

Março 2016

Pedro Miguel de Freitas Alves

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

P

Licenciado em Engenharia Informática

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Analyzing Audit Trails in a Distributed and
Hybrid Intrusion Detection Platform

[Título da Tese]

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Dissertação para obtenção do Grau de Mestre em
[Engenharia Informática]

Orientador: Henrique Domingos, Professor Auxiliar, DI/FCT/UNL

 Júri:

Presidente: Doutora Carla Maria Gonçalves Ferreira, Profª Auxiliar,
Faculdade de Ciências e Tecnologia da UNL – Dep. de
Informática.

Arguente: Doutor Rui Miguel Soares Silva, Professor Adjunto,
Instituto Politécnico de Beja – ESTIG – Dep. de
Engenharia – Área Cientifica de Redes e Sistemas de
Computadores.

Vogal: Doutor Henrique João Lopes Domingos, Prof. Auxiliar,
Faculade de Ciências e Tecnologia da UNL – Dep. de
Informática.

Analyzing Audit Trails in a Distributed and Hybrid Intrusion Detection Plat-
form

Copyright © Pedro Miguel de Freitas Alves, Faculdade de Ciências e Tecnolo-
gia, Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o
direito, perpétuo e sem limites geográficos, de arquivar e publicar esta disserta-
ção através de exemplares impressos reproduzidos em papel ou de forma digi-
tal, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a
divulgar através de repositórios científicos e de admitir a sua cópia e distribui-
ção com objectivos educacionais ou de investigação, não comerciais, desde que
seja dado crédito ao autor e editor.

 v

 vii

Acknowledgements

First and foremost, I would like to thank Faculdade de Ciências e Tecnologia
da Universidade Nova de Lisboa and to all professors who I had the pleasure to
learn from, and who always kindly offered me their help and support through-
out my journey here. Especially, I would like to thank my mentor, Prof. Hen-
rique Domingos, for his invaluable help and for the fortunate opportunity to
work with and learn from him. His insightful ideas, dedication and patience
made this project possible, and for that I am forever grateful.

My family deserves endless thanks for their support and encouragement
over the last years. In particular, my parents, my grandmother, and my brother
who also helped me with his invaluable insights in the face of many technical
difficulties.

I also want to say thank you to all my friends and colleagues for their
companionship, encouragement and for making my academic journey so much
more enjoyable and gratifying.

 ix

Abstract

Efforts have been made over the last decades in order to design and perfect In-
trusion Detection Systems (IDS). In addition to the widespread use of Intrusion Pre-
vention Systems (IPS) as perimeter defense devices in systems and networks, various
IDS solutions are used together as elements of holistic approaches to cyber security in-
cident detection and prevention, including Network-Intrusion Detection Systems
(NIDS) and Host-Intrusion Detection Systems (HIDS). Nevertheless, specific IDS and
IPS technology face several effectiveness challenges to respond to the increasing scale
and complexity of information systems and sophistication of attacks. The use of isolat-
ed IDS components, focused on one-dimensional approaches, strongly limits a com-
mon analysis based on evidence correlation. Today, most organizations’ cyber-security
operations centers still rely on conventional SIEM (Security Information and Event
Management) technology. However, SIEM platforms also have significant drawbacks
in dealing with heterogeneous and specialized security event-sources, lacking the sup-
port for flexible and uniform multi-level analysis of security audit-trails involving dis-
tributed and heterogeneous systems.

In this thesis, we propose an auditing solution that leverages on different intru-
sion detection components and synergistically combines them in a Distributed and
Hybrid IDS (DHIDS) platform, taking advantage of their benefits while overcoming
the effectiveness drawbacks of each one. In this approach, security events are detected
by multiple probes forming a pervasive, heterogeneous and distributed monitoring
environment spread over the network, integrating NIDS, HIDS and specialized
Honeypot probing systems. Events from those heterogeneous sources are converted to
a canonical representation format, and then conveyed through a Publish-Subscribe
middleware to a dedicated logging and auditing system, built on top of an elastic and
scalable document-oriented storage system. The aggregated events can then be queried
and matched against suspicious attack signature patterns, by means of a proposed de-
clarative query-language that provides event-correlation semantics.

Keywords: Intrusion Detection Systems (IDS), Distributed and Hybrid IDS, Analysis of
Audit-Trails

 xi

Resumo

Nas ultimas décadas têm sido desenvolvidos esforços no sentido de conceber e
aperfeiçoar Sistemas de Detecção de Intrusões (IDS). Adicionalmente ao uso difundido
de Sistemas de Prevenção de Intrusões (IPS) como instrumentos de defesa de períme-
tro de sistemas e redes, várias soluções IDS são utilizadas em conjunto numa aborda-
gem holística na detecção e prevenção de incidentes de ciber-segurança, incluindo
NIDS (IDS orientados para a segurança de redes - Network) e HIDS (IDS vocacionados
para a segurança em nós – Hosts). Não obstante, a tecnologia especifica IDS e IPS, de-
fronta-se com vários problemas de eficácia na resposta às crescentes escala e complexi-
dade dos sistemas de informação e sofisticação dos ataques. O uso de componentes
IDS isolados, focados em abordagens unidimensionais, limita a possibilidade de uma
análise uniforme baseada na correlação de evidencias. Atualmente, os centros operaci-
onais de ciber-segurança da maioria das organizações ainda dependem da tecnologia
convencional de gestão de informação e eventos de segurança (SIEM). Porem, as plata-
formas SIEM também têm inconvenientes significativos ao lidar com fontes de eventos
heterogéneas e especificas, carecendo de suporte a uma analise multinível flexível e
uniforme de registos de segurança envolvendo sistemas distribuídos e heterogéneos.

Nesta tese, propomos uma solução de auditoria que, aproveitando diferentes
componentes IDS, combina-os sinergicamente numa plataforma IDS híbrida e distribu-
ída (DHIDS), tirando partido dos seus benefícios enquanto mitiga as suas ineficácias
individuais. Nesta abordagem os eventos de segurança são detectados por múltiplas
sondas que compõem um ambiente de monitorização pervasivo, heterogéneo e distri-
buído sobre a rede, integrando NIDS, HIDS e sistemas Honeypot. Os eventos proveni-
entes destas fontes heterogéneas são convertidos para um formato de representação
canónico e enviados através duma plataforma intermediária Publish-Subscribe para um
sistema de dedicado de registo e auditoria que assenta numa plataforma de armaze-
namento orientada a documentos elástica e escalável. Os eventos agregados podem
então ser consultados e comparados com padrões suspeitos de assinaturas ataques, por
meio de uma linguagem de consulta declarativa que possibilita correlação de eventos.

Palavras-chave: Sistemas de Detecção de Intrusões, IDS Híbridos e Distribuídos, Analise de
Registos de Eventos

 xiii

 xv

Contents

1 INTRODUCTION ... 1
1.1 MOTIVATION .. 4
1.2 OBJECTIVES ... 6
1.3 DOCUMENT ORGANIZATION ... 7

2 RELATED WORK ... 9
2.1 INTRUSION DETECTION SYSTEMS .. 9

2.1.1 Common Classification of IDS ... 10
2.1.2 Other Classification Criteria for IDS .. 14
2.1.3 IDS Platforms .. 15

2.2 IDS MESSAGE EXCHANGE FORMATS ... 17
2.3 DISTRIBUTED IDS APPROACHES USING HONEYPOTS 18

2.3.1 Honeypots .. 19
2.3.2 Honeypot Implementations .. 20

2.4 MESSAGE ORIENTED MIDDLEWARE SYSTEMS ... 20
2.5 EVENT FLOW ANALYSIS METHODS ... 23

2.5.1 Event Analysis Based on Information Flow Control 24
2.5.2 Event-tracing in Dynamic Instrumentation 25
2.5.3 Stream Processing Engines .. 26
2.5.4 Event-Flow Processing Applied to Intrusion Detection 27

2.6 RELATED WORK SUMMARY AND THE DHIDS APPROACH 29

3 SYSTEM MODEL AND ARCHITECTURE ... 31
3.1 SYSTEM ARCHITECTURE OVERVIEW .. 31
3.2 PROBING AGENTS ... 32

3.2.1 Classes of Agents ... 32
3.2.2 Generic Agent Architecture ... 33

3.3 EVENT DISSEMINATION PLATFORM .. 34

 xvi

3.3.1 Requirements for the Message Queuing Support 34
3.3.2 Interoperability Model .. 35

3.4 EVENT MONITORING AND MANAGEMENT SYSTEM 37
3.4.1 Architecture .. 37
3.4.2 Event Model ... 38
3.4.3 Event Analysis Module .. 40

3.5 DHIDS QUERY LANGUAGE ... 41
3.5.1 Language Prerequisites .. 42
3.5.2 Query Structure ... 42
3.5.3 Chained Queries and Persistency ... 45
3.5.4 Rules and Alerts ... 46
3.5.5 Additional Constructs .. 47

4 IMPLEMENTATION .. 51
4.1 IMPLEMENTATION OVERVIEW .. 51
4.2 PERVASIVE PROBING ENVIRONMENT - AGENTS 53
4.3 EVENT DISSEMINATION PLATFORM - RABBITMQ 55
4.4 EVENT MONITORING AND MANAGEMENT SYSTEM 55

4.4.1 Data Storage – Elasticsearch .. 56
4.4.2 Event Management – Logstash .. 56
4.4.3 Event Analysis Module .. 56

5 EVALUATION ... 61
5.1 EVALUATION ENVIRONMENT .. 61

5.1.1 Experimental Test-bench 1 ... 62
5.1.2 Experimental Test-bench 2 ... 64

5.2 EVENT COLLECTION AND PROCESSING TESTS ... 67
5.2.1 Network Performance ... 67
5.2.2 End-to-end Event Processing Throughput .. 68
5.2.3 RabbitMQ Event Publish-Subscribe Throughput 70
5.2.4 RabbitMQ Throughput in Scalable Conditions 73

5.3 DHIDS-QL EXPRESSIVENESS AND EFFECTIVENESS 74
5.3.1 SQL-Injection Attack ... 75
5.3.2 SYN-Flood DoS and DDoS Attacks .. 79
5.3.3 SSL Heartbleed ... 82

 xvii

5.4 EVALUATION SUMMARY .. 85

6 CONCLUSIONS .. 87
6.1 FUTURE WORK DIRECTIONS .. 89

 REFERENCES .. 91

 APPENDIX A: IDMEF XML DOCUMENT TYPE DEFINITION 99

 APPENDIX B: DHIDS-QL ABSTRACT SYNTAX 101

 APPENDIX C: PRE-CAPTURED DATA SETS 103

 xix

 xxi

Index of Tables

TABLE 2.1: CLASSIFICATION OF IDS PLATFORMS .. 17
TABLE 5.1: COMPONENTS IN THE TEST-BENCH 1 INSTALLATION 63
TABLE 5.2: COMPONENTS IN THE TEST-BENCH 2 INSTALLATION 66
TABLE 5.3: IPERF BANDWIDTH MEASUREMENTS .. 67
TABLE 5.4: ROUND-TRIP-TIME MEASUREMENTS .. 68

 xxiii

Index of Figures

FIGURE 1.1: TYPICAL INTERNETWORKING ENVIRONMENT .. 5
FIGURE 2.1: DIDS ARCHITECTURE EXAMPLE ... 12
FIGURE 2.2: SYNTHETIC REPRESENTATION OF A TYPICAL DIDS ARCHITECTURE 13
FIGURE 3.1: SYSTEM MACRO-COMPONENTS OVERVIEW .. 32
FIGURE 3.2: GENERIC AGENT’S INTERNAL ARCHITECTURE ... 34
FIGURE 3.3: RFC4765 IDMEF MESSAGE MODEL ... 36
FIGURE 3.4: EVENT MONITORING AND MANAGEMENT SYSTEM (EMMS) 38
FIGURE 3.5: QUERY PROCESSING WORKFLOW .. 40
FIGURE 4.1: IMPLEMENTATION OVERVIEW .. 52
FIGURE 5.1: TEST-BENCH 1 NETWORK DIAGRAM ... 62
FIGURE 5.2: TEST-BENCH 2 NETWORK DIAGRAM ... 65
FIGURE 5.3: END-TO-END EVENT-PROCESSING THROUGHPUT (TESTBENCH 1) 69
FIGURE 5.4: END-TO-END EVENT-PROCESSING THROUGHPUT (TEST-BENCH 2) 70
FIGURE 5.5: RABBITMQ PUBLISH-SUBSCRIBE THROUGHPUT (TEST-BENCH 1) 71
FIGURE 5.6: RABBITMQ PUBLISH-SUBSCRIBE THROUGHPUT (TEST-BENCH 2) 72
FIGURE 5.7: RESULTS OF MYSQL EVENT ANALYSIS QUERY (KIBANA) 77
FIGURE 5.8: RESULTS OF THE CORRELATION BETWEEN MYSQL AND APACHE EVENTS

(KIBANA) ... 78
FIGURE 5.9: RESULTS OF THE SQLI EVIDENCES FOUND IN HTTP MESSAGES (KIBANA) 78
FIGURE 5.10: SYN FLOOD RESULTS (KIBANA) ... 82
FIGURE 5.11: HEARBEAT ATTACK .. 82
FIGURE 5.12: HEARTBLEED ATTACK EVENT BASED ON NETWORK TRAFFIC (KIBANA) .. 84
FIGURE 5.13: HEARTBLEED ATTACK EVENT BASED ON HONEYPOT EVENTS (KIBANA) . 84

 xxv

Index of Listings

LISTING 3.1: BASIC QUERY STRUCTURE .. 42
LISTING 3.2: SEQ OPERATOR STRUCTURE .. 43
LISTING 3.3: FIELD REFERENCING .. 44
LISTING 3.4: TCP HANDSHAKE PATTERN (QUERY EXAMPLE) .. 45
LISTING 3.5: PERSISTENT RESULT QUERY (PUBLISH-IN) ... 46
LISTING 3.6: TCP HANDSHAKE INCOMPLETE (QUERY EXAMPLE) 48
LISTING 3.7: SYN-FLOOD ATTACK PATTERN (QUERY EXAMPLE) 48
LISTING 3.8: TIME WINDOW SPECIFICATION (QUERY EXAMPLE) 49
LISTING 3.9: INDEX SPECIFICATION (QUERY EXAMPLE) ... 49
LISTING 3.10: PUBLISH-IN WITH DESCRIPTION (QUERY EXAMPLE) 50
LISTING 5.1: MYSQL EVENT ANALYSIS (DHIDS-QL) .. 76
LISTING 5.2: CORRELATING MYSQL WITH APACHE EVENTS (DHIDS-QL) 77
LISTING 5.3: LOOKING FOR SQLI EVIDENCES IN HTTP MESSAGES 78
LISTING 5.4: SYN REQUESTS QUERY ... 79
LISTING 5.5: INCOMPLETE TCP CONNECTIONS QUERY ... 81
LISTING 5.6: SYN FLOOD ATTACK QUERY .. 81
LISTING 5.7: HEARTBLEED ATTACK QUERY BASED ON NETWORK TRAFFIC 84
LISTING 5.8: HEARTBLEED ATTACK QUERY BASED ON HONEYPOT EVENTS 84
LISTING 5.9: ACCOMPLISHED HEARTBLEED QUERY EXAMPLE 85

 xxvii

List of Acronyms

AWS Amazon Web Services

CAM Central Auditing Module

DAG Directed Acyclic Graph

DBMS Database Management System(s)

DDoS Distributed Denial of Service

DHIDS Distributed and Hybrid Intrusion Detection System(s)

DIDS Distributed Intrusion Detection System(s)

DoS Denial of Service

DSL Domain Specific Language

EDP Event Dissemination Platform

ELK ELK Software Platform, composed by the
Elasticsearch, Logstash and Kibana Software Components

EMMS Event Monitoring and Management System

HIDS Host Intrusion Detection System(s)

HMA Host Monitor Agent

HW Hardware

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System(s)

IETF Internet Engineering Task Force

IPS Intrusion Prevention System(s)

JRE Java Runtime Environment

LAMP Linux, Apache, MySQL and PHP

MOM Message Oriented Middleware

NIDS Network Intrusion Detection System(s)

 xxviii

NMA Network Monitor Agent

SIEM Security Information and Event Management

SOC Security Operational Center

SPE Stream Processing Engine(s)

SQLI SQL Injection (vulnerability)

SSL Secure Sockets Layer

SW Software

TLS Transport Layer Security

 1

 Introduction

Intrusion attacks on networks are today’s one of the most prevalent
threats to information security. Detection and prevention of such attacks on dif-
ferent and heterogeneous systems, as well as recovery of the caused damages,
are key elements in an adequate holistic approach to cyber security. In these
comprehensive approaches, different components and technology are usually
involved, ranging from Intrusion Detection Systems (IDS), including the net-
work-based (NIDS) and the host-based (HIDS), to Intrusion Prevention Systems
(IPS), comprising firewall systems and perimeter defense components [Stallings
14].

Regarding IDS approaches, efforts have been made over the last decades
in order to design and improve IDS solutions, either network-oriented or host-
oriented, and more recently, different combinations of both. On the other hand,
more or less specialized IDS solutions are often used together as tools and com-
ponents in a holistic approach to incident detection and prevention. Neverthe-
less, specific IDS and IPS technology face several effectiveness challenges re-
sponding to the increasing scale and complexity of information systems, heter-
ogeneity of the technology present in datacenters, and specialization of distrib-
uted applications. Those challenges also involve the possible sophistication of
attacks and the difficulty to establish a correlation base, covering a complete
analysis of security incidents. However, the use of isolated IDS or IPS compo-
nents, each focused only on a one-dimensional approach to security-event de-
tection, strongly limits a common correlation analysis for a more effective re-
sponse.

1

 2

Intrusion attacks

Intrusion threats can either come from outsider agents - someone external
to organization, performing malicious activities against machines, applications
or network components - or by insider agents - an otherwise legitimate user,
misusing or trying to expand his or her privileges inside the system. Some-
times, these attacks also result from inadvertent activities of well-intended us-
ers by the indirect use of “malicious software components” previously installed
as the result of past intrusions. The intent of the attacks can range from harm-
less, doing it for fun or recognition, to more obscure and harmful goals
[Stallings14]. Nevertheless, intrusions are invariably undesirable, as they devi-
ate systems from the correct specification, and even when no sensitive infor-
mation or critical resources are present, intrusive actions may consume re-
sources that must be available for correct use and for legitimate users.

Counter-measures against intrusions

There are several lines of defense against intrusion threats, ranging from
perimeter defense to in-depth intrusion detection solutions; from the hardware
and system infrastructure level to the application-level; and from more generic
to more specific solutions in terms of granularity analysis [Stallings14, Kauf-
man02, Anderson08].

The first line focuses on prevention: mechanisms and services explicitly
designed to ensure the correct use of systems and networks (IPS). In those
mechanisms and services we include authentication and single-sign-on sys-
tems, access control, or the use of cryptography in order to protect the confiden-
tiality and the integrity of data. In the IPS category we include systems such as
network-monitoring systems with traffic analysis and traffic-shaping functions,
firewalls ranging from screening-routing control, packet-filtering or packet-
blocking functions to specialized application-proxy filters or specialized appli-
cation-firewalls that can include the perimeter detection of malicious traffic or
malicious contents. Often these mechanisms, services and systems are enough
to defeat most of the intrusion attempts. However intrusion prevention is a
challenging security goal, as the attacker possesses an enormous advantage
over the defender, as he just needs to find one specific weak point in the target-
ed system, in a specific time frame, to perform a successful attack; by contrast
the defender must try to predict every possible angle of attack. Therefore, it is
considered wise to assume that every intrusion prevention system will eventu-
ally fail.

Based on that assumption, a second line of defence, operating inde-
pendently from the previously discussed, is materialized by the evolution of

 3

Intrusion Detection Systems [Lazarevic05, Scarfone07, Axelsson00, Mitchell14].
As initially introduced, these systems and their implementations are primarily
classified in two main families: Host-based IDS (or HIDS) – focused on intru-
sion-detection at the host level [AIDE, OSSEC, Tripwire, SAMHAIN] – and
Network-based IDS (or NIDS) – focused on traffic analysis of intrusion patterns
in network protocols [Snort, Suricata]. Their purpose is to detect attempted, in
progress, or accomplished intrusions attacks based on suspicious signs of mali-
cious activity. These signs could be traces or signatures left by the attacks or de-
tectable anomalies in the system operation patterns.

The IDS are configured to look for certain telltale signs, which could be
expressed in three distinct ways:

i. As signatures expressed by rules of non-valid patterns in the cor-
rect operation of systems and networks;

ii. As signatures expressed as rules of valid patterns in the correct op-
eration of systems and networks;

iii. Hybrid signatures composing the former approaches, with possible
inclusion of admissible deviations.

SIEM platforms

Many organizations centralize their cyber-security operations in dedicated
monitoring centers (usually designed as SOC - Security Operational Centers)
and specialized cyber security incident teams. In such centers, SIEM technolo-
gy1 plays an important role, as frontline operational platforms. Despite that rel-
evant SIEM technology is today reasonably effective in the detecting and help-
ing react to frontline incidents, as Distributed Denial of Service (DDoS) attacks,
it is becoming too common that more sophisticated attacks involve events oc-
curring in different distributed components, with different anomalous opera-
tional patterns and behaviors not immediately detected as correlated incidents.
Also, the increasingly sophisticated intrusion techniques use aggressive and

1 Security information and event management (SIEM) is a term that describes soft-
ware products and services combining security information management (SIM) and
security event management (SEM). SIEM systems provides real-time analysis of securi-
ty alerts generated by network hardware and applications. SIEM are sold as software,
appliances or managed services, and used to log security data and generate reports for
compliance purposes.

 4

“noisy” frontline attacks as a diversion to more surgical but subtle specific at-
tack vectors. Unfortunately, current SIEM technologies are not so effective at
detecting long tail subtle anomalies, particularly in environments of large-scale
distributed and heterogeneous targets, inter-related within one or more threats
or one attack incident as the final manifestation of such threats.

