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Abstract 

 

Efforts have been made over the last decades in order to design and perfect In-
trusion Detection Systems (IDS). In addition to the widespread use of Intrusion Pre-
vention Systems (IPS) as perimeter defense devices in systems and networks, various 
IDS solutions are used together as elements of holistic approaches to cyber security in-
cident detection and prevention, including Network-Intrusion Detection Systems 
(NIDS) and Host-Intrusion Detection Systems (HIDS). Nevertheless, specific IDS and 
IPS technology face several effectiveness challenges to respond to the increasing scale 
and complexity of information systems and sophistication of attacks. The use of isolat-
ed IDS components, focused on one-dimensional approaches, strongly limits a com-
mon analysis based on evidence correlation. Today, most organizations’ cyber-security 
operations centers still rely on conventional SIEM (Security Information and Event 
Management) technology. However, SIEM platforms also have significant drawbacks 
in dealing with heterogeneous and specialized security event-sources, lacking the sup-
port for flexible and uniform multi-level analysis of security audit-trails involving dis-
tributed and heterogeneous systems. 

In this thesis, we propose an auditing solution that leverages on different intru-
sion detection components and synergistically combines them in a Distributed and 
Hybrid IDS (DHIDS) platform, taking advantage of their benefits while overcoming 
the effectiveness drawbacks of each one. In this approach, security events are detected 
by multiple probes forming a pervasive, heterogeneous and distributed monitoring 
environment spread over the network, integrating NIDS, HIDS and specialized 
Honeypot probing systems. Events from those heterogeneous sources are converted to 
a canonical representation format, and then conveyed through a Publish-Subscribe 
middleware to a dedicated logging and auditing system, built on top of an elastic and 
scalable document-oriented storage system. The aggregated events can then be queried 
and matched against suspicious attack signature patterns, by means of a proposed de-
clarative query-language that provides event-correlation semantics. 

Keywords:  Intrusion Detection Systems (IDS), Distributed and Hybrid IDS, Analysis of 
Audit-Trails 
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Resumo 

 

Nas ultimas décadas têm sido desenvolvidos esforços no sentido de conceber e 
aperfeiçoar Sistemas de Detecção de Intrusões (IDS). Adicionalmente ao uso difundido 
de Sistemas de Prevenção de Intrusões (IPS) como instrumentos de defesa de períme-
tro de sistemas e redes, várias soluções IDS são utilizadas em conjunto numa aborda-
gem holística na detecção e prevenção de incidentes de ciber-segurança, incluindo 
NIDS (IDS orientados para a segurança de redes - Network) e HIDS (IDS vocacionados 
para a segurança em nós – Hosts). Não obstante, a tecnologia especifica IDS e IPS, de-
fronta-se com vários problemas de eficácia na resposta às crescentes escala e complexi-
dade dos sistemas de informação e sofisticação dos ataques. O uso de componentes 
IDS isolados, focados em abordagens unidimensionais, limita a possibilidade de uma 
análise uniforme baseada na correlação de evidencias. Atualmente, os centros operaci-
onais de ciber-segurança da maioria das organizações ainda dependem da tecnologia 
convencional de gestão de informação e eventos de segurança (SIEM). Porem, as plata-
formas SIEM também têm inconvenientes significativos ao lidar com fontes de eventos 
heterogéneas e especificas, carecendo de suporte a uma analise multinível flexível e 
uniforme de registos de segurança envolvendo sistemas distribuídos e heterogéneos. 

Nesta tese, propomos uma solução de auditoria que, aproveitando diferentes 
componentes IDS, combina-os sinergicamente numa plataforma IDS híbrida e distribu-
ída (DHIDS), tirando partido dos seus benefícios enquanto mitiga as suas ineficácias 
individuais. Nesta abordagem os eventos de segurança são detectados por múltiplas 
sondas que compõem um ambiente de monitorização pervasivo, heterogéneo e distri-
buído sobre a rede, integrando NIDS, HIDS e sistemas Honeypot. Os eventos proveni-
entes destas fontes heterogéneas são convertidos para um formato de representação 
canónico e enviados através duma plataforma intermediária Publish-Subscribe para um 
sistema de dedicado de registo e auditoria que assenta numa plataforma de armaze-
namento orientada a documentos elástica e escalável. Os eventos agregados podem 
então ser consultados e comparados com padrões suspeitos de assinaturas ataques, por 
meio de uma linguagem de consulta declarativa que possibilita correlação de eventos. 

Palavras-chave:  Sistemas de Detecção de Intrusões, IDS Híbridos e Distribuídos, Analise de 
Registos de Eventos 
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 Introduction 

Intrusion attacks on networks are today’s one of the most prevalent 
threats to information security. Detection and prevention of such attacks on dif-
ferent and heterogeneous systems, as well as recovery of the caused damages, 
are key elements in an adequate holistic approach to cyber security. In these 
comprehensive approaches, different components and technology are usually 
involved, ranging from Intrusion Detection Systems (IDS), including the net-
work-based (NIDS) and the host-based (HIDS), to Intrusion Prevention Systems 
(IPS), comprising firewall systems and perimeter defense components [Stallings 
14]. 

Regarding IDS approaches, efforts have been made over the last decades 
in order to design and improve IDS solutions, either network-oriented or host-
oriented, and more recently, different combinations of both. On the other hand, 
more or less specialized IDS solutions are often used together as tools and com-
ponents in a holistic approach to incident detection and prevention. Neverthe-
less, specific IDS and IPS technology face several effectiveness challenges re-
sponding to the increasing scale and complexity of information systems, heter-
ogeneity of the technology present in datacenters, and specialization of distrib-
uted applications. Those challenges also involve the possible sophistication of 
attacks and the difficulty to establish a correlation base, covering a complete 
analysis of security incidents. However, the use of isolated IDS or IPS compo-
nents, each focused only on a one-dimensional approach to security-event de-
tection, strongly limits a common correlation analysis for a more effective re-
sponse. 

 

1 
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Intrusion attacks 

Intrusion threats can either come from outsider agents - someone external 
to organization, performing malicious activities against machines, applications 
or network components - or by insider agents - an otherwise legitimate user, 
misusing or trying to expand his or her privileges inside the system. Some-
times, these attacks also result from inadvertent activities of well-intended us-
ers by the indirect use of “malicious software components” previously installed 
as the result of past intrusions. The intent of the attacks can range from harm-
less, doing it for fun or recognition, to more obscure and harmful goals 
[Stallings14]. Nevertheless, intrusions are invariably undesirable, as they devi-
ate systems from the correct specification, and even when no sensitive infor-
mation or critical resources are present, intrusive actions may consume re-
sources that must be available for correct use and for legitimate users. 

Counter-measures against intrusions 

There are several lines of defense against intrusion threats, ranging from 
perimeter defense to in-depth intrusion detection solutions; from the hardware 
and system infrastructure level to the application-level; and from more generic 
to more specific solutions in terms of granularity analysis [Stallings14, Kauf-
man02, Anderson08].  

The first line focuses on prevention: mechanisms and services explicitly 
designed to ensure the correct use of systems and networks (IPS). In those 
mechanisms and services we include authentication and single-sign-on sys-
tems, access control, or the use of cryptography in order to protect the confiden-
tiality and the integrity of data. In the IPS category we include systems such as 
network-monitoring systems with traffic analysis and traffic-shaping functions, 
firewalls ranging from screening-routing control, packet-filtering or packet-
blocking functions to specialized application-proxy filters or specialized appli-
cation-firewalls that can include the perimeter detection of malicious traffic or 
malicious contents. Often these mechanisms, services and systems are enough 
to defeat most of the intrusion attempts. However intrusion prevention is a 
challenging security goal, as the attacker possesses an enormous advantage 
over the defender, as he just needs to find one specific weak point in the target-
ed system, in a specific time frame, to perform a successful attack; by contrast 
the defender must try to predict every possible angle of attack. Therefore, it is 
considered wise to assume that every intrusion prevention system will eventu-
ally fail. 

Based on that assumption, a second line of defence, operating inde-
pendently from the previously discussed, is materialized by the evolution of 
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Intrusion Detection Systems [Lazarevic05, Scarfone07, Axelsson00, Mitchell14]. 
As initially introduced, these systems and their implementations are primarily 
classified in two main families: Host-based IDS (or HIDS) – focused on intru-
sion-detection at the host level [AIDE, OSSEC, Tripwire, SAMHAIN] – and 
Network-based IDS (or NIDS) – focused on traffic analysis of intrusion patterns 
in network protocols [Snort, Suricata]. Their purpose is to detect attempted, in 
progress, or accomplished intrusions attacks based on suspicious signs of mali-
cious activity. These signs could be traces or signatures left by the attacks or de-
tectable anomalies in the system operation patterns.  

The IDS are configured to look for certain telltale signs, which could be 
expressed in three distinct ways:  

i. As signatures expressed by rules of non-valid patterns in the cor-
rect operation of systems and networks;  

ii. As signatures expressed as rules of valid patterns in the correct op-
eration of systems and networks; 

iii. Hybrid signatures composing the former approaches, with possible 
inclusion of admissible deviations. 

SIEM platforms 

Many organizations centralize their cyber-security operations in dedicated 
monitoring centers (usually designed as SOC - Security Operational Centers) 
and specialized cyber security incident teams. In such centers, SIEM technolo-
gy1 plays an important role, as frontline operational platforms. Despite that rel-
evant SIEM technology is today reasonably effective in the detecting and help-
ing react to frontline incidents, as Distributed Denial of Service (DDoS) attacks, 
it is becoming too common that more sophisticated attacks involve events oc-
curring in different distributed components, with different anomalous opera-
tional patterns and behaviors not immediately detected as correlated incidents. 
Also, the increasingly sophisticated intrusion techniques use aggressive and 

 
1 Security information and event management (SIEM) is a term that describes soft-
ware products and services combining security information management (SIM) and 
security event management (SEM). SIEM systems provides real-time analysis of securi-
ty alerts generated by network hardware and applications. SIEM are sold as software, 
appliances or managed services, and used to log security data and generate reports for 
compliance purposes. 
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“noisy” frontline attacks as a diversion to more surgical but subtle specific at-
tack vectors. Unfortunately, current SIEM technologies are not so effective at 
detecting long tail subtle anomalies, particularly in environments of large-scale 
distributed and heterogeneous targets, inter-related within one or more threats 
or one attack incident as the final manifestation of such threats.  

Another difficulty of conventional SIEM platforms is their specialization 
in monitoring only certain targets. In general, the existent approaches fail to 
capture incidents and events of heterogeneous sources and have significant 
drawbacks in terms of openness, extensibility and scalability. Openness limita-
tions are particularly noticed because current SIEM platforms are in general 
based on proprietary solutions. Extensibility limitations result from the fact that 
many SIEM-based monitoring platforms are not designed to evolve beyond the 
scope of specific monitoring targeted functions. Scalability issues come from the 
subjacent data-repository solutions to store events and to support query opera-
tions that are generically based on rigid storage models, such as centralized 
SQL relational databases. 

1.1 Motivation 
In general, “intrusion detection” refers to the process of identifying com-

puting or network activity that is potentially malicious, unauthorized or uncon-
sciously incorrect. This could be caused by misconfiguration of computers and 
network components including the perimeter-defense mechanisms. Most Intru-
sion Detection Systems have a common generic structure and components. The-
se consist of a probing module that monitors one or more data sources captur-
ing relevant security related events, and a processing module that applies filters 
and detection algorithms to the captured events [Stallings14]. They may or may 
not automatically react to a detected intrusion, but at least they notify the net-
work administrator.  

The following two premises broadly summarize the motivation behind ef-
fective IDS approaches: 

i. The quicker an on-going intrusion can be detected, the faster the de-
fense and recovery mechanisms can react and the lesser is the dam-
age it can produce;  

ii. The collected evidences and its subsequent investigation, allow us to 
understand and anticipate future intrusions. 

The first consideration implies fast detection based on possible real-time 
constraints. The second argument, closer related to the present dissertation, 
suggests a soft-real-time or asynchronous analysis of multi-source diverse 
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events. Also, it follows from this premises that a richer set of evidences (in di-
versity and number) contribute to a more accurate analysis from possible corre-
lations in a complete knowledge-base of the anatomy of such potential attacks 
or its possible variants. Furthermore, the information gained from IDS audit 
trails about the attacker's techniques can be used to strengthen the first line of 
defense and to refine the perimeter defenses. Another advantage is the fact that 
systems or networks known to be armed with effective IDS solutions represents 
by itself a disincentive for the attacker.  

 

Figure 1.1: Typical internetworking environment 

Current IDS technology is increasingly unable to protect the global infor-
mation infrastructure due to several problems [Stallings14a, Kumar14]: 

i. The existence of intruder attacks that cannot be detected based on single 
site observations (a single host or network segment). E.g. coordinated 
multiple attacker intrusions that require global scope for assessment. 

ii. HIDS and NIDS technology exhibit reliability problems related to the oc-
currence of false positives and failures due to possible false negatives. 
Normal variations in system behaviour and changes in attack behaviour 
may cause false detection and misidentification. 

iii. Detection of attack intention and trending, capturing correlated patterns 
and variants from previous audit trails is needed for future prevention. 

iv. Advances in automated and autonomous attacks, i.e. rapidly spreading 
worms, require quick assessment and mitigation. 
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v. The sheer volume of events in large-scale or high-speed networks with a 
large number of interconnected hosts can become overwhelming to the 
IDS, causing possible losses of relevant events; 

vi. Absence of aggregation and correlation mechanisms of multiple evi-
dences that would provide more detailed information about the attack. 

To address these problems related to the scale and reliability aspects, a 
possible direction is to consider a distributed intrusion detection platform 
(DIDS), composed by multiple HIDS and NIDS systems, cooperating in a per-
vasive and distributed intrusion monitoring environment [Kothari02, Huang09, 
Johnson14]. The addition of diversity by combining different HIDS and NIDS 
with other components providing more specific events from application-level 
analysis (for example, Honeypot systems) is expected to enhance the accuracy 
of detection reducing false positives and false negatives, resulting in a so-called 
Distributed and Hybrid IDS (DHIDS) [Mairh11, Kreibich04]. Such approaches 
require solutions to deal with the possible heterogeneity of multiple event-
sources using fast local probing solutions, and the reliable transmission of 
events to the place where they will be analysed.  

To respond to the asymmetry between effectiveness tradeoffs of IDS, IPS 
and SIEM-based monitoring platforms, and to better tackle sophisticated exter-
nal or internal attacks, cyber security auditing functions in a large organization 
must be organized around two separate but collaborative functions: frontline 
SOCs focused on short tail (from seconds to a few hours) event series, and back-
line extensible SOCs. The former functions fit more easily in the adoption of 
standard SIEM technology that works reasonably well for the main functions 
involved. The latter must be based on open source data science related technol-
ogy, focused on more subtle anomaly event streams that must be detected and 
correlated on long tail (from seconds to a few months). In the backline SOC, the 
use of scalable and highly available non-SQL data repositories is aligned in a 
direction of particular interest. 

1.2 Objectives 
In this thesis, we propose an auditing solution leveraging on different in-

trusion detection components put together and synergistically combined in a 
Distributed and Hybrid IDS (DHIDS) platform. The combination takes in ad-
vantage the benefits of different IDS component combined in a pervasive prob-
ing environment while overcoming their individual effectiveness shortcomings. 
Thus, in our DHIDS proposal, security events are detected by multiple and di-
verse probes spread over the network, integrating: NIDS and HIDS probes, as 
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well as, specialized Honeypot probing systems. Events detected by these multi-
ple sources are converted to canonical event representations, and then con-
veyed through an event publishing/subscribing middleware to a dedicated 
scalable event logging and auditing platform, built on top of an elastic and scal-
able document-oriented storage system. In this platform the detected events can 
then be aggregated, queried and matched against suspicious attack patterns, 
expressed as attack signatures by means of a declarative query-language. Ex-
pressed signatures represent query patterns allowing for the correlation analy-
sis of aggregated events, originally detected by independent sources. 

The objectives of the dissertation consist on designing, prototyping and 
testing the DHIDS proposal, addressing the identified shortcomings of the cur-
rent IDS technology in order to build an extensible large-scale monitoring envi-
ronment. The proposed DHIDS platform emerges from the following specific 
contributions: 

i. Support for a pervasive environment of probing agents spread all across 
the network, including diversity and multiplicity in the variety of agents, 
exploring or leveraging from the diversity of different technological op-
tions and specializations, including NIDS, HIDS and Honeypot solu-
tions;   

ii. Materialization of a distributed publish/subscribe middleware, support-
ing decoupling and interoperability between the diversity in the probing 
environment and the auditing system where events are analysed as au-
dit-trails of security incidents, potential threats or reported attack evi-
dences; 

iii. Materialization of an Event Monitoring and Management System, mate-
rializing an auditing platform built as an elastic auditing data repository, 
to store and to manage detected events for audit-trail analysis based on 
the aggregation and correlation of such events; 

iv. Proposal, implementation and evaluation of DHIDS-QL, a query-based 
language to express patterns used as signatures for querying security 
audit-trails, as well as a runtime to interpret and execute such queries 
over the data-repository.  

1.3 Document Organization 
The remaining of this report will be organized in the following way: chap-

ter 2 is dedicated to relevant related work regarding the different components 
of the proposed DHIDS platform; chapter 3 presents the DHIDS system model 
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and architecture; chapter 4 describes the platform prototype’s implementation 
discussing the adopted technologies and relevant challenges; chapter 5 is dedi-
cated to the experimental observation and evaluation of the implemented pro-
totype; finally the chapter 6 summarizes the main conclusions, addressing other 
open-issues and future work directions. 
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 Related Work 

In the previous chapter, we stated the thesis objectives and intended con-
tributions. Now, we present the related work regarding the different dimen-
sions involved. First, we introduce the identified dimensions; then, we present 
the respective related work references; finally, we briefly summarize the stud-
ied work from a critical analysis perspective to establish the design principles 
and main components for the DHIDS platform prototype.  

The design of our DHIDS platform involves different related work dimen-
sions that had to be conjugated for the targeted solution, namely: 

• Intrusion Detection Systems 

• IDS message exchange formats 

• Distributed IDS approaches using Honeypots 

• Message-Oriented Middleware for Event Dissemination 

• Event flow analysis and correlation 
These dimensions are addressed in the next sections, where we summa-

rize relevant related work references, following the above order. 

2.1 Intrusion Detection Systems 
An Intrusion Detection System (IDS) monitors the actions occurred in a 

system or network, looks for any suspicious activity and notifies the adminis-
trator about any unexpected actions discovered.  

2 
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2.1.1 Common Classification of IDS 
As suggested in [Stallings14], IDS solutions can be split into two main 

classes, regarding the source of the captured events: Host-based (HIDS) and 
Network-based (NIDS). The former monitors the activity that takes place on the 
host, for example state changes in the hardware, operating system, file system, 
etc. The latter is concerned about the events occurring on the network itself, in-
cluding interactions between the hosts. Both will be discussed in more detail 
next. In [Stallings 14], the notion of Distributed Intrusion Detection Systems 
(DIDS) is also introduced, a key notion for this thesis. A DIDS approach inte-
grates both HIDS and NIDS event-sources, working cooperatively, in a distrib-
uted monitoring environment. 

HIDS – Host Based Intrusion Detection Systems 

The first IDS were Host-based. Their concern is to collect data from the 
machine where they are installed, and detect signs of possible intrusions. The 
HIDS main advantage is to observe the events locally on the host, which is the 
potential starting point of an attack. They are in that sense closer to intrusion 
attack detection on computer nodes than NIDS technology, making the capture 
of events easier and more reliable. They can observe consequences of possible 
intrusion attacks, even when they are conducted by attack vectors based on en-
crypted communications. However, when operating isolated they do not have a 
global knowledge of all activities, for example they cannot be aware of an even-
tual network scan that precedes an attack, or about attacks targeting another 
host. Additionally, the task of configure HIDS on many hosts in a heterogene-
ous environment can become considerably complex.  

