
Ricardo Jorge Pratas Guilherme

Licenciado em Matemática

A coalgebraic approach to fuzzy automata

Dissertação para obtenção do Grau de Mestre em

Matemática e Aplicações - Álgebra, Lógica e Computação

Orientador: Prof. Doutor Luís Fernando Lopes Monteiro, Profes-
sor Catedrático (aposentado), Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa

Co-orientador: Prof. Doutor António José Mesquita da Cunha
Machado Malheiro, Professor Auxiliar, Faculdade de
Ciências e Tecnologia da Universidade Nova de
Lisboa

Júri

Presidente: Prof. Doutor Vitor Hugo Bento Dias Fernandes
Arguente: Prof. Doutor Paulo Alexandre Carreira Mateus

Vogal: Prof. Doutor Luís Fernando Lopes Monteiro

Março, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157633991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A coalgebraic approach to fuzzy automata

Copyright © Ricardo Jorge Pratas Guilherme, Faculdade de Ciências e Tecnologia, Uni-

versidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to thank my thesis advisor Prof. Luís Monteiro. His knowledge and patience

were key to introduce me to the Coalgebra Theory. His support and guidance helped me

throughout the research and writing of this thesis. I would like to express my sincere

gratitude for being my supervisor in the research project QAIS (see below), where the

research for this thesis has been done.

I would also like to thank my thesis co-advisor Prof. António Malheiro. His sugges-

tions and encouragement helped me throughtout the process of structuring and writing

this thesis. His successive reviews of the writing allowed me to submit a better thesis.

I would also like to thank Prof. João Nuno Gonçalves Faria Martins. His mentoring

on Category Theory was very important in the research and the writing of this thesis.

Whenever I needed help, Prof. João Martins was available either in his office or by email.

Unfortunately, for bureaucratic reasons, Prof. João Martins could not be accounted as

co-advisor, although he acted as one.

I would also like to thank the Departamento de Matemática da Faculdade de Ciências e

Tecnologia da Universidade Nova de Lisboa. In particular, I would like to acknowledge all

the professors who taught me making my last seven years in this department wonderfull.

Finally, I must thank my parents and my sister. Their unfailing support makes my life

easier allowing me to focus on what is really important.

I, the author, was funded by FCT under the project QAIS: Análise quantitativa de sistemas
reactivos: fundamentos e algoritmos, PTDC/EIA-CCO/122240/2010.

v

Abstract

In this thesis, we make a coalgebraic description of fuzzy automata allowing their inte-

gration in much general context. Thus, results obtained indivudually to fuzzy automata

end up to be consequence of their coalgebraic description. In particular, a coalgebraic

definition of the fuzzy language recognized by a fuzzy automaton is obtained. And, by

defining a monad for fuzzy sets, a functor that describes a determinization process via a

generalization of the powerset construction is obtained.

Keywords: Fuzzy automaton, Fuzzy language, Coalgebra, Determinization, Fuzzy set,

Fuzzy relation

vii

Resumo

Nesta tese, faz-se uma abordagem co-algébrica aos autómatos vagos, permitindo a sua

integração num contexto mais geral. Deste modo, resultados obtidos especificamente

para autómatos vagos são consequência da descrição co-algébrica elaborada. É obtida

uma definição co-algébrica da linguagem vaga reconhecida por autómatos vagos e, com a

definição de uma mónada para os conjuntos vagos, é obtido um functor que descreve um

processo de determinização para os autómato vagos.

Palavras-chave: Autómato vago, Linguagem vaga, Co-álgebra, Determinização, Conjunto

vago, Relação vaga

ix

Contents

1 Introduction 1

2 Categories 3

2.1 Basics on categories . 3

2.1.1 Products . 4

2.1.2 Coproducts . 6

2.1.3 Pullbacks . 7

2.1.4 Pushouts . 12

2.2 Monads and Kleisli triples . 14

2.3 Algebras for a monad . 19

2.3.1 Generalizing morphism extension to the algebras of a monad . . . 21

2.3.2 Functor liftings to the Eilenberg-Moore category of a monad . . . 22

3 Coalgebras 27

3.1 The category of coalgebras . 27

3.2 Final coalgebras . 34

3.3 Determinization . 37

4 Fuzzy sets 45

4.1 Residuated lattices . 45

4.1.1 K-modules . 50

4.2 Fuzzy sets . 55

4.2.1 Fuzzy relations . 57

4.2.2 The K-module of fuzzy sets . 59

4.3 A monad for fuzzy sets . 61

4.3.1 Z-algebras are K-modules . 62

5 Fuzzy automata 71

5.1 Coalgebras for fuzzy automata . 71

5.1.1 Crisp-deterministic fuzzy automata 74

5.2 Fuzzy languages . 76

5.3 A final coalgebra for crisp-deterministic fuzzy automata 77

5.4 Determinization of fuzzy automata . 80

xi

CONTENTS

5.4.1 Recognizing fuzzy languages . 85

5.5 Bisimulations for fuzzy automata . 90

5.5.1 Quotient fuzzy automata . 92

Bibliography 97

xii

C
h
a
p
t
e
r

1
Introduction

In Computer Science, an adequate algebraic formalization for general discrete algebraic

systems, in addition accommodating the a) classical notions of automata, b) formal lan-

guages and computatibily, c) computation models for programming languages semantics,

has proven to be a difficult task. Recently this difficulty was overcome by using the theory

of coalgebras.

From a categorical point of view the notion of a coalgebra is dual to that of an alge-

bra. The axioms of coalgebras are exactly dual to the axioms of algebras of a functor in

Category Theory. Thus, the Theory of Coalgebras is a subject in the Category Theory.

Fuzzy automata are a type of transition system, where sets and relations are fuzzy. Sev-

eral transition systems are already studied from a coalgebraic point of view (e.g. [Rut00;

Sil+13]), therefore our coalgebraic description of fuzzy automata integrates them in a

much general context. This framework allowed us to obtain the following main results:

a) a coalgebraic definition of the fuzzy language recognized by a fuzzy automaton, b) the

definition of a functor that describes the determinization process of a fuzzy automata

via a generalization of the powerset construction, c) a coalgebraic definition of bisimu-

lation on fuzzy automata allowing the construction of a quotient fuzzy automaton. To

achieve these results, a generalization of the powerset monad and its algebras were ob-

tained for fuzzy sets. We obtained more results such as a coalgebraic description of trace

equivalence, namely bisimilarity, behaviour and semantical state equivalence for fuzzy

automata, but they were not included in this thesis for time reasons.

1

C
h
a
p
t
e
r

2
Categories

In this chapter, we present some basic definitions in Category Theory. We assume that

the foundations of the theory are known, such as the definitions of category and functor.

See [Adá+90; ML98] for a full introduction.

In Section 2.1, we introduce most of the notation that will be used in the rest of the

thesis, we also present some basic results that will be useful further. In Section 2.2, we

construct a one-to-one correspondence between monads and Kleisli triples allowing us

to use either of the concepts depending on the context. Finally, in Section 2.3, we present

the category of the algebras of a monad and then show how morphism can be extend and

functors can be lifted to this category.

2.1 Basics on categories

Let C be a category, we denote the classes of its objects and morphisms by Ob(C) and

Mor(C), respectively. For simplicity, we write X ∈ C for X ∈ Ob(C) and f in C for f ∈
Mor(C). Unless specified beforehand, X, Y and Z are arbitrary objects in (a context

category) C. We denote by C(X,Y) the set of morphisms from X to Y , i.e. with domain

X and codomain Y , in C, and adopt the arrow notation f : X → Y or X
f
−→ Y to denote

f ∈ C(X,Y). Also, we denote the indentity morphism on X by idX , and given morphisms

f : X → Y and g : Y → Z, we write g ◦ f for their composition (from X to Z). The

notation X � Y means that X is isomorphic to Y , i.e. there are morphisms f : X→ Y and

f −1 : Y → X such that f −1 ◦ f = idX and f ◦ f −1 = idY .

Given categories D and E, to denote a functor F from C to D we also use the arrow

notation F : C→D or C
F−→D. However, for functors F : C→D and G : D→ E, we write

simply GF for their composition (from C to E). For a functor T : C→ C on C, we define

3

CHAPTER 2. CATEGORIES

inductively

T 0 = IdC and T n+1 = T T n, n ∈ N,

where IdC is the identity functor on C and N = {0,1,2, . . . } is the set of natural numbers.

We consider Set to be the category with objects all sets, morphisms all functions

between them and the usual function composition. For sets X and Y , instead of Set(X,Y),

we write Y X to denote the set of all functions from X to Y . We also consider that a number

n ∈ N may represent a set with exactly n elements, namely 1 = {∗} and 2 = {0,1}. Note that

X � Y means that there is a bijection from X to Y .

Finally, when we consider a family (ai)i∈I , unless said otherwise, it is a set-indexed

family, i.e. I is a set. A family (fi : Xi → Yi)i∈I denotes a family of morphisms (fi)i∈I such

that fi : Xi → Yi , for each i ∈ I .

2.1.1 Products

Definition 2.1. Let X and Y be objects in a category C. A product of X and Y is a pair

(P , (pX ,pY)) consisting of an object P ∈ C and morphisms pX : P → X and pY : P → Y in

C (called the projections), such that for any object Q ∈ C and morphisms qX :Q→ X and

qY :Q→ Y in C, there exists a unique morphism h :Q→ P which makes the diagram

Q

X P Y

qX qY

pX pY

h

commute, i.e. qX = pX ◦ h and qY = pY ◦ h. Since a product (when exists) is unique up to

isomorphism, we denote P by X ×Y and h by 〈qX ,qY 〉.
In general, a product of a family (Xi)i∈I of objects in C, indexed by a set I , is a pair

(
∏
i∈I Xi , (pi)i∈I), where

∏
i∈I Xi ∈ C and (pj :

∏
i∈I Xi → Xj)j∈I , such that for any object

Q ∈ C and family of morphisms (qi : Q → Xi)i∈I in C, there exists a unique morphism

〈qi〉i∈I :Q→
∏
i∈I Xi satisfying qj = pj ◦ 〈qi〉i∈I , for each j ∈ I .

Let X and Y be objects in a category C and assume that their product (X ×Y , (pX ,pY))

exists. If h : Q → X × Y is a morphism in C, then h is unambiguously determined by

qX = pX ◦ h :Q→ X and qY = pY ◦ h :Q→ Y , since h = 〈qX ,qY 〉. Therefore, any morphism

from an object Q ∈ C to a product X ×Y will be usually described by its composition with

the projections.

Given objects X,X ′ ,Y ,Y ′, for which products (X × Y , (pX ,pY)) and (X ′ × Y ′ , (pX ′ ,pY ′))
exist, and morphisms f : X→ X ′ and g : Y → Y ′ in a category C, we define f ×g : X ×Y →
X ′ ×Y ′ to be the only morphism that makes commutative the following diagram

4

2.1. BASICS ON CATEGORIES

X ×YX Y

X ′ ×Y ′X ′ Y ′,

pX pY

f × gf g

pX ′ pY ′

and so f × g = 〈f ◦ pX , g ◦ pY 〉.
In Set, a product of any sets X and Y exists and it corresponds (up to bijection) to the

cartesian product

X ×Y = {(x,y) | x ∈ X,y ∈ Y },

with the respective projections

pX(x,y) = x and pY (x,y) = y, (x,y) ∈ X ×Y .

Given functions qX :Q→ X and qY :Q→ Y , we have that

〈qX ,qY 〉(z) = (qX(z),qY (z)), z ∈Q.

And, for any functions f : X→ X ′ and g : Y → Y ′, we have that

(f × g)(x,y) = (f (x), g(y)), (x,y) ∈ X ×Y .

Note that, for sets X, Y and Z,

ZX×Y � (ZY)X .

The process that maps a function f : X × Y → Z to a function fc : X → ZY , such that

fc(x)(y) = f (x,y) (with x ∈ X and y ∈ Y), is called currying1. On the other hand, the

inverse process which maps a function f : X→ ZY to a function fu : X ×Y → Z, such that

fu(x,y) = f (x)(y) (with (x,y) ∈ X ×Y), is called uncurrying. For the sake of simplicity, we

drop the subscript letters (c and u) letting f denote both functions, where the context

identifies which is being used.

Finally, the product of a family of sets (Xi)i∈I , indexed by a set I , is again the (general)

cartesian product ∏
i∈I
Xi = {(xi)i∈I | xi ∈ Xi for each i ∈ I}

together with the projections (pj :
∏
i∈I Xi → Xj)j∈I where pj(xi)i∈I = xj . For a family of

functions (qi :Q→ Xi)i∈I , we have 〈qi〉i∈I (z) = (qi(z))i∈I , for all z ∈Q.

1a common term in functional programming, named after H. B. Curry who introduced the method.

5

CHAPTER 2. CATEGORIES

2.1.2 Coproducts

Definition 2.2. Let X and Y be objects in a category C. A coproduct of X and Y is a pair

(K, (kX , kY)) consisting of an object K ∈ C and morphisms kX : X → K and kY : Y → K in

C (called the coprojections), such that for any object L ∈ C and morphisms lX : X→ L and

lY : Y → L, there exists a unique morphism h : K → L which makes the diagram

X K Y

L

kX

lX

kY

lY
h

commute, i.e. lX = h ◦ kX and lY = h ◦ kY . Since a coproduct (when exists) is unique up to

isomorphism, we denote K by X +Y and h by [lX , lY].

In general, a coproduct of a family (Xi)i∈I of objects in C, indexed by a set I , is a pair

(
∑
i∈I Xi , (ki)i∈I), where

∑
i∈I Xi ∈ C and (kj : Xj →

∑
i∈I Xi)j∈I , such that for any object

L ∈ C and family of morphisms (li : Xi → L)i∈I in C, there exists a unique morphism

[li]i∈I :
∑
i∈I Xi → L satisfying lj = [li]i∈I ◦ kj , for each j ∈ I .

We remark that coproducts could be defined as the dual of products. In that case,

(K, (kX , kY)) is a coproduct of X and Y in a category C if it is a product of X and Y in the

opposite category Cop [Adá+90, Definition 3.5]. Also, the following notes are dual to the

ones done for products.

Let X and Y be objects in a category C and assume that their coproduct (X+Y , (kX , kY))

exists. If h : X + Y → L is a morphism in C, then h is unambiguously determined by

lX = h ◦ kX : X → L and lY = h ◦ kY : Y → L, since h = [lX , lY]. Therefore, any morphism

from a coproduct X + Y to an object L ∈ C will be usually described by its composition

with the coprojections.

Given objects X,X ′ ,Y ,Y ′, for which coproducts (X +Y , (kX , kY)) and (X ′ +Y ′ , (kX ′ , kY ′))

exist, and morphisms f : X→ X ′ and g : Y → Y ′ in a category C, we define f +g : X +Y →
X ′ +Y ′ to be the only morphism that makes commutative the following diagram

X +YX Y

X ′ +Y ′X ′ Y ′,

kX kY

f + gf g

kX ′ kY ′

and so f + g = [kX ′ ◦ f ,kY ′ ◦ g].

In Set, a coproduct of any sets X and Y exists and it corresponds (up to bijection) to

the disjoint union

X +Y = (X × {1})∪ (Y × {2}) = {(x,1) | x ∈ X} ∪ {(y,2) | y ∈ Y },

6

2.1. BASICS ON CATEGORIES

with the respective coprojections (also known as canonical injections)

kX(x) = (x,1) and kY (y) = (y,2), x ∈ X, y ∈ Y .

Given functions lX : X→ L and lY : Y → L, we have that

[lX , lY](z, i) =

lX(z) if z ∈ X,i = 1

lY (z) if z ∈ Y , i = 2,
(z, i) ∈ X +Y .

And, for any functions f : X→ X ′ and g : Y → Y ′, we have that

(f + g)(z, i) =

(f (z), i) if z ∈ X,i = 1

(g(z), i) if z ∈ Y , i = 2,
(z, i) ∈ X +Y .

In general, the coproduct of a family of sets (Xi)i∈I , indexed by a set I , is again the

(general) disjoint union ∑
i∈I
Xi =

⋃
i∈I

(Xi × {i}) = {(x, i) | x ∈ Xi , i ∈ I}

together with the coprojections (kj : Xj →
∑
i∈I Xi)j∈I where kj(x) = (x, j). For a family of

function (li : Xi → L)i∈I , we have [li]i∈I (x, j) = lj(x), for all (x, j) ∈
∑
i∈I Xi .

2.1.3 Pullbacks

Definition 2.3. Let f : X→ Z and g : Y → Z be morphisms with the same codomain in a

category C. A pullback of f and g is a pair (P , (pX ,pY)) consisting of an object P ∈ C and

morphisms pX : P → X and pY : P → Y in C such that the diagram

P X

Y Z

pX

pY f

g

commutes, i.e. f ◦ pX = g ◦ pY , and for any object P ′ ∈ C and morphisms p′X : P ′→ X and

p′Y : P ′→ Y with f ◦ p′X = g ◦ p′Y , there exists a unique morphism h : P ′→ P which makes

the diagram

P ′

P X

Y Z

pX

pY f

g

p′X

p′Y

h

7

CHAPTER 2. CATEGORIES

commute, i.e. p′X = pX ◦ h and p′Y = pY ◦ h. If we do not require h to be unique (for each

object and morphisms), then (P , (pX ,pY)) is called a weak pullback.

Let f : X → Z and g : Y → Z be morphisms in a category C. We remark that if

(P , (pX ,pY)) and (P ′ , (p′X ,p
′
Y)) are pullbacks of f and g, then there is an isomorphism

h : P ′ → P with p′X = pX ◦ h and p′Y = pY ◦ h, and so a pullback (when exists) is unique

up to isomorphism. Although this does not apply to weak pullbacks, we still have the

following result.

Theorem 2.4. Let (P , (pX ,pY)) be a weak pullback of morphisms f : X→ Z and g : Y → Z in
a category C. A pair (W, (wX ,wY)), where W ∈ C, wX : W → X and wY : W → Y , is a weak
pullback of f and g if, and only if, f ◦wX = g◦wY and there is h : P →W such that pX = wX ◦h
and pY = wY ◦ h, i.e. the following diagram is commutative

P

W X

Y Z.

wX

wY f

g

pX

pY

h

Proof. Assume that (W, (wX ,wY)) is a weak pullback of f and g. In particular, f ◦wX =

g ◦wY . Since (P , (pX ,pY)) is a weak pullback, f ◦ pX = g ◦ pY . Thus, there is h : P → W

which makes the diagram

P

W X

Y Z

wX

wY f

g

pX

pY

h

commute, i.e. pX = wX ◦ h and pY = wY ◦ h, due to (W, (wX ,wY)) be a weak pullback of f

and g.

Conversely, suppose that f ◦wX = g ◦wY , and let h : P →W be such that pX = wX ◦ h
and pY = wY ◦ h. If P ′ ∈ C, p′X : P ′→ X and p′Y : P ′→ Y are such that f ◦ p′X = g ◦ p′Y , then

there is h′ : P ′→ P which makes the diagram

8

2.1. BASICS ON CATEGORIES

P ′

P

W X

Y Z

wX

wY f

g

pX

pY

p′X

p′Y

h′

h

commute, since (P , (pX ,pY)) is a weak pullback. Therefore, (W, (wX ,wY)) is a weak pull-

back of f and g.

In Set, a pullback of any functions f : X → Z and g : Y → Z exists. For instance, a

pullback of f : X→ Z and g : Y → Z is the set

P = {(x,y) ∈ X ×Y | f (x) = g(y)}

together with the projections (restricted to P) pX : P → X and pY : P → Y defined by

pX(x,y) = x and pY (x,y) = y, (x,y) ∈ P .

Since any other pullback of f and g is bijective to (P , (pX ,pY)), we will use it by default.

Example 2.5. In Set, let f : X→ Y be a function. A pullback of f with itself is formed by

ker(f) = {(x,y) ∈ X ×X | f (x) = f (y)},

the kernel of f , and the projections (restricted to ker(f)) p1 : ker(f)→ X and p2 : ker(f)→
X where

p1(x,y) = x and p2(x,y) = y, (x,y) ∈ ker(f).

Definition 2.6. Let C and D be categories, and let f and g be morphisms with common

codomain in C. A functor F : C→D is said to preserve (weak) pullbacks of f and g provided

that for every (weak) pullback (P , (pX ,pY)) of f and g in C, (F(P), (F(pX),F(pY))) is a (weak)

pullback of F(f) and F(g) in D.

If F : C→D preserves (weak) pullbacks of any two morphisms with common codomain

in C, then F is said to preserve (weak) pullbacks.

Note that if F : C→ D and G : D→ E are functors that preserve (weak) pullbacks,

then their composition GF : C→ E also preserves (weak) pullbacks.

The following result will be very useful when proving that a specific functor preserves

weak pullbacks.

9

CHAPTER 2. CATEGORIES

Theorem 2.7. Let F : C→ D be a functor between categories C and D, and let f : X → Z

and g : Y → Z be morphisms in C. If there is a weak pullback (P , (pX ,pY)) of f and g such
that (F(P), (F(pX),F(pY))) is a weak pullback of F(f) and F(g) in D, then F preserves weak
pullbacks of f and g.

Proof. Suppose (P , (pX ,pY)) is a weak pullback of f and g such that (F(P), (F(pX),F(pY)))

is a weak pullback of F(f) and F(g). Let (W, (wX ,wY)) be any weak pullback of f and g,

then there is h : P →W which makes the diagram

P

W X

Y Z

wX

wY f

g

pX

pY

h

commute, by Theorem 2.4. Thus, the following diagram is also comutative

F(P)

F(W) F(X)

F(Y) F(Z),

F(wX)

F(wY) F(f)

F(g)

F(pX)

F(pY)

F(h)

and so (F(W), (F(wX),F(wY))) is a weak pullback of F(f) and F(g), by Theorem 2.4. There-

fore, F preserves weak pullbacks of f and g.

As we have already seen, in Set there are pullbacks of any two functions with common

codomain. By Theorems 2.4 and 2.7, to prove that a functor F : Set→ Set preserves weak

pullbacks, it is sufficient to show that for any functions f : X→ Z and g : Y → Z there is

h : P ′→ F(P) which makes the diagram

P ′

F(P) F(X)

F(Y) F(Z)

F(pX)

F(pY) F(f)

F(g)

pF(X)

pF(Y)

h

10

2.1. BASICS ON CATEGORIES

commute, where (P , (pX ,pY)) is a pullback of f and g, and (P ′ , (pF(X),pF(Y))) is a pullback

of F(f) and F(g).

Example 2.8. (i) Let A be a set. Consider the functor F = (−)A : Set→ Set which maps

a set X to the set XA of all functions from A to X, and maps each function f : Y → Z to

f A = f ◦ (−) : Y A→ ZA, where

f A(h) = f ◦ h, h ∈ Y A.

Given functions f : X→ Z and g : Y → Z, let (P , (pX ,pY)) be their pullback, where

P = {(x,y) ∈ X ×Y | f (x) = g(y)},

and pX and pY are the projections (restricted to P). Also, let (P ′ , (pXA ,pY A)) be the pullback

of f A and gA, where

P ′ = {(h,k) ∈ XA ×Y A | f A(h) = gA(k)} = {(h,k) ∈ XA ×Y A | f ◦ h = g ◦ k},

and pXA and pY A are the projections (restricted to P ′). Note that, if (h,k) ∈ P ′, then

(h(a), k(a)) ∈ P , for any a ∈ A. Define i : P ′→ P A which maps each (h,k) ∈ P ′ to i(h,k) : A→
P defined by

i(h,k)(a) = (h(a), k(a)), a ∈ A.

Thus, the diagram

P ′

P A XA

Y A ZA

pAX

pAY f A

gA

pXA

pY A

i

commutes, which implies that (P A, (pAX ,p
A
Y)) is a weak pullback, by Theorem 2.4. Conse-

quently, F preserves weak pullbacks, by Theorem 2.7.

(ii) Let B be a set. Consider the functor F = B × (−) : Set→ Set which maps each set

X to B×X and each function f to idB×f . Given functions f : X → Z and g : Y → Z, let

(P , (pX ,pY)) be their pullback (as defined in (i)). Also, let (P ′ , (pB×X ,pB×Y)) be the pullback

of idB×f and idB×g, where

P ′ = {((b,x), (b′ , y)) ∈ (B×X)× (B×Y) | idB×f (b,x) = idB×g(b′ , y)}

= {((b,x), (b′ , y)) ∈ (B×X)× (B×Y) | b = b′ , f (x) = g(y)},

11

CHAPTER 2. CATEGORIES

and pB×X and pB×Y are the projections (restricted to P ′). Note that ((b,x), (b′ , y)) ∈ P ′ if,

and only if, b = b′ and (x,y) ∈ P . Define h : P ′→ B× P by

h((b,x), (b′ , y)) = (b, (x,y)), ((b,x), (b′ , y)) ∈ P ′ .

Thus, the diagram

P ′

B× P B×X

B×Y B×Z

idB×pX

idB×pY idB×f

idB×g

pB×X

pB×Y

h

commutes. By Theorems 2.4 and 2.7, we have that F preserves weak pullbacks. Moreover,

since h is a bijection, (B × P , (idB×pX , idB×pY)) is a pullback of idB×f and idB×g, and

therefore F preserves pullbacks.

(iii) By composing the functors of the previous examples, we have that the functor

B× (−)A : Set→ Set also preserves weak pullbacks, for any sets A and B.

2.1.4 Pushouts

Definition 2.9. Let f : Z → X and g : Z → Y be morphisms with the same domain in a

category C. A pushout of f and g is a pair (V , (vX ,vY)) consisting of an object V ∈ C and

morphisms vX : X→ V and vY : Y → V in C, such that the diagram

Z X

Y V

f

g vX

vY

commutes, i.e. vX ◦ f = vY ◦ g, and for any object V ′ ∈ C and morphisms v′X : X→ V ′ and

v′Y : Y → V ′ with v′X ◦ f = v′Y ◦ g, there exists a unique morphism h : V → V ′ which makes

the diagram

12

2.1. BASICS ON CATEGORIES

Z X

Y V

V ′

f

g vX

vY

v′X

v′Y

h

commute, i.e. v′X = h ◦ vX and v′Y = h ◦ vY .

Observe that a pushout is the dual notion of a pullback. However, in Set, the con-

struction of a pushout requires a little more work than the construction of pullbacks.

In Set, the pushout of functions f : Z→ X and g : Z→ Y exists and may be obtained

as follows. Consider the coproduct (X+Y , (kX , kY)) of X and Y , and let R ⊆ (X+Y)×(X+Y)

be the smallest equivalence relation on X+Y such that (kX(f (z)), kY (g(z))) ∈ R, for all z ∈ Z,

i.e. if S is an equivalence relation on X +Y containing all pairs (kX(f (z)), kY (g(z))), z ∈ Z,

then R ⊆ S. Since R is an equivalence relation on X + Y , denote the R-equivalence class

of a ∈ X +Y by [a]R and denote by (X +Y)/R the quotient set of X +Y by R, i.e. the set of

all R-equivalence classes. Define q : X +Y → (X +Y)/R the quotient function which maps

each a ∈ X +Y to its R-equivalence class [a]R. Thus, we have a diagram

Z X

Y X +Y

(X +Y)/R

f

g kX

kY q

where q ◦ kX ◦ f = q ◦ kY ◦ g. Also, if V is a set, and vX : X → V and vY : Y → V are

functions for which vX ◦ f = vY ◦ g, then ker[vX ,vY] is an equivalence relation on X + Y

that contains all pairs (kX(f (z)), kY (g(z))), z ∈ Z, which implies R ⊆ ker[vX ,vY], and so

there is a function [vX ,vY]/R : (X +Y)/R→ V defined by

([vX ,vY]/R)([a]R) = [vX ,vY](a), a ∈ (X +Y)/R,

that makes the diagram

13

CHAPTER 2. CATEGORIES

Z X

Y (X +Y)/R

V

f

g q ◦ kX

q ◦ kY

vX

vY

[vX ,vY]/R

commute. Moreover, [vX ,vY]/R is the unique function that makes such diagram commute,

since if h : (X +Y)/R→ V is such that h ◦ q ◦ kX = vX and h ◦ q ◦ kY = vY , then

h ◦ q = [h ◦ q ◦ kX ,h ◦ q ◦ kY] = [vX ,vY] = ([vX ,vY]/R) ◦ q,

and so h = [vX ,vY]/R because q is surjective. Therefore, ((X + Y)/R, (q ◦ kX ,q ◦ kY)) is a

pushout of f and g.

