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Abstract

The unique features of shape memory alloys (SMA) gives them an unmatched ability to be
implemented in several fields of engineering. Considering their phase shift capacity, when
thermoelectrically driven, SMAs assume an elastic modulus variation predicated upon two
key parameters - stress and temperature.

Based on the above statement, the present dissertation aims to develop a new vibration
control system, which makes use of SMAs in order to extend and improve its operational
domain.

Initially, an experimental campaign is developed in order to design a mapping of the elastic
modulus of a FLEXINOL R© SMA sample.This mapping seeks to explore and an optimize the
inclusion of shape memory alloys in vibration control systems.

In a second step, two types of ATMDs (Suppressor and TMD) are mathematically studied
in order to comprise the insertion of a SMA element in the control system.

Considering the main purpose of this thesis, a particular case study structure was chosen
to carry out the implementation of the new vibration control system. The selected structure
consists in a footbridge built over an important highway located in the Lisbon city center,
Portugal. At this stage, both the design of the SMA element and the subsequent operational
limits are presented.

Afterwards, a numerical model computed in MATLAB (The Mathworks, 2014) is devel-
oped to simulate the behavior of a two degrees of freedom (TDOF) system. This one provides
the system’s behavior (structure + ATMD) towards a predefined harmonic request, evaluating
the effects of the implementation of the new vibration control system.

Using the above mentioned numerical model, an influence analysis of both control systems
was carried out. Several comparisons between the variants of each ATMD (Suppressor and
TMD) where drawn, showing the positive and negative aspects of their action. In the end, a
single numerical model, with the ability to excite the structure, read its behavior, identify the
vibration frequencies and properly tune the control system in real time, performed a complete
structural analysis.

Finally, a concluding chapter is presented, where the obtained results are discussed. This
chapter also mentions the main future development prospects, that may be considered in
studies conducted by other researchers.

Dissertation produced in LATEXsoftware.

Keywords:

Shape memory alloys, Elastic modulus, Vibration control systems, Suppressor, Tuned mass
damper, Variable stiffness.
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Resumo

As características únicas das ligas com memória de forma (LMF) conferem-lhes uma aptidão
inigualável para serem implementadas em diversos ramos da engenharia. Tendo em conta a sua
capacidade de alteração de fase, quando termoelectricamente accionadas, as LMF assumem
uma variação do módulo de elasticidade dependente de dois parâmetros principais - tensão e
temperatura.

Posto isto, a presente dissertação tem como principal objectivo o desenvolvimento de um
novo sistema de controlo de vibrações, que recorre à utilização de LMFs com o intuito de
alargar o domínio do seu funcionamento.

Inicialmente apresenta-se um programa experimental que contribui para a concretização de
um dos sub-objectivos desta tese, isto na medida da realização de um mapeamento do módulo
de elasticidade em função da temperatura de uma liga de FLEXINOL R©. Este mapeamento
visa uma tentativa de explorar e optimizar o comportamento das LMF.

Numa segunda fase, dois tipos de ATMDs (Supressor e TMD) são matematicamente es-
tudados por forma a considerar a hipótese da inserção de um elemento constituído por LMF.

Tendo em conta o objectivo principal desta dissertação, recorreu-se a um caso de estudo
para realizar a implementação do sistema de controlo de vibrações. Este consiste na análise
de uma ponte pedonal construída sobre um importante eixo de ligação rodoviária no centro
da cidade de Lisboa, Portugal. Nesta fase, é também apresentado um dimensionamento do
elemento de LMF, bem como os limites operacionais associados á sua utilização.

Seguidamente é desenvolvido um modelo numérico em MATLAB (The Mathworks, 2014)
que considera a modelação de um sistema de dois graus de liberdade. Este é desenvolvido
por forma a obter o comportamento do sistema (estrutura + ATMD) face a uma solicitação
harmónica pré-definida, avaliando assim os efeitos da implementação do novo tipo de sistema
de controlo de vibrações.

Recorrendo ao modelo numérico desenvolvido, é realizada uma análise da influência que
ambos os sistemas de controlo têm no comportamento estrutural. Uma série de comparações
são realizadas entre as variantes de cada ATMD, evidenciando os aspectos positivos e negativos
associados. É também apresentada uma análise estrutural feita com um modelo numérico
completo, com a capacidade de excitar a estrutura, ler o seu comportamento, identificar as
frequências de vibração e sintonizar correctamente o sistema de controlo em tempo real.

Para finalizar, é apresentado um capítulo conclusivo, onde os resultados obtidos nesta
dissertação são comentados. Neste capítulo são também referidas as principais perspectivas
de desenvolvimento futuro, que podem ser consideradas em estudos realizados por outros
investigadores.

Dissertação produzida em LATEXsoftware.
Palavras chave:

Ligas com memória de forma, Módulo de elasticidade, Sistemas de controlo de vibrações,
Supressor, Amortecedor de massa sintonizado, Rigidez variável.
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Chapter 1

Introduction

"We shape our buildings, thereafter they shape us." - Winston Churchill

1.1 Problem Description

In the past few years, footbridges have evolved to overcome larger spans and achieve greater
lightness to perfectly suit in the surrounding environments. Footbridges are usually steel
structures, with great flexibility and low damping ratios, directly influencing their dynamic
behavior. The decrease in the stiffness, often leads to structures with lower natural frequencies
and with an increased risk of resonance.

With the purpose of mitigating this negative impact on structures, different approaches
have been studied over the past few years. A well known vibration control approach is
based in the use of Tuned Mass Dampers (TMD). A TMD reduces the vibration of a system
with a comparatively lightweight component, stabilizing it against violent motions caused by
harmonic vibrations. Roughly speaking, TMDs are currently tuned to either move the main
mode away from a troubling excitation frequency, or to add damping excluding the possibility
of resonance.

The main problem regarding TMDs usage is related to the fact that they are designed
only to be tuned to the structure’s natural frequency, which introduces the resonance effect.
Therefore, their effect won’t become so sharp when the harmonic action comprises other range
of frequencies.

In order to overcome the above mentioned weakness, several control systems have been
studied. Among the ones reported in the literature, one highlights a device studied by N.
Varadarajan and S. Nagarajaiah [42] and S. Nagarajaiah and E. Sonmez [25], where a vibration
control system with a property of "variable stiffness" was developed. This "variable stiffness"
property allows a correct tuning of the device for a wider range of frequencies.

As in the above described case, the present dissertation studies an Adaptive Tuned Mass
Damper (ATMD) device with the same "variable stiffness" property.
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1.2 Objectives and Scope

Regarding the previously exposed problematic, the present dissertation aims to develop a new
approach on a vibration control system, which increases the performance towards a wider
range of vibration exposure. In order to achieve the above mentioned primary objective,
different work stages with secondary objectives were considered.

• The first task will address the temperature/stress mapping of a SMA element with
respect to its elastic modulus. For this, both an experimental and a numerical approach
will be developed.

• In a second stage of the work, two ATMD vibration control systems will be studied
considering the hypothesis of the inclusion of a SMA element in the system.

• The third stage regards the full definition of a numerical model based on a simplified two
degree of freedom dynamic system implemented in MATLAB (The Mathworks, 2014),
to simulate the behavior of the composed structural system (footbridge + ATMD),
associated with a dynamic loading.

• Hereupon, through numerical simulations, several comparisons between different ap-
proaches on the vibration control system in concern will be considered and finally, some
conclusions will be presented.
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1.3. Dissertation Outline

1.3 Dissertation Outline

The content of the dissertation is organized into the following chapters:

Chapter 1 - General approach to the subject of the present dissertation.

Chapter 2 - General introduction to SMAs, including a description of the supere-
lasticity and shape-memory effects, triggered by martensitic transformations. SMAs
applications in Civil Engineering. Constitutive models for SMAs and definition of the
Mechanical and kinetic governing laws considered in this document.

Chapter 3 - Detailed description of the Experimental and Numerical approaches on the
definition of the Young Modulus Mapping of FLEXINOL R© actuator wires. Reference
to the proportional-integral-derivative (PID) algorithm used in the experimental tests.
Review and application of the defined constitutive model. Comparisons between the
different approaches and results.

Chapter 4 - Introduction to the vibration control systems (Suppressor and TMD) stud-
ied in this document. Mathematical definition of those two vibration control systems,
according to the studies reported by Den Hartog [12].

Chapter 5 - Simplified overview of this document case study. Review of the studies
reported by T. Krus [15]. Geometry, structural aspects and analysis of the case study
footbridge. Implementation of a vibration control system in the Footbridge. Inclusion
of the "variable stiffness" property in the considered vibration control systems, using
SMAs, in order to increase their performance. Definition of the operating limits of both
ATMDs.

Chapter 6 - Numerical implementation of the active control strategy, based on a Sim-
plified Two Degree of Freedom Dynamic System. MATLAB (The Mathworks, 2014) im-
plementation of the two Vibration Control Systems (Suppressor and TMD) previously
studied. Definition and numerical implementation of a frequency tracking algorithm
based on short-time Fourier transforms (STFT), to determine the real-time frequency
of a sinusoidal signal as it changes over time.

Chapter 7 - Analysis of the results yielded by the numerical tests performed. Definition
of the initial vibration problems of this case study footbridge, considering the developed
numerical model. Single Numerical Model with the STFT frequency tracking algorithm
in the Output response signal of the structure.

Chapter 8 - Summary of the proposed dissertation, conclusions and future research
suggestions.
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Chapter 2

Shape Memory Alloys

2.1 Introduction to Shape Memory Alloys (SMA)

In the present chapter, the main concepts underlying the definition of Shape Memory Alloys
and their applications in Civil Engineering, are introduced. In the small group of smart
materials, Shape Memory Alloys (SMAs) belong to a class that gives them the capacity
to memorize their previous characteristics when subjected to certain kinds of stimulus such
as thermomechanical variations. Taking advantage of their unique features and considering
the research being developed, SMAs have drawn significant attention in a wide range of
commercial applications, in the latest years.

SMAs are characterized by two main thermo-mechanical properties, the Shape Memory
Effect and Superelasticity. The application of both properties, as well as the functioning of
the material itself, is highly related with a diffusionless phase transformation, characteristic
of SMAs, called martensitic transformation. Due to this transformation, the material atoms
rearrange themselves differently according to external factors like Temperature or Stress vari-
ations. The two main types of atom rearrangements, yield to two different phases, Martensitic
and Austenitic phase.

In 1932, the Swedish physicist Arne Ölander, discovered the superelastic behavior of an
Au-Cd alloy. Then in 1938, Greninger and Mooradian observed the formation/disappearance
of a martensitic phase when they decreased/increased the temperature of a Cu-Zn alloy.
Only after a decade, in 1949, the Shape-Memory Effect phenomenon due to the thermoelastic
behavior of the martensitic phase was reported by Kurdjumov and Khandros and also by
Chang and Read (1951). The development of the Nickel and Titanium Shape-Memory Alloys
(NiTi Alloys - Nitinol), occurred between 1962-1963 by the United States Naval Ordnance
Laboratory, after their properties have been accidentally discovered by Dr. David S. Muzzey.
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2.2 General aspects of Shape Memory alloys

Although SMAs can be composed by different chemical elements, this document only considers
the ones composed by Nickel and Titanium alloys (NiTi SMAs), mostly known as Nitinol wires.

As mentioned in this chapter’s introduction, SMAs are characterized by two important
thermo-mechanical properties:

• Superelasticity;

• Shape-Memory effect.

Both mentioned thermo-mechanical properties are based upon martensitic transforma-
tions. Those properties and transformations are described in detail in the following sections.

2.2.1 Operating principles of SMAs

SMAs are characterized by comprising two main phases, where the internal organization of
the crystals changes according to Temperature/Stress variations:

• Austenitic Phase;

• Martensitic Phase.

Both phases are further described in Table 2.1.

Table 2.1: Austenite and Martensite phases.

Austenite Martensite

"Elastic behavior" phase "Plastic behavior" phase
"Stronger" phase "Weaker" phase

Stable at high temperatures Stable at low temperatures
Cubic crystal structure Monoclinic crystal structure

In order to clarify the operation of SMAs, the Figure 2.1 diagram is presented, illustrating
the transition between the two mentioned crystallographic phases as function of temperature.

Figure 2.1: Phase alternation with respect to temperature. [38]
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Figure 2.1 presents the relation between the Temperature (T ) and the martensite phase
fraction (ξ). The martensite phase fraction comprises values between 0 and 1, where 1 corre-
sponds to the complete martensitic phase and 0 corresponds to the complete austenitic phase.
With this, it is possible to observe that as the temperature increases, a phase transition from
martensite to austenite occurs in the alloy. In order to define the start and finish point of
each phase transition process, the following transformation temperatures are presented:

Ms - Martensitic phase Start.

Mf - Martensitic phase Finish.

As - Austenitic phase Start.

Af - Austenitic phase Finish.

2.2.2 Superelasticity

The Superelasticity thermo-mechanical property of SMAs is a result of the internal rearrange-
ment of the alloy crystals which gives to the SMA a higher elastic recovery in comparison to
the metals and commonly used alloys. In SMAs, Superelasticity is associated with recoverable
strains up to 8% during a mechanical cycle of loading and unloading that, when compared to
0.2% of the common alloys, represents a considerable increase.

To illustrate this phenomenon, one considers the example of a single SMA column (in the
austenitic phase) with a fixed support at its basis and with the other edge free (Figure 2.2).

Figure 2.2: Superelasticity effect. Residual strain: u0 = 0 ; Temperature variation: ∆T ≈ 0.
(Adapted from [33]).

When a single load is applied at the free top edge of the column, it triggers a deformation
process in that element. Due to its superelastic properties, when the load is removed, the
column returns to its initial configuration, without any residual deformation.

2.2.3 Shape Memory effect

As the name implies, this property allows the alloy to recover its undeformed configuration
after being subjected to a positive variation of its temperature. This positive variation of
temperature must be within a range of values that allows martensitic transformations to
occur. SMAs can be subjected to many shape-memory cycles without any loss of resistant
stress.

To illustrate this phenomenon, one considers the example of section 2.2.2 but, this time,
the SMA column is initially in the martensitic phase (Figure 2.3).
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Figure 2.3: Shape Memory effect. Residual strain: u0 > 0 ; Temperature variation: ∆T > 0.
(Adapted from [33]).

With the application of the single load, the column suffers an induced deformation process
and when reaching a certain stress value, it enters into a plastic regime.

Unlike in the superelasticity phenomenon, when the load is removed, the column does
not return to its original shape. This is due to the fact that the column comprised a plastic
deformation and thus, a residual strain needs to be considered (the column recovers only part
of the total strain to which it was subjected).

However, a positive temperature variation can be introduced into the system causing a
phase transition from martensite to austenite, and then the structure will be able to completely
recover its original shape. This phenomenon is called the shape memory effect.

The above represented cycle may be repeated many times without changes in the material
properties.

To summarize the whole operation of NiTi alloys, Figure 2.4 presents a sequence of marten-
sitic transformations which demonstrate the superelastic and shape memory behavior of this
type of SMA.

Figure 2.4: Properties of Shape-memory-alloys. Relations between Stress, Strain and Tem-
perature. [34]

In accordance with Figure 2.4, when in a low temperature phase (Martensite) one applies
a stress variation to the material, it suffers a continuous deformation without recovery of
the original shape upon stress removal. Then, with the induction of a positive temperature
variation, the alloy’s crystals rearrange themselves differently, changing from a martensitic
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phase to an austenitic one. Due to the "shape-memory effect", the alloy is now able to
recover its undeformed shape. When in the austenitic phase, one applies a stress variation,
the material will experience the expected deformation, but this time, upon the removal of
the applied stress, it is able to completely recover the undeformed shape. This phenomenon
occurs due to the "Superelasticity" property, characteristic of the austenitic phase.

2.3 Shape Memory Alloys in Civil Engineering

Nowadays, SMA’s applications in civil engineering structures are quite occasional, even though,
they begin to be more frequently seen in several applications. Perhaps the most relevant one
is the application of SMA’s in vibration control devices, mainly implemented in buildings and
footbridges, which is the main subject of the present dissertation.

The application of these alloys is also increasing, in structural rehabilitation. The ability
of this material to recover its original shape can be very useful in structural rehabilitation
and also in the field of self-rehabilitation of damaged structural elements.

Most of the SMAs implementation examples in civil engineering structures, can be ob-
served in Italy, with several successful cases of real applications of SMA materials. Most
of these applications are related with the rehabilitation of historical structures damaged by
seismic events [22] [13] [38].

Some studies, regarding the use of SMAs in vibration control systems, have also been
conducted in other areas of civil engineering, such as Tensegrity structures [30]. SMAs are
also often used to improve the behavior of several types of structures [1] [27], or even in specific
structural elements [40].

Even though the use of SMAs may increase the structures performance, it always requires
a substantial amount of material. This may be an important restraint to their implementation
due to their high price, when compared with other conventional construction materials [31].