NIDS – Network Intrusion Detection Systems 

In order to capture and analyze network events, NIDS may be installed to 
capture packets crossing different network segments. NIDS can be running on 
hosts, dedicated appliances, as well as, in connection devices like gateways or 
routers. NIDS technology is also available as specific HW/SW appliances, op-
erating in the perimeter defense infrastructure. These components are also inte-
grated in current technology for firewalls or routers (inspecting in-
bound/outbound traffic), as well as, in managed switches (inspecting traffic 
flows in aggregation ports). The main advantage of NIDS elements is their cov-
erage, in the sense that a small number of these, strategically placed in appro-
priate network locations can monitor a large number of traffic originated or 
with destination to different hosts, even in host-heterogeneous environments.  
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There are however some limitations, which are naturally related to the 
low level at which NIDS operate. First, on heavily loaded links they may be-
come overwhelmed by the sheer volume of the passing traffic and consequently 
be forced to drop packets. Furthermore, to perform a more sophisticated analy-
sis some state information may have to be maintained, for example about ongo-
ing TCP connections, which in turn requires more memory. It becomes obvious 
that there is a trade off between performance and the range of attacks investi-
gated. Their coverage can also be impaired in a switched network environment. 
To overcome this problem, some techniques have been studied like embedding 
the sensor inside a switch or directly taping into the cables, but again the event 
loss problem remains. There are also attacks and evasion techniques that could 
be used against the NIDS. One is to launch a series of simultaneous simulated 
attacks in an effort to “snow blind” the sensor making it hard for the adminis-
trator to know which one was the real one. Another possible attack would be a 
denial of service (DoS) as the NIDS are analyzing protocols making them as 
vulnerable to DoS attack as the hosts. Additionally, there are ways for an in-
truder to bewilder the NIDS by obfuscating his actions, not showing a clear sig-
nature of an attack. For example, an intruder can perform a port scan at a very 
slow rate so the NIDS does not correlate each scan to the same occurrence, or 
use a very large number of machines to perform a distributed port scanning 
[Schupp00]. 

Finally, other problems arise regarding the use of NIDS-only approaches 
for a complete IDS strategy: with the increasing use of encryption, NIDS have 
lost access to possible significant content, hindering their ability to function 
well. Therefore, while NIDS have an important role to play, they can only be 
used effectively today as part of a broader IDS solution.  

DIDS – Distributed Intrusion Detection Systems 

HIDS and NIDS are focused on single-system intrusion detection func-
tions, usually running in stand-alone machines, developed as dedicated 
HW/SW solutions or as SW solutions running independently in different hosts. 
However, in complex internetworked environments, the actions relating to an 
intrusion incident are often distributed over multiple network segments and in 
heterogeneous hosts running different applications, and therefore could be par-
tially observed by such different components on the entire network. In a com-
plex computing infrastructure, as found in organizations or in business-
oriented data centers, it is required to defend a large distributed collection of 
hosts, as relevant assets that must be monitored in a global way.  
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Although we can mount individual defenses as counter-measures against 
possible intrusions, using multiple stand-alone IDS (HIDS and NIDS) running 
in different computers, with independent management functions, a more effec-
tive defense would take advantage of the cooperation of multiple IDS platforms 
installed and operating across the internetworked infrastructure. As identified 
by initial approaches for DIDS [Porras02], the two major requirements for their 
design are:  

1. The ability to deal with different event formats and types (HIDS and 
NIDS events), as canonical representations, with data-types originally 
obtained from heterogeneous security related audit records; 

2. Events must be obtained and efficiently transmitted with high through-
put, reliability, integrity and confidentiality, from the multiple probing 
devices installed in particularly relevant places (for example, NIDS 
probes in aggregation ports of switches or close to routers’ ports). 

Additionally, depending on the global architecture considered in the DIDS 
design and the related system model, other issues may be considered:  

• For centralized systems, a solution must be considered to avoid sin-
gle points of failures;  

• In distributed architectures, complexity comes from the requirement 
imposed by the coordination of analysis activities in more than one 
analysis node, requiring a consistent coordination.  

The typical DIDS architecture can be summarized as represented in the 
Figure 2, where different modules are defined.  

 

Figure 2.1: DIDS architecture example 
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The terminology in the Figure 2 follows the concepts and notions as de-
scribed in [Stallings14], as follow: 

• Host Monitor Agent (HMA) is a software appliance providing the prob-
ing function of a typical HIDS. Usually operating as a background process 
in a monitored system and collecting relevant data on security related 
events. It may provide local filtering, selection or aggregation capabilities 
(according to specific parameterizations). The HMA collects and selects 
data or attack-behaviors, and transmits the observed data to the CAM 
module (discussed below); 

• Network Monitor Agent (NMA) is a possible hybrid appliance, possibly 
combining hardware, firmware and software, operating in the same way 
as the HMA but focusing on the observation of events mapped from pa-
rameterized LAN traffic patterns. These agents send observed events to 
the CAM node. NMAs correspond to the probing and parameterization 
capabilities of conventional NIDS. 

• Centralized Auditing Manager (CAM) is a centralized module to process 
agents’ collected data. HMA’s and NMA’s events are received and pro-
cessed by the CAM Software Module, for auditing purposes. This involves 
the classification and correlation of events, represented as IDS auditable 
data-structures or audit trails. Auditable IDS trails can be analyzed in real-
time, or stored as persistent audit trails, for asynchronous auditing pur-
poses. 

 

Figure 2.2: Synthetic representation of a typical DIDS architecture 

The presented DIDS architecture suggests the combined use of HMAs and 
NMAs, as a cooperative and pervasive IDS solution. In this approach, NIDS 
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and HIDS are put together to form an integrated distributed auditing infra-
structure.  

We should also notice that Figure 2 (and also Figure 3), are generic repre-
sentations that map many practical DIDS approaches. From an abstract model 
definition standpoint, the presented abstraction is independent from the moni-
tored network. 

To summarize, the typical approach of different implementations of DIDS 
based on the above architectural model is a generic common base observed in 
different practical implementations. Sometimes, different authors address only 
a sub-set of that model [Wang10, Huang09, Kreibich04]. 

We must notice that a DIDS approach only using HIDS and NIDS probing 
sensors, may miss possible intrusion attacks. For example, network attacks may 
be missed, if the NIDS’s are slow to recognize that an attack is under way, or if 
throughput conditions are not satisfactory for the requirements of observed 
network traffic – a typical situation in very large internetworking environments 
and high-speed networks. Analysis of network traffic at the host level provides 
an environment in which there is much less network traffic. On the other hand, 
HIDS can make use of a richer set of data, possibly using some evidences of the 
application level, as possible inputs for event-classification. However, it is not 
expected of an HIDS to be able to process other relevant information from in-
trusions against applications, namely if these attacks have specific vulnerabili-
ties of such applications as preferential targets. 

2.1.2 Other Classification Criteria for IDS 

In literature, there are other classification criteria for IDS approaches. 
Among different differentiation criteria, we highlight the following: detection, 
timing, cooperation and reaction, as presented next. 

Detection 

There are two main methods for intrusions detection: misuse detection (or 
also called signature or rule-based detection) and anomaly detection (also called 
behavioral detection) [Johnson14]. Misuse detection uses previous knowledge 
about intrusion attacks, expressed as well-known intrusion patterns, and at-
tempts to match current behavior against those patterns. This form of detection 
is more reliable, with low false-positive rates and requiring lightweight pro-
cessing. The shortcoming is that the approach excludes unknown intrusion pat-
terns [Axelsson00a] and new rules must be designed by analysis on possible fu-
ture penetration identification patterns, requiring the work of cyber security 
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specialists and who search and infer on possible suspicious behaviors. This is 
sometimes named Statistical Anomaly Detection, involving collections of data 
relating to the behavior of legitimate machines or users, over a time interval. 
Then statistical tests are applied to observed behavior to determine with the 
highest possible certainty, whether that behavior is legitimate or not. For anom-
aly detection, two possible techniques are used: threshold-based or profile-
based detection. In the former, the detection criteria are derived from the defini-
tion of threshold values, independent of users, as metrics for frequency occur-
rence of different events. In the profile-based detection approach, a profile of 
the activity of each user is developed and used to detect changes including the 
behavior of individual accounts. In summary, statistical approaches attempt to 
define valid thresholds for the expected behavior, whereas signature-based ap-
proaches attempt to define the proper behavior [Stallings14]. 

Timing 

This criterion refers to the time when the event analysis, and consequent 
eventual intrusion alerts take place. Two methods can be distinguished: “real-
time detection” – the events are being analyzed as they occur, and “delayed de-
tection” – the events are collected for later analysis.  

Cooperation 

The cooperation criterion is used to distinguish IDS that are natively ready 
to work cooperatively with other IDS instances, for example exchanging event 
information.  

Reaction  

IDS approaches can be differentiated as reactive or passive systems [An-
derson08]. A passive IDS, simply detects potential intrusions, logging the corre-
sponding observed events and may notify the administration when it detects a 
possible intrusion. A reactive IDS (usually associated with the notion of IPS – 
Intrusion Prevention System) may automatically take action after the suspicious 
detection of intrusion activity, for example by resetting and closing connections, 
shutting down systems, changing the rules of firewalls, etc. 

2.1.3 IDS Platforms 

We will focus on a representative set of IDS platforms that fulfill the fol-
lowing requirements: 

1. Relevant, well-known and “de facto” widely used platforms; 
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2. Open-source solutions or without imposed restrictions for the possible 
use in the achievement of the thesis objectives; 

3. Effective and modular platforms for host and network -based intrusion 
detection, with minimal deployment requirements. 

Snort 

Snort [Snort] is a free and open-source NIDS capable of performing packet 
logging and real-time traffic analysis on IP networks. It was initially released in 
1998 and has benefited over the years from the contributions of a wide and 
growing developers community, evolving into a powerful tool and likely the 
most currently and widely deployed.  It runs on three distinct modes:  

• Sniffer mode, which simply reads the packets off the network and displays 
them in continuous stream; 

• Packet Logger mode, which reads and logs the packet into disk;  

• Complex and configurable mode, a mode of operating that is as a full inte-
grated stand-alone NIDS, capable of performing protocol analysis, content 
searching/matching, and able to detect a variety of attacks and probes, 
such as buffer overflows, stealth port scans, and so forth.  

Snort performs rule-based analysis and it uses a specific lightweight lan-
guage for rule description. It is also highly modularized for extensibility, 
providing a C API for the development of Plug-ins. 

Suricata 

Suricata [Suricata] is another open source solution for a rule-based NIDS 
solutions, released in 2010. One of its main features is its high performance and 
scalability provided by the multi-threaded engine built to take full advantage of 
multicore CPU’s. It provides automatic application layer protocol identification 
and the rule language expressiveness goes to level of the protocol fields. It also 
supports file identification and extraction, based on MD5 checksums. Similarly 
to Snort, Suricata was also designed to be extended by plug-ins and is accompa-
nied by developer documentation. 

OSSEC 

OSSEC [OSSEC] is an open-source rule-based HIDS capable of monitoring 
most operating systems, performing log analysis, file integrity checking, policy 
monitoring, and so forth. Its architecture resembles a distributed HIDS system 
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(not to be confused with DHIDS notion, which will be discussed later) in the 
sense that it adheres to a client-server model with distributed agents monitor-
ing several machines and a centralized manager. For strictly local deployment, 
it also can run as an all-in-one stand-alone process. The manager encapsulates a 
centralized administration console to supervise a large number of agents, file 
integrity checking databases, system logs and rules. It is also responsible for the 
analysis and correlation of events, which may result in a simple passive alert or 
the execution of an active response script, delegated to multiple hosts. 

AIDE (and Tripwire) 

AIDE (Advanced Intrusion Detection Environment) [AIDE] is developed 
as a free and open-source replacement for the HIDS Tripwire [Tripwire]. In 
terms of its sensing functionality, it is similar to the previously presented OS-
SEC. It works by taking a snapshot of the system and then when the system 
administrator runs an integrity check it detects, by comparison, the modifica-
tions, producing a report.  

Summary 

The following table summarizes the characterization of the presented sys-
tems, regarding the criteria introduced earlier. 

Table 2.1: Classification of IDS platforms 

IDS Data 
Source 

Detection 
Method 

Cooperation 
/Extensibility 

Detection 
Time 

Reaction 

Snort Network 
(NIDS) 

Rule/Signature 
based 

Prepared for the addi-
tion of Plug-ins 

Real-time Passive alert 

Suricata Network 
(NIDS) 

Rule/Signature 
based 

Prepared for the addi-
tion of Plug-ins 

Real-time Passive alert 

OSSEC Host 
(HIDS) 

Rule/Signature 
based 

Agent-Manager archit. / 
not extendible 

Real-time Passive alert / 
Active response 

AIDE Host 
(HIDS) 

Rule/Signature 
based 

Insufficient documenta-
tion 

Delayed 
Detection 

Produces an 
integrity report 

2.2 IDS Message Exchange Formats 
In order to facilitate the development and interoperability of DIDS across 

a wide range of platforms and internetworked environments, it is required the 
definition and adoption of a standard, namely at the level of interoperable mes-
sage-type formats carrying alerts or notifications corresponding to events, as 
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well as remote parameterization commands. With particular emphasis on 
TCP/IP based environments, the IETF Intrusion Detection Platforms Working 
Group [IETF-IDWG], established since 2007, has defined relevant standardiza-
tion of data-formats and exchange procedures. The most suitable standards for 
a DIDS or IDS cooperative approach are presented next [Stallings14]: 

1. The Intrusion Detection Message Exchange Format (IDMEF) [RFC4766] 
defines the requirements, unifying terminology and an abstract defini-
tion for IDMEF messages;  

2. The IDMEF-XML based definition [RFC4765] refers to an IDMEF data 
model, supported by a XML Document Type Definition and providing 
integration examples for interoperability;  

3. The Intrusion Detection Exchange Protocol or IDXP [RFC4767] sup-
ports IDMEF interoperability on top of TCP transport, defined as an 
application-level protocol for exchanging data between intrusion de-
tection entities in a DIDS model.  

Another possible approach is to support IDMEF-messages as secure ob-
jects transported by SSL or HTTPS (as a IDXP/SSL proposal). Different imple-
mentations for processing RFC 4765 compliant XML-IDMEF are today freely 
available in a variety of languages, including C, C++, Python and Java (e.g. 
[IDMF-Java]), which simplifies the adoption of the format in many research 
contributions and projects. 

2.3 Distributed IDS Approaches Using Honeypots 
Intrusion detection techniques can be categorized according to the inher-

ent type of analysis: misuse signature-based detection and anomaly detection. 
Misuse signature detection requires the previous knowledge about known at-
tacks and matches current behavior against the defined attack patterns. It has 
the advantage that known attacks can be detected reliably and in general with 
low false positive rates. The shortcoming is that it cannot detect unknown and 
unspecified attacks. However, the introduction of Honeypots can help solving 
this problem [Qiao13], as it can detect an unknown attack, by the simple fact 
that it was “touched”. 

As stated previously (in 1.2), this thesis objectives focus on the design and 
creation of an enhanced DIDS architecture in order to deal with the conjugation 
of reliability, scalability and attack coverage dimensions of the intrusion detec-
tion problem. In this vision, diverse components must be combined in hybrid 
architectures. The heterogeneity of data sources (NIDS, HIDS and Honeypots) 
will result in broader attack range coverage. This extended notion of a DIDS ar-
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chitecture gives origin to a new term: DHIDS – Distributed and Hybrid IDS. In 
a DHIDS, the pervasiveness and multiplicity of sensors will promote the scala-
bility of the solution and reliability on event collection. Additionally, the diver-
sity in IDS platforms used will contribute to the event capturing reliability, as 
one system may be better suited to detected one specific kind of event and vice-
versa.  

Next, we delve deeper into the concept of Honeypot and after that follows 
a brief discussion of some concrete implemented Honeypot systems. 

2.3.1 Honeypots 

A Honeypot is defined as an information system resource whose purpose 
lies in detection of unauthorized or illicit use of that resource [Maihr11]. They 
are materialized by programs, machines or systems on a network, as bait for 
potential attackers, purposely built to attract and deceive them. Honeypots 
mimic real systems but don't contain, real operation data [Gollman11]. They try 
to feel and capture details of the attacker’s intentions. When a Honeypot is 
“touched”, the captured information can be then used to learn about the attack-
er’s tactics, intentions and tools, for future consideration [Kreibich04]. The main 
difference between an IDS and a Honeypot is that the IDS just parses base activ-
ity logs (and respective type data) and selectively reports events that might be 
indicative of a potential intrusion; while a Honeypot is a decoy system, set up 
with deliberate weaknesses or vulnerabilities and usually announced with a 
high profile. In some sense, Honeypots are prevention systems that can gener-
ate active countermeasures against a discovered threat. At the same time, 
Honeypots present a way to gain insight into the process of an attack; while an 
IDS simply notifies that the attack happened. 

Honeypots can engage in sessions with attackers at different levels of in-
teraction and in the literature different approaches are usually characterized ac-
cording to main interaction criteria [Maihr11]: LIH (Low Interaction Honey-
pots) or HIH (High Interaction Honeypots). LIH’s are those related to the detec-
tion of automated attacks, while HIH’s are focused in the support of detailed 
analysis of the behaviors of malware/attackers. In a LIH approach, Honeypots 
offer basic emulations of functions or vulnerabilities of some software services 
or operating systems. Complete honeypot solutions can deceive the attacker 
leading her/him to think that is interacting with a real system, but this requires 
an high degree of completeness of the honeypot in a possible emulation of a 
complex system. If this is not the case, the attacker can quickly identify that 
she/he is “speaking” or “touching” a Honeypot system. Furthermore, the de-
velopment of Honeypot technology has also been accompanied by the devel-
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opment and availability of tools, to detect Honeypots. Then, in HIH approach-
es, the more sophisticated the emulation becomes, the more types of interaction 
behavior can be observed and logged. HIH technology involves many times 
replicas of real services (indistinguishable form the real operation services), but 
with fake data. The more interactions made possible, the greater is also the 
danger that the attacker can also misuse the Honeypot itself, as a staging post 
for launching attacks against other critical systems. 

2.3.2 Honeypot Implementations 

There are different implementations of Honeypot systems, in the commer-
cial and in the free software world, with many available systems reported in 
recent surveys [Wang10]. The challenge behind the development of different 
solutions for Honeypots has been strongly inspired by three major challenges: 
(1) the construction of convincing Honeypots and Honeynets [Wang10], in par-
ticular when the supported behavior at the application level should be investi-
gated (2) the protection of Honeypots themselves and (3) the extraction of novel 
attacks from the monitored behavior. 

There are some relevant Honeypot systems, usually described in the litera-
ture as practical approaches for the emulation of application-level protocols, 
(e.g.: [Kippo, Dionaea]). However, more sophisticated honeypots to completely 
emulate the behavior of specific applications require in general a complete rep-
lica of the targeted application, with a similar behavior regarded from outside, 
but without real production data. 

2.4 Message Oriented Middleware Systems 
One relevant component for the DHIDS architecture is the Message Ori-

ented Middleware (MOM) substrate for the dissemination of events. We stud-
ied different candidate solutions, focusing on publish/subscribe event-bus sys-
tems used for interoperability in enterprise-application platforms.  