2.2 Monads and Kleisli triples

Let F,G : C→ D be functors between two categories C and D. A natural transformation
η from F to G, denoted by η : F → G or F

η
−→ G, is a class of morphisms (ηX : F(X) →

G(X))X∈C in D, indexed by the objects of C, such that for any objects X,Y ∈ C and mor-

phism f : X→ Y in C the following diagram

F(X)

F(Y)

G(X)

G(Y)

F(f)

ηX

ηY

G(f)

commutes, i.e. ηY ◦ F(f) = G(f) ◦ ηX . Note that a natural transformation can also be

regarded as a function η : Ob(C)→Mor(D) with X 7→ (ηX : F(X)→ G(X)) satisfying the

previous property.

Definition 2.10. A monad (T ,η,µ) on a category C consists of a functor T : C→ C and

two natural transformations η : IdC → T (called the unit) and µ : T 2 → T (called the

multiplication), such that the diagrams

T 3(X) T 2(X)

T 2(X) T (X)

T (X) T 2(X) T (X)

T (X)

T (µX)

µT (X) µX

µX

ηT (X)

idT (X)

T (ηX)

idT (X)

µX

14

2.2. MONADS AND KLEISLI TRIPLES

commute, i.e. µX ◦T (µX) = µX ◦µT (X) (the associative law), µX ◦ηT (X) = idT (X) (the left unit
law) and µX ◦ T (ηX) = idT (X) (the right unit law), for each X ∈ C.

For simplicity, we represent a monad by its functor, when its unit and its multiplica-

tion are clear from the context.

In the following example, we present a monad on Set, namely the powerset monad,

that will be used through the rest of the text.

Example 2.11. Consider the powerset functor P : Set→ Set that maps each set X to the

set of all its subsets

P(X) = {S | S ⊆ X},

and maps each function f : Y → Z to P(f) : P(Y)→ P(Z) defined by

P(f)(S) = {f (s) | s ∈ S}, S ∈ P(Y).

For each set X, define ηX : X→ P(X) by

ηX(x) = {x}, x ∈ X,

and define µX : P(P(X))→ P(X) by

µX(W) =
⋃
S∈W

S, W ∈ P(P(X)).

Let η = (ηX)X∈Set and µ = (µX)X∈Set. Then, (P,η,µ) is a monad on Set called the powerset
monad.

Let (T ,η,µ) be a monad on a category C. For a morphism f : X → T (Y) in C, with

X,Y ∈ C, define

f = µY ◦ T (f) : T (X)→ T (Y).

Note that

ηX = µX ◦ T (ηX) = idT (X),

by the right unit law, for each X ∈ C. Also, for a morphism f : X→ T (Y), the diagram

X T (Y)

T (X) T 2(Y) T (Y)

f

ηX ηT (Y)

T (f)

idT (Y)

µY

15

CHAPTER 2. CATEGORIES

commutes, because η is a natural transformation from IdC to T and by the left unit law,

and so

f ◦ ηX = µY ◦ T (f) ◦ ηX = f .

Finally, given morphisms f : X→ T (Y) and g : Y → T (Z), the diagram

T (X) T 2(Y) T 3(Z) T 2(Z)

T (Y) T 2(Z) T (Z)

T (f) T 2(g) T (µZ)

µY µT (Z) µZ

T (g) µZ

commutes, because µ is a natural transformation from T 2 to T and by the associative law,

and thus

g ◦ f = µZ ◦ T (µZ) ◦ T 2(g) ◦ T (f) = µZ ◦ T (g) ◦µY ◦ T (f) = g ◦ f .

From the previous construction, we have seen how to obtain a so-called Kleisli triple

from a monad.

Definition 2.12. A Kleisli triple (T ,η,) on a category C consists of a function T : Ob(C)→
Ob(C), a family of morphisms η = (ηX : X → T (X))X∈C in C, indexed by the objects of

C, and an extension operation that for each morphism f : X → T (Y) in C assigns a

morphism f : T (X)→ T (Y) in C, such that the following properties hold

(K1) ηX = idT (X),

(K2) f ◦ ηX = f , and

(K3) g ◦ f = g ◦ f ,

for any morphisms f : X→ T (Y) and g : Y → T (Z) and objects X,Y ,Z ∈ C.

Observe that properties (K2) and (K3) are equivalent to say that both diagrams

X T (X)

T (Y)

T (X) T (Y)

T (Z)

ηX

f
f

f

g ◦ f
g

commute, for any morphisms f : X→ T (Y) and g : Y → T (Z).

Let (T ,η,) be a Kleisli triple on a category C. For each morphism f : X → Y in C,

define

T (f) = ηY ◦ f : T (X)→ T (Y).

16

2.2. MONADS AND KLEISLI TRIPLES

For each X ∈ C, we have that

T (idX) = ηX = idT (X),

by (K1), and for each morphisms f : X→ Y and g : Y → Z in C, we have that

T (g) ◦ T (f) = ηZ ◦ g ◦ ηY ◦ f
by (K3)

= ηZ ◦ g ◦ ηY ◦ f
by (K2)

= ηZ ◦ g ◦ f = T (g ◦ f).

Therefore, T is a functor on C. By (K2), the diagram

X T (X)

Y T (Y)

ηX

f T (f) = ηY ◦ f

ηY

commutes, for any morphism f : X→ Y . Hence, η is a natural transformation from IdC

to T . For each X ∈ C, define

µX = idT (X) : T 2(X)→ T (X).

Observe that

µY ◦ T 2(f) = idT (Y) ◦ ηT (Y) ◦ ηY ◦ f

= idT (Y) ◦ ηT (Y) ◦ ηY ◦ f by (K3)

= idT (Y)◦ηY ◦ f by (K2)

= ηY ◦ f ◦ idT (X)

= ηY ◦ f ◦ idT (X) by (K3)

= T (f) ◦µX ,

and so the diagram

T 2(X) T (X)

T 2(Y) T (Y)

µX

T 2(f) T (f)

µY

17

CHAPTER 2. CATEGORIES

commutes, for any morphism f : X→ Y in C. Thus, µ = (µX)X∈C is a natural transforma-

tion from T 2 to T . Finally, for each X ∈ C, we have

µX ◦ T (µX) = idT (X) ◦ ηT (X) ◦ idT (X)

= idT (X) ◦ ηT (X) ◦ idT (X) by (K3)

= idT (X)◦idT (X) by (K2)

= idT (X) ◦ idT 2(X)

= idT (X) ◦ idT 2(X) by (K3)

= µX ◦µT (X)

(the associative law),

µX ◦ ηT (X) = idT (X) ◦ ηT (X)
by (K2)

= idT (X)

(the left unit law), and

µX ◦ T (ηX) = idT (X) ◦ ηT (X) ◦ ηX
by (K3)

= idT (X) ◦ ηT (X) ◦ ηX
by (K2)

= ηX
by (K1)

= idT (X)

(the right unit law), implying that the diagrams

T 3(X) T 2(X)

T 2(X) T (X)

T (X) T 2(X) T (X)

T (X)

T (µX)

µT (X) µX

µX

ηT (X)

idT (X)

T (ηX)

idT (X)

µX

commute. Therefore, (T ,η,µ) is a monad on C.

At first, we have seen how to construct a Kleisli triple from a monad and now we have

seen how to construct a monad from a Kleisli triple (cf. [Man76]). It is easy to check that

if we start with a monad, construct a Kleisli triple and obtain a monad from the Kleisli

triple, then the monad we obtained is exactly the monad we began with. Also, if we start

with a Kleisli triple, obtain a monad and construct a Kleisli triple from the monad, then

the resulting Kleisli triple is the same that we began with. Thus, we have proven the

following result.

Theorem 2.13. Let C be a category.

(i) Given a monad (T ,η,µ) on C, for each morphism f : X→ T (Y) in C define f : T (X)→
T (Y) by f = µY ◦ T (f). Then (T ,η,) is a Kleisli triple on C.

(ii) Given a Kleisli triple (T ,η,) on C, for each morphism f : X → Y in C define T (f) :

T (X)→ T (Y) by T (f) = ηY ◦ f . Also, for each object X ∈ C define µX : T 2(X)→ T (X)

by µX = idX , and let µ = (µX)X∈C. Then T : C→ C is a functor and (T ,η,µ) is a monad
on C.

18

2.3. ALGEBRAS FOR A MONAD

Moreover, (i) and (ii) are inverse of each other.

To conclude this section, we describe the morphism extension for the powerset monad

presented in Example 2.11.

Example 2.14. Consider the powerset monad P. For a function f : X → P(Y), we have

that f : P(X)→ P(Y) is defined by

f (S) =
⋃
x∈S

f (x),

for each S ∈ P(X).

2.3 Algebras for a monad

Definition 2.15. Let (T ,η,µ) be a monad on a category C.

(i) An algebra of T , or simply a T -algebra, is a pair (X,h) consisting of an object X ∈ C

and a morphism h : T (X)→ X in C, which makes both diagrams

T 2(X) T (X)

T (X) X

X T (X)

X

T (h)

µX h

h

ηX

idX
h

commute, i.e. h◦T (h) = h◦µX and h◦ηX = idX . Also, X is called the carrier of the T -algebra
and α is called the T -algebra structure.

(ii) A homomorphism of T -algebras f : (X,h)→ (X ′ ,h′) is a morphism f : X → X ′ in C

for which the diagram

T (X) T (X ′)

X X ′

T (f)

h h′

f

commutes, i.e. h′ ◦ T (f) = f ◦ h.

(iii) The class of all T -algebras together with their homomorphisms and composition

as in C form a category known as the Eilenberg-Moore category of T , denoted by EM(T).

The forgetful functor U : EM(T)→ C maps each T -algebra (X,h) to its carrier X and maps

each homomorphism of T -algebras f : (X,h)→ (X ′ ,h′) to f : X→ X ′ in C.

19

CHAPTER 2. CATEGORIES

In general, the algebras of a monad need not to be (isomorphic to) algebras in the

usual sense of Universal Algebra [BS81]. Although every variety, regarded as a category,

is isomorphic to the Eilenberg-Moore category of some monad [ML98, Theorem §VI.8.1].

The following example, which will be important throughout the text, describes the

Eilenberg-Moore category of the powerset monad introduced in Example 2.11.

Example 2.16. Consider the powerset monad P. For a set X and a function h : P(X)→ X,

we have that (X,h) is a P-algebra if, and only if,

h(
⋃
S∈W

S) = h({h(S) | S ∈W }) and h({x}) = x,

for any W ∈ P(P(X)) and x ∈ X. Let (X,h) be a P-algebra. Since P(X) is nonempty and

h : P(X)→ X, then X is nonempty. Define a binary operation ∨ on X (called join) by

x∨ y = h({x,y}), x,y ∈ X,

and let ≤ be a partial order relation on X defined by

x ≤ y ⇐⇒ x∨ y = y, x,y ∈ X.

Then, (X,∨) is a join-semilattice (cf. [Grä11]). Moreover, the supremum, or the least upper

bound, of any subset of X exists and is given by∨
S = h(S), S ⊆ X,

i.e. (X,∨) has arbitrary joins. And so (X,∨) is a complete join-semilattice.

Also, a homomorphism of P-algebras f : (X,h)→ (X ′ ,h′) is a homomorphism of the

resulting complete join-semilattices f : (X,∨)→ (X ′ ,∨′), since

f (
∨

S) = f (h(S)) = h′(P(f)(S)) = h′({f (x) | x ∈ S}) =
∨
x∈S

′
f (x)

for any S ⊆ X.

Conversely, for a complete join-semilattice (X,∨), define h : P(X)→ X by

h(S) =
∨

S, S ∈ P(X).

Then, (X,h) is a P-algebra. Also, a homomorphism of complete join-semilattices f :

(X,∨)→ (X ′ ,∨′) is a homomorphism of the resulting P-algebras f : (X,h)→ (X ′ ,h′), be-

cause

f (h(S)) = f (
∨

S) =
∨
x∈S

′
f (x) =

∨′
P(f)(S) = h′(P(f)(S))

for any S ∈ P(X).

Therefore, EM(P) is isomorphic to the category of complete join-semilattices and their

homomorphisms.

We remark that the complete join-semilattices do not form a variety, although they

are still (isomorphic to) algebras of a monad, namely P-algebras.

20

2.3. ALGEBRAS FOR A MONAD

2.3.1 Generalizing morphism extension to the algebras of a monad

Let (T ,η,µ) be a monad on a category C. For any object X ∈ C, by the associative law

and left unit law in Definition 2.10, (X,µX) is a T -algebra called the free T -algebra over X.

As in Universal Algebra [BS81, Proposition II.§10.10], the free T -algebra over an object

X ∈ C also has an universal property [Man76, see 1.4.12], which we now present.

For instance, given a morphism f : X→ T (Y) in C, the diagram

T 2(X) T 3(Y) T 2(Y)

T (X) T 2(Y) T (Y)

T 2(f)

µX

T (µY)

µT (Y) µY

T (f) µY

commutes, and so the extension f = µY ◦ T (f) : T (X)→ T (Y) of f is a homomorphism of

T -algebras from (T (X),µX) to (T (Y),µY). The morphism extension can be generalized

to T -algebras as follows.

Let f : X→ Y be a morphism in C and let (Y ,h) be a T -algebra. Define

f h = h ◦ T (f) : T (X)→ Y .

Since µ : T 2→ T is a natural transformation and (Y ,h) is a T -algebra, the diagram

T 2(X) T 2(Y) T (Y)

T (X) T (Y) Y

T 2(f)

µX

T (h)

µY h

T (f) h

commutes, and then h ◦ T (f h) = f h ◦ µX , which implies that f h is a homomorphism of

T -algebras from (T (X),µX) to (Y ,h). Also, the diagram

X Y

T (X) T (Y) Y

f

ηX
idYηY

T (f) h

commutes, because η : IdC→ T is a natural transformation and (Y ,h) is a T -algebra, and

so f = f h ◦ ηX . In the following theorem, we show that f h is the unique morphism in C

that satisfies such conditions.

21

CHAPTER 2. CATEGORIES

Theorem 2.17. Let (T ,η,µ) be a monad on a category C. Given a T -algebra (Y ,h) and a
morphism f : X → Y in C, f h = h ◦ T (f) : T (X)→ Y in C is the unique homomorphism of
T -algebras from (T (X),µX) to (Y ,h) such that f = f h ◦ ηX .

Proof. Let (Y ,h) be a T -algebra and f : X → Y a morphism in C. As we saw above,

f h = h ◦ T (h) is a homomorphism of T -algebras from (T (X),µX) to (Y ,h) and f = f h ◦ ηX .

If g : (T (X),µX) → (Y ,h) is a homomorphism of T -algebras with f = g ◦ ηX , and since

µX ◦ T (ηX) = idT (X) by the right unit law in Definition 2.10, then the diagram

T (X) T 2(X) T (Y)

T (X) Y

T (ηX)

idT (X)

T (g)

µX h

g

commutes, hence g = h ◦ T (g) ◦ T (ηX) = h ◦ T (g ◦ ηX) = h ◦ T (f) = f h.

When h is clear from the context, we write simply f instead of f h.

In the following example, we present the function extension for the algebras of the

powerset monad P, see Example 2.11.

Example 2.18. Given a set X, a P-algebra (Y ,h) and a function f : X→ Y , then f : P(X)→
Y is defined by

f (S) = h({f (x) | x ∈ S}), S ∈ P(X),

and thus f is the unique homomorphism of P-algebras from (X,µX) to (Y ,h) such that

f ({x}) = f (x), for all x ∈ X.

In other words, by Example 2.16, consider P-algebras as complete join-semilattices.

Then, for a set X, the free P-algebra over X is in correspondence with (P(X),∪), the

complete join-semilattice of all subsets of X together with set union. And for a complete

join-semilattice (Y ,∨) and a function f : X→ Y , f : P(X)→ Y is defined by

f (S) =
∨
x∈S

f (x), S ∈ P(X).

In particular, f is the unique homomorphism of complete join-semilattices from (P(X),∪)

to (Y ,∨) such that f ({x}) = f (x), for all x ∈ X.

2.3.2 Functor liftings to the Eilenberg-Moore category of a monad

Now, we introduce the notion of a lifting of a functor to the Eilenberg-Moore category of a

monad, and then describe a one-to-one correspondence between liftings and distributive

laws. See also [Joh75].

22

2.3. ALGEBRAS FOR A MONAD

Definition 2.19. Let (T ,η,µ) be a monad on a category C, and consider the forgetful

functor U : EM(T)→ C. Given a functor F : C→ C, a lifting of F to EM(T) is a functor

F̂ : EM(T)→ EM(T) such thar the diagram

EM(T) EM(T)

C C

F̂

U U

F

commutes, i.e. UF̂ = FU.

Let (T ,η,µ) be a monad on a category C, and let F : C→ C be a functor with a lifting

F̂ : EM(T)→ EM(T) to EM(T). For a T -algebra (X,h), observe that F(X) is the carrier of

the T -algebra F̂(X,h), and for a homomorphism of T -algebras f : (X,h)→ (X ′ ,h′), F(f) is

a homomorphism of T -algebras from F̂(X,h)→ F̂(X ′ ,h′). In particular, for each object X ∈
C, there exists a morphism hX : T FT (X)→ FT (X) in C such that (FT (X),hX) = F̂(T (X),µX),

and thus hX ◦ηFT (X) = idFT (X) and hX ◦T (hX) = hX ◦µX . Define ρX = hX◦T F(ηX) : T F(X)→
FT (X) in C, for each X ∈ C. Let ρ = (ρX)X∈C.

For any morphism f : X→ Y in C, since T (f) is a homomorphism of T -algebras from

(T (X),µX) to (T (Y),µY), then FT (f) is a homomorphism of T -algebras from (FT (X),hX)

to (FT (Y),hY), and since η is a natural transformation from IdC to T , we have that the

following diagram

T F(X) T FT (X) FT (X)

T F(Y) T FT (Y) FT (Y)

T F(ηX)

T F(f)

hX

T FT (f) FT (f)

T F(ηY) hY

commutes, which implies FT (f) ◦ ρX = ρY ◦ T F(f). Hence, ρ is a natural transformation

from T F to FT .

Also, for any X ∈ C, the diagram

F(X) FT (X)

T F(X) T FT (X) FT (X)

F(ηX)

ηF(X)
idFT (X)

ηFT (X)

T F(ηX) hX

commutes, because η is a natural transformation from IdC to T and (FT (X),hX) is a

T -algebra. Thus, ρX ◦ ηF(X) = F(ηX) for every object X ∈ C.

23

CHAPTER 2. CATEGORIES

Finally, for any X ∈ C, the diagram

T 2F(X) T 2FT (X) T FT (X)

T F(X) T FT (X) FT (X)

T 2F(ηX)

µF(X)

T (hX)

µFT (X) hX

T F(ηX) hX

commutes, because µ is a natural transformation from T 2 to T and (FT (X),hX) is a T -

algebra, and so hX ◦ T (ρX) = ρX ◦µF(X). Also, since µX is a homomorphism of T -algebras

from (T 2(X),µT (X)) to (T (X),µX), by the associative law (Definition 2.10), then F(µX) is a

homomorphism of T -algebras from (FT 2(X),hT (X)) to (FT (X),hX), and since µX ◦ ηT (X) =

idT (X) by the left unit law (Definition 2.10), the diagram

T FT (X) T FT 2(X) FT 2(X)

T FT (X) FT (X)

T F(ηT (X))

idT FT (X) = T F(idT (X))

hT (X)

T F(µX) F(µX)

hX

commutes, that is F(µX) ◦ ρT (X) = hX . Therefore, the diagram

T 2F(X) T FT (X) FT 2(X)

T F(X) FT (X)

T (ρX)

µF(X)

ρT (X)

hX
F(µX)

ρX

commutes, i.e. F(µX) ◦ ρT (X) ◦ T (ρX) = ρX ◦µF(X), for every object X ∈ C.

The previous results shows that ρ is a distributive law of T over F.

Definition 2.20. Let (T ,η,µ) be a monad on a category C, and let F : C→ C be a functor on

the same category. A distributive law of T over F is a natural transformation ρ : T F→ FT

such that the following diagrams

F(X) T F(X)

FT (X)

T 2F(X) T FT (X) FT 2(X)

T F(X) FT (X)

ηF(X)

F(ηX)
ρX

T (ρX)

µF(X)

ρT (X)

F(µX)

ρX

24

2.3. ALGEBRAS FOR A MONAD

commute, i.e. ρX ◦ ηF(X) = F(ηX) and F(µX) ◦ ρT (X) ◦ T (ρX) = ρX ◦µF(X), for all X ∈ C.

Let (T ,η,µ) be a monad on a category C and F : C→ C be a functor such that there is

a distributive law ρ : T F→ FT . Given a T -algebra (X,h), observe that both diagrams

T 2F(X) T FT (X) T F(X)

FT 2(X) FT (X)

T F(X) FT (X) F(X)

F(X) T F(X)

FT (X) F(X)

T (ρX)

µF(X)

T F(h)

ρT (X) ρX

FT (h)

F(µX) F(h)

ρX F(h)

ηF(X)

idF(X)
F(ηX)

ρX

F(h)

commute, and so T (F(h)◦ρX)◦(F(h)◦ρX) = µF(X)◦(F(h)◦ρX) and (F(h)◦ρX)◦ηF(X) = idF(X).

Hence, (F(X),F(h) ◦ ρX) is a T -algebra.

Also, for any homomorphism of T -algebras f : (X,h)→ (X ′ ,h′), the diagram

T F(X) FT (X) F(X)

T F(X ′) FT (X ′) F(X ′)

ρX

T F(f)

F(h)

FT (f) F(f)

ρX ′ F(h′)

commutes, and thus F(f) is a homomorphism of T -algebras from (F(X),F(h) ◦ ρX) to

(F(X ′),F(h′) ◦ ρX ′).
Therefore, we can define F̂ : EM(T)→ EM(T), a lifting of F to EM(T), by F̂(X,h) =

(F(X),F(h) ◦ ρX), for each T -algebra (X,h), and F̂(f) = F(f), for each homomorphism of

T -algebras.

Finally, for any object X ∈ C, note that F̂(T (X),µX) = (FT (X),F(µX) ◦ ρT (X)) and since

the diagram

T F(X) FT (X)

T FT (X) FT 2(X) FT (X)

ρX

T F(ηX) FT (ηX)
idFT (X) = F(idT (X))

ρT (X) F(µX)

commutes, then ρX = (F(µX) ◦ ρT (X)) ◦ T F(ηX).

Now, we have proved the following theorem.

25

CHAPTER 2. CATEGORIES

Theorem 2.21. Let (T ,η,µ) be a monad on a category C, and let F : C→ C be a functor on the
same category.

(i) Given a lifting F̂ : EM(T)→ EM(T) of F to EM(T), define ρX = hX ◦T F(ηX) : T F(X)→
FT (X), where hX : T FT (X)→ FT (X) is such that (FT (X),hX) = F̂(T (X),µX), for each
X ∈ C. Then, ρ = (ρX)X∈C is a distributive law of T over F.

(ii) Given a distributive law ρ : T F → FT of T over F, define F̂ : EM(T) → EM(T) by
F̂(X,h) = (F(X),F(h)◦ρX), for each T -algebra (X,h), and F̂(f) = F(f) for each homomor-
phism of T -algebras f . Then, F̂ is a lifting of F to EM(T).

Moreover, (i) and (ii) are inverse of each other.

At last, we present a lifting of the functor 2× (−)A to the Eilenberg-Moore category of

the powerset monad.

Example 2.22. Consider the powerset monad P, see Example 2.11, and the functor D =

2× (−)A : Set→ Set, see Example 2.8(iii), where 2 = {0,1} and A is a nonempty set. Given

a P-algebra (X,h), define h1 : P(2×XA)→ 2 by

h1(S) = max{z | (z, f) ∈ S}, S ∈ P(2×XA),

and define h2 : P(2×XA)→ XA by

h2(S)(a) = h({f (a) | (z, f) ∈ S}), a ∈ A,S ∈ P(2×XA),

and then we have a P-algebra (2×XA,〈h1,h2〉). Moreover, we have a lifting D̂ : EM(P)→
EM(P) ofD to EM(P) defined by D̂(X,h) = (2×XA,〈h1,h2〉), where h1 and h2 are defined as

above for each P-algebra (X,h), and D̂(f) = id2×f A for each homomorphism of P-algebras

f .

In other words, if we consider P-algebras as complete join-semilattices (Example 2.16),

we have that 2 = {0,1} is a complete join-semilattice where 0 < 1. For a complete join-

semilattice (X,∨), we obtain another complete join-semilattice onXA where join is defined

pointwise. And thus, D(X) = 2×XA, being the product of two complete join-semilattices,

is a complete join-semilattice with join defined pairwise. Also, given a homomorphism of

complete join-semilattices f : X→ X ′, then id2×f A is a homomorphism of the resulting

complete join-semilattices 2×XA and 2× (X ′)A.

By Theorem 2.21, D̂ is in correspondence with a distributive law ρ : PD→DP, where

ρX = 〈ρ1,X ,ρ2,X〉 : P(2×XA)→ 2× (P(X))A is defined by

ρ1,X(S) = max{z | (z, f) ∈ S}, S ∈ P(2×XA),

and

ρ2,X(S)(a) = {f (a) | (z, f) ∈ S}, a ∈ A,S ∈ P(2×XA)

for each set X.

26

C
h
a
p
t
e
r

3
Coalgebras

In this chapter, we introduce the notion of a coalgebra of a functor. We generalize some

results of Universal Coalgebra (see [Rut00]) to coalgebras of a functor on an arbitrary

category, instead of using functors on the category of sets. See also [Adá05; Jac12].

Throughout this chapter, we illustrate the main definition and theorems in exam-

ples using deterministic and nondeterministic automata. In theses examples, we obtain

well-known results from a coalgebraic point of view. See [Eil74; How91] for a classical in-

troduction to the Theory of Automata. Moreover, in Chapter 5, we will see these examples

as concrete case of a general theory.

3.1 The category of coalgebras

In this section, we study some basic results in the category of coalgebras of a functor. The

notion of a coalgebra of a functor comes from the duality with the notion of an algebra of

a functor (see [JR11]).

Definition 3.1. Let F : C→ C be a functor on a category C.

(i) A coalgebra of F, or simply an F-coalgebra, is a pair (X,α) consisting of an object

X ∈ C and a morphism α : X→ F(X) in C. Also, F is called the type of the coalgebra, X is

called the carrier of the F-coalgebra, or state space, and α is called the F-coalgebra structure
or the transition structure.

(ii) A homomorphism of F-coalgebra f : (X,α)→ (Y ,β) is a morphism f : X → Y in C

that makes the diagram

27

CHAPTER 3. COALGEBRAS

X Y

F(X) F(Y)

f

α β

F(f)

commute, i.e. β ◦ f = F(f) ◦α.

Let F : C→ C be a functor on a category C. Given an F-coalgebra (X,α), observe that

α ◦ idX = α = idF(X)◦α = F(idX) ◦α

and so idX is a homomorphism of F-coalgebras from (X,α) to itself. Also, if f : (X,α)→
(Y ,β) and g : (Y ,β)→ (Z,γ) are two homomorphisms of F-coalgebras, the diagram

X Y Z

F(X) F(Y) F(Z)

f

α

g ◦ f

g

β γ

F(f)

F(g ◦ f)

F(g)

commutes, then g ◦ f : (X,α)→ (Z,γ) is a homomorphism of F-coalgebras. Therefore, we

can define a category of F-coalgebras as follows.

Definition 3.2. Let F : C→ C be a functor on a category C. We denote by CoAlg(F) the

category of all F-coalgebras and their homomorphisms with composition defined as in C.

Given two functors on the same category, we can define a functor between the cate-

gories of their coalgebras, whenever there is a natural transformation between them.

Theorem 3.3. Let F,G : C → C be two functors on a category C, and let ξ : F → G be a
natural transformation. Given any homomorphism of F-coalgebras f : (X,α)→ (Y ,β), then
f is a homomorphism of G-coalgebras from (X,ξX ◦ α) to (Y ,ξY ◦ β). Therefore, ξ induces
a functor from CoAlg(F) to CoAlg(G) mapping each F-coalgebra (X,α) to (X,ξX ◦ α) and
mapping each homomorphism of F-coalgebras f to the homomorphism of G-coalgebras f .

