier exercise data analysis necessity in order to updating the 

exercise intensity and also to comparing these results to those of CRT studies with 
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evaluation at 3 months.  It turned out possible to determine if EXT/CRT effects occurred 

more or less early.   

Exercise training program was started at 1 month after CRT device implant, if no 

exercise contra-indication was present, allowing patients recovery after the 

cardioresynchronizer intervention. Earlier exercise starting, before one month, would be 

too premature and unsafe for the patients, due to the technical aspects of the device 

implant intervention.  A long, 6 months, high intensity interval training program (HIIT) 

was started, adapted from Wisloff445 and according to individual prescription. 

Evaluation of cardiac events occurrence at M3 was performed (7 month after 

cardioresynchronizer implant): 

 cardiac death; 

 any-cause death; 

 ventricular tachycardia; 

 ventricular fibrillation or cardiac arrest with hospitalization; 

 HF aggravation hospitalization; 

 composite event: cardiac death or cardiac hospitalization; 

 composite event: cardiac death or cardiac hospitalization or ventricular 

arrhythmia. 

 

Dependent variables considered were: 

 NYHA class – for HF symptoms severity 

 HeartQol scores, total, physical and psychologic - for quality of life, HeartQol 

questionnaire (Oldridge)  

 LVEF, LVED Vol, LVES Vol, LA Vol, RA Vol, GLS, E/e’, LV Mass, TAPSE, PSAP – for 

cardiac function and remodeling, determined by echocardiographic study 

 CPT dur, AT time, VO2p, VE/VCO2 slope, HRmax, SBP, SBPmax, HRR1, HRR6 – for 

functional capacity and autonomic function, determined by  Cardiopulmonary 

Exercise Testing 

 HMRe, HMRl, WOR – for autonomic nervous function, by 123IMIBG Cardiac 

scintigraphy  
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 SDNN, RSDMM, SDANN, NN50 – for autonomic nervous function, determined by 

24h-Holter HRV analysis  

 RHI, AI, AI@75 – for endothelial function, determined by digital tonometry 

(Endopat) 

 BNP, hs-RCP, TNF-α, sCD40, IL-6, sFasL – for inflammation and apoptosis, 

determined by blood analysis  

 Cardiac Events at 6 months after HIIT (at 7 months after CRT) – for short-term 

prognosis, determined by identification of cardiac events, considered cardiac 

death, total death, cardiac hospitalization (HF/ventricular arrhythmia), 

ventricular tachycardia, combined events (cardiac death or cardiac 

hospitalization and cardiac death or cardiac hospitalization or ventricular 

tachycardia) 

 
In summary, the study design was characterized by: 
 

 Longitudinal randomized controlled clinical triaI 

 Inclusion period: 2012 (1st January)-2015 (31st March) 

 Sample size determined by statistical method (n=60 patients) 

 Blind Aleatorization immediately post-CRT implant, in 2 groups: exercise training 

group (EXTG) and non exercise training, control group (CG) 

 Exercise Training Program (HIIT), 6 months duration  

 Evaluation (all exams) at M1, pre CRT implant (48 h before), at M2, 3 months 

after EXT onset (CPT, Echo), and at M3, 6 months after EXT onset (all exams, 

except Holter).  

 

From total CRT population sample, the nonrandomized patients were also evaluated 

with the same approach in time and with the same methodology, despite not 

performing EXT intervention. These results were used for evaluation of CRT, as a 

prospective cohort study, besides the main randomized controlled trial. 

The study was approved by the Ethics Comission of Hospital Santa Marta (attachement 

1) and of University Nova, Faculty of Medical Sciences (attachement 2).  The  written 
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informed consent (attachement 3) was signed by all patients who participated in the 

study. Data protection was assured by the usual methods. 

 

 

 

 

 
 
 
 
 
 
 

 
 
Figure 2: Study design and randomization of BETTER-HF: Patients randomized to 
exercise training group (EXTG), patients randomized to control group (CG), 
patients nonrandomized (NR) 
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6.2. Study Population Sample 

 

Moderate to severe HF patients (NYHA class III-IV under optimal medical therapy), 

enlarged QRS (>120 msec), selected for CRT implant, were recruited from hospital Santa 

Marta during a period from 1st January 2012 and 31st March 2015. They all were 

formally invited to participate in the study after a clinical and functional screening, 

respecting the inclusion and exclusion criteria.  

 

Inclusion criteria were considered: 

 HF patients, class III-IV (NYHA), receiving optimal HF pharmacologic therapy  

 Age > 18 years old  

 LV moderate to severe dysfunction (LVEF<35%) 

 QRS duration≥120 ms 

 Ischemic or non-ischemic etiology  

 Referred to cardiac resynchronization therapy, CRT implant at Hospital Santa 

Marta 

 Stable condition for >1 month (no hospitalization for HF, no change in 

medication, no change in NYHA functional class)  

 All patients must read and sign an informed consent form 

 

Exclusion criteria were defined as: 

 Geographical long distance address with difficulty/impossibility in frequent 

hospital displacement for ET  

 Incapacitating orthopedic, neurologic or other limitations that unable the patient 

to exercise  

 Not acceptance to participate in the study for any reason  

 Inability to sign informed consent 

 Previous treatment with an intravenous inotropic agent within the 30 days prior 

to implantation 

 Unstable angina pectoris 
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Optimal medical therapy for HF was considered to include an angiotensin-converting 

enzyme inhibitor or an angiotensin receptor blocker and a beta-blocker, as guidelines 

recommend, unless a contraindication was evident. 

 

Patients, who met the inclusion criteria without exclusion factors, and accepting by 

signing an informed consent form to participate in the study, were randomized after 

resyncronization therapy to either exercise program, HIIT, or control (no exercise). They 

were informed that this study would include a 6 months, hospital-centre exercise 

program, if they were randomized to EXT. 

 

6.3. Patients Evaluation 

 

All patients underwent evaluation by clinical consult and noninvasive techniques at the 

following moments (M): 

 

M1 - Baseline evaluation, before the cardiac resynchronizer implant  

 Clinical consult: demographic characteristics, clinical functional class (NYHA) 

 Symptom-limited cardiopulmonary exercise testing (CPT) 

 Echocardiogram  

 24h-Holter with heart rate variability analysis   

 Cardiac 123I-MIBG scintigraphy  

 EndoPAT   

 Blood analysis  

 HeartQoL questionnaire 

 

M2 - At 4 months after CRT (3 months after EXT)  

 Clinical consult: clinical functional class (NYHA) 

 Echocardiogram 

 CPT 

 Blood analysis 
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M3 - At 7 months after CRT (6 months after EXT)  

 Clinical consult: Clinical functional class (NYHA) 

 Symptom-limited cardiopulmonary exercise testing (CPT) 

 Echocardiogram  

 Cardiac 123I-MIBG scintigraphy  

 EndoPAT   

 Blood analysis  

 HeartQoL questionnaire 

 Cardiac events 

  



83 

 

6.4. Methodology for Dependent Variables Evaluation 

 

6.4.1. Demographic Characteristics 

HF patients were assessed at baseline, M1, regarding age, gender, HF etiology and BMI, 

in clinical consult. 

 

6.4.2. Symptoms severity 

Symptoms were classified according to clinical severity, by the clinical functional 

classification of New York Heart Association, NYHA490, at baseline, M1, M2 and M3, in 

clinical consult. 

 

6.4.3. Quality of life 

HeartQol Questionnaire from Odridge et al.491 was used for quality of life (Qol) 

evaluation, allowing determination of quality scores before CRT, M1, and at 7 months 

after CRT, M3.  

This questionnaire491 was developed as a core heart disease-specific  instrument for 

comparison following interventions such as cardiac rehabilitation, used in more than one 

heart disease diagnosis. Despite being originally dedicated to ischemic disease, it did 

include a segment of heart failure patients.  

The 14 items in the HeartQoL scale cluster as a bi-dimensional questionnaire with a 10-

item HeartQoL physical subscale and a 4-item HeartQoL emotional (psychological) 

subscale providing a global assessment and evaluation of how much a patient with heart 

failure perceives, he or she, is bothered by their heart disease. Global score, physical 

score and emotional score were calculated, knowing that on a HeartQoL scale response 

of 0–3, higher scores indicate better quality of life. We considered, in this study as, at 

least, moderate the increase of 0.52, corresponding to 25% of mean value for total 

HeartQoL score in HF patients, published by Oldridge491. 
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6.4.4. Cardiac Scintigraphy with 123I-meta-iodobenzylguanidine (123I-MIBG) variables  

Cardiac Scintigraphy with 123I-meta-iodobenzylguanidine (123I-MIBG) was performed  for 

ANS noninvasive imaging, at baseline, M1, and at 7 months after CRT (6 months after 

EXT), M3.  

Cardiac medication was not suspended, namely beta-blockers, although drugs like 

antidepressants were stopped for the exam. The imaging protocol typically included 

anterior and left anterior oblique planar scintigraphic images, obtained by a multiple 

head gamma camera (Siemens, model E.Cam), at 10 to 15 min (early) and at 4 h (late), 

after intravenous injection of ≈ 185 MBq (adjusted to body weight if necessary) of 123I-

MIBG. Thyroid was previously blocked by potassium iodide to inhibit absorption of 

unbound radioiodine during cardiac imaging.  

The acquisition was performed by a nuclear technician at an independent core 

laboratory (Nuclear Medicine, Quadrantes, Lisbon). A certified nuclear medicine 

physician and a cardiologist processed and interpreted all images. The physicians and 

nuclear technician were blinded to randomization for exercise.  

Myocardial uptake and distribution were visually assessed in both acquisitions. By 

measuring  123I-MIBG activity, after drawing regions of interest (ROI) on the heart (H) and 

mediastinum (M), 123I-MIBG uptake was determined by calculating  H/M ratio (HMR), 

early (HMRe) and late (HMRl). The myocardial wash-out rate (WOR), meaning the rate of 

123I-MIBG clearance from myocardium, was calculated as the difference between the 

early and late H/M and expressed as a percentage of the early H/M492, as follows:  

 

This approach is proven to provide a highly reproducible index of cardiac sympathetic 

activity. By comparing early and late activities, the 123I-MIBG WOR from the myocardium 

can be derived, providing a parameter that reflects retention of NE by sympathetic 

neurons77, since the early HMR reflects the integrity of presynaptic nerve terminals and 

uptake-1 function and the late HMR combines information on neuronal function from 

uptake to release through the storage vesicles at the nerve terminals. 

In summary, the cardiac sympathetic variables measured were: 
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 HMRe 

 HMRl 

 WOR (%). 

 

6.4.5. 24h-Holter monitoring Heart Rate Variability Variables 

 

24h-Holter study (Burdick, Spacelabs) was performed before CRT, M1, for detection of 

cardiac rhythm/arrhythmias, heart rate and for heart rate variability analysis, which 

corresponds to the beat-to-beat variations in the R-R interval on the ECG, measured over 

a period ranging from few minutes to 24 hours87, reflecting the autonomic balance 

between the sympathetic and parasympathetic pathway action on the intrinsic rhythm 

of the sinoatrial node of the heart.  Spectral analysis of HRV is a widely used method to 

assess the function of the ANS. 

The HRV analysis was only performed before CRT, at M1, because most patients were on 

pacing rhythm after CRT implant. 

Variables used from heart rate variability analysis (domain methods only) were: 

 SDNN (Standard deviation of the NN interval); 

 SDANN (Standard deviation of the average N-N interval over periods of about 

5 minutes); 

 RMSDD (Square root of the mean squared differences between adjacent N-N 

intervals); 

 NN50 (Number of adjacent N-N intervals that differ by more than 50 ms). 

 

6.4.6. Cardiopulmonary exercise testing Variables 

Exercise functional capacity was evaluated at 3 moments, M1, M2 and M3, by 

cardiopulmonary exercise test (CPT), which is the best technique to obtain patients 

maximal and submaximal functional capacity.  

Gas exchange analysis is known to provide a highly reproducible measurement of 

exercise limitation and insights into the differentiation between cardiac or respiratory 

causes of dyspnea, to assess ventilatory efficiency and to carry prognostic information. 
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This test was done with the subjects in a non-fasting condition and under the regular 

medication. A symptom-limited incremental CPT, the modified Bruce protocol (treadmill, 

2 warm-up stages, each lasting 3 minutes, first at 1.7 mph and a 0% grade, and second at 

1.7 mph and 5% grade), was performed on a treadmill (MedGraphics CPX Ultima) with 

breath-by-breath gas exchange measurements (InnocorR, Innovision,Cardiosolutions), 

with online real time calculation of VO2, CO2peak production, respiratory exchange ratio 

(RER).  Before each test, the gas analyzer was calibrated with gases of known 

concentrations and the pneumotachograph calibrated before with a known volume (5L 

syringe).  

A twelve-lead ECG (MedGraphics CPX Ultima) was recorded continuously and blood 

pressure (BP) was measured by auscultation, using sphygmomanometer.  

Subjects were encouraged to exercise until exhaustion, defined by intolerance, leg 

fatigue or dyspnea, unless clinical criteria for earlier test termination were observed, 

trying to achieve RR values superior to 1.1, as indicator of maximal effort, once RR peak 

is an useful index of peak performance. Patients sat on a chair as soon as they stop 

walking, while recovery measurements were taken. BP was recorded at baseline, during 

the 2nd minute of each stage, at peak exercise and during recovery. VO2peak was 

considered the highest attained VO2 during the final 30s of exercise and ventilatory 

anaerobic threshold (VAT) was estimated with the V-slope method, registering time to 

VAT493. HR recovery (HRR), a simple marker of parasympathetic activity, was calculated 

as the difference between peak HR and HR at one minute after exercise cessation95. The 

recovery period was maintained until 7 minutes after peak effort.  

CPT Variables measured were the following: 

 CPT dur (Cardiopulmonary Testing duration; seconds); 

 VAT time (Time to Ventilatory Anaerobic Threshold; seconds);  

 VO2p (Peak oxygen consumption; ml/kg/min); 

 VE/VCO2 slope (Minute ventilation − carbon dioxide production relation); 

 HRbas (Baseline heart rate; beats per minute) and HRmax (Maximal heart rate; 

beats per minute); 

 HRR1, HRR6 (Heart rate recovery at 1st minute and 6th minute; seconds) 

 SBPbas and SBPmax (Baseline and Maximal Blood Pressure; mm Hg) 
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6.4.7. Echocardiography Variables 

 

Cardiac function was studied by echocardiography. A rest transthoracic echocardiogram, 

bidimensional, Doppler, Tissue Doppler Imaging (TDI)  and strain analysis by speckle 

tracking, was performed, with an ultrasound machine (General Electric, GE Vivid 9), at 

the 3 moments. The exam was done by the Echocardiography laboratory cardiologists, 

who were blinded to experimental protocol and group randomization. The usual 

measurements of left ventricular systolic and diastolic function and right ventricular 

systolic function were undertaken, according to recommendations494. The calculation of 

left ventricular volumes (LVED Vol, LVES Vol) and left ventricular ejection fraction (LVEF) 

was performed by Simpson`s method. Global longitudinal strain of left ventricle (GLS) 

was determined by using speckle tracking. Tissue Doppler analysis of mitral annulus 

motion was done for diastolic function evaluation. 

Evaluated echocardiographic variables were:  

 LVEF (Left ventricular ejection fraction; ml) 

 LVEDVol (Left ventricular end diastolic volume; ml) 

 LVESVol (Left ventricular end systolic volume; ml) 

 LVM (Left ventricular mass; grams) 

 GLS (Global longitudinal strain; %) 

 E/e’ (Ratio between E wave from mitral inflow and e’ wave from mean mitral 

annular motion, TDI)  

 TAPSE (Tricuspid annular plane systolic excursion; mm) 

 LAVol (Left atrial volume; ml) 

 RAVol (Right atrial volume; ml) 

 PSAP (Pulmonary Systolic artery pressure; mm Hg) 

 

Images were acquired by 3 experient echocardiographists and all measurements were 

revised by a single echocardiographist. 
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LVEF, LV volumes and GLS measurements were performed at least 3 times, for obtaining 

an average, excluding discrepant results. 

 

6.4.8. EndoPAT 

 

Endothelial function study was undertaken by evaluating digital arterial elasticity, by  

EndoPAT (Itamar Medical, Israel). It detects plethysmographic pressure changes in the 

finger tips caused by the arterial pulse and translates these to peripheral arterial tone 

(PAT). Endothelium-mediated changes in vascular tone after occlusion of the brachial 

artery reflect a downstream hyperemic response, reactive hyperemia,  which is a 

measure for arterial endothelial function496.  

The EndoPAT (peripheral artery tonometry) was done to each patient at M1,  M2 and 

M3 conducting to pre and post-occlusion values, according to the protocol497. 

Many variables are known to acutely influence endothelial function and they were 

controlled for the testing. Alcohol and caffeine were limited in the 48 hours prior to 

testing. The protocol consisted in inflating a standard blood pressure cuff , eliciting a 5-

minutes occlusion of the brachial artery, in a fasting state patient who had been lied 

down for at least 5 minutes in  a quiet environment, mild temperature. The cuff was 

then released and consequently the surge of blood flow caused an endothelium-

dependent vasodilation, called Flow Mediated Dilatation (FMD). Measurements on the 

contralateral arm were used to control for concurrent nonendothelium-dependent 

changes in vascular tone. The dilatation, manifested as reactive hyperemia, is captured 

by EndoPAT™, as an increase in the PAT Signal amplitude, which is diminished in 

endothelial dysfunction. A post-occlusion to pre-occlusion ratio is calculated by the 

EndoPAT™ software, providing the EndoPAT™ index, RHI (reactive hyperemia index).  

In addition, the EndoPAT provides a measure for arterial stiffness: the augmentation 

index (AI). AI can be adjusted for a HR of 75 (AI@75). 

 

Endothelial Study Variables determined were: 

 Reactive Hyperemia index - peripheral arterial tonus (RHI-PAT) 

 Augmentation index (AI, AI@75) 
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6.4.9. Blood Analysis 

 

Analytic parameters were obtained for inflammation, apoptosis, endothelial and cardiac 

function were obtained from blood analysis at M1, M2 and M3.  

The variables analysed were the following: 

 TNF-α  (Tumor necrotic factor- alpha; pg/ml) 

 IL-6 (Interleukin-6; pg/ml) 

 sCD40 (soluble Cluster of differentiation-40; pg/ml) 

 sFasL (soluble Protein Fas ligand; ng/ml) 

 hs-CRP (high sensitivity C Reactive Protein; mg/L) 

 BNP (Brain Natriuretic Peptide; pg/ml) 

 NO (Nitric Oxide; µmol/L) 

 

NO determination (µmol/L) was performed in Universidade Nova de Lisboa, according to 

the usual method498 after previous blood collection and storage at – 80 C O, in Hospital 

Santa Marta. Blood sample preparation for NO determination was carefully treated, not 

to artifactually create NO products or metabolites during sample preparation. Blood was 

centriphugated and plasma separated and frozen. Posteriorly, it was transported for 

measurement of NO level by quimioimunoluscence method by 280i Nitric Oxide Analyzer 

(NOATM ,Sievers Instruments). 

TNF-α (pg/ml), IL-6 (pg/ml), sFasL (ng/ml) and sCD40 (pg/ml) were measured, according 

the usual method Elisa499 at Instituto de Medicina Molecular e Terapêutica (IMMT) and 

blood was collected in Hospital Santa Marta. Blood was centriphugated and plasma was 

frozen at -80º C. Transport was conducted in adequate conditions, with dry ice, to IMMT.  