MOM systems are typically offered since the 90s as products from differ-
ent vendors, such as IBM MQSeries [Lewis99], Oracle Advanced Queuing [Ora-
cleAQ] or Microsoft MQ [MSMQ]. In general, MOM platforms fall into two main 
categories [Birman05]:  

1. Provisioning of network access to conventional mainframe systems and 
other forms of batch message delivery services when client-applications 
want to send messages to servers that are busy, overloaded or not cur-
rently running;  
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2. Message-dissemination middleware systems used as a high-level asyn-
chronous message passing abstraction for direct use in the integration of 
applications.  

Independently of the environment for which MOM products are more di-
rectly targeted, there are some common design principles. First of all is the 
asynchronous nature of the communication model, in the sense that the sending 
of a request to the remote destination is decoupled from the handling of its re-
ply – as if one were sending mail to a remote server which will later send mail 
back containing the results of some inquiry. Second point is concerned with 
persistency support, mainly because the decoupling between requests and re-
plies must consider also the possibility to deal with non-availability of the des-
tination. This also relates with an intrinsic reliability support provided by such 
platforms, if it guarantees to reschedule the delivering of internally stored mes-
sages when the destination is available again or repeating the sequence in the 
opposite direction when a possible replay is sent back. A third issue is related in 
providing a well-defined request/reply API, with options to deal with different 
situations. These include: priority levels in message dispatching, flow-control, 
queue management functions, load-balancing when several processes consume 
from the same queues, security support allowing for message authentication, 
integrity and confidentiality guarantees, and fault-tolerance for long-running 
applications. 

For our DHIDS approach, a MOM-oriented middleware is particularly in-
teresting in the sense that it decouples the distributed pervasive intrusion-
detection probes from the auditing platform where the detected events will be 
stored and managed for auditing purposes. In the envisaged solution is particu-
larly relevant the use of a scalable event-bus architecture, where the MOM API 
is regarded as an event publish/subscribe substrate.  

Publish/Subscribe (or Message-Bus) architectures are in most respects 
very similar to asynchronous messaging systems and may be supported by 
conventional MOM platforms [Birman05, Eugster03]. The only significant dif-
ference is that message-bus protocols tend to be optimized for high-speed, us-
ing broadcast hardware for example, and they typically deliver messages as 
soon as they reach their subscribing destinations, through some form of up-call 
to the application processes. Examples of message-bus architectures were im-
plemented in well-know systems such as TIBCO Rendezvous [Okie93]. However 
the requirements of scalability, reliability, security, persistence and perfor-
mance for the operation of such platforms in the internet-scale, originated the 
design of a new generation of message-oriented publish/subscribe systems, for 
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fast-event dissemination purposes and remote event log processing. Among 
these systems, we consider systems such as Rabbit MQ [RabbitMQ], Amazon 
SQS [AmzonSQS], HornetQ [HornetQ], MongoDB [MongoDB] or Apache Kafka 
[Kreps11]. These systems can be studied from different classes of criteria as 
usually addressed for extensive comparative purposes of Message-Bus systems 
[Eugster03]. 

As a starting point, any of the above solutions can be regarded as a good 
candidate. All of them address the base decoupling support considering space 
and time criteria, as well as, synchronization conditions and reliability guaran-
tees. Anyway, to drive a rational for the choice of the best one, several other re-
quirements must be particularly taken into account. Some of the requirements 
can be analyzed from a comparative analysis of the different solutions. Other 
requirements are imposed by external conditions. We established the following 
order of main criteria for our analysis and our final choice:  

1. High persistence 
2. Possibility of scale out (in a possible cluster solution) 
3. Adequate performance and event throughput  
4. Publish/subscribe API for fast integration with Logstash [Logstash] (an 

“event-manager” used in the CAM) 

From a study previously addressed on the candidate solutions for the the-
sis preparation phase (out of scope of the dissertation itself) [Costa14] and from 
complementary observations on published work on the evaluation of the differ-
ent candidate solutions [Eugster03], we summarize the main issues behind the 
decision to use the RabbitMQ platform. RabbitMQ exhibited the best conditions 
for high-persistency guarantees, with a possible deployment using a cluster-
based architecture, as well as, good indicators in disk access processing and 
communication throughput, addressing also our second requirement. 

According to [Costa14], HornetQ has good performance and provides a 
rich messaging interface with different routing options, offering different tun-
ing alternatives for message scheduling. Although these advantages, the gains 
in performance are not considerably better when compared with RabbitMQ or 
Amazon SQS. As a tradeoff, HornetQ don’t have support for scalability. Mon-
goDB, support replicated message queues for scalability, but comparatively it 
appears as the worst solution in terms of performance. Kafka appears in differ-
ent comparisons as the best solution for performance, but the gains compared 
with RabbitMQ or SQS are not so considerable for our expected input require-
ments. Amazon SQS can be comparable with Kafka in performance when multi-
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ple SQS nodes are used, but to achieve the same performance more resources 
are required. On the other hand, SQS is a solution especially designed for the 
AWS cloud, with minimal setup required for AWS cloud-based applications (an 
interesting issue but not particularly relevant for us). 

Considering the criteria more directly related to external conditions, Rab-
bitMQ is seamlessly compatible with Logstash. Additionaly, RabbitMQ is well-
known and already adopted in the context of ongoing research collaboration 
projects involving the NOVA LINCS Research Center and its Computer Sys-
tems Group and external industrial partners (e.g., Amazon AWS and Portugal 
Telecom), namely in the domain of event-dissemination in the context of cyber-
security auditing tools.  

From the previous analysis and a the study on performance of different 
adoptable MOM solutions [Costa14] we decided to use RabbitMQ as the best 
balance on the different above tradeoffs, as the reference solution to leverage 
the development and materialization of the DHIDS event-dissemination sub-
strate2. At the same time, RabbitMQ can support transparently the event-
dissemination process over HTTP or HTTPS over TLS v2, allowing for its trans-
parent use in internetworking security environments, with no changes for ex-
ample in firewall management policies and configurations. 

2.5 Event Flow Analysis Methods  
This segment is dedicated to the study of event logs processing and analy-

sis approaches. It includes the following topics: 

• Analysis of events based on information flow control,  

 
2 This decision was made during the thesis preparation phase as the result of previous 
specific assessment criteria involving different alternatives [Costa14], and due to other 
institutional reasons indirectly related to the specific context of the thesis. These relate 
to other ongoing projects being developed in PT Comunicações S.A. in the direction of 
design options to build and to consolidate a common MQS infrastructure that must be 
shared by different SIEM monitoring platforms. In the context of a collaboration and 
partnership between DI/FCT/UNL and PT Comunicações S.A., it was decided that the 
contributions of this thesis would be aligned with that standardization effort, as a step 
to align the implementation effort in the thesis elaboration with the future possible 
adoption of the thesis’ contributions in the context of PT Comunicações S.A. 
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• Event tracing in systems oriented for dynamic instrumentation,  

• Event flow processing in stream databases and,  

• Event processing systems specifically oriented to intrusion detec-
tion. 

2.5.1 Event Analysis Based on Information Flow Control 

Information flow is the process of information transference from one place 
to another. That could be for example, data read from a file by a process or an 
object shared between different processes. In this context, Information Flow 
Control is a technique used to trace the information flow inside a system, as ex-
plained in [Blankstein11]. In short, this consists of tagging each piece of data in 
the system with security labels, which are sets of tags. The processes manipulat-
ing this same data object become “contaminated" (associated) with these tags 
and as processes communicate with each other, tags flow accordingly.  

In [Blankstein11] the author presents a system for analyzing security event 
logs, also called audit trails. This is designed to run on top of an already exist-
ing distributed security platform named Aeolus that generates audit trails fol-
lowing an information flow control scheme. The idea is to gather these audit 
trails generated by Aeolus, represent them using a convenient model (preserv-
ing the information flow relationships) and export an interface that facilitates an 
efficient further analysis of these events in order to detect and trace information 
misuses. The system supports two distinct features. First, it provides an inter-
face for directly querying past events, using SQL. The second is a publish-
subscribe interface for registering watchers for receiving, in (almost) real time, 
events that match pre-specified filters. A watcher is a client object that receives 
event notification from a logging facility. Upon registration, the watcher sup-
plies the logging server with some filters that define the events he is interested 
in, expressed using a domain-specific language. 

The presented system deals with events produced by a distributed plat-
form that monitors the user processes running on top of it. Our source of events 
is the probing agents (acting like sensors) running IDS software and forming a 
pervasive mesh in the network. The concept of the watchers as a client objects 
and the language used for event filtering provides us meaningful inspiration as 
we face similar challenges. Although, we intend to go one step further, as we do 
not only want to filter events individually but also determine correlations be-
tween them (this aspect will be further studied in 2.5.3 – Stream Processing En-
gines). 
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2.5.2 Event-tracing in Dynamic Instrumentation 

Instrumentation refers to the techniques of implanting blocks of code into 
a program in order to monitor its behavior as it executes (e.g. to measure its 
performance, diagnose errors or write logs). Dynamic instrumentation means 
that it occurs at run-time as opposed to static instrumentation where the analy-
sis code is injected (and the executable rewritten) before the program runs. 
Event tracing in active log monitoring environments is related to work focused 
in generic solutions found in dynamic instrumentation systems. These systems 
require interfaces for specifying events to monitor (as dynamic configurable fil-
ters) and actions to take. Conceptually, instrumentation consists of two compo-
nents: the code that is executed at each instrumentation point and a mechanism 
that decides where to insert the analysis code. We are interested in studying 
specifically the latter. Many techniques for dynamic instrumentation and event 
tracing systems are available in the literature, from which we studied a repre-
sentative set. 

Pin [Luk05] is a framework for dynamic binary instrumentation, which 
enables the creation of customized dynamic analysis tools, known as Pintools. 
These specify code (written in C/C++) to insert in arbitrary places of the target 
program. This is done by intercepting each binary instruction of the executable, 
and generating and running identical code “on-the-fly”, providing the oppor-
tunity for the Pintool to run its own code. The original target application code is 
only used as reference and the code that actually runs is the one generated by 
Pin. The interface provided to user is by means of a hook function in the Pintool 
that is called by Pin every time a new instruction is encountered. The user can 
then inspect the instruction and specify actions to be executed.  

DynamoRIO [Bruening03] is a dynamic tool for runtime code manipula-
tion. This resembles the previously studied, Pin. It exports an interface for 
building dynamic customized tools where the client supplies the specific hook 
functions to deal with the events. On the other hand, it is not limited to the in-
sertion of instruction points (i.e. adding code), as it also allows for arbitrary 
modifications to the instructions. Furthermore, the granularity regarding the 
generation of events also differs, as it notifies the client for each straight-line 
code sequence (or basic block) as opposed to generating an event for each in-
struction. 

DTrace [Cantrill04] is a dynamic instrumentation and monitoring plat-
form. Several instrumentation methods are supported, one of them being “sys-
tem call tracing”, which allows the user to place instrumentation points at the 
entry and return of any system call invoked in a single host. To specify which 
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system calls should be instrumented and what actions are to be executed, it us-
es a C-like domain-specific language (or DSL).  

AspectJ [Kiczales01] is an extension of Java for aspect-oriented program-
ming. Its relevancy for this section is motivated by one of the its features - dy-
namic crosscutting - which makes it possible to instrument java code, be it our 
own code, for enhanced modularity, or already compiled classes. There are sev-
eral possible well-defined points of insertion - designated by join points - which 
represent specific occurrences in the program execution, for example when a 
method call is received by the target object or when an object is initialized. The 
injected code is specified in a method-like structure where the signature con-
tains an expression that matches one or many join points. 

2.5.3 Stream Processing Engines 

Stream processing engines (SPE) are systems whose purpose is to address 
some of the limitations of the traditional database management systems 
(DBMS) in order to better suit stream-oriented applications, like monitoring 
applications. As opposed to business-oriented applications, monitoring applica-
tions have to deal with large continuous streams of events, usually real-time, 
and to perform computations such as filtering – remove unwanted events; cor-
relation – detect patterns across different events; and aggregation – compute 
aggregation functions values. These requirements render the typical DBMS un-
suitable for the task of process high-volume data streams in order to extract 
useful and actionable information to monitoring applications in real-time. The 
solution we propose is also in its essence a monitoring system, intended to pro-
cess continuous streams of events, originating from multiple sources, and ana-
lyze them based on correlations between each other. In that sense, SPE’s are 
closely related to our problem. In this class of systems, there are many different 
and relevant approaches. Here, we focus on a representative subset. 

Aurora and Borealis are two similar and related SPE’s presented in [Ab-
adi03] and [Abadi05] respectively. In both approaches, the queries over streams 
are expressed in the form of data flows, known as query diagrams. These are 
“boxes and arrows” diagrams, composed by multiple operators, and can be ex-
pressed and stored in a XML file. There are two kinds of operators: stateless op-
erators - meaning they perform operations one tuple at a time maintaining no 
state between tuples - and stateful operators - which rather than processing tu-
ples in isolation, perform computation over groups of input tuples. A relevant 
feature of stateful operators is the possibility of processing windows of data 
that move with time, in which both the window size and the sliding increment 
are parameterizations. Besides extending some of the functionality introduced 
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by its predecessor Aurora, the main idea behind Borealis is to perform stream 
processing in a distributed and scalable manner. Borealis also allows for dynam-
ically modifying queries and to “time travel” in order to query past events. 

Cayuga and SASE+, presented in [Demers07] and [Agrawal08], are inter-
esting approaches on this topic, offering rich query languages for matching 
complex event patterns. The idea of Cayuga is to provide a general-purpose sys-
tem for high performance, on-line pattern matching of complex events on a 
large scale, offering an expressive and composable query model. Queries ad-
here to the publish-subscribe paradigm, each representing a pattern of events 
and publishing it under a given name that a client may subscribe to, or that can 
be used as input for another query. They are expressed in an SQL-like syntax 
but introducing some interesting new constructs, allowing to correlate events 
over time. SASE+ shares mainly the same claims as Cayuga. Despite the lan-
guage differences, it also provides a rich declarative language for event correla-
tion and an efficient implementation for high throughput. SASE+ provides a 
very powerful and elegant declarative language for pattern matching over 
event streams, presented in [Agrawal08, Diao07], which we find quite adapta-
ble to our vision and which is worth highlighting. This contains constructs for 
expressing sequences of events, Kleene closures (an indefinite number of simi-
lar events), event negation (test for its absence) and event filtering techniques 

Relating to our own system, we do not use any of these solutions directly 
in our event processing as we choose to use a distributed and elastic event stor-
age system instead, promoting scalability. Nevertheless, these approaches pro-
vide invaluable inspiration and a model for our own pattern matching system, 
as we will see in chapter 3. It is also worth mentioning that our approach is not 
particularly targeted for real time event processing and analysis, but more for 
deferred analysis of previously stored auditable event trails. 

2.5.4 Event-Flow Processing Applied to Intrusion Detection 
This thesis objectives include the exploration of an event-flow processing 

technique to support querying and analysis of the audit trails corresponding to 
those events. There has been some significant work regarding the processing of 
audit-trails in the context of intrusion detection and recovery platforms. Be-
tween those, we emphasize the references below. 

RETRO [Kim10] is an intrusion recovery system. In RETRO, after an in-
trusion is discovered (by the network administrator, perhaps with the help of 
an IDS, or by noticing a suspicious file, or by other means), usually some ac-
tions must be taken in order to undo the effects of the attack. In other words, 
the system must be restored to a state that mirrors the system as if the attack 
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had never happened, loosing none of the legitimate information and modifica-
tions in the meantime. RETRO’s solution is to periodically make checkpoints of 
the system state and to log all the subsequent actions, in the form of a directed 
acyclic graph (DAG), which it then uses to trace an intrusion incident to its 
origin. From there, it uses rollbacks and re-execution in order to repair just the 
compromised objects in the system, with minimum user input. The graph rep-
resents the system execution history over time. In the graph, nodes represent 
the system objects, like files and processes and each edge represents an action 
by an object over other, for example a process writing to a file. An action has a 
set of dependencies which are the objects accessed or modified by it.  

BackTracker [King05] is another approach based on DAG’s to trace a de-
tected intrusion to its origin point. The system analyzes operating system 
events from system logs, to determine the source of a given intrusion on a sin-
gle system (by looking for targeted intrusion patterns in the persistent logs). 
The events are then represented as nodes in a DAG, where each edge in the 
graph represents a causal relationship between the nodes. When an intrusion is 
discovered, BackTracker traverses the event DAG backwards from that discov-
ery point searching for the source of the intrusion. 

Summary. What we found most relevant in the RETRO and Backtracker 
approaches, considering the context of our work, is the graph model used and 
the analysis in pursuance of the origin of the intrusion. Our system must be 
able to analyze events occurring across a distributed set of IDS sources. Conse-
quently, backtracking graph analysis is more difficult because we must deal 
with different audit logs and these logs may branch significantly. For example, 
a user may want to trace the source of a “write event to a file” but also “a spe-
cific TCP packet” in a network segment supporting a SSH session related to that 
write. The analysis starts by examining the process that wrote to the file and 
any inputs to that process could have contributed to the write. These inputs 
could be file reads, remote procedure calls, accesses to shared state, or startup 
parameters and we must follow from this if events are related to a remote SSH 
session logged in the system and traced in a network segment where the host is 
located. Those inputs require further analysis of what processes and what net-
work traffic may have affected them. Additionally, our solution should offer 
query support for audit trails, expressed as potential attack signatures.  

There are some important differences comparing our objectives with the 
previous approaches: the analysis performed in the BackTracker proposal is also 
different from active monitoring or direct querying. While our envisaged plat-
form is more focused on discovering misuses or violations from defined pat-
terns expressed as “malicious activity patterns”, the BackTracker approach is 
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more concerned with discovering how specific misuses occurred in a specific 
node. This idea is suitable for our approach. Despite that in our case we have 
the additional problem of dealing with multiple distributed heterogeneous 
NIDS and HIDS sources (as a Distributed and Hybrid Intrusion detection Plat-
form), requiring some form of previous local “filtering” functionality, as well 
as, previous event-type conversion, before the adoption of a global graph repre-
sentation, as proposed in the BackTracker system. Similarly, the RETRO system 
was not particularly designed as an Intrusion Detection system. 

2.6 Related Work Summary and the DHIDS Approach  
Revisiting the generic DHIDS architecture, as previously represented in 

Figure 2.2, we have addressed the initially identified dimensions regarding the 
design and implementation of a DHIDS prototype using diverse probing devic-
es to materialize a distributed and pervasive probing environment. We will 
now highlight the lessons learned from this chapter as a starting point for our 
DHIDS design model. 

We began to study a representative set of the IDS implementations now 
available, which can be leveraged in a heterogeneous and pervasive monitoring 
environment. These included NIDS – where Suricata [Suricata] and Snort [Snort] 
have demonstrated to be viable options as implementations instances of NMA 
components in our conceptual architecture, running in dedicated small devices 
(e.g. RaspberryPi); and HIDS – installed in potential target machines as imple-
mentation instances of HMA components (e.g. Tripwire [Tripwire], AIDE 
[AIDE] and OSSEC [OSSEC]). Then, we demonstrated that Honeypots could be 
a valuable addition to that same heterogeneous monitoring structure. 

This pervasive DHIDS architectural model, promotes the extensibility, 
scalability and availability attributes. For it to be effective, the appropriate con-
ditions for reliability and persistence of detected events must be ensured, until 
they reach the CAM for later analysis. For the purpose, we addressed the im-
plementation of the Message Oriented Middleware substrate leveraging the 
RabbitMQ system and implementing adapters for IDMS event-formats. As we 
will explain in the DHIDS system model (described in chapter 3) and imple-
mentation (in chapter 4), we used the IDMEF base standard, adopting a JSON 
data-model for the implementation of the base IDMEF-XML data-model speci-
fication [RFC4765]. 

