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Abstract 

In modern chemical industry, the separation of solvent mixtures into their pure 

compounds is mandatory not only to prevent their accumulation, but also for that their 

reusability may assure a sustainable overall process. However, the presence of azeotropes 

or close boiling point mixtures constitute one of the most challenging tasks in industrial 

processes in the separation of solvent mixtures, since their separation by simple distillation 

is basically impossible. The processes designed for the efficient separation of azeotropic 

mixtures usually require the use of a separation agent. 

Separation agents can range from an organic solvent, to an inorganic salt (IS), or even 

combinations of both. More recently, ionic liquids (ILs), deep eutectic solvents (DES) and 

hyperbranched polymers have also been successfully tested. ISs are known for their high 

separation efficiencies, due to their ionic character, and ILs for their liquid state and 

negligible vapour pressures. So, the next natural step is to combine the advantages of both 

these classes of compounds. 

This thesis explores the separation of azeotropic mixtures using a combination of an IL 

and an IS as separation agent. The work presented herein starts by studying different IL-IS 

mixtures in terms of their physical and chemical properties, which allowed the determination 

of their ionicity or ionic character (Chapter 2 and 3). Afterwards, the studied IL-IS mixtures 

are tested in the separation of one specific azeotropic mixture, n-heptane + ethanol that will 

serve as test model (proof-of-concept) for the application of IL-IS mixtures as separation 

agents for breaking azeotropes (Chapter 4 and 5). In addition, deep eutectic solvents (DES), 

viewed as greener analogues of ILs, are also tested as potential azeotrope breakers 

(Chapter 6). 

The obtained results enable the establishment of relationships between the 

thermophysical properties of IL-IS mixtures and their ionicity, and about the chemical 

structures of the ILs and ISs required to produce mixtures with increased ionicity. 

Furthermore, the work presented in this thesis shows that IL-IS mixtures can surpass neat 

ILs as efficient separation agents, allowing the establishment of a link between ionicity and 

extraction efficiency in the separation of azeotropic mixtures. 
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Resumo 

Actualmente, a separação de misturas de solventes é um processo crucial para 

qualquer indústria química, não só para evitar a acumulação dos mesmo mas também 

porque a reutilização de solventes purificados pode assegurar a sustentabilidade global de 

processos. No entanto, muitos dos compostos encontrados nas misturas de solventes 

industriais apresentam pontos azeotrópicos ou apresentam pontos de ebulição muito 

próximos entre si, dificultando a separação destas misturas, uma vez que os processos de 

destilação convencionais não são capazes de as separarem. Assim, novos processos 

foram desenvolvidos para a separação destas misturas “especiais”, onde a adição de um 

agente de separação é necessário. 

Os agentes de separação mais comuns são solventes orgânicos, sais inorgânicos 

(SIs) ou combinações entre ambos. Recentemente, líquidos iónicos (LIs), solventes 

eutécticos e polímeros hiper-ramificados também tem sido testados a nível laboratorial. Os 

SIs, devido ao seu carácter iónico, são extremamente eficazes na separação de misturas 

azeotrópicas, enquanto que os LIs têm sido testados pelo facto se serem líquidos e não 

apresentarem pressão de vapor à pressão atmosférica. Assim, a combinação das 

vantagens oferecidas por ambos estes compostos, SIs e LIs, apresenta-se como uma 

estratégia natural a seguir. 

Nesta tese, estudou-se a separação de misturas azeotrópicas utilizando um mistura 

de um LI com um SI como agente de separação. Inicialmente, as propriedades físicas e 

químicas de diferentes misturas de LIs com SIs são estudadas, e posteriormente foram 

efectuados estudos sobre a sua ionicidade (Capítulos 2 e 3). De forma a estabelecer uma 

ligação entre a ionicidade (carácter iónico) das misturas de LI-SI e a sua eficiência na 

separação de misturas azeotrópicas, as misturas de LI-SI com maior potencial foram 

testadas na separação de misturas de n-heptano e etanol (Capítulos 4 e 5). Esta mistura 

azeotrópica é usada como modelo, de forma a mostrar o potencial da aplicação de 

combinações de LIs e SIs como agentes de separação. Além disso, foram também 

testados solventes eutécticos, vistos como análogos mais verdes dos LIs, como potenciais 

agentes de separação para a mesma mistura azeotrópica (Capítulo 6). 
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Os resultados obtidos nesta tese permitem estabelecer relações entre as 

propriedades termofísicas das misturas de LI-SI e sua ionicidade, assim como sobre as 

estruturas químicas dos LIs e SIs necessárias para produzir misturas com maior ionicidade. 

Adicionalmente, o trabalho apresentado nesta tese mostra ainda que as misturas de LI-SI 

podem ultrapassar a performance dos LIs puros como agentes de separação, permitindo o 

estabelecimento de uma ponte entre a ionicidade e a eficiência de separação na separação 

de misturas azeotrópicas. 
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1. General context 

Since early civilizations, different separation processes have been developed and used 

in the whole world. They allow us to produce some of the most common products that we 

use today, such as the salt that we use in our kitchens, the fuel that we put in our cars, the 

coffee we drink after lunch or even the casual beer we drink after work. 

Nowadays, separation processes are essential in the modern industrial economy, 

since any industrial production of chemicals requires numerous purification steps, the reuse 

of solvents and the disposal of by-products and / or unreacted raw materials. Each 

separation process is based on a specific principle. Evaporation, condensation and 

distillation all involve a liquid and a gas phase, while the solvent extraction involves two 

liquid phases. Crystallization, drying and leaching involve a liquid and a solid phase. 

Sorption processes can involve gas, liquid or solid phases. All of these processes, have as 

ground principles the mass transport and the equilibrium of phases.1 

The separation of a homogeneous liquid mixture into its compounds is an important 

step in many industrial processes, where distillation is without doubt one of the most 

important processes used. Indeed, it is estimated that only in USA, there are approximately 

40 000 of distillation columns working, which are accountable for nearly 7 % of the total 

energy consumed in the country. The distillation is therefore the dominating separation 

process, due to its high efficiency, accounting for more applications than all the others 

techniques. However, it is known that distillation processes are the most costly in terms of 

energy, accounting for more than 95 % of the total energy used in separations, in industries 

worldwide.1, 2 

The employment of efficient separation techniques in the petrochemical, chemistry and 

pharmaceutical industries is of utmost importance not only for the development of products 

but also in the recovery / reuse of solvents or other secondary compounds, allowing the 

reduction of environmental problems and, at the same time, leading to economic 

advantages. 
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2. Azeotropic mixtures 

In many areas of industry, the recovery and reuse of organic solvents is generally 

practiced because of increased solvent costs and potential solvent shortages, but mainly 

because their disposal often results in violation of air, water or land

Therefore, the separation of solvent mixtures into their pure compounds is mandatory

preventing their accumulation, allowing their reuse and

overall process. Nevertheless, in some cases, 

point mixtures poses difficulties in their recycling, which in turn can lead to the accumulation 

of hazardous solvent mixtures. 

Azeotropic mixtures are non-ideal mixtures that do not follow the Raoult law

Raoult's law states that in an ideal mixture of two liquids, A and B, the vapour pressure of 

each one of the compounds (pi) is related to its own molar fraction (

pressure of the pure compound (pi*) as shown by equation 1:

 

∗×= iii pxp  

 

If this mixture is heated until the boiling temperature is reached, the compositions of 

the liquid and gas phases in equilibrium will be different

higher content of the more volatile compound (Figure 1

 

Figure 1 | Temperature - composition phase diagram of 

ideal behaviour, b) positive deviation from the Raoult's law (minimum

4 

recovery and reuse of organic solvents is generally 

practiced because of increased solvent costs and potential solvent shortages, but mainly 

disposal often results in violation of air, water or land-pollution regulations. 

separation of solvent mixtures into their pure compounds is mandatory, 

ir reuse and assuring the sustainability of the 

process. Nevertheless, in some cases, the presence of azeotropic or close boiling 

point mixtures poses difficulties in their recycling, which in turn can lead to the accumulation 

ideal mixtures that do not follow the Raoult law. The 

deal mixture of two liquids, A and B, the vapour pressure of 

) is related to its own molar fraction (xi) and to the vapour 

as shown by equation 1: 

(1) 

is heated until the boiling temperature is reached, the compositions of 

the liquid and gas phases in equilibrium will be different, since the gas phase will have 

(Figure 1a).3 

 

hase diagram of a mixture of two liquids A and B that present: a) 

ideal behaviour, b) positive deviation from the Raoult's law (minimum-boiling azeotrope) and c) negative 
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deviation from the Raoult's law (maximum-boiling azeotrope). 

 

In the case of azeotropic mixtures, the establishment of interactions between the 

molecules of liquid A and the molecules of liquid B, will lead to the formation of an 

azeotropic point, causing a deviation from the Raoult's law. 

If the deviation is positive then the interactions between A and B molecules are 

unfavourable, meaning that the attraction between identical molecules (A-A and B-B) is 

stronger than between different molecules (A-B) and hence the (T, x) phase diagrams show 

a minimum, indicating that the mixture is destabilized relative to the ideal solution (Figure 

1b). On the other hand, a negative deviation means that the interactions between the A and 

B molecules are favourable, i.e., the attraction between different molecules (A-B) is the 

strongest, causing a maximum in the (T, x) phase diagram of the mixture (Figure 1c).3 

In the azeotropic point, the compositions of both phases of the mixture, liquid and gas, 

are equal, allowing the mixture to boil at a constant temperature, making it impossible to 

separate by a simple distillation. Because of this fact, azeotropes are sometimes mistaken 

for single components. Nonetheless, in the case of azeotropes the variation of pressure 

changes not only the boiling temperature but also the composition of the mixture, and this 

easily distinguishes it from a pure component. 

Besides being classified by the positive or negative deviation from the Raoult's law, 

azeotropes can also be divided into two groups: homoazeotropes or heteroazotropes. If in 

the equilibrium temperature the liquid mixture is homogeneous, the azeotrope is classified 

as a homoazeotrope. However, if in the equilibrium the vapour phase coexists with the liquid 

phases, then we are in the presence of a heteroazeotrope. Heteroazeotropes usually result 

from mixtures of liquid with very small solubility in each other, such as water with benzene 

or water with dichloromethane.4 

The most famous example of a homoazeotropic mixture is that formed by ethanol and 

water. At atmospheric pressure this mixture will boil at a temperature of 78.2 ºC and the 

composition obtained in both liquid and gas phases will be 96 wt% of ethanol and 4 wt% of 

water. This example represents also positive azeotropy, meaning that it is a minimum-

boiling azeotrope. Indeed, more than 90 % of the know azeotropes display the same 
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behaviour, where 80 % of these are homoazeotropic. Common examples of negative 

azeotropy are mixtures of chloroform + acetone or nitric acid + water. 

In this thesis, the homoazeotrope of n-heptane + ethanol is studied. The azeotropic 

point for this mixture happens at a composition of 48 wt% (0.3325 in mole fraction) of 

ethanol and 52 wt% (0.6675 in mole fraction) of n-heptane and it boils at 72 ºC, thus 

presenting a minimum in the phase diagram.5 This azeotropic mixture is formed in the 

production of oxygenated additives for gasoline6 and its separation gains industrial 

relevance because of the importance of ethanol as an attractive alternative fuel, since it can 

be used both as a fuel and as a gasoline oxygenated additive. 

 

3. Separation technologies 

Since azeotropic mixtures are impossible to separate by simple distillation, other 

techniques that allow the breaking of the azeotropic point, and hence the separation of the 

compounds in the mixture, have been developed. The separation of these mixtures requires 

the disruption of the chemical interactions between the compounds and alteration of the 

phase equilibrium. This effect can be obtained by pressure variation or by the introduction of 

another compound in the mixture, a separation agent, which promotes the separation of the 

components in the azeotropic mixture.7, 8 

The most used technique is enhanced distillation that covers three different types of 

distillation, namely the azeotropic distillation, the extractive distillation and the pressure 

swing distillation. Other techniques rely on the use of membranes for the separation, such 

as pervaporation or membrane distillation. In addition, liquid-liquid extraction has also 

emerged since this technique can be viewed as a more economical and environmentally 

beneficial option.7, 8 
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3.1. Extractive distillation 

Extractive distillation is the most used technique in the industry for the separation of 

azeotropic or close boiling point mixtures, due to its efficiency and versatility, especially in 

the petrochemical industry. This technique is commonly used in the separation of mixtures 

of hydrocarbons with close boiling point, such as n-butane (C4H10), n-pentane (C5H12) and n-

hexane (C6H14) among others; and azeotropic mixtures of alcohol + water, acetic acid + 

water, acetone + methanol, methanol + methyl acetate, ethanol + ethyl acetate and acetone 

+ ethyl ether to name a few examples.9 

In order for this technique to be efficient in the separation of azeotropic or close boiling 

point mixtures, it requires the addition of a separation agent to the mixture. This separating 

agent, also known as entrainer, interacts with the compounds of the mixture and alters their 

relative volatility allowing their total separation. 

The feasibility of an entrainer can be assessed by the determination of two 

parameters, the relative volatility (α) and the selectivity (S). The first parameter can be 

calculated from the vapour + liquid equilibria data as shown in the following equation: 
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where x is mole fraction in the liquid phase, y is mole fraction in the vapour phase and 

γ is the activity coefficient. The selectivity of the entrainer is calculated by the change in the 

γi / γj ratio, since the ratio of pi* / pj* is constant for small temperature changes.9 

In azeotropic mixtures, α is equal to the unity and in close boiling point mixtures it is 

also very close to 1. Therefore, the most promising entrainers should have the highest 

relative volatility possible, as well as a high boiling point difference from the components to 

be separated, to facilitate its separation from the distillation products. Other parameters 

such as, corrosion, prices, sources, etc. should also be taken into consideration.1, 9 

In extractive distillation the entrainer doesn’t need to be vaporized and remains with 
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one of the components at the bottom of the distillation column, while the other is obtained 

pure at the top. For the separation of the entrainer from the remaining component a simple 

distillation is commonly used. In addition, this technique is known for its high efficiency and 

for the vast range of entrainers that can be used, from solid to liquid. On the downside, it 

requires high pressures or high temperatures and, thus, a tremendous amount of energy to 

obtain one fluid-phase system.9 

 

3.2. Azeotropic distillation 

The azeotropic distillation follows the same basic principles that of the extractive 

distillation, requiring two distillation columns for the separation, where the first serves as the 

main column for the separation while the second one is for the recovery of the entrainer. 

The main difference between the azeotropic and the extractive distillation is that the former 

requires the vaporization of all compounds, including the entrainer. Therefore, in this 

technique the energy consumption is much higher and the range of entrainers that can be 

used in smaller than in the extractive distillation.7, 8 

The majority of the entrainers used in azeotropic distillation are highly volatile when 

compared to the components of the azeotropic mixture, which allows the formers  to 

evaporate first, along with the lightest component of the mixture, to the top of the first 

column, leaving the heavier compound to be recovered at the bottom of the column. 

Afterwards, the entrainer and the lightest compound are fed to the second column where 

they are separated by a simple distillation. 

Due to the amount of energy required and the restrictions on the entrainers' selection, 

the azeotropic distillation is usually disfavoured over the extractive distillation. Nevertheless, 

because the entrainer comes out of the top in the first column, this technique produces 

products with higher degree of purity.7 

Common examples of azeotropic mixtures separated by azeotropic distillation are 

ethanol or isopropanol + water, formic acid + water and cyclohexane + benzene among 

others.7 



Introduction 

9 

 

3.3. Liquid-liquid extraction 

Liquid-liquid extraction (LLE) processes are known to be less energy demanding than 

any of the other processes used in the separation of azeotropic mixtures. This technique 

can be used at room temperature because it is based on the principle of the immiscibility 

between the different compounds present in the mixture, thus requiring the addition of a 

separation agent. In LLE processes, the separation agent (extraction solvent) interacts 

preferentially with one of the compounds of the azeotropic mixture, dissolving it and thus 

promoting a separation of phases, with one phase being composed by the most immiscible 

compound (diluent or inert) in the extraction solvent, the raffinate, and the other by the more 

miscible compound (solute) plus the extraction solvent, the extract.8 

Two crucial parameters widely used in the assessment of an extraction solvent 

performance are the distribution coefficient, β and the selectivity, S, which are defined as 

follows: 

 

I
j

II
j

j
x

x
β =  (3) 

 

jII
i

I
i β

x

x
S ×=  (4) 

 

where xi
I and xj

I are the mole fractions of the inert and the solute in the upper phase, 

respectively, and xi
II and xj

II are the mole fractions of the inert and the solute in the lower 

phase. The distribution coefficient is related to the solute-carrying capacity of the extraction 

solvent and it determines the amount of solvent required for the extraction process. The 

selectivity is related to the efficiency of the extraction solvent, indicating the ease of 

extraction of a solute from a diluent (inert). The ideal extraction solvent should have both 

high values of distribution coefficient and selectivity, since high selectivity values usually 

lead to fewer stages in the process and lesser amounts of inert residual in the extract, while 
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high distribution coefficient values correspond to a lower solvent flow rate, a smaller-

diameter column and lower operating costs.8 

Although LLE processes have the advantage of being low energy consumption 

process, they are usually a less efficient process than extractive or azeotropic distillation. 

Nevertheless, LLE is commonly used when distillation is impractical or too costly and 

becomes more suitable than the later when the relative volatility of the mixture falls between 

1 and 1.2.10 The most well-known examples of the feasibility of LLE for the separation of 

azeotropic mixture are in mixtures of aromatic + aliphatic hydrocarbons for the range of 20 

to 65 wt% of aromatic content,11 water + 2-butanone,10 and alcohols + aliphatic 

hydrocarbons, such as ethanol + n-heptane.8 

 

3.4. Other processes 

As mentioned before, the separation of azeotropic mixtures can also be accomplished 

even without the introduction of a separation agent to the mixture. This is the case when 

pressure swing distillation (PSD) processes are used. This technique takes advantage of 

the changes in the relative volatility of the liquids by changing the pressure of the mixture. 

For instance, when the operating pressure is increased, the azeotropic point shifts to lower 

composition values of the light component, promoting an increase in the relative volatility of 

the azeotropic mixture. This change in the azeotrope point is sufficient to allow the 

separation of the mixture without the need for a separating agent.7 

PSD processes take advantage over other processes, such as azeotropic or extractive 

distillation and liquid-liquid extraction, since they do not require an additional chemical 

compound to separate azeotropic mixtures. In addition, Hamad and Dunn12 showed that by 

using a PSD process in the separation of the azeotropic mixture of tetrahydrofuran (THF) + 

water, the energy requirements of the plant could be reduced by more than 60%, when 

global energy optimization strategies were applied.12 

Nevertheless, there are far more disadvantages to PSD processes than advantages, 

including higher complexity of the operation (requires more sophisticated automation and 
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more complex process control) and the lack of literature data on the phase behaviour of 

azeotropic mixtures at different pressures (experimental studies tend to be limited to 

atmospheric conditions), which limits the application of PSD processes in industry.7 

Another example of processes that do not require the addition of separation agent for 

the separation of azeotropic mixtures, are processes that use membrane technology, 

although the membrane itself could also be viewed as a separation agent. Membrane 

processes are regarded as "clean technology" since they are low energy demanding 

processes and do not use additional chemicals (extraction solvent or entrainer), but their 

main advantage is that the selectivity is independent of the vapour-liquid equilibria of the 

mixture. They are usually applied in the separation of alcohols + water, ketones + esters 

and aromatic + aliphatic azeotropic mixtures.7 However, membrane processes' suffer some 

drawbacks such as low permeate flux, increased processing costs, they are generally 

limited to moderate volumes (high prices for membrane modules for large capacities) and 

they have little flexibility to variations in the feed composition.13 

 

4. Separation agents 

In order to successfully separate azeotropic mixtures there two main factors that have 

to be considered. The first is the selection of the separation process and the second is the 

selection of the separation agent. Assuming that the separation process is determined, the 

most difficult task is to select a feasible separation agent that can assure an efficient and 

cost-effective separation of the mixture. Indeed, the choice of the separation agent is crucial 

for the design of a economical viable process. The selection of a the separation agent 

should always be adjusted to the of azeotropic mixture to be separated, taking into account 

some key characteristics such as, solubility of the separation agent on the components of 

the azeotropic mixture, efficiency and recover / regeneration capability, price and handling. 

Up to date, only two kinds of separation agents are used at the industrial level: the 

common volatile organic solvents and inorganic salts or combinations of both. Nevertheless, 

in the last decade other compounds such as ionic liquids, hyperbranched polymers and 
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even deep eutectic solvents have been tested at laboratorial level as potential separation 

agents for the separation of azeotropic mixtures. 

 

4.1. Organic solvents 

Organic solvents are the most widely separation agents used in industry for azeotropic 

mixtures. These compounds can be used in any type of azeotropic or extractive distillation 

processes as well as in liquid-liquid extraction. They are usually cheap, since most are 

produced from abundant commodities, such as oil. In addition, the fact that they are liquid 

poses minimal problems with dissolution, reuse and transport. Nevertheless, organic 

solvents usually have a very high solvent ratio, i.e., large quantity of solvent to feed mass 

ratio, which leads to higher energy consumption, adding to the fact that they are volatile and 

thus pose additional health and environment concerns. 

Common examples of organic solvents are polar compounds such as sulfolane, N-

methylpyrrolidone (NMP), N-formylmorpholine (NFM), ethylene glycols and propylene 

carbonate that are used in the separation of aromatic hydrocarbons like benzene, toluene, 

ethylbenzene and xylenes from C4 - C10 aliphatic hydrocarbons.11, 14 N,N-dimethylformamide 

(DMF) or acetonitrile (ACN) are used in the separation of C4 hydrocarbons and ethylene 

glycol and DMF in the separation of water + alcohols.9, 13 

 

4.2. Inorganic salts 

Inorganic salts (ISs) are known to be the most efficient separation agents for the 

azeotropic mixtures and in cases where their solubility is not a problem, they present major 

advantages over organic solvents. Since they are composed entirely by ions, ISs present a 

much higher ionic character (the Coulombic forces are much stronger) that allows for much 

large effects than organic solvents on the azeotropic mixture, leading to higher efficiency on 

the separation. In addition, comparing with organic solvents, smaller amount of ISs are 

required for the separation of an azeotropic mixture, resulting in higher production capacity 
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and lower energy consumption. Moreover, since ISs are not volatile their recovery can be 

performed by either full or partial drying, rather than by the subsequent distillation as in the 

case of organic solvents.13 However, when the solubility of the IS becomes an issue their 

disadvantages clearly exceed their advantages, limiting their application in industry. Adding 

to this fact, there are also problems associated with their reuse, storage, transport and in 

some cases even corrosion of the equipment due to extended exposure to the IS.7 

These type of separation agents are mostly used in extraction distillation processes 

(they cannot be used in azeotropic distillation) and for the separation of water from alcohols. 

Using a 70 / 30 mixture of potassium and sodium acetate, a process known as HIAG (Holz 

Industrie Acetien Geselleschaft), licensed by DEGUSSA and based on patents registered by 

Adolph Gorhan, separates water from ethanol, producing ethanol with a purity above 99.8 

%.15 Other ISs such as, calcium chloride, sodium chloride, aluminium chloride, potassium 

nitrate, copper (II) nitrate, among others have also proven to be effective in the separation of 

water + ethanol azeotrope mixture.13 In Japan, the Ishikawajima-Harima Heavy industries 

(IHI) company developed a process for the production of isopropanol from aqueous 

solutions using calcium chloride as the separation agent.13 

 

4.3. Ionic liquids 

Ionic liquids (ILs) have been one of the most studied classes of solvents in last 

decades. In a simplistic way, it was conventionally accepted that an IL was a salt that 

presented a melting point bellow a temperature of 100 ºC.16 Even though ILs can be 

regarded as a combination of two ions, a cation (usually organic) and a anion (organic or 

inorganic), they are more than simple liquid salts (Figure 2). Indeed, they present unique 

characteristics that give them advantages over volatile organic solvents in some 

applications. The asymmetry and charge dispersion between their cation and anion allow 

them to be liquid at room temperatures, and the fact that they are constituted by ions 

permits the adjustment of their physical / chemical properties by a careful selection of 

ions.16-18 
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Figure 2 | Cations and anions commonly use in ionic liquids. 

 

Better known as "designer solvents", due to the multiple possible combinations 

between cations and anions that can be made, ILs exhibit excellent solvent qualities for 

many types of compounds (polar and non-polar), and generally present high thermal 

stability, high ionic conductivity and a large liquid temperature range. However, their most 

attractive feature is their negligible vapour pressures, i.e., they do not evaporate at ambient 

conditions,19 which made ILs to be considered as valid potential substitutes of many volatile 

organic solvents in a wide range of areas such as physical chemistry, electrochemistry, 

engineering, material sciences, analytics, solvents and catalysts and even biological uses.20 

Among all of these foreseeable applications for ILs, there has been considerable 

interest in their use in separation processes, namely in the separation of azeotropic 

mixtures. Since ILs present negligible vapour pressure, it allows the extracted product to be 

separated from the IL by low-pressure distillation (potential for energy savings), with the 

recovery of the IL for reuse. Therefore, the replacement of conventional organic solvents by 
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ILs in extraction processes is seen as a promising field of investigation.21  

Recently, Pereiro et al.8 reviewed processes where ILs were used as separation 

agents. So far, ILs have been tested in three different processes of separation of azeotropic 

mixtures: extractive distillation, liquid-liquid extraction and processes using supported liquid 

membranes. From these processes the first two are those that have been receiving most 

research attention.  

Most of the research in extractive distillation processes, dealing with ILs as entrainers, 

has been focused on the separation of azeotropic mixtures of THF + water or alcohols + 

water. In terms of the ILs tested, the most used are those based on the imidazolium cation, 

where the 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([C2MIM][OTf]) and the 1-

butyl-3-methylimidazolium chloride ([C4MIM]Cl) have been the most studied. Nevertheless, 

the ILs containing chloride and acetate anions have shown the best results.8 In what 

concerns liquid-liquid extraction, ILs based on imidazolium and pyridinium cations combined 

with cyano (-C≡N) based groups have shown higher distribution coefficient and selectivity 

values than the commonly used organic solvents in the separation of aromatic and aliphatic 

hydrocarbons, such as toluene or benzene and n-hexane or n-heptane.11 In addition, 

imidazolium-based ILs combined with alkyl sulfate anions have also shown great potential in 

the separation of alcohols from aliphatic hydrocarbons, specifically in the separation of 

ethanol from n-hexane or n-heptane.8  

Regarding the industrial application of ILs in the separation of azeotropic mixtures, 

Meindersma and de Haan22 used ASPEN Plus 12.1 to simulate the liquid-liquid extraction of 

toluene + n-heptane azeotropic mixture with the IL 4-methyl-N-butylpyridinium 

tetrafluoroborate ([C1C4pyr][BF4]). Comparing the performance of this IL with that of 

sulfolane as the extraction solvent, the results show that the investment costs of the process 

could be decreased in 35 % when the IL was used. However, the application of ILs in the 

industry is yet to come since the synthesis of ILs usually requires long periods of time and 

high costs. Moreover, most of the reported ILs still do not provide sufficiently higher values 

of distribution coefficients or selectivities than those achieved by organic solvents in order to 

justify their use,11 adding to the fact that most ILs are moisture sensitivity.23 
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4.4. Other separation agents 

Seiler et al.24, 25 were the first authors to suggest the use of hyperbranched polymers 

(HyPols) as separation agents for the separation of azeotropic mixtures. These authors 

studied the liquid-liquid separation of THF + water mixtures using a HyPol of polyester and 

the separation of ethanol + water mixtures using a HyPol of polyglycerol by means of an 

extractive distillation process. Their experimental and simulated results lead to the 

conclusion that cost savings compared to conventional separation processes could be 

achieved. However, further studies regarding the use of HyPols in the separation of 

azeotropic mixtures are in need in order to enable a clearer conclusion.  

Another class of solvents that has also been attracting increasing interest in recent 

years is the deep eutectic solvents' (DESs). A typical DES comprises a combination of a 

hydrogen bond acceptor (HBA), usually a quaternary ammonium or phosphonium salt, with 

a hydrogen bond donor (HBD) or a complexing agent (CA). The mixture of these two 

constituents at a certain molar ratio produces a liquid mixture that has a melting point lower 

than that of the individual constituents (thus, the term eutectic).26 So far, these compounds 

have been tested in the separation of alcohols or aromatics from aliphatic hydrocarbons 

azeotropic mixtures, where Kareem et al.27-29 and Rodriguez et al.30 reported performances 

of the DESs that were comparable with or even superior to conventional organic solvents 

and ILs. 

 

4.5. Combination of separation agents 

In an attempt to improve the efficiency of the chemicals used as separations agents in 

the separation of azeotropic mixtures, the combinations of different types of separation 

agents has also been tested. 

Lei et al.13 were the first authors to combine organic solvents with ISs, in order to take 

advantage of the liquid status of the organic solvents and the high separation ability of the 

ISs. These authors studied the separation of systems containing polar compounds, such as 

ethanol + water and isopropanol + water mixtures, using combinations of ethylene glycol + 
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CaCl2 and K[OH], respectively as entrainers in extractive distillation processes. The results 

obtained showed that the addition of IS to the ethylene glycol increased the amount of 

alcohol in the vapour phase and thus the efficiency of the separation. In addition, these 

authors also tested the separation of C4 compounds mixtures with DMF, where salts like 

Na[SCN] and K[SCN] prove to be the best additives by improving the relative volatilities of 

C4 to some extent. 

Unfortunately, many ISs are corrosive to the equipment and can easily decompose at 

high temperatures. Also, the amount of IS added to the organic solvents is often small due 

to solubility issues, making the benefit of adding ISs limited. Another problem is the volatility 

of the organic solvents, which inevitably poses additional concerns with the recovery of the 

mixture, since IS are not volatile. Nevertheless, some of these problems might be overcome 

with the combination of ILs with ISs. Due to the negligible vapour pressures of the ILs, the 

recovery of a IL-IS mixture becomes simpler than a mixture of organic solvent with an IS. 

Moreover, ILs are also liquid in a wide range of temperatures and the fact that they are 

composed by ions allows for a tuning between the IL and the IS, making it possible to 

solubilise higher amounts of IS in an IL than in an organic solvent. In addition, recent studies 

show that ILs have an inhibitory effect on the corrosion behaviour of metal in aggressive 

media.31-34 Therefore, combining ILs with ISs is more advantageous than combining organic 

solvent with ISs. 

Recently, Lei et al.35 attempted the separation of water + ethanol mixtures by extractive 

distillation, using mixtures of IL-IS as entrainers. In this study the 1-ethyl-3-

methylimidazolium acetate ([C2MIM][Ac]) IL was combined with 10 different ISs, namely, 

K[Ac], Na[Ac], KCl, NaCl, K[HCO3], Na[HCO3], K[NO3], Na[NO3], K[SCN] and Na[SCN]. The 

amount of IS was always fixed at a mass fraction of 5 wt%, and the experimental results 

showed that in all cases the mixture of IL-IS yielded better results than the neat IL, with the 

K[Ac] showing the most promising results. 

Up to date, no other studies regarding the use of IL-IS mixtures for the separation of 

azeotropic mixture have been found. Nevertheless, in order to use IL-IS mixtures as 

separation agents is mandatory to previously study the solubility of the IS in the IL, as well 

as the impact of the former in the physical and chemical properties of the IL. 
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5. Ionicity 

In many cases, the designing of the perfect task-specific IL just by adjusting the cation 

or the anion can be quite difficult, hence in the last years studies of involving mixtures of ILs 

with other ILs36, 37 and also with ISs38-42 started to appear in the literature. So far, most of the 

literature studies that merge ILs with simple ISs have been focused on the development of 

systems for batteries, where ILs based on the bis(trifluoromethylsulfonyl)imide anion ([NTf2]-

) have been deeply investigated.41-45 

The earliest studies regarding IL-IS mixtures were performed by Wilkes et al.46, 47 and 

focused on the physical properties, solid-liquid equilibria and X-ray analysis of 

chloroaluminate-based ILs with distinct ISs. Rosol et al.42 published the first studies 

addressing the solubility behaviour of lithium salts in four imidazolium-based ILs with distinct 

anions and its effect on viscosity and ionic conductivity. Lui et al.46 studied the mixing of 1–

ethyl–4–(methoxycarbonyl)pyridinium iodide (Kosower’s salt) in six different ILs, and 

because these mixtures were composed of similar ions, particularly in terms of their relative 

sizes, ideal behaviour was observed. AlNashef et al.39 studied the solubility of different 

commercial sodium salts for their potential use in the production of sodium metal by 

electrochemical processes in ILs. In a more recent work, Pereiro et al.47 tested the solubility 

of different ISs that cover a substantial part of the Hofmeister series, both in terms of the 

cation and the anion, in a wide variety of ILs as shown in Figures 3 and 4. 
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Figure 3 | Matrix of the IL-IS binary mixtures studied. The symbols  and  represent the solubility tests 

performed using a visual detection method and using a spectroscopic method, respectively. 

 

 

Figure 4 | Matrix of the IL-IS binary mixtures presenting common ions studied. The symbols  and  

represent the solubility tests performed using a visual detection method and using a spectroscopic method, 

respectively. 

 

The results obtained showed that the solubility behaviour is largely dependent on the 

cation / anion of both the IL and the IS present in the mixture. In general, binary mixtures 

containing ammonium thiocyanate ([NH4][SCN]) yielded higher solubilities. On the other 
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hand, ISs with divalent atom (Na2[SO4] and CaCl2) exhibit lower solubilities in the IL. In 

addition, a comparison between the cations [C2MIM]+ and trihexyltetradecylphosphonium 

([P66614]+) cations demonstrated that a larger alkyl chains hindered the solubility of ISs in the 

IL. Regarding the binary systems which contained common ions, those with the [NTf2]- anion 

yielded the highest solubilities. The IL-IS systems where high solubilities of IS were obtained 

are depicted in Table 1, showing that the ISs with ions such as [NH4]+, [NTf2]-, and [SCN]-, 

that are classified according to the Hofmeister series as weakly hydrated ions, yield higher 

solubilities in different ILs. 

 

Table 1 | Solubility of ISs (2) in ILs (1) at 298.15 K and atmospheric pressure. 

