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ABSTRACT

Throughout the last decades, control systems theory has thrived, promoting new areas
of development, especially for chemical and biological process engineering. Production
processes are becoming more and more complex and researchers, academics and industry
professionals dedicate more time in order to keep up-to-date with the increasing complex-
ity and nonlinearity. Developing control architectures and incorporating novel control
techniques as a way to overcome optimization problems is the main focus for all people
involved.

Nonlinear Model Predictive Control (NMPC) has been one of the main responses
from academia for the exponential growth of process complexity and fast growing scale.
Prediction algorithms are the response to manage closed-loop stability and optimize
results. Adaptation mechanisms are nowadays seen as a natural extension of prediction
methodologies in order to tackle uncertainty in distributed parameter systems (DPS),
governed by partial differential equations (PDE). Parameters observers and Lyapunov
adaptation laws are also tools for the systems in study.

Stability and stabilization conditions, being implicitly or explicitly incorporated in the
NMPC formulation, by means of pointwise min-norm techniques, are also being used and
combined as a way to improve control performance, robustness and reduce computational
effort or maintain it low, without degrading control action.

With the above assumptions, centralized (or single agent) or decentralized and dis-
tributed Model Predictive Control (MPC) architectures (also called multi-agent) have been
applied to a series of nonlinear distributed parameters systems with transport phenomena,
such as bioreactors, water delivery canals and heat exchangers to show the importance
and success of these control techniques.

Keywords: Distributed parameters systems, nonlinear model predictive control, multi-
agent control, stability, adaptation, pointwise min-norm control
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RESUMO

Ao longo das últimas décadas, a teoria de controlo de sistemas tem prosperado,
promovendo novas áreas de investigação e desenvolvimento, em especial no domínio
da engenharia química e biológica. O aumento da complexidade e não linearidade nos
processos produtivos faz com que investigadores, académicos e profissionais da indústria
tenham de dedicar mais tempo ao seu estudo. O desenvolvimento de novas técnicas e
arquiteturas de controlo tem ganho preponderância face aos problemas de optimização
destes mesmos processos e o foco de atenção para todos os envolvidos.

O controlo preditivo não linear (NMPC) tem sido uma das principais respostas da
investigação face ao crescimento exponencial da complexidade dos processos de produção
e do aumento de escala dos mesmos. Os algoritmos de predição fazem face à garantia de
estabilidade em malha fechada e na optimização dos resultados obtidos. Os mecanismos de
adaptação começam a ser vistos como uma extensão natural das metodologias preditivas
e são usados para resolver a incerteza associada aos sistemas de pârametros distríbuidos
(DPS), compostos por conjuntos de equações diferenciais parciais (PDE). Observadores e
mecanismos adaptativos baseados são utilizados para os sistemas aqui apresentados.

Estabilização e condições de estabilidade, implicita ou explicitamente incorporadas
na formulação geral do NMPC como controlo do tipo pointwise min-norm, são usadas e
combinadas com outras estruturas de forma a melhorar o desempenho, garantir a robustez
e manter o esforço computacional baixo.

Tendo como ponto de partida as permissas acima indicadas, foram usadas estruturas
de controlo centralizado (ou de agente único) ou controlo descentralizado ou, ainda, dis-
tríbuído (controlo multi agente) em sistemas de pârametros distríbuidos com fenómenos
de transporte, como sejam bioreactores, canais de distribuição de água ou permutadores
de calor por forma a mostrar a importância e o sucesso destas técnicas de controlo.

Palavras-chave: Sistemas de pârametros distribuídos, controlo preditivo não linear, con-
trolo multi-agente, estabilidade, adaptação, controlo pointwise min-norm
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INTRODUCTION

1.1 Motivation

Over the last three to four decades MPC has been extensively studied and developed both
in linear and nonlinear systems. MPC can be described as an optimization of the future
behaviour of a process by using a model, making the model the basis of the controller.
Rawlings presents in [100] an extensive survey focusing on the application of MPC using
a very simple and straight forward language to introduce a set of complex terms, as well
as presents a typical example regarding the usage of MPC. In [97] the authors focus on
industrial application of MPC algorithms provided by vendors, reporting both linear and
nonlinear applications, as depicted in 1.1.

LQG

IDCOM-M HIECON

SMCA

PCTPFC

IDCOM

SMOC

Connoisseur

DMC

DMC+

QDMC

RMPC

RMPCT

1960

1970

1980

1990

2000

1st generation

MPC

2nd generation

MPC

3rd generation

MPC

4th generation

MPC

Figure 1.1: Genealogy of MPC algorithms as seen in [97].

The list of papers on the application of MPC in linear systems is massive, but being
this thesis about Distributed Parameter System (DPS) in chemical or affine processes,
such as tubular bioreactors or water delivery canals, the nonlinearity is present and these
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CHAPTER 1. INTRODUCTION

nonlinear systems are far less studied. Take notice that the nonlinearity in these processes
is at least promoted by mass and energy conservation laws as well as chemical kinetics
and its relationship with the properties of the final products.

1.2 State of the Art

When dealing with DPS several methods have been proposed in order to solve many of
the challenges that these systems (especially the nonlinear) introduce. Many researchers
and research groups developed mathematical solutions to deal with both linear and
nonlinear systems (for instance parabolic or hyperbolic Partial Differential Equation(s)
(PDE) systems) has it will be described below.

1.2.1 Operators and Semigroups

In [27] the authors start by motivating what they find has the usefulness of developing a
theory for linear infinite dimensional systems and to do so they begin to present a series of
control problems to practical and industrial applications. Their next step was to generalize
the studied systems in the form:

ż = Az(t) + Bu(t), t ≥ 0, z(0) = z0 (1.1)

where Z is a separable complex Hilbert space. In the example proposed, the authors
define the operators A and B as:

A =
d2

dx2

D(A) = {z ∈ L2(0, 1); Mz = M1(.)|0,1 + M2
d(.)
dx
|0,1 = 0} (1.2)

B = I

and with Z = L2(0, 1) as the state space, z(·, t) = {z(x, t), 0 ≤ x ≤ 1} as the state,
u(·, t) as the input and z0(·) ∈ L2(0, 1) as the initial state. The boundary conditions, Mz,
are defined in the operator A domain. After the formulation, the solution is obtained and
given by:

z(x, t) =
∫ 1

0
g(t, x, y)z0(y)dy +

∫ t

0

∫ 1

0
g(t− s, x, y)u(y, s)dyds (1.3)

where g(t, x, y) is given by:

g(t, x, y) = 1 +
∞

∑
n=0

2e−n2π2tcos(nπx)cos(nπy). (1.4)

A bounded operator z(t) = T(t)z0 on L2(0, 1) is then introduced in order to simplify
the above solution as:

z(x, t) = T(t)z0 +
∫ t

0
T(t− s)u(s)ds. (1.5)
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1.2. STATE OF THE ART

This new bounded operator is what is called a strongly continuous semigroup as its
properties in T(t) : R+ → L(Z) are satisfied:

T(t + s) = T(t)T(s), for t, s ≥ 0; (1.6)

T(0) = I; (1.7)

‖T(t)z0 − z0‖ → 0, as t→ 0+ ∀z0 ∈ Z. (1.8)

In [32] the authors use a similar deduction for a parabolic PDE with boundary control
actuation subject to input and state constraints.

1.2.2 Galerkin Method

One other approach on DPS control was suggested and developed in [11] and further ahead
in [24], where the authors primarily describe hyperbolic and/or parabolic distributed
systems such as, for instance heat exchangers, and use a different method from the one
presented in the previous section in order to solve the set of PDEs. Although there are
some differences in the adopted notation in both documents, the DPS can be written as:

∂v(t)
∂t

= Av(t) + B f (t) (1.9)

with the initial conditions v(t) = v0 and output y(t) = Cv(t). The operator A is
described like in 1.2.1 and originates a C0 semigroup U(t), with a growth property:

‖ U(t) ‖≤ Ke−σt, t ≥ 0, K ≥ 1 and σ > 0 (1.10)

and B and C operators are defined as:

B f (t) =
M

∑
i=1

bi fi(t) (1.11)

yj(t) = (cj, v(t)), 1 ≤ j ≤ P. (1.12)

with both bi and cj being influence functions in the Hilbert space H. This DPS can be
written as:

v(t) = U(t)v0 +
∫ t

0
U(t− τ)B f (τ)dτ, y(t) = Cv(t) (1.13)

as a weak formulation of the original DPS. A reduced-order model is then obtained:

∂vN

∂t
= ANvN + ANRvR + BN f

(1.14)
∂vR

∂t
= ARNvN + ARvR + BR f , y = CNvN + CRvR

3



CHAPTER 1. INTRODUCTION

in order to synthesize a finite dimensional feedback controller using the Galerkin
method.

In the latter, the author in [24] presents a similar DPS formulation:

∂x̄
∂t

= A
∂x̄
∂z

+ B
∂2 x̄
∂z2 + wb(z)u + f (x̄)

yi =
∫ β

α
ci(z)kx̄dz, i = 1, . . . , l (1.15)

qk =
∫ β

α
sk(z)ωx̄dz, k = 1, . . . , p

subject to the boundary conditions and initial condition, respectively:

C1 x̄(α, t) + D1
∂x̄
∂z

(α, t) = R1 (1.16)

C2 x̄(β, t) + D2
∂x̄
∂z

(β, t) = R2

x̄(z, 0) = x̄0(z). (1.17)

In this formulation x̄ is the state, z and t are respectively space and time, α and β

are the domain of the process, u, y and q are, respectively, the manipulated inputs, the
controlled outputs and the measured outputs. The functions b(z), ci(z) and sk(z) are
smooth functions of z. This system can now be written as a infinite dimensional system in
Hilbert space H:

ẋ = Ax + Bu + f (x), x(0) = x0

(1.18)

y = Cx, q = Qx

with:

Ax = A
∂x̄
∂z

+ B
∂2 x̄
∂z2 (1.19)

x ∈ D(A) = {x ∈ H([α, β]; Rn); C1 x̄(α, t) + D1
∂x̄
∂z

(α, t) = R1;

C2 x̄(β, t) + D2
∂x̄
∂z

(β, t) = R2}

and

Bu = wbu

Cx = (c, kx) (1.20)

Qx = (s, ωx).
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Like in the previous formulations, A generates a strongly continuous semigroup if
the eigenspectrum for A can be partitioned in finite-dimensional of slow eigenvalues
and a stable infinite-dimensional complement of fast eigenvalues and that this separation
between slow and fast is large [24]. With so, the general solution for the system can be
written in the form:

x(t) = U(t)x0 +
∫ t

0
U(t− τ)[(Bu(τ) + f (x(τ))]dτ (1.21)

with:

‖U(t)‖ ≤ K1ea1t, ∀t ≥ 0. (1.22)

Take notice that the formulations presented are very similar and the authors use the
Galerkin approximation method to design the controllers and obtain the solution for these
systems.

1.2.3 Orthogonal Collocation Method

As seen so far, the research in DPS applications is based upon different mathematical
techniques. In [30] the authors describe a dynamical model for a fixed bed bioreactor in
the form:

∂x1

∂t
= K̄1 ϕ̄(x1, x2) (1.23)

∂x2

∂t
=

F
A

∂x2

∂z
K̄2 ϕ̄(x1, x2) (1.24)

with boundary conditions:

x2(t, z = 0) = x2,in(t). (1.25)

In this dynamical model x1 and x2 are the states, ϕ(x1, x2) is a function in (x1, x2) that
describe the kinetics, K̄1, K̄2 and F are, respectively, the yield coefficient matrices and the
hydraulic flow rate. Finally, A is the cross-section area of the bioreactor. The authors then
propose themselves to achieve a reduced model by using the Orthogonal Collocation
method (OCM) [120]. With this method the PDEs are transformed into a series of Ordinary
Differential Equaltion(s) (ODE) by expanding the variables as a finite sum of products of
time and space functions:

x1(z, t) =
p+1

∑
j=0

Bj(z)x1,j(t), x1,j(t) = x1,j(t, z = zj) (1.26)

x2(z, t) =
p+1

∑
j=0

Bj(z)x2,j(t), x2,j(t) = x2,j(t, z = zj) (1.27)

5



CHAPTER 1. INTRODUCTION

with Lagrange polynomials in the form:

β j(zi) =

{
1 if i = j
0 if i 6= j

. (1.28)

The reduced model can now be written as a set of ODEs in each collocation point and
at the output:

dx1

dt
= K1ϕ(x1, x2) (1.29)

dx2

dt
= − F

A
Bx2 + FR + K2ϕ(x1, x2) (1.30)

where x1 and x2 are column vectors of states at each collocation point, ϕ(x1, x2) is
a column vector of the original ϕ̄(x1, x2) also at the collocation points, K1 and K2 are
diagonal matrices of K̄1 and K̄2, respectively and Bij and FR are matrices that depend on
the derivative of βij along space at the chosen collocation points (for further understanding
please read [30]).

The resulting output will be obtained as:

dY
dt

= − F
A

CTBx2 +
F
A

CT
2 b̄p+1x2,in + θTφ (1.31)

where Y is the value of the controlled component at the reactor output, yi is the
concentration of the controlled component along the reactor at the collocation points zi,
CTBx2 is a linear combination of only the variables yi at the different collocation points
and θ and φ are column vectors of the unknown and known parameters, respectively. F is
the controlled input.

The stated advantages when implementing OCM, for instance when deducing an
adaptive controller such as described [30], is that this method is by far easier when
compared with the Galerkin method and also that after the model reduction the integrity
and nature of the original system remains unchanged. Take note that the mass balances
are preserved as demonstrated in [23].

In [50] we propose a similar application as in [30], but for a system modelled as:

∂w
∂t
− u

L
∂w
∂z

= p(w, x, d) (1.32)

∂xk

∂t
+

vk

L
∂w
∂z

= fk(w, x, d). (1.33)

In this case, w is the fluid temperature that circulates countercurrent on a jacket and
xk are the state variables that represent the components for a given set of endothermic
reactions in a inner tube (both w and xk are space and time functions), u, vk and L are fluid
and transport velocities and tube length, respectively.

The application of the OCM is identical to the one described earlier and, in this case,
the objective is to control the space distributed output:

y(t) =
1

z2 − z1

∫ z2

z1

xp(z, t)dz (1.34)
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by manipulating u(t) using an adaptive control scheme.

1.2.4 Flat Systems

One other major important mathematical technique for DPS is the concept of flatness and
flat systems. Flatness appeared in a series of papers like [37, 38] and later on in [34, 72,
102, 103] and uses the formalism of differential algebra. The authors use this formalism to
say that "a system is said to be flat if one can find a set of variables, called the flat outputs, such
that the system is (non-differentially) algebraic over the differential field generated by the set of flat
outputs" [84]. In a more simplistic definition, a system is flat if it exists a set of outputs in
the same number as the inputs, such that it is possible to obtain all states and inputs of a
system from these outputs without the need for integration. This means that for any given
system with states x ∈ Rn and inputs u ∈ Rm then the system is flat if there are outputs
y ∈ Rm:

y = h
(

x, u, u̇, ü, . . . ,
(r)
u
)

(1.35)

such that:

x = ϕ

(
y, ẏ, ÿ, . . . ,

(q)
y

)
(1.36)

u = α

(
y, ẏ, ÿ, . . . ,

(q)
y

)
. (1.37)

A very interesting use of flat systems in chemical engineering is the one published
in [65]. In this paper, the authors define the system as a inhomogeneous parabolic DPS in
the form:

α
∂x(z, t)

∂t
= −Ax(z, t) + u(z, t), z ∈ [0, 1, t > 0] (1.38)

subject to the boundary conditions:

B1x(0, t) = w1(t), t > 0 (1.39)

B2x(1, t) = w2(t), t > 0 (1.40)

and initial conditions and control output, respectively, defined as:

x(z, 0) = x0(z), z ∈ [0, 1] (1.41)

y(t) = x(0, t), t ≥ 0. (1.42)

This system is described in [27] as a lumped parameter system in state space, although
the main difference is that in this formulation A and B are described as second and first
order differential operators:
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A(·) , β2
∂2

∂z2 (·) + β1
∂

∂z
(·) + β0(·) (1.43)

Bi(·) , Bi1
∂

∂z
(·) + Bi0(·), i = 1, 2. (1.44)

The solution is then presented for x(z, t) as:

x(z, t) =
+∞

∑
i=0

ai(t)ϕi(z) =
+∞

∑
i=0

ai(t)
zi

i!
(1.45)

and then approximated, assuming uniform convergence, by its first N + 1 terms:

x(z, t) =
N

∑
i=0

ai(t)
zi

i!
. (1.46)

The same approximation can be performed on the control input u(z, t):

u(z, t) = u(t)
m

∑
i=0

fi
zi

i!
, fi ∈ R, f0 6= 0, m ≤ N − 2. (1.47)

The resulting model 1.38 is now written as:

α
N−2

∑
i=0

ȧi(t)
zi

i!
+ β2

N−2

∑
i=0

ai+2(t)
zi

i!
+ β1

N−2

∑
i=0

ai+1(t)
zi

i!
+ β0

N−2

∑
i=0

ai(t)
zi

i!
= u(t)

m

∑
i=0

fi
zi

i!
(1.48)

with boundary conditions 1.39 and output 1.41, respectively:

B11a1(t) + B10a0(t) = w1(t) (1.49)
N−1

∑
i=0

1
i!
[B21ai+1(t) + B20ai(t)] = w2(t) (1.50)

y(t) = x(0, t) =
N

∑
i=0

ai(t)
0i

i!
≡ a0(t). (1.51)

This formulation is obtain by using the Power series solution of differential equations.
One other study on flatness and flat systems is presented in [57] where the authors

use flat systems theory and motion planning in order to solve an hyperbolic PDE system
that describes a distributed collector solar field. Although taken into account the differ-
ences between parabolic an hyperbolic systems, the application is similar to the one just
described being the differences restricted to notation form.