The Central Auditing Manager (as defined in the conceptual architecture) 
subscribes IDMEF events notified by all above IDS (NMA and HMA) and 
Honeypot components. For the CAM level, we designed a query based analysis 
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environment on top of an elastic document-oriented event storage system. The 
stored events can then be matched against known attack-signature patterns by 
means of a declarative DSL (presented in chapter 3). The studied stream pro-
cessing engines (specifically Cayuga [Demers07] and SASE+ [Agrawal08, Di-
ao07]) provided the general model for that language. 
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 System Model and Architecture 

This chapter presents the system model and the architecture for the pro-
posed Distributed and Hybrid Intrusion Detection System (DHIDS) – we will 
name it so from now on. In this chapter, we focus on the design considerations 
and related specifications. Later, on chapter 4, we will describe the specific im-
plementation options for the DHIDS prototype.  

We begin with the overview of the DHIDS design model and architecture 
in section 3.1, followed by an explanation in more detail of each component, 
namely the Pervasive Probing Environment (explained in section 3.2), the Event 
Dissemination Platform (section 3.3) and the Event Monitoring and Manage-
ment System (explained in section 3.4). Finally, we present the design and spec-
ification of the DHIDS Query Language (DHIDS-QL) for attack-signature ex-
pression. 

3.1 System Architecture Overview 
The DHIDS system is conceptually divided in three parts, as represented 

in Figure 3.1: the Pervasive Probing Environment, the Event Dissemination 
Platform and the Event Monitoring and Management System.  

The Pervasive Probing Environment comprises a set of independent and 
heterogeneous probing agents spread over the network, observing and captur-
ing security-related events according to their specialization and local configura-
tion. The relevant events detected are then encapsulated in a common format 
and dispatched to the Event Dissemination Platform. 

3 
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Figure 3.1: System macro-components overview 

Conceptually, the Event Dissemination Platform is designed as an event-
bus, publish/subscribe substrate for the entire DHIDS architecture, providing 
reliable and asynchronous delivery (with persistency message-queuing proper-
ties). Published events are subscribed by the Event Monitoring and Manage-
ment System (EMMS), specifically by the Event Manager and are then merged 
and stored in a scalable logging system. This logs and maintains agent-detected 
events, and results of “a posteriori” aggregations of correlated events. Then, 
these events can be queried according to known intrusion attack patterns or 
suspicious behaviors, expressed in DHIDS-QL. These queries are interpreted 
and executed over the elastic log by the Event Analysis Module.  

3.2 Probing Agents 
The Pervasive Probing Environment is composed by “in-the-field” agents, 

whose function is to collect data. Agents can act as NMA, HMA or honeypots. 
Therefore, the placement strategy in the network for the specialized probing 
agents is a key decision of system and network administrators, as it has implica-
tions on the span of detectable activity patterns. 

3.2.1 Classes of Agents 

Regarding the conceptual characterization and specialization of agents, 
our DHIDS approach adopts the DIDS terminology used in [Stallings14], with 
the addition of another category – the Honeypot. The diversity of the probing 
environment is described as follows, using the notion of classes of agents, 
namely: NMA, HMA and Honeypots. 
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• Network Management Agents (NMA) capture the traffic-related events 
occurring on a network segment. These are the conceptual equivalent to 
the sensor capabilities of typical NIDS platforms. According to its spe-
cializations, NMAs materialize on-line NIDS-based probing functionali-
ty, to deal with the network observation in real time. This may include 
traffic analysis at different protocol levels, and filtering based on local 
configuration rules to decide if an event is relevant to be sent to the 
EMMS. 

• Host Management Agents (HMA) capture events occurring on specific 
hosts. HMAs correspond to the probing capabilities of HIDS solutions in 
monitoring the internals dynamic behavior and state of a system. They 
may detect which program accesses what resources. For example, it can 
be detected that a specific process has suddenly and inexplicably started, 
modifying the system resources (for example the password database or 
security critical configurations). So, depending on each specific material-
ization, HMAs may look at the state of the system, its stored information, 
monitor local log files and check that the contents of these appear as ex-
pected. Each HMA in the DHIDS platform, according to its specializa-
tion, monitors whether anything or anyone, whether internal or external, 
has circumvented expected system's security policies. 

• Honeypots are systems purposely deployed as bait for potential attack-
ers. It simulates a potential target while firing security events as noticea-
ble evidences when anyone interacts with it. Therefore, Honeypot agents 
are related to the typical event-logging capabilities of specific Honeypot 
systems, as introduced in section 2.5. 

We must notice that each of these classes is associated with a specific func-
tion and agent specialization. We can also have diversity of different im-
plementations for the same function. For this reason, our conceptual model 
for DHIDS includes this diversity dimension, which is particularly related to 
the heterogeneity of the probing base, captured by the word “Hybrid” in 
DHIDS. 

3.2.2 Generic Agent Architecture 

As DHIDS components, each probing agent (independently of their spe-
cialization) can be abstractly viewed as generic architecture composed by four 
sub-components, as represented in Figure 3.2: 
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Figure 3.2: Generic agent’s internal architecture 

• Sensor: It is the agent’s data collecting component. It gathers information 
(potential intrusion evidence) from the environment where it is implant-
ed. Examples of input data could be network packets, system logs, appli-
cation logs, etc. 

• Filter: The events collected by the sensor are then handed to a filtering 
component set by a local parameterization interface to specify rules. It 
selects or discards each element of the captured data set, and returns a 
subset of the observed events according to defined rules.  

• Formatter: The events are then passed to a formatting component re-
sponsible for the standardization and encapsulation of the event data in-
to the message format as required to satisfy the interoperability model 
supported by the defined IDMEF message format specification 
[RFC4765].  

• Publisher: This component implements the publishing interface with the 
Event Dissemination Platform and is responsible for all the necessary 
steps to publish the captured, filtered and formatted events. 

3.3 Event Dissemination Platform 
As initially presented, the Event Dissemination Platform is a highly scala-

ble “event bus” responsible for the carriage of events in the DHIDS platform. It 
is supported by a message-queuing substrate providing a publish-subscribe in-
terface. The messages comply with the IDMEF interoperability model (de-
scribed in section 3.3.2). 

3.3.1 Requirements for the Message Queuing Support  

The Event Dissemination Platform simultaneously supports decoupling, 
reliability and scalability. These characteristics result in several tangible bene-
fits.  
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It facilitates the growth of the Pervasive Probing Environment, simplifying 
the addition of new specialized probing agents, as long as they support the de-
fined message interoperability model and the implementation of the publishing 
interface. As the agent network and consequently the volume of events grow, 
the dissemination platform should scale accordingly. Decoupling also promotes 
the future interoperability with other systems. 

Asynchronous message queuing with persistency is a desirable feature 
considering that the Pervasive Probing Environment on one side and the Event 
Monitoring and Management System on the other side, can publish and sub-
scribe the events, each at its own pace, and events are not lost in between. 

It also has the added benefit of facilitating the implementation of different 
queuing policies if needed, for example based on priority, to tweak the system 
performance. 

Of course, to prevent the system from becoming itself target of attack, the 
Event Dissemination Platform must to be supported by secure message-
queuing channels. Specifically all the communications should be SSL-encrypted 
safeguarding the dimensions of confidentiality, integrity and authenticity of 
messages. For this purpose, the required public key infrastructure (PKI) should 
be in place and complying with the X.509 standard, in order to support public-
key certificates used by all the components involved in publishing and sub-
scribing the disseminated events. 

3.3.2 Interoperability Model 

The interoperability model for the DHIDS Event Dissemination Platform 
complies with the IDMEF standard [RFC4765] (Intrusion Detection Message 
Exchange Format). Event messages moving through the event bus should be 
encapsulated into this format, as the canonical representation of events pub-
lished by the agents and subscribed by the Event Monitoring and Management 
System. 

The IDMEF standard was adopted as the interoperability reference in or-
der to enable the potential interoperability between commercial, open-source, 
and research systems, allowing for the integration of different components into 
the same IDS solution. This also has the advantage of facilitating the extension 
of the DHIDS Probing ecosystem. Figure 3.3 generically represents the structure 
of the IDMEF message model.  
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Figure 3.3: RFC4765 IDMEF message model 

Due to the heterogeneity inherent to all kinds of security-related messages 
and alerts, a universal data model has to allow for flexibility, which makes it 
somewhat complex, comprising several optional and required fields. Here, for 
simplicity, we focus on a partial representation of the IDMEF data model, con-
sidering only the standard-required fields and the additional ones that are re-
quired in the context of this solution. A complete specification of the data mod-
el can be found in [RFC4765]. 

IDMEF defines more than one type of message. In our model, we only 
consider messages of type Alert, with the following fields: 

• Analyzer: Identifies the analyzer (the agent) that originated the alert. 

• Create Time: The time the alert was created. 

• Detect Time: The time the event leading up to the alert was detected. In 
some circumstances, this may not be the same value as Create Time. 

• Classification: A “tag” that identifies what the alert is; in our specific 
case, it indicates the type of the event (e.g. a network-related occurrence). 

• Additional Data: This is a format-free data field including all the specific 
event details (that don’t fit in any of the other fields). The agent defines 
the format of the data in this field.  

Although the Additional Data is a format-free data field, the implementa-
tion should guarantee EMMS component is able to parse all the implementa-
tion-specific possible formats and convert them into a “queryable” data struc-



 37 

ture. The XML-Specification according to the IDMEF [RFC4765] can be found in 
Appendix A. 

3.4 Event Monitoring and Management System 
The Event Monitoring and Management System stores and analyses the 

events collected by the agents, looking for suspicious activity in the form of pat-
terns. These patterns, expressed in DHIDS-QL, are explained in section 3.5. 

3.4.1 Architecture  

As illustrated in Figure 3.4, this component consists of the following sub-
systems: 

1. Event Manager: it handles the subscription and reception of messages 
from the Event Dissemination Platform. Upon reception, it passes each 
event to the Event Pre-processor. 

2. Event Pre-processor: it is responsible for the de-encapsulation of the 
events, parsing and preliminary processing. According to its type and 
source, each event is parsed (including the unstructured Additional Data 
field), and the fields sanitized, producing well-formed structured and 
“queryable” event, which is then placed into the Elastic Data Storage. 

3. Elastic Data Storage: component that assures the persistency of events. It 
provides document-oriented storage with high availability, scalability 
and read/write performance. As the system has to deal with all the 
events that the agents generate, its storage capacity should be able to 
scale according to the size and possible growth of the monitored net-
work, the increased volume of traffic and the extensibility of the probing 
environment. For that reason, this component should be implemented on 
top of a distributed and elastic key-value store based platform. 

4. Data Access Layer: provides basic query conveniences over the Elastic 
Data Storage, allowing the insertion and retrieving of sets of events ac-
cording to a certain filtering criteria. 

5. Event Analysis Module: receives and parses the user-defined specifica-
tions of attack pattern expressed in DHIDS-QL and searches for pattern-
matches in the event log. (This will be presented in more detail in 3.4.3). 
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Figure 3.4: Event Monitoring and Management System (EMMS) 

3.4.2 Event Model 

Events in DHIDS belong to one of the following two categories: 

• Atomic, the events produced by the agents, which represent an atomic 
occurrence in the monitored system. 

• Aggregated, the events created as output of queries executed by the 
administrator. The idea underlying the representation of query results 
as events is that they should represent the semantics of higher-level 
events. For example, the event “TCP-handshake” could be a higher-
lever representation of three lower-level events, the IP packets ex-
changed back and forth. Once represented, these higher-level events 
can then be used as input events in subsequent queries (as we will dis-
cuss later in section 3.5). 

Storage Model 

Upon reception by the EMMS, the events are pre-processed and stored in 
the Elastic Data Storage component, where they reside organized in indices. 
The notion of indices derives from the data repository model adopted – docu-
ment-oriented. An index is identified by a name, indexing a collection of docu-
ments related to events sharing similar characteristics. There may exist any 
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number of indices with indiscriminate names defined by the administrator. 
Although, we believe that one convention should be adopted: atomic and ag-
gregated events should not share the same index. This rule may prove useful by 
simplifying the querying task and query readability as it makes this distinction 
clear. 

When stored, we still need a way to discriminate events by type and 
source, know the time of occurrence and possibly the agent who detected it. For 
those reasons, it makes sense to adopt the same structure of the IDMEF Alert 
message model [RFC4765] for storage. That way, we preserve the “header” of 
all events in the same standard form. The event-specific information will be 
stored under the tag “Additional Data”. All of these data representation intrica-
cies will be transparent for the user, as the pattern query language will provide 
that abstraction (as explained later in 3.5). 

Atomic Events 

All agent-generated events should come with a type, explicitly defined in 
the Classification attribute (Figure 3.3), which is an IDMEF required field. Poly-
morphism is possible; as for example an event of type “TCP” could also be seen 
as an “IP” event. In this case, different types should be separated by dots (.) as 
in “Packet.Ethernet.IP.TCP”. It is the responsibility of the Event-Preprocessor to 
validate the Classification field, as well as the other required fields ensuring 
that a well-formed event is stored. As we will see later, the types of events must 
be explicitly defined when querying a pattern. 

Aggregated Events 

An aggregated event encapsulates the lower-level events that gave origin 
to it in the first place resulting in the following additional fields stored under 
the tag “Additional Data”: 

• Events: the lower-level events that match the pattern in this partic-
ular instance. 

• Analysis Description: optional field containing a user-defined 
message, resulting from the pattern-matching query. 

This type of event (like any other event) complies with the IDMEF-based 
storage standard. Therefore, the “header” fields contain the following infor-
mation: 

• Analyzer: contains the signature of the Event Analysis Module; 
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• Detect Time: the Detect Time of its first occurring lower-level 
event; 

• Create Time: the time the analysis took place; 

• Classification: a user-defined category (expressed in the query) re-
lating to the semantic meaning of the pattern. For example, if a que-
ry specifies an unsuccessful TCP handshake, a suitable Classifica-
tion for the matching occurrences could be “IncompleteTCPHand-
shake”. 

3.4.3 Event Analysis Module 

The Event Analysis Module is a sub-component of the EMMS. It is de-
signed as a set of processing components to perform searches over the event log 
maintained in the Elastic Data Storage. Such components are:  Query Parser, 
Query Validator, Query Plan Builder, Query Runtime and Data Access Manag-
er. The Event Analysis Module interacts (via the Data Access Manager) with the 
Elastic Data Storage though the Data Access Layer.  

The query processing support allows searching positive matches of attack 
patterns specified by the DHIDS-QL syntax, as represented in the Figure 3.5.  
The figure illustrates the processing workflow that each query goes through. 
Each step is executed by the corresponding component in the Event Analysis 
Module. 

 

 

Figure 3.5: Query Processing Workflow 
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According to the Figure 3.5, the Query Processing Workflow is composed 
by the following phases: 

1. Parsing: The Query Parser receives the query, converts it to the corre-
sponding logical query tree, asserting that it is syntactically correct, and 
passes it to the next module.  

2. Validation: The Query Validation Module decides if the query is valid, 
before execution. It performs all the necessary checks, (e.g. type-
checking) and if needed, for normalization purposes, it may even re-
write some branches of the query tree. 

3. Planning: The Query Plan Builder receives the validated and normalized 
logical query tree and produces a query execution plan. This plan con-
sists of an ordered set of tasks including fetching, filtering and result- 
processing. Fetching should precede filtering tasks and result-processing 
tasks should happen after all the others have taken place.  

4. Execution: The Query Runtime receives the execution plan and executes 
each task in chain. Each task receives as input, the output produced by 
the previous one. The fetching tasks imply the retrieving of events from 
the Elastic Data Storage (via the Data Access Manager). Filtering tasks 
are computations performed over stored data produced by the previous 
tasks. The result-processing tasks include printing the results in a con-
sole or writing the resulting events as a higher-level event, correlating its 
base relevant events (as high-value event “mashups” aggregating a set of 
lower-level discrete ones).  

3.5 DHIDS Query Language 
The purpose of DHIDS-QL is to provide a powerful, elegant and concise 

way of expressing the anatomy of potential intrusion attacks in the form of 
event patterns and search the log for occurrences of those patterns. As far as we 
known, there is no specific “attack-signature” expression language commonly 
accepted as a standard. Inspired by the related work on pattern-based query 
languages, we adopted SASE+  [Agrawal08, Diao07] as the foundation for the 
design of our own. SASE+ was originally proposed as a rich pattern-matching 
language, which resembles an SQL-like syntax, specifically oriented for pattern 
matching on event streams. Taking the original language definition as starting 
point, we introduced slight tweaks, defining the embryonic “attack-signature 
language” we call DHIDS-QL. In this approach, queries take events as input 
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from the log (either atomic or aggregated events) and produce one output event 
for each distinguishable manifestation of the specified pattern.   

In the next sections, we will present DHIDS-QL, starting with the prereq-
uisites and then explaining the query structure and formalisms, accompanied 
by illustrative examples. Finally, we go through the more advanced constructs 
of the language for additional expressiveness. A complete abstract syntax speci-
fication can be found in Appendix B. 

3.5.1 Language Prerequisites 

The envisioned language should clearly express the traceable signatures of 
attacks in the form of patterns, in a highly concise and readable manner. Specif-
ically, it should provide means to: 

1. Select relevant events;  

2. Express correlations between different events, through the specification 
of pattern structures (e.g. sequencing) and the use of complex predicates; 

3. Test for the non-occurrence of events;  

4. Express a finite but unbounded number of similar events; 

5. Express admissible time windows for the pattern occurrence; 

6. Compute aggregation values; 

7. Compose queries that make use of the results of previously executed 
queries. 

3.5.2 Query Structure 

Next, we present the basic query structure (in Listing 3.1), which we then 
dissect and explain the meaning of each of its main components. 

PATTERN <pattern structure> 
[WHERE <matching condition>] 
RETURN <output-event type>; 

Listing 3.1: Basic query structure 

The PATTERN Clause 

The clause PATTERN announces a pattern specification. To express a pat-
tern structure that represents a sequence of events, the operator SEQ should be 
used. Each event is declared with an explicit type and a unique identifier. List-
ing 3.2 defines the SEQ operator used to represent a sequence of events.  
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SEQ ( <type1> <id1>, <type2> <id2>, ... ) 

Listing 3.2: SEQ operator structure 

The WHERE Clause 

If applicable, a WHERE clause should follow, expressing the event selec-
tion and correlation conditions, using the previously specified identifiers. This 
uses a syntax similar to SQL. The following tables present the available logical, 
arithmetic and comparative operators. Parenthesis can also be used to compose 
complex predicates. 

Operators 

The following three tables summarize the logical (Table 3.1), arithmetic 
(table 3.2) and comparison operators (Table 3.3) available: 

Table 3.1: Logical Operators 

AND Conjunction 

OR Disjunction  

NOT Negation 

 

Table 3.2: Arithmetic Operators 

+ Addition 

- Subtraction 

* Multiplication 

/ Division  

 

 

Table 3.3: Comparison Operators 

= Equals 
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< Less than 

> Greater than 

>= Greater or equal 

<= Less or equal 

<> Different than 

CONTAINS Only applicable to strings. Returns true if and only if the preced-
ing string contains the succeeding string. 

Literals 

There are three types of literal values: String, Number and Boolean and 
they are represented as Table 3.4 illustrates: 

Table 3.4: Literal Values 

String Represented between quotation marks (“”). E.g. “foo”. 

Number Integers represented as sequence of digits. Negative numbers are 
represented by the precedence of a minus signal (-). E.g. 14, 0, -1. 

Boolean TRUE, FALSE, true, false, 0, 1. 

Fields 

To reference an object’s field the dot (.) notation is used, as demonstrated 
in Listing 3.3.  