Proof. Let f : (X,α) → (Y ,β) be a homomorphism of F-coalgebras, that is a morphism

f : X → Y in C such that β ◦ f = F(f) ◦ α. Note that ξX ◦ α : X → G(X) and ξY ◦ β :

Y → F(Y), and thus (X,ξX ◦α) and (Y ,ξY ◦ β) are both G-coalgebras. Since ξ is a natural

transformation from F to G, the diagram

28

3.1. THE CATEGORY OF COALGEBRAS

X F(X) G(X)

Y F(Y) G(Y)

α

f

ξX

F(f) G(f)

β ξY

commutes, then G(f) ◦ ξX ◦α = ξY ◦ β ◦ f . Hence, f is a homomorphism of G-coalgebras

from (X,ξX ◦α) to (Y ,ξY ◦β). Therefore, any homomorphism of F-coalgebras f : (X,α)→
(Y ,β) is a homomorphism of G-coalgebras from (X,ξX ◦α) to (Y ,ξY ◦ β), and clearly the

functor induced by ξ is well-defined.

In the following result we describe how to construct a coalgebra, which will be used

later.

Theorem 3.4. Let F : C → C be a functor on a category C. Let f : (X,α) → (Y ,β) be a
homomorphism between F-coalgebras (X,α) and (Y ,β). Given Z ∈ C and g : Z → Y in C, if
there are morphisms i : Z→ X and j : X→ Z in C such that both diagrams

X Y

Z

X Y

Z

f

i g

f

j
g

commute, i.e. g = f ◦ i and f = g ◦ j, then g is a homomorphism of F-coalgebras from (Z,F(j)◦
α ◦ i) to (Y ,β).

Proof. Let Z ∈ C and g : Z → Y in C be such that there are i : Z → X and j : X → Z in C

with g = f ◦ i and f = g ◦ j. Recall that F(f) ◦ α = β ◦ f , because f : (X,α)→ (Y ,β) is a

homomorphism. Then

F(g) ◦F(j) ◦α ◦ i = F(g ◦ j) ◦α ◦ i

= F(f) ◦α ◦ i

= β ◦ f ◦ i

= β ◦ g,

which implies that g is a homomorphism of F-coalgebras from (Z,F(j)◦α◦ i) to (Y ,β).

For any functor F : C→ C, the existence of coproducts (Definition 2.2) or pushouts

(Definition 2.9) depends only whether they exist in C, as shown in the following two

results.

29

CHAPTER 3. COALGEBRAS

Theorem 3.5. Let F : C→ C be a functor on a category C.

(i) Given a family (Xi ,αi)i∈I of F-coalgebras indexed by a set I . If there exists a coprod-
uct (

∑
i∈I Xi , (ki)i∈I) of (Xi)i∈I in C, then there exists ζ :

∑
i∈I Xi → F(

∑
i∈I Xi) such that

((
∑
i∈I Xi ,ζ), (ki)i∈I) is a coproduct of (Xi ,αi)i∈I in CoAlg(F).

(ii) Given two homomorphisms of F-coalgebras, with common domain, f : (Z,γ)→ (X,α)

and g : (Z,γ)→ (Y ,β). If there is a pushout (V , (vX ,vY)) of f : Z → X and g : Z → Y in C,
then there is ξ : V → F(V) such that ((V ,ξ), (vX ,vY)) is a pushout of f and g in CoAlg(F).

Proof. (i) Let (Xi ,αi)i∈I be a family of F-coalgebras, and assume there is a coproduct

(
∑
i∈I Xi , (ki)i∈I) of (Xi)i∈I in C. Note that F(kj) ◦αj : Xj → F(

∑
i∈I Xi) for each j ∈ I . Define

ζ = [F(ki)◦αi]i∈I :
∑
i∈I Xi → F(

∑
i∈I Xi) to be the unique morphism that makes the diagram

Xj
∑
i∈I Xi

F(Xj) F(
∑
i∈I Xi)

kj

αj ζ

F(kj)

commute, i.e. ζ ◦ kj = F(kj) ◦αj , for all j ∈ I . Thus, kj is a homomorphism of F-coalgebras

from (Xj ,αj) to (
∑
i∈I Xi ,ζ), for each j ∈ I .

Also, let (Y ,β) be an F-coalgebra and let (fi : (Xi ,αi)→ (Y ,β))i∈I be a family of homo-

morphisms of F-coalgebras. In particular, fi : Xi → Y in C, for each i ∈ I , and so there

is a unique morphism [fi]i∈I :
∑
i∈I Xi → Y in C such that [fi]i∈I ◦ kj = fj , for every j ∈ I .

Observe that

β ◦ [fi]i∈I ◦ kj = β ◦ fj = F(fj) ◦αj

and

F([fi]i∈I) ◦ ζ ◦ kj = F([fi]i∈I) ◦F(kj) ◦αj = F(fj) ◦αj ,

which implies β ◦ [fi]i∈I ◦ kj = F([fi]i∈I) ◦ ζ ◦ kj , for each j ∈ I . Then, we have

β ◦ [fi]i∈I = [β ◦ [fi]i∈I ◦ kj]j∈I = [F([fi]i∈I) ◦ ζ ◦ kj]j∈I = F([fi]i∈I) ◦ ζ

which means that the diagram

∑
i∈I Xi Y

F(
∑
i∈I Xi) F(Y)

[fi]i∈I

ζ β

F([fi]i∈I)

30

3.1. THE CATEGORY OF COALGEBRAS

commutes, and so [fi]i∈I is a homomorphism of F-coalgebras from (
∑
i∈I Xi ,ζ) to (Y ,β).

Since [fi]i∈I is the unique morphism in C such that [fi]i∈I ◦ kj = fj , for all j ∈ I , it fol-

lows that it is also the unique homomorphism of F-coalgebras from (
∑
i∈I Xi ,ζ) to (Y ,β)

that verifies such condition. Hence, ((
∑
i∈I Xi ,ζ), (ki)i∈I) is a coproduct of (Xi ,αi)i∈I in

CoAlg(F).

(ii) Consider two homomorphisms of F-coalgebras, with common domain, f : (Z,γ)→
(X,α) and g : (Z,γ)→ (Y ,β), and assume there is a pushout (V , (vX ,vY)) of f : Z→ X and

g : Z→ Y in C. Note that

F(vX) ◦α ◦ f = F(vX) ◦F(f) ◦γ

= F(vX ◦ f) ◦γ

= F(vY ◦ g) ◦γ

= F(vY) ◦F(g) ◦γ

= F(vY) ◦ β ◦ g,

so the diagram

Z X

Y F(V)

f

g F(vX) ◦α

F(vY) ◦ β

commutes. Then, since (V , (vX ,vY)) is a pushout of f and g in C, there is a unique

morphism ξ : V → F(V) in C such that the following diagram

Z X F(X)

Y

F(Y)

V

F(V)

f

g

α

vX

β

vY
F(vX)

F(vY)

ξ

commutes. Thus, vX is a homomorphism of F-coalgebras from (X,α) to (V ,ξ) and vY is a

homomorphism of F-coalgebras from (Y ,β) to (V ,ξ) with vX ◦ f = vY ◦ g.

Now, let (V ′ ,ξ ′) be an F-coalgebra, and let v′X : (X,α) → (V ′ ,ξ ′) and v′Y : (Y ,β) →
(V ′ ,ξ ′) be homomorphisms of F-coalgebras with v′X ◦ f = v′Y ◦g. Similarly to what is done

above, we have F(v′X) ◦α ◦ f = F(v′Y) ◦ β ◦ g. Then, both diagrams

31

CHAPTER 3. COALGEBRAS

Z X

Y V ′

Z X

Y F(V ′)

f

g v′X

v′Y

f

g F(v′X) ◦α

F(v′Y) ◦ β

commute. Since (V , (vX ,vY)) is a pushout of f and g in C, there are unique morphisms

h1 : V → V ′ and h2 : V → F(V ′) in C such that v′X = h1◦vX , v′Y = h1◦vY , F(v′X)◦α = h2◦vX
and F(v′Y) ◦ β = h2 ◦ vY . Also, we have

ξ ′ ◦ h1 ◦ vX = ξ ′ ◦ v′X = F(v′X) ◦α

and

ξ ′ ◦ h1 ◦ vY = ξ ′ ◦ v′Y = F(v′Y) ◦ β,

and so ξ ′ ◦ h1 = h2 by uniqueness. On the other hand, we have

F(h1) ◦ ξ ◦ vX = F(h1) ◦F(vX) ◦α = F(h1 ◦ vX) ◦α = F(v′X) ◦α

and

F(h1) ◦ ξ ◦ vY = F(h1) ◦F(vY) ◦ β = F(h1 ◦ vY) ◦ β = F(v′Y) ◦ β,

which implies F(h1) ◦ ξ = h2 by uniqueness. Hence, the diagram

V V ′

F(V) F(V ′)

h1

ξ ξ ′

F(h1)

h2

commutes, and thus h1 is a homomorphism of F-coalgebras from (V ,ξ) to (V ′ ,ξ ′). Since h1

is the unique morphism in C such that v′X = h1◦vX and v′Y = h1◦vY , it follows that it is the

only homomorphism of F-coalgebras from (V ,ξ) to (V ′ ,ξ ′) that verifies such conditions.

Therefore, ((V ,ξ), (vX ,vY)) is a pushout of f : (Z,γ) → (X,α) and g : (Z,γ) → (Y ,β) in

CoAlg(F).

For instance, if F : Set→ Set is any functor on the category Set, we have coproducts

of any set-indexed family of F-coalgebras and pushouts of any two homomorphisms of

F-coalgebras, with common domain, by the previous theorem.

In other cases, for a functor F : C→ C on a category C, it is useful if F verifies certain

properties. In the following result, we show how to construct an F-coalgebra from a weak

pullback (Definition 2.3) in C when F preserves weak pullbacks (Definition 2.6).

32

3.1. THE CATEGORY OF COALGEBRAS

Theorem 3.6. Let F : C → C be a functor on a category C that preserves weak pullbacks.
Given two homomorphisms of F-coalgebras, with common codomain, f : (X,α)→ (Z,γ) and
g : (Y ,β)→ (Z,γ), if (P , (pX ,pY)) is a weak pullback of f : X → Z and g : Y → Z in C, then
there exists π : P → F(P) such that pX is a homomorphism of F-coalgebras from (P ,π) to (X,α)

and pY is a homomorphism of F-coalgebras from (P ,π) to (Y ,β).

Proof. Let f : (X,α)→ (Z,γ) and g : (Y ,β)→ (Z,γ) be homomorphisms of F-coalgebras,

with common codomain, and assume there is a weak pullback (P , (pX ,pY)) of f : X → Z

and g : Y → Z in C. Observe that

F(f) ◦α ◦ pX = γ ◦ f ◦ pX = γ ◦ g ◦ pY = F(g) ◦ β ◦ pY .

This implies that the diagram

P F(X)

F(Y) F(Z)

α ◦ pX

β ◦ pY F(f)

F(g)

commutes. Since F preserves weak pullbacks, (F(P), (F(pX),F(pY))) is a weak pullback of

F(f) : F(X)→ F(Z) and F(g) : F(Y)→ F(Z) in C, and thus there exists π : P → F(P) such

that the following diagram

P X

F(X)

Y F(Y)

F(P)

F(Z)

pX

pY

α

F(pX)

β

F(pY) F(f)

F(g)

π

commutes. Therefore, pX is a homomorphism of F-coalgebras from (P ,π) to (X,α) and

pY is a homomorphism of F-coalgebras from (P ,π) to (Y ,β).

Finally, we present two examples of how deterministic and nondeterministic automata

can be modelled by coalgebras. These examples will be used throughout this chapter.

Example 3.7. In the following we describe automata (as coalgebras) without initial state

or set of initial states which will be introduced in Examples 3.10 and 3.14. Also, let A be

an input alphabet, i.e. a nonempty set whose elements are called (input) letters.

33

CHAPTER 3. COALGEBRAS

(i) Deterministic automata. Consider D = 2× (−)A : Set→ Set, where 2 = {0,1}, to be a

functor on the category Set mapping each set X to 2 ×XA, and mapping each function

f : X→ Y to id2×f A : 2×XA→ 2×Y A defined by

(id2×f A)(z,h) = (z, f ◦ h), (z,h) ∈ 2×XA.

A deterministic automaton is a D-coalgebra (X,〈o,d〉 : X → 2×XA) where X is the set of
states, o : X→ 2 determines whether a state x ∈ X is final (o(x) = 1) or not (o(x) = 0), and

d : X → XA is the transition function. In a D-coalgebra (X,〈o,d〉), we say that the input

letter a ∈ A causes a transition from x ∈ X to y ∈ X, denoted by x
a−→ y, if y = d(x)(a).

Given D-coalgebras (X,〈o,d〉 and (X ′ ,〈o′ ,d′〉), a function f : X → Y is a homomor-

phism of D-coalgebras from (X,〈o,d〉 to (X ′ ,〈o′ ,d′〉) if, and only if, o(x) = o(f (x)) and

d′(f (x))(a) = f (d(x)(a)) for all x ∈ X and a ∈ A. In other words, this last condition says that

if x
a−→ y then f (x)

a−→ f (y), for every x,y ∈ X and a ∈ A.

(ii) Nondeterministic automata. Let N = DP = 2 × (P(−))A : Set → Set be a functor

on the category Set defined by the composition of the powerset functor (Example 2.11)

with D (defined above). A nondeterministic automaton is an N -coalgebra (X,〈o,d〉 : X→
2× (P(X))A) where X is the set of states, o : X→ 2 determines whether a state x ∈ X is final
(o(x) = 1) or not (o(x) = 0), and d : X→ (P(X))A maps each state x ∈ X and letter a ∈ A to

the set of next states. In this case, we write x
a−→ y if y ∈ d(x)(a), for x ∈ X and a ∈ A.

Given N -coalgebras (X,〈o,d〉 and (X ′ ,〈o′ ,d′〉), a function f : X → Y is a homomor-

phism of N -coalgebras from (X,〈o,d〉 to (X ′ ,〈o′ ,d′〉) if, and only if,

o(x) = o(f (x)) and d′(f (x))(a) = P(f)(d(x)(a)) =
⋃

y∈d(x)(a)

f (y)

for all x ∈ X and a ∈ A. From the second condition, we have if x
a−→ y then f (x)

a−→ f (y)

and also if f (x)
a−→ x′ then there is z ∈ X such that x′ = f (z) and x

a−→ z, for every x,y ∈ X,

x′ ∈ X ′ and a ∈ A.

3.2 Final coalgebras

Definition 3.8. Let F : C→ C be a functor on a category C. An F-coalgebra (Ω,ω) is final
if for any F-coalgebra (X,α) there exists exactly one homomorphism of F-coalgebras `(X,α)

from (X,α) to (Ω,ω), i.e. there exists a unique morphism `(X,α) : X→Ω in C which makes

the diagram

X Ω

F(X) F(Ω)

α ω

`(X,α)

F(`(X,α))

34

3.2. FINAL COALGEBRAS

commute. Thus a final F-coalgebra is a final object in the category CoAlg(F).

Consider a functor F : C→ C on a category C for which there is a final F-coalgebra

(Ω,ω). Given an F-coalgebra (X,α), we usually denote `(X,α) simply by `X , when the

F-coalgebra structure is understood, or even by `, when the F-coalgebra is clear from

the context. Since a final F-coalgebra is a final object in CoAlg(F), then idΩ is the only

homomorphism of F-coalgebras from (Ω,ω) to itself, i.e. `(Ω,ω) = idΩ.

Note that for certain functors there is no final coalgebra. Although when a final

coalgebra exists, it has the following property.

Theorem 3.9. Let F : C→ C be a functor on a category C, and let (Ω,ω) be a final F-coalgebra.
Then ω : Ω→ F(Ω) is an isomorphism in C.

Proof. Note that F(ω) : F(Ω) → F(F(Ω)), and so (F(Ω),F(ω)) is an F-coalgebra. Since

(Ω,ω) is a final F-coalgebra, there exists exactly one morphism ` : F(Ω)→ Ω such that

ω ◦ ` = F(`) ◦F(ω). Thus, the diagram

Ω F(Ω) Ω

F(Ω) F(F(Ω)) F(Ω)

ω

ω

`

F(ω) ω

F(ω) F(`)

commutes, which implies that ` ◦ω is a homomorphism of F-coalgebras from (Ω,ω) to

itself. Hence, ` ◦ω = idΩ because (Ω,ω) is final. Now, we have that

ω ◦ ` = F(`) ◦F(ω) = F(` ◦ω) = F(idΩ) = idF(Ω) .

Therefore, ω is an isomorphism in C.

The functor D = 2× (−)A of deterministic automata, presented in Example 3.7(i), has

a final coalgebra described in the following example. For further details see [Rut98].

Example 3.10. Let A be an input alphabet. Denote the set of all finite words over A by

A∗, where the empty word is denoted by ε and the concatenation of two words u,v ∈ A∗ is

denoted by uv. Thus, A∗ is (the carrier of) the free monoid over A. A language over A is

any subset of A∗.

Consider the functor D = 2 × (−)A : Set→ Set of deterministic automata defined in

Example 3.7(i). Let Ω = {L | L ⊆ A∗} be the set of all languages over A. The coalgebra of
languages is a D-coalgebra (Ω,〈e, t〉 : Ω→ 2×ΩA) where

e(L) =

1 if ε ∈ L

0 otherwise
and t(L)(a) = {w ∈ A∗ | aw ∈ L},

for each L ∈Ω and each a ∈ A.

35

CHAPTER 3. COALGEBRAS

Given a D-coalgebra (X,〈o,d〉 : X → 2 ×XA), the transition function d : X → XA can

be extended up to d∗ : X→ XA
∗

inductively defined by

d∗(x)(ε) = x

for any x ∈ X, and

d∗(x)(aw) = d∗(d(x)(a))(w)

for any x ∈ X, a ∈ A and w ∈ A∗. Define a function ` : X→Ω mapping each state x ∈ X to

the language it accepts

`(x) = {w ∈ A∗ | o(d∗(x)(w)) = 1}.

For any x ∈ X and a ∈ A, note that

o(x) = 1 ⇐⇒ ε ∈ `(x) ⇐⇒ e(`(x)) = 1

and

`(d(x)(a)) = {w ∈ A∗ | o(d∗(d(x)(a))(w)) = 1}

= {w ∈ A∗ | o(d∗(x)(aw)) = 1}

= {w ∈ A∗ | aw ∈ `(x)}

= t(`(x))(a).

This implies that the diagram

X Ω

2×XA 2×ΩA

`

〈o,d〉 〈e, t〉

id2×`A

commutes, and so ` is a homomorphism of D-coalgebras from (X,〈o,d〉) to (Ω,〈e, t〉).
Moreover, ` is unique. Thus, (Ω,〈e, t〉) is a final D-coalgebra.

Note that if we consider a deterministic automaton as a D-coalgebra (X,〈o,d〉) with

an initial state x0 ∈ X, then the language recognized by this automaton is `(x0).

On the other hand, the functor N = DP = 2 × (P(−))A of nondeterministic automata,

presented in Example 3.7(ii), does not have a final coalgebra. If (Ω,ω) were a final N -

coalgebra, then ω : Ω → 2 × (P(Ω))A would be a bijection, by Theorem 3.9, which is a

contradiction because the cardinality of 2× (P(Ω))A is strictly greater than the cardinality

of Ω (recall that A is a nonempty set).

36

3.3. DETERMINIZATION

3.3 Determinization

The powerset construction is a well-known determinization process that allows to obtain

a deterministic automaton from a nondeterministic automaton, preserving many prop-

erties such as language recognizability. This process can be generalized to coalgebras of

functors that satisfy certain conditions. See also [Jac+12; Sil+13].

Consider a monad (T ,η,µ) on a category C and a functor F : C → C with a lifting

F̂ : EM(T) → EM(T) to the Eilenberg-Moore category of T (see Definitions 2.10, 2.15

and 2.19). By Definition 3.1, an F̂-coalgebra is a pair ((X,h),α) consisting of a T -algebra

(X,h) and a homomorphism of T -algebras α : (X,h) → F̂(X,h). And a homomorphism

of F̂-coalgebras f : ((X,h),α)→ ((X ′ ,h′),α′) is a morphism f : X → X ′ in C such that f

is both a homomorphism of T -algebras from (X,h) to (X ′ ,h′) and a homomorphism of

F-coalgebras from (X,α) to (X ′ ,α′).

By Theorem 2.21, there exists a distributive law ρ : T F → FT of T over F such that

F̂(X,h) = (F(X),F(h) ◦ ρX), for each T -algebra (X,h). Given an FT -coalgebra (X,α), we

have α : X→ FT (X) where (FT (X),F(µX) ◦ ρT (X)) = F̂(T (X),µX) is a T -algebra, and so the

extension

α = F(µX) ◦ ρT (X) ◦ T (α) : T (X)→ FT (X)

is the unique homomorphism of T -algebras from (X,µX) to F̂(X,µX) making the diagram

X T (X)

FT (X)

ηX

α α

commute, i.e. α ◦ ηX = α, by Theorem 2.17. Therefore, ((T (X),µX),α) is an F̂-coalgebra.

Let f : (X,α)→ (Y ,β) be a homomorphism of FT -coalgebras, that is β ◦ f = FT (f) ◦α.

Note that T (f) is a homomorphism of T -algebras from (T (X),µX) to (T (Y),µY), because µ

is a natural transformation from T 2 to T , and so FT (f) = F̂(T (f)) is also a homomorphism

of T -algebras from F̂(T (X),µX) to F̂(T (Y),µY). Since ρ is a natural transformation from

T F to FT , the diagram

T (X) T FT (X) FT 2(X) FT (X)

T (Y) T FT (Y) FT 2(Y) FT (Y)

T (α)

T (f)

ρT (X)

T FT (f)

F(µX)

FT 2(f) FT (f)

T (β) ρT (Y) F(µY)

commutes, and thus

β ◦ T (f) = F(µY) ◦ ρT (Y) ◦ T (β) ◦ T (f) = FT (f) ◦F(µX) ◦ ρT (X) ◦ T (α) = FT (f) ◦α

37

CHAPTER 3. COALGEBRAS

which implies that the following diagram is commutative in EM(T)

(T (X),µX) (T (Y),µY)

F̂(T (X),µX) F̂(T (Y),µY).

T (f)

α β

F̂(T (f))

Hence, T (f) is a homomorphism of F̂-coalgebras from ((T (X),µX),α) to ((T (Y),µY),β).

Also, observe that the diagram

X Y

T (X) T (Y)

FT (X) FT (Y)

f

ηX

α

ηY

β

T (f)

α β

FT (f)

commutes, because η is a natural transformation from IdC to T .

We proved the following theorem that gives a coalgebraic interpretation of the deter-

minization process [Jac+12].

Theorem 3.11. Let (T ,η,µ) be a monad on a category C, and let F : C→ C be a functor with
a lifting F̂ : EM(T)→ EM(T) to the Eilenberg-Moore category of T . For each FT -coalgebra
(X,α), define H(X,α) = ((T (X),µX),α), where α is the unique homomorphism of T -algebras
from (X,µX) to F̂(X,µX) such that α ◦ ηX = α. For each homomorphism of FT -coalgebras f ,
define H(f) = T (f). Then, H is a functor from CoAlg(FT) to CoAlg(F̂).

In particular, the following diagram

X Y

T (X) T (Y)

FT (X) FT (Y)

f

ηX

α

ηY

β

T (f)

α β

FT (f)

commutes, for any homomorphism of FT -coalgebras f : (X,α)→ (Y ,β).

38

3.3. DETERMINIZATION

In the following example, we apply the previous theorem to the functor N = DP =

2× (P(−))A of nondeterministic automata. And basically, we get the determinization via

the powerset construction as a particular case of the coalgebraic determinization.

Example 3.12. Consider the functorN =DP = 2×(P(−))A : Set→ Set of nondeterministic

automata, introduced in Example 3.7(ii), where (P,η,µ) is the powerset monad presented

in Example 2.11. Let D̂ : EM(P)→ EM(P) be the lifting of D to EM(P) defined in Exam-

ple 2.22. Observe that D̂-coalgebras are basically deterministic automata in the category

of complete join-semilattices, by Example 2.16.

Given a DP-coalgebra (X,〈o,d〉 : X → 2 × (P(X))A), by Theorem 3.11, we have a D̂-

coalgebra ((P(X),µX),〈o,d〉) where o : P(X)→ 2 and d : P(X)→ (P(X))A are defined by

o(S) = max{o(x) | x ∈ S} and d(S)(a) =
⋃
x∈S

d(x)(a),

for every S ∈ P(X) and a ∈ A. In particular, (P(X),〈o,d〉) is a deterministic automaton

as it is a D-coalgebra. Also, a set S ∈ P(X) is final in (P(X),〈o,d〉) if, and only if, there

is a state x ∈ S that is final in (X,〈o,d〉). And for S,S ′ ∈ P(X) and a ∈ A, S
a−→ S ′ in

(P(X),〈o,d〉) if, and only if, for every state x′ ∈ S ′ there exists a state x ∈ S such that

x
a−→ x′ in (X,〈o,d〉). Note that (P(X),〈o,d〉) is basically the determinization of (X,〈o,d〉)

via the powerset construction.

In the terms of Theorem 3.11, assume that F has a final coalgebra (Ω,ω) (see Def-

inition 3.8). Given an FT -coalgebra (X,α), by Theorem 3.11, we have an F̂-coalgebra

((T (X),µX),α), and thus an F-coalgebra (T (X),α). Since (Ω,ω) is a final F-coalgebra, there

exists a unique homomorphism of F-coalgebras ` : (T (X),α)→ (Ω,ω). Then, we have that

the following diagram

X T (X) Ω

FT (X) F(Ω).

ηX

α ωα

`

F(`)

commutes. Moreover, we can obtain a final F̂-coalgebra whenever F has a final coalgebra.

Theorem 3.13. Let (T ,η,µ) be a monad on a category C, and let F : C → C be a functor
with a lifting F̂ : EM(T)→ EM(T) to the Eilenberg-Moore category of T . By Theorem 2.21,
define a distributive law ρ : T F → FT of T over F such that F̂(X,h) = (F(X),F(h) ◦ ρX), for
every T -algebra (X,h). If there exists a final F-coalgebra (Ω,ω), then F̂ has a final coalgebra
((Ω,κ),ω) where κ : T (Ω)→Ω is the unique morphism in C making the diagram

39

CHAPTER 3. COALGEBRAS

T (Ω) Ω

FT (Ω) F(Ω)

ρΩ ◦ T (ω) ω

κ

F(κ)

commute, i.e. ω ◦κ = F(κ) ◦ ρΩ ◦ T (ω).

Proof. Suppose that F has a final coalgebra (Ω,ω). We have that (T (Ω),ρX ◦ T (ω)) is an

F-coalgebra, then there exists exactly one morphism κ : T (Ω) → Ω in C such that the

diagram

T (Ω) Ω

FT (Ω) F(Ω)

ρΩ ◦ T (ω) ω

κ

F(κ)

commutes. Since η is a natural transformation from IdC to T and ρ is a distributive law

of T over F (Definition 2.20), the diagram

Ω F(Ω)

T (Ω) T F(Ω) FT (Ω)

ω

ηΩ
F(ηΩ)

ηF(Ω)

T (ω) ρΩ

commutes, then ηΩ is a homomorphism of F-coalgebras from (Ω,ω) to (T (Ω),ρΩ ◦ T (ω)).

Thus, κ ◦ ηΩ is a homomorphism of F-coalgebras from (Ω,ω) to itself, which implies that

κ ◦ ηΩ = idΩ, by finality of (Ω,ω). Also, both diagrams

T 2(Ω) T FT (Ω) FT 2(Ω)

T (Ω) T F(Ω) FT (Ω)

T (ρΩ ◦ T (ω))

T (κ)

ρT (Ω)

T F(κ) FT (κ)

T (ω) ρΩ

and

40

3.3. DETERMINIZATION

T 2(Ω) T 2F(Ω) T FT (Ω) FT 2(Ω)

T (Ω) T F(Ω) FT (Ω)

T 2(ω)

µΩ

T (ρΩ)

µF(Ω)

ρT (Ω)

F(µΩ)

T (ω) ρΩ

commute, because ρ is a distributive law of T over F and µ is a natural transformation

from T 2 to T , and hence both T (κ) and µΩ are homomorphisms of F-coalgebras from

(T 2(Ω),ρT (Ω) ◦ T (ρΩ) ◦ T 2(ω)) to (T (Ω),ρΩ ◦ T (ω)). Therefore, both κ ◦ T (κ) and κ ◦ µΩ
are homomorphisms of F-coalgebras from (T 2(Ω),ρT (Ω) ◦T (ρΩ) ◦T 2(ω)) to (Ω,ω), which

implies that κ ◦ T (κ) = κ ◦µΩ, by finality of (Ω,ω). Hence, (Ω,κ) is a T -algebra.