2.4 Constitutive Models for Shape-Memory Alloys

2.4.1 Introduction

In order to describe the highly complex behavior of Shape-Memory Alloys, different consti-
tutive models have been developed. Each of these models takes into account the properties
of SMAs that must be considered for a particular study, making the model more suitable for
the study in concern.

These models are usually constituted by two main coupled laws, the Kinetic Law and the
Mechanical Law. The Kinetic Law is used to describe the evolution of the phase fraction as
a function of stress and temperature, governing the process of the crystallographic transfor-
mation between phases, while the Mechanical Law is mainly concerned with the stress-strain
behavior of the alloy itself.

There are many constitutive models for SMAs available in the literature (references to
these models can be found in [31] [3] [16] and [6]). The major difference between the different
types of constitutive models is related with the consideration (or not) of the transformation
rate and consequently the time factor. For this study the most appropriate model should
understand that same factor. However, the constitutive model used in this study is based in
[6] (Mechanical law) and [47] (Kinetic law).
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2.4.2 Kinetic law

Several phenomenological kinetic equations have been proposed in the literature to describe
kinetic data of different constitutive models for NiTi SMAs. These equations cover a wide
range of mathematical approaches to the kinetic data, ranging from Exponential laws [39],
Cosine based laws [16], Linear and Tangentially laws [14] and even Square-rooted based laws
[17].

In order to mathematically describe the evolution of the degree of Martensitic transfor-
mation regarding the temperature, the kinetic law presented by Nikolay Zotov, Vladimir
Marzynkevitsch and Eric J. Mittemeijer [47] is adopted in this work.

This model is based on the kinetic data (for Austenite fraction) obtained by DSC (differ-
ential scanning calorimetry) during the M → A transformation in order to obtain a better
agreement with experimental data than the existing empirical models. Due to the fact that the
transformation issues of NiTi SMAs depend on the composition and on the thermo-mechanical
treatment of the alloys, in the referred article, the DSC analysis was applied to two NiTi SMAs
with different compositions (nearly-equiatomic NiTi SMAs (50.1 at.% Ni) and Ni-rich NiTi
SMA (50.7 at.% Ni)), but for the sake of simplicity, the present study will only focus on the
nearly-equiatomic NiTi SMAs.

With the DSC test results obtained (see Figure 3.8), the degree of transformation can
be determined from the enthalpy of the transformation, expressed by the area of the DSC
graphic peak. According to [47], a baseline-corrected and unsmeared DSC curve, can be
obtained using:

Fu(t) = Fm(t) +
τ dFm(t)

dt
(2.1)

where Fm(t) ∼ d∆H
dt , ∆H is the enthalpy change of the SMA specimen and τ is a time

constant.
In order to preform the kinetic analysis of the austenite formation as a function of temper-

ature, the data obtained from the DSC curves described above (mainly the baseline-corrected
and unsmeared DSC curve given by equation (2.1)) can be used to find the austenite phase
fraction applying:

f(T ) =

(
1

∆HA

) ∫ T

0
Fu(y)dy (2.2)

Where ∆HA is the total enthalpy change of the M → A phase transformation and Fu is
the unsmeared heat flux (2.1).

To obtain a more realistic description of the experimental kinetic data than the existing
SMA kinetic models, Nikolay Zotov, Vladimir Marzynkevitsch and Eric J. Mittemeijer [47]
proposed:

f(T ) =
1

(1 + exp(−gν(T − Tm)))
1
ν

(2.3)

Equation (2.3) describes the evolution of the Austenite phase fraction as function of Tem-
perature, and it is ruled by three fit parameters (g, ν, Tm) that have simple physical mean-
ings. Tm determines the temperature corresponding to the maximum transformation rate
(df/dT )max, g and ν determine the transformation rate (df/dT ).

This type of kinetic equation approach is able to describe the experimental kinetic data
and thus is applicable to a range of NiTi shape memory alloys of different compositions,
microstructures and thermomechanical histories.
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2.4.3 Mechanical law

In order to perform a stress-strain (σ−ε) analysis related to the temperature (T ) and marten-
site phase fraction (ξ) of SMAs, a mechanical law is implemented. There are three main ap-
proaches that consider transformation phase fraction to be related with the elastic fraction of
the response. According to [6], if the elastic fraction of the response is limited to the austenite
phase, a simple serial model is obtained (see Figure 2.5a). If a parallel distribution of austenite
and martensite phases is considered, a Voight scheme is obtained (see Figure 2.5b). If a peri-
odical distribution of austenite and martensite phases within the material, orthogonal to the
direction of the applied stress is considered, the Reuss scheme is obtained (see Figure 2.5c).

(a) Simple serial model (b) Voight scheme (c) Reuss scheme

Figure 2.5: Mechanical models for SMAs, [6]

Due to the interest of reporting the evolution of the Young Modulus regarding the tem-
perature, is necessary to take into account the two main phases that occur in this material, as
well as the length of variations between phases. Therefore, this document will only address
the Voight and Reuss schemes which contemplate those two different crystallographic phases,
austenite and martensite.

2.4.3.1 Voight scheme

Assuming that the austenitic and martensitic elastic strains are equal (εelast = εM = εA), the
mechanical law governing the behavior of the material can be expressed as:

σ = ξ σM + (1− ξ)σA (2.4)

and considering Hooke’s Law (σ = E ε), it is possible to obtain the following relationship,
or "rule of mixture" [36]:

Ew = ξ EM + (1− ξ)EA (2.5)

Where Ew is the Young’s Modulus of the SMA wire calculated from the martensite EM
and austenite EA modulus, each of them representing an implicit constant of the material.
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2.4.3.2 Reuss scheme

According to Reuss scheme, the prerequisite for the formulation of its mechanical law is based
on the assumption that the total strain of the material depends on the percentage of phase
associated with it, i.e:

ε = ξ εM + (1− ξ) εA (2.6)

Considering the total stress in each phase, the individual phase strains are given by:
εA = σ

EA
and εM = σ

EM
+ εL. Equation (2.6) results in:

σ =
EAEM

ξ EA + (1− ξ)EM
(ε− εL ξ) (2.7)

Where εL is the maximum residual strain in the material. Considering Hooke’s Law once
again, the Young Modulus relation for the Reuss scheme can be expressed as:

Ew =
EAEM

ξ EA + (1− ξ)EM
(2.8)

2.4.4 Constitutive Model Summary

In order to summarize the considered constitutive model as well as its constitutive laws,
Table 2.2 is presented below.

Table 2.2: Constitutive Model for SMAs - Summary

Kinetic Law [47] f(T ) = 1

(1+exp(−gν(T−Tm)))
1
ν

(2.3)

Mechanical Laws

Voight Ew = ξ EM + (1− ξ)EA (2.5)

Reuss Ew = EA EM
ξ EA+(1−ξ)EM (2.8)
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Chapter 3

Mapping of the SMAs Modulus of
Elasticity

3.1 Introduction

The behavior of the SMAs Young’s modulus in a thermal cycle is a very interesting issue
for the study of the application of these materials. Several articles in the literature already
describe this specific behavior of SMA wires [47] [36].

Hereupon, one considers the mapping of the SMAs Young Modulus as the leading objective
of the present chapter.

Although each crystallographic phase has a particular value of Young’s Modulus associated
with it, a non-linear and hysteretic dependence of the wire modulus Ew = Ew(T ), which
occurs during the phase transition interval, is considered to be the focus of the present chapter.

In order to do this, two different methods were used. First, an experimental test was
performed, where the modulus of elasticity of the NiTi wire was calculated based on the
Hooke’s law concepts, while in the second method, the calculation of the modulus of elasticity
relied upon the use of the constitutive models specified in section 2.4, that have been based
on a DSC analysis performed on the same NiTi wires.

3.2 SMA wire characteristics

The SMA wires used in this work were provided by Dynalloy, Inc. These small diameter
FLEXINOL R© wires are made of Nickel and Titanium and they are able to contract when
electrically driven or heated. Their ability to flex/shorten is considered a characteristic of
SMAs, which dynamically change their internal structure when submitted to certain temper-
atures.

The NiTi wires have a 0,5 mm diameter, are straight, oxide free and can remember its
shape at both high/low temperatures. The strength of the wire and its pulling force are
function of the wires size and cross sectional area. According to the FLEXINOL R© catalog,
if a load of 103 MPa is maintained during cooling, then nearly 5% memory strain will be
obtained, and when heated through the transformation temperature, the wire will shorten by
the same 4-5% that it was stretched, exerting stresses of 172 MPa when doing so. It is also
important to refer that at stresses below 103 MPa, permanent strain will remain under 0,5%,
even after hundreds of thousands of cycles.
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The modulus of elasticity of SMA wires can vary considerably with composition, elon-
gation, training, and temperature. For NiTinol, in the low temperature phase (Martensite),
it varies between 28-40 GPa and in the high temperature phase (Austenite), it is around 83
GPa.

According to the FLEXINOL R© catalog the transformation temperature of the actuator
wire is set around 60◦C and 110◦C (As = 90oC). This allows an easy heating process with
modest electrical currents applied directly through the wire, and a quick cooling process to
temperatures below the transformation temperature as soon as the current is stopped.

Figure 3.1: FLEXINOL R© actuator wire.

Relevant physical properties of FLEXINOL R©:

• Diameter: 0, 5 mm;

• Density: 6, 45 g/cm3;

• Specific heat: 0, 2 cal/g.oC;

• Melting point: 1300 ◦C;
• Thermal Conductivity: 0, 18 W/cm ◦C;
• Thermal expansion coefficient:

– Austenitic phase: 11, 0× 10−6 /◦C;

– Martensitic phase: 6, 6× 10−6 /◦C;

• Approximate electrical resistance:

– Austenitic phase: 100 micro-
ohms.cm;

– Martensitic phase: 80 micro-
ohms.cm;

3.3 Experimental mapping - Young modulus of the SMA wire

In order to characterize the Young’s modulus of the FLEXINOL R© alloy as function of tem-
perature (and the applied stress, σ), an experimental procedure was conducted. To properly
represent the application of the spring element of a TMD (tuned mass damper) in a reduced
scale, the experimental structure was composed by a support, a SMA wire and a suspended
mass.

The importance of the test to be performed in this way is due to the necessity of the SMA
wire to be able to comprise vertical displacements at the bottom end, consequently extend-
ing and compressing freely both when subjected to a stress variation and/or a temperature
variation, as in a real TMD. Regarding this fact, the test could not be accomplished with a
conventional tensile test machine (example: Zwick-Z050 ) because in this way, both edges of
the wire would be fixed, allowing no extension/contraction.

3.3.1 Experimental Device

The experimental device was composed of a main support and a 0, 45m SMA wire suspending
an attached mass, as shown in Figure 3.2. The SMA wire was attached to the two supports
(main support and weights support) by clamps fixed on both edges. It is important to
note that the upper base of the main support is an element of high stiffness, preventing any
deformation at the mid span of the upper plate, that could occur during the loading procedure.

14



3.3. Experimental mapping - Young modulus of the SMA wire

Figure 3.2: Experimental Device.

A - 1kg weights (each)

B - Main support

C - Electrical connectors

D - SMA wire sample

E - Thermocouple

F - Leveler device

G - Weight support

H - Laser target

I - Baumer Photoelectric sensor CH-8501 Class 2 laser

J - Kaise DC power supply hy3005d

K - National Instruments NI PXI-1052
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Six weights of 1kg each were placed in the weights support, allowing for an increment of
stress in the wire sample. The wire sample was electrically driven by two electrical connectors
linked to a power source controller and connected to a power supplier that produces an
electric potential difference, causing a thermal variation in the sample. To measure the wire’s
temperature in real time, a thermocouple was placed in the center of the wire sample. This
thermocouple was connected to the National Instruments NI PXI-1052.

Figure 3.3: National Instruments NI PXI-1052 controller and kaise DC power supply hy3005d.

The National Instruments NI PXI-1052 offers advanced analog and digital signal condi-
tioning, isolation, timing and synchronization features making this equipment very useful in
a wide range of applications.

As it can be seen in Figure 3.4, a Baumer Photoelectric sensor CH-8501 Class 2 laser
(supplied by a kaise DC power supply hy3005d), pointing into a target positioned at the
bottom side of the support for weights, was placed under the support for weights in order to
record the vertical displacements experienced by the wire throughout the whole test. This
laser was also connected to the National Instruments NI PXI-1052 referred above. To ensure
the verticality of the load and the suitability of the readings made by the laser, a leveler
device was placed at the upper face of the weight support allowing to make adjustments when
placing each load increment in the wire.

Figure 3.4: Baumer Photoelectric sensor CH-8501 Class 2 laser, Target and Leveler device.
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The entire experimental process was monitored by the graphical environment of LabVIEW
(National Instruments), which comprises a PID control algorithm for the temperature of
the SMA wire in real time. The wire’s temperature values read by the thermocouple, are
computed into the LabVIEW platform in real time and then, through the PID algorithm, the
platform is able to calculate the voltage required to apply to the SMA wire to achieve the
desired temperature. As mentioned above, the heating process of the alloys is accomplished
by Joule effect through the application of an electrical current. The cooling process is done
by convection and therefore does not require any electric current in the wire sample.

In the LabVIEW VI two main windows can be found, one showing the lengthwise dis-
placement that occurs in the wire in real time, while the other one shows the temperature of
the same wire in real time as well.

3.3.2 Experimental Method

The test performed in this section approaches a typical tensile test, applying an increasing
uniaxial tensile load on a specific specimen, but in this case, without reaching rupture (failure
state). With this type of test, all the deformations brought into the material are uniformly
distributed throughout the sample and, as the load increases in a reasonably slow speed, the
tensile test allows a satisfactory measurement of the strain of the material.

All the steps performed during the experimental test are subsequently described below:

1. Initial step

First, to obtain a proper application of the load, an initial weighing of the "weights
support" was performed since this one is also suspended, counting as a load to the wire.
Afterwards, in order to start the experimental procedure, all components were placed
together. In this initial step, the wire supported no load (except the one corresponding
to the weights support) and the laser beam was directly pointed to the target. In the
LabVIEW environment, both wire temperature and strain are displayed and controlled.

2. Temperature definition

A 20oC wire temperature (more or less the room temperature) was the experiment
starting point. To achieve this temperature, the values read by the thermocouple were
computed, in real time, to the LabVIEW platform and through the PID algorithm the
platform was able to calculate the required voltage to be applied in the wire sample.

During the experimental test, the PID algorithm compares the value of the instantaneous
temperature of the wire (read by the thermocouple) with a target temperature value
previously set, calculating the error and consequently the response to be imposed to the
system, in order to change the wire’s temperature. This process is repeated sequentially
until the desired temperature becomes reached.

A detailed description of this Proportional-Integral-Derivative controller (PID controller)
is presented in the Appendix B of this dissertation.

As 20oC was considered the room temperature, the wire length remained the same
(0.45m) and the data read by the laser comprised 0mm of uniaxial extension.
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3. Loading procedure

By adding the 1kg weight to the "weights support", the first vertical displacement value
was read by the laser sensor. Knowing the initial and final length of the wire (before and
after the first loading), the total deformation ratio (strain) was calculated considering:

ε =
∆L

L
(3.1)

Where L is the initial length of the wire and ∆L is the value read by the laser sensor.

Then, the second 1kg weight was added and new length measurements were obtained.
The entire process was repeated until the maximum load (6 kg) is reached. It is impor-
tant to note that according to FLEXINOL R©’s catalog, 345 MPa is the maximum yield
strength defined for the high temperature phase and one must not exceed this limit. As
335,7 MPa was the major stress applied to the wire during the whole experimental test,
the above mentioned recommendation was fully considered.

4. Data recording

Considering a specific test temperature, all vertical displacement values were recorded
(in mm) for each stress increment (in MPa), allowing to obtain a Stress Vs. Strain
relation for the material, for the given temperature. It can be seen in Figure 3.5 that,
as the stress in the wire increases, the strain also increases almost linearly.
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Figure 3.5: Stress - Strain curve for a 20oC temperature

Using a linear regression (see Figure 3.5), it is possible to define a representative linear
function containing a particular slope value. This slope corresponds to the Young mod-
ulus value of the SMA wire for the defined temperature. In this case (Figure 3.6a), the
Young modulus obtained for a 20◦C wire’s temperature is Ew = 33, 99 GPa.

5. Temperature definition 2

In this step, all weights were removed from the "weights support" and the laser was
reset to zero. Subsequently, through the aforementioned PID control algorithm, the
wire’s temperature was entirely increased by 10 ◦C, allowing the measurement of a new
wire’s length, caused by the heating effect. Finally, with the new temperature imposed,
the laser is once again reset to zero and the loading procedure previously mentioned is
reapplied.
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6. Next Steps

Steps 3, 4 and 5 were consecutively repeated with temperature increments in the or-
der of 10 ◦C, from 20 oC up to a final temperature of 110 oC. When dealing with this
temperature range, it is possible to ensure that the wire sample has suffered a phase
transition from martensite (low temperature) to Austenite (high temperature).