Another difficulty of conventional SIEM platforms is their specialization
in monitoring only certain targets. In general, the existent approaches fail to
capture incidents and events of heterogeneous sources and have significant
drawbacks in terms of openness, extensibility and scalability. Openness limita-
tions are particularly noticed because current SIEM platforms are in general
based on proprietary solutions. Extensibility limitations result from the fact that
many SIEM-based monitoring platforms are not designed to evolve beyond the
scope of specific monitoring targeted functions. Scalability issues come from the
subjacent data-repository solutions to store events and to support query opera-
tions that are generically based on rigid storage models, such as centralized
SQL relational databases.

1.1 Motivation
In general, “intrusion detection” refers to the process of identifying com-

puting or network activity that is potentially malicious, unauthorized or uncon-
sciously incorrect. This could be caused by misconfiguration of computers and
network components including the perimeter-defense mechanisms. Most Intru-
sion Detection Systems have a common generic structure and components. The-
se consist of a probing module that monitors one or more data sources captur-
ing relevant security related events, and a processing module that applies filters
and detection algorithms to the captured events [Stallings14]. They may or may
not automatically react to a detected intrusion, but at least they notify the net-
work administrator.

The following two premises broadly summarize the motivation behind ef-
fective IDS approaches:

i. The quicker an on-going intrusion can be detected, the faster the de-
fense and recovery mechanisms can react and the lesser is the dam-
age it can produce;

ii. The collected evidences and its subsequent investigation, allow us to
understand and anticipate future intrusions.

The first consideration implies fast detection based on possible real-time
constraints. The second argument, closer related to the present dissertation,
suggests a soft-real-time or asynchronous analysis of multi-source diverse

 5

events. Also, it follows from this premises that a richer set of evidences (in di-
versity and number) contribute to a more accurate analysis from possible corre-
lations in a complete knowledge-base of the anatomy of such potential attacks
or its possible variants. Furthermore, the information gained from IDS audit
trails about the attacker's techniques can be used to strengthen the first line of
defense and to refine the perimeter defenses. Another advantage is the fact that
systems or networks known to be armed with effective IDS solutions represents
by itself a disincentive for the attacker.

Figure 1.1: Typical internetworking environment

Current IDS technology is increasingly unable to protect the global infor-
mation infrastructure due to several problems [Stallings14a, Kumar14]:

i. The existence of intruder attacks that cannot be detected based on single
site observations (a single host or network segment). E.g. coordinated
multiple attacker intrusions that require global scope for assessment.

ii. HIDS and NIDS technology exhibit reliability problems related to the oc-
currence of false positives and failures due to possible false negatives.
Normal variations in system behaviour and changes in attack behaviour
may cause false detection and misidentification.

iii. Detection of attack intention and trending, capturing correlated patterns
and variants from previous audit trails is needed for future prevention.

iv. Advances in automated and autonomous attacks, i.e. rapidly spreading
worms, require quick assessment and mitigation.

 6

v. The sheer volume of events in large-scale or high-speed networks with a
large number of interconnected hosts can become overwhelming to the
IDS, causing possible losses of relevant events;

vi. Absence of aggregation and correlation mechanisms of multiple evi-
dences that would provide more detailed information about the attack.

To address these problems related to the scale and reliability aspects, a
possible direction is to consider a distributed intrusion detection platform
(DIDS), composed by multiple HIDS and NIDS systems, cooperating in a per-
vasive and distributed intrusion monitoring environment [Kothari02, Huang09,
Johnson14]. The addition of diversity by combining different HIDS and NIDS
with other components providing more specific events from application-level
analysis (for example, Honeypot systems) is expected to enhance the accuracy
of detection reducing false positives and false negatives, resulting in a so-called
Distributed and Hybrid IDS (DHIDS) [Mairh11, Kreibich04]. Such approaches
require solutions to deal with the possible heterogeneity of multiple event-
sources using fast local probing solutions, and the reliable transmission of
events to the place where they will be analysed.

To respond to the asymmetry between effectiveness tradeoffs of IDS, IPS
and SIEM-based monitoring platforms, and to better tackle sophisticated exter-
nal or internal attacks, cyber security auditing functions in a large organization
must be organized around two separate but collaborative functions: frontline
SOCs focused on short tail (from seconds to a few hours) event series, and back-
line extensible SOCs. The former functions fit more easily in the adoption of
standard SIEM technology that works reasonably well for the main functions
involved. The latter must be based on open source data science related technol-
ogy, focused on more subtle anomaly event streams that must be detected and
correlated on long tail (from seconds to a few months). In the backline SOC, the
use of scalable and highly available non-SQL data repositories is aligned in a
direction of particular interest.

1.2 Objectives
In this thesis, we propose an auditing solution leveraging on different in-

trusion detection components put together and synergistically combined in a
Distributed and Hybrid IDS (DHIDS) platform. The combination takes in ad-
vantage the benefits of different IDS component combined in a pervasive prob-
ing environment while overcoming their individual effectiveness shortcomings.
Thus, in our DHIDS proposal, security events are detected by multiple and di-
verse probes spread over the network, integrating: NIDS and HIDS probes, as

 7

well as, specialized Honeypot probing systems. Events detected by these multi-
ple sources are converted to canonical event representations, and then con-
veyed through an event publishing/subscribing middleware to a dedicated
scalable event logging and auditing platform, built on top of an elastic and scal-
able document-oriented storage system. In this platform the detected events can
then be aggregated, queried and matched against suspicious attack patterns,
expressed as attack signatures by means of a declarative query-language. Ex-
pressed signatures represent query patterns allowing for the correlation analy-
sis of aggregated events, originally detected by independent sources.

The objectives of the dissertation consist on designing, prototyping and
testing the DHIDS proposal, addressing the identified shortcomings of the cur-
rent IDS technology in order to build an extensible large-scale monitoring envi-
ronment. The proposed DHIDS platform emerges from the following specific
contributions:

i. Support for a pervasive environment of probing agents spread all across
the network, including diversity and multiplicity in the variety of agents,
exploring or leveraging from the diversity of different technological op-
tions and specializations, including NIDS, HIDS and Honeypot solu-
tions;

ii. Materialization of a distributed publish/subscribe middleware, support-
ing decoupling and interoperability between the diversity in the probing
environment and the auditing system where events are analysed as au-
dit-trails of security incidents, potential threats or reported attack evi-
dences;

iii. Materialization of an Event Monitoring and Management System, mate-
rializing an auditing platform built as an elastic auditing data repository,
to store and to manage detected events for audit-trail analysis based on
the aggregation and correlation of such events;

iv. Proposal, implementation and evaluation of DHIDS-QL, a query-based
language to express patterns used as signatures for querying security
audit-trails, as well as a runtime to interpret and execute such queries
over the data-repository.

1.3 Document Organization
The remaining of this report will be organized in the following way: chap-

ter 2 is dedicated to relevant related work regarding the different components
of the proposed DHIDS platform; chapter 3 presents the DHIDS system model

 8

and architecture; chapter 4 describes the platform prototype’s implementation
discussing the adopted technologies and relevant challenges; chapter 5 is dedi-
cated to the experimental observation and evaluation of the implemented pro-
totype; finally the chapter 6 summarizes the main conclusions, addressing other
open-issues and future work directions.

 9

 Related Work

In the previous chapter, we stated the thesis objectives and intended con-
tributions. Now, we present the related work regarding the different dimen-
sions involved. First, we introduce the identified dimensions; then, we present
the respective related work references; finally, we briefly summarize the stud-
ied work from a critical analysis perspective to establish the design principles
and main components for the DHIDS platform prototype.

The design of our DHIDS platform involves different related work dimen-
sions that had to be conjugated for the targeted solution, namely:

• Intrusion Detection Systems

• IDS message exchange formats

• Distributed IDS approaches using Honeypots

• Message-Oriented Middleware for Event Dissemination

• Event flow analysis and correlation
These dimensions are addressed in the next sections, where we summa-

rize relevant related work references, following the above order.

2.1 Intrusion Detection Systems
An Intrusion Detection System (IDS) monitors the actions occurred in a

system or network, looks for any suspicious activity and notifies the adminis-
trator about any unexpected actions discovered.

2

 10

2.1.1 Common Classification of IDS
As suggested in [Stallings14], IDS solutions can be split into two main

classes, regarding the source of the captured events: Host-based (HIDS) and
Network-based (NIDS). The former monitors the activity that takes place on the
host, for example state changes in the hardware, operating system, file system,
etc. The latter is concerned about the events occurring on the network itself, in-
cluding interactions between the hosts. Both will be discussed in more detail
next. In [Stallings 14], the notion of Distributed Intrusion Detection Systems
(DIDS) is also introduced, a key notion for this thesis. A DIDS approach inte-
grates both HIDS and NIDS event-sources, working cooperatively, in a distrib-
uted monitoring environment.

HIDS – Host Based Intrusion Detection Systems

The first IDS were Host-based. Their concern is to collect data from the
machine where they are installed, and detect signs of possible intrusions. The
HIDS main advantage is to observe the events locally on the host, which is the
potential starting point of an attack. They are in that sense closer to intrusion
attack detection on computer nodes than NIDS technology, making the capture
of events easier and more reliable. They can observe consequences of possible
intrusion attacks, even when they are conducted by attack vectors based on en-
crypted communications. However, when operating isolated they do not have a
global knowledge of all activities, for example they cannot be aware of an even-
tual network scan that precedes an attack, or about attacks targeting another
host. Additionally, the task of configure HIDS on many hosts in a heterogene-
ous environment can become considerably complex.

NIDS – Network Intrusion Detection Systems

In order to capture and analyze network events, NIDS may be installed to
capture packets crossing different network segments. NIDS can be running on
hosts, dedicated appliances, as well as, in connection devices like gateways or
routers. NIDS technology is also available as specific HW/SW appliances, op-
erating in the perimeter defense infrastructure. These components are also inte-
grated in current technology for firewalls or routers (inspecting in-
bound/outbound traffic), as well as, in managed switches (inspecting traffic
flows in aggregation ports). The main advantage of NIDS elements is their cov-
erage, in the sense that a small number of these, strategically placed in appro-
priate network locations can monitor a large number of traffic originated or
with destination to different hosts, even in host-heterogeneous environments.

 11

There are however some limitations, which are naturally related to the
low level at which NIDS operate. First, on heavily loaded links they may be-
come overwhelmed by the sheer volume of the passing traffic and consequently
be forced to drop packets. Furthermore, to perform a more sophisticated analy-
sis some state information may have to be maintained, for example about ongo-
ing TCP connections, which in turn requires more memory. It becomes obvious
that there is a trade off between performance and the range of attacks investi-
gated. Their coverage can also be impaired in a switched network environment.
To overcome this problem, some techniques have been studied like embedding
the sensor inside a switch or directly taping into the cables, but again the event
loss problem remains. There are also attacks and evasion techniques that could
be used against the NIDS. One is to launch a series of simultaneous simulated
attacks in an effort to “snow blind” the sensor making it hard for the adminis-
trator to know which one was the real one. Another possible attack would be a
denial of service (DoS) as the NIDS are analyzing protocols making them as
vulnerable to DoS attack as the hosts. Additionally, there are ways for an in-
truder to bewilder the NIDS by obfuscating his actions, not showing a clear sig-
nature of an attack. For example, an intruder can perform a port scan at a very
slow rate so the NIDS does not correlate each scan to the same occurrence, or
use a very large number of machines to perform a distributed port scanning
[Schupp00].

Finally, other problems arise regarding the use of NIDS-only approaches
for a complete IDS strategy: with the increasing use of encryption, NIDS have
lost access to possible significant content, hindering their ability to function
well. Therefore, while NIDS have an important role to play, they can only be
used effectively today as part of a broader IDS solution.

DIDS – Distributed Intrusion Detection Systems

HIDS and NIDS are focused on single-system intrusion detection func-
tions, usually running in stand-alone machines, developed as dedicated
HW/SW solutions or as SW solutions running independently in different hosts.
However, in complex internetworked environments, the actions relating to an
intrusion incident are often distributed over multiple network segments and in
heterogeneous hosts running different applications, and therefore could be par-
tially observed by such different components on the entire network. In a com-
plex computing infrastructure, as found in organizations or in business-
oriented data centers, it is required to defend a large distributed collection of
hosts, as relevant assets that must be monitored in a global way.

 12

Although we can mount individual defenses as counter-measures against
possible intrusions, using multiple stand-alone IDS (HIDS and NIDS) running
in different computers, with independent management functions, a more effec-
tive defense would take advantage of the cooperation of multiple IDS platforms
installed and operating across the internetworked infrastructure. As identified
by initial approaches for DIDS [Porras02], the two major requirements for their
design are:

1. The ability to deal with different event formats and types (HIDS and
NIDS events), as canonical representations, with data-types originally
obtained from heterogeneous security related audit records;

2. Events must be obtained and efficiently transmitted with high through-
put, reliability, integrity and confidentiality, from the multiple probing
devices installed in particularly relevant places (for example, NIDS
probes in aggregation ports of switches or close to routers’ ports).

Additionally, depending on the global architecture considered in the DIDS
design and the related system model, other issues may be considered:

• For centralized systems, a solution must be considered to avoid sin-
gle points of failures;

• In distributed architectures, complexity comes from the requirement
imposed by the coordination of analysis activities in more than one
analysis node, requiring a consistent coordination.

The typical DIDS architecture can be summarized as represented in the
Figure 2, where different modules are defined.

Figure 2.1: DIDS architecture example

 13

The terminology in the Figure 2 follows the concepts and notions as de-
scribed in [Stallings14], as follow:

• Host Monitor Agent (HMA) is a software appliance providing the prob-
ing function of a typical HIDS. Usually operating as a background process
in a monitored system and collecting relevant data on security related
events. It may provide local filtering, selection or aggregation capabilities
(according to specific parameterizations). The HMA collects and selects
data or attack-behaviors, and transmits the observed data to the CAM
module (discussed below);

• Network Monitor Agent (NMA) is a possible hybrid appliance, possibly
combining hardware, firmware and software, operating in the same way
as the HMA but focusing on the observation of events mapped from pa-
rameterized LAN traffic patterns. These agents send observed events to
the CAM node. NMAs correspond to the probing and parameterization
capabilities of conventional NIDS.

• Centralized Auditing Manager (CAM) is a centralized module to process
agents’ collected data. HMA’s and NMA’s events are received and pro-
cessed by the CAM Software Module, for auditing purposes. This involves
the classification and correlation of events, represented as IDS auditable
data-structures or audit trails. Auditable IDS trails can be analyzed in real-
time, or stored as persistent audit trails, for asynchronous auditing pur-
poses.

Figure 2.2: Synthetic representation of a typical DIDS architecture

The presented DIDS architecture suggests the combined use of HMAs and
NMAs, as a cooperative and pervasive IDS solution. In this approach, NIDS

 14

and HIDS are put together to form an integrated distributed auditing infra-
structure.

We should also notice that Figure 2 (and also Figure 3), are generic repre-
sentations that map many practical DIDS approaches. From an abstract model
definition standpoint, the presented abstraction is independent from the moni-
tored network.

To summarize, the typical approach of different implementations of DIDS
based on the above architectural model is a generic common base observed in
different practical implementations. Sometimes, different authors address only
a sub-set of that model [Wang10, Huang09, Kreibich04].

We must notice that a DIDS approach only using HIDS and NIDS probing
sensors, may miss possible intrusion attacks. For example, network attacks may
be missed, if the NIDS’s are slow to recognize that an attack is under way, or if
throughput conditions are not satisfactory for the requirements of observed
network traffic – a typical situation in very large internetworking environments
and high-speed networks. Analysis of network traffic at the host level provides
an environment in which there is much less network traffic. On the other hand,
HIDS can make use of a richer set of data, possibly using some evidences of the
application level, as possible inputs for event-classification. However, it is not
expected of an HIDS to be able to process other relevant information from in-
trusions against applications, namely if these attacks have specific vulnerabili-
ties of such applications as preferential targets.

2.1.2 Other Classification Criteria for IDS

In literature, there are other classification criteria for IDS approaches.
Among different differentiation criteria, we highlight the following: detection,
timing, cooperation and reaction, as presented next.

Detection

There are two main methods for intrusions detection: misuse detection (or
also called signature or rule-based detection) and anomaly detection (also called
behavioral detection) [Johnson14]. Misuse detection uses previous knowledge
about intrusion attacks, expressed as well-known intrusion patterns, and at-
tempts to match current behavior against those patterns. This form of detection
is more reliable, with low false-positive rates and requiring lightweight pro-
cessing. The shortcoming is that the approach excludes unknown intrusion pat-
terns [Axelsson00a] and new rules must be designed by analysis on possible fu-
ture penetration identification patterns, requiring the work of cyber security

 15

specialists and who search and infer on possible suspicious behaviors. This is
sometimes named Statistical Anomaly Detection, involving collections of data
relating to the behavior of legitimate machines or users, over a time interval.
Then statistical tests are applied to observed behavior to determine with the
highest possible certainty, whether that behavior is legitimate or not. For anom-
aly detection, two possible techniques are used: threshold-based or profile-
based detection. In the former, the detection criteria are derived from the defini-
tion of threshold values, independent of users, as metrics for frequency occur-
rence of different events. In the profile-based detection approach, a profile of
the activity of each user is developed and used to detect changes including the
behavior of individual accounts. In summary, statistical approaches attempt to
define valid thresholds for the expected behavior, whereas signature-based ap-
proaches attempt to define the proper behavior [Stallings14].

Timing

This criterion refers to the time when the event analysis, and consequent
eventual intrusion alerts take place. Two methods can be distinguished: “real-
time detection” – the events are being analyzed as they occur, and “delayed de-
tection” – the events are collected for later analysis.

Cooperation

The cooperation criterion is used to distinguish IDS that are natively ready
to work cooperatively with other IDS instances, for example exchanging event
information.

Reaction

IDS approaches can be differentiated as reactive or passive systems [An-
derson08]. A passive IDS, simply detects potential intrusions, logging the corre-
sponding observed events and may notify the administration when it detects a
possible intrusion. A reactive IDS (usually associated with the notion of IPS –
Intrusion Prevention System) may automatically take action after the suspicious
detection of intrusion activity, for example by resetting and closing connections,
shutting down systems, changing the rules of firewalls, etc.

2.1.3 IDS Platforms

We will focus on a representative set of IDS platforms that fulfill the fol-
lowing requirements:

1. Relevant, well-known and “de facto” widely used platforms;

 16

2. Open-source solutions or without imposed restrictions for the possible
use in the achievement of the thesis objectives;

3. Effective and modular platforms for host and network -based intrusion
detection, with minimal deployment requirements.

Snort

Snort [Snort] is a free and open-source NIDS capable of performing packet
logging and real-time traffic analysis on IP networks. It was initially released in
1998 and has benefited over the years from the contributions of a wide and
growing developers community, evolving into a powerful tool and likely the
most currently and widely deployed. It runs on three distinct modes:

• Sniffer mode, which simply reads the packets off the network and displays
them in continuous stream;

• Packet Logger mode, which reads and logs the packet into disk;

• Complex and configurable mode, a mode of operating that is as a full inte-
grated stand-alone NIDS, capable of performing protocol analysis, content
searching/matching, and able to detect a variety of attacks and probes,
such as buffer overflows, stealth port scans, and so forth.

Snort performs rule-based analysis and it uses a specific lightweight lan-
guage for rule description. It is also highly modularized for extensibility,
providing a C API for the development of Plug-ins.

Suricata

Suricata [Suricata] is another open source solution for a rule-based NIDS
solutions, released in 2010. One of its main features is its high performance and
scalability provided by the multi-threaded engine built to take full advantage of
multicore CPU’s. It provides automatic application layer protocol identification
and the rule language expressiveness goes to level of the protocol fields. It also
supports file identification and extraction, based on MD5 checksums. Similarly
to Snort, Suricata was also designed to be extended by plug-ins and is accompa-
nied by developer documentation.

OSSEC

OSSEC [OSSEC] is an open-source rule-based HIDS capable of monitoring
most operating systems, performing log analysis, file integrity checking, policy
monitoring, and so forth. Its architecture resembles a distributed HIDS system

 17

(not to be confused with DHIDS notion, which will be discussed later) in the
sense that it adheres to a client-server model with distributed agents monitor-
ing several machines and a centralized manager. For strictly local deployment,
it also can run as an all-in-one stand-alone process. The manager encapsulates a
centralized administration console to supervise a large number of agents, file
integrity checking databases, system logs and rules. It is also responsible for the
analysis and correlation of events, which may result in a simple passive alert or
the execution of an active response script, delegated to multiple hosts.

AIDE (and Tripwire)

AIDE (Advanced Intrusion Detection Environment) [AIDE] is developed
as a free and open-source replacement for the HIDS Tripwire [Tripwire]. In
terms of its sensing functionality, it is similar to the previously presented OS-
SEC. It works by taking a snapshot of the system and then when the system
administrator runs an integrity check it detects, by comparison, the modifica-
tions, producing a report.

Summary

The following table summarizes the characterization of the presented sys-
tems, regarding the criteria introduced earlier.

Table 2.1: Classification of IDS platforms

IDS Data
Source

Detection
Method

Cooperation
/Extensibility

Detection
Time

Reaction

Snort Network
(NIDS)

Rule/Signature
based

Prepared for the addi-
tion of Plug-ins

Real-time Passive alert

Suricata Network
(NIDS)

Rule/Signature
based

Prepared for the addi-
tion of Plug-ins

Real-time Passive alert

OSSEC Host
(HIDS)

Rule/Signature
based

Agent-Manager archit. /
not extendible

Real-time Passive alert /
Active response

AIDE Host
(HIDS)

Rule/Signature
based

Insufficient documenta-
tion

Delayed
Detection

Produces an
integrity report

2.2 IDS Message Exchange Formats
In order to facilitate the development and interoperability of DIDS across

a wide range of platforms and internetworked environments, it is required the
definition and adoption of a standard, namely at the level of interoperable mes-
sage-type formats carrying alerts or notifications corresponding to events, as

 18

well as remote parameterization commands. With particular emphasis on
TCP/IP based environments, the IETF Intrusion Detection Platforms Working
Group [IETF-IDWG], established since 2007, has defined relevant standardiza-
tion of data-formats and exchange procedures. The most suitable standards for
a DIDS or IDS cooperative approach are presented next [Stallings14]:

1. The Intrusion Detection Message Exchange Format (IDMEF) [RFC4766]
defines the requirements, unifying terminology and an abstract defini-
tion for IDMEF messages;

2. The IDMEF-XML based definition [RFC4765] refers to an IDMEF data
model, supported by a XML Document Type Definition and providing
integration examples for interoperability;

3. The Intrusion Detection Exchange Protocol or IDXP [RFC4767] sup-
ports IDMEF interoperability on top of TCP transport, defined as an
application-level protocol for exchanging data between intrusion de-
tection entities in a DIDS model.