Binary mixture 
Solubility 

Molar fraction of ISs Mass fraction of ISs 

[C2MIM][C2SO4] (1) + [NH4][SCN] (2) 0.6479 ± 0.0036  0.3722 ± 0.0037 

[C2MIM][C2SO3] (1) + [NH4][SCN] (2) 0.4137 ± 0.0046 0.1960 ± 0.0030 

[C2MIM][Ac] (1) + [NH4][SCN] (2) 0.4035 ± 0.0046  0.2322 ± 0.0034 

[C2MIM][C2SO4] (1) + Na[SCN] (2) 0.2371 ± 0.0038 0.0964 ± 0.0018 

[C2MIM][SCN] (1) + Na[SCN] (2) 0.2462 ± 0.0015 0.1353 ± 0.0009 

[C2MIM][C2SO3] (1) + [NH4]Cl (2) 0.2529 ± 0.0031 0.0760 ± 0.0012 

[C2MIM][Ac] (1) + [NH4]Cl (2) 0.3755 ± 0.0016 0.1590 ± 0.0009 

[C2MIM][NTf2] (1) + Li[NTf2] (2) 0.4331 ± 0.0036 0.3592 ± 0.0033 

[EtCh][NTf2] (1) + Li[NTf2] (2) 0.5603 ± 0.0027 0.4787 ± 0.0028 

[C2MIM][NTf2] (1) + Cs[NTf2] (2) 0.2999 ± 0.0034 0.3114 ± 0.0035 

[EtCh][NTf2] (1) + Cs[NTf2] (2) 0.3223 ± 0.0044 0.3302 ± 0.0045 

 

These results of the solubility of ISs in ILs opened the doors to more insightful studies 

on the interactions of ISs with ILs, namely in terms of the effect caused by the IS on the 

structure and properties of the IL. Much of the current research on ILs evaluates the effect 

of increasing the dispersive contributions by lengthening the alkyl side chains present in the 

ions and on the effect of increasing other specific van der Waals interactions. However, 

since ILs are composed by discrete ions, the Coulombic interactions play an important role 

in the definition of the some thermophysical properties. In this line of thought, Pereiro et al.48 

studied the increase in the Coulombic character of ILs through the solubilisation of ISs in 
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their media. In this work, two IL-IS binary systems were considered, the 1-ethyl-3-

methylimidazolium ethyl sulfate ([C2MIM][C2SO4]) + [NH4][SCN] and the [C2MIM][Ac] + 

[NH4][SCN]. The thermophysical properties of these two systems were thoroughly studied 

and NMR data and MD calculations were also obtained in order to gain a better 

understanding of the interactions between the IL and the IS. The results showed that by 

solubilising the IS into the IL media, modifications on the IL's initial structure were promoted 

and the Coulombic character of the ILs could be increased, which lead to the increase of the 

ionicity of the system leading to the formation of ILs with higher ionicity. 

The subject of ionicity in ILs has been extensively discussed by Watanabe49, 50 and 

MacFarlane51 and co-authors, among others. The quantitative estimation of the ILs' ionicity 

is of great significance for the characterization of these fluids, since it provides a way to 

study their structure, namely concerning the formation of aggregates or clusters between 

the IL's ions. The ionicity of ILs has been interpreted as a ratio between the effective 

concentration of charged species and the total concentration of species (charged and 

neutral) in the IL, measuring the dissociativity or degree of correlative motion of ions.50, 52 

There are two main methods to estimate the ionicity of ILs. The first is based on the 

Walden Plot approach, where plots of the logarithm of the molar conductivity against the 

logarithm of the fluidity are drawn. In these plots, the ideal Walden line is given by a straight 

line with a unitary slope, drawn with data of an aqueous solution of KCl, which is usually 

taken to be representative of the ideal electrolyte, since the ions are known to be fully 

dissociated. The quantitative determination of the ionicity of the IL is given by the distance of 

the IL's data to the ideal Walden line. However, this method has been criticized due to the 

use of KCl solutions of arbitrary compositions as a reference, since Schreiner et al.53 

observed that the slopes of Walden plots for KCl solutions do not represent the unity. In 

addition, the use of the Walden plot as a quantitative method for the ionicity has also been 

questioned in the case of a weak electrolyte, where the degree of dissociation is determined 

by the pKa.54 Nevertheless, from a qualitative point of view, the deviation from the ideal 

Walden line (∆W) is still a versatile tool to access the ionicity of ILs. 

Following the Walden Plot approach, Xu et al.55 proposed the classification of ILs in 

"good ILs" or "poor ILs" according to their proximity to ideal behaviour, i.e. fully dissociated 
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ions, with the majority of the neat ILs tested in literature falling in the "good ILs" region. 

Also based on the Walden plot approach, Ueno et al.56 proposed another method for 

the calculation of the ionicity. In this method, the ionicity is defined as the ratio between the 

molar conductivity, calculated from the ionic conductivity measured by the electrochemical 

impedance method (Ʌimp), and the ideal molar conductivity (Ʌideal), which is assumed to be 

equal to the fluidity (in Poise-1) taken from the ideal Walden line.  

The second and most consensual method used for the quantitative determination of 

the ionicity uses the ratio between the Ʌimp, that accounts for the migration of charged 

species in an electric field, and the molar conductivity calculated from the ion self-diffusion 

coefficients (ɅNMR), that accounts for the migration of all species in the media (charged and 

neutral, ions and aggregates).50 The value of ɅNMR is determined by the Nernst-Einstein 

(NE) equation as follows: 

 

( )−+ +
⋅

= DD
TR

F
ΛNMR

2

 (5) 

 

where R and F are the gas and Faraday constants, respectively, T is the temperature 

and D+/- are the ion self-diffusion coefficients of the IL obtained from the NMR. However, in 

the case of binary systems such as IL-IS mixtures, the mole fractions (x) of the IL and the IS 

should be included, as follows: 

 

( )−+−+ +++
⋅

= ISISISISILILILILNMR DxDxDxDx
TR

F
Λ

2

 (6) 

 

A comparison between the two methods used in the determination of the ionicity (∆W 

and the Λimp / ΛNMR ratio) has already been made for neat aprotic ILs,49, 56 protic ILs57 and 

glyme-Li salt equimolar mixtures56 and a rough consistency was observed. In addition, other 

studies on the ionicity of neat ILs50, 58, 59 and aqueous solutions of ILs,60 where Walden plots 

were drawn and the ionicity calculated from the Λimp / ΛNMR ratio, have also corroborated the 

consistency of the results obtained from both methods. However, in a study concerning IL-
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IS systems, Hayamizu et al.61 doped ILs N-methyl-N-propyl-pyrrolidinium (P13) [NTf2] and 

[FSA] with a fixed concentration of [Li][NTf2] and [FSA], respectively, and obtained different 

trends for the ionicity when the two methods described above were used. Using the Walden 

plot, the authors verified that the trend in the ∆W was [P13][NTf2] > [P13][NTf2] + [Li][NTf2] > 

[P13][FSA] + [Li][FSA] > [P13][FSA], with the latter neat IL displaying the highest ionicity, 

whereas when the ionicity was calculated by the Λimp / ΛNMR ratio, both IL-IS mixtures yielded 

higher ionicities than the neat ILs according to the following trend: [P13][FSA] + [Li][FSA] > 

[P13][NTf2] + [Li][NTf2] > [P13][FSA] > [P13][NTf2]. In this study the authors do not explore any 

further these results. However, these different trends clearly indicate that the determination 

of the ionicity in IL-IS mixtures is not as simple as in neat ILs and additional studies are 

needed. 

Recently, Holloczki et al.62 showed that the charge transfer between the ions in neat 

ILs can also affect the determination of the ionicity, since the neutralization of the mobile 

species in the media occurs not only due to the formation of ion pairs but also as a result of 

the charge transfer. Indeed, their data suggested that both phenomena are significant 

factors that could explain the lower than expected conductivities obtained by NMR (ɅNMR). 

Moreover, these authors also performed a series of MD simulations on a single probe ion 

pair of NaCl in the IL [C4MIM]Br, where they artificially varied the charges of the IS ions. The 

results showed that by increasing the charge on the IS's ions both the Na-Cl and the IL-IS 

interactions become stronger and the association of the ion pair is favoured, while a 

decrease of the charge leads to an IL that behaves more like a molecular liquid than a salt, 

showing higher fluidity. 

 

6. Objectives 

The work developed in this thesis exploits the separation of azeotropic mixtures by 

LLE processes using IL-IS mixtures as extraction solvents. The main objective is to improve 

the efficiency of ILs as azeotrope breakers by the increasing their ionicity through the 

addition of ISs. For this reason, different IL-IS mixtures are explored and their ionicity is 
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evaluated and understood. The ionicity of the IL-IS mixtures is used as a tool to access, 

explain and reason out the efficiency of the former mixtures as extraction solvents in the 

separation of azeotropic mixtures.  

The work presented in this thesis explores three different combinations of ILs and ISs, 

namely one IL with several ISs, different ILs with one IS and one IL with different 

concentrations of the same IS. Studies of the impact of the addition of the IS on the IL 

properties, namely density, viscosity and conductivity, are presented and the ionicity of each 

mixture is calculated and compared with that of other IL-IS mixtures. Molecular insights on 

these systems are provided by the use of molecular dynamics and NMR in order to better 

understand the ionicity of the studied mixture. Finally, the studied IL-IS mixtures are tested 

in the separation of one specific azeotropic mixture, n-heptane + ethanol that will serve as 

test model (proof-of-concept) for the application of IL-IS mixtures as extraction solvents for 

breaking azeotropes. These two tasks, the IL-IS ionicity evaluation and their use in the 

separation of azeotropic mixtures, enable to address the underlying scientific question of 

this work, the existence of a link between ionicity and extraction efficiency of an azeotropic 

mixtures, described by the selectivity and distribution coefficient. 

 

7. Thesis outline 

The research developed during the time of my PhD project is presented in this article-

based thesis constituted by seven chapters. The present chapter introduced the main topics 

discussed as well as the thesis' objectives. The subsequent chapters (2 to 6) are entirely 

based on published (or submitted) scientific articles which are not put together by their 

chronological order of publication, but rather to give the reader a perspective of the 

evolution of the fields studied in this thesis, starting by the combination of ILs and ISs, 

exploring and understanding their properties, and ending with their application as separation 

agents for azeotropic mixtures. Moreover, each article-based chapter includes a brief and 

objective review of the state of the art for that particular work, presents and discusses the 

results and draws conclusions. General lists of figures, tables and abbreviations or symbols 
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are not presented in this thesis since in each individual article-based chapter the 

aforementioned contents are carefully identified. 

Chapter 2 focus on the study of IL-IS mixtures where the same IS is added to two 

different but yet similar ILs. The thermophysical properties and ionicity of the IL-IS mixture of 

1-ethyl-3-methylimidazolium ethyl sulfonate with ammonium thiocyanate were studied, and 

then compared to those of the IL-IS mixtures with the 1-ethyl-3-methylimidazolium ethyl 

sulfate IL, previously measured and published by our laboratory. For a better understanding 

of the interactions that occur at the molecular level, spectroscopic (NMR and Raman) and 

Molecular Dynamic studies are also presented. The effects caused by the addition of the IS 

and the different chemical structures of the IL's anions, are discussed based on the changes 

observed on the ionicity and the thermophysical properties of the IL. 

In Chapter 3, a study on IL-IS mixtures with the same IL and six different ISs is 

presented. This chapter is divided in two parts, where the Part I describes the effect of the 

different ISs used on the thermophysical properties and ionicity of the IL, while Part II shows 

some insights into the interactions of the same IL-IS mixtures. In Part I, the work presented 

considers IL-IS mixtures of the IL 1-ethyl-3-methylimidazolium acetate with four ammonium-

based ISs (acetate, chloride, ethyl sulfonate and thiocyanate) and two sodium-based ISs 

(acetate and thiocyanate). The density, viscosity, conductivity and refractive index of these 

IL-IS mixtures were studied and the effect of the different cations and anions of the ISs on 

the aforementioned properties, as well as on the ionicity, of the IL is discussed. Part II 

focuses on the interactions established in the IL-IS mixtures. NMR and Raman 

spectroscopy were used to screen for changes in the molecular environment of the ions in 

the mixtures as compared to their pure state. Molecular Dynamics and ab initio simulations 

where also used for the screening of aggregates between the IL and the IS ions. The 

formation of preferential interactions between the different ions in the mixture is discussed 

as well as different methods for the calculation of the ionicity of the IL-IS mixtures. 

After acquiring some insights into the behaviour of IL-IS mixtures at both macrospcopic 

and molecular level, the use of these solvents in the separation of azeotropic mixtures was 

evaluated. Therefore, in the next two chapters, Chapter 4 and 5, the use of IL-IS mixtures as 

potential separation agents for azeotropic mixtures by liquid-liquid extraction process is 
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described. The main goal of the studies presented in these two chapters, was to improve 

the efficiency of the IL as a separation agent of azeotropic mixtures and, at the same time, 

correlate the ionicity of the IL-IS mixture with the extraction efficiency. Therefore, in Chapter 

4, IL-IS mixtures of [C2MIM][C2SO4] with ammonium thiocyanate were tested for the liquid-

liquid separation of n-heptane + ethanol mixtures. Three different concentration of the IS 

were used in the mixtures and their impact on the distribution coefficient and selectivity 

values of the systems is discussed, along with a comparison of the IL-IS mixtures with the 

neat IL. In the next study, presented in Chapter 5, [C2MIM][Ac] was used in the studied IL-IS 

mixtures and the three ISs, ammonium acetate, chloride and thiocyanate, at a fixed 

concentration were used. The effects caused by different anions of the IS in the efficiency of 

the extraction of ethanol from n-heptane are discussed.  

Although the main focus of this thesis is on the study of the ionicity of IL-IS mixtures 

and their application on the separation of azeotropic mixtures, and taking into account that 

DES can be understood as ILs by the formation of a new anion through the establishment of 

hydrogen bonds between the IL´s anion and the hydrogen bond donor, Chapter 6 describes 

the possible application of deep eutectic solvents as separation agents for the breaking of 

azeotropic mixtures. In this work, three different deep eutectic solvents were tested for the 

extraction of ethanol from n-heptane + ethanol azeotropic mixtures. The deep eutectic 

solvents used were all based on choline chloride and were combined with different HBD 

such as glycerol, ethylene glycol and levulinic acid. A comparison between the results 

obtained and those found in literature for neat ILs, as well as the impact of the different HBD 

on the distribution coefficient and selectivity values is discussed. 

Finally, in Chapter 7, the key results presented in the different chapters are 

summarized, and the main conclusions are withdrawn and discussed in an integrated way. 

Possible challenges and future work are also discussed. 
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1. Abstract 

In this work, a comparison between the thermophysical properties of two binary 

systems containing ionic liquid + inorganic salt, is presented. The effect of ammonium 

thiocyanate salt on the ionicity of two similar ionic liquids, 1-ethyl-3-methylimidazolium ethyl 

sulfonate and ethyl sulfate, is deconstructed in terms of the related thermophysical 

properties, namely density, viscosity and ionic conductivity in the temperature range 298.15 

K – 323.15 K. In addition, spectroscopic (NMR and Raman) and Molecular Dynamic studies 

were conducted in order to understand, at a molecular level, the interactions that occur in 

these system. The obtained results reveal that although the two anions of the ionic liquid 

exhibit similar chemical structures, the presence of one additional oxygen in the ethyl sulfate 

anion has a major impact on interactions and thus on the thermophysical properties of the 

studied systems. 

 

2. Introduction 

In the last couple of years, several authors have debated the concept of the ionicity of 

ionic liquids (ILs), and showed that a quantitative description of the ionicity can be a useful 

indicator of the thermodynamic and thermophysical behaviour of ionic liquids.1, 2 

The ionicity of an IL or the degree of dissociation / association of an IL is related to its 

ionic nature, which is controlled by the magnitude and balance of the interactive forces. Due 

to the complex nature of these solvents, several interactions are present in ILs, such as 

Coulombic, van der Waals, hydrogen-bonding and π-π interactions, with Coulombic being 

the predominant. Although ideally ILs consist of discrete ions, in reality they form 

aggregates or clusters to some extent. The formation of aggregates has obviously strong 

impact on some ILs properties such as viscosity, conductivity, and diffusion coefficients. 

However, other IL’s properties, as vapour pressure and hydrogen acceptor or donor 

character, can also be linked to ionicity.3 Thus, the evaluation of the ionicity of ILs has 

become an interesting and important parameter for their characterization.2, 4 
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Several studies on the ionicity of pure ILs have already been conducted.2-9 Based on 

the classical Walden rule 3, 10, which relates the ionic conductivity to the fluidity, the ionicity of 

ILs can be assessed. Most of the ILs studied so far showed a behaviour close to the ideal, 

where the ion-ion interactions are absent and the ions are fully dissociated and have equal 

mobility. The former ILs were classified as “good ILs”, while the others that present a 

behaviour very distant from the ideal were regarded as “poor ILs”.3, 11 

In our previous work,12 we showed that the Coulombic character of the IL can be 

incremented through the solubilisation of simple inorganic salts (ISs) in their milieu, thus 

increasing the ionicity of ILs at very low cost, while the liquid state status is still preserved.  

Most of the literature studies that merge ILs with simple ISs focus on the development 

of systems for batteries, where ILs based on bistriflamide anion have been deeply 

investigated.13-17 For example, Lui et al.18 show results on mixing 1–ethyl–4–

(methoxycarbonyl)pyridinium iodide (Kosower’s salt) in six different ILs, but these mixtures 

are composed of similar ions, particularly in terms of relative sizes, and thus ideal behaviour 

is observed. Umebayashi et al.19, 20 studied the solvation structure of the lithium ion (from 

lithium bis(trifluoromethylsulfonyl)amide salt, [Li][NTf2]) in three different ILs, two 

imidazolium-based (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide and 1-

butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide) and one pyrrolidinium-based 

(N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide) by Raman spectroscopy, 

Density Functional Theory and ab initio calculations. In the Raman spectra, these authors 

observed that the intensity of strong band at 744 cm-1, attributed to the free [NTf2]- anion in 

the bulk, decreases with the increasing concentration of lithium salt. Simultaneously, a new 

band at 750 cm-1 appeared with the increase in salt content, which is attributed to the 

binding of [NTf2]- anions to the lithium cation. In addition, using ab initio calculations it was 

possible to show that the lithium cation coordinated with the four oxygen atoms of the 

bidentate [NTf2]- anion. Another important observation is that the IL cation played a key role 

in the stabilization of the complex formed by the lithium cation and the [NTf2]- anions. Zhou 

et al.21 used crystallography and Raman studies to show that lithium cations serve as 

crosslinkers between the anions, forming aggregates and eventually new networks of ions 

which results in a dramatic decrease in the ionic conductivity. Hayamizu et al.9 studied the 
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diffusion behaviour of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide and 1-

ethyl-3-methylimidazolium bis(fluorosulfonyl)amide and their corresponding binary systems 

with lithium salts. The results showed that in spite of the extremely small lithium radius (0.06 

nm), the lithium diffusion coefficients were the smallest of all ions, which clearly confirms 

that lithium cations are engaged in the formation of complexes. 

The present work is a continuation of our previous study12 where the effect of the 

addition of ISs on the ionicity of ILs is explored. Two ionic liquids, 1-ethyl-3-

methylimidazoilum ethyl sulfonate ([C2MIM][C2SO3]) and 1-ethyl-3-methylimidazoilum ethyl 

sulfate ([C2MIM][C2SO4]), which (slightly) differ in the nature of their constituting anions 

(ethyl sulfate has an extra oxygen atom), were selected for comparison. Deive et al.22 

conducted a study on phase equilibria of haloalkanes dissolved in the same two ILs. The 

results showed that the haloalkanes studied are more soluble in [C2MIM][C2SO3] than in 

[C2MIM][C2SO4]. This fact was attributed to the extra oxygen atom in the [C2MIM][C2SO4], 

which causes shifts in the charge distribution of the anion especially at the first carbon atom 

of the alkyl side chain. Furthermore, the presence of the oxygen atom between the charged 

–SO3 group and the nonpolar alkyl side chain, allows the ethyl sulfate anion to exhibit a 

larger polar moiety and to form more extensive polar networks.23  

The aim of the present work is to establish a comparison between the ionicity of the 

binary system 1-ethyl-3-methylimidazoilum ethyl sulfonate + ammonium thiocyanate, 

evaluated in this work, with a similar binary system, the 1-ethyl-3-methylimidazoilum ethyl 

sulfate + ammonium thiocyanate, measured in a previous work.12 The ionicity of these 

systems will be deconstructed into the related thermophysical properties, such as density, 

viscosity and ionic conductivity in the temperature range 298.15 K – 323.15 K. Refractive 

index and thermal stability measurements have also been carried out as a function of the IS 

content. NMR spectroscopy was used for the determination of the diffusion coefficients and 

to identify preferential interactions between both cations and anions. Raman spectroscopy 

was employed to monitor the molecular environment of the thiocyanate anion in the two 

binary systems. MD studies were used to provide further insights at molecular level in order 

to corroborate the experimental data. 

In generally, this work contributes to the understanding of interactions at the molecular 
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level that govern macroscopic characteristics of the IL-IS  systems so that a rational design 

of IL-IS systems can be proposed. 

 

3. Experimental Section 

3.1. Materials 

The ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfonate ([C2MIM][C2SO3]) was 

prepared according to a previously described procedure.24, 25 The inorganic salt, ammonium 

thiocyanate ([NH4][SCN] (≥ 0.99 mass fraction purity) was supplied by Sigma-Aldrich. To 

reduce the water and other volatile substances content, vacuum (ca. 10-1 Pa) and moderate 

temperature (ca. 323.15 K) were always applied to both the IL and the IS for more than 48 

hours prior to their use. After drying, the IL purity was checked by 1H and 13C NMR. The 1H 

spectra confirmed purity levels higher or around 99%. Karl Fischer coulometric titration 

(Metrohm 831 KF Coulometer) was used to determine the final water mass fraction of the 

ionic liquid, which contained less than 150 ppm of water. 

 

3.2. IL + IS mixtures 

The binary mixtures of [C2MIM][C2SO3] + [NH4][SCN] were prepared in the range 

between 0 and 0.3 in IS mole fraction, taking into account the solubility limits determined on 

our previous work.26 The samples were prepared in an inert-atmosphere glove box, since 

the IL is moisture sensitive, using an analytical high-precision balance with an uncertainty of 

± 10-5 g by weighing known masses of the each component into stoppered flasks. Good 

mixing was assured by magnetic stirring. For each sample, triplicates of the physical 

properties were measured to ensure accuracy. In Figure 1 the structures and numbering of 

the [C2MIM][C2SO3], [C2MIM][C2SO4] and [NH4][SCN] are presented. 
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Figure 1 | Structure and numbering of the two ionic liquids compared in this work, a) [C2MIM][C2SO3] and 

b) [C2MIM][C2SO4], and the inorganic salt c) [NH4][SCN]. 

 

3.3. Viscosity and density measurements 

Measurements of viscosity and density were performed in the temperature range 

between 298.15 and 323.15 K at atmospheric pressure, using an automated SVM 3000 

Anton Paar rotational Stabinger viscometer-densimeter. The temperature uncertainty is ± 

0.02 K. Further details on the equipment can be found elsewhere.27 Triplicates of the IL and 

each IL-IS mixture were measured and the reported results is the average value. The 

uncertainty of the dynamic viscosity and density measurements is ± 1.3 % and ± 0.01 %, 

respectively. 

 

3.4. Ionic conductivity measurements 

Ionic conductivities were performed using a CDM210 Radiometer Analytical 

conductivimeter in the temperature range between 298.15 and 323.15 K. Measurements 

were performed in a glass cell containing a magnetic stirrer and temperature regulated by a 

water jacket connected to a bath controlled to ± 0.01 K. The temperature in the cell was 

measured using a platinum resistance thermometer coupled to a Keithley 199 System 

DMM/Scanner. The thermometer was calibrated with high–accuracy mercury thermometers 
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(0.01 K). Further details on the equipment can be found elsewhere.12 

Previous to the measurements, the conductivimeter was calibrated at each 

temperature with certified 0.01 D KCl standard solution supplied by Radiometer Analytical. 

For determination of the ionic conductivity, approx. 1.5 mL of the sample was added to the 

thermostatic cell, closed with screw caps and vigorously stirred. Each single measurement 

was performed as quickly as possible to minimize undesired effects (such as self–heating of 

the samples, ionization in the electrodes, etc)28, 29 that might modify the measured 

conductivity values. 

Each conductivity value was determined at least three times to ensure its 

reproducibility within 1 % in absolute value. 

 

3.5. Refractive index and thermal stability measurements 

The experimental methods used for the refractive index and thermal stability 

measurements are described in the supporting information (SI), at the end of this chapter. 

The data obtained for the refractive index, molar volume, molar refraction and free molar 

volume for the neat [C2MIM][C2SO3] and [C2MIM][C2SO4] and their binary mixtures are 

depicted in Tables S1 and S2, respectively, in the SI. The thermal decomposition 

temperatures for the binary systems [C2MIM][C2SO3] or [C2MIM][C2SO4] + [NH4][SCN] 

are depicted in Table S3 in the SI. 

 

3.6. NMR spectroscopy 

NMR spectroscopy was used for two different studies in this work. In the first the 

changes in the 1H and 13C chemical shifts of [C2MIM][C2SO3] with increasing [NH4][SCN] 

concentration was evaluated, while in the second the diffusivity of the IL-IS systems was 

determined. 

For the first study, the experiments were carried out on a Bruker AVANCE 400 

spectrometer operated at room temperature with 16 scans for 1H NMR and 500 scans for 
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13C NMR. The samples were prepared gravimetrically using an analytical high–precision 

balance with an uncertainty of ± 10–5 g, by adding different amounts of [NH4][SCN] into 

solutions of 1:1 in mass fraction of ionic liquid and deuterated dimethyl sulfoxide (DMSO–

d6). Upon complete dissolution, the samples were transferred to 5 mm NMR tubes 

containing the same amount of DMSO–d6. All spectra were obtained using DMSO–d6, for 

field–frequency lock and NMR internal reference. As reported in previous studies,30, 31 the 

addition of DMSO–d6 as a co–solvent has no impact on the chemical shifts trends obtained 

upon IS or IL addition. For the measurements of the self-diffusion coefficients of the 

samples, a Bruker AVANCE 300 wide board spectrometer, with a Diff30 diffusion probe with 

a gradient amplifier of high power (60 A and 1500 G·cm-1) was used. The 1H diffusion 

coefficients were measured using the Pulsed Gradient Stimulated Echo (PGSTE) method 

operating at a frequency of 300.14 MHz and at 298.15 K. The gradient pulse duration (δ) 

was typically of 2.5 ms, the diffusion time (∆) of 50 ms and the maximum gradient value of 

400 G·cm-1. 

 

3.7. Raman spectroscopy 

Raman spectra of the [C2MIM][C2SO4] + [NH4][SCN] mixtures were measured in 

sealed vials in backscattering geometry using Raman spectrometer (Jobin Yvon U1000), 

coupled to a confocal microscope equipped with 1200 1/mm grating and a liquid nitrogen 

cooled CCD detector. The 413 nm line from a Kr+-laser (Coherent Innova 302) was used as 

excitation source. For each sample four spectra were recorded with 3 mW laser power and 

60s accumulation time at RT. In order to avoid strong background fluorescence, Raman 

spectra of the [C2MIM][C2SO3] + [NH4][SCN] mixtures were measured with 1064 nm 

excitation (Nd-YAG cw laser) using RFS 100/S (Bruker Optics, Ettlinger, Germany) Fourier-

transform Raman spectrometer. Laser power was set to 400 mW and 100 scans were 

recorded for each sample at room temperature. 
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3.8. Molecular dynamics simulations 

Molecular Dynamics simulations on selected IL-IS mixtures were used to interpret the 

experimental data at a molecular scale. All simulation runs were performed using the 

DL_POLY package version 2.20.32 The force field developed by Canongia Lopes and co-

workers23, 33 was selected to describe the inter- and intra-molecular interactions in the 

[C2MIM][C2SO3] and [C2MIM][C2SO4] ILs. In the case of [NH4][SCN], a previously developed 

parameterization for the behaviour of this IS in IL media was used.12 

The simulation boxes, with a total number of 200 ions, were prepared by random 

distribution of the IL and IS ions to yield [NH4][SCN] mole fractions of 0.0, 0.1 and 0.3. In the 

case of [C2MIM][C2SO4] plus [NH4][SCN] mixtures, an equimolar fraction was also 

considered. Cutoff distances of 1.4 nm were used in all simulations and the Ewald 

summation technique (k-values set to 6 and α = 0.199 Å) were applied to account for long-

range Coulomb interactions beyond the cutoff. 

All simulations were performed under the isothermal-isobaric (N-p-T) ensemble. The 

equilibration period, composed of short and consecutive 0.5 ns simulation runs, was 

performed by using the following temperature/pressure sequence: (i) p = 5.0 MPa, T = 1000 

K; (ii) p = 0.1 MPa, T = 1000 K; (iii) p = 0.5 MPa, T = 298 K; and (iv) p = 0.1 MPa, T = 298 K. 

After this sequence, the density of the liquid reached an approximately constant value, 

indicating that an equilibrium state has been obtained. Finally, a production stage of 8 ns 

was performed at 298.15 K and 0.1 MPa. 

All subsequent structural studies, radial distribution functions and aggregation analysis, 

were calculated taking the positions of: the imidazolium ring centroid (IL cation); the sulfur 

atoms in the IL anions, the nitrogen atom in the ammonium cation; and the carbon atom in 

the thiocyanate anion. 

Aggregation analyses between different ion pairs ([C2MIM]+ / [C2SO3]−, [C2MIM]+ / 

[SCN]−, [NH4]+ / [C2SO3]− and [NH4]+ / [SCN]−) were performed by using the previously 

reported methodology.34 In brief, this type of study consists of the determination of a 

neighbours list between different ion pairs, by using a limit connection distance (d), defined 

as the first solvation shell between the ions. This distance was estimated for each pair from 
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the corresponding radial distribution functions (Figure 8). The selected distances where: 

dC2MIM+/C2SO3- = 7.0 Å; dC2MIM+/SCN- = 7.0 Å; dNH4+/SCN- = 4.7 Å; dNH4+/C2SO3- = 4.5 Å. 

Finally, the neighbour list is converted into an aggregate list, by assuming that two 

cations (or anions) can only belong to the same aggregate if both are connected by the 

same anion (or cation), thus establishing an ionic network. All statistical analyses where 

performed as previously described.34 

 

4. Results and discussion 

4.1. Ionicity 

Based upon the Walden rule, the Walden Plot establishes a relationship between the 

molar conductivity and the fluidity of the solution. It has already been proved that the 

Walden Plot is a suitable tool to measure the ionicity of pure ILs1, 2 and also mixtures of IL 

and simple ISs.12 In Figure S1 (SI) the Walden Plot for the system [C2MIM][C2SO3] + 

[NH4][SCN] is depicted. The increasing concentration of IS corresponds to a behaviour 

closer to the “ideal” Walden line (ideal electrolyte, an 1 M aqueous KCl solution2 at 298.15 

K), leading to an increase in ionicity. 

A simple way to measure the ionicity of the system is to quantify the deviation from the 

ideal electrolyte by measuring the vertical distance to the “ideal” Walden line (∆W).11 Figure 

2 illustrates the deviations from the Walden ideality relation measured at a fixed value of log 

η–1 = 0, against the molar concentration of [NH4][SCN]. Both systems, [C2MIM][C2SO3] + 

[NH4][SCN] and [C2MIM][C2SO4] + [NH4][SCN]12 are plotted for comparison. Despite the fact 

that both systems show increased ionicity with the increase in IS content, the system with 

the ethyl sulfonate-based IL displays a lower ionicity in all IS concentration range. 
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Figure 2 | Deviations from the “ideal” Walden behaviour for the binary systems [C2MIM][C2SO3] + 

[NH4][SCN] and [C2MIM][C2SO4] + [NH4][SCN]12 plotted against the inorganic salt molar concentration. 

 

4.2. Viscosity and density 

Figure 3 shows the temperature dependence of the viscosity for the pure ILs, 

[C2MIM][C2SO4] and [C2MIM][C2SO3], and their binary mixtures with [NH4][SCN] at a fixed 

concentration of 0.3 in mole fraction of salt. It is interesting to note that, at 298.15 K, the 

viscosity of [C2MIM][C2SO3] IL is twice that of [C2MIM][C2SO4]. Upon the addition of IS, the 

viscosity of all samples increases. However, the addition of salt has a higher effect (at least 

15%) on the viscosity of the ethyl sulfate-based than on ethyl sulfonate-based IL since the 

ratio of the viscosity of the [C2MIM][C2SO4] binary mixture and that of the pure IL is above 2 

for all temperatures, while for [C2MIM][C2SO3] this value is systematically smaller. Another 

peculiar observation is that the binary mixture [C2MIM][C2SO4] + [NH4][SCN] and the neat 

[C2MIM][C2SO3] have similar viscosities. 

The densities of the binary system were measured only to compare the behaviour of 

the two systems on the Walden Plot. A discussion about the effect of the IS addition on the 

IL can be found in SI. Figure S2 compares the temperature dependence of the density for 
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the two binary systems. 

Table S1 in SI presents the experimental data for the viscosity and density of the 

[C2MIM][C2SO3] + [NH4][SCN] binary system. 
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Figure 3 | Viscosity as a function of temperature for [C2MIM][C2SO4] (blue filled circle),12 [C2MIM][C2SO4] 

+ x[NH4][SCN]=0.3 (blue empty circle),12 [C2MIM][C2SO3] (red filled square) and [C2MIM][C2SO3] + 

x[NH4][SCN]=0.3 (red empty square). 

 

4.3. Ionic conductivity 

The temperature dependence of the ionic conductivity for the pure ILs, [C2MIM][C2SO4] 

and [C2MIM][C2SO3], and their binary mixtures with [NH4][SCN] at a concentration of 0.3 in 

mole fraction of IS is presented in Figure 4. The ionic conductivity of pure [C2MIM][C2SO4] is 

approximately twice that of pure [C2MIM][C2SO3], in the whole temperature range. As 

expected, due to the formation of aggregates, the addition of IS decreases the ionic 

conductivity of the neat IL in both cases. However, the decrease observed in the ionic 

conductivity is less pronounced than the decrease in the viscosity (the average ratio 

between the neat ILs' conductivity and their binary mixture is 1.30 and 1.16 for the 

[C2MIM][C2SO4] and [C2MIM][C2SO3], respectively). Nevertheless, these results are 

consistent with those obtained for viscosity, since [C2MIM][C2SO3] presents higher viscosity 
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than [C2MIM][C2SO4]. Identically to the trend in viscosity, the effect of the addition of 

[NH4][SCN] has a higher effect on the conductivity of [C2MIM][C2SO4] than of 

[C2MIM][C2SO3]. Table S1 in SI presents the experimental data for ionic conductivity of 

[C2MIM][C2SO3] + [NH4][SCN] binary system. 
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Figure 4 | Ionic conductivity as a function of temperature for [C2MIM][C2SO4] (blue filled circle),12 

[C2MIM][C2SO4] + x[NH4][SCN]=0.3 (blue empty circle),12 [C2MIM][C2SO3] (red filled square) and [C2MIM][C2SO3] 

+ x[NH4][SCN]=0.3 (red empty square). 

 

4.4. NMR studies 

To understand the interactions in the [C2MIM][C2SO3] + [NH4][SCN] binary system at 

the molecular level, the effect of the addition of [NH4][SCN] on the chemical shifts of the 

pure IL has been investigated using 1H and 13C NMR. In this way, the sites of the 

imidazolium ring participating in the ionic liquid – inorganic salt interactions, as well as the 

sites of ethyl sulfonate anion involved in the interactions with the inorganic salt can be 

identified. 