3.3.3 Results

Before introducing the results of the above mentioned test, it is necessary to take into account
that the accuracy of a tensile test strongly depends on the precision of the measurement devices
used. With minor stress, deformation and temperature increments, it may have been possible
to achieve higher precision results evaluating the stress-strain behavior of the wire sample.

The graphical results for the ten temperature values imposed to the wire are listed below.
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(a) Stress-Strain curve for 20oC
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(b) Stress-Strain curve for 30oC
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(c) Stress-Strain curve for 40oC
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(d) Stress-Strain curve for 50oC
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(e) Stress-Strain curve for 60oC
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(f) Stress-Strain curve for 70oC
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(g) Stress-Strain curve for 80oC
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(h) Stress-Strain curve for 90oC
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(i) Stress-Strain curve for 100oC
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(j) Stress-Strain curve for 110oC

Figure 3.6: Stress-Strain curves obtained for the considered temperature range.

In the previously presented graphics, one can observe a similar behavior of the wire sample
regardless of the temperature to which it is subjected, where the stress-strain curve presents
a linear increasing behavior throughout its whole domain.

The main difference observed between graphics is related with the slope values. This effect
consolidates the increase of the modulus of elasticity for positive temperature variations.

Regarding the shape recovery force exerted by the FLEXINOL R© wire, it is possible to
observe (from 60◦C) a reduction in the wire’s extension (in %) when subjected to the same
loads but for higher temperatures. This contraction effect can be easily noticed when the
wire’s length measurements depend only on the increasing temperature (with no loading).

Table 3.1: Wire length with no loading.

Temperature Wire length
T(oC) (m)

20 0.45
30 0.4496
40 0.4486
50 0.445
60 0.4305
70 0.43005
80 0.43
90 0.43
100 0.43
110 0.43
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3.3. Experimental mapping - Young modulus of the SMA wire

It can be seen in the previous table (Table 3.1), that as the temperature increases, the
total length of the wire sample decreases. This reduction occurs from 0,45m to 0,43m, which
is a contraction around 4.44% (between 4 and 5%) of the initial length. This value is in
accordance with the FLEXINOL R© specifications mentioned in section 3.2. It is noteworthy
that upon reaching 80◦C (approximately As temperature) the variation of the wire’s length
(due to the increasing temperature) reaches a minimum value of 0,43m.

In order to summarize the evolution of the modulus of elasticity of the SMA wire in this
experimental test, Table 3.2 is presented bellow. This table contains the equations of the
linear regressions for each graphic of Figure 3.6 as well as the values of Young’s modulus
associated to each temperature value.

Table 3.2: SMA wire Test Results

Temperature Trend line Young’s Modulus
T (oC) E (Gpa)

20 y = 339,91 x 33.99
30 y = 346,63 x 34.66
40 y = 329,85 x 32.98
50 y = 239,99 x 23.99
60 y = 364,26 x 36.42
70 y = 498,51 x 49.85
80 y = 551,35 x 55.13
90 y = 510,52 x 51.05
100 y = 649,38 x 64.93
110 y = 587,44 x 58.74

From the data of Table 3.2, it is possible to plot a scattering map, where one can observe
the behavior of the modulus of elasticity as function of temperature.
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Figure 3.7: Modulus of elasticity as function of temperature.
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In the previous graphic (Figure 3.7), one can observe the existence of a horizontal initial
baseline (between 20◦C and 60◦C), followed by an increasing line (between 60◦C and 100◦C)
which turns out to horizontally stabilize after that temperature range. Looking back at the
vertical axis (E), it is concluded that initially the wire presented a modulus of elasticity
around 34 GPa (in martensitic phase) followed by an increase and a new stabilization of the
E values around 65 GPa (in austenitic phase).

With the proposed experimental procedure, it was possible to establish a clear relation
between the Modulus of Elasticity of the SMA wire and its temperature.

For a more detailed analysis of the results for the whole experimental test, all the experi-
mental data is described in the appendix A of this document.

3.4 Numerical approach - Young modulus of the SMA wire

Using the formulations presented in section 2.4, one will now implement a constitutive model,
representative of the behavior of the wire sample, comprising a Kinetic Law and a Mechanical
Law.

3.4.1 Kinetic law

In order to characterize the austenite phase fraction of the NiTi wire sample as function
of temperature, the results from a differential scanning calorimetry (DSC) test, performed
in [32] using a SETARAM-DSC92 thermal analyzer, have been taken into account. The
sample, tested as received, was submitted to a thermal cycle, heated up to 130oC, held at
this temperature for 6 minutes, and then cooled to -20oC, with heating and cooling rates of
7,5oC/min. As it is referred in [32], before the DSC experiment, the sample was submitted
to a chemical etching (10 vol.% HF + 45 vol.% HNO3 + 45 vol.% H2O) in order to remove
the oxide and the layer formed by the cutting operation. The results of the DSC test are
presented in Figure 3.8 bellow.

Figure 3.8: DSC analysis (from [32]) .

22



3.4. Numerical approach - Young modulus of the SMA wire

The obtained DSC curve exhibits a single-step endothermic M → A transition upon
heating and an exothermic A→M transition upon cooling. By considering theM → A tran-
sition, due to the presence of its high peak, one can determine the As and Af transformation
temperatures, with values of about 40oC and 70oC, respectively.

With the aid of PlotDigitizer App, the DSC curve values (in mW/mg) from 39,9oC to
90oC, which was the temperature range comprising both martensite and austenite phases in
the endothermic transition (driven by heating), were extracted (see Figure 3.9).

(a) Heat Flux - PlotDigitizer analisys.
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Figure 3.9: Extraction of the Heat Flux values from the DSC curve.

According to the assumptions of chapter 2.4.2 and [47], the degree of transformation can
be determined from the enthalpy of the system, expressed by the area of the DSC graphic
peak. From equation (2.1) the following baseline-corrected and unsmeared DSC curve, was
obtained:
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Figure 3.10: Unsmeared Heat Flux of the M → A transformation.
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Chapter 3. Mapping of the SMAs Modulus of Elasticity

Considering the previous curve and applying the equation (2.2), one can obtain a repre-
sentative curve of the austenite phase fraction f(T) as function of temperature.
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Figure 3.11: Austenite phase fraction evolution during the M → A transformation.

It is noteworthy that the As and Af transformation temperatures stand around 40oC and
70oC respectively, just like it was presumed in the DSC run graphic.

Taking into account the SMA kinetic model developed by Nikolay Zotov, Vladimir Marzynke-
vitsch and Eric J. Mittemeijer [47], equation (2.3) was used to describe Figure’s 3.11 data.

-­‐0,2	
  

0	
  

0,2	
  

0,4	
  

0,6	
  

0,8	
  

1	
  

1,2	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
  

Au
st
en

ite
	
  P
ha

se
	
  F
ra
c/
on

	
  f(
T,
g,
v,
Tm

)	
  (
%
)	
  

Temperature	
  T	
  (ºC)	
  

f(T,g,v,Tm)	
  

Figure 3.12: Austenite phase fraction - Equation (2.3),
f(T, g, ν, Tm).

Table 3.3: Equation (2.3)
fitting parameters.

Fit parameters

g ν Tm
0.225 6 68.36
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3.4. Numerical approach - Young modulus of the SMA wire

The g and ν fitting parameters used in the equation (2.3) were chosen considering the
studies of [47], with the purpose of approximating the equation (2.3) to the behavior reported
in the graphic of Figure 3.11. Regarding the Tm fitting parameter, it was obtained by in-
terpolation between the temperatures corresponding to the maximum transformation rate
(df/dT )max, (see Figure C.4 of Appendix C).

In order to verify the suitability of equation (2.3) (see Figure 3.12 ) to express the data
of the Figure 3.11, a graphical overlay, represented in the Figure 3.13, was performed. It is
possible to conclude that the kinetic equation (2.3) describes very well the data obtained from
the DSC run.
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Figure 3.13: Suitability of equation (2.3) to the graphical data of Figure 3.11.
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Chapter 3. Mapping of the SMAs Modulus of Elasticity

3.4.2 Mechanical law

To complete the SMA constitutive model, it is necessary to define the mechanical law that
relates stress (σ) and strain (ε), in order to obtain the elasticity modulus (E). The martensite
phase fraction (ξ) is an internal state variable representing the transformation in the mate-
rial. It is complementary to the austenite phase fraction (f(T )) and can be mathematically
represented as ξ = 1− f(T ).

Both the two mechanical laws (Voight scheme and Reuss scheme), mentioned in Sec-
tion 2.4.3, were used to simulate the behavior of the modulus of elasticity of the SMA wire
sample.

Considering the experimental results from Section 3.3.3, the EM and EA values were
established in accordance with the obtained maximum and minimum values of the modulus
of elasticity. EM = 34GPa and EA = 65GPa.
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Figure 3.14: Voight scheme - Modulus of
elasticity as function of temperature.

• Reuss scheme
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Figure 3.15: Reuss scheme - Modulus of
elasticity as function of temperature.

The graphics in Figures 3.14 and 3.15 report the evolution of E according to the stress
(σ), strain (ε), temperature (T ) and martensite phase fraction (ξ), according to the Voight
and Reuss schemes, respectively.

For a more detailed analysis, all the numerical data used in this approach is described in
the appendix C of this document.
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3.5. Experimental approach Vs. Numerical approach - Young modulus of the
SMA wire

3.5 Experimental approach Vs. Numerical approach - Young
modulus of the SMA wire

Both experimental and theoretical means have been used in the literature to obtain the
relevant characteristics of SMAs.

In this section, all the models defining the modulus of elasticity as function of temperature
are plotted in a single graphic, to compare all the obtained results.
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Figure 3.16: Experimental approach Vs. Numerical approach - Young modulus of the SMA
wire.

Observing the graphic in Figure 3.16, it is possible to draw some important conclusions.
Despite the similar behaviors presented by all curves, it is possible to observe certain differ-
ences, mainly between the experimental and the numerical approach.

The key difference observed in Figure’s 3.16 graphic, is reflected in the beginning of the
austenitic baseline, where one can verify that in the numerical approach (Voight and Reuss
schemes) the Af value rounds Af ± 70oC, while in the experimental approach the Af value
is higher, rounding Af ± 80oC.

The above-mentioned point turns out to be mitigated, due to the fact that the data
obtained through the experimental approach, yields a scattering graphic, where the results
are described by single points. The non consideration of a variable stress in the numerical
model approach, may be a cause for the slightly different behavior between the results of both
approaches.

Either way, even with the constraints of the experimental test, the results of the Young
modulus mapping were considered acceptable. As the Reuss model curve is the one that best
suits the experimental data, the results established by this model will be subsequently used
in the course of this document.
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Chapter 4

Vibration Control Systems - Adaptive
Tuned Mass Damper

4.1 Introduction

Vibration control systems are a set of technical means with the objective of mitigating vibra-
tional impacts in structures.

Nowadays, a large survey is being conducted at the level of vibration control in civil
engineering structures. Several types of vibration control systems have been studied and
appear in the literature ([24] [44]) organized according to their way of action, being therefore,
divided into active, passive or hybrid systems.

Active control systems comprise real-time actions with input signal processing equipment
and actuators employing large amounts of energy. On the other hand, passive control systems
have no feedback capability, applying a suitable control only for the considered situation.
Hybrid control systems combine features of both active and passive control systems.

This dissertation focuses the application of a hybrid control system composed by an adap-
tive tuned mass damper (ATMD) with specific features. To do so, the present chapter de-
scribes the implementation of the two following vibration control systems:

• The Undamped Dynamic Vibration Absorber.

• The Damped Dynamic Vibration Absorber.

Initially, those two types of control systems are presented and their operational and the-
oretical basis are explained, according to the studies of Den Hartog [12].

Afterwards, both control systems are compared in order to highlight their main differences
and key features.
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Chapter 4. Vibration Control Systems - Adaptive Tuned Mass Damper

4.2 The Undamped Dynamic Vibration Absorber - Vibration
Suppressor

Any ordinary structure, subjected to a steady alternating force of constant frequency may
suffer obnoxious vibrations, especially when the excitation frequency is close to the natural
frequency of the structure, causing resonance problems. In order to prevent this situation, one
should consider the possibility of removing the force or changing the structure’s characteristics,
namely the mass and/or the stiffness. Unfortunately, in the majority of the cases, both of two
options previously referred are impractical [12]. The third possibility relies in the application
of a control system in the structure.

In this section, the Undamped Dynamic Vibration Absorber (Vibration Suppressor) is the
control system in concern.

Figure 4.1: Main System and the Undamped Dynamic Vibration Absorber.

The vibration Suppressor of Figure 4.1 consists in a secondary smaller vibratory system
(k2, m2) attached to the main mass (m1) of the primary system that is under the effect of
a sinusoidal force F (t) = Po sinω t. The main goal is to tune the vibration suppressor with
the acting force by choosing a natural frequency for the secondary system (ω2 =

√
k2
m2

) equal
to the frequency ω of the acting force. Consequently, the secondary system will vibrate in
such way that its spring force is equal and opposite to the one applied in the main system
(F (t) = Po sinω t), making both forces cancel each other and then the main mass does not
vibrate at all.

In order to demonstrate the operation of the vibration suppressor, one obtains the following
equations of motion.

From the dynamic equilibrium equation:

F (t) = mẍ+ c ẋ+ k x (4.1)

For the main and secondary system, one obtains respectively:

m1 ẍ1 + (k1 + k2)x1 − k2 x2 = P0 sinω t (4.2)

m2 ẍ2 + k2(x2 − x1) = 0 (4.3)
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4.2. The Undamped Dynamic Vibration Absorber - Vibration Suppressor

The forced vibration of the system will be of the form:{
x1 = X1 sinω t

x2 = X2 sinω t
(4.4)

Replacing these two expressions in equations of motion (4.2) and (4.3), using two differ-
entiations (in order to the variable t) and dividing both by sinω t, one obtains:

X1(−m1 ω
2 + k1 + k2)− k2X2 = P0 (4.5)

−k2X1 +X2(−m2 ω
2 + k2) = 0 (4.6)

According to Den Hartog [12] and taking into account the following relations:

• Xst = P0
k1
, Static deflection of the main system;

• ω2
2 = k2

m2
, Natural frequency of the absorber;

• ω2
1 = k1

m1
, Natural frequency of the main system;

soving for X1 and X2,

X1

Xst
=

1− ω2

ω2
2(

1− ω2

ω2
2

) (
1 + k2

k1
− ω2

ω2
1

)
− k2

k1

(4.7)

X2

Xst
=

1(
1− ω2

ω2
2

) (
1 + k2

k1
− ω2

ω2
1

)
− k2

k1

(4.8)

Through the equation (4.7) (main system), when the frequency of excitation (ω) equals
the natural frequency of the absorber (ω2), the numerator (1− ω2

ω2
2
) becomes equal to zero and

consequently the amplitude (X1) of the main mass becomes also zero. For the same situation
(ω = ω2), in equation (4.8) (Suppressor), the amplitude (X2) of the Suppressor is reduced to:

X2 = −k1

k2
Xst = −P0

k2

These relations are true for any value of ω
ω1

and thus, the initially proposed statement is
proved.

Now, considering,

ω2 = ω1 and k2
m2

= k1
m1

or k2
k1

= m2
m1

one defines,

• µ = m2
m1

, as the mass ratio between the two masses.

And the amplification factor regarding µ is defined:

X1

Xst
=

1− ω2

ω2
2(

1− ω2

ω2
2

) (
1 + µ− ω2

ω2
2

)
− µ

(4.9)
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X2

Xst
=

1(
1− ω2

ω2
2

) (
1 + µ− ω2

ω2
2

)
− µ (4.10)

With the introduction of this control system, the structure now comprises two new natural
frequencies of vibration, which both differ from the initial natural frequency of the structure
without the control system (see Figure 4.2).

Those new natural frequencies are determined by setting the denominators equal to zero:(
1− ω2

ω2
2

) (
1 + µ− ω2

ω2
2

)
− µ = 0⇔

⇔
(
ω

ω2

)2

=
(

1 +
µ

2

)
±
√
µ+

µ2

4

(4.11)

According to equation (4.9) and considering an approximately 5% mass ratio (µ), one
obtains the following graphical representation of the structure’s amplification factor regarding
a chosen frequency range.
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Figure 4.2: Amplitude of the main system motion with and without Suppressor.

As shown in Figure 4.2, with the introduction of the vibration suppressor in the system, the
structure will now have two fundamental frequencies instead of one. One of the frequencies
will be inferior and the other one will be superior to the original natural frequency of the
structure.