<event identifier>.<field name> 

Listing 3.3: Field referencing 

The RETURN Declaration 

Each positive pattern-match found produces a higher-level event (none-
theless, with similar characteristics to any other event) representing one specific 
occurrence of the queried pattern and encapsulating the original events that 
gave origin to it. The RETURN declaration is one of the two possible ways to 
finish a query, which relates to the level of persistency of the output events. The 
other will be addressed later in 3.5.3 where the differences will be discussed. 
For now, with the RETURN declaration, this newly created event exists only 
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temporarily, in memory, and can be “seen” only by subsequent queries in the 
same session. 

The semicolon (;) indicates the end of a query, which allows us to batch 
multiple queries in the same script. 

An Example 

Listing 3.4 represents a concrete example of a query, which expresses the 
pattern of opening a TCP connection between two hosts: 

PATTERN SEQ ( TCP e1, TCP e2, TCP e3 ) 
WHERE e1.tcp.flags = "syn" 
 AND e2.tcp.flags = "syn-ack" 
 AND e3.tcp.flags = "ack" 
   AND e2.ip4.destination = e1.ip4.source  
   AND e1.ip4.destination = e2.ip4.source 
 AND e3.ip4.source = e1.ip4.source 
 AND e3.ip4.destination = e1.ip4.destination 
 AND e2.tcp.ack = e1.tcp.seq+1 
 AND e3.tcp.seq = e2.tcp.ack 
 AND e3.tcp.ack = e2.tcp.seq+1 
RETURN "TCPConnectionOpen"; 

Listing 3.4: TCP handshake pattern (query example) 

The SEQ construct indicates the specification of a sequence pattern: three 
events of type TCP. The WHERE clause expresses the event-matching predicate 
for the previously defined events: the definition of the TCP three-way hand-
shake. Finally, the RETURN declaration specifies the resulting event’s type.  

3.5.3 Chained Queries and Persistency 

Queries can be executed directly on a console session or from a pre-
written script file. The former is convenient for conducting quick analysis on 
querying event patterns directly, to immediately print the matches on the 
screen. The latter is more suitable for rules specification for frequently ran que-
ries. Both methods allow chaining queries together. This feature is useful for 
break up complex queries into smaller ones, taking as input the results pro-
duced by the previously executed queries.  

Another important distinction is about the level of persistency of the out-
put events, which can be: 
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1. Volatile: when the events are resulting of the RETURN declaration. 
Output events live temporarily in the environment, being available to 
be used as input in subsequent queries. However, they will be dis-
carded at the end of the querying session.  

2. Persistent: when the events are indexed, in the event log. This is 
achieved with the use of the PUBLISH-IN declaration. 

Evaluation Environment 

The query evaluation environment temporarily stores the results of previ-
ously executed queries, so that they can be reused as input for subsequent 
chained queries. These exist during the query session or the script execution, 
being discarded thereafter. 

The PUBLISH-IN Declaration 

If the output events are to be made persistent, the query should be final-
ized by a PUBLISH-IN declaration inspired in Cayuga’s language [Demers07]. 
This specifies the type of the output event and names the index where it should 
be stored (instead of using the RETURN statement). Listing 3.5 defines the que-
ry syntax with the PUBLISH-IN declaration: 

PATTERN <pattern structure> 
[WHERE <matching condition>] 
PUBLISH <output-event type>  
IN <index>; 

Listing 3.5: Persistent result query (PUBLISH-IN) 

Scripts 

A script is a file containing a sequence of queries. These are useful for exe-
cuting complex queries that are broken into smaller ones, or to store frequently 
used queries. A script executes in its own isolated environment. Therefore, at 
least its last query should be a “PUBLISH-IN” query, so the results can be made 
persistence. 

3.5.4 Rules and Alerts 

Remembering chapter 2, the notion of rule is very familiar among the ex-
isting IDS systems, specifically the signature-based kind. The idea is to have pre 
specified rules running on background and, when a rule is triggered, an alert is 
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raised. In this approach, we leverage the already discussed querying mecha-
nism as system of rules. These can be seen as queries that are permanently run-
ning on the background and produce an output event every time a new occur-
rence is detected (as opposed to simple queries which run once by user com-
mand).  

This is accomplished with the use of scripts. A rule is added to the system 
by placing a script (which may be composed by one or more queries) in a pre-
specified rules-directory.  

The output events of rules may be directed to a specific index in the log 
reserved to alerts. Additionally, a “listener” component may be connected to 
logging system in order to monitor that index and actively notifies the adminis-
trator when a threatening alert event occurs (e.g. by email, SMS, or some other 
form of message). 

3.5.5 Additional Constructs 

Event Negation  

The negation construct is inspired in SASE+, with the same meaning and 
for the same purpose. It verifies the non-occurrence of an event. It is expressed 
by the addition of the tilde (~) before the event declaration.  

As an example, if we wanted to capture a situation of an incomplete TCP 
connection-opening request typical of a SYN-Flood attack, that could be done 
by tweaking the previous example (from 3.4.2), as follows in Listing 3.6. The 
modifications appear in boldface font. With this query we detect the occurrence 
of the pattern: SYN-request from the client, followed by the SYN-acknowledge 
from the server, without the existence of the rightful final acknowledge from 
the client. When it happens repeatedly, it could mean a SYN-flood denial-of-
service attempt. 
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PATTERN SEQ ( TCP e1, TCP e2, ~(TCP e3) ) 
WHERE e1.tcp.flags = "syn" 
 AND e2.tcp.flags = "syn-ack" 
 AND e3.tcp.flags = "ack" 
 AND e2.ip4.destination = e1.ip4.source  
 AND e1.ip4.destination = e2.ip4.source 
 AND e3.ip4.source = e1.ip4.source 
 AND e3.ip4.destination = e1.ip4.destination 
 AND e2.tcp.ack = e1.tcp.seq+1 
 AND e3.tcp.seq = e2.tcp.ack 
 AND e3.tcp.ack = e2.tcp.seq+1 
PUBLISH "TCPConnectionIncomplete" 
 IN "threats"; 

Listing 3.6: TCP handshake incomplete (query example) 

Kleene Closure 

The Kleene Plus construct also comes from SASE+ and enables the repre-
sentation of one or more occurrences of a particular event type. It is denoted by 
a plus sign (+) after the event type declaration, accompanied by the square 
brackets “[]” after the event instance name, which denotes a list of events.  

The next example query (Listing 3.7) expresses the pattern of denial-of-
service (DoS) attacks targeting one particular host. As demonstrated, the Kleene 
closure is usually used in conjunction with aggregation functions. count() gives 
the number of element in the list (more on this next in Aggregation Functions). 
The WHERE clause here, illustrates the “every” semantics in Kleene closure 
(where i,j ≥ 1). 

PATTERN SEQ (TCPConnectionIncomplete+ c[]) 
WHERE c[i].e1.ip4.destination = c[j].e1.ip4.destination 
HAVING count(c) > 100  
RETURN "SYNfloodAttempt"; 

Listing 3.7: SYN-Flood attack pattern (query example) 

Aggregation Functions 

The example above demonstrates the use of an aggregate function – 
count() – already familiar from SQL. In this example the PATTERN and 
WHERE clauses generate the possible pattern matches. The HAVING clause 
specifies the pattern filtering condition. There may exist the following aggrega-
tion functions:  
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Avg():   returns the average of a set of values. E.g. avg( packets[].length ) 
gives the average length of the packet array. 

Sum():   returns the cumulative sum of a set of values. 

Count():  returns the number of element in a set of values. 

Max():   returns the largest of a set of values.  

Min():  returns the smallest of a set of values. 

Time Window 

The last example may be further refined in order to consider the time di-
mension, using the WITHIN construct, also inspired in SASE+ (Listing 3.8). The 
PATTERN, WHERE and WITHIN clauses select the possible event matches for 
this pattern: all the TCPConnectionIncomplete events targeting one host within 
the time frame of 1 hour. The HAVING then filters the possible pattern to just 
the ones that involve more than 100 occurrences. 

PATTERN SEQ (TCPConnectionIncomplete+ c[]) 
WHERE c[i].e1.ip4.destination = c[j].e1.ip4.destination 
WITHIN 1 hour 
HAVING count(c) > 100 
RETURN "SYNfloodAttempt"; 

Listing 3.8: Time window specification (query example) 

Index Specification 

By default, the pattern-matcher algorithm will look into all indices for the 
specified type of event. However, a specific index can be selected as input using 
the clause IN, in the event declaration. This mechanism, in conjunction with the 
PUBLISH-IN declaration, facilitates the process of composing queries on top of 
each other, giving finer control to the administrator. Listing 3.9 illustrates this 
situation. 

PATTERN SEQ (TCPConnectionIncomplete+ c[] IN “threats”) 

WHERE c[i].e1.ip4.destination = c[j].e1.ip4.destination 

HAVING count(c) > 100 

RETURN "SYNfloodAttempt"; 

Listing 3.9: Index specification (query example) 
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Description 

The DESCRIPTION clause, following the PUBLISH-IN declaration, allows 
us to specify a custom “description” string field to the output event. Listing 3.10 
shows an example using the DESCRIPTION clause and PUBLISH-IN declara-
tion. 

PATTERN SEQ (TCPConnectionIncomplete+ c[]) 
WHERE c[i].e1.ip4.source = c[j].e1.ip4.source 
HAVING count(c) > 100 
WITHIN 1hour 
PUBLISH "SYNfloodAttempt" 
  IN "attacks1"  
  DESCRIPTION “SYN flood attempt from host ” + 
  c[1].e1.ip4.source; 

Listing 3.10: PUBLISH-IN with description (query example)
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 Implementation 

Taking DHIDS design model and architecture as a starting point, this 
chapter presents the implementation prototype. It begins with an overview of 
all implemented components (section 4.1). After that, the three following sec-
tions address to the implementation details about the technology behind the 
components of the specific implementation domains, namely: the Pervasive 
Probing Environment (4.2) the Event Dissemination Platform (4.3) and the 
Event Monitoring and Management System, integrating the query language 
and the implementation of its runtime support (4.4). 

4.1 Implementation Overview 
Our prototype instantiates the system model as discussed in chapter 3. 

Figure 4.1 illustrates the implementation components and technology used.   

Pervasive Probing Environment 

The network-probing agents (NMA) are implemented by leveraging the 
probing components provided by the Snort [Snort] and Suricata [Suricata]. To 
implement the functionality of Host-Based Agents (HMA), we leveraged Trip-
wire [Tripwire](open-source version). Finally, to implement the Honeypot 
agents, for evaluation purposes, we used two strategies: (1) a vulnerable web-
server attack target website – Wackopicko [Wackopicko] – running on Apache and 
MySQL (from which we extracted logs); and (2) a representative agent fed with 
the logs extracted from a vulnerability scanning and attack injection tool tested 
against a web server (under attack).  

4 
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Figure 4.1: Implementation Overview 

Event Dissemination Platform 

 The Event Dissemination Platform in the DHIDS prototype was imple-
mented by the RabbitMQ message queuing system [RabbitMQ], initially dis-
cussed in chapter 2.  
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Event Monitoring and Management System (EMMS) 

 The EMMS implementation materializes the components initially de-
scribed in chapter 3. The Elastic Data Storage and the Data Access Layer are 
supported by Elasticsearch [Elasticsearch], an efficient and elastic document-
oriented database with support for powerful analytics capabilities. With this 
approach, we also benefit from the possibility for seamless integration with the 
variety of products from the Elastic family, most important being the Logstash 
and Kibana (forming the ELK stack1). Both Event Manager and Event Pre-
processor’s functions are handled by Logstash [Logstash]. It is used as an event 
parsing and formatting pipeline, seamlessly compatible with both Elasticsearch 
and RabbitMQ. This implementation options offers the immediate advantages 
of using code-shipping and relevant on-going developments as services inte-
grated and compliant with the base Elasticsearch technology2. For example, we 
can use Kibana [Kibana], for data querying, exploration and graphical visualiza-
tion over Elasticsearch data, making the development of a monitoring environ-
ment with centralized dashboards for the DHIDS proposal easier to address. 
The Event Analysis Module and their internal components were fully imple-
mented in Java 1.8. 

4.2 Pervasive Probing Environment - Agents 
In our DHIDS implementation, we used a representative set of parameter-

ized well-known HIDS and NIDS systems, as well as vulnerable web applica-
tion in place of Honeypots, suiting our intended test scenarios. As this is a be-
ginning approach to the DHIDS prototype, we did not need, for evaluation 
purposes, a fully automated production mechanism for real-time capturing and 
publish of events. Instead, we used pre-captured data sets from the aforemen-
tioned IDS and honeypot tools, to be “re-played” and published as observed 
events.  This strategy enables us to use available real world sets of events (some, 

 
1 ELK stands for Elasticsearch, Logstash and Kibana. The term was coined by Elastic, the 
company behind these open-source projects, as it is aparently very common for these 
three components to be deployed together as part of the same log analysis solution. 

2 In https://www.elastic.co/products there is a list of these relevant products, ranging 
from security enhancements, system-administration facilities to data visualization and 
management functions (accessed on 2/Feb/2016). 
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containing attacks) and reproduce them at will in a controlled environment. 
Please refer to Appendix C for the list of the used data sets. 

Generic Agent 

The aforementioned approach also saved us the time of implementing 
several IDS-specific agent adapters for the DHIDS platform. Instead, we devel-
oped and use several instances of a Generic Agent, which is a component capa-
ble of reading many different types of logs (PCAP, MySQL, Apache, Syslog, any 
JSON or XML represented events, etc.) and publish them as standardized 
events, according to the defined interoperability format, in the Event Dissemi-
nation Platform. The Generic Agent was fully developed in Java 1.8. It consists 
of about 1900 lines of code and 64 classes. It also makes use of several libraries 
and open-source projects, as follows: 

• jNetPcap Used to read PCAP-formatted files into the Ge-
neric Agent. Version used: 1.4 [jNetPcap]. 

• org.json library for Java Used To manipulate JSON documents in a ob-
ject-oriented way in Java. Used version: 2015-
05-01 [JSON-java]. 

• com.cr_labs.rfc4765 lib  Java implementation of the data structure in-
troduced in RFC4765. We used to help convert 
event events to the interoperability format spec-
ified in chapter 3. Version: not specified.  
[IDMEF-java]  

• RabbitMQ Java Client  Java API to communicate with the RabbitMQ 
server. Used to publish the events. Version 
used: 3.4.4. [RabbitMQ] 

IDS Systems 

In our prototype, we used Snort (v. 2.9.6) [Snort] and Suricata (v. 1.4.7) [Su-
ricata] as NMA agents. We configured both to produce PCAP-formatted logs. 
To obtain HMA-related events, we used Tripwire (v. 2.4.2.2) and instances of 
our earlier mentioned Generic Agent to read collect events directly from appli-
cation logs. To implement an example of a Honeypot we used Wackopicko, a 
web application with vulnerabilities used to test vulnerability-scanning tools. 
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Low-cost card-sized computers 

 One key notion underlying our model is the pervasiveness of agents. It is 
therefore particularly interesting to implement NMAs and Honeypots as stand-
alone credit-card-sized low-cost autonomous computer nodes, which can be 
deployed anywhere in the network. For this purpose, we selected RaspberryPi’s 
(both 1B and 2B) [RaspberryPi], running Raspbian Wheezy (kernel version 3.18) 
[Raspbian] to implement NMAs and Honeypots for event collection, as well as 
Generic Agents to process pre-captured logs in a test environment. 

4.3 Event Dissemination Platform - RabbitMQ 
RabbitMQ (version 3.4.4) [RabbitMQ] is an open-source distributed and re-

liable message-queuing system. In this implementation, it was configured to 
provide publish/subscribe support, for many producers – the agents distribut-
ed in the probing environment – and one consumer – the Event Monitoring and 
Management System (EMMS). 

As stated earlier, we implement an interoperability format for event dis-
semination. We use JSON as encoding format to implement the base RFC4765 
message format. This induces a smaller encapsulation overhead in comparison 
with XML and demands less processing by the Event Manager (Logstash), which 
doesn’t need to convert it to JSON (as Elasticsearch document storage model is 
based on JSON).  

Another feature provided by RabbitMQ is an acknowledgement mecha-
nism – Confirms (aka Publisher Acknowledgements) – as an extension to the 
AMQP 0-9-1 protocol, that ensures messages are not lost. This slightly impacts 
the performance, but as we will see in our experimental evaluation in the next 
chapter, the overhead is almost negligible. This mechanism may be activated or 
not by the publishers, i.e. the agents. Preferentially, we publish events using 
Confirms mode. 

4.4 Event Monitoring and Management System 
The EMMS is the most complex part of the implementation. Here we ex-

plain how we handled the challenges of data storage, event management and 
event analysis. 
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4.4.1 Data Storage – Elasticsearch 

We used Elasticsearch (version 1.7.1) [Elasticsearch] for event storage. We 
consider this an adequate choice as it suits the model’s requisites, has a good 
reputation for performance and scalability, and it also enables seamless integra-
tion with Logstash – an event log processor – and Kibana – an analytics and visu-
alization tool, useful to chart and summarize event data. 

In this particular implementation, we used it as a schema-free document 
database (the default) for simplicity. This means that Elasticsearch automatically 
detects the structure and data types of the event’s JSON document and indexes 
it “as is”, as the agent sends it, in the IDMEF format. Nonetheless, it is possible 
(by configuration on Elasticsearch) to force the documents to comply with one or 
many rigidly specified schemas. 

4.4.2 Event Management – Logstash 

Logstash (version 1.5.5) [Logstash] handles the functions of the Event Man-
ager and Event Pre-processor. It is a data pipeline for log management, which 
gathers log events from a variety of sources and parses them into a structured 
format set by configuration. As mentioned, Logstash also provides event parsing 
and formatting features, which are configured via a sequence of filters. For 
simplicity, we are not using any relevant filter (besides for timestamp parsing) 
as we assume the events to be sent in the expected format by the agents. 

4.4.3 Event Analysis Module 

The Event Analysis Module was the most demanding part in terms of im-
plementation effort. It was developed in Java 1.8. It consists of aboud 8000 lines 
of code and 96 classes. It implements the query processing workflow model 
presented in section 3.4.3. This specified the four query execution phases and 
the main components involved in the process. Next, we go through each of the-
se phases and its respective implementation details. To implement the interface 
with the Elasticsearch, we used the Java API (version 1.4.4) provided by the Elas-
ticsearch platform. 

Parsing (Phase 1) 

The first is the parsing phase. This is performed by the Query Parser 
whose job is to receive a user-provided text query and produce a query tree. 
The query tree is the data structure that represents the query internally. Each 
node in the tree represents one specific DHIDS-QL syntactic connector. The 
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Query Parser was built using Java Compiler Compiler (a.k.a. JavaCC) 6.0 [JavaCC]. 
This is a tool that given a grammar specification, it converts it to a Java program 
capable of recognizing text and matching it to the grammar. Most of the Query 
Parser components were generated using this tool, given the DHIDS-QL lan-
guage specification as presented in 3.5 (converted to the JavaCC input format). 
The language specification used to create the parser can be found in Appendix 
B. JavaCC was set to use the default LOOKAHEAD – 1, which means DHIDS-
QL is an LL(1) grammar. Once the parsing phase is successfully terminated, 
then the query is considered syntactically correct and the execution can proceed 
to the next phase – validation. 

Validation (Phase 2) 

This phase provides an opportunity to traverse the query tree and perform 
the necessary checks or modifications in order to assure that every node is valid 
and to enforce any rules that cannot be verified at the syntactic level.  If any in-
consistency is detected, the Query Validator should either perform the neces-
sary modifications to the query tree to make it valid, or if not possible, to fail-
fast and raise the appropriate exception. This procedure assures that in the fol-
lowing phases, we are only dealing with valid queries. Since this implementa-
tion is a prototype, we didn’t focus in performing extensive query checking. 
Nevertheless, we use the validation phase to perform field name translation 
and other adaptations in order to make our queries more readable and less ver-
bose. For example, our prototype accepts queries written with simplified field 
names (e.g. “tcp”) but it replaces them internally with the full name (e.g. “addi-
tionalData.packet.tcp”). 