Table S4 in SI shows the 1H and 13C NMR deviations for the [C2MIM][C2SO3] + 

[NH4][SCN] binary system for the concentration range between 0 and 0.4 mole fraction of 

salt. Figure 5 shows the relative changes of the chemical shifts for [C2MIM][C2SO3] 1H NMR 
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spectrum with increasing inorganic salt concentration. The results for the [C2MIM][C2SO4] + 

[NH4][SCN] binary system12 were also represented for comparison. It can be clearly seen 

that the deviations for the [C2MIM][C2SO3] system are much more pronounced than for the 

[C2MIM][C2SO4]. Nevertheless, both systems reveal similar trends of the chemical shift 

differences for the all protons. For instance, the protons H2, H4 and H5 of the imidazolium 

ring, which are the most acidic ones, present upfield shifts, while the proton H9 of the anion 

is the only one that undergoes a downfield shift for both ILs. For the other protons, negligible 

changes with increasing IS concentration were observed. However, the aromatic protons 

(H2, H4 and H5) of the IL [C2MIM][C2SO3] are more affected by the increasing salt 

concentration since their upfield shifts are higher (Figure 5a) than the shifts observed in the 

other protons of the IL including the aromatic protons of the [C2MIM][C2SO4] (Figure 5b). 

Brüssel et al.,35, 36 used ab initio MD calculations to study the binary mixture of 

[C2MIM][SCN] and [C2MIM]Cl. In their work, these authors showed that while in the neat ILs 

the main anion–cation interaction takes place through the most acidic proton of the 

imidazolium ring (H2), this observation does not hold for the mixture. Upon the addition of a 

stronger hydrogen bond acceptor (Cl-), the thiocyanate ion starts to interact more favourably 

with the aromatic protons H4 and H5 than with H2, indicating that the different anions are 

competing for the available interaction sites. In this way, the chloride anion is replacing the 

thiocyanate anion at the most acidic position (H2). These results support our findings that 

upon the addition of [NH4][SCN], the IS ions start to compete with the IL ions, for the best 

interaction sites. Since [NH4]+ is a stronger hydrogen bond donor than [C2MIM]+ and 

[C2SO4]- / [C2SO3]- are stronger acceptors than [SCN]-, the affinity between the IL's anion 

and the IS's cation allows the [NH4]+ to draw the IL's anion away from the [C2MIM]+ ring 

protons, resulting in the upfield shifts observed in the H2, H4 and H5. 
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Figure 5 | Trend of the chemical shift difference of protons in 1H NMR of [C2MIM][C2SO3] (red) and 

[C2MIM][C2SO4]12 (blue) with increasing [NH4][SCN] concentration (∆δ = δ −δneat) (b is an enlarged image of 

a). 

 

The effect of [NH4][SCN] concentration on the 13C NMR spectrum of both ILs is 

summarized in Figure S5 in the SI. Although the data obtained from the 13C NMR spectra 

can only be viewed as qualitative, it is interesting to see that even though the deviations in 

the 1H spectra of both ILs are similar, the 13C spectra reveal significant differences. For 

instance, in the system containing [C2MIM][C2SO3] only the C6 and C7 carbons present 

downfield shifts, while in the [C2MIM][C2SO4] system, the C9 also presents a downfield shift, 

with higher deviations than the former carbons. This means that in the latter the anion, 
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[C2SO4]-, interacts more favourably with the IS ([NH4]+) than in the [C2MIM][C2SO3] system. 

Furthermore, in both cases the C12 (corresponding to the [SCN]- anion) was the carbon that 

presented the highest downfield shift at higher concentrations of salt. This interpretation is 

further supported by Raman results (vide infra), which indicate that, unlike in the case of 

[C2MIM][C2SO4] + [NH4][SCN] mixtures, the [SCN]- anions are always ´engaged´ in 

interaction with [C2MIM][C2SO3], which is explained by the downfield shifts in the C6, C7 and 

C12 ([C2MIM]+ / [SCN]- interaction). On the other hand, in the [C2MIM][C2SO4] system, two 

populations of [SCN]- anions, one establishing similar interactions to those present in 

[C2MIM][C2SO3], and the other establishing weaker (or no) interactions, can be identified. 

The intense deviations in aromatic protons as well as the upfield shift of C9 in the 

[C2MIM][C2SO4], can be attributed to the extra oxygen atom in the anion, that allows it to 

establish more favourable interactions with the [NH4][SCN] resulting in an higher 

solubilization capacity of this inorganic salt, as indicated by the solubility limits of the two 

systems.26 

Tsuzuki et al.37 used ab initio calculations to compare interactions between binary 

mixtures of [Li][NTf2] salt with N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium 

bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide ILs. They concluded that the interactions between the 

ammonium cation and the [Li][NTf2] complex are attractive when the lithium atom has close 

contact with the oxygen atom of the ammonium cation, while in the case of the imidazolium-

based IL the interactions are always repulsive. A similar behaviour could occur in the case 

of the ammonium thiocyanate salt and the two ILs reported in this work, where the extra 

oxygen in the ethyl sulfate-based IL could play a key role in the different trends of the 

physical properties of both systems (vide supra). 
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Figure 6 | a) Concentration dependence of the self-diffusion coefficients of the ions that compose the 

different IL+IS systems under discussion: blue symbols = sulfate-based systems; red symbols = sulfonate-based 

systems; ○ = [C2MIM]+ ions; □ = ([C2SO4]– or [C2SO3]–) ions; ∆ = [NH4]+ ions. The results were calculated from 

experimental (1H NMR) data, the lines are guide to the eyes. b) Average values of the self-diffusion coefficients 

of the same ions contained in different (IL+IS) mixtures in the 0.0>xIS>0.3 mole fraction range, calculated from 

average squared displacement data obtained by Molecular Dynamics simulation. The simulation data were re-

scaled in order to yield the same range of diffusion coefficient values obtained experimentally. In other words, 

panel b should be viewed only as a way to gage the self-diffusion of the different ions relative to each other. 

 

In Figure 6a, the diffusion coefficients of the binary systems IL-IS are depicted as a 

function of the [NH4][SCN] content. The results show that the diffusion coefficients of the 

[C2MIM][C2SO4] binary system are larger than those of [C2MIM][C2SO3]. These results are in 

agreement with the other properties measured, since [C2MIM][C2SO4] system shows lower 

viscosity and higher conductivity and free molar volume than [C2MIM][C2SO3]. The diffusion 

coefficients follow the same order in both systems D[C2MIM]
+ > D[NH4]

+ > D[SO4]
- / D[SO3]

- 

Although [C2MIM]+ is the largest ion in both systems, it is also the one with the highest D 

(D[SCN]- could not be measured by 1H NMR). This behaviour was also found in other systems 

with mixtures of IL-IS,6, 38-40 where usually the IL's cation presents the highest self-diffusion 

coefficients. This (contra-intuitive) behaviour of D, D[C2MIM]
+ > D[NH4]

+, is related with the 

interactions established between the [NH4]+ and the IL's anion, which is also reflected in the 

changes in the chemical shifts. In addition, the Dcation / Danion can be used to assess the 
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degree of ion pairing, where the unity is interpreted as a diagnostic of complete ion pairing 

and small deviations from unity are interpreted as intermediate ion pairing.41 From the 

results depicted in Figure 6a it can be seen that upon the addition of [NH4][SCN] the self 

diffusion coefficients decrease, with the Danion showing a more pronounced decrease. 

Furthermore, the Dcation / Danion ratio is lower than the D[NH4]
+ / Danion ratio in both systems, 

which can be seen by the proximity of the Danion and D[NH4]
+ values. These results confirm 

that a higher degree of ion pairing occurs between the [NH4]+ and the IL's anion, as 

indicated by the formation of aggregates in the MD studies (vide infra). 

 

4.5. Raman studies 

In the next step we probed molecular environment of the thiocyanate anions in 

[NH4][SCN] + IL binary mixtures employing Raman spectroscopy. We monitored frequency 

(νSCN) and band width (∆ν) of this intense mode in the [C2MIM][C2SO3] and [C2MIM][C2SO4] 

systems upon increasing amounts of [NH4][SCN]. The full-range Raman spectra of the neat 

ILs are depicted in Figure S6 in the SI. The frequency of the (S)C≡N stretching mode, found 

at ~ 2060 cm-1, falls into region of the Raman spectra free from contributions of the ions of 

the pure ILs. 

For a relatively small amount of [SCN]- (0.1 mole fraction of [NH4][SCN]), the broad 

[SCN]- band is centred at 2055 cm-1 in [NH4][SCN] + [C2MIM][C2SO3], and at 2056 cm-1 in 

[NH4][SCN] + [C2MIM][C2SO4] mixtures, indicating comparable and heterogeneous 

environments of this anion in the two ILs. Except for a moderate broadening, (∆ν increases 

from 20 cm-1 for 0.1 mole fraction of [NH4][SCN] to 21.2 cm-1 for 0.25 mole fraction), which 

reveals further raise of heterogeneity, no other spectral changes take place as the amount 

of [NH4][SCN] increases in [C2MIM][C2SO3], Figure 7, inset. The situation is different for the 

[SCN]- in [C2MIM][C2SO4] system, Figure 7. An additional population characterized by νSCN 

at 2065 cm-1 clearly emerges in this system upon increasing amount of [NH4][SCN]. The 

frequency of the new species indicates a presence of ´unengaged´ or loosely interacting 

[SCN]- moieties, as the respective νSCN stretching mode appears upshifted. At 0.53 mole 
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fraction, the second population becomes clearly predominant (Figure 7, trace c). It is 

noteworthy that the higher solubility of [NH4][SCN] in [C2MIM][C2SO4] allows for probing 

mixtures with higher IS : IL ratios, which are not accessible for [C2MIM][C2SO3]. 

Nevertheless, even for relatively small but comparable amounts of [NH4][SCN], 0.25 mole 

fraction, the presence of a shoulder at 2065 cm-1 becomes evident in the spectrum of [SCN]- 

+ [C2MIM][C2SO4] (Figure S7, upper traces). Furthermore, the band broadening is observed 

upon increasing of the [NH4][SCN] in both populations (∆ν increases from 22 cm-1 to 28 cm-1 

for ν2056, and from 16 cm-1 to 20 cm-1 for ν2065, as the [NH4][SCN] mole fraction changes from 

0.1 to 0.53). This is indicative of an increased heterogeneity of the [SCN]- molecular 

environment within each population. 

Taken together, Raman data reveal that the interactions between [SCN]- anion and the 

two studied IL are indeed distinct. Other experimental and theoretical approaches (MD, vide 

infra) point to IL anion : [NH4]+ interaction as determinant in these systems. The higher 

flexibility and the higher free molar volume (Figure S3) of the [C2SO4]- anion, as compared 

to that of the [C2SO3]-, implies its higher capacity to accommodate [NH4]+ that would 

furthermore allow the [SCN]- anion to form more than one population in [C2MIM][C2SO4]. The 

´unengaged´ [SCN]- population present in this IL shows an upshifted C≡N stretching band, 

close to that of [NH4][SCN] crystals, (νSCN(crystal) = 2063 cm-1).42 Increasing amount of this 

[SCN]- population, however, does not contribute significantly to the ionic conductivity (Figure 

4), indicating a more complex interplay of ionic species in the sulfate-based IL. On the other 

hand, the measured ionic conductivity of the [C2MIM][C2SO3] in the presence / absence of 

[NH4][SCN] is in full accordance with Raman data, showing extremely small differences 

between pure IL and IL-IS mixtures. 
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Figure 7 | Raman spectra of [SCN]- in [C2MIM][C2SO4] + [NH4][SCN] binary mixtures, for x[NH4][SCN]: a) 

0.17; b) 0.33 and c) 0.53. Inset: Raman spectra of [C2MIM][C2SO3] + [NH4][SCN] binary mixtures for 

x[NH4][SCN]: 0.1, 0.17 and 0.25. Spectral intensities were normalized to 1 for clearer comparison. The 

experimental conditions are stated in Materials and Methods (and in Figure S7 in the SI). 

 

4.6. Molecular Dynamics simulations 

The structural analysis of the two pure ILs and their mixtures with increasing 

concentrations of the IS was also accomplished using MD simulation results. 

Figure 8 shows selected radial distribution functions (RDFs) between relevant pairs of 

atoms/centres belonging to the IL ions that compose the different systems. The inset of the 

figure shows the characteristic fingerprint of each IL: local electro-neutrality conditions 

impose phase opposition behaviour between the RDFs of unlike-charged pairs (red and 

blue lines) and the RDFs of ions with the same charge (green line). The inset also shows 

that in terms of structure, the two pure ILs (sulfonate- and sulfate-based) are very similar to 

each other: the first peak distances corresponding to the (sulfate or sulfonate anion) S-O···H 

(imidazolium ring) interactions are almost identical; the slightly larger size of sulfate anion is 

only noticeable in the slightly shifted and less intense second peak corresponding to such 

interactions. This figure also shows the same unlike-charged RDFs, comparing the pure ILs 

with mixtures containing 30% (mole fraction) of the IS. It must be stressed out that due to 

the smaller size of the IS ions, a 0.3 mole fraction of IS corresponds to much smaller (lower 

than 0.1) volume fractions. Interestingly the position of the first peaks remain almost 

unchanged, albeit less intense, due to the loss of some of the cation-anion interactions, 
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whereas the second peaks show important shifts towards smaller distances. Such shifts are 

more pronounced in the case of the sulfate-based IL, with the peak exhibiting a more 

complex shape (shoulder). In other words, it seems that the extra bridge oxygen of the 

sulfate anion not only increases the size of the anion relative to its sulfonate counterpart, but 

also confers it a more flexible way to interact with the cations. The more structured second 

peak indicates that the contraction of the ionic mixture structure is caused by the 

introduction of the much smaller ammonium cations,12 which are better accommodated in 

the sulfate-based than in the sulfonate-based system. This fact might explain the enhanced 

solubility of the IS in the former IL. 
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Figure 8 | Selected radial distribution functions (RDFs) between pairs of atoms/centres belonging to the 

ionic liquid ions that compose the (IL+IS) systems: blue curves = RDF(imidazolium centroid, sulfate sulphur 

atom) in pure [C2MIM][C2SO4];12 red curves = RDF(imidazolium centroid, sulfonate sulphur atom) in pure 

[C2MIM][C2SO3]; dashed blue curve = RDF(imidazolium centroid, sulfate sulphur atom) in the ([C2MIM][C2SO4] + 

[NH4][SCN]) mixture with xIS = 0.3;12 dashed red curve = RDF(imidazolium centroid, sulfonate sulphur atom) in 

the ([C2MIM][C2SO3] + [NH4][SCN]) mixture with xIS = 0.3; green curve (inset)= RDF(sulfate sulphur atom, sulfate 

sulphur atom) in pure [C2MIM][C2SO4].12 The inset scale is the same as that of the larger figure. 

 

Figure 9 (a to f) shows the aggregation analysis results. Panels a to c show the 

probability of formation of aggregates of a given size composed exclusively of [C2MIM]+ and 
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[SCN]– ions in sulfonate- or sulfate-based IL mixtures with 0.1, 0.3 and 0.5 mole fraction of 

[NH4][SCN]. The other three panels show similar results for aggregates composed 

exclusively of [NH4]+ and ([C2SO3]– or [C2SO4]–) ions. When the mole fraction of IS is just 

0.1, panels a and d seem to indicate that IL-IS aggregates are easier to form in the 

sulfonate-based ILs (red lines shifted to the right of the blue ones). This is logical if we 

assume that at these small concentration the IS ions are diluted in a continuous network of 

IL ions. The limiting step for the formation of an IL-IS aggregate, either [C2MIM]+ plus [SCN]–

, or [NH4]+ plus ([C2SO3]– or [C2SO4]–), is the proximity of two similar IS ions. That probability 

is slightly higher in the sulfonate-based IL due to its smaller molar volume. In terms of the IS 

ions, the formation of IL-IS aggregates is also easier for the bulkier [SCN]– anion (panel a, 

larger aggregates) than for the smaller [NH4]+ cation (panel d, smaller aggregates). 

Changes start to occur in the 0.3 concentration range. In this case the mole, and thus 

the volume fraction of the IS anions is large enough to form large aggregates containing 

almost all the ions in the simulation box (panel b). In the case of the smaller ammonium 

cation, its volume fraction is still not sufficient to form such extended aggregates (panel e). 

One also sees that the sulfate-based systems are now better at forming larger aggregates 

than their sulfonate counterparts. This means that the flexibility of the sulfate anion 

conferred by its extra oxygen atom overcomes the issue of larger ion size that is noticeable 

at more diluted (0.1 mole fraction) concentrations. Finally at equimolar concentrations of IL 

and IS (panels c and f, only for the case of the sulfate-based IL), the IL-IS aggregates 

encompass all ions present in the system in the case of [C2MIM]+ plus [SCN]– aggregates 

(panel c) or a fair proportion of those in the case of [NH4]+ plus [C2SO4]– aggregates (panel 

f). The large difference between the solubility of [NH4][SCN] in the two ILs can be interpreted 

as a result of the better ability of the sulfate-based IL to accommodate extended IL-IS 

aggregates in the midst of its polar network. Such ability is a consequence of the more 

flexible nature of the ethyl sulfate anion relative to its sulfonate-based counterpart. 

Moreover, the simulation results can also yield the self-diffusion coefficients of each 

type of ion present in the mixture. These were calculated from the corresponding mean 

square displacements of each ion obtained in the 8 ns simulation runs and compared with 

experimental results obtained via NMR analysis in Figure 6. It must be stressed out at this 
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point that the force-field used to model the IL-IS systems (a non-polarizable, systematic 

force field for ionic liquids) is not particularly suited to estimate transport properties such as 

viscosity or mass diffusivity. Previous results have shown that very long simulation results 

are always required in the case of highly viscous ionic liquid systems and that in most cases 

viscosity is still overestimated (and mass diffusivity under-estimated) by more than one 

order of magnitude. Many different schemes have been attempted to overcome this issue, 

namely charge-transfer or charge-reduction schemes that aim to dampen the (excessive) 

role of the electrostatic interactions or the inclusion of polarization in the models that try to 

mimic the response of the electronic distribution in the ions when subjected to different 

electric fields caused by the surrounding ions. Unfortunately such methods lie outside the 

scope of the present work. Nevertheless, the current approach provides a qualitative 

indication about the relative magnitude of the self-diffusion coefficients of the different ions 

present in the mixture and such relation can be helpful in the interpretation of the 

experimental results. 
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Figure 9 | Distribution functions showing the probability of finding an aggregate of a given size composed 

exclusively of: (a-c) [C2MIM]+ and [SCN]– ions in sulfate-based (blue lines) or sulfonate-based (red lines) 
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mixtures; (d-f) [NH4]+ and ([C2SO4]– or [C2SO3]–) ions in sulfate-based (blue lines) or sulfonate-based (red lines) 

mixtures. The different mole fractions of salt, 0.1, 0.3 and 0.5, are illustrated in panels a) / d), b) / e) and c) / f), 

respectively. 

 

Figure 6 shows that the relative magnitude of the self-diffusion coefficients obtained in 

the NMR experiments and in the simulations is the same, with the 1-ethyl-3-

methylimidazolium ion cation exhibiting larger self-diffusion coefficient values than those of 

the ammonium, ethyl sulfate or ethyl sulfonate ions. This apparently unusual state of affairs 

— the 1-ethyl-3-methylimidazolium cation is much larger than the ammonium cation and 

should exhibit a lower mobility — can be explained by the higher charge dispersion (and 

less intense electrostatic interactions) in the organic cation. Simulation results also indicate 

that the self-diffusion of the thiocyanate anion is even higher than that of the imidazolium 

cation: in this case the charge delocalization across the molecular ion (between the nitrogen 

and sulphur atoms of [SCN]–) is combined with its relatively small size. Unfortunately, these 

findings could not be confirmed by 1H NMR due to the absence of hydrogen atoms in the 

[SCN]– structure. 

Overall the simulation results support the idea that the fluidity and electrical 

conductivity of the IL-IS mixtures should decrease as the concentration of the IS is 

increased, as shown in Walden plots of Figure S1, due to the formation of ionic aggregates 

composed of more localized charged species (the ammonium cations). However, the ionic 

conductivity does not decrease as much as expected (the ionicity even increases) due to 

the concomitant introduction of relatively mobile species such as the thiocyanate anion. 

 

5. Conclusions 

In the present work, a comparison between the binary IL-IS systems [C2MIM][C2SO3] + 

[NH4][SCN] and [C2MIM][C2SO4] + [NH4][SCN] was made in order to study the effect of the 

nature of the IL’s anion on the density, refractive index, thermal stability, viscosity and ionic 

conductivity. 

The obtained data showed that upon the addition of ammonium thiocyanate, both 
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systems display the same type of behaviour and an increase in the ionicity of both these 

systems was observed. Nevertheless, since the neat IL [C2MIM][C2SO3] is much more 

viscous and has also a smaller ionic conductivity than the [C2MIM][C2SO4], it shows lower 

ionicity. The addition of [NH4][SCN] seems to have higher impact on the [C2MIM][C2SO4] 

system properties than on those of [C2MIM][C2SO3]. 

The NMR and Raman studies showed that the sulfate-based IL is capable of 

establishing stronger interactions with the [NH4][SCN] than the sulfonate-based one. The 

results reveal that the extra oxygen in the sulfate-based IL plays a key role in the structuring 

of the complexes between the IL and the IS (namely between the [C2SO4]- anion and the 

[NH4]+ cation). This becomes evident by the differences observed between the two ILs in the 

self-diffusion coefficients, the 13C chemical shifts and the Raman spectra. 

In addition, the experimental data are fully corroborated by Molecular Dynamic studies, 

which reveal that upon the addition of IS, the sulfate-based IL forms more aggregates than 

the sulfonate-based IL. The ability of the sulfate-based IL to accommodate extended IL-IS 

aggregates in its polar network, results from the flexibility of the sulfate anion conferred by 

its extra oxygen atom. The formation of aggregates between the [C2SO4]- anion and the 

[NH4]+ cation allows the other ions to become more free, which results in the increase in 

ionicity of the system. 
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7. Supplementary Information 

7.1. Experimental section 

7.1.1. Refractive index measurements 

The refractive indexes were measured in the temperature range between 298.15 and 

323.15 K at the sodium D-line using a Carl Zeiss Abbé refractometer with a precision of ± 5 

× 10-5. The temperature in the refractometer cell was controlled using an external 

thermostatic bath and measured with the refractometer thermometer (± 0.05 K accuracy). 

Samples were directly introduced in the cell (prism assembly) using a syringe. 

At least three independent measurements were taken for each sample at each 

temperature to assure the effectiveness of the measurement. The absolute uncertainty of 

the refractive index is ± 0.00005. 

 

7.1.2. Thermal stability measurements 

Thermogravimetric analyses (TGA) were carried out using a TA instrument Model TGA 

Q50. Nitrogen was used as the sample gas for the TGA measurements at a flow rate of 60 

mL·min-1. All samples were recorded in aluminium pans within a nitrogen atmosphere. 

Samples were heated to 873.15 K at a rate of 10 K·min-1 until complete thermal degradation 

was achieved. Universal Analysis, version 4.4A software, was used to determine the onset 

temperatures (Tonset) corresponding to the temperature at which the baseline slope changed 

during heating. The relative uncertainty of the temperature is ± 0.50 %. At least three 

independent measurements were taken for each sample to ensure the accuracy of the 
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measurement. 

 

7.2. Results and discussion 

7.2.1. Ionicity 
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Figure S1 | Walden plot for the binary system [C2MIM][C2SO3] + [NH4][SCN] as a function of the inorganic 

salt concentration: red square x[NH4][SCN]=0, blue square x[NH4][SCN]=0.02, green square x[NH4][SCN]=0.10, orange 

square x[NH4][SCN]=0.20, pink square x[NH4][SCN]=0.30. The inset figure shows the behaviour of the binary system at 

298.15 K. 

 

7.1.2. Density 

The density values measured for the [C2MIM][C2SO3] + [NH4][SCN] system at 

temperatures between 293.15 and 323.15 K and at atmospheric pressure are listed in Table 

S1. Figure S2 illustrates the temperature dependence of the density for this mixture at a 

concentration of 0.3 in mole fraction of [NH4][SCN] and compares it with the pure IL, 

[C2MIM][C2SO3]. Also, results for the pure [C2MIM][C2SO4] IL and its binary mixture 

[C2MIM][C2SO4] + [NH4][SCN] (also at a IS’s mole fraction of 0.3 [NH4][SCN]) are plotted.12 



Ionicity in -SOx based ILs: comparing the effect of ethyl sulfonate and ethyl sulfate anions 

 

63 

 

The IS's mole fraction of 0.3 was chosen for comparison of the two ILs. The density of pure 

[C2MIM][C2SO4] is higher than the pure [C2MIM][C2SO3] and for both binary mixtures the 

density is lower than the neat ILs. This behaviour is different from that found for other binary 

mixtures of IL-IS where the addition of salt increased the density of the mixture. The 1-ethyl-

3-methylimidazolium acetate + ammonium thiocyanate system in our previous work12 as 

well as the mixtures of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide and 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)amide with their respective lithium salts43 are 

examples of increased density with the addition of inorganic salt. Lassègues et al.14 and 

Monteiro et al.16 also reported density data of mixtures of different ILs based on alkyl-

substituted imidazolium cations and bis(trifluoromethylsulfonyl)amide anions, with the lithium 

bis(trifluoromethylsulfonyl)amide salt, where the density of the mixture was higher than the 

neat IL. Moreover, the effect of the addition of [NH4][SCN] is more pronounced in the density 

of the [C2MIM][C2SO4] than the [C2MIM][C2SO3]. This finding is corroborated by Raman 

data, which indicate a formation of ´unengaged´ SCN only in the former IL. 

 

Table S1 | Density, ρ, dynamic viscosity, η, ionic conductivity, σ, refractive index, nD, molar volume, Vm, 

molar refraction, Rm, and free molar volume, fm, for the binary system [C2MIM][C2SO3] (1) + [NH4][SCN] (2) at 

several temperatures. 

x2 
ρ 

(g⋅cm-3) 
η 

(mPa⋅s) 
σ 

(mS⋅cm-1) 
nD Vm Rm fm 

 T = 298.15 K 

0 1.2037 204.35 1.770 1.49181 183.013 53.078 129.935 
0.0206 1.2035 209.26 1.751 1.49181 180.576 52.371 128.205 
0.1016 1.2025 258.52 1.668 1.49482 171.005 49.853 121.152 
0.2007 1.2004 315.24 1.615 1.49816 159.407 46.739 112.669 
0.3002 1.1973 371.13 1.518 1.50184 147.839 43.618 104.221 

 T = 303.15 K 

0 1.2004 151.41 2.290 1.48947 183.516 53.008 130.508 
0.0206 1.2002 155.49 2.267 1.48947 181.067 52.301 128.766 
0.1016 1.1993 192.11 2.155 1.49314 171.466 49.844 121.623 
0.2007 1.1972 235.08 2.090 1.49615 159.833 46.703 113.130 
0.3002 1.1941 276.11 1.970 1.50051 148.231 43.635 104.596 

 T = 308.15 K 

0 1.1971 114.96 2.912 1.48846 184.012 53.058 130.954 
0.0206 1.1970 118.33 2.876 1.48879 181.556 52.381 129.176 
0.1016 1.1961 146.23 2.734 1.49248 171.920 49.919 122.002 
0.2007 1.1941 179.27 2.645 1.49482 160.248 46.717 113.531 
0.3002 1.1910 210.28 2.499 1.49917 148.617 43.649 104.968 

 T = 313.15 K 
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0 1.1939 89.18 3.619 1.48779 184.510 53.140 131.370 
0.0206 1.1938 91.97 3.572 1.48846 182.043 52.491 129.553 
0.1016 1.1930 113.64 3.396 1.49080 172.377 49.906 122.470 
0.2007 1.1910 139.49 3.286 1.49448 160.661 46.810 113.851 
0.3002 1.1880 163.36 3.112 1.49750 148.992 43.635 105.357 

 T = 318.15 K 

0 1.1907 70.52 4.425 1.48545 185.011 53.066 131.945 
0.0206 1.1906 72.85 4.362 1.48645 182.532 52.447 130.085 
0.1016 1.1899 89.94 4.145 1.48980 172.826 49.949 122.876 
0.2007 1.1880 110.48 4.016 1.49314 161.076 46.824 114.252 
0.3002 1.1851 129.19 3.816 1.49716 149.365 43.719 105.646 

 T = 323.15 K 

0 1.1875 56.73 5.315 1.48478 185.510 53.147 132.363 
0.0206 1.1874 58.68 5.240 1.48511 183.019 52.464 130.555 
0.1016 1.1868 72.38 4.992 1.48913 173.277 50.021 123.256 
0.2007 1.1850 88.92 4.827 1.49248 161.483 46.888 114.595 
0.3002 1.1824 103.20 4.600 1.49649 149.706 43.769 105.938 
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Figure S2 | Density as a function of temperature for [C2MIM][C2SO4] (blue filled circle),12 [C2MIM][C2SO4] 

+ x[NH4][SCN]=0.3 (blue empty circle),12 [C2MIM][C2SO3] (red filled square) and [C2MIM][C2SO3] + x[NH4][SCN]=0.3 

(red empty square). 

 

7.1.3. Refractive index 

The refractive indexes for the system [C2MIM][C2SO3] + [NH4][SCN] are shown in 

Table S1, for the concentration range between 0 and 0.3 mole fraction of salt. For the 
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system [C2MIM][C2SO4] + [NH4][SCN], the refractive indexes along with the molar volume, 

molar refraction, and free molar volume values are depicted in Table S2 for the all 

concentration range of salt. In both systems, the addition of salt increased the refractive 

index of the mixture, and within the studied concentration range of [NH4][SCN], it decreased 

linearly with increasing temperature. 

The Lorentz–Lorenz equation (1) can be used to calculate the molar refraction or molar 

polarizability, Rm, which can be related both to density, ρ, and refractive index, nD.44 

 

m

D

D
m V

n

n
R ×









+
−

=
2

1
2

2

 (1) 

 

where Vm is the molar volume. The molar refraction is considered as a measure of the 

hard-core volume of one molecule and it can be used to calculate the molar free volume, fm, 

of a solution,45 by: 

 

( )mmm RVf −=  (2) 

 

The values for the calculated molar refractions (from equation 1) and molar free 

volumes (from equation 2) of all the studied samples are listed in Tables S1 and S2 together 

with the molar volume calculated from density values. Figure S3 illustrates the molar free 

volumes for the neat ILs, [C2MIM][C2SO4] and [C2MIM][C2SO3], and their binary mixtures 

with [NH4][SCN] at a concentration of 0.3 in mole fraction of salt. It can be observed that the 

molar free volumes decrease with [NH4][SCN] concentration and increase as the 

temperature increases. In addition, the [C2MIM][C2SO4] IL shows higher molar free volume 

in the whole range of temperature, which means that it has more space available to 

accommodate [NH4][SCN] than [C2MIM][C2SO3]. This is at least part of the answer for the 

higher solubility limit of the inorganic salts in [C2MIM][C2SO4] than in [C2MIM][C2SO3]. 

The analysis of the molar free volumes can be related with the solubility of different 

species in the mixtures of IL and ISs, especially low molecular weight solutes that are 
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gaseous at normal conditions. However, the mechanisms of solvation of some of these 

species, for example CO2
46, 47 are controlled by the interactions and only to a minor extent 

by molar free volume effect.48 Therefore, refractive data can be useful to evaluate the 

importance of the dispersive molecular interactions and the size of the apolar domains 

(dominated by dispersive molecular interactions) in the pure ILs or mixtures with ILs.45 

 

Table S2 | Refractive index, nD, molar volume, Vm, molar refraction, Rm, and free molar volume, fm, for the 

binary system [C2MIM][C2SO4] (1) + [NH4][SCN] (2) at several temperatures. 

x2 nD Vm Rm fm 

 T = 298.15 K 

0 1.47875 191.096 54.165 136.931 
0.0235 1.47976 188.128 53.420 134.708 
0.1553 1.48477 171.827 49.226 122.601 
0.3025 1.48980 153.727 44.430 109.297 
0.4042 1.49582 141.042 41.189 99.853 
0.5205 1.50385 126.110 37.333 88.778 
0.5650 1.50987 120.233 35.952 84.281 
0.5997 1.51389 115.649 34.811 80.838 

 T = 303.15 K 
0 1.47775 191.623 54.218 137.405 

0.0235 1.47875 188.647 53.471 135.176 
0.1553 1.48277 172.289 49.185 123.104 
0.3025 1.48879 154.118 44.464 109.653 
0.4042 1.49381 141.402 41.152 100.251 
0.5205 1.50284 126.434 37.365 89.069 
0.5650 1.50887 120.541 35.984 84.557 
0.5997 1.51188 115.965 34.791 81.174 

 T = 308.15 K 
0 1.47674 192.153 54.269 137.883 

0.0235 1.47775 189.169 53.523 135.645 
0.1553 1.48177 172.739 49.226 123.513 
0.3025 1.48779 154.511 44.500 110.011 
0.4042 1.49181 141.765 41.115 100.649 
0.5205 1.50184 126.759 37.398 89.361 
0.5650 1.50686 120.850 35.956 84.894 
0.5997 1.51088 116.253 34.820 81.433 

 T = 313.15 K 
0 1.47474 192.670 54.220 138.450 

0.0235 1.47574 189.678 53.474 136.204 
0.1553 1.48076 173.192 49.267 123.926 
0.3025 1.48678 154.906 44.535 110.371 
0.4042 1.49080 142.117 41.145 100.972 
0.5205 1.50083 127.075 37.427 89.647 
0.5650 1.50586 121.152 35.986 85.166 
0.5997 1.50886 116.543 34.790 81.753 

 T = 318.15 K 
0 1.47373 193.205 54.271 138.934 
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0.0235 1.47474 190.190 53.522 136.668 
0.1553 1.47875 173.647 49.220 124.428 
0.3025 1.48578 155.290 44.567 110.723 
0.4042 1.48980 142.471 41.176 101.295 
0.5205 1.49883 127.382 37.391 89.991 
0.5650 1.50485 121.455 36.015 85.440 
0.5997 1.50787 116.834 34.820 82.014 

 T = 323.15 K 
0 1.47273 193.744 54.324 139.420 

0.0235 1.47373 190.705 53.569 137.136 
0.1553 1.47675 174.105 49.173 124.932 
0.3025 1.48478 155.689 44.603 111.085 
0.4042 1.48879 142.827 41.207 101.620 
0.5205 1.49783 127.701 37.421 90.280 
0.5650 1.50385 121.759 36.045 85.714 
0.5997 1.50686 117.127 34.848 82.279 
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Figure S3 | Molar Free Volume as a function of temperature for [C2MIM][C2SO4] (blue filled circle), 

[C2MIM][C2SO4] + x[NH4][SCN]=0.3 (blue empty circle), [C2MIM][C2SO3] (red filled square) and [C2MIM][C2SO3] + 

x[NH4][SCN]=0.3 (red empty square). 