In the previous graphic is, once again, possible to observe that for ω = ω2 = ω1 , the
amplitude (X1) of the main mass becomes zero.

Finally, in order to correctly design the vibration suppressor, it is necessary to ensure that
its natural frequency equals the frequency of the applied force.

ω = ω2 =

√
k2

m2

(4.12)
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4.3. The Damped Vibration Absorber - Tuned Mass Damper (TMD)

4.3 The Damped Vibration Absorber - Tuned Mass Damper
(TMD)

Unlike the Suppressor, the introduction of a TMD in the structure does not allow for the
complete attenuation of structural vibrations. In fact, a TMD only allows for a reduction of
the vibrations up to a given value, but for a wider range of frequencies than the Suppressor,
yielding a better efficiency.

Figure 4.3: Main System and the Damped Vibration Absorber.

If an additional damper is added to the system presented in Figure 4.1, one obtains the
system designed in Figure 4.3, representative of a TMD implementation.

Applying the Newton’s first law to the mass m1, one obtains the equations of motion for
the main and secondary system respectively,

m1 ẍ1 + k1 x1 + k2 (x1 − x2) + c2 (ẋ1 − ẋ2) = P0 sinω t (4.13)

m2 ẍ2 + k2(x2 − x1) + c2 (ẋ2 − ẋ1) = 0 (4.14)

According to [15], and taking into account the relations defined by Moutinho [24],

• r1 = ω
ω1
, ratio between the excitation frequency and the frequency of the system;

• q = ω2
ω1
, ratio between the TMD frequency and the frequency of the system;

• µ = m2
m1

, as the mass ratio between the two masses;

• Xst = P0
k1
, Static deflection of the main system;

• ζ2 = c2
2
√
k2m2

, TMD damping ratio.
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the amplitudes of the standing motion of the mass m1 and m2 are respectively given by:

X1

Xst
=

√
(2ζ2r1q)2 + (r2

1 − q2)2

(r4
1 − [1 + (1 + µ)q2]r2

1 + q2)2 + (2ζ2r1q)2[1− r2
1(1 + µ)]2

(4.15)

X2

Xst
=

√
q4 + (2ζ2q)2

(r4
1 − [1 + (1 + µ)q2]r2

1 + q2)2 + (2ζ2r1q)2[1− r2
1(1 + µ)]2

(4.16)

Considering once again an approximately 5% mass ratio (µ), according to equation (4.15)
one obtains the graphical representation of the structure’s amplification factor, presented in
Figure 4.4.
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Figure 4.4: Amplitude of the main system motion with and without TMD.

As in the vibration suppressor case, with the introduction of the TMD, the structure will
also have two fundamental frequencies instead of one, as it is possible to see in Figure 4.4.

Considering ζ2, q and µ as the key parameters controlling the system’s amplification, it is
important to note that: ζ2 is the parameter which controls the maximum amplitude value of
the two peaks displayed in the structural response of the main system; q the one that regulates
the difference between the maximum value of both peaks of the system’s amplification; and
µ being the parameter that regulates the gap between those two referred peaks.

Note: For ζ2 = 0, the system is able to completely eliminate the vibrations when the
excitation frequency equals the system frequency, thus representing the aforementioned Sup-
pressor case (see section 4.2).

The structure in which the control system is being applied is characterized by a very low
damping ratio (0 < ζ < 1%) and, therefore, one can calculate the optimal parameters for the
TMD, using the solution found by Den Hartog [12].

It is important to note that Den Hartog’s solution is based on an imposition that both
peaks, regarding the TMD usage (Figure 4.4), present the same displacement amplitude.
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4.4. Suppressor Vs. TMD

• Maximum amplitude of the main system displacement:

X1

Xst
=

√
1 +

2

µ
(4.17)

• Optimal frequency of the TMD:

ω2,opt =
1

1 + µ
ω1 = qopt × ω1 (4.18)

• Optimum damping ratio of the TMD:

ζ2,opt =

√
3µ

8(1 + µ)3
(4.19)

• Optimal stiffness of the TMD:
k2 = ω2

2,opt ×m2 (4.20)

4.4 Suppressor Vs. TMD

Figure 4.5 exhibits the amplitude of the system’s vibratory motion described for a certain
range of frequencies according to equations (4.9) and (4.15), where both Suppressor and
TMD are correctly tuned for a generic structure.
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Figure 4.5: Amplitude of the main system motion with Suppressor, with TMD and without
control system.

When the Undamped Dynamic Vibration Absorber (Suppressor) is designed for a reso-
nance situation, it completely eliminates the motion of the main mass, becoming in this way
the best solution (for frequencies close to the resonance situation). However, this reduction
proves to be useful in a very limited frequency range, since in the vicinity of this resonance
frequency, the dynamic amplification factor highly increases again.

In the Damped Vibration Absorber (TMD) case, although it does not completely removes
the structure’s motion for the resonant frequency, it turns out to be very efficient since the
reduction of the amplification comprises a larger domain of frequencies, keeping the dynamic
amplification factor always below a pre-defined value.
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Chapter 5

Implementation of an Adaptive Tuned
Mass Damper in a Footbridge

5.1 Introduction

The present chapter describes the implementation of the two previously presented adaptive
vibration control systems in a footbridge structure.

Initially, a section with the considered case study is presented. This case study intends to
implement the formulations developed on the considered vibration control systems in a real
structure.

Afterwards, taking into account the characteristics of the footbridge, a Damped Dynamic
Vibration Absorber (TMD) is designed in order to attenuate the amplitude of the vibrations
caused by a sinusoidal force acting on structure. This TMD design is built upon the studies
carried out by T. Krus [15]. The Undamped Dynamic Vibration Absorber (Suppressor) is
also designed to operate in the same structure and also for the same force.

Then, the "spring" component of both aforementioned control systems was characteristi-
cally changed, being now composed of a SMA wire. With this, it became possible to develop
two new control systems with the ability to modify their stiffness.

Lastly, the operational limits of both control systems are disclosed and new alternatives
for their usage, outside the defined operating limits, are presented.
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5.2 Case Study - Footbridge

The purpose of this section is to present an overview of the structure studied in this document.
The case study is based on a footbridge built over the Avenida Marechal Gomes da Costa

(Figure 5.1), which is an important avenue located in the Lisbon city center, Portugal. This
footbridge allows pedestrians to safely cross the aforementioned avenue and it is characterized
by lightness attributes, suiting the urban area where it is located.

This structure has been previously studied by T. Krus in [15], and thus, most of the data
regarding its operation was obtained from that document.

Figure 5.1: Footbridge over the Avenida Marechal Gomes da Costa, T. Krus, [15].

5.2.1 Footbridge Geometry

The footbridge consists on a simple supported structure that comprises a 30m span estab-
lishing the connection between two edge supports with the same altimetric quota. The cross
section of the platform is 2,85 m width by 2,80 m height. This footbridge is mainly composed
by a steel structure, where both the upper and lower chords are made of metallic profiles of
the HEB type. The majority of the other structural elements are also characterized by HEB
and IPE metallic profiles.

A simple schematic representation of the footbridge, can be seen in Figure 5.2.

Figure 5.2: Three dimensional view of the footbridge model, T. Krus, [15].
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5.2. Case Study - Footbridge

5.2.2 Dynamic behavior

In order to obtain an appropriate dynamic design of this case study footbridge, it was necessary
to correctly estimate its damping coefficient. This coefficient essentially depends on the type
of materials and structural connections used. According to [20], Table 5.1 displays the typical
values of the equivalent viscous damping ratio ζ for footbridges under the pedestrian action.

Table 5.1: Common values of damping ratio ζ for footbridges, [20].

Damping ratio (ζ)

Construction Type min. mean max.

Reinforced concrete 0.008 0.013 0.020
Prestressed concrete 0.005 0.010 0.017
Composite 0.003 0.006 -
Steel 0.002 0.004 -

Based on Table 5.1 one considered a damping ratio of ζ = 0, 002 (0,2%), and performed
a modal analysis of the structure.From here, the author of [15], obtained the structure’s
eigenvalues, eigenvectors and also its natural frequencies and vibration modes.

Figure 5.3 represents the configuration of the first vertical vibration mode of the structure,
which is the one taken into account throughout the development of this thesis.

Figure 5.3: Configuration of the 2nd vibration mode of the structure - 1st vertical vibration
mode: f=3,46 Hz - T. Krus, [15].

5.2.3 Dynamic Actions and Structural Response

In the majority of the cases, vibration problems in footbridges are caused by a forced motion
imposed by the stepping rate of pedestrians. According to [20], the average walking rate of
pedestrians is near 2Hz with a standard deviation of 0,175Hz, meaning that more or less 95%
of pedestrians walk at rates between 1,65Hz and 2,35Hz. In some cases, running pedestrians
with a walking rate over 3,5Hz also need to be considered.

In order to study these types of actions, footbridges are often modeled as equivalent Single
Degree of Freedom (SDOF) Systems [20].

According to the studies carried out by T. Krus [15], in order to evaluate the effect
of a pedestrian crowd walking on the bridge, a simplified loading model - Sétra Model -
was considered. Based on this model, this structure was classified as a Class I footbridge
(urban bridge connecting areas of high pedestrian density or frequently used by dense crowds,
subjected to a high pedestrian traffic), comprising an average density of 1 pedestrian/m2
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Table 5.2 describes the calculation of the distributed loads regarding the pedestrians mass,
according to the Sétra Model [35].

Table 5.2: Distributed loads regarding the pedestrians mass, [15]

Footbridge Pedestrian Effective Total number Equivalent number Pedestrians Distributed
class density (d) area (S) of pedestrians of pedestrians total weight load

[pedestrians/m2] [m2] (N=S·d) (Neq = 1, 85
√
N) [kN] [kN/m]

Class I 1 2,4 · 30 72 15,7 50,4 1,68

Once the loading is applied in accordance with the pedestrian traffic class, the new natural
frequency of the structure is obtained and presented in Table 5.3.

Table 5.3: Natural frequency of the structure.

Vibration Mode Natural
mode type frequency [Hz]

2 1st Vertical 3,03

Taking into account the natural vibration frequency obtained for 1st vertical mode of the
structure, one considered the following load case.

Table 5.4, adapted from [15], describes the implementation of the distributed loads corre-
sponding to the dynamic component of the pedestrians action. The load application process
is a dynamic one (time dependent) and it is represented by a time-history force function.

Table 5.4: Time-history force function for the 1st Vertical mode of a Class I footbridge,
considering the Sétra Model [35].

Vibration Mode Footbridge Distributed
mode type class Distributed load function max. load Time-history force function

[N/m]

2 1st Vertical Class I 70 ·Neq · ψ / L · cos(2 · π · f · t) 18,7 18, 7 · cos(2 · π · 3, 03 · t)

The ψ coefficient, is presented as a reduction coefficient of the action, depending on the
frequency range in concern and it was defined as ψ = 0, 51 for this case study, by T. Krus
[15].

Once again according to T. Krus studies, the footbridge in concern suffers from vibration
problems, overcoming the vertical acceleration limits. Hence, one concludes that it is necessary
to implement a vibration control system to improve its behavior.
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5.3 Implementation of the Vibration Control System to the
Case Study

5.3.1 Design of a TMD with constant stiffness - Case Study

In order to summarize the studies conducted by T. Krus [15], which carried out the design of
a passive control solution for the footbridge referred in section 5.2, some of the main features
described in [15] are presented in this section.

Regarding the theoretical design of a TMD system cited in section 4.3, one should note
that it is based on a simple two degrees of freedom system.

Considering that the footbridge structure is composed by multiple degrees of freedom, to
be able to use the formulation of section 4.3, is necessary to condense all those DOF in a
single degree of freedom system with a similar dynamic behavior to the original structure.

If one solely considers the vertical vibration modes of the structure, the design of the
vibration control system has to be performed for the most influential one: Mode 2 which is
the first vertical mode, with a frequency of 3,03 Hz.

Analyzing the structure’s deformed shape for the vibration mode in concern, the point of
maximum displacement, regarding the undeformed shape, indicates the optimal location of
the control device.

According to T. Krus [15], performing a modal analysis of the structure using the SAP2000
software, the maximum modal component value (β2) and the structure’s modal mass (m1)
for the vibration mode in concern (2o mode) were obtained:

β2 = 0, 306 , m1 = 10, 68 ton

Knowing that the Eurocode 0, EN - 1990 limits the vertical acceleration of the pedestrian
bridge to a limiting value of:

amax ≤ 0, 7m/s2

The maximum displacement of the structure, which limits the vertical acceleration to the
above mentioned value, is calculated:

X1 =
amax

ω2
n

=
0, 7

(3, 03× 2π)2
= 0, 001944m (5.1)

Taking into account the time history function F (t) = 18, 7 cos(3, 03 · 2π · t) (Sinusoidal
force) representative of the applied force that stimulates the first vertical vibration mode of
the structure, T. Krus [15] obtained the structure’s static displacement:

Xst = 0, 000276m (5.2)

and the maximum dynamic amplification factor:

X1

Xst
=

0, 001944

0, 000276
= 7, 04 (5.3)

Knowing the maximum value of the dynamic amplification factor, the optimal parameters
of the TMD are determined in accordance with the relations defined in section 4.3 (Equa-
tions (4.17) (4.18) (4.19)).
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X1

Xst
=

√
1 +

2

µ
⇔ µ = 0, 0411 (5.4)

ω2,opt =
1

1 + µ
ω1 =

1

1 + 0, 0411
(3, 03 · 2π) = 18, 285rad/s (5.5)

ζ2,opt =

√
3µ

8(1 + µ)3
= 0, 0117 (5.6)

Thereby, the optimal parameters of TMD are obtained:

m2 = µ ·m1 = 0, 0411 · 10, 68 = 0, 440ton (5.7)

k2 = ω2
2,opt ×m2 = 18, 2852 · 0, 440 = 147, 1 kN/m (5.8)

c2 = 2 · ζ2,opt ·
√
k2 ·m2 = 2 · 0, 0117 ·

√
147, 1 · 0, 440 = 1, 88 kN.s/m (5.9)

Table 5.5 summarizes the main features of the designed TMD to be installed in the foot-
bridge structure.

Table 5.5: Optimal parameters of the vertical TMD.

Vibration Vertical Acceleration µ qopt ω2,opt m2 k2 c2

Mode Limit (m/s2) (rad/s) (ton) (kN/m) (kN.s/m)

1st vertical 0.7 0.0411 0.96 18.285 0.440 147.1 1.88

5.3.2 Design of a Vibration Suppressor with constant stiffness - Case
Study

To design the Suppressor implemented in the footbridge case study, the majority of the choices
that conditioned the TMD design (in section 5.3.1), were taken into account. The Suppressor
was also dimensioned considering the same type of disturbance force and the same vibrational
mode (2ndvibrational mode of the structure corresponding to the 1stvertical mode).

Aiming to use the same parameters previously defined for the TMD, the Supressor’s mass
ratio was also set to µ = 0, 0411.

Considering,

ω2 = ω1 and k2
m2

= k1
m1

or k2
k1

= m2
m1

as a fundamental principle and knowing that F (t) = 18, 7 cos(3, 03 · 2π · t), the stiffness of
the Suppressor’s "spring" is obtained through equation (4.12):

k2 = ω2 ×m2 = (3, 03 · 2π)2 · 0, 440 = 159, 477 kN.s/m (5.10)
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According to equation (4.11) the two new natural frequencies of the structure are defined
by the ratio between the excitation frequency and the natural frequency of the whole system,

(
ω
ω2

)
= 0, 90(

ω
ω2

)
= 1, 11

(5.11)

and these values correspond to the vertical asymptotes of the graphic in Figure 4.2.
Table 5.6 summarizes the main features of the designed Suppressor to be installed in the

footbridge structure.

Table 5.6: Optimal parameters of the vertical suppressor.

Vibration µ ω2 m2 k2

Mode (rad/s) (ton) (kN/m)

1st vertical 0.0411 19.038 0.440 159.477

5.4 Design of SMA Wires - Control System "spring"

The SMA cables used in the control systems, provide them with the "variable stiffness" factor
and consequently increase their performance. The SMA wire design follows the specifications
described in [29], and the tests were performed considering a dynamic system comprising a
m2 = 440 kg mass which represents the vibration controller.

According to FLEXINOL R© and the assumptions mentioned in chapter 3.2, one can define
σ = 103 MPa as the maximum stress that the wire is capable of withstanding, in order to
ensure a proper cyclic behavior.

1. Choice of wire diameter - The wire diameter and cross sectional area are based on the
maximum allowable stress of 103 MPa. Then, the required cross sectional area for a
load of 4312 N yields:

A =
F

σmax
=

4312

103
= 41, 86 mm2 (5.12)

d =

√
4A

π
= 7, 30 mm (5.13)

2. Choice of wire length - In order to achieve stiffness values in both martensitic and
austenitic phase, comprising a range of values where the optimum stiffness of the vibra-
tion controller is located, a 15m length wire was adopted. i.e. In the TMD case, for
a natural frequency of the structure of 3,03 Hz, a stiffness of 147,1 kN/m is required
for the SMA wire ("spring"). In the vibration suppressor case, for the same natural
frequency of the structure, a stiffness of 159,477 kN/m is required for the SMA wire.