1.3 Model Predictive Control Architectures

Now, the focus is to understand the main MPC architectures applied in various distributed
parameters systems such as bioreactors, water canals and chromatography columns.
Understanding the architecture and pointing out the differences and applications leads to
a better knowledge on how different architectures were implemented and, in some cases,
similar results were attained.
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1.3.1 Single Agent or Centralized Control

Centralized MPC (cMPC) as been a widespread control architecture over the last decades
in different areas such as chemical and biological engineering [21, 30, 33, 52], power
systems [91], supply chains [125], aerospace engineering [63] as well as energy efficiency
for construction [123].

 

  

MPC 

SYSTEM 

 Subsystem 1  Subsystem 2 

u1 u
2

 

y
1

 y
2

 

Figure 1.2: Centralized Model Predictive Control architecture.

Commonly applied to linear systems, as for instance in [17, 25], cMPC has suffered com-
pelling advances in nonlinear systems theory and processes. It takes a single multivariable
system and its interactions and uses one controller to compute all control actions [105].
By doing so, optimal solutions can be obtained by manipulating the inputs, minimiz-
ing the difference between predicted and desired behaviour of a given system or set of
subsystems.

Figure 1.2 depicts a generic cMPC applied to a system containing two subsystems.
Although of all the advantages in application to linear and low complexity systems, this
centralized architecture generates more computer effort as the complexity and nonlinearity
of the systems increase.

The evolution of MPC algorithm from a simple unconstrained Single Input Single
Output (SISO) case using Dynamic Matrix Control (DMC) and Generalized Predictive
Control (GPC) as described in [78] to nonlinear control systems [59, 81] with stability
constraints, such as Stabilizing Input Output Receding Horizon Control (SIORHC) [48,
49] and/or with adaptation algorithms [51, 52, 53, 55, 56, 60] is thoroughly discussed in
control systems theory literature.

1.3.2 Multi-Agent Control

1.3.2.1 Decentralized Model Predictive Control

The decentralized MPC (dMPC) [10, 18, 121] architecture is still commonly used in large
scale industrial systems [98, 121, 122]. As depicted in figure 1.3 different controllers are
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used in different subsystems and treated as disjoint sets. These sets of inputs and outputs
are coupled in a way that the resulting pairs do not overlap and the local controllers can
then be designed to operate independently [105]. The decentralized framework has as
main aspect the fact that the controllers inside a given system do not communicate with
each other, which means that there is no information trading, although as seen in [47]
information is exchanged only for special purposes.

SYSTEM 

 Subsystem 1  Subsystem 2 

 MPC 1  MPC 2 

u1 u
2
 

y
1

y
2
 

Figure 1.3: Decentralized Model Predictive Control architecture.

In terms of stability analysis a great number of papers have been presented [6, 80, 116,
117, 124], giving particular relevance to the application of Input-to-State Stability (ISS)
which was first introduced in [110] and further developed in [62, 98, 112] on nonlinear
discrete-time systems or for constrained uncertain nonlinear systems [73].

1.3.2.2 Distributed Model Predictive Control

Contrariwise to dMPC, on distributed MPC (DMPC) [35] information is exchanged be-
tween the controllers in order to have coordination in their actions. One of the major
classes of DMPC are non-cooperative [75, 76] where the communication between con-
trollers can be one-directional and the controllers are evaluated in a sequence, Sequential
DMPC, or at the same time, Parallel DMPC. The other class is cooperative DMPC [39, 69,
77, 90, 113] where the same global cost function is optimized in each controller. In the
last decades several research developments have been achieved with the use of DMPC,
namely advances in thermal and energy efficiency [12, 13, 14, 15] and for chemical engi-
neering systems [87, 108, 115]. Recent design methods were developed to solve two major
problems: guaranteeing stability and improving performance (please read [42, 64, 118]).

1.3.2.3 Non-cooperative DMPC

Like was said before, non-cooperative DMPC uses a set of local controllers whose actions
are taken in order to optimize local cost functions. With this type of configuration there
is no need for a given subsystem to know what happens, trajectory-wise in the other
subsystems, including its neighbours. The exception is mostly focused in guaranteeing
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SYSTEM 

 Subsystem 1  Subsystem 2 

 MPC 1  MPC 2  

u1 u
2
 

y
1
 y

2
 

Figure 1.4: Distributed Model Predictive Control architecture.

stability. In order to obtain some solution, at each sampling time, these controllers can
exchange information only once (non-iterative parallel controllers) or can iterate (iterative
parallel controllers). The iterative algorithms deal with a higher amount of information
being exchanged, rather than non-iterative algorithms. Sequential and parallel designs are
depicted in figures 1.5 and 1.6 respectively. Mathematical background for non-cooperative
game theory can be read in [8].

SYSTEM

MPC 1 MPC nMPC 2

u1 u
2

u
n

…

y

Figure 1.5: Sequential Distributed Model Predictive Control architecture.

1.3.2.4 Cooperative DMPC

In terms of cooperative DMPC the main objective is the optimization of a global cost
function, like in a centralized architecture. This means that, although there is the manip-
ulation of local variables in each subsystem (like in a decentralized or non-cooperative
architectures) all these manipulations take into account a global optimal solution - Pareto
optimal solution - rather than a typical Nash equilibrium of non-cooperative designs. So,
the importance of cooperative DMPC is focused on performance improvement by using
distributed optimization algorithms. In other words, cooperative architectures operates
in a decentralized away, using centralized assumptions. Stability in cooperative DMPC
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SYSTEM

MPC 1 MPC nMPC 2

u1 u
2

u
n

…

y

Figure 1.6: Parallel Distributed Model Predictive Control architecture.

should be taken into account in suboptimal control theory. Interesting applications can be
seen in [79].

1.4 Thesis structure

This thesis is, therefore, organized as follows:

• Chapter 1 includes a summary of the whole thesis, namely reports the main motiva-
tion for the writing of this thesis, the state of the art in terms of the proposed work,
different MPC architectures applied to nonlinear systems, including a brief descrip-
tion of centralized, decentralized and distributed designs to be further developed
and the organization of all chapters.

• Chapter 2 defines a general formulation for the class of uncertain nonlinear systems
with transport phenomena proposed, introduces stability constrainment and applies
receding horizon control with adaptation for a fixed-bed tubular bioreactor as an
application of the given system.

• Chapter 3 extends the subjects presented in chapter 3 to other systems within the
same class of distributed and uncertain nonlinear systems, namely to a finite es-
cape traveling time distributed system. An application to a water delivery canal is
thoroughly presented and discussed in SISO and Multiple Input Multiple Output
(MIMO) cases with different control architectures, namely centralized and decentral-
ized control.

• Chapter 4 is the extension of the previous chapter with the introduction of cooper-
ative distributed control (multi-agent control) with zero state terminal constraints.
New control techniques, mainly neighbour-to-neighbour cooperation have been
applied to the water delivery canal prototype, as well as the developed generic
serially chained systems solution.
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1.4. THESIS STRUCTURE

• Chapter 5 makes use of assumptions and definitions from previous chapters and
uses them as an application for a countercurrent heat exchanger. Centralized and
non-cooperative distributed control techniques are developed and compared in
terms of performance, robustness and computational effort.

• Chapter 6 summarizes conclusions for the whole thesis and presents future and
under development work.
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NONLINEAR MODEL PREDICTIVE CONTROL IN

BIOREACTORS

2.1 Introduction

In this chapter, the main goal is, first of all, to introduce the importance of NMPC in control
systems theory and invoke some of the work that has been developed for this thesis as an
application to a fixed bed tubular bioreactor.

Previously presented and developed for linear systems, in [36] and later on in [44,
99] NMPC has been proven to show important advantages in terms of advanced process
control. This is due to the fact that constraint incorporation tends to be easier, becoming
a decisive advantage for industrial applications when compared to other methods. The
extension to multivariable cases can also be easier and well understood.

However, from an implementation standpoint, a major issue and main focus on re-
search consists in being able to ensure stability for a short finite horizon in an uncertain
environment, without dramatically increasing the computational effort. Usually, when in
presence of uncertainty in a already complex nonlinear system, closed-loop stability has
been shown to be extremely hard to achieve. The solution for these problems is the use of
larger weight penalty on control action included in the optimization problem or bigger
finite horizon in the controller, which tends to transform the optimization into higher
computational effort. From a practical perspective, closed-loop stability is not decisive,
and therefore many MPC techniques applied in process industries do not meet this feature.
However, as can be read in [107] stability is convenient.

Later on in this chapter a stabilizing NMPC for a given class of uncertain biosystems
with transport phenomena, associated with fluid flow in pipes, is to be formulated. The
inclusion of a stabilizing condition based in a Robust Lyapunov Control Function (RLCF)
(also known as PointWise Min-Norm Controller (PWMNC) as described in [40, 95, 126] and
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to be developed in this chapter and further on in chapter 3) will guarantee robust NMPC
closed-loop stability. A stable distributed parameter estimator, in the Lyapunov sense,
is also to be presented when combined with the NMPC algorithm, using the certainty
equivalence principle for adaptation proposes.

Notwithstanding the main attention in the last decade is still on NMPC as in both
academic and basic research as well as industrial applications, one of the still less ap-
proached area is the incorporation of adaptation mechanisms as mentioned in [85], which
seems to be a natural idea to deal with parametric uncertainty (maintaining, of course,
low computational cost/effort).

The literature (mostly academic papers such as [3, 5]) on the subject are now gaining
some more relevance and meaning. Early results for distributed systems can be found
in [56]. Predictive control of hyperbolic PDE systems, namely transport-reaction processes,
was studied in [33, 106] for SISO cases. In [33] the controller is based on a predictive model
developed using the method of characteristics (for this and other methods and definitions
in both hyperbolic and parabolic PDE system solving, please read the seminal [26]) and
does not consider constraints. For [106] authors use finite differences method for space
discretization and a space distributed actuator was used with success. In [53] the authors
used a combination of adaptive and predictive control that was obtained via Orthogonal
Collocation (OC) [101] reduced modelling, also for SISO hyperbolic tubular transport-
bioreaction processes, that proved to achieve the control objectives. Stability conditions
have also been derived and discussed in the same article. A pioneer research on adaptive
control of tubular bioreactors, using OC reduced models and Feedback Linearizing Control
(FLC) can be found in [30] and also a successful application for a distributed uncertain
solar power plant, where NMPC was combined with FLC and Lyapunov Adaptation can
be read in [54].

The main contribution of this chapter consists in the formulation of a Lyapunov stable
efficient adaptive NMPC for a broad class of parametric uncertain nonlinear PDE systems,
that exhibits (bio)mass and energy transport. Therein a stable distributed law, suitable
for the entire system class, is used to achieve adaptation, requiring low computational
effort. Stability is ensured online by a constraint justified via a Robust Control Lyapunov
Function (RCLF) condition that arises from the relation between PWMNC and RHC.

This chapter is organized as follows: after this introduction, the prototype model of
the tubular biosystem class is considered and described by a set of PDEs. Afterwards,
the general stabilizing formulation of a NMPC for the infinite dimension system class is
introduced and then the stability condition is derived. Afterwards, a distributed adaptive
law in the sense of Lyapunov (Lyapunov Adaptation Law (LAL)) is obtained and the
adaptive NMPC is stated by combining both Receding Horizon (RH) and LAL. Finally,
an application to a fixed-bed tubular bioreactor (with Contois kinetics) is described in a
series of simulations.
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2.2. CLASS OF PDE MODELS

2.2 Class of PDE models

Start by considering the dynamical model described as:

∂x(z, t)
∂t

+ L(x(z, t), u(t); θ) = s(x(z, t), u(t); θ), (2.1)

where space z and time t have the domain (z, t) ∈ [0, 1]×R+, the state trajectories
x(., t) defined as x(., t) ∈ X ⊂ [0, 1]×Rn, bounded manipulated input defined as u(t) ∈
U ⊂ Rm and L(., u; θ) as quasi-linear matrix space operator. The boundary conditions are
given by the nonlinear space operatorM(., u; θ):

M(x(z, t), u; θ) = 0 (2.2)

and the output defined as y(t) ∈ Y ⊂ Rp is given by:

yk(t) =
∫ 1

0
bk(z) hk(x(z, t))dz, (k = 1, ..., p). (2.3)

Both s(x, u), h(x) are smooth vectors of nonlinear functions, defined as s(x, u) :
Rn × Rm 7→ Rn, h(x) : Rn 7→ R . The space weight bk(z) > 0 : [0, 1] → R+ satis-
fies

∫ 1
0 bk(z) dz = 1. Finally, uncertain parameters or additive disturbances defined as

θ ∈ Θ ⊂ Rq. This uncertain parameters or additive disturbances lie within a known open
convex set Θ = {θ : θ < θ < θ}.

It is important to declare that the L operator must include the convection terms v ∂(.)
∂z

and that it will depend on the manipulated variable when u ≡ v (where v is the fluid
velocity). If the manipulated variable is space weighted additive in the production term,
then s(x, u; θ) = sx(x; θ) + su(x; θ) w(z) u. In both cases the manipulated variable is
explicit on equation (2.1) and it will be implicit when it only appears in the boundary
condition (2.2).

As stated before this prototype class allows the study of a wide variety of processes
with transport phenomena and defines the class of systems presented above. Take note
that this set of equations promotes a process model that occurs in a tubular or cylindrical
domain. Here the state variables xk(z, t) (k = 1, . . . , n) represent the (bio)chemical species
involved and the mixture temperature along a normalized space (z ∈ [0, 1]) and time
(t ∈ [0,+∞[), where v is the transport velocity. The system is thereby modelled by n
quasi-linear PDEs in the state variables xk(x, t), that results from ensuring the application
of conservation principles (mass or biomass and energy balances) as described in [7, 20,
31].

2.3 Process System Engineering design assumptions

The class of systems just presented arises in Process System Engineering (PSE) and are
designed to operate in steady state for long periods of time. A change in operating condi-
tions is usually promoted by a sudden set-point jump between two steady states nearby.
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Keeping this in mind there are some assumptions that need to be made.

Assumption A1: By design, there exist one or more steady state nominal operating points
and for each nominal operating point there exists a output value yr, a corresponding state
profile x0

r ≡ xr(z; θ)|θ=θ0 and input u0
r ≡ ur(θ)|θ=θ0 obtained for the nominal parameter

values θ = θ0 ∈ Θ. And also a subset Xr(θ0) given by:

Xr(θ0) = {x ∈ X :‖ x− x0
r ‖Qr≤ lr} (2.4)

lr = max
θ∈Θ
{‖ xr(z; θ)− x0

r ‖Qr}, (2.5)

where Xr is a closed convex subset, containing xr and x0
r , bounded by the curve level

lr of the elliptical hyper paraboloid Vr(x) =‖ x− x0
r ‖Qr .

Take notice that the actual steady state space profile xr(z; θ) does not coincide with
the nominal state space profile, namely because in general θ 6= θ0 due to parametric
uncertainty, and by so not accurately known but lying inside Xr (xr(z; θ) ∈ Xr(θ0)).
Figure 2.1 depicts what is described in Assumption A1.

Assumption A2: Properness viz. Xr  X and so by A1, xr and x0
r ∈ Xr ⊂ X.

Figure 2.1: Sets.

2.4 Stability

In terms of stability, as shown in [95] one can develop a PointWise Min Norm (PWMN)
control based in a RLCF as defined in [40] for the stated class of systems. As for the NMPC
problem previously stated it is suggested that, at the same time, it is possible to include
the PWMN stabilizing property as an inequality constraint in its basic formulation.

In [40] the authors declare that an implicit stabilizing controller may be design using
the following optimization statement: if V(x̃) > l0 then:

min
u∈U

uTu (2.6)

s. t. (2.1) and max
θ∈Θ
{V̇(x̃; θ)}+ αV(x̃) < 0,
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2.4. STABILITY

where V(x̃) : X → R≥0 is a continuously differentiable, positive definite and radially
unbounded function in respect to the L2 norm of x̃, as seen in [27]. The difference between
the actual state and a steady state profile along space length x̃(z, t) = x(z, t)− xr(z; θ0),
where xr ∈ Xr, obtained for parameter nominal value θ0. In other words, V(x̃) is simply a
RLCF candidate whose maximum derivative can be made less than −αV(x̃) pointwise
(see [41]) by the choice of control values outside a region or set around the nominal
operating point. The region must be chosen by adjusting the curve level value l0 and can
converged using the α relaxation parameter.

In terms of choice for the Control Lyapunov Function (CLF) candidate:

V(e) =
1
2

∫ 1

0
x̃Tq(z)x̃ dz,

∫ 1

0
q(z) dz = 1 (2.7)

with q(z) positive definite. Using Lyapunov stability arguments, as shown in [67] and
in[86]: any x̃(z, t) solution, originating in a bounded region, will asymptotically tend to
the included invariant region parameterized by l0 as t → ∞, if V̇ < 0 (∀ x̃ 6= 0). In this
case, the time derivative of (2.7) will yield:

V̇ =
1
2

∫ 1

0

∂

∂t

(
x̃T(z, t) q(z) x̃(z, t)

)
dz (2.8)

using (2.1):

V̇ =
∫ 1

0
(s(x, u; θ)−L(x, u; θ)Tq(z)x̃(z, t) dz (2.9)

and the robust optimization condition, for this class of systems, is given by:

max
θ

{∫ 1

0
(s(x, u; θ)−L(x, u; θ))Tq(z)x̃(z, t) dz

}
+

α

2

∫ 0

1
x̃Tq(z)x̃ dz < 0. (2.10)

Note that one of the following conditions must hold a priori in relation to the manner
how the inputs appear in (2.1). Condition

∫ 1
0 (

∂x
∂z )

T Av q(z)x̃ dz 6= 0, where Av is a diagonal
matrix with one or zero in the main diagonal, must hold if the corresponding state is
related with the manipulated velocity. Or∫ 1

0
(su(x; θ) w(z) u)Tq(z)x̃ dz 6= 0

iff u 6= 0, if u is related with the production term. Finally,M(x, u, θ) 6= 0 iff u 6= 0 if u
is implicit through boundary conditions. These conditions must hold or controllability
from u to the ’output’ ≡ V is lost. Note also that in order for the RCLF to be chosen the
conditions on q(z) must be able to find V and the corrected condition must hold. If this
does not happen, then the candidate V is not a RLCF and must be discarded and one
must find a new CLF candidate that can verify all conditions. If nothing works then other
methods must be applied.