Another possible approach is to support IDMEF-messages as secure ob-
jects transported by SSL or HTTPS (as a IDXP/SSL proposal). Different imple-
mentations for processing RFC 4765 compliant XML-IDMEF are today freely
available in a variety of languages, including C, C++, Python and Java (e.g.
[IDMF-Java]), which simplifies the adoption of the format in many research
contributions and projects.

2.3 Distributed IDS Approaches Using Honeypots
Intrusion detection techniques can be categorized according to the inher-

ent type of analysis: misuse signature-based detection and anomaly detection.
Misuse signature detection requires the previous knowledge about known at-
tacks and matches current behavior against the defined attack patterns. It has
the advantage that known attacks can be detected reliably and in general with
low false positive rates. The shortcoming is that it cannot detect unknown and
unspecified attacks. However, the introduction of Honeypots can help solving
this problem [Qiao13], as it can detect an unknown attack, by the simple fact
that it was “touched”.

As stated previously (in 1.2), this thesis objectives focus on the design and
creation of an enhanced DIDS architecture in order to deal with the conjugation
of reliability, scalability and attack coverage dimensions of the intrusion detec-
tion problem. In this vision, diverse components must be combined in hybrid
architectures. The heterogeneity of data sources (NIDS, HIDS and Honeypots)
will result in broader attack range coverage. This extended notion of a DIDS ar-

 19

chitecture gives origin to a new term: DHIDS – Distributed and Hybrid IDS. In
a DHIDS, the pervasiveness and multiplicity of sensors will promote the scala-
bility of the solution and reliability on event collection. Additionally, the diver-
sity in IDS platforms used will contribute to the event capturing reliability, as
one system may be better suited to detected one specific kind of event and vice-
versa.

Next, we delve deeper into the concept of Honeypot and after that follows
a brief discussion of some concrete implemented Honeypot systems.

2.3.1 Honeypots

A Honeypot is defined as an information system resource whose purpose
lies in detection of unauthorized or illicit use of that resource [Maihr11]. They
are materialized by programs, machines or systems on a network, as bait for
potential attackers, purposely built to attract and deceive them. Honeypots
mimic real systems but don't contain, real operation data [Gollman11]. They try
to feel and capture details of the attacker’s intentions. When a Honeypot is
“touched”, the captured information can be then used to learn about the attack-
er’s tactics, intentions and tools, for future consideration [Kreibich04]. The main
difference between an IDS and a Honeypot is that the IDS just parses base activ-
ity logs (and respective type data) and selectively reports events that might be
indicative of a potential intrusion; while a Honeypot is a decoy system, set up
with deliberate weaknesses or vulnerabilities and usually announced with a
high profile. In some sense, Honeypots are prevention systems that can gener-
ate active countermeasures against a discovered threat. At the same time,
Honeypots present a way to gain insight into the process of an attack; while an
IDS simply notifies that the attack happened.

Honeypots can engage in sessions with attackers at different levels of in-
teraction and in the literature different approaches are usually characterized ac-
cording to main interaction criteria [Maihr11]: LIH (Low Interaction Honey-
pots) or HIH (High Interaction Honeypots). LIH’s are those related to the detec-
tion of automated attacks, while HIH’s are focused in the support of detailed
analysis of the behaviors of malware/attackers. In a LIH approach, Honeypots
offer basic emulations of functions or vulnerabilities of some software services
or operating systems. Complete honeypot solutions can deceive the attacker
leading her/him to think that is interacting with a real system, but this requires
an high degree of completeness of the honeypot in a possible emulation of a
complex system. If this is not the case, the attacker can quickly identify that
she/he is “speaking” or “touching” a Honeypot system. Furthermore, the de-
velopment of Honeypot technology has also been accompanied by the devel-

 20

opment and availability of tools, to detect Honeypots. Then, in HIH approach-
es, the more sophisticated the emulation becomes, the more types of interaction
behavior can be observed and logged. HIH technology involves many times
replicas of real services (indistinguishable form the real operation services), but
with fake data. The more interactions made possible, the greater is also the
danger that the attacker can also misuse the Honeypot itself, as a staging post
for launching attacks against other critical systems.

2.3.2 Honeypot Implementations

There are different implementations of Honeypot systems, in the commer-
cial and in the free software world, with many available systems reported in
recent surveys [Wang10]. The challenge behind the development of different
solutions for Honeypots has been strongly inspired by three major challenges:
(1) the construction of convincing Honeypots and Honeynets [Wang10], in par-
ticular when the supported behavior at the application level should be investi-
gated (2) the protection of Honeypots themselves and (3) the extraction of novel
attacks from the monitored behavior.

There are some relevant Honeypot systems, usually described in the litera-
ture as practical approaches for the emulation of application-level protocols,
(e.g.: [Kippo, Dionaea]). However, more sophisticated honeypots to completely
emulate the behavior of specific applications require in general a complete rep-
lica of the targeted application, with a similar behavior regarded from outside,
but without real production data.

2.4 Message Oriented Middleware Systems
One relevant component for the DHIDS architecture is the Message Ori-

ented Middleware (MOM) substrate for the dissemination of events. We stud-
ied different candidate solutions, focusing on publish/subscribe event-bus sys-
tems used for interoperability in enterprise-application platforms.

MOM systems are typically offered since the 90s as products from differ-
ent vendors, such as IBM MQSeries [Lewis99], Oracle Advanced Queuing [Ora-
cleAQ] or Microsoft MQ [MSMQ]. In general, MOM platforms fall into two main
categories [Birman05]:

1. Provisioning of network access to conventional mainframe systems and
other forms of batch message delivery services when client-applications
want to send messages to servers that are busy, overloaded or not cur-
rently running;

 21

2. Message-dissemination middleware systems used as a high-level asyn-
chronous message passing abstraction for direct use in the integration of
applications.

Independently of the environment for which MOM products are more di-
rectly targeted, there are some common design principles. First of all is the
asynchronous nature of the communication model, in the sense that the sending
of a request to the remote destination is decoupled from the handling of its re-
ply – as if one were sending mail to a remote server which will later send mail
back containing the results of some inquiry. Second point is concerned with
persistency support, mainly because the decoupling between requests and re-
plies must consider also the possibility to deal with non-availability of the des-
tination. This also relates with an intrinsic reliability support provided by such
platforms, if it guarantees to reschedule the delivering of internally stored mes-
sages when the destination is available again or repeating the sequence in the
opposite direction when a possible replay is sent back. A third issue is related in
providing a well-defined request/reply API, with options to deal with different
situations. These include: priority levels in message dispatching, flow-control,
queue management functions, load-balancing when several processes consume
from the same queues, security support allowing for message authentication,
integrity and confidentiality guarantees, and fault-tolerance for long-running
applications.

For our DHIDS approach, a MOM-oriented middleware is particularly in-
teresting in the sense that it decouples the distributed pervasive intrusion-
detection probes from the auditing platform where the detected events will be
stored and managed for auditing purposes. In the envisaged solution is particu-
larly relevant the use of a scalable event-bus architecture, where the MOM API
is regarded as an event publish/subscribe substrate.

Publish/Subscribe (or Message-Bus) architectures are in most respects
very similar to asynchronous messaging systems and may be supported by
conventional MOM platforms [Birman05, Eugster03]. The only significant dif-
ference is that message-bus protocols tend to be optimized for high-speed, us-
ing broadcast hardware for example, and they typically deliver messages as
soon as they reach their subscribing destinations, through some form of up-call
to the application processes. Examples of message-bus architectures were im-
plemented in well-know systems such as TIBCO Rendezvous [Okie93]. However
the requirements of scalability, reliability, security, persistence and perfor-
mance for the operation of such platforms in the internet-scale, originated the
design of a new generation of message-oriented publish/subscribe systems, for

 22

fast-event dissemination purposes and remote event log processing. Among
these systems, we consider systems such as Rabbit MQ [RabbitMQ], Amazon
SQS [AmzonSQS], HornetQ [HornetQ], MongoDB [MongoDB] or Apache Kafka
[Kreps11]. These systems can be studied from different classes of criteria as
usually addressed for extensive comparative purposes of Message-Bus systems
[Eugster03].

As a starting point, any of the above solutions can be regarded as a good
candidate. All of them address the base decoupling support considering space
and time criteria, as well as, synchronization conditions and reliability guaran-
tees. Anyway, to drive a rational for the choice of the best one, several other re-
quirements must be particularly taken into account. Some of the requirements
can be analyzed from a comparative analysis of the different solutions. Other
requirements are imposed by external conditions. We established the following
order of main criteria for our analysis and our final choice:

1. High persistence
2. Possibility of scale out (in a possible cluster solution)
3. Adequate performance and event throughput
4. Publish/subscribe API for fast integration with Logstash [Logstash] (an

“event-manager” used in the CAM)

From a study previously addressed on the candidate solutions for the the-
sis preparation phase (out of scope of the dissertation itself) [Costa14] and from
complementary observations on published work on the evaluation of the differ-
ent candidate solutions [Eugster03], we summarize the main issues behind the
decision to use the RabbitMQ platform. RabbitMQ exhibited the best conditions
for high-persistency guarantees, with a possible deployment using a cluster-
based architecture, as well as, good indicators in disk access processing and
communication throughput, addressing also our second requirement.

According to [Costa14], HornetQ has good performance and provides a
rich messaging interface with different routing options, offering different tun-
ing alternatives for message scheduling. Although these advantages, the gains
in performance are not considerably better when compared with RabbitMQ or
Amazon SQS. As a tradeoff, HornetQ don’t have support for scalability. Mon-
goDB, support replicated message queues for scalability, but comparatively it
appears as the worst solution in terms of performance. Kafka appears in differ-
ent comparisons as the best solution for performance, but the gains compared
with RabbitMQ or SQS are not so considerable for our expected input require-
ments. Amazon SQS can be comparable with Kafka in performance when multi-

 23

ple SQS nodes are used, but to achieve the same performance more resources
are required. On the other hand, SQS is a solution especially designed for the
AWS cloud, with minimal setup required for AWS cloud-based applications (an
interesting issue but not particularly relevant for us).

Considering the criteria more directly related to external conditions, Rab-
bitMQ is seamlessly compatible with Logstash. Additionaly, RabbitMQ is well-
known and already adopted in the context of ongoing research collaboration
projects involving the NOVA LINCS Research Center and its Computer Sys-
tems Group and external industrial partners (e.g., Amazon AWS and Portugal
Telecom), namely in the domain of event-dissemination in the context of cyber-
security auditing tools.

From the previous analysis and a the study on performance of different
adoptable MOM solutions [Costa14] we decided to use RabbitMQ as the best
balance on the different above tradeoffs, as the reference solution to leverage
the development and materialization of the DHIDS event-dissemination sub-
strate2. At the same time, RabbitMQ can support transparently the event-
dissemination process over HTTP or HTTPS over TLS v2, allowing for its trans-
parent use in internetworking security environments, with no changes for ex-
ample in firewall management policies and configurations.

2.5 Event Flow Analysis Methods
This segment is dedicated to the study of event logs processing and analy-

sis approaches. It includes the following topics:

• Analysis of events based on information flow control,

2 This decision was made during the thesis preparation phase as the result of previous
specific assessment criteria involving different alternatives [Costa14], and due to other
institutional reasons indirectly related to the specific context of the thesis. These relate
to other ongoing projects being developed in PT Comunicações S.A. in the direction of
design options to build and to consolidate a common MQS infrastructure that must be
shared by different SIEM monitoring platforms. In the context of a collaboration and
partnership between DI/FCT/UNL and PT Comunicações S.A., it was decided that the
contributions of this thesis would be aligned with that standardization effort, as a step
to align the implementation effort in the thesis elaboration with the future possible
adoption of the thesis’ contributions in the context of PT Comunicações S.A.

 24

• Event tracing in systems oriented for dynamic instrumentation,

• Event flow processing in stream databases and,

• Event processing systems specifically oriented to intrusion detec-
tion.

2.5.1 Event Analysis Based on Information Flow Control

Information flow is the process of information transference from one place
to another. That could be for example, data read from a file by a process or an
object shared between different processes. In this context, Information Flow
Control is a technique used to trace the information flow inside a system, as ex-
plained in [Blankstein11]. In short, this consists of tagging each piece of data in
the system with security labels, which are sets of tags. The processes manipulat-
ing this same data object become “contaminated" (associated) with these tags
and as processes communicate with each other, tags flow accordingly.

In [Blankstein11] the author presents a system for analyzing security event
logs, also called audit trails. This is designed to run on top of an already exist-
ing distributed security platform named Aeolus that generates audit trails fol-
lowing an information flow control scheme. The idea is to gather these audit
trails generated by Aeolus, represent them using a convenient model (preserv-
ing the information flow relationships) and export an interface that facilitates an
efficient further analysis of these events in order to detect and trace information
misuses. The system supports two distinct features. First, it provides an inter-
face for directly querying past events, using SQL. The second is a publish-
subscribe interface for registering watchers for receiving, in (almost) real time,
events that match pre-specified filters. A watcher is a client object that receives
event notification from a logging facility. Upon registration, the watcher sup-
plies the logging server with some filters that define the events he is interested
in, expressed using a domain-specific language.

The presented system deals with events produced by a distributed plat-
form that monitors the user processes running on top of it. Our source of events
is the probing agents (acting like sensors) running IDS software and forming a
pervasive mesh in the network. The concept of the watchers as a client objects
and the language used for event filtering provides us meaningful inspiration as
we face similar challenges. Although, we intend to go one step further, as we do
not only want to filter events individually but also determine correlations be-
tween them (this aspect will be further studied in 2.5.3 – Stream Processing En-
gines).

 25

2.5.2 Event-tracing in Dynamic Instrumentation

Instrumentation refers to the techniques of implanting blocks of code into
a program in order to monitor its behavior as it executes (e.g. to measure its
performance, diagnose errors or write logs). Dynamic instrumentation means
that it occurs at run-time as opposed to static instrumentation where the analy-
sis code is injected (and the executable rewritten) before the program runs.
Event tracing in active log monitoring environments is related to work focused
in generic solutions found in dynamic instrumentation systems. These systems
require interfaces for specifying events to monitor (as dynamic configurable fil-
ters) and actions to take. Conceptually, instrumentation consists of two compo-
nents: the code that is executed at each instrumentation point and a mechanism
that decides where to insert the analysis code. We are interested in studying
specifically the latter. Many techniques for dynamic instrumentation and event
tracing systems are available in the literature, from which we studied a repre-
sentative set.

Pin [Luk05] is a framework for dynamic binary instrumentation, which
enables the creation of customized dynamic analysis tools, known as Pintools.
These specify code (written in C/C++) to insert in arbitrary places of the target
program. This is done by intercepting each binary instruction of the executable,
and generating and running identical code “on-the-fly”, providing the oppor-
tunity for the Pintool to run its own code. The original target application code is
only used as reference and the code that actually runs is the one generated by
Pin. The interface provided to user is by means of a hook function in the Pintool
that is called by Pin every time a new instruction is encountered. The user can
then inspect the instruction and specify actions to be executed.

DynamoRIO [Bruening03] is a dynamic tool for runtime code manipula-
tion. This resembles the previously studied, Pin. It exports an interface for
building dynamic customized tools where the client supplies the specific hook
functions to deal with the events. On the other hand, it is not limited to the in-
sertion of instruction points (i.e. adding code), as it also allows for arbitrary
modifications to the instructions. Furthermore, the granularity regarding the
generation of events also differs, as it notifies the client for each straight-line
code sequence (or basic block) as opposed to generating an event for each in-
struction.

DTrace [Cantrill04] is a dynamic instrumentation and monitoring plat-
form. Several instrumentation methods are supported, one of them being “sys-
tem call tracing”, which allows the user to place instrumentation points at the
entry and return of any system call invoked in a single host. To specify which

 26

system calls should be instrumented and what actions are to be executed, it us-
es a C-like domain-specific language (or DSL).

AspectJ [Kiczales01] is an extension of Java for aspect-oriented program-
ming. Its relevancy for this section is motivated by one of the its features - dy-
namic crosscutting - which makes it possible to instrument java code, be it our
own code, for enhanced modularity, or already compiled classes. There are sev-
eral possible well-defined points of insertion - designated by join points - which
represent specific occurrences in the program execution, for example when a
method call is received by the target object or when an object is initialized. The
injected code is specified in a method-like structure where the signature con-
tains an expression that matches one or many join points.

2.5.3 Stream Processing Engines

Stream processing engines (SPE) are systems whose purpose is to address
some of the limitations of the traditional database management systems
(DBMS) in order to better suit stream-oriented applications, like monitoring
applications. As opposed to business-oriented applications, monitoring applica-
tions have to deal with large continuous streams of events, usually real-time,
and to perform computations such as filtering – remove unwanted events; cor-
relation – detect patterns across different events; and aggregation – compute
aggregation functions values. These requirements render the typical DBMS un-
suitable for the task of process high-volume data streams in order to extract
useful and actionable information to monitoring applications in real-time. The
solution we propose is also in its essence a monitoring system, intended to pro-
cess continuous streams of events, originating from multiple sources, and ana-
lyze them based on correlations between each other. In that sense, SPE’s are
closely related to our problem. In this class of systems, there are many different
and relevant approaches. Here, we focus on a representative subset.

Aurora and Borealis are two similar and related SPE’s presented in [Ab-
adi03] and [Abadi05] respectively. In both approaches, the queries over streams
are expressed in the form of data flows, known as query diagrams. These are
“boxes and arrows” diagrams, composed by multiple operators, and can be ex-
pressed and stored in a XML file. There are two kinds of operators: stateless op-
erators - meaning they perform operations one tuple at a time maintaining no
state between tuples - and stateful operators - which rather than processing tu-
ples in isolation, perform computation over groups of input tuples. A relevant
feature of stateful operators is the possibility of processing windows of data
that move with time, in which both the window size and the sliding increment
are parameterizations. Besides extending some of the functionality introduced

 27

by its predecessor Aurora, the main idea behind Borealis is to perform stream
processing in a distributed and scalable manner. Borealis also allows for dynam-
ically modifying queries and to “time travel” in order to query past events.

Cayuga and SASE+, presented in [Demers07] and [Agrawal08], are inter-
esting approaches on this topic, offering rich query languages for matching
complex event patterns. The idea of Cayuga is to provide a general-purpose sys-
tem for high performance, on-line pattern matching of complex events on a
large scale, offering an expressive and composable query model. Queries ad-
here to the publish-subscribe paradigm, each representing a pattern of events
and publishing it under a given name that a client may subscribe to, or that can
be used as input for another query. They are expressed in an SQL-like syntax
but introducing some interesting new constructs, allowing to correlate events
over time. SASE+ shares mainly the same claims as Cayuga. Despite the lan-
guage differences, it also provides a rich declarative language for event correla-
tion and an efficient implementation for high throughput. SASE+ provides a
very powerful and elegant declarative language for pattern matching over
event streams, presented in [Agrawal08, Diao07], which we find quite adapta-
ble to our vision and which is worth highlighting. This contains constructs for
expressing sequences of events, Kleene closures (an indefinite number of simi-
lar events), event negation (test for its absence) and event filtering techniques

Relating to our own system, we do not use any of these solutions directly
in our event processing as we choose to use a distributed and elastic event stor-
age system instead, promoting scalability. Nevertheless, these approaches pro-
vide invaluable inspiration and a model for our own pattern matching system,
as we will see in chapter 3. It is also worth mentioning that our approach is not
particularly targeted for real time event processing and analysis, but more for
deferred analysis of previously stored auditable event trails.

2.5.4 Event-Flow Processing Applied to Intrusion Detection
This thesis objectives include the exploration of an event-flow processing

technique to support querying and analysis of the audit trails corresponding to
those events. There has been some significant work regarding the processing of
audit-trails in the context of intrusion detection and recovery platforms. Be-
tween those, we emphasize the references below.

RETRO [Kim10] is an intrusion recovery system. In RETRO, after an in-
trusion is discovered (by the network administrator, perhaps with the help of
an IDS, or by noticing a suspicious file, or by other means), usually some ac-
tions must be taken in order to undo the effects of the attack. In other words,
the system must be restored to a state that mirrors the system as if the attack

 28

had never happened, loosing none of the legitimate information and modifica-
tions in the meantime. RETRO’s solution is to periodically make checkpoints of
the system state and to log all the subsequent actions, in the form of a directed
acyclic graph (DAG), which it then uses to trace an intrusion incident to its
origin. From there, it uses rollbacks and re-execution in order to repair just the
compromised objects in the system, with minimum user input. The graph rep-
resents the system execution history over time. In the graph, nodes represent
the system objects, like files and processes and each edge represents an action
by an object over other, for example a process writing to a file. An action has a
set of dependencies which are the objects accessed or modified by it.

BackTracker [King05] is another approach based on DAG’s to trace a de-
tected intrusion to its origin point. The system analyzes operating system
events from system logs, to determine the source of a given intrusion on a sin-
gle system (by looking for targeted intrusion patterns in the persistent logs).
The events are then represented as nodes in a DAG, where each edge in the
graph represents a causal relationship between the nodes. When an intrusion is
discovered, BackTracker traverses the event DAG backwards from that discov-
ery point searching for the source of the intrusion.

Summary. What we found most relevant in the RETRO and Backtracker
approaches, considering the context of our work, is the graph model used and
the analysis in pursuance of the origin of the intrusion. Our system must be
able to analyze events occurring across a distributed set of IDS sources. Conse-
quently, backtracking graph analysis is more difficult because we must deal
with different audit logs and these logs may branch significantly. For example,
a user may want to trace the source of a “write event to a file” but also “a spe-
cific TCP packet” in a network segment supporting a SSH session related to that
write. The analysis starts by examining the process that wrote to the file and
any inputs to that process could have contributed to the write. These inputs
could be file reads, remote procedure calls, accesses to shared state, or startup
parameters and we must follow from this if events are related to a remote SSH
session logged in the system and traced in a network segment where the host is
located. Those inputs require further analysis of what processes and what net-
work traffic may have affected them. Additionally, our solution should offer
query support for audit trails, expressed as potential attack signatures.