BNP (pg/ml), CRP (mg/L)  were collected in Hospital Santa Marta and analysed, according 

to usual method at Hospital S. José Laboratory. 
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Commercial high-sensitive enzyme-linked immunoassay kits (ELISA kits R&D Systems) 

were used to determine the concentration of BNP, hs-RCP, IL-6, TNF-α, sCD-40 and sFasL 

in the patients  serum.  

 

6.4.10. Cardiac events  

 

Cardiac events, determined at M3 and evaluated by consult, telephone interview, and 

hospital registries, were defined as: all-cause mortality, cardiac mortality, cardiac 

hospitalization (heart failure, severe arrhythmia, cardiac arrest) and evaluated 

separately and combined. 

 

 

6.5. Implantation CRT Protocol 

 

Implantation was performed in Hospital Santa Marta, according to the protocol for 

standard biventricular pacing implantation techniques500. The CRT or CRT-D is a small 

equipment, which includes a generator and three leads, used to correct ventricular 

dyssynchrony. Implantation of all system is performed under local anesthesia with 

standard ECG monitoring and pulse oximetry, under fluoroscopic guidance, by a 

dedicated intervention team consisting of two electrophysiologists, a technician and a 

nurse. An active fixation lead is positioned via the left cephalic venous access, in an 

apical or septal position, with a second lead inserted through an introducer sheath into 

the left subclavian vein and implanted at the high right atrium. Specific long delivery 

systems and lead shapes allow to cannulate the coronary sinus using a long sheath via 

the left subclavian vein and, thereby, after performing an angiography obtained with a 

small amount of nonionic contrast material during balloon occlusion, ensure progression 

of a transvenous left ventricular over-the-guide wire lead to be positioned in a distal 

target position (lateral median, postero-lateral or antero-lateral cardiac vein). If the 

catheter cannot be located into the coronary sinus easily, it is changed by another 

catheter having a different shape or an electrophysiology catheter designed to cannulate 

the coronary sinus. After positioning the left ventricular lead to its final location, the 
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guiding catheter is withdrawn. The procedure is performed using left anterior oblique, 

right anterior oblique and posteroanterior views. After positioning the atrial and 

ventricular leads, the capture thresholds testing are performed until obtaining a good 

safety margin. Generators are placed subcutaneous in the left pectoral region. Optimal 

programming includes atrio-ventricular and sequential ventricular timings, chronotropic 

response, output, sensitivity and therapies (ATP and shocks) delivery in tachycardia 

zones. All patients perform a thoracic X-Ray and an echocardiogram before discharge.   
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6.6. Protocol of Exercise Training 

 

Patients from the EXT group were submitted, after careful functional evaluation, to a 

supervised, controlled, ECG monitored, based-hospital exercise program, twice a week, 

60 minutes sessions, on non-consecutive days, during 6 months (48 sessions), including 

aerobic high intensity interval training (HIIT) , resistance and sensoriomotor exercises. 

Patients were stimulated to increase physical activity at home, especially in the days 

without training session. 

Aerobic interval high intensity training (HIIT) method was selected for the development 

of cardiorespiratory system. 

The EXT design was based on Wisloff study445, using an interval exercise training 

method, because of Wisloff good cardiovascular results.  

The program began with the warm-up and aerobic training, by using treadmill walking.  

Patient warm-up lasted for 10 minutes at 50% to 60% of HRmax (obtained in the CPT), 

before walking to 4 intervals of 2 minutes at 90 to 95% of HRmax.  Aerobic exercise 

training was initiated with shorter aerobic intervals and, only at the second month, the 

Wisloff  protocol445  was started. The HIIT protocol comprised 4 interval training periods 

(high intensity) and 3 active pauses (moderate intensity) between interval training 

periods. Each interval, including the last one, was separated by 2 minutes active pauses, 

walking at 60% to 70% of HRmax (Fig.2). 

After the first month, every week, each interval training and active pause was increased 

by 30 seconds, until arriving to the 4 minutes work with 3 minutes of active rest, at the 

end of the second month. By the end of the progression, the protocol includes 28 

minutes of aerobic HIIT, maintained to the end of EXT intervention period. 

The moment at 3 months, M2, intended to provid accurate information for updating the 

exercise prescription, allowing to adjust aerobic training intensity, as the target heart 

rate (THR) is adjusted. The speed and inclination of the treadmill should be continuously 

adjusted to ensure that, in each interval, THR would be respected, throughout the 

aerobic training period.  

Compared to continuous exercise training, this interval method allows HF patients to 

complete short periods of exercise at high intensity (which stress heart’s ability), 
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without deleterious effects of undue stress and fatigue. However, due to our patients 

frequent previous severe clinical status and physical deconditioning,  a slower exercise 

prescription progression was chosen in the first 1-2 months, whenever necessary. The 

long intervention duration of 6-month allowed to use initially a continuous moderated 

exercise training protocol, passing afterwards to interval training. 

Another difference in this EXT program protocol was the incorporation of resistive and 

sensoriomotor exercises. Muscle resistance training  consisted of 1-2 sets of 8-12 

repetitions, for each of the 6 exercises.  The patients were instructed regarding correct 

exercise techniques and avoidance of the Valsalva manoeuver.  

Sensoriomotor training included 1 to 2 exercises, lasting 40 seconds each, with 3 

repetitions with 20 seconds rest between sets. The resistance and sensoriomotor 

training period lasted 15-17 minutes. 

These non aerobic exercises were aimed to improve muscle strength and coordination 

in movements, which are frequently lacking in HF patients, and consequently to 

enhance the performance of muscles not involved in the aerobic mode of exercise, 

influencing positively daily life activities and consequently quality of life. The inclusion of 

resistance and sensoriomotor exercises in the program is fundamental for 

complementing the effects of aerobic exercise in HF patients.  

Every session ended with a 5-7 minutes cool-down, consisting on stretching exercises 

and relaxation.   

All patients were monitored, using a 12-lead ECG, during the aerobic training to control 

both exercise intensity and safety during the high intensity workout, and a heart rate 

monitor (Polar, Electro, Kempele, Finland), during the execution of the other exercises. 

Blood pressure was monitored and the Borg 6-to-20 scale was used to assess the rate of 

perceived exertion during and after each training session.  

The exercise schedule was set according to the patient possibility and maintained during 

the 6-month intervention. No more than 2 patients were scheduled at the same time of 

the day.  

 

EXT protocol used in this study, schematically displayed in the fig.2, consisted of: 

 Warm-up – 10’, 60-70% HR max; 

 Resistance Training- 2x (8-12) repetitions; 
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 Aerobic – 4x4’@90-95% HR max; 3x3’@50-70%HR max; 

 Cool-down- 5-7’, HR reduction, relaxation, stretching. 

The progression of exercise, along time, was as follows:  

 1 Month - Aerobic continuous 60-70% HR max; 

 2-3 Months – 4x2’ 90-95% HR max; 3X2’@50-70% HR max; increase of 30’’ 15/15 

days; 

 4-6 Months – 4x4’@90-95% HR max ; 3x3’@50-70%HR max. 

 

 

 

 

Fig.2. Exercise training modalities with graphicaly displayed VO2P variation along 
time: HIIT (high intensity interval training) protocol, on the right, and MICE (moderate 
intensity continuous exercise) protocol, on the left. 

  



95 

 

6.7. Definition of CRT responder  

 

Once there are several definitions for CRT response in different studies, as previously 

discussed in a previous chapter , we considered appropriate to specify the definitions 

used in this study. 

Clinical responder was defined as the patient who increases at least one functional class 

of NYHA. 

Echocardiographic responder was defined as the patient who increases at least 5% 

(absolute value) of LVEF. 

Functional responder was defined as the patient who increases at least 1ml/kg/min 

VO2p. 

 

6.8. Data base and Statistics 

 

Exploratory analysis was carried out for all variables, tested for normality and 

homogeneity of variance with the Shapiro-Wilk and Levene’s tests, respectively. 

Categorical data were presented as frequencies and percentages, and continuous 

variables as mean or median, standard deviation (SD) or inter-quartile range (IQR, 25th 

percentile-75th percentile), as appropriate. Chi-square, Fisher’s exact tests, parametric t-

test, paired and unpaired and non-parametric Wilcoxon and Mann-Whitney were used, 

as adequate. The multivariable analysis was performed using logistic regression models; 

all the variables with a p-value <0.15 in the univariable analysis were considered. 

Hosmer-Lemeshow goodness-of-fit test was used, with high p-value indicating that the 

model is performing well. Box-Tidwell transformation to test the assumption of linearity 

in the logit of continuous variables was used. The 95% confidence intervals (CI) were also 

calculated, as required. The level of significance α=0.05 was considered.All data were 

analyzed using SPSS 22.0 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows. 

Armonk, NY: IBM Corp). 
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7. RESULTS 

 

Results were organized as follows: 
 

 Effects of Exercise Training Intervention after CRT: A randomized controlled trial 

(7.1) 

 Effects of CRT with or without Exercise: An observational study (7.2) 

 

7.1. Effects of Exercise Training Intervention after CRT: a Randomized Controlled 
Trial 

 
 

7.1.1. Randomized Groups characterization 

 

From the sample of 121 HF patients selected for CRT implant, 62 had criteria for 

inclusion in the controlled randomized trial and initially agreed to be randomized for 

exercise or control and to participate in the study.  

34 patients were randomized for exercise, although afterwards 12 P reffused to enter 

the exercise program, for financial reasons (8 P), transportation difficulties (3 P) and 

professional unavailability (1P). The remaining 22 patients in the EXTG completed it, with 

no drop-out. 28 P were randomized for the control group (CG). 

Despite the reffusal of some patients to perform exercise, patients submitted to 

randomization, in the 2 groups, confirmed to be statistically identical (EXTG and CG), 

regarding the characeristics of randomization (table 1A). 
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Table 1A. Demographic and clinical characteristics of randomized patients 

 

Exercise Group 

(EXTG) 

Control Group  

(CG) 

 

P 

N 22 28  

Age (years) 67.5±9.8 66.7±10.8 Ns 

Female (n, %) 5 (22.7%) 7 (25%) Ns 

BMI (Kg/m2) 27.18±3 27.54±3.5 Ns 

NYHA II-III (n, %) 21 (95%) 28 (100%) Ns 

NYHA IV (n, %) 1 (5%) 0 (0%) Ns 

LVEF (%) 26.68±6.21 26.18±8.24 Ns 

LVEF<20% 3 (13.6%) 9 (32.1%) Ns 

AF (n, %) 9 (40.9%) 11 (39.2%) Ns 

Ischemic DCM (n, %) 9 (40.9%) 10 (35.7%) Ns 

wQRS (msec) 157.5+21.2 146.7+46.2 Ns 

 

 

 
 
The results of this clinical trial, evaluating 50 randomized patients, are displayed in the 

next sections: 

 Baseline values for dependent variables (7.1.2.) 

 Variation for dependent variables after intervention (7.1.3) 

 

 

 

 

 

 

 

 

 

BMI- body mass índex (kg/m2 ); NYHA-New York Heart Association clinical classification(n-number,%); LVEF- left 
ventricular ejection fraction; AF –atrial fibrillation; DCM – dilated cardiomyopathy; Wqrs – QRS lenght  
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7.1.2. Baseline Dependent Variables 

 

Values for dependent variables (expressed as median and interquartile range, 25th 

percentile-75th percentile), collected at M1, baseline, previous to CRT, in the randomized 

patients, are displayed in table 1B. 

 

     Tabela 1B. Baseline Dependent Variables in Exercise (EXTG) and Control (CG) groups 

Variables 

EXTG 

(n=22) 

CG 

(n=28) 

 

Median 
P25-P75 

(min-max) 
Median 

P25-P75 

(min-max) 

P 

NYHA class 3 
2.66-3.07 

(2-4) 
3 

2.71-3 

(2-3) 
Ns 

HQoL T score 0.64 
0.56-1 

(0.28-1.57) 
0.78 

0.555-1.217 

(0.01-2.5) 
Ns 

HQoL Ph score 0.4 
0.31-0.74 

(0-1.2) 
0.4 

0.327-0.935 
(0.01-2.4) 

Ns 

HQoL Ps score 1.25 
0.9-1.59 

(0-2.5) 
1.33 

0.929-1.736 

(0.01-3) 
Ns 

LVEF (%)  26.5 
23.93-29.44 

(12-34) 
29 

22.98-29.37 
(11-42) 

Ns 

LVEDVol (ml) 203 
178.54-250.91 

(98-433) 
195 

183.47-248.41 

(104-420) 
Ns 

LVESVol (ml) 139 
124.66-179.8 

(49-300) 

 

155 
132.83-189.94 

(78-322) 
Ns 

LVMass (g) 297 
288.17-364.07 

(224.05-583.79) 
313.21 

295.963-373.941 

(169-517.69) 
Ns 

GLS (%) -5.5 
-7.41-(-3.22) 

(-13-0.1) 
-7 

-7.68-(-5.14) 

(-10-0) 
Ns 

E/e’  15 
13.6-29.2 

(7-50) 
19 

15.42-27.51 
(6-46) 

Ns 

LAVol (ml) 74 
58.88-84.75 

(38-102) 
67 

62.55-119.34 

(22-222) 
Ns 

RAVol (ml) 43 
28.17-63.03 

(13-89) 
37 

19.33-76.31 
(12-254) 

Ns 

TAPSE (mm) 17 
14.75-20.9 

(9-30) 
17 

15.61-19.91 

(10-31) 
Ns 

PSAP (mm Hg) 40 
34.15-47.71 

(29-70) 
40 

38.71-49.08 

(28-71) 
Ns 

HRbas (bpm) 75 
69.47-84.74 

(51-107) 
75.5 

71.04-85.76 
(57-116) 

Ns 

HRmax (bpm) 111 
107.56-131.91 

(82-173) 
122 

114.61-135.48 

(72-160) 
Ns 

SBPbas (mm Hg) 110 
104.66-120.24 

(90-140) 
120 

113.55-129.79 

(90-150) 
Ns 

SBPmax (mm Hg) 139 
130-147.2 

(120-170) 
140 

128-156 

(120-178) 
Ns 

HRR1 (bpm) 11 
8-14.5 

(4-19) 
16 

10-20 

(8-22) 
Ns 

HRR6 (bpm) 31 
25-38 

(15-48) 
42 

28-49 

(12-54 ) 
Ns 

CPTdur (sec) 

 
360 

277.32-491.23 

(57-747) 
327.5 

264.23-518.77 

(47-900) 
Ns 

VATtime (sec) 

 
180 

161.64-313.5 
(90-510) 

279 
151.80-407.8 

(90-540) 
Ns 

VO2p ml/kg/min) 

 
13 

11.99-16.34 

(9-21) 
13 

11.79-18.52 

(6-32) 
Ns 

VEVCO2slope 31 
28.84-39.29 

(22-56) 
37 

32.14-42 
(22-57) 

Ns 

HMRe 1.46 
1.314-1.656 

(1-2) 
1.45 

1.269-1.578 

(1-2) 
Ns 
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HMRl 1.28 
1.169-1.468 

(1-2) 
1 

1.31-1.38 

(1-2) 
Ns 

WOR (%) 

 
50.5 

44.56-58.2 

(20-90) 
44.73 

42.236-54.357 

(20-79) 
Ns 

RHI 1.53 
1.19-1.7 

(1-2) 
1.5 

1.25-1.86 
(1-3) 

Ns 

AI (%) 

 
2 

-10.6-4.79 

(-27-26) 
-3 

-24.72-13.14 

(-125-58) 
Ns 

AI@75 (%) -8 
-14.51-0.7 

(-37-18) 
-7 

-15.07-7.6 

(-42-52) 
Ns 

wQRS 

 
150 

141.27-173.24 

(130-200) 
120 

117.47-154.53 

(120-200) 
Ns 

SDNN 105.5 
85.59-167.91 

(42-344) 
109 

79.88-191.96 

(53-347) 
Ns 

SDANN 76 
56.57-107.43 

(0.1-159) 
83 

55.96-122.4 
(35-204) 

Ns 

RMSDD 42 
14.73-106.2 

(12-345) 
64 

28.36-145.04 

(12-244) 
Ns 

pNN50 16 
3.05-29.35 

(0.1-84) 
21 

8.25-46.30 
(1-78) 

Ns 

BNP (pg/ml) 292 
224.11-634.41 

(42-1868) 
254 

301.26-811.12 

(89-2340) 
Ns 

hs-CRP (mg/L) 2 
1.56-6.35 

(0-20) 
2 

0.09-13.37 

(0.001-86) 
Ns 

TNF-α (pg/ml) 2 
1.94-3.96 

(1-10) 
2 

1.87-3.13 
(1-6) 

Ns 

IL-6 (pg/ml) 7.5 
3.85-13.35 

(2-24) 
7 

4.28-9.72 

(1-18) 
Ns 

sCD-40 (pg/ml) 3494 
2556.03-5874.77 

(528-9207) 
3459 

2693.68-6171.24 
(1200-10235) 

Ns 

sFasL (ng/ml) 55 
44.31-73.22 

(26-126) 
57 

45.22-67.50 

(21-130) 
Ns 

NO (µmol/L) 53 
35.43-61.13 

(11-105) 
48 

41.23-66.43 

(20-126) 
Ns 

                                   
                    All  values  are expressed as median,  inter-quartile range 25th percentile-75th percentile (P25-P75), minimal  and  maximal values.                 

                                     NYHA -  New  York  Heart  Association functional clinical classification;  HQoL T- total score of quality of life  questionnaire                            
                                     HeartQoL; HQoL Ph – Physical score of quality of life questionnaire HeartQoL; HQoL Ps – psychologic score of quality of life 

                                     of HeartQoL;   LVEF – left  ventricular  ejection fraction;  LVEDVol – left ventricular end-diastolic volume ;  LVESVol – left 

                                     ventricular end-systolic volume; LVMass – left   ventricular mass; GLS – left ventricular Global Longitudinal Strain; E/e’- ratio 
                                     between   E wave  from pulsed  Doppler left  ventricular inflow wave  and  tissue  Doppler mitral  annular  mean  e’;   LAVol  –  

                                     left atrial volume;   RAVol – right atrial volume;   TAPSE – Tricuspide  Annular Plane Systolic Excursion;  PSAP – pulmonary             

parterial  systolic  pressure;   HRbas – baseline heart rate;   HRmax – maximal  heart  rate;   SBPbas – baseline  systolic  pressure; 
                                     SBPmax  – maximal  systolic   pressure;    HRR1 – heart  rate recovery  at  1st  min;   HHR6 –  heart   rate   recovery  at   6th min; 

                                     CPTdur –  duration of cardiopulmonary testing;  VATtime – time to ventilatory  anaerobic threshold;  VO2P – ventilatory oxygen  

                                     in consumption;VEVCO2 slope – slope of ventilatory exchange of carbon dioxide;HMRe – 123I-MIBG heart to mediastinum ratio    
                                     WOR - wash-out ratio; RHI – reactive hyperemia index; AT – augmentation index;  AT@75 – augmentation  index corrected for 

                                     average heart rate of  75 bpm;Wqrs – QRS length; SDNN – standard deviation of NN interval; SDANN – standard  deviation  of 

                                     the average N-N interval over periods of about 5 minute;RMSDD- square root of the mean squared differences between adjacent    
                                     N-N intervals, NN50 – number  of  adjacent N-N intervals that differ more than 50 ms; BNP – plasmatic brain natriuretic peptide;   

                                     CRP –plasmatic C reactive protein; TNF-α – plasmatic tumor necrotic factor alpha; IL-6 – plasmatic interleukin 6; sFasL -                         

                                     plasmatic soluble FasL; sCD-40 – plasmatic soluble citokyne 40;NO – plasmatic nitric oxide 
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7.1.3. Variation of Dependent Variables after Exercise Intervention in CRT-HF patients 

 

Values for modification of dependent variables after exercise intervention post-CRT in 

EXTG and after CRT only in CG are shown in the next tables (table 3-table 9). 