By the definition of κ, the diagram

T (Ω) T F(Ω)

Ω F(Ω)

T (ω)

κ F(κ) ◦ ρΩ

ω

commutes, then ω is a homomorphism of T -algebras from (Ω,κ) to F̂(Ω,κ) = (F(Ω),F(κ)◦
ρΩ). Thus, ((Ω,κ),ω) is an F̂-coalgebra.

Let ((X,h),α) be an F̂-coalgebra. Note that (X,α) is an F-coalgebra, and so there exists

a unique homomorphism of F-coalgebras ` : (X,α) → (Ω,ω), because (Ω,ω) is a final

F-coalgebra. We have that ω ◦ κ = F(κ) ◦ ρΩ ◦ T (ω) and ω ◦ ` = F(`) ◦ α, and since α

is a homomorphism of T -algebras from (X,h) to F̂(X,h) = (F(X),F(h) ◦ ρX) and ρ is (in

particular) a natural transformation from T F to FT , then both diagrams

T (X) X Ω

FT (X) F(X) F(Ω)

h

ρX ◦ T (α)

`

α ω

F(h) F(`)

and

41

CHAPTER 3. COALGEBRAS

T (X) T (Ω) Ω

T F(X) T F(Ω)

FT (X) FT (Ω) F(Ω)

T (`)

T (α)

κ

T (ω)

ω
TF(`)

ρX ρΩ

FT (`) F(κ)

commute, which implies that both ` ◦ h and κ ◦T (`) are homomorphisms of F-coalgebras

from (T (X),ρX◦T (α)) to (Ω,ω). Hence, `◦h = κ◦T (`) because (Ω,ω) is a final F-coalgebra,

and so ` is a homomorphism of T -algebras from (X,h) to (Ω,κ). Therefore, ` is a homo-

morphism of F̂-coalgebras from ((X,h),α) to ((Ω,κ),ω).

Finally, if `′ : ((X,h),α)→ ((Ω,κ),ω) is a homomorphism of F̂-coalgebras, then `′ is

also a homomorphism of F-coalgebras from (X,α) to (Ω,ω) which implies `′ = ` due to

(Ω,ω) be a final F-coalgebra. Thus, ` is the unique homomorphism of F̂-coalgebras from

((X,h),α) to ((Ω,κ),ω).

We have that ((Ω,κ),ω) is a final F̂-coalgebra.

In Example 3.10 we saw that language recognition arises from a final coalgebra for

deterministic automata. By the previous theorem, we get a similar notion, from a coalge-

braic point of view, for nondeterministic automata.

Example 3.14. Consider the functorN =DP = 2×(P(−))A : Set→ Set of nondeterministic

automata, described in Example 3.7(ii), where (P,η,µ) is the powerset monad presented in

Example 2.11. Let D̂ : EM(P)→ EM(P) and ρ : PD→DP be the lifting of D to EM(P) and

the distributive law of P over D, respectively, defined in Example 2.22. And let (Ω,〈e, t〉),
where Ω = {L | L ⊆ A∗}, be the coalgebra of languages described in Example 3.10, which is

a final D-coalgebra. Define κ : P(Ω)→Ω by

κ(X) =
⋃
L∈X

L, X ∈ P(Ω),

and define 〈e′ , t′〉 = ρΩ ◦P(〈e, t〉) : P(Ω)→DP(Ω) which is given by

e′(X) = max{e(L) | L ∈ X} and t′(X)(a) = {t(L)(a) | L ∈ X}

for each X ∈ P(Ω) and a ∈ A. Observe that the diagram

P(Ω) Ω

DP(Ω) D(Ω)

〈e′ , t′〉 = ρΩ ◦P(〈e, t〉) 〈e, t〉

κ

id2×κA

42

3.3. DETERMINIZATION

commutes. Then, by Theorem 3.13, ((Ω,κ),〈e, t〉) is a final D̂-coalgebra.

Given a DP-coalgebra (X,〈o,d〉), we obtain a D̂-coalgebra ((P(X),µX),〈o,d〉) as de-

scribed in Example 3.12, and then there exists a unique homomorphism of D̂-coalgebras

` : ((P(X),µX),〈o,d〉)→ ((Ω,κ),〈e, t〉) defined by

`(S) = {w ∈ A∗ | o(d
∗
(S)(w)) = 1}, S ∈ P(X).

For any S ∈ P(X) and a1, a2, . . . , an ∈ A∗, where n ∈ N, note that a1a2 . . . an ∈ `(S) if and

only if there exists x0 ∈ S such that x0
a1−→ x1

a2−→ ·· ·
an−→ xn in (X,〈o,d〉) and o(xn) = 1, for

some xi+1 ∈ d(xi)(ai+1) with 0 ≤ i < n. Then, ` maps each set S ∈ P(X) to the language

recognized by the nondeterministic automaton (X,〈o,d〉) with S as set of initial states.

43

C
h
a
p
t
e
r

4
Fuzzy sets

In this chapter, we study fuzzy sets with membership degrees in a complete residuated

lattice and define a monad for them. Fuzzy sets were first introduced in [Zad65] to model

collections of objects where the question of whether an object belongs to a collection is

answered by a value in a certain structure. See also [Gog67; Win07].

This chapter is divided in three parts. First, in Section 4.1, we introduce complete

residuated lattices that we will use as structure of membership degrees for fuzzy sets, and

state some results that will be useful to work with fuzzy sets. We also define the notion

of a module over a complete residuated lattice in Section 4.1.1.

Second, in Section 4.2, we give a brief introduction to fuzzy sets and fuzzy relations.

For a comprehensive introduction we refer to [Běl02; BV05]. Then, in Section 4.2.2, we

relate fuzzy sets and modules over a complete residuated lattice.

Finally, in Section 4.3, we make a categorical approach to fuzzy sets by defining a

monad for them. And then, in Section 4.3.1, we present a isomorphism between algebras

of the fuzzy-set monad and the category of modules over a complete residuated lattice.

4.1 Residuated lattices

In this section we introduce an algebraic structure that will be used as structure of truth

values for the underlying fuzzy logic. Since fuzzy logic admits many truth values (between

the traditional ones: absolutely true and absolutely false), this structure gains extreme

importance. In concrete applications, the structure of truth values is the basis of our

resoning and judgment. So we choose to work on complete residuated lattices which are

general enough to be used in many different problems and still a rich structure where

basic logical notions can be “soundly” modelled. Thus, along the section we also do some

notes about the logical motivation and interpretation of some properties.

45

CHAPTER 4. FUZZY SETS

Definition 4.1. A residuated lattice is an algebra K = (K,∧,∨,⊗,→,0,1) with four binary

and two nullary operations that satifies:

(RL1) (K,∧,∨,0,1) is a lattice with the least element 0 and the greatest element 1 for the

partial order ≤ defined by

x ≤ y ⇐⇒ x∨ y = y, x,y ∈ K ;

(RL2) (K,⊗,1) is a commutative monoid with the unit 1;

(RL3) ⊗ and→ form an adjoint pair, i.e. the following property holds

x ≤ y→ z ⇐⇒ x⊗ y ≤ z, x,y,z ∈ K.

The operations ⊗ and → are called multiplication and residuum, respectively. Also, if

(K,∧,∨,0,1) is a complete lattice, then K is called a complete residuated lattice.

In this thesis, the structures of truth values of fuzzy logic will be complete residuated

lattices. Let K = (K,∧,∨,⊗,→,0,1) be such a structure. Condition (RL1) guarantees that

the set of truth values K is partially ordered (where infima and suprema of every two

truth values exist) and contains the least truth value 0 (representing “absolutely false”)

and the greatest truth value 1 (representing “absolutely true”). The (general) infimum∧
and (general) supremum

∨
are intended for modelling of the general and existential

quantifier, respectively.

For logical connectives, the multiplication ⊗ and residuum→ are intended for mod-

elling of the conjunction and implication, respectively. Condition (RL2) provides that

the multiplication satisfies some properties that we want for the conjunction. Condition

(RL3) reflects a generalization of the inference rule modus ponens (from classical bivalent

logic) and ensures that the residuum gives the greatest truth value for which it holds.

Although residuated lattices are derived from relatively simple logical assumptions,

we will see that they originate a rich structure of truth values. Since we intended to

generalize classical bivalent logic, the two-element Boolean algebra (i.e. the structure of

truth of classical bivalent logic) arises as a residuated lattice on {0,1}.

Example 4.2. Let K = 2 = {0,1}. Define x∧ y = min(x,y) and x∨ y = max(x,y), for x,y ∈ K .

Then (K,∧,∨,0,1) is a (complete) lattice. Also, define x⊗y = x∧y and x→ y = max(1−x,y),

for x,y ∈ K . Thus, (K,∧,∨,⊗,→,0,1) is a (complete) residuated lattice, which is basically

the two-element Boolean algebra (to match the standard definition [BS81, Definition

IV§1.3], consider the complementation operation ′ given by x′ = x→ 0, x ∈ K). Moreover,

this is the unique residuated lattice on 2 = {0,1} (with 0 < 1), which we denote by 2.

Furthermore, most of the structures of truth values used for fuzzy logic are (complete)

residuated lattices as shown in the following example.

Example 4.3. Let K = [0,1] be the interval of all real numbers between 0 and 1. Note that

(K,min,max,0,1) is a complete lattice.

46

4.1. RESIDUATED LATTICES

(i) Define

x⊗ y = max(x+ y − 1,0)

x→ y = min(1− x+ y,1),

for x,y ∈ [0,1]. Then, (K,min,max,⊗,→,0,1) is a complete residuated lattice that corre-

sponds to the standard Lukasiewicz algebra.

(ii) Define

x⊗ y = min(x,y)

x→ y =

1 if x ≤ y

y if y < x

for x,y ∈ [0,1]. Then, (K,min,max,⊗,→,0,1) is a complete residuated lattice that corre-

sponds to the standard Gödel algebra.

(iii) Define

x⊗ y = x · y

x→ y =

1 if x ≤ y

y/x if y < x

(where · and / represent the usual multiplication and division of real numbers), for x,y ∈
[0,1]. Then, (K,min,max,⊗,→,0,1) is a complete residuated lattice that corresponds to

the standard product algebra.

The following theorem presents some basic properties of residuated lattices. Each of

them has an interpretation from the logical point of view that complements the previous

discussion. For instance, Definition 4.1 does not (directly) state the result of x⊗0, although

one would expect it to be 0.

Theorem 4.4. Let K = (K,∧,∨,⊗,→,0,1) be a residuated lattice. The following hold for any
x,y ∈ K :

(i) x⊗ 0 = 0;
(ii) 1→ x = x;

(iii) x⊗ (x→ y) ≤ y;
(iv) x ≤ y if, and only if, x→ y = 1;
(v) x⊗ y ≤ x∧ y;

(vi) the set {z ∈ K | x⊗ z ≤ y} is nonempty and x→ y is its supremum.

Proof. Let x,y ∈ K . (i) Since 0 is the least element, we have 0 ≤ x→ 0, then by adjunction

x⊗ 0 = 0⊗ x ≤ 0 which implies x⊗ 0 = 0.

(ii) By adjunction, x⊗ 1 = x ≤ x implies x ≤ 1→ x and 1→ x ≤ 1→ x implies 1→ x =

(1→ x)⊗ 1 ≤ x. Thus, 1→ x = x.

(iii) From x→ y ≤ x→ y, it follows that x⊗ (x→ y) = (x→ y)⊗ x ≤ y.

47

CHAPTER 4. FUZZY SETS

(iv) By adjunction, we have that

x ≤ y ⇐⇒ 1⊗ x ≤ y ⇐⇒ 1 ≤ x→ y ⇐⇒ x→ y = 1.

(v) Applying the previous result, y→ y = 1 (since y ≤ y) and then x ≤ y→ y implies

that x⊗ y ≤ y. Since ⊗ is commutative, we also have x⊗ y = y ⊗ x ≤ x. Thus, x⊗ y ≤ x∧ y.

(vi) Let S = {z ∈ K | x⊗ z ≤ y}. By (iii), x→ y ∈ S. If z is such that x⊗ z ≤ y (or z⊗ x ≤ y,

by commutativity of ⊗), then z ≤ x→ y. Therefore, x→ y =
∨
S.

From these last properties it is easy to check that ⊗ and→ behave like the classical

conjunction and implication on {0,1}, respectively. It supports our claim in Example 4.2

that the only two-element residuated lattice is indeed the two-element Boolean algebra.

Theorem 4.5. Let K = (K,∧,∨,⊗,→,0,1) be a residuated lattice. The multiplication ⊗ is
order-preserving in both arguments and the residuum→ is order-preserving in the second and
order-reversing in the first argument, i.e.

x⊗ y1 ≤ x⊗ y2 y1 ⊗ x ≤ y2 ⊗ x

x→ y1 ≤ x→ y2 y2→ x ≤ y1→ x

for any x,y1, y2 ∈ K , where y1 ≤ y2.

Proof. Let x,y1, y2 ∈ K with y1 ≤ y2. From y2 ⊗ x ≤ y2 ⊗ x, we get y2 ≤ x → (y2 ⊗ x) (by

adjunction) and thus y1 ≤ x→ (y2⊗x) which implies y1⊗x ≤ y2⊗x. Therefore, ⊗ is order-

preserving in the first argument and, since ⊗ is commutative, it follows for the second

argument.

From Theorem 4.4(iii), we have (x → y1) ⊗ x ≤ y1 and thus (x → y1) ⊗ x ≤ y2 which

implies x→ y1 ≤ x→ y2. Therefore,→ is order-preserving in the second argument.

Since (y2 → x) ⊗ y2 ≤ x (Theorem 4.4(iii)) and ⊗ is order-preserving (in the second

argument), we have (y2 → x) ⊗ y1 ≤ (y2 → x) ⊗ y2. Thus, (y2 → x) ⊗ y1 ≤ x that implies

y2→ x ≤ y1→ x. Therefore,→ is order-reversing in the first argument.

Note that the order preservation (or reversion) has a special relevance from the logical

point of view, because it tells how the truth degree of a conjunction or implication depends

on the truth degree of the propositions involved. Moreover, the following result can be

seen as a generalization of Theorem 4.5.

Theorem 4.6. Let K = (K,∧,∨,⊗,→,0,1) be a complete residuated lattice. The following
(distributive) rules hold for any x,yi ∈ K , i ∈ I , where I is an index set:

(i) x⊗ (
∨
i∈I
yi) =

∨
i∈I

(x⊗ yi);

(ii) x→ (
∧
i∈I
yi) =

∧
i∈I

(x→ yi);

(iii) (
∨
i∈I
yi)→ x =

∧
i∈I

(yi → x).

48

4.1. RESIDUATED LATTICES

Proof. Let x,yi ∈ K , i ∈ I (where I is an index set). (i) For each j ∈ I , we have yj ≤
∨
i∈I yi

and, since ⊗ is order-preserving (Theorem 4.5), x ⊗ yj ≤ x ⊗ (
∨
i∈I yi). If z is such that

x⊗ yj ≤ z (or, equivalently, yj ≤ x→ z), for each j ∈ I , then
∨
i∈I yi ≤ x→ z which implies

x⊗ (
∨
i∈I yi) ≤ z. Therefore, x⊗ (

∨
i∈I yi) =

∨
i∈I (x⊗ yi).

(ii) For each j ∈ I , we have
∧
i∈I yi ≤ yj and, since→ is order-preserving in the second

argument (Theorem 4.5), x→ (
∧
i∈I yi) ≤ x→ yj . If z is such that z ≤ x→ yj (or, equiv-

alently, z ⊗ x ≤ yj), for each j ∈ I , then z ⊗ x ≤
∧
i∈I yi which implies z ≤ x → (

∧
i∈I yi).

Therefore, x→ (
∧
i∈I yi) =

∧
i∈I (x→ yi).

(iii) For each j ∈ I , yj ≤
∨
i∈I yi and, since→ is order-reversing in the first argument

(Theorem 4.5), (
∨
i∈I yi) → x ≤ yj → x. If z is such that z ≤ yj → x (or, equivalently,

z ⊗ yj ≤ x), for each j ∈ I , then z ⊗ (
∨
i∈I yi) =

∨
i∈I (z ⊗ yi) ≤ x (from (i)) which implies

z ≤ (
∨
i∈I yi)→ x. Therefore, (

∨
i∈I yi)→ x =

∧
i∈I (yi → x).

In Theorem 4.6, we could assume
∧
i∈I yi and

∨
i∈I yi to exist instead of K to be com-

plete. From this fact, we have that

x⊗ (y ∨ z) = (x⊗ y)∨ (x⊗ z)

x→ (y ∧ z) = (x→ y)∧ (x→ z)

(x∨ y)→ z = (x→ z)∧ (y→ z)

in any residuated lattice.

From the properties already described, it is easy to check that any residuated lattice

satisfies the following identities

x→ (x∨ y) = 1

(x⊗ (x→ y))∨ y = y

(x⊗ y)→ z = x→ (y→ z).

On the other hand, if an algebra K = (K,∧,∨,⊗,→,0,1) satisfies (RL1) and (RL2) from

Definition 4.1 and these three identities, then K is a residuated lattice. Thus, the class of

all residuated lattices is a variety of algebras [Běl02, Theorem 2.18].

The following example generalizes Example 4.3 (note that the standard Lukasiewicz

algebra is an MV-algebra).

Example 4.7. The following are alternative descriptions of well-known types of algebras

which mostly match the usual definitions so that in [Běl02, Definition 2.15] they are given

as the main definitions.

(i) A Heyting algebra (or Brouwerian lattice) is a residuated lattice (K,∧,∨,⊗,→,0,1)

satisfying

x⊗ y = x∧ y, x,y ∈ K.

49

CHAPTER 4. FUZZY SETS

(ii) A BL-algebra is a residuated lattice (K,∧,∨,⊗,→,0,1) satisfying

x∧ y = x⊗ (x→ y),

(x→ y)∨ (y→ x) = 1, x,y ∈ K.

(iii) An MV-algebra is a residuated lattice (K,∧,∨,⊗,→,0,1) satisfying

x∨ y = (x→ y)→ y, x,y ∈ K.

(iv) A
∏

-algebra (product algebra) is a residuated lattice (K,∧,∨,⊗,→,0,1) which is a

BL-algebra and satisfies

x∧ (x→ 0) = 0,

(z→ 0)→ 0 ≤ ((x⊗ z)→ (y ⊗ z))→ (x→ y), x,y,z ∈ K.

(v) A G-algebra (Gödel algebra) is a residuated lattice (K,∧,∨,⊗,→,0,1) which is a BL-

algebra and satisfies

x⊗ x = x, x ∈ K.

(vi) A Boolean algebra is a residuated lattice which is both a Heyting algebra and an

MV-algebra.

On the subsequent sections, K = (K,∧,∨,⊗,→,0,1) is an arbitrary complete residuated

lattice, with at least two elements (i.e. 0 , 1), that will be used as structure of truth values

for the underlying fuzzy logic.

4.1.1 K-modules

Complete join-semilattices (Example 2.16) are also called sup-lattices (cf. [JT84]), because

a complete join-semilattice (X,∨) has arbitrary meets defined by∧
S =

∨
{x ∈ X | x ≤ s for all s ∈ S}, S ⊆ X,

and so (X,∧,∨) is a complete lattice. However, a homomorphism of complete join-

semilattices may not preserve meets and thus it is not a homomorphism of complete

lattices.

Definition 4.8. (i) A K-module M = (M,∨,∗) is a complete join-semilattice (M,∨) together

with an action ∗ : K ×M→M, (k,m) 7→ k ∗m, that satisfies the following properties

1 ∗m =m, a ∗ (b ∗m) = (a⊗ b) ∗m,

(
∨
i∈I
ai) ∗m =

∨
i∈I

(ai ∗m), a ∗ (
∨
i∈I
mi) =

∨
i∈I

(a ∗mi),

for any a,b ∈ K , m ∈ M, and any families (ai)i∈I and (mi)i∈I of elements of K and M,

respectively.

50

4.1. RESIDUATED LATTICES

(ii) A homomorphism of K-modules f : M→M′ is a function f :M→M ′ such that

f (
∨
i∈I
mi) =

∨
i∈I

′
f (mi) and f (a ∗m) = a ∗′ f (m),

for any a ∈ K ,m ∈M and family (mi)i∈I of elements ofM. Homomorphisms of K-modules

are also called linear maps.
(iii) The category with objects all K-modules and morphisms all linear maps between

them is denoted by K-Mod.

This terminology is due to the resemblances with the definition of modules over a

ring. It is also defined modules over a quantale (see [Res00; Ros90] for a general reference

about quantales and quantale modules), and since K is a special type of quantale whose

multiplication is commutative and 1 is its unit, K-modules are a special case of modules

over a quantale.

Given K-modules M and M′. Note that a linear map f : M→M′ is a homomorphism

of complete join-semilattices from (M,∨) to (M ′ ,∨′) which commutes with the action of

each element a ∈ K (i.e. f (a ∗m) = a ∗′ f (m), for all m ∈M).

Example 4.9. (K,∨,⊗) is a K-module (by Theorem 4.6(i)).

We can also obtain K-modules from other K-modules as described in the following

two theorems.

Theorem 4.10. (i) Given a K-module M = (M,∨,∗) and a set X. We have a K-module MX =

(MX ,∨X ,∗X), where ∨X and ∗X are defined pointwise, i.e.

(
∨
i∈I

X
fi)(x) =

∨
i∈I
fi(x) and (a ∗X f)(x) = a ∗ f (x), x ∈ X,

for any f ∈MX , a ∈ K , and any family of functions (fi : X→M)i∈I .
(ii) Given a linear map f : M→M′, then f X :MX → (M ′)X defined by

f X(h) = f ◦ h, h ∈MX ,

is a linear map from MX to (M′)X

Proof. (i) Since M is nonempty, because it is the carrier of a complete join-semilattice,

then MX is nonempty. For any functions h1,h2,h3 ∈MX , we have that

(h1 ∨X h2)(x) = h1(x)∨ h2(x) = h2(x)∨ h1(x) = (h2 ∨X h1)(x),

(h1 ∨X h1)(x) = h1(x)∨ h1(x) = h1(x),

and

((h1 ∨X h2)∨X h3)(x) = (h1(x)∨ h2(x))∨ h3(x)

= h1(x)∨ (h2(x)∨ h3(x)) = (h1 ∨X (h2 ∨X h3))(x)

51

CHAPTER 4. FUZZY SETS

for all x ∈ X. This implies that (MX ,∨X) is a join-semilattice, where the partial order is

given by

h1 ≤X h2 ⇐⇒ ∀x ∈ X. h1(x) ≤ h2(x), h1,h2 ∈MX .

Let (hi)i∈I be a family of functions from X to M. Define s : X→M by

s(x) =
∨
i∈I
hi(x), x ∈ X.

Then, by definition of ≤X , we have that hi ≤X s for all i ∈ I . If u : X → M is such that

hi ≤X u for all i ∈ I , that is hi(x) ≤ u(x) for all x ∈ X and i ∈ I , then

s(x) =
∨
i∈I
hi(x) ≤ u(x),

for all x ∈ X, which implies s ≤X u. Hence, s is the supremum of (hi)i∈I . Consequently,

(MX ,∨X) is a complete join-semilattice.

For any h ∈MX and a,b ∈ K , we have that

(1 ∗X h)(x) = 1 ∗ h(x) = h(x)

(a ∗X (b ∗X h))(x) = a ∗ (b ∗ h(x)) = (a⊗ b) ∗ h(x) = ((a⊗ b) ∗X h)(x),

for all x ∈ X. And for any families (ai)i∈I of elements of K and (hi)i∈I of functions from X

to M, we have that

((
∨
i∈I
ai) ∗X h)(x) = (

∨
i∈I
ai) ∗ h(x) =

∨
i∈I
ai ∗ h(x) =

∨
i∈I

(ai ∗X h)(x) = (
∨
i∈I

X
ai ∗X h)(x)

(a ∗X (
∨
i∈I

X
hi))(x) = a ∗ (

∨
i∈I

X
hi)(x) = a ∗ (

∨
i∈I
hi(x)) =

∨
i∈I
a ∗ hi(x) = (

∨
i∈I

X
a ∗X hi)(x),

for every x ∈ X. Therefore, (MX ,∨X ,∗X) is a K-module.

(ii) Let f : M→M′ be a linear map. Then, for a family (hi)i∈I of functions from X to

M, we have that

f X(
∨
i∈I

X
hi)(x) = f (

∨
i∈I
hi(x)) =

∨
i∈I

′
f (hi(x)) = (

∨
i∈I

′X
f X(hi))(x)

for all x ∈ X. And for any a ∈ K and h ∈MX , we have that

f X(a ∗X h)(x) = f (a ∗ h(x)) = a ∗′ f (h(x)) = (a∗′Xf X(h))(x),

for all x ∈ X. Therefore, f X is a linear map from MX to (M′)X .

Theorem 4.11. (i) Given two K-modules M and M′. Then, we have a K-module M ×M′ =

(M ×M ′ ,∨×,∗×), where ∨× and ∗× are defined componentwise, i.e.∨
i∈I

×
(mi ,m

′
i) = (

∨
i∈I
mi ,

∨
i∈I

′
m′i) and a ∗× (m,m′) = (a ∗m,a ∗′m′)

for any (m,m′) ∈M ×M ′, a ∈ K , and any family (mi ,m′i)i∈I of elements of M ×M ′).
(ii) Given two linear maps f : M1→M2 and f ′ : M′1→M′2, then f × f ′ is a linear map

from M1 ×M′1 to M2 ×M′2.

52

4.1. RESIDUATED LATTICES

Proof. (i) Since M and M′ are K-modules, the sets M and M ′ are both nonempty, and so

M ×M ′ is nonempty. For any (m1,m
′
1), (m2,m

′
2), (m3,m

′
3) ∈M ×M ′, we have that

(m1,m
′
1)∨× (m1,m

′
1) = (m1 ∨m1,m

′
1 ∨
′m′1) = (m1,m

′
1),

(m1,m
′
1)∨× (m2,m

′
2) = (m1 ∨m2,m

′
1 ∨
′m′2) = (m2 ∨m1,m

′
2 ∨
′m′1)

= (m2,m
′
2)∨× (m1,m

′
1)

and

(((m1,m
′
1)∨× (m2,m

′
2))∨× (m3,m

′
3)) = ((m1 ∨m2)∨m3, (m

′
1 ∨
′m′2)∨′m′3)

= (m1 ∨ (m2 ∨m3),m′1 ∨
′ (m′2 ∨

′m′3))

= ((m1,m
′
1)∨× ((m2,m

′
2)∨× (m3,m

′
3))).

Then, (M ×M ′ ,∨×) is a join-semilattice where the partial order ≤× is given by

(m1,m
′
1) ≤× (m2,m

′
2) ⇐⇒ m1 ≤m2 and m′1 ≤

′ m′2,

(m1,m
′
1), (m2,m

′
2) ∈M ×M ′. Let (mi ,m′i)i∈I be a family of elements of M ×M ′. Define

(s, s′) = (
∨
i∈I
mi ,

∨
i∈I

′
m′i).

Then (mi ,m′i) ≤
× (s, s′) for all i ∈ I . If (u,u′) ∈M ×M ′ are such that (mi ,m′i) ≤

× (u,u′) for

all i ∈ I , that is mi ≤ u and m′i ≤
′ u′ for all i ∈ I , then s ≤ u and s′ ≤′ u′ which implies that

(s, s′) ≤× (u,u′). Hence, (s, s′) is the supremum of (mi ,m′i)i∈I . Consequently, (M ×M ′ ,∨×) is

a complete join-semilattice.

For any (m,m′) ∈M ×M ′ and a,b ∈ K , we have that

1 ∗× (m,m′) = (1 ∗m,1 ∗′m′) = (m,m′)

a ∗× (b∨× (m,m′)) = (a ∗ (b ∗m), a ∗′ (b ∗′m′)) = ((a⊗ b) ∗m, (a⊗ b) ∗′m′)

= (a⊗ b) ∗× (m,m′).

And for any families (ai)i∈I of elements of K and (mi ,m′i)i∈I of elements of M ×M ′, we

have that

(
∨
i∈I
ai) ∗× (m,m′) = ((

∨
i∈I
ai) ∗m, (

∨
i∈I
ai) ∗′m′)

= (
∨
i∈I
ai ∗m,

∨
i∈I
ai ∗′m′) =

∨
i∈I

×
ai ∗× (m,m′)

and

a ∗× (
∨
i∈I

×
(mi ,m

′
i)) = (a ∗ (

∨
i∈I
mi), a ∗′ (

∨
i∈I

′
m′i))

= (
∨
i∈I
a ∗mi ,

∨
i∈I

′
a ∗′mi) =

∨
i∈I

×
a ∗× (mi ,m

′
i).