Considering the mapping of the modulus of elasticity as function of temperature defined
in chapter 3 (with respect to Reuss scheme), one was able to predict the SMA wire
behavior during heating. In order to increase the interval where the SMA wire is able
to change its stiffness, the EM and EA limit values were defined according to the ones
set in the FLEXINOL R© protocol.
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Then, with a length of 15m and considering EM = 40 GPa, EA = 83 GPa in a first
stage, the following values of stiffness were obtained:

KM =
EM A

L
= 111, 64 kN/m (5.14)

KA =
EAA

L
= 231, 65 kN/m (5.15)

Thus, it’s possible to to check that,

For the TMD: 111, 64︸ ︷︷ ︸
KM

< 147, 1︸ ︷︷ ︸
Koptm

< 231, 65︸ ︷︷ ︸
KA

kN/m

For the Suppressor: 111, 64︸ ︷︷ ︸
KM

< 159, 477︸ ︷︷ ︸
Koptm

< 231, 65︸ ︷︷ ︸
KA

kN/m

Knowing that the stiffness values for the SMA cable also depend on the wire’s length,
one had to study this measurement according to the strain that can occur in both
phases. The two distinct types of effects capable of producing length variations in the
SMA cable (and consequently in its stiffness), are subsequently presented.

(EM = 40 GPa, EA = 83 GPa, A = 41, 86 mm2, F = 4312 N)

• Stress influence in the wire’s strain/stiffness:
Considering stress as the factor producing wire length variations, the strains in
both high and low temperature phases were studied:

εM =
F

EM A
= 0, 2575% (5.16)

εA =
F

EAA
= 0, 1241% (5.17)

With those strain values, new wire lengths were obtained for each phase and con-
sidering equation (5.14) and (5.15) the following stiffness values were achieved:

KM = 111, 35 kN/m

KA = 231, 36 kN/m

The following table summarizes the stress influence in the wire’s strain/stiffness,
providing the final lengths of the wire as well as the error (%) associated with the
stiffness variation regarding the values presented in (5.14) and (5.15).
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Table 5.7: Stress influence in the wire’s strain/stiffness

Strain Length Stiffness "error" (%)

Martensite Austenite Martensite Austenite Martensite Austenite Martensite Austenite
εM εA L+ εM L+ εA K(L+ εM ) K(L+ εA) ∆K ∆K

(m/m) (m/m) (m) (m) (kN/m) (kN/m) (%) (%)

0.002575 0.001241 15.0386 15.0186 111.3508 231.3608 -0.2568 -0.1239

Through the previous results one can conclude that in this case, stiffness variations
are low enough to not be considered.

• Temperature influence in the wire’s strain/stiffness:
Alternatively, considering the Temperature as the main cause of length variations
in the wire, the strains in both high and low temperature phases are recalculated.
As in the low temperature phase the heating has not yet occurred, the strain only
depends on the stress applied to the wire, remaining equal to the one previously
calculated.

εM = 0, 2575%

According to [29], for a certain length value, there is a corresponding value of
stroke that needs to be considered. This stroke value is directly related to the
specifications of the wire itself, where for FLEXINOL R©, nearly 5% memory strain
can be obtained, when the wire is heated through its transformation temperatures.

Once again, one should report the experimental results obtained in chapter 3, where
Table 3.1 shows a contraction in the wire’s length of 4.44%, when thermoelectrically
driven.

εA ≈ 5%

Then, knowing the strains in both phases and considering a cable with L = 15m a
specific stroke (S) value was obtained:

S = (εM − εA)L = −0, 7114 m (5.18)

Austenitic wire length can be easily obtained by subtracting the stroke to the
Martensitic length. The following table summarizes the Temperature influence in
the wire’s strain/stiffness, providing the final lengths of the wire as well as the
error (%) associated with the stiffness variation, regarding the values presented in
(5.3) and (5.4).

Table 5.8: Temperature influence in the wire’s strain/stiffness

Strain Length Stiffness "error" (%)

Martensite Austenite Martensite Austenite Martensite Austenite Martensite Austenite
εM εA L+ εM L+ εA K(L+ εM ) K(L+ εA) ∆K ∆K

(m/m) (m/m) (m) (m) (kN/m) (kN/m) (%) (%)

0.002575 0.05 15.0386 14.3273 111.3508 242.5251 -0.2568 4.6956
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As it can be seen in the table above, the error (%) obtained for stiffness in the
austenitic phase is now considerable (4.6956%). Therefore, one can conclude that it
is necessary to take into account the wire shortening effect caused by temperature,
achieving new length and stiffness values for both phases.
Hence, from Table 5.8,

111, 35︸ ︷︷ ︸
KM

< Kwire < 242, 53︸ ︷︷ ︸
KA

kN/m
(5.19)

are considered the stiffness limit values for the SMA cable.
Taking into account the assumptions defined in this section and the studies carried
out in chapter 3, the SMA wire stiffness-temperature mapping is presented in the
appendix D of this dissertation.

5.5 SMA Wire Operating Limits - Control systems with
variable stiffness

In accordance with the above seen, SMA wires are characterized by having stiffness boundaries
associated with both the austenitic and martensitic phases. Thus, the vibration control
devices, where the SMA wires are implemented, will also be subjected to certain operating
limits when changing their stiffness according to a specific vibration.

5.5.1 Suppressor with Variable Stiffness

The stiffness values referred in the previous section were considered to determine the range of
frequencies for which the Suppressor is able to operate within. Regarding the operation prin-
ciple of the Suppressor, the minimum and maximum operating frequency values are obtained,
considering the stiffness values mentioned in eq. (5.19):

ω =

√
k

m
(rad/s) (5.20)

f =
ω

2π
(Hz) (5.21)

• Minimun operating frequency: (Martensite Phase)

KM = 111, 35 kN/m→ ω =

√
111, 35

440× 10−3
= 15, 9082 (rad/s)→

→ f =
15, 9082

2π
= 2, 5319 (Hz)

(5.22)

• Maximun operating frequency: (Austenite Phase)

KA = 242, 53 kN/m→ ω =

√
242, 53

440× 10−3
= 23, 4775 (rad/s)→

→ f =
23, 4775

2π
= 3, 7366 (Hz)

(5.23)
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For the sake of simplicity, the following approximations have been considered.

• Minimun operating frequency: (Martensite Phase)

f = 2, 5319 ' 2, 54 Hz (5.24)

• Maximun operating frequency: (Austenite Phase)

f = 3, 7366 ' 3, 73 Hz (5.25)

Finally, with the limit frequencies defined, the definitive stiffness values for the Suppressor
are obtained:

f = 2, 54 Hz→ KM = 112, 07 kN/m (5.26)

f = 3, 73 Hz→ KA = 241, 67 kN/m (5.27)

Dividing the limit frequencies earlier defined, by the value of the structure’s natural fre-
quency (3,03 Hz), one obtains the Suppressor operating boundaries.

Max. operating limit: r1 =
ω

ω1
=

2, 54× 2π

3, 03× 2π
= 0, 8383 (5.28)

Min. operating limit: r1 =
ω

ω1
=

3, 73× 2π

3, 03× 2π
= 1, 2310 (5.29)

These boundaries and the Suppressor operating domain are displayed in the following
graphic (Figure 5.4).
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Figure 5.4: Suppressor Operating Limits.
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Figure 5.4 displays the dynamic amplification curves of the pedestrian action according
to the frequency of excitation, with and without the implementation of the control system.

Here, the "spring" of the Suppressor is able to change its stiffness between the operating
limits specified in Figure 5.4, adjusting this characteristic for any frequency value between
2, 54 < f < 3, 73Hz. With this, the dynamic amplification factor (X1/X1st) remains near to
zero in this complete range of frequencies.

To ensure that beyond the maximum and minimum operating limits previously defined,
the dynamic amplification factor (X1/X1st) remains below 7,04 (see equation (5.3)) and con-
sequently the maximum acceleration registered with the control system (Suppressor) is also
below the imposed limit (a < 0, 7m/s2), required for the structure [15], one defined the fol-
lowing stiffness transitions:

For: f < 2, 54 Hz → k2 = KA = 241, 67 kN/m (Tw ≥ 70◦C) (5.30)

For: f > 3, 73 Hz → k2 = KM = 112, 07 kN/m (Tw ≤ 35◦C) (5.31)

For: 2, 54 < f < 3, 73 Hz → k2 = variable (Tw = variable) (5.32)

With this, when the excitation frequency exceeds the defined operating limits, a stiffness
transition from KA to KM or vice versa, occurs.

Tw is the wire temperature that, according to the studies carried out in chapter 3, ensures
the proposed stiffness values. The considered stiffness-temperature relation can be found in
Figure D.2 of the appendix D.

To ensure the energetic efficiency of the proposed control system, it must comprise a
system of sensors that allow its activation only when strictly necessary.

In order to clarify the considerations set in this section, Table 5.9 summarizes the most
important points of the Suppressor’s operating limits.

Table 5.9: Suppressor’s operating limits

Frequency Operating limits Stiffness limits

Martensite Austenite Martensite Austenite Martensite Austenite
fsupp fsupp fsupp/fn fsupp/fn KM KA

(Hz) (Hz) (Hz/Hz) (Hz/Hz) (kN/m) (kN/m)

2.54 3.73 0.8383 1.2310 112.07 241.67

5.5.2 TMD with Variable Stiffness

In order to maintain the same stiffness boundaries previously calculated for the Suppressor in
section 5.5.1 (112, 07 < Kwire < 241, 67 kN/m), the minimum and maximum TMD operating
frequencies were obtained according to equations (4.20), (4.18) and (5.21):

k2 = m2 × ω2
2,opt

ω2
2,opt =

1

1 + µ
× ω1 (rad/s)

f =
ω

2π
(Hz)
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• Minimun operating frequency: (Martensite Phase)

KM = 112, 07 kN/m→ ω2,opt =

√
112, 07

440× 10−3
= 15, 9596 (rad/s) (5.33)

considering equation (4.18):

→ ω = 15, 9596× (1 + µ) = 16, 6171 (rad/s) (5.34)

→ f =
16, 6171

2π
= 2, 6447 (Hz) (5.35)

• Maximun operating frequency: (Austenite Phase)

KA = 241, 67 kN/m→ ω2,opt =

√
241, 67

440× 10−3
= 23, 4359 (rad/s) (5.36)

considering equation (4.18):

→ ω = 23, 4359× (1 + µ) = 24, 4014 (rad/s) (5.37)

→ f =
24, 4014

2π
= 3, 8836 (Hz) (5.38)

Dividing the limit frequencies above mentioned by the value of the structure’s natural
frequency (3,03 Hz), one achieves the operating boundaries of the TMD.

Max. operating limit: r1 =
ω

ω1
=

2, 6447× 2π

3, 03× 2π
= 0, 8728 (5.39)

Min. operating limit: r1 =
ω

ω1
=

3, 8836× 2π

3, 03× 2π
= 1, 2817 (5.40)
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The previously defined limits and the TMD operating domain are displayed in the following
graphic (Figure 5.5).
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Figure 5.5: TMD Operating Limits.

Figure 5.5 displays the dynamic amplification curves of the pedestrian action according
to the frequency of excitation, with and without the implementation of the control system.

Here, the TMD’s "spring" is able to change its stiffness between the operating limits
specified in Figure 5.5, adjusting this characteristic for any frequency value between 2, 6447 <
f < 3, 8836Hz.

For frequency values outside the operating limits, the TMD presents the following stiff-
nesses:

For: f < 2, 447 Hz → k2 = KM = 112, 07 kN/m (Tw ≤ 35◦C) (5.41)
For: f > 3, 8836 Hz → k2 = KA = 241, 67 kN/m (Tw ≥ 70◦C) (5.42)
For: 2, 447 < f < 3, 8836 Hz → k2 = variable (Tw = variable) (5.43)

It is important to emphasize that for the entire frequencies domain, the dynamic am-
plification factor (X1/X1st) remains below 7.04 and consequently the maximum acceleration
registered with the control system (TMD) is also below the imposed limit (a < 0, 7m/s2).

In order to clarify the considerations set in this section, Table 5.10 summarizes the most
important points of the TMD’s operating limits.

Table 5.10: TMD’s operating limits

Frequency Operating limits Stiffness limits

Martensite Austenite Martensite Austenite Martensite Austenite
fexc fexc fexc/fn fexc/fn KM KA

(Hz) (Hz) (Hz/Hz) (Hz/Hz) (kN/m) (kN/m)

2.6447 3.8836 0.8728 1.2817 112.07 241.67

All the numerical data of section 5.4 and section 5.5 is described in the appendix D of this
document.
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Chapter 6

Numerical Analysis of a Simplified
Two Degree of Freedom Dynamic
System

6.1 Introduction

This chapter discusses the analysis of a Simplified Two Degree of Freedom Dynamic System.
The implementation of such system in MATLAB (The Mathworks, 2014) software, is also ad-
dressed. Some practical examples regarding the case study of section 5.2 are further presented,
in order to validate and prove the efficiency of the proposed control systems. Comparisons
between variants of those control systems are also presented in this chapter.

In this section an implementation of the short-time Fourier transformation algorithm
(STFT) is discussed, to be used in the model to determine the real-time frequency of a
sinusoidal signal as it changes over time.

Lastly, two numerical models, applied to this thesis case study, are presented. Those
models are capable of applying a force to the structure, reproduce its behavior (displacement,
velocity or acceleration), read the structural response throughout the STFT model and tune
the control systems, changing their stiffness in order to improve their performance and mitigate
the structural response.

6.2 Simplified Two Degree of Freedom Dynamic System

In order to perform a numerical analysis of the structural behavior (footbridge - case study)
when subjected to a vibration control using the two devices referenced in sections 4.3 and 4.2
(TMD and Suppressor), two Simplified Two Degree of Freedom Dynamic Systems were im-
plemented in MATLAB (The Mathworks, 2014) software, each one corresponding to a control
system device.
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• Vibration Suppressor :

Figure 6.1: Vibration Suppressor - Two
Degree of Freedom Dynamic System.

• TMD :

Figure 6.2: TMD - Two Degree of Freedom
Dynamic System.

Where,

m1 = 10, 68 ton; c1 = 0, 8133 kN.s/m; k1 = 3870, 9 kN/m;
m2 = 0, 440 ton; c2 = 1, 8827 kN.s/m; k2 = variable kN/m.

The damping coefficient of the primary system (c1) was based on,

ζ =
c1

2
√
k1 ·m1

(6.1)

where, according to section 5.2, ζ = 0, 002 is the damping ratio considered for the foot-
bridge.

It is mandatory to note that this damping coefficient (c1) corresponds to a very low
damping ratio (0 < ζ < 1%) and is therefore possible to use the Den Hartog’s solution [12],
as previously mentioned in section 4.3.

6.3 Short-time Fourier transforms

6.3.1 Short-time Fourier transforms - Description

"The short time Fourier transform (STFT) is the most widely used method for studying non-
stationary signals." - Nagarajaiah and Varadarajan, [26]

In order to test the efficiency of a vibration control system with the peculiarity of being
able to change its spring stiffness (using SMAs), the sinusoidal excitation signal applied to
a structure must be composed by two or more sections where different vibration frequencies
can be highlighted.

Thus, in order to identify those excitation frequencies, as well as the instant of transition
between them, a STFT based algorithm was implemented.

The basic idea of short time Fourier transforms is to break the complete signal into small
time segments in order to analyze them, tracking the frequency of each of those segments.
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For each different time segment, a different frequency spectrum is obtained and the sum of
all spectra corresponds to the complete time-frequency distribution of the whole signal.

The idea proposed in this study is to use STFT to identify the dominant frequency in
each time segment of the signal and monitor its variation as function of time in order to be
able to correctly tune the stiffness of the control system in concern.

According to [25], Short-time Fourier transforms can be mathematically described by:

STFT(t, ω) = S(t, ω) =

∫
s(τ)w(τ − t)e−jωτdτ (6.2)

Here, w(τ − t) is the window function, commonly a Hann window around zero, chosen
to leave the signal more or less unaltered around the time (t), and s(τ) is the signal to be
transformed. S(t, ω) is the Fourier Transform of s(τ)w(τ−t), a complex function representing
the phase and magnitude of the signal over time and frequency. The running time is τ and the
fixed time is t. Since the window function emphasizes the signal around time, t, the Fourier
spectrum will emphasize the frequencies at that time.

It is extremely important to properly define the window size. A small window size allows
to identify the precise time at which the signal changes, yet it turns difficult to identify its
precise frequencies. On the other hand, a large window size allows the frequencies to be
precisely identified but the time between frequency changes becomes blurred.