The established above result can be stated in the following proposition:
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Proposition 1: Consider the class of distributed systems Σ∆ = (L,M, s, U, X, Xr, Y; Θ)

with solutions x(z, t) defined by (2.1), then the function V given by (2.7) is a RLCF for Σ∆

if and only if exists scalars l0, α ∈ R+ such that:

min
u∈U

max
θ∈Θ
{V̇(x̃; θ)}+ αV(x̃) < 0

whenever V(x̃) > l0.

Remark 1: The u ∈ U referred in proposition 1 can be obtained by the optimization
statement (2.6) when feasible, which means that the set U 3 u must be chosen large
enough. Feasibility in the last proposition arises only from the fact that in general unstable
systems cannot be stabilized globally when input constrains are present. Without feasibility
there is no guarantee for global stability.

Remark 2: An important PWMN control feature is the fact that it corresponds to a NMPC
limit stabilizing solution when the horizon value goes to zero. Consider the following
NMPC formulation:

min
u∈U

∫ T
0

(V(x̃(z, τ)) + ‖ũ‖2
R)dτ (2.11)

s. t. (2.1) and max
θ∈Θ
{V̇(x̃; θ)}+ αV(x̃) < 0,

when the horizon T tends to zero:

min
u

lim
T →0

1
T

∫ T
0

(V(x̃(z, τ)) + ‖ũ‖2
R)dτ

= min
u
{V(x̃(z, t)) + ‖ũ‖2

R} ⇔ min
u
‖ũ‖2

R, (2.12)

showing the equivalency to the PWMN control. Make note that dividing (2.11) by T
has no effect on the optimization problem and also that when T goes to zero there is no
need to include the term V(x̃) because it is not affected by u and, so forth, constant. Hence
this simple observation, stated in [95], indicates that as T goes to zero, RH controllers
loses the ability to maintain acceptable performance by just minimizing input energy. This
implies a degradation in the performance of the controller which leads to closed-loop
instability if the robust PWMN condition or some other equivalent mechanism is not
included. Make note also that the constraint requires V to be a RCLF for any receding
horizon value in order to ensure closed-loop stability. It is suggested further reading on
this subject in [52] to obtain extra details about the robust stability conditions.

Remark 3: Due to uncertainty l0 ≥ lr assuring that any solution x(z, t) will enter and
stay inside a set containing Xr in finite time.

2.5 Proposed NMPC general formulation

The aim is to control the output y(t) in equation 2.3, a state nonlinear function weighted
in the space domain, by manipulating the input u(t). The proposed way to achieve this is
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2.5. PROPOSED NMPC GENERAL FORMULATION

by solving an open loop optimization problem and applying a receding horizon strategy
according to the NMPC approach like the one presented in [44, 99]. Therefore, defining
the basic optimal control problem with quadratic cost functional:

min
u

J =
∫ t+T

t

(
‖ỹ(τ)‖2

Q + ‖ũ(τ)‖2
R
)

dτ, (2.13)

where Q ≥ 0 and R > 0 are weighting matrices, subject to the model (2.1)-(2.3) with
operational constraints of the general form:

O(ξ(x(t)), y(t), u(t), t) ≤ 0 (2.14)

and guaranteed closed-loop stability constraint:

max
θ∈Θ
{V̇(x̃; θ)}+ αV(x̃) < 0. (2.15)

In equations (2.13) to (2.15):

V(x̃) =
1
2

∫ 1

0
x̃Tq(z)x̃ dz

ξ(x(t)) =
∫ 1

0
B(z)ζ(x) dz,

∫ 1

0
B(z) dz = I,

ỹ = yr − y, ũ = ur − u and x̃ = xr − x, (2.16)

where yr, xr and ur define the reference trajectory to track, ξ(t) is broad set of state
functions and q(z) is a space weighting matrix. The stability condition included forces
the RHC to have a performance that is equal or higher to a stabilizing control law when
applied in the same conditions (see [53]). One approximated computationally efficient
procedure for solving the stated nonlinear, infinite dimension, non-convex programming
problem is to use a finite parametrization for the control signal. This way, u(t) ∈ [t, t + T[,
where Nu segments of constant value u1, . . . , uNu and duration T

Nu
, as decision variables.

Thus the suboptimal, finite dimension, constrained programming problem amounts to
solve:

min
u(t̄)

J =
∫ t+T

t

((
‖ỹ‖2

Q + ‖ũ‖2
R
))

dτ (2.17)

s. t. O(ξ(x(t̄)), y(t̄), u(t̄), t̄) ≤ 0

max
θ∈Θ
{V̇(x̃(t); θ)}+ αV(x̃(t)) < 0

u(t̄) = seq{u1, . . . , uNu}

and also subject to the proper space semi-discrete model obtained from the original
distributed one reposted in [53], where u(t̄) is the sequence of steps of amplitude ui and
the variable t̄ represents virtual time during the minimization computation, t̄ ∈ [0, T [.
Once the minimization result u(t̄) is achieved, the first sample u1 is therefore applied at
t + δ and the whole procedure is repeated. The interval δ corresponds to the time needed
to obtain a solution, although is must be assumed that δ must be much smaller than the
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sampling interval. Note that if θ is uncertain, there is the need to use an estimate θ̂ in order
to perform the minimization (this can be seen in [51]). Also, as stated in [99] the MPC
solution (2.17) "is best regarded as a practical means of implementing the Dynamic Programming
solution (control law)" of (2.13-2.16).

2.6 Adaptive Control

The usage of observers in the estimation of parameters seems to be a good way to tackle
parameter uncertainty as long as the state is considered accessible [3, 56]. With this,
consider the model (2.1) in plug-flow conditions and with the manipulated variable
defined as the fluid velocity:

Lx = L(x(z, t), u(t); θ) =
u
L

Av
∂x(z, t)

∂z
, (2.18)

where Av is a diagonal matrix that was one or zero main diagonal elements, relating
the existence or non-existence of the transport term. Considering that typical process
production terms are, in many cases, linear affine in θ one can assumed that:

s(x; θ) = s0(x) +
q

∑
i=1

θisi(x) = s0(x) + S(x)θ, (2.19)

where s0(x) is, as stated, a vector of smooth nonlinear functions (n× 1), S(x) is also a
matrix of smooth nonlinear functions (n× q) and θ = [θ1 · · · θq]T is a vector of uncertain
parameters assumed to be time constant or, at most, very slowly varying. The observer
filter dynamics as seen in [3, 114] takes the form:

∂xa(z, t)
∂t

+
u
L

Av
∂x(z, t)

∂z
= s(x; θ̂) +K(x− xa), (2.20)

where K > 0 and the observation error dynamics (ea = x− xa) is given by:

∂ea

∂t
= S(x)θ̃ −Kea

with θ̃ = θ − θ̂. Finally, introducing the Lyapunov candidate function [67]:

V(ea, θ̃) =
1
2

(∫ 1

0
eT

a ea dz + θ̃TΓ−1θ̃

)
, (2.21)

where Γ is a weighting matrix, differentiating V with respect to time, using the error
dynamics and choosing:

˙̃θ = −Γ
∫ 1

0
S(x)Tea dz (2.22)

it guarantees V̇(ea) < 0 when ea 6= 0.

This way the errors tends to zero (ea(t) and θ̃ → 0 as t → ∞), after initial conditions
transient (w(0), x(0) and θ̂(0)), if the nonlinear functions S(x) 6= 0 locally. Note that θ̃ can
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KINETICS

be bounded by the use of the projection method as described in [66]:

Proj
{

τ, (θ, θ, ε)
}

=


max(0, ε−θ̂+θ

ε )τ θ̂ ≥ θ and τ > 0

max(0, ε+θ̂−θ
ε )τ θ̂ ≤ θ and τ < 0

τ otherwise

(2.23)

with θ + ε ≥ θ̂ ≥ θ − ε and where τ is the update law and, thereby, constraining the
estimated to the interior of a bounded convex parameters space.

When combining NMPC with LAL dynamics, the RHC+LAL solution is formulated,
like in [51], using (2.13) subject to the predictive model (2.1), in which θ is made equal to
θ̂(t), operational constraints (2.14) and the stability constraint (2.15). Additionally, at each
sampling period, parameters estimate and distributed observer dynamics are computed
in parallel:

∂xa

∂t
= −Lx + s0(x) + S(x)θ̂ −K(x− xa) (2.24)

˙̂θ = Proj
{

Γ
∫ 1

0
ST(x)(x− xa) dz, (θ, θ, ε)

}
, (2.25)

where x is the system state and xa is the observer state and θ + ε ≥ θ̂ ≥ θ − ε.

2.7 Application to a Fixed-Bed Tubular Bioreactor with Contois
Kinetics

Consider now the application of the above techniques to the specific case of a fixed bed
tubular bioreactor with two reactions, where the specific growth depends on both substrate
and biomass concentrations given by a Contois kinetics model as described in [16, 30]:

∂xb

∂t
= µxb − kdxb (2.26)

∂s
∂t

+
u
L

∂s
∂z

= −k1µxb (2.27)

∂xd

∂t
+

u
L

∂xd

∂t
= kdxb (2.28)

µ =
µ̄s

kcxb + s
, (2.29)

where xb(z, t) is the biomass concentration, s(z, t) and xd are the substrate and non-
active biomass concentration flowing at velocity u(t), k1 is the yield coefficient, kd is the
consumption rate. The coefficients associated to the kinetics, µ̄ and kc are assumed known.
Nominal parameter values are given in table 2.1, consumption and yield rates are assumed
uncertain θ = [kd k1]

T.
The NMPC algorithm proposed uses a space semi-discrete model obtained by the

OCM in N = 6 space collocation points. The velocity u is saturated to the values included
in the interval ]0.01, 0.5[ and the state is considered available at the collocation points. It
can be shown that using OC with N = 6 corresponds to more than 500 finite difference for
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Table 2.1: Bioreactor parameters.

Parameters Value Units

L 1 m
k1 0.4 -
kc 0.4 -
kd 0.05 h−1

µ̄ 0.35 h−1

Table 2.2: Tuned RHC parameters.

Parameters Value

T 6 h
Nu 6
ρ 250
α 0.001

semi-discretized space in the numerical PDE model solution. Several simulations were
made in order to evaluate the importance of, not only the penalty weight of the input
in the optimization problem, but also the control horizon, the computational effort (in
terms of time spent on simulation) and most importantly the incorporation of the stability
constraint in the optimization.

2.7.1 Simulation run 1: Constrained/Unconstrained controller

The series of simulations, as stated before intends to demonstrate the controller per-
formance with different configurations. For the first simulation, figures 2.2-2.4 show
respectively the velocity (manipulated variable) u(t), the output y(t) = s(1, t) and the
parameters estimates for the tuned adaptive NMPC controller of table 2.2 (where ρ is the
control effort or penalty weight). Take notice that the parameter estimates converge in the
first 30h thereby, maintaining the controller performance. The response to a sudden change
in set-point has a settling time smaller than 12.5h and an approximately 15− 20% over-
shoot. Figure 2.4 shows the estimated parameters, for initial values θ̂1(0) = 0.1, θ̂2(0) = 0.3.
The estimates converge to the nominal values given in table 2.1. The estimation gains
and the convergence coefficients are given in table 2.3. Figure 2.7 shows the Lyapunov
function decreasing for each step set-point change. Because the control law is well tuned
the stability condition is not active during all simulation. Finally, figures 2.5 and 2.6 show,
respectively substrate and biomass profiles.
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Table 2.3: Estimation and convergence parameters.

Parameters Value

kpx 0.1 IN+1
kps 0.1 IN+1
γx 0.1
γs 1.0× 10−3
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Figure 2.2: Simulation 1: Velocity (input) with stability constraint (black) and without
(blue)
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Figure 2.3: Simulation 1: Substrate (output) with stability constraint (black) and without
(blue)
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Figure 2.4: Simulation 1: Parameters estimation
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Figure 2.5: Substrate and substrate estimator: S(t), Sa(t). With stability constraint (black)
and without (blue)

2.7.2 Simulation run 2: Input weight

For simulation 2, figures 2.8-2.10 show the behavior for a detuned control law with a
prediction horizon T = 1 h and very small input weight ρ = 1 (see table 2.4). In this case
the stability condition is active during almost every period of time, in order to prevent
closed-loop instability. The comparison between the inclusion (or not) of the stability
constraint is depicted as previously (black line represents presence of the constraint and
blue line represents no stability constraint present). In terms of computational time it has
been registered that the inclusion of the stability condition has increased the calculations
in 10-25% when compared to the simple unconstrained version. Figure 2.11 shows that
the adaptation converges even when closed-loop stability is in risk.
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Figure 2.6: Simulation 1: Biomass, X(t), and biomass estimator, Xa(t), with stability con-
straint (black) and without (blue)
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Figure 2.7: Simulation 1: Control Lyapunov Function with stability constraint (black) and
without (blue)

Table 2.4: Tuned RHC parameters for simulation 2.

Parameters Value

T 1 h
Nu 6
ρ 1.0
α 0.001
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Figure 2.8: Simulation 2: Output, s(1, t), with (black) and without (blue) stability condition.
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Figure 2.9: Simulation 2: Velocity (input) with (black) and without (blue) stability condition.
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Figure 2.10: Simulation 2: Control Lyapunov function, V(t), decreasing (black) and
V(t)/10 without stability condition (blue) oscillating.
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Figure 2.11: Simulation 2: Substrate and Subtract estimation, with (black) and without
(blue) stability condition.
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Figure 2.12: Simulation 1: Biomass and Biomass estimation, with (black) and without
(blue) stability condition.

2.7.3 Simulation run 3: Additive disturbance

On simulation 3, an additive disturbance (an increase on the inlet substrate concentration
Sin of 12.5% at 175h) was tested for the constrained version. The results confirm that the
inclusion of the stability condition is activated briefly on set-point changes, but also as
the disturbance is included, but without degrading the control action. Figures 2.13- 2.15
depict the input, output and control Lyapunov function for this trial run.

2.7.4 Simulation run 4: Prediction horizon

In simulation 4, intends to demonstrate the influence of prediction horizon in the controller
behaviour. Figures 2.16- 2.18 depict input, output and CLF for different prediction horizons.
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Figure 2.13: Simulation 3: Output, s(1, t).
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Figure 2.14: Simulation 3: Velocity (input)
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Figure 2.15: Simulation 3: Lyapunov function: V(t) decreasing, V(t)/10 without stability
condition oscillating.
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2.8. CONCLUSIONS

Table 2.5: Prediction horizon parameter for simulation 4.

Prediction horizon Simulation real-time [s]

10 225
8 208
4 195
2 150

It is shown that smaller horizons tend to give worst performances, as expected, but it
also shown that despite poorer performance the controller maintains integrity. In terms
of computational time, as could be expected higher horizons tend to demand additional
time in simulations, although this increase has been quite moderate (30-50%) as can be
seen in table 2.5.
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Figure 2.16: Output: s(1, t). Solid line represents higher prediction horizon and dashed
line represents lower prediction horizon. Dash-dot and double dotted lines represent
intermediate horizons.

2.8 Conclusions

A stable adaptive NMPC formulation for an uncertain class of distributed parameter
biosystems was introduced and exemplified in the form of a fixed-bed tubular bioreactor
with Contois kinetics with the application of a stabilizing NMPC and LAL. A general
stability condition for the combined NMPC nominal formulation with a stable parameter
observer was also successfully developed. Low computational effort for closed-loop
stability and on-line parameter estimation as a way to deal with uncertainty has been
shown to justify this type of approach. A series of simulations were performed in order to
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Figure 2.17: Velocity (input). Solid line represents higher prediction horizon and dashed
line represents lower prediction horizon. Dash-dot and double dotted lines represent
intermediate horizons.
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Figure 2.18: Lyapunov function: V(t) Solid line represents higher prediction horizon
and dashed line represents lower prediction horizon. Dash-dot and double dotted lines
represent intermediate horizons.

demonstrate not only the controller performance, but also the importance of adaptation
mechanisms still scarcely applied in nonlinear hyperbolic DPS.
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ROBUST POINTWISE MIN-NORM CONTROL

3.1 Introduction

From the previous chapter, PWMN control assumes great relevance as an extension of
RCLF. In this chapter the objective is to describe a RPWMN control general result for a
class of distributed parameters systems with fluid flow, heat transfer and (bio)reactions
processes modelled by a set of hyperbolic and/or parabolic PDE equations including
convective and dispersive phenomena. This broad class of models, as described in the
previous chapter, arises from physical conservation principles by means of balances of
mass, energy and linear momentum and can describe the temperature and (bio)chemical
species distribution on moving fluids through pipes (please refer to [20, 83]) and also
fluids hydraulics in open pool channels at atmospheric pressure, predicting velocity and
mass, space and time behaviour, as explained in [28].

Pointwise Control for nonlinear finite dimensional systems can be found two extremely
important text books on nonlinear control such as [40, 111], but also in [95, 96]. For the
control of infinite dimensional systems the author in [24] uses semigroups theory (see
chapter 1 for further understanding) in linear control for this class of systems and in [27],
as seen before, the authors develop robust control methodologies in order to deal with
hyperbolic and parabolic distributed systems as the one presented in this chapter.

Different approaches to the use of a PWMN stability condition for predictive control
were studied in [95] where a unified framework uses both PWMN and RHC used as a
tool for an optimal control scheme (a variation of the Sontag’s formula [109]) and [46]
where the authors propose, firstly a generalized version of PWMN control that differs
on the common version, because it adds an extra term - a guide function - to improve
performance in this type of control while the CLF only has to deal with keeping closed-
loop stability. They have also introduced the enhanced version for the Generalized PWMN
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for NMPC in order to achieve the optimal performance by the selection of the uncertain
parameters. In [55] similar CLF techniques for adaptive control of hyperbolic systems are
described, namely for a tubular heat exchanger, a distributed collector solar field and a
tubular reactor.