There are some important differences comparing our objectives with the
previous approaches: the analysis performed in the BackTracker proposal is also
different from active monitoring or direct querying. While our envisaged plat-
form is more focused on discovering misuses or violations from defined pat-
terns expressed as “malicious activity patterns”, the BackTracker approach is

 29

more concerned with discovering how specific misuses occurred in a specific
node. This idea is suitable for our approach. Despite that in our case we have
the additional problem of dealing with multiple distributed heterogeneous
NIDS and HIDS sources (as a Distributed and Hybrid Intrusion detection Plat-
form), requiring some form of previous local “filtering” functionality, as well
as, previous event-type conversion, before the adoption of a global graph repre-
sentation, as proposed in the BackTracker system. Similarly, the RETRO system
was not particularly designed as an Intrusion Detection system.

2.6 Related Work Summary and the DHIDS Approach
Revisiting the generic DHIDS architecture, as previously represented in

Figure 2.2, we have addressed the initially identified dimensions regarding the
design and implementation of a DHIDS prototype using diverse probing devic-
es to materialize a distributed and pervasive probing environment. We will
now highlight the lessons learned from this chapter as a starting point for our
DHIDS design model.

We began to study a representative set of the IDS implementations now
available, which can be leveraged in a heterogeneous and pervasive monitoring
environment. These included NIDS – where Suricata [Suricata] and Snort [Snort]
have demonstrated to be viable options as implementations instances of NMA
components in our conceptual architecture, running in dedicated small devices
(e.g. RaspberryPi); and HIDS – installed in potential target machines as imple-
mentation instances of HMA components (e.g. Tripwire [Tripwire], AIDE
[AIDE] and OSSEC [OSSEC]). Then, we demonstrated that Honeypots could be
a valuable addition to that same heterogeneous monitoring structure.

This pervasive DHIDS architectural model, promotes the extensibility,
scalability and availability attributes. For it to be effective, the appropriate con-
ditions for reliability and persistence of detected events must be ensured, until
they reach the CAM for later analysis. For the purpose, we addressed the im-
plementation of the Message Oriented Middleware substrate leveraging the
RabbitMQ system and implementing adapters for IDMS event-formats. As we
will explain in the DHIDS system model (described in chapter 3) and imple-
mentation (in chapter 4), we used the IDMEF base standard, adopting a JSON
data-model for the implementation of the base IDMEF-XML data-model speci-
fication [RFC4765].

The Central Auditing Manager (as defined in the conceptual architecture)
subscribes IDMEF events notified by all above IDS (NMA and HMA) and
Honeypot components. For the CAM level, we designed a query based analysis

 30

environment on top of an elastic document-oriented event storage system. The
stored events can then be matched against known attack-signature patterns by
means of a declarative DSL (presented in chapter 3). The studied stream pro-
cessing engines (specifically Cayuga [Demers07] and SASE+ [Agrawal08, Di-
ao07]) provided the general model for that language.

 31

 System Model and Architecture

This chapter presents the system model and the architecture for the pro-
posed Distributed and Hybrid Intrusion Detection System (DHIDS) – we will
name it so from now on. In this chapter, we focus on the design considerations
and related specifications. Later, on chapter 4, we will describe the specific im-
plementation options for the DHIDS prototype.

We begin with the overview of the DHIDS design model and architecture
in section 3.1, followed by an explanation in more detail of each component,
namely the Pervasive Probing Environment (explained in section 3.2), the Event
Dissemination Platform (section 3.3) and the Event Monitoring and Manage-
ment System (explained in section 3.4). Finally, we present the design and spec-
ification of the DHIDS Query Language (DHIDS-QL) for attack-signature ex-
pression.

3.1 System Architecture Overview
The DHIDS system is conceptually divided in three parts, as represented

in Figure 3.1: the Pervasive Probing Environment, the Event Dissemination
Platform and the Event Monitoring and Management System.

The Pervasive Probing Environment comprises a set of independent and
heterogeneous probing agents spread over the network, observing and captur-
ing security-related events according to their specialization and local configura-
tion. The relevant events detected are then encapsulated in a common format
and dispatched to the Event Dissemination Platform.

3

 32

Figure 3.1: System macro-components overview

Conceptually, the Event Dissemination Platform is designed as an event-
bus, publish/subscribe substrate for the entire DHIDS architecture, providing
reliable and asynchronous delivery (with persistency message-queuing proper-
ties). Published events are subscribed by the Event Monitoring and Manage-
ment System (EMMS), specifically by the Event Manager and are then merged
and stored in a scalable logging system. This logs and maintains agent-detected
events, and results of “a posteriori” aggregations of correlated events. Then,
these events can be queried according to known intrusion attack patterns or
suspicious behaviors, expressed in DHIDS-QL. These queries are interpreted
and executed over the elastic log by the Event Analysis Module.

3.2 Probing Agents
The Pervasive Probing Environment is composed by “in-the-field” agents,

whose function is to collect data. Agents can act as NMA, HMA or honeypots.
Therefore, the placement strategy in the network for the specialized probing
agents is a key decision of system and network administrators, as it has implica-
tions on the span of detectable activity patterns.

3.2.1 Classes of Agents

Regarding the conceptual characterization and specialization of agents,
our DHIDS approach adopts the DIDS terminology used in [Stallings14], with
the addition of another category – the Honeypot. The diversity of the probing
environment is described as follows, using the notion of classes of agents,
namely: NMA, HMA and Honeypots.

 33

• Network Management Agents (NMA) capture the traffic-related events
occurring on a network segment. These are the conceptual equivalent to
the sensor capabilities of typical NIDS platforms. According to its spe-
cializations, NMAs materialize on-line NIDS-based probing functionali-
ty, to deal with the network observation in real time. This may include
traffic analysis at different protocol levels, and filtering based on local
configuration rules to decide if an event is relevant to be sent to the
EMMS.

• Host Management Agents (HMA) capture events occurring on specific
hosts. HMAs correspond to the probing capabilities of HIDS solutions in
monitoring the internals dynamic behavior and state of a system. They
may detect which program accesses what resources. For example, it can
be detected that a specific process has suddenly and inexplicably started,
modifying the system resources (for example the password database or
security critical configurations). So, depending on each specific material-
ization, HMAs may look at the state of the system, its stored information,
monitor local log files and check that the contents of these appear as ex-
pected. Each HMA in the DHIDS platform, according to its specializa-
tion, monitors whether anything or anyone, whether internal or external,
has circumvented expected system's security policies.

• Honeypots are systems purposely deployed as bait for potential attack-
ers. It simulates a potential target while firing security events as noticea-
ble evidences when anyone interacts with it. Therefore, Honeypot agents
are related to the typical event-logging capabilities of specific Honeypot
systems, as introduced in section 2.5.

We must notice that each of these classes is associated with a specific func-
tion and agent specialization. We can also have diversity of different im-
plementations for the same function. For this reason, our conceptual model
for DHIDS includes this diversity dimension, which is particularly related to
the heterogeneity of the probing base, captured by the word “Hybrid” in
DHIDS.

3.2.2 Generic Agent Architecture

As DHIDS components, each probing agent (independently of their spe-
cialization) can be abstractly viewed as generic architecture composed by four
sub-components, as represented in Figure 3.2:

 34

Figure 3.2: Generic agent’s internal architecture

• Sensor: It is the agent’s data collecting component. It gathers information
(potential intrusion evidence) from the environment where it is implant-
ed. Examples of input data could be network packets, system logs, appli-
cation logs, etc.

• Filter: The events collected by the sensor are then handed to a filtering
component set by a local parameterization interface to specify rules. It
selects or discards each element of the captured data set, and returns a
subset of the observed events according to defined rules.

• Formatter: The events are then passed to a formatting component re-
sponsible for the standardization and encapsulation of the event data in-
to the message format as required to satisfy the interoperability model
supported by the defined IDMEF message format specification
[RFC4765].

• Publisher: This component implements the publishing interface with the
Event Dissemination Platform and is responsible for all the necessary
steps to publish the captured, filtered and formatted events.

3.3 Event Dissemination Platform
As initially presented, the Event Dissemination Platform is a highly scala-

ble “event bus” responsible for the carriage of events in the DHIDS platform. It
is supported by a message-queuing substrate providing a publish-subscribe in-
terface. The messages comply with the IDMEF interoperability model (de-
scribed in section 3.3.2).

3.3.1 Requirements for the Message Queuing Support

The Event Dissemination Platform simultaneously supports decoupling,
reliability and scalability. These characteristics result in several tangible bene-
fits.

 35

It facilitates the growth of the Pervasive Probing Environment, simplifying
the addition of new specialized probing agents, as long as they support the de-
fined message interoperability model and the implementation of the publishing
interface. As the agent network and consequently the volume of events grow,
the dissemination platform should scale accordingly. Decoupling also promotes
the future interoperability with other systems.

Asynchronous message queuing with persistency is a desirable feature
considering that the Pervasive Probing Environment on one side and the Event
Monitoring and Management System on the other side, can publish and sub-
scribe the events, each at its own pace, and events are not lost in between.

It also has the added benefit of facilitating the implementation of different
queuing policies if needed, for example based on priority, to tweak the system
performance.

Of course, to prevent the system from becoming itself target of attack, the
Event Dissemination Platform must to be supported by secure message-
queuing channels. Specifically all the communications should be SSL-encrypted
safeguarding the dimensions of confidentiality, integrity and authenticity of
messages. For this purpose, the required public key infrastructure (PKI) should
be in place and complying with the X.509 standard, in order to support public-
key certificates used by all the components involved in publishing and sub-
scribing the disseminated events.

3.3.2 Interoperability Model

The interoperability model for the DHIDS Event Dissemination Platform
complies with the IDMEF standard [RFC4765] (Intrusion Detection Message
Exchange Format). Event messages moving through the event bus should be
encapsulated into this format, as the canonical representation of events pub-
lished by the agents and subscribed by the Event Monitoring and Management
System.

The IDMEF standard was adopted as the interoperability reference in or-
der to enable the potential interoperability between commercial, open-source,
and research systems, allowing for the integration of different components into
the same IDS solution. This also has the advantage of facilitating the extension
of the DHIDS Probing ecosystem. Figure 3.3 generically represents the structure
of the IDMEF message model.

 36

Figure 3.3: RFC4765 IDMEF message model

Due to the heterogeneity inherent to all kinds of security-related messages
and alerts, a universal data model has to allow for flexibility, which makes it
somewhat complex, comprising several optional and required fields. Here, for
simplicity, we focus on a partial representation of the IDMEF data model, con-
sidering only the standard-required fields and the additional ones that are re-
quired in the context of this solution. A complete specification of the data mod-
el can be found in [RFC4765].

IDMEF defines more than one type of message. In our model, we only
consider messages of type Alert, with the following fields:

• Analyzer: Identifies the analyzer (the agent) that originated the alert.

• Create Time: The time the alert was created.

• Detect Time: The time the event leading up to the alert was detected. In
some circumstances, this may not be the same value as Create Time.

• Classification: A “tag” that identifies what the alert is; in our specific
case, it indicates the type of the event (e.g. a network-related occurrence).

• Additional Data: This is a format-free data field including all the specific
event details (that don’t fit in any of the other fields). The agent defines
the format of the data in this field.

Although the Additional Data is a format-free data field, the implementa-
tion should guarantee EMMS component is able to parse all the implementa-
tion-specific possible formats and convert them into a “queryable” data struc-

 37

ture. The XML-Specification according to the IDMEF [RFC4765] can be found in
Appendix A.

3.4 Event Monitoring and Management System
The Event Monitoring and Management System stores and analyses the

events collected by the agents, looking for suspicious activity in the form of pat-
terns. These patterns, expressed in DHIDS-QL, are explained in section 3.5.

3.4.1 Architecture

As illustrated in Figure 3.4, this component consists of the following sub-
systems:

1. Event Manager: it handles the subscription and reception of messages
from the Event Dissemination Platform. Upon reception, it passes each
event to the Event Pre-processor.

2. Event Pre-processor: it is responsible for the de-encapsulation of the
events, parsing and preliminary processing. According to its type and
source, each event is parsed (including the unstructured Additional Data
field), and the fields sanitized, producing well-formed structured and
“queryable” event, which is then placed into the Elastic Data Storage.

3. Elastic Data Storage: component that assures the persistency of events. It
provides document-oriented storage with high availability, scalability
and read/write performance. As the system has to deal with all the
events that the agents generate, its storage capacity should be able to
scale according to the size and possible growth of the monitored net-
work, the increased volume of traffic and the extensibility of the probing
environment. For that reason, this component should be implemented on
top of a distributed and elastic key-value store based platform.

4. Data Access Layer: provides basic query conveniences over the Elastic
Data Storage, allowing the insertion and retrieving of sets of events ac-
cording to a certain filtering criteria.

5. Event Analysis Module: receives and parses the user-defined specifica-
tions of attack pattern expressed in DHIDS-QL and searches for pattern-
matches in the event log. (This will be presented in more detail in 3.4.3).

 38

Figure 3.4: Event Monitoring and Management System (EMMS)

3.4.2 Event Model

Events in DHIDS belong to one of the following two categories:

• Atomic, the events produced by the agents, which represent an atomic
occurrence in the monitored system.

• Aggregated, the events created as output of queries executed by the
administrator. The idea underlying the representation of query results
as events is that they should represent the semantics of higher-level
events. For example, the event “TCP-handshake” could be a higher-
lever representation of three lower-level events, the IP packets ex-
changed back and forth. Once represented, these higher-level events
can then be used as input events in subsequent queries (as we will dis-
cuss later in section 3.5).

Storage Model

Upon reception by the EMMS, the events are pre-processed and stored in
the Elastic Data Storage component, where they reside organized in indices.
The notion of indices derives from the data repository model adopted – docu-
ment-oriented. An index is identified by a name, indexing a collection of docu-
ments related to events sharing similar characteristics. There may exist any

 39

number of indices with indiscriminate names defined by the administrator.
Although, we believe that one convention should be adopted: atomic and ag-
gregated events should not share the same index. This rule may prove useful by
simplifying the querying task and query readability as it makes this distinction
clear.

When stored, we still need a way to discriminate events by type and
source, know the time of occurrence and possibly the agent who detected it. For
those reasons, it makes sense to adopt the same structure of the IDMEF Alert
message model [RFC4765] for storage. That way, we preserve the “header” of
all events in the same standard form. The event-specific information will be
stored under the tag “Additional Data”. All of these data representation intrica-
cies will be transparent for the user, as the pattern query language will provide
that abstraction (as explained later in 3.5).

Atomic Events

All agent-generated events should come with a type, explicitly defined in
the Classification attribute (Figure 3.3), which is an IDMEF required field. Poly-
morphism is possible; as for example an event of type “TCP” could also be seen
as an “IP” event. In this case, different types should be separated by dots (.) as
in “Packet.Ethernet.IP.TCP”. It is the responsibility of the Event-Preprocessor to
validate the Classification field, as well as the other required fields ensuring
that a well-formed event is stored. As we will see later, the types of events must
be explicitly defined when querying a pattern.

Aggregated Events

An aggregated event encapsulates the lower-level events that gave origin
to it in the first place resulting in the following additional fields stored under
the tag “Additional Data”:

• Events: the lower-level events that match the pattern in this partic-
ular instance.

• Analysis Description: optional field containing a user-defined
message, resulting from the pattern-matching query.

This type of event (like any other event) complies with the IDMEF-based
storage standard. Therefore, the “header” fields contain the following infor-
mation:

• Analyzer: contains the signature of the Event Analysis Module;

 40

• Detect Time: the Detect Time of its first occurring lower-level
event;

• Create Time: the time the analysis took place;

• Classification: a user-defined category (expressed in the query) re-
lating to the semantic meaning of the pattern. For example, if a que-
ry specifies an unsuccessful TCP handshake, a suitable Classifica-
tion for the matching occurrences could be “IncompleteTCPHand-
shake”.

3.4.3 Event Analysis Module

The Event Analysis Module is a sub-component of the EMMS. It is de-
signed as a set of processing components to perform searches over the event log
maintained in the Elastic Data Storage. Such components are: Query Parser,
Query Validator, Query Plan Builder, Query Runtime and Data Access Manag-
er. The Event Analysis Module interacts (via the Data Access Manager) with the
Elastic Data Storage though the Data Access Layer.

The query processing support allows searching positive matches of attack
patterns specified by the DHIDS-QL syntax, as represented in the Figure 3.5.
The figure illustrates the processing workflow that each query goes through.
Each step is executed by the corresponding component in the Event Analysis
Module.

Figure 3.5: Query Processing Workflow

 41

According to the Figure 3.5, the Query Processing Workflow is composed
by the following phases:

1. Parsing: The Query Parser receives the query, converts it to the corre-
sponding logical query tree, asserting that it is syntactically correct, and
passes it to the next module.

2. Validation: The Query Validation Module decides if the query is valid,
before execution. It performs all the necessary checks, (e.g. type-
checking) and if needed, for normalization purposes, it may even re-
write some branches of the query tree.

3. Planning: The Query Plan Builder receives the validated and normalized
logical query tree and produces a query execution plan. This plan con-
sists of an ordered set of tasks including fetching, filtering and result-
processing. Fetching should precede filtering tasks and result-processing
tasks should happen after all the others have taken place.

4. Execution: The Query Runtime receives the execution plan and executes
each task in chain. Each task receives as input, the output produced by
the previous one. The fetching tasks imply the retrieving of events from
the Elastic Data Storage (via the Data Access Manager). Filtering tasks
are computations performed over stored data produced by the previous
tasks. The result-processing tasks include printing the results in a con-
sole or writing the resulting events as a higher-level event, correlating its
base relevant events (as high-value event “mashups” aggregating a set of
lower-level discrete ones).

3.5 DHIDS Query Language
The purpose of DHIDS-QL is to provide a powerful, elegant and concise

way of expressing the anatomy of potential intrusion attacks in the form of
event patterns and search the log for occurrences of those patterns. As far as we
known, there is no specific “attack-signature” expression language commonly
accepted as a standard. Inspired by the related work on pattern-based query
languages, we adopted SASE+ [Agrawal08, Diao07] as the foundation for the
design of our own. SASE+ was originally proposed as a rich pattern-matching
language, which resembles an SQL-like syntax, specifically oriented for pattern
matching on event streams. Taking the original language definition as starting
point, we introduced slight tweaks, defining the embryonic “attack-signature
language” we call DHIDS-QL. In this approach, queries take events as input

 42

from the log (either atomic or aggregated events) and produce one output event
for each distinguishable manifestation of the specified pattern.

In the next sections, we will present DHIDS-QL, starting with the prereq-
uisites and then explaining the query structure and formalisms, accompanied
by illustrative examples. Finally, we go through the more advanced constructs
of the language for additional expressiveness. A complete abstract syntax speci-
fication can be found in Appendix B.

3.5.1 Language Prerequisites

The envisioned language should clearly express the traceable signatures of
attacks in the form of patterns, in a highly concise and readable manner. Specif-
ically, it should provide means to:

1. Select relevant events;

2. Express correlations between different events, through the specification
of pattern structures (e.g. sequencing) and the use of complex predicates;

3. Test for the non-occurrence of events;

4. Express a finite but unbounded number of similar events;

5. Express admissible time windows for the pattern occurrence;

6. Compute aggregation values;

7. Compose queries that make use of the results of previously executed
queries.

3.5.2 Query Structure

Next, we present the basic query structure (in Listing 3.1), which we then
dissect and explain the meaning of each of its main components.

PATTERN <pattern structure>
[WHERE <matching condition>]
RETURN <output-event type>;

Listing 3.1: Basic query structure

The PATTERN Clause

The clause PATTERN announces a pattern specification. To express a pat-
tern structure that represents a sequence of events, the operator SEQ should be
used. Each event is declared with an explicit type and a unique identifier. List-
ing 3.2 defines the SEQ operator used to represent a sequence of events.

 43

SEQ (<type1> <id1>, <type2> <id2>, ...)

Listing 3.2: SEQ operator structure

The WHERE Clause

If applicable, a WHERE clause should follow, expressing the event selec-
tion and correlation conditions, using the previously specified identifiers. This
uses a syntax similar to SQL. The following tables present the available logical,
arithmetic and comparative operators. Parenthesis can also be used to compose
complex predicates.

Operators

The following three tables summarize the logical (Table 3.1), arithmetic
(table 3.2) and comparison operators (Table 3.3) available:

Table 3.1: Logical Operators

AND Conjunction

OR Disjunction

NOT Negation

Table 3.2: Arithmetic Operators

+ Addition

- Subtraction

* Multiplication

/ Division

Table 3.3: Comparison Operators

= Equals

 44

< Less than

> Greater than

>= Greater or equal

<= Less or equal

<> Different than

CONTAINS Only applicable to strings. Returns true if and only if the preced-
ing string contains the succeeding string.

Literals

There are three types of literal values: String, Number and Boolean and
they are represented as Table 3.4 illustrates:

Table 3.4: Literal Values

String Represented between quotation marks (“”). E.g. “foo”.

Number Integers represented as sequence of digits. Negative numbers are
represented by the precedence of a minus signal (-). E.g. 14, 0, -1.

Boolean TRUE, FALSE, true, false, 0, 1.

Fields

To reference an object’s field the dot (.) notation is used, as demonstrated
in Listing 3.3.

<event identifier>.<field name>

Listing 3.3: Field referencing

The RETURN Declaration

Each positive pattern-match found produces a higher-level event (none-
theless, with similar characteristics to any other event) representing one specific
occurrence of the queried pattern and encapsulating the original events that
gave origin to it. The RETURN declaration is one of the two possible ways to
finish a query, which relates to the level of persistency of the output events. The
other will be addressed later in 3.5.3 where the differences will be discussed.
For now, with the RETURN declaration, this newly created event exists only

 45

temporarily, in memory, and can be “seen” only by subsequent queries in the
same session.

The semicolon (;) indicates the end of a query, which allows us to batch
multiple queries in the same script.