The correct implementation of the STFT in the control algorithm follows the arrangement
of Figure 6.3.

Figure 6.3: Implementation of the STFT in the control algorithm.

6.3.2 Short-time Fourier transforms - Implementation

Unlike the traditional tuned mass damper (TMD) system, which can only be tuned to a
fixed frequency, the new "variable stiffness" control system, developed in this dissertation, is
capable of continuously vary its stiffness and retuning the structure’s frequency in real time
throughout a STFT control algorithm.

In order to deploy this STFT control algorithm in the Two Degree of Freedom Dynamic
System numerical model, a simple STFT frequency-tracker model was developed in MATLAB
(The Mathworks, 2014) software, using MATLAB’s Signal Processing Toolbox, spectrogram
feature.

The MATLAB implementation of the simple STFT frequency-tracker model is further
described in the Appendix E of this dissertation.
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6.3.2.1 STFT in the Two Degree of Freedom Dynamic System

Initially, the STFT algorithm was applied to the signal of the excitation force acting on the
structure of this thesis case study (see section 5.2).

A sinusoidal force F (t) = Po sinω t, was applied in the main mass of the two degrees of
freedom system, representative of the case study structure. This sinusoidal force has a dura-
tion of 10 seconds, where the frequency changes from 5 Hz to 3,03 Hz triggering a resonance
situation in the structure, as it can be seen in Figures 6.4 and 6.5.
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Figure 6.4: Sinusoidal force where the frequency changes from 5 Hz to 3,03 Hz - Input force
signal.
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Figure 6.5: Resonance situation triggered in the structure of the case study - Output response
signal.

In Figure 6.5, when the frequency of the input force (Figure 6.4) changes from 5 Hz to
3,03 Hz, the structure enters into a resonance state, where its vertical acceleration increases
to values beyond the previously defined limit of 0,7 m/s2.
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6.3. Short-time Fourier transforms

Running the STFT algorithm implemented in the input force signal (sinusoidal force), one
obtains the spectrogram represented in Figure 6.6.
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Figure 6.6: Short-time Fourier transform
spectrum - Input force signal.
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Figure 6.7: Frequency tracking - Input
force signal.

Alternatively, running the STFT algorithm in the output response signal (structure’s
response to the input force signal), one obtains the following spectrogram:
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Figure 6.8: Short-time Fourier transform
spectrum - Output response signal.
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Figure 6.9: Frequency tracking - Output
response signal.

Comparing the spectra obtained in Figures 6.6 and 6.7 with the ones from Figures 6.8
and 6.9, it is possible to draw some conclusions. A slightly different accuracy between the
spectra of the Figures 6.6 and 6.8 turns out to be more pronounced during the first 5 seconds
of the acting force, where the frequency remains at 5 Hz. This difference is also easily noted
by comparing Figures 6.7 and 6.9, where in the last one, the initial baseline slightly bounces
around 5 Hz.

Despite those differences, the results of applying the STFT algorithm in the applied force
and in the structure’s response end up being very similar.

A complete model for the case study, applying the STFT algorithm directly into the
structural response, will also be further presented in this study.
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Chapter 6. Numerical Analysis of a Simplified Two Degree of Freedom Dynamic
System

6.4 Two Degree of Freedom Dynamic System - MATLAB
Implementation

The model implemented in this section relies upon a dynamic analysis of a Two Degree
of Freedom System. This model is based on the Newmark’s method which is a numerical
integration method used to solve differential equations and numerically evaluate the dynamic
response of structures.

The model is suitable for both TMD and Suppressor control systems, differing only in the
configuration of the damping matrix (C), in the operating limits and in the calculation of the
stiffness matrix (K), according to the control system in concern.

6.4.1 Dynamic Analysis Model - MATLAB

The Dynamic Analysis Model can be unfolded into a set of five main Scripts, each one with
a different purpose:

1. harmonic_force.m

2. force_interpolation.m

3. STFT_algorithm.m

4. control_system_stiffness.m

5. newmark_mdof.m

1. harmonic_force.m

Defines the sinusoidal force F (t) = P0 cos(ω · t) acting on the structure.

Considering this thesis case study, the previously defined time history force function
F (t) = 18, 7 cos(3, 03 ·2π · t), representative of the applied force that stimulates the first
vertical vibration mode of the structure for a pedestrian density of 1pedestrian/m2, was
taken into account.

In order to successfully implement this force in the one degree of freedom system (struc-
ture) one had to apply a P0 concentrated load (N) instead of a distributed one (N/m).
Thus, it became necessary to multiply P0 = 18, 7 N/m by the influence length of the
footbridge. Knowing that the footbridge is bi-supported and counts on a 30m length
between the ends, it was considered a certain load distribution for the supports that
resulted in a 12,5m influence length.

Then, F (t) = 18, 7 · 12, 5 · cos(ω · t) is the force function acting on the structure, which
has the ability to change its frequency (ω) over time. This force function comprises
a fixed duration (eg: total_time = 10 sec) and, with a time step of dt = 0.01sec, it
produces a ’force.txt’ file with NrSteps = (total_time/dt) + 1 steps. This ’force.txt’
file contains the data describing the acting force in each step time.
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6.4. Two Degree of Freedom Dynamic System - MATLAB Implementation

2. force_interpolation.m

Performs an interpolation between the values from the ’force.txt’ file regarding each
time step. This MATLAB defined function will be subsequently used for the calculation
of the vertical acceleration of the structure, in the newmark_mdof.m script.

3. STFT_algorithm.m

The STFT algorithm was implemented according to the assumptions specified in sec-
tion 6.3.2. It breaks the Input signal into small time segments in order to analyze them,
determining the frequencies in each segment. For each different time segment, a different
frequency spectrum is obtained and the sum of all spectra corresponds to the complete
time-frequency distribution of the whole signal.

4. control_system_stiffness.m

The idea expressed in this script is to compute the stiffness of the control system as
function of the frequency obtained through STFT_algorithm.m. This step is applied
differently depending on the control system in concern.

Using the TMD (with variable stiffness) as the vibration control system applied, the
stiffness k2 is calculated in accordance with the procedure described in section 5.5.2.

Using the Vibration Suppressor (with variable stiffness) as the vibration control system
applied, the stiffness k2 is calculated in accordance with the procedure described in
section 5.5.1.

It is important to remember that each vibration control system is characterized by
having different operating limits and thus it is necessary to define them. The stiffness
limit values (due to the use of the SMA cable), and the stiffness transition boundaries
used in the code are defined in sections 5.5.2 and 5.5.1.

5. newmark_mdof.m

In the numerical models commonly used in the literature, the structures are often dis-
cretized into n degrees of freedom and their dynamic behavior is described through the
well known differential equation used in the dynamics of structures. For a given spatial
discretization, equation of motion assumes the form,

Mü+ Cu̇+ Ku = P (6.3)

which involves the mass, the damping and the stiffness matrices of the structure (sym-
metrical matrices with DOF×DOF dimension), the vector of the "nodal" forces P =
P (t) and the displacement vector u = u(t) (unknown) with the respective derivatives in
order to time, u̇ = u̇(t) and ü = ü(t) representing velocity and acceleration respectively.

Considering a simplified two degrees of freedom system (TDOF), the inertia, stiffness,
and damping matrices are defined by:

M =

[
m1 0
0 m2

]
(ton) (6.4)
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K =

[
k1 + k2 −k2

−k2 k2

]
(kN/m) (6.5)

C =

[
c1 + c2 −c2

−c2 c2

]
(kN.s/m) (6.6)

The input vectors of the initial conditions and the excitation force vector are defined as:

u0(t) =

[
0
0

]
(m) (6.7)

u̇0(t) =

[
0
0

]
(m/s) (6.8)

P (t) =

[
P0 cos(ω · t)

0

]
(6.9)

All the parameters of the equation of motion 6.3 are now set. Counting on this study
purpose, it is now necessary to introduce the "variable stiffness feature" in the system.
Then, for each step time, the stiffness matrix (K) may or may not be changed depending
on the variation of the excitation frequency. This change is characterized by the intro-
duction of the k2 stiffness, measured in control_system_stiffness.m, in the main K
matrix. With the continuous variation of the K matrix, the equation of motion will
consequently be changing for each time step.

In order to proceed with the dynamic analysis, the Newmark time-stepping method was
applied in an algorithm adapted from Chopra, Dynamics of Structures [4].

The algorithm was based on the Newmark’s Integration for MDOF Linear Elastic Sys-
tems and relies on the function:

[t,u,v,a,fe]=newmark_mdof(m,k,c,T,dt,u0,v0,force,varargin) (6.10)

This function integrates a MDOF system with mass matrix "m", stiffness matrix "k"
and damping matrix "c", when subjected to an external load,

force function: p(t)=force(t,ndof) (6.11)

defined in harmonic_force.m, where p(t) is a column vector with applied forces on the
corresponding DOF. This function returns the displacement, velocity and acceleration
of the system with respect to an inertial frame of reference.
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6.4. Two Degree of Freedom Dynamic System - MATLAB Implementation

INPUT:

[m] : Mass matrix of the system

[k] : Stiffness matrix of the system

[c] : Damping matrix of the system

[T]: Duration of the analysis

[dt]: Time-step

[u0]: Initial Position

[v0]: Initial Velocity

[force] : Function describing the applied force

[varargin]: Options - Include changing the value of the γ and β coefficient which
appear in the formulation of the method.

OUTPUT:

[t]: Time vector

[u]: Displacement Response

[v]: Velocity

[a]: Acceleration

[fe]: Elastic force over time

The γ and β coefficients define the variation of the acceleration over a time step and
also the stability and accuracy characteristics of the method.

Considering the average acceleration method, one defined: γ = 1
2 and β = 1

4 , which are
the recommended values to ensure that the method is unconditionally stable.

Summarizing the computer implementation, [4],

a) Initial calculations:

i. From the equation of motion: ü0 = 1
m(p0 − c · u̇0 − k · u0)

ii. Select: dt (time step).

iii. Define: k̂ = k + γ
β dt c+ 1

β (dt)2
m

iv. Define: a = 1
β dt m+ γ

β c and b = 1
2β m+ dt

(
γ

2β − 1
)
c

b) Calculations for each time step, i:

i. ∆p̂i = ∆pi + a · u̇i + b · üi

ii. ∆ui = ∆p̂i
k̂

iii. ∆u̇i = γ
β dt ∆ui − γ

β u̇i + dt
(

1− γ
2β

)
üi
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iv. ∆üi = 1
β (dt)2

∆ui − 1
β dt u̇i −

1
2β üi

v. ui+1 = ui + ∆ui, u̇i+1 = u̇i + ∆u̇i, üi+1 = üi + ∆üi, pi+1 = pi + ∆pi

c) Repetition for the next time step: Replace i by i+ 1 and repeat step b).
Now, considering the equation of motion 6.3, one can obtain the acceleration for
each time step:

üi+1 =
1

m
(pi+1 − c · u̇i+1 − k · ui+1) (6.12)

Note that the k matrix varies according to each time step.

After this whole procedure is complete and the entire action is analyzed, the graphics
reporting the acceleration of the structure and control system, as function of time, are
plotted and the dynamic analysis is completed.
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Chapter 7

Results of the Numerical Analysis

7.1 Introduction

Considering the studies carried out in chapter 3, the present chapter focus on the results
obtained from the application of the control devices, designed in chapter 4, to the structure
of section 5.2.

Several comparisons shall be developed with the primary purpose of proving the benefits
of applying a SMA "spring" that enables both control devices (TMD and Suppressor) to have
the "variable stiffness" property and hence, to be able to properly tune themselves for a wider
range of frequencies.

Finally, the results obtained through a single numerical model, that computes the STFT
algorithm directly on the structural response, in real time, will also be presented.

7.2 Initial Case

Performing an acceleration-time analysis for the case study structure (see section 5.2), us-
ing the model developed in chapter 6, important conclusions regarding the suitability of its
application, can be drawn.

Applying the previously defined time history function F (t) = 18, 7 · 12, 5 · cos(3, 03 · 2π · t)
in the numerical model, one obtains the graphic of Figure 7.1.
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Figure 7.1: Acceleration-time graphic for the case study structure.
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Figure 7.1 presents the acceleration-time history for the case study structure, when sub-
jected to an input force with a frequency of 3,03 Hz. The structure enters into a resonance
state, where its vertical acceleration achieves a maximum value of 3,5 m/s2, which is consis-
tent with the results obtained by T. Krus [15]. This maximum acceleration value is beyond
the previously defined limit of 0,7 m/s2, confirming once again, the necessity to implement a
vibration control system in this structure.

7.3 Suppressor

This section presents the application of the Suppressor (designed in chapter 4) as the vibration
control device in concern. Comparisons between different featured Suppressors are also shown
in order to highlight their advantages.

7.3.1 Suppressor with Constant Stiffness (SCS) Vs. Suppressor with
Variable Stiffness (SVS)

In order to highlight the importance of having a Suppressor with variable stiffness, one reports
the following case.

With the introduction of this control system (without variable stiffness), the structure
now comprises two new natural frequencies of vibration, which both differ from the initial
natural frequency of the structure without the control system.

Considering the Suppressor designed in section 4.2, taking into account equation 4.11
and µ = 0, 0411, one calculates the new "upper" natural frequency of the structure (with
Suppressor):

(
ω

ω2

)2

=
(

1 +
µ

2

)
+

√
µ+

µ2

4
⇔

(
ω

ω2

)
= 1, 11

⇔ ω = 1, 11 · 3, 03 · 2πrad/s

Knowing that, ω = f · 2π → f = 3, 36Hz

(7.1)

The goal of this comparison is to apply a time history force function F (t) = 18, 7 · 12, 5 ·
cos(f · 2π · t), where the frequency f changes from 3,03Hz (natural frequency of the structure
without control system) to 3,36Hz (new superior natural frequency of the structure with
Suppressor), and evaluate the behavior of the two types of Suppressor devices (without and
with variable stiffness).

According to equation (4.9) and considering a Suppressor with Constant Stiffness (SCS)
designed for a 3,03Hz natural frequency, one obtains the following graphical representation
of the structure’s amplification factor.
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Figure 7.2: Amplitude of the main system motion with Suppressor (SCS) designed for a
3,03Hz natural frequency.

Regarding the above mentioned statement, one divides the action in two phases:

1st phase (0<Time<30 sec) → f = 3,03Hz → Optimum stiffness: k2 = 159,477 kN/m

2nd phase (30<Time<60 sec) → f = 3,36Hz → Optimum stiffness: k2 = 196,106 kN/m
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Figure 7.3: Sinusoidal force where the frequency changes from 3,03 Hz to 3,36 Hz.
(0 < Time < 30 seconds → f = 3, 03 Hz) ; (30 < Time < 60 seconds → f = 3, 36 Hz).

Then, through the numerical analysis, one obtains the following acceleration-time graphics
for the Suppressor with Constant Stiffness (SCS) and for the Suppressor with Variable Stiffness
(SVS), respectively.
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Figure 7.4: Acceleration-time graphic for
the Suppressor with Constant Stiffness
(SCS). k2 = 159,477 kN/m is maintained
during the two phases.
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Figure 7.5: Acceleration-time graphic for
the Suppressor with Variable Stiffness
(SVS). In the 1st phase k2 = 159,477 kN/m
and in the 2nd phase k2 = 196,106 kN/m

The obtained results, for the structural acceleration, are very clear and can be summarized
from the following observations:

• Regarding Figure 7.4 - Suppressor with Constant Stiffness (SCS):

1st phase → amax (f = 3, 03Hz) = 0, 107m/s2

2nd phase → amax (f = 3, 36Hz) = 1, 72m/s2

• Regarding Figure 7.5 - Suppressor with Variable Stiffness (SVS):

1st phase → amax (f = 3, 03Hz) = 0, 107m/s2

2nd phase → amax (f = 3, 36Hz) = 0, 060m/s2

In the 1st phase (0<Time<30 sec) of Figure 7.4, with the Suppressor designed for the
3,03Hz frequency (k2 = 159,477 kN/m), the structural acceleration is nearly zero (amax =
0, 107m/s2), as expected. Then, in the 2nd phase (30<Time<60 sec), the frequency changes
to 3,36Hz but the Suppressor stiffness remains the same. This effect leads to a non-tuned
Suppressor, causing an increase in the structural acceleration (amax = 1, 72m/s2) to values
beyond the predefined limits (amax = 0, 7m/s2).

In the 1st phase (0<Time<30 sec) of Figure 7.5, the structural acceleration is equal to
the one defined for the Suppressor with Constant Stiffness (SCS), (Figure 7.4). In the 2nd

phase (30<Time<60 sec), when the frequency changes to 3,36Hz, the Suppressor changes
its stiffness (to k2 = 196,106 kN/m) and stays tuned. With this, the structural acceleration
remains near zero (amax = 0, 107m/s2) and the action of the Suppressor (SVS) becomes
widespread.