In terms of water distribution in open canals control, several studies have been devel-
oped and bibliography is now widely available. For instance, in [74] the authors propose
to use a combination of robustness with different controller structures and try to achieve a
compromise between water resources management and disturbance rejection. In [43, 49,
70] predictive control schemes with adaptation are considered for a multivariate NMPC
application to a water canal pool, as the one here presented.

In this chapter, and as stated in chapter 2, the objective is to establish a numerical
PWMN control scheme that can be combined in a more general NMPC design. The main
goal is to ensure closed-loop stability using moderate values of the prediction horizon (take
note that when the horizon tends to zero the PWMN control will be the limit stabilizing
solution for NMPC). Simultaneously, the idea is to keep computational effort and off-line
computation as low as possible, improving controller performance.

Recall that, as stated in the previous chapter, this type of controller corresponds to
a NMPC limit stabilizing solution when the horizon value goes to zero and that can be
designed based to the optimization statement:

if V(x̃) > l0 then:

min
u∈U

uTu (3.1)

s. t. (2.1) and max
θ∈Θ
{V̇(x̃; θ)}+ αV(x̃) < 0,

where V(x̃) : X → R≥0 is, as seen before, a continuously differentiable, positive
definite and radially unbounded function in respect to the L2 norm of x̃.

3.2 Finite Escape Traveling Time Distributed System

The systems here considered present finite escape travelling time, which means that for a
given trajectory −→x (t), the system goes to infinity at a certain time in the future if

lim
t→tescape

‖−→x (t)‖ = ∞

for some tescape ∈ [t0, ∞[ [61]. Figure 3.1 depicts a finite escape travelling time system.
Considering the class of PDE models defined in Chapter 2:

∂x(z, t)
∂t

+ L(x(z, t); u(t); θ) = s(x(z, t); u(t); θ) (3.2)

M(x(z, t); u; θ) = 0

yk(t) =
∫ 1

0
bk(z) hk(x(z, t))dz (k = 1, ..., p). (3.3)
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It is important to remember that the L operator must include convection terms and that
it will depend on the manipulated variable u(t). Remember also that if the manipulated
variable is space weighted additive in the production term:

s(x, u; θ) = sx(x; θ) + sx(x; θ) w(z) u. (3.4)

The manipulated variable is, therefore explicit on the model and implicit if appears
only in the boundary condition.

As pointed out, these configurations allow the study of tubular reactors and bioreac-
tors [30, 68], but also heat exchangers, solar fields [19], and fluid flow in water distribution
canals. The complex dynamics on this class of distributed nonlinear systems, usually
strongly dependent with respect to space, may present unstable dynamics as shown
in [21], unstable with traveling finite escape time, non minimum-phase behavior shown
in [92], hot spots characteristics (please read [68]) and fluid flow traveling waves and
oscillation as seen in [83].

The optimization problem can be defined as in (2.13), with extended operational
constraints defined as:

C(η̇(t), ẏ(t), u̇(t), η(t), y(t), u(t), t) ≤ 0 (3.5)

and the same stability constraint (2.15).

Given these assumptions, a possibly uncertain distributed hyperbolic system with
finite traveling escape time, is given by:

∂x
∂t

+
u(t)

L
∂x
∂z

= θx2, (3.6)

with parameter θ > θ > θ > 0, solving for x(0, t) = 0 it yields:

x(z, t) =
1

ϕ(z, 0)− θt
, (3.7)

where ϕ(z, 0) = x−1(z, 0). Clearly for constant velocity u > θL to stabilize the system
around x(z, t) = 0 if x(z, 0) = 1, as depicted in figure 3.1.

If u(t) is not constant, an average finite time escape velocity, ūe, exists and is given by:

te =
1

θφ(0)
=

L
ūe

. (3.8)

The space stationary profile, defined by ∂x
∂t ≡ 0, can be obtained from:

dx(z)
dz

= γx2 (3.9)

γ =
θL
u

. (3.10)
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Figure 3.1: Numerical solution, 200 finite differences, for u=2.5 m/s, θ = 2 and x(z, 0) = 1

For the boundary condition x(0, t) = xin, the solution for the stationary state profile
in 3.9 is:

xr(z) =
xin

1− γrxinz
. (3.11)

Using (3.11) with output set-point defined as xr(1, t) = r:

r =
xin

1− γrxin
and ur =

θ rxin

r− xin
, (3.12)

with ur > 0 which implies r > xin. Substituting (3.12) in (3.11) it yields:

xr =
rxin

r− rz + xinz
(3.13)

for xr(0) = xin and xr(1) = r.
Stabilizing around the stationary profile, using the CLF:

V =
1
2

∫ 1

0
e2dz, e = x− xr. (3.14)

Differentiating (3.14) with respect to time:

V̇ = −u
L

∫ 1

0
e

∂x
∂z

dz +
∫ 1

0
e θx2dz. (3.15)

The feasible optimization problem can be written as:

min
u>0

u2 (3.16)

s. t.
∂x
∂t

+
u
L

∂x
∂z

= θx2 − u
L

∫ 1

0
e

∂x
∂z

dz + max
θ

{
θ
∫ 1

0
e x2dz

}
+ α

1
2

∫ 1

0
e2dz < 0,

yielding the following dynamical bound max{V̇}+ αV < 0. In this case, an analytical
solution can be found for (3.16):

u =
Θ̌
∫ 1

0 e x2dz + α V∫ 1
0 e ∂x

∂z dz
L, (3.17)
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where Θ̌ switches from θ to θ with sign(
∫ 1

0 e x2dz). Note that u is well-defined be-
cause

∫ 1
0 e ∂x

∂z dz 6= 0 outside the curve level V(e) = φ and the space operators converge
exponentially to zero as e(z, t)→ 0.

By observing that the PDE solution x(z, t) = (x−1
in − θzL/u(t))−1, along characteristic

curve ż = u(t)/L which implies ∂x
∂t > 0 and e(z, t) 6= 0 for any z 6= 0, outside the invariant

region. Take note that both the control law and equation (3.17) are coincidental by feedback
linearization with y ≡ V with a characteristic index equal to one outside the invariant
region, as seen in [24].
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Figure 3.2: State x(z, t) transition, for θ = 2, α = 2 and φ = 0.0001.
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Figure 3.3: Manipulated velocity u [m/s].

Figures 3.2 and 3.3 depicts, respectively state x(z, t) and input u(t) to a sudden set-
point change from at t = 5 s. The simulation results were obtained solving (3.16) by
application of the Finite Difference method with 200 space finite differences. Figures 3.4
and 3.5 depict both state and input when the setpoint changes are from 3 to 2 at t = 5 s
and back again to 3 at t = 10 s for bounded uncertain θ. In both cases ur is unknown.
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Figure 3.4: Robust state x(z, t) transition, for θ ∈ [1.8 2.2], α = 2 and φ = 0.0001.
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Figure 3.5: Manipulated velocity u [m/s].

3.3 Application to a Water Distribution Canal Pool

One of the best examples of DPS are water distribution canals given the strong nonlinearity
and so nonlinear control may be applied. These canals are formed by a sequence of pools
separated by gates, as depicted below in figure 3.6. The output variables are the pool level
at certain points, the manipulated variables are the gates positions and disturbances are
the outlet water flows. This type of system is obviously constrained by the minimum
and maximum positions of the gates and also by gate slew rate and the minimum and
maximum water level. For this application, the objective is to make the canal pool level to
follow a reference in the presence of possible disturbances.

The pool level satisfies the Saint-Venant equations (also known as shallow water
equations) which are a set of hyperbolic partial differential equations that embody mass
and momentum conservation (derived from Navier-Stokes equations). With that said,
considering a single pool model without infiltration, Saint-Venant equations can be given
by:
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Figure 3.6: Canal pool schematic.

∂h
∂t

+
v
L

∂h
∂z

+

(
da
dh

)−1 a(h)
L

∂v
∂z

= 0

(3.18)
∂v
∂t

+
v
L

∂v
∂z

+
g
L

∂h
∂z

+ g(I(h, v)−J ) = 0,

where h(z, t) and v(z, t) are respectively level and water velocity distributions along
space (z ∈ [0, 1]) and time. Functions a(h) and friction I(h, v) are nonlinear functions that
represent the wet surface and friction terms, respectively. Finally, the gravity acceleration
g, J is the constant canal slope and L is the pool length. The flow at upstream and
downstream gates, that gives the boundary conditions, are:

v(0, t) = cd Ad(u)
√
(2g(Hu(t)− h(0, t)))/a(h(0, t)) (3.19)

v(1, t) = cd Ad(u)
√
(2g(h(1, t)− Hd(t)))/a(h(1, t)). (3.20)

Assume a single trapezoidal reach with two pools, two moving gates positioned in the
upstream ends of each pool and a fixed gate at the downstream end. The water elevation
immediately before the reach Hu(t) and immediately after the reach Hd(t) are assumed to
be known. The physical parameters for the given system are table 3.1.

The control problem is to control water elevation in a pool, using the upstream gate
position as control signal, and by doing this solve the PWMN optimization statement
in (3.17). The error signal is calculated by doing the difference between the water level
measure and the corresponding reference, at some fixed distance from the gate. In order
to keep computational burden low, velocity distribution was not incorporated in the
optimization process.

3.3.1 Centralized Pointwise Min-Norm Control

Like in the previous chapter, a series of simulation run trials have been made in order
to test not only the performance of the controller, to see if stability constraints present
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Figure 3.7: Frictionless water oscillation in a closed single pool.

Table 3.1: Pool physical parameters.

Parameter Value Units

Gravitational constant g 9.8 ms−1

Manning coefficient n 1.0 m−1s−3

Discharge coefficient cd 0.6 −
Discharge area Ad(u) 0.49 u m2

Bottom width b 0.15 m
Trapezoid slope d 0.15 −
Canal slope J 2× 10−3 −
Upstream elevation Hu 2.0 m
Downstream elevation Hd 1.0 m
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Figure 3.8: Water elevation h(z, t) [m] with real Manning coefficient of 0.018 (concrete
canal).
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Figure 3.9: Water elevation h(z, t) [m] for a Manning coefficient of 0.1

robustness to different input and/or disturbances and also to evaluate the computational
effort.

3.3.1.1 Simulations 1 and 2: additive disturbances in centralized PWMNC scheme
for one pool canal

Simulation 1 intends to demonstrate a simple centralized control scheme for RPWMN
level control at 1.7 m, upstream, when downstream gate opens from 0 to 0.1 m at t = 0 s.
The pool was initially at rest with 1.5 m at z = 0.5. All numerical results were obtained,
as initially stated, with 200 space finite differences. The model space reduction is more
extensively detailed in [49]. The chosen controller parameter values are α = 0.5 and
φ = 1× 10−5. Figures 3.10 and 3.12 show, respectively, water elevation and gate manoeuver
and figure 3.11 shows water velocity. Make note that the wave back propagation effect on
gate opening is very small, causing only a small overshoot.
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Figure 3.10: Centralized RPWMN scheme: Water elevation h(z, t) [m] for simulation run 1.
Manning coefficient of 1.
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Figure 3.11: Centralized RPWMN scheme: Water velocity v(z, t) [m/s] for simulation 1.
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Figure 3.12: Centralized RPWMN scheme: Upstream gate opening u [m] for simulation 1.

As for simulation 2, depicted in figures 3.13 and 3.14 show the same experiment when
downstream gate has a delayed opening from 0 to 0.1 m at t = 10 s. In this second
simulation, contrary to what can be seen in figure 3.10, one can state that there are two
combined observable facts: until the downstream gate opens at t = 10 s the pool level is
increasing, since the downstream gate is closed. This creates a large water rise near it. After
t = 10 s the downstream gate opens promoting the water drainage. During this period the
actuation on the upstream gate opening must act accordingly (figure 3.14) which causes
the constraint u ≥ 0 to be active for a considerable period of time, illustrating how this
type of control can handle hard constraints.

3.3.2 Fully Decentralized Pointwise Min-Norm Control

It seems important to test the extension of the SISO case, in the centralized version with
one water canal pool and two gates (upstream and downstream), to the MIMO version
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Figure 3.13: Centralized RPWMN scheme: Water elevation h(z, t) [m] for simulation 2.
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Figure 3.14: Centralized RPWMN scheme: Upstream gate opening u [m] for simulation 2.

of two water canal pools in series with three gates (where the middle gate separates the
two canals) as depicted in figure 3.15. The minimization of both local cost functionals
is made in sequence at the beginning, moving towards a simultaneous minimization as
interactions between both levels increases. The parameter values of the water canal pools
were kept as in the centralized trials and are described in table 3.1.

3.3.2.1 Simulations 1, 2 and 3: additive disturbances in decentralized PWMNC
scheme for two pool canals

In the decentralized version communication between controllers is non-existing. Each
controller deals exclusively with their local cost function and solves the optimization prob-
lem independently from a possible optimal global. With that said, figures 3.16- 3.19 show
respectively water elevations and upstream and middle gates manoeuver for RPWMN
level control at 1.7 m and 1.5 m for canal 1 and 2, as depicted in figure 3.15. Downstream
gate is opened at 0.1 m and both pools were initially at rest with 1.5 m at z = 0.5, exploring
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Figure 3.16: Decentralized RPWMN scheme: Water elevation h1(z, t) [m] (first pool) for
simulation 1.

the same conditions of the centralized control scheme for one pool depicted in simulation
1. Controller parameter values were maintained, likewise, at α = 0.5 and φ = 1× 10−5.

In simulation 2, the main goal was to show both water elevations and upstream and
middle gates manoeuver for references of 1.6 and 1.4 m at t ≥ 20 s in pools 1 and 2,
respectively. Figures 3.20- 3.23 shown that both controllers

In simulation 3, the disturbance is made in the downstream gate from 0.1 to 0.12 m.
This type of disturbance affects the global installation. For references of 1.6 and 1.4 m in
pool 1 and 2, respectively, figures 3.24- 3.27 show that the reference is maintained near
the upstream and middle gates, but deviated from the reference a the end of each canal
pool as a result of both canal slope and increased velocity imposed by the opening in the
downstream gate.
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Figure 3.17: Decentralized RPWMN scheme: Water elevation h2(z, t) [m] (second pool) for
simulation 1.
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Figure 3.18: Decentralized RPWMN scheme: Upstream gate opening u1 [m] for simulation
1.
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Figure 3.19: Decentralized RPWMN scheme: Middle gate opening u2 [m] for simulation 1.
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Figure 3.20: Decentralized RPWMN scheme: Water elevation h1(z, t) [m] (first pool) for
simulation 2.
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Figure 3.21: Decentralized RPWMN scheme: Water elevation h2(z, t) [m] (second pool) for
simulation 2.

3.4 Conclusions

Using robust pointwise min-norm methodologies it was possible to obtain a general result
for distributed fluid flow systems stabilization around a stationary space profile. This
obtained optimization statement can be interpreted as a stabilizing limit solution, when
included in a predictive receding horizon control formulation, resulting in closed-loop
stability for any given horizon. This alternative technique proved to be not only viable, but
also with small increase on the computational effort. An application on water distribution
canal pool RPWMN control form a basis of more complex studies on canal engineered
architectures that by combining robust and predictive design methods can achieve a fair
compromise between water resources management and disturbance rejection. Both SISO
and MIMO cases were studied in centralized and decentralized control architectures, re-
spectively. In the MIMO case it was observed that controllers appeared to be implemented
in sequence, but evolving to simultaneous optimization as the interactions tended to
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Figure 3.22: Decentralized RPWMN scheme: Upstream gate opening u1 [m] for simulation
2.
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Figure 3.23: Decentralized RPWMN scheme: Middle gate opening u2 [m] for simulation 2.
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Figure 3.24: Decentralized RPWMN scheme: Water elevation h1(z, t) [m] (first pool) for
simulation 3.
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Figure 3.25: Decentralized RPWMN scheme: Water elevation h2(z, t) [m] (second pool) for
simulation 3.
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Figure 3.26: Decentralized RPWMN scheme: Upstream gate opening u1 [m] for simulation
3.
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Figure 3.27: Decentralized RPWMN scheme: Middle gate opening u2 [m] for simulation 3.
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increase. The extension to the MIMO case also showed that computational effort seems to
be similar behavior to the centralized version.
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DISTRIBUTED MODEL PREDICTIVE CONTROL FOR

SERIALLY CONNECTED SYSTEMS

4.1 Introduction

In this chapter the idea of cMPC is to be abandoned due to the high complexity of the
system under study, making the global optimal solution for cMPC, most of the times,
unfeasible. The application of decentralized and distributed MPC schemes have proven to
be the best choice for these type of multivariable systems as an application to intelligent
infrastructures.

The use of cooperative DMPC as described in chapter 1, section 1.3 is intended in order
to obtain global optimal performance, a Pareto Optimal solution. A decentralized scheme
is applied to the system with the objective of achieving local performance indexes that
are best suited to globally control in closed-loop large scale and geographically expansive
systems. A behaviorial induction approach is also introduced and discussed in the model
predictive control framework. The algorithm is to be fully developed for generic serially
chained systems.

With the cMPC regulation problem defined in equations (4.1)-(4.4), the feasible opti-
mization problem is solved as a way to find the subsystems inputs ui(k) at each instant
in discrete time k as described by the authors in [119]. The discrete global system model
is considered to be linear [104] and the cost function J(k) is quadratic with symmetric
weighting matrices Qi and Ri.

min
U

J(X, U; x(k)) = ∑
i

wi Ji(xi, ui; xi(k)) (4.1)

s. t. x(k + 1) = Ax(k) + Bu(k) (4.2)

ui ∈ Ui, (4.3)
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where wi > 0, ∑i wi = 1 and Ui is an admissible control convex set.