 

7.1.4. Thermogravimetric analysis 

The thermal decomposition temperatures as a function of IS concentration are listed in 

Table S3 and the onset temperature versus [NH4][SCN] concentration is plotted in Figure 

S4. The results for the binary mixtures indicate that the thermal decomposition temperatures 
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decrease when the IS concentration increases. However, a deviation from this behaviour is 

observed for the binary mixture [C2MIM][C2SO4] + [NH4][SCN] in the onset temperatures at x 

[NH4][SCN] > 0.35. From this point, the onset temperatures stabilize with the addition of 

inorganic salt.  

 

Table S3 | Thermal decomposition temperatures for the binary system [C2MIM][C2SO3] or 

[C2MIM][C2SO4] (1) + [NH4][SCN] (2). 

[C2MIM][C2SO3] [C2MIM][C2SO4] 
x2 Tonset (K) x2 Tonset (K) 
0 626.20 0 621.29 

0.0206 623.75 0.0235 620.93 
0.1016 621.72 0.1553 605.10 
0.2007 611.98 0.3025 573.80 
0.3002 565.54 0.4042 529.17 

1 462.97 0.5205 518.05 
̶ ̶ 0.5650 517.84 
̶ ̶ 0.5997 525.33 
̶ ̶ 1 462.97 
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Figure S4 | The onset temperature, Tonset, as a function of [NH4][SCN] concentration in the solubility range 

for the binary systems [C2MIM][C2SO4] (blue filled circle) or [C2MIM][C2SO3] (red filled square) + [NH4][SCN]. 
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7.1.5. NMR studies 

Table S4 | 1H NMR and 13C NMR chemical shifts (ppm) of [C2MIM][C2SO3] and the effect of [NH4][SCN] 

concentration upon the chemical shifts in DMSO–d6 at 298.15 K. 

Position 
Mole fraction of [NH4][SCN] 

0 0.1332 0.2418 0.3384 0.3939 0 0.1332 0.2418 0.3384 0.3939 

 1H NMR 13C NMR 

2 9.397 9.319 9.261 9.160 9.117 136.639 136.553 136.444 136.368 136.322 
4 7.951 7.895 7.846 7.780 7.750 123.463 123.432 123.445 123.413 123.399 
5 7.843 7.793 7.751 7.687 7.660 121.939 121.896 121.893 121.855 121.837 
6 3.916 3.899 3.879 3.860 3.852 35.425 35.453 35.526 35.545 35.565 
7 4.245 4.226 4.214 4.185 4.177 43.934 43.983 44.037 44.079 44.104 
8 1.383 1.378 1.392 1.364 1.364 15.061 15.027 15.050 15.023 15.018 
9 2.473 2.484 2.485 2.504 2.513 45.188 45.168 45.159 45.146 45.143 
10 1.064 1.053 1.066 1.028 1.026 9.727 9.626 9.651 9.553 9.529 
12 ̶ ̶ ̶ ̶ ̶ ̶ 129.953 130.003 130.193 130.274 
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Figure S5 | Trend of the chemical shift difference of carbons in 13C NMR of [C2MIM][C2SO3] (red) and 

[C2MIM][C2SO4]12 (blue) with increasing [NH4][SCN] concentration (∆δ = δ −δneat) (b is an enlarged image of 

a). 
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7.1.6. Raman studies 

 
Figure S6 | Raman spectra of a) [C2MIM][C2SO3], b) [C2MIM][C2SO4] and c) [C2MIM][C2SO3] + 

[NH4][SCN] (x[NH4][SCN] = 0.17). a) and c) were measured with 400 mW laser power and 1064 nm excitation; b) 

was recorded with 3 mW laser power, 60s accumulation time, and 413 nm excitation. Spectral intensities are 

normalized for clearer comparison. 

 

 
Figure S7 | Raman spectra of [C2MIM][C2SO4] + [NH4][SCN] (solid lines) and [C2MIM][C2SO3] + 

[NH4][SCN] (dotted lines) binary mixtures, for x[NH4][SCN] = 0.17 (upper traces) and for x[NH4][SCN] = 0.25 (lower 

traces). Spectra of [C2MIM][C2SO4] +[NH4][SCN] were recorded with 3 mW laser power, 60s accumulation time, 

and 413 nm excitation. Spectra of the [C2MIM][C2SO3] + [NH4][SCN] mixtures were measured with 400 mW laser 

power and 1064 nm excitation. Spectral intensities were normalized to 1 for clearer comparison. 
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1. Abstract 

In this work, we studied the effects caused by the addition of different inorganic salts, 

on the ionicity of the IL 1-ethyl-3-methylimidazolium acetate. The solubility of different 

inorganic salts, based on the ammonium and the sodium cations, in this IL was 

experimentally determined at room temperature. Thermophysical properties, such as 

viscosity, density, conductivity and refractive indexes, of the 1-ethyl-3-methylimidazolium 

acetate + inorganic salt mixtures were measured in different concentrations of inorganic salt 

and the ionicity of the systems was calculated. The results showed that when ammonium-

based salts are used, the ionicity of the IL can be increased, while when sodium-based salts 

are used, the opposite behaviour was found. 

 

2. Introduction 

Over the last years, the field of ionic liquids (ILs) has expanded immensely due to their 

unique properties such as negligible vapour pressure, wide liquid range, highly specific and 

tunable solvent ability,1, 2 that allowed their introduction in a wide range of industrial 

applications.3 Since ILs are compounds composed entirely of ions, it is possible to tune their 

thermophysical properties simply by the choice of their cation or anion, which resulted on 

they being labelled as "designer solvents". Nevertheless, designing the perfect task-specific 

IL just by adjusting the cation or the anion can be quite difficult and therefore studies of 

mixtures of ILs with other ILs4 and also with inorganic salts (ISs)5-9 started to appear in the 

literature. 

Recently, our group reported the solubility of common ISs in a wide range of different 

ILs.10 The results showed that among the ILs tested, the 1-ethyl-3-methylimidazolium 

acetate was capable of dissolving a wider range of ISs in significant concentrations. Indeed, 

this IL is one of the most studied ILs and recognized by its great solvent properties, proving 

to be capable of dissolving lignocellulosic materials,11-14 proteins and enzymes,15, 16 and also 

of having a high performance in capturing CO2.17-19 In our previous work,20 we also used 1-
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ethyl-3-methylimidazolium acetate along with 1-ethyl-3-methylimidazolium ethyl sulfate, and 

studied the effects of the addition of ammonium thiocyanate on the thermophysical 

properties of these two ILs. NMR and MD calculations showed that by solubilising this salt 

into the IL media, modifications on the IL's initial structure were promoted and the 

Coulombic character of the ILs could be increased, which lead to the increase of the ionicity 

of the system. 

The subject of ionicity in ILs has been extensively discussed by Watanabe21, 22 and 

MacFarlane23 and co-authors, among others. The quantitative estimation of the ILs' ionicity 

is of great significance for the characterization of these fluids, since it provides a way to 

study their structure, namely concerning the formation of aggregates or clusters between 

the IL's ions. Different methods have been proposed for the estimation of ionicity. The two 

most commonly used are: i) the Walden Plot approach, that is based on the Walden Rule 

and relates the molar conductivity of an ionically conducting liquid to its viscosity, and ii) the 

ratio between the measured molar conductivity (Λimp) and the molar conductivity calculated 

from ionic self-diffusion coefficients using the simple form of the Nernst-Einstein equation 

(ΛNMR). Following the Walden Plot approach, Xu et al.24 proposed the classification of ILs in 

"good ILs" or "poor ILs" according to their proximity to ideal behaviour, i.e. fully dissociated 

ions. 

So far, the majority of the pure ILs tested in literature fall in the "good ILs" region, and 

the most studied ILs have been the bis(trifluoromethylsulfonyl)imide-based. Despite the fact 

that the ionicity concept has not been widely explored, the majority of authors lean on this 

definition to explore ILs application in several fields where this property is relevant, namely 

electrochemistry. For example, Watanabe's group published a collection of three papers25-27 

where they demonstrate that the ratio Λimp / ΛNMR is a useful parameter to characterize ILs, 

since it is linked to various physicochemical and structural properties. This group recently 

reported on ionicity of mixtures of lithium salts and glymes to evaluate the possibility of 

developing lithium solvate ILs as lithium-conducting electrolytes.28 

Bulut et al.29 determined the viscosities and conductivities as a function of temperature 

for a series of bis(trifluoromethylsulfonyl)imide-based ILs using different imidazolium, 

pyrrolidinium and piperidinium cations. In that work, the authors showed that an increase in 
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the alkyl chain length of the cation leads to a lower ionicity, and that this effect was 

dominant over the addition of -CH2 groups to the ring of the cation. Chiappe et al.30 studied 

the transport properties of several pyrazolium-based ILs combined with 

bis(trifluoromethylsulfonyl)imide and dicyanamide anions, and compared them to their 

imidazolium counterparts. Using the Walden plot and Kamlet−Taft solvatochromic 

parameters, these authors observed that the ion association was increased when 

dicyanamide-based ILs were used instead of bis(trifluoromethylsulfonyl)imide-based ILs, 

and imidazolium-based instead of pyrazolium-based ILs. Regarding the study of the ionicity 

of IL-IS systems, Wu et al.31 studied mixtures of 1-methyl-3-pentylimidazolium 

bis(trifluoromethylsulfonyl)imide and lithium bis(trifluoromethylsulfonyl)imide at various 

concentrations for the development of lithium-conducting electrolytes, while Hayamizu et 

al.32 studied the ion conduction and diffusion in mixtures of 1-ethyl-3-methylimidazolium 

tetrafluoroborate with its lithium counterpart. 

As a continuation of our previous studies,20, 33 in this work we explore the influence of 

the addition of several inorganic salts in the thermophysical properties of the IL 1-ethyl-3-

methylimidazolium acetate. The final goal of this work is to increase the ionicity of ILs 

through the addition of ISs. For this purpose, four salts with the ammonium cation and 

different anions (acetate, chloride, ethyl sulfonate and thiocyanate) and two other salts with 

the sodium cation, sodium acetate and sodium thiocyanate, were used. 

 

3. Experimental Section 

3.1. Materials 

The following six ISs were used in this work: ammonium acetate ([NH4][Ac]), 

ammonium chloride ([NH4]Cl), ammonium thiocyanate ([NH4][SCN]), ammonium ethyl 

sulfonate ([NH4][C2SO3]), sodium acetate (Na[Ac]) and sodium thiocyanate (Na[SCN]). 

Sodium acetate, ammonium acetate, chloride and thiocyanate were all provided by Sigma-

Aldrich with a purity content superior to 99.0 %, 98.0 %, 99.5 % and 99.0 %, respectively. 

Sodium thiocyanate was provided by Fluka with a purity content superior to 98.0 %. 
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Ammonium ethyl sulfonate was synthesized from the reaction between ethane sulfonic acid 

solution (70 wt% in water, purchased from Sigma-Aldrich) and ammonium hydroxyde 

solution (30 % NH3 basis, purchased from Sigma-Aldrich). Both starting reagents were 

further diluted in water and then mixed in equimolar concentrations under vigorous stirring 

with a magnetic stirrer. The resulting solution was then dried under high vacuum in order to 

obtain a solid white powder (ammonium ethyl sulfonate). The powder has then analyzed by 

NMR and Mass Spectroscopy (spectra in the supporting information, SI) to confirm the 

purity of the compound. 

The ILIL 1-ethyl-3-methylimidazolium acetate ([C2MIM][Ac]) was purchased from Iolitec 

with a mass fraction purity of ≥ 95 %. To reduce the water and other volatile substances 

contents, vacuum (10-1 Pa) and moderate temperature (no more than 318.15 K) were 

always applied to the IL for at least 5 days prior to their use. After drying, the IL purity was 

checked by 1H and 13C NMR. Karl Fischer coulometric titration (Metrohm 831 KF 

Coulometer) was used to determine the final water mass fraction of the IL, which contained 

around 4000 ppm of water. 

 

3.2. Solubility determination 

The binary mixtures of [C2MIM][Ac] + IS were prepared in the range of 0 to 0.45 in IS 

mole fraction. The solubility of [NH4]Cl and [NH4][SCN] in [C2MIM][Ac] was experimentally 

determined in our previous work.10 For the remaining systems, the solubility of the ISs in 

[C2MIM][Ac] was accomplished by consecutive addition of very small amounts (≈ 0.01 g) of 

IS to the IL until a precipitate was observed. The samples were prepared in an inert-

atmosphere glove box, since [C2MIM][Ac] is very moisture sensitive, using an analytical 

high-precision balance with an uncertainty of ± 10-5 g by weighing known masses of the 

each component into stoppered flasks. Good mixing was assured by magnetic stirring. In 

order to ensure the accuracy of the physical properties, each sample was measured in 

triplicates. 
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3.3. Viscosity and density measurements 

The measurements of density and viscosity were performed in the temperature range 

between 298.15 and 323.15 K at atmospheric pressure, using an automated SVM 3000 

Anton Paar rotational Stabinger viscometer-densimeter. The uncertainty for the 

temperature, viscosity and density is ± 0.02 K, ± 0.35 % and ± 0.0005 g·cm-3, respectively. 

Further details on the equipment can be found elsewhere.34 The results presented are the 

average value of three replicas measured for the IL and each IL-IS mixture, where the 

highest relative standard deviation registered for the dynamic viscosity and density 

measurements was ± 3.01 % and ± 0.03 %, respectively. 

 

3.4. Ionic conductivity measurements 

The measurements of ionic conductivities were performed using a CDM210 

Radiometer Analytical conductivimeter in the temperature range between 298.15 and 

323.15 K. The apparatus used for the measurements can be found elsewhere.20 For the 

calibration of the equipment for each temperature, a certified 0.01 D KCl standard solution 

supplied by Radiometer Analytical was used. Each conductivity value was determined at 

least three times to ensure its reproducibility within 1 % in absolute value. 

 

3.5. Refractive index measurements 

The measurements of refractive indexes were performed using an automated Anton 

Paar Refractometer Abbemat 500 in the temperature range between 298.15 and 323.15 K 

and at atmospheric pressure. The absolute uncertainty of the equipment is ± 0.00005. The 

refractive index of each sample was determined in triplicate and the results presented are 

the respective average value with a relative standard deviation lower than 0.004 %. 
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4. Results and discussion 

4.1. Solubility 

The range of concentrations used for the preparation of the IL-IS mixtures depends 

greatly of the choice of ions of the salt, as shown in our previous work.10 For the salts 

[NH4][SCN] and [NH4]Cl, the solubility in [C2MIM][Ac] is 0.4035 and 0.3755 in salt mole 

fraction (xIS), respectively. However, for the study of these IL-IS systems' thermophysical 

properties, only mixtures up to a concentration of 0.34 (in xIS) were prepared to ensure that 

no salt precipitation occurred. For the remaining salts the maximum concentration used was 

greatly affected both by the cation and the anion of the IS. For the salts containing the 

acetate anion it was possible to prepare mixtures up to a xIS of 0.16 for Na[Ac] and 0.45 for 

the [NH4][Ac]. For the [NH4][C2SO3], the mixtures were prepared up to a xIS of 0.17 and for 

Na[SCN], which is the less soluble salt, only mixture was prepared with a concentration of 

0.05 in mole fraction of salt. It can be concluded that the ammonium-based ISs have a much 

higher solubility in [C2MIM][Ac] than the sodium-based, probably due to the affinity of the 

IS's ammonium cation for the IL's acetate anion. 

 

4.2. Density 

The experimental density data for all the studied [C2MIM][Ac] + IS systems are 

depicted in Figure 1 and reported in Tables S1-S5, in the SI. The results show that in all 

systems the density increased upon the addition of IS and decreased with temperature. 

Other IL-IS systems found in literature exhibited the same behaviour with increasing IS 

concentration. Tsuzuki et al.35 observed an increase of density in mixtures of 1-ethyl-3-

methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide with their respective lithium salts, while Lassègues et al.8 

and Monteiro et al.36 reported increases in the density data for mixtures of different ILs 

based on alkyl-substituted imidazolium cations and bis(trifluoromethylsulfonyl)imide anions, 

upon the addition of lithium bis(trifluoromethylsulfonyl)imide salt. Wu et al.31 studied the 
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transport properties and density of mixtures of 1-methyl-3-pentylimidazolium 

bis(trifluoromethylsulfonyl)imide with lithium bis(trifluoromethylsulfonyl)imide, and also 

observed increases in the density of the IL with the increase in IS concentration. 

A clear comparison between the systems is difficult because of the different solubilities 

of each salt in the IL. In Figure 1a, a comparison is drawn between the densities of the 

systems containing different ammonium-based salts, where it can be seen that the IS's 

anions can affect the density in different ways. In the systems containing chloride and ethyl 

sulfonate anions, the increase in the density is much more pronounced than for those 

containing acetate or thiocyanate anions, where after a xIS of 0.20 the density reaches an 

almost constant value. For pure ILs, the variations of density can be linked to the molecular 

weight of the ions, where a decrease in the density can be correlated with the decrease in 

the anion's molecular weight.25, 37-39 However, in our systems such a correlation cannot be 

established since there are two other ions in the mixture and hence their interactions 

change the coordination and packing of the system. 

In Figure 1b, the effect of the IS's cation is shown. It can be observed that sodium-

based salts lead to denser mixtures in comparison to their ammonium counterparts. Yet, 

due to the low solubility of the sodium ISs, no conclusions can be drawn regarding the 

behaviour of the system with the increase in IS concentration. Nevertheless, at a xIS of 0.05 

a comparison between all the studied system can be made, where the density of the system 

is affected by the IS in the following order: Na[SCN] > [NH4][C2SO3] > Na[Ac] > [NH4]Cl > 

[NH4][SCN] > [NH4][Ac], where the latter is the salt where the density of the IL increases the 

least. 
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Figure 1 | Density as a function of the IS mole fraction for the systems [C2MIM][Ac] + IS. a) Comparison 

between systems with the same IS cation; b) Comparison between the systems with common IS anion. The 

system [C2MIM][Ac] + [NH4][SCN] is taken from literature.20 The different symbols represent the temperatures 

298.15 K (○) and 323.15 K (×), whereas the grey symbols represent the neat IL. 

 

The molar volumes for all [C2MIM][Ac] + IS systems were calculated from the density 

data and are depicted in Figure 2 and presented on Tables S1-S5 in the SI. As expected, 

the molar volume of the mixtures decreases upon the addition of IS to the IL (in all systems 

the density increases) and increases with temperature. The molar volumes decrease in the 

following order: [NH4][C2SO3] > [NH4][Ac] > [NH4][SCN] > Na[Ac] > Na[SCN] > [NH4]Cl. 
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Figure 2 | Molar volume as a function of the IS mole fraction for the [C2MIM][Ac] + IS systems. The 

different symbols represent the temperatures 298.15 K (○) and 323.15 K (×), whereas the grey symbols 

represent the neat IL. 

 

4.3. Refractive index 

The determination of the refractive indexes, which are usually used as a measure of 

the electronic polarizability of a molecule, are important in the characterization of these 

systems, since they can yield useful information on the forces between molecules. In Figure 

3, the refractive indexes for all IL-IS systems are depicted. Two different types of behaviours 

can be observed: i) the refractive index increases with the addition of ISs containing [SCN]- 

and Cl- anions, and ii) the refractive index decreases upon the addition of any other IS 

tested. In addition, for all systems, the refractive index decreases with increasing 

temperature. 

As observed for pure ILs,37, 38 the refractive index is strongly dependent of the type of 

the anion present. The results obtained for the [C2MIM][Ac] + IS systems are in agreement 

with the behaviour observed in pure ILs, where the change of anion (of the IS in this case) 

has a stronger effect than the cation on the refractive index of the mixture. 

Usually the increase of the refractive index is associated to an increase in the 
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polarizability, which implies that the compound is capable of enjoying particularly strong 

dispersion forces, allowing a better solubility for other species. The data obtained showed 

that the addition of ISs containing [SCN]- and Cl- anions, increased the polarizability of the 

pure IL, leading to stronger dispersion forces in these systems. Although the other ISs used, 

present anions, such as acetate and ethyl sulfonate, which possess more electronegative 

atoms, like oxygen, the higher electronegativity of these atoms can limit the distortion of the 

electron cloud, restraining their polarizability and hence resulting in lower refractive 

indexes.40 
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Figure 3 | Refractive index as a function of the IS mole fraction for the systems [C2MIM][Ac] + IS. The 

system [C2MIM][Ac] + [NH4][SCN] is taken from literature.20 The different symbols represent the temperatures 

298.15 K (○) and 323.15 K (×), whereas the grey symbols represent the neat IL. 

 

Making use of the refractive index, nD, and the density data (used for the calculation of 

the molar volume, Vm), it is possible to calculate the molar refraction, Rm, of the binary 

[C2MIM][Ac] + IS mixtures using the Lorenz-Lorenz equation41 as shown in equation 1: 
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The molar refraction is considered as a measure of the hard-core volume of one 

molecule and it can be used to calculate the molar free volume, fm, of a solution by the 

following equation: 

 

( )mmm RVf −=  (2) 

 

Tables S1-S6 in the SI present the experimental data for the refractive indexes, molar 

refractions and molar free volumes. Figure 4 presents the molar free volumes for the studied 

systems. The molar free volumes decrease with the addition of IS and increase with the 

temperature. In addition, the results show the same trend observed for the molar volumes, 

where the addition of a IS with smaller volume leads to higher packing efficiency and hence 

to a lower molar free volume. The molar free volumes follow the order: [NH4]Cl < Na[SCN] < 

Na[Ac] < [NH4][SCN] < [NH4][Ac] < [NH4][C2SO3]. 
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Figure 4 | Molar free volume as a function of the IS mole fraction for the systems [C2MIM][Ac] + IS. The 

system [C2MIM][Ac] + [NH4][SCN] is taken from literature.20 The different symbols represent the temperatures 

298.15 K (○) and 323.15 K (×), whereas the grey symbols represent the neat IL. 
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4.4. Viscosity 

The viscosity is one of the properties required for the assessment of the ionicity of ILs, 

since it accounts for the flow of the molecules and therefore has direct influence on the 

mass transport phenomena. 

In Figure 5, the data obtained for the viscosity of the studied systems are presented. 

The results showed that in all systems, the viscosity of the IL increases upon the addition of 

IS and decreases with increasing temperature. These results are consistent with those 

obtained for other IL-IS systems found in literature.9, 33 The viscosity increase follows the 

trend [NH4][SCN] < Na[SCN] < [NH4][Ac] < Na[Ac] < [NH4][C2SO3] < [NH4]Cl, showing that 

the salts that contain thiocyanate are those that affect the least the viscosity of the system. 

In the case of the [NH4][SCN] containing system, for IS concentrations higher than 0.20, the 

viscosity seems to stabilize at a value of ≈ 1.5 times the viscosity of the pure IL. Regarding 

the two sodium-based salts, for the Na[SCN] containing system, no clear conclusion can be 

attained due to the low solubility of this salt in [C2MIM][Ac], while for the Na[Ac] containing 

system the viscosity increases upon the addition of small amounts of IS. Again, due to the 

lower solubility of this salt no clear tendency can be established. For the remaining systems, 

the viscosity is greatly affected by the increase of IS concentration. For instance, the largest 

increments were obtained for the [NH4]Cl system, recording increases of 3, 6, and 13 times 

the viscosity of the pure IL, for the 0.17, 0.25 and 0.33 concentrations of IS, respectively. 

These tendencies were expected since ILs bearing -CN groups are known to be less 

viscous than others,42 while those containing the Cl- anion and oxygen atoms ([NH4][Ac], 

Na[Ac] and [NH4][C2SO3]) can highly increase the viscosity of the IL, due to the 

establishment of hydrogen bonds. 
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Figure 5 | Viscosity as a function of the IS mole fraction for the systems [C2MIM][Ac] + IS [b) is an 

enlargement of a)]. The system [C2MIM][Ac] + [NH4][SCN] is taken from literature.20 The different symbols 

represent the temperatures 298.15 K (○) and 323.15 K (×), whereas the grey symbols represent the neat IL. 

 

The activation energy, Ea, can be calculated based on the viscosity dependence with 

temperature using Arrhenius equation, shown in equation 3: 

 

( )
RT

E
ηLnηLn a+= ∞)(  (3) 
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where Ea is the activation energy, η the viscosity, η∞ the viscosity at infinite 

temperature, R the universal gas constant and T the temperature. 

Figure 6 depicts the activation energy for the systems studied, while Tables S1-S6 in 

the SI present the experimental data for the viscosity and Table S7 the experimental data 

for the activation energies. It can be seen that the activation energy increases proportionally 

to the increase in salt concentration, with the exception of the [NH4][SCN], which is a direct 

consequence of the viscosity behaviour discussed before. Since the activation energy is 

directly related to the flow of ions past to each other, it was expected that [NH4]Cl presented 

the highest Ea and [NH4][SCN] the lowest, as verified in Figure 6. It is also interesting to 

observe that the Ea of the [NH4][SCN] containing system follows the same behaviour found 

for the viscosity of this system, where a constant value was reached for IS concentrations 

higher than 0.20.  
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Figure 6 | Activation energy as a function of the IS mole fraction for the [C2MIM][Ac] + IS systems. The 

grey symbol represents the neat IL. 
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4.5. Ionic conductivity 

The ionic conductivity is associated with the movement of ions in a media and 

therefore a property directly related with the ionicity. The influence of the IS content on the 

ionic conductivity of the IL is illustrated in Figure 7 and the experimental data is presented 

on Tables S1-S5 in the SI. Again two different types of behaviours can be observed: i) an 

increase in the concentration of the IS leads to the decrease of the ionic conductivity of the 

mixture, according to the IS trend [NH4][Ac] < [NH4][C2SO3] < Na[SCN] < [NH4]Cl < Na[Ac]. 

These ionic conductivity data are in agreement with the viscosity results since the increase 

in the viscosity decreases the fluidity of the system and consequently the movement of ions 

diminishes, leading to lower ionic conductivities. Nonetheless, the decrease in the ionic 

conductivity is not as large as the increase in the viscosity. ii) in the system [C2MIM][Ac] + 

[NH4][SCN] the ionic conductivity increases upon the addition of IS, until a constant value is 

reached near the solubility limit. Nevertheless, the increments in the ionic conductivity of the 

system are small, ranging from 1 to 1.25 times the ionic conductivity of the pure IL, in the 

whole concentration range. This phenomena is related with the presence of anion 

thiocyanate in the IS, since it is known that the present of anions with -CN groups can 

generate highly fluid and conductive ILs.42 Furthermore, as shown in the viscosity section, 

this system exhibits the smallest decrease in fluidity which could explain the small increase 

in the conductivity registered. 
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Figure 7 | Ionic conductivity as a function of the IS mole fraction, for the [C2MIM][Ac] + IS systems. The 

[C2MIM][Ac] + [NH4][SCN] system is taken from literature.20 The different symbols represent the temperatures 

298.15 K (○) and 323.15 K (×), whereas the grey symbols represent the neat IL.  

 

4.6. Ionicity 

The ionicity of an IL is related to its ionic nature and measures the degree to which it 

can be considered to be composed entirely by ions or by neutral ion-pairs (large 

aggregates). It is known that ILs can form aggregates or clusters to some extent even 

though, ideally, they should consist of non-associated ions. 

Based on the Walden rule, a linear relationship between the molar conductivity and the 

viscosity (fluidity) can be obtain, as shown in equation 4: 

 

kηΛ =⋅  (4) 

 

where Ʌ is the molar conductivity, η is the viscosity and k a temperature dependent 

constant. By plotting the log Ʌ vs. log η-1, the Walden Plot is obtained, where a straight line 

that passes through the origin with a slope equal to 1 represents the ideal electrolyte 
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behaviour, also known as the "ideal" Walden line. This line was drawn from data of a 1 M 

KCl aqueous solution where the inorganic salt is known to be fully dissociated, with the ions 

having equal mobility. The Walden Plot has been proved to be a convenient and versatile 

tool to measure the ionicity of ILs.22, 23 However, the use of the KCl aqueous solution as the 

reference in the Walden plot is debatable43 and as MacFarlane et al.23 showed, disregarding 

the hydrodynamic radii of different ions has an impact on the Walden Plot, since it affects 

the molar conductivity as well as the viscosity of ILs, and thus what might be considered as 

"ideal" or "associated" behaviour. Therefore, the Walden plot should be adjusted taking into 

account the radius of the ions involved in each system. The role of ion size can be inferred 

from the Stokes-Einstein equation for each ion as shown in equation 5: 

 

i

B
i

rηπ

Tk
D

⋅⋅
⋅=

6
 (5) 

 

where Di is the diffusion coefficient, kB is the Boltzmann's constant, T the temperature 

and ri the radius of the ion. To adjust the Walden Plot, it is necessary to correlate the 

Stokes-Einstein equation with the Nernst-Einstein equation, given by equation 6: 
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where NA is the Avogadro's number, e is the electronic charge and D+ and D- are the 

diffusion coefficients for the cation and anion, respectively. Since in the systems under study 

there are 4 ions involved, the adjusted Walden Plot must take in consideration the molar 

ratios of the IL + IS mixture, as shown in equation 7: 
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where C is a constant, and r+ and r- are the radius of cation and anion, respectively. 

For the calculation of the radius of each ion the following equation was used: 

 

3

3
4

ion

theory rπV ⋅=  (8) 

 

where Vtheory is the molecular volume of the ion calculated by Ab Initio calculations. The 

molecular volumes were computed using the M06-2X/aug-cc-pVDZ level of theory. Table S8 

in the SI depicts the theoretical molecular volumes and ionic radius of each ion. 

In Figure 8, the [C2MIM][Ac] + IS systems studied in this work are represented in the 

adjusted Walden Plot. The solid line in Figure 8 represents the ideal Walden line and the 

proximity to this line indicates higher ionicity. The results show that all the systems studied 

are very close to the ideal Walden line, meaning that they all fall on the "good ILs" region.24 

In all systems, for each concentration, the Walden plot shows a linear behaviour with the 

temperature, and as the temperature increases the values deviate from the ideal line (the 

slope is smaller than the unit), a behaviour that is observed for protic ILs.44 
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Figure 8 | Adjusted Walden Plot for the [C2MIM][Ac] + IS systems. The [C2MIM][Ac] + [NH4][SCN] system 

is taken from literature.20 The different symbols represent each concentration in the range of temperatures 
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298.15 ― 323.15 K. (○) xIS = 0, (□) 0.02< xIS < 0.05, (∆) xIS = 0.10, (◊) 0.15< xIS < 0.20, (∇) xIS = 0.25, (-) xIS = 

0.30, (×) 0.32< xIS < 0.33, (+) xIS > 0.33. 

 

By measuring the vertical distance to the ideal Walden line (∆W), the ionicity of each 

system can be inferred.45 Figure 9 illustrates the deviations from the adjusted Walden plot, 

measured at a fixed value of log η-1 = 0, against the concentration of IS for the binary 

mixtures studied. The results show that for all the systems with ammonium-based ISs, the 

ionicity of the mixture increases with the increasing concentration of IS, since the deviation 

to the ideal Walden line becomes smaller. On the other hand, when a sodium-based IS is 

added to the IL, the deviations become higher, meaning the ionicity decreases with the 

addition of these ISs. Nevertheless, for some systems, this method allows only an 

estimative of the ionicity since the deviation to the ideal Walden line is calculated at a given 

fluidity. For instance, in the case of the systems [C2MIM][Ac] + [NH4][Ac] and [C2MIM][Ac] + 

[NH4]Cl, the log(fluidity) = 0 is out of the range of the experimental results for higher ISs 

concentrations, and thus a extrapolation of the results is needed for the determination of the 

∆W. 
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Figure 9 | Deviations from the Adjusted Walden Plot for the [C2MIM][Ac] + IS systems. The [C2MIM][Ac] + 

[NH4][SCN] system is taken from literature.20 The grey symbol represents the neat IL. 
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Following the Walden plot method for the determination of the ionicity, Ueno et al.28 

calculated the ionicity through the (Λimp / Λideal) ratio, where the Λimp is the molar conductivity, 

usually measured by the impedance method, and Λideal is assumed to be the ideal molar 

conductivity at a given fluidity in the ideal Walden line, i.e., the absolute value of the Λideal 

(S·cm2·mol-1) is equal to that of the fluidity (P-1). 

Table 1 displays the results obtained for both methods of calculating the ionicity. 

Although these two methods cannot be quantitatively compared, from a qualitative point, 

they both produce the same conclusions. When using the ∆W, the values decrease when 

ammonium-based salts are used (higher ionicity) and increase for the sodium-based ones 

(lower ionicity). For the (Λimp / Λideal) ratio, the opposite behaviour is observed, since an 

increase in this ratio means proximity to the unity and hence ideality, leading to higher 

ionicity, which is obtained for the ammonium-based ISs but not for the sodium-based ones. 

These results can be explained based on the viscosity and ionic conductivity changes upon 

the addition of the respective IS. In the systems containing ammonium-based salts, the 

decrease in ionic conductivity is always much smaller than the increase in viscosity, 

meaning that the movement of ions is still possible despite the lower fluidity of the system. 

On the other hand, for the systems with sodium-based salts, the increase in the viscosity is 

of the same order of magnitude as the decrease in the ionic conductivity, which means that 

the decrease in the fluidity of these systems effectively impacts the movement ions in a 

stronger way than in the systems with ammonium-based salts. Furthermore, in our previous 

work,33 where the ionicity of the binary systems 1-ethyl-3-methylimidazolium ethyl sulfonate 

and ethyl sulfate + ammonium thiocyanate was studied, we found that one of the reasons 

for the increase in the ionicity of these systems was the formation of aggregates between 

the IL's anion and the [NH4]+ cation, that allowed the other ions to become more free. From 

the results obtained in the present work, it can be concluded that the presence of the [NH4]+ 

cation is crucial for occurrence of stronger interactions between the IS and the IL and the 

formation of aggregates. 

The two systems that displayed higher ionicity are the [C2MIM][Ac] + [NH4][SCN] and 

the [C2MIM][Ac] + [NH4]Cl. In the first one, the increase in the ionicity was expected since 

this system was the only one where an increase in the ionic conductivity was observed and 
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simultaneously the increase in the viscosity was the lowest of all the systems studied. In the 

case of the system with [NH4]Cl, even though it exhibits the largest increase in viscosity, the 

ratio between the increase in viscosity and the decrease in the ionic conductivity was much 

lower than for the other two ammonium salts, [NH4][Ac] and [NH4][C2SO3]. 

 

Table 1 | Ionicity for the binary systems [C2MIM][Ac] (1) + Salt (2) calculated through different methods: 

Ʌimp/Ʌideal, at 323.15 K; and deviations from the ideal Walden line (at log(fluidity) = 0). 