Planning (Phase 3) 

As explained in chapter 3 (section 3.4.3) each query is executed according 
to an execution plan specifically tailored to each query, determined before the 
execution phase. This is performed by the Query Plan Builder, which receives a 
validated query tree and produces a query execution plan. The latter is simply a 
data structure consisting of an ordered set of tasks to be carried out during the 
execution phase. Our system’s model does not suggest the specific query execu-
tion operations that should be supported (just that there are three kinds of op-
erations: fetch, filter and result-process). These are the query processing algo-
rithms and we see them as an implementation matter. In our prototype, the 
specific implemented operations that may compose a query execution plan are: 
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1) Fetch Tasks: 

i. Single Event Search – performs a search for occurrences of a single 
event, according to a given parameterization.  

ii. Absent Event Search – performs a search for a given event that if not 
found returns a positive match. 

iii. Kleene-Closure Search – performs a search for an unbounded number 
of events that share the same key characteristics. 

2) Filter Tasks: 

i. All-to-all Comparison Filter – can be used, after a Kleene-Closure 
Search, and filters the input set according to the evaluation of an all-
to-all predicate. 

ii. Pattern Filter – it filters instances of the pattern according to the 
evaluation of predicate expressed in the HAVING clause. 

3) Result-process Tasks: 

i. Publish Results – prepares the output event for each positive instance 
of the pattern, and indexes it in the Elastic Data Storage. 

In our implementation, the query execution plan enforces a priority order 
on the tasks. That order corresponds precisely to the order in which they are 
presented here. That means Single Event Search tasks (if any) always happen 
before than Absent Event Search tasks (if there is any absent event), which pre-
cede Kleene-Closure Search, and so forth. 

Execution (Phase 4) 

The query execution is handled by the Query Runtime component. In con-
cept, the Query Runtime iterates over the query execution plan and executes the 
tasks in sequence while feeding as input to each task the output of the previous 
one. Each task receives as input, and produces as output, a set of cases. A case is 
a partial event sequence representing a potential pattern match, i.e. a possibility 
that has not yet been discarded. For each task, the cases are divided in a few or 
many chunks (or subtasks) of configurable size and placed in an execution 
queue. A pool of threads consumes from this queue and executes the subtasks. 
The degree of concurrency is determined by the thread pool size also set by 
configuration.  

For each case, the fetch-tasks request events from the Elastic Data Storage, 
via the Data Access Manager (Figure 3.5). We should note that the amount of 
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processing needed to resolve a query depends greatly on the type of pattern we 
are querying, specifically the number of cases generated by each fetch task, that 
must be considered in the subsequent tasks. The idea is to put the heavy pro-
cessing work on side of the Elastic Data Storage, and to simplify, as much as 
possible, the work on side of the Event Analysis Module. This is so, because the 
former is the component that can be horizontally scaled.  

Elasticsearch is able to deal with many queries in the same request and effi-
ciently parallelize the work internally. In our Event Analysis Module imple-
mentation, the queries for each chunk of cases are generated at the same time 
and sent to the Elasticsearch bulked in the same request. Therefore, the chunk 
size determines the number of queries per request demanded from Elasticsearch. 
To make full use of the Elasticsearch cluster’s hardware, this number should be 
the highest possible just before, we start getting “rejected execution” exceptions 
from Elasticsearch. That means we are asking too many simultaneous queries 
from it. As we will see later in the next chapter, we found this optimal number 
to be around forty queries per request, for our test-bench server (a quad-core 
with 8GB RAM), as we will present in chapter 5.  





 61 

 Evaluation 

To validate the proposed DHIDS platform we deployed an experimental 
environment to conduct a set of tests, using two distinct test-bench installations. 
We start by presenting each of the mentioned test-bench environments in sec-
tion 5.1. The remaining sections are dedicated to the presentation of a selected 
set of experiments and representative observations, using those test-bench pi-
lots. Section 5.2 addresses network performance indicators and end-to-end la-
tency conditions related to the DHIDS platform and its components. The section 
also presents some base validation observations on reliability, efficiency and 
scalability criteria, considering event-detection, -formatting, -dissemination and 
-storage. Section 5.3 addresses DHIDS-QL expressiveness and effectiveness cri-
teria, by showing how the proposed query-language can be used to express a 
set of selected representative attack-patterns (or signatures), queried as search-
able evidences of combinations and correlations of stored events. Finally, in sec-
tion 5.4, we present a summary of the evaluation phase and some additional 
remarks. 

5.1 Evaluation Environment 
For the evaluation and experimental observation of the proposed, de-

signed and implemented DHIDS platform, we created two test environments: 
Test-bench 1 and Test-bench 2. Most of the experimental tests were conducted 
in the Test-bench 1, designed to operate as a dedicated and isolated network, 
described in 5.1.1. Some observations also used the Test-bench 2 described in 
5.1.2, a setup environment integrated in the FCT/UNL internetwork infrastruc-
ture, in an effort to more closely simulate a real-world scenario in terms of la-
tency and network conditions. 

5 
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5.1.1 Experimental Test-bench 1 

In the Test-bench 1, the DHIDS platform is supported by an isolated 
switched IEEE 802.3 and IEEE 802.11g LAN environment, as represented in the 
Figure 5.1. Table 5.1 complements the diagram and characterizes each compo-
nent presented in the figure, regarding its function, software and hardware.   

 

Figure 5.1: Test-bench 1 network diagram 

The pervasive probing environment (for NMA, HMA and HPOT compo-
nents) correspond to a set of devices installed in two switched segments, name-
ly, the wireless IEEE 802.11g (54 Mbps) Segment 1, and the wired IEEE 802.3 
(100 Mbps) Segment 2. The IDS MGMT segment corresponds to the EMMS net-
work and is a wired IEEE 802.3 (100 Mbps) segment. This EMMS instance is 
composed of just one node (EMMS HOST). Specifically, it hosts a single in-
stance of Elasticsearch and the related ELK software stack, which includes the 
Logstash and Kibana. In this test-bench, this same node simultaneously hosts the 
Event Dissemination Platform implemented by RabbitMQ. 



 63 

Table 5.1: Components in the Test-bench 1 installation 

 

The USER station usually connects wirelessly through IEEE 802.11g to the 
WI-FI LAN. It runs the Event Analysis Module, which in turn is indirectly con-
nected to the ELK as it consumes and writes data from and to Elasticsearch. 
Some specific tests may require to not be limited by the IEEE 802.11g wireless 
network bandwidth in which case we connect the USER node to Segment 2 via 
Ethernet cable. In other tests, we also use the USER station to inject the attacks. 

ID Description Hardware Software 

EMMS 
HOST 

Host for both the Event Dissemination 
Platform instance and the Event and Mon-
itoring and Management System. 

AMD Quad-
core;  

8GB DDR3;  

100-BASE-T 
Ethernet; 

 

Linux Ubuntu 
14.04 64bit;  
JRE 1.8;  
Elasticsearch 1.7.1; 
Logstash 1.5.5;  
Kibana 4.2;  
RabbitMQ Server 
3.4.4; 

NMA/ 
NMA 
HOST 

The Network Monitoring Agents. These 
can either be integrated in an node as a 
background software, or as an specific 
independent network monitoring device 

RaspberryPi 1B 
/RaspberryPi 2B 

Raspbian Wheezy 
3.18; 
Snort (v xxx);  Su-
ricata 2.0.8; 

HMA 
HOST 

The Host Monitoring Agent.  RaspberryPi 1B Raspbian Wheezy 
3.18;  
Apache 2.2.22; 
Tripwire 2.4.2.2; 

SW Switches 10/100 BASE-T Micronet 
SP616EA Ether-
Fast 16 ports / 
SMC 108DT 8 
ports 

Not-Applicable 

HPOT 
HOST 

The honeypot implemented by 
Wackopicko running on a LAMP server in 
a RaspberryPi. It is used as the target of 
attacks. 

RaspberryPi 1B Raspbian Wheezy 
3.18;  
Apache 2.2.22; 
MySQL 5.5; PHP 
5.5; Wackopicko; 

USER User station. Runs the implemented Event 
Analysis Module. In some tests, it is also 
used as the attacker station. 

MacBook Pro; 
2.5GHz Intel 
Core i5 (dual 
core); 8GB DDR3 

OS X 10.10.5; 
VirtualBox 4.3.26; 
Ubuntu 14.04 LTS 
(virtualized); 
w3af 1.7.6 
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The local internetworking and switching environment (represented in figure 
5.1) is provided by the interconnection of two local 100 Mbps switches. Addi-
tionally, to allow for packet-sniffing functions, a local 10Mbps hub-repeater is 
available, which may be connected whenever necessary, to each switch, allow-
ing the connection of network-interfaces in promiscuous modes, to inspect traf-
fic observed in the hub ports and in one specific port of each switch. 

5.1.2 Experimental Test-bench 2 

Test-bench 2 is useful for complementary evaluations of quantitative met-
rics, closer to a real-life environment. This environment is integrated to the in-
ternetworking environment and infrastructure of FCT/UNL. Namely, a net-
work-environment interconnecting DI (Departamento de Informática) and local 
teaching and research labs, and remote Virtual LANs installed in the SI 
FCT/UNL (Serviço de Informática – FCT/UNL), a centralized Sector responsi-
ble for all IT installations, as well as system and network administration func-
tions, including the centralized software services provisioning.  

The Test-bench 2 setup allows for the observation of differences in testing 
metrics, some of them primarily obtained in the test-bench 1, but in this case 
closer to a “real-operation setup environment”.  For example, we can compare 
the event-publishing throughput performance in the context of the test-bench 2 
and its central management solution, to compare with the equivalent observa-
tion in the dedicated local setup of Test-bench 1. 

This internetworking environment is represented in the Figure 5.2. The 
pervasive probing environment (for NMA, HMA and HPOT agents) is enabled 
by devices installed in a LAN segment. This is located in a local lab and con-
nects to the wired LAN switched infrastructure covering the DI-FCT-UNL 
through a NAT box (R/FW) connected to wall Ethernet connector. In this case, 
we use a local switched segment, providing a IEEE 802.3 wired switched access. 
For the Test-bench 2 local DI-FCT-UNL segments and local addressing, we use 
the DHCP and DNS services, as centrally managed by the SI-FCT-UNL. The 
Event Dissemination Platform in this case is located in a remote virtual machine 
installed in a VLAN at the SI-FCT-UNL, running the RabbitMQ platform (RE-
MOTE EDP). The EMMS, similarly to Test-bench 1, runs in the EMMS HOST in 
our local network. This configuration requires that every published event trav-
erse the FCT-UNL network infrastructure and return to the EMMS HOST, 
therefore being subjected to the traffic conditions offered by the FCT-UNL net-
work. 
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We should notice that in the Test-bench 2, we are not able to install perva-
sive intrusion-detection sensors in the internetworking infrastructure. We can 
only simulate their operation, by processing and disseminating datasets of pre-
captured events, for example, reference datasets with events reflecting attack-
patterns. First, we are not authorized to install systems or devices with network 
interfaces running in promiscuous mode to capture or to sniff traffic though the 
FCT/UNL network infrastructure. Second, we can’t use Honeypot or HIDS el-
ements running in production servers. Third, we can’t capture and we are not 
authorized to publish “real intrusion events” that have been observed in the 
FCT/UNL infrastructure, through the monitoring, interception or inspection of 
switch-based traffic or routing-processing traffic crossing the production infra-
structure. 

 

Figure 5.2: Test-bench 2 network diagram 

The characterization of components in the test-bench 2, regarding its func-
tion, software and hardware type, is presented in Table 5.2. 
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Table 5.2: Components in the Test-bench 2 installation 

 

ID Description Hardware Software 

REMOTE 
EDP 

Remote host running RabbitMQ. 
Virtualized in SI-FCT-UNL infra-
structure. 

Intel Xeon E5-2660 
2.2GHz; 

506MB DDR; 

  

Linux Ubuntu 
14.04 64bit;  

JRE (Java Runtime 
Environment) 1.8;   

RabbitMQ Server 
3.4.4 

EMMS 
HOST 

Host for the Event and Monitoring 
and Management System. Runs the 
ELK service stack. 

AMD Quad-core;  

8GB DDR3;  

100-BASE-T Ethernet; 

 

Linux Ubuntu 
14.04 64bit;  
JRE 1.8;  
Elasticsearch 1.7.1; 
Logstash 1.5.5;  
Kibana 4.2;  

NMA/ 
NMA 
HOST 

The Network Monitoring Agents. 
These can either be integrated in an 
node as a background software, or 
as an specific independent network 
monitoring device 

RaspberryPi 1B / 
RaspberryPi 2B 

Raspbian Wheezy 
3.18; 
Snort (v xxx);  Su-
ricata 2.0.8; 

HMA 
HOST 

The Host Monitoring Agent.  RaspberryPi 1B Raspbian Wheezy 
3.18;  
Apache 2.2.22; 
Tripwire 2.4.2.2; 

SW Switches 10/100 BASE-T Micronet SP616EA 
EtherFast 16 ports / 
SMC 108DT 8 ports 

Not applicable. 

R/FW Router / Firewall Linksys WRT54GC Not applicable. 

HPOT 
HOST 

The honeypot implemented by 
Wackopicko running on a LAMP 
server in a RaspberryPi. It is used as 
the target of attacks. 

RaspberryPi 1B Raspbian Wheezy 
3.18;  
Apache 2.2.22; 
MySQL 5.5; PHP 
5.5; Wackopicko; 
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5.2 Event Collection and Processing Tests 
The goal for this first series of tests is to evaluate how reliable, efficient 

and scalable is the process of capturing, formatting, disseminating and storage 
of events. Specifically, we aim to answer the following questions:  

• Are the events detected by the agents and reliably transmitted to the Event 
Dissemination Platform? What is the effective publishing throughput?  

• What is the expectable performance and local processing capabilities of 
the specific probing devices (namely the Raspberry Pi nodes)? 

• Does the implemented EMMS correctly process and store the events? 
What is the event-processing throughput? 

5.2.1 Network Performance 

We began by measuring the effective network performance on both test-
benches. This measure will serve as an upper-bound benchmark to be com-
pared against the following performance observations. For that, we used iPerf 
2.0.5 [iPerf] – a network performance active measuring tool – to obtain the 
measurement of the maximum achievable bandwidth in a TCP connection from 
the agents to the EMMS HOST, and to the EDP REMOTE in the case of Test-
bench 2. The measurements considered in both cases are the ones seen by the 
receiver. Each of the following results is an average of ten consecutive observa-
tions. The variables in this tests are the test-benches: both 1 and 2; and the de-
vice running the agent: RaspberryPi 1 Model B, RaspberryPi 2 Model B and Mac-
Book Pro (associated to the USER station – see Table 5.1). 

Table 5.3: iPerf bandwidth measurements 

 RaspberryPi 1B RaspberryPi 2B MacBook Pro 

Test-bench 1 57,2 Mbps 94,0 Mbps 94,0 Mbps 

Test-bench 2 46,2 Mbps 46,1 Mbps 46,4 Mbps 

 

Table 5.3 presents the obtained measurements for both test-benches and 
all the available agent hardware devices. As expected, RaspberryPi 2B is much 
faster than its predecessor dealing with network traffic, as the results from Test-
bench 1 show. Regarding test-bench 2, the bottleneck seems to be imposed by the 
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network conditions, every device showed similar bandwidth measurements. In 
addition, we measured the network’s end-to-end latency, in the same circum-
stances as the bandwidth measurements (Table 5.4). The presented results are 
the average of one hundred measurments. 

Table 5.4: Round-trip-time measurements 

 RaspberryPi 1B RaspberryPi 2B MacBook Pro 

Test-bench 1 0,903 ms 0,589 ms 0,504 ms 

Test-bench 2 2,987 ms 2,826 ms 2,737 ms 

 

5.2.2 End-to-end Event Processing Throughput 

The goal for this test is to evaluate the overall system’s event-processing 
capacity. For this purpose, we used an event log of measurable size in PCAP 
format from the DARPA data set – named “outside.tcpdump” – (see Appendix 
C for more details about the DARPA data set) containing 233428 events. We set 
up one Generic Agent to extract, format and publish events into the Event Dis-
semination Platform implemented by RabbitMQ. We set up the EMMS on the 
other side, implemented by Logstash and Elasticsearch, to consume, process and 
store the events. The throughput is calculated based on the difference between 
the receiving time of the first and last events of the dataset. As mentioned in last 
chapter, RabbitMQ offers an acknowledge-based reliable publishing mode. We 
tested both publishing conditions: the default (without Confirms) and with reli-
able publishing (Confirms). Event persistency was not enforced in RabbitMQ. 
This means that messages were not necessarily written to disk when they 
reached the queue.  

There are three variables to consider in this test: 

• Event-publishing mode: reliable (using the Confirms mechanism) 
vs. unreliable (default); 

• Agent host device: RaspberryPi 1B, RaspberryPi 2B and a laptop 
(MacBook Pro). 

• Test-benches (both 1 and 2) 

The presented results (Figure 5.3) are the aggregated values of twenty in-
dependent observations for each test instance in Test-bench 1. Regarding the 
previously obtained network performance measurements, it seems reasonable 
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to expect a very significant decline on the effective throughput. This is due to 
the overheads imposed by (1) the RabbitMQ, an effect inflated by the fact that 
the events are being published one-by-one and, (2) the event processing and in-
dexing operation on the EMMS side (Logstash and Elasticsearch). The Raspber-
ryPi’s hardware limitations should also likely contribute to the deterioration of 
the event-publishing performance.  

 

 

Figure 5.3: End-to-end event-processing throughput (Testbench 1) 

As expected, RaspberryPi 1B was the slowest tested hardware option, 
achieving an effective publishing throughput of around 1,5 Mbps. That corre-
sponds to an observed average of 250 to 300 events per second, using the men-
tioned data set. This was outperformed by far by its successor, which achieved 
a throughput of up to 4,7Mbps. That equates to about 800 events per second 
(the event average size in this particular data set is 767 bytes). 

We didn’t find a very significant variation in performance when using 
RabbitMQ’s Confirms mechanism. It’s also worth noting the fact that there was 
no event loss in these test conditions, even when not using reliable publishing.  

Next, we present the results obtained in Test-bench 2 for the exact same 
tests (Figure 5.4). As we can recall from the previously presented network per-
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formance tests (5.2.1), the achievable bandwidth measured for this network 
conditions was significantly less than the observed in Test-bench 1. That fact 
seems to have had no impact in the observed end-to-end event-processing 
throughput. Moreover, we even noticed a slight positive variation in perfor-
mance (more than 10%) in one of the tests – the one using the laptop. The most 
likely explanation for that is that, in this test-bench, both Elasticsearch and Log-
tash were not running alongside with RabbitMQ. The latter was now running in 
the virtual machine, freeing some resources for event processing on the EMMS 
side. The following tests will probably reveal more details on this issue. 

 

Figure 5.4: End-to-end event-processing throughput (Test-bench 2) 

As anticipated, the “end-to-end” throughput test revealed a very signifi-
cant decrease in performance when compared with the available bandwidth. 
However, it didn’t reveal which component or components are the limiting fac-
tors. This is an important question because it has a direct reflection in the sys-
tem scalability. The results from the following test will certainly shed more 
light on this matter. 