53

CHAPTER 4. FUZZY SETS

Therefore, (M ×M ′ ,∨×,∗×) is a K-module.

(ii) Let f : M1→M2 and f ′ : M′1→M′2 be linear maps. For any family (mi ,m′i)i∈I of

elements of M1 ×M ′1, we have that

(f × f ′)(
∨
i∈I

1×
(mi ,m

′
i)) = (f (

∨
i∈I

1
mi), f

′(
∨
i∈I

1′
m′i))

= (
∨
i∈I

2
f (mi),

∨
i∈I

2′
f ′(m′i)) =

∨
i∈I

2×
(f × f ′)(mi ,m′i).

And for any a ∈ K and (m,m′) ∈M1 ×M ′1, we have that

(f × f ′)(a∗1×(m,m′)) = (f (a ∗1m), f ′(a ∗1′m′))

= (a ∗2 f (m), a ∗2′ f ′(m′)) = a∗2×(f × f ′)(m,m′).

Therefore, f × f ′ is a linear map from M1 ×M′1 to M2 ×M′2.

Theorem 4.12. Let M be a K-module. The following hold for any a,b ∈ K , m,n ∈M:
(i) if a ≤ b, then a ∗m ≤ b ∗m;

(ii) if m ≤ n, then a ∗m ≤ a ∗n;
(iii) 0 ∗m = 0M , where 0M is the least element of M.

Proof. Let a,b ∈ K and m,n ∈M. (i) If a ≤ b, then

(a ∗m)∨ (b ∗m) = (a∨ b) ∗m = b ∗m

and so a ∗m ≤ b ∗m.

(ii) If m ≤ n, then

(a ∗m)∨ (a ∗n) = a ∗ (m∨n) = a ∗n

and thus a ∗m ≤ a ∗n.

(iii) Note that 0 =
∨
∅ in K, and 0M =

∨
∅ in M. Let (ai)i∈∅ denote the empty family,

then

0 ∗m = (
∨
i∈∅
ai) ∗m =

∨
i∈∅
ai ∗m =

∨
∅ = 0M .

by Definition 4.8(i).

Observe that Definition 4.8(i) and Theorem 4.12(iii) determines how 0 and 1 act on

any K-module.

Example 4.13. Let 2 be the two-element (complete) residuated lattice in Example 4.2.

For a complete join-semilattice (M,∨), we have that (M,∨,∗) is a 2-module if, and only if,

∗ : 2×M→M is given by

0 ∗m = 0M and 1 ∗m =m, m ∈M,

Also, a homomorphism of complete join-semilattices is a linear map of 2-modules. Thus,

the category of 2-modules (Definition 4.8(iii)) is isomorphic to the category of complete

join-semilattices (Example 2.16).

54

4.2. FUZZY SETS

4.2 Fuzzy sets

In this section we present the notions of fuzzy sets and fuzzy relations (with truth values

for membership degrees in a complete residuated lattice K). We also define some basic

operations (such as union of fuzzy sets and composition of fuzzy relations) that structure

these notions.

Definition 4.14. Let X be a set.

(i) A fuzzy subset of X (over K) is a function ϕ : X→ K . Given x ∈ X, ϕ(x) is called the

membership degree of x in ϕ.

(ii) In addition to KX , the set of all fuzzy subsets of X is also denoted by Z(X).

The notation Z(X) will be mostly used in Section 4.3 to define a functor on Set that

maps each set X to the set of all its fuzzy subsets Z(X). In general, we write ϕ ∈ KX or

ϕ : X→ K , rather than ϕ ∈ Z(X), to be more explicit.

Let ϕ ∈ KX be a fuzzy subset of a set X. For each x ∈ X, ϕ(x) can be interpreted as

the truth value of “x is an element of ϕ” (or “x is in ϕ”). Thus, if ϕ(x) ∈ {0,1} (⊆ K), for

all x ∈ X, then ϕ defines an ordinary subset S = {x ∈ X | ϕ(x) = 1} of X, where ϕ is the

characteristic function of S (i.e. x ∈ S, if ϕ(x) = 1, and x < S, if ϕ(x) = 0). Moreover, if

there is a unique x0 ∈ X such that ϕ(x0) = 1, and ϕ(x) = 0, for every x ∈ X \ {x0}, then ϕ

determines an element of X.

Definition 4.15. Let ϕ ∈ KX be a fuzzy subset of a set X.

(i) ϕ is called crisp if either ϕ(x) = 0 or ϕ(x) = 1, for all x ∈ X.

(ii) ϕ is called crisp-deterministic if there exists x0 ∈ X such thatϕ(x0) = 1, andϕ(x) = 0,

for every x ∈ X \ {x0}.

On the other hand, an ordinary subset S of a set X defines a crisp fuzzy subset ϕ of

X where ϕ(x) = 1, if x ∈ S, and ϕ(x) = 0, if x ∈ X \ S. And an element x0 ∈ X defines a

crisp-deterministic fuzzy subset ϕ of X where ϕ(x0) = 1, and ϕ(x) = 0, for all x ∈ X \ {x0}.
An application of fuzzy sets is for modelling of collections of objects where the ques-

tion of whether an object is in a collection is answered by a truth value in a structure

(namely a complete residuated lattice).

Example 4.16. (i) Consider K to be the standard Lukasiewicz algebra (Example 4.3(i)).

Let X = {black,brown,orange,red} and define a fuzzy subset ϕ of X by

ϕ(black) = 0, ϕ(brown) = 0.4, ϕ(orange) = 0.6, ϕ(red) = 1.

The collection of “colors like red” (in X) may be represented by ϕ.

(ii) Consider K to be the standard Gödel algebra (Example 4.3(ii)). Let ϕ be a fuzzy

subset of the natural numbers N defined by

ϕ(n) =

n/100 if n ≤ 100

1 otherwise,
n ∈ N.

55

CHAPTER 4. FUZZY SETS

The collection of “large natural numbers” may be represented by ϕ.

(iii) Consider K to be the standard Gödel algebra (Example 4.3(ii)). Let ϕ be a fuzzy

subset of the real numbers R defined by

ϕ(x) =


1 + x if −1 ≤ x ≤ 0

1− x if 0 < x ≤ 1

0 otherwise,

x ∈ R.

The collection of “real numbers near 0” may be represented by ϕ.

Note that the structure of truth values plays a very important role when defining a

fuzzy set. It is from where the membership degrees are choosen, which is itself a very

important matter whether the choice represents our collection. Moreover, it also induces

operation on the fuzzy sets.

Definition 4.17. Let X be a set. Define binary operations ∩, ∪, ⊗X and→X , and nullary

operations ∅ and χ on KX by

(ϕ ∩ψ)(x) = ϕ(x)∧ψ(x), (ϕ ∪ψ)(x) = ϕ(x)∨ψ(x),

(ϕ ⊗X ψ)(x) = ϕ(x)⊗ψ(x), (ϕ→X ψ)(x) = ϕ(x)→ ψ(x),

∅(x) = 0, χ(x) = 1,

for all x ∈ X and all ϕ,ψ ∈ KX . Also, for a family (ϕi)i∈I of fuzzy subsets of X, indexed by

a set I , define (
⋂
i∈I
ϕi) : X→ K and (

⋃
i∈I
ϕi) : X→ K by

(
⋂
i∈I
ϕi)(x) =

∧
i∈I
ϕi(x) and (

⋃
i∈I
ϕi)(x) =

∨
i∈I
ϕi(x), x ∈ X.

Note that if X is the empty set, then KX has exactly one element and thus the previous

operations are trivially defined on KX .

Let X be a set. The algebra (KX ,∩,∪,⊗X ,→X ,∅,χ) is a complete residuated lattice, the

(lattice) partial order ⊆ is given by

ϕ ⊆ ψ ⇐⇒ ∀x ∈ X.ϕ(x) ≤ ψ(x), ϕ,ψ ∈ KX ,

where arbitrary meets and arbitrary joins correspond to
⋂

and
⋃

, respectively. We usually

omit the superscript X in ⊗X and→X , since it is always clear from the context when we

are considering these operations on X or on KX .

Example 4.18. Let 2 be the two-element (complete) residuated lattice in Example 4.2.

For each set X, consider a function λX from the set of fuzzy subsets of X to the set of

ordinary subsets of X, i.e. λX : 2X → P(X), defined by

λX(ϕ) = {x ∈ X | ϕ(x) = 1}, ϕ ∈ 2X .

56

4.2. FUZZY SETS

Let X be a set. λX is a bijection, which allows us to check that the operations on 2X (from

Definition 4.17) coincide with the usual ones on P(X). For ϕ,ψ ∈ 2X , we have

(ϕ ∩ψ)(x) = 1 ⇐⇒ x ∈ λX(ϕ) and x ∈ λX(ψ),

(ϕ ∪ψ)(x) = 1 ⇐⇒ x ∈ λX(ϕ) or x ∈ λX(ψ), x ∈ X.

Thus, ∩ and ∪ on 2X coincide with the intersection and union on P(X), respectively. Also

ϕ ⊆ ψ ⇐⇒ λX(ϕ) is a subset of λX(ψ), ϕ,ψ ∈ 2X .

Similarly,
⋂

and
⋃

on 2X correspond to arbitrary intersection and arbitrary union on

P(X), respectively. Note that ⊗ coincides with ∩, since K has just two elements. Finally,

for ϕ,ψ ∈ 2X , we have

(ϕ→ ψ)(x) = 1 ⇐⇒ x ∈ λX(ψ) or x ∈ X \λX(ϕ), x ∈ X.

4.2.1 Fuzzy relations

Recall that a relation between (ordinary) sets is a subset of their cartesian product. Thus,

the following definition becomes very natural.

Definition 4.19. Let X1,X2, . . . ,Xn be sets, n ≥ 2. A fuzzy relation between X1,X2, . . . ,Xn is

a fuzzy subset of the cartesian product X1 ×X2 × · · · ×Xn. An n-ary fuzzy relation on a set

X is a fuzzy subset of Xn.

Although fuzzy relations are fuzzy sets, some characterizations mean different proper-

ties. For instance, the terms introduced in Definition 4.15 for fuzzy sets have the following

definition for fuzzy relations.

Definition 4.20. Let µ : X1×X2×· · ·×Xn→ K be a fuzzy relation between setsX1,X2, . . . ,Xn,

n ≥ 2.

(i) µ is called crisp if either µ(x1,x2, . . . ,xn) = 0 or µ(x1,x2, . . . ,xn) = 1, for every x1 ∈
X1,x2 ∈ X2, . . . ,xn ∈ Xn.

(ii) µ is called crisp-deterministic if for every x1 ∈ X1,x2 ∈ X2, . . . ,xn−1 ∈ Xn−1 there exists

xn ∈ Xn such that µ(x1,x2, . . . ,xn−1,xn) = 1, and µ(x1,x2, . . . ,xn−1, y) = 0, for all y ∈ Xn \ {xn}.

Note that a crisp fuzzy relation is a crisp fuzzy subset of a cartesian product. However,

this does not apply to crisp-deterministic fuzzy relations, where we have the following.

Let µ : X1 ×X2 × · · · ×Xn→ K be a fuzzy relation between sets X1,X2, . . . ,Xn, n ≥ 2. For

each x1 ∈ X1,x2 ∈ X2, . . . ,xn−1 ∈ Xn−1, consider a fuzzy subset µx1,x2,...,xn−1
of Xn defined by

µx1,x2,...,xn−1
(xn) = µ(x1,x2, . . . ,xn), xn ∈ Xn.

Therefore, µ is a crisp-deterministic fuzzy relation between X1,X2, . . . ,Xn if, and only if,

µx1,x2,...,xn−1
is a crisp-determistic fuzzy subset of Xn, for all x1 ∈ X1,x2 ∈ X2, . . . ,xn−1 ∈ Xn−1.

57

CHAPTER 4. FUZZY SETS

For each x1 ∈ X1,x2 ∈ X2, . . . ,xn ∈ Xn, µ(x1,x2, . . . ,xn) can be interpreted as the truth

value of “x1,x2, . . . ,xn are related by µ” (or “x1,x2, . . . ,xn are µ-related”). Therefore, as

fuzzy sets models collections of objects, fuzzy relations may be used for modelling of

relationships between objects where the membertship degree (or relationship degree) is

intended to answer the question of whether some objects are related.

Example 4.21 ([Běl02, Example 3.5]). Consider K to be any complete residuated lattice

on [0,1]. Define a binary fuzzy relation µ on the set of real numbers R by

µ(x,y) = max(1− |x − y|,0) x,y ∈ R

(where |·| represents the absolute value). Then µ may represent the relationship “being

close real numbers”.

Since fuzzy relations are fuzzy sets, the operations in Definition 4.17 apply to them.

Definition 4.22. Let X, Y and Z be sets.

(i) The composition of fuzzy relations µ ∈ KX×Y and ν ∈ KY×Z is a fuzzy relation

µ � ν ∈ KX×Z defined by

(µ � ν)(x,z) =
∨
y∈Y

(µ(x,y)⊗ ν(y,z)), (x,z) ∈ X ×Z.

(ii) The composition of a fuzzy set ϕ ∈ KX and a fuzzy relation µ ∈ KX×Y is a fuzzy set

ϕ �µ ∈ KY defined by

(ϕ �µ)(y) =
∨
x∈X

(ϕ(x)⊗µ(x,y)), y ∈ Y .

(iii) The composition of a fuzzy relation µ ∈ KX×Y and a fuzzy set ψ ∈ KY is a fuzzy set

µ �ψ ∈ KX defined by

(µ �ψ)(x) =
∨
y∈Y

(µ(x,y)⊗ψ(y)), x ∈ X.

(iv) The composition of fuzzy sets ϕ,ψ ∈ KX is an element ϕ �ψ ∈ K defined by

ϕ �ψ =
∨
x∈X

(ϕ(x)⊗ψ(x)).

From Theorem 4.6(i), it is easy to verify that the composition of fuzzy structures (sets

or relations) is associative, i.e., given sets X, Y and Z,

(µ � ν) � ρ = µ � (ν � ρ), (ϕ �µ) � ν = ϕ � (µ � ν),

(µ � ν) � ξ = µ � (ν � ξ), (ϕ �µ) �ψ = ϕ � (µ �ψ),

for any fuzzy relations µ ∈ KX×Y , ν ∈ KY×Z and ρ ∈ KZ×W , and any fuzzy sets ϕ ∈ KX , ψ ∈
KY and ξ ∈ KZ . Therefore, we will omit parentheses when composing fuzzy structures.

58

4.2. FUZZY SETS

Example 4.23. Let 2 be the two-element (complete) residuated lattice in Example 4.2,

and let X, Y and Z be sets. Consider the functions λX : 2X → P(X), λY : 2Y → P(Y),

λX×Y : 2X×Y → P(X × Y), and λY×Z : 2Y×Z → P(Y × Z) defined in Example 4.18. Let

µ ∈ 2X×Y . We have, for ν ∈ 2Y×Z ,

(µ � ν)(x,z) = 1 ⇐⇒ ∃y ∈ Y . (x,y) ∈ λX×Y (µ) and (y,z) ∈ λY×Z(ν), (x,z) ∈ X ×Z,

thus the composition of fuzzy relations corresponds to the usual composition of ordinary

relations. For ϕ ∈ 2X , we have

(ϕ �µ)(y) = 1 ⇐⇒ ∃x ∈ λX(ϕ). (x,y) ∈ λX×Y (µ), y ∈ Y ,

and so λY (ϕ�µ) is the subset of Y whose elements are λX×Y (µ)-related with some element

of λX(ϕ). Similarly, for ψ ∈ 2Y ,

(µ �ψ)(x) = 1 ⇐⇒ ∃y ∈ λY (ψ). (x,y) ∈ λX×Y (µ), x ∈ X.

Finally, for ϕ,ϕ′ ∈ 2X , we have

ϕ �ϕ′ = 1 ⇐⇒ ∃x ∈ X. x ∈ λX(ϕ) and x ∈ λX(ϕ′),

therefore the composition of fuzzy sets may be seen as a test for the resulting ordinary

sets having common elements.

4.2.2 The K-module of fuzzy sets

Given a set X, recall that (KX ,∩,∪,⊗X ,→X ,∅,χ) is a complete residuated lattice (Defini-

tion 4.17). In particular, (KX ,∪) is a complete join-semilattice which becomes a K-module

(see Definition 4.8, Example 4.9 and Theorem 4.10) as follows.

Definition 4.24. Let X be a set. For every a ∈ K and ϕ ∈ KX , define a~ϕ : X→ K by

(a~ϕ)(x) = a⊗ϕ(x), x ∈ X.

(KX ,∪,~) is called the K-module of fuzzy subsets of X.

The K-module of fuzzy subsets of a set X has a very good structure since the crisp-

deterministic fuzzy subsets of X (Definition 4.15(ii)) works as a basis in the following

sense.

Definition 4.25. For each set X, let ηX : X→ KX be defined by

ηX(x)(y) =

1 if x = y

0 otherwise,
x,y ∈ X.

59

CHAPTER 4. FUZZY SETS

Theorem 4.26. Let X be a set. Then for every ϕ ∈ KX there exist unique elements ax ∈ K , for
every x ∈ X, such that

ϕ =
⋃
x∈X

ax~ ηX(x).

Consequently, for any K-module M and function f : X→M, there exists a unique linear map
f : (KX ,∪,~)→M such that f (ηX(x)) = f (x), for all x ∈ X.

Proof. Let ϕ ∈ KX and choose ax = ϕ(x), for each x ∈ X. Then

(
⋃
x∈X

ax~ ηX(x))(y) =
⋃
x∈X

(ax~ ηX(x))(y) =
⋃
x∈X

ax ⊗ ηX(x)(y) = ay = ϕ(y)

(since ax⊗ηX(x)(y) = ax⊗0 = 0, if x , y, by Theorem 4.4(i), and ay ⊗ηX(y)(y) = ay ⊗1 = ay),

for all y ∈ X. Hence ax, x ∈ X, are the unique elements such that ϕ =
⋃
x∈X

ax~ ηX(x).

Let M be a K-module and f : X→M a function. Define f : KX →M by

f (ϕ) =
∨
x∈X

ϕ(x) ∗ f (x), ϕ ∈ KX .

Then f is indeed a linear map (Definition 4.8(ii)), since

f (
⋃
i∈I
ϕi) =

∨
x∈X

(
⋃
i∈I
ϕi)(x) ∗ f (x) =

∨
x∈X

(
∨
i∈I
ϕi(x)) ∗ f (x) =

∨
x∈X

∨
i∈I
ϕi(x) ∗ f (x) =

∨
i∈I
f (ϕi),

for any family (ϕi)i∈I of fuzzy subsets of X, and

f (a~ϕ) =
∨
x∈X

(a~ϕ)(x) ∗ f (x) =
∨
x∈X

(a⊗ϕ(x)) ∗ f (x) =
∨
x∈X

a ∗ (ϕ(x) ∗ f (x)) = a ∗ f (ϕ),

for any a ∈ K and ϕ ∈ KX . Also,

f (ηX(x)) =
∨
y∈X

ηX(x)(y) ∗ f (y) = f (x)

(since ηX(x)(y) ∗ f (y) = 0 ∗ f (y) = 0M , whenever y , x, by Theorem 4.12(iii), and ηX(x)(x) ∗
f (x) = 1 ∗ f (x) = f (x)), for all x ∈ X. Finally, if g : (KX ,∪,~)→M is a linear map such that

g(ηX(x)) = f (x), for each x ∈ X, then

g(ϕ) = g(
⋃
x∈X

ϕ(x)~ ηX(x))

=
∨
x∈X

g(ϕ(x)~ ηX(x))

=
∨
x∈X

ϕ(x) ∗ g(ηX(x))

=
∨
x∈X

ϕ(x) ∗ f (x) = f (ϕ),

for all ϕ ∈ KX , and therefore g = f .

60

4.3. A MONAD FOR FUZZY SETS

This last result motivates the following definition.

Definition 4.27. Given a set X, a K-module M and a function f : X→M, let f : KX →M

be defined by

f (ϕ) =
∨
x∈X

ϕ(x) ∗ f (x), ϕ ∈ KX .

f is called the linear extension of f .

In other words, by Theorem 4.26, a linear extension of a function f : X→M, where

M is a K-module, is the unique linear map f : (KX ,∪,~)→M such that f (ηX(x)) = f (x),

for all x ∈ X.

Example 4.28. Let 2 be the two-element (complete) residuated lattice in Example 4.2.

Let X be a set and M a 2-module (Example 4.13). For a function f : X → M, we have

f : 2X →M is such that

f (ϕ) =
∨
x∈X

ϕ(x) ∗ f (x) =
∨
x∈X
ϕ(x)=1

f (x) =
∨

x∈λX (ϕ)

f (x)

(where λX : 2X → P(X) is defined in Example 4.18), for all ϕ ∈ 2X .

Observe the similarity between the linear extension in the previous example and

the P-algebra extension in Example 2.18, when P-algebras are considered complete join-

semilattices. This follows from the fact that the powerset monad is a particular case of

the fuzzy-set monad presented in the next section.

4.3 A monad for fuzzy sets

In Definition 4.14(ii), we defined a function Z that maps a set X to the set of all its

fuzzy subsets Z(X) = KX . For each set X, we also have a function ηX : X → Z(X), by

Definition 4.25. Let η = (ηX)X∈Set. Finally, given a function f : X → Z(Y), we have that

(Z(Y),∪,~) is a K-module (Definition 4.24) and thus f : Z(X)→ Z(Y), the linear extension

of f (Definition 4.27), is defined by

f (ϕ)(y) = (
⋃
x∈X

ϕ(x)~ f (x))(y) =
∨
x∈X

(ϕ(x)~ f (x))(y) =
∨
x∈X

ϕ(x)⊗ f (x)(y),

for each y ∈ Y and each ϕ ∈ Z(X). These definitions lead to the following result which

uses the notion of Kleisli triple in Definition 2.12.

Theorem 4.29. (Z,η,), as defined above, is a Kleisli triple.

Proof. Let X, Y and Z be sets, and let f : X→ Z(Y) and g : Y → Z(Z) be functions. First,

we have ηX : Z(X)→ Z(X) is such that

ηX(ϕ) =
⋃
x∈X

ϕ(x)~ ηX(x) = ϕ,

61

CHAPTER 4. FUZZY SETS

for all ϕ ∈ Z(X), by Theorem 4.26. Hence, ηX = idZ(X).

Second, by Theorem 4.26, f : Z(X)→ Z(Y) is such that f (ηX(x)) = f (x), for each x ∈ X.

Therefore, f ◦ ηX = f .

Finally, we have g ◦ f : Z(X)→ Z(Z) is such that

(g ◦ f)(ϕ)(z) =
∨
x∈X

ϕ(x)⊗ (g ◦ f)(x)(z)

=
∨
x∈X

ϕ(x)⊗ (
∨
y∈Y

f (x)(y)⊗ g(y)(z))

=
∨
y∈Y

(
∨
x∈X

ϕ(x)⊗ f (x)(y))⊗ g(y)(z)

=
∨
y∈Y

f (ϕ)(y)⊗ g(y)(z)

= g(f (ϕ))(z) = (g ◦ f)(ϕ)(z)

(recall that ⊗ is distributive over
∨

, by Theorem 4.6(i)) for any z ∈ Z and ϕ ∈ Z(X). Hence,

g ◦ f = g ◦ f .

By Theorem 2.13, we have that a monad (Definition 2.10) can be obtained from a

Kleisli triple. For each function f : X→ Y , define Z(f) = ηY ◦ f : Z(X)→ Z(Y), that is

Z(f)(ϕ) =
⋃
x∈X

ϕ(x)~ ηY (f (x)), ϕ ∈ Z(X).

Then Z becomes a functor on Set. And, for each set X, define µX = idZ(X) : Z2(X)→ Z(X),

where Z2(X) = Z(Z(X)) = K (KX), that is

µX(Φ) =
⋃

ϕ∈Z(X)

Φ(ϕ)~ϕ, Φ ∈ Z2(X).

Let µ = (µX)X∈Set. Thus, we have the following result.

Corollary 4.30. (Z,η,µ), as defined above, is a monad on Set.

The monad (Z,η,µ) is called the fuzzy-set monad.

Example 4.31. Consider the two-element (complete) residuated lattice 2 in Example 4.2.

For each set X, let λX : Z(X)→ P(X) defined in Example 4.18, and let λ = (λX)X∈Set. Then,

λ is a natural isomorphism between Z and P, i.e. it is a natural transformation from Z to

P and λX is bijective foe each set X.

4.3.1 Z-algebras are K-modules

Recall that a set X and a function h : Z(X)→ X form a Z-algebra (Definition 2.15) if both

diagrams

62

4.3. A MONAD FOR FUZZY SETS

Z2(X) Z(X)

Z(X) X

X Z(X)

X

Z(h)

µX h

h

ηX

idX
h

commute, i.e. h ◦µX = h ◦Z(h) and h ◦ ηX = idX . Thus, for a Z-algebra (X,h), we have

h(
⋃

ϕ∈Z(X)

Φ(ϕ)~ϕ) = h(
⋃

ϕ∈Z(X)

Φ(ϕ)~ ηX(h(ϕ))),

for all Φ ∈ Z2(X), and h(ηX(x)) = x, for each x ∈ X. Moreover, we have the following

properties.

Theorem 4.32. Let (X,h) be a Z-algebra.

(i) For any family (ϕi)i∈I of fuzzy subsets of X,

h(
⋃
i∈I
ϕi) = h(

⋃
i∈I
ηX(h(ϕi))).

(ii) For any a ∈ K and ϕ ∈ Z(X),

h(a~ϕ) = h(a~ ηX(h(ϕ))).

Moreover, for any b ∈ K ,

h((a⊗ b)~ϕ) = h(a~ ηX(h(b~ϕ))).

Proof. (i) Let (ϕi)i∈I be a family of fuzzy subsets of X. Define Φ : Z(X)→ K by

Φ(ψ) =

1 if ψ ∈ {ϕi | i ∈ I}

0 otherwise,
ψ ∈ Z(X).

Note that Φ ∈ Z2(X) and Φ =
⋃
i∈I ηZ(X)(ϕi), by Theorem 4.26. Also,⋃

i∈I
ϕi =

⋃
ψ∈Z(X)

Φ(ψ)~ψ = µX(Φ).

Thus, we have

h(
⋃
i∈I
ϕi) = h(µX(Φ)) = h(Z(h)(Φ)) = h(

⋃
ψ∈Z(X)

Φ(ψ)~ ηX(h(ψ))) = h(
⋃
i∈I
ηX(h(ϕi))).

(ii) Let a ∈ K and ϕ ∈ Z(X). Define Ψ : Z(X)→ K by

Ψ (ψ) =

a if ψ = ϕ

0 otherwise,
ψ ∈ Z(X).

63

CHAPTER 4. FUZZY SETS

Note that

a~ϕ =
⋃

ψ∈Z(X)

Ψ (ψ)~ψ = µX(Ψ)

and therefore

h(a~ϕ) = h(µX(Ψ)) = h(Z(h)(Ψ)) = h(
⋃

ψ∈Z(X)

Ψ (ψ)~ ηX(h(ψ))) = h(a~ ηX(h(ϕ))).

Moreover,

h((a⊗ b)~ϕ) = h(a~ (b~ϕ)) = h(a~ ηX(h(b~ϕ))),

for any b ∈ K .

Similarly to Example 2.16, now we are able to construct an isomorphism between the

category of Z-algebras EM(Z) and the category of K-modules K-Mod.

Theorem 4.33. (i) Let (X,h) be a Z-algebra. Define a binary operation ∨ on X by

x∨ y = h(ηX(x)∪ ηX(y)), x,y ∈ X,

and an action ∗ : K ×X→ X by

a ∗ x = h(a~ ηX(x)), a ∈ K,x ∈ X.

Then (X,∨,∗) is a K-module.
(ii) If f : (X,h)→ (X ′ ,h′) is a homorphism of Z-algebras, then f is a linear map between

the resulting K-modules by (i).