Salt x2 Ʌimp/Ʌideal ∆W 

 0 0.5154 0.1238 
[NH4][Ac] 0.0503 0.5331 0.1204 
 0.0999 0.5517 0.1143 
 0.1703 0.5464 0.1195 
 0.2498 0.6178 0.0905 
 0.3280 0.6573 0.0881 
 0.4491 0.6924 0.1002 
[NH4]Cl 0.0505 0.5027 0.1316 
 0.0999 0.5268 0.1305 
 0.1702 0.6127 0.1007 
 0.2500 0.6944 0.0916 
 0.3297 0.8990 0.0078 
[NH4][C2SO3] 0.0500 0.4936 0.1268 
 0.0999 0.5119 0.1241 
 0.1701 0.5628 0.1011 
[NH4][SCN] 0.0200 0.5770 0.0881 
 0.1002 0.6183 0.0684 
 0.1998 0.6977 0.0264 
 0.2514 0.7282 0.0094 
 0.3001 0.7489 -0.0068 
 0.3199 0.7576 -0.0104 
 0.3413 0.7625 -0.0098 
Na[Ac] 0.0501 0.4762 0.1558 
 0.1001 0.4777 0.1737 
 0.1605 0.4851 0.1614 
Na[SCN] 0.0502 0.4563 0.1658 

 

5. Conclusions 

In the present work, the thermophysical properties of the several binary systems of 

[C2MIM][Ac] + IS were determined. Six different ISs were used, four ammonium-based and 

two sodium-based, in order to compare the effects of using different IS cations and anions, 

on the density, refractive index, viscosity, ionic conductivity and ionicity of the IL. 

The obtained data showed that the addition of ammonium-based ISs increased the 
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ionicity of the system, whereas the addition of sodium-based ISs had the opposite effect. 

The results showed that in all systems the viscosity increased and the ionic conductivity 

decreased upon the addition of IS, with the exception of the system [C2MIM][Ac] + 

[NH4][SCN]. The effect of addition of IS on the ionicity can be well described by the ratio 

between the variation of viscosity and variation of conductivity. To increase the ionicity of a 

system, it is essential to increase its ionic conductivity and decrease its viscosity. In 

addition, the presence of an ammonium cation instead of a sodium cation in the IS is of 

utmost importance in the establishment of stronger interactions between the IL and the IS, 

and therefore in the increase of the ionicity of the IL. 
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7. Supplementary Information 

7.1. Characterization of [NH4][C2SO3] 

 
Figure S1 | Mass spectrum of ammonium ethyl sulfonate ([NH4][C2SO3]) acquired in negative mode by 

API-ION TRAP. 

 

 
Figure S2 | 1H NMR spectrum of ammonium ethyl sulfonate ([NH4][C2SO3]) acquired in deuterated 

dimethyl sulfoxide (DMSO-d6). 
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7.2. Supporting tables 

Table S1 | Density, ρ, dynamic viscosity, η, ionic conductivity, σ, refractive index, nD, molar volume, Vm, 

molar refraction, Rm, and free molar volume, fm, for the binary system [C2MIM][Ac] (1) + [NH4][Ac] (2) at 

several temperatures. 

x2 
ρ 

(g⋅cm-3) 
η 

(mPa⋅s) 
σ 

(mS⋅cm-1) 
nD 

Vm 

(cm-3⋅mol-1) 
Rm 

(cm-3⋅mol-1) 
fm 

(cm-3⋅mol-1) 
 T = 298.15 K 

0 1.0983 126.25 2.875 1.49997 154.976 45.579 109.397 
0.0503 1.0983 152.54 2.553 1.49884 150.715 44.241 106.474 
0.0999 1.0991 185.89 2.261 1.49771 146.403 42.892 103.511 
0.1703 1.1001 260.87 1.806 1.49585 140.306 40.976 99.330 
0.2498 1.1009 388.81 1.458 1.49365 133.475 38.834 94.641 
0.3280 1.1015 571.81 1.136 1.49099 126.791 36.720 90.071 
0.4491 1.1020 1020.12 0.734 1.48604 116.500 33.450 83.050 

 T = 303.15 K 

0 1.0952 93.62 3.736 1.49867 155.410 45.606 109.804 
0.0503 1.0952 111.68 3.365 1.49750 151.142 44.265 106.877 
0.0999 1.0960 134.68 2.995 1.49641 146.817 42.918 103.899 
0.1703 1.0970 185.54 2.425 1.49458 140.707 41.003 99.703 
0.2498 1.0977 270.91 1.988 1.49235 133.864 38.860 95.004 
0.3280 1.0983 389.50 1.580 1.48971 127.168 36.748 90.420 
0.4491 1.0989 672.61 1.056 1.48482 116.832 33.474 83.358 

 T = 308.15 K 

0 1.0924 71.26 4.730 1.49732 155.818 45.620 110.197 
0.0503 1.0921 83.95 4.309 1.49617 151.562 44.287 107.275 
0.0999 1.0929 100.14 3.888 1.49505 147.234 42.940 104.293 
0.1703 1.0939 135.50 3.188 1.49322 141.105 41.024 100.082 
0.2498 1.0946 194.03 2.656 1.49097 134.251 38.880 95.371 
0.3280 1.0951 273.26 2.151 1.48839 127.539 36.771 90.769 
0.4491 1.0956 458.10 1.476 1.48350 117.184 33.496 83.687 

 T = 313.15 K 

0 1.0894 55.52 5.869 1.49597 156.247 45.641 110.606 
0.0503 1.0891 64.56 5.423 1.49483 151.989 44.310 107.678 
0.0999 1.0898 76.17 4.936 1.49366 147.652 42.960 104.692 
0.1703 1.0908 101.26 4.103 1.49182 141.506 41.041 100.465 
0.2498 1.0915 142.31 3.486 1.48959 134.632 38.897 95.736 
0.3280 1.0919 196.62 2.857 1.48700 127.909 36.788 91.122 
0.4491 1.0924 320.87 2.009 1.48217 117.523 33.514 84.009 

 T = 318.15 K 

0 1.0864 44.15 7.605 1.49465 156.678 45.663 111.015 
0.0503 1.0860 50.66 6.710 1.49344 152.418 44.329 108.089 
0.0999 1.0867 59.09 6.170 1.49228 148.074 42.980 105.094 
0.1703 1.0876 77.20 5.186 1.49040 141.914 41.059 100.856 
0.2498 1.0883 106.56 4.486 1.48822 135.024 38.917 96.107 
0.3280 1.0888 144.61 3.706 1.48561 128.277 36.804 91.474 
0.4491 1.0892 230.31 2.673 1.48081 117.869 33.532 84.336 

 T = 323.15 K 

0 1.0834 35.74 9.180 1.49331 157.112 45.684 111.428 
0.0503 1.0829 40.46 8.620 1.49205 152.854 44.349 108.505 



Thermophysical properties of the different IL-IS mixtures 

105 

 

0.0999 1.0835 46.65 7.965 1.49085 148.502 42.998 105.504 
0.1703 1.0845 59.89 6.410 1.48902 142.320 41.077 101.243 
0.2498 1.0852 81.25 5.616 1.48677 135.406 38.928 96.478 
0.3280 1.0857 108.40 4.714 1.48419 128.644 36.817 91.827 
0.4491 1.0862 168.88 3.469 1.47942 118.201 33.544 84.657 

 

Table S2 | Density, ρ, dynamic viscosity, η, ionic conductivity, σ, refractive index, nD, molar volume, Vm, 

molar refraction, Rm, and free molar volume, fm, for the binary system [C2MIM][Ac] (1) + [NH4]Cl (2) at several 

temperatures. 

x2 
ρ 

(g⋅cm-3) 
η 

(mPa⋅s) 
σ 

(mS⋅cm-1) 
nD 

Vm 

(cm-3⋅mol-1) 
Rm 

(cm-3⋅mol-1) 
fm 

(cm-3⋅mol-1) 
 T = 298.15 K 

0 1.0983 126.25 2.875 1.49997 154.976 45.579 109.397 
0.0505 1.1012 171.74 2.343 1.50091 149.220 43.956 105.264 
0.0999 1.1040 236.36 1.903 1.50176 143.614 42.366 101.248 
0.1702 1.1083 405.44 1.385 1.50278 135.649 40.085 95.564 
0.2500 1.1134 774.92 0.911 1.50385 126.663 37.496 89.166 
0.3297 1.1184 1608.07 0.567 1.50474 117.782 34.920 82.863 

 T = 303.15 K 

0 1.0952 93.62 3.736 1.49867 155.410 45.606 109.804 
0.0505 1.0981 124.59 3.084 1.49958 149.636 43.979 105.657 
0.0999 1.1008 167.80 2.548 1.50043 144.027 42.392 101.635 
0.1702 1.1052 277.71 1.921 1.50150 136.038 40.112 95.925 
0.2500 1.1102 510.76 1.295 1.50262 127.028 37.527 89.501 
0.3297 1.1153 1040.75 0.843 1.50345 118.106 34.940 83.166 

 T = 308.15 K 

0 1.0924 71.26 4.730 1.49732 155.818 45.620 110.197 
0.0505 1.0951 92.92 3.977 1.49820 150.051 43.998 106.053 
0.0999 1.0978 122.56 3.332 1.49904 144.425 42.409 102.016 
0.1702 1.1020 196.41 2.587 1.50014 136.425 40.134 96.291 
0.2500 1.1071 348.45 1.791 1.50129 127.391 37.550 89.841 
0.3297 1.1122 693.30 1.214 1.50217 118.435 34.962 83.474 

 T = 313.15 K 

0 1.0894 55.52 5.869 1.49597 156.247 45.641 110.606 
0.0505 1.0920 70.98 5.013 1.49682 150.472 44.018 106.454 
0.0999 1.0947 91.75 4.308 1.49765 144.830 42.427 102.402 
0.1702 1.0989 142.76 3.408 1.49876 136.809 40.154 96.656 
0.2500 1.1040 244.97 2.422 1.49992 127.749 37.568 90.181 
0.3297 1.1090 477.83 1.693 1.50085 118.777 34.985 83.793 

 T = 318.15 K 

0 1.0864 44.15 7.605 1.49465 156.678 45.663 111.015 
0.0505 1.0891 55.36 6.218 1.49547 150.878 44.034 106.843 
0.0999 1.0917 70.19 5.367 1.49627 145.228 42.443 102.784 
0.1702 1.0958 106.20 4.386 1.49736 137.196 40.171 97.025 
0.2500 1.1008 176.75 3.200 1.49854 128.116 37.588 90.528 
0.3297 1.1059 339.15 2.299 1.49951 119.117 35.006 84.112 

 T = 323.15 K 

0 1.0834 35.74 9.180 1.49331 157.112 45.684 111.428 
0.0505 1.0860 43.98 7.555 1.49409 151.299 44.053 107.246 
0.0999 1.0887 54.73 6.610 1.49489 145.632 42.461 103.171 
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0.1702 1.0927 80.62 5.524 1.49594 137.586 40.188 97.398 
0.2500 1.0977 130.47 4.143 1.49715 128.474 37.604 90.870 
0.3297 1.1028 246.40 3.055 1.49817 119.445 35.022 84.423 

 

Table S3 | Density, ρ, dynamic viscosity, η, ionic conductivity, σ, refractive index, nD, molar volume, Vm, 

molar refraction, Rm, and free molar volume, fm, for the binary system [C2MIM][Ac] (1) + [NH4][C2SO3] (2) at 

several temperatures. 

x2 
ρ 

(g⋅cm-3) 
η 

(mPa⋅s) 
σ 

(mS⋅cm-1) 
nD 

Vm 

(cm-3⋅mol-1) 
Rm 

(cm-3⋅mol-1) 
fm 

(cm-3⋅mol-1) 
 T = 298.15 K 

0 1.0983 126.25 2.875 1.49997 154.976 45.579 109.397 
0.0500 1.1050 157.19 2.468 1.49869 152.088 44.633 107.456 
0.0999 1.1137 210.28 1.996 1.49756 148.976 43.635 105.341 
0.1701 1.1241 298.77 1.639 1.49488 144.905 42.249 102.656 

 T = 303.15 K 

0 1.0952 93.62 3.736 1.49867 155.410 45.606 109.804 
0.0500 1.1018 114.96 3.232 1.49735 152.526 44.659 107.867 
0.0999 1.1105 150.90 2.659 1.49624 149.405 43.663 105.743 
0.1701 1.1208 209.82 2.215 1.49359 145.327 42.278 103.050 

 T = 308.15 K 

0 1.0924 71.26 4.730 1.49732 155.818 45.620 110.197 
0.0500 1.0987 86.26 4.151 1.49599 152.956 44.681 108.275 
0.0999 1.1073 111.20 3.464 1.49488 149.828 43.684 106.144 
0.1701 1.1176 151.50 2.933 1.49223 145.743 42.299 103.444 

 T = 313.15 K 

0 1.0894 55.52 5.869 1.49597 156.247 45.641 110.606 
0.0500 1.0956 66.19 5.224 1.49464 153.389 44.704 108.685 
0.0999 1.1042 83.89 4.423 1.49346 150.258 43.703 106.555 
0.1701 1.1144 112.07 3.804 1.49081 146.166 42.319 103.848 

 T = 318.15 K 

0 1.0864 44.15 7.605 1.49465 156.678 45.663 111.015 
0.0500 1.0925 51.82 6.495 1.49325 153.824 44.724 109.100 
0.0999 1.1010 64.60 5.529 1.49204 150.690 43.721 106.969 
0.1701 1.1112 84.65 4.806 1.48940 146.587 42.336 104.251 

 T = 323.15 K 

0 1.0834 35.74 9.180 1.49331 157.112 45.684 111.428 
0.0500 1.0894 41.30 7.747 1.49184 154.271 44.745 109.526 
0.0999 1.0978 50.65 6.688 1.49060 151.129 43.740 107.389 
0.1701 1.1080 65.14 5.878 1.48797 147.006 42.352 104.654 
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Table S4 | Density, ρ, dynamic viscosity, η, ionic conductivity, σ, refractive index, nD, molar volume, Vm, 

molar refraction, Rm, and free molar volume, fm, for the binary system [C2MIM][Ac] (1) + Na[Ac] (2) at several 

temperatures. 

x2 
ρ 

(g⋅cm-3) 
η 

(mPa⋅s) 
σ 

(mS⋅cm-1) 
nD 

Vm 

(cm-3⋅mol-1) 
Rm 

(cm-3⋅mol-1) 
fm 

(cm-3⋅mol-1) 
 T = 298.15 K 

0 1.0983 126.25 2.875 1.49997 154.976 45.579 109.397 
0.0501 1.1045 160.47 2.318 1.49832 150.106 44.023 106.083 
0.1001 1.1112 204.64 1.885 1.49654 145.233 42.465 102.768 
0.1496 1.1101 206.54 1.992 1.49682 141.445 41.377 100.068 

 T = 303.15 K 
0 1.0952 93.62 3.736 1.49867 155.410 45.606 109.804 

0.0501 1.1014 117.14 3.052 1.49700 150.524 44.046 106.478 
0.1001 1.1081 147.40 2.519 1.49525 145.640 42.490 103.149 
0.1496 1.1070 148.24 2.646 1.49554 141.841 41.402 100.439 

 T = 308.15 K 
0 1.0924 71.26 4.730 1.49732 155.818 45.620 110.197 

0.0501 1.0983 87.95 3.917 1.49567 150.949 44.070 106.879 
0.1001 1.1050 109.28 3.273 1.49392 146.048 42.512 103.536 
0.1496 1.1040 109.67 3.427 1.49420 142.233 41.421 100.812 

 T = 313.15 K 
0 1.0894 55.52 5.869 1.49597 156.247 45.641 110.606 

0.0501 1.0955 67.68 4.914 1.49432 151.344 44.084 107.260 
0.1001 1.1021 83.11 4.158 1.49258 146.432 42.525 103.907 
0.1496 1.1009 83.29 4.347 1.49285 142.634 41.441 101.193 

 T = 318.15 K 
0 1.0864 44.15 7.605 1.49465 156.678 45.663 111.015 

0.0501 1.0925 53.18 6.062 1.49298 151.760 44.103 107.657 
0.1001 1.0991 64.68 5.177 1.49121 146.832 42.541 104.291 
0.1496 1.0979 64.72 5.380 1.49148 143.023 41.457 101.567 

 T = 323.15 K 
0 1.0834 35.74 9.180 1.49331 157.112 45.684 111.428 

0.0501 1.0894 42.66 7.336 1.49163 152.182 44.123 108.059 
0.1001 1.0961 51.35 6.320 1.48990 147.234 42.560 104.674 
0.1496 1.0949 51.31 6.594 1.49016 143.409 41.473 101.936 

 

Table S5 | Density, ρ, dynamic viscosity, η, ionic conductivity, σ, refractive index, nD, molar volume, Vm, 

molar refraction, Rm, and free molar volume, fm, for the binary system [C2MIM][Ac] (1) + Na[SCN] (2) at several 

temperatures. 

x2 
ρ 

(g⋅cm-3) 
η 

(mPa⋅s) 
σ 

(mS⋅cm-1) 
nD 

Vm 

(cm-3⋅mol-1) 
Rm 

(cm-3⋅mol-1) 
fm 

(cm-3⋅mol-1) 
 T = 298.15 K 

0 1.0983 126.25 2.875 1.49997 154.976 45.579 109.397 
0.0502 1.1057 150.36 2.424 1.50133 149.896 44.186 105.710 

 T = 303.15 K 
0 1.0952 93.62 3.736 1.49867 155.410 45.606 109.804 

0.0502 1.1026 110.38 3.164 1.50000 150.313 44.210 106.103 
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 T = 308.15 K 
0 1.0924 71.26 4.730 1.49732 155.818 45.620 110.197 

0.0502 1.0995 83.31 4.035 1.49867 150.737 44.234 106.503 
 T = 313.15 K 
0 1.0894 55.52 5.869 1.49597 156.247 45.641 110.606 

0.0502 1.0965 64.41 5.043 1.49732 151.149 44.253 106.896 
 T = 318.15 K 
0 1.0864 44.15 7.605 1.49465 156.678 45.663 111.015 

0.0502 1.0935 50.86 6.178 1.49597 151.569 44.274 107.295 
 T = 323.15 K 
0 1.0834 35.74 9.180 1.49331 157.112 45.684 111.428 

0.0502 1.0904 40.90 7.342 1.49465 151.990 44.297 107.694 

 

Table S6 | Molar volume, Vm, molar refraction, Rm, and free molar volume, fm, for the binary system 

[C2MIM][Ac] (1) + [NH4][SCN] (2) at several temperatures. 

x2 
Vm 

(cm-3⋅mol-1) 
Rm 

(cm-3⋅mol-1) 
fm 

(cm-3⋅mol-1) 
 T = 298.15 K 

0.0200 152.817 44.934 107.883 
0.1002 145.570 42.973 102.598 
0.1998 136.768 40.533 96.235 
0.2514 132.398 39.326 93.072 
0.3001 128.216 38.148 90.068 
0.3199 126.518 37.748 88.771 
0.3413 124.640 37.229 87.412 

 T = 303.15 K 
0.0200 153.249 44.984 108.265 
0.1002 145.980 42.996 102.984 
0.1998 137.156 40.625 96.530 
0.2514 132.778 39.373 93.405 
0.3001 128.576 38.169 90.407 
0.3199 126.877 37.770 89.107 
0.3413 124.994 37.231 87.763 

 T = 308.15 K 
0.0200 153.668 44.979 108.690 
0.1002 146.392 43.008 103.384 
0.1998 137.542 40.626 96.916 
0.2514 133.160 39.420 93.740 
0.3001 128.950 38.152 90.798 
0.3199 127.242 37.795 89.447 
0.3413 125.353 37.296 88.057 

 T = 313.15 K 
0.0200 154.100 45.002 109.098 
0.1002 146.802 43.067 103.735 
0.1998 137.935 40.604 97.331 
0.2514 133.548 39.446 94.102 
0.3001 129.314 38.174 91.140 
0.3199 127.609 37.798 89.812 
0.3413 125.718 37.280 88.439 
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 T = 318.15 K 
0.0200 154.529 45.024 109.505 
0.1002 147.223 43.068 104.155 
0.1998 138.338 40.630 97.708 
0.2514 133.935 39.426 94.508 
0.3001 129.704 38.224 91.480 
0.3199 127.990 37.826 90.164 
0.3413 126.074 37.280 88.794 

 T = 323.15 K 
0.0200 154.956 45.122 109.834 
0.1002 147.642 43.067 104.575 
0.1998 138.756 40.661 98.096 
0.2514 134.332 39.431 94.901 
0.3001 130.084 38.217 91.867 
0.3199 128.369 37.809 90.560 
0.3413 126.455 37.288 89.167 

 

Table S7 | Activation energy, Ea, for the binary systems [C2MIM][Ac] (1) + IS (2). 

Salt x2 
Ea 

(KJ⋅mol-1) 
Error 

 0 40.403 0.017 
[NH4][Ac] 0.0503 42.485 0.017 
 0.0999 44.257 0.016 
 0.1703 47.102 0.015 
 0.2498 50.114 0.016 
 0.3280 53.227 0.017 
 0.4491 57.570 0.019 
[NH4]Cl 0.0505 43.605 0.017 
 0.0999 46.831 0.018 
 0.1702 51.690 0.019 
 0.2500 57.027 0.021 
 0.3297 60.103 0.022 
[NH4][C2SO3] 0.0500 42.792 0.016 
 0.0999 45.572 0.016 
 0.1701 48.759 0.016 
[NH4][SCN] 0.0200 41.138 0.017 
 0.1002 42.517 0.015 
 0.1998 43.908 0.013 
 0.2514 44.617 0.012 
 0.3001 44.223 0.012 
 0.3199 44.065 0.012 
 0.3413 43.938 0.014 
Na[Ac] 0.0501 42.422 0.019 
 0.1001 44.268 0.019 
 0.1496 44.573 0.020 
Na[SCN] 0.0502 41.672 0.018 
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Table S8 | Theoretical molar volumes and molecular ionic radius for the IL and ISs used in this work. 

Compound 
Cation Vm 

(cm3·mol-1) 

Anion Vm 

(cm3·mol-1) 

Cation 

radius (Å) 

Anion 

radius (Å) 

[C2MIM][Ac] 87.401 38.767 3.26 2.49 
[NH4][Ac] 19.866 38.767 1.99 2.49 
[NH4]Cl 19.866 13.723 1.99 1.76 
[NH4][C2SO3] 19.866 63.824 1.99 2.94 
[NH4][SCN] 19.866 33.812 1.99 2.38 
Na[Ac] 8.512 38.767 1.50 2.49 
Na[SCN] 8.512 33.812 1.50 2.38 
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1. Abstract 

In this work, we explore the interactions between the ionic liquid 1-ethyl-3-

methylimidazolim acetate and different inorganic salts belonging to two cation families, 

those based on ammonium and others based on sodium. NMR and Raman spectroscopy 

are used to screen for changes in the molecular environment of the ions in the ionic liquid + 

inorganic salt mixtures as compared to  pure ionic liquid. The ion self-diffusion coefficients 

are determined from NMR data, allowing the discussion of the ionicity values of the ionic 

liquid + inorganic salt mixtures calculated using different methods. Our data reveal that 

preferential interactions are established between the ionic liquid and ammonium-based 

salts, as opposed to sodium-based salts. Computational calculations show the formation of 

aggregates between the ionic liquid and the inorganic salt, which is consistent with the 

spectroscopic data, which indicate that the acetate anion of the ionic liquid establishes 

preferential interactions with the ammonium cation of the inorganic salts, leaving the 

imidazolium cation less engaged in the media. 

 

2. Introduction 

Ionic liquids (ILs) are low temperature melting salts which possess a wide range of 

unique properties, such as negligible vapour pressure, large liquid range, highly specific and 

tunable solvent ability, that are responsible for the increased interest in this class of 

compounds in last decades. Better known as "designer solvents", due to the multiple 

possible combinations between cations and anions that allow the tune of their 

thermophysical properties, ionic liquids offer high-potential solutions to a broad range of 

applications in many areas ranging from biology to chemistry, engineering and industry.1, 2 

Although ILs are composed by discrete ions, these compounds form aggregates and 

clusters to some extent, as result of their complex nature that emerges from the interplay 

between their Coulombic, hydrogen-bonding and dispersive (van der Waals and π–π) 

interactions. Furthermore, studies have shown that ILs are nano-structured, i.e., composed 
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of micro-segregated polar and non-polar domains, where the polar domain is composed of 

the high charge-density parts of both the cations and anions, while the apolar domain is 

typically constituted by the alkane-type moieties of their organic ions.3 

Lately, Molecular Dynamics (MD) and ab initio have become powerful tools for the 

understanding of thermophysical properties and phase equilibria, contributing with important 

insights in the proposal of structure-property relationships of ILs. Brüssel et al.4, 5, used ab 

initio MD calculations to study the binary mixture of the ILs based on the 1-ethyl-3-

methylimidazolium cation combined with thiocyanate and chloride anions. In their work, 

these authors showed that while in the neat ILs the main anion–cation interaction takes 

place through the most acidic proton of the imidazolium ring (H2), this observation does not 

hold for their mixture. In other works regarding mixtures of ILs and inorganic salts (ISs), 

Umebayashi et al.6, 7 used Raman spectroscopy and ab initio calculations to study the 

solvation structure of the lithium ion (from lithium bis(trifluoromethylsulfonyl)amide salt, 

Li[NTf2]) in three different ILs, two imidazolium-based (1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide and 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide) and one pyrrolidinium-based (N-butyl-N-

methylpyrrolidinium bis(trifluoromethylsulfonyl)amide). The ab initio calculations showed that 

the lithium cation coordinated to the four oxygen atoms of the bidentate [NTf2]- anion and 

that the IL cation played a key role in the stabilization of the complex formed by the lithium 

cation and the [NTf2]- anions. Tsuzuki et al.8 studied the transport properties of the 1-ethyl-3-

methylimidazolium bis(fluorosulfonyl)amide IL and its lithium salt mixtures and used ab initio 

calculations to infer about the stabilization energies of the complexes formed between the 

different ions. The results obtained were then compared with those of the 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)amide IL and also its lithium salt mixture. It 

was showed that the both the imidazolium and the lithium cations had weaker electrostatic 

and induction interactions with the bis(fluorosulfonyl)amide anion than with the 

bis(trifluoromethylsulfonyl)amide anion, corroborating the lower viscosity of the system 

containing the first anion. 

NMR spectroscopy offers the ability to study the changes in the supramolecular IL’s 

structure with solvation, enabling a closer look at the molecular interactions in situ. It was 



Interactions between the IL and the different ISs 

119 

 

already demonstrated that nuclear Overhauser effect (NOE) techniques can be used 

successfully with neat IL and IL mixtures to study solvation and preferential interactions.9-12 

The analysis of intermolecular NOEs in solution can reflect the mutual position of interacting 

species in terms of short range effects (d < 5Å) or, as proposed by Gabl et al.13, be a 

consequence of long-range effects and interactions far beyond the first coordination shell. 

The combination of NOE data with MD simulations is therefore a powerful tool for the 

rationalization of the network of interactions occurring in ILs at the nano-level. 

In our recent work,14 we reported thermophysical properties of mixtures of 1-ethyl-3-

methylimidazolium acetate IL with several ammonium/sodium-based ISs and determined 

their ionicity through the Walden plot approach. We observed different behaviours upon the 

addition of different ISs; for instance, when sodium-based ISs were added the ionicity of the 

system decreased, while with ammonium-based ISs the opposite behaviour was found. In 

addition, when [NH4][SCN] was added to the IL, the mixtures showed distinct behaviours 

when comparing with the other ISs used. In this particular system, we observed that the 

conductivity increased and the viscosity was almost constant upon the addition of IS, 

leading to the highest ionicity of the IL-IS systems studied. As a follow up of this work, in the 

present study we explore the interactions that occur between the IL and IS in order to 

understand the increase in the ionicity caused by the addition of IS to the IL media. The IL 

used was the 1-ethyl-3-methylimidazolium acetate and the effect of the addition of six 

different ISs namely, ammonium acetate, ammonium chloride, ammonium thiocyanate, 

ammonium ethyl sulfonate, sodium acetate and sodium thiocyanate, was studied. 

Spectroscopic methods, NMR and Raman, were used for the screening of changes in the 

bulk IL as the IS concentration was increased, and MD and ab initio calculations 

complement and support the discussion of our spectroscopic findings. In addition, the 

ionicity calculated through different methods is finally discussed. 
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3. Experimental Section 

3.1. Materials 

The following six ISs were used in this work: ammonium acetate ([NH4][Ac]), 

ammonium chloride ([NH4]Cl), ammonium thiocyanate ([NH4][SCN]), ammonium ethyl 

sulfonate ([NH4][C2SO3]), sodium acetate (Na[Ac]) and sodium thiocyanate (Na[SCN]). 

Sodium acetate, ammonium acetate, chloride and thiocyanate were all provided by Sigma-

Aldrich with a purity content superior to 99.0 %, 98.0 %, 99.5 % and 99.0 %, respectively. 

Sodium thiocyanate was provided by Fluka with a purity content superior to 98.0 %. 

Ammonium ethyl sulfonate was synthesized in the laboratory, the details are explained in 

our previous work.14  

The ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2MIM][Ac]) was purchased from 

Iolitec with a mass fraction purity of ≥ 98 %. To reduce the water and other volatile 

substances contents, vacuum (10-1 Pa) and moderate temperature (no more than 318.15 K) 

were always applied to the ionic liquid for at least 2 days prior to their use. After drying, the 

ionic liquid purity was checked by 1H NMR. Karl Fischer coulometric titration (Metrohm 831 

KF Coulometer) was used to determine the final water mass fraction of the ionic liquid, 

which contained around 6000 ppm of water. 

 

3.2. IL-IS mixtures 

The binary mixtures of [C2MIM][Ac] + IS were prepared in the range of 0 to 0.45 in IS 

molar fraction, taking into account the solubility limits of each IS, determined on our previous 

work.15 The samples were prepared in an inert-atmosphere glove box, since the ionic liquid 

is moisture sensitive, using an analytical high-precision balance with an uncertainty of ± 10-5 

g by weighing known masses of the each component into stoppered flasks. Good mixing 

was assured by magnetic stirring. 
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3.3. NMR spectroscopy 

All NMR experiments were performed using a Bruker Avance III 400 operating at 

400.15 MHz for protons, equipped with a 5 mm high-resolution BBFO probe and with a 

pulsed field gradient unit, capable of producing magnetic field pulsed gradients in the z-

direction of 0.54 T·m-1. The samples were prepared by transferring approximately 2 mL of 

each IL-IS mixture to 5 mm NMR tubes. For the recording of all spectra, a capillary with 

deuterated dimethyl sulfoxide (DMSO-d6) was inserted inside the tube for field-frequency 

lock and NMR internal reference. The structures and numbering of the IL and ISs are 

depicted in Figure 1. 

Firstly, the changes in the 1H chemical shifts of [C2MIM][Ac] with increasing IS 

concentration, were analyzed. The 1H spectra experiments were carried out at 298.15 K with 

8 scans and 4 dummy scans. The 1H NMR spectra of each one of the six IL-IS systems and 

their respective chemical shifts are depicted in Figures S1-S5 and in Table S1, respectively 

in the supporting information section (SI). Afterwards, NOESY data were acquired for the 

most concentrated samples of each system, in order to infer about the interaction of the IS 

with the IL. Yet, an initial screening of different mixing times was previously performed in 

order to assure the NOE effect was obtained. For the NOESY data obtained, a mixing time 

of 300 ms was selected and the spectra was obtained with 4 scans and 4 dummy scans at 

298.15 K. 

Lastly, the ion self-diffusion coefficients for the IL-IS systems were determined. The 1H 

diffusion coefficients were measured using the pulsed gradient stimulated echo (PGSTE) 

pulse sequence at 323.15 K for viscosity purposes. Typically, in each experiment 32 spectra 

of 32 K data points were collected, with values for the duration of the magnetic field pulsed 

gradients (δ) of 6.0 ms, diffusion times (∆) of 500 to 1000 ms, and an eddy current delay set 

to 5 ms. The gradient recovery time was 200 ms. The sine shaped pulsed gradient (g) was 

incremented from 5 to 95 % of the maximum gradient strength in a linear ramp. The ion self-

diffusion coefficients for the cation and anions in the IL-IS systems were calculated using 

the integrals of the NMR signal and the Stejskal-Tanner equation. The standard relative 

deviation obtained for the ion- self-diffusion coefficients was of 0.37 % for the neat IL and 
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ranged between 0.58 % and 1.68 % for the mixtures. 

 

 
Figure 1 | Chemical structure and numbering of the ionic liquid and inorganic salts used in this work. a) 1-

ethyl-3-methylimidazolium, b) ammonium acetate, c) ammonium chloride, d) ammonium ethyl sulfonate, e) 

ammonium thiocyanate, f) sodium acetate, g) sodium thiocyanate. 

 

3.4. Raman spectroscopy 

Raman spectra of all samples were measured with 1064 nm excitation (Nd-YAG cw 

laser) using an RFS 100/S (Bruker Optics, Ettlinger, Germany) Fourier-transform Raman 

spectrometer. Laser power was set to 400 mW and 100 scans were recorded for each 

sample at room-temperature. 

 

3.5. Ab initio calculations 

The geometries of the ion-pairs of the ISs [NH4][Ac], [NH4]Cl, [NH4][SCN], 

[NH4][C2SO3], Na[SCN], and Na[Ac] were fully conformationally screened at the M06-

2X/aug-cc-pVDZ level of theory. For the ionic liquid [C2MIM][Ac], the optimized geometry 

presented by Chen et al.16 was used. The geometries of the 4 ion cluster structures (ionic 

liquid plus inorganic salt) were optimized at the same level of theory. The ethanol dielectric 
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constant was used in the optimization of all the structures (ion-pairs and clusters), in order 

to help mimic the IL media. Furthermore, the electronic energies were improved by 

calculation of the single point energies at a higher level of theory, the MP2/aug-cc-pVDZ, 

and also by adding the zero-point vibrational correction value, that was computed at the 

M06-2X/aug-cc-pVDZ level of theory. The obtained data for the IL, ISs and clusters as well 

as all the conformations screened, are depicted in Tables S3 and S4 and Figures S8-14 in 

the SI. 

Table 1 presents the binding energy between the IL and IS molecules, ∆E, was 

calculated by the following expression: ( )ISILcluster EEE∆E +−= , where Ecluster, EIL and EIS 

are the sum of electronic energy and zero-point values of the cluster, the ionic liquid ion-pair 

and the inorganic salt ion-pair at their lower energy conformations, respectively. 

For this study the GAUSSIAN 09 quantum chemical package17 was used. 

 

Table 1 | Binding energies for the IL-IS systems. 