Ji(k) =
N

∑
j=1

(
xT

i,k+jQixi,k+j + uT
i,k+j−1Riui,k+j−1

)
(4.4)

X = [xT(k + 1) · · · xT(k + N)]T

U = [uT(k) · · · uT(k + N − 1)]T

Qi ≥ 0, Ri > 0,

where xi,k is the subsystem state at k and is known and also that the pair (Ai, Q1/2
i ) is

detectable [104]. Note that xi,k and ui,k denotes the state and input i, at instant k.

Centralized MPC achieves the best attainable performance, Pareto Optimal, due to
the fact that the effects of interconnections among subsystems are accounted for exactly.
The optimization takes into account the conflicts between control objectives and these
are solved optimally. The controller is defined by implementing the first input of the
corresponding solution for the optimization problem in a receding horizon control scheme.

In a distributed regulator version of MPC (4.5)-(4.9) the global model is now partitioned
in smaller subsystems in order to replace the global cost function by local ones making
it easier to solve optimally. These local functions measure the impact of local control
agents action and make use of a communication based strategy, based upon information
exchange constrains. Each subsystem uses a local cost function that iterates L times
before obtaining the control input uL

i (k). Take note that at each iteration the optimization
problem is solved. This means that for each iteration the objective is to find Ul

i (k) for
xl−1

h̄ (k) and ul−1
h̄ (k) which are broadcasted by the other subsystem controllers (h̄ indexes

the set ℵi, that includes all subsystems directly connect to subsystem Σi). If there exists
convergence in this communication based iteration, different types of equilibrium can be
achieved by adjusting the weights αh (h indexes the set ℵi ∪ Σi). If the solution induces
egocentric behavior, αh 6=i = ε, with ε � 1, except for αh=i � ε then at limit (ε → 0)
a Nash equilibrium is achieved (make note that Nash equilibria has been presented in
chapter 1, section 1.3 as the type of solution for the non-cooperative type of controllers)
which can result in potentially poor closed-loop performance or even instability. This is
due to competitiveness between different controllers instead of a cooperative solution. On
the other hand, if altruistic behavior is present, αh 6= 0, then all iterates generated by a
cooperation algorithm are strictly feasible which will satisfy all the local constraints and
the result is a nominal distributed closed-loop stable control law, as it will be shown for
the particular algorithm developed in this chapter. Finally for a pure altruist scenario, αh

will be all equal.

In summary, cooperative distributed control systems can be seen as a set of computa-
tional agents that cooperate with their neighbours, in an open information interchange
infrastructure, to achieve local performance indexes, suitable for global control optimiza-
tion.

52
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min
Ul

i

J̄l
i (Xh, Ui; xh(k)) = min

Ul
i

∑
h

αh Jh,i(k) (4.5)

s. t. xh(k + 1) = Ahhxi(k) + Bhhui(k) + ∑
h̄

(
Ahh̄ xl−1

h̄ (k) + Bhh̄ ul−1
h̄ (k)

)
(4.6)

xi(k + N + 1)...xi(k + N + P) = 0 (4.7)

ui ∈ Ui, (4.8)

where l = 1, ..., L and

Jh,i(k) =
N

∑
j=1

(
xT

h,k+jQixh,k+j

)
+

N−1

∑
j=0

uT
i,k+jRiui,k+j. (4.9)

Moreover

Xh =
[

xT
h (k + 1) · · · xT

h (k + N)
]T

(4.10)

Ui =
[
uT

i (k) · · · uT
i (k + N − 1)

]T
.

The setup includes P zero state terminal constraints that have a crucial role in global
closed loop stability as to be explained further ahead. In [22] the authors discuss in detail
how general conditions for cooperative iterates convergence and solution uniqueness, by
the computational agents, is applied.

4.2 Distributed Stabilizing Input/Output Receding Horizon
Control

SIORHC is a receding tracking horizon control algorithm equipped with stabilizing zero
terminal constraints for moderate values of the prediction horizon dimension, as seen in
figure 4.2. The centralized original algorithm is presented in [88] and early results and
extensions to MIMO systems can be found respectively in [89] and [48]. In this section
a distributed version of the algorithm is derived for serially chained systems based on
neighborhood optimization, as presented in [127], as a particular case of the dMPC dis-
cussed above when there are no input constraints, Ui ≡ Rmi , and when zero equality
terminal constraints at the end of the prediction horizon, forcing the outputs to take
a particular value, are included. This constraint will play a major role in guaranteeing
global closed-loop stability, as shown in the previous section of this chapter. In fact, in this
case the assumption of a linear model and unbound inputs yields, by solving the stated
optimization problem for each local control agent, an analytical iterative solution that
converges to the unique optimal distributed solution, providing that a check condition can
be verified a priori. This cooperative behavior among the control agents can be induced,
as stated before, by adjusting weights on local cost functions yielding different overall
performances. The decentralized solution exploits the assumption that in distributed
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Figure 4.1: Agent shared information service, Ci; Information interchanged by system i,
Σi, is depicted in the service bus. I f (b) denotes forward (backward) interactions and the di
denotes disturbances.

systems the interactions between the subsystems can be sparse, which means that the local
models dimension (ℵi ∪ Σi) can be much smaller than the overall system dimension. This
allows that the original highly dimensional problem can be reduced to a set of simpler low
dimensional problems to be solved in parallel computation. A generic Service Oriented
Architecture, a open computational infrastructure, where the agents can cooperate by sub-
scribing services is depicted in figure 4.1. This figure stresses the shared and broadcasted
information during the iterative cooperation by each control agent. Technological issues
on cooperative service oriented open process control can be read in [94].

Consider the extended or augmented linear state model:[
xk+1

yk

]
=

[
A B
C 0

] [
xk

∆uk

]
, (4.11)

where A, B and C have (n × n), (n × m) e (p × n) dimensions, xk, yk and ∆uk are
respectively the outputs, the state and moves sequences, i. e. the incremental inputs.

For this system the predicted outputs at k + j can be obtained from:

ŷ(k + j) =
j−1

∑
i=0

C Aj−i−1B∆u(k + i) + ŷ0(k + j) (4.12)

ŷ0(k + j) = C Aj x(k) = Γ x(k),

where ŷ0 is the output predicted value without moves. For j = 1...N, N + 1, ..., N + P, (4.12)
yields the following predictive equations:

ŶN = GN∆U + ΓNx(k) = GN∆U + Ŷ0N (4.13)

ŶP = GP∆U + ΓPx(k) = GP∆U + Ŷ0P,
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Figure 4.2: SIORHC prediction horizon with contraints.

with:

ŶN = [yk+1 · · · yk+N ]
T (4.14)

ŶP = [yk+N+1 · · · yk+N+P]
T

∆U = [∆uk · · ·∆uk+N−1]
T .

Equation (4.13) can be recast by considering only input related interactions between
neighboring connected systems:

ŶNi = ∑
h

GNih∆Uh + Ŷ0Ni (4.15)

ŶPi = ∑
h

GPih∆Uh + Ŷ0Pi.

Local controllers are obtained by minimizing the local cost function for the i subsystem:

J̄i = ∑
g

(
αi,g

N

∑
j=1

eT
g,k+j Qi,g eg,k+j

)

+
N−1

∑
j=0

∆uT
i,k+j Ri ∆ui,k+j, (4.16)

with zero terminal horizon constrain given by, as can be seen in figure (4.2):

[yi,k+N+1 · · · yi,k+N+P]
T = [ri,k+N+1 · · · ri,k+N+P]

T , (4.17)

where ei,k = ri,k− yi,k, is the subsystem i error, at instant k, in relation with the reference
sequence, ri,k, and Qi,g ≥ 0 and Ri > 0 are symmetric weighting matrices. Weights αi,g can
change agents behavior as explained before. Integer variable g has the same meaning of h.

Equivalently minimizing J̄i with respect to ∆Ui can be written as:

min
∆Ui

J̄i = ∑
g

αi,g‖YRNg − ŶNg‖2
Qi,g

(4.18)

+‖∆Ui‖2
Ri

s. t. ŶPi = YRPi.
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The stated Quadratic Programming (QP) optimization problem with constrains can
now be solved by finding the vector ∆Ui that minimizes the Lagrangian:

Li := ∑
g

αi,g‖YRNg − ŶNg‖2
Qi,g

+ ‖∆Ui‖2
Ri
+

[ŶPi −YRPi]
Tλi, (4.19)

using (4.15) then:

Li = ∑
g

αi,g‖ENg −∑
h

GNgh∆Uh‖2
Qi,g

+‖∆Ui‖2
Ri
+

[
EPi + ∑

h
GPih∆Uh

]T

λi, (4.20)

where:

ENi = YRNi − Ŷ0Ni (4.21)

EPi = YRPi − Ŷ0Pi

and λi is a P.pi column vector of Lagrange multipliers. The conditions to find the
minimum are:

∂Li

∂∆Ui
= 0 (4.22)

∂Li

∂λi
= 0.

Using (4.22) the solution amounts to solve an algebraic set of linear equations Φ∆U =

Ψ(k). Where ∆U(k) is an unknown vector collecting all ∆Ui, Φ is a constant matrix and
Ψ(k) is a variable matrix in k.

4.2.1 Serially connected systems solution

Consider the case when the subsystems are connected in series and coupled only by the
state variables of its left and right neighbours, as depicted in figure 4.1. Solving (4.22), for
all the subsystems, yields the building block matrices for the distributed SIORHC serially
connected systems solution, viz.:

Φ = [block pentadiagonal (4.23){
· · ·Φi(i−2) Φi(i−1) Φii Φi(i+1) Φi(i+2) · · ·

}
]

Ψ =


...

Ψi
...

 , (4.24)
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Φi(i−2) = Si

(
αi−1GT

N(i−1)iQi−1GN(i−1)(i−2)

)
Φi(i−1) = Si

(
αi−1GT

N(i−1)iQi−1GN(i−1)(i−1)

+αiGT
NiiQiGNi(i−1)

)
+ GT

PiiWiGPi(i−1)

Φii = Mi

Φi(i+1) = Si

(
αiGT

NiiQiGNi(i+1)

+αi+1GT
N(i+1)iQi+1GN(i+1)(i+1)

)
+GT

PiiWiGPi(i+1)

Φi(i+1) = Si

(
GT

N(i+1)iQi+1GN(i+1)(i+2)

)
,

(4.25)

Ψi = Si

1

∑
h=−1

αi+hGT
N(i+h)iQi+hEN(i+h)

+GT
PiiWiEPi, (4.26)

where h = {−1, 0, 1} indexes the subsystem immediately at the left of system i, itself
(i) and immediately at the right respectively, and:

Si = I − GT
PiiWiGPii M−1

i (4.27)

Wi =
(

GPii M−1
i GT

Pii

)−1
(4.28)

and

Mi =
1

∑
h=−1

αi+hGT
N(i+h)iQi+hGN(i+h)i + Ri. (4.29)

Make note that for the solution by the Lagrangian multiplier method to exist Ppi <

Nmi and the rank of GPii should be equal to Ppi. Remark also that if simultaneous calcula-
tion were possible then ∆U = Φ−1Ψ.

4.3 Parallel Iterated Solution

Each distributed SIORHC control agent Ci(k) must iterate during the sampling time period
k the following difference equation:

∆Ui(l) = Φ−1
ii

(
Ψi −∑

h̄
Φij∆Uj(l − 1)

)
, (4.30)

where l = 1, 2, ..., L, indexes the number of iterations during each sampling time
period, for simplicity of notation the time index has been omitted in (4.30). Starting with
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the initial condition:

∆Uj(0) = (4.31)[
∆uL

j (k + 1|k− 1) ... ∆uL
j (k + N − 1|k− 1) 0

]T

that is the control input sequence obtained in the last time k− 1 for future instants
k + 1, ..., k + N − 1 and because there is no prediction at k + N|k− 1 the last array position
is filled with a zero row block, meaning no moves at the horizon end.

The iterates will converge to the algebraic fully-iterated solution if the following
spectrum radius condition hold: ∀i |λi| < 1, where λi are the difference equation matrix
eigenvalues given by:

|λi I −Φ−1
d Φnd| = 0, (4.32)

where:
Φd + Φnd = Φ, (4.33)

with Φd = [diag {· · · Φii · · · }].
The spectral radius condition must be checked and it depends on the control action

parameters.

4.4 Nominal Closed-Loop Stability

In this section a nominal closed-loop stability for distributed predictive control with zero
terminal equality constraints is proved for the fully-iterated algorithm considering that
the prediction models ŶPi (∀ i) contains all the interactions terms between subsystems.
The proof is accomplished only for serially connected systems by the sake of clarity.

Consider non-zero initial conditions, x(0) 6= 0, and that under closed-loop, the system
state is to be steered to zero with the fully-iterated distributed SIORHC controller. To
prove close-loop stability consider the cost function for the generic subsystem i:

min
∆Ui

J̄i(k) =
1

∑
h=−1

αi+h

N

∑
j=1
‖ŷi+h(k + j)‖2

Q(i+h)j

+
N−1

∑
j=0
‖∆ui(k + j)‖2

Ri(j+1)
, (4.34)

where:

‖ŷi(k + j)‖2
Qij

= ŷi(k + j)TQij ŷi(k + j)

ŷi(k + j) = Ci x̂i(k + j). (4.35)

In terms of the state, this can be written as:

min
∆Ui

J̄i(k) =
1

∑
h=−1

αi+h

N

∑
j=1
‖x̂i+h(k + j)‖2

Q(i+h)j

+
N−1

∑
j=0
‖∆ui(k + j)‖2

Ri(j+1)
(4.36)
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Qij = CT
i QijCi. (4.37)

The optimal control sequence J̄∗i (k) is obtained by replacing the control increments
with the optimal ones ∆U∗i (k) and it can be written as:

J̄∗i (k) =
1

∑
h=−1

αi+h‖x̂i+h(k + 1)‖2
Q(i+h)1

+
1

∑
h=−1

αi+h

N

∑
j=2

(‖x̂i+h(k + j)‖2
Q(i+h)j

+‖∆u∗i (k)‖2
Ri1

+
N−1

∑
j=1
‖∆u∗i (k + j)‖2

Ri(j+1)
. (4.38)

Applying the following feasible control sequence at k + 1, ∆U
′
i (k + 1) ≡ {∆u∗i (k +

1) . . . ∆u∗i (k + N − 1) 0}, yields:

J̄ ′i (k + 1) =
1

∑
h=−1

αi+h

N−1

∑
j=1
‖x̂i+h(k + 1 + j)‖2

Q(i+h)j

+
N−2

∑
j=0
‖∆u

′
i(k + 1 + j)‖2

Ri(j+1)

+
1

∑
h=−1

αi+h‖x̂i+h(k + 1 + N)‖2
Q(i+h)j

+‖∆u
′
i(k + 1 + N − 1)‖2

RiN
. (4.39)

Assuming that x̂i+h(k + N + 1) = 0, due to the zero terminal constraints, viz. by
making N > P = ni, and remarking that ∆u

′
i(k + N) ≡ 0 then:

J̄ ′i (k + 1) =
1

∑
h=−1

αi+h

N−1

∑
j=1
‖x̂i+h(k + 1 + j)‖2

Q(i+h)j

+
N−2

∑
j=0
‖∆u

′
i(k + 1 + j)‖2

Ri(j+1)
(4.40)

or

J̄ ′i (k + 1) =
1

∑
h=−1

αi+h

N

∑
j=2
‖x̂i+h(k + j)‖2

Q(i+h)j

+
N−1

∑
j=1
‖∆u∗i (k + j)‖2

Ri(j+1)
. (4.41)
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Substituting in (4.38), it yields:

J̄∗i (k) =
1

∑
h=−1

αi+h‖x̂i+h(k + 1)‖2
Q(i+h)1

(4.42)

+‖∆u∗i (k)‖2
Ri1

+ J̄
′
i(k + 1).

So it is possible to conclude that J̄∗i (k) ≥ J̄
′
i (k + 1) ≥ J̄∗i (k + 1) and consequently

J̄∗i (k) is a Lyapunov function for the subsystem i. Using the same methodology for the
other subsystems, then the sum ∑i J̄∗i (k) is a Lyapunov function for the overall system.
Using standard Lyapunov stability arguments it is proved that the closed-loop under
fully-iterated distributed SIORHC is nominally asymptotically stable.

Take note that for exact zero terminal equality, ∀ i it implies making:

ŶPi ≡ X̂Pi = ∑
j

GPij∆Uj + ΓPix(k) = [0 . . . 0]T (C = I), (4.43)

where in general GPij 6= 0, although in distributed systems it is expected that systems
outside the neighborhood (j /∈ h̄), i.e. not directly connected to system i, will contribute
with approximately zero to (4.43).

ẋ =


1 0 0
1√
2

1 0

0 1√
2

1

 x +


1 0 k1

0 1√
2

0

k2 1 1

 u. (4.44)

Consider the example depicted in figure 4.3 with space state model (4.44). This example
shows how to deal with unexpected interactions. Make note that the non-minimum phase
zero feed forward input u2 to system Σ3 creating an across interaction through the input
matrix B (entry 3,2). In this example, the original algorithm with k1 = k2 = 0 stabilizes
the overall system because all the interactions are accounted for although the matrix B
being not diagonal (as one might suppose just by looking at the block diagram). But
when k1 6= 0 and k2 6= 0 this is not true anymore and (4.43) must be used to include all
input contributions to the zero terminal constraints. Simulations showed that the original
algorithm is able to robustly stabilize the overall system when k1 6= 0 and k2 = 0, but
when k2 > 0.005 then (4.43) must be used. The cost function for these two cases is depicted
in figures 4.4 and 4.5.