Considering the ability to change its stiffness, in the 2nd phase of the action, the Suppressor
(SVS) promotes an improvement in the reduction of the structural acceleration of 96.51% when
compared with the Suppressor (SCS).
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7.3.2 SVS with no Stiffness Transition Vs. SVS with Stiffness Transition
(SVST)

The main goal of this comparison is to highlight the importance of having a Suppressor
with Stiffness Transition, confirming the principles described in section 5.5.1. For this, it
is extremely important to review the operating limits implicit in Table 5.9 and the stiffness
transitions mentioned in equations (5.30), (5.31) and (5.32).

In order to achieve the situation where the Suppressor operating limits become exceeded,
a specific time history force function had to be applied, where the frequency f changes from
3,73Hz (upper frequency operating limit of the Suppressor) to 3,90Hz (frequency beyond the
operating limit of the Suppressor).

It is noteworthy that this frequency (f = 3,90Hz) was chosen to be beyond the Suppressor’s
"upper" operating limit and was obtained by setting the denominator of the equation 4.7 to
zero, but this time, counting on a Suppressor tuned for ω2 = 3, 73 · 2π rad/s.

Then, the action is divided in two phases:

1st phase (0<Time<30 sec) → f = 3,73Hz → Optimum stiffness: k2 = 241,67 kN/m

2nd phase (30<Time<60 sec) → f = 3,90Hz →

→ Optimum stiffness:

{
k2 = 112, 07 kN/m (With Stiffness Transition)
k2 = 241, 67 kN/m (Without Stiffness Transition)

Considering the above mentioned specifications, one obtains the following graphical rep-
resentation of the structure’s amplification factor, with and without stiffness transition.
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Figure 7.6: Amplitude of the main system motion with Suppressor. Stiffness transition and
Operating Limits representation.

The above Figure 7.6 was obtained by considering the same foundations as the graphic of
Figure 7.2, but in this case, the operational limits from Table 5.9 are displayed (vertical black
lines) and the horizontal axis represent the excitation frequency imposed to the structure.
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• SVS Without Stiffness Transition: When f changes from 3,73Hz to 3,90Hz, as the
Suppressor reached the defined operating limit, its stiffness remains constant (k2 =
241,67 kN/m) and the graphic displays the "Blue" position. Here, it is possible to
observe that for f = 3,90Hz, the amplitude of the main system motion increases and
consequently also does the structural acceleration.

• SVS With Stiffness Transition: When f = 3,73Hz, the Suppressor stiffness becomes
k2 = 241,67 kN/m and the graphic displays the "Blue" position. When f = 3,90Hz,
the Suppressor stiffness changes to k2 = 112,07 kN/m and the graphic now displays the
"Red" position. Here, it is possible to observe that for f = 3,90Hz, the amplitude of
the main system motion (and consequently the structural acceleration) remains close to
zero.

Then, through the numerical analysis, one obtains the following acceleration-time graphics
for the Suppressor SVS without and with stiffness transition, respectively.
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Figure 7.7: Acceleration-time graphic for
the Suppressor (SVS) Without Stiffness
Transition. k2 = 241,67 kN/m is main-
tained during the two phases.
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Figure 7.8: Acceleration-time graphic for
the Suppressor (SVS) With Stiffness Tran-
sition. In the 1st phase k2 = 241,67 kN/m
and in the 2nd phase k2 = 112,07 kN/m.

The obtained results, for the structural acceleration, can be summarized from the following
observations:

• Regarding Figure 7.7 - Suppressor (SVS) Without Stiffness Transition:

1st phase → amax (f = 3, 73Hz) = 0, 075m/s2

2nd phase → amax (f = 3, 90Hz) = 1, 45m/s2

• Regarding Figure 7.8 - Suppressor (SVS) With Stiffness Transition:

1st phase → amax (f = 3, 73Hz) = 0, 075m/s2

2nd phase → amax (f = 3, 90Hz) = 0, 088m/s2
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For this specific situation, in the 2nd phase of the action, the Suppressor (SVS) With
Stiffness Transition promotes an improvement in the reduction of the structural acceleration
of about 93.93%, when compared to the Suppressor (SVS) Without Stiffness Transition.

7.4 Tunned Mass Damper (TMD)

This section presents the application of the TMD (designed in chapter 4) as the vibration con-
trol device in concern. Comparisons between TMD’s with and without variable stiffness were
preformed in order to demonstrate the improvements brought by this new kind of approach.

7.4.1 TMD with Constant Stiffness (TMDCS) Vs. TMD with Variable
Stiffness (TMDVS)

With the introduction of the TMD control system (without variable stiffness), the dynamic
amplification factor of the structure is reduced, fulfilling the acceleration requirements pre-
viously stated. Yet, in the neighborhood of the TMD’s (TMDCS) natural frequency, the
amplification factor increases considerably (not as much as in the Suppressor case). This
phenomenon can be seen in Figure 7.9.

Considering the TMD with Constant Stiffness (TMDCS) designed in section 5.3.1 for a
3,03Hz natural frequency, one obtains the following graphical representation of the structure’s
amplification factor.

2,6447 3,03 3,19 3,8836
0

1

2

3

4

5

6

7

8

Frequency − f (Hz)

R
1=

X
1/

X
st

 

 

With TMD

Figure 7.9: Amplitude of the main system motion with the TMD (TMDCS) designed for a
3,03Hz natural frequency. Operating limits displayed (vertical lines).

The goal of this comparison is to apply a time history force function where the frequency
f changes from 3,03Hz (natural frequency of the structure without control system) to 3,19Hz
(new "upper" natural frequency of the structure with the TMD), and evaluate the behavior
of the two types of TMD devices (without and with variable stiffness).

Regarding the above mentioned statement, one divides the action in two phases:

1st phase (0<Time<30 sec) → f = 3,03Hz → Optimum stiffness: k2 = 147,1 kN/m

2nd phase (30<Time<60 sec) → f = 3,19Hz → Optimum stiffness: k2 = 163,1 kN/m

67



Chapter 7. Results of the Numerical Analysis

It is worth noting that both frequencies are within the operating limits (variable stiffness
domain) and also that the optimum stiffness values were based on the calculation method of
the equations (5.5) and (5.8).

Then, through the numerical analysis, one obtains the following acceleration-time graphics
for the TMD with Constant Stiffness (TMDCS) and for the TMD with Variable Stiffness
(TMDVS), respectively.
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Figure 7.10: Acceleration-time graphic
for the TMD with Constant Stiffness
(TMDCS). k2 = 147,1 kN/m is maintained
during the two phases.
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Figure 7.11: Acceleration-time graphic
for the TMD with Variable Stiffness
(TMDVS). In the 1st phase k2 = 147,1
kN/m and in the 2nd phase k2 =
163,1 kN/m.

The obtained results, for the structural acceleration, can be summarized from the following
observations:

• Regarding Figure 7.10 - TMD with Constant Stiffness (TMDCS):

1st phase → amax (f = 3, 03Hz) = 0, 1315m/s2

2nd phase → amax (f = 3, 19Hz) = 0, 168m/s2

• Regarding Figure 7.11 - TMD with Variable Stiffness (TMDVS):

1st phase → amax (f = 3, 03Hz) = 0, 1315m/s2

2nd phase → amax (f = 3, 19Hz) = 0, 115m/s2

Considering the TMD with Constant Stiffness (TMDCS), when f changes from 3,03Hz to
3,19Hz, the TMD stiffness remains constant (k2 = 147,1 kN/m) and then, in the 2nd phase
(30<Time<60 sec) this device is no longer correctly tuned, leading to a slight increase of the
structural acceleration.

Considering the TMD with Variable Stiffness (TMDVS), when f changes from 3,03Hz
to 3,19Hz, the TMD stiffness increases from k2 = 147,1 kN/m to k2 = 163,1 kN/m staying
tuned and leading, this time, to a slight decrease of the structural acceleration.

Given the ability to change its stiffness, in the 2nd phase of the action, the TMD (TMDVS)
promotes an improvement in the reduction of the structural acceleration of 31.5% when com-
pared to the TMD (TMDCS).
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7.5 TMD Vs. Suppressor

Previously, it has been proven that the variable stiffness property provides significant benefits
to the action of both control systems (TMDVS and SVST). Now, in this section, a comparison
between those two control systems is performed and, to do so, a specific case where the
frequency changes from 5Hz to 3Hz (≈ resonant frequency) is considered.

Few conclusions about the action of both control systems, with variable stiffness, will also
be presented.

7.5.1 Tuned Mass Damper (TMDVS) Vs. Suppressor (SVST)

Applying a time history force function where the frequency f changes from 5Hz to 3Hz, one
can evaluate the behavior of the two types control systems (TMDVS) and (SVST).

Regarding the above mentioned statement, and considering a force applied during 10
seconds, one divides the action in two phases:

1st phase (0<Time<5 sec) → f = 5Hz

2nd phase (5<Time<10 sec) → f = 3Hz

Note: The STFT frequency tracking results for this action are reproduced in Figures 6.6
and 6.7.

Then, through the numerical analysis, one obtains the following acceleration-time graphics
for the Tuned Mass Damper (TMDVS) and the Suppressor (SVST) actions, respectively.
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Figure 7.12: Acceleration-time graphic for
the TMDVS action.
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Figure 7.13: Acceleration-time graphic for
the SVST action.

The obtained results, for the structural acceleration, can be summarized from the following
observations:

• Regarding Figure 7.12 - (TMDVS):

1st phase → amax (f = 5Hz) = 0, 044m/s2

2nd phase → amax (f = 3Hz) = 0, 148m/s2
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Chapter 7. Results of the Numerical Analysis

• Regarding Figure 7.13 - (SVST):

1st phase → amax (f = 5Hz) = 0, 045m/s2

2nd phase → amax (f = 3Hz) = 0, 105m/s2

It should be noted that, given the ability to change their stiffness, both control systems
offer good results, showing an adequate reduction of the structural acceleration.

In the 1st phase of the action, as the excitation frequency is relatively high, the structural
acceleration presents itself moderate and then, both control systems do not have a major
influence.

In the 2nd phase of the action, when the excitation frequency becomes close to the natural
frequency of the structure, the Suppressor (SVST) promotes an improvement in the reduction
of the structural acceleration of about 29% when compared with the TMD (TMDVS). The
improvement increases as the control system’s action extends itself over time.

Although the Suppressor (SVST) is able to take the maximum advantage of the SMA’s
usage (regarding their capacity to change their stiffness), if a failure in the tuning process
occurs, the opposite effect may be triggered, exponentially increasing the structural acceler-
ation. In the TMD (TMDVS) case, the improvement achieved may not be so sharp, but the
control system features the redundancy property i.e. if something in the tuning process fails,
it does not cause major problems, giving it an advantage over the Suppressor (SVST).

7.6 TMD and Suppressor - STFT algorithm in the Output
response signal

In the course of this dissertation, one considers the importance of the development and pre-
sentation of a single numerical model, which brings together all the scripts mentioned in
section 6.4.1, computing the STFT frequency tracking algorithm directly on the structural
response, in real time, as it should be.

This section presents several comparisons between the numerical model (STFT - Input
force signal) described in section 6.4.1 and the new single model (STFT - Output response
signal), in order to show the abilities and disabilities of this last one.

To do so, the same time history force function defined in section 7.5.1, is applied.
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Figure 7.14: Sinusoidal force where the frequency changes from 5 Hz to 3 Hz.
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7.6. TMD and Suppressor - STFT algorithm in the Output response signal

7.6.1 Suppressor (SVST)

By applying the sinusoidal force displayed in Figure 7.14 to the case study structure and
reproducing its behavior through the single numerical model, one obtains the following results.

With the introduction of the Suppressor in the system, it will change the way the main
system behaves. Apart from reducing the structural vibration, this one will also change,
somehow, the way in which the structure vibrates.
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Figure 7.15: Short-time Fourier transform spectrum - Output response signal of the structure
with SVST.

Through the observation of the Figure’s 7.15 spectrum, some imperfections in the frequency-
time domain can be highlighted, especially when compared with the spectrum from Figure 6.8.

Even with these imperfections, a correct major transition from 5 Hz to 3 Hz frequency
can be easily seen.

Then, through the numerical analysis performed with the previously mentioned single nu-
merical model, one obtains the following acceleration-time graphic for the Suppressor (SVST)
action:
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Figure 7.16: Acceleration-time graphic for the SVST action - STFT in the Output response
signal.
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Chapter 7. Results of the Numerical Analysis

Regarding Figure’s 7.16 acceleration-time graphic, one obtains the following results:

1st phase → amax (f = 5Hz) = 0, 046m/s2

2nd phase → amax (f = 3Hz) = 0, 270m/s2

Now looking at Figure’s 7.13 graphic, where the STFT frequency tracking algorithm was
applied in the Input signal (force) and comparing it with the one obtained in the above
Figure 7.16, some similarities and differences can be found.

In general, the structural behavior, presents himself similar in both graphics. Regarding
the acceleration values, it is possible to observe that in the Figure’s 7.16 case, the structural
acceleration values are slightly higher (especially in the 2nd phase). The appearance of more
severe acceleration peaks, triggered by the Suppressor’s movement influence in the system,
could be the basis of the previous statement. This effect is softened over time.

Even with this slightly "more onerous" behavior, reproduced by the single numerical
model with the STFT frequency tracking algorithm applied in the Output response signal,
the Suppressor (SVST) action presents itself extremely effective, maintaining the structural
acceleration far beneath the recommended limits.

7.6.2 Tuned Mass Damper (TMDVS)

Analyzing the same situation (as the above section 7.6.1), one reproduces the behavior of
the structure with TMDVS, through the single numerical model with the STFT frequency
tracking algorithm applied in the Output response signal.

With the introduction of the TMD on the main system, it will also change the way
the main system behaves (as in the Suppressor case). Apart from reducing the structural
vibration, this one will also change, the way in which the structure vibrates. Now considering
Figure’s 7.17 spectrum, one can highlight some imperfections in the frequency-time domain,
especially when compared to the spectrum from Figure 6.8.
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Figure 7.17: Short-time Fourier transform
spectrum - Output response signal of the
structure with TMDVS.
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Although it presents these slight differences from Figure 6.8, the spectrum of Figure 7.17
displays a more perfect frequency transition (from 5 Hz to 3 Hz) than the one in Figure 7.15.

The aforementioned statement is confirmed by the Figure 7.18 frequency tracking diagram,
where the vibration frequency of the structure is relatively well defined over time, approaching
the diagram presented Figure 6.9.

This improvement is due to the fact that, unlike the Suppressor, the TMD comprises a
built-in damper, allowing it to have a more sustained action.

Then, through the analysis performed with the previously mentioned "single numerical
model", one obtains the following acceleration-time graphic for the Tuned Mass Damper
(TMDVS) action:
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Figure 7.19: Acceleration-time graphic for the TMDVS action - STFT in the Output response
signal.

Regarding Figure’s 7.19 acceleration-time graphic, one obtains the following results:

1st phase → amax (f = 5Hz) = 0, 044m/s2

2nd phase → amax (f = 3Hz) = 0, 180m/s2

Comparing the graphic from Figure 7.19, with the one obtained in Figure 7.12 (with STFT
algorithm in the Input force signal), one can conclude that, in general, the structural behavior
presents himself similar in both cases.

Regarding the acceleration values, it is possible to observe that in Figure 7.19, the maxi-
mum structural acceleration value is slightly higher (in the 2nd phase). Once again, this effect
may be caused by the presence of the 2nd Degree of Freedom (TMDVS) in the system, which
causes changes in the way the structure moves and consequently those slightly changes in the
vibration frequency of the system (see Figure 7.18).

Even with this slightly "more onerous" behavior, reproduced by the single numerical
model with the STFT frequency tracking algorithm applied in the Output response signal,
the Tuned Mass Damper (TMDVS) action also presents itself extremely effective, maintaining
the structural acceleration far beneath the recommended limits.
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Chapter 8

Summary, Conclusions and Future
Work

This chapter presents the conclusions of the work developed in this document. Some possible
future work of interest to the field of study, is also mentioned.

8.1 Summary and Conclusions

Currently, the development of new guidelines imposing harder service limitations to structures
has been growing, and so does the need to explore new techniques that allow structures to
comply with these guidelines, fulfilling all the necessary requirements and allowing them to
provide a smooth operation. In order to do this, new materials with different and revealing
characteristics are continuously studied in order to be applied in civil engineering problems,
as well as in other fields of engineering.

Regarding this dissertation main purpose of designing a vibration control system (TMD
type) which comprises the variable stiffness property and takes into account the possibility
to use those new materials, one considered the hypothesis of performing a symbiosis between
these two subjects.