System ∆E / KJ·mol-1 
[C2MIM][Ac] + [NH4][Ac] -65.3054 
[C2MIM][Ac] + [NH4]Cl -72.5491 
[C2MIM][Ac] + [NH4][SCN] -84.1234 
[C2MIM][Ac] + [NH4][C2SO3] -79.5077 
[C2MIM][Ac] + Na[Ac] -42.8886 
[C2MIM][Ac] + Na[SCN] -49.2667 

 

3.6. Molecular dynamics simulations 

All molecular dynamic simulation where performed with DLPOLY 4.07.18 The CL&P19 

and OPLS-AA force fields20 were used to describe the [C2MIM][Ac] ionic liquid, while a 

previously recommended parameterization21 was used to model the [NH4]+ and [SCN]- ions. 

The MD runs were performed at 0.1MPa and 373.15 K, under the isotropic 

isothermal−isobaric ensemble (N-p-T). The temperature and pressure were controlled using 

Nosé−Hoover thermostats/barostats, with relaxation time constants of 1 and 4 ps, 

respectively. In all calculations a cutoff distance of 1.4 nm was applied, with the Ewald 

summation technique (k-values set to 16 and α = 0.27107 Å) used to account for 
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interactions beyond this limit. All simulation were prepared with the DLPGEN program,22 by 

distributing the molecules in expanded boxes that were subsequently equilibrated to 

constant density. Besides the simulation of pure [C2MIM][Ac], two mixtures of this IL with 

[NH4][Ac] and [NH4][SCN] at molar fractions 0.10 and 0.33 were investigated. All simulation 

boxes were composed by 900 ions (450 ion pairs). The production stages consisted of 10 

ns runs, performed with a time step of 2 fs, where the simulation box configurations were 

recorded each 2 ps. 

 

4. Results and discussion 

4.1. Spectroscopic measurements 

The changes on the chemical shifts of the IL + IS mixtures can be used in a 

quantitative way to evaluate the interactions occurring in the bulk system. Therefore, the 1H 

NMR spectra of each one of the six IL + IS systems were acquired and the chemical shifts' 

deviations determined as depicted in Figure 2. Although the solubility range of the systems 

containing sodium-based ISs is smaller, it can be seen that the effect on the IL's chemical 

shifts in much less pronounced than for the ammonium-based IS. This finding shows that 

the interactions between the sodium-based ISs and the IL are weaker than those with 

ammonium-based ISs. 

Moreover, in Figure 2a it can be observed that the protons H2, H4 and H5, belonging 

to the aromatic ring of the imidazolium, are the most affected by the presence of an IS. 

These three protons show strong negative deviations, meaning that they undergo an upfield 

shift, with the highest deviation for the H2 proton, the most acidic. The upfield shifts 

experienced by these aromatic protons indicate that their interactions become weaker as 

the IS concentration increases. Regarding the other two protons of the imidazolium cation, 

H6 and H7, they also present negative deviations, although the effect of the IS 

concentration is much less pronounced. On the other hand, protons H8 (from the terminal -

CH3 of the ethyl chain of the imidazolium cation) and H10 (from the acetate anion) present 

small positive deviations, i.e. downfield shifts, meaning that they establish stronger 
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interactions upon the addition of the IS to the IL medium. 
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Figure 2 | 1H NMR chemical shifts' deviations for the systems [C2MIM][Ac] + IS determined at 298.15 K. 

Each symbol represents a different proton and each IS is represented by a different color: [NH4][Ac] is blue, 

[NH4]Cl is green, [NH4][C2SO3] is red, [NH4][SCN] is orange, Na[Ac] is pink, Na[SCN] is black. Panels a) and b) 

illustrate the chemical shift´s deviations in the IL and in the IS, respectively. 

 

In general, all studied IL + IS systems with ammonium-based ISs show identical 

behaviour in terms of the up or downfield shifts of the protons. Nevertheless, few differences 

can be pointed out as the IS's anion is changed: i) for the chloride anion, protons H8 and 

H10 also display upfield shifts, which is in accordance with the large increase in the 

viscosity of the system;14 ii) for the thiocyanate anion, the deviations on the chemical shifts 

of the protons are higher than those for any other anion, meaning that the [NH4][SCN] is the 
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IS that affects most the IL bulk structure; iii) for the acetate anion, the deviations on the 

aromatic protons are smaller than for the other ammonium salts, as might be expected 

given that in this case there is no new anion present in the mixture. 

In Figure 2b the same deviations trend observed for the IL protons can now be verified 

for the ISs. Regarding the protons of the [NH4]+ cation, they all present negative deviations, 

with [NH4][SCN] presenting the highest and [NH4][Ac] the lowest. The negative deviations of 

these protons were somewhat surprising, since we were expecting the ammonium cation to 

be engaged in interactions, especially with the IL anion. Nevertheless, these results could 

also mean that the ammonium cation is interacting less with its own counter-ion and thus 

getting looser in the network. In addition, the deviations of the protons of the ethane 

sulfonate anion (H12 and H13) are also depicted in Figure 2b, showing very small downfield 

shifts. 

In addition, Raman spectroscopy was also employed to probe the molecular 

environment of the acetate (and thiocyanate) anions, by monitoring their frequencies (ν) and 

bandwidths (∆ν). Regarding the cations of the systems, it was not possible to extract any 

information due to the overlap of bands. For the cations of the systems, it was not possible 

to extract any information due to the overlap of bands. The shifts of the (H3)C-C(OO-) 

stretching band of the acetate anion centered around 900 cm-1, upon the addition of different 

amounts of IS, are shown in Figure 3. It can be seen that the addition of IS to the pure 

[C2MIM][Ac] causes the frequency upshift and band broadening. The upshifts indicate a 

stronger respective bond in the presence of IS, meaning that the acetate anion is becoming 

less engaged in the interaction with the imidazolium cation. At low concentrations of IS (xIS = 

0.10), both bandwidths and frequencies of the acetate band show minor alterations with 

respect to the neat IL in all IL + IS systems. As the concentration of IS increases (xIS = 

0.17), the νC-COO shifts of the systems with [NH4][Ac], [NH4]Cl and [NH4][C2SO3] are still 

comparable (when the intensity is normalized, the bands fully overlap), whereas in the 

system containing [NH4][SCN], the band is further broadened and upshifted. At the highest 

concentration of IS (xIS = 0.33), the νC-COO band further upshifts and broadins. It can be seen 

that in the systems containing [NH4]Cl (νC-COO = 907 cm-1, ∆ν = 31 cm-1) and [NH4][Ac] (νC-

COO = 904 cm-1, ∆ν = 26 cm-1) the bandwidths are much larger than in the neat IL (νC-COO = 
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900 cm-1, ∆ν  = 16 cm-1), suggesting a much more heterogeneous molecular environments 

of acetate anions. In the system containing [NH

although the bandwidth is not as large as in the other cases, the upshift in the frequency 

indicates that [NH4][SCN] is the IS that affects the most the acetate anions in the system. 

Furthermore, for the system containing [

thiocyanate was also monitored via the S≡CN stretching mode at 2056 cm

shown). However, no additional bands, band shifts or broadening were observed in the 

Raman spectra with the increase in the IS concentration, indicating uniform [SCN]

environment as previously reported for 1

([C2MIM][C2SO3]) + [NH4][SCN].23 

 

Figure 3 | Raman spectra of [C2MIM][Ac] + IS systems, acetate C

is represented by a different colour: neat [C2MIM][Ac] is gre

red, [NH4][SCN] is orange and Na[Ac] is pink. The spectra were measured with 1064 mm excitation at 298.15 K.

 

In Figure 4, the mean orientations of the interacting ions are drawn from NOESY data 

from the evaluation of the relative strength of the cross peaks found between the four ions in 

the IL + IS cluster. The NOESY spectra could only obtained for the ammonium

Interactions between the IL and the different ISs 
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), suggesting a much more heterogeneous molecular environments 

NH4][SCN] (νC-COO = 914 cm-1, ∆ν  = 19 cm-1), 

although the bandwidth is not as large as in the other cases, the upshift in the frequency 

][SCN] is the IS that affects the most the acetate anions in the system. 

Furthermore, for the system containing [NH4][SCN], the molecular environment of 

CN stretching mode at 2056 cm-1 (data not 

shown). However, no additional bands, band shifts or broadening were observed in the 

Raman spectra with the increase in the IS concentration, indicating uniform [SCN]- 

environment as previously reported for 1-ethyl-3-methylimidazolium ethyl sulfonate 

 
systems, acetate C-COO- stretching regions. Each system 

MIM][Ac] is grey; [NH4][Ac] is blue, [NH4]Cl is green, [NH4][C2SO3] is 

The spectra were measured with 1064 mm excitation at 298.15 K. 

In Figure 4, the mean orientations of the interacting ions are drawn from NOESY data 

from the evaluation of the relative strength of the cross peaks found between the four ions in 

the IL + IS cluster. The NOESY spectra could only obtained for the ammonium-based ISs 
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because the sodium-based ISs do not present protons in their ions (with the exception of 

acetate). The relative distance between ions was established using the areas of the cross 

peaks in the 2D NMR spectra. For all the studied IL + IS systems, the cross peak that 

showed the highest area and that was associated with the highest proximity between 

protons belonging to two different ions, was the one corresponding to the cross-relaxation 

between the protons from the terminal methyl group of the imidazolium (H6) and those in 

the acetate (H10). The area of this peak was set as reference point, and the areas of all the 

other peaks were divided by the area of the reference in order to obtain a relative scale of 

the NOE between the ions in the system. 

 

 

Figure 4 | Preferential interactions between the IL and IS ions for the systems [C2MIM][Ac] + ammonium-

based ISs as derived from NOESY spectra. a) [NH4][C2SO3], b) [NH4][Ac], c) [NH4]Cl and d) [NH4][SCN] 

determined at 298.15 K. The different colours represent the level of relative NOE:  very low (0−0.20),  low 

(0.21−0.40),  medium (0.41−0.60),  high (0.61−0.80) and  very high (0.81−1). 
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As depicted in Figure 4, NOESY data suggest that in all systems the acetate anion 

detaches itself from the imidazolium cation. This is demonstrated by the low intensity of 

cross peaks between the acetate anion and the aromatic protons of the imidazolium cation, 

which is further corroborated by the large downfield shifts recorded in the imidazolium 

cation, presented in Figure 2a. These results are a direct consequence of the addition of IS 

to the IL, since it is recognized that in the neat [C2MIM][Ac] the acetate anions establish in-

plane interactions with the three imidazolium ring protons.24 As the structure of ILs and ISs 

are both dominated by the Coulombic forces, it is expected that the introduction of ISs into 

the IL media will alter the whole set of interactions that are present, either by the disruption 

of interactions of the ion-pairs (IL-IL and IS-IS) and/or the establishment of new interactions 

(IL-IS). 

Considering the ammonium cation of the ISs, it can be seen that in all systems there 

are stronger contacts between this cation and the acetate anion than with any other ion in 

the mixture. In the case of the [NH4][Ac] IS, these results were expected since it is not 

possible to distinguish between the acetate anions from the IL and those belonging to the 

IS, and hence the high level of contact between the ammonium cation and the acetate anion 

was anticipated. Regarding the [NH4][SCN] IS, where the second highest level of contacts 

was found, the results also support the idea of the establishment of a strong interaction 

between the [Ac]- of the IL and the [NH4]+ of the IS, that allow the other two ions to become 

more "free". This higher level of interaction of the [Ac]- anion with the [NH4]+ cation is 

consistent with the high downfield shifts of the aromatic protons obtained for this system and 

depicted in Figure 2a, showing that the imidazolium is interacting less with its own counter-

ion (the acetate anion is less engaged, as seen in Figure 3) as the ammonium content in the 

mixture increases. For the other two ISs ([NH4]Cl and [NH4][C2SO3]), similar behaviour to 

that observed for the [NH4][SCN] is found, with the low cross peak intensity between the IL's 

anion and the IS's cation being also consistent with their lower negative deviations in the 

aromatic protons shown in Figure 2a and the upshifted νC-COO frequencies (Figure 3). In 

addition, for [NH4][C2SO3] it was also possible to obtain the proximity levels to the IS anion. 

In this case, [C2SO3]- anion becomes closer to the IL's ions than to its own counter-ion (the 

ammonium). Nevertheless these proximity levels are very low, which probably explain the 
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small, yet positive, chemical shift deviations. 

The trends obtained from the deviations of the chemical shifts along with the relative 

contacts determined from the NOESYs are in agreement with the binding energies between 

the IL and IS molecules obtained from the ab initio calculations presented in Table 1. Here 

we can see that the formation of the four ion cluster is favoured in the case of the 

ammonium-based ISs compared to the sodium-based ISs, which is consistent with the large 

deviations observed in the chemical shifts of the former. It seems that for the latter, the ions 

of the IS prefer to remain associated instead of interacting with the ions of the IL. 

Considering the values of the binding energy (∆E) for the four ion cluster, it can be 

observed that the system containing the [NH4][SCN] is the one where the formation of the 

cluster is preferred, which is in agreement with the higher deviations of the chemical shifts 

obtained. In addition, if excluding the common ion system, we can also see in Figure 4 that 

the intensity of the relative NOE between [NH4]+ and the [Ac]- in the [NH4][SCN] containing 

system, is higher than for the systems with [NH4]Cl and [NH4][C2SO3], which present similar 

values in terms of their ∆E, chemical shift deviations and levels of proximity between the 

ions in the system. Regarding the system containing [NH4][Ac], due to the effect of the 

common ion, the chemical environment does not change as much as in the case of the 

other ammonium-based ISs, hence the ∆E and chemical shift deviations are lower. 

In Figure 5, the 1H NMR self-diffusion coefficients (D) for the individual ions of the IL + 

IS systems are depicted. These results are also presented in Table S2 in the ESI. 

Unfortunately, due to the lack of protons in some ions of the ISs (Cl-, [SCN]- and Na+), it was 

not possible to determine the ion self-diffusion coefficients of all species. Moreover, for 

some concentrations, the [NH4]+ cation peak overlapped with the H4 and H5 peaks of the 

imidazolium ring, making impossible the determination of D[NH4]
+. Nevertheless, some 

general trends can be established from these experiments upon the addition of IS to the IL 

media. 
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Figure 5 | 1H NMR self-diffusion coefficients of the ions [C2MIM]+ (●), [Ac]- (■), [NH4]+ (▲) and [C2SO3]- 

(×) in the [C2MIM][Ac] + IS systems determined at 323.15 K. 

 

First it can be seen that [NH4]+ has slightly higher diffusivity than D[C2MIM]
+, except for 

the most concentrated mixtures. With the increase in the amount of IS in the mixture, the 

D[NH4]
+ starts to decrease to the point it becomes lower than D[C2MIM]

+. This behaviour can be 

correlated with the approximation between [NH4]+ and [Ac]- and the establishment of 

aggregates between the two (vide infra). Since [NH4]+ is a smaller and more mobile 

molecule than [C2MIM]+ or [Ac]- it would be expected to have a higher D, however with the 

increase in amount of IS, the formation of aggregates involving [NH4]+ increases, making the 

[NH4]+ less mobile than [C2MIM]+. 

Regarding the IL's diffusion coefficients, Figure 5 shows that the D of the cation (DIL
+) 

is always higher than of the anion (DIL
-), either in the neat IL or in the mixtures. Previous 

studies on the diffusion of [C2MIM][Ac] 24, 25 also showed that the smaller acetate anion 

diffuses more slowly than the larger imidazolium cation. The results obtained in this work 

are comparable to those in literature, showing relative standard deviations of 1.6 % and 0.7 

% for the DIL
+ and of 0.8 % and 4.4 % for the DIL

- regarding the data presented by Remsing 

et al.25 and Bowron et al.24, respectively. 

Other general trend that can be withdrawn from the diffusion measurements is that, 



Chapter 3 | Part II 

132 

 

with the exception of the system containing [NH4][SCN], both the DIL
+ and DIL

- decrease with 

the IS concentration. Literature shows that this behaviour is common to other IL-IS systems, 

namely those involving bis(trifluoromethylsulfonyl)amide-based (NTf2) or 

bis(fluorosulfonyl)amide-based (FSA) ILs + [Li][NTf2] or [Li][FSA] respectively,8, 26-29 systems 

of N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEME) based ILs with lithium ISs, 

[DEME][BF4] + Li[BF4] and [DEME][CF3BF3] or [NTf2] + Li[NTf2],30 and also the system of 

[C2MIM][BF4] + Li[BF4] 31 where the addition of IS leads to the decrease of both DIL
+ and DIL

-. 

In this study, the decrease observed in both DIL
+ and DIL

- follows the trend Na[Ac] > 

[NH4]Cl > Na[SCN] > [NH4][C2SO3] > [NH4][Ac] > [NH4][SCN], where the next to the last one 

is the IS where a smallest decrease in the DIL was obtained; for [NH4][SCN] the DIL
- 

decreases and the DIL
+ increases upon the addition of IS. This decrease in ion mobility with 

the IS concentration is in agreement with our previous studies of the ionic conductivities of 

these systems,14 where an increase in the concentration of the IS led to the decrease of the 

ionic conductivity (with the exception of [NH4][SCN] where the conductivity increased with 

the addition of IS). Interestingly, both of these trends (diffusion and ionic conductivity) do not 

follow the behaviour of the viscosity,14 where the systems containing the ISs [NH4][C2SO3] 

and [NH4]Cl present the highest increase in viscosity, which should result in lower D for 

these systems, according to the Stokes-Einstein equation, equation 1, where it is assumed 

that the diffusing species are rigid spheres in a continuum of a solvent.32 

 

rηπc

Tk
D B=  (1) 

 

where kB is the Boltzmann constant, T is the temperature, η is the viscosity, r is the 

Stokes radius and c is a constant dependent on the strength of the interactions between the 

diffusing species and the medium, that usually ranges between 4 and 6 for slip and stick 

boundary conditions, respectively. Nevertheless, several studies on ILs have shown that the 

c value for these fluids could be lower than 4.28, 30, 33 

In order to further explore this divergence, the diffusion data obtained in this work was 

correlated with the viscosity data of our previous study.14 Figure S6 in the SI, plots the D for 
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each ion in the system versus the kBT/πηmix, where linear relationships (r2 ≥ 0.99) were only 

obtained for the [Ac]- anion (in all system) and for the [C2MIM]+ cation in the system 

containing Na[Ac]. However, in the [C2MIM][Ac] + ammonium-based ISs systems, no 

linearity was obtained, with special mention to the case of [NH4][SCN] since in this system 

the DIL
+ increases with the increase in viscosity and the DIS

+ does not decrease in a linear 

way. These findings are different from the results reported by Hayamizu et al.26, who 

obtained linear plots for all ions in the studied IL-IS mixtures, thus allowing the use of the SE 

equation to obtain physical insights between the diffusional motion of the species and the 

viscosity. In the present work, the application of the SE equation is not valid. In fact, the 

validity of the SE equation for neat ILs is being debated by other authors.34, 35 

Concerning the ion self-diffusion coefficients of the IS, the same behaviour of the IL 

was found where the increase in the IS concentration also lead to the decrease of both DIS
+ 

and DIS
-, again with the exception of [NH4][SCN]. This trend is better illustrated in Figure S7 

in the SI, where the ratio between the self-diffusion coefficients of each ion and the DIL
+ is 

plotted against the molar fraction of IS. In this plot, it can be observed that in all systems 

containing ammonium-based ISs, for small concentration of IS, the D[NH4]
+ is consistently 

higher than D[C2MIM]
+ and as the concentration of IS increases the D[NH4]

+ decreases to the 

point it becomes smaller than D[C2MIM]
+. 

For the system with the IS [NH4][C2SO3], it was possible to determine the DIS
- which 

has the opposite behaviour of D[NH4]
+ − at lower IS concentrations the D[C2SO3]

- is smaller than 

D[Ac]
- and as the concentration of IS increases D[C2SO3]

- becomes higher than D[Ac]
-. Moreover, 

it can also be seen that the addition of IS always affects more the DIL
- than the DIL

+ (DIL
- / 

DIL
+ always < 1). 

 

4.2. Molecular dynamic simulations 

To gain further insight into the structure of [C2MIM][Ac] + ISs mixtures, several 

molecular dynamic simulations were performed, namely IL mixtures with [NH4][Ac] and 

[NH4][SCN]. The selection of these two ISs is related with the irregular behaviour observed 
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in the physical properties of IL + [NH4][SCN] mixtures relative to the other salts, that were 

presented above, while [NH4][Ac] was chosen to represent the most common trends 

observed when ISs are added to the IL. 

 

 
Figure 6 | Probability, P(na), of finding an aggregate of size na, for mixtures with different molar fraction of 

[NH4][Ac] and [NH4][SCN] with [C2MIM][Ac], at 373.15 K. Each graphic represents the aggregates formed 

between a) [NH4]+ and [Ac]–, b) [C2MIM]+ and [SCN]– and c) [NH4]+ and [SCN]–. d) Average number of counter-

ions, Ni, of (�) [C2MIM]+, (�) [Ac]–, (�) [SCN]– and (�) [NH4]+ in different IL + ISs concentrations. The colour 

of each series denotes the interactions between [C2MIM]+ and [Ac]– (red), [C2MIM]+ and [SCN]– (green), [NH4]+ 

and [Ac]– (blue) and [NH4]+ and [SCN]– (orange). The solid and dashed lines correspond to mixtures with 

[NH4][Ac] and [NH4][SCN], respectively. In order to visualize all data points, a small offset along the x axis was 

applied. Thus all data correspond to IS molar fractions of 0, 0.10 or 0.33. 

 

Figure 6 shows the probability, P(na), of finding an aggregate of size na, computed from 

the MD simulation results with the methodology previously described.36, 37 In Figure 6a it is 

observed that the size variation of the aggregates formed by [NH4]+ and [Ac]– does not 

change monotonically. Instead, several probability maxima are found for aggregates with a 
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particular size. This occurs because the ammonium cations tend to be surrounded by ~4 

[Ac] anions (Figure 6d), while acetate, on average, are in contact with less than one [NH4]+ 

cation (considering the data for xIS = 0.1). This suggests the formation of isolated clusters 

composed by ~5 ions, as illustrated in Figure 7. Thus, any time an anion produces a bridge 

between two [NH4]+ cations, the size of the aggregate changes in accordance to the number 

of acetate ions connected to the two cations, given rise to a high probability of finding 

aggregates with a specific size. This observation is in good agreement with the 

spectroscopic findings reported above, that preferential interaction exists between the 

ammonium and acetate ions. This interaction is sustained by the formation of hydrogen 

bonds (H-bonds), that according to Jeffrey’s hydrogen bond distance criteria,38 are relatively 

strong (strong and moderate H-bonds exhibit when H···O distances vary in the range 2.2 − 

2.5 Å and 2.5 − 3.2 Å, respectively; see distances in Figure 7). 

The analyses of Figures 6b and 6c shows a strong interaction between [C2MIM]+ and 

[SCN]– (these two ions are able to produce long polar networks, with the thiocyanate and 

imidazolium ions surrounded by ~4 and ~2 counterions, respectively; Figure 6d) and an 

almost absence of contact between the IS ions (with an average number of neighbours for 

each ion bellow 0.6, Figure 6d). This suggest a strong interaction between the IS ions and 

the IL polar network. Figure 6a also reveals that the aggregates formed between [NH4]+ and 

[Ac]– ions when [NH4][SCN] is added to the ionic liquid tend to be larger than in the case of 

[NH4][Ac]. This observation suggest a bigger interaction between the former IS and the IL 

bulk structure, in accordance to the higher chemical shifts discussed above, observed when 

[NH4][SCN] is mixed with [C2MIM][Ac]. 
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Figure 7 | Snapshot of an aggregate of [NH4]+ cation surrounded by acetate ions, found in a mixture of 

[C2MIM][Ac] with [NH4][SCN] at xIS = 0.10 and T = 373.15 K.

 

4.3. Ionicity 

The ionicity of ILs has been interpreted as a ratio between the effective concentration 

of charged species and the total concentration of the IL, measuring the dissociativity

degree of correlative motion of ions.39, 40 There are two main methods to estimate the ionicity 

of ILs. The first is based on the Walden Plot approach, where plots made of the logarithm of 

the molar conductivity against the logarithm of the fluidity are drawn. In these plots, the ideal 

Walden line is given by a straight line with a unitary slope, drawn with data of an aqueous

solution of KCl, which is usually taken to be representative of the ideal electrolyte, where the 

ions are known to be fully dissociated. The quantitative determination of the ionicity of the IL 

is given by the distance of the IL's data to the ideal Walden

been criticized due to the use of KCl solutions of arbitrary compositions as a reference, 

since Schreiner et al.41 observed that the slopes of Walden plots for KCl solutions

represent the unity. In addition, the use of the Walden plot as a quantitative method for the 

ionicity has also been questioned in the case of a weak electrolyte, where the degree of 
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dissociation is determined by the pKa, which is a thermodynamic quantity.42 Nevertheless, 

from a qualitative point the deviation from the ideal Walden line (∆W) is still a versatile tool 

to access the ionicity of ILs. 

In our recent study,14 we used the ∆W to determine of the ionicity of the same IL + IS 

systems studied in this work and compared them to the ionicity calculated by other method 

proposed by Ueno et al.43, also based on the Walden plot approach. In this last method the 

ionicity is defined as the ratio between the molar conductivity, calculated from the ionic 

conductivity measured by the electrochemical impedance method (Ʌimp), and the ideal molar 

conductivity (Ʌideal), which is assumed to be equal to the fluidity (in Poise-1) taken from the 

ideal Walden line. The results proved to be consistent from a qualitative point of view since 

they both produced the same conclusions − the addition of ammonium-based ISs increased 

the ionicity of the [C2MIM][Ac] IL, while the sodium-based ISs decreased it. 

The second and most consensual method used for the quantitative determination of 

the ionicity uses the ratio between the Ʌimp, that accounts for the migration of charged 

species in an electric field, and the molar conductivity calculated from the ion self-diffusion 

coefficients (ɅNMR), that accounts for the migration of all species in the media (charged and 

neutral, ions and aggregates).39 The value of ɅNMR is determined by the Nernst-Einstein 

(NE) equation as follows: 

 

( )−+ +
⋅

= DD
TR

F
ΛNMR

2

 (2) 

 

where R and F are the gas and Faraday constants, respectively, T is the temperature 

and D+/- are the ion self-diffusion coefficients of the IL obtained from the NMR. However, in a 

IL-IS binary systems, the mole fractions (x) of the IL and the IS have to be accounted for, as 

follows: 

 

( )−+−+ +++
⋅

= ISISISISILILILILNMR DxDxDxDx
TR

F
Λ

2

 (3) 

 



Chapter 3 | Part II 

138 

 

Since in the determination of the diffusion by NMR, D accounts for all species in 

solution, both free and associated forms, the value of ɅNMR is always overestimated.26 Thus, 

the ratio Λimp / ΛNMR will always be smaller than the unity.39 In this study, the determination of 

the D of all ions was only possible in the systems with the ISs [NH4][Ac] and [NH4][C2SO3], 

hence the calculation of the ionicity through the Ʌimp / ɅNMR ratio was only accomplished for 

two IL-IS systems. 

Figure 8 represents a comparison between the ionicity calculated using two different 

methods, the Ʌimp / Ʌideal ratio and the Ʌimp / ɅNMR ratio. The results obtained demonstrate 

opposite trends, showing that the addition of the IS to the IL makes the determination of 

these system's ionicity a challenge. It can be seen that the ionicities calculated trough the 

Ʌimp / Ʌideal ratio increasing upon the addition of IS to the IL, while the ionicities calculated 

trough the Ʌimp / ɅNMR ratio decrease and always presents values lower than the neat IL. 

However, the possible overestimation in the D can affect the determination of the ionicity 

since an increase in the ɅNMR leads to a lower value of Ʌimp / ɅNMR and thus not only the 

ionicity of the IL-IS mixture becomes lower than the neat IL, as also the difference between 

the determination of the ionicity by the two methods increases. Nevertheless, for the neat IL, 

[C2MIM][Ac], the rough consistency between the two methods is confirmed 
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Figure 8 | Comparison between the Ionicity calculated using the Walden Plot approach14 and using the 1H 
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NMR self-diffusion coefficients, for the systems [C2MIM][Ac] + [NH4][Ac] (blue symbols) and [C2MIM][Ac] + 

[NH4][C2SO3] (red symbols) determined at 323.15 K. 

 

The comparison between these two methods had already been made for neat aprotic 

ILs,43, 44 protic ILs45 and glyme-Li salt equimolar mixtures43 and a rough consistency was 

observed. In addition, other studies on the ionicity of neat ILs30, 33, 39 and aqueous solutions 

of ILs,46 where Walden plots are drawn and the ionicity calculated from the Λimp / ΛNMR ratio, 

have also corroborated the consistency of the results obtained from both methods. 

However, in another study concerning IL-IS systems, Hayamizu et al.26 doped ILs N-methyl-

N-propyl-pyrrolidinium (P13) [NTf2] and [FSA] with a fixed concentration of Li[NTf2] and 

[FSA], respectively, and obtained different trends for the ionicity when the two methods 

described above are used. Using the Walden plot, the authors verified that the trend in the 

∆W was [P13][NTf2] > [P13][NTf2] + Li[NTf2] > [P13][FSA] + Li[FSA] > [P13][FSA], with the latter 

neat IL displaying the highest ionicity, whereas when the ionicity was calculated by the Λimp / 

ΛNMR ratio, both IL-IS mixtures yielded higher ionicities than the neat ILs according to the 

following trend: [P13][FSA] + Li[FSA] > [P13][NTf2] + Li[NTf2] > [P13][FSA] > [P13][NTf2]. In this 

study the authors do not explore any further these results. However, these different trends 

clearly indicate that the determination of the ionicity in IL-IS mixtures is not as simple as in 

neat ILs and additional studies are needed. 

In addition, Holloczki et al.47 recently showed that the charge transfer between the ions 

in neat ILs can also affect the determination of the ionicity, since the neutralization of the 

mobile species in the media occurs not only due to the formation of ion pairs but also as a 

result of the charge transfer. Indeed, their data suggested that both phenomena are 

significant factors that could explain the lower than expected conductivities (ɅNMR). 

Moreover, these authors also performed MD simulations on a mixture of [Na][Cl] in the IL 

[C4MIM][Br], and showed that by increasing the charge on the ions both the IS and the IL 

interactions become stronger and the association of the ion pair is favoured, while a 

decrease of the charge leads to the IL to behave more like a molecular liquid than a salt, 

showing higher fluidity. 
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5. Conclusions 

In this work we present insights into the interactions between mixtures of the IL 

[C2MIM][Ac] with several ammonium and sodium-based ISs. Our studies reveal that the 

ammonium based ISs can establish more interactions with the IL than the sodium-based, 

which was verified by the higher deviations of the 1H NMR chemical shifts and corroborated 

by the ab initio calculations. We found that these interactions were in part a result of the 

approximation of the IS's cation, the ammonium, to the IL's anion, the acetate, that lead to 

the establishment of aggregates and to a more detached imidazolium cation. These effects 

were more pronounced in the case were the IS was the [NH4][SCN]. 

The ion self-diffusion coefficients show that the introduction of IS had a deep effect on 

the diffusion of the IL's ions, specifically in the case of the imidazolium cation. Moreover, for 

the systems with [NH4][Ac] and [NH4][EtSO3] ISs, the ionicity was calculated through the 

Ʌimp / ɅNMR ratio and compared with the ionicity determined through the Walden plot 

approach. The two methods show divergent behaviours meaning that the interplay between 

the interactions of IL and IS is much more complex than in the case of neat ILs or molten 

salts. 
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7. Supplementary Information 

7.1. NMR studies 

 
Table S1 | 1H NMR chemical shifts for the [C2MIM][Ac]+ IS systems at 298.15 K. 

Position 
x[NH4][Ac] 

0 0.0520 0.1000 0.1688 0.2466 0.3302 0.4346 
2 10.214 10.131 10.073 9.991 9.895 9.762 9.657 
4 8.114 8.062 8.024 7.972 7.913 7.833 7.774 
5 7.939 7.894 7.863 7.819 7.770 7.702 7.653 
6 3.627 3.619 3.610 3.600 3.597 3.587 3.593 
7 3.902 3.901 3.896 3.891 3.893 3.889 3.900 
8 0.891 0.900 0.903 0.909 0.928 0.946 0.984 

10/10' 1.128 1.143 1.147 1.155 1.176 1.193 1.225 
11 - - - 8.140 8.248 8.039 8.080 

Position 
x[NH4]Cl 

0 0.0492 0.0988 0.1688 0.2479 0.3250 - 
2 10.214 10.094 10.016 9.874 9.705 9.534 - 
4 8.114 8.044 8.011 7.940 7.851 7.757 - 
5 7.939 7.876 7.848 7.786 7.706 7.621 - 
6 3.627 3.598 3.597 3.578 3.552 3.526 - 
7 3.902 3.879 3.882 3.868 3.847 3.827 - 
8 0.891 0.873 0.880 0.875 0.866 0.862 - 
10 1.128 1.110 1.115 1.106 1.092 1.086 - 
11 - - 8.209 8.190 8.147 8.072 - 

Position 
x[NH4][SCN] 

0 0.0494 0.0995 0.1610 0.2490 0.3298 - 
2 10.214 10.103 9.967 9.784 9.478 9.166 - 
4 8.114 8.028 7.928 7.804 7.628 7.484 - 
5 7.939 7.866 7.781 7.676 7.526 7.398 - 
6 3.627 3.611 3.588 3.567 3.543 3.526 - 
7 3.902 3.891 3.872 3.857 3.841 3.830 - 
8 0.891 0.902 0.906 0.919 0.946 0.973 - 
10 1.128 1.144 1.152 1.167 1.191 1.214 - 
11 - 8.525 8.447 8.339 8.204 7.996 - 

Position 
x[NH4][C2SO3] 

0 0.0503 0.1002 0.1702 0.2481 - - 
2 10.214 10.084 9.955 9.765 9.541 - - 
4 8.114 8.033 7.957 7.851 7.738 - - 
5 7.939 7.868 7.802 7.711 7.612 - - 
6 3.627 3.608 3.592 3.567 3.547 - - 
7 3.902 3.890 3.880 3.861 3.847 - - 
8 0.891 0.894 0.898 0.899 0.911 - - 
10 1.128 1.137 1.145 1.147 1.156 - - 
11 - 8.284 8.306 8.197 8.080 - - 
12 - 2.000 2.008 2.016 2.035 - - 
13 - 0.526 0.534 0.540 0.555 - - 
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Position 
x Na[Ac] x Na[SCN] 

0 0.0493 0.1017 0.1406 0.0495 - - 
2 10.214 10.162 10.110 10.075 10.098 - - 
4 8.114 8.086 8.061 8.045 8.031 - - 
5 7.939 7.916 7.896 7.884 7.868 - - 
6 3.627 3.626 3.622 3.621 3.613 - - 
7 3.902 3.909 3.912 3.915 3.897 - - 
8 0.891 0.898 0.898 0.900 0.898 - - 

10/10' 1.128 1.136 1.133 1.132 1.138 - - 

 

 

 
Figure S1 | Effect of [NH4][Ac] concentration on the 1H NMR spectrum of [C2MIM][Ac] at 298.15 K. 
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Figure S2 | Effect of [NH4]Cl concentration on the 1H NMR spectrum of [C2MIM][Ac] at 298.15 K. 