5.2.3 RabbitMQ Event Publish-Subscribe Throughput 

In this test, we evaluate the performance of the Event Dissemination Plat-
form implemented by RabbitMQ in isolation. The goal is to estimate what is the 
actual overhead imposed by this component and consequently, to what extent 
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does it affect the event-processing throughput. For that purpose, we set up the 
same Generic Agent, publishing events in same conditions as the previous test. 
On the server side, instead of the EMMS, we set up a simple process just con-
suming events and measuring the receiving rate. The events were published in 
a reliable channel, using the Confirms mechanism. 

The variables in this test are the following: 

• Agent host device: RaspberryPi 1B, RaspberryPi 2B, MacBook Pro. 

• Test-benches (both 1 and 2) 

The presented results represent the aggregated measurements from twen-
ty independent observations in both Test-bench 1 (Figure 5.5) and Test-bench 2 
(Figure 5.6).  

 

Figure 5.5: RabbitMQ publish-subscribe throughput (Test-bench 1) 

Considering both the results from this test and the previous one, there 
seem to be two distinct bottlenecks. The first bottleneck concerns the Raspber-
ryPi devices. The effective throughput in Mbps obtained in this test - simple 
publish and subscribe of events without any further processing – is, almost ex-
actly, the same as in the first “end-to-end” test. It seems reasonable to assume 
that the limitation is actually in the publishing capacity of both devices, im-
posed by their hardware limitations, which in turn sets a ceiling for the event-
processing rate for the whole system. This theory is reinforced when we look at 
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the results for the laptop agent, where that limitation seems to not be there an-
ymore.  

The second bottleneck becomes clear when we compare the results ob-
tained on the laptop on both tests. When the events were being consumed by 
Logstash and indexed in Elasticsearch, we achieved a throughput of about 
8Mbps. With those two components out of the equation, we observe a through-
put increase to around 65 Mbps. This leads us to believe that the 8 Mbps seen 
before is in fact the upper bound of Logstash/Elasticsearch event-processing 
throughput in this specific setup, in which these components are operating in a 
single node. Although we don’t have at this moment, data regarding the per-
formance of Elasticsearch and Logstash in a distributed environment due to limi-
tations in time and resources, we don’t believe this bottleneck to be a serious 
limitation. As mentioned, Elasticsearch is built to scale horizontally according to 
the needs, simply by adding new nodes to the cluster. Logstash is a single pro-
cess pipeline and not intrinsically scalable, but multiple instances could be set 
up in multiple nodes. In that scenario, RabbitMQ would be configured as a 
“work queue” to distribute the events among the various Logstash instances, for 
example following a “round-robin” policy. This way, both Logstash and Elas-
ticsearch could be easily scaled. RabbitMQ is also built to operate in clustered 
environments. The next section presents a similar experiment with RabbitMQ in 
a distributed environment. 

 

Figure 5.6: RabbitMQ publish-subscribe throughput (Test-bench 2) 
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5.2.4 RabbitMQ Throughput in Scalable Conditions 

In this test, we evaluated the performance and scale capability of the 
Event Dissemination Platform implemented by RabbitMQ. This was conducted 
in a different test-bench (neither of the previously presented ones), as a possibil-
ity offered by PT Portugal SGPS, S.A. especially for this test. This test-bench 
consists of a clustered RabbitMQ pre-production environment in PT’s infrastruc-
ture.  

This test features multiple Generic Agent processes running in multiple 
hosts (simulating multiplicity of agents), a decent size RabbitMQ cluster and 
multiple event consumer processes running in another (single) machine. On the 
agents’ side there were 24 Generic Agent processes running simultaneously, 
evenly distributed by four machines (6 agents per host). The RabbitMQ cluster 
was composed of six machines interconnected by a 1 Gbps backbone. The 
hardware present in each machine (both in the agent’s and in the RabbitMQ 
cluster) was the following: 8 cores AMD Opteron 6000 and 128 GB RAM DDR3. 
The consumer was running in another more powerful host with the following 
hardware characteristics: 12 cores AMD Opteron 6000 and 256 GB RAM DDR3. 
This cluster (including the agents’ and consumer’s machines) is interconnected 
via a 1 Gbps end-to-end backbone. 

For this test, the 24 agent processes were executed simultaneously, all 
publishing events through the same queue. Similarly to the previous RabbitMQ 
test, this was also performed using reliable publishing (using the Confirms 
mechanism) and the test was composed of twenty repetitions, each followed by 
a 10 seconds interval to allow for network stabilization. For simplicity, we con-
sidered the results of just one agent, since we have found no relevant differ-
ences between the various agents. 

The average throughput achieved by one agent was 194.4 Mbps. Since 
there were 24 agents executing simultaneously the aggregated throughput is 
calculated to be 4.56 Gbps. This equates to an average rate of about 771 thou-
sand events per second that can be dispatched by the Event Dissemination Plat-
form regarding the described circumstances and equipment.5 

 
5 The event dataset used was the same used in the previous tests, whose average 

size per event is 767 bytes after encapsulation in the interoperability format. 
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This test demonstrated that the Event Dissemination Platform wouldn’t 
pose a problem regarding the overall scalability of our system. PT’s technicians 
also provided further information about the RabbitMQ cluster’s typical perfor-
mance that supports this conclusion. Their pre-production environment typical-
ly achieves between 160 and 400 Mbps per client in similar tests (depending on 
the number of clients running simultaneously), consistent with what we ob-
served in this particular test. Their more powerful production infrastructure, 
interconnected by 10Gbps backbone and using superior hardware, they say one 
publishing client can achieve in average 1,2Gbps throughput. 

5.3 DHIDS-QL Expressiveness and Effectiveness 
The goal for this series of tests is to answer the following questions:  

• Does the Event Analysis Module provide the querying capabilities 
specified in the system model?  

• How efficient is the runtime support to process queries, in face of 
scale conditions and heterogeneity of events stored in the EMMS?  

• Regarding specific “real-life” attack scenarios, how effective is the de-
tection, and how appropriate is the language expressiveness to evi-
dences of relevant and recent security exploits? Namely: SQL-
injection, SYN-flood DoS and SSL Heartbleed attack?  

• Is it expectable that the designed solution presents extensibility sup-
port to evolve and to allow the expression of new attacks? 

To evaluate the expressiveness of the proposed DHIDS-QL language for 
auditing specific attacks and the implemented system’s detection effectiveness 
in the face of realistic and some of the security threats most prominent today, 
we selected the following auditing cases:  

• SQL-Injection Attack 

• SYN-Flood DoS Attack 

• SSL Heartbleed Attack 

For each attack scenario, we recreated the attacks in our test environment 
using specific attack tools and target applications. Then we collected the traces 
left by the attack in the form of events, which were eventually stored in the 
EMMS. Finally, we looked for the telltale signs of the attack by formulating spe-
cific DHIDS-QL queries. All the following tests were performed in Test-bench 1.   
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5.3.1 SQL-Injection Attack 

According to OWASP’s “The Ten Most Critical Web Applications Security 
Risks” report [OWASP13], injection vulnerabilities are considered the most 
common type of security weaknesses in web applications today. These can oc-
cur when non-sanitized user input data is passed to an interpreter as part of a 
command or query. This way, an attacker can trick the interpreter to execute his 
malicious instructions. Here we focus specifically on SQL-Injection, likely the 
most popular kind of injection attack, to recreate an attack scenario where a 
vulnerable application is targeted in a monitored environment. SQLi is, as the 
name suggests, an injection technique that attempts to execute malicious SQL 
statements on a database, taking advantage of a user entry field where the input 
is not appropriately sanitized. 

For this test scenario, we set up a vulnerable web application, Wackopicko 
[Wackopicko], running on a LAMP server on a HPOT (running on a RaspberryPi 
1B node), as represented in the figure 5.1. Logs from the Apache server and the 
MySQL database (as components of such “Honeypot”) were recorded and pub-
lished as events on the EMMS server. We used w3af [w3af] (running on the US-
ER station) – a vulnerability scanning and exploiting tool for web applications. 
With w3af, we perform an SQLi scanning and intrusion attack targeting 
Wackopico. Additionally, logs of network events were also collected in PCAP 
format by a Suricata instance (used here in the role of a NMA). Suricata also 
runs on the HPOT node, the target of the attack (but it could run on any other 
node in the same segment). The events were published by the probing agents 
involved and stored on the EMMS system.  

This test intends to illustrate a typical use case scenario of auditing a po-
tential injection attack, in this case SQLi, in combination with possible related 
evidences captured by intrusion-detection agents. Even that we studied in this 
case a SQLi attack, the underlying principles and methodology could be ex-
trapolated to other kinds of web injection attacks such as cross-site scripting - 
XSS). This test should provide a concrete idea of how our system performs 
when dealing with that kind of attack detection.  

One of the telltale signs of a consummated SQLi attack can be found on 
the database log. We know, from the study of w3af, that its SQL injection plugin 
tries to inject the string a’b”c’d” in every injection point (in HTML forms) and 
searches for SQL errors in the HTTP response body. Assuming the attack was 
successful, we began by looking for that kind of string pattern occurring at the 
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database level. We did this by executing the following query (Listing 5.1) on the 
Event Analysis Module. 

PATTERN SEQ (MYSQL e1) 
WHERE e1.command = "Query" 
AND e1.argument CONTAINS "a\\'b\\\"c\\'d\\\"" 
PUBLISH "SQLiAttackSucceeded" IN "attacks" 
DESCRIPTION "Detected SQLi. SQL command:" + e1.argument; 

Listing 5.1: MySQL event analysis (DHIDS-QL) 

We must notice that the string we are in fact looking for is not the original-
ly injected string but its equivalent considering the escape characters as it will 
appear in the MySQL log: a\’b\”c\’d\”. The string presented in the query is the 
equivalent to this last one considering the escape characters for our parser, 
which is implemented in Java6. 

The query in the listing 5.1 returned seven matches. These can be seen on 
Figure 5.7, which shows a partial screen-shot from Kibana (running on the 
EMMS system) containing every document in the recently created “attacks” in-
dex. As mentioned earlier, Kibana is a powerful data navigation and visualiza-
tion tool integrated with Elasticsearch. In the following tests, we use it to observe 
the output events created by the queries. We will be focusing on three event 
fields: Time, which represents the detection timestamp; classification.text, which 
means the event “type” defined by the query; and additionalData.message, which 
is an event description also specified by the query. 

 
6 The quotation marks (“) and apostrophes (‘) are escape characters in MySQL, so they 

are represented in string preceded by the backslash (\) as in \” and \’. Similarly, in Java, the 
backslash (\) and the quotation marks (“) are escape characters themselves and are also 
represented in a string preceded by backslash (\) as in \\ and \”. 
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Figure 5.7: Results of MySQL event analysis query (Kibana) 

The last query still doesn’t reveal where the attack came from. For that 
purpose, we can now try to correlate the MySQL events (which reveal that there 
was an attack) with the preceding POST request found in the Apache log 
(which reveal the origin of the HTTP requests that most likely carried the at-
tack). We do so with the following query (Listing 5.2): 

PATTERN SEQ (APACHE e1, MYSQL e2) 
WHERE e1.verb = "POST" 
AND e1.request = "/users/login.php" 
AND e1.response = 200 
AND e2.command = "Query" 
AND e2.argument CONTAINS "SELECT*users*a\\'b\\\"c\\'d\\\"" 
WITHIN 30ms 
PUBLISH "SQLiAttackSucceeded" IN "attacks2" 
DESCRIPTION "Detected SQLi. From host: " + e1.clientip; 

Listing 5.2: Correlating MySQL with Apache events (DHIDS-QL) 

The previous query (Listing 5.1) returned several matches. One of them 
(second row in Figure 5.7) is related to an SQLi attempt on the users’ login 
form. This query (Listing 5.2) targets specifically that occurrence. It correlates 
both the MySQL event and the related HTTP POST request, by relating the re-
quest URI (/users/login.php) with the manipulated SQL query that should val-
idate the login (SELECT … FROM users … <SQLi string>). As expected, it re-
turned exactly one match (shown in Figure 5.8). This query, as opposed to the 
previous one, not only tells us that there was a consummated SQLi attack but 
also reveals the origin of the potential malicious request. 

 



 78 

 

Figure 5.8: Results of the correlation between MySQL and Apache events 
(Kibana)  

Another variant of this scenario would be if we wanted to know if there 
was an SQLi attempt regardless of whether it was successful or not. In that case, 
it’s not enough to look only at the database and Apache events. In fact, Apache by 
default doesn’t log the data in POST requests. Therefore, in this case we had to 
look also at the network events. Specifically, we looked at the HTTP messages 
captured on the network (by the Suricata based agent). We did so with the fol-
lowing query (Listing 5.3). 

PATTERN SEQ (HTTP pkt) 
WHERE pkt.http.request.method = "POST" 
AND pkt.http.request.uri = "/users/login.php" 
AND pkt.payload.data CONTAINS "a%27b%22c%27d%22" 
PUBLISH "SQLiAttack" IN "attacks" 
DESCRIPTION "SQLi attempt from host:"+pkt.ip4.source 
+ " Injected data:" + pkt.payload.data; 

Listing 5.3: Looking for SQLi evidences in HTTP messages 

We should notice that the string pattern we are looking for in this query is 
the same (a’b”c’d”), only this time it is its HTML-encoding equivalent. 

This query looks for HTTP POST requests directed to Wackopicko’s login 
page, carrying the typical w3af’s SQLi pattern. It produced two output events as 
shown in Figure 5.9. They are two variants of the same attack injected by w3af. 
One targets the “username” field and other targets the “password” field. 

 

Figure 5.9: Results of the SQLi evidences found in HTTP messages (Kibana) 
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5.3.2 SYN-Flood DoS and DDoS Attacks 

The SYN-Flood is a form of denial-of-service in which the target is hit with 
a barrage of TCP SYN requests, in an attempt to exhaust its resources and im-
pair its ability to answer legitimate requests. This happens because the receiver 
to initiate a connection has to store some state while it waits for the expected 
acknowledgement. When that acknowledgement doesn’t arrive, those resources 
are only liberated much later, after a time-out. This form of DoS is considered 
outdated nowadays, as it can be defeated by some mechanisms like the use of 
SYN-cookies, which prevent the receiver to store any state before the three-way 
handshake is completed. Nevertheless, many systems don’t implement such 
new features, and the principle underlying the SYN-flood attack maintains its 
relevance today and it can still be effective. The danger is particularly relevant 
in the context of DDoS (Distributed Denial of Service) attacks. In addition, it is a 
very illustrative example of a DoS attack evidence, and an interesting example 
to demonstrate the capabilities of the pattern-detection algorithm and language. 

For this test scenario, first we simulated a SYN flood attack and captured 
its evidences in the form of related events. For that purpose, we set up an 
Apache server, in the HPOT, and used hping3 [hping] – a command-line orient-
ed TCP/IP packet assembler and analyzer tool – to send a profusion of SYN 
packets to the HPOT from the USER station, using random fake source IP ad-
dresses. Meanwhile, we had a NMA (implemented by a Suricata instance run-
ning in a RaspberryPi) sniffing packets on the same switch port as the HPOT (us-
ing a hub/repeater). The packets were then sent in the form of events to the 
EMMS, as usual, using the Generic Agent implementing the NMA. 

Using hping3 (USER station), we sent 10.000 SYN packets to the target 
(HPOT running in RaspberryPi 1B) at a rate of 1.000 packets per second. Mean-
while, the Suricata instance (NMA running in a RaspberryPi 1B) sniffed traffic on 
the same Ethernet segment. All the packets observed by the NMA were then 
published to the EMMS. Using the Event Analysis Module prototype running 
on the USER station, we executed the following query (Listing 5.4), to find out 
how many of the 10.000 SYN packets sent, were actually detected by the NMA.  

PATTERN SEQ (TCP e1) 
WHERE e1.tcp.flags = "syn" 
AND e1.ip4.destination = "192.168.1.13" 
PUBLISH "SynRequest" IN "tcpevents"; 

Listing 5.4: SYN requests query 
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This query returned 3.117 matches, which means a very significant event 
loss rate of around 69%. We believe, the most likely cause for this loss of pack-
ets is attributed to the hardware limitations of the RaspberryPi 1B. Although out 
of scope of this test, we performed a series of quick informal tests to provide a 
general idea of what could be expected from this kind of devices operating as 
NMA’s, as we briefly describe: 

• First, we repeated the same procedure under the same circumstances 
using RaspberryPi 2B, but it did not prove to perform any better than 
RaspberryPi 1B. 

• Then, we repeated the same test, only varying the pace at which we 
sent the packets while maintaining the total of packets sent: 10.000. At 
half of the initial rate, 500 packets/sec, we found a slight improve-
ment with RaspberryPi 1B, collecting 4.271 of the total 10.000 SYN 
packets sent, which equates to about 57% event loss. At 200 pack-
ets/sec, it collected 7.613 packets (24% loss). Finally, at 100 pack-
ets/sec, it managed to capture all 10.000 (0% loss). 

As a final consideration, it is not much relevant for the problem in hand to 
capture every single incomplete connection attempt. It should be possible to de-
tect the presence of a SYN-Flood attack by just looking at a representative sam-
ple of all the SYN packets sent. For the remaining of this experiment, we con-
sider the original results obtained with RaspberryPi 1B (3.117 TCP SYN packets 
observed out of 10.000 sent).  

Then we ran another query (Listing 5.5), to observe how many of these 
SYN requests were followed by a typical SYN flood attack pattern – a SYN-
ACK response from the target followed by the absence of the expected hand-
shake-completing ACK. This returned 2.828 positive matches. The fact that they 
are less than the preceding SYN’s could be caused by one, or both, of two rea-
sons: either the HPOT lost the SYN packets and didn’t answer them or it did 
and the NMA didn’t capture those events. 
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PATTERN SEQ (TCP e1, TCP+ e2[], ~(TCP e3)) 
WHERE e2[i].ip4.destination = e1.ip4.source  
AND e1.ip4.destination = e2[i].ip4.source 
AND e3.ip4.source = e1.ip4.source 
AND e3.ip4.destination = e1.ip4.destination 
AND e1.tcp.flags = "syn" 
AND e2[i].tcp.flags = "syn-ack" 
AND e3.tcp.flags = "ack" 
AND e2[i].tcp.ack = e1.tcp.seq+1 
AND e3.tcp.seq = e2[i].tcp.ack 
AND e3.tcp.ack = e2[i].tcp.seq+1 
PUBLISH "IncompleteTCPConnection" IN "threats"; 

Listing 5.5: Incomplete TCP connections query 

The middle event – e2 – is represented as a Kleene closure because as it is 
never acknowledged, it is usually retransmitted by the target, which originates 
multiple matches for the same event. That, in turn would potentially generate 
multiple matches for the same handshake, if e2 had been declared as a single 
event. This way, multiple matches for the same handshake are always identi-
fied as one. 

Finally, we ran the following query (Listing 5.6), which looks for the oc-
currence of more than 1.000 failed TCP handshakes, targeting the same host. It 
then publishes each pattern match with an appropriate message including the 
target IP address. 

 

PATTERN SEQ(IncompleteTCPConnection+ events[] IN "threats") 
WHERE events[i].e1.ip4.destination = 
events[j].e1.ip4.destination 
HAVING count(events) > 1000 
PUBLISH "SYNfloodAttack" IN "attacks" 
DESCRIPTION "SYN flood attack targeting "+ 
first(events).e1.ip4.destination; 

Listing 5.6: SYN flood attack query 

Our initial idea was to design a query correlating the quantity of observed 
events and the observation time frame. For example, we wanted to detect any 
occurrence of more than 1.000 IncompleteTCPConnection events in a 10 seconds 
interval. However, our implemented prototype exhibited some particular issues 
when we attributed a WITHIN clause to a Kleene closure. The problem was that 
the algorithm, would have to consider every possible set of events that occurred 
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within any possible 10 seconds window. That was not computationally feasible, 
which led us to exclude the WITHIN clause. This query, as expected, returned 
one positive match (Figure 5.10). 
 