Proof. (i) First, we check that (X,∨) is a complete join-semilattice. Since Z(X) is nonempty

and h : Z(X)→ X, then X is nonempty. Let x,y,z ∈ X, observe that

x∨ x = h(ηX(x)∪ ηX(x)) = h(ηX(x)) = (h ◦ ηX)(x) = idX(x) = x

(since (X,h) is a Z-algebra),

x∨ y = h(ηX(x)∪ ηX(y)) = h(ηX(y)∪ ηX(x)) = y ∨ x,

and

(x∨ y)∨ z = h(ηX(h(ηX(x)∪ ηX(y)))∪ ηX(z))

= h(ηX(h(ηX(x)∪ ηX(y)))∪ ηX(h(ηX(z))))

= h((ηX(x)∪ ηX(y))∪ ηX(z))

= h(ηX(x)∪ (ηX(y)∪ ηX(z)))

= h(ηX(h(ηX(x)))∪ ηX(h(ηX(y)∪ ηX(z))))

= h(ηX(x)∪ ηX(h(ηX(y)∪ ηX(z)))) = x∨ (y ∨ z),

64

4.3. A MONAD FOR FUZZY SETS

by Theorem 4.32(i). Thus, ∨ is idempotent, commutative and associative. And so (X,∨)

is a join-semilattice, where the partial order ≤ is defined by

x ≤ y ⇐⇒ x∨ y = y, x,y ∈ X.

Let Y be a subset of X and consider s = h(
⋃
y∈Y

ηX(y)). For any y ∈ Y , we have

y ∨ s = h(ηX(y)∪ ηX(s))

= h(ηX(h(ηX(y)))∪ ηX(h(
⋃
z∈Y

ηX(z))))

= h(ηX(y)∪ (
⋃
z∈Y

ηX(z)))

= h(
⋃
z∈Y

ηX(z)) = s,

by Theorem 4.32(i), which implies y ≤ s. If u ∈ X is such that y ≤ u, for all y ∈ Y , then

s∨u = h(ηX(s)∪ ηX(u))

= h(ηX(h(
⋃
y∈Y

ηX(y)))∪ ηX(h(ηX(u))))

= h((
⋃
y∈Y

ηX(y))∪ ηX(u))

= h(
⋃
y∈Y

(ηX(y)∪ ηX(u)))

= h(
⋃
y∈Y

ηX(h(ηX(y)∪ ηX(u))))

= h(
⋃
y∈Y

ηX(y ∨u))

= h(
⋃
y∈Y

ηX(u))

= h(ηX(u)) = u

and so s ≤ u. Hence, s is the supremum of Y . Thus,(X,∨) is a complete join-semilattice,

where
∨
Y = h(

⋃
y∈Y

ηX(y)) for any Y ⊆ X.

Second, we check that (X,∨,∗) is a K-module (Definition 4.8(i)). Let a,b ∈ K , x ∈ X,

then

1 ∗ x = h(1~ ηX(x)) = h(ηX(x)) = x

and, by Theorem 4.32(ii),

a ∗ (b ∗ x) = h(a~ ηX(h(b~ ηX(x)))) = h((a⊗ b)~ ηX(x)) = (a⊗ b) ∗ x.

65

CHAPTER 4. FUZZY SETS

Also, for a family (ai)i∈I of elements of K ,

(
∨
i∈I
ai) ∗ x = h((

∨
i∈I
ai)~ ηX(x))

= h(
⋃
i∈I
ai ~ ηX(x))

= h(
⋃
i∈I
ηX(h(ai ~ ηX(x))))

= h(
⋃
i∈I
ηX(ai ∗ x)) =

∨
i∈I
ai ∗ x

(by Theorem 4.32(i)) and, for a family (xi)i∈I of elements of X,

a ∗ (
∨
i∈I
xi) = h(a~ ηX(h(

⋃
i∈I
ηX(xi))))

= h(a~ (
⋃
i∈I
ηX(xi)))

= h(
⋃
i∈I
a~ ηX(xi))

= h(
⋃
i∈I
ηX(h(a~ ηX(xi))))

= h(
⋃
i∈I
ηX(a ∗ xi)) =

∨
i∈I
a ∗ xi

(by Theorem 4.32). Therefore, (X,∨,∗) is indeed a K-module.

(ii) Let f : (X,h) → (X ′ ,h′) be a homomorphism of Z-algebras (Definition 2.15(ii)),

and let (X,∨,∗) and (X ′ ,∨′ ,∗′) be the K-modules obtained from (X,h) and (X ′ ,h′) by (i),

respectively. Then

f (
∨
i∈I
xi) = f (h(

⋃
i∈I
ηX(xi)))

= h′(Z(f)(
⋃
i∈I
ηX(xi)))

= h′(
⋃
x∈X

(
⋃
i∈I
ηX(xi))(x)~ ηX ′ (f (x)))

= h′(
⋃
i∈I

⋃
x∈X

ηX(xi)(x)~ ηX ′ (f (x)))

= h′(
⋃
i∈I
ηX ′ (f (xi))) =

∨
i∈I

′
f (xi),

for any family (xi)i∈I of elements of X, and

f (a ∗ x) = f (h(a~ ηX(x)))

= h′(Z(f)(a~ ηX(x)))

= h′(
⋃
y∈X

(a~ ηX(x))(y)~ ηX ′ (f (y)))

= h′(a~
⋃
y∈X

ηX(x)(y)~ ηX ′ (f (y)))

= h′(a~ ηX ′ (f (x))) = a ∗′ f (x),

66

4.3. A MONAD FOR FUZZY SETS

for any a ∈ K and x ∈ X. Hence, f is a linear map from (X,∨,∗) to (X ′ ,∨′ ,∗′).

From the previous construction, for a Z-algebra (X,h), we have

h(
⋃
i∈I
ϕi) = h(

⋃
i∈I
ηX(h(ϕi))) =

∨
i∈I
h(ϕi),

for any family (ϕi)i∈I of fuzzy subsets of X (by Theorem 4.32(i)), and

h(a~ϕ) = h(a~ ηX(h(ϕ)) = a ∗ h(ϕ),

for any a ∈ K and ϕ ∈ Z(X) (by Theorem 4.32(ii)). Thus, h is a linear map from (Z(X),∪,~)

to (X,∨,∗). Moreover, h(ηX(x)) = x, for all x ∈ X, and so h = idX by Theorem 4.26, i.e. h is

the linear extension of the identity function on X (Definition 4.27).

Theorem 4.34. (i) Let M be a K-module, and let h = idM : Z(M)→M be the linear extension
of the identity function on M, i.e.

h(ϕ) =
∨
m∈M

ϕ(m) ∗m, ϕ ∈ Z(M).

Then (M,h) is a Z-algebra.

(ii) If f : M→M′ is a linear map of K-modules, then f is a homomorphism of the resulting
Z-algebras by (i).

Proof. (i) Note that h is a linear map from (Z(X),∪,~) to M and h(ηM(m)) = m, for all

m ∈M. Thus, h ◦ ηM = idM . Also, for any Φ ∈ Z2(M), we have

h(µM(Φ)) = h(
⋃

ϕ∈Z(M)

Φ(ϕ)~ϕ) =
∨

ϕ∈Z(M)

h(Φ(ϕ)~ϕ) =
∨

ϕ∈Z(M)

Φ(ϕ) ∗ h(ϕ)

and

h(Z(h)(Φ)) = h(
⋃

ϕ∈Z(M)

Φ(ϕ)~ ηM(h(ϕ))) =
∨

ϕ∈Z(M)

Φ(ϕ) ∗ h(ηM(h(ϕ))) =
∨

ϕ∈Z(M)

Φ(ϕ) ∗ h(ϕ).

Hence, h ◦µM = h ◦Z(h). Therefore, both diagrams

Z2(M) Z(M)

Z(M) M

M Z(M)

M

Z(h)

µM h

h

ηM

idM
h

commute, and so (M,h) is a Z-algebra.

67

CHAPTER 4. FUZZY SETS

(ii) Let f : M→M′ be a linear map of K-modules, and let (M,h) and (M ′ ,h′) be the

Z-algebras obtained from M and M′ by (i), respectively. For any ϕ ∈ Z(M), we have

h′(Z(f)(ϕ)) = h′(
⋃
m∈M

ϕ(m)~ ηM ′ (f (m)))

=
∨
m∈M

′
ϕ(m) ∗′ h′(ηM ′ (f (m)))

=
∨
m∈M

′
ϕ(m) ∗′ f (m)

= f (
∨
m∈M

ϕ(m) ∗m) = f (h(ϕ)),

since h = idM and h′ = idM ′ . Hence, h′ ◦Z(f) = f ◦ h, and so the diagram

Z(M) Z(M ′)

M M

Z(f)

h h′

f

commutes. Therefore, f is a homomorphism of Z-algebras from (M,h) to (M ′ ,h′).

From the previous construction, for a K-module M, we have

h(ηM(x)∪ ηM(y)) = h(ηM(x))∨ h(ηM(y)) = x∨ y

and

h(a~ ηM(x)) = a ∗ h(ηX(x)) = a ∗ x,

for any x,y ∈M and a ∈ K (recall that h = idM).

Observe that, if we start with a Z-algebra, construct a K-module by Theorem 4.33(i),

and then obtain a Z-algebra by Theorem 4.34(i), we end up with the same Z-algebra that

we started with. On the other hand, if we start with a K-module, obtain a Z-algebra by

Theorem 4.34(i), and then construct a K-module by Theorem 4.33(i), we end up with the

same K-module that we started with. Clearly, we have a similar interaction between Theo-

rem 4.33(ii) and Theorem 4.34(ii) for homomorphisms. Therefore, Theorem 4.33 induces

a functor from EM(Z) to K-Mod (see Definitions 2.15(iii) and 4.8(iii)), and Theorem 4.34

induces its inverse.

Corollary 4.35. The Eilenberg-Moore category of Z is isomorphic to the category of K-modules
and linear maps, i.e. EM(Z) �K-Mod.

Given a set X, recall that we defined µX = idZ(X) (see Corollary 4.30). Then (Z(X),µX),

the free Z-algebra over X, is obtained from (Z(X),∪,~), the K-modules of fuzzy subsets

of X (Definition 4.24), by Theorem 4.33(i).

68

4.3. A MONAD FOR FUZZY SETS

Finally, let (Y ,h) be a Z-algebra and f : X → Y a function. Consider the K-module

(Y ,∨,∗) constructed from (Y ,h) by Theorem 4.33(i), and let f : X → Y be the linear ex-

tension of f (Definition 4.24), which is a linear map from (Z(X),∪,~) to (Y ,∨,∗). Note

that the Z-algebras (Z(X),µX) and (Y ,h) are obtained from (Z(X),∪,~) and (Y ,∨,∗), re-

spectively, by Theorem 4.34(i). Thus, f is a homomorphism of Z-algebras from (Z(X),µX)

to (Y ,h), by Theorem 4.34(ii). Since f = f ◦ηX , then f is also the function extension for Z-

algebras as described in Section 2.3.1 (denoted by f h there), by Theorem 2.17. Therefore,

given the isomorphisms induced by Theorems 4.33 and 4.34, we have that the function

extension for Z-algebras corresponds to the linear extension for K-modules.

69

C
h
a
p
t
e
r

5
Fuzzy automata

In this chapter, we present a coalgebraic approach to fuzzy automata. In Section 5.1, we

show how the classical notions of fuzzy automata and crisp-deterministic fuzzy automata

can be modelled by coalgebras. Although we introduce the classical notions, we refer to

[Ćir+12; Ign+08; Ign+10; JĆ14; Jan+14; Wec78] for more details. In Section 5.2, we intro-

duce the notions of fuzzy languages and fuzzy languages recognized by fuzzy automata,

see also [BLB06; BLB08]. Then, in Section 5.3, we show a coalgebraic description of the

fuzzy language recognized by a crisp-deterministic fuzzy automata, by proving that the

functor of crisp-deterministic automata has a final coalgebra. In Section 5.4, we show

that the functor of fuzzy automata satisfies the properties for determinization, studied

in Section 3.3, leading to a generalization of the powerset construction. Finally, in Sec-

tion 5.4.1, we give a coalgebraic description of the fuzzy language recognized by a fuzzy

automaton via determinization process. Finally, in Section 5.5, we describe bisimultion

for the functor of fuzzy automata leading to the definition of a quotient coalgebras for

this functor.

5.1 Coalgebras for fuzzy automata

In this section we introduce the notion of a fuzzy automaton, based on [Jan+14]. Then

we show how this concept can be modelled from a coalgebraic point of view, leading to a

framework where some well-known results on fuzzy automata arise from a much general

theory.

Recall that K = (K,∧,∨,⊗,→,0,1) is a complete residuated lattice (Definition 4.1),

with at least two elements, and (Z,η,µ) is the fuzzy-set monad (Corollary 4.30). Also,

from now on let A be an arbitrary nonempty set, the input alphabet, whose elements are

called (input) letters.

71

CHAPTER 5. FUZZY AUTOMATA

Definition 5.1. A fuzzy automaton (with input alphabet A and membership values over

K) is a quadruple A = (X,σ ,τ,δ) consisting of a set X (called the set of states), two fuzzy

subsets σ : X → K (called the fuzzy set of initial states) and τ : X → K (called the fuzzy
set of final states) of X, and a fuzzy relation δ : X ×A×X→ K (called the fuzzy transition
relation) between X, A and X.

Let A = (X,σ ,τ,δ) be a fuzzy automaton. For a state x ∈ X, σ (x) and τ(x) can be seen as

the truth degree of “x is an initial state” (or input state) and “x is a final state” (or terminal

state), respectively. For states x,y ∈ X and a letter a ∈ A, δ(x,a,y) can be interpreted as the

truth degree of “the input a causes a transition from x to y”.

There are bijective correspondences

KX×A×X � ((KX)A)X � ((KX)X)A � (KX×X)A

via currying and uncurrying (see Section 2.1.1). Thus, the fuzzy transition relation δ :

X ×A ×X → K may assume different forms. For the sake of simplicity, we still use δ to

denote these other forms, despite of being formally different functions, letting the context

decide which one it represents. Considering δ : X → (KX)A, called the fuzzy transition
function (usually, this name is used for δ : X×A→ KX , but in the coalgebraic approach our

terminology will be more appropriate), δ assigns to each state x ∈ X its fuzzy transitions

function δ(x) : A→ KX which maps an input letter a ∈ A to the fuzzy subset of next states

δ(x)(a). When δ : A→ (KX)X , it assigns the fuzzy state transition function for each input

letter a ∈ A, denoted by δa : X → KX . Similarly, δ : A→ KX×X associates to each input

letter a ∈ A its induced fuzzy state transition relation δa : X ×X→ K . In the end, regardless

of the form we began with, we have

δ(x,a,y) = δ(x)(a)(y) = δa(x)(y) = δa(x,y).

Let A∗ denote (the carrier of) the free monoid over A, where ε ∈ A∗ is the empty word

and, for two words u,v ∈ A∗, uv ∈ A∗ is their concatenation. The fuzzy transition relation

δ : X ×A ×X → K is inductively extended up to δ∗ : X ×A∗ ×X → K as follows: for any

x,y ∈ X,

δ∗(x,ε,y) = ηX(x)(y) =

1 if x = y

0 otherwise

and, for any x,y ∈ X, w ∈ A∗ and a ∈ A,

δ∗(x,aw,y) =
∨
z∈X

δ(x,a,z)⊗ δ∗(z,w,y).

Similarly, we can extend any other form of δ, and so we have

δ∗(x,w,y) = δ∗(x)(w)(y) = δ∗w(x)(y) = δ∗w(x,y),

72

5.1. COALGEBRAS FOR FUZZY AUTOMATA

for every x,y ∈ X and w ∈ A∗. Considering δ∗ : X ×A∗ ×X→ K , since ⊗ is distributive over∨
, by Theorem 4.6(i), we have that

δ∗(x,a1a2 . . . an, y) =
∨
zi∈X

1≤i<n

δ(x,a1, z1)⊗ δ(z1, a2, z2)⊗ · · · ⊗ δ(zn−1, an, y),

and considering δ∗ : A∗→ KX×X , we have that

δ∗a1a2...an = δa1
� δa2

� · · · � δan

(Definition 4.22). for any a1, a2, . . . , an ∈ A where n ≥ 2.

For states x,y ∈ X and a word w ∈ A∗, δ∗(x,w,y) can be interpreted as the truth degree

of “the input word w causes a transition from x to y” or “the word labels a path from x to

y”.

Observe that, apart from the fuzzy set of initial states, a fuzzy automaton is described

by a pair (X,〈τ,δ〉) consisting of a set X and a function 〈τ,δ〉 : X→ K × (KX)A.

Definition 5.2. The fuzzy automata functor F = K × (Z(−))A is a functor F : Set→ Set on

the category Set mapping each set X to

F(X) = K × (Z(X))A = K × (KX)A,

and mapping each function f : X→ Y to

F(f) = idK ×(Z(f))A : K × (KX)A→ K × (KY)A

defined by F(f)(k,ϕ) = (k,Z(f) ◦ϕ) for each (k,ϕ) ∈ K × (KX)A.

The functor F will be used as the type for a coalgebraic approach to fuzzy automata,

such that F-coalgebras shall bring a new perspective to their classical theory. For instance,

we have the notion of homomorphism. By Definition 3.1(ii), a homomorphism of F-

coalgebras f : (X,〈τ,δ〉)→ (X ′ ,〈τ ′ ,δ′〉) is a function f : X→ X ′ which makes the diagram

X X ′

K × (KX)A K × (KX
′
)A

f

〈τ,δ〉 〈τ ′ ,δ′〉

idK ×(Z(f))A

commute, that is 〈τ ′ ◦ f ,δ′ ◦ f 〉 = 〈τ, (Z(f))A ◦ δ〉. Thus, a homomorphism f : (X,〈τ,δ〉)→
(X ′ ,〈τ ′ ,δ′〉) is such that

τ ′(f (x)) = τ(x)

(from τ ′ ◦ f = τ), for all x ∈ X, and

δ′(f (x))(a) = Z(f)(δ(x)(a)) =
⋃
y∈X

δ(x)(a)(y)~ ηX ′ (f (y))

73

CHAPTER 5. FUZZY AUTOMATA

(from δ′ ◦ f = (Z(f))A ◦ δ), for every x ∈ X and a ∈ A, which implies that

δ′(f (x))(a)(y′) =
∨
y∈X

f (y)=y′

δ(x)(a)(y) =
∨

y∈f −1(y′)

δ(x)(a)(y)

(where f −1(y′) = {y ∈ X | f (y) = y′}), for every x ∈ X, a ∈ A and y′ ∈ X ′.

Example 5.3. Consider K to be the two-element (complete) residuated lattice 2 described

in Example 4.2. Let (X,〈τ,δ〉 : 2 × (2X)A) be an F-coalgebra, and let λX : Z(X) → P(X)

defined in Example 4.18. Define

〈o,d〉 = (id2×(λX)A) ◦ 〈τ,δ〉 = 〈τ, (λX)A ◦ δ〉 : X→ 2× (P(X))A,

and so (X,〈o,d〉) is a nondeterministic automaton as it is an N -coalgebra (Example 3.7(ii)).

For x,y ∈ X and a ∈ A, we have that x
a−→ y in (X,〈o,d〉) if, and only if, δ(x)(a)(y) = 1.

Moreover, (id2×λX)X∈Set is a natural bijection between F and N , and therefore fuzzy

automata with membership values in 2 are basically nondeterministic automata.

5.1.1 Crisp-deterministic fuzzy automata

Definition 5.4. A crisp-deterministic fuzzy automaton is a quadruple A = (X,x0, τ,d) con-

sisting of a set X (called the set of states), an element x0 ∈ X (called the initial state), a

fuzzy subset τ : X→ K of X (called the fuzzy set of final states), and a function d : X→ XA

(called the transition function).

In the literature [Ćir+12; JĆ14], usually the transition function of a crisp-deterministic

fuzzy automaton A = (X,x0, τ,d) is considered d : X ×A→ X, which makes no conflict

with our definition, since there is a bijection between XX×A and (XA)X via currying.

Given a crisp-deterministic fuzzy automaton A = (X,x0, τ,d), define δ : (ηX)A◦d : X→
(KX)A, that is

δ(x)(a)(y) =

1 if y = d(x)(a)

0 otherwise

for every x,y ∈ X and a ∈ A. Then, (X,ηX(x0), τ,δ) is a fuzzy automaton, where ηX(x0) is

a crisp-deterministic subset of X (Definition 4.15(ii)), and considering δ : X ×A×X→ K

(via uncurrying), δ is a crisp-deterministic relation (Definition 4.20(ii)).

On the other hand, for a fuzzy automaton A = (X,σ ,τ,δ) where σ and δ are both

crisp-deterministic (in [Jan+14] this is given as the definition of crisp-deterministic fuzzy

automaton), let x0 ∈ X be such that σ (x0) = 1, and let d : X → XA map each x ∈ X and

each a ∈ A to the unique element d(x)(a) ∈ X such that δ(x,a,d(x)(a)). Then, (X,x0, τ,d) is

a crisp-deterministic fuzzy automaton.

In this case, ηX(x0) is called a crisp-deterministic fuzzy set and δ is called a crisp-
deterministic fuzzy transition relation (or crisp-deterministic fuzzy transition function, when

74

5.1. COALGEBRAS FOR FUZZY AUTOMATA

considering δ : X → (KX)A). Equivalently, we can obtain a crisp-deterministic fuzzy

automaton from a fuzzy automaton where the fuzzy set of initial states and the fuzzy

transition relation are both crisp-deterministic [JĆ14],

Let A = (X,x0, τ,d) be a crisp-deterministic automaton, the transition function d : X→
XA can be extended up to d∗ : X→ XA

∗
inductively defined by

d∗(x)(ε) = x

for any x ∈ X, and

d∗(x)(aw) = d∗(d(x)(a))(w)

for any x ∈ X, w ∈ A∗ and a ∈ A.

Note that a crisp-deterministic fuzzy automaton is a type of Moore automaton, where

the output set is the underlying set of a complete residuated lattice. Thus, apart from the

initial state, crisp-deterministic fuzzy automata are coalgebras of the following functor.

Definition 5.5. The crisp-deterministic fuzzy automata functor DK = K × (−)A is a functor

DK : Set→ Set on the category Set mapping each set X to

DK (X) = K ×XA,

and mapping each function f : X→ Y to

DK (f) = idK ×f A : K ×XA→ K ×Y A

defined by DK (f)(k,h) = (k,f ◦ h) for each (k,h) ∈ K ×XA.

We remark that, for the two-element complete residuated lattice 2 (Example 4.2), the

crisp-deterministic fuzzy automata functor D2 is exactly the functor for deterministic

automata defined in Example 3.7(ii).

For each set X, define ξX = DK (ηX) : DK (X)→ DK (Z(X)). Let ξ = (ξX)X∈Set. Recall

that η is the unit of the fuzzy-set monad, in particular η is a natural transformation from

IdSet to Z, and so, for any function f : X→ Y , the diagram

DK (X) DK (Y)

DK (Z(X)) DK (Z(Y))

DK (f)

ξX = DK (ηX) ξ = DK (ηY)

DK (Z(f))

commutes. Hence, ξ is a natural transformation from DK to DKZ. Note that F = DKZ.

Therefore, by Theorem 3.3, ξ induced a functor from CoAlg(DK) to CoAlg(F), which maps

a DK -coalgebra (X,〈τ,d〉) to the F-coalgebra (X,〈τ, (ηX)A◦d〉) and maps a homomorphism

to itself. This functor reflects the fact that a crisp-deterministic fuzzy automaton induces

a special kind of fuzzy automaton, where the transition relation is crisp-deterministic, as

discussed above.

75

CHAPTER 5. FUZZY AUTOMATA

5.2 Fuzzy languages

In this section, we introduce the notion of fuzzy language and define the (left) derivative

operation. We also define the classical notion of the fuzzy language recognized by a

(crisp-deterministic) fuzzy automaton. This notion will be obtained from a coalgebraic

point of view in the next two sections.

Definition 5.6. A fuzzy language over an alphabet A (and with membership values over

K), or simply a fuzzy language, is a fuzzy subset of A∗, that is a function λ : A∗→ K .

The set of all fuzzy languages over A is Z(A∗) = KA
∗

and so all operations on fuzzy sets

in Definition 4.17 are appliable on fuzzy languages. Also, we have that A∗ acts on fuzzy

languages by the following operation.

Definition 5.7. Let λ : A∗ → K be a fuzzy language and u ∈ A∗ be a word. The (left)
derivative of λ with respect to u is a fuzzy language u−1λ : A∗→ K defined by

(u−1λ)(v) = λ(uv), v ∈ A∗.

Given a fuzzy language λ : A∗→ K and two words u,v ∈ A∗, note that

(v−1(u−1λ))(w) = (u−1λ)(vw) = λ(uvw) = ((uv)−1λ)(w)

for any w ∈ A∗. Hence, v−1(u−1λ) = (uv)−1λ.

Fuzzy languages relates with fuzzy automata as follows.

Definition 5.8. (i) Given a fuzzy automaton A = (X,σ ,τ,δ), the fuzzy language recognized
by A, denoted by L(A) : A∗→ K , is defined by

L(A)(w) =
∨
x,y∈X

σ (x)⊗ δ∗(x,w,y)⊗ τ(y), w ∈ A∗.

(ii) Given a crisp-deterministic fuzzy automaton A = (X,x0, τ,d), the fuzzy language
recognized by A, denoted by L(A) : A∗→ K , is defined by

L(A)(w) = τ(d∗(x0)(w)), w ∈ A∗,

that is L(A) = τ ◦ d(x0).

(iii) A (crisp-deterministic) fuzzy automaton A is (language) equivalent to a (crisp-

deterministic) fuzzy automaton A′ if L(A) = L(A′).

For any fuzzy automaton A = (X,σ ,τ,δ), letting δ∗ : A∗→ KX×X , we have that

L(A)(w) = σ � δ∗w � τ, w ∈ A∗.

Given a (crisp-deterministic) fuzzy automaton A and a word w ∈ A∗, L(A)(w) can be

seen as the truth degree of “the word w causes a transition from an initial state to a final

state in A”. Thus, L(A)(w) is called the degree of recognition of w by A.

76

5.3. A FINAL COALGEBRA FOR CRISP-DETERMINISTIC FUZZY AUTOMATA

5.3 A final coalgebra for crisp-deterministic fuzzy automata

In this section we show that the coalgebra of fuzzy languages, described below, is a

final coalgebra (Definition 3.8) for the crisp-deterministic fuzzy automata functor DK

(Definition 5.5).

Definition 5.9. The coalgebra of fuzzy languages is a DK-coalgebra (KA
∗
,〈ε, t〉) where ε :

KA
∗ → K is defined by

ε(λ) = λ(ε), λ ∈ KA
∗
,

and t : KA
∗ → (KA

∗
)A is defined by

t(λ)(a) = a−1λ, a ∈ A,λ ∈ KA
∗
.

In the coalgebra of fuzzy languages, we show by induction, on the length of words

w ∈ A∗, that t∗ : KA
∗ → (KA

∗
)A
∗

is given by

t∗(λ)(w) = w−1λ,

for every fuzzy language λ ∈ KA∗ . First, we have that t∗(λ)(ε) = ε−1λ = λ for any λ ∈ KA∗ .
Assume t∗(λ)(w) = w−1λ, for all λ ∈ KA∗ , as induction hypothesis (IH). Thus,

t∗(λ)(aw) = t∗(t(λ)(a))(w) = t∗(a−1λ)(w)
(IH)
= w−1(a−1λ) = (aw)−1λ

for any λ ∈ KA∗ .
Observe that, given a fuzzy language λ ∈ KA∗ , the fuzzy language ε ◦ t∗(λ) : A∗→ K is

such that

(ε ◦ t∗(λ))(w) = ε(t∗(λ)(w)) = ε(w−1λ) = (w−1λ)(ε) = λ(wε) = λ(w),

for every word w ∈ A∗. Hence, λ = ε ◦ t∗(λ) is the fuzzy language recognized by the crisp-

deterministic fuzzy automaton A = (KA
∗
,λ,ε, t). This is a particular case of the following

result.

Theorem 5.10. The coalgebra of fuzzy languages (KA
∗
,〈ε, t〉) is a finalDK -coalgebra. Moreover,

given a DK -coalgebra (X,〈τ,d〉 : X→ K ×XA), the function ` : X→ KA
∗

defined by

`(x) = τ ◦ d∗(x) : A∗→ K, x ∈ X,

is the unique homomorphism of DK -coalgebras from (X,〈τ,d〉) to (KA
∗
,〈ε, t〉), that is the unique

function which makes the following diagram commute

X KA
∗

K ×XA K × (KA
∗
)A.