 

7.1.3.1. Symptoms and quality of life effects of Exercise Intervention 

 

Clinical functional class improved in both groups, exercise and control, although more in 

the exercise group, especialy attaining significance at 6 months of exercise program, as 

observed in table 3.  

At 3 months of EXT there were 90.1% clinical responders in EXTG vs 82.6% in CG.  

At 6 months, clinical responders increased in EXTG to 95% vs 78.5% in CG.  

 

Quality of life, evaluated by HeartQol questionnaire, which had baseline low scores, 

improved at least moderately (more than 0.5 in total score) in 95% of patients in EXTG 

and 96% in CG. One only patient did not improve HeartQoL score at all, from the CG.  

Quality of life scores improved significantly, in all dimensions, in both exercise and 

control group patients, with significant variation (p=0.000), but without statistical 

difference in  randomized groups, as shown in the table 4. 

 

 
Table 3.  NYHA Clinical Functional Class variation after CRT with Exercise (EXTG) and 
without exercise (CG) 

 

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).      
NYHA – New York Heart Association clinical classification; M2-M1 -  variation between moment 2 and 1; M3-M1 – variation between 
moment 3 and moment 1; EXTG – exercise training group; CG – control group 
 

 

 
NYHA ∆ 
 

 

EXTG 

 

CG 

    

 
EXT/ CG       

 
Median 

 
P25-P75 

 
P 

 
Median 

 
P25-P75 

 
P 

 
P 

NYHA M2-M1 -1.27 -1.6- (-0.94) 0.000 -0.95 -1.2-(-0.71) 0.000 0.094 

NYHA M3-M1 -1.52 -1.82-(-1.23) 0.000 -1.00 -1.34- (-0.65) 0.000 0.034 
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Table 4. Quality of Life score variation after CRT with Exercise (EXTG) and without 
exercise (CG) 
 

    

   All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).         
HQoL T – total score of quality of life questionnaire HeartQol (Oldridge);  HQol Ph – physical   score of quality of life  questionnaire 
HeartQol; HQol Ps – psychologic score of quality of life questionnaire HeartQol; EXTG – exercise training group; CG – control group 

 

 

7.1.3.2. Echocardiographic effects of Exercise Intervention  

 

LVEF, increased significantly in both randomized groups, more at 6 months, without 

significant difference.  

At 3 months, 68.4 % echocardiographic CRT responders in the exercise group and 75 % in 

the control group were present, but at 6 months responders increased to 81.8 % in the 

exercise group and decreased to 72.7 % in the control group.  

LVED volume decreased in both groups, significantly only at 6 months. 

LVES volume decreased also in both groups, significantly at 6 months. At 3 months LVES 

volume decrease was significant only in CG.  

LV mass decreased nonsignificantly in both randomized groups, but especially at 6 

months with a tendency for significance (p=0.094), only in the group of exercise 

(variation of 38 g EXTG vs 11 g CG).  

E/e’, decreased in both subgroups, however with statistical significance only at 6 months 

for EXTG (p=0.042).  

Regarding the variation of all other echocardiographic parameters, no statistical 

significance was obtained. 

Echocardiographic parameters variation are displayed in table 5. 

 
 
 

 
HQol ∆ 

 

EXTG 

 

 

CG   

 
EXT/ CG       

 
Median 

 
P25-P75 

 
P 

 
Median 

 
P25-P75 

 
P 

 
P 

HQol T M3-M1 1.26 0.84-1.68 0.000 0.94 0.50-1.38 0.000 0.246 

HQol Ps M3-M1 1.05 0.71-1.39 0.000 0.789 0.29-1.28 0.000 0.223 

HQol Ph M3-M1 1.52 1.23-1.82 0.000 1.211 0.79-1.62 0.000 0.146 
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Table 5. Echocardiographic variables variation after CRT with Exercise (EXTG) and without 
exercise (CG) 
 
 

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).      
LVEF – left ventricular ejection fraction (%);LVEDVol – left ventricular end-diastolic volume (ml);LVESVol – left ventricular end-systolic volume 

(ml); LVMass – left ventricular mass (g); GLS – left ventricular Global Longitudinal Strain (%); E/e’- ratio between E wave from pulsed Doppler left 

ventricular inflow wave and tissue Doppler mitral annular and mean e’;LAVol – left atrial volume (ml); RAVol – right atrial volume (ml); TAPSE – 
tricuspide annular plane systolic excursion (mm); PSAP – pulmonary systolic artery pressure (mm Hg) 

 

 

 

 

 

 

 
Echo ∆ 
  

 

EXTG 

 

 

CG 

 
EXT/CG       

 
Median 

 
P25-P75

 
 

 
P 

 
Median 

 
P25-P75 

 
P 

 
P 

LVEF M2-M1 11.90 5.29-18.50 0.004 9.56 5.67-13.45 0.000 0.545 

LVEF M3-M1 11.86 6.66-17.06 0.001 10.41 4.69-16.12 0.003 0.734 

LVEDVol M2-M1 -8.79 -36.99-19.42 0.594 -18.39 -46.13- 9.35 0.218 0.750 

LVEDVol M3-M1 -21.71 -42.38-(-1.05) 0.019 -14.23 -28.77- 0.31 0.042 0.692 

LVESVol M2-M1 -24.0 -53.0-5.0 0.140 -28.78 -53.50-(-4.05) 0.023 0.866 

LVESVol M3-M1 -22.24 -38.80- (-5.68) 0.015 -26.36 -43.38; -9.34 0.005 0.834 

LV Mass M2-M1 -7.37 -74.68-59.93 0.972 -3.31 -37.22-30.59 0.831 0.805 

LV Mass M3-M1 -38.58 -82.63-5.48 0.094 -11.90 -48.39-24.58 0.355 0.425 

GLS M2-M1 -0.75 -4.15-2.65 0.528 -0.5 -3.22-2.22 0.391 0.878 

GLS M3-M1 -2.36 -5.53-0.81 0.109 -0.69 -2.69-1.30 0.504 0.331 

E/e’ M2-M1 -0.88 -5.42-3.67 0.599 -5.17 -20.29-9.96 0.345 0.414 

E/e’ M3-M1 -6.40 -12.28-(-0.52) 0.042 -4.3 -9.47-0.87 0.097 0.765 

LAVol M2-M1 3.33 -29.02-35.69 0.917 -21.63 -47.52-4.27 0.089 0.181 

LAVol M3-M1 -9.14 -33.86; 15.58 0.499 6.2 -27.27-39.67 0.685 0.475 

RAVol M2-M1 -15.67 -37.94-6.60 0.074 -6.00 -22.21-10.21 0.326 0.282 

RAVol M3-M1 -11.71 -30.43- 7.00 0.150 -6.00 -25.22-13.22 0.441 0.606 

TAPSE M2-M1 1.67 -1.41-4.75 0.167 0.79 -2.35- 3.93 0.552 0.667 

TAPSE M3-M1 0.50 -2.42-3.42 0.893 -1.31 -4.00-1.39 0.385 0.402 

PSAP M2-M1 -2.00 -13.75-9.75 0.858 -3.27 -9.03-2.49 0.271 0.640 

PSAP M3-M1 -2.29 -16.11-11.54 0.400 -4.82 -11.35-1.72 0.130 0.328 



103 

 

7.1.3.3. Exercise functional capacity effects of Exercise Intervention  

 

From CPT variables, CPT duration showed significant increase, only in the exercise 

group, with a significant difference regarding those who did not exercise in CG, 

especially at 6 months (p=0.002). VAT increased significantly in the exercise group, at 3 

and especially at 6 months, while in the control group increased less and only at 6 

months. There was a significant difference at 3 months (p= 0.006) and a tendency for a 

difference at 6 months (p=0.06), between the 2 randomized groups.  

VO2p increased in both groups, but statistically significantly only at 3 months (p=0.026) 

in EXTG (EXTG 2.13 ml/kg/min vs CG 0.25ml/kg/min; p=ns). 

Functional response (defined as those who increased VO2p at least 1 ml/kg/min), at 3 

months, occurred in EXTG in 77.2% patients vs 53.8% in CG and at 6 months, in 77.2% in 

EXTG  vs  CG in 53.8%.   

The variation of HRR1, at 3 months, was significantly different between both groups, 

better only for CG. At 6 months, HRR1 improves in both, but significantly only in CG.  

 All other variables variation had no significant difference, as shown in table 6. 
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Table 6. Exercise Testing variables variation after CRT with Exercise (EXTG) and without 
exercise (CG) 

 

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).      
HRbas – baseline heart rate (bpm); HRmax – maximal heart rate (bpm); SBPbas – baseline systolic pressure (mm Hg); SBPmax – maximal systolic 

pressure (mm Hg); HRR1 – heart rate recovery at 1st  min; HHR6 – heart rate recovery at 6th min (bpm), CPTdur – duration of  cardiopulmonary 

testing (sec), VATtime – time to ventilatory anaerobic threshold (sec), VO2P – ventilatory oxygen consumption (ml/kg/min); VEVCO2 slope –  
minute ventilation-carbon dioxide production relation slope; EXTG- exercise training group; CG – control group; 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
CPET ∆ 

 

EXTG 
 
 
 

 

CG 
 

 
EXT/ CG       

 
Median 

 
P25-P75 

 
P 

 
Median 

 
P25-P75 

 
P 

 
P 

HR bas M2-M1 1.56 -7.07-10.19 0.469 -0.19 -8.86- 8.48 0.959 0.696 

HR bas M3-M1 -4.47 -12.95- 4.01 0.443 -2.64 -12.10- 6.81 0.541 0.891 

HR max M2-M1       0.88 -11.66-13.41 0.552 5.77 -3.30- 14.83 0.218 0.683 

HR max M3-M1 -3.59 -16.72-9.54 0.795 -6.40 -20.59- 7.79 0.551 0.655 

HRR1 M2-M1 6.5 -2.62-15.62 0.079 -5.93 -14.48-2.61 0.182 0.024 

HRR1 M3-M1 -2.19 -12.73-8.35 0.979 -15.46 -29.35-(-1.58) 0.039 0.110 

HRR6 M2-M1 2.46 -3.67-8.60 0.25 -1.54 -11.87-8.79 0.861 0.39 

HRR6 M3-M1 -1.76 -9.76-6.23 0.76 -7.31 -15.39-0.77 0.140 0.26 

SBP bas M2-M1 10.56 1.10-20.02 0.033 -0.59 -12.75-11.57 0.819 0.127 

SBP bas M3-M1 6.33 -2.82-15.49 0.141 -1.13 -12.23-9.96 0.972 0.259 

SBPmax M2-M1 12.81 -2.32; 27.95 0.093 30.71 -9.18-23.55 0.375 0.669 

SBPmax M3-M1 12.78 2.36-23.20 0.034 3.21 -11.58-18.01 0.755 0.220 

CPTdur M2-M1 167.69 38.9-296.47 0.017 77.2 -40.66-195.06 0.256 0.202 

CPTdur M3-M1 235.13
 

83.07- 387.18 0.008 24.00 -50.42- 98.42 0.397 0.002 

VATtime M2-M1 174.64 86.88-262.39 0.006 -6.86 -116.79-103.08 0.612 0.006 

VATtime M3-M1 216.42 109.7-323.14 0.004 50.00 -116.12-216.12 0.028 0.064 

VO2p M2-M1 2.44 -0.05-4.92 0.026 2.20 -1.67-6.07 0.285 0.545 

VO2p M3-M1 2.18 -0.53-4.80 0.080 0.25 -2.59-3.09 0.893 0.277 

Ve/VCO2sl M2-M1 -3.62 -9.64-2.41 0.294 -7.67 -12.50-(-2.83) 0.014 0.152 

Ve/VCO2sl M3-M1 0.08 -4.88-5.03 0.551 -2.63 -12.36-7.11 0.483 0.750 



105 

 

7.1.3.4. Imaging ANS function effects of Exercise Intervention  

In randomized groups, variations of the parameters of ANS function, HMRe, HMRl and 

WOR, in EXTG and CG groups were not significant, as observed in table 7. 

Table 7. Scintigraphic variables variation after CRT with Exercise (EXTG) and without 
exercise (CG) 

 

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).       
HMRe – 123I-MIBG early heart to mediastinum ratio; 123I-MIBG HMRl – late heart to mediastinum ratio;  WOR -  123I-MIBG wash-out 
rate; EXTG – Exercise Training group; CG – Control group  
 
 

 
7.1.3.5. Endothelial effects of Exercise Intervention  

 
Endothelial function and arterial stiffness parameters from peripheral arterial 

tonometry, RHI, AI and AI@75 did not vary significantly in EXTG and CG. Also, NO did not 

significantly change, as displayed in table 8. 

 
Table 8. Endothelial function variables variation after CRT with Exercise (EXTG) and 
without exercise (CG) 
 

 
All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75), minimal and maximal values.    

RHI – Reactive Hyperemia Index; AI – Augmentation Index (%); AI@75 – Augmentation Index adjusted for average heart rate of 75 

bpm (%); NO – Nitric oxide (µmol/L); EXTG – Exercise training group; CG – Control group 

 
 

 

123
I-MIBG  ∆ 

 
EXTG 

 
CG 

 

 
EXTG/CG 

 
Median 

 
P25-P75 

 
P 

 
Median 

 
P25-P75 

 
P 

 
P 

HMRe M3-M1 -0.04 -0.42-0.21 0.508 0.05 -0.13-0.22 0.722 0.554 

HMRl M3-M1 -0.02 -0.3-0.23 0.937 -0.01 -0.15-0.14 0.760 0.651 

WOR M3-M1 -3.34 -48.13- 34.16 0.642 4.46 -3.48-12.41 0.330 0.617 

 
Endopat 
and NO∆ 

EXTG  
 

                 CG 
 

 
 EXT/ CG       

 
Median 

 
P25-P75 

 
P 

 
Median 

 
P25-P75 

 
p 

 
P 

RHI M3-M1 0.20 -0.17-0.57 0.257 -0.07 -0.56-0.42 0.763 0.412 

AI M3-M1 8.94 -2.16-20.04 0.107 13.12 -11.52-37.89 0.423 0.631 

AI@75 M3-M1 8.24 -2.16-18.63 0.107 9.62 -1.21- 20.46 0.103 0.986 

NO M3-M1 7.66 -27.71-43.03 0.657 2.75 -16.62-22.13 0.616 0.857 
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7.1.3.6. Inflammatory and Apoptosis effects of Exercise Intervention  

 

TNF-α showed a significant decrease only in patients submitted to exercise trainning 

(p=0.016) with a significant difference regarding the small nonsignificant difference in 

control group (p=0.008).  

BNP decreased in both groups with a tendency for significance in EXTG and CG (p=0.09 

and 0.06, respectively), without significant difference between the groups. 

Other analysed blood markers, including hs- CRP sCD-40, sFasL and IL-6, did not change 

significantly in the randomized groups.  

sCD-40, sFasL and BNP were determined only at  M1 and M3 for technical reasons. 

Values are shown in table 9. 

 

Table 9. Biomarkers variation after CRT with Exercise (EXTG) and without exercise (CG) 
 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).      

TNF-α – plasmatic tumor necrotic factor alpha (pg/ml); IL-6 – plasmatic interleukin 6 (pg/ml); sFasL – plasmatic soluble FasL (ng/ml); sCD40 – 
soluble citokyne 40 (pg/ml); BNP – plasmatic brain natriuretic peptide (pg/ml);hs-CRP – plasmatic C reactive protein (mg/L); EXTG – 

Exercise training group; CG – Control group 

 

 

7.1.4. Safety results of Exercise HIIT protocol 

 

During high intensity interval training program there were no complications, namely 

cardiac, muscular, osteoarticular or other in any of the patients of our population of 

CRT-advanced heart failure patients. 

Only one patient had excessive increase of BP with exercise, which disappeared after 

adjustment of hypertension medication. 

 

 
Biomarkers ∆ 

 

EXTG 
 
 

 

CG 
 

 
 
EXTG/CG    

Median P25-P75 P Median P25-P75  P P 

TNF-α M2-M1 0.18 -1.92-2.28 0.439 -0.43 -1.24- 0.38 0.298 0.936 

TNF-α M3-M1 -1.08 -1.84-(-0.32) 0.016 0.12 -0.19-0.43 0.414 0.008 

IL-6 M2-M1 0.5 -5.85-6.85 0.317 2.00 -6.65-10.65 0.416 0.857 

IL-6 M3-M1 -0.33 -7.65-6.99 0.684 -3.13 -7.91-1.66 0.127 0.755 

sFasL M3-M1 5.29 -14.71-25.28 0.310 4.00 -4.74-12.74 0.414 0.328 

sCD40 M3-M1 3753 -9885-17391 0.180 4852.5 -47223.9-56928.9 0.180 0.99 

BNP M3-M1 -67.81 -151.67-16.05 0.098 -116.29 -227.54-(-5.05) 0.061 0.631 

hs-CRP M2-M1 -2.00 -4.74-0.74 0.205 1.39 -9.36-5.74 0.637 0.281 

hs-CRP M3-M1 1.00 -5.69-7.69 0.236 -1.81 -9.36-5.74 0.568 0.832 
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7.1.5. Cardiac Events at 7 months after CRT (M3) 

 

Cardiac events at M3 are reported in this sub-chapter in randomized groups, EXTG and 

CG. Also, the events in total 121 CRT patients and NEXTG are included here, for easier 

comparison.  

Cardiac events at M3, 7 months after CRT, corresponding to 6 months after exercise 

program, occurred in 9% of EXTG and 10.7% of CG and were the following, as observed 

in table 10: 

 

Table 10. Cardiac Events at M3, in total CRT, EXTG, CG and NEXTG 

 

Cardiac Events 

 

 

Total group 

n=121 

NEXTG 

 

n=99 

EXTG 

 

n=22 

CG 

 

n=28 

n % 

 

 

 

n 

 

 

% 

 

 

 

n 

 

 

% 

 

 

 

n 

 

 

% 

 Death 6 4.9 6 6 0 0 1 3.5 

HF hospital admission 7 5.7 7 7 0 0 1 3.5 

Cardiac death/ HF hospital admission 11 9 11 11.1 0 0 1 3.5 

Death/hospital admission  14 11.5 13 13.1 1 4.5 3 10.7 

Ventricular tachycardia 11 9 9 9 2 9 2 7.1 

Death/adm./arrhythmia 18 14.8 16 16.2 2 9 3 10.7 

 
HF hospital admission – hospital admission for heart failure; adm. – admission; NEXTG – Nonexercise group; EXTG – Exercise group; CG – 
Control group; M3 – moment 7 months after CRT  
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7.2. Effects of CRT with/without Exercise: An observational study  

 

7.2.1. CRT Cohort sample 

 

From the initial 121 CRT patients, 59 were not randomized because of living distantly 

from the hospital or reffusal to participate in the EXT trial. These, together with the 12 

patients who reffused to exercise after randomization, but accepted the proposed 

evaluation (71 patients in total), took part of a cohort study for evaluation of CRT effects 

in HF. All these patients, together with the randomized 28 patients who did not exercise 

in the CG (99 patients in total) were denominated non exercise training patients (NEXT) 

and went through the 3 moments evaluation, exactly as the effectively randomized 

groups (EXT and CG), as illustrated in figure 3. 