 

Figure 5.10: SYN flood results (Kibana) 

5.3.3 SSL Heartbleed 

The Heartbleed [CVE-2014-0160, Heartbleed] is a devastating vulnerability 
recently found (April 2014) in some older versions of the OpenSSL library – a 
commonly used implementation of the SSL/TLS protocol. It exploits a bug, 
found in OpenSSL versions 1.01 and 1.02 beta, related to the Heartbeat Exten-
sion for TLS. The Hearbeat mechanism provides a way to test or keep a secure 
connection alive, by refreshing the session security association parameters, in-
stead of having to reestablish it with a new TLS handshake, after a certain peri-
od of inactivity. This is done by sending a message known as a Heartbeat Re-
quest (a standardized message type in the Record Layer Protocol (RLP) of the 
TLS protocol stack. This message consists of two components: an arbitrary pay-
load and an explicit indication about the size of that same payload.  

Figure 5.11 presents a typical traffic flow of an attacker sending a heart-
beat request, in this case detected with the Wireshark protocol analyzer tool7.  

 

Figure 5.11: Hearbeat attack 

 
7 Available on https://www.wireshark.org (accessed on 27/Mar/2016). 
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This tool can detect malformed heartbeat requests (as showed in the “Mal-
formed Packet: SSL” line) but the packet capture is typical when a heatbleed 
attack is launched by an originator. As we can see in figure 5.11, the length of 
the TLS 1.1 record layer packet (carrying the Hearbeat Request message) has a 
length of 3 bytes, but Hearbeat’s payload has a field Payload Length with 16K 
bytes. 

The response to Hearbeat request messages should contain the exact same 
payload initially sent by the instigator in the Payload Length field. So, the way 
this mechanism can be exploited is by sending a maliciously crafted Heartbeat 
Request containing a short payload together with a fake much larger size indi- 
cation. The receiver of the Heartbeat Request will eventually store the payload 
in memory while it prepares the response. The above-mentioned versions of 
OpenSSL, handle the Heartbeat Request blindly trusting the size provided by 
the other party and failing to verify the actual size of the message and do the 
appropriate bounds checking. In this case, the result is that the response mes- 
sage contains the payload the sent by the attacker followed by what happened 
to be next to it in the victim’s memory. Since OpenSSL is meant to provide secu- 
rity to sensitive data, it will most likely have, in its memory, sensitive data like 
for instance the X.509 certificates’ private keys, names and password of users, 
session-cookies, etc. 

To show how a Heartbleed attack is detected by our DHIDS platform, we 
set up a basic SSL Honeypot script running on the HPOT. It simply accepts 
SSL/TLS connections and notifies on the console about the attacker address. On 
the client side (USER station), we used a Python script to inject the Heartbleed 
attack. For event capturing purposes, we used two techniques. First, we had an 
instance of Suricata running alongside with the SSL Honeypot (on the HPOT), 
logging all network traffic. Second, the SSL Honeypot script prints the source 
addresses of suspected Heartbleed scans to the console. To capture these mes-
sages as events into our EMMS, we redirected its standard output to a Generic 
Agent process, which interprets each line and encapsulates it into an event ac- 
cording to the interoperability format, and publishes it on the Event Dissemina-
tion System. 

From the server point of view, this attack is known for not leaving any 
traceable occurrence. However, this is not the case with network events, which 
usually tell a more complete story. The following query (Listing 5.7) looks for 
SSL packets with content type “Heartbeat” (24) and heartbeat type “Request” 
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(1), according to the Heartbeat extension protocol specification [RFC6520]. It 
also looks at the specified payload length, which we know that in normal cir-
cum- stances should always be less than the actual frame size. When this is not 
the case (and the other criteria is also met), a positive match for a Heartbleed 
attack is generated. This query returned one positive match, as shown in next 
partial screen-shot from Kibana (Figure 5.11). 

PATTERN SEQ (SSL e1) 
WHERE e1.ssl.record_type = 24 
AND e1.ssl.heartbeat_type = 1 
AND e1.ssl.heartbeat_payload_length > e1.frame.lenght 
PUBLISH "HeartbleedAttack" IN "attacks" 
MESSAGE "Attack: Heartbleed - From host:    
"+e1.ip4.source+" - Specified length: " +  
e1.ssl.heartbeat_payload_length; 

Listing 5.7: Heartbleed attack query based on network traffic 

 

Figure 5.12: Heartbleed attack event based on network traffic (Kibana) 

A simpler way of detecting this attack is to use the events produced by the 
Honeypot itself. We did this with the following query (Listing 5.8), which simp-
ly looks for any occurrence of a “HeartbleedHoneypot” event (this event type 
was set by configuration on the Generic Agent that is listening to the Honeypot) 
and notifies so, producing an event in the “attacks” index. As expected, this 
query produced one match, as shown in Figure 5.12. 

PATTERN SEQ (HeartbleedHoneypot hb) 
PUBLISH "HeartbleedAttack" IN "attacks" 
MESSAGE "Attack: Heartbleed targeting honeypot; 
From host: "+hb.source; 

Listing 5.8: Heartbleed attack query based on Honeypot events 

 

Figure 5.13: Heartbleed attack event based on Honeypot events (Kibana) 
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In this particular case, the Heartbleed attack was not successful because 
we were using a vulnerable OpenSSL version. However, we could formulate a 
query to detect if there occurred an accomplished Heartbleed attack by compar-
ing the Heartbeat Request size against the Heartbeat Response (type 2, accord-
ing to [RFC6520]) size, as suggested in Heartbleed official website [Heartbleed]. 
We can do so with DHIDS-QL as Listing 5.9 exemplifies. Predictably, this query 
returned no matches. 

PATTERN SEQ (SSL e1, SSL e2) 
WHERE e1.ssl.record_type = 24 
AND e1.ssl.heartbeat_type = 1 
AND e1.ssl.heartbeat_payload_length > e1.frame.lenght 
AND e2.ip4.source = e1.ip4.destination 
AND e2.ip4.destination = e1.ip4.source 
AND e2.ssl.record_type = 24 
AND e2.ssl.heartbeat_type = 2 
AND e2.frame.lenght > e1.frame.lenght 
PUBLISH "AccomplishedHeartbleedAttack" IN "attacks" 
MESSAGE "Attack: Accomplished Heartbleed - From host: 
"+e1.ip4.source+" - Specified length: " + 
e1.ssl.heartbeat_payload_length; 

Listing 5.9: Accomplished Heartbleed query example 

5.4 Evaluation Summary 
In this chapter, we demonstrated how the DHIDS prototype effectively 

collects, processes and stores intrusion-events, detected by possible multiple 
and heterogeneous distributed probes. The reported experiments, among other 
conducted evaluations, are representative of the potential of the DHIDS plat- 
form design and implementation. From our experimental observations we de- 
tected which components in our implementation, and to what extent, could be- 
come bottlenecks, and discussed what possible solutions are available to pre- 
vent it. The message-queuing component has demonstrated to be easily scalable 
and a reliable substrate for intrusion-detection event dissemination from multi- 
ple probes to the central management solution built on top of the Elasticsearch 
(or ELK) software stack. Then, we demonstrated that the system is capable of 
detecting “real-life” intrusion occurrences (namely: SQLi, SYN-Flood, and 
Heartbleed attacks) relying on a variety of event sources. 

Although we didn’t present query execution performance tests to provide 
measurable data about expectable query execution times, we have observed, 
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during the previous tests and other experiments, some typical behaviors re-
garding the query execution performance. Based on that, we can make the fol-
lowing considerations: 

• The execution time depends on the type of events and pattern we are 
querying. Querying events that are very specific or rare is usually very 
fast. 

• The opposite is also true. Querying common events may take a long 
time to execute. Furthermore, if the pattern is composed of many dif-
ferent events and they are not rare, then the query may take a very 
long time to execute or ultimately fail. 

• As an example, the query that looks for incomplete TCP connections 
took a long time to execute (about 2 minutes for the used data set), as 
TCP handshakes, and therefore SYN packets, are very common occur-
rences in the network traffic. On the other hand, all the other queries 
used in this chapter executed quickly (typically, in a few millisec-
onds). 

• As a corollary, even that the DHIDS platform was not designed as a 
real-time-intrusion detection system, in the sense that time-bound 
metrics for event-detection always obey to real-time threshold guaran-
tees, the practical observation show, however, that the system exhibits 
an interesting potential for soft-real-time guarantees. This can be pro- 
vided namely by using more powerful probing devices, a cluster- 
based solution for the RabbitMQ based event dissemination and a 
powerful deployment of a cluster-ELK infrastructure. 

We should note that the above considerations are conditioned by the spe-
cific test environments used. It is expectable that if Elasticsearch were running 
on bigger cluster with more powerful nodes, the execution of queries would al- 
so be faster. 
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 Conclusions 

In this thesis, we proposed a Distributed and Hybrid Intrusion Detection 
System (DHIDS), addressed as an auditing platform that leverages on different 
intrusion detection components, synergistically combined in a pervasive moni-
toring system. Our objectives addressed the identified shortcomings on current 
IDS technology, building the DHIDS platform as a proposed solution to large-
scale monitoring environments.  

Our proposal combines the following relevant contributions: 

1. It supports a pervasive and diverse environment of probing agents 
spread all across the network, leveraging from the diversity of differ-
ent technological options and specializations, including NIDS, HIDS 
and Honeypot solutions.  

2. It offers scalability and extendibility by means of a distributed pub-
lish/subscribe middleware and an interoperability format, decou-
pling the event capturing and the event analysis process.  

3. It features a scalable Event Monitoring and Management System, as 
an auditing platform built on top of an elastic data repository, to store 
and to manage events for audit-trail correlation analysis. 

4. It provides a query-based language (DHIDS-QL) to express attack or 
signatures for querying security audit-trails, as well as a runtime im-
plementation to interpret and execute queries over the data-
repository.  

Some issues can be emphasized, considering the contribution, namely 
comparing with other intrusion detection approaches. First, by adopting differ-
ent base technology to build a diverse probing environment, the platform over-

6 
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comes effectiveness drawbacks of conventional IDS technology, according to its 
specialization and limitations, and when performing in isolation. This comple-
mentarity is an open way to deal with well-known problems of such IDS tech-
nology, namely considering scalability, reliability and effectiveness issues (i.e., 
tradeoffs between false-positive and false-negative ratios). 

Second, in the DHIDS platform, security events are detected by multiple 
probes (possibly using specific local capture formats), filtered and converted to 
a canonical JSON-based message format representation, inspired by the 
RFC4765 XML-message format. This standardized approach allows that events 
are uniformly conveyed through a generic publish/subscribe middleware to a 
dedicated logging and auditing system, the EMMS. In EMMS, all observed 
events can be aggregated, correlated and queried, against suspicious intrusion 
attack signature patterns involving heterogeneous evidences. This approach 
provides some relevant advantages: (1) it is a much more extensible architec-
ture, with the possibility to integrate new pervasive intrusion detection probes, 
decoupling their internal functionality in the global DHIDS architecture, and (2) 
the integration of existent technology that adheres to the RFC4765 as a support-
ed native format is almost immediate8. 

 Finally, in the proposed DHIDS platform, attack signatures are expressed 
by means of a declarative pattern query-language (DHIDS-QL), providing 
event-correlation semantics, using events as base elements for extensible possi-
ble rich-aggregations and correlations, modeling possible sophisticated attack 
evidences. This allows for a global intrusion detection and monitoring envi-
ronment when compared with specific management functions on conventional 
IDS technology, which tend to consider sub-sets of discrete events. 

We implemented the DHIDS platform as a proof-of-concept prototype, 
with a particular contribution and emphasis on the design and development of 
the proposed query language model and query execution runtime for the 
EMMS. Then, we experimentally evaluated the prototyped platform. For this 
purpose, we built two different test-bench environments and conducted differ-
ent observations, regarding event processing throughput, expectable perfor-

 
8 In that case, there would be a need for direct conversion from XML to JSON. 

As a prototype implementation choice, we adopted JSON equivalent to XML model 
suggested in RFC4765, as JSON imposes significantly lighter communication overhead 
than XML and it also simplified the implementation effort. 
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mance and scalability properties of the various adopted devices and platforms, 
expressiveness and effectiveness of the conceived attack signature expressing 
language. The results support our belief that the DHIDS platform is a realistic 
and interesting approach to implement a pervasive, diverse and effective Intru-
sion Detection System with centralized management and high-level event corre-
lation semantics. The experimental evaluation also demonstrates that the de-
signed platform and its prototype exhibit interesting indicators of potential for 
scalability, reliability, extensibility and availability. 

6.1 Future Work Directions 
Despite the results obtained by the prototype developed in the context of 

the thesis elaboration, many relevant work directions must be addressed as fu-
ture work, in order to arrive to a final deployed solution, eventually used in a 
real-monitoring environment. We advance some open issues that could be ad-
dressed as next steps, starting from our initial implementation and proof-of-
concept evaluations.  

A more extensive evaluation is certainly needed to better validate the ef-
fectiveness of the proposed solution. Namely: 

• Tests regarding the potential for scalability of the EMMS in a clus-
tered environment, targeting both, event capturing and processing, 
and query processing performance. In addition to these, experiments 
exploring replication, load balancing and clustering conditions re-
garding Elasticsearch would also be of interest.  

• Experiments targeting the system’s “real-time” capabilities, when 
capturing and analyzing events live, possibly in a real pre-
production environment. This could include the further develop-
ment of the agent devices, specifically the development of embedded 
agents with specialized, native and optimized functions for event-
capture, local filtering, event conversion and event publishing. 

Another interesting research and development direction would be the fur-
ther exploration of the software ecosystem around the ELK stack; namely, the 
use of Kibana as a real-time event monitoring visualization dashboard. 

We recognize that there is also a space for improvement regarding 
DHIDS-QL, namely in the expressiveness of the proposed language. This ex-
pressiveness could be expanded, for example with the addition of more pattern 
structures. Not all patterns can be expressed by a sequence. A pattern could be 
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such that looks for the occurrence of a set of events regardless of the order. Al-
so, pattern structures could be embedded in other pattern structures. This effort 
for the language enrichment could begin by analyzing different kinds of attacks 
and evolve the language while developing new attack signatures, taking ad-
vantage of the extensibility possibilities in the declarative language behavior 
and the way it is supported by the ELK/Logstash component. 

Finally, a revision of the current implementation with possible refinement 
and optimizations of the developed software, as well as, new selected tests, can 
open the possibility to address the dissemination of the DHIDS platform as an 
open-source platform. In this direction, an open task is to consider a publication 
to a national conference, or to an international conference or workshop. 
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 Appendix A:  
IDMEF XML Document Type Definition 

 
<!ELEMENT Alert                         ( 
       Analyzer, CreateTime, DetectTime?, AnalyzerTime?, 
       Source*, Target*, Classification, Assessment?, (Tool-
Alert | OverflowAlert | CorrelationAlert)?, AdditionalData*)> 
   <!ATTLIST Alert 
       messageid           CDATA                   '0' 
       %attlist.global; 

     > 

 

 
<!ELEMENT Analyzer                      ( 
       Node?, Process?, Analyzer? 
     )> 
   <!ATTLIST Analyzer 
       analyzerid          CDATA                   '0' 
       name                CDATA                   #IMPLIED 
       manufacturer        CDATA                   #IMPLIED 
       model               CDATA                   #IMPLIED 
       version             CDATA                   #IMPLIED 
       class               CDATA                   #IMPLIED 
       ostype              CDATA                   #IMPLIED 
       osversion           CDATA                   #IMPLIED 
       %attlist.global; 

     > 

 

 
<!ELEMENT Classification ( 

Reference* 
)> 

   <!ATTLIST Classification 
       ident               CDATA                   '0' 
       text                CDATA                   #REQUIRED 

     > 
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<!ENTITY % attvals.adtype               " 
       ( boolean | byte | character | date-time | integer | 
ntpstamp | 
         portlist | real | string | byte-string | xmltext ) 
     "> 
 
 
 
 
   <!ELEMENT AdditionalData           ( 
     (boolean | byte        | character | date-time | 
      integer | ntpstamp    | portlist  | real      | 
      string  | byte-string | xmltext  ) 
    )> 
 
   <!ATTLIST AdditionalData 
       type                %attvals.adtype;        'string' 
       meaning             CDATA                   #IMPLIED 
       %attlist.global; 

     > 

 

 
  <!ELEMENT CreateTime          (#PCDATA) > 
   <!ATTLIST CreateTime 
       ntpstamp            CDATA                   #REQUIRED 
       %attlist.global; 
     > 
 
 
 
 
   <!ELEMENT DetectTime          (#PCDATA) > 
   <!ATTLIST DetectTime 
       ntpstamp            CDATA                   #REQUIRED 
       %attlist.global; 

     > 
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 Appendix B:  
DHIDS-QL Abstract Syntax 

DHIDS-QL is defined by the following BNF grammar. Reserved words 
and terminal symbols are presented in boldface font. 

 

<query>   ::= PATTERN <pattern>  
   [WHERE <logical_exp>] 

   [WITHIN <time_window>] 

   [HAVING <logical_exp>] 
   ( PUBLISH <publish> | RETURN <expression> ) 
 
<pattern>  ::= <pattern_type> ( <element> [, <element>]* ) 
 
<pattern_type> ::= SEQ 

 
<element>   ::= <event> | ~(<event>)  
 
<event>   ::= <type> ( [+] <id> [] | <id> ) [ IN <id> ] 
 

<logical_exp>  ::= <logic_term> [OR <logical_exp>] 

 
<logical_term>  ::= <logical_fact> [AND <logical_term>] 

 
<logical_fact>  ::= <comparison> | NOT <logical_fact>  
 

<comparison>  ::= <expression>  
[( > | < | = | <> | >= | <= | CONTAINS )  
<expression> ] 

 
<expression>  ::= <term> [ ( + | - ) <expression> ] 
 

<term>   ::= <fact> [ ( * | / ) <term> | . <field> ] 
 
<fact>   ::= <simple_fact> | - <fact> 
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<simple_fact>  ::= integer | string | <id> [<id>] |  
( [<expression>]* ) | <id> | ( <logical_exp> ) 

 
<time_window>  ::= integer <letter>* 

 

<publish>  ::= <expression> IN <expression>  
[ DESCRIPTION <expression> ] 

 

<id>    ::= <letter> <letter_digit>* 
 

<type>  ::= <letter> <letter>* 

 
<letter>   ::= [a-z] | [A-Z] 
 
<letter_digit>  ::= letter | [0-9] 

 

  

 



 103 

 Appendix C:  
Pre-captured Data Sets 

Among the representative log datasets available on the Internet that can 
be considered for our experimental purposes, we studied the following ones: 

• DARPA Intrusion Detection Data Sets  

Available on: http://www.ll.mit.edu/ideval/data/ (accessed on 
20/Feb/2016). 

These data sets were created in 1998/1999 for research purposes, spe-
cifically for IDS evaluation. These include several gigabytes of data 
captured in a simulated network in PCAP format including several at-
tack occurrences alongside with normal traffic. 

 

• Public PCAP files list from NETRESEC  

Available on: http://www.netresec.com/?page=PcapFiles (accessed 
on 20/Feb/2016). 

This is a list of publicly available data sets in PCAP format from vari-
ous sources. 

 

• USA Military Academy Datasets  

Available on: 
http://www.westpoint.edu/crc/SitePages/DataSets.aspx (accessed 
on 20/Feb/2016). 

These are real data sets recorded in the internal USMA network. These 
include: Network traffic in the PCAP format DNS message logs, 
Apache web server logs (both access and error) and Snort alert logs. 