An Example

Listing 3.4 represents a concrete example of a query, which expresses the
pattern of opening a TCP connection between two hosts:

PATTERN SEQ (TCP e1, TCP e2, TCP e3)
WHERE e1.tcp.flags = "syn"
 AND e2.tcp.flags = "syn-ack"
 AND e3.tcp.flags = "ack"
 AND e2.ip4.destination = e1.ip4.source
 AND e1.ip4.destination = e2.ip4.source
 AND e3.ip4.source = e1.ip4.source
 AND e3.ip4.destination = e1.ip4.destination
 AND e2.tcp.ack = e1.tcp.seq+1
 AND e3.tcp.seq = e2.tcp.ack
 AND e3.tcp.ack = e2.tcp.seq+1
RETURN "TCPConnectionOpen";

Listing 3.4: TCP handshake pattern (query example)

The SEQ construct indicates the specification of a sequence pattern: three
events of type TCP. The WHERE clause expresses the event-matching predicate
for the previously defined events: the definition of the TCP three-way hand-
shake. Finally, the RETURN declaration specifies the resulting event’s type.

3.5.3 Chained Queries and Persistency

Queries can be executed directly on a console session or from a pre-
written script file. The former is convenient for conducting quick analysis on
querying event patterns directly, to immediately print the matches on the
screen. The latter is more suitable for rules specification for frequently ran que-
ries. Both methods allow chaining queries together. This feature is useful for
break up complex queries into smaller ones, taking as input the results pro-
duced by the previously executed queries.

Another important distinction is about the level of persistency of the out-
put events, which can be:

 46

1. Volatile: when the events are resulting of the RETURN declaration.
Output events live temporarily in the environment, being available to
be used as input in subsequent queries. However, they will be dis-
carded at the end of the querying session.

2. Persistent: when the events are indexed, in the event log. This is
achieved with the use of the PUBLISH-IN declaration.

Evaluation Environment

The query evaluation environment temporarily stores the results of previ-
ously executed queries, so that they can be reused as input for subsequent
chained queries. These exist during the query session or the script execution,
being discarded thereafter.

The PUBLISH-IN Declaration

If the output events are to be made persistent, the query should be final-
ized by a PUBLISH-IN declaration inspired in Cayuga’s language [Demers07].
This specifies the type of the output event and names the index where it should
be stored (instead of using the RETURN statement). Listing 3.5 defines the que-
ry syntax with the PUBLISH-IN declaration:

PATTERN <pattern structure>
[WHERE <matching condition>]
PUBLISH <output-event type>
IN <index>;

Listing 3.5: Persistent result query (PUBLISH-IN)

Scripts

A script is a file containing a sequence of queries. These are useful for exe-
cuting complex queries that are broken into smaller ones, or to store frequently
used queries. A script executes in its own isolated environment. Therefore, at
least its last query should be a “PUBLISH-IN” query, so the results can be made
persistence.

3.5.4 Rules and Alerts

Remembering chapter 2, the notion of rule is very familiar among the ex-
isting IDS systems, specifically the signature-based kind. The idea is to have pre
specified rules running on background and, when a rule is triggered, an alert is

 47

raised. In this approach, we leverage the already discussed querying mecha-
nism as system of rules. These can be seen as queries that are permanently run-
ning on the background and produce an output event every time a new occur-
rence is detected (as opposed to simple queries which run once by user com-
mand).

This is accomplished with the use of scripts. A rule is added to the system
by placing a script (which may be composed by one or more queries) in a pre-
specified rules-directory.

The output events of rules may be directed to a specific index in the log
reserved to alerts. Additionally, a “listener” component may be connected to
logging system in order to monitor that index and actively notifies the adminis-
trator when a threatening alert event occurs (e.g. by email, SMS, or some other
form of message).

3.5.5 Additional Constructs

Event Negation

The negation construct is inspired in SASE+, with the same meaning and
for the same purpose. It verifies the non-occurrence of an event. It is expressed
by the addition of the tilde (~) before the event declaration.

As an example, if we wanted to capture a situation of an incomplete TCP
connection-opening request typical of a SYN-Flood attack, that could be done
by tweaking the previous example (from 3.4.2), as follows in Listing 3.6. The
modifications appear in boldface font. With this query we detect the occurrence
of the pattern: SYN-request from the client, followed by the SYN-acknowledge
from the server, without the existence of the rightful final acknowledge from
the client. When it happens repeatedly, it could mean a SYN-flood denial-of-
service attempt.

 48

PATTERN SEQ (TCP e1, TCP e2, ~(TCP e3))
WHERE e1.tcp.flags = "syn"
 AND e2.tcp.flags = "syn-ack"
 AND e3.tcp.flags = "ack"
 AND e2.ip4.destination = e1.ip4.source
 AND e1.ip4.destination = e2.ip4.source
 AND e3.ip4.source = e1.ip4.source
 AND e3.ip4.destination = e1.ip4.destination
 AND e2.tcp.ack = e1.tcp.seq+1
 AND e3.tcp.seq = e2.tcp.ack
 AND e3.tcp.ack = e2.tcp.seq+1
PUBLISH "TCPConnectionIncomplete"
 IN "threats";

Listing 3.6: TCP handshake incomplete (query example)

Kleene Closure

The Kleene Plus construct also comes from SASE+ and enables the repre-
sentation of one or more occurrences of a particular event type. It is denoted by
a plus sign (+) after the event type declaration, accompanied by the square
brackets “[]” after the event instance name, which denotes a list of events.

The next example query (Listing 3.7) expresses the pattern of denial-of-
service (DoS) attacks targeting one particular host. As demonstrated, the Kleene
closure is usually used in conjunction with aggregation functions. count() gives
the number of element in the list (more on this next in Aggregation Functions).
The WHERE clause here, illustrates the “every” semantics in Kleene closure
(where i,j ≥ 1).

PATTERN SEQ (TCPConnectionIncomplete+ c[])
WHERE c[i].e1.ip4.destination = c[j].e1.ip4.destination
HAVING count(c) > 100
RETURN "SYNfloodAttempt";

Listing 3.7: SYN-Flood attack pattern (query example)

Aggregation Functions

The example above demonstrates the use of an aggregate function –
count() – already familiar from SQL. In this example the PATTERN and
WHERE clauses generate the possible pattern matches. The HAVING clause
specifies the pattern filtering condition. There may exist the following aggrega-
tion functions:

 49

Avg(): returns the average of a set of values. E.g. avg(packets[].length)
gives the average length of the packet array.

Sum(): returns the cumulative sum of a set of values.

Count(): returns the number of element in a set of values.

Max(): returns the largest of a set of values.

Min(): returns the smallest of a set of values.

Time Window

The last example may be further refined in order to consider the time di-
mension, using the WITHIN construct, also inspired in SASE+ (Listing 3.8). The
PATTERN, WHERE and WITHIN clauses select the possible event matches for
this pattern: all the TCPConnectionIncomplete events targeting one host within
the time frame of 1 hour. The HAVING then filters the possible pattern to just
the ones that involve more than 100 occurrences.

PATTERN SEQ (TCPConnectionIncomplete+ c[])
WHERE c[i].e1.ip4.destination = c[j].e1.ip4.destination
WITHIN 1 hour
HAVING count(c) > 100
RETURN "SYNfloodAttempt";

Listing 3.8: Time window specification (query example)

Index Specification

By default, the pattern-matcher algorithm will look into all indices for the
specified type of event. However, a specific index can be selected as input using
the clause IN, in the event declaration. This mechanism, in conjunction with the
PUBLISH-IN declaration, facilitates the process of composing queries on top of
each other, giving finer control to the administrator. Listing 3.9 illustrates this
situation.

PATTERN SEQ (TCPConnectionIncomplete+ c[] IN “threats”)

WHERE c[i].e1.ip4.destination = c[j].e1.ip4.destination

HAVING count(c) > 100

RETURN "SYNfloodAttempt";

Listing 3.9: Index specification (query example)

 50

Description

The DESCRIPTION clause, following the PUBLISH-IN declaration, allows
us to specify a custom “description” string field to the output event. Listing 3.10
shows an example using the DESCRIPTION clause and PUBLISH-IN declara-
tion.

PATTERN SEQ (TCPConnectionIncomplete+ c[])
WHERE c[i].e1.ip4.source = c[j].e1.ip4.source
HAVING count(c) > 100
WITHIN 1hour
PUBLISH "SYNfloodAttempt"
 IN "attacks1"
 DESCRIPTION “SYN flood attempt from host ” +
 c[1].e1.ip4.source;

Listing 3.10: PUBLISH-IN with description (query example)

 51

 Implementation

Taking DHIDS design model and architecture as a starting point, this
chapter presents the implementation prototype. It begins with an overview of
all implemented components (section 4.1). After that, the three following sec-
tions address to the implementation details about the technology behind the
components of the specific implementation domains, namely: the Pervasive
Probing Environment (4.2) the Event Dissemination Platform (4.3) and the
Event Monitoring and Management System, integrating the query language
and the implementation of its runtime support (4.4).

4.1 Implementation Overview
Our prototype instantiates the system model as discussed in chapter 3.

Figure 4.1 illustrates the implementation components and technology used.

Pervasive Probing Environment

The network-probing agents (NMA) are implemented by leveraging the
probing components provided by the Snort [Snort] and Suricata [Suricata]. To
implement the functionality of Host-Based Agents (HMA), we leveraged Trip-
wire [Tripwire](open-source version). Finally, to implement the Honeypot
agents, for evaluation purposes, we used two strategies: (1) a vulnerable web-
server attack target website – Wackopicko [Wackopicko] – running on Apache and
MySQL (from which we extracted logs); and (2) a representative agent fed with
the logs extracted from a vulnerability scanning and attack injection tool tested
against a web server (under attack).

4

 52

Figure 4.1: Implementation Overview

Event Dissemination Platform

 The Event Dissemination Platform in the DHIDS prototype was imple-
mented by the RabbitMQ message queuing system [RabbitMQ], initially dis-
cussed in chapter 2.

 53

Event Monitoring and Management System (EMMS)

 The EMMS implementation materializes the components initially de-
scribed in chapter 3. The Elastic Data Storage and the Data Access Layer are
supported by Elasticsearch [Elasticsearch], an efficient and elastic document-
oriented database with support for powerful analytics capabilities. With this
approach, we also benefit from the possibility for seamless integration with the
variety of products from the Elastic family, most important being the Logstash
and Kibana (forming the ELK stack1). Both Event Manager and Event Pre-
processor’s functions are handled by Logstash [Logstash]. It is used as an event
parsing and formatting pipeline, seamlessly compatible with both Elasticsearch
and RabbitMQ. This implementation options offers the immediate advantages
of using code-shipping and relevant on-going developments as services inte-
grated and compliant with the base Elasticsearch technology2. For example, we
can use Kibana [Kibana], for data querying, exploration and graphical visualiza-
tion over Elasticsearch data, making the development of a monitoring environ-
ment with centralized dashboards for the DHIDS proposal easier to address.
The Event Analysis Module and their internal components were fully imple-
mented in Java 1.8.

4.2 Pervasive Probing Environment - Agents
In our DHIDS implementation, we used a representative set of parameter-

ized well-known HIDS and NIDS systems, as well as vulnerable web applica-
tion in place of Honeypots, suiting our intended test scenarios. As this is a be-
ginning approach to the DHIDS prototype, we did not need, for evaluation
purposes, a fully automated production mechanism for real-time capturing and
publish of events. Instead, we used pre-captured data sets from the aforemen-
tioned IDS and honeypot tools, to be “re-played” and published as observed
events. This strategy enables us to use available real world sets of events (some,

1 ELK stands for Elasticsearch, Logstash and Kibana. The term was coined by Elastic, the
company behind these open-source projects, as it is aparently very common for these
three components to be deployed together as part of the same log analysis solution.

2 In https://www.elastic.co/products there is a list of these relevant products, ranging
from security enhancements, system-administration facilities to data visualization and
management functions (accessed on 2/Feb/2016).

 54

containing attacks) and reproduce them at will in a controlled environment.
Please refer to Appendix C for the list of the used data sets.

Generic Agent

The aforementioned approach also saved us the time of implementing
several IDS-specific agent adapters for the DHIDS platform. Instead, we devel-
oped and use several instances of a Generic Agent, which is a component capa-
ble of reading many different types of logs (PCAP, MySQL, Apache, Syslog, any
JSON or XML represented events, etc.) and publish them as standardized
events, according to the defined interoperability format, in the Event Dissemi-
nation Platform. The Generic Agent was fully developed in Java 1.8. It consists
of about 1900 lines of code and 64 classes. It also makes use of several libraries
and open-source projects, as follows:

• jNetPcap Used to read PCAP-formatted files into the Ge-
neric Agent. Version used: 1.4 [jNetPcap].

• org.json library for Java Used To manipulate JSON documents in a ob-
ject-oriented way in Java. Used version: 2015-
05-01 [JSON-java].

• com.cr_labs.rfc4765 lib Java implementation of the data structure in-
troduced in RFC4765. We used to help convert
event events to the interoperability format spec-
ified in chapter 3. Version: not specified.
[IDMEF-java]

• RabbitMQ Java Client Java API to communicate with the RabbitMQ
server. Used to publish the events. Version
used: 3.4.4. [RabbitMQ]

IDS Systems

In our prototype, we used Snort (v. 2.9.6) [Snort] and Suricata (v. 1.4.7) [Su-
ricata] as NMA agents. We configured both to produce PCAP-formatted logs.
To obtain HMA-related events, we used Tripwire (v. 2.4.2.2) and instances of
our earlier mentioned Generic Agent to read collect events directly from appli-
cation logs. To implement an example of a Honeypot we used Wackopicko, a
web application with vulnerabilities used to test vulnerability-scanning tools.

 55

Low-cost card-sized computers

 One key notion underlying our model is the pervasiveness of agents. It is
therefore particularly interesting to implement NMAs and Honeypots as stand-
alone credit-card-sized low-cost autonomous computer nodes, which can be
deployed anywhere in the network. For this purpose, we selected RaspberryPi’s
(both 1B and 2B) [RaspberryPi], running Raspbian Wheezy (kernel version 3.18)
[Raspbian] to implement NMAs and Honeypots for event collection, as well as
Generic Agents to process pre-captured logs in a test environment.

4.3 Event Dissemination Platform - RabbitMQ
RabbitMQ (version 3.4.4) [RabbitMQ] is an open-source distributed and re-

liable message-queuing system. In this implementation, it was configured to
provide publish/subscribe support, for many producers – the agents distribut-
ed in the probing environment – and one consumer – the Event Monitoring and
Management System (EMMS).

As stated earlier, we implement an interoperability format for event dis-
semination. We use JSON as encoding format to implement the base RFC4765
message format. This induces a smaller encapsulation overhead in comparison
with XML and demands less processing by the Event Manager (Logstash), which
doesn’t need to convert it to JSON (as Elasticsearch document storage model is
based on JSON).

Another feature provided by RabbitMQ is an acknowledgement mecha-
nism – Confirms (aka Publisher Acknowledgements) – as an extension to the
AMQP 0-9-1 protocol, that ensures messages are not lost. This slightly impacts
the performance, but as we will see in our experimental evaluation in the next
chapter, the overhead is almost negligible. This mechanism may be activated or
not by the publishers, i.e. the agents. Preferentially, we publish events using
Confirms mode.

4.4 Event Monitoring and Management System
The EMMS is the most complex part of the implementation. Here we ex-

plain how we handled the challenges of data storage, event management and
event analysis.

 56

4.4.1 Data Storage – Elasticsearch

We used Elasticsearch (version 1.7.1) [Elasticsearch] for event storage. We
consider this an adequate choice as it suits the model’s requisites, has a good
reputation for performance and scalability, and it also enables seamless integra-
tion with Logstash – an event log processor – and Kibana – an analytics and visu-
alization tool, useful to chart and summarize event data.

In this particular implementation, we used it as a schema-free document
database (the default) for simplicity. This means that Elasticsearch automatically
detects the structure and data types of the event’s JSON document and indexes
it “as is”, as the agent sends it, in the IDMEF format. Nonetheless, it is possible
(by configuration on Elasticsearch) to force the documents to comply with one or
many rigidly specified schemas.

4.4.2 Event Management – Logstash

Logstash (version 1.5.5) [Logstash] handles the functions of the Event Man-
ager and Event Pre-processor. It is a data pipeline for log management, which
gathers log events from a variety of sources and parses them into a structured
format set by configuration. As mentioned, Logstash also provides event parsing
and formatting features, which are configured via a sequence of filters. For
simplicity, we are not using any relevant filter (besides for timestamp parsing)
as we assume the events to be sent in the expected format by the agents.

4.4.3 Event Analysis Module

The Event Analysis Module was the most demanding part in terms of im-
plementation effort. It was developed in Java 1.8. It consists of aboud 8000 lines
of code and 96 classes. It implements the query processing workflow model
presented in section 3.4.3. This specified the four query execution phases and
the main components involved in the process. Next, we go through each of the-
se phases and its respective implementation details. To implement the interface
with the Elasticsearch, we used the Java API (version 1.4.4) provided by the Elas-
ticsearch platform.

Parsing (Phase 1)

The first is the parsing phase. This is performed by the Query Parser
whose job is to receive a user-provided text query and produce a query tree.
The query tree is the data structure that represents the query internally. Each
node in the tree represents one specific DHIDS-QL syntactic connector. The

 57

Query Parser was built using Java Compiler Compiler (a.k.a. JavaCC) 6.0 [JavaCC].
This is a tool that given a grammar specification, it converts it to a Java program
capable of recognizing text and matching it to the grammar. Most of the Query
Parser components were generated using this tool, given the DHIDS-QL lan-
guage specification as presented in 3.5 (converted to the JavaCC input format).
The language specification used to create the parser can be found in Appendix
B. JavaCC was set to use the default LOOKAHEAD – 1, which means DHIDS-
QL is an LL(1) grammar. Once the parsing phase is successfully terminated,
then the query is considered syntactically correct and the execution can proceed
to the next phase – validation.

Validation (Phase 2)

This phase provides an opportunity to traverse the query tree and perform
the necessary checks or modifications in order to assure that every node is valid
and to enforce any rules that cannot be verified at the syntactic level. If any in-
consistency is detected, the Query Validator should either perform the neces-
sary modifications to the query tree to make it valid, or if not possible, to fail-
fast and raise the appropriate exception. This procedure assures that in the fol-
lowing phases, we are only dealing with valid queries. Since this implementa-
tion is a prototype, we didn’t focus in performing extensive query checking.
Nevertheless, we use the validation phase to perform field name translation
and other adaptations in order to make our queries more readable and less ver-
bose. For example, our prototype accepts queries written with simplified field
names (e.g. “tcp”) but it replaces them internally with the full name (e.g. “addi-
tionalData.packet.tcp”).

Planning (Phase 3)

As explained in chapter 3 (section 3.4.3) each query is executed according
to an execution plan specifically tailored to each query, determined before the
execution phase. This is performed by the Query Plan Builder, which receives a
validated query tree and produces a query execution plan. The latter is simply a
data structure consisting of an ordered set of tasks to be carried out during the
execution phase. Our system’s model does not suggest the specific query execu-
tion operations that should be supported (just that there are three kinds of op-
erations: fetch, filter and result-process). These are the query processing algo-
rithms and we see them as an implementation matter. In our prototype, the
specific implemented operations that may compose a query execution plan are:

 58

1) Fetch Tasks:

i. Single Event Search – performs a search for occurrences of a single
event, according to a given parameterization.

ii. Absent Event Search – performs a search for a given event that if not
found returns a positive match.

iii. Kleene-Closure Search – performs a search for an unbounded number
of events that share the same key characteristics.

2) Filter Tasks:

i. All-to-all Comparison Filter – can be used, after a Kleene-Closure
Search, and filters the input set according to the evaluation of an all-
to-all predicate.

ii. Pattern Filter – it filters instances of the pattern according to the
evaluation of predicate expressed in the HAVING clause.

3) Result-process Tasks:

i. Publish Results – prepares the output event for each positive instance
of the pattern, and indexes it in the Elastic Data Storage.

In our implementation, the query execution plan enforces a priority order
on the tasks. That order corresponds precisely to the order in which they are
presented here. That means Single Event Search tasks (if any) always happen
before than Absent Event Search tasks (if there is any absent event), which pre-
cede Kleene-Closure Search, and so forth.

Execution (Phase 4)

The query execution is handled by the Query Runtime component. In con-
cept, the Query Runtime iterates over the query execution plan and executes the
tasks in sequence while feeding as input to each task the output of the previous
one. Each task receives as input, and produces as output, a set of cases. A case is
a partial event sequence representing a potential pattern match, i.e. a possibility
that has not yet been discarded. For each task, the cases are divided in a few or
many chunks (or subtasks) of configurable size and placed in an execution
queue. A pool of threads consumes from this queue and executes the subtasks.
The degree of concurrency is determined by the thread pool size also set by
configuration.

For each case, the fetch-tasks request events from the Elastic Data Storage,
via the Data Access Manager (Figure 3.5). We should note that the amount of

 59

processing needed to resolve a query depends greatly on the type of pattern we
are querying, specifically the number of cases generated by each fetch task, that
must be considered in the subsequent tasks. The idea is to put the heavy pro-
cessing work on side of the Elastic Data Storage, and to simplify, as much as
possible, the work on side of the Event Analysis Module. This is so, because the
former is the component that can be horizontally scaled.

Elasticsearch is able to deal with many queries in the same request and effi-
ciently parallelize the work internally. In our Event Analysis Module imple-
mentation, the queries for each chunk of cases are generated at the same time
and sent to the Elasticsearch bulked in the same request. Therefore, the chunk
size determines the number of queries per request demanded from Elasticsearch.
To make full use of the Elasticsearch cluster’s hardware, this number should be
the highest possible just before, we start getting “rejected execution” exceptions
from Elasticsearch. That means we are asking too many simultaneous queries
from it. As we will see later in the next chapter, we found this optimal number
to be around forty queries per request, for our test-bench server (a quad-core
with 8GB RAM), as we will present in chapter 5.