 

 

 
Fig.3. HF-CRT patients (N=121) randomized (n=62) to EXG (N=22) and CG (N=28),  
with 12 patients randomized to EXT refusing to exercise but accepting evaluation. Non randomized patients (N=59) 
accepted evaluation, but performed no EXT.  
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Demographic and clinical characteristics of the total population sample, including all the 
patients who did not exercise are included in the next table (table 11). 
 
 
Table 11. Demographic and clinical characterization of all CRT patients, with and 
without exercise  
 
 

 
Total NEXTG EXTG 

N 121 99 22 

Age mean±SD (years) 

 

69.6±12.1 

 

69.9+10.8 67.5±9.8 

Female (n,%) 

 

38 (31.4%) 

 

33 (33%) 5 (22.7%) 

BMI mean±SD (Kg/m2) 

 

26.9±4.8 

 

26.1+3.6 27.18±3 

NYHA II-III (n,%) 

 

115 (95%) 

 

94 (94.9%) 21 (95%) 

NYHA IV (n,%) 

 

6 (5%) 

 

5 (5%) 1 (5%) 

LVEF mean±SD (%) 

 

26.2±7.0 

 

26.1+7.2 26.68±6.21 

LVEF<20% (n,%) 

 

27 (22%) 

 

24 (24%) 3 (13.6%) 

AF (n,%) 

 

40 (33) 

 

31 (31%) 9 (40.9%) 

Ischemic DCM (n,%) 

 

37 (30.5%) 

 

28 (28%) 9 (40.9%) 

wQRS mean±SD (msec) 

 

144.3+22.6 

 

141.8+22.2 157.5+21.2 

 
BMI – Body Mass Index (Kg/m2); NYHA – New York Heart Association clinical functional classification LVEF 
 – Left Ventricular Ejection Fraction (%); AF – Atrial Fibrillation; DCM – Dilated Cardiomyopathy;Wqrs –  
length of QRS 

 
The results of CRT effects of the total population sample studied as a cohort, without 
randomization, at M1, M2 and M3 are described in this chapter.  
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7.2.2. Baseline Dependent Variables in CRT cohort 

   

Dependent variables baseline values, at M1, in the cohort of CRT patients, are expressed 

as median and interquartile range 25thpercentile-75thpercentile in table 12. 

 

 

Table 12- Baseline Dependent variables in Total CRT patients 

 

Variables 
 

Median 
 

P25-P75 

NYHA (class) 3 2.7-2.89 

HQoL T (score) 0.78 0.816-1.118 

HQoL Ph/Ps (score) 0.50/1.25 0.56-0.83/1.47-1.53 

LVEF (%) 27 24.9-27.44 

LVEDVol (ml) 195 193.97-220.43 

LVESVol (ml) 144 142.81-164.75 

LVMass (gr) 310.66 310.27-345.11 

GLS (%) -7 -7.03-(-5.64) 

E/E’  16 15.89-20.88 

LAVol (ml) 79 74.99-97.83 

RAVol (ml) 36 34.19-52.81 

TAPSE (mm) 18 17.89-20.13 

PSAP (mm Hg) 38.5 38.08-43.38 

HRbas (bpm) 76.5 75.8-82.22 

HRmax (bpm) 115 115.52-125.19 

SBPbas (bpm) 120 113.91-120.67 

SBPmax (mm Hg) 143 135.4-178.17 

HRR1 (bpm) 13 10-16 

HRR6 (bpm) 35 30-39 

CPTdur (sec) 360 315.96-410.84 

VATtime (sec) 240 235.83-305.01 

VO2p (ml/kg/min) 13 13.27-15.41 

VEVCO2 slope 37.9 35.25-40.58 

HMRe 1.533 1.444-1.583 
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                                                                  All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).      
                                                                  NYHA - New York Heart Association functional clinical classification;  HQoL T- total score 

                                                                  of  quality  of   life questionnaire   HeartQoL;   HQoL Ph  – Physical  score  of quality of life  

                                                                  questionnaire   HeartQoL;   HQoL Ps  –  psychologic  score  of   quality  of  life   HeartQoL ;                             
                                                                  LVEF – left ventricular ejection  fraction; LVEDVol – left ventricular end-diastolic volume; 

                                                                  LVESVol  – left ventricular end-systolic volume;  LVMass  –  left ventricular  mass;  GLS – 

                                                                  left ventricular Global Longitudinal Strain; E/e’- ratio  between E wave from pulsed Doppler 
                                                                  left inflow wave  ventricular and tissue Doppler mitral  annular and  mean  e’; LAVol –   left  

                                                                  atrial volume;  RAVol  –  right  atrial  volume;  TAPSE  –  tricuspide  annular plane  systolic  

                                                                  excursion; PSAP – pulmonary systolic  arterial oulmonary pressure;  HRbas – baseline heart 
                                                                  rate; HRmax –maximal heart rate; SBPbas –  baseline systolic pressure;  SBPmax – maximal 

                                                                  systolic pressure;   HRR1 – heart rate  recovery  at 1st  min;   HHR6 –  heart rate recovery  at 

                                                                  6th min;   CPTdur  – duration  of   cardiopulmonary  testing;   VATtime – time to ventilatory 
                                                                  anaerobic threshold; VO2P – ventilatory oxygen  in consumption; VEVCO2 slope  – slope of  

                                                                 ventilatory exchange of carbon dioxide; HMRe – 123I-MIBG heart to mediastinum ratio;WOR 
                                                                  - wash-out ratio;   RHI –  reactive  hyperemia  index;  AT – augmentation  index;   AT@75 – 

                                                                 augmentation index corrected for average heart rate of  75 bpm;  Wqrs – QRS length;  SDNN 

                                                                 – standard  deviation  of   NN  interval;  SDANN –  standard  deviation of  the   average  N-N 

                                                                 interval   over  periods  of  about  5 minutes;   RMSDD -  square  root  of  the  mean   squared      

                                                                 differences between adjacent  N-N intervals, NN50 – number  of  adjacent N-N intervals  that 

                                                                 differ more than 50 ms;BNP– plasmatic brain natriuretic peptide;hsCRP –plasmatic C reactive  
                                                                 protein;     TNF-α  –  plasmatic  tumor  necrotic factor alpha;   IL-6 –  plasmatic  interleukin 6; 

                                                                 sFasL -  plasmatic soluble FasL;   sCD-40 – soluble citokyne 40;  NO – plasmatic nitric oxide 

 
 

                                                             

                                                  
                                                    

                        

               
   

  

HMRl 1.303 1.280-1.408 

WOR (%) 48.34 44.65-50.97 

RHI 
2 

1.43-1.68 

AI (%) 
4 

-4.26-5.4 

AI@75 (%) 
0.01 

-5.63-1.73 

Wqrs (msec) 
150 

138.33-153 

SDNN 
105 

108.95-140.07 

SDANN 
80 

76.98-97.62 

RMSDD 
37 

49.33-81.39 

pNN50 
8 

14.87-28.13 

BNP (pg/ml) 
296.5 

395.25-618.22 

hs-CRP (mg/L) 
2 

4.42-10.2 

TNF-α (pg/ml) 
2 

2.22-2.83 

IL-6 (pg/ml) 
7 

5.94-9.62 

sCD-40 (pg/ml) 
3354 

3575.7-5037.37 

sFasL (ng/ml) 
58 

52.79-63.33 

NO (µmol/L) 
45 

0.16-214.7 
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7.2.3. Variation of Dependent variables after CRT in HF patients 

 

7.2.3.1. Clinical functional class and quality of life effects of CRT 

 

Improvement in NYHA functional class occurred in 75.6 % of the total CRT sample 

patients (clinical responders) at M3, being the variation of clinical functional NYHA class 

statistically significant at M2 and M3 (p<0.0001), for total, NEXTG and, as already 

observed in the RCT, in EXTG patients, as seen in table 13. 

In total CRT sample there were no differences in the rate of response regarding gender, 

age, etiology and LV dysfunction severity. 

In total CRT sample, 80 % of the patients improved Heart quality score after CRT. 

Quality of life scores after CRT, total, psychological and physical, assessed by HeartQol 

questionnaire improved very significantly (p<0.0001),as reported in table 14. 

There was no difference in gender regarding the effect of CRT on quality of life. 

 

Table 13.  NYHA functional class variation after CRT in total group, EXTG and NEXTG  

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).      
NYHA – New York Heart Association clinical functional classification; M2-M1 – variation from 4 months after CRT to baseline; M3-M1 – variation 

between 7 months to baseline; NEXTG- Nonexercise Training group;EXTG – Exercise Training group 

 
 

Table 14. Heart Quality of Life variation after CRT in total group, EXTG and NEXTG 

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75). 

HQoL T – total score of quality of life questionnaire HeartQol (Oldridge);  HQol Ph – physical    score of quality of life questionnaire HeartQol;  
HQol Ps – psychologic score of quality of life questionnaire  HeartQol;  NEXTG – Non exercise group;  EXTG – exercise training group 

 

 

 

 
 
NYHA ∆ 

Total NEXTG EXTG  
 

Median P25-P75 P Median P25-P75   P Median P25-P75 P 

NYHA M2-M1 -0.92 -1.08-(-0.76) 0.000 -0.84 -1.01-(-0.67) 0.000 -1.27 -1.611-(-0.945) 0.000 

    NYHA M3-M1 -1.01 -1.19-(-0.82) 0.000 -0.88 -1.1- (-0.67) 0.000 -1.52 -1.821-(-1.231) 0.000 

 
Total NEXTG EXTG 

 
Median P25-P75 P Median P25-P75 P Median P25-P75 P 

HQol T M3-M1 0.82                          0.42-1.1 0.000 0.75 0.51-.99 0.000 1.26 0.84-1.68 0.000 

HQol Ps M3-M1 1.1 0.84-1.36 0.000 1.02 0.51-.99 0.000 1.05 0.71-1.39 0.000 

HQolPh M3-M1 0.72 0.48-.96 0.000 0.7 0.44-1.7 0.000 1.52 1.23-1.82 0.000 
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7.2.3.2. Echocardiographic effects of CRT  

 

After 4 months post-CRT, at M3, patients had a mean LVEF increase of 9.1% and at 7 

months a higher increase of 10.7%, being this improvement significant (p<0.0001). The 

significant increase of LVEF was also maintained when patients submitted to exercise 

intervention were excluded. 

At 7 months, 63.9.% were echocardiographic CRT responders (LVEF variation> 5%). 

Patients with CRT echocardiographic or clinical response were 100 (82.6%). 

LVED volume decreased at 7 months, however not significantly and LVES volume 

decreased significantly only at 7 months: 22.4 ml mean value reduction (p=0.001).  

The variation of ESLV volume attained significance at 7 months, independently of 

exercise. 

LV mass decreased at 4 months, mean value 26.5 g, showing already a tendency for 

statistical significance (p=0.077), and moreoever at 7 months, LV mass decreased more, 

42.1 g, mean value, attaining statistical significance (p=0.025). Excluding the exercise 

group, the LV mass variation showed a tendency to significance at 6 months (p=0.054). 

GLS increased significantly (-1.709±3.871), but only at 7 months and, excluding the 

exercise group, the statistical significance was maintained.  

E/e’ changed significantly (E/e’ ratio decreased, mean variation 3.334; p=0.039),  only at 

7 months. 

LA volume decreased significantly at 4 months and maintained the decrease at 7 

months (mean variation 20.25 ml; p=0.010). RA volume decreased, but nonsignificantly. 

TAPSE increased almost significantly at 4 months (p=0.051) although changed not 

significantly at 7 months. Systolic pulmonary arterial pressure changed non significantly, 

although with greater decrease at 7 months. Patients who had no criteria for 

randomization to exercise and did not perform exercise, also showed a significant 

increase of LVEF, at 4 and 7 months, and a reduction of LVES volume at 7 months. All 

the described echocardiographic effects are shown in table 15. 
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         Table 15. Echo variables variation after CRT, total group, EXTG, NEXTG   
 

¶  

              All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).     
              LVEF – left ventricular ejection fraction (%);LVEDVol – left ventricular end-diastolic volume (ml);LVESVol – left ventricular end-systolic volume (ml); 

              LVMass – left ventricular mass (g); LV GLS – left ventricular Global Longitudinal Strain (%); LV E/e’- ratio between E wave from pulsed Doppler left  

              ventricular inflow  wave and  tissue  Doppler mitral annular  and mean e’;  LAVol  – left atrial volume (ml);  RAVol – right atrial volume (ml); TAPSE – 
              Tricuspide Annular Plane Systolic Excursion (mm); PSAP- pulmonary systolic artery pressure (mm Hg); NEXTG - Non exercise training group; EXTG – 

              Exercise Training group 

 

 

 

 

 

 
Echo ∆ 

Total CRT 
 
 

NEXTG 
 
 

EXTG 
 
 

 Median P25-P75 P Median P25-P75 P 
 
Median 

P25-P75 P 

LVEF M2-M1 9.19 7.01-11.36 0.000 8.65 6.49-10.81 0.000 11.90 5.29- 18.50 0.004 

LVEF M3-M1 11.83 9.60-14.07 0.000 12.2 9.7-14.7 0.000 11.86 6.66- 17.06 0.001 

LVEDVol M2-M1 -7.73 -36.7-21.3 0.875 -7.49 -23.05-8.06 0.166 -8.79 -36.99-19.42 0.594 

LVEDVol M3-M1 -15.3 -38.3-8.3 0.279 -13.66 -24.04-(-3.28) 0.011 -21.71 -42.38-(-1.05) 0.019 

LVESVol M2-M1 -17.88 -43.08-7.32 0.058 -16.33 -30.06-(-2.6) 0.009 -24 -53- 5.00 0.140 

LVESVol M3-M1 -25.13 -45.68-4.5 0.001 -25.91 -35.5-(-16.32) 0.000 -22.24 -38.80-(-0.68) 0.015 

LV Mass M2-M1 -26.54 -56.13-3.03 0.077 -34.11 -77.5-10.4 0.645 -7.37 -74.68- 59.93 0.972 

LV Mass M3-M1 -22.85 -40.12-(-3.04) 0.026 -18.62 -39.85-2.61 0.079 -38.58 -82.63- 5.48 0.094 

LV GLS M2-M1 -1.041 -1.77-0.95 0.004 -1.10 -2.08-(-0.12) 0.039 -0.75 -4.15- 2.65 0.528 

LV GLS M3-M1 -1.710 -2.68-(-0.73) 0.003 -1.5 -2.53-.46 0.013 -2.36 -5.53- 0.81 0.109 

LV E/e’ M2-M1 -1.259 -4.15-1.63 0.008 -1.29 -4.79-2.22 0.391 -0.88 -5.42- 3.67 0.599 

LV E/e’ M3-M1 -3.145 -6.48-(-0.18) 0.009 1.53 1.50-4.55 0.069 -6.4 -12.28-(-0.52) 0.042 

LAVol M2-M1 -16.900 -30.15-(-3.64) 0.025 -18.81 -32.84-(-4.78) 0.008 3.33 -29.02- 35.69 0.917 

LAVol M3-M1 -6.883 -17.46-3.69 0.09 -6.44 -18.61-5.72 0.137 -9.14 -33.86- 15.58 0.499 

RAVol M2-M1 -7.26 -14.65-0.11 0.054 -5.85 -13.41-1.71 0.091 -15.67 -37.94- 6.60 0.074 

RAVol M3-M1 -3.43 -10.47-3.59 0.329 -2.23 -9.93-5.48 0.262 -11.71 -30.43- 7.00 0.150 

TAPSE M2-M1 1.28 -0.05-2.58 0.051 -0.84 -.54-2.22 0.170 1.67 -1.41-4.75 0.167 

TAPSE M3-M1 -0.52 -1.86-0.80 0.430 -0.85 -2.26-.57 0.353 0.5 -2.42-3.42 0.893 

PSAP M2-M1 -1.8 -5.36-2.40 0.448 -1.07 -5.01-2.88 0.668 -2 -13.75- 9.75 0.858 

PSAP M3-M1 -2.39 -6.66-1.89 0.103 -2.41 -7.11-2.23 0.397 -2.29 -16.11-11.54 0.400 
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7.2.3.3. Exercise functional testing effects of CRT 

 

Baseline and maximal heart rate did not change significantly.  

The variation of HR at 1st minute recovery and at 6th min recovery regarding the peak HR 

(reduction) was significant, at 7 months after CRT.  

There was a significant variation of VO2p, at 3+1 months (mean increase of 1.79 

ml/kg/min), maintaining the functional benefit at 6 months. 

Most of our patients increased VO2p. 76 (62.8 %) patients were functional responders 

(variation>1ml/kg/min). 

CPT duration increased significantly at M2 and M3 (p=0.000 and p=0.002, respectively) 

and time to AT increased significantly at M3 after CRT (p=0.001). 

VE/VCO2 slope, decreased significantly at 3 and 6 months (p=0.000 and p=0.003, 

respectively).  

Exercise testing variables are shown in table 16. 
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Table 16. Exercise Testing variables variation after CRT: total sample, NEXTG, EXTG 
 

 
            All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).     