 

 
Figure S3 | Effect of [NH4][C2SO3] concentration on the 1H NMR spectrum of [C2MIM][Ac] at 298.15 K. 
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Figure S4 | Effect of [NH4][SCN] concentration on the 1H NMR spectrum of [C2MIM][Ac] at 298.15 K. 

 

 
Figure S5 | Effect of Na[SCN] and Na[Ac] concentration on the 1H NMR spectrum of [C2MIM][Ac] at 

298.15 K. 
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Table S2 | 1H NMR self-diffusion coefficients of the different ions (D, in 10-11·m2·s-1) in the [C2MIM][Ac]+ 

IS systems at 323.15 K. 

xIS 
DIL+ DIL- DIS+ DIS- 

[C2MIM][Ac] + [NH4][Ac] 
0 4.42 3.84 - 3.84 

0.0520 4.45 3.54 - 3.54 
0.1000 4.09 3.01 - 3.01 
0.1688 3.54 2.35 3.90 2.35 
0.2466 3.09 1.88 3.21 1.88 
0.3302 2.69 1.52 - 1.52 
0.4361 1.93 1.03 1.69 1.03 

 [C2MIM][Ac] + [NH4]Cl 
0 4.42 3.84 - - 

0.0492 4.13 3.30 - - 
0.0988 3.56 2.64 - - 
0.1688 2.75 1.83 - - 
0.2479 2.02 1.22 2.03 - 
0.3250 1.42 0.82 1.31 - 

 [C2MIM][Ac] + [NH4][SCN] 
0 4.42 3.84 - - 

0.0494 4.52 3.58 4.72 - 
0.0995 4.43 3.19 5.04 - 
0.1610 4.42 2.80 5.05 - 
0.2490 4.52 2.45 4.83 - 
0.3290 4.81 2.27 4.75 - 

 [C2MIM][Ac] + [NH4][C2SO3] 
0 4.42 3.84 - - 

0.0503 4.26 3.36 - 3.13 
0.1002 3.89 2.84 4.33 2.77 
0.1702 3.30 2.10 3.61 2.21 
0.2481 2.74 1.56 2.54 1.73 

 [C2MIM][Ac] + Na[Ac] 
0 4.42 3.84 - - 

0.0493 3.93 3.14 - 3.14 
0.1017 3.43 2.58 - 2.58 
0.1406 3.03 2.16 - 2.16 

 [C2MIM][Ac] + Na[SCN] 
0 4.42 3.84 - - 

0.0495 4.23 3.41 - - 
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Figure S6 | Ion self-diffusion coefficients plotted against kBT/πη in the [C2MIM][Ac] + IS systems at 323.15 

K. Panel a) represents the cations of the system [C2MIM]+ (●) and [NH4]+ (▲) whereas panel b) represents the 

anions [Ac]- (■) and [C2SO3]- (▼). 
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Figure S7 | 1H NMR relative ion self-diffusion coefficients for the different ions in the [C2MIM][Ac] + IS 

systems at 323.15 K. Each panel represents a different IS: a) [NH4][Ac]; b) [NH4]Cl; c) [NH4][C2SO3]; d) 

[NH4][SCN]; e) Na[Ac] and f) Na[SCN]; 
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7.2. Ab initio calculations 

Table S3 | Electronic energies, SP and ZPVE, as well as the final energy (sum of SP and ZPVE), E, for 

the optimized structures of the pure IL and ISs. 

Compound SP / KJ·mol-1 ZPVE / KJ·mol-1 E / KJ·mol-1 

[C2MIM][Ac] -1500984 577 -1500406 
[NH4][Ac] -748152 259 -747893 
[NH4]Cl -1356605 130 -1356475 
[NH4][SCN] -1436975 154 -1436821 
[NH4][C2SO3] -1992313 339 -1991974 
Na[Ac] -1023702 131 -1023571 
Na[SCN] -1712557 25 -1712533 

 

Table S4. Electronic energies, SP and ZPVE, as well as the final energy of the cluster (sum of SP and 

ZPVE), Ecluster, for the optimized structures of the IL + IS systems. 

System Conformation SP / KJ·mol-1 ZPVE / KJ·mol-1 Ecluster / KJ·mol-1 

[C2MIM][Ac] 
+ 

[NH4][Ac] 

1 -2249198 839 -2248359 
2 -2249183 840 -2248343 
3 -2249204 840 -2248364 
4 -2249196 843 -2248353 
5 -2249174 841 -2248334 
6 -2249174 839 -2248335 

[C2MIM][Ac] 
+ 

[NH4]Cl 

1 -2857664 710 -2856954 
2 -2857648 708 -2856940 
3 -2857662 710 -2856952 
4 -2857659 712 -2856947 

[C2MIM][Ac] 
+ 

[NH4][SCN] 

1 -2938041 734 -2937307 
2 -2938048 737 -2937311 
3 -2938043 734 -2937309 

[C2MIM][Ac] 
+ 

[NH4][C2SO3] 

1 -3493379 918 -3492460 
2 -3493370 919 -3492451 
3 -3493381 921 -3492460 

[C2MIM][Ac] 
+ 

Na[Ac] 

1 -2524703 711 -2523993 
2 -2524719 712 -2524007 
3 -2524736 716 -2524020 

[C2MIM][Ac] 
+ 

Na[SCN] 

1 -3213595 608 -3212987 
2 -3213597 609 -3212988 
3 -3213587 606 -3212981 
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Figure S8 | Conformations drawn for the system [C

conformation in ethanol. 
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Conformations drawn for the system [C2MIM][Ac] + [NH4][Ac]. a) Initial conformation. b) Final 
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Figure S9 | Conformations drawn for the system [C2MIM][Ac] + [NH4]Cl. a) Initial conformation. b) Final 

conformation in ethanol. 

 

 
Figure S10 | Conformations drawn for the system [C2MIM][Ac] + [NH4][SCN]. a) Initial conformation. b) 

Final conformation in ethanol. 
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Figure S11 | Conformations drawn for the system [C2MIM][Ac] + [NH4][C2SO3]. a) Initial conformation. b) 

Final conformation in ethanol. 

 

 
Figure S12 | Conformations drawn for the system [C2MIM][Ac] + Na[Ac]. a) Initial conformation. b) Final 

conformation in ethanol. 
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Figure S13 | Conformations drawn for the system [C2MIM][Ac] + Na[SCN]. a) Initial conformation. b) Final 

conformation in ethanol. 

 

 
Figure S14 | Binding energies for the different conformations of all IL + IS systems studied. 
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1. Abstract 

In this work, the liquid-liquid extraction of ethanol from n-heptane + ethanol mixtures 

using combinations of one ionic liquid with different amounts of the same inorganic salt as 

extraction solvents, is studied. Three different mixtures of ionic liquid + inorganic salt, with 

different ionicities were prepared through the addition of different amounts of ammonium 

thiocyanate inorganic salt to 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid, and used. 

Liquid-liquid equilibria of ternary mixtures of n-heptane + ethanol + 3 different mixtures of 

ionic liquid + inorganic salt were experimentally measured at 298.15 K and 0.1 MPa. Both 

the selectivity and the distribution coefficient were used in the assessment of the extraction 

solvent feasibility and a correlation of these parameters with the ionicity of the ionic liquid + 

inorganic salt mixtures was established. A comparison between the different mixtures of 

ionic liquid + inorganic salt and the neat ionic liquid is also made. 

 

2. Introduction 

In many areas of industry, from the production of commodities to fine chemical 

processes, the accumulation of hazardous solvent mixtures, due to recycling difficulties, is a 

serious problem. In order to meet sustainability criteria, the separation of these mixtures into 

their pure components is mandatory so that they can be reused. For example, numerous 

problems related to the trade-off between efficiency and soot gases emissions are posed in 

the production and commercialization of fuels. In these processes, alkanols and alkanes are 

brought together to produce oxygenated additives for gasoline or diluted hydrocarbon fuels.1 

In this context, the azeotropes of either n-hexane or n-heptane with methanol or ethanol 

have been reported due to difficulties in separating these compounds.2-19 The approach 

usually used to separate this type of azeotropes is to implement liquid–liquid separation.20 

In order to break the azeotrope of a mixture a third component (i.e. separation agent) 

must be added, regardless of the technique used. The separation agent promotes the 

separation of the components in the azeotropic mixture. In the case of liquid-liquid extraction 
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processes, the separation agent is an extraction solvent that changes the solubility of the 

compounds, promoting the azeotrope breaking. 

The choice of the separation agent is of utmost importance for the separation of 

azeotropic mixtures. Organic solvents  are the most used separation agents in industry, 

nevertheless inorganic salts (ISs), the combination of both and more recently, ionic liquids 

(ILs) have also been tested.21 Due to their remarkable properties, specifically almost null 

volatility at room temperature, recycling easiness and fine tunable properties, ILs have been 

emerging as an appealing alternative for the recycling of volatile organic solvent mixtures 

used in industry.20 In addition, ILs have shown the ability to efficiently separate azeotropic 

mixtures including alcohols + alkanes mixtures,2-8, 10-17, 19 aromatic + aliphatic mixtures,22-32 

ethyl acetate + alcohols or n-hexane,33-35 ketones + alkanes or alcohols mixtures,36, 37 and 

ethers + alcohols38-41 through liquid-liquid extraction. The best separation results obtained in 

the previous examples were for the azeotropic mixtures of alkanes + alcohols.20 

Lately, our group studied the solubility of common ISs in a wide range of different ILs42 

and showed that their solubilisation in the IL media can increase the Coulombic character of 

the latter, thus increasing the ionicity of ILs at very low cost, while the liquid state status is 

still preserved.43-45 The ionicity of an IL is related to its ionic nature, which can be controlled 

by the magnitude and balance of the interactive forces of the IL. ILs present a complex 

nature where several interactions, such as Coulombic (the predominant), van der Waals, 

hydrogen-bonding and π-π interactions, are present. In addition, the formation of 

aggregates or clusters in ILs may also occur to some extent, affecting their structure and 

obviously their physicochemical properties such as viscosity, conductivity, and diffusion 

coefficients. Other IL’s properties, namely vapour pressure and hydrogen acceptor or donor 

character, have also been linked to their ionicity.46 Thus, the evaluation of the ionicity or the 

degree of dissociation/association of ILs and its correlation to their macroscopic properties 

has become an interesting and important parameter for the characterization of ILs.47, 48 

In previous works,43, 44 we studied the effects of the addition of ammonium thiocyanate 

on the thermophysical properties of three ILs based on the 1-ethyl-3-methylimidazolium 

cation combined with ethyl sulfate, ethyl sulfonate and acetate anions. NMR, Raman and 

MD calculations showed that by solubilising this salt into the IL media, modifications on the 
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IL's initial structure were promoted and the Coulombic character of the IL altered. Although 

an increase in the ionicity was observed in all the studied systems, this property did not 

change in a linear manner with composition indicating the formation of different 

complexes/aggregates depending on the IS concentration, in other words, different ion´s 

“availability” to participate in solvation schemes. 

Recently, Lei et al.49 just demonstrated that the combination of ISs and ILs shows 

promising results in the separation of ethanol and water azeotropic mixtures by extractive 

distillation. In the present work, our aim is to evaluate the performance of studied IL-ISs 

mixtures as extraction solvents for n-heptane + ethanol azeotropic mixtures in liquid-liquid 

extraction and, if possible, to link their ionicity to their extraction efficiency and capacity. For 

that purpose, liquid-liquid equilibria data for ternary systems of n-heptane + ethanol + (IL-IS) 

mixture were measured at 298.15 K and 0.1 MPa. Literature shows that alkyl sulfate-based 

ILs are some of the most promising ILs, presenting high efficiency in the separation of 

azeotropic mixtures, namely in the separation of mixtures of benzene + C6-C9 aliphatic 

compounds,27, 32 ethyl acetate + ethanol35 or 2-propanol,33 ethyl tert-butyl ether + ethanol39 

and n-hexane or n-heptane + ethanol.10, 11, 13-15 This family of ILs, specifically those with a 

cation derived from imidazolium, exhibit good chemical and thermal stability, low melting 

points and relatively low viscosities.50 In particular, the 1-ethyl-3-methylimidazolium ethyl 

sulfate IL is highly efficient in the separation of the n-heptane + ethanol azeotropic mixture.10 

Consequently, in this work, three different IL-IS mixtures, based on 1-ethyl-3-

methylimidazolium ethyl sulfate IL with different amounts of ammonium thiocyanate, were 

used. Their separation capacity was evaluated through the calculation of the decisive 

parameters: distribution coefficient and selectivity. These IL-IS mixtures were selected for 

several reasons: i) the IL selected shows good efficiency in the separation of the targeted 

mixture,10 ii) the IS chosen displays high solubility in the IL,42 allowing the study of different 

concentrations of IS; and iii) the commercial availability and cheap price of the IL when 

comparing to other short chain alkyl sulfate-based imidazolium ILs. 
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3. Experimental Section 

3.1. Materials 

N-heptane and ethanol were supplied by Riedel-de-Haën with 99 % purity and by 

Scharlau with 99.9 % purity, respectively. Ammonium thiocyanate ([NH4][SCN]) was 

provided by Sigma-Aldrich with a purity content superior to 99.0 %, while the IL 1-ethyl-3-

methylimidazolium ethyl sulfate ([C2MIM][C2SO4]) was purchased from Merck with a mass 

fraction purity of ≥ 99 %. To reduce the water and other volatile substances contents, 

vacuum (0.1 Pa) and moderate temperature (no more than 323.15 K) were always applied 

to the ionic liquid and inorganic salt for at least 3 days prior to their use. After drying, the 

ionic liquid purity was checked by 1H NMR. 

Three different concentrations of binary mixtures of [C2MIM][C2SO4] + [NH4][SCN] were 

prepared: xIL = 0.83 + xIS = 0.17 (SO4-SCN17), x IL = 0.67 + x IS = 0.33 (SO4-SCN33) and x IL 

= 0.55 + xIS = 0.45 (SO4-SCN45). These concentrations were chosen taking into account 

the solubility limits42 and the ionicity of the system.44 Table 1 presents the ionicity of the IL-IS 

mixtures used, calculated by the Walden Plot method. 

 

Table 1 | Ionicity (∆W) calculated from the Walden Plot deviations at 298.15 K for the neat IL and the IL-IS 

mixtures tested in this work.  

Solvent ∆W a 

[C2MIM][C2SO4] 0.164 
SO4-SCN17 0.088 
SO4-SCN33 0.061 
SO4-SCN45 0.084 

 a The ionicity data was taken from the literature.44 

 

In this method, the ionicity is determined by the deviation of the corresponding IL-IS 

mixture to the ideal Walden line (behaviour of ideal electrolyte). A higher deviation to the 

ideal line corresponds to a “less ionic” ionic liquid. The SO4-SCN33 mixture was chosen 

due to its highest ionicity (the lowest deviation to the ideal Walden line), while the other two 

(SO4-SCN17 and SO4-SCN45) present similar ionicity values, despite the fact that SO4-
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SCN45 has a much higher viscosity and lower conductivity than SO4-SCN17.44 The 

samples were prepared by weighing known masses of the each component into stoppered 

flasks using an analytical high-precision balance with an uncertainty of ± 10-5 g, under inert 

atmosphere. Afterwards, they were mixed with a magnetic stirring until a clear solution was 

obtained. In Figure 1, the chemical structures of the IL [C2MIM][C2SO4] and of the IS 

[NH4][SCN] are presented. 
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Figure 1 | Chemical structure of both ionic liquid and inorganic salt used in this work, a) [C2MIM][C2SO4] 

and b) [NH4][SCN]. 

 

3.2. Liquid-liquid equilibria measurements 

The ternary LLE experiments were performed at 298.15 K and 0.1 MPa in a glass cell 

thermostatically regulated by a water jacket connected to an external water bath controlled 

to ± 0.01 K. The temperature in the cell was measured with a platinum resistance 

thermometer coupled to a Keithley 199 System DMM/Scanner that was calibrated with 

high–accuracy mercury thermometers (0.01 K). The mixing was assured by a magnetic 

stirrer. 

The binodal curve of the ternary system was determined by preparing several binary 

mixtures of IL-IS + n-heptane in the immiscible region and then ethanol was added until the 

ternary mixture became miscible. Afterwards, the refractive index of those ternary mixtures 

was determined in triplicate. The measurements of refractive index were performed at 
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298.15 K and 0.1 MPa, using an automated Anton Paar Refractometer Abbemat 500 with 

an absolute uncertainty in the measurement of ± 0.00005. 

The determination of the tie-lines, was carried out by preparing ternary mixtures of 

known composition that were vigorously stirred for at least 1 h and left to settle for at least 

12 h at 298.15 K. Then, samples from both phases were taken with a syringe and their 

refractive indexes measured in triplicate. The composition of both phases in equilibrium was 

determined using the fitting of the refractive indexes at 298.15 K with the composition, along 

the binodal curve, using the following equations: 
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where, w1, w2 and w3 correspond to the mass fraction compositions of n-heptane, 

ethanol and IL-IS mixture, respectively, and the parameters A to O are adjustable 

parameters, which are given in Table S2 in the supporting information (SI) for the studied 

systems. 

The method was validated using experimental data for the ternary system of n-heptane 

+ ethanol + [C2MIM][C2SO4] from the literature.10 The measurements obtained were 

estimated to be accurate to ± 0.009 in mass fraction in comparison with the method used in 

literature10 and the uncertainty in the composition is estimated to be ± 0.006 in mass 

fraction. 
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4. Results and discussion 

The ternary diagrams for the system n-heptane + ethanol + (IL-IS) at 298.15 K and 0.1 

MPa are presented in Figures 2-4. It can be observed that an increase in the molar ratio of 

IS in the IL-IS mixture leads to an increase in the immiscibility region of the ternary diagram. 

In addition, the tie-lines of the three studied systems present positive slopes meaning that 

the extraction of ethanol from n-heptane is always favourable. The composition of the 

phases in equilibrium, along with the distribution coefficient and the selectivity values are 

presented in Tables S1 in the SI. 
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Figure 2 | Ternary diagram for the system n-heptane (1) + ethanol (2) + SO4-SCN17 (3) at 298.15 K and 

0.1 MPa. The green dots represent the binodal curve and the green squares the composition of the initial 

mixture; the black dots and lines represent the composition of the co-exiting phases and the tie-lines, 

respectively. 
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Figure 3 | Ternary diagram for the system n-heptane (1) + ethanol (2) + SO4-SCN33 (3) at 298.15 K and 

0.1 MPa. The red dots represent the binodal curve and the red squares the composition of the initial mixture; the 

black dots and lines represent the composition of the co-exiting phases and the tie-lines, respectively. 
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Figure 4 | Ternary diagram for the system n-heptane (1) + ethanol (2) + SO4-SCN45 (3) at 298.15 K and 

0.1 MPa. The orange dots represent the binodal curve and the orange squares the composition of the initial 

mixture; the black dots and lines represent the composition of the co-exiting phases and the tie-lines, 

respectively. 
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The distribution coefficient and the selectivity are two required parameters to assess 

the performance of the extraction solvent in liquid-liquid extraction system. The first 

accounts for the solute-carrying capacity as well as the amount of extraction solvent (IL-IS 

mixture, in this case) required for the extraction process, while the latter evaluates the 

efficiency of the extraction solvent, indicating the ease of extraction of a solute (ethanol) 

from a diluent or inert (heptane). These two parameters can be determined by the following 

equations: 
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where, β2 is the distribution coefficient of ethanol, S is the selectivity, w1 and w2 the 

mass fractions of n-heptane and ethanol, respectively and superscripts I and II indicate the 

n-heptane-rich phase (upper phase) and IL-IS-rich phase (lower phase), respectively. A high 

selectivity allows fewer stages in the process of extraction and smaller amount of inert 

residual in the extract, while a high distribution coefficient value usually leads to a lower 

solvent flow rate, a smaller-diameter column and lower operating costs.20 

Figure 5 depict the distribution coefficient values obtained for the IL-IS mixtures tested, 

while the data is listed in Table S1 (SI). In addition, the distribution coefficient values 

obtained for the neat IL, [C2MIM][C2SO4], were also plotted for comparison. It can be 

observed that addition of IS did not promote any major effect on the distribution coefficient in 

comparison with the neat IL. In all systems, IL and IL-IS mixture, the β2 values increase with 

the decrease of the ethanol mass fraction in the n-heptane-rich phase, showing similar 

values in the whole range with the exception of SO4-SCN33. For mass fraction values 

below 0.05, the β2 values of SO4-SCN33 drop. This was not expected since SO4-SCN33 

presents the highest ionicity. This fact indicates that the distribution coefficient is not related 
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with the extraction solvent ionicity. On the other hand, MD studies showed that, at this 

concentration (xIS = 0.33), the original IL structure starts to break apart, and the ions are less 

ordered which might explain the less solute-carrying capacity of this IL-IS mixture.44 

wEthanol in Heptane-rich Phase

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

β 2

0

5

10

15

20
[C2MIM][C2SO4] + [NH4][SCN] (x2 = 0.17)

[C2MIM][C2SO4] + [NH4][SCN] (x2 = 0.17)

[C2MIM][C2SO4] + [NH4][SCN] (x2 = 0.33)

[C2MIM][C2SO4] + [NH4][SCN] (x2 = 0.45)

 

Figure 5 | Distribution coefficient values, β2, for the ternary systems n-heptane (1) + ethanol (2) + IL-IS 

(3), as a function of ethanol mass fraction in n-heptane-rich phase at 298.15 K and 0.1 MPa. The data for the 

neat IL is taken from literature.10 

 

The selectivity values obtained for the ternary systems containing IL-IS mixtures 

studied in this work are plotted in Figure 6 and the data presented in Table S1 in the SI. The 

selectivity values obtained for the neat [C2MIM][C2SO4] were also plotted for comparison. It 

can be observed that the addition of IS to the IL increased the selectivity values in 

comparison to the pure IL. The results obtained also show that a correlation between the 

ionicity of the extraction solvent and its selectivity can be established. SO4-SCN33 is the 

extraction solvent that presented the highest selectivity values in accordance with its highest 

ionicity. When comparing SO4-SCN33 with the neat IL, the IL-IS mixture always presents 

higher selectivity values than the neat IL. Even at low ethanol concentrations, where the 

neat IL displays its highest selectivity, SO4-SCN33 has a selectivity of more than 3 times 

higher than that of the neat IL. Regarding the other two HIILs, the selectivity values obtained 

are also higher than those of the neat IL, with the SO4-SCN45 presenting higher selectivity 
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values than SO4-SCN17. 

For mass fractions of ethanol lower than 0.05 it is possible to establish a trend, where 

the selectivity increases with the increase in the ionicity, following the order: SO4-SCN33 > 

SO4-SCN45 > SO4-SCN17 > neat IL. 

 

 

Figure 6 | Selectivity, S, of the three studied IL-IS mixtures for the ethanol in the n-heptane (1) + ethanol 

(2) + IL-IS (3) system, as a function of the ethanol mass fraction in the n-heptane-rich phase at 298.15 K and 0.1 

MPa. The line are just for eyes' guidance and the data for the neat IL is taken from literature.10 

 

In order to better evaluate the effect of the addition of IS to the IL in the efficiency of 

the IL-IS mixtures as extraction solvents, the ethanol mass fraction was fixed and the 

selectivity values were compared in Figure 7. Three different mass fractions of ethanol, 

0.014, 0.030 and 0.090, were chosen to draw a direct comparison between the IL-IS 

mixtures containing systems and the system with the neat IL. As the mass fraction of 

ethanol increases in the n-heptane-rich phase, the effect of the ionicity becomes less 

pronounced, as shown in Figure 7 and Figure S2 in the SI. Nonetheless, the addition of 

[NH4][SCN] to the [C2MIM][C2SO4] always enhances the selectivity of the neat IL and SO4-

SCN33 always displays the highest selectivity values at the 3 studied ethanol compositions, 

in accordance to its highest ionicity. 
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Figure 7 | Effect of the ionicity in the selectivity of the IL-IS mixture for the system n-heptane (1) + ethanol 

(2) + IL-IS (3), at a three fixed ethanol mass fractions in n-heptane-rich phase, at 298.15 K and 0.1 MPa. The 

data for the neat IL is taken from literature.10 

 

In Figures 8 and 9, a comparison between the distribution coefficients and selectivity 

values of the IL-IS mixtures tested in this work and the ILs found in literature, for the n-

heptane + ethanol azeotrope, at a fixed ethanol mass fraction in n-heptane-rich phase, is 

presented. The comparison in the full range of ethanol mass fraction is shown in Figures 

S1-S2 in the SI. Most of the literature data on the separation of n-heptane + ethanol 

azeotropic mixture using ILs as extraction solvents is based on ILs containing the 

bis(trifluoromethylsulfonyl)imide anion. 

Seoane et al.19 studied the effect of increasing the alkyl chain of the 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) on the separation of n-

heptane + ethanol mixtures and found that this increase lead to lower selectivity values, 

while the distribution coefficient values were not greatly affected. González et al.8 tested two 

pyridinium-based ILs, 1-ethyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide ([C2-3-

C1Py][NTf2]) and 1-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide ([C3-3-

C1Py][NTf2]) and demonstrated the lower performance of these ILs when compared to their 

imidazolium counterparts. However, in another work the same authors7 showed that 

pyrrolidinium-based ILs could provide better results than other ILs families. In this work 
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these authors combined the 1-butyl-1-methylpyrrolidinium cation ([C4-3-C1pyr]+) with the 

dicyanamide ([DCA]-) and the trifluoromethanesulfonate ([OTf]-) anions. The results showed 

that the [C4-3-C1pyr][DCA] was the more feasible extraction solvent for the separation of n-

heptane + ethanol mixtures showing distribution coefficient values superior to 8 and 

selectivity values ranging from 80 to 1500. Aranda et al.2 used two tetraalkyl ammoniums, 

butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([BTMA][NTf2]) and 

tributylmethylammonium bis(trifluoromethylsulfonyl)imide ([TBMA][NTf2]), for the separation 

of n-heptane or n-hexane + ethanol or methanol mixtures, where the best results were 

obtained for [BTMA][NTf2] in the n-hexane + methanol system, whereas for the n-heptane+ 

ethanol system the studied ILs tested performed more poorly than the pyridinium-based ILs 

studied by González et al.8 

As mentioned before, some studies on the use of alkyl sulfate-based ILs to break this 

particular azeotrope were also found in the literature. Pereiro et al. studied the separation of 

n-heptane + ethanol, using the ILs 1-butyl-3-methylimidazolium methyl sulfate 

[C4MIM][C1SO4],11 1,3-dimethylimidazolium methyl sulfate ([C1MIM][C1SO4])14 and also 1-

ethyl-3-methylimidazolium ethyl sulfate ([C2MIM][C2SO4]).10 The results obtained showed 

that all these ILs used were suitable extraction solvents for the extraction of ethanol from its 

azeotropic mixture, especially in mixtures of n-heptane + ethanol, where particularly high 

efficiencies were obtained. In addition, it was observed that a shorter alkyl chain on the 

imidazolium cation led to better n-heptane/ethanol efficiencies. 

Moreover, Pereiro et al.12, 16 also tested hexafluorophosphate-based ILs, 1-hexyl-3-

methylimidazolium ([C6MIM][PF6]) and 1-octyl-3-methylimidazolium hexaflurophosphate 

([C8MIM][PF6]), for the separation of n-heptane + ethanol mixtures. Both the ILs proved to 

break the azeotropic point of the tested mixtures, with the [C6MIM][PF6] IL showing very high 

selectivity values in the case of n-heptane + ethanol mixtures. However, the low distribution 

coefficients and its solutropic behaviour makes the use of this IL inadvisable. 

Recently, Cai et al.3 tested ILs based on di-alkyl phosphate anions for the extraction of 

ethanol from n-heptane + ethanol azeotropic mixtures. The extraction capabilities of the ILs 

tested showed to decrease with the increase in the alkyl chain of both cation and anion. The 

IL 1,3-dimethylimidazolium dimethylphosphate ([C1MIM][DMP]) displayed both higher 
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distribution coefficient and selectivity values than the other two ILs tested, 1-ethyl-3-

methylimidazolium diethylphosphate ([C2MIM][DEP]) and 1-butyl-3-methylimidazolium 

dibutylphosphate ([C4MIM][DBP]). However, in comparison with other neat ILs, 

[C1MIM][DMP] still presents lower selectivity and distribution coefficient values than the alkyl 

sulfate-based ILs. 

When comparing the performance of the IL-IS mixtures used in this work with the 

bis(trifluoromethylsulfonyl)imide-based ILs found in literature, it can be seen that IL-IS 

mixtures greatly outperform ILs both in terms of the distribution coefficient and the selectivity 

values in the hole range of ethanol composition. In the case of the di-alkyl phosphate-based 

ILs, the IL-IS mixtures tested presented slightly higher distribution coefficient values than the 

[C1MIM][DMP] and higher than the other two ILs. However, IL-IS mixtures have much higher 

selectivity values than [C1MIM][DMP]. The IL [C4-3-C1pyr][DCA] was, so far, the neat IL that 

yielded the highest distribution coefficient values. However, in terms of selectivity it still falls 

short in comparison with the alkyl sulfate-based ILs and IL-IS mixtures tested in this work. 

Regarding the alkyl sulfate-based ILs, in terms of the distribution coefficient values, 

SO4-SCN17 and SO4-SCN45 displayed values in the same order of magnitude as the other 

alkyl sulfate-based ILs found in literature,10, 11, 14 whereas for the selectivity, it can be seen 

that the addition of inorganic salt greatly enhances it in comparison with the neat IL, and in 

the case of SO4-SCN33 higher selectivity values than those of [C1MIM][C1SO4] IL can be 

obtained. 
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Figure 8 | Comparison of the distribution coefficient values, β2, for the systems studied in this work and 

those from literature,2, 3, 7, 8, 10-12, 14, 19 at an ethanol mass fraction between 0.02 - 0.03 wt% in n-heptane-rich 

phase at 298.15 K and 0.1 MPa. 

 

 

Figure 9 | Comparison of the selectivity, S, for the systems studied in this work and those found in 

literature,2, 3, 7, 8, 10-12, 14, 19 at an ethanol mass fraction between 0.02 - 0.03 wt% in n-heptane-rich phase at 298.15 

K and 0.1 MPa. 
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5. Conclusions 

In this work, the effect of the ionicity of the ionic liquid on the separation of n-heptane + 

ethanol azeotropic mixtures was explored. To increase the ionicity of the IL 1-ethyl-3-

methylimidazolium ethyl sulfate, the IS ammonium thiocyanate was added in three different 

concentrations, xIS = 0.17, 0.33 and 0.45. 

The LLE for the ternary systems n-heptane + ethanol + (IL-IS) was measured at 

298.15 K and atmospheric pressure, and in order to analyze the IL-IS mixtures' extraction 

capacity, the distribution coefficients and selectivity values were determined. The results 

obtained show that the IL-IS mixtures tested are good candidates as extraction solvents for 

the n-heptane + ethanol azeotropic mixture breaking using liquid-liquid extraction process, 

since they proved to have higher selectivity values than the neat ILs found in literature, as 

well as distribution coefficient values of the same order of magnitude. Furthermore, by 

increasing the ionicity of a given IL, through the addition of an IS, the efficiency of the IL can 

be increase and a better separation for azeotropic mixtures can be obtained. 

The knowledge gained in this study opens the door for the production of powerful 

tailor-made solvents, since a wide range of combinations of ionic liquids and inorganic salts 

is available at low cost. 
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7. Supplementary Information 

7.1. Supporting tables 

Table S1 | Composition of the experimental tie-lines, ethanol distribution coefficient (β2) and selectivity (S) 

for the ternary system n-heptane + ethanol + IL-IS at 298.15 K. 

n-heptane-rich phase IL-IS-rich phase 
β2 S 

w1
I w2

I w3
I w1

II w2
II w3

II 

n-heptane (1) + ethanol (2) + SO4-SCN17 (3) 

0.994 0.004 0.002 0.002 0.113 0.885   
0.989 0.009 0.002 0.004 0.175 0.821 19.36 4512.16 
0.984 0.014 0.002 0.009 0.242 0.749 17.26 1851.86 
0.974 0.024 0.002 0.014 0.282 0.704 11.83 844.65 
0.959 0.039 0.003 0.024 0.347 0.629 8.97 359.85 
0.944 0.053 0.003 0.035 0.393 0.572 7.36 199.54 
0.913 0.083 0.004 0.057 0.452 0.491 5.47 87.91 
0.898 0.097 0.005 0.095 0.507 0.398 5.20 49.05 
0.849 0.143 0.008 0.176 0.543 0.281 3.78 18.20 

n-heptane (1) + ethanol (2) + SO4-SCN33 (3) 

0.995 0.004 0.001 0.000 0.040 0.960   
0.989 0.010 0.001 0.001 0.089 0.910 9.54 15195.70 
0.984 0.014 0.002 0.002 0.138 0.860 9.66 5089.81 
0.969 0.029 0.002 0.003 0.176 0.821 6.05 1715.34 
0.959 0.039 0.002 0.008 0.251 0.741 6.43 740.32 
0.949 0.049 0.002 0.021 0.349 0.630 7.14 330.05 
0.929 0.068 0.003 0.032 0.404 0.564 5.89 170.84 
0.908 0.088 0.004 0.053 0.466 0.481 5.28 90.71 
0.868 0.127 0.005 0.081 0.513 0.406 4.04 43.29 
0.847 0.147 0.006 0.117 0.545 0.338 3.72 26.97 
0.827 0.166 0.007 0.199 0.562 0.239 3.39 14.08 

n-heptane (1) + ethanol (2) + SO4-SCN45 (3) 

0.994 0.004 0.002 0.001 0.110 0.889   
0.989 0.009 0.002 0.003 0.174 0.823 20.10 7709.99 
0.979 0.018 0.003 0.005 0.228 0.767 12.33 2347.45 
0.969 0.028 0.003 0.008 0.278 0.714 9.79 1107.56 
0.958 0.038 0.004 0.013 0.325 0.662 8.50 622.00 
0.943 0.053 0.004 0.021 0.386 0.593 7.28 319.02 
0.928 0.068 0.004 0.029 0.422 0.549 6.24 202.50 
0.913 0.082 0.005 0.043 0.475 0.482 5.78 122.39 
0.903 0.092 0.005 0.063 0.523 0.414 5.68 81.07 
0.856 0.136 0.008 0.104 0.572 0.324 4.22 34.79 

 

Table S2 | Adjustable parameters in equations 1 and 2, for the different IL-IS mixtures used. 