4.5 Stability analysis without full iteration

If full iteration is not possible, due to insufficient sampling time period duration (small L),
and noting that:

∆U(k) ≡ ∆U(L) = Ξ∆U(k− 1) + Πx(k), (4.45)
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Figure 4.3: Example.
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Figure 4.4: Example with the original algorithm. Cost function k1 = 0, k2 = 0.005.
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Figure 4.5: Example with modified algorithm. Cost function k1 = 0, k2 = 0.005.
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where:

Ξ = (Φ−1
d Φnd)

LΛ, (4.46)

Π =
L

∑
l=1

(Φ−1
d Φnd)

l−1Φ−1
d Υ (4.47)

and noting also that Ψ = Υx(k), with:

Υi = −Si

1

∑
h=−1

αi+hGT
N(i+h)iQi+hΓNi + GT

PiiWiΓPi, (4.48)

the systems closed-loop dynamics is given by:

x(k + 1) = A x(k) + B u(k) (4.49)

u(k) = u(k− 1) + E ∆U(k) (4.50)

∆U(k) = Ξ ∆U(k− 1) + Π x(k), (4.51)

and consequently the following matrix must have its eigenvalues inside the unit circle
for asymptotic stability:

Acl =

 A B 0
E ΠA I + E Π B E Ξ
Π A B Ξ

 . (4.52)

Increasing L will produce a stable closed-loop since the fully-iterated stability result,
stated above, must be recover for some minimum value of L.

The auxiliaries matrices Λ and E are block builded with:

Λi =


0 I 0 · · ·
0 0 I · · ·
...

...
...

. . .

0 0 0 · · ·

 (4.53)

and

Ei =
[

bidiag { · · · Imi×mi 0mi(N−1)×mi(N−1) · · · }
]

, (4.54)

respectively.

Figures 4.6-4.8 illustrate the stability result for a three unstable serially connected
system with N = 20, P = 3, L = 10, R = 10 I, Q = I and ∆t = 0.01s. Set-points are
constant and respectively r1 = 1, r2 = 2 and r3 = 3. Finally y ≡ x.

ẋ =

 1 0 0
1 1 0
0 1 1

 x +

 1 0 0
0 1 0
0 0 1

 u. (4.55)
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Figure 4.6: Three unstable serially connected systems; Outputs.
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Figure 4.7: Three unstable serially connected systems; Inputs.
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Figure 4.8: Normalized cost function; As predicted the cost function for the entire system is
monotonically decreasing and therefore the system is asymptotically stable in closed-loop.
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Figure 4.9: Control of a water delivery canal with Decentralized SIORHC [58]

4.6 Water delivery canal

The experimental canal of Núcleo de Hidráulica e Controlo de Canais (Universidade de Évora,
Portugal) is taken hereafter as a prototype. The canal has four pools with a length of
35m, separated by three undershoot gates, with the last pool ended by an overshoot gate.
Four water off-takes, each one placed downstream from each branch and equipped with
a valve, allow to mimic water use for irrigation. Water level sensors are installed at the
end of each pool. The level sensors allow to measure values between 0 mm and 900 mm
that corresponds to the canal border. The nomenclature is as follows: For pool number
i, i = 1, . . . , 4, the downstream level is denoted yi. Pool number i ends with gate number
i. The opening degree of gate i is denoted ui. All these quantities are measured in [mm].

Figure 4.9 shows experimental results obtained for upstream control of the first 3 pools
using Decentralized SIORHC (dSIORHC) [58]. The vertical lines indicate the opening and
closing of the off-take of pool 1.

4.7 Conclusion

A distributed version of SIORHC, a model predictive controller for linear systems with
constraints on the terminal state that ensures closed-loop stability, has been presented.
This results in a set of multiple local agents that act in a cooperative way to achieve a
common goal - global optimal. The distributed control agents predict their control actions
in a finite horizon relying in a local model that assumes only interaction with neighboring
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subsystems, via the input signals. The cooperation among these agents is accomplished
when using an iterative procedure that converges to the optimal decentralized (i.e. fully-
iterated) solution. The adjustment of weights in each subsystem cost function, ranging
from a so-called egocentric behavior to a pure altruistic one result in different type of
closed-loop performance. The minimal requirements of a generic open computational
infrastructure, where the agents can cooperate for sharing and broadcasting information,
are given. Closed-loop stability results show that it can be directly applied to stable
and unstable large scale linear systems. Finally, the application results obtained in a
experimental water delivery canal validate this new approach to distributed control.
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5
MODEL PREDICTIVE CONTROL OF

COUNTERCURRENT TUBULAR HEAT EXCHANGERS

WITH COMPOSITE GEOMETRY

5.1 Introduction

In the previous chapters, the importance of NMPC has been shown for different proto-
type systems and the application of predictive and adaptive algorithms has also been
accomplished. Stability is still the major issue on control, since all systems appear to have
uncertainty that contributes to closed-loop instability.

In this chapter, the objective is to design both single and multi-agent predictive con-
trollers with adaptation for a parametric uncertain transport-reaction phenomena process,
described by nonlinear partial differential equations, with mass and energy transport,
namely a countercurrent heat exchanger, which makes a very interesting example of a
dynamically coupled system. A dynamical coupled system is a system where the states
from different subsystems affect others. The purpose here is to see how the temperature of
a hot and a cold fluids affect each other by means of the fluid velocities.

5.2 Prototype Model

The process considered occurs in a composite tubular geometry heat exchanger as depicted
in figures 5.2 and 5.3. This geometry consists of a inner pipe inside a concentric outer pipe
for flow heat exchange. The fluid in the outer pipe is countercurrent with respect to the
fluid in the inner pipe. This configuration allows the study a wide variety of processes
with transport phenomena as described in [20] and can be used as basis for the study of
systems with more complex geometries.
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x(z,t)

Figure 5.1: Sets with state reference curve level including real and nominal parameters.
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v(t) 

u(t) u(t) 

Figure 5.2: Prototype system: simple (top) and composite (bottom) geometries.

The cold fluid temperature is taken as controlled variable and hot fluid flow velocity,
u, is taken as manipulated variable in single agent (or centralized) control and in u
and v velocities (respectively, outer and inner fluid velocities) for multi-agent control.
Furthermore, plug-flow conditions are assumed, where the fluid is radially homogeneous
and the axial diffusion/dispersion is neglected and also diffusion/dispersion model are
treated (see [71]).

Several studies were performed for similar heat exchanger systems as, for instance, a
shell and tube heat exchanger [93], high duty counter-current heat exchangers [45] and a
very close system and control type approach to this thesis work in [82]. A series of papers
on countercurrent double-pipe heat exchangers has been published by [1, 2] and on heat
exchanger network can be read in [9].

For better understanding, one can generalize the simple geometry system like stated
in [101]:

− δk

L2
∂2x
∂z2 +

∂xk(z, t)
∂t

+
vk

L
∂xk(z, t)

∂z
= fk(x(z, t), d(z, t); θ) (5.1)

Like stated before, this set of equations models a process that occurs in a tubular
system. The state variables xk(z, t) (k = 1, . . . , n) represent the fluid temperature along
space (z ∈ [0, 1]) and time (t ∈ [0,+∞[) in the inner pipe, the transport velocity being
vk. From conservation principles (mass and energy balances), the system is modelled
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Figure 5.3: Prototype system: perspective composite geometry with countercurrent flows.
Blue arrows and red arrows define cold and hot fluid flow, respectively.

by n hyperbolic PDEs in the state variables xk(x, t) and the manipulated variable is the
transport velocity u = vk (except in cases in which vk = 0), δk is a diffusion coefficient, L is
the pipe length and fk(x, d(z, t)) is a nonlinear bounded production term that includes
possible disturbances d(z, t). The uncertain parameters are put in a column vector θ and
used to estimate , lying within a known set Θ = {θ : θ < θ < θ}.

For the composite geometry, the following model is considered:

∂w(z, t)
∂t

± u
L

∂w(z, t)
∂z

= p(w, x, d(z, t); θ)

− δk

L2
∂2x
∂z2 +

∂xk(z, t)
∂t

+
vk

L
∂xk(z, t)

∂z
= fk(w, x; θ) (5.2)

The equations (5.2) present an additional temperature w(z, t) balance in the outer pipe,
being u the fluid velocity in the same pipe. Vector θ again denotes the vector of uncertain
parameters to estimate.

The objective is to control the output assumed to be a smooth nonlinear state function
weighted over space, by manipulating the fluid velocity u(t).

5.3 NMPC Nominal Formulation and Adaptive Control

The nominal formulation as well as stability for this class of systems is thoroughly dis-
cussed in previous chapters. The controller design for the heat exchanger here presented
is solely based on the stability conditions and adaptation, so the focus will be on a more
effective discussion of the adaptation mechanism to be combined with the proposed
NMPC.

5.3.1 Adaptation with parameters observer

The proposed way to deal with parameter uncertainty is to use an observer for estimating
parameters. Considering the state to be accessible as described in [4, 29, 56] and considering
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the full model (5.2) in the following matrix form:

∂η

∂t
=

[
p(η, d)

f (η) + D
L2

∂2x
∂z2 − Av

L
∂x
∂z

]
±
[

∂w
∂z

0

]
u
L

(5.3)

where η = [w xT]T.
It is also considered that the output does not explicitly depends on w, dh

dη =
[

0 dh
dx

]
and assumed that typical process production terms are linear in θ:

f (η; θ) = f0(η) +
q

∑
i=1

θi fi(η) = f0(η) + F(η)θ (5.4)

p(η; θ) = p0(η) +
q

∑
i=1

θi pi(η) = p0(η) + P(η)θ (5.5)

it yields:

∂η

∂t
=

[
0
Lx

]
±
[

∂w
∂z

0

]
u
L
+

[
p0(η)

f0(η)

]
+

[
P(η)
F(η)

]
θ (5.6)

where:

Lx =
D
L2

∂2x
∂z2 −

Av

L
∂x
∂z

(5.7)

Writing the observer filter dynamics in the form [4, 114]:

∂ηa

∂t
=

[
0
Lx

]
±
[

∂w
∂z

0

]
u
L
+

[
p0(η)

f0(η)

]

+

[
P(η)
F(η)

]
θ̂ +K(η − ηa) (5.8)

where K > 0, the observation error dynamics (ea = η − ηa) is given by:

∂ea

∂t
=

[
P(η)
F(η)

]
θ̃ −Kea (5.9)

Considering the Lyapunov candidate function [67]:

V(ea, θ̃) =
1
2

(∫ 1

0
eT

a ea dz + θ̃TΓ−1θ̃

)
(5.10)

Differentiating V with respect to time, using the error dynamics and choosing:

˙̃θ = −Γ
∫ 1

0

[
P(η)
F(η)

]T

ea dz (5.11)

it guarantees:

V̇(ea) < 0; ea 6= 0 (5.12)
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making the errors go to zero (ea(t) and θ̃ → 0 as t → ∞), after initial conditions
transient (w(0), x(0) and θ̂(0)), if the nonlinear functions matrix:[

P(η)
F(η)

]
6= 0 (5.13)

locally, as a way to assure that the adaptation error goes to zero.
Note that θ̃ can be bounded by the use of the projection method, as shown earlier and

thereby constraining the estimated to the interior of a bounded convex parameters space.
The parameters projection uses the following rule (see [66]):

Proj
{

τ, (θ, θ, ε)
}
=


max(0, ε−θ̂+θ

ε )τ θ̂ ≥ θ and τ > 0

max(0, ε+θ̂−θ
ε )τ θ̂ ≤ θ and τ < 0

τ otherwise

(5.14)

with θ + ε ≥ θ̂ ≥ θ − ε and where τ is the update law.

5.3.2 Countercurrent Heat Exchanger Model

Consider the model of a countercurrent heat exchanger:

∂w
∂t
− u

L
∂w
∂z

= b(x− w) (5.15)

∂x
∂t

+
v
L

∂x
∂z

= a(w− x) (5.16)

in which w and x are respectively the outer and inner pipe fluid temperature, a and
b the outer and inner exchange coefficient [min−1], v is the inner pipe fluid velocity
[m min−1] and the manipulated variable is the outer pipe fluid velocity u.

In the adaptive case and assuming the certain equivalence, the parameters are replaced
by the estimates:

˙̂a = −γa(w(1, t)− x(1, t))(x(1, t)− ηa)

˙̂b = −γb(w(0, t)− x(0, t))(w(0, t)− ηb) (5.17)

with local observation dynamics, respectively:

η̇a = −
v
L

∂x
∂z
| z=1 + â (w(1, t)− x(1, t)) + κa(x(1, t)− ηa) (5.18)

η̇b =
u
L

∂w
∂z
| z=0 + b̂ (x(0, t)− w(0, t)) + κb(x(0, t)− ηb) (5.19)

Figure 5.4 shows the parameters convergence, with â(0) = b̂(0) = 0.5 and a = b = 0.2
for the true values and figure 5.5 shows additionally a 20% change in parameter a, meaning
a(t > 120) = 0.25. This simulations uses 200 space elements and values from tables 5.1
and 5.2.
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Table 5.1: Heat Exchanger parameters, initial and boundary conditions.

Parameter Value Units

L 1 m
a 0.2 min−1

b 0.2 min−1

w(z, 0) 50.0 ◦C
x(z, 0) 25.0 ◦C
w(1, t) 50.0 ◦C
x(1, t) 25.0 ◦C

Table 5.2: Controller parameters.

Parameters Values

γa 0.002
γb 0.002
κa 0.500
κb 0.500
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Figure 5.4: Parameters estimation: â, b̂ [min−1].
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Figure 5.5: Parameters estimation for disturbed system: â, b̂ [min−1].
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5.3.3 NMPC combination with LAL dynamics

In the adaptive NMPC for the SISO case (present in decentralized or distributed control),
the RHC+LAL can be formulated as:

min
u

J =
∫ t+T

t

(
ỹ2 + ρũ2) dτ (5.20)

subject to the predictive model (5.2) in which θ = θ̂(t) and also to input, state, output
constraints:

C(ξ̇(t), ẏ(t), u̇(t), ξ(t), y(t), u(t), t) ≤ 0 (5.21)

and the stability constraint:

S(ξ(t), u(t); θ, θ) ≤ 0 (5.22)

and the additional distributed observer and parameters estimate dynamics:

∂ηa

∂t
= Lη + ϕ0(η) + ϕ(η)θ̂ −K(η − ηa) (5.23)

˙̂θ = Proj
{

Γ
∫ 1

0
ϕT(η)(η − ηa) dz, (θ, θ, ε)

}
, (5.24)

where η and ηa are the system and observer state respectively, Lη is the space operator
on the systems state, containing convection and diffusion terms, and ϕ0(η) and ϕ(η)

are obtained from the production terms f (x; θ) and p(w; θ). Note that the parameters
projection ensures that the estimates stay inside the bounded meaningful physical set Θ
and the stability condition must robustly stabilize the system within that set.

In the centralized case, corresponding to the MIMO case, the formulation RHC+LAL
uses the set of equations (5.25):

min
u(t̄)

J =
∫ t+T

t

((
‖ỹ‖2

Q + ‖ũ‖2
R
))

dτ (5.25)

s. t. O(ξ(x(t̄)), y(t̄), u(t̄), t̄) ≤ 0

max
θ∈Θ
{V̇(x̃(t); θ)}+ αV(x̃(t)) < 0

u(t̄) = seq{u1, . . . , uNu}

5.4 Simulation results

Several simulations were performed in order to test the controller design. The first three
simulation scenarios for centralized (or single agent) control with constant inner pipe
velocity. The next set of simulations demonstrate a fully centralized architecture that
include both fluid velocities. Finally, a new set of simulations were carried out in order to
test a noncooperative distributed architecture (different controllers with different control
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Figure 5.6: Simulation 1: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).
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Figure 5.7: Simulation 1: Cold fluid temperature profile.

action weights) to test the performance and robustness of all algorithms. All simulations
use 100 state equations and use the same initial conditions.

5.4.1 Centralized control

5.4.1.1 Simulation 1: constant inner fluid velocity

In simulation 1 the controller action is on hot fluid velocity for a steady-state velocity
u = 0.27 m/min and a constant cold fluid velocity of v = 0.1 m/min as shown in
figures 5.6- 5.9 The chosen control penalty weight is 0.5 and the rest of the parameters are
described in tables 5.1 and 5.2.

As can be seen in figure 5.6, both temperatures track the reference with almost pinpoint
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Figure 5.8: Simulation 1: Hot fluid temperature profile.
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Figure 5.9: Simulation 1: Hot fluid velocity [m/min].
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Figure 5.10: Simulation 1: Robust control Lyapunov function.
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Figure 5.11: Simulation 2: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).
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Figure 5.12: Simulation 2: Cold fluid temperature profile.

accuracy, resulting in state profiles as depicted in figures 5.7 and 5.8 for cold and hot fluid
temperatures, respectively. The outer fluid velocity is shown in figure 5.9. Figure 5.10
shows the robust Lyapunov control function continuously decreasing.

5.4.1.2 Simulation 2: doubling inner fluid velocity

For simulation 2 the inner fluid velocity was doubled to v = 0.2 m/min maintaining the
rest of the parameters unchanged for sake of comparison with simulation 1. Figure 5.11
shows the new references on the heat exchange process.

As can be seen, references changed due to different velocities, but still the controller
maintained the ability to track the references. Figures 5.12 and 5.13 depict the new tem-
perature profiles and figures 5.14 and 5.15 show, respectively the velocity profile and the
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Figure 5.14: Simulation 2: Hot fluid velocity [m/min].
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Figure 5.15: Simulation 2: Robust control Lyapunov function.
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Figure 5.16: Simulation 3: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).
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Figure 5.17: Simulation 3: Cold fluid temperature profile.

decreasing Lyapunov function.

5.4.1.3 Simulation 3: Fault-tolerance testing

In simulation 3, using the scenario values from the previous simulation, the controller
was subject to a flaw in the velocity of the outer pipe fluid. This intends to simulate what
happens to the temperature control if the pump for the hot fluid works intermittently or is
faulty.