            HRbas – baseline heart rate (bpm); HRmax – maximal heart rate (bpm); SBPbas – baseline systolic pressure (mm Hg); SBPmax  maximal systolic pressure (mm Hg); 
            HRR1- heart rate recovery at 1st  min; HHR6 – heart rate recovery at 6th min (bpm), CPTdur – duration of  cardiopulmonary testing (sec), VATtime – time to 

            ventilatory anaerobic threshold (sec), VO2P – ventilatory oxygen consumption (ml/kg/min); VEVCO2 slope – ventilatory minute –   exchange of carbon dioxide 

            relation slope; NEXTG – Nonexercise training group; EXTG- exercise training group  

 

 

 

 

 

 

 

 

CPT ∆ 

 

Total CRT 
 
 

 

NEXTG 
 
P 

 

EXTG       
 

 
 

Media
n 

P25-P75 P Median P25-P75  Median P25-P75 p 

HR bas M2-M1 -2.22 -5.97- 1.52 0.240 -3.65 -7.78-0.49 0.136 1.56 -7.07- 10.19 0.469 

HR bas M3-M1 -3.72 -7.79-.35 0.073 -3.56 -8.1-0.98 0.156 -4.47 -12.95- 4.01 0.443 

HR max M2-M1 0.94 -3.90-5.79 0.699 0.88 -4.33-6.09 0.341 0.88 -11.66-13.41 
0.552 

 

HR max M3-M1 -2.12 -7.51-3.26 0.435 -2.33 -8.24-3.57 0.699 -3.59 -16.72- 9.54 0.795 

HRR1 M2-M1 -0.88 -6.06-4.29 0.734 -2.8 -8.8-3.19 0.368 6.5 -2.62- 15.62 0.079 

HRR1 M3-M1 -6.65 -11.94-(-1.35) 0.015 -7.89 -13.91--1.88 0.024 -2.19 -12.73- 8.35 0.979 

HRR6 M2-M1 -3.13 -6.73-0.46; 0.087 -4.24 -8.44-(0-.04) 0.082 2.46 -3.67-8.60 0.25 

HRR6 M3-M1 -4.04 -7.75-(-0.33) 0.033 -4.7 -8.75-(-0.64) 0.020 -1.76 -9.76-6.22 0.76 

SBP bas M2-M1 7.27 1.83-12.71 0.007 6.36 -0.19-12.91 0.045 10.56 1.10-20.02 0.033 

SBP bas M3-M1 4.81 0.89-8.72 0.020 4.35 -0.09-8.79 0.071 6.33 -2.82- 15.49 0.141 

SBPmax M2-M1 13.27 5.82-20.73 0.001 13.4 4.62-22.19 0.004 12.81 -2.32- 27.95 0.093 

SBPmax M3-M1 7.61 1.59-13.63 0.004 6.03 -1.25-13.32 0.038 12.78 2.36-23.20 0.034 

CPTdur M2-M1 85.52 39.57-131.48 0.000 62.29 
-16.49-
108.09 

0.024 167.69 38.9-296.47 0.017 

CPTdur M3-M1 80.08 32.89-137.71 0.002 37.31 -7.12-81.74 0.11 235.13 83.07-387,18 0.008 

VATtime M2-M1 31.23 -19.47-81.95 0.271 -34.5 -77.65-8.65 0.156 174.64 86.88- 262.39 0.006 

VATtime M3-M1 90.5 39.5-141.64 0.001 61.54 -6.71-129.79 0.085 216.42 109.7-323.14 0.004 

VO2p M2-M1 
1.7 

 

0.203-3.209 

 

0.027 1.6 0.17-3.03 0.041 2.44 -0.05;4.92 0.026 

VO2p M3-M1 1.45 - 0.06-2.85 0.040 0.6 0.78-1.99 0.381 2.18 -0.53- 4.80 0.08 

Ve/VCO2sl M2-M1 -6.8 -9.50-(-4.02) 0.000 -7.53 
-10.53-(-

4.52) 
0.000 -3.62 -9.64- 2.41 0.294 

Ve/VCO2sl M3-M1 5.31 -8.77-(-1.858) 

 

0.003 -6.67 
-10.76-(-

2.57) 
0.005 0.08 -4.88-5.03 0.551 
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7.2.3.4. Imaging autonomic system function effects of CRT 

 

In our total HF patients sample, as a whole, we found nonsignificant variation of 123I-

MIBG cardiac scintigraphy parameters, HMRe, HMRl and WOR, after CRT (table 17).   

Evaluating separately the nonischemic cardiomyopathy patients, we found that HMR 

late and WOR, as continuous variables, correlated significantly with CRT 

echocardiographic response, by univariate analysis, which did not occur in ischemic HF 

patients. In this nonischemic group of CRT patients, those with baseline HMRl >1.5 had a 

3 fold greater possibility of being an echocardiographic responder (LVEF>5%), compared 

to those with HMRl<1.5. This association was confirmed by multivariate analysis 

(p=0.05). 

 

Table 17.  MIBG123-Cardiac Scintigraphy variables variation after CRT: total sample, NEXTG, 

EXTG 

 

  
     All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).     
     HMRe – 123I-MIBG early heart to mediastinum ratio; 123I-MIBG HMRl – late heart to  mediastinum;  123IMIBG WOR-wash-out rate; NEXTG – Non Exercise    
     Training Group; EXTG – Exercise Training group 

 
 

                Endothelial effects of CRT 
 

The studied parameters, for endothelial function, RHI, AI and AI@75 did not vary 

significantly after CRT in the whole CRT population sample. NO also did not vary 

significantly, neither was associated with CRT response. All parameters increased, 

although nonsignificantly, as seen in the next table (table 18). 

 

 

 

 
 
MIBG scint. ∆ 

 

Total CRT 

 

 

 

NEXTG 

 

 

 

EXTG 

 

P 

Median P25-P75 p Median P25-P75 P Median P25-P75  

HMRe M3-M1 -0.017 -0.578-0.021 0.37 -0.012 -0.14-0.1 0.75 -0.04 -0.42-0 .21 0.508 

HMRl M3-M1 -0.039 -0.893-0.009 0.115 -0.07 -0.19-0.05 0.411 -0.02 -0.3- 0.23 0.937 

WOR M3-M1 1.901 -4.849-8.651 0.574 3.56 -2.46-9.59 0.361 -3.34 -48.13- 34.16 0.642 
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 Table 18. Peripheral Artery Tonometry effects of CRT 

 

 
All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).     
Reactive Hyperemia Index; AI – Augmentation Index (%); AI@75 – Augmentation Index adjusted for average heart rate of 75 bpm (%). NO – Nitric oxide 
(µmol/L); NEXTG – Nonexercise training group; EXTG – Exercise training group 

 

 

7.2.3.5. Inflammation and Apoptosis biomarkers variables variation after CRT 

 

In the total HF patients, BNP decreased nonsignificantly, as hs-CPR, which only 

decreased at M2. 

Inflammatory parameters, sCD-40 and sFasL, increased after CRT, but only significantly at 

M2 for sCD-40. IL-6 had also nonsignificant variation. TNF-α decreased at M2 and 

especially at M3  after CRT, but nonsignificantly. 

Biomarkers data are included in the next table (table 19). 

  

 
Endopat 
and NO∆ 

 

Total CRT 

 

NEXTG 
 
 

 

EXTG     

Median P25-P75 P Median P25-P75 P Median P25-P75 P 

RHI M3-M1 0.88 0.078-0.44 0.659 1.1 -1.22-3.34 0.705 0.20 -0.17-0.57 0.257 

AI M3-M1 9.37 2.46-21.21 0.110 1.89 -7.65-11.44 0.997 8.94 -2.16- 20.04 0.107 

AI@75 M3-M1 8.31 2.81-19.43 0.130 1.34 -5.65-8.33 0.920 8.24 -2.16- 18.63 0.107 

NO M3-M1  -87.82  -257.17-81.53  0.240 -108.83 -316.18-98.52 0.286 7.66 -27.71-43.03 0.657 
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Table 19. Biomarkers variation after CRT: total sample, NEXTG, EXTG 

 

 
TNF-α – plasmatic tumor necrotic factor alpha (pg/ml); IL-6 – plasmatic interleukin 6 (pg/ml); sFasL – plasmatic soluble FasL (ng/ml); sCD-40 – soluble citokyne 40  

(pg/ml); BNP – brain natriuretic peptide (pg/ml);  hs-CRP – plasmatic C reactive protein (mg/L); NEXTG – Non Exercise Training group; Exercise Training group 

 
 
7.2.4. EXTG and NEXTG: Comparative effects 

 
Comparing EXTG with NEXTG variation of dependent values, there was a statistical 

difference observed at M3, only in the variables, NYHA, CPET, AT time, TNF@, as shown 

in table 20. 

Table 20. Comparison of Effects in EXTG and NEXTG with statistical significance 
 

  
EXTG 

 

 
NEXTG 

 

 

             Median                                               P25-P75          Median                           P25-P75 P 

 NYHA class  M3-M1  
-1.52 -1.84-(-1.23) -0.88 -1.1-(-0.67) 0.004 

CPT dur M3-M1(msec) 
       235.13 83.07-387.18          37.31 -7.12-81.74 0.001 

 
0.001 

ATtime M3-M1(msec) 
174.64 109.7-323.14 -34.5 -6.71-129.79 0.000 

TNF@ M1-M3 (pg/ml) 
1.08 -1.84-(-0.32) 0.11 -0.20-0.41 0.01 

 

All values are expressed as median, inter-quartile range 25th percentile-75th percentile (P25-P75).     
New York Heart Association clinical classification; CPTdur – cardiopulmonary exercise testing duration; ATtime – time to anaerobic 

threshold; TNF-α – Tumor Necrotic Factor alpha; EXTG – Exercise group; NEXTG – No exercise group 

 

Inflammatory 
Markers ∆ 

 
Total CRT 

 
 

 
NEXTG 

 
 

 
EXTG 

 
 

Median P25-P75 p Median P25-P75 P Media
n 

P25-P75 p 

TNF-α M2-M1 - 0.078 -0.759-0.602 0.81

7 

-

0.21+1.8

2 

-0.87-0.44 0.647 0.18 -1.92; 2.28 0.439 

TNF-α M3-M1 -0.108 -408-0.190 0.47

1 

0.11 -0.20-0.41 0.836 -1.08 -1.84; -0.32 0.016 

IL-6 M2-M1 1.245 -1.897-4.388 0.39

8 

1.44 -2.56-5.45 0.374 0.5 -5.85; 
6.85 

0.317 

IL-6 M3-M1 -0.730 -3.297-1.837 0.56 -1.01 -3.96-1.93 0.495 -0.33 -7.65; 6.99 0.684 

SFasL M2-M1 11.360 -1.6-24.37 0.083 13.56 -4.24-31.35 0.074  
- 

 
- 

 
- 

SFasL M3-M1 4.113 -0.79- 9.02 0.098 3.82 -1.11-8.76 0.224 5.29 -14.71; 25.28 0.310 

sCD40 M2-M1 5897.16 -1436.411-10357.921 0.01

9 

8041.17 5279.22-
10803.11 

0.109  
- 

 
- 

 
- 

SCD40 M3-M1 2090.88 -1563.806-5745.573 0.23

4 

2090.88 -1563.81-5745.57 0.209 3753 -9885; 17391 0.180 

BNP M3-M1 -50.742 -178.13-42.64 0.22

5 

-42.72 -5.86-6.79 0.153 -67.81 -151.67; 
16.05 

0.098 

hs-CRP M2-M1 -0.044 -5.05-4.96 0.98

6 

0.46 -2.11-6.45 0.469 -2.00 -4.74; .74 0.205 

hs-CPR M3-M1 1.933 -1.69-5.55 0.29

2 

2.17 -2.11-6.45 0.484 1.00 -5.69; 7.69 0.236 
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7.2.5. Effects in responders and non responders to CRT, with and without Exercise 

 

Patients in this study were mostly in class III/IV, NYHA (74.3 %) and were considered to 

respond to CRT at M3, clinically (>1 class NYHA) in 91 cases (75.6%), 

echocardiographically (LVEF variation greater than 5% increase) in 77 cases (63.9%) and 

functionally (VO2p variation greater than 1ml/kg/min) in 76 (62.8 %) patients.  

Patients with both clinical and echocardiographic response were 59 (48.7%), while those 

with either clinical or echocardiographic response were 100 (82.6%).  

Comparative effects of CRT in echocardiographic responders and nonresponders, with 

significant difference of all CRT patients of our study are shown in table 21. 

 
Table 21.  CRT Responders vs Non responders: Baseline and Effects difference 
 

  
CRT responder 

 
CRT non responder 

 
P 

Baseline M1    

SDNN 134.843±75.72 103.440±43.04 0.024 

HMRe 1.525±.16 1.477+.14 0.034 

HMRl 1.432±.18 1.360±.15 0.028 

LVED 196.92±72.69 228.34±67.62 0.032 

LVES 154.46±59.72 162.07±57.32 0.000 

TAPSE 20.077±5.346 17.229±5.618 0.016 

Variation M3-M1    

∆LVEF 18.14±9,61 -10.39±12,80 0.000 

∆LVESVol -37.186±40.148 4.206±38.805 0.000 

∆GLS -2.564±3.757 -0.247±3.218 0.002 

∆VO2p 2.795±5.15 0.488±3.86 0.058 

             

            All values are expressed as mean±SD. SDNN- standard devistion of NN interval, HMRe- Early heart-mediastinum ratio;  

                                            HMRl- Late heart-mediastinum ratio; LVEDVol – left ventricular end-diastolic volume (ml);LVESVol – left ventricular  

                                            end-systolic volume (ml); TAPSE –    Tricuspide Annular Plane Systolic Excursion (mm);    ∆LVEF –   variation of left  

                                            ventricular ejection fraction; ∆LVESVol – variation of end-systolic left ventricular volume; ∆GLS- variation   of global  
                                                 longitudinal strain;   ∆VO2p-variation of peak oxygen consumption;    NEXTG - Non exercise training group; EXTG – 

                                            Exercise Training group 

 
 

Responders had less events: carardiac death+HF hospital admissions; death+hospital 

admissions+arrhythmias. 

Responders, with non ischemic HF, also had statistically more frequent baseline 

HMRl>1.5: OR 1.8 (95%CI 1,11-2,99). 
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For evaluation of predictive factors to CRT response, In a multivariate analysis which 

included clinical, functional and echocardiographic variables, TAPSE was found to be the 

only variable associated to response, predicting higher values a positive response to CRT 

(OR=1.13;95%CI:1.02-1.26; P=0.020). TAPSE<15 was associated to nonresponse to CRT 

(p=0.05) and there were no responders when baseline TAPSE <10 (submitted paper).  

 
  



122 

 

8. DISCUSSION 

 

The discussion of results will be done separately regarding the exercise RCT, BETTER-HF, 

which is the purpose of this thesis (chapter 8.1), and the CRT cohort, relevant for a 

deeper understanding  (chapter 8.2). 

 

8.1. High intensity Interval Training after CRT: A randomized control trial 

    Effects and mechanisms of Exercise training in HF-CRT patients 

 

The purpose of evaluating a specific protocol of high intensity interval training in an 

optimized pharmacological and CRT treated patients with advanced heart failure is 

ambitious. We are not really addressing the issue of “exercise effects in HF”, but of 

“exercise larger additional effects after CRT”, regarding  those already well 

demonstrated pharmacologic and CRT effects in large HF trials.  

 

Clinical functional class and quality of life EXT effects in HF-CRT patients  

 

Overt heart failure is manifested by decreased effort tolerance and increasing disability, 

with daily life severe restrictions. As we are fully aware, despite being subjective, the 

clinical functional classification of New York Heart Association (NYHA), is the most 

frequently used method to quantify clinical severity of heart failure490. 

The positive effect of a therapeutic intervention on symptoms severity and decreased 

quality of life, obviously important from the patient’s own perspective, is though to be 

fundamental for HF patient’s wellbeing.  

In our randomized groups, both submitted to CRT, clinical functional class improved in 

both exercise and control groups, more significantly in the exercise group, after 6 

months of exercise training (p=0.034).  

Clinical response, defined by the decrease of 1 clinical functional NYHA class, was 

present in 90.1%, at 3 months and in 95%, at 6 months of EXT (M3) in the EXTG versus 

82.6% and 78.5%, respectively, at the same moment in the CG. It is interesting to notice 
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that, although at 6 months the percentage of clinical nonresponders was more than 4-

fold greater in CG, 21.5% (compared to 5% in EXTG), this difference did not reach 

statistical significance, most probably due to the fact of the small number of responders 

and nonresponders in the two groups, analysed in this sample. Despite this fact, these 

results, in our patients, point out to a relation of HIIT intervention with decreased 

number of clinical nonresponders, therefore suggesting an additional effect of exercise 

in the improvement of symptoms clinical severity, with benefit for a greater number of 

patients (16.5% less of nonresponders). 

Besides this more subjective clinical functional class improvement evaluation, the 

quality of life (QOL), objectively quantified by a score derived from HeartQol 

questionnaire491, also improved very significantly (p=0.000), in all dimensions (total, 

psychological and physical), in both randomized groups, with and without exercise, with 

no statistical significant difference. 95% in EXTG and 96% in CG had an improvement of 

HQoL considered at least moderate. It is interesting to notice that all randomized 

patients, except one, improved the quality of life scores, and that the one who did not 

increase belonged to the control group (3.5% non improvement of QOL for CG vs 0% for 

EXTG).  

Other authors have also shown before, the benefit in quality of life of CRT or exercise, 

using different instruments20. 

It is easily understandable that patients who were previously very disabled, reporting 

clinical functional improvement after intervention, might undoubtly gain the frequently 

lost quality of life. Although QOL is probably the most important endpoint from a 

patient’s point of view and is quantitatively translated into a score, which is considered 

objective, we must not forget that QOL measurement is also subjected to some bias and 

to personal interpretation. 

 

Echocardiographic EXT effects and mechanisms in HF-CRT patients 

 

An important issue to be discussed is the effect of exercise after CRT on cardiac 

remodeling.  

Preventing or reversing maladaptive remodeling is an important therapeutic target, 

since cardiac remodeling is a central factor of disease progression in HF patients324-325. 
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The relation between exercise training and cardiac remodeling has been already 

described. Looking back to the first larger prospective randomized study, conducted by 

Hambrecht et al.459, which provided evidence for training-induced reverse remodeling, it 

has been demonstrated that endurance training led to reverse left ventricular (LV) 

remodeling, although with modest improvements in LVEF (from 30% to 35%), as well as 

LV end-diastolic diameter reduction.  

These results were confirmed by two meta-analyses460,461, despite some of the included 

studies501,502 not having positive effect on LV volumes reduction. These meta-analyses 

also demonstrated that aerobic training, especially greater than 6 months duration, 

significantly reversed LV remodeling, whereas strength training, alone or combined with 

aerobic training, had no effect on reverse remodeling. This conclusion might have been 

influenced by the different number of patients analysed, with a smaller number in 

isolated or associated strength training, as already discussed. Still, there were doubts in 

these studies, regarding the central effect of exercise. 

Wisloff et al. performed the study445, which inspired several other investigators, 

demonstrating in a small sample of patients that high-intensity interval training relative 

to the individual’s maximal oxygen uptake is feasible, even in elderly patients with 

chronic heart failure and severely impaired cardiovascular function. These authors 

confirmed  that  the intensity of exercise may be an important factor for reversing LV 

remodeling. The underlying physiologic concept behind interval training regards the fact 

that metabolic rate is raised for a brief period, considered higher than for a typical 

continuous exercise program, which allows a longer duration of a given training period 

to be spent at a higher percentage of peak oxygen consumption (VO2p). This has the 

effect of eliciting a higher rate of energy production, requiring different metabolic 

pathways to produce energy and different muscle fiber recruitment patterns from those 

elicited by continuous training503. 

Facing all the previous data, suggesting greater cardiovascular adaptations after high-

intensity interval exercise, we decided in our study, to use HIIT, with a long duration 

exercise program, for 6 months, to allow time for remodeling, which might take longer 

than 3 months, with a frequency of twice a week and duration of 60 minutes per session. 

The inclusion of a third session per week might had been important, nevertheless the 
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acceptance and adherence of patients for this long period of 6 months would probably 

had been worst. 

More recent studies, using HIIT exercise, have suggested or demonstrated that cardiac 

function can also be improved504.  

In our study, LVEF, at M2 (3 months of exercise), increased significantly in patients from 

both randomized groups, with greater magnitude (although nonsignificantly different) in 

those from exercise group (LVEF mean increase of 11.9% in EXTG vs 9.6% in CG). At 6 

months after exercise, at M3, the improvement continued to be greater, but with a 

smaller difference (11.9% for EXTG vs 10.4% for CG; p=ns). Eventhough the LVEF 

difference was small at 6 months, we have to keep in mind that these patients have 

baseline severe LV dysfunction, with a mean LVEF of 26%, which is increased by CRT, as 

demonstrated in multiple studies. Also, apparently small LVEF improvement differences 

might represent a valuable percentual gain (mean LVEF relative increase of 46% in the 

EXTG and 40% in the CG with a mean difference of 6%). The worst the baseline LVEF it 

is, the more important is getting a greater LVEF increase after HIIT. What we have 

noticed in this sample, was that patients undergoing HIIT attained faster a better LVEF 

and maintained a slightly higher LVEF increase, which might be clinically important, 

especially because of the known prognostic value of LVEF505.  