〈τ,d〉 〈ε, t〉

`

idK ×`A

77

CHAPTER 5. FUZZY AUTOMATA

In particular, for any crisp-deterministic fuzzy automaton A = (X,x0, τ,d), the unique
homomorphism of DK -coalgebras ` : (X,〈τ,d〉)→ (KA

∗
,〈ε, t〉) is such that L(A) = `(x0).

Proof. Let (X,〈τ,d〉 : X → K ×XA) be any DK-coalgebra. Define ` : X → KA
∗

by `(x) =

τ ◦ d∗(x), for each x ∈ X. We have that

(ε ◦ `)(x) = ε(`(x)) = `(x)(ε) = τ(d∗(x)(ε)) = τ(x),

for any x ∈ X, and so ε ◦ ` = idK ◦τ . Since

d∗(x)(aw) = d∗(d(x)(a))(w)

by definition of d∗, then

(t ◦ `)(x)(a)(w) = t(`(x))(a)(w)

= (a−1(`(x)))(w)

= `(x)(aw) by Definition 5.7

= τ(d∗(x)(aw))

= τ(d∗(d(x)(a))(w))

= `(d(x)(a))(w)

= (` ◦ d(x))(a)(w)

= (`A ◦ d)(x)(a)(w),

for any x ∈ X, a ∈ A and w ∈ A∗, and hence t ◦ ` = `A ◦ d. Therefore, the diagram

X KA
∗

K ×XA K × (KA
∗
)A

〈τ,d〉 〈ε, t〉

`

idK ×`A

commutes, which implies that ` is a homomorphism of DK-coalgebras from (X,〈τ,d〉) to

(KA
∗
,〈ε, t〉).

Let `′ be a homomorphism of DK-coalgebras from (X,〈τ,d〉) to (KA
∗
,〈ε, t〉). We prove

by induction, on the length of words w ∈ A∗, that `′(x)(w) = `(x)(w) for every x ∈ X. Since

ε ◦ `′ = idK ◦τ = ε ◦ `,

then

`′(x)(ε) = ε(`′(x)) = ε(`(x)) = `(x)(ε)

78

5.3. A FINAL COALGEBRA FOR CRISP-DETERMINISTIC FUZZY AUTOMATA

for any x ∈ X. Assume `′(x)(w) = `(x)(w), for all x ∈ X, as induction hypothesis (IH). Thus,

`′(x)(aw) = t(`′(x))(a)(w)

= `′(d(x)(a))(w) by t ◦ `′ = (`′)A ◦ d

= `(d(x)(a))(w) by (IH)

= t(`(x))(a)(w) by t ◦ ` = `A ◦ d

= `(x)(aw).

Hence, `′ = `.

Therefore, ` is the unique homomorphism ofDK -coalgebras from (X,〈τ,d〉) to (KA
∗
,〈ε, t〉).

Consequently, the coalgebra of fuzzy languages (KA
∗
,〈ε, t〉) is a final DK -coalgebra.

Finally, given a crisp-deterministic fuzzy automaton A = (X,x0, τ,d), there exists a

unique homomorphism of DK-coalgebras ` : (X,〈τ,d〉)→ (KA
∗
,〈ε, t〉) as described above.

Thus,

L(A) = τ ◦ d∗(x0) = `(x0)

by Definition 5.8(ii).

By the previous theorem, we have a coalgebraic description of the fuzzy language

recognized by a crisp-deterministic fuzzy automaton. Furthermore, having a final DK-

coalgebra, we can do proofs by coinduction (see [Rut00]) on crisp-deterministic fuzzy

automata as presented in the following example.

Example 5.11. Let λ ∈ KA∗ be a fuzzy language. Let X = {w−1λ | w ∈ A∗}, and define

τ : X→ K and d : X→ XA by

τ(ϕ) = ϕ(ε) and d(ϕ)(a) = a−1ϕ,

for all ϕ ∈ X and a ∈ A. Note that d is well-defined because a−1(w−1λ) = (wa)−1λ, for any

a ∈ A and w ∈ A∗. Clearly, the inclusion function i : X → KA
∗
, given by i(ϕ) = ϕ for all

ϕ ∈ X, makes the diagram

X KA
∗

K ×XA K × (KA
∗
)A

〈τ,d〉 〈ε, t〉

i

idK ×iA

commute. Thus, by Theorem 5.10, λ = i(ε−1λ) is the fuzzy language recognized by A =

(X,λ,τ,d). We have that A is called the (left) derivative automaton of the fuzzy language λ
and we proved part of [Ign+10, Theorem 4.1].

By Theorem 5.10, which gives a final DK-coalgebra, we can also do definitions by

coinduction (see [Rut00]) as follows.

79

CHAPTER 5. FUZZY AUTOMATA

Example 5.12. Define a function r : KA
∗ → (KA

∗
)A by

r(λ)(a)(w) = λ(wa), λ ∈ KA
∗
, a ∈ A,w ∈ A∗.

By Theorem 5.10, there exists a unique function rev : KA
∗ → KA

∗
which makes the diagram

KA
∗

KA
∗

K × (KA
∗
)A K × (KA

∗
)A

〈ε,r〉 〈ε, t〉

rev

idK ×revA

commute. Given a fuzzy language λ ∈ A∗, observe that

rev(λ)(ab) = rev(r(λ)(a))(b) = rev(r(r(λ)(a))(b))(ε) = ε(r(r(λ)(a))(b))

= r(r(λ)(a))(b)(ε) = r(λ)(a)(εb) = λ(εba) = λ(ba),

for any letters a,b ∈ A. In general, we have that

rev(λ)(ε) = ε(rev(λ)) = ε(λ) = λ(ε)

and

rev(λ)(a1a2 . . . an) = λ(an . . . a2a1)

for any letters a1, a2, . . . , an ∈ A, where n ≥ 1. Thus, rev(λ) is the fuzzy language known as

the reverse fuzzy language of λ.

5.4 Determinization of fuzzy automata

In this section we apply the coalgebraic determinization process, studied in Section 3.3, to

the fuzzy automata functor F (Definition 5.2) leading to a generalization of the powerset

construction. Also, we present a coalgebraic definition of the fuzzy language recognized

by a fuzzy automaton.

Let M = (M,∨,∗) be a K-module (Definition 4.8). By Theorem 4.10(i), we can obtain

a K-module MA = (MA,∨A,∗A). Also (K,∨,⊗) is a K-module (Example 4.9). Then, by

Theorem 4.11(i), we have a K-module (DK (M),∨DK ,∗DK) where∨
i∈I

DK
(ki ,hi) = (

∨
i∈I
ki ,

∨
i∈I

A
hi) and z ∗DK (k,h) = (z⊗ k,z ∗A h)

for any z ∈ K , (k,h) ∈ K ×MA, and any family (ki ,hi)i∈I of elements of K ×MA.

Given a linear map f : M ×M′. By Theorem 4.10(ii), f A is a linear map from MA

to (M′)A. Since idK is a linear map from (K,∨,⊗) to itself, by Theorem 4.11, we have

that DK (f) is a linear map from (DK (M),∨DK ,∗DK) to (DK (M ′),∨DK ,∗DK). Therefore, we

proved the following result that will be useful throughout this section.

80

5.4. DETERMINIZATION OF FUZZY AUTOMATA

Theorem 5.13. (i) Let M be a K-module. Then, (DK (M),∨DK ,∗DK), as defined above, is a
K-module.

(ii) Let f : M→ M′ be a linear map between K-modules M and M′. Then, DK (f) is a
linear map between the resulting K-modules by (i).

As usual, we omit the superscript DK in ∨DK and ∗DK , whenever the operations are

clear from the context.

In particular, by Theorem 5.13, the K-module (Z(X),∪,~) of fuzzy subsets of X (Defi-

nition 4.24) gives rise to a K-module (DKZ(X),∨,∗), where∨
i∈I

(ki ,αi) = (
∨
i∈I
ki ,

⋃
i∈I

A
αi) and z ∗ (k,α) = (z⊗ k,z~A α),

for any (k,α) ∈ K × (Z(X))A, z ∈ K and any family (ki ,αi)i∈I of elements of K × (Z(X))A.

The fuzzy automata functor F is the composition of DK with Z, where (Z,η,µ) is

the fuzzy-set monad (Corollary 4.30), that is F = DKZ. For each set X, we have that

DK (ηX) : DK (X)→DKZ(X), where (DKZ(X),∨,∗) is a K-module, and so we can consider

the linear extension (Definition 4.27) DK (ηX) : ZDK (X)→DKZ(X) of DK (ηX). This leads

to the definition of a distributive law (Definition 2.20) as the following result shows.

Theorem 5.14. For each set X, consider the K-module (DKZ(X),∨,∗) obtained from the K-
module (Z(X),∪,~) of fuzzy subsets of X by Theorem 5.13(i), and let

ρX = DK (ηX) : KK×X
A
→ K × (KX)A

be the linear extension of DK (ηX) : DK (X)→DKZ(X), i.e.

ρX(ϕ) =
∨

(k,h)∈K×XA
ϕ(k,h) ∗ (k,ηX ◦ h)

= (
∨

(k,h)∈K×XA
ϕ(k,h)⊗ k,

⋃A

(k,h)∈K×XA
ϕ(k,h)~A (ηX ◦ h))

for all ϕ ∈ KK×XA . Let ρ = (ρ)X∈Set. Then, ρ is a distributive law of Z over DK .

Proof. Recall that, for each set X, ρX = DK (ηX) is the unique linear map from the K-

module (ZDK (X),∪,~) of fuzzy subsets of DK (X) to the K-module (DKZ(X),∨,∗), ob-

tained from (Z(X),∪,~) by Theorem 5.13(i), such that ρX ◦ ηDK (X) = DK (ηX), by Theo-

rem 4.26 and Definition 4.27.

Let f : X → Y be any function between sets X and Y , and let (DKZ(X),∨,∗) and

(DKZ(Y),∨,∗) be the K-modules obtained from (Z(X),∪,~) and (Z(Y),∪,~), respectively,

by Theorem 5.13(i). By definition ofZ (Corollary 4.30), we have thatZDK (f) = ηDK (Y) ◦DK (f)

is the unique linear map from (ZDK (X),∪,~) to (ZDK (Y),∪,~) such thatZDK (f)◦ηDK (X) =

ηDK (Y) ◦DK (f). Thus, the diagram

81

CHAPTER 5. FUZZY AUTOMATA

DK (X) DK (Y)

ZDK (X) ZDK (Y) DKZ(Y)

DK (f)

ηDK (X)
DK (ηY)

ηDK (Y)

ZDK (f) ρY

commutes, and so ρY ◦ZDK (f)◦ηDK (X) = DK (ηY)◦DK (f). Also, Z(f) = ηY ◦ f is the unique

linear map from (Z(X),∪,~) to (Z(Y),∪,~) such that Z(f) ◦ ηX = ηY ◦ f . This implies that

DKZ(f) is a linear map from (DKZ(X),∨,∗) to (DKZ(Y),∨,∗), by Theorem 5.13(ii), and

that the diagram

DK (X) DK (Y)

ZDK (X) DKZ(X) DKZ(Y)

DK (f)

ηDK (X)
DK (ηX) DK (ηY)

ρX DKZ(f)

commutes, and so DKZ(f) ◦ ρX ◦ ηDK (X) = DK (ηY) ◦DK (f). Therefore, both functions

DKZ(f) ◦ ρX and ρY ◦ZDK (f) are linear maps from (ZDK (X),∪,~) to (DKZ(Y),∨,∗) and

DKZ(f) ◦ ρX ◦ ηDK (X) = DK (ηY) ◦DK (f) = ρY ◦ZDK (f) ◦ ηDK (X),

which implies that DKZ(f) ◦ ρX = ρY ◦ZDK (f), by Theorem 4.26. Consequently, ρ is a

natural transformation from ZDK to DKZ.

For each set X, by definition of µX (Corollary 4.30), we have that µX = idZ(X) is

the unique linear map from (Z(Z(X)),∪,~) to (Z(X),∪,~) such that µX ◦ ηZ(X) = idZ(X).

Given a set X, let (DKZ
2(X),∨,∗) and (DKZ(X),∨,∗) be the K-modules obtained from

(Z(Z(X)),∪,~) and (Z(X),∪,~), respectively, by Theorem 5.13(i). Thus, DK (µX) is a

linear map from (DKZ
2(X),∨,∗) to (DKZ(X),∨,∗) by Theorem 5.13(ii). Also, Z(ρX) =

ηDKZ(X) ◦ ρX is the unique linear map from (Z(ZDK (X)),∪,~) to (Z(DKZ(X)),∪,~) such

that Z(ρX) ◦ ηZDK (X) = ηDKZ(X) ◦ ρX . And ρZ(X) = DK (ηZ(X)) is the unique linear map from

(ZDKZ(X),∪,~) to (DKZ
2(X),∨,∗) such that ρZ(X) ◦ ηDKZ(X) = DK (ηZ(X)). Then, the dia-

gram

ZDK (X) DKZ(X)

Z2DK (X) ZDKZ(X) DKZ
2(X)

DKZ(X)

ρX

ηZDK (X)
ηDKZ(X)

DK (ηZ(X))

DK (idZ(X)) = idDKZ(X)

Z(ρX) ρZ(X)

DK (µX)

commutes, that is DK (µX) ◦ ρZ(X) ◦Z(ρX) ◦ ηZDK (X) = ρX . Hence

DK (µX) ◦ ρZ(X) ◦Z(ρX) ◦ ηZDK (X) = ρX = ρX ◦ idZDK (X) = ρX ◦µDK (X) ◦ ηZDK (X),

82

5.4. DETERMINIZATION OF FUZZY AUTOMATA

where both DK (µX)◦ρZ(X) ◦Z(ρX) and ρX ◦µDK (X) are linear maps from (Z(ZDK (X)),∪,~)

to (DKZ(X),∨,∗), and therefore DK (µX) ◦ ρZ(X) ◦ Z(ρX) = ρX ◦ µDK (X) by Theorem 4.26.

Consequently, for any set X, both diagrams

DK (X) ZDK (X)

DKZ(X)

Z2DK (X) DKZ
2(X)

ZDK (X) DKZ(X)

ηDK (X)

DK (ηX)
ρX

ρZ(X) ◦Z(ρX)

µDK (X) DK (µX)

ρX

commute, and hence ρ is a distributive law of Z over DK .

By Theorem 2.21, from the fact that ρ is a distributive law of Z over DK , we have the

following.

Corollary 5.15. Let ρ be the distributive law of Z ovar DK described in Theorem 5.14. Define
a functor D̂K : EM(Z)→ EM(Z) mapping each Z-algebra (X,h) to

D̂K (X,h) = (DK (X),DK (h) ◦ ρX),

and mapping each homomorphism of Z-algebras f to D̂K (f) = DK (f). Then, D̂K is a lifting of
DK to EM(Z).

We remark that the previous corollary reflects Theorem 5.13 on EM(Z), given the

isomorphism between K-Mod and EM(Z) induced by Theorems 4.33 and 4.34. In other

words, denote by G : K-Mod→ EM(Z) the isomorphism induced by Theorem 4.34, with

inverse G−1 : EM(Z)→K-Mod induced by Theorem 4.33, then

(DK (M),∨DK ,∗DK) = G−1D̂KG(M,∨,∗)

for any K-module (M,∨,∗). Thus, given a function f : X→DKZ(X), the linear extension

f : Z(X)→DKZ(X) of f , which is the unique linear map from (Z(X),∪,~) to (DKZ(X),∨,∗)
satisfying f ◦ ηX = f , is also the unique homomorphism of Z-algebras from (Z(X),µX) to

D̂K (Z(X),µX) satisfying the equality.

By Corollary 5.15, the fuzzy automata functor F is the composition of DK with Z,

where (Z,η,µ) is the fuzzy-set monad, and DK has a lifting D̂K to EM(Z). Thus, the

functor F = DKZ satifies the assumptions of Theorem 3.11 leading to a (coalgebraic)

determinization method of fuzzy automata.

Theorem 5.16. Consider the lifting D̂K of DK to EM(Z), by Corollary 5.15. For each F-
coalgebra (X,〈τ,δ〉 : X→ K × (KX)A), define H(X,〈τ,δ〉) = ((KX ,µX),〈τ,δ〉), where τ : KX →
K and δ : KX → (KX)A are defined by

τ(ϕ) =
∨
x∈X

ϕ(x)⊗ τ(x) and δ(ϕ) =
⋃
x∈X

A
ϕ(x)~A δ(x)

for all ϕ ∈ KX , and then the diagram

83

CHAPTER 5. FUZZY AUTOMATA

X KX

K × (KX)A

ηX

〈τ,δ〉
〈τ,δ〉

commutes. For each homomorphism of F-coalgebras, define H(f) = Z(f). Then, H is a functor
from CoAlg(F) to CoAlg(D̂K).

In particular, a fuzzy automaton (X,σ ,τ,δ) gives rise to a crisp-deterministic fuzzy au-
tomaton (KX ,σ ,τ,δ).

Proof. This statement follows from Theorem 3.11, whenever we prove that 〈τ,δ〉 is a

homomorphism of Z-algebras from (Z(X),µX) to D̂K (Z(X),µX) and 〈τ,δ〉 ◦ ηX = 〈τ,δ〉, for

any F-coalgebra (X,〈σ,δ〉).
Let (X,〈τ,δ〉) be an F-coalgebra. By Theorem 4.26 and Definition 4.27, we have that

τ is the unique linear map from (Z(X),∪,~) to (K,∨,⊗) such that τ ◦ ηX = τ , and δ is

the unique linear map from (Z(X),∪,~) to ((Z(X))A,∪A,~A) such that δ ◦ ηX = δ. Let

(DKZ(X),∨,∗) be the K-module obtained from (Z(X),∪,~) by Theorem 5.13(i). For any

family (ϕi)i∈I of fuzzy subsets of X aand any ϕ ∈ KX , k ∈ K , we have that

〈τ,δ〉(
⋃
i∈I
ϕi) = (τ(

⋃
i∈I
ϕi),δ(

⋃
i∈I
ϕi)) = (

∨
i∈I
τ(ϕi),

⋃
i∈I

A
δ(ϕi)) =

∨
i∈I
〈τ,δ〉(ϕi)

〈τ,δ〉(k~ϕ) = (τ(k~ϕ),δ(k~ϕ)) = (k ⊗ τ(ϕ), k~A δ(ϕ)) = k ∗ 〈τ,δ(ϕ〉,

and so 〈τ,δ〉 is a linear map from (Z(X),∪,~) to (DKZ(X),∨,∗). Also, we have that

〈τ,δ〉(ηX(x)) = (τ(ηX(x)),δ(ηX(x))) = (τ(x),δ(x)) = 〈τ,δ〉(x),

for all x ∈ X, and hence 〈τ,δ〉 ◦ ηX = 〈τ,δ〉.
Let ρ be the distributive law described in Theorem 5.14. As showed in the proof of

Theorem 5.14, we have linear maps

(Z(X),∪,~) (ZDKZ(X),∪,~) (DKZ
2(X),∨,∗) (DKZ(X),∨,∗)

Z(〈τ,δ〉) ρZ(X) DK (µX)

such thatZ(〈τ,δ〉)◦ηX = ηDKZ(X)◦〈τ,δ〉, ρZ(X)◦ηDKZ(X) = DK (ηZ(X)) andDK (µX)◦DK (ηZ(X)) =

idDKZ(X), which implies that the diagram

X DKZ(X)

Z(X) ZDKZ(X) DKZ
2(X)

DKZ(X)

〈τ,δ〉

ηX
ηDKZ(X)

DK (ηZ(X))

idDKZ(X)

Z(〈τ,δ〉) ρZ(X)

DK (µX)

84

5.4. DETERMINIZATION OF FUZZY AUTOMATA

commutes. And so, both function 〈τ,δ〉 and DK (µX)◦ρZ(X)◦Z(〈τ,δ〉) are linear maps from

(Z(X),∪,~) to (DKZ(X),∨,∗) and

〈τ,δ〉 ◦ ηX = 〈τ,δ〉 = DK (µX) ◦ ρZ(X) ◦Z(〈τ,δ〉) ◦ ηX ,

which implies that 〈τ,δ〉 = DK (µX) ◦ ρZ(X) ◦Z(〈τ,δ〉) by Theorem 4.26. Therefore, since

(DKZ(X),DK (µX) ◦ ρZ(X)) = D̂K (Z(X),µX) by Corollary 5.15, we have that 〈τ,δ〉 is the

unique homomorphism of Z-algebras from (Z(X),µX) to D̂K (Z(X),µX) satisfying 〈τ,δ〉 ◦
ηX = 〈τ,δ〉, by Theorem 2.17.

By the previous theorem, given a fuzzy automaton (X,σ ,τ,δ), we can construct a crisp-

deterministic fuzzy automaton (KX ,σ ,τ,δ). We remark that KX may not be finite, even

when X is finite. Also, since EM(Z) �K-Mod by Corollary 4.35, note that a D̂K -coalgebra

induces, by adding an initial state, a crisp-deterministic fuzzy automaton on the category

of K-modules and linear maps.

5.4.1 Recognizing fuzzy languages

Recall that K is a complete residuated lattice with at least two elements. Thus, for any

set X, the cardinality of KX is strictly greatar than the cardinality of X.

Theorem 5.17. The fuzzy automata functor F does not have a final coalgebra.

Proof. Suppose that (Ω,ω) is a final F-coalgebra. Then, by Theorem 3.9, ω : Ω→ K ×
(KΩ)A is a bijection, which is a contradiction because the cardinality ofK×(KΩ)A is strictly

greater than the cardinality of Ω, since K has at least two elemnts and A is nonempty.

Consequently, a final F-coalgebra does not exist.

On the other hand, the coalgebra of fuzzy languages (KA
∗
,〈ε, t〉), described in Defini-

tion 5.9, is a final DK-coalgebra by Theorem 5.10. Then, by Theorem 3.13, there exists a

final D̂K -coalgebra as follows.

Theorem 5.18. Let (KA
∗
,〈ε, t〉) be the coalgebra of fuzzy languages, and let ρ be the distributive

law of Z over DK defined in Theorem 5.14. Then, the following diagram

Z2(A∗) Z(A∗)

DKZ
2(A∗) DKZ(A∗)

ρZ(A∗) ◦Z(〈ε, t〉) 〈ε, t〉

µA∗

DK (µA∗)

commutes, i.e. 〈ε, t〉 ◦ µA∗ = DK (µA∗) ◦ ρZ(A∗) ◦Z(〈ε, t〉). And therefore, ((KA
∗
,µA∗),〈ε, t〉) is a

final D̂K -coalgebra, for the lifting D̂K of DK to EM(Z) described in Corollary 5.15.

85

CHAPTER 5. FUZZY AUTOMATA

Proof. Consider (DKZ(A∗),∨,∗) to be the K-module obtained from (Z(A∗),∪,~) by Theo-

rem 5.13(i). Then, for any family (λi)i∈I of fuzzy languages and any λ ∈ KA∗ , k ∈ K , we

have that

ε(
⋃
i∈I
λi) = (

⋃
i∈I
λi)(ε) =

∨
i∈I
λi(ε) =

∨
i∈I
ε(λi)

ε(k~λ) = (k~λ)(ε) = k ⊗λ(ε) = k ⊗ ε(λ)

and

t(
⋃
i∈I
λi)(a)(w) = (

⋃
i∈I
λi)(aw) =

∨
i∈I
λi(aw) =

∨
i∈I
t(λi)(a)(w) = (

⋃
i∈I

A
t(λi))(a)(w)

t(k~λ)(a)(w) = (k~λ)(aw) = k ⊗λ(aw) = k ⊗ t(λ)(a)(w) = (k~A t(λ))(a)(w),

for all a ∈ A and w ∈ A∗, and hence

〈ε, t〉(
⋃
i∈I
λi) = (ε(

⋃
i∈I
λi), t(

⋃
i∈I
λi)) = (

∨
i∈I
ε(λi),

⋃
i∈I

A
t(λi)) =

∨
i∈I
〈ε, t〉(λi)

〈ε, t〉(k~λ) = (ε(k~λ), t(k~λ)) = (k ⊗ ε(λ), k~A t(λ)) = k ∗ 〈ε, t〉(λ).

Thus, 〈ε, t〉 is a linear map from (Z(X),∪,~) to (DKZ(X),∨,∗). By definition of µA∗ (Corol-

lary 4.30), we have that µA∗ = idZ(A∗) is the unique linear map from (Z2(A∗),∪,~) to

(Z(A∗),∪,~) such that µA∗ ◦ ηZ(A∗) = idZ(A∗). As showed in the proof of Theorem 5.14,

we have linear maps

(Z2(A∗),∪,~) (ZDKZ(A∗),∪,~) (DKZ
2(A∗),∨,∗) (DKZ(A∗),∨,∗)

Z(〈ε, t〉) ρZ(A∗) DK (µA∗)

such that Z(〈ε, t〉) ◦ ηZ(A∗) = ηDKZ(A∗) ◦ 〈ε, t〉, ρZ(A∗) ◦ ηDKZ(A∗) = DK (ηZ(A∗)) and DK (µA∗) ◦
DK (ηZ(A∗)) = idDKZ(A∗), which implies that the diagram

Z(A∗) DKZ(A∗)

Z2(A∗) ZDKZ(A∗) DKZ
2(A∗)

DKZ(A∗)

〈ε, t〉

ηZ(A∗)
ηDKZ(A∗)

DK (ηZ(A∗))

idDKZ(A∗)

Z(〈ε, t〉) ρZ(A∗)

DK (µA∗)

commutes. Hence, both functions 〈ε, t〉◦µA∗ and DK (µA∗)◦ρZ(A∗)◦Z(〈ε, t〉) are linear maps

from (Z2(A∗),∪,~) to (DKZ(A∗),∨,∗) and

〈ε, t〉 ◦µA∗ ◦ ηZ(A∗) = 〈ε, t〉 = DK (µA∗) ◦ ρZ(A∗) ◦Z(〈ε, t〉) ◦ ηZ(A∗),

which implies that 〈ε, t〉 ◦ µA∗ = DK (µA∗) ◦ ρZ(A∗) ◦ Z(〈ε, t〉) by Theorem 4.26, that is the

diagram

86

5.4. DETERMINIZATION OF FUZZY AUTOMATA

Z2(A∗) Z(A∗)

DKZ
2(A∗) DKZ(A∗)

ρZ(A∗) ◦Z(〈ε, t〉) 〈ε, t〉

µA∗

DK (µA∗)

commutes. Therefore, by Theorem 3.13, ((KA
∗
,µA∗),〈ε, t〉) is a final D̂K -coalgebra.

Given an F-coalgebra (X,〈τ,δ〉), by Theorem 5.16, we can construct a D̂K-coalgebra

((KX ,µX),〈τ,δ〉), and then there exists (a unique) function ` : KX → KA
∗

such that the

diagram

X KX KA
∗

K × (KX)A K × (KA
∗
)A

ηX

〈τ,δ〉 〈ε, t〉
〈τ,δ〉

`

idK ×`A

commutes, by Theorem 5.18. The function ` allows us to obtain the fuzzy language

recognized by a fuzzy automaton.

Theorem 5.19. Let D̂K be the lifting of DK to EM(Z) in Corollary 5.15, and let (KA
∗
,〈ε, t〉) be

the coalgebra of fuzzy languages. Given an F-coalgebra (X,〈τ,δ〉), consider the D̂K-coalgebra
((KX ,µX),〈τ,δ〉) as described in Theorem 5.16. Define ` : KX → KA

∗
by

`(σ)(w) =
∨
x,y∈X

σ (x)⊗ δ∗(x)(w)(y)⊗ τ(y), w ∈ A∗,σ ∈ KX .

Then, the function ` is the unique homomorphism of D̂K-coalgebras from ((KX ,µX),〈τ,δ〉) to
((KA

∗
,µA∗),〈ε, t〉).

In particular, a fuzzy automaton (X,σ ,τ,δ) is (language) equivalent to its uduced crisp-
deterministic fuzzy automaton (KX ,σ ,τ,δ) by Theorem 5.16.

We provide two distinct proofs of this theorem. A proof by coinduction where we just

have to show that ` is a homomorphism of DK -coalgebras. And a proof by induction, on

the length of words inA∗, where we show that ` coincides with the unique homomorphism

of DK -coalgebras from (KX ,〈τ,δ〉) to (KA
∗
,〈ε, t〉).

Coinductive proof of Theorem 5.19. Let (X,〈τ,δ〉) be an F-coalgebra, and construct the D̂K -

coalgebra ((KX ,µX),〈τ,δ〉) as described in Theorem 5.16. Define ` : KX → KA
∗

by

`(σ)(w) =
∨
x,y∈X

σ (x)⊗ δ∗(x)(w)(y)⊗ τ(y), w ∈ A∗,σ ∈ KX .