Focusing on the input and RCLF (figures 5.19 -5.20), the controller shows excellent
performance even when subject to a fault in the hot fluid velocity at t ∈ [15, 17] min. This
faulty movement of the hot fluid is also shown in figures 5.17 and 5.18, as well as in 5.16
where it is denoted a slight deviation from the reference. A closer analysis of the Lyapunov
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Figure 5.18: Simulation 3: Hot fluid temperature profile.
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Figure 5.19: Simulation 3: Hot fluid velocity [m/min].
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Figure 5.20: Simulation 3: Robust control Lyapunov function.
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Figure 5.21: Simulation 4: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).
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Figure 5.22: Simulation 4: Cold fluid temperature profile.

control function, one can see that the fail in u promotes an increase in the RCLF. As soon
has the pump is fixed, the controller increases the velocity in order to track the steady-state
reference. In this particular case, the time span seems to be short, but still is possible to see
that the adaptation combined with stable NMPC maintain the integrity and robustness of
the projected controller.

5.4.1.4 Simulations 4, 5 and 6: Fully centralized architecture

In simulations 4, 5 and 6, the controller has been redesigned to incorporate both hot and
cold fluid velocities in the control action. The main intention is to serve as a comparison to
the simulation results of the first three tests.

From figures 5.21 -5.25 (referred to simulation 4) analysis one can conclude that the
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Figure 5.23: Simulation 4: Hot fluid temperature profile.
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Figure 5.24: Simulation 4: Hot and cold fluid velocity [m/min].
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Figure 5.25: Simulation 4: Robust control Lyapunov function.
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Figure 5.26: Simulation 5: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).

controller works as well as the original version, especially when dealing with the objective
output. Figure 5.24 shows the inclusion of the now controlled cold fluid velocity. In
terms of computational effort, this new controller does decrease the time for simulation
(approximately 5− 10%).

In simulation 5 both scenarios from simulations 2 and 3 are combined. It has been
included a reduction of the outer fluid velocity between t ∈ [15, 17] min for a v =

0.2 m/min. Figures 5.26 to 5.30 show that the fully centralized version takes advantage of
actuating over both velocities to compensate the fail on one of the velocities. The control
input signal (figure 5.29) shows that a smaller weight on control action would be better to
prevent sudden changes, although adaptation seems to be sufficient enough to prevent
degrading the performance. RCLF (figure 5.30) shows a slight increase in the Lyapunov
control function for the fault in u.

Finally, figures 5.31 -5.35 show the effect of larger cumulative fail in both fluid velocities.
Even in this scenario, the controller keeps integrity and although both temperature profiles
present bigger overshoots (positive in the cold fluid and negative in the hot fluid, in respect
to the reference of each temperature). Computational effort is still smaller in this fully
centralized version than in the one presented in the first three simulations.

5.4.2 Non-cooperative Distributed control

In this section, the control system has been again redesigned. This time, a non-cooperative
distributed architecture has been adopted, where both controllers change information
about their local optimizations in a non-iterative parallel fashion, as described in chapter
1, section 1.3. The main objective here is to evaluate how different architectures may differ
in this type of uncertain nonlinear system. Both controllers target for closed-loop stability.
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Figure 5.27: Simulation 5: Cold fluid temperature profile.
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Figure 5.28: Simulation 5: Hot fluid temperature profile.
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Figure 5.29: Simulation 5: Hot and cold fluid velocity [m/min].
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Figure 5.30: Simulation 5: Robust control Lyapunov function.
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Figure 5.31: Simulation 6: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).

5.4.2.1 Simulation 7: different control weights

In this simulation controllers use different control weights, α and fluid velocities are kept
close at u = 0.2 m/min and v = 0.201 m/min. Physically speaking, both velocities in a
heat exchange installation can be equal, but numerically making both velocities equal leads
to a indetermination, creating instability. Control weight for the controller on outer fluid
flow velocity, α1 = 0.5 and for the inner fluid flow, α2 = 0.1. This prevents both controllers
to compete in order to obtain better performance over each other. Signal saturation is also
avoided.

Figures 5.36 to 5.40 depict this simulation results. Computational effort has increased
due to the need to maintain control integrity in both subsystems.
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Figure 5.32: Simulation 6: Cold fluid temperature profile.
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Figure 5.33: Simulation 6: Hot fluid temperature profile.
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Figure 5.34: Simulation 6: Hot fluid velocity [m/min].
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Figure 5.35: Simulation 6: Robust control Lyapunov function.
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Figure 5.36: Simulation 7: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).

5.4.2.2 Simulations 8 and 9: fault-tolerance scenarios

This last two simulations intend to show how stability and performance are affected with
simple and cumulative fails in the feeding fluids for non-cooperative DMPC.

Figures 5.41 to 5.45 depict this simulation 8 results. Computational effort has, as
expected, increased due to the need to maintain control integrity in both subsystems.
Figures 5.46 to 5.50 show the results for simulation 9, where velocities are u = 0.27 m/min
and v = 0.3 m/min. Both controllers are subject to sudden decreases in v and v for a
certain amount of time, namely t ∈ [15, 17] min and t ∈ [15, 20] min respectively. Once
again both controllers prove to be robust even in worst-case scenarios.
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Figure 5.37: Simulation 7: Cold fluid temperature profile.
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Figure 5.38: Simulation 7: Hot fluid temperature profile.
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Figure 5.39: Simulation 7: Hot and cold fluid velocity [m/min].
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Figure 5.40: Simulation 7: Robust control Lyapunov function.
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Figure 5.41: Simulation 8: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).

5.5 Conclusions

An adaptive NMPC formulation for an uncertain class of distributed parameter systems
is introduced and exemplified. Different control architectures have been developed and
successfully applied to a countercurrent heat exchanger, a thorough dynamical coupled
system. Low computational effort for on-line parameter estimation as a way to deal with
uncertainty is shown to justify this type of alternative approach, especially in distributed
control architectures. Controller performance and robustness have been tested in differ-
ent scenarios as a way to show the importance of stability conditions combined with
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Figure 5.42: Simulation 8: Cold fluid temperature profile.
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Figure 5.43: Simulation 8: Hot fluid temperature profile.
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Figure 5.44: Simulation 8: Hot fluid velocity [m/min].
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Figure 5.45: Simulation 8: Robust control Lyapunov function.
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Figure 5.46: Simulation 9: Temperature tracking reference. Dotted lines mark both refer-
ences; Cold fluid temperature (blue line with left-to-right direction marker) and hot fluid
temperature (red line with right-to-left direction marker).

adaptation for SISO and MIMO systems.
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Figure 5.47: Simulation 9: Cold fluid temperature profile.
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Figure 5.48: Simulation 9: Hot fluid temperature profile.
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Figure 5.49: Simulation 9: Hot and cold fluid velocity [m/min].
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Figure 5.50: Simulation 9: Robust control Lyapunov function.
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6
CONCLUSIONS AND FUTURE WORK

The study of novel control techniques applied to distributed parameter systems, namely
hyperbolic nonlinear systems described by partial differential equations and involving
parameter uncertainty were accomplished with success. These type of nonlinear systems
were chosen, because they are who best describe transport phenomena processes in
chemical and biological engineering, as well as other important engineering disciplines.

Model predictive control or receding horizon control of nonlinear systems has been
proven to be a powerful tool on control of DPS and its combination with adaptation laws,
in the sense of Lyapunov, and stability constraints were derived and applied successfully
to tubular bioreactors and water delivery canals. A stable adaptive NMPC formulation for
an uncertain class of distributed parameter biosystems was introduced and exemplified
in chapter 3 in the form of a fixed-bed tubular bioreactor with Contois kinetics with
the application of a stabilizing NMPC and LAL. Also, a general stability condition for
the combined NMPC nominal formulation with a stable parameter observer was also
successfully developed. Online parameter estimation, in order to deal with uncertainty,
has been shown as well as the maintenance of low computational effort for closed-loop
stability, making it a very decisive approach on solution of these kind of systems. The series
of simulations performed demonstrated that the controller performance was maintained
and that the inclusion of adaptation mechanisms applied in nonlinear hyperbolic DPS
seems to be a natural extension on the NMPC.

The application of robust pointwise min-norm methedologies to a general result
for distributed fluid flow systems stabilization around a stationary space profile was
successfully obtained. This optimization statement, interpreted as a stabilizing limit
solution when included in a predictive receding horizon control formulation results in
closed-loop stability for any given horizon. The viability of alternative control techniques
such as this has been proven, although costing in an increase on the computational effort.
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Water distribution canals controlled by RPWMN control form a basis of more complex
studies on canal engineered architectures resulting in the combination of robust and
predictive design methods in order to achieve a fair compromise between water resources
management and disturbance rejection. The extension from SISO case to MIMO cases
were studied in both centralized and decentralized control architectures, respectively.
For the particular MIMO case, control appears to be implemented in sequence, although
after some time the optimization appear to be simultaneous when interactions increases.
Computational effort in the decentralized control of the MIMO version appears to maintain
a similar behavior exposed in the SISO centralized version.

There has also been studied the application of a locally distributed version of SIORHC,
a form of model predictive controller for linear systems with constraints on the terminal
state that ensures closed-loop stability. A set of multiple local agents that act in a neighbour-
to-neighbour cooperative way to achieve a common goal - global optimal. The distributed
control agents where projected to predict their control actions in a finite horizon relying in
a local model that assumes only interaction with neighboring subsystems, via the input
signals. The cooperation among these agents is accomplished when using an iterative
procedure that converges to the optimal decentralized (i.e. fully-iterated) solution. Adjust-
ments of weights in each subsystem cost function, ranging from a so-called egocentric
behavior to a pure altruistic one resulted in different types of closed-loop performances
and minimal requirements of a generic open computational infrastructure, where the
cooperation of the different agents was shown when in presence of a sharing and broad-
casting information service. In terms of closed-loop stability, results have shown that these
agents can be directly applied to stable and unstable large scale linear systems. Finally,
the application on the water delivery canal prototype earlier presented have produce
encouraging results which allowed the validation of this new approach to distributed
control.

Thorough dynamical coupled systems have also been studied in the form of counter-
current heat exchangers. Again, adaptation combined with pointwise min-norm control
have been proven to be an important control strategy for uncertain nonlinear systems
described by partial differential equations. The application of this type of control on dis-
tributed and centralized control architectures shows that performance and robustness is
maintained under difficult scenarios, corroborating and extending the results of chapter 3
for water delivery canals.

In terms of future work, the uncertain DPS systems and prototypes presented are being
prepared for the extension to global distributed architectures in NMPC. By the same time as
the writing of this thesis, a multivariable NMPC for the set of hyperbolic partial differential
equations for the water delivery canals has been developed. Based upon some of the work
here presented, a general formulation along with a computational efficient algorithm has
been presented, using model reduction via the orthogonal collocation method resulting
in two numerical examples that illustrates the application with success. Furthermore,
decentralized and distributed architectures are being developed for the fixed-bed tubular
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bioreactor presented in chapter 3 as a way to incorporate local and global optimization.
The application of some of the proposed predictive techniques, namely pointwise min-
norm control and receding horizon control with adaptation are under development for
other hyperbolic and parabolic systems. Optimization of simulated moving bed liquid
chromatography is already under development.
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A.1 Pseudocode Algorithms

All routines were developed using MathWorksr MATLAB
TM

and converted here into
pseudocode algorithms. The appendix is divided in three different sections, depending on
the system in study.

A.2 Fixed-Bed Bioreactor routines

In chapter 2, six routines were developed, namely:

• RHCBioreactor as the main routine for predictive and adaptive control of the biore-
actor system;

• Custobioreactormoc used to calculate the cost function for the reduced model;

• Colloc used to calculate OC points and differential matrices;

• Jacobi used to calculates Jacobi polynomial coefficients to be used in colloc routine;

• Dlagrange used to calculate OC matrices based on Lagrange polynomials and its
derivatives;

• BioreactorAdapt used to calculate the output for a Bioreactor using an adaptive RH
controller.
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Algorithm 1 RHCBioreactor routine: Calculates the output for a Bioreactor using an
adaptive RH controller

1: Inputs: u
2: Begin
3: Initializes Uk,Sock,Xock,yre f ,Theta1k,Theta2k,Socpk,Xocpk,Vks
4: Define the model parameters L,k1,kc,kd,µb,Ar,α . α is an auxiliary parameter
5: Define the initial inlet concentration Sin and initial velocity uee
6: Nint ← {value} . number of interior points
7: Uses subroutine colloc to calculate xoc,Aoc1 and Boc1 using Nint;
8: Aoc← −Aoc1(2 : Nint + 2, 2 : Nint + 2)
9: Boc← −Aoc1(2 : Nint + 2, 1)

10: Sooc← e(−k1∗(µb−kd)/uee/kc∗xoc(2:Nint+2)) ∗ Sin . Calculates initial substrate in OCM
11: Xooc← (µb − kd)/kc/kd ∗ Sooc . Calculates initial biomass in OCM
12: yooc← [Sooc Xooc]′ . Puts both substrate and biomass in a output matrix form
13: k1est← {value}
14: kdest← {value}
15: uk← {value} . Defines initial value of the RHC
16: Vk← {value} . Defines initial value of the CLF
17: Uo ← [uk · · · uk] . Builds the matrix for the prediction horizon
18: I ← length(Uo)
19: Define tmax, dt, tsim and kmax . Calculates integration time, intervals and number of

simulations
20: Define yre f trajectory for substrate S
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21: for k = 1→ kmax do . Calculates states X∗ and S∗

22: uee← −k1 ∗ (µb − kd)/kc ∗ L/log(yre f (k)/Sin);
23: Sooc← e(−k1∗(muib−kd)/uee/kc∗xoc(2:Nint+2)) ∗ Sin;
24: if k == 1 then
25: Sk← Sooc;
26: end if;
27: Xooc← (µb − kd)/kc/kd ∗ Sooc;
28: if k == 1 then
29: Xk← Xooc;
30: end if;
31: Vk0 ← (Sk − Sooc) ∗ (Sk − Sooc)′ + value ∗ (Xk − Xooc) ∗ (Xk − Xooc)′; .

Calculates the CLF based on states S and X
32: al f a = k1est/kc ∗ (µb − kdest) ∗ L;
33: uss← −al f a ∗ 1/log(yre f (k)/Sin);
34: Sin ← value . Indicates inlet concentration of substrate
35: Calculates the velocity matrix while minimizes the cost functional based on sub-

routine custobioreactmoc1 . Minimization makes use of fmincon function in
Matlab

36: uk ← U(1);
37: Uo ← [Uo(2 : I)U(I)];
38: uk ← max(min(uk, uppervalue), lowervalue); . Includes saturation on velocity u at

each iteration
39: Calculates the output based on adaptation routine BioreactorAdapt
40: yinis← yocs(size(yocs, 1), :)′;
41: yooc← yocs(size(yocs, 1), 1 : 2 ∗ Noc)′;
42: Sk← yocs(size(yocs, 1), 1 : Noc); . Stores substrate values calculated at iteration k
43: Xk← yocs(size(yocs, 1), Noc + 1 : 2 ∗ Noc); . Stores biomass values calculated at

iteration k
44: Vk← (Sk− Sooc) ∗ (Sk− Sooc)′ + value ∗ (Xk− Xooc) ∗ (Xk− Xooc)′;
45: Sock← [Sock ; yocs(size(yocs, 1), 1 : Noc)];
46: Xock← [Xock ; yocs(size(yocs, 1), Noc + 1 : 2 ∗ Noc)];
47: Socpk← [Socpk ; yocs(size(yocs, 1), 2 ∗ Noc + 1 : 3 ∗ Noc)];
48: Xocpk← [Xocpk ; yocs(size(yocs, 1), 3 ∗ Noc + 1 : 4 ∗ Noc)];
49: Theta1k = [Theta1k ; yocs(size(yocs, 1), 4 ∗ Noc + 1)];
50: Theta2k = [Theta2k ; yocs(size(yocs, 1), 4 ∗ Noc + 2)];
51: y← yocs(size(yocs, 1), Noc);
52: k1est← yocs(size(yocs, 1), 4 ∗ Noc + 1); . Estimated k1 through adaptation
53: kdest← yocs(size(yocs, 1), 4 ∗ Noc + 2); . Estimated kd through adaptation
54: Uk← [Uk uk];
55: Vks = [Vks Vk];
56: end for
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Algorithm 2 Custobioreactormoc routine: Calculates cost function for the system using
Orthogonal collocation method

1: Inputs: u,dt,xini,Aoc,Boc,k1,kc,kd,µb,Sin,xre f ,Noc,uss
2: Outputs: Jrhc
3: Begin
4: I = length(u);
5: Initializes Xs and ts . Xs is states and ts is time
6: for i = 1 : I do
7: Integrates Bioreactor model based on initial states, inputs and parameters
8: xini = x(size(x, 1), :)′;
9: Xs = [Xs ; x(:, 1 : Noc)];

10: ts = [ts ; t];
11: end for;
12: Starts the calculations on cost integral using trapezoid method
13: lt = length(ts);
14: Dus← u− [uss u(1 : I − 1)];
15: Dts← ts(2 : lt)− ts(1 : lt− 1);
16: S1← (Xs(1 : lt− 1, size(Xs, 2)) + Xs(2 : lt, size(Xs, 2)))/2;
17: S3← sum(Dus.2) ∗ dt;
18: Jrhc← value ∗ ((S1− xre f )′.2 ∗ Dts + weoght ∗ S3); . weight refers to control action

weight

Algorithm 3 Colloc routine: Calculates Orthogonal Collocation points and differential
matrices accordingly to [101]

1: Inputs: α,β,N
2: Outputs: γ
3: Begin
4: γ← jacobi(α, β, N); . Calculates Jacobi polynomial coefficients based on Jacobi

routine
5: x ← [0 f liplr((roots(γ))′) 1]; . Calculates the zeros for Jacobi polynomial
6: [A, B]← dlagrange(x); . Uses dlagrange routine to calculate first and second order

derivatives for Lagrange polynomial

Algorithm 4 Jacobi routine: Calculates Jacobi polynomial coefficients

1: Inputs: α,β,N
2: Outputs: γ
3: Begin
4: γ(1)← 1;
5: for i = 1 : N do
6: γ(i + 1)← (N − i + 1) ∗ (N + i + α + β) ∗ γ(i)/i/(i + β);
7: end for
8: γ← f liplr(γ. ∗ ((−1).(N − (0 : N))));