LVEF response was defined as obtaining at least 5% absolute increase of LVEF, which 

corresponds to 19% and 15% relative increase regarding, respectively, the mean value 

and the higher value of baseline LVEF in our patients, offering no doubts regarding LV 

systolic function improvement, largely overpassing the intra and inter-individual 

variability of LVEF determination by echocardiography506. This criterion for 

echocardiographic response allow us high specificity in CRT response diagnosis, without 

loosing too much sensitivity. 

At M2 (3 months of exercise) and at M3 (6 months of exercise), 68.4 % and 81.8% 

echocardiographic CRT responders, respectively, were observed in the exercise group 

and 75 % and 72.7%, respectively, in the CG. The increased number of 

echocardiographic responders, after 6 months of HIIT program, had no significant 

statistical difference regarding those who did not exercise, although the number of 

echocardiographic non responders was 2-fold greater in the control group: 18.2% 

nonresponders in the EXTG and 27.3% in the CG. The HIIT intervention resulted in a 
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decrease in the number of echocardiographic non responders, which is particularly 

important in terms of prognosis for these patients. With a greater sample, in the 

exercise group, probably the difference might had attained significance. 

LV volumes decreased significantly in both groups after 6 months of exercise and at the 

same time for CG, without statistical difference. Also, only LVES volume decreased 

significantly at 3 months of exercise, in CG, however without any statistical difference. 

The LV mass decreased nonsignificantly in EXTG at M1 and continued to decrease, 38.6 

g median variation M1-M3, with a tendency to significance (p=0.09), compared to 

nonsignificant initial increase and posterior small decrease of 11.9 g, in CG, leading to 

almost 4-fold greater LV mass decrease after 6 months of exercise. We think that if the 

number of patients would had been greater or if we had continued the exercise after 6 

months and performed the echocardiogram later, we might have observed significance 

in the LV mass improvement in the EXTG. It looks that HIIT may have an additional 

benefit to CRT on LV remodeling, acting through LV mass reduction, but this tendency 

needs to be confirmed.  

Mechanisms explaining reverse remodeling by exercise training in heart failure have 

been studied. In the absence of myocardial biopsies, for molecular analysis of 

myocardial changes induced by training, most investigators interpreted this favorable 

training effect as secondary to afterload reduction with reduced resting blood pressure 

due to improved endothelial function459, as previously discussed. 

At cellular level, cellular remodeling is observed in the form of changes in 

cardiomyocyte size and shape and by molecular modifications that often recapitulate 

fetal gene expression and compromise excitation–contraction coupling, myofilament 

function, cell-survival signaling, bioenergetics, and the cellular metabolic state. In 

addition to the remodeling of cardiomyocytes, remodeling of the extracellular matrix is 

central to deforming the cardiac chamber and to altering the composition of fibrous and 

vascular elements in the myocardium. Chamber dilatation typically is also associated 

with a more-spherical shape of the ventricle, which reduces the efficiency of ejection 

because cardiomyocytes need to shorten more to achieve the same ejected net volume. 

Hypertrophy stimulated by stretch (that is, by volume overload), is often termed 

eccentric and differs from concentric hypertrophy induced by pressure overload507. 

Differences include the shape of cardiomyocytes (long and thin versus short and fat), 
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the organization of sarcomeres (‘in series’ versus ‘in parallel’), and changes in molecular 

signaling508. 

Cardiac hypertrophy—irrespective of cardiac morphology—has been traditionally 

considered to be an adaptive process, at least initially. However, this notion is 

increasingly questioned. Clinical and experimental data suggest that, if the stimulus for 

hypertrophy is pathologic, the remodeling response is also pathologic and suppression 

of remodeling is, therefore, beneficial. Animal studies have shown that even transient 

exposure to pathological stress induces very different molecular cascades, suggesting 

that the response to pathological stress is never truly ‘adaptive’. Data from trials in 

humans have confirmed LV hypertrophy as an independent risk factor, and indicate that 

antihypertensive agents that reduce LV mass lower mortality. Whereas concentric LV 

hypertrophy often evolves into a more dilated failure phenotype in small rodents, this 

evolution is less frequently observed in humans. Nonetheless, there is growing 

sentiment that directly targeting pathological remodeling might be beneficial even if 

abnormal loading persists. Although therapeutic interference with some signaling 

pathways can cause adverse effects, accumulating evidence indicates that many 

maladaptive responses can and should be targeted 509.  

In this study, we have not performed  myocardial biopsies that could explain reverse 

remodeling at cellular level, however the  significant increase of LVEF,  with LV volumes 

decrease and LV mass decrease (tendency to significance), demonstrated after CRT a 

positive effect on reverse remodeling, however without significant difference between 

EXTG and CG. 

We also analysed, the effect of exercise on diastolic function.  E/e’, decreased in both 

groups, but only significantly in the EXTG, after 6 months of exercise (p=0.04).  

Although the reduction of E/e’ was 1.5 fold greater in the EXTG, the difference between 

the 2 randomized groups did not reach statistical significance. We may again argue that 

in a larger sample or with a longer exercise protocol we might achieve this significance. 

Further investigation will be needed to understand the additional effect of HIIT to CRT 

on diastolic function, including other diastolic function parameters. 

Regarding all other echocardiographic parameters, no statistical significance was 

obtained in variation, at 3 or 6 months of exercise, although their variation occurred in 

the same direction as in the total CRT population.  As referred before regarding other 
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echocardiographic variables, the reason for not having obtained statistical significance 

in the variation of several echocardiographic parameters after HIIT, relates most 

probably with the dimension of the analyzed groups. Nevertheless, this is one of the 

largest studies regarding HIIT in advanced HF patients with CRT, until now. 

 

Exercise functional EXT effects and mechanisms in HF-CRT patients 

 

The functional improvement effect in HF-CRT patients after EXT, using a continuous 

protocol has been previously demonstrated by objective VO2p increase, by several 

authors20,482,483,510.  

Also, the benefit of intervalic protocols, HIIT, in functional capacity was demonstrated 

by Wisloff and others445.  In these studies, the comparison of  VO2p increase between 

HIIT and MICE was analysed. While some obtained a significant difference with higher 

benefit for HIIT445,446,511,512, others did not confirm these results513,514.  

Meyer’s meta-analysis504, including all these studies, confirmed the peripheral 

functional effect of HIIT, with controversial effect on LVEF, only verified by Wisloff in a 

sample of 27 patients, inferior to ours, as already mentioned in the discussion of 

echocardiographic effects. 

In our EXT protocol, we included strength training to HIIT, based on the knowledge that 

associated modalities of training are more effective in improving functional capacity: 

combined strength and intermittent exercise appear superior for peak VO2 changes 

when compared to intermittent exercise of similar exercise energy expenditure515. 

Functional benefit was objectively demonstrated in our CRT patients who underwent 

the HIIT program.  

From CPT variables, CPT duration showed a significant increase at 3 months, but 

especially at 6 months of exercise, in the EXTG, with a significant difference regarding 

the control group (235 vs 24 sec; p=0.002), whose patients had a nonsignificant 

decrease in CPT duration. 

Also, time to VAT showed significant increase, only in the exercise group, decreasing 

nonsignificantly in CG, with a significant difference at 3 months (p=0.006) and almost 

significant at 6 months (216 vs 50 sec; p=0.064), between EXTG and CG.  
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VO2p increased, though without statistical significance, in all randomized patients, at 6 

months, more in the exercise group (EXTG 2.1 ml/kg/min vs CG 0.25ml/kg/min). 

We admit that, if the number of our patients was higher, or if we had prolonged the 

duration of exercise, probably we would also had obtained a significant increase in VO2p. 

This was the case in the study of Belardinelli516, in which patients underwent EXT for 10  

years , with increasingly VO2p, especially evident until 1 year, but maintaining the 

difference in the following years regarding those HF patients who did not exercise. Even 

more,  we must keep in mind, the clinical significance of VO2 improvement, knowing 

that the increase of 1ml/kg/min associates to 10% decrease of CV mortality517 and that 

for each 1% VO2p increase, mortality decreases 2%518. According to these data, the VO2p 

increase at 6 months in the exercise group can be associated to 20% decrease of CV 

mortality and more than 2% decrease of total mortality in these patients, reflecting the 

protective effect of exercise. 

Looking at the number of patients who were functional responders (defined as those 

who increased VO2p>1ml/kg/min), at 3 months, 77.2% in EXTG were responders vs 

53.5% in CG, maintaining this rate of response at 6 months. The number of functional 

nonresponders was less than half in the EXTG, 22.8%, compared to CG, 46.2%,  which 

has clear clinical and prognostic implications. 

Despite the VO2p nonsignificant increase, though superior in our EXTG patients, the 

significant increase in the duration of exercise testing (CPTdur) and in time to anaerobic 

threshold (VATtime) attest for a better functional capacity, in these baseline low-

functional capacity patients, with beneficial implications for patients life. The positive 

changes achieved on these exercise testing parameters, attest for the fact that HIIT 

exercise training elicit a strong functional improvement effect after CRT, which has an 

important significance to prognosis. 

Maximal systolic blood pressure increased more in the EXTG, only significantly after 6 

months of exercise (p=0.034), 4-fold more than in control group (variation of 12.8 vs 3 

mm Hg), however without statistical difference between the 2 randomized groups. It is 

important to notice that the absolute mean value of baseline SBP was lower in EXTG, 

allowing that even with greater SBP variation in these patients, the maximal SBP 

remained inferior to that of CG patients. 
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Before analyzing possible autonomic effects, we should remark that baseline HHR1, was 

not different between the 2 groups and SDNN and other parameters of HRV were in the 

normal range and also not significantly different between the two groups519. Heart rate 

recovery at first minute (HRR1) was significantly different at 3 months in the 2 

randomized groups (p=0.024), with nonsignificant increase in EXTG and nonsignificant 

decrease in CG. Later, at 6 months, a nonsignificant reduction of HRR1 was observed in 

the EXTG, compared to a significant decrease in the CG (p=0.039), but no statistical 

difference between the variation in the 2 randomized groups was demonstrated. Only 

at 6 months the benefic variation of HHR1 attained significance in the CG, suggesting an 

effect only of CRT on the ANS. HIIT could not show an additional effect to CRT on this 

marker of autonomic function, HHR1, which cannot be generalized to no positive effect 

of exercise on ANS, already demonstrated for EXT in  HF, in previous studies513. We may 

hipothesize, looking at our results, that the ANS modulation by HIIT might possibly 

increase with prolongation of exercise after the 6 months.  

Regarding the change of all other CPT variables, no significant difference was shown. 

 

Imaging autonomic system function EXT effects in HF-CRT patients 

Advanced HF patients usualy present considerable changes in cardiac autonomic 

nervous system function. 

In our study, patients presented low baseline values of HMRe and HMRl, inferior to 

normal, indicative of decreased cardiac innervation and inferior to the value 1.6, 

considered of low prognosis: HMRe 1.51 and HMRl 1.47 in EXTG and HMRe 1.47 and 

HMRl 1.46 in CG. Baseline WOR values were high, also indicating denervated hearts: 

WOR 51.34 % in EXTG and WOR 48.24% in CG. 

Exercise training can induce, besides haemodynamic and metabolic changes, important 

neurohormonal adaptations in patients with chronic heart failure due to severe left 

ventricular dysfunction. Several studies were conducted on the effect of exercise in ANS 

function, measured by 123I-MIBG cardiac scintigraphy, in HF patients. 

Previously, Agostini et al. (520) examined the impact of exercise rehabilitation on 

cardiac neuronal function using 123I-MIBG scintigraphy, in only 14 HF patients (NYHA 

class II-III), with LVEF<50%, who underwent progressive, supervised continuous 
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endurance training for 6-month (60 sessions, 3 sessions per week). The authors 

concluded that exercise rehabilitation induced improvement of cardiac neuronal 

function without negative effects on cardiac contractility, in patients with stable chronic 

heart failure.  

Contrarily to this study, the comparison of HMRe, HMRl and WOR variation in our 

patients, in the exercise and control groups, did not show statistical difference. 

Although without statistical significance, it was interesting to notice that WOR mean 

value decreased in the EXTG, differently from the increase verified in the CG, which may 

be prognostically different, once low WOR was associated to poor prognosis, as 

demonstrated by Kuwabara et al.521, in a nice meta-analysis. This, including 15 published 

¹²³I-MIBG studies conducted in Japan, reported that both an increased washout rate and 

a decreased cardiac ¹²³I-MIBG activity (H/M) were indicative of a poor prognosis in 

patients with chronic heart failure. According to these data, it is expectable that 

strategies that reduce WOR should carry an improved prognosis.  

It is important to point out that normal WOR values are considered inferior to 10%, but 

in patients with dilated cardiomyopathies washout rates of 123I-MIBG are typically 

accelerated between early and delayed images, with values superior to 25% 78. Some 

authors demonstrated that values of WOR greater than 27% were associated with a 

significant increase in sudden death and with a cardiac death rate of 35%522, while 

others stated that values of WOR greater than 50% were associated with an increased 

risk for cardiac death78,523,524.  

In our patients, in the EXTG the baseline WOR median value was 50,5% and after EXT 

program decreased to 47.16 % (median variation 3.34%), decreasing the risk of cardiac 

death, according to the above referred studies. Contrarily, in the CG the WOR increased, 

although nonsignificantly.  

The decrease of WOR after exercise, in our patients, despite nonsignificant, may suggest 

a better prognosis, even more with the presence of high baseline WOR values in these 

advanced HF-CRT patients. In a larger EXT group or, as already discussed for HRR1, 

prolonging the duration of EXT, we might had confirmed that EXT after CRT could 

positively modulate autonomic nervous system, improving cardiac autonomic function. 

 

Endothelial function EXT effects in HF-CRT patients 



132 

 

 

Besides the myocardium, the vascular system is significantly impaired in HF and several 

studies using EXT as a therapeutic intervention proved beneficial effects on this system. 

Reactive hyperemia (RHI), translating endothelial function and arterial index, related to 

arterial stiffness (not necessarily indicating endothelial function) were measured in our 

study. 

On a functional level, it has been shown by previous studies that EXT results in a better 

endothelial function and in a better compliance of the vessel, meaning reduced 

stiffness525. From a molecular standpoint, it seems that HIIT improves endothelial 

function much better than MCT due to the greater bioavailability of NO (increase of the 

antioxidant status in the plasma) and reduced oxidized LDL.  In addition, the activation 

of muscle PGC-1α (peroxisome proliferated-activated receptor gama coactivator 1α), 

which plays a central role for adaptive muscle metabolism responses to EXT 526 is more 

pronounced after HIIT. 

In our study, both NO and RHI increased, although nonsignificantly, in the EXTG, which is 

in favour of a positive effect on endothelial function, compared to the decrease, not 

significant, in the CG.  

Baseline RHI mean value was low, below the normal previously used cut-point for 

Doppler endothelial evaluation of 2527, and for digital tonometry the value of 1.67312,  

meaning endothelial dysfunction: EXTG 1.51 and CG 1.55. Baseline AI mean value was 

found to be -2.9 in the EXTG and -5.7% in the CG, being considered as increased 

stiffness. This evaluation was based on the grading of AI as follow:  normal range (-10 to 

-30%), increased stiffness (-10 to 10%) and abnormal stiffness (>10%) 310,312.  

Baseline mean NO value was determined as 14.18, in EXTG and 14.60 in CG, being 

normal NO measured in plasma considered in the range of 11.5-76.4 µmol/L528. The 

increase of NO in EXTG was higher, although nonsignificant (0.76 vs 0.27 in CG). 

The nonsignificant variation with increase in the absolute value of AI and AI@75 was in 

the direction of better elasticity in both EXTG and CG. This is an important finding 

because we are aware that the effect on arterial stiffness reduction may favour reverse 

left ventricular remodeling. 

Summarizing, vascular parameters obtained from peripheral arterial tonometry, AI, 

AI@75, RHI and NO were improved with HIIT in this sample of CRT treated HF patients, 
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but not enough to obtain statistical significance. Once again, we think that we would 

need a larger number of patients to better understand the effect of HIIT in endothelial 

function and arterial elasticity, which looks beneficial. 

Inflammatory, apoptosis and heart failure biomarkers EXT effects in HF-CRT patients 

 

A derangement in inflammatory factors is evident during the development of HF199.  

The prototype of inflammatory cytokine increase in HF is tumor necrosis factor (TNF-

α)529-530. This inflammatory biomarker was remarkably decreased in patients, but only in 

those submitted to HIIT, after 6 months of exercise (p=0.016). The TNF-α variation 

differed significantly in EXTG regarding CG (p=0.008), meaning that inflammation was 

positively affected by the long duration HIIT and that this effect was really dependent on 

exercise. In the control nonexercising patients, CRT by itself had no effect in 

inflammation or apoptosis. As will be presented in the next chapter, also nonrandomized 

patients who did not undergo EXT, did not also present significant benefit of CRT 

regarding these mechanisms.  

Serra et al. 531 presented evidence suggesting that chronic exercise training may improve 

cardiac function in adrenergically induced HF through anti-inflammatory effects. In their 

study, rats that had undergone a previous 12 week treadmill training programme were 

allocated to either isoproterenol or vehicle injection for 8 days. Sustained adrenergic 

stimulation caused left ventricular hypertrophy, decreased contractility and increased 

cardiomyocyte stiffness, as well as a proinflamatory environment, involving increased 

TNF-α and IL-6 expression. Regular exercise training prevented cardiac remodeling and 

suppressed myocardial inflammatory cytokine synthesis, suggesting a local anti-

inflammatory mechanism. 

There are different theories for the origin of elevation of plasmatic citokynes in HF:  

production and secretion by mononuclear cells, like macrophages 532,  secretion by 

injured cardiomyocytes or by peripheral tissues, mainly skeletal muscle cells and 

induction of TNF-α production by lipopolyssacharides due to increased edema of the 

bowel wall 161. 

Inflammatory citokynes, especially TNF-α are able to induce muscle wasting in end- 

-stage HF533 , a phenomenon due to activation of UPS (ubiquitin-proteasome system)  
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by MAPKS (mitogen activated protein kinases) and nuclear factor534. 

In LEICA trial (the Randomized Leipzig Exercise Intervention in Chronic Heart Failure 

Catabolism Study), Gielen et al. 535 concluded that 4 weeks of endurance training 

provided an excellent anabolic stimulus, with local decrease of TNF-α expression,  in 

both younger and elderly patients with heart failure and recommended EXT as a key 

component of an anticatabolic treatment approach in heart failure patients of all age 

groups. 

Other citokynes have been described to be elevated in HF, like IL-6 . In a review study of 

inflammatory citokynes in HF from Smart and Steel536, it was suggested that physical 

therapies, employing 5 sessions of exercise per week, would be most likely to reduce 

serum levels of TNF-α in HF patients, differently from IL-6. 

In our study, we confirmed these data with the decrease of TNF-α by exercise and the 

nonsignificant change of IL-6 in exercised HF patients.  