 61

 Evaluation

To validate the proposed DHIDS platform we deployed an experimental
environment to conduct a set of tests, using two distinct test-bench installations.
We start by presenting each of the mentioned test-bench environments in sec-
tion 5.1. The remaining sections are dedicated to the presentation of a selected
set of experiments and representative observations, using those test-bench pi-
lots. Section 5.2 addresses network performance indicators and end-to-end la-
tency conditions related to the DHIDS platform and its components. The section
also presents some base validation observations on reliability, efficiency and
scalability criteria, considering event-detection, -formatting, -dissemination and
-storage. Section 5.3 addresses DHIDS-QL expressiveness and effectiveness cri-
teria, by showing how the proposed query-language can be used to express a
set of selected representative attack-patterns (or signatures), queried as search-
able evidences of combinations and correlations of stored events. Finally, in sec-
tion 5.4, we present a summary of the evaluation phase and some additional
remarks.

5.1 Evaluation Environment
For the evaluation and experimental observation of the proposed, de-

signed and implemented DHIDS platform, we created two test environments:
Test-bench 1 and Test-bench 2. Most of the experimental tests were conducted
in the Test-bench 1, designed to operate as a dedicated and isolated network,
described in 5.1.1. Some observations also used the Test-bench 2 described in
5.1.2, a setup environment integrated in the FCT/UNL internetwork infrastruc-
ture, in an effort to more closely simulate a real-world scenario in terms of la-
tency and network conditions.

5

 62

5.1.1 Experimental Test-bench 1

In the Test-bench 1, the DHIDS platform is supported by an isolated
switched IEEE 802.3 and IEEE 802.11g LAN environment, as represented in the
Figure 5.1. Table 5.1 complements the diagram and characterizes each compo-
nent presented in the figure, regarding its function, software and hardware.

Figure 5.1: Test-bench 1 network diagram

The pervasive probing environment (for NMA, HMA and HPOT compo-
nents) correspond to a set of devices installed in two switched segments, name-
ly, the wireless IEEE 802.11g (54 Mbps) Segment 1, and the wired IEEE 802.3
(100 Mbps) Segment 2. The IDS MGMT segment corresponds to the EMMS net-
work and is a wired IEEE 802.3 (100 Mbps) segment. This EMMS instance is
composed of just one node (EMMS HOST). Specifically, it hosts a single in-
stance of Elasticsearch and the related ELK software stack, which includes the
Logstash and Kibana. In this test-bench, this same node simultaneously hosts the
Event Dissemination Platform implemented by RabbitMQ.

 63

Table 5.1: Components in the Test-bench 1 installation

The USER station usually connects wirelessly through IEEE 802.11g to the
WI-FI LAN. It runs the Event Analysis Module, which in turn is indirectly con-
nected to the ELK as it consumes and writes data from and to Elasticsearch.
Some specific tests may require to not be limited by the IEEE 802.11g wireless
network bandwidth in which case we connect the USER node to Segment 2 via
Ethernet cable. In other tests, we also use the USER station to inject the attacks.

ID Description Hardware Software

EMMS
HOST

Host for both the Event Dissemination
Platform instance and the Event and Mon-
itoring and Management System.

AMD Quad-
core;

8GB DDR3;

100-BASE-T
Ethernet;

Linux Ubuntu
14.04 64bit;
JRE 1.8;
Elasticsearch 1.7.1;
Logstash 1.5.5;
Kibana 4.2;
RabbitMQ Server
3.4.4;

NMA/
NMA
HOST

The Network Monitoring Agents. These
can either be integrated in an node as a
background software, or as an specific
independent network monitoring device

RaspberryPi 1B
/RaspberryPi 2B

Raspbian Wheezy
3.18;
Snort (v xxx); Su-
ricata 2.0.8;

HMA
HOST

The Host Monitoring Agent. RaspberryPi 1B Raspbian Wheezy
3.18;
Apache 2.2.22;
Tripwire 2.4.2.2;

SW Switches 10/100 BASE-T Micronet
SP616EA Ether-
Fast 16 ports /
SMC 108DT 8
ports

Not-Applicable

HPOT
HOST

The honeypot implemented by
Wackopicko running on a LAMP server in
a RaspberryPi. It is used as the target of
attacks.

RaspberryPi 1B Raspbian Wheezy
3.18;
Apache 2.2.22;
MySQL 5.5; PHP
5.5; Wackopicko;

USER User station. Runs the implemented Event
Analysis Module. In some tests, it is also
used as the attacker station.

MacBook Pro;
2.5GHz Intel
Core i5 (dual
core); 8GB DDR3

OS X 10.10.5;
VirtualBox 4.3.26;
Ubuntu 14.04 LTS
(virtualized);
w3af 1.7.6

 64

The local internetworking and switching environment (represented in figure
5.1) is provided by the interconnection of two local 100 Mbps switches. Addi-
tionally, to allow for packet-sniffing functions, a local 10Mbps hub-repeater is
available, which may be connected whenever necessary, to each switch, allow-
ing the connection of network-interfaces in promiscuous modes, to inspect traf-
fic observed in the hub ports and in one specific port of each switch.

5.1.2 Experimental Test-bench 2

Test-bench 2 is useful for complementary evaluations of quantitative met-
rics, closer to a real-life environment. This environment is integrated to the in-
ternetworking environment and infrastructure of FCT/UNL. Namely, a net-
work-environment interconnecting DI (Departamento de Informática) and local
teaching and research labs, and remote Virtual LANs installed in the SI
FCT/UNL (Serviço de Informática – FCT/UNL), a centralized Sector responsi-
ble for all IT installations, as well as system and network administration func-
tions, including the centralized software services provisioning.

The Test-bench 2 setup allows for the observation of differences in testing
metrics, some of them primarily obtained in the test-bench 1, but in this case
closer to a “real-operation setup environment”. For example, we can compare
the event-publishing throughput performance in the context of the test-bench 2
and its central management solution, to compare with the equivalent observa-
tion in the dedicated local setup of Test-bench 1.

This internetworking environment is represented in the Figure 5.2. The
pervasive probing environment (for NMA, HMA and HPOT agents) is enabled
by devices installed in a LAN segment. This is located in a local lab and con-
nects to the wired LAN switched infrastructure covering the DI-FCT-UNL
through a NAT box (R/FW) connected to wall Ethernet connector. In this case,
we use a local switched segment, providing a IEEE 802.3 wired switched access.
For the Test-bench 2 local DI-FCT-UNL segments and local addressing, we use
the DHCP and DNS services, as centrally managed by the SI-FCT-UNL. The
Event Dissemination Platform in this case is located in a remote virtual machine
installed in a VLAN at the SI-FCT-UNL, running the RabbitMQ platform (RE-
MOTE EDP). The EMMS, similarly to Test-bench 1, runs in the EMMS HOST in
our local network. This configuration requires that every published event trav-
erse the FCT-UNL network infrastructure and return to the EMMS HOST,
therefore being subjected to the traffic conditions offered by the FCT-UNL net-
work.

 65

We should notice that in the Test-bench 2, we are not able to install perva-
sive intrusion-detection sensors in the internetworking infrastructure. We can
only simulate their operation, by processing and disseminating datasets of pre-
captured events, for example, reference datasets with events reflecting attack-
patterns. First, we are not authorized to install systems or devices with network
interfaces running in promiscuous mode to capture or to sniff traffic though the
FCT/UNL network infrastructure. Second, we can’t use Honeypot or HIDS el-
ements running in production servers. Third, we can’t capture and we are not
authorized to publish “real intrusion events” that have been observed in the
FCT/UNL infrastructure, through the monitoring, interception or inspection of
switch-based traffic or routing-processing traffic crossing the production infra-
structure.

Figure 5.2: Test-bench 2 network diagram

The characterization of components in the test-bench 2, regarding its func-
tion, software and hardware type, is presented in Table 5.2.

 66

Table 5.2: Components in the Test-bench 2 installation

ID Description Hardware Software

REMOTE
EDP

Remote host running RabbitMQ.
Virtualized in SI-FCT-UNL infra-
structure.

Intel Xeon E5-2660
2.2GHz;

506MB DDR;

Linux Ubuntu
14.04 64bit;

JRE (Java Runtime
Environment) 1.8;

RabbitMQ Server
3.4.4

EMMS
HOST

Host for the Event and Monitoring
and Management System. Runs the
ELK service stack.

AMD Quad-core;

8GB DDR3;

100-BASE-T Ethernet;

Linux Ubuntu
14.04 64bit;
JRE 1.8;
Elasticsearch 1.7.1;
Logstash 1.5.5;
Kibana 4.2;

NMA/
NMA
HOST

The Network Monitoring Agents.
These can either be integrated in an
node as a background software, or
as an specific independent network
monitoring device

RaspberryPi 1B /
RaspberryPi 2B

Raspbian Wheezy
3.18;
Snort (v xxx); Su-
ricata 2.0.8;

HMA
HOST

The Host Monitoring Agent. RaspberryPi 1B Raspbian Wheezy
3.18;
Apache 2.2.22;
Tripwire 2.4.2.2;

SW Switches 10/100 BASE-T Micronet SP616EA
EtherFast 16 ports /
SMC 108DT 8 ports

Not applicable.

R/FW Router / Firewall Linksys WRT54GC Not applicable.

HPOT
HOST

The honeypot implemented by
Wackopicko running on a LAMP
server in a RaspberryPi. It is used as
the target of attacks.

RaspberryPi 1B Raspbian Wheezy
3.18;
Apache 2.2.22;
MySQL 5.5; PHP
5.5; Wackopicko;

 67

5.2 Event Collection and Processing Tests
The goal for this first series of tests is to evaluate how reliable, efficient

and scalable is the process of capturing, formatting, disseminating and storage
of events. Specifically, we aim to answer the following questions:

• Are the events detected by the agents and reliably transmitted to the Event
Dissemination Platform? What is the effective publishing throughput?

• What is the expectable performance and local processing capabilities of
the specific probing devices (namely the Raspberry Pi nodes)?

• Does the implemented EMMS correctly process and store the events?
What is the event-processing throughput?

5.2.1 Network Performance

We began by measuring the effective network performance on both test-
benches. This measure will serve as an upper-bound benchmark to be com-
pared against the following performance observations. For that, we used iPerf
2.0.5 [iPerf] – a network performance active measuring tool – to obtain the
measurement of the maximum achievable bandwidth in a TCP connection from
the agents to the EMMS HOST, and to the EDP REMOTE in the case of Test-
bench 2. The measurements considered in both cases are the ones seen by the
receiver. Each of the following results is an average of ten consecutive observa-
tions. The variables in this tests are the test-benches: both 1 and 2; and the de-
vice running the agent: RaspberryPi 1 Model B, RaspberryPi 2 Model B and Mac-
Book Pro (associated to the USER station – see Table 5.1).

Table 5.3: iPerf bandwidth measurements

 RaspberryPi 1B RaspberryPi 2B MacBook Pro

Test-bench 1 57,2 Mbps 94,0 Mbps 94,0 Mbps

Test-bench 2 46,2 Mbps 46,1 Mbps 46,4 Mbps

Table 5.3 presents the obtained measurements for both test-benches and
all the available agent hardware devices. As expected, RaspberryPi 2B is much
faster than its predecessor dealing with network traffic, as the results from Test-
bench 1 show. Regarding test-bench 2, the bottleneck seems to be imposed by the

 68

network conditions, every device showed similar bandwidth measurements. In
addition, we measured the network’s end-to-end latency, in the same circum-
stances as the bandwidth measurements (Table 5.4). The presented results are
the average of one hundred measurments.

Table 5.4: Round-trip-time measurements

 RaspberryPi 1B RaspberryPi 2B MacBook Pro

Test-bench 1 0,903 ms 0,589 ms 0,504 ms

Test-bench 2 2,987 ms 2,826 ms 2,737 ms

5.2.2 End-to-end Event Processing Throughput

The goal for this test is to evaluate the overall system’s event-processing
capacity. For this purpose, we used an event log of measurable size in PCAP
format from the DARPA data set – named “outside.tcpdump” – (see Appendix
C for more details about the DARPA data set) containing 233428 events. We set
up one Generic Agent to extract, format and publish events into the Event Dis-
semination Platform implemented by RabbitMQ. We set up the EMMS on the
other side, implemented by Logstash and Elasticsearch, to consume, process and
store the events. The throughput is calculated based on the difference between
the receiving time of the first and last events of the dataset. As mentioned in last
chapter, RabbitMQ offers an acknowledge-based reliable publishing mode. We
tested both publishing conditions: the default (without Confirms) and with reli-
able publishing (Confirms). Event persistency was not enforced in RabbitMQ.
This means that messages were not necessarily written to disk when they
reached the queue.

There are three variables to consider in this test:

• Event-publishing mode: reliable (using the Confirms mechanism)
vs. unreliable (default);

• Agent host device: RaspberryPi 1B, RaspberryPi 2B and a laptop
(MacBook Pro).

• Test-benches (both 1 and 2)

The presented results (Figure 5.3) are the aggregated values of twenty in-
dependent observations for each test instance in Test-bench 1. Regarding the
previously obtained network performance measurements, it seems reasonable

 69

to expect a very significant decline on the effective throughput. This is due to
the overheads imposed by (1) the RabbitMQ, an effect inflated by the fact that
the events are being published one-by-one and, (2) the event processing and in-
dexing operation on the EMMS side (Logstash and Elasticsearch). The Raspber-
ryPi’s hardware limitations should also likely contribute to the deterioration of
the event-publishing performance.

Figure 5.3: End-to-end event-processing throughput (Testbench 1)

As expected, RaspberryPi 1B was the slowest tested hardware option,
achieving an effective publishing throughput of around 1,5 Mbps. That corre-
sponds to an observed average of 250 to 300 events per second, using the men-
tioned data set. This was outperformed by far by its successor, which achieved
a throughput of up to 4,7Mbps. That equates to about 800 events per second
(the event average size in this particular data set is 767 bytes).

We didn’t find a very significant variation in performance when using
RabbitMQ’s Confirms mechanism. It’s also worth noting the fact that there was
no event loss in these test conditions, even when not using reliable publishing.

Next, we present the results obtained in Test-bench 2 for the exact same
tests (Figure 5.4). As we can recall from the previously presented network per-

 70

formance tests (5.2.1), the achievable bandwidth measured for this network
conditions was significantly less than the observed in Test-bench 1. That fact
seems to have had no impact in the observed end-to-end event-processing
throughput. Moreover, we even noticed a slight positive variation in perfor-
mance (more than 10%) in one of the tests – the one using the laptop. The most
likely explanation for that is that, in this test-bench, both Elasticsearch and Log-
tash were not running alongside with RabbitMQ. The latter was now running in
the virtual machine, freeing some resources for event processing on the EMMS
side. The following tests will probably reveal more details on this issue.

Figure 5.4: End-to-end event-processing throughput (Test-bench 2)

As anticipated, the “end-to-end” throughput test revealed a very signifi-
cant decrease in performance when compared with the available bandwidth.
However, it didn’t reveal which component or components are the limiting fac-
tors. This is an important question because it has a direct reflection in the sys-
tem scalability. The results from the following test will certainly shed more
light on this matter.

5.2.3 RabbitMQ Event Publish-Subscribe Throughput

In this test, we evaluate the performance of the Event Dissemination Plat-
form implemented by RabbitMQ in isolation. The goal is to estimate what is the
actual overhead imposed by this component and consequently, to what extent

 71

does it affect the event-processing throughput. For that purpose, we set up the
same Generic Agent, publishing events in same conditions as the previous test.
On the server side, instead of the EMMS, we set up a simple process just con-
suming events and measuring the receiving rate. The events were published in
a reliable channel, using the Confirms mechanism.

The variables in this test are the following:

• Agent host device: RaspberryPi 1B, RaspberryPi 2B, MacBook Pro.

• Test-benches (both 1 and 2)

The presented results represent the aggregated measurements from twen-
ty independent observations in both Test-bench 1 (Figure 5.5) and Test-bench 2
(Figure 5.6).

Figure 5.5: RabbitMQ publish-subscribe throughput (Test-bench 1)

Considering both the results from this test and the previous one, there
seem to be two distinct bottlenecks. The first bottleneck concerns the Raspber-
ryPi devices. The effective throughput in Mbps obtained in this test - simple
publish and subscribe of events without any further processing – is, almost ex-
actly, the same as in the first “end-to-end” test. It seems reasonable to assume
that the limitation is actually in the publishing capacity of both devices, im-
posed by their hardware limitations, which in turn sets a ceiling for the event-
processing rate for the whole system. This theory is reinforced when we look at

 72

the results for the laptop agent, where that limitation seems to not be there an-
ymore.

The second bottleneck becomes clear when we compare the results ob-
tained on the laptop on both tests. When the events were being consumed by
Logstash and indexed in Elasticsearch, we achieved a throughput of about
8Mbps. With those two components out of the equation, we observe a through-
put increase to around 65 Mbps. This leads us to believe that the 8 Mbps seen
before is in fact the upper bound of Logstash/Elasticsearch event-processing
throughput in this specific setup, in which these components are operating in a
single node. Although we don’t have at this moment, data regarding the per-
formance of Elasticsearch and Logstash in a distributed environment due to limi-
tations in time and resources, we don’t believe this bottleneck to be a serious
limitation. As mentioned, Elasticsearch is built to scale horizontally according to
the needs, simply by adding new nodes to the cluster. Logstash is a single pro-
cess pipeline and not intrinsically scalable, but multiple instances could be set
up in multiple nodes. In that scenario, RabbitMQ would be configured as a
“work queue” to distribute the events among the various Logstash instances, for
example following a “round-robin” policy. This way, both Logstash and Elas-
ticsearch could be easily scaled. RabbitMQ is also built to operate in clustered
environments. The next section presents a similar experiment with RabbitMQ in
a distributed environment.

Figure 5.6: RabbitMQ publish-subscribe throughput (Test-bench 2)

 73

5.2.4 RabbitMQ Throughput in Scalable Conditions

In this test, we evaluated the performance and scale capability of the
Event Dissemination Platform implemented by RabbitMQ. This was conducted
in a different test-bench (neither of the previously presented ones), as a possibil-
ity offered by PT Portugal SGPS, S.A. especially for this test. This test-bench
consists of a clustered RabbitMQ pre-production environment in PT’s infrastruc-
ture.

This test features multiple Generic Agent processes running in multiple
hosts (simulating multiplicity of agents), a decent size RabbitMQ cluster and
multiple event consumer processes running in another (single) machine. On the
agents’ side there were 24 Generic Agent processes running simultaneously,
evenly distributed by four machines (6 agents per host). The RabbitMQ cluster
was composed of six machines interconnected by a 1 Gbps backbone. The
hardware present in each machine (both in the agent’s and in the RabbitMQ
cluster) was the following: 8 cores AMD Opteron 6000 and 128 GB RAM DDR3.
The consumer was running in another more powerful host with the following
hardware characteristics: 12 cores AMD Opteron 6000 and 256 GB RAM DDR3.
This cluster (including the agents’ and consumer’s machines) is interconnected
via a 1 Gbps end-to-end backbone.

For this test, the 24 agent processes were executed simultaneously, all
publishing events through the same queue. Similarly to the previous RabbitMQ
test, this was also performed using reliable publishing (using the Confirms
mechanism) and the test was composed of twenty repetitions, each followed by
a 10 seconds interval to allow for network stabilization. For simplicity, we con-
sidered the results of just one agent, since we have found no relevant differ-
ences between the various agents.

The average throughput achieved by one agent was 194.4 Mbps. Since
there were 24 agents executing simultaneously the aggregated throughput is
calculated to be 4.56 Gbps. This equates to an average rate of about 771 thou-
sand events per second that can be dispatched by the Event Dissemination Plat-
form regarding the described circumstances and equipment.5

5 The event dataset used was the same used in the previous tests, whose average

size per event is 767 bytes after encapsulation in the interoperability format.

 74

This test demonstrated that the Event Dissemination Platform wouldn’t
pose a problem regarding the overall scalability of our system. PT’s technicians
also provided further information about the RabbitMQ cluster’s typical perfor-
mance that supports this conclusion. Their pre-production environment typical-
ly achieves between 160 and 400 Mbps per client in similar tests (depending on
the number of clients running simultaneously), consistent with what we ob-
served in this particular test. Their more powerful production infrastructure,
interconnected by 10Gbps backbone and using superior hardware, they say one
publishing client can achieve in average 1,2Gbps throughput.

5.3 DHIDS-QL Expressiveness and Effectiveness
The goal for this series of tests is to answer the following questions:

• Does the Event Analysis Module provide the querying capabilities
specified in the system model?

• How efficient is the runtime support to process queries, in face of
scale conditions and heterogeneity of events stored in the EMMS?

• Regarding specific “real-life” attack scenarios, how effective is the de-
tection, and how appropriate is the language expressiveness to evi-
dences of relevant and recent security exploits? Namely: SQL-
injection, SYN-flood DoS and SSL Heartbleed attack?

• Is it expectable that the designed solution presents extensibility sup-
port to evolve and to allow the expression of new attacks?

To evaluate the expressiveness of the proposed DHIDS-QL language for
auditing specific attacks and the implemented system’s detection effectiveness
in the face of realistic and some of the security threats most prominent today,
we selected the following auditing cases:

• SQL-Injection Attack

• SYN-Flood DoS Attack

• SSL Heartbleed Attack

For each attack scenario, we recreated the attacks in our test environment
using specific attack tools and target applications. Then we collected the traces
left by the attack in the form of events, which were eventually stored in the
EMMS. Finally, we looked for the telltale signs of the attack by formulating spe-
cific DHIDS-QL queries. All the following tests were performed in Test-bench 1.

 75

5.3.1 SQL-Injection Attack

According to OWASP’s “The Ten Most Critical Web Applications Security
Risks” report [OWASP13], injection vulnerabilities are considered the most
common type of security weaknesses in web applications today. These can oc-
cur when non-sanitized user input data is passed to an interpreter as part of a
command or query. This way, an attacker can trick the interpreter to execute his
malicious instructions. Here we focus specifically on SQL-Injection, likely the
most popular kind of injection attack, to recreate an attack scenario where a
vulnerable application is targeted in a monitored environment. SQLi is, as the
name suggests, an injection technique that attempts to execute malicious SQL
statements on a database, taking advantage of a user entry field where the input
is not appropriately sanitized.