87

CHAPTER 5. FUZZY AUTOMATA

By definition of δ∗, for any x,y ∈ X, we have that δ∗(x)(ε)(x) = 1 and δ∗(x)(ε)(y) = 0,

whenever x , y. Thus,

ε(`(σ)) = `(σ)(ε) =
∨
x,y∈X

σ (x)⊗ δ∗(x)(ε)(y)⊗ τ(y) =
∨
x∈X

σ (x)⊗ τ(x) = τ(σ),

by Theorem 4.4(i) and the definition of τ , for any σ ∈ KX . Hence, ε ◦ ` = τ .

By definition of δ, we have that

δ(σ)(a)(z) = (
⋃
x∈X

A
σ (x)~A δ(x))(a)(z) =

∨
x∈X

σ (x)⊗ δ(x)(a)(z)

for all σ ∈ KX , a ∈ A and z ∈ X. Since ⊗ is distributive over
∨

, by Theorem 4.6(i), then

`(δ(σ)(a))(w) =
∨
z,y∈X

δ(σ)(a)(z)⊗ δ∗(z)(w)(y)⊗ τ(y)

=
∨
z,y∈X

(
∨
x∈X

σ (x)⊗ δ(x)(a)(z))⊗ δ∗(z)(w)(y)⊗ τ(y)

=
∨

x,z,y∈X
σ (x)⊗ δ(x)(a)(z)⊗ δ∗(z)(w)(y)⊗ τ(y)

=
∨
x,y∈X

σ (x)⊗ (
∨
z∈X

δ(x)(a)(z)⊗ δ∗(z)(w)(y))⊗ τ(y)

=
∨
x,y∈X

σ (x)⊗ δ∗(x)(aw)(y)⊗ τ(y)

= `(σ)(aw)

= t(`(σ))(a)(w),

for all σ ∈ KX , a ∈ A and w ∈ A∗. Hence, t ◦ ` = `A ◦ δ.

Therefore, the diagram

KX KA
∗

K × (KX)A K × (KA
∗
)A

`

〈τ,δ〉 〈ε, t〉

idK ×`A

commutes, which implies that ` is a homomorphism of DK-coalgebras from (KX ,〈τ,δ〉)
to (KA

∗
,〈ε, t〉). Moreover, ` is unique because (KA

∗
,〈ε, t〉) is a final DK-coalgebra, by

Theorem 5.10. And since ((KA
∗
,µA∗),〈ε, t〉) is a final D̂K-coalgebra by Theorem 5.18,

the function ` is the unique homomorphism of D̂K-coalgebras from ((KX ,µX),〈τ,δ〉) to

((KA
∗
,µA∗),〈ε, t〉), as showed in the proof of Theorem 3.13.

Finally, given a fuzzy automaton A = (X,σ ,τ,δ) and its determinization, by Theo-

rem 5.16, A′ = (KX ,σ ,τ,δ). Then L(A) = `(σ) as proved above, and L(A′) = `(σ) by

Theorem 5.10. Consequently, A and A′ are (language) equivalent.

88

5.4. DETERMINIZATION OF FUZZY AUTOMATA

Inductive proof of Theorem 5.19. Let (X,〈τ,δ〉) be an F-coalgebra, and consider the D̂K-

coalgebra ((KX ,µX),〈τ,δ〉) as described in Theorem 5.16. Define ` : KX → KA
∗

as above.

Since ((KA
∗
,µA∗),〈ε, t〉) is a final D̂K-coalgebra by Theorem 5.18, there is a unique homo-

morphism of D̂K -coalgebras

`′ : ((KX ,µX),〈τ,δ〉)→ ((KA
∗
,µA∗),〈ε, t〉).

In particular, the diagram

KX KA
∗

K × (KX)A K × (KA
∗
)A

`′

〈τ,δ〉 〈ε, t〉

idK ×(`′)A

commutes, and so we have that

ε ◦ `′ = τ and t ◦ `′ = (`′)A ◦ δ.

We show by induction, on the length of words w ∈ A∗, that `′(σ) = `(σ) for any σ ∈ KX .

As we showed in the coinductive proof,

`′(σ)(ε) = ε(`′(σ)) = τ(σ) =
∨
x∈X

σ (x)⊗ τ(x) = `(σ)(ε),

for any σ ∈ KX . Assume `′(σ)(w) = `(σ)(w), for all σ ∈ KX , as induction hypothesis (IH).

Then, for a ∈ A,

`′(σ)(aw) = t(`′(σ))(a)(w) = `′(δ(σ)(a))(w) = `(δ(σ)(a))(w),

by (IH), and

`(δ(σ)(a))(w) =
∨
z,y∈X

δ(σ)(a)(z)⊗ δ∗(z)(w)(y)⊗ τ(y)

=
∨
x,y∈X

σ (x)⊗ δ∗(x)(aw)(y)τ(y) = `(σ)(aw),

as showed in the coinductive proof. Hence, `′ = `. And therefore, ` is the unique ho-

momorphism of D̂K -coalgebras from ((KX ,µX),〈τ,δ〉) to ((KA
∗
,µA∗),〈ε, t〉). The rest of the

proof is analogous to the coinductive proof.

By the previous theorem, we have a coalgebraic description of the fuzzy language

recognized by a fuzzy automaton. Furthermore, the determinization process described in

Theorem 5.16 generates a crisp-deterministic fuzzy automaton from a fuzzy automaton,

which recognizes the same fuzzy language.

89

CHAPTER 5. FUZZY AUTOMATA

5.5 Bisimulations for fuzzy automata

In this section, we describe bisimulations for the coalgebras of the fuzzy automata functor

F (Definition 5.1). We refer to [Rut00] for a proper introduction on bisimulations for

coalgebras.

Let (X,〈τ,δ〉 : X → K × (KX)A) and (X ′ ,〈τ ′ ,δ′〉 : X ′ → K × (KX
′
)A) be F-coalgebras. A

bisimulation between (X,〈τ,δ〉) and (X ′ ,〈τ ′ ,δ′〉) is a relation R ⊆ X ×X ′ such that there

exists an F-transition structure 〈ψ,θ〉 : R→ K × (KR)A which makes the diagram

X R X ′

K × (KX)A K × (KR)A K × (KX
′
)A

〈τ,δ〉

p p′

〈ψ,θ〉 〈τ ′ ,δ′〉

idK ×(Z(p))A idK ×(Z(p′))A

commute, where p and p′ are the projections from R to X and X ′, respectively.

Consider a bisimulation R between (X,〈τ,δ〉) and (X ′ ,〈τ ′ ,δ′〉) with transition structure

〈ψ,θ〉 : R→ K × (KR)A. First, we have

τ ◦ p = ψ and τ ′ ◦ p′ = ψ,

which implies that, for all (x,x′) ∈ R,

τ(x) = τ ′(x′).

Second, we have

δ ◦ p = (Z(p))A ◦θ and δ′ = (Z(p′))A ◦θ,

which implies that, for all (x,x′) ∈ R and a ∈ A,

δ(x)(a) = Z(p)(θ(x,x′)(a))

=
⋃

(y,y′)∈R
θ(x,x′)(a)(y,y′)~ ηX(p(y,y′))

=
⋃

(y,y′)∈R
θ(x,x′)(a)(y,y′)~ ηX(y)

and similarly

δ′(x′)(a) = Z(p′)(θ(x,x′)(a)) =
⋃

(y,y′)∈R
θ(x,x′)(a)(y,y′)~ ηX ′ (y

′).

Note that, for (x,x′) ∈ R, a ∈ A and y ∈ X,

δ(x)(a)(y) =
∨
y′∈X ′

(y,y′)∈R

θ(x,x′)(a)(y,y′),

90

5.5. BISIMULATIONS FOR FUZZY AUTOMATA

where the supremum ranges over y′ ∈ X ′ such that (y,y′) ∈ R, and so δ(x)(a)(y) can be

seen as the truth degree of “there is y′ ∈ X ′ such that (y,y′) ∈ R and the input a causes a

transition from (x,x′) to (y,y′)”. Similarly, for (x,x′) ∈ R, a ∈ A and y′ ∈ X ′,

δ′(x′)(a)(y′) =
∨
y∈X

(y,y′)∈R

θ(x,x′)(a)(y,y′),

and so δ′(x′)(a)(y′) can be seen as the truth degree of “there is y ∈ X such that (y,y′) ∈ R
and the input a causes a transition from (x,x′) to (y,y′)”.

Theorem 5.20. Let R be a bisimulation between F-coalgebras (X,〈τ,δ〉) and (X ′ ,〈τ ′ ,δ′〉), with
F-transition structure 〈ψ,θ〉 : R→ K × (KR)A. Then, for all a ∈ A,

(i)
∨
y′∈X ′

(y,y′)∈R

θ(x,x′1)(a)(y,y′) =
∨
y′∈X ′

(y,y′)∈R

θ(x,x′2)(a)(y,y′), for (x,x′1), (x,x′2) ∈ R,y ∈ X;

(ii)
∨
y∈X

(y,y′)∈R

θ(x1,x
′)(a)(y,y′) =

∨
y∈X

(y,y′)∈R

θ(x2,x
′)(a)(y,y′), for (x1,x

′), (x2,x
′) ∈ R,y′ ∈ X ′;

(iii) θ(x,x′)(a)(y,y′) ≤ δ(x)(a)(y)∧ δ′(x′)(a)(y′), for any (x,x′), (y,y′) ∈ R;

(iv) δ(x)(a)(y) ≤
∨
y′∈X ′

(y,y′)∈R

δ′(x′)(a)(y′), for any (x,x′) ∈ R and y ∈ X;

(v) δ′(x′)(a)(y′) ≤
∨
y∈X

(y,y′)∈R

δ(x)(a)(y), for any (x,x′) ∈ R and y′ ∈ X ′;

(vi)
∨
y∈X

δ(x)(a)(y) =
∨
y′∈X ′

δ′(x′)(a)(y′), for any (x,x′) ∈ R.

Proof. We only prove (i), (iii), (iv) and (vi), since (ii) and (v) are proven as (i) and (iv),

respectively. Let a ∈ A. (i) If (x,x′1), (x,x′2) ∈ R and y ∈ X, then∨
y′∈X ′

(y,y′)∈R

θ(x,x′1)(a)(y,y′) = δ(x)(a)(y) =
∨
y′∈X ′

(y,y′)∈R

θ(x,x′2)(a)(y,y′),

since (R,〈ψ,θ〉) is a bisimulation.

(iii) For (x,x′), (y,y′) ∈ R, we have

δ(x)(a)(y) =
∨
z′∈X ′

(y,z′)∈R

θ(x,x′)(a)(y,z′) and δ′(x′)(a)(y′) =
∨
z∈X

(z,y′)∈R

θ(x,x′)(a)(z,y′),

which implies that θ(x,x′)(a)(y,z′) ≤ δ(x)(a)(y) and θ(x,x′)(a)(z,y′) ≤ δ′(x′)(a)(y′), for any

(y,z′), (z,y′) ∈ R. In particular, θ(x,x′)(a)(y,y′) ≤ δ(x)(a)(y) and θ(x,x′)(a)(y,y′) ≤ δ′(x′)(a)(y′),

and thus

θ(x,x′)(a)(y,y′) ≤ δ(x)(a)(y)∧ δ′(x′)(a)(y′).

91

CHAPTER 5. FUZZY AUTOMATA

(iv) For (x,x′) ∈ R and y ∈ X, we have

δ(x)(a)(y) =
∨
y′∈X ′

(y,y′)∈R

θ(x,x′)(a)(y,y′) ≤
∨
y′∈X ′

(y,y′)∈R

δ′(x′)(a)(y′)

by (iii).

(vi) Let (x,x′) ∈ R. By (iv), we have∨
y∈X

δ(x)(a)(y) ≤
∨
y∈X

∨
y′∈X ′

(y,y′)∈R

δ′(x′)(a)(y′) ≤
∨
y′∈X ′

δ′(x′)(a)(y′).

By (v), we have ∨
y′∈X ′

δ′(x′)(a)(y′) ≤
∨
y′∈X ′

∨
y∈X

(y,y′)∈R

δ(x)(a)(y) ≤
∨
y∈X

δ(x)(a)(y).

And thus
∨
y∈X

δ(x)(a)(y) =
∨
y′∈X ′

δ′(x′)(a)(y′).

5.5.1 Quotient fuzzy automata

Let R be a bisimulation equivalence on an F-coalgebra (X,〈τ,δ〉), that is, a bisimulation

between (X,〈τ,δ〉) and itself which is also an equivalence relation on X. Given y ∈ X,

recall that the set {y′ ∈ X | (y,y′) ∈ R} is the R-equivalence class of y, denoted by [y]. Thus,

many results in Theorem 5.20 can be written in terms of equivalence classes. Moreover,

the following theorem states two equalities which will allow us to describe the quotient
coalgebra (X/R,〈τ,δ〉/R) of (X,〈τ,δ〉) by R.

Theorem 5.21. Let R be a bisimulation equivalence on an F-coalgebra (X,〈τ,δ〉). Then, for
all x ∈ X,

(i) τ(x1) = τ(x2), for any x1,x2 ∈ [x];

(ii)
∨
y′∈[y]

δ(x1)(a)(y′) =
∨
y′∈[y]

δ(x2)(a)(y′), for any x1,x2 ∈ [x], a ∈ A and y ∈ X;

where [x] denotes the R-equivalence class of x.

Proof. Let x ∈ X. (i) If x1,x2 ∈ [x], then (x1,x2) ∈ R and thus

τ(x1) = τ(x2),

since R is a bisimulation on (X,〈τ,δ〉).
(ii) Let x1,x2 ∈ [x], a ∈ A, and y ∈ X. Since (x1,x2) ∈ R, for any z ∈ [y],

δ(x1)(a)(z) ≤
∨
y′∈[z]

δ(x2)(a)(y′) =
∨
y′∈[y]

δ(x2)(a)(y′),

92

5.5. BISIMULATIONS FOR FUZZY AUTOMATA

by Theorem 5.20(iv). Thus,∨
y′∈[y]

δ(x1)(a)(y′) ≤
∨
y′∈[y]

δ(x2)(a)(y′).

Similarly, ∨
y′∈[y]

δ(x2)(a)(y′) ≤
∨
y′∈[y]

δ(x1)(a)(y′),

due to (x2,x1) ∈ R. Therefore,
∨
y′∈[y]

δ(x1)(a)(y′) =
∨
y′∈[y]

δ(x2)(a)(y′).

Now, we describe the F-transition structure for the quotient of an F-coalgebra by a

bisimuletion equivalence on it.

Theorem 5.22. Let R be a bisimulation equivalence on an F-coalgebra (X,〈τ,δ〉). Define
τ/R = τ/R : X/R→ K by

τ/R([x]) = τ(x), [x] ∈ X/R

and δ/R : X/R→ (KX/R)A by

δ/R([x])(a)([y]) =
∨
y′∈[y]

δ(x)(a)(y′), [x], [y] ∈ X/R,a ∈ A.

Then, 〈τ/R,δ/R〉 is the unique function from X/R → K × (KX/R)A that makes the following
diagram

X X/R

K × (KX)A K × (KX/R)A

q

〈τ,δ〉

idK ×(Z(q))A

〈τ/R,δ/R〉

commute, i.e. 〈τ/R◦q,δ/R◦q〉 = 〈τ, (Z(q))A◦δ〉, where q denotes the quotient function. Therefore,
(X/R,〈τ/R,δ/R〉) is the quotient coalgebra of (X,〈τ,δ〉) by R.

Proof. First, if [x1], [x2] ∈ X/R with [x1] = [x2], that is (x1,x2) ∈ R, then

τ/R([x1]) = τ(x1) = τ(x2) = τ/R([x2]),

by Theorem 5.21(i), and

δ/R([x1])(a)([y]) =
∨
y′∈[y]

δ(x1)(a)(y′) =
∨
y′∈[y]

δ(x2)(a)(y′) = δ/R([x2])(a)([y]),

for all a ∈ A and [y] ∈ X/R, by Theorem 5.21(ii). Hence, τ/R and δ/R are both well-defined

functions.

93

CHAPTER 5. FUZZY AUTOMATA

Finally, for any x ∈ X, a ∈ A and [y] ∈ X/R, we have

((Z(q))A ◦ δ)(x)(a)([y]) =
∨
y′∈X

δ(x)(a)(y′)⊗ ηX/R(q(y′))([y])

=
∨
y′∈X

δ(x)(a)(y′)⊗ ηX/R([y′])([y])

=
∨
y′∈[y]

δ(x)(a)(y′) = δ/R([x])(a)([y])

(note that [y′] = [y] if, and only if, y′ ∈ [y]), which implies that (Z(q))A ◦ δ = δ/R ◦ q. Thus,

〈τ/R ◦ q,δ/R ◦ q〉 = 〈τ, (Z(q))A ◦ δ〉. And so, by [Rut00, Proposition 5.8], 〈τ/R,δ/R〉 is the

unique function from X/R to K × (KX/R)A such that

〈τ/R,δ/R〉 ◦ q = (idK ×(Z(q))A) ◦ 〈τ,δ〉.

In the conditions of the previous theorem, we remark that 〈τ/R,δ/R〉 is the unique

function from X/R to K × (KX/R)A which makes q a homomorphism of F-coalgebras from

(X,〈τ,δ〉) to (X/R,〈τ/R,δ/R〉).
Although the cardinality of X/R is lesser than or equal to the cardinality of X, we have

that the F-coalgebras (X,〈τ,δ〉) and (X/R,〈τ/R,δ/R〉) can recognize exactly the same fuzzy

languages in the following sense.

Theorem 5.23. Let R be a bisimulation equivalence on an F-coalgebra (X,〈τ,δ〉). And let
(X/R,〈τ/R,δ/R〉) be the quotient F-coalgebra as defined in Theorem 5.22. Also, by Theo-
rem 5.16, consider the D̂K-coalgebras ((KX ,µX),〈τ,δ〉) and ((KX/R,µX/R),〈τ/R,δ/R〉) obtained
from (X,〈τ,δ〉) and (X/R,〈τ/R,δ/R〉), respectively. Given the homomorphism of D̂K -coalgebras

`X : ((KX ,µX),〈τ,δ〉)→ ((KA
∗
,µA∗),〈ε, t〉)

and

`X/R : ((KX/R,µX/R),〈τ/R,δ/R〉)→ ((KA
∗
,µA∗),〈ε, t〉),

by Theorem 5.19, then

{`X(σ) | σ ∈ KX} = {`X/R(σ ′) | σ ′ ∈ KX/R}.

Furthermore, `X(σ) = `X/R(Z(q)(σ)) and `X/R(σ ′) = `X(σ ′ ◦q), for every σ ∈ KX and σ ′ ∈ KX/R.

Proof. By Theorem 5.22, we have that the quotient function q is a homomorphism of

F-coalgebras from (X,〈τ,δ〉) to (X/R,〈τ/R,δ/R〉). Then, by Theorem 5.16, Z(q) is a homo-

morphism of D̂K-coalgebras from ((KX ,µX),〈τ,δ〉) to ((KX/R,µX/R),〈τ/R,δ/R〉), and so we

have a homomorphism of D̂K -coalgebras

`X/R ◦Z(q) : ((KX ,µX),〈τ,δ〉)→ ((KA
∗
,µA∗),〈ε, t〉).

Since `X is unique by Theorem 5.19, then `X = `X/R ◦Z(q), that is, the diagram

94

5.5. BISIMULATIONS FOR FUZZY AUTOMATA

KX KX/R KA
∗

K × (KX)A K × (KX/R)A K × (KA
∗
)A

〈τ,δ〉

Z(q)

`X

`X/R

〈τ/R,δ/R〉 〈ε, t〉

idK ×(Z(q))A

idK ×(`X)A

idK ×(`X/R)A

commutes. In particular, `X(σ) = `X/R(Z(q)(σ)), for all σ ∈ KX , which implies that

{`X(σ) | σ ∈ KX} ⊆ {`X/R(σ ′) | σ ′ ∈ KX/R}.

On the other hand, given σ ′ ∈ KX/R, we have that

Z(q)(σ ′ ◦ q) =
∨
x∈X

σ ′(q(x))~ ηX/R(q(x)) =
∨
x∈X

σ ′([x])~ ηX/R([x]),

and thus,

Z(q)(σ ′ ◦ q)([x′]) =
∨
x∈X

σ ′([x])⊗ ηX/R([x])([x′]) =
∨
x∈[x′]

σ ′([x]) = σ ′([x′])

(note that [x] = [x′] for all x ∈ [x′]), for any [x′] ∈ X/R. Hence, Z(q)(σ ′ ◦ q) = σ ′. Therefore,

for any σ ′ ∈ KX/R, we have

`X(σ ′ ◦ q) = `X/R(Z(q)(σ ′ ◦ q)) = `X/R(σ ′),

which implies that

{`X/R(σ ′) | σ ′ ∈ KX/R} ⊆ {`(σ) | σ ∈ KX}.

Consequently, {`X(σ) | σ ∈ KX} = {`X/R(σ ′) | σ ′ ∈ KX/R}.

From the previous theorem, given a fuzzy automaton A = (X,σ ,τ,δ) and a bisimu-

lation equivalence R on the F-coalgebra (X,〈τ,δ〉), we can construct a fuzzy automaton

A/R = (X/R,Z(q)(σ), τ/R,δ/R) which is (language) equivalent to A and may have fewer

states.

95

Bibliography

[Adá05] J. Adámek. “Introduction to coalgebra”. In: Theory Appl. Categ. 14.8 (2005).

[Adá+90] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and concrete categories.
Pure and Applied Mathematics. The joy of cats, A Wiley-Interscience Publi-

cation. John Wiley & Sons, Inc., New York, 1990.

[Běl02] R. Bělohlávek. Fuzzy relational systems: foundations and principles. Vol. 20.

International Federation for Systems Research International Series on Systems

Science and Engineering. Kluwer Academic Publishers, New York, 2002.

[BV05] R. Bělohlávek and V. Vychodil. Fuzzy equational logic. Vol. 186. Studies in

Fuzziness and Soft Computing. Springer, Berlin-Heidelberg, 2005.

[BLB06] S. Bozapalidis and O. Louscou-Bozapalidou. “On the recognizability of fuzzy

languages. I”. In: Fuzzy Sets and Systems 157.17 (2006), pp. 2394–2402.

[BLB08] S. Bozapalidis and O. Louscou-Bozapalidou. “On the recognizability of fuzzy

languages. II”. In: Fuzzy Sets and Systems 159.1 (2008), pp. 107–113.

[BS81] S. Burris and H. P. Sankappanavar. A course in universal algebra. Vol. 78.

Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1981.

[Ćir+12] M. Ćirić, J. Ignjatović, N. Damljanović, and M. Bašić. “Bisimulations for fuzzy

automata”. In: Fuzzy Sets and Systems 186 (2012), pp. 100–139.

[Eil74] S. Eilenberg. Automata, languages, and machines. Vol. 59A. Pure and Applied

Mathematics. Academic Press, New York, 1974.

[Gog67] J. A. Goguen. “L-fuzzy sets”. In: J. Math. Anal. Appl. 18 (1967), pp. 145–174.

[Grä11] G. Grätzer. Lattice theory: foundation. Birkhäuser/Springer Basel AG, Basel,

2011.

[How91] J. M. Howie. Automata and languages. Oxford Science Publications. The

Clarendon Press, Oxford University Press, New York, 1991.

[Ign+08] J. Ignjatović, M. Ćirić, and S. Bogdanović. “Determinization of fuzzy au-

tomata with membership values in complete residuated lattices”. In: Inform.
Sci. 178.1 (2008), pp. 164–180.

[Ign+10] J. Ignjatović, M. Ćirić, S. Bogdanović, and T. Petković. “Myhill-Nerode type

theory for fuzzy languages and automata”. In: Fuzzy Sets and Systems 161.9

(2010), pp. 1288–1324.

97

BIBLIOGRAPHY

[Jac12] B. Jacobs. Introduction to coalgebra towards mathematics of states and observa-
tions. Version 2.00. Draft, 2012. url: http://www.cs.ru.nl/B.Jacobs/

CLG/JacobsCoalgebraIntro.pdf.

[JR11] B. Jacobs and J. J. M. M. Rutten. “An introduction to (co)algebras and

(co)induction”. In: Advanced topics in bisimulation and coinduction. Ed. by

D. Sangiorgi and J. J. M. M. Rutten. Vol. 52. Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2011, pp. 38–99.

[Jac+12] B. Jacobs, A. Silva, and A. Sokolova. “Trace semantics via determinization”. In:

Coalgebraic methods in computer science. Ed. by D. Pattinson and L. Schröder.

Vol. 7399. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2012, pp. 109–

129.

[JĆ14] Z. Jančić and M. Ćirić. “Brzozowski type determinization for fuzzy automata”.

In: Fuzzy Sets and Systems 249 (2014), pp. 73–82.

[Jan+14] Z. Jančić, I. Micić, J. Ignjatović, and M. Ćirić. “Further improvements of

determinization methods for fuzzy finite automata”. In: arXiv: 1402.6510v4
[cs.FL] (2014). Preprint submitted to Fuzzy Sets and Systems. url: http:

//arxiv.org/abs/1402.6510.

[Joh75] P. T. Johnstone. “Adjoint lifting theorems for categories of algebras”. In: Bull.
London Math. Soc. 7.3 (1975), pp. 294–297.

[JT84] A. Joyal and M. Tierney. “An extension of the Galois theory of Grothendieck”.

In: Mem. Amer. Math. Soc. 51.309 (1984), pp. vii+71.

[ML98] S. Mac Lane. Categories for the working mathematician. Second. Vol. 5. Gradu-

ate Texts in Mathematics. Springer-Verlag, New York, 1998.

[Man76] E. G. Manes. Algebraic theories. Vol. 26. Graduate Texts in Mathematics.

Springer-Verlag, New York-Heidelberg, 1976.

[Res00] P. Resende. “Quantales and observational semantics”. In: Current research in
operational quantum logic. Vol. 111. Fund. Theories Phys. Kluwer Acad. Publ.,

Dordrecht, 2000, pp. 263–288.

[Ros90] K. I. Rosenthal. Quantales and their applications. Vol. 234. Pitman Research

Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1990.

[Rut98] J. J. M. M. Rutten. “Automata and coinduction (an exercise in coalgebra)”. In:

CONCUR’98: concurrency theory (Nice). Vol. 1466. Lecture Notes in Comput.

Sci. Springer, Berlin, 1998, pp. 194–218.

[Rut00] J. J. M. M. Rutten. “Universal coalgebra: a theory of systems”. In: Theoret.
Comput. Sci. 249.1 (2000). Modern algebra and its applications (Nashville,

TN, 1996), pp. 3–80.

98

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://arxiv.org/abs/1402.6510
http://arxiv.org/abs/1402.6510

BIBLIOGRAPHY

[Sil+13] A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutten. “Generalizing

determinization from automata to coalgebras”. In: Log. Methods Comput. Sci.
9.1 (2013), pp. 1–27.

[Wec78] W. Wechler. The concept of fuzziness in automata and language theory. Vol. 5.

Studien zur Algebra und ihre Anwendungen [Studies in Algebra and its Ap-

plications]. With an appendix by V. Dimitrov. Akademie-Verlag, Berlin,

1978.

[Win07] M. Winter. Goguen categories: A categorical approach to L-fuzzy relations. Vol. 25.

Trends in Logic—Studia Logica Library. Springer, Dordrecht, 2007.

[Zad65] L. A. Zadeh. “Fuzzy sets”. In: Information and Control 8 (1965), pp. 338–353.

99

	Introduction
	Categories
	Basics on categories
	Products
	Coproducts
	Pullbacks
	Pushouts

	Monads and Kleisli triples
	Algebras for a monad
	Generalizing morphism extension to the algebras of a monad
	Functor liftings to the Eilenberg-Moore category of a monad

	Coalgebras
	The category of coalgebras
	Final coalgebras
	Determinization

	Fuzzy sets
	Residuated lattices
	K-modules

	Fuzzy sets
	Fuzzy relations
	The K-module of fuzzy sets

	A monad for fuzzy sets
	Z-algebras are K-modules

	Fuzzy automata
	Coalgebras for fuzzy automata
	Crisp-deterministic fuzzy automata

	Fuzzy languages
	A final coalgebra for crisp-deterministic fuzzy automata
	Determinization of fuzzy automata
	Recognizing fuzzy languages

	Bisimulations for fuzzy automata
	Quotient fuzzy automata

	Bibliography