Contrarily to the data of the just mentioned review and of our study, some other 

authors have shown the relation of exercise and IL-6 increase537-538. A marked increase 

in circulating levels of IL-6 after exercise without muscle damage has been citated in the 

review paper of Pedersen537. Plasma IL-6 was described to increase in an exponential 

fashion with exercise and related to the exercise intensity and duration, to the mass of 

muscle recruited, and to one’s endurance capacity538. Research within the past few 

years has demonstrated that IL-6 mRNA is upregulated in contracting skeletal muscle539 

and that the transcriptional rate of the IL-6 gene is enhanced by exercise540. In spite of 

these findings, we did not have a significant variation of IL-6 with exercise. Also 

comparing this variation between EXTG and CG there was no significant difference. 

Adamapoulos et al. 541 demonstrated that physical training, besides the significant 

decrease in the circulating proinflammatory cytokines TNF-α and IL-6 and their soluble 

receptors (TNF-RI, TNF-RII and IL-6R), caused, as well, the decrease of soluble apoptosis 

inducer FasL and the soluble apoptosis receptor Fas, and that these beneficial effects 

might be related to the training-induced improvement in functional status of patients 

with HF, suggesting that a persistent immune activation appears to be involved in the 

impaired exercise capacity characterizing this syndrome. 

The other blood markers analysed in our study, including sFasL and sCD40, as IL-6, did 

not change significantly, neither with exercise nor with CRT only. 



135 

 

In our present study, BNP decreased in both randomized groups, with a tendency to 

significance, reflecting the benefit in HF after CRT. This variation was no statistically 

different between EXTG and CG, meaning that in this randomized group the effect of 

exercise training was not superior to the isolated effect of CRT. 

 

  Safety of HIIT Exercise in CRT-HF patients 

 

 

Several years ago, exercise was contra-indicated in heart failure. After studies on cardiac 

rehabilitation benefits post-myocardial infarction, exercise training was expanded to HF. 

Studies with exercise training programs, using moderate continuous exercise 

documented safety, with low incidence of severe events during or after training in HF 

patients, if well performed443.. 

More recently HIIT, initially questioned to be potentially less safe, was demonstrated to 

be equally safe, since adequate patients selection and exercise supervision during 

exercise is provided  542. 

In our patients, who were all monitored and supervised during exercise, we had during 

exercise no cardiac or extra cardiac complications.   

Also, regarding the issue of HIIT might negatively affect reverse remodeling, we did not 

confirm it in our patients and, on the contrary, there was some evidence of benefit, as 

already discussed.  

 

Cardiac Events at 7 months after CRT in HF patients, with and without EXT 

 

In this sub-chapter, cardiac events at 7 months after exercise program, are discussed in 

all patients: total CRT sample, randomized patients for exercise and nonrandomized 

patients.  

At 7 months after CRT (6 months after EXT), 4.95% of the HF-CRT patients died.  

Nonrandomized patients had the highest death rate (9.8%), while randomized  patients 

had 2% (exercise patients had none, CG 3.5%).  

Compared to the total CRT patients, those who went through an exercise program had 

less cardiac events than control group and nonrandomized patients.  
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The combined endpoint, death or HF hospitalization doubled in number of patients in 

the control group, compared to exercise group (4.5% EXTG vs 10.7% CG). In the total 

CRT patients sample, this rate was 13.8%, due to the higher rate of 19.6% in 

nonrandomized patients. 

The second combined endpoint, death or HF hospitalization or severe arrhythmia, 

occurred also less frequently in EXTG than in those who did not exercise (9% EXTG vs 

10.7% CG). This endpoint was also more frequent in total CRT patients (14.8%) due to 

nonrandomized patients rate (16.2%). 

We must remember that 16% of the patients with criteria for randomization reffused to 

exercise, for economical or schedule unavailability and these have been added to the 

nonrandomized patients. Hypothetically, these patients might be less cautious with 

medication taking and other health procedures, compared to those who were available 

for exercise at once. Additionally, patients who could not be randomized, mainly for 

geographical reason, were different from the randomized submitted to exercise: slightly 

older with higher rate of female, less ischemic etiology, less atrial fibrillation, shorter 

QRS length and higher rate of more severe LV dysfunction.  

 

8.2. CRT cohort study of advanced HF patients 

      Effects and mechanisms of CRT in Heart Failure patients 

 

Despite the fact that the primary purpose of this thesis was to evaluate the effect of an 

intervalic exercise protocol in HF patients submitted to CRT, we cannot forget that these 

patients present the effects of CRT, which should be evaluated, as well as the involved 

mechanisms. We must be aware that we are comparing a potentially additional effect of 

exercise to the effect of CRT intervention. This fact, may even mask the isolated effect of 

exercise in HF, because the improvement in some parameters might even have occurred 

due to CRT before the effect of exercise takes place. The additional benefit of exercise 

will only be visible if there is no positive effect of CRT or if it significantly overpasses in 

magnitude the CRT positive effect. Therefore, we consider it is adequate and necessary 

to discuss the effects of CRT verified in this cohort sample of 121 consecutive patients. 
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The HF-CRT patients sample was evaluated in total and also excluding those    patients 

(18%) who had additional exercise intervention (EXTG). The comparison between 

patients in  the EXTG and all the others CRT patients who did not perform exercise 

(NEXTG) has not the same value and significance and cannot be assumed the same way 

as the statistical comparison among the two randomized groups (EXTG and CG), 

discussed in the last chapter of results. Baseline clinical characteristics, as gender, age, 

etiology, rhythm, severity of LV dysfunction and QRS length differed in EXTG and NEXTG, 

as previously remarked.  

 

Heart Failure Responders to CRT 

 

In this chapter dedicated to the discussion of CRT effects in the cohort population, we 

begin by discussing the CRT response observed. The data obtained regarding responders 

rate is dependent on the response definition that has been used in the study. 

Echocardiographic response has been the most accepted criteria to define CRT response. 

Even so, different authors selected different echocardiographic criteria for defining what 

they considered “the best CRT response”420, as previously explained. 

The patients in this study, mostly in class III (NYHA), responded to CRT, clinically in 91 

cases, 75.6%, and echocardiographically in 77 cases, 63.9%, considering as clinical 

response the improvement of at least 1 clinical functional class (NYHA) and as 

echocardiographic response the increase of at least 5% LVEF (absolute value). Looking at 

VO2p improvement response (VO2p increase >1ml/kg/min), we observed 69 functional 

responders (62.1%). 

According to the utilized echocardiographic response criterion, we obtained a 

nonresponse rate of 36.1% in our population sample, which is in accordance to the 

literature420. 

Of course, we know that criteria of response are variable420 and if more strict 

echocardiographic criteria had been used, like the decrease of more than 15% relative 

value for LVESVol, the number of nonresponders would had been slightly increased to 

37.9%. Also, it is interesting to observe that using the functional outcome, VO2p, not 

often used as CRT response, we found out 76 CRT responders (62.8%), a very close 
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number to the echocardiographic response, although those who responded by 

echocardiography were not necessarily the same patients who responded by exercise 

testing.  

A large diversity regarding what defines “CRT responder” is present in the literature, as 

analysed by Fornwalt and coauthors420, based on 26 CRT trials. The level of agreement 

among primary end points was poor, as already stated: patients defined with “positive 

CRT response” ranged from 32% to 91%.  

It was interesting to observe in our CRT patients that simultaneous clinical and 

echocardiographic response, concordant response, was present only in 59 patients 

(48.7%), while at least one response, clinical or echocardiographically, occurred in 100 

patients (82.6%). So, the number of patients with a discordant 

clinical/echocardiographic response was 41 (33.9%),  which means that some patients 

felt better, but did not improve LVEF more than 5% and others, although having this 

LVEF improvement did not feel less symptomatic, depending on other factors, like co-

morbidities and emotional status. 

We are much aware that the clinical response by itself is nonspecific, largely subjective 

and too much dependent on different variables. Functional response, identified by VO2p 

is dependent from the peripheral component (circulation, muscles, osteoarticular 

function), as well as from the central cardiac component, so more difficult to interpret 

as a response to CRT, by itself. On the other hand, LVEF, easily obtained, despite 

influenced by preload, afterload,  HR, and affected by mitral regurgitation, is known to 

be the most widely used echocardiographic parameter and an important index of LV 

function. It is importantly associated to reverse remodeling, which has undoubtedly a 

relevant prognostic impact, as discussed before.  These are the main reasons for 

echocardiographic criteria being the most accepted for identifying the response to CRT, 

in the majority of studies. Nevertheless, the best LVEF variation to recognize those who 

are really responding is still under discussion420. 

In our study, echocardiographic response was defined as LVEF>5% absolute 

improvement, in order to including most of the patients who significantly improved LV 

systolic function. LVEF absolute increase of 6% correspond in this LV dysfunction 

population to more than 17% relative LVEF increase. Using a greater LVEF increase or a 
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large volume decrease, would restrict the range of responders, increasing response 

specificity, but certainly decreasing sensitivity for beneficial response.  

Comparing demographic and clinical variables between responders and non-responders 

in our study, there were no significant differences in the main aspects. As well, other 

investigators did not consider gender and etiology as independent predictors, when 

adjusted to LV volumes. In disagreement, some sub-analyses from randomized clinical 

trials, suggested that CRT beneficial effects on LV function and/or prognosis were 

greater in female543 and nonischemic patients544.  

Regarding all other baseline variables, responders had significantly better ANS function, 

with higher SDNN, HMRe and HMRl, less dilated LV ventricules, with smaller LVED and 

LVES volumes and better RV function with higher TAPSE, in accordance to previous 

studies545.  

The responders with greater cardiac remodeling, attested by greater improvement in 

LVEF, LV volumes and GLS, also had less combined events: death and hospital 

admissions for HF or death and hospital admissions and arrhythmias.  

It has to be remembered that 18% of these CRT treated patients also underwent an 

exercise program, which might improve response (or not), meaning that although the 

proportion of patients who only had the effect of CRT is high (82%), this cannot be 

considered as a “pure” CRT response. 

We must assume it is difficult, and most of the times not possible, to compare studies 

with different CRT response definitions and sometimes quite different population 

characteristics.  Once more, it is necessary and understandable to discuss the effects of 

CRT in this specific HF population sample, evaluated by the selected response criteria, 

complementing and helping to understand the results from the exercise controlled 

randomized trial, which is the main object of this thesis. 

 

Clinical and quality of life functional effects of CRT in Heart Failure patients 

 

In our total population sample of 121 HF-CRT patients (with 22 P submitted to exercise 

program), mean age 69.6±12.1 years, 68.5%male, 30.5 %ischemic, 74.3% in NYHA 

clinical function III/IV, an improvement in NYHA functional class was observed in 75.6.% 



140 

 

at 6 months, being the variation statistically significant (p<0.0001). This clinical benefit 

after CRT is supported in the literature since long (362). Excluding the patients who 

exercised, in the NEXTG, the rate of clinical response was 69%. It is interesting to notice 

that the rate of nonresponders in NEXTG, 31%, was more than twice superior to the 

15% rate in those who were submitted to exercise. This is consistent to the better effect 

of exercise in clinical response verified in the RCT, with a significant different rate of 

clinical nonresponse in the EXTG regarding the 21.5% rate in the CG, as previously 

demonstrated. 

In our CRT patients sample, there was no difference in this clinical benefit according to 

gender, age, etiology and severity of LV dysfunction. It is interesting to compare these 

results to those of gender-analysis performed in the patients of the Mascot study546. In 

this, despite CRT echocardiographic greater benefit in female, clinical NYHA class 

reduction was also not different regarding gender, as in our present study. 

We know that clinical responders, defined by the improvement of NYHA class, do not 

always correspond to echocardiographic responders. For this reason, and because of the 

subjectivity of the clinical endpoint by itself for CRT response547, translating the 

clinician’s impression of the patient’s functional limitation548, it has been questioned 

several times and it is clear that it should not be used alone as an outcome  measure 

reflecting clinical CRT response549. However, it is one of the most real approaches to 

patients’ daily life, reflecting functional ability and consequently manifesting an 

improvement in patients’ capacities and wellbeing. It should be carefully addressed by 

the same doctor, before and after CRT, to reduce any possible bias in questioning and 

interpreting the answer, though no standardization exists and inter-rater reliability is 

poor550.  

HF patients, besides functional symptomatic limitation, present a variety of  

psychosocial, socioeconomic and emotional concerns that affect their overall quality of 

life551,552. A quantitative more objective form to evaluate clinical benefit, wider in 

spectrum, physical and emotional, is using a questionnaire for quality of life score 

determination, despite all limitations and bias that might be involved553. Even more, self 

reported symptoms and quality of life have been reported to have prognostic value in 

HF553,554. 
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Quality of life after CRT was assessed in our study by HeartQol questionnaire, an 

instrument also used for evaluation of quality of life in heart failure patients (491), as 

already described.  

Quality of life improved very significantly in several previous studies: Mustic, Miracle, 

Miracle ICD, CARE-HF370. This improvement was not related to gender, contrarily to the 

Mustic gender analysis362.  

In our study, the significant increases of clinical functional class and HeartQol scores 

were maintained, even when patients submitted to exercise intervention were excluded 

from analysis, showing CRT beneficial effect in clinical symptoms severity and in quality 

of life. 

Echocardiographic effects and mechanisms of CRT in Heart Failure patients 

 

LV reverse remodeling after CRT was evaluated in our study by determination of LVEF, 

LV volumes, LV mass and GLS variation, as already described . 

The first evidence that CRT induces reverse remodeling, was provided by Yu et al.,  

showing that LVES and LVED volumes decreased over a period of several months of CRT 

and that this adaptation persisted, even if pacing was temporarily suspended407. It is well 

established, nowadays, that cardiac resynchronizer implant acutely changes 

haemodynamic status, improving net systolic function without affecting diastolic volume 

377,556. Posteriorly at long-term, it induces LV volumes reduction, associated with an 

increase in LVEF and LV structural reverse remodeling, as well as improvements in mitral 

regurgitation severity7,557. Randomized trials demonstrated that these changes were 

associated with improved clinical outcome7. Whether these benefits are more 

specifically due to improvements in synchrony or contractile function remains 

unknown558. 

Our patients, at 4 months after CRT onset, had an increase in median LVEF of 9.1% and 

at 7 months a slightly higher increase of 11.8% (p<0.0001), which was already expected, 

since these patients had been selected to CRT for LV function improvement, according 

to current guidelines criteria, based on multiple studies demonstrating LV function 

benefit. We know well this prognostically important effect of CRT, consistently 

confirmed by the improvement of LVEF, the most frequently used and extensively 
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studied echocardiographic LV systolic function parameter, unequivocally related with 

mortality for long559.  

This significant increase of LVEF was maintained, when the patients submitted to 

exercise intervention were excluded from analysis. Analysing separately patients who 

did not exercise (NEXTG), we continued to observe a significant increase of LVEF and 

reduction of LVES volume, at 4 and 7 months,  which related directly to the effect of 

CRT. Also, in the previously presented RCT, there was not a significant difference 

between exercise and control group regarding systolic LV function and volumes, except 

for LVES volume, whose decrease was greater in CG at 4 months, meaning that, and in 

accordance with the cohort results, exercise seems to have no additional effect to CRT 

on the magnitude of improvement of LV systolic function. We cannot state the same 

regarding echocardiographic response rate. At 7 months, 63.9.% echocardiographic 

responders were registered in the total CRT sample, in agreement with several 

studies403  while 81.2% echocardiographic responders were determined in EXTG.  

Interestingly, echocardiographic nonresponders were superior in number in the total 

population (36.1%) and in the group which did not exercise (41%), compared to those 

who exercised after CRT device implant (18,2%), in accordance with our previous RCT 

analysis. This results points out, differently from the above discussed non additional 

effect of exercise on the magnitude of improvement of LV systolic function by CRT, to a 

possible additional positive effect of exercise in reducing the number of CRT 

nonresponders. 

Regarding volumes, despite nonsignificant decrease of LVED volume at 7 months,  LVES 

volume decreased significantly at 4 and at 7 months. In the exercise group this 

significant decrease was only noticed at 7 months. These volumes might continue 

decreasing afterwards, however the present study did not include echocardiograms 

later than 7 months for the detection of late responders. A recent observational study 

showed that half of the patients who did not respond at 6-12 months, responded until 3 

years of follow-up560. 

LV mass decreased, attaining significance at 6 months, with a mean decrease of 22.85 g 

(p=0.025), as in the Miracle Study7, although this trial had a lower mean LV mass 

reduction. In our study, both the EXTG (38 g of LV mass decrease) and NEXTG (18 g of LV 
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mass decrease) showed a tendency for reduction of LV mass, probably not reaching 

significance, because of the groups dimension and   dispersion. 

Interestingly, a more recent marker of systolic LV function, GLS, more sensitive and 

more independent from other factors than LVEF, improved significantly (1.079±3.871),  

but only at 6 months.  

Few studies had examined changes in multidirectional strain, a measure of contractile 

function, after CRT, and the relationship with LV reverse remodeling561,562. Delgado et al. 

561 demonstrated, in 141 patients with HF, that improvement in global LV strain after 

CRT was a long-term effect and related to the extent of LV reverse remodeling. 

However, significant improvement in multidirectional strain and significant reverse 

remodeling were only noted in responders. More recently, the MADIT-CRT 

investigators369 demonstrated that contractile function, expressed by GLS, increased 

significantly after CRT-D compared to ICD (CRT-D: −1.4 ± 3.1% vs. ICD: −0.4 ± 2.5%, p < 

0.001). In the CRT-D group, 78% of the patients had improved contractile function to 

some extent, as measured by LV GLS. Inferior improvements in the ICD-only group were 

likely due to optimized medical therapy.  

Diastolic LV function, translated by E/e’, significantly changed (E/e’ ratio decreased, 

mean variation 3.33; p=0.039), only at 6 months, maybe reflecting that LV end diastolic 

pressures need more time to reduce significantly. In the Miracle study7, which also 

included patients with moderate-to-severe HF, besides reduction in LV volumes and 

improvement of systolic function, there was an improvement in diastolic function, 

earlier at 3 months after CRT. However, we must keep in mind  that methodology was 

different and in Miracle diastolic function was not evaluated by TDI, as it was in the 

present study. 

Left ventricular reverse remodeling, demonstrated by the echocardiographic   studied 

parameters, needed more than only 4 months to occur, being significant at 7 months, 

meaning that is a chronic effect of CRT377. Contrarly to LV remodeling, LA remodeling 

occurred earlier. LA volume decreased significantly, at 4 months (mean variation 20.25 

ml; p=0.010), maintaining a nonsignificant decrease at 7 months.  Probably, the 

decrease at 4 months of LA volume reflects, the more immediate consequence of initial 

LV mass and LVESVol reduction and LVEF increase, observed in these patients after CRT. 

Also, Ypenburg et al.563 identified at 6 months a significant reduction of LA volume after 
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CRT, though non responders did not present LA reverse remodeling. Patients who did 

exercise did not show significant reduction in LA volume. 

RA volume decreased, almost significantly at 4 months (p=0.054). Regarding right 

ventricular function, the parameter TAPSE increased almost significantly at 4 months 

(p=0.051). Both RAVol and RV function appeared to respond after 4 months, but this 

observation did not persist at 7 months, despite the fact that patients were on 

optimized therapy in the two moments. 

Our hypothesis is that there was an earlier beneficial effect of CRT on the RA and RV was 

greater earlier due to resynchronization, but it was partially lost by progression of 

cardiac and/or pulmonary subjacent disease in some of the patients. We observed, as 

well, PSAP did not change significantly after CRT, which might be explained by the same 

reason. We have no respiratory tests in these patients to confirm or exclude primary or 

secondary pulmonary function abnormalities. 