Then, this dissertation presented a study carried out on Shape Memory Alloys (SMAs),
emphasizing their ability to vary their mechanical properties, such as the modulus of elastic-
ity (E), knowing that they are temperature sensitive materials. This ability derives from a
crystallographic phase transformation that occurs in SMA materials called martensitic trans-
formation. Martensitic transformation is highly dependent of stress and temperature and
allows the occurrence of a transition between a high energy phase (austenite) and a low
energy phase (martensite), giving birth to these materials remarkable properties.

The SMA material was then applied in two vibration control systems, already studied
in the literature (Suppressor and Tuned Mass Damper), changing their main features and
increasing their operating range.
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Chapter 8. Summary, Conclusions and Future Work

Choosing FLEXINOL R© as the specific NiTi shape memory alloy studied in this section,
an experimental program, including temperature controlled tensile tests, was conducted in
order to perform the Young Modulus mapping of this material.

These experimental tests comprised an exhaustive analysis of a FLEXINOL R© sample
providing a valuable insight on the main variables influencing this material’s Young Modulus
variability. It is also noteworthy that the experimental device developed in section 3, may be
considered as a small scale prototype of the ATMDs operation basis, mentioned in this thesis.

After discussing the theoretical background concerning constitutive models for SMAs, a
numerical model, coupling the mechanical and kinetic laws, was also developed. This model
was based on a differential scanning calorimetry (DSC) test performed in [32].

The good performance of the numerical model was confirmed by comparing the numerical
simulations with the experimental obtained data and the literature results. Regarding the
literature results, one can conclude that the data obtained through both numerical and ex-
perimental approaches is highly representative of the one-way transformation, only differing
at the level of the alloy’s upper and lower elastic modulus limit values obtained. Afterwards,
comparing the numerical data with the experimental one, it was possible to conclude that,
despite some differences in the exponential growth behavior of the elastic modulus, both ap-
proaches present similar results, providing a trusted mapping of the FLEXINOL R© elastic
modulus as function of temperature.

Considering the alloys upper and lower elastic modulus limit values, defined in the FLEX-
INOL R© actuator wires technical report [8], which increased the range of the E values covered
by the transformation, one has obtained the stiffness-temperature relation, presented in the
Appendix D. This relation was further used for the design of the vibration control systems.

Regarding the control systems studied in this document - initially the design models of
both systems (Suppressor and TMD) were introduced, followed by a study carried out on the
implementation of the "variable stiffness" property.

As mentioned before, this property comes from the use of the FLEXINOL R© material in
the "spring" component of each control system. As it happens in the material, the control
systems are also subjected to some predefined operating limits which are directly related with
the SMA alloys modulus of elasticity limits. These operating limits are mainly felt in the
"spring" stiffness boundaries and consequently affect the range of frequencies of the vibration
controller action. Although not critical, this constraint has been mitigated especially in the
Suppressor case, when the implementation of the so-called "transition stiffness" was carried
out.

In order to correctly tune the control systems, a frequency tracking algorithm, based
on the implementation of the short-time-fourier-transforms (STFT) was developed. This
algorithm, computed in the MATLAB (The Mathworks, 2014) software, has the peculiarity
of being able to find the vibration frequencies of a specific signal in real time. In order to
test the implementation of the two vibration control systems in concern, one as computed a
numerical model that performs a temporal analysis of the behavior of a two degree of freedom
(TDOF) system. This numerical model computes the acceleration, velocity and displacement
of both degrees of freedom (structure and vibration control device) when the primary DOF
is subjected to a certain harmonic force.

Thereby, using the aforementioned numerical model, the two control systems with variable
stiffness were applied to this thesis case study (footbridge described in section 5.2), and the
results, regarding its behavior, were obtained.
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8.1. Summary and Conclusions

Once performed the numerical analysis of the structural behavior, comprising both control
systems, it was possible to draw some conclusions:

• Regarding section 7.2 case, for a specific harmonic action (exciting the resonance ef-
fect), the structure without any vibration control system, achieves a maximum vertical
acceleration of 3,5 m/s2 which is clearly beyond the 0,7 m/s2 acceleration limit defined
in the literature.

For the same action, with the implementation of the Suppressor control system the
maximum vertical acceleration value decreases to 0,107 m/s2. With the implementation
of the TMD control system, the maximum vertical acceleration achieves values in the
order of 0,1315 m/s2.

According to these results, the vibration control effects can be rather important, amount-
ing up to a 96% percentage of improvement in both Suppressor and TMD case.

• Regarding the importance of the "variable stiffness" property, section 7.3.1 shown that,
in the worst case scenario (regarding the excitation frequency), a Suppressor with vari-
able stiffness can provide up to a 96% of improvement when compared with a "constant
stiffness" one.

Section 7.4.1 shown that a TMD with variable stiffness can provide up to a 31,5% of
improvement when compared with a "constant stiffness" one, subjected once again to
the worst case scenario.

• Now considering the final numerical model developed, where the STFT algorithm is
directly applied to the structural response, one may withdraw some important conclu-
sions.

Although theoretically the Suppressor with variable stiffness (SVST) present higher
efficacy in the vibration control, one should note that this effect only happens for a
correct tuning in real time, without any misalignments. Thus, if a failure in the tuning
process occurs, the opposite effect might be triggered and the structural acceleration
could possibly increase exponentially.

In the TMD (TMDVS) case, the improvement achieved may not always be so sharp, but
the control system features the redundancy property i.e. if something in the tuning pro-
cess fails, it does not cause major problems, giving it an advantage over the Suppressor
(SVST).

The numerical tests performed with the developed models showed that the vibration con-
trol mechanism investigated is very efficient for harmonic excitations, achieving substantial
reductions in the structural acceleration and displacement, especially for excitation frequen-
cies near the natural frequencies of the structure.

Some examples of this type of dynamic actions, in civil engineering structures, are the
already mentioned action of the pedestrians walking rate or even the wind action, which, in
some cases, may jeopardize the safety of the structure and/or the comfort of its occupants.
Thus, a vibration control mechanism such as the one investigated in this thesis, would actively
control the accelerations in the structures using the temperature control of the SMA actuators
integrated on it.
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8.2 Future Works

In general, the proposed objectives for this dissertation were fulfilled. However, even though
the studies carried out in this document successfully yielded a different vibration control
system, at least for academic pursuits, there are several aspects of improvement, which can
be further studied through an additional research.

Regarding the SMA study:

• Taking into account the difficulties in the real time tuning of the control systems de-
scribed in this document, it would be important to produce a more complete model,
able to accurately predict the SMAs behavior.

To do so, one might consider the studies carried out by D. Grandi, M. Maraldi and L.
Molari [11] [18], where a macroscale phase-field model for shape memory alloys with
non-isothermal effects is developed.

The above mentioned model relies on a Time dependent Ginzburg-Landau free energy
model, defined as function of macroscopically measurable quantities, accounting for ther-
mal effects. Based on thermodynamic principles, various relevant physical aspects are
established, in particular, the influence of the strain rate and of the ambient conditions
on the response of the model.

Considering the aforementioned, it would be possible to produce a "3-dimensional"
model, comprising the variation of the SMAs elastic modulus as function of real time
temperature and/or stress variations.

Regarding the Vibration Control Systems in concern:

• In order to experimentally evaluate the studies carried in this dissertation, it would be
really interesting to develop a prototype of the vibration control systems concerned.
This prototype would then be implemented and tested in a reduced scale model of the
section’s 5.2 case study structure.

• The main drawback of the presented control systems comes from their, real time, tuning
difficulties. Therefore, one would have to implement a specific sensor in the system,
measuring the structural acceleration in real time, computing the recorded data into
the developed control algorithm.

• Being an active control system, electrically driven by SMA actuators, a movement sensor
with specific requirements would need to be implemented in the structure in order to
trigger the control system’s action, only when strictly necessary.

To do so, new requirements of fast response, lower power consumption and other promis-
ing alternatives should be further studied.
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Appendix A

Experimental approach - SMA wire
Young Modulus Mapping

This Appendix presents a more detailed analysis of the results of the experimental test de-
scribed in section 3.3

A1



Appendix A. Experimental approach - SMA wire Young Modulus Mapping

Table A.1: Test Temperature: 20oC - experimental results
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Figure A.1: Stress-Strain curve for 20oC

Table A.2: Test Temperature: 30oC - experimental results
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Figure A.2: Stress-Strain curve for 30oC
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Appendix A. Experimental approach - SMA wire Young Modulus Mapping

Table A.3: Test Temperature: 40oC - experimental results
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Figure A.3: Stress-Strain curve for 40oC

Table A.4: Test Temperature: 50oC - experimental results
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Figure A.4: Stress-Strain curve for 50oC
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Appendix A. Experimental approach - SMA wire Young Modulus Mapping

Table A.5: Test Temperature: 60oC - experimental results
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Figure A.5: Stress-Strain curve for 60oC

Table A.6: Test Temperature: 70oC - experimental results
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Figure A.6: Stress-Strain curve for 70oC
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Appendix A. Experimental approach - SMA wire Young Modulus Mapping

Table A.7: Test Temperature: 80oC - experimental results
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Figure A.7: Stress-Strain curve for 80oC

Table A.8: Test Temperature: 90oC - experimental results
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Figure A.8: Stress-Strain curve for 90oC
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Appendix A. Experimental approach - SMA wire Young Modulus Mapping

Table A.9: Test Temperature: 100oC - experimental results
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Figure A.9: Stress-Strain curve for 100oC

Table A.10: Test Temperature: 110oC - experimental results

y	
  =	
  587,44x	
  +	
  43,339	
  

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

0	
   0,1	
   0,2	
   0,3	
   0,4	
   0,5	
   0,6	
  

St
re
ss
	
  (M

Pa
)	
  

Strain	
  (%)	
  	
  

Stress	
  VS	
  Strain	
  :	
  110ºC	
  

Experimental	
  

Trendline	
  

Figure A.10: Stress-Strain curve for 110oC
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Appendix B

Proportional-Integral-Derivative
(PID) Control Algorithm

This appendix describes the PID algorithm used in the experimental procedure of chapter 3.
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Appendix B. Proportional-Integral-Derivative (PID) Control Algorithm

The PID controller calculates the error between a variable value being measured and a
specific target value. Then, the controller seeks to minimize this error through a response
that depends on three parameters: P - proportional, I - integral and D - derivative.

• P, depends on the present error,

• I, dependes upon the accumulation of errors in the past,

• D, is a prediction of future errors.

The basic operating principle behind a PID controller is given by: Considering the data
recorded with a sensor (Input signal), obtain an Output signal capable of producing the
expected system’s response by adding a proportional, integral and derivative calculation in
real time.

According to the PID algorithm, the output response u(t) produced by the controller can
be mathematically represented by:

u(t) = Kp e(t) +Ki

∫ t

o
e(τ)dτ +Kd

d e(t)

dt
(B.1)

Where:

• Kp - proportional gain (tuning parameter);

• Ki - integral gain (tuning parameter);

• Kd - derivative gain (tuning parameter);

• e - error;

• t - instantaneous time;

• τ - variable of integration (taking values between 0 and the present time).

Figure B.1: Proportional-Integral-Derivative (PID) Controller layout.

During the experimental test, the PID algorithm compares the value of the instantaneous
temperature of the wire (read by the thermocouple) with a target temperature value previously
set, calculating the error and consequently the response to be imposed to the system (through
the previously defined gains), in order to change the wire’s temperature. This process is
repeated sequentially until the desired temperature becomes reached.
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Appendix C

Numerical approach - SMA wire
Young Modulus Mapping

This Appendix presents a more detailed analysis of the results of the numerical approach
described in section 3.4
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Appendix C. Numerical approach - SMA wire Young Modulus Mapping

.Table C.1: Heat Flux
values from DSC curve
(M → A transition).

Figure C.1: Heat Flux - PlotDigitizer analisys.
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Figure C.2: Heat Flux [mW/mg].

Table C.2: Baseline-
corrected-unsmeared
Heat Flux values.
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Figure C.3: Unsmeared Heat Flux of theM → A transformation.
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Appendix C. Numerical approach - SMA wire Young Modulus Mapping

.

Table C.3: Austen-
ite phase fraction (DSC
analysis). Table C.4: Fit parameters.

Figure C.4: Transformation rate.

-­‐0,2	
  

0	
  

0,2	
  

0,4	
  

0,6	
  

0,8	
  

1	
  

1,2	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
  

Au
st
en

ite
	
  P
ha

se
	
  F
ra
c/
on

	
  f(
T)
	
  (%

)	
  

Temperature	
  T	
  (ºC)	
  

Figure C.5: Austenite phase fraction evolution (DSC analysis).

Table C.5: Austenite
phase fraction (Equa-
tion (2.3)).
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Figure C.6: Austenite phase fraction (Equation (2.3)).
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Appendix C. Numerical approach - SMA wire Young Modulus Mapping
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Figure C.7: Suitability of equation (2.3) to the graphical data of Figure 3.11. Figures C.5
and C.6 overlay.
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Appendix C. Numerical approach - SMA wire Young Modulus Mapping

.Table C.6: Voight
scheme (E vs. T ). Table C.7: Young Modulus in Martensite/Austenite phase.
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Figure C.8: Voight scheme - Modulus of elasticity as function of
temperature.

Table C.8: Reuss
scheme (E vs. T ). Table C.9: Young Modulus in Martensite/Austenite phase.
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Figure C.9: Reuss scheme - Modulus of elasticity as function of
temperature.
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Appendix C. Numerical approach - SMA wire Young Modulus Mapping
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Figure C.10: Experimental approach Vs. Numerical approach - Young modulus of the SMA
wire.
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Appendix D

Design of SMA Wires Under Constant
Force

This Appendix presents all the numerical data of section 5.4 and section 5.5. It also displays
a stiffness-temperature mapping of the SMA element, used in the vibration control system.

D1



Appendix D. Design of SMA Wires Under Constant Force

Table D.1: Design of Shape Memory Alloy (SMA) actuators.

Table D.2: Stress influence in the wire’s strain/stiffness.

Table D.3: Temperature influence in the wire’s strain/stiffness.

• Suppressor:

Table D.4: Suppressor operating limits - Numerical values.

Table D.5: Suppressor operating limits - Considered values.

• TMD:

Table D.6: TMD operating limits - Numerical values.

Table D.7: TMD operating limits - Considered values.

D2



Appendix D. Design of SMA Wires Under Constant Force

• SMA E and K Mapping considering new EM and EA values - Reuss Model:

Table D.8: Reuss
scheme (E vs. T ). Table D.9: Young Modulus in Martensite/Austenite phase.
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Figure D.1: Reuss scheme - Modulus of elasticity as function of
temperature.

Table D.10: SMA Stiffness.

100	
  

120	
  

140	
  

160	
  

180	
  

200	
  

220	
  

240	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
  

S"
ffn

es
s,
	
  K
	
  (k

N
/m

)	
  

Temperature,	
  T	
  (ºC)	
  

Figure D.2: Stiffness mapping as function of tempera-
ture.
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Appendix E

Short-time Fourier transforms -
MATLAB implementation

This appendix describes the MATLAB implementation of the simple STFT frequency-tracker
model, mentioned in section 6.3.2.
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Appendix E. Short-time Fourier transforms - MATLAB implementation

Throughout the following function, the STFT frequency-tracker model returns the frequency-
time spectrogram of a specific signal:

[S,F,T,ps] = spectrogram(x,window,noverlap,nfft,fs) (E.1)

where,

Output Arguments:

• S - Short-time Fourier transform, returned as a matrix. Time increases across the
columns of S and frequency increases down the rows, starting from zero.

• F - Cyclical frequencies, returned as a vector. F has a length equal to the number of
rows of S.

• T - Time instants, returned as a vector. The time values in T correspond to the midpoint
of each section.

• ps - Power spectral density (PSD) or power spectrum, returned as a matrix.

Input Arguments:

• x - Input signal, specified as a row or column vector.

• window - Window, specified as an integer or as a row or column vector. Use window
to divide the signal into sections.

• noverlap - Number of overlapped samples, specified as a positive integer. If window is
a vector, then noverlap must be smaller than the length of window.

• nfft - Number of DFT (Discrete Fourier transform) points, specified as a positive integer
scalar. This parameter must be large enough to provide good frequency-time results,
but if too large, it will introduce high computational effort.

• fs - Sample rate, specified as a positive scalar. The sample rate is the number of samples
per unit time. If the unit of time is seconds, then the sampling frequency is in Hz.
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Appendix F

Vibration Control Algorithm

This appendix displays a representative diagram of the final control algorithm for both control
systems.
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Appendix F. Vibration Control Algorithm

• Suppressor SVST - Vibration control algorithm:

Figure F.1: Suppressor Vibration control algorithm.
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Appendix F. Vibration Control Algorithm

• Tuned mass damper TMDVS - Vibration control algorithm:

Figure F.2: TMD Vibration control algorithm.
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