For this test scenario, we set up a vulnerable web application, Wackopicko
[Wackopicko], running on a LAMP server on a HPOT (running on a RaspberryPi
1B node), as represented in the figure 5.1. Logs from the Apache server and the
MySQL database (as components of such “Honeypot”) were recorded and pub-
lished as events on the EMMS server. We used w3af [w3af] (running on the US-
ER station) – a vulnerability scanning and exploiting tool for web applications.
With w3af, we perform an SQLi scanning and intrusion attack targeting
Wackopico. Additionally, logs of network events were also collected in PCAP
format by a Suricata instance (used here in the role of a NMA). Suricata also
runs on the HPOT node, the target of the attack (but it could run on any other
node in the same segment). The events were published by the probing agents
involved and stored on the EMMS system.

This test intends to illustrate a typical use case scenario of auditing a po-
tential injection attack, in this case SQLi, in combination with possible related
evidences captured by intrusion-detection agents. Even that we studied in this
case a SQLi attack, the underlying principles and methodology could be ex-
trapolated to other kinds of web injection attacks such as cross-site scripting -
XSS). This test should provide a concrete idea of how our system performs
when dealing with that kind of attack detection.

One of the telltale signs of a consummated SQLi attack can be found on
the database log. We know, from the study of w3af, that its SQL injection plugin
tries to inject the string a’b”c’d” in every injection point (in HTML forms) and
searches for SQL errors in the HTTP response body. Assuming the attack was
successful, we began by looking for that kind of string pattern occurring at the

 76

database level. We did this by executing the following query (Listing 5.1) on the
Event Analysis Module.

PATTERN SEQ (MYSQL e1)
WHERE e1.command = "Query"
AND e1.argument CONTAINS "a\\'b\\\"c\\'d\\\""
PUBLISH "SQLiAttackSucceeded" IN "attacks"
DESCRIPTION "Detected SQLi. SQL command:" + e1.argument;

Listing 5.1: MySQL event analysis (DHIDS-QL)

We must notice that the string we are in fact looking for is not the original-
ly injected string but its equivalent considering the escape characters as it will
appear in the MySQL log: a\’b\”c\’d\”. The string presented in the query is the
equivalent to this last one considering the escape characters for our parser,
which is implemented in Java6.

The query in the listing 5.1 returned seven matches. These can be seen on
Figure 5.7, which shows a partial screen-shot from Kibana (running on the
EMMS system) containing every document in the recently created “attacks” in-
dex. As mentioned earlier, Kibana is a powerful data navigation and visualiza-
tion tool integrated with Elasticsearch. In the following tests, we use it to observe
the output events created by the queries. We will be focusing on three event
fields: Time, which represents the detection timestamp; classification.text, which
means the event “type” defined by the query; and additionalData.message, which
is an event description also specified by the query.

6 The quotation marks (“) and apostrophes (‘) are escape characters in MySQL, so they

are represented in string preceded by the backslash (\) as in \” and \’. Similarly, in Java, the
backslash (\) and the quotation marks (“) are escape characters themselves and are also
represented in a string preceded by backslash (\) as in \\ and \”.

 77

Figure 5.7: Results of MySQL event analysis query (Kibana)

The last query still doesn’t reveal where the attack came from. For that
purpose, we can now try to correlate the MySQL events (which reveal that there
was an attack) with the preceding POST request found in the Apache log
(which reveal the origin of the HTTP requests that most likely carried the at-
tack). We do so with the following query (Listing 5.2):

PATTERN SEQ (APACHE e1, MYSQL e2)
WHERE e1.verb = "POST"
AND e1.request = "/users/login.php"
AND e1.response = 200
AND e2.command = "Query"
AND e2.argument CONTAINS "SELECT*users*a\\'b\\\"c\\'d\\\""
WITHIN 30ms
PUBLISH "SQLiAttackSucceeded" IN "attacks2"
DESCRIPTION "Detected SQLi. From host: " + e1.clientip;

Listing 5.2: Correlating MySQL with Apache events (DHIDS-QL)

The previous query (Listing 5.1) returned several matches. One of them
(second row in Figure 5.7) is related to an SQLi attempt on the users’ login
form. This query (Listing 5.2) targets specifically that occurrence. It correlates
both the MySQL event and the related HTTP POST request, by relating the re-
quest URI (/users/login.php) with the manipulated SQL query that should val-
idate the login (SELECT … FROM users … <SQLi string>). As expected, it re-
turned exactly one match (shown in Figure 5.8). This query, as opposed to the
previous one, not only tells us that there was a consummated SQLi attack but
also reveals the origin of the potential malicious request.

 78

Figure 5.8: Results of the correlation between MySQL and Apache events
(Kibana)

Another variant of this scenario would be if we wanted to know if there
was an SQLi attempt regardless of whether it was successful or not. In that case,
it’s not enough to look only at the database and Apache events. In fact, Apache by
default doesn’t log the data in POST requests. Therefore, in this case we had to
look also at the network events. Specifically, we looked at the HTTP messages
captured on the network (by the Suricata based agent). We did so with the fol-
lowing query (Listing 5.3).

PATTERN SEQ (HTTP pkt)
WHERE pkt.http.request.method = "POST"
AND pkt.http.request.uri = "/users/login.php"
AND pkt.payload.data CONTAINS "a%27b%22c%27d%22"
PUBLISH "SQLiAttack" IN "attacks"
DESCRIPTION "SQLi attempt from host:"+pkt.ip4.source
+ " Injected data:" + pkt.payload.data;

Listing 5.3: Looking for SQLi evidences in HTTP messages

We should notice that the string pattern we are looking for in this query is
the same (a’b”c’d”), only this time it is its HTML-encoding equivalent.

This query looks for HTTP POST requests directed to Wackopicko’s login
page, carrying the typical w3af’s SQLi pattern. It produced two output events as
shown in Figure 5.9. They are two variants of the same attack injected by w3af.
One targets the “username” field and other targets the “password” field.

Figure 5.9: Results of the SQLi evidences found in HTTP messages (Kibana)

 79

5.3.2 SYN-Flood DoS and DDoS Attacks

The SYN-Flood is a form of denial-of-service in which the target is hit with
a barrage of TCP SYN requests, in an attempt to exhaust its resources and im-
pair its ability to answer legitimate requests. This happens because the receiver
to initiate a connection has to store some state while it waits for the expected
acknowledgement. When that acknowledgement doesn’t arrive, those resources
are only liberated much later, after a time-out. This form of DoS is considered
outdated nowadays, as it can be defeated by some mechanisms like the use of
SYN-cookies, which prevent the receiver to store any state before the three-way
handshake is completed. Nevertheless, many systems don’t implement such
new features, and the principle underlying the SYN-flood attack maintains its
relevance today and it can still be effective. The danger is particularly relevant
in the context of DDoS (Distributed Denial of Service) attacks. In addition, it is a
very illustrative example of a DoS attack evidence, and an interesting example
to demonstrate the capabilities of the pattern-detection algorithm and language.

For this test scenario, first we simulated a SYN flood attack and captured
its evidences in the form of related events. For that purpose, we set up an
Apache server, in the HPOT, and used hping3 [hping] – a command-line orient-
ed TCP/IP packet assembler and analyzer tool – to send a profusion of SYN
packets to the HPOT from the USER station, using random fake source IP ad-
dresses. Meanwhile, we had a NMA (implemented by a Suricata instance run-
ning in a RaspberryPi) sniffing packets on the same switch port as the HPOT (us-
ing a hub/repeater). The packets were then sent in the form of events to the
EMMS, as usual, using the Generic Agent implementing the NMA.

Using hping3 (USER station), we sent 10.000 SYN packets to the target
(HPOT running in RaspberryPi 1B) at a rate of 1.000 packets per second. Mean-
while, the Suricata instance (NMA running in a RaspberryPi 1B) sniffed traffic on
the same Ethernet segment. All the packets observed by the NMA were then
published to the EMMS. Using the Event Analysis Module prototype running
on the USER station, we executed the following query (Listing 5.4), to find out
how many of the 10.000 SYN packets sent, were actually detected by the NMA.

PATTERN SEQ (TCP e1)
WHERE e1.tcp.flags = "syn"
AND e1.ip4.destination = "192.168.1.13"
PUBLISH "SynRequest" IN "tcpevents";

Listing 5.4: SYN requests query

 80

This query returned 3.117 matches, which means a very significant event
loss rate of around 69%. We believe, the most likely cause for this loss of pack-
ets is attributed to the hardware limitations of the RaspberryPi 1B. Although out
of scope of this test, we performed a series of quick informal tests to provide a
general idea of what could be expected from this kind of devices operating as
NMA’s, as we briefly describe:

• First, we repeated the same procedure under the same circumstances
using RaspberryPi 2B, but it did not prove to perform any better than
RaspberryPi 1B.

• Then, we repeated the same test, only varying the pace at which we
sent the packets while maintaining the total of packets sent: 10.000. At
half of the initial rate, 500 packets/sec, we found a slight improve-
ment with RaspberryPi 1B, collecting 4.271 of the total 10.000 SYN
packets sent, which equates to about 57% event loss. At 200 pack-
ets/sec, it collected 7.613 packets (24% loss). Finally, at 100 pack-
ets/sec, it managed to capture all 10.000 (0% loss).

As a final consideration, it is not much relevant for the problem in hand to
capture every single incomplete connection attempt. It should be possible to de-
tect the presence of a SYN-Flood attack by just looking at a representative sam-
ple of all the SYN packets sent. For the remaining of this experiment, we con-
sider the original results obtained with RaspberryPi 1B (3.117 TCP SYN packets
observed out of 10.000 sent).

Then we ran another query (Listing 5.5), to observe how many of these
SYN requests were followed by a typical SYN flood attack pattern – a SYN-
ACK response from the target followed by the absence of the expected hand-
shake-completing ACK. This returned 2.828 positive matches. The fact that they
are less than the preceding SYN’s could be caused by one, or both, of two rea-
sons: either the HPOT lost the SYN packets and didn’t answer them or it did
and the NMA didn’t capture those events.

 81

PATTERN SEQ (TCP e1, TCP+ e2[], ~(TCP e3))
WHERE e2[i].ip4.destination = e1.ip4.source
AND e1.ip4.destination = e2[i].ip4.source
AND e3.ip4.source = e1.ip4.source
AND e3.ip4.destination = e1.ip4.destination
AND e1.tcp.flags = "syn"
AND e2[i].tcp.flags = "syn-ack"
AND e3.tcp.flags = "ack"
AND e2[i].tcp.ack = e1.tcp.seq+1
AND e3.tcp.seq = e2[i].tcp.ack
AND e3.tcp.ack = e2[i].tcp.seq+1
PUBLISH "IncompleteTCPConnection" IN "threats";

Listing 5.5: Incomplete TCP connections query

The middle event – e2 – is represented as a Kleene closure because as it is
never acknowledged, it is usually retransmitted by the target, which originates
multiple matches for the same event. That, in turn would potentially generate
multiple matches for the same handshake, if e2 had been declared as a single
event. This way, multiple matches for the same handshake are always identi-
fied as one.

Finally, we ran the following query (Listing 5.6), which looks for the oc-
currence of more than 1.000 failed TCP handshakes, targeting the same host. It
then publishes each pattern match with an appropriate message including the
target IP address.

PATTERN SEQ(IncompleteTCPConnection+ events[] IN "threats")
WHERE events[i].e1.ip4.destination =
events[j].e1.ip4.destination
HAVING count(events) > 1000
PUBLISH "SYNfloodAttack" IN "attacks"
DESCRIPTION "SYN flood attack targeting "+
first(events).e1.ip4.destination;

Listing 5.6: SYN flood attack query

Our initial idea was to design a query correlating the quantity of observed
events and the observation time frame. For example, we wanted to detect any
occurrence of more than 1.000 IncompleteTCPConnection events in a 10 seconds
interval. However, our implemented prototype exhibited some particular issues
when we attributed a WITHIN clause to a Kleene closure. The problem was that
the algorithm, would have to consider every possible set of events that occurred

 82

within any possible 10 seconds window. That was not computationally feasible,
which led us to exclude the WITHIN clause. This query, as expected, returned
one positive match (Figure 5.10).

Figure 5.10: SYN flood results (Kibana)

5.3.3 SSL Heartbleed

The Heartbleed [CVE-2014-0160, Heartbleed] is a devastating vulnerability
recently found (April 2014) in some older versions of the OpenSSL library – a
commonly used implementation of the SSL/TLS protocol. It exploits a bug,
found in OpenSSL versions 1.01 and 1.02 beta, related to the Heartbeat Exten-
sion for TLS. The Hearbeat mechanism provides a way to test or keep a secure
connection alive, by refreshing the session security association parameters, in-
stead of having to reestablish it with a new TLS handshake, after a certain peri-
od of inactivity. This is done by sending a message known as a Heartbeat Re-
quest (a standardized message type in the Record Layer Protocol (RLP) of the
TLS protocol stack. This message consists of two components: an arbitrary pay-
load and an explicit indication about the size of that same payload.

Figure 5.11 presents a typical traffic flow of an attacker sending a heart-
beat request, in this case detected with the Wireshark protocol analyzer tool7.

Figure 5.11: Hearbeat attack

7 Available on https://www.wireshark.org (accessed on 27/Mar/2016).

 83

This tool can detect malformed heartbeat requests (as showed in the “Mal-
formed Packet: SSL” line) but the packet capture is typical when a heatbleed
attack is launched by an originator. As we can see in figure 5.11, the length of
the TLS 1.1 record layer packet (carrying the Hearbeat Request message) has a
length of 3 bytes, but Hearbeat’s payload has a field Payload Length with 16K
bytes.

The response to Hearbeat request messages should contain the exact same
payload initially sent by the instigator in the Payload Length field. So, the way
this mechanism can be exploited is by sending a maliciously crafted Heartbeat
Request containing a short payload together with a fake much larger size indi-
cation. The receiver of the Heartbeat Request will eventually store the payload
in memory while it prepares the response. The above-mentioned versions of
OpenSSL, handle the Heartbeat Request blindly trusting the size provided by
the other party and failing to verify the actual size of the message and do the
appropriate bounds checking. In this case, the result is that the response mes-
sage contains the payload the sent by the attacker followed by what happened
to be next to it in the victim’s memory. Since OpenSSL is meant to provide secu-
rity to sensitive data, it will most likely have, in its memory, sensitive data like
for instance the X.509 certificates’ private keys, names and password of users,
session-cookies, etc.

To show how a Heartbleed attack is detected by our DHIDS platform, we
set up a basic SSL Honeypot script running on the HPOT. It simply accepts
SSL/TLS connections and notifies on the console about the attacker address. On
the client side (USER station), we used a Python script to inject the Heartbleed
attack. For event capturing purposes, we used two techniques. First, we had an
instance of Suricata running alongside with the SSL Honeypot (on the HPOT),
logging all network traffic. Second, the SSL Honeypot script prints the source
addresses of suspected Heartbleed scans to the console. To capture these mes-
sages as events into our EMMS, we redirected its standard output to a Generic
Agent process, which interprets each line and encapsulates it into an event ac-
cording to the interoperability format, and publishes it on the Event Dissemina-
tion System.

From the server point of view, this attack is known for not leaving any
traceable occurrence. However, this is not the case with network events, which
usually tell a more complete story. The following query (Listing 5.7) looks for
SSL packets with content type “Heartbeat” (24) and heartbeat type “Request”

 84

(1), according to the Heartbeat extension protocol specification [RFC6520]. It
also looks at the specified payload length, which we know that in normal cir-
cum- stances should always be less than the actual frame size. When this is not
the case (and the other criteria is also met), a positive match for a Heartbleed
attack is generated. This query returned one positive match, as shown in next
partial screen-shot from Kibana (Figure 5.11).

PATTERN SEQ (SSL e1)
WHERE e1.ssl.record_type = 24
AND e1.ssl.heartbeat_type = 1
AND e1.ssl.heartbeat_payload_length > e1.frame.lenght
PUBLISH "HeartbleedAttack" IN "attacks"
MESSAGE "Attack: Heartbleed - From host:
"+e1.ip4.source+" - Specified length: " +
e1.ssl.heartbeat_payload_length;

Listing 5.7: Heartbleed attack query based on network traffic

Figure 5.12: Heartbleed attack event based on network traffic (Kibana)

A simpler way of detecting this attack is to use the events produced by the
Honeypot itself. We did this with the following query (Listing 5.8), which simp-
ly looks for any occurrence of a “HeartbleedHoneypot” event (this event type
was set by configuration on the Generic Agent that is listening to the Honeypot)
and notifies so, producing an event in the “attacks” index. As expected, this
query produced one match, as shown in Figure 5.12.

PATTERN SEQ (HeartbleedHoneypot hb)
PUBLISH "HeartbleedAttack" IN "attacks"
MESSAGE "Attack: Heartbleed targeting honeypot;
From host: "+hb.source;

Listing 5.8: Heartbleed attack query based on Honeypot events

Figure 5.13: Heartbleed attack event based on Honeypot events (Kibana)

 85

In this particular case, the Heartbleed attack was not successful because
we were using a vulnerable OpenSSL version. However, we could formulate a
query to detect if there occurred an accomplished Heartbleed attack by compar-
ing the Heartbeat Request size against the Heartbeat Response (type 2, accord-
ing to [RFC6520]) size, as suggested in Heartbleed official website [Heartbleed].
We can do so with DHIDS-QL as Listing 5.9 exemplifies. Predictably, this query
returned no matches.

PATTERN SEQ (SSL e1, SSL e2)
WHERE e1.ssl.record_type = 24
AND e1.ssl.heartbeat_type = 1
AND e1.ssl.heartbeat_payload_length > e1.frame.lenght
AND e2.ip4.source = e1.ip4.destination
AND e2.ip4.destination = e1.ip4.source
AND e2.ssl.record_type = 24
AND e2.ssl.heartbeat_type = 2
AND e2.frame.lenght > e1.frame.lenght
PUBLISH "AccomplishedHeartbleedAttack" IN "attacks"
MESSAGE "Attack: Accomplished Heartbleed - From host:
"+e1.ip4.source+" - Specified length: " +
e1.ssl.heartbeat_payload_length;

Listing 5.9: Accomplished Heartbleed query example

5.4 Evaluation Summary
In this chapter, we demonstrated how the DHIDS prototype effectively

collects, processes and stores intrusion-events, detected by possible multiple
and heterogeneous distributed probes. The reported experiments, among other
conducted evaluations, are representative of the potential of the DHIDS plat-
form design and implementation. From our experimental observations we de-
tected which components in our implementation, and to what extent, could be-
come bottlenecks, and discussed what possible solutions are available to pre-
vent it. The message-queuing component has demonstrated to be easily scalable
and a reliable substrate for intrusion-detection event dissemination from multi-
ple probes to the central management solution built on top of the Elasticsearch
(or ELK) software stack. Then, we demonstrated that the system is capable of
detecting “real-life” intrusion occurrences (namely: SQLi, SYN-Flood, and
Heartbleed attacks) relying on a variety of event sources.

Although we didn’t present query execution performance tests to provide
measurable data about expectable query execution times, we have observed,

 86

during the previous tests and other experiments, some typical behaviors re-
garding the query execution performance. Based on that, we can make the fol-
lowing considerations:

• The execution time depends on the type of events and pattern we are
querying. Querying events that are very specific or rare is usually very
fast.

• The opposite is also true. Querying common events may take a long
time to execute. Furthermore, if the pattern is composed of many dif-
ferent events and they are not rare, then the query may take a very
long time to execute or ultimately fail.

• As an example, the query that looks for incomplete TCP connections
took a long time to execute (about 2 minutes for the used data set), as
TCP handshakes, and therefore SYN packets, are very common occur-
rences in the network traffic. On the other hand, all the other queries
used in this chapter executed quickly (typically, in a few millisec-
onds).

• As a corollary, even that the DHIDS platform was not designed as a
real-time-intrusion detection system, in the sense that time-bound
metrics for event-detection always obey to real-time threshold guaran-
tees, the practical observation show, however, that the system exhibits
an interesting potential for soft-real-time guarantees. This can be pro-
vided namely by using more powerful probing devices, a cluster-
based solution for the RabbitMQ based event dissemination and a
powerful deployment of a cluster-ELK infrastructure.

We should note that the above considerations are conditioned by the spe-
cific test environments used. It is expectable that if Elasticsearch were running
on bigger cluster with more powerful nodes, the execution of queries would al-
so be faster.

 87

 Conclusions

In this thesis, we proposed a Distributed and Hybrid Intrusion Detection
System (DHIDS), addressed as an auditing platform that leverages on different
intrusion detection components, synergistically combined in a pervasive moni-
toring system. Our objectives addressed the identified shortcomings on current
IDS technology, building the DHIDS platform as a proposed solution to large-
scale monitoring environments.

Our proposal combines the following relevant contributions:

1. It supports a pervasive and diverse environment of probing agents
spread all across the network, leveraging from the diversity of differ-
ent technological options and specializations, including NIDS, HIDS
and Honeypot solutions.

2. It offers scalability and extendibility by means of a distributed pub-
lish/subscribe middleware and an interoperability format, decou-
pling the event capturing and the event analysis process.

3. It features a scalable Event Monitoring and Management System, as
an auditing platform built on top of an elastic data repository, to store
and to manage events for audit-trail correlation analysis.

4. It provides a query-based language (DHIDS-QL) to express attack or
signatures for querying security audit-trails, as well as a runtime im-
plementation to interpret and execute queries over the data-
repository.

Some issues can be emphasized, considering the contribution, namely
comparing with other intrusion detection approaches. First, by adopting differ-
ent base technology to build a diverse probing environment, the platform over-

6

 88

comes effectiveness drawbacks of conventional IDS technology, according to its
specialization and limitations, and when performing in isolation. This comple-
mentarity is an open way to deal with well-known problems of such IDS tech-
nology, namely considering scalability, reliability and effectiveness issues (i.e.,
tradeoffs between false-positive and false-negative ratios).

Second, in the DHIDS platform, security events are detected by multiple
probes (possibly using specific local capture formats), filtered and converted to
a canonical JSON-based message format representation, inspired by the
RFC4765 XML-message format. This standardized approach allows that events
are uniformly conveyed through a generic publish/subscribe middleware to a
dedicated logging and auditing system, the EMMS. In EMMS, all observed
events can be aggregated, correlated and queried, against suspicious intrusion
attack signature patterns involving heterogeneous evidences. This approach
provides some relevant advantages: (1) it is a much more extensible architec-
ture, with the possibility to integrate new pervasive intrusion detection probes,
decoupling their internal functionality in the global DHIDS architecture, and (2)
the integration of existent technology that adheres to the RFC4765 as a support-
ed native format is almost immediate8.