Comparing echocardiographic responders and nonresponders in all CRT patients of our 

study, we found that responders, besides a greater mean value decrease of LV volumes 

and LV mass and increase in LVEF and GLS (which are expectable), had a greater 

baseline TAPSE, a greater variation in SPAP, a greater improvement in clinical NYHA 

class and fewer composite events at 7 months. 

These data, of TAPSE and PSAP variation, attest for the importance of the right-side 

heart influence regarding CRT response, which is defined as improvement in LV systolic 

function. TAPSE was found to be a predictor of echocardiographic CRT response 

(demonstrated in paper 1, included in attachement). In this cohort of CRT patients, 

echocardiographic responders also had an improvement in magnitude of  clinical 

functional class and even more importantly in prognosis, which we know from the trials 

375. 

 

Exercise functional effects and mechanisms of CRT in Heart Failure patients 

 

For evaluating cardiac capacity in HF-CRT patients we used, as described in the 

methodology, cardiopulmonary exercise testing (CPT).  
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CPT is an important diagnostic and prognostic tool for evaluating cardiovascular 

function and offers good indicators for benefit on symptoms, prognosis and ANS in HF 

patients. 

In our patients, we observed a significant variation of VO2p, already at 3 months (median 

increase of 1.7 ml/kg/min; p=0.02), maintaining the functional benefit at 6 months 

(median increase of 1.45 ml/kg/min; p=0.04). It is well known that VO2p is the best 

parameter in CPT testing to objectively demonstrate improvement in exercise capacity, 

which is severely decreased, most of the times in advanced heart failure. Traditionally, it 

is used for risk stratification in HF patients, due to its high prognostic value564,565. 

Like VO2p, some exercise functional parameters have been evaluated in the literature 

after CRT, but just a few times were considered as response criteria and sometimes 

associated to clinical criteria420. Patients who increase more than 10% VO2p after CRT 

were considered by some authors as functional responders566, while others considered 

all those who increased VO2p at least 1 ml/kg/min, independently of the increased 

value61. In our CRT population, 76 P (62.8%) were identified as functional responders, 

considered those who improved VO2p >1ml/kg/min. In our CRT sample, VO2P, with a low 

baseline mean value of 14.3ml/kg/min, increased significantly at 4 and 7 months, while 

in EXTG it only increased significantly at 4 months. However, eventhough nonsignificant 

at 7 months, VO2p in EXTG had a median increase of 2.18 ml/kg/min, comparatively 

higher than the value of 1.45±4.84 ml/kg/min, registered in the total CRT group. The 

explanation for nonsignificance in EXTG might be related to the smaller sample of 

patients who exercised. 

Also, the CPT duration increased significantly at 4 and 7 months (p<0.0001 and p=0.002, 

respectively) and time to VAT increased significantly at 7 months after CRT (p=0.001).   

In our HF patients, functional improvement after CRT, was objectively demonstrated by 

the increase of CPT duration, time to VAT and VO2 peak. Since the beginning of this 

century, core trials, like MUSTIC362, PATH-CHF363 and MIRACLE7, had demonstrated the 

improvement of functional capacity of HF patients after CRT, through the increase of 

VO2p. 

It is interesting to notice, however, that, excluding patients who exercised and had 

increased CPT duration and time to VAT, at 4 and 7 months, patients with CRT effect 

alone (NEXTG) had only improvement in CPT duration at 4 months. Also, in the RCT, it 
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was demonstrated the additional value of exercise on functional capacity, with 

significant difference in CPT duration and time to VAT, in favour of exercise.  

It is well known that VO2p improvement depends on a central and a peripheral 

component. CRT seemed to be responsible for the central component improvement and 

HIIT additionaly was also responsible for the sustained peripheral component 

improvement. In this cohort, it looks that functional capacity improvement was 

attributed mainly to exercise after CRT. It looks understandable that in very 

deconditioned patients, the resynchronizer implant will not be enough to improve the 

peripheral component, namely the skeletal muscles function. 

Another CPT parameter, VE/VCO2 slope, with a high baseline median value of 37.9, 

decreased significantly at 4 and 7 months after CRT (p<0.0001 and p=0.003, 

respectively). The variation of this parameter maintains significant even excluding the 

exercise patients, who had already no significant variation of VE/VCO2 slope in the 

analysis of RCT.  

We know that the rate of ventilation per unit increase of carbon dioxide (VE/VCO2) in HF 

is higher than in normals individuals. Patients with slopes above the upper limits of 

normal have poorer exercise tolerance and worst prognosis565, 567. 

Both, VO2p and VEVCO2 slope, show good correlation to prognosis, with equivalent 

prognostic power and complementary prognostic information564. The baseline VO2p and 

VEVCO2 slope mean values of our patients were definitely abnormal, correlating to bad 

prognosis. CRT described effects are expected to associate with a better prognosis in 

those patients who improve VO2p and/or decrease VEVCO2   in posterior follow-up, 

which was not a purpose of evaluation in this study. 

In CPT, we also evaluated heart rate recovery at different moments of recovery, min1 

(HRR1) and min 6 (HRR6), after exercise.  

It is recognized that, as HRV analysis in 24-hours Holter, HRR in CPT is clinically used in 

noninvasive assessment procedures for the determination of cardiovascular 

parasympathetic function568. Heart rate recovery after graded exercise is one of the 

commonly used techniques, reflecting autonomic activity and predicting cardiovascular 

events and mortality, not only in cardiovascular system disorders, but also in various 

systemic disorders568.  
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During exercise, the heart rate increase is due, in part, to a reduction in vagal tone and, 

in part, to an increased sympathetic activity. Recovery of the heart rate immediately 

after exercise is a function of vagal reactivation combined to sympathetic withdrawal. A 

generalized decrease in vagal activity is known to be a risk factor for death and CV 

disease progression, so consequently the heart rate after exercise is an important 

prognostic marker569. 

A delay in HRR, indicative measure of reduced parasympathetic activity, has been 

observed before in patients with chronic heart failure568. In addition, a decrease in 

parasympathetic and/or an increase in sympathetic HRV indexes have also been 

described in patients with cardiovascular disease569. 

In our population, baseline and maximal heart rate did not change significantly, 

however the variation of HR at 1st minute and 6th min recovery regarding the peak HR, 

were significant, but only at 6 months after CRT. The improvement of HHR1 (p=0.015) 

and HHR6 (p=0.03), is in support of the modulating effect of CRT on the autonomic 

nervous system, as referred in other studies568,570, which does not look to be immediate 

and needs more than 3 months. Excluding those patients who did the exercise program, 

the significant improvement maintains. 

This might lead us to the conclusion that CRT, modulating ANS, induces a positive 

peripheral effect on the CV system in advanced heart failure patients, as might be 

responsible for the beneficial central effects, of reverse remodeling, already discussed. 

It is not immediate and takes some months to have an ANS modulation effect after CRT 

device implant. In our sample, exercise did not add benefit to CRT, regarding these 

mechanisms. 

 

Imaging autonomic system function effects in Heart Failure patients 

 

Imaging of sympathetic inervation has been performed through 123-MIBG-Cardiac 

scintigraphy. As previously mentioned and explained in this chapter, the parameters 

derived from the scintigraphic image, HMRe, HMRl and WOR,  with known prognostic 

value in HF77, have also been demonstrated to have the same value after CRT (67). 
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In our total population, we found nonsignificant variation of HMRe, HMRl and WOR  

after CRT.   

HF patients selected to CRT have different etiologies. Evaluating separately nonischemic 

cardiomyopathy patients, we found that HMR late and WOR correlated significantly 

with CRT echocardiographic response.  In this nonischemic group of CRT patients, those 

with baseline HMRl >1.5 had a 2-fold greater possibility of being an echocardiographic 

responder (FEVE>5%), compared to those with HMRl<1.5. This association of HMRl and 

LVEF>5% was confirmed by multivariate analysis (p=0.053). 

Resuming, these results indicate that advanced HF nonischemic patients with less 

innervated hearts were less prone to respond echocardiographically to CRT. 

A few studies have been performed regarding sympathetic imaging after CRT. According 

to Burri et al.571, who studied a smaller sample of 16 patients, changes in cardiac 

adrenergic activity after CRT, were noticed at 9 months, a later period of evaluation 

regarding our study. They investigated whether these changes were related to LVEF 

improvement, showing that responders only had lower 123I-MIBG washout at follow-up 

compared with non-responders, indicating improvement of cardiac sympathetic nerve 

activity after CRT in responders (p=0.036). A moderate correlation between increase in 

LVEF and decrease in 123I-MIBG washout was also demonstrated (r=0.52, p=0.04), 

concluding that CRT induced a reduction in cardiac sympathetic nerve activity in 

responders, that paralleled the improvement in LVEF, whereas non-responders did not 

show any significant changes. 

Another study572 evaluated, by 123I-MIBG cardiac scintigraphy, 30 HF patients, before 

and at 3 months after CRT, and correlated these data with CRT clinical response. The 

HMR and WOR were associated with CRT response (p=0.005 and p =0.04, respectively). 

The HMR ratio was the only independent predictor of CRT response (p=0.01), with an 

optimal cut-off point of 1.36 (sensitivity 75%; specificity 71%). They concluded that the 

improvement in autonomic nervous system activity correlated with a positive clinical 

CRT response. Lower 123I-MIBG uptake before therapy was associated with CRT 

nonresponse. The HMR could be helpful in selecting patients for CRT, at least in some 

doubtful cases.  

With a similar conclusion, Cha et al. 573 evaluated 45 HF patients with CRT- defibrillator, 

at baseline and after implant (3 and 6 months), with 123I-MIBG scintigraphy. After CRT, 
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NYHA class and LVEF improved. Along with improvement in SDNN and SDANN, HMR 

increased (1.82±0.58 vs 1.97±0.59; p=0.03), whereas the mean  washout rate was 

reduced (48%±19% vs 37%±22%; p=0.01). Compared with nonresponders, responders 

had a higher HMRl (2.11 vs 1.48; p=0.003) and lower washout rate (37% vs 62%; 

p=0.003) at baseline. These authors concluded that CRT improved sympathetic function, 

assuming that cardiac sympathetic reserve may be a marker for the reversibility of the 

failing myocardial function. 

The two previous studies showed an association of low cardiac inervation with CRT 

nonresponse, which is very similar to our results in the nonischemic HF patients. 

Other authors 574, also evaluated nonischemic HF patients, 37 P, who underwent CRT, 

before and 7 months after CRT. In responders (≥15% absolute decrease in LVES Vol)  the 

mean HMRl was significantly increased (p<0.05) and serum levels of hs-CRP were 

decreased (p<0.01). Such improvements were not observed in nonresponders. Stepwise 

multiple regression analysis showed that the reduction in hs-CRP level was 

independently associated with the increase in the HMRl. These authors demonstrated 

that cardiac sympathetic nervous dysfunction and systemic inflammation were both 

improved in nonischemic HF patients responders to CRT. Furthermore, the reduction in 

systemic inflammation was associated with the improvement in cardiac sympathetic 

nervous dysfunction. Contrarily, in our study, we did not demonstrate in this 121 

patients sample an increase in HMRl, nor a reduction of inflammation after CRT. We 

may hypothesize that with a longer period after cardiac resynchronizer implant we 

might had obtained an improvement in autonomic nervous system and possibly in 

inflammatory parameters, at least in some subgroups of these patients, namely in 

nonischemic cardiomyopathy.  

 

Endothelial effects of CRT in Heart Failure patients 

 

Benefits on endothelial function after CRT have been demonstrated, which is 

prognostically important401. 

In our study, the endothelial studied parameters, RHI, AI and AI@75, did not vary 

significantly after CRT. Also, NO variation did not reach statistical significance. 
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Nevertheless, RHI baseline mean value was low (1.58), indicating endothelial 

dysfunction and increased after CRT to a mean value superior to 1.67, the cut-point of 

normality for endothelial function by RHI, which may have an impact on prognosis. 

 

Inflammation, Apoptosis and HF biomarkers effects in Heart Failure patients 

 

CRT did not present considerable beneficial effects on markers of inflammation and 

apoptosis in the total CRT population sample. We even observed a significant increase 

of CD40 at M2, which disappeared at M3. BNP and hs-CRT decreased but 

nonsignificantly.  

It is known that the effect of cardiac resynchronization therapy (CRT) on systemic 

inflammation change associated with heart failure is not well characterized575-577. Some 

studies575, showed the lack of effect after 3 and 12 months of CRT therapy on plasma 

levels of inflammatory markers such as TNF-α and IL-6, as happened in this sample of 

patients CRT treated HF patients.  

Contrarily, as already described, others observed that CRT had a positive effect on 

inflammation, namely in reducing hs-RCP level578. 

 

 

 

 

Effects in patients with CRT without Exercise 

 

As already explained, besides the analysis performed regarding exercise effects after CRT 

in the randomized controlled trial, we decided to evaluate the isolated effect of CRT in 

the patients who did not exercise. In this evaluation, despite the non randomization, we 

enlarged the group of patients with CRT who did not do any exercise program. 

Just to summarize, what has been already reported and debated along the discussion 

chapter (cohort study subchapter), the results in the randomized controlled trial are not 

comparable to those in the cohort study. A greater proportion of female and 

nonischemic were present in the group of patients who did not exercise (NEXT).  
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Patients who did not exercise, had at 7 months (M3) after CRT a significant increase of 

NYHA, LVEF and Heartqol scores, as exercise patients. Differently from these, people 

who did not exercise had GLS and VE/VCO2 significantly improved.  

Also, inflammatory and apoptosis markers did not have significant variation, they 

increased in patients who did not exercise, while in the EXTG there was a significant 

decrease of TNF-α, calling attention, once more, for the effect of exercise on 

inflammation as an additional beneficial mechanism to CRT. 

Comparatively to those who exercised, the NEXTG had an inferior number of clinical  

(71% NETXG vs95% EXTG; p=0.017) and echocardiographic responders (69.7% NEXTG 

vs77.3% EXTG; p=ns) and less improvement in clinical functional class and in functional 

capacity, with inferior CPTdur (p=0.001) and VATtime (p=0.000).  

We must be aware that these results are only based on an observational study, without 

a homogeneous population with EXT, differently from the RCT, nevertheless they were 

quite similar in conclusions to those found in the randomized clinical trial.  

 

9. LIMITATIONS AND STRENGHTS 

 

The strengths of this thesis, in order to respond to our hypothesis, are here described. 

Strenghts: the large sample size of advanced HF patients submitted to CRT, exhaustively 

studied, enrolled in one single-center, which assures uniformity in patients evaluation 

and treatment; the great number of variables, measured before and after 

resynchronization, mostly including two moments after CRT (4 and 7 months);  the use 

of a specific and innovative intervalic high intensity exercise training protocol (HIIT), 

hypothetically better for central cardiac improvement, for long duration intervention, 

uniformly applied to advanced heart failure patients treated by CRT, allowing to study 

not only the additional effects of HIIT for a period of 6 months and effects of CRT for 7 

months, but also the mechanisms for exercise and CRT intervention in heart failure; the 

possibility to evaluate in-hospital, under continuous monitoring and surveillance, the 

potential limitations and complications of exercise training, mainly HIIT, in these subsets 

of patients and the prognosis at 7 months after CRT. 



152 

 

Limitations: the small number of patients who were randomized and accepted to 

perform HIIT, though in the literature, by the time this study was done, there were just 

a few studies with HIIT in HF-CRT patients, with very small numbers, inferior to ours; the 

number of exercise sessions, once the initial HIIT protocol was planned to include 3 

sessions per week on alternate days, however finally only two sessions per week were 

considered, because of patients’ different kinds of limitations, namely economical and 

job-related, which could compromise participation and adherence. 

Even so, despite the limitations, it may allow to understand the effects of this type and 

volume of exercise training in this very selected group of advanced HF-CRT patients. 
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10. CONCLUSION 

 

In this randomized controlled trial, evaluating a high intensity interval training exercise 

protocol for 6 months in a sample of patients with advanced HF, with severe LV systolic 

dysfunction and multiple etiology, selected for CRT according to the current guidelines, 

the exercise intervention demonstrated to add benefit to CRT and to be safe, without 

major complications resulting from the exercise program.  

Clinical functional improvement had a greater magnitude in patients who exercised. The 

proportion of clinical and echocardiographic responders was greater in the group of 

exercise, with identical improvement in quality of life.  

The functional capacity improvement benefit was greatly dependent on HIIT, as 

demonstrated by the prolonged CPT duration and time to VAT. 

The HIIT effect on reverse remodeling, was strongly suggested by the occurrence of less 

echocardiographic nonresponders and by the LV mass decrease of more than 3-fold, 

regarding the CG, at 6 months, in the EXTG. This effect did not reach statistical 

significance, most probably due to the dimension of the sample. Increasing the number 

of patients or prolonging the exercise program, possibly would increase the magnitude 

of the effect and might confer statistical significance to this positive modification.   

Regarding pathophysiologic mechanism inflammation, which play a central role in the 

aggravation of HF, this was positively influenced by exercise, illustrated by the 

significant decrease of TNF-α only after 6 months of HIIT. 

Additionally to the RCT, in the cohort study, which included all the CRT treated HF 

patients in the sample, with and without exercise, beneficial effects on quality of life, LV 

reverse remodeling and functional capacity were also observed after CRT. Mechanisms 

involved, like ANS dysfunction, were linked to the improvement observed in 

nonischemic DCM after CRT, with less denervated heart patients responding more to 

resynchronization regarding the improvement of LV systolic function.  

Finally, major cardiac events at the end of the exercise training program, at 7 months 

after CRT implant, including death and hospitalization, were inferior in number 

relatively to those occurred in patients who did not exercise.  
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Globally, the results of this thesis, suggest frankly, that exercise training treatment 

should be added, after CRT, as a protocol, in the modality of HIIT, whenever possible, at 

least twice a week, 60 minutes sessions, ideally maybe 3 times a week,  including 

resistance (strength) training, in order to decrease the number of clinical and 

echocardiographic nonresponders, with additional benefit on symptoms,  exercise 

functional capacity and inflammation, possibly decreasing the number of cardiac events.  

Additionaly HIIT did not exert deleterious effect on cardiac remodeling and, on the 

contrary, the present results point to a possible benefit on reverse remodeling.  Even 

more, considering that CRT is an expensive therapy aimed to benefit selected HF 

patients, but knowing in advance that more than 30% will not respond, it looks 

mandatory to use an easily available, unexpensive, nonpharmacologic therapy as 

exercise, which only needs unexpensive tools, physical space, an organized team and 

adherent patients to reduce the number of CRT nonresponders. 

Larger series with HIIT in HF-CRT patients will be needed to confirm these results.   

 

11. FUTURE DIRECTIONS 

 

Next studies will be needed to address issues like, whose patients will benefit most from 

HIIT exercise after CRT, what is the best exercise training protocol for these CRT 

patients, how can we increase adherence to exercise, if the increase of HIIT program 

duration modify results, should strength training be increased and what is the best 

intensity and modality exercise protocol for these patients. 

Also, identifying which are the best parameters to define non CRT responders and what 

is the best way of identifying response to CRT, will be important. 

The results obtained in this sample and the possible need for longer exercise program 

and longer evaluation (1 year) needs to be confirmed 

 in a larger population. 
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