110



A.2. FIXED-BED BIOREACTOR ROUTINES

Algorithm 5 Dlagrange routine: Calculates Orthogonal Collocation matrices based on
Lagrange polynomials and its derivatives

1: Inputs: x
2: Outputs: A and B matrices for OC containing Lagrange polynomial first and second

order derivatives accordingly to [101].
3: Begin
4: M← length(x); . M is N + 2 interior collocation points
5: Initializes P1,P2,P3;
6: for i = 1 : M do
7: p← 1;,p1← 0;,p2← 0;,p3← 0;
8: for j = 1 : M do
9: dx ← (x(i)− x(j));

10: p3← dx ∗ p3 + 3 ∗ p2;
11: p2← dx ∗ p2 + 2 ∗ p1;
12: p1← dx ∗ p1 + p;
13: p← dx ∗ p;
14: end for
15: P1← [P1 p1];
16: P2← [P2 p2];
17: P3← [P3 p3];
18: end for
19: for i = 1 : M do
20: for j = 1 : M do
21: if i == j then
22: A(i, j) = 1/2 ∗ P2(i)/P1(i);
23: elseA(i, j) = 1/(x(i)− x(j)) ∗ P1(i)/P1(j);
24: end if
25: end for;
26: end for;
27: for i = 1 : M do
28: for j = 1 : M do
29: if i == j then
30: B(i, j) = 1/3 ∗ P3(i)/P1(i);
31: elseB(i, j) = 2 ∗ A(i, j) ∗ (A(i, i)− 1/(x(i)− x(j)));
32: end if
33: end for;
34: end for;
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Algorithm 6 BioreactorAdapt routine: Calculates the output for a Bioreactor using an
adaptive RH controller

1: Inputs: t,y,A,B,k1,kc,kd,µb,u,so,N
2: Begin
3: s← y(1 : N);
4: x ← y(N + 1 : 2 ∗ N);
5: st← y(2 ∗ N + 1 : 3 ∗ N);
6: xt← y(3 ∗ N + 1 : 4 ∗ N);
7: theta1← y(4 ∗ N + 1);
8: theta2← y(4 ∗ N + 2);
9: µ← (1./(kc ∗ x + s)). ∗ s ∗ µb; . Element-wise operations uses dot

10: sp← u ∗ (A ∗ s + B ∗ so)− k1 ∗ µ. ∗ x;
11: xp← (µ− kd). ∗ x;
12: stp← u ∗ (A ∗ s + B ∗ so)− theta1 ∗ µ. ∗ x + value ∗ ones(1, N) ∗ (s− st);
13: xtp← (µ− theta2). ∗ x + value ∗ ones(1, N) ∗ (x− xt);
14: t1p← −value1 ∗ (µ. ∗ x)′ ∗ (s− st); . value1 is the adaptive controller weight for

substrate
15: t2p← −value2 ∗ x′ ∗ (x− xt); . value2 is the adaptive controller weight for biomass
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A.3 Water Delivery Canal Pools

In chapter 3, two main routines, two model routines and a constraint routine were devel-
oped, namely:

• Canal_onepool as the main routine for PWMN control in a single water canal pool;

• Canal_twopools as the main routine for PWMN control in two water canal pools;

• Canalmod100 used to define the model for one water canal pool (includes optimiza-
tion);

• Canalmod200 used to define the model for two water canal pools (includes opti-
mization for centralized and decentralized control);

• SC used to include the constraints of the optimization problem (this function is
included in both model algorithms).
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Algorithm 7 Canal_onepool routine: Calculates the output for a Water delivery canal pool
using a PWMN controller.

1: Inputs: Initial states and inputs
2: Outputs: matrix Y containing water elevation h, water velocity v and gate opening u
3: Begin
4: Define physical parameters:
5: g . gravitational constant
6: cd12 . Discharge coefficient
7: n . Manning coefficient
8: b . Bottom width
9: d . Trapezoid slope

10: J . Canal slope
11: L . Pool length
12: Ad . Discharge area
13: nl . Number of pool sections
14: dx ← L/nl . Length of pool section
15: Auxiliary calculations and matrices:
16: n2

17: sd←
√

1 + d2

18: cc← cd12 ∗ Ad
19: A3 ← [zeros(nl − 2, 1) eye(nl − 2); zeros(1, nl − 1)] − [[zeros(1, nl − 2); eye(nl −

2)]zeros(nl − 1, 1)]
20: A2 = [[2 zeros(1, nl − 2)]; A3; [zeros(1, nl − 2) − 2]]
21: A1 = [[−2 ; −1 ; zeros(nl − 1, 1)] A2 [zeros(nl − 1, 1) ; 1; 2]];
22: Recalculates matrix A1 as A1← 0.5 ∗ A1
23: Recalculates matrix A2 as A2← A1(2 : nl, :)
24: Defines initial conditions for the simulation
25: x ← 0 : dx : L
26: Defines initial water elevation h← value ∗ ones(nl + 1, 1)
27: Defines initial water velocity v← value ∗ ones(nl − 1, 1)
28: Defines initial upstream gate position u1
29: Defines initial downstream gate position u2
30: Defines upstream elevation Hu
31: Defines upstream elevation Hd
32: Integrates the model in canalmod100 to obtain water elevation h, water velocity v and

gate opening u
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Algorithm 8 Canal_twopools routine: Calculates the output for a Water delivery canal
pools using a centralized or decentralized PWMN controllers.

1: Inputs: Initial states and inputs
2: Outputs: matrix Y containing water elevations h1 and h2, water velocities v1 and v2

and gates opening ui (i = 1, 2, 3)
3: Begin
4: Define physical parameters:
5: g . gravitational constant
6: cd12 . Discharge coefficient
7: n . Manning coefficient
8: b . Bottom width
9: d . Trapezoid slope

10: J . Canal slope
11: L . Pool length
12: Ad . Discharge area
13: nl . Number of pool sections
14: dx ← L/nl . Length of pool section
15: Auxiliary calculations and matrices:
16: n2

17: sd←
√

1 + d2

18: cc← cd12 ∗ Ad
19: A3 ← [zeros(nl − 2, 1)eye(nl − 2); zeros(1, nl − 1)] − [[zeros(1, nl − 2); eye(nl −

2)]zeros(nl − 1, 1)]
20: A2 = [[2 zeros(1, nl − 2)]; A3; [zeros(1, nl − 2) − 2]]
21: A1 = [[−2 ; −1; zeros(nl − 1, 1)] A2 [zeros(nl − 1, 1) ; 1; 2]];
22: Recalculates matrix A1 as A1← 0.5 ∗ A1
23: Recalculates matrix A2 as A2← A1(2 : nl, :)
24: Defines initial conditions for the simulation
25: x ← 0 : dx : L
26: Defines initial water elevation for first pool h1← value ∗ ones(nl + 1, 1)
27: Defines initial water elevation for second pool h2← value ∗ ones(nl + 1, 1)
28: Defines initial water velocity for first pool v1← value ∗ ones(nl − 1, 1)
29: Defines initial water velocity for second pool v2← value ∗ ones(nl − 1, 1)
30: Defines initial upstream gate position u1
31: Defines initial middle gate position u2
32: Defines initial downstream gate position u3
33: Defines upstream elevation Hu
34: Defines upstream elevation Hd
35: Integrates the model in canalmod200 to obtain water elevations h1 and h2, water

velocities v1 and v2 and gates opening ui, (i = 1, 2, 3) depending on which gates are
being controlled.
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Algorithm 9 Canalmod100 routine: Model for a Water delivery canal pool.

1: Inputs: Initial states, inputs and parameters
2: Outputs: matrix Y containing water elevations h1 and h2, water velocities v1 and v2

and gates opening ui (i = 1, 2, 3)
3: Begin
4: Positions the water elevation in the output matrix h← y(1 : nl + 1)
5: Positions the water velocity in the output matrix v← y(nl + 2 : 2 ∗ nl)
6: ah← b ∗ h + d ∗ h. ∗ h
7: f h← ah./(b + 2 ∗ d ∗ h)
8: rh← n2./(ah/b + 2 ∗ h ∗ sd).(4/3)
9: dh1← H1− h(1)

10: dh2← h(nl + 1)− H2
11: Runs optimization routine using MATLAB fmincon function subject to the SC routine
12: u1← y(end)
13: u1← max(min(u1, 0.5), 0) . Saturates gate opening
14: v0← sign(dh1) ∗ cc ∗ u1 ∗ sqrt(2 ∗ g ∗ abs(dh1))/ah(1)
15: vN ← sign(dh2) ∗ cc ∗ u2 ∗ sqrt(2 ∗ g ∗ abs(dh2))/ah(nl + 1)
16: vbc← [v0 ; v ; vN] . Boundary velocities vector
17: hp← −(vbc. ∗ (A1 ∗ h) + f h. ∗ (A1 ∗ vbc))/dx
18: vp← −(g ∗ A2 ∗ h + v. ∗ (A2 ∗ vbc))/dx− g ∗ (v. ∗ abs(v). ∗ rh(2 : nl)− J);
19: up← (−y(end) + u1) ∗ value . Filtered input
20: yp← [hp ; vp; up]; . Output matrix
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Algorithm 10 Canalmod200 routine: Model for two water delivery canal pools in series.

1: Inputs: Initial states, inputs and parameters
2: Outputs: matrix Y containing water elevations h1 and h2, water velocities v1 and v2

and gates opening ui (i = 1, 2, 3)
3: Begin
4: Positions the water elevation of the first pool in the output matrix h1← y(1 : nl + 1)
5: Positions the water velocity of the first pool in the output matrix v1← y(nl + 2 : 2 ∗ nl)
6: Positions the water elevation of the second pool in the output matrix h2← y(2 ∗ nl + 1 :

3 ∗ nl + 1)
7: Positions the water velocity of the second pool in the output matrix v2← y(3 ∗ nl + 2 :

4 ∗ nl)
8: ah1← b ∗ h1 + d ∗ h1. ∗ h1
9: ah2← b ∗ h2 + d ∗ h2. ∗ h2

10: f h1← ah1./(b + 2 ∗ d ∗ h1
11: f h2← ah2./(b + 2 ∗ d ∗ h2)
12: rh1← n2./(ah1/b + 2 ∗ h1 ∗ sd).(4/3)
13: rh2← n2./(ah2/b + 2 ∗ h2 ∗ sd).(4/3)
14: dh1← H1− h(1)
15: dh2← h1(nl + 1)− h2(1)
16: dh3← h2(nl + 1)− H2
17: Runs optimization routine using MATLAB fmincon function subject to the SC rou-

tine. Centralized version uses one matrix with both elevations and velocities and
decentralized version uses independent optimization routines

18: u1← y(end− 1)
19: u2← y(end)
20: u1← max(min(u1, 0.5), 0) . Saturates upstream gate opening
21: u2← max(min(u2, 0.5), 0) . Saturates middle or downstream gate opening
22: v10← sign(dh1) ∗ cc ∗ u1 ∗ sqrt(2 ∗ g ∗ abs(dh1))/ah1(1)
23: v1N ← sign(dh2) ∗ cc ∗ u2 ∗ sqrt(2 ∗ g ∗ abs(dh2))/ah1(nl + 1)
24: v20← sign(dh2) ∗ cc ∗ u2 ∗ sqrt(2 ∗ g ∗ abs(dh2))/ah2(1)
25: v2N ← sign(dh3) ∗ cc ∗ u3 ∗ sqrt(2 ∗ g ∗ abs(dh3))/ah2(nl + 1)
26: v1bc = [v10 ; v1 ; v1N] . Boundary velocities vector for first pool
27: v1bc = [v20 ; v2 ; v2N] . Boundary velocities vector for second pool
28: h1p← −(v1bc. ∗ (A1 ∗ h1) + f h1. ∗ (A1 ∗ v1bc))/dx
29: v1p← −(g ∗ A2 ∗ h1 + v1. ∗ (A2 ∗ v1bc))/dx− g ∗ (v1. ∗ abs(v1). ∗ rh1(2 : nl)− J)
30: h2p← −(v2bc. ∗ (A1 ∗ h2) + f h2. ∗ (A1 ∗ v2bc))/dx
31: v2p← −(g ∗ A2 ∗ h2 + v2. ∗ (A2 ∗ v2bc))/dx− g ∗ (v2. ∗ abs(v2). ∗ rh2(2 : nl)− J)
32: u1p← (−y(end− 1) + u1) ∗ value . Filtered input 1
33: u2p← (−y(end) + u2) ∗ value . Filtered input 2
34: yp← [h1p ; v1p ; h2p ; v2p ; u1p ; u2p] . Output matrix
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A.4 Countercurrent Heat Exchanger

For chapter 5, one main routine and three model routines (including constraint routine)
were developed, namely:

• Permutador100 as the main routine for adaptive PWMN control for countercurrent
tubular heat exchanger;

• permod100 used to define the model for centralized control on hot fluid velocity
with constant cold fluid velocity;

• permod200 used to define the model for fully centralized control on hot and cold
fluid velocities;

• permod300 used to define the model for non-cooperative distributed control on hot
and cold fluid velocities;

• SC used to include the constraints of the optimization problem (this function is
included in all model algorithms).

118



A.4. COUNTERCURRENT HEAT EXCHANGER

Algorithm 11 Permutador100 routine: Integrates different models for the heat exchanger

1: Begin
2: Defines the heat exchanger physical parameters:
3: L . Tube length
4: u← value . Hot fluid velocity (based upon steady-state analytical solution)
5: v← value . Cold fluid velocity (steady-state analytical solution or constant velocity)
6: a← value . Outer permutation coefficient
7: b← value . Inner permutation coefficient
8: W1 ← value . Hot fluid boundary condition
9: X0 ← value . Cold fluid boundary condition

10: nl ← value . Number of tube sections
11: dz← L/nl . Tube section length
12: α← −L ∗ a/v
13: β = −L ∗ b/u
14: A← (α ∗W1− β ∗ X0 ∗ exp(α− β))/(α− β ∗ exp(α− β))
15: B← beta/al f a ∗ (X0− A)
16: Calculates reference curves based on steady-state solution
17: z← 0 : dz : nl ∗ dz
18: wre f ← A + B ∗ exp((α− β) ∗ z) . Hot fluid reference
19: xre f ← A + α/β ∗ B ∗ exp((α− β) ∗ z) . Cold fluid reference
20: Calculates auxiliary matrices A1 to B4:
21: A1← −eye(nl) + [zeros(nl − 1, 1) eye(nl − 1, nl − 1) ; zeros(1, nl)]
22: A2← [[zeros(1, nl − 1) ; eye(nl − 1, nl − 1)] zeros(nl, 1)]
23: A3← eye(nl)− [zeros(1, nl) ; eye(nl − 1, nl)]
24: A4← [zeros(nl − 1, 1) eye(nl − 1, nl − 1) ; zeros(1, nl)]
25: B1 = [1zeros(1, nl − 1)]′

26: B2← [zeros(1, nl − 1) 1]′

27: B3← B2
28: B4← −B1
29: I ← eye(nl)
30: x0← value ∗ ones(1, nl) . Initial cold fluid temperature
31: w0← value ∗ ones(1, nl) . Initial hot fluid temperature
32: V0← 0.5 ∗ sum([x0− xre f (2 : end) w0−wre f (1 : end− 1)] ∗ [x0− xre f (2 : end) w0−

wre f (1 : end− 1)]′) ∗ dz . Initial RCLF value based on NMPC formulation
33: Integrates permod100, permod200 or permod300 depending on the type of control
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APPENDIX A. APPENDIX

Algorithm 12 permod100 routine: Integrates different models for the heat exchanger

1: Begin
2: w← y(1 : nl)
3: x ← y(nl + 1 : 2 ∗ nl)
4: u f ← y(2 ∗ nl + 1)
5: n← y(2 ∗ nl + 2)
6: ae← y(2 ∗ nl + 3)
7: s← y(2 ∗ nl + 4)
8: be← y(2 ∗ nl + 5)
9: V ← 0.5 ∗ sum([x′ − xre f (2 : end) w′ − wre f (1 : end− 1)] ∗ [x′ − xre f (2 : end) w′ −

wre f (1 : end− 1)]′) ∗ dz
10: Runs optimization routine using MATLAB fmincon function subject to the constraints.

Permod100 optimizes only hot fluid velocity, permod200 optimizes independently
hot fluid and cold fluid velocities (distributed version) and permod300 optimizes
simultaneously both velocities (fully centralized version).

11: u1← max(min(u1, upper_bound), lower_bound) . Saturates fluid velocity between
lower and upper bound

12: wp← (u1/dz ∗ A1− I ∗ b) ∗ w + A2 ∗ b ∗ x + b ∗ B1 ∗ X0 + u1/dz ∗ B2 ∗W1
13: xp← (−v/dz ∗ A3− I ∗ a1) ∗ x + A4 ∗ a1 ∗ w + B3 ∗ a1 ∗W1− v/dz ∗ B4 ∗ X0
14: Vp← sum([x′ − xre f (2 : end) w′ − wre f (1 : end− 1)] ∗ [xp ; wp]) ∗ dz
15: np← −v/dz ∗ (x(nl)− x(nl − 1)) + ae ∗ (W1− x(nl)) + value ∗ (x(nl)− n)
16: aep← value ∗ (W1− x(nl)) ∗ (x(nl)− n) . Value refers to the controller parameters

presented in table 5.2
17: sp← u1/dz ∗ (w(2)− w(1)) + be ∗ (X0− w(1)) + value ∗ (w(1)− s)
18: bep← value ∗ (X0− w(1)) ∗ (w(1)− s)
19: u f p← (−u f + u1)/value . Filtered input
20: yp← [wp ; xp ; u f p ; np ; aep ; sp ; bep ; Vp] . Output matrix
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