 Finally, in the proposed DHIDS platform, attack signatures are expressed
by means of a declarative pattern query-language (DHIDS-QL), providing
event-correlation semantics, using events as base elements for extensible possi-
ble rich-aggregations and correlations, modeling possible sophisticated attack
evidences. This allows for a global intrusion detection and monitoring envi-
ronment when compared with specific management functions on conventional
IDS technology, which tend to consider sub-sets of discrete events.

We implemented the DHIDS platform as a proof-of-concept prototype,
with a particular contribution and emphasis on the design and development of
the proposed query language model and query execution runtime for the
EMMS. Then, we experimentally evaluated the prototyped platform. For this
purpose, we built two different test-bench environments and conducted differ-
ent observations, regarding event processing throughput, expectable perfor-

8 In that case, there would be a need for direct conversion from XML to JSON.

As a prototype implementation choice, we adopted JSON equivalent to XML model
suggested in RFC4765, as JSON imposes significantly lighter communication overhead
than XML and it also simplified the implementation effort.

 89

mance and scalability properties of the various adopted devices and platforms,
expressiveness and effectiveness of the conceived attack signature expressing
language. The results support our belief that the DHIDS platform is a realistic
and interesting approach to implement a pervasive, diverse and effective Intru-
sion Detection System with centralized management and high-level event corre-
lation semantics. The experimental evaluation also demonstrates that the de-
signed platform and its prototype exhibit interesting indicators of potential for
scalability, reliability, extensibility and availability.

6.1 Future Work Directions
Despite the results obtained by the prototype developed in the context of

the thesis elaboration, many relevant work directions must be addressed as fu-
ture work, in order to arrive to a final deployed solution, eventually used in a
real-monitoring environment. We advance some open issues that could be ad-
dressed as next steps, starting from our initial implementation and proof-of-
concept evaluations.

A more extensive evaluation is certainly needed to better validate the ef-
fectiveness of the proposed solution. Namely:

• Tests regarding the potential for scalability of the EMMS in a clus-
tered environment, targeting both, event capturing and processing,
and query processing performance. In addition to these, experiments
exploring replication, load balancing and clustering conditions re-
garding Elasticsearch would also be of interest.

• Experiments targeting the system’s “real-time” capabilities, when
capturing and analyzing events live, possibly in a real pre-
production environment. This could include the further develop-
ment of the agent devices, specifically the development of embedded
agents with specialized, native and optimized functions for event-
capture, local filtering, event conversion and event publishing.

Another interesting research and development direction would be the fur-
ther exploration of the software ecosystem around the ELK stack; namely, the
use of Kibana as a real-time event monitoring visualization dashboard.

We recognize that there is also a space for improvement regarding
DHIDS-QL, namely in the expressiveness of the proposed language. This ex-
pressiveness could be expanded, for example with the addition of more pattern
structures. Not all patterns can be expressed by a sequence. A pattern could be

 90

such that looks for the occurrence of a set of events regardless of the order. Al-
so, pattern structures could be embedded in other pattern structures. This effort
for the language enrichment could begin by analyzing different kinds of attacks
and evolve the language while developing new attack signatures, taking ad-
vantage of the extensibility possibilities in the declarative language behavior
and the way it is supported by the ELK/Logstash component.

Finally, a revision of the current implementation with possible refinement
and optimizations of the developed software, as well as, new selected tests, can
open the possibility to address the dissemination of the DHIDS platform as an
open-source platform. In this direction, an open task is to consider a publication
to a national conference, or to an international conference or workshop.

 91

 References

[Abadi03] Daniel J. Abadi, et al. “Aurora: A new model and architecture
for data stream management”, The VLDB Journal, 12:120–139,
August 2003.

[Abadi05] Daniel J. Abadi, et al. “The design of the borealis stream pro-
cessing engine”, CIDR, pages 277–289, 2005.

[Agrawal08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, Neil Immer-
man. “Efficient pattern matching over event streams”, Proceed-
ings of the 2008 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’08, pages 147–160, 2008.

[AIDE] “AIDE – Advanced Intrusion Detection Environment”,
http://aide.sourceforge.net (accessed on 02/Feb/2014).

[AmazonSQS] “Amazon SQS – Message Queuing Service - AWS”,
https://aws.amazon.com/sqs/ (accessed on 19/Feb/2016).

[AMQP] “AMQP – Advanced Message Queuing Protocol Specification,
Version 0.9.1, AMQP Working Group”,
http://www.amqp.org/specification/0-9-1/amqp-org-download
(accessed on 15/Jan/2015), November 2008.

[Anderson08] Ross Anderson, “Security Engineering: A Guide to Building
Dependable Distributed Systems”, 2nd Edition, Wiley, April
2008.

 92

[Axelsson00a] Stefan Axelsson. “Intrusion Detection Systems: A Survey and
Taxonomy”, Technical Report, Dep. Of Computer Engineer-
ing, Chalmers University of Technology, Goteborg, Sweden,
March 2000.

[Axelsson00] Stefan Axelsson, “The Base-Rate Fallacy and the Difficulty of
Intrusion Detection”, ACM Transactions on Information and Sys-
tems Security (TISSEC), pp. 186-205, Aug 2000.

[Birman05] Kenneth P. Birman. "Reliable Distributed Systems: Technolo-
gies, Web Services and Applications”, Springer, 2005.

[Blankstein11] Aaron Blankstein. “Analyzing Audit Trails in the Aeolus Se-
curity Platform.” Technical Report, Massachusetts Institute of
Technology (MIT), 2011.

[Bruening03] Derek Bruening, Timothy Garnett, Saman Amarasinghe. “An
infrastructure for adaptive dynamic optimization”, Proceedings
of the international symposium on Code generation and optimiza-
tion: feedback-directed and runtime optimization, CGO ’03, pages
265–275, 2003. IEEE Computer Society.

[Cantrill04] Bryan M. Cantrill, Michael W. Shapiro, Adam H. Leventhal.
“Dynamic instrumentation of production systems”, Proceed-
ings of the annual conference on USENIX Annual Technical Con-
ference, ATEC ’04, pages 2–2, 2004. USENIX Association.

[Costa14] Nuno Costa, Pedro Tibocco, Mauro Cruz, Henrique Domin-
gos. “MOM Comparative evaluation for the Pulse Pilot”, Tech-
ical Report TR-PULSE-2-0017-C-2015, EF Tecnologias S.A - PT
Comunicações, Pulse2 Pilot Project Documentation, Sep 2014

[Demers07] Alan Demers, Johannes Gehrke, Biswanath Panda, Mirek Rie-
dewald, Varun Sharma, Walker White. “Cayuga: A general
purpose event monitoring system”, Conference on Innovative
Data Systems Research, pages 412–422, 2007.

[Diao07] Yanlei Diao, Neil Immerman, Daniel Gyllstrom. “SASE+: An
Agile Language for Kleene Closure over Event Streams”, 2007.

[CVE-2014-0160] “Common Vulnerabilities Exposures – CVE-2014-0160”,
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
(accessed on 19/Feb/2016).

 93

[Dionaea] “GitHub – rep/dionaea: dionaea low interation honeypot
(forked from: dionaea.carnivore.it) ”
https://github.com/rep/dionaea (accessed on 19/Feb/2016)

[Elasticsearch] “Elasticsearch” – and End-to-End search and analytics plat-
form, http://www.elasticsearch.org/overview (accessed on.
08/Feb/2014)

[Eugster03] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. In ACM Computing Sur-
veys, Volume 35, Issue 2, pp. 114-131, June 2003.

[Gollman11] Dieter Gollman. “Computer Security”, J. Wiley & Sons, 3rd
Edition, 2011

[Heartbleed] “Heartbleed Bug”, http://heartbleed.com (accessed on
19/Feb/2016).

[HornetQ] “HornetQ – putting the buzz on messaging – JBoss Communi-
ty”, http://hornetq.jboss.org (accessed on 19/Feb/2016).

[hping] “Hping – Active Network Security Tool”,
http://www.hping.org (accessed on 01(Mar/2016)

[Huang09] P-Sheng Huang, C. Yang, T. Ahn, “Design and implementa-
tion of a distributed early warning system combined with in-
trusion detection system and honeypot”, Proceedings of the
2009 International Conference on Hybrid Information Technology,
ACM, Daejeon, Korea, August 2009.

[IDMEF-Java] “A Java Implementation of IETF RFC4765: Intrusion Detec-
tion Message Exchange Format (IDMEF) Experimental Proto-
col”, https://github.com/cr-labs/RFC4765 (accessed on
02/Feb/2015).

[iPerf] “iPerf – The TCP, UDP and SCTP network bandwidth meas-
urement tool”, https://iperf.fr (accessed on 20/Fev/2016).

[JavaCC] “Java Compiler Compiler tm (JavaCC tm) - The Java Parser
Generator”, https://javacc.java.net (accessed on 15/Jan/2016).

[jNetPcap] “jNetPcap Open-source | Protocol Analysis SDK”,
http://jnetpcap.com (accessed on 20/Feb/2016).

[Johnson14] Thienne Johnson, Loukas Lazos. “Network Anomaly Detec-
tion Using Autonomous System Flow Aggregates”, Proc. of
IEEE GLOBECOM 2014, Austin, Texas, 2014.

 94

[JSON-java] “GitHub - stleary/JSON-java: A reference implementation of a
JSON package in Java.”, https://github.com/stleary/JSON-
java (accessed on 20/Feb/2016)

[Kaufman02] Charlie Kaufman, R. Perlman, Mike Speciner. “Network Secu-
rity – Private Communication in a Public World”, 2nd Edition,
Prentice Hall, 2002.

[Kibana] “Kibana” – Open-source data visualization platform,
https://www.elastic.co/products/kibana (accessed on
15/Jan/2016)

[Kiczales01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, William G. Griswold. “An overview of AspectJ.”
Proceedings of the 15th European Conference on Object-Oriented
Programming, ECOOP ’01, pages 327–353, 2001. Springer-
Verlag.

[Kim10] Taesoo Kim, Xi Wang, Nickolai Zeldovich, M. Frans
Kaashoek. “Intrusion recovery using selective re-execution.”
Proc. of the 9th USENIX OSDI Conference, Operating Systems De-
sign and Implementation, pages 1-9, 2010.

[King05] Samuel T. King, Peter M. Chen. “Backtracking Intrusions.” In
ACM Trans. on Computer Sytsems, Vol. 23(1), pages 51–76, Feb-
ruary 2005.

[Kippo] “kippo SSH Honeypot” https://code.google.com/p/kippo (accessed
on 8/Feb/2015).

[Kothari02] Pravin Khotari. “Intrusion Detection Interoperability and
Standradization”, GSEC, SANS Institure, InfoSec Reading
Room Series, Feb 2002.

[Kreibich04] Christian Kreibich, J. Crowcroft. “Honeycomb: Creating Intru-
sion Detection Signatures using Honeypots”, SIGCOMM Com-
puter Commiunication Review, ACM, Vol 34 Issue 1, January
2004.

[Kreps11] Jay Kreps, Neha Narkhede, Jun Rao. “Kafka: a Distributed
Message System for Log Processing”. In Proceedings of 6th In-
ternational Workshop on Networking Meets Databases
(NetDB), Athens, Greece (2011).

 95

[Kumar14] M. Kumar. “Distributed Intrusion Detection System Scalabil-
ity Enhancement using Cloud Computing”, GESJ: Computer
Science and Telecommunications 2014|No.1(41).

[Lazarevic05] A. Lazarevic, V. Kumar, J. Srivastava. “Managing Cyber
Threats: Issues, Approaches and Challenges” Chap. 2 – Intru-
sion Detection: A Survey Springer Series: Massive Computing
Vol.5, May 2005

[Lewis99] Ryhs Lewis. “Advanced Messaging Applications with MSMQ
and MQSeries”. Que; 1st edition (December 17, 1999).

[Logstash] “Logstash | Elastic”,
https://www.elastic.co/products/logstash (accessed on
20/Feb/2016).

[Luk05] Chi-Keung Luk, et al. “Pin: building customized program
analysis tools with dynamic instrumentation.” PLDI ’05: Pro-
ceedings of the 2005 ACM SIGPLAN Conference, on Programming
language design and implementation, pages 190–200, 2005.

[Mairh11] A. Maihr, D. Barik, K. Verma, D. Jena. “Honeypot in Network
Security”, ICCCS 11 – Proc. of Intl Conference on Communication,
Computing & Security, ACM, Rourkela-India, Feb 2011.

[Mitchell14] Robert Mitchell, Ing-Ray Chen. “A Survey of Intrusion Detec-
tion Techniques for Cyber-Physical Systems”, ACM Computing
Surveys, Vol.46, No. 4, March 2014.

[MongoDB] “MongoDB for GIANT Ideas | MongoDB”,
https://www.mongodb.org (accessed on 19/Feb/2016).

[MSMQ] “Message Queuing (MSMQ) - MSDN - Microsoft”,
https://msdn.microsoft.com/enus/library/ms711472(v=vs.85
).aspx (accessed on 19/Feb/2016).

[Oki93] Brian Oki, Manfred Pfluegl, Alex Siegel, Dale Skeen. “The In-
formation Bus – An Architecture for Extensible Distributed
System”. In 14th ACM Symposium on Operating System Prin-
cipals, (Asheville, NC), 1993.

[OracleAQ] “Oracle Advanced Queuing”,
https://docs.oracle.com/cd/B28359_01/java.111/b31224/stre
amsaq.htm (accessed on 19/Feb/2016).

 96

[OSSEC] “OSSEC – Open Source Host Based Intrusion Detection Sys-
tem”, http://www.ossec.net (accessed on 02/Feb/2015).

 [OWASP13] “OWASP Top 10 – 2013. The Ten Most Critical Web Applica-
tion Security Risks”,
http://owasptop10.googlecode.com/files/OWASP%20Top%
2010%20-%202013.pdf (accessed on 01/Mar/2016)

[Porras02] P. A. Porras, M. W. Fong, A. Valdes. “A Mission-Impact-Based
Approach to INFOSEC Alarm Correlation”. Proceedings of the
5th International Symposium on Recent Advances in Intrusion De-
tection (RAID). 2002

[Qiao13] Peili Qiao, Shan-Shan Hu, Ji-Qiang Zhai. “Design and imple-
mentation of dynamic hybrid Honeypot network”, Proc. SPIE
8752, Modeling and Simulation for Defense Systems and Applica-
tions VIII, May 2013.

[RabbitMQ] “RabbitMQ - Messaging that just works”,
http://www.rabbitmq.com (accessed on 08/Feb/2015).

[RaspberryPi] “Raspberry Pi - Teach, Learn, and Make with Raspberry Pi”,
https://www.raspberrypi.org (accessed on 20/Feb/2016).

[Raspbian] “Download Raspbian for Raspberry Pi”,
https://www.raspberrypi.org/downloads/raspbian/ (ac-
cessed on 20/Feb/2016)

[RFC4765] H. Debar, D. Curry, B. Feinstein. “The Intrusion Detection
Message Exchange Format (IDMEF)” IETF, Network Working
Group, March 2007.

[RFC4766] M. Wood, M. Erlinger. “Intrusion Detection Message Ex-
change Requirements” IETF, Network Working Group, March
2007.

[RFC4767] B. Feinstein, G. Matthews. “The Intrusion Detection Exchange
Protocol (IDXP)” IETF, Network Working Group, March 2007.

[RFC6520] R. Seggelmann, M. Tuexen, M. Williams. “Transport Layer Se-
curity (TLS) and Datagram Transport Layer Security (DTLS)
Heartbeat Extension”. IETF, Standards Track, February 2012.

[SAMHAIN] “The SAMHAIN File Integrity / Host Based Intrusion Detec-
tion System”, http://la-samhna.de/samhain/ (accessed on
02/Feb/2014).

 97

[Scarfone07] Karen Scarfone, P. Mall. “Guide to Intrusion Detection and
Prevention Systems (IDPS)”, NIST – National Institute of
Standards and Technology, Special Pub. 800-94, Feb 2007.

[Schupp00] Steve Schupp, “Limitations of Network Intrusion Detection”,
Global Information Assurance Certification, SANS Institute, De-
cember 2000.

[Snort] “Snort”, http://www.snort.org (accessed on 02/Feb/2014).

[Stallings14a] William Stallings, “Network Security Essentials: Applications
and Standards”, 5th Edition, Prentice Hall, 2014.

[Stallings14] William Stallings, Lawrie Brown. “Computer Security: Princi-
ples and Practice”, Prentice Hall – Pearson, 3rd Edition, Au-
gust 2014.

[Suricata] “Suricata – Open Source IDS/IPS/NSM Engine”,
http://suricata-ids.org (accessed on 02/Feb/2014).

[Swift07] David Swift, “A Practical Application of SIM/SEM/SIEM Au-
tomating Threat Identification”, Technical Report, SANS Insti-
tute – Infosec Reading Room Series, 2007.

 [Tripwire] Open Source Tripwire, http://www.tripwire.org (accessed on
08/Feb/2015)

[w3af] “w3af – Open Source Web Application Security Scanner”,
http://w3af.org (accessed on 1/Mar/2016).

[Wackopicko] “GitHub - adamdoupe/WackoPicko: WackoPicko is a vulner-
able web application used to test web application vulnerabil-
ity scanners.”, https://github.com/adamdoupe/WackoPicko
(accessed on 20/Feb/2016).

[Wang10] H. Wang, Q. Chen. “Design of Cooperative Deployment in
Distributed Honeynet System”, Proc. of CSCWD 2010 - 14th
Intl. IEEE Conference on Computer Supported Cooperative Work in
Design, 2010.

 99

 Appendix A:
IDMEF XML Document Type Definition

<!ELEMENT Alert (
 Analyzer, CreateTime, DetectTime?, AnalyzerTime?,
 Source*, Target*, Classification, Assessment?, (Tool-
Alert | OverflowAlert | CorrelationAlert)?, AdditionalData*)>
 <!ATTLIST Alert
 messageid CDATA '0'
 %attlist.global;

 >

<!ELEMENT Analyzer (
 Node?, Process?, Analyzer?
)>
 <!ATTLIST Analyzer
 analyzerid CDATA '0'
 name CDATA #IMPLIED
 manufacturer CDATA #IMPLIED
 model CDATA #IMPLIED
 version CDATA #IMPLIED
 class CDATA #IMPLIED
 ostype CDATA #IMPLIED
 osversion CDATA #IMPLIED
 %attlist.global;

 >

<!ELEMENT Classification (

Reference*
)>

 <!ATTLIST Classification
 ident CDATA '0'
 text CDATA #REQUIRED

 >

 100

<!ENTITY % attvals.adtype "
 (boolean | byte | character | date-time | integer |
ntpstamp |
 portlist | real | string | byte-string | xmltext)
 ">

 <!ELEMENT AdditionalData (
 (boolean | byte | character | date-time |
 integer | ntpstamp | portlist | real |
 string | byte-string | xmltext)
)>

 <!ATTLIST AdditionalData
 type %attvals.adtype; 'string'
 meaning CDATA #IMPLIED
 %attlist.global;

 >

 <!ELEMENT CreateTime (#PCDATA) >
 <!ATTLIST CreateTime
 ntpstamp CDATA #REQUIRED
 %attlist.global;
 >

 <!ELEMENT DetectTime (#PCDATA) >
 <!ATTLIST DetectTime
 ntpstamp CDATA #REQUIRED
 %attlist.global;

 >

 101

 Appendix B:
DHIDS-QL Abstract Syntax

DHIDS-QL is defined by the following BNF grammar. Reserved words
and terminal symbols are presented in boldface font.

<query> ::= PATTERN <pattern>
 [WHERE <logical_exp>]

 [WITHIN <time_window>]

 [HAVING <logical_exp>]
 (PUBLISH <publish> | RETURN <expression>)

<pattern> ::= <pattern_type> (<element> [, <element>]*)

<pattern_type> ::= SEQ

<element> ::= <event> | ~(<event>)

<event> ::= <type> ([+] <id> [] | <id>) [IN <id>]

<logical_exp> ::= <logic_term> [OR <logical_exp>]

<logical_term> ::= <logical_fact> [AND <logical_term>]

<logical_fact> ::= <comparison> | NOT <logical_fact>

<comparison> ::= <expression>
[(> | < | = | <> | >= | <= | CONTAINS)
<expression>]

<expression> ::= <term> [(+ | -) <expression>]

<term> ::= <fact> [(* | /) <term> | . <field>]

<fact> ::= <simple_fact> | - <fact>

 102

<simple_fact> ::= integer | string | <id> [<id>] |
([<expression>]*) | <id> | (<logical_exp>)

<time_window> ::= integer <letter>*

<publish> ::= <expression> IN <expression>
[DESCRIPTION <expression>]

<id> ::= <letter> <letter_digit>*

<type> ::= <letter> <letter>*

<letter> ::= [a-z] | [A-Z]

<letter_digit> ::= letter | [0-9]

 103

 Appendix C:
Pre-captured Data Sets

Among the representative log datasets available on the Internet that can
be considered for our experimental purposes, we studied the following ones:

• DARPA Intrusion Detection Data Sets

Available on: http://www.ll.mit.edu/ideval/data/ (accessed on
20/Feb/2016).

These data sets were created in 1998/1999 for research purposes, spe-
cifically for IDS evaluation. These include several gigabytes of data
captured in a simulated network in PCAP format including several at-
tack occurrences alongside with normal traffic.

• Public PCAP files list from NETRESEC

Available on: http://www.netresec.com/?page=PcapFiles (accessed
on 20/Feb/2016).

This is a list of publicly available data sets in PCAP format from vari-
ous sources.

• USA Military Academy Datasets

Available on:
http://www.westpoint.edu/crc/SitePages/DataSets.aspx (accessed
on 20/Feb/2016).

These are real data sets recorded in the internal USMA network. These
include: Network traffic in the PCAP format DNS message logs,
Apache web server logs (both access and error) and Snort alert logs.