Parameters SO4-SCN17 SO4-SCN33 SO4-SCN45 

A 1.4078 1.3829 1.3828 
B 0.1753 0.2037 0.3348 
C -0.2155 -0.2111 -0.6311 
D 0.0179 0.0099 0.2961 
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E 1.1459 1.1602 1.3118 
F 0.3694 0.3726 -0.2236 
G -0.1072 -0.0724 0.6423 
H 0.0091 -0.0674 -0.2901 
I 1.4692 1.4593 1.3577 
J 0.1954 0.1850 0.7056 
K -0.1585 -0.0916 -0.9637 
L -0.0209 -0.0612 0.3981 
r2 1.0000 1.0000 1.0000 
M 99.5381 98.3916 97.9521 
N -0.2964 -0.3107 -0.3420 
O 3.4670×10-6 3.6275×10-6 2.6354×10-6 
r2 0.9988 0.9995 0.9990 

 

7.2. Supporting figures 

wEthanol Heptane-rich Phase 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

β 2

0

5

10

15

20

25

30

SO4-SCN17
SO4-SCN33
SO4-SCN45
[C

2
MIM][C

2
SO

4
]

[C
1
MIM][C

1
SO

4
]

[C
4
MIM][C

1
SO

4
]

[C
2
MIM][NTf

2
]

[C
3
MIM][NTf

2
]

[C
4
MIM][NTf

2
]

[C
6
MIM][NTf

2
]

[C
2
-3-C

1
Py][NTf

2
]

[C
3
-3-C

1
Py][NTf

2
]

[C
4
-3-C

1
Pyr][OTf]

[C
4
-3-C

1
Pyr][DCA]

[BTMA][NTf
2
]

[TBMA][NTf
2
]

[C6MIM][PF
6
]

[C8MIM][PF
6
]

[C1MIM][DMP]

[C2MIM][DEP]

[C4MIM][DBP]

 
Figure S1 | Comparison of the distribution coefficient values, β2, between the systems studied in this work and 

those found in literature,2, 8, 10-12, 14, 19 as a function of the ethanol mass fraction in n-heptane-rich phase at 298.15 

K and 0.1 MPa. 
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Figure S2 | Comparison of the selectivity, S, between the systems studied in this work and those found in 

literature,2, 8, 10-12, 14, 19 as a function of the ethanol mass fraction in n-heptane-rich phase at 298.15 K and 0.1 

MPa. 
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1. Abstract 

In this work, the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, [C2MIM][Ac], was 

combined with three inorganic salts (ISs), namely ammonium acetate, [NH4][Ac], ammonium 

chloride, [NH4]Cl, and ammonium thiocyanate, [NH4][SCN], and used as extraction solvent 

for the separation of the azeotropic mixture of n-heptane + ethanol. The liquid-liquid 

equilibria (LLE) of the ternary mixtures of n-heptane + ethanol + IL and (IL-IS) was 

experimentally measured at 298.15 K and 0.1 MPa. The feasibility of the used extraction 

solvents was assessed by calculation of the distribution coefficient and the selectivity. The 

results showed that the extraction solvents studied are suitable candidates for the 

separation of ethanol from n-heptane. Additionally, we show that the solubilisation of ISs in 

the IL can greatly increase the selectivity of the latter, while no significant impact on the 

distribution coefficient is verified. Moreover, the distribution coefficient values obtained for 

the [C2MIM][Ac] and its mixtures with ISs are the highest among the neat ILs tested so far 

for the azeotropic mixture under study. 

2. Introduction 

In the last decades, the volume of oxygenated additives used in gasolines has been 

increasing from year to year. Lower alkyl chain alcohols, such as methanol, ethanol or 

butanol, and ethers such as, methyl-tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) 

and ter-amyl ethyl ether (TAEE) are typical examples of oxygenated additives. These 

compounds are known for their higher octane number, which allows a boost in combustibility 

and the reduction of CO emissions, when added to gasolines. Due to the discontinuation of 

lead-based additives, the production of oxygenated compounds has gradually become 

higher, and along with it a growing number of processes in which alkanes and alcohols co-

exist have emerged.1-3 

The presence of an azeotropic point in mixtures of n-hexane or n-heptane + ethanol 

makes it impossible to separate these mixtures by a simple distillation, hence other 

techniques must be used. In literature, the separation of azeotropic mixtures of alkanes + 
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ethanol has already been studied by several groups, using liquid-liquid extraction and ionic 

liquids (ILs) as extraction solvents. Letcher et al.4 were the first researchers to test an IL as 

extraction solvent for the separation of mixtures of alkanes + alcohols. Using 1-methyl-3-

octylimidazolium chloride, Letcher and co-workers separated alkanes such as n-heptane, 

dodecane and hexadecane from alcohols such as methanol or ethanol. The highest 

selectivity values were obtained for mixtures of hexadecane + methanol. 

Pereiro et al.5, 6 started testing hexafluorophosphate-based ILs in the separation of n-

hexane or n-heptane + ethanol mixtures. The ILs selected were 1-hexyl-3-

methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and 1-octyl-3-methylimidazolium 

hexafluorophosphate ([C8MIM][PF6]). Both proved to break the azeotropic point of the tested 

mixtures. In the case of n-heptane + ethanol mixtures, [C6MIM][PF6] has shown to provide 

very high selectivity values. However, both the low distribution coefficients and its solutropic 

behaviour make the use of this IL inadvisable. 

Afterwards, Pereiro et al. focused on alkyl sulfate-based ILs to break the azeotrope 

mixtures of n-hexane or n-heptane + ethanol. The ILs tested included the 1-butyl-3-

methylimidazolium methyl sulfate [C4MIM][C1SO4],7, 8 1,3-dimethylimidazolium methyl sulfate 

([C1MIM][C1SO4])9, 10 and 1-ethyl-3-methylimidazolium ethyl sulfate ([C2MIM][C2SO4]).11 All of 

the ILs used proved to be suitable candidates for the extraction of ethanol, particularly in 

mixtures of n-heptane + ethanol, where high efficiencies were obtained. In addition, it was 

shown that a shorter alkyl chain on the imidazolium cation led to better n-heptane/ethanol 

efficiencies. 

More recently, several ILs based on the bis(trifluoromethylsulfonyl)imide anion have 

been used in the separation of n-hexane or n-heptane + ethanol azeotropic mixtures.12-16 

Seoane et al.14 studied the effect of increasing the alkyl chain of the imidazolium cation, 

using four different ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([C2MIM][NTf2]), 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([C3MIM][NTf2]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([C4MIM][NTf2]) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([C6MIM][NTf2]); González et al.13 tested two pyridinium-based ILs, 1-ethyl-3-

methylpyridinium bis(trifluoromethylsulfonyl)imide ([C2-3-C1Py][NTf2]) and 1-propyl-3-
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methylpyridinium bis(trifluoromethylsulfonyl)imide ([C3-3-C1Py][NTf2]); and Aranda et al.12 

used two tetraalkyl ammoniums, butyltrimethylammonium bis(trifluoromethylsulfonyl)imide 

([BTMA][NTf2]) and tributylmethylammonium bis(trifluoromethylsulfonyl)imide 

([TBMA][NTf2]). The results obtained from these three studies, showed similar ranges of the 

distribution coefficient and selectivity values, with the imidazolium-based ILs showing 

slightly higher values and the ammonium-based ILs the lowest.  

On another related work, Corderí and González showed that pyridinium-based ILs 

could yield better results than imidazolium-based ILs when combined with the 

trifluoromethanesulfonate anion ([OTf]-) instead of the [NTf2]- anion in the separation of n-

hexane + ethanol azeotropic mixtures.15 The same authors, used three different ILs all with 

the same cation, 1-hexyl-3-methylimidazolium, and observed that the extraction of ethanol 

in n-hexane + ethanol mixtures was more effective when the dicyanamide anion ([DCA]-) 

was used, followed by the [OTf]- anion and lastly the [NTf2]- anion.16 In addition, these 

authors also observed high distribution coefficient and selectivity values in the separation of 

n-hexane or n-heptane + ethanol mixtures, using the 1-butyl-1-methylpyrrolidinium cation 

([C4-3-C1pyr]+) combined with [DCA]- or [OTf]- anions.17 

Cai et al.18, 19 used phosphate-based ILs in the separation of n-hexane or n-heptane + 

ethanol azeotropic mixtures. The results obtained showed that smaller alkyl chains in both 

the cation and / or the anion are preferential, with the IL 1,3-dimethylimidazolium 

dimethylphosphate ([C1MIM][DMP]) showing higher efficiency in both n-hexane and n-

heptane systems than the other two ILs tested, 1-ethyl-3-methylimidazolium 

diethylphosphate ([C2MIM][DEP]) and 1-butyl-3-methylimidazolium dibutylphosphate 

([C4MIM][DBP]). 

Moreover, the use of deep eutectic solvents, based on combinations of cholinium 

chloride with different organic acids or alcohols, has also been attempted by some of us20 

and Rodriguez et al.21 These compounds proved to be highly efficient extraction solvents for 

the separation of n-heptane + ethanol mixtures, due to their ability to form H-bonds with 

ethanol. However, despite the higher selectivity values presented by these compounds, their 

distribution coefficients fall in the same range of those of neat ILs. 

In this work, we explore the use of combinations of one IL and several ISs as 
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extraction solvents for azeotropic mixtures. It is our hope to combine the advantages of the 

ILs, easy operation / liquid state and non-volatility with the advantages of ISs, namely their 

high separation ability. The use of mixtures of IL-IS as separating agents for azeotropic 

mixtures has already been attempted by Lei et al.22 in the separation of water + ethanol 

mixtures by extractive distillation, where it was shown that the addition of potassium acetate 

to the IL effectively increased the volatility of ethanol to water, allowing a better separation 

of the azeotropic mixture. Furthermore, in our previous work (described in the previous 

chapter of this thesis),23 we also showed that by combination the IL 1-ethyl-3-

methylimidazolium ethyl sulfate ([C2MIM][C2SO4]) with different amounts of [NH4][SCN] 

(SO4-SCN17, SO4-SCN33 and SO4-SCN45), the selectivity values could be increased due 

to the higher ionicity of the mixtures, leading to a higher efficiency in the extraction of 

ethanol from n-heptane + ethanol azeotropic mixtures. 

Therefore, and as a continuation of our previous work, in this study we used mixtures 

of the IL 1-ethyl-3-methylimidazolium acetate ([C2MIM][Ac]) with the same concentration of 

three different inorganic salts (ISs), ammonium acetate ([NH4][Ac]), ammonium chloride 

([NH4]Cl) and ammonium thiocyanate ([NH4][SCN]) as extraction solvents for n-heptane + 

ethanol azeotropic mixtures. The liquid-liquid equilibria for the ternary systems n-heptane + 

ethanol + IL or IL-IS was measured at 298.15 K and 0.1 MPa and the distribution coefficient 

and selectivity parameters were determined in order to assess the feasibility of the IL and 

IL-IS mixtures as extraction solvents. 

 

3. Experimental Section 

3.1. Materials 

N-heptane and ethanol were supplied by Riedel-de-Haën with 99 % purity and by 

Scharlau with 99.9 % purity, respectively. The inorganic salts, ammonium acetate 

([NH4][Ac]), ammonium chloride ([NH4]Cl) and ammonium thiocyanate ([NH4][SCN]), were all 

provided by Sigma-Aldrich with a purity content superior to 98.0 %, 99.5 % and 99.0 %, 

respectively and were used as received. 
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The ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2MIM][Ac]) was purchased from 

Iolitec with a mass fraction purity of ≥ 95 %. 1H NMR was used for purity check and the 

water content was measured by Karl Fischer coulometric titration (Metrohm 831 KF 

Coulometer). The ionic liquid was used as received and the final water mass fraction ranged 

between 5000 − 8000 ppm of water. 

 

3.2. Mixtures of ionic liquid with inorganic salts 

Three different inorganic salts, [NH4][Ac], [NH4]Cl and [NH4][SCN] were combined with 

the same ionic liquid [C2MIM][Ac]. All of the IL-IS mixtures were prepared at the same IS 

concentration, 0.33 mole fraction, i.e., 1 mol of IS per 2 mol of IL. This concentration was 

chosen because it allows a direct comparison of the effects caused by the different ISs, but 

mainly due to the higher ionicity of the system at this mole fraction. Table 1, presents the 

ionicity of the IL-IS mixtures tested, calculated by the Walden Plot method. In this method, 

the determination of the ionicity is made by considering the deviation of the solution / 

compound from the ideal Walden line (ideal electrolyte), meaning that a smaller deviation 

leads to a higher ionicity. 

 

Table 1 | Ionicity (∆W) calculated from the Walden Plot deviations at 298.15 K for the neat IL and the 

mixtures of IL + IS tested in this work.  

Solvent ∆W a 

[C2MIM][Ac] 0.1238 
0.67 [C2MIM][Ac] + 0.33 [NH4][Ac] (AC-33AC) 0.0881 
0.67 [C2MIM][Ac] + 0.33 [NH4]Cl (AC-33CL) 0.0078 
0.67 [C2MIM][Ac] + 0.33 [NH4][SCN] (AC-33SCN) -0.0098 

 a Ionicity data were taken from literature.24  

 

3.3. Liquid-liquid equilibria measurements 

The ternary liquid-liquid equilibria (LLE) experiments were performed at 298.15 K in a 

glass cell thermostatically regulated by a water jacket connected to an external water bath 
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controlled to ± 0.01 K. The temperature in the cell was measured with a platinum resistance 

thermometer coupled to a Keithley 199 System DMM/Scanner that was calibrated with 

high–accuracy mercury thermometers (0.01 K). The mixing was assured by a magnetic 

stirrer. 

The binodal curve of the ternary system was determined by preparing several binary 

mixtures of IL or (IL+IS) + n-heptane in the immiscible region and then ethanol was added 

until the ternary mixture became miscible. Afterwards, the density and the refractive index of 

those ternary mixtures were determined in duplicate. The measurements of density and 

refractive index were both performed at 303.15 K and atmospheric pressure, in order to 

assure that no phase splitting occurred during the measurements. The density 

measurements were performed using an automated Anton Paar Densimiter DMA 5000, 

while the refractive index measurements were performed using an automated Anton Paar 

Refractometer Abbemat 500, where the relative standard deviation of the measurements 

was 0.007 % and 0.002 % for the density and the refractive index, respectively. 

The determination of the tie-lines was performed by preparing ternary mixtures of 

known composition that were vigorously stirred for at least 1 h and left to settle for at least 

12 h in a thermostatic bath at 298.15 K. Then, samples from both phases were taken with a 

syringe and their densities and refractive indexes were determined in duplicate. The 

composition of both phases in equilibrium was calculated by MATLAB, using the fitting of 

the densities and of the refractive indexes versus composition along the binodal curve by 

the following equations: 
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where, ρ and nD correspond to the density and refractive index, respectively, w1, w2 

and w3 correspond to the mass fraction compositions of heptane, ethanol and IL or IL-IS, 

respectively, and A to X are adjustable parameters which are given in Table S2 in the 

supporting information (SI). The root-mean-square deviations obtained for the fittings were 

always lower than 0.02 % and 0.03 % for the refractive indexes and the density, respectively 

in all systems studied. In order to determine the uncertainty of the composition of the tie 

lines, duplicate samples with the same initial composition were prepared and their 

respective tie-lines were calculated, showing a standard deviation lower than 0.003 in the 

mass fraction. 

 

4. Results and discussion 

4.1. Ternary diagrams 

The ternary diagrams for the systems n-heptane (1) + ethanol (2) + IL or IL-IS (3) 

obtained at 298.15 K and 0.1 MPa are presented in Figures 1-4 in mass fraction and 

Figures S1-S4 in the SI in mole fraction. From the inspection of these Figures, it can be 

seen that in all systems studied either using the neat IL or the IL-IS mixtures, large 

immiscibility regions were obtained independently of the extraction solvent used, where the 

n-heptane is always immiscible in the IL or IL-IS mixtures and the ethanol is always miscible 

in the whole composition range in both n-heptane and extraction solvent. In addition, Figure 

S5 in the SI depicts a comparison between the binodal curves of all studied extraction 

solvents in this work, where it is shown that the addition of IS to the IL increases the 

immiscibility region. This behaviour is consistent with that found in our previous work where 

different amounts of the same IS ([NH4][SCN]) were added to the IL [C2MIM][C2SO4], and it 

was observed that the immiscibility region increased as the [NH4][SCN] content increased 

as well.23 In this study, the IS [NH4][Ac] showed the smallest increase of the immiscibility 

region, possibly due to the effect of the common ion, whereas the two other ISs, [NH4]Cl and 

[NH4][SCN], showed similar increments on the immiscibility region. 

Moreover, Figures 1-4 also show the tie-lines calculated for each extraction solvent, 
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where it can be seen that positive slopes were obtained for all systems. This behaviour 

indicates that ethanol is more soluble than n-heptane in the extraction solvents studied, 

meaning that the extraction of ethanol from n-heptane is always favourable. Indeed, in Table 

S1 in the SI, the compositions for the tie-lines are presented and it is clear that in the n-

heptane-rich phase of every system studied, the compositions of ethanol and IL or IL-IS are 

always very low, in some cases they fall below the error of our determination method and 

consequently the distribution coefficient and selectivity values cannot be calculated. 
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Figure 1 | Ternary diagram for the system n-heptane (1) + ethanol (2) + [C2MIM][Ac] (3) at 298.15 K and 

0.1 MPa. The grey dots represent the binodal curve, the grey squares the composition of the initial mixture, the 

black dots the composition of the co-exiting phases and the lines represent the tie-lines. Compositions are given 

in mass fraction. 

 



Combining one IL with different ISs for the separation of ethanol from n-heptane 

195 

 

AC-33AC0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethanol

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Heptane

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

Figure 2 | Ternary diagram for the system n-heptane (1) + ethanol (2) + (0.67[C2MIM][Ac] + 

0.33[NH4][Ac]) (3) at 298.15 K and 0.1 MPa. The blue dots represent the binodal curve, the blue squares the 

composition of the initial mixture, the black dots the composition of the co-exiting phases and the lines represent 

the tie-lines. Compositions are given in mass fraction. 
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Figure 3 | Ternary diagram for the system n-heptane (1) + ethanol (2) + (0.67[C2MIM][Ac] + 0.33[NH4]Cl) 

(3) at 298.15 K and 0.1 MPa. The green dots represent the binodal curve, the green squares the composition of 

the initial mixture, the black dots the composition of the co-exiting phases and the lines represent the tie-lines. 

Compositions are given in mass fraction. 
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Figure 4 | Ternary diagram for the system n-heptane (1) + ethanol (2) + (0.67[C2MIM][Ac] + 

0.33[NH4][SCN]) (3) at 298.15 K and 0.1 MPa. The orange dots represent the binodal curve, the orange squares 

the composition of the initial mixture, the black dots the composition of the co-exiting phases and the lines 

represent the tie-lines. Compositions are given in mass fraction. 

 

4.2. Distribution coefficient and selectivity 

In order to evaluate the feasibility of the neat IL and the mixtures of IL-IS in the 

separation of n-heptane + ethanol mixtures, two widely used parameters were calculated, 

the distribution coefficient and the selectivity. Since we are evaluating the ability of the 

extraction solvent (IL or IL-IS) to extract ethanol from n-heptane, the distribution coefficient, 

β, was calculated in respect to ethanol as shown in the following equation: 

 

I
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w
β
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where w2
I and w2

II represent the mass fraction of ethanol in the n-heptane rich phase 
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(upper phase) and in the IL or IL-IS rich phase (lower phase), respectively. 

The distribution coefficient represents the ratio between the amount of ethanol that is 

extracted to the IL or IL-IS and the amount that remains in the n-heptane phase, thus 

accounting for the solute-carrying capacity of the extraction solvent. Figure 5 depicts the 

distribution coefficients obtained for all systems studied as a function of the mass fraction of 

ethanol in the n-heptane rich phase. These values are also presented in Table S1 in the SI. 

As expected, the distribution coefficient increases as the concentration of ethanol decreases 

in the n-heptane rich phase. In addition, the values obtained are very similar for all the 

systems, meaning that the addition of the IS or the increase in the ionicity did not promote a 

significant effect on this parameter. Nevertheless, the distribution coefficients presented are 

higher than those obtained using other neat ILs or other IL-IS mixtures as shown in Figure 

S6 in the SI, consistently showing values superior to 10 for w2
I < 0.05. The high distribution 

coefficients obtained were somewhat expected due to the presence of the acetate anion on 

the IL, which will certainly establishes stronger H-bond interactions with the ethanol, owing 

to its carboxylate group -COO-. A higher distribution coefficient allows the use of lower 

amounts of extraction solvent and usually leads to a lower solvent flow rate, a smaller-

diameter column and lower operating costs. 
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Figure 5 | Distribution coefficient values, β2, for the ternary systems n-heptane (1) + ethanol (2) + IL or IL-

IS (3), as a function of ethanol mass fraction in the n-heptane-rich phase at 298.15 K and 0.1 MPa. 



Chapter 5 

198 

 

The selectivity, S, is the parameter that evaluates the efficiency of the extraction 

solvent, indicating the ease of extraction of the solute, ethanol, from its diluent, n-heptane, 

and was determined by the following equation: 

 

2
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1 β
w

w
S

II

I

×=  (5) 

 

where, β2 is the distribution coefficient of ethanol and w1
I and w1

II are the mass 

fractions of n-heptane in the n-heptane rich phase (upper phase) and IL or IL-IS rich phase 

(lower phase), respectively.  

Figure 6 and Table S1 in the SI present the selectivity values obtained for all the 

systems studied. In agreement with the β2 behaviour, the selectivity also increases as the 

concentration of ethanol decreases in the n-heptane rich phase. As shown in Figure 6, the 

addition of IS to the IL positively affects this parameter and a relation with the ionicity of the 

system is possible to establish. It can be seen that the selectivity increases according to the 

following trend, [C2MIM][Ac] < AC-33AC < AC-33CL < AC-33SCN, which follows the same 

order as the ionicity of these extraction solvents, presented in Table 1. An increase in 

ionicity means that more ions become more mobile in the media. As a consequence, these 

ions create stronger interactions with ethanol, leading to an increase in selectivity. In our 

previous work,23 we had already shown that by increasing the ionicity of the IL, the 

selectivity of the extraction could also be increased, thus indicating that the addition of an IS 

to an IL could improve the extraction of ethanol from n-heptane + ethanol azeotropic 

mixtures. A high selectivity means that we have a decrease of the amount of inert, n-

heptane in the studied systems, in the extract which will be the IL-IS rich phase to where the 

ethanol is extracted. As shown in the ternary diagrams, the addition of an IS increases the 

immiscibility region of the system, making the n-heptane more insoluble in the IL-IS mixture 

than in the neat IL, consequently leading to a reduction of its amount in the IL-IS rich phase. 

In addition, a higher selectivity also allows for fewer stages in the process of extraction. 
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Figure 6 | Selectivity, S, for the ternary systems n-heptane (1) + ethanol (2) + IL or IL-IS (3), as a function 

of ethanol mass fraction in the n-heptane-rich phase at 298.15 K and 0.1 MPa. The inset figure represents an 

enlargement of the data plot, whereas the lines are just for eyes’ guidance. 

 

4.3. Comparison with literature 

In this section, the β and the S values obtained in this work were compared with those 

of other neat ILs and IL-IS mixtures found in literature for the same azeotropic mixture. 

The β values found in literature are expressed in mole fractions, hence they were 

converted to mass fraction because of the large differences in the molecular weights of the 

ILs, which resulted in lower values of β. In Figure 7 the comparison between the β values of 

this work and those found in literature is establish for approximately the same concentration 

of ethanol, while Figure S6 in the SI depicts the same comparison in the whole ethanol 

concentration range. 

As mentioned in the previous section, the presence of ions that can establish H-bonds 

with ethanol is crucial to increase the β values. Since ethanol is a compound of small 

molecular weight and with an -OH group, IL or IL-IS mixtures with smaller ions and the 

capacity to establish H-bonds will be preferential to the extraction of ethanol. In this way, it 

can be seen from Figure 7 that either the neat [C2MIM][Ac] or its mixtures with ISs are better 
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suited to extract ethanol than the other neat ILs found in literature. The increase in the 

distribution coefficient follows the trend acetated-based ILs > dicyanamide-based ILs > 

sulfate-based ILs > phosphate-based ILs > [OTf]- based ILs > [NTf2]- based ILs. In addition, 

it can also be seen that the anion of the IL plays a much more important role in the β values 

than the cation. This behaviour was also observed by Corderí et al.16 where several ILs with 

the same cation combined with different anions where tested; in the works where [NTf2]- 

based ILs with different cations were tested 12-14 yielding similar β values (2-4); and in the 

works with phosphate-based ILs,5, 18 where [C8MIM][PF6], that presents a longer alkyl chain 

than [C1MIM][DMP], [C2MIM][DEP] and [C4MIM][DBP], has a higher distribution coefficient 

than [C4MIM][DBP] but smaller than the other two ILs. 
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Figure 7 | Comparison between the distribution coefficient values, β2, of the systems studied in this work, 

other IL-IS mixtures23 and neat ILs found in literature.5, 7, 9, 11-14, 17, 18 The comparison was done at an ethanol 

mass fraction between 0.02 - 0.03 wt% in the n-heptane-rich phase at 298.15 K and 0.1 MPa. 
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In Figures 8 and S7 (in the SI), the comparison between the S values of this work and 

those found in literature is established for approximately the same concentration of ethanol 

and in the whole ethanol concentration range, respectively. It can be seen from panel a) in 

Figure 8, that the ILs and IL-IS mixtures based on sulfate anions are the most efficient 

extraction solvents for ethanol in n-heptane + ethanol azeotropic mixtures. It was our 

expectation that the selectivity values found for the [C2MIM][Ac] and its mixtures with ISs 

would be higher than those obtained since we have an IL with a short alkyl chain in the 

cation and an anion capable of establishing strong H-bonds with ethanol. The reason for the 

lower selectivity values of the [C2MIM][Ac] and its mixtures might be due to its great solvent 

properties. As shown in other works, [C2MIM][Ac] as proven to be capable of dissolving a 

wide range of compounds, raging form different ISs,25 to lignocellulosic materials,26-29 

proteins and enzymes30, 31 and also of having a high performance in capturing CO2.32-34 

As mentioned in the previous section, the immiscibility of the IL in n-heptane may play 

a crucial role in the determination of the selectivity parameter. Hence, ILs that present small 

ability to dissolve n-heptane and that, at the same time, have low solubility in n-heptane can 

produce higher selectivity values. From panel b) in Figure 8, it is possible to see that as the 

alkyl chain of the IL increases (either in the cation or in the anion), the selectivity decreases. 

Nevertheless, the results show that with the addition of an IS, the selectivity parameter 

can be greatly increased reaching a value of more than 3 times higher when [NH4][SCN] is 

added to the IL. Indeed, the AC-33SCN displayed selectivity values comparable to some of 

the better neat ILs, such as [C2MIM][C2SO4], [C4-3-C1Pyr][DCA] and [C1MIM][DMP], and 

higher than the remaining neat ILs, including [C4MIM][C1SO4], [C4-3-C1Pyr][OTf], some 

phosphate based ILs and all the [NTf2]- based ILs. 
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Figure 8 | Comparison between the selectivity, S, of the systems studied in this work, other IL-IS 

mixtures23 and neat ILs found in literature.5, 7, 9, 11-14, 17, 18 The comparison was done at an ethanol mass fraction 

between 0.02 - 0.03 wt% in the n-heptane-rich phase at 298.15 K and 0.1 MPa. Panel b) represents an 

enlargement in the scale of panel a). 
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5. Conclusions 

In this work, the use of mixtures of an IL with different ISs was assessed for the 

separation of n-heptane + ethanol azeotropic mixtures. Three different ISs were tested at 

identical concentrations and the LLE for the ternary systems n-heptane + ethanol + IL or IL-

IS was measured at 298.15 K and atmospheric pressure. 

The feasibility of the IL and IL-IS mixtures was determined by the calculation of both 

the distribution coefficient and selectivity values. The results obtained show that the addition 

of the IS to the IL leads to an increase of the immiscibility region of the systems, which is 

translated as an increase in the selectivity of the extraction solvent. The increase in the 

selectivity observed followed the trend AC-33SCN > AC-33CL > AC-33AC > [C2MIM][Ac], 

which could be correlated with the increase in the ionicity of the IL. The distribution 

coefficient values were not significantly affected by the addition of the IS; nevertheless, the 

data obtained showed that both ILs and IL-IS mixtures based on acetate anions lead to 

higher distribution coefficients than all the other neat ILs tested so far. However, the 

selectivity values obtained are lower than expected.  

Thus, the addition of ISs to the ILs could provide a boost in the feasibility of the ILs as 

extraction solvents for the separation of azeotropic mixtures in LLE systems that can be 

obtained at a low cost. Therefore, the knowledge gained in this study may open doors for 

the production of more promising extraction solvents, due to the wide range of combinations 

that can be established between ILs and ISs. 
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7. Supplementary Information 

7.1. Supporting tables 

Table S1 | Composition of the experimental tie-lines, ethanol distribution coefficient (β2) and selectivity (S) 

for the ternary system n-heptane + ethanol + IL or IL-IS mixture at 298.15 K and 0.1 MPa. 

n-heptane-rich phase IL (or IL-IS)-rich phase 
β2 S 

w1
I w2

I w3
I w1

II w2
II w3

II 

n-heptane (1) + ethanol (2) + [C2MIM][Ac] (3) 

0.999 0.001 0.000 0.009 0.096 0.895   
0.999 0.001 0.000 0.018 0.191 0.791   
0.999 0.001 0.000 0.030 0.269 0.701   
0.998 0.001 0.000 0.049 0.347 0.604   
0.997 0.002 0.001 0.070 0.416 0.514   
0.995 0.003 0.002 0.085 0.451 0.464 150.33 1759.78 
0.992 0.006 0.002 0.108 0.489 0.403 81.50 748.59 
0.966 0.032 0.003 0.167 0.527 0.306 16.47 95.26 
0.916 0.078 0.007 0.270 0.526 0.204 6.74 22.88 

n-heptane (1) + ethanol (2) + AC-33AC (3) 

1.000 0.000 0.000 0.005 0.120 0.875   
0.999 0.001 0.000 0.013 0.211 0.776   
0.999 0.001 0.000 0.018 0.276 0.706   
0.998 0.001 0.001 0.036 0.352 0.612   
0.995 0.003 0.002 0.049 0.407 0.544 135.67 2754.86 
0.991 0.008 0.001 0.071 0.457 0.472 57.13 797.34 
0.981 0.017 0.002 0.104 0.498 0.398 29.29 276.32 
0.956 0.041 0.003 0.160 0.544 0.296 13.27 79.28 

n-heptane (1) + ethanol (2) + AC-33CL (3) 

1.000 0.000 0.000 0.002 0.078 0.920   
0.999 0.000 0.001 0.004 0.143 0.853   
0.999 0.000 0.001 0.005 0.214 0.781   
0.999 0.001 0.000 0.012 0.276 0.712   
0.997 0.002 0.001 0.022 0.363 0.615   
0.996 0.003 0.001 0.035 0.419 0.546 139.67 3974.51 
0.992 0.007 0.001 0.052 0.462 0.486 66.00 1259.08 
0.984 0.013 0.003 0.069 0.504 0.426 38.85 553.98 
0.963 0.030 0.007 0.099 0.564 0.337 18.80 182.87 
0.926 0.067 0.007 0.181 0.576 0.243 8.60 43.98 

n-heptane (1) + ethanol (2) + AC-33SCN (3) 

1.000 0.000 0.000 0.001 0.068 0.931   
0.999 0.000 0.001 0.002 0.150 0.848   
0.999 0.000 0.001 0.006 0.179 0.815   
0.997 0.002 0.001 0.008 0.209 0.783   
0.995 0.004 0.001 0.013 0.289 0.698 72.25 5529.90 
0.993 0.005 0.002 0.020 0.351 0.629 70.20 3485.43 
0.989 0.008 0.003 0.034 0.413 0.554 51.63 1547.19 
0.968 0.026 0.006 0.054 0.467 0.478 18.00 322.67 
0.957 0.038 0.005 0.084 0.520 0.396 13.68 155.90 
0.930 0.064 0.006 0.129 0.559 0.312 8.73 62.97 
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Table S2 | Adjustable parameters in equations 1 and 2, for the different solvents used in this work. 

Parameters [C2MIM][Ac] AC-33AC AC-33CL AC-33SCN 

A 0.67780 0.64858 0.65633 0.55005 
B -0.32095 0.28128 0.04087 0.55673 
C 0.46530 -0.46467 0.01921 -0.94574 
D -0.14662 0.21040 -0.04101 0.51438 
E 0.90884 0.72125 0.70271 0.94991 
F -0.09358 -0.07169 0.18452 -0.68974 
G -0.34012 0.30049 -0.08722 0.82553 
H 0.20068 -0.08659 -0.01900 -0.18070 
I 1.08803 0.95457 0.99417 0.95094 
J -0.42872 0.53033 0.26565 0.55177 
K 0.61952 -0.70649 -0.17645 -0.86418 
L -0.20906 0.30020 0.03040 0.46365 
r2 1.0000 1.0000 1.0000 1.0000 
M 1.37691 1.33752 1.38367 1.34106 
N 0.21141 0.46716 -0.09056 0.27694 
O -0.33846 -0.94697 0.22399 -0.45943 
P 0.13312 0.52517 -0.13428 0.22423 
Q 1.27587 1.49145 1.30362 1.38040 
R -0.00837 -0.68609 0.23570 -0.23123 
S 0.32745 0.87372 -0.26866 0.42643 
T -0.23097 -0.16862 0.04363 -0.18324 
U 1.47420 1.36134 1.49779 1.45856 
V 0.16394 0.65525 -0.13510 0.23751 
W -0.23724 -1.13090 0.29738 -0.37453 
X 0.08233 0.59075 -0.15937 0.18470 
r2 1.0000 1.0000 1.0000 1.0000 
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7.2. Supporting figures 
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Figure S1 | Ternary diagram for the system n-heptane (1) + ethanol (2) + [C2MIM][Ac] (3) at 298.15 K and 

0.1 MPa. The gray dots represent the binodal curve, the black dots the composition of the co-exiting phases and 

lines the tie-lines, the compositions are given in mole fraction. 
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Figure S2 | Ternary diagram for the system n-heptane (1) + ethanol (2) + (0.67[C2MIM][Ac] + 

0.33[NH4][Ac]) (3) at 298.15 K and 0.1 MPa. The blue dots represent the binodal curve, the black dots the 

composition of the co-exiting phases and lines the tie-lines, the compositions are given in mole fraction. 
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Figure S3 | Ternary diagram for the system n-heptane (1) + ethanol (2) + (0.67[C2MIM][Ac] + 0.33[NH4]Cl) 

(3) at 298.15 K and 0.1 MPa. The green dots represent the binodal curve, the black dots the composition of the 

co-exiting phases and lines the tie-lines, the compositions are given in mole fraction. 
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Figure S4 | Ternary diagram for the system n-heptane (1) + ethanol (2) + (0.67[C2MIM][Ac] + 

0.33[NH4][SCN]) (3) at 298.15 K and 0.1 MPa. The orange dots represent the binodal curve, the black dots the 

composition of the co-exiting phases and lines the tie-lines, the compositions are given in mole fraction. 
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Figure S5 | Comparison between the binodal curve of the different systems studied in this work. The dots 

represent the experimental points obtained for each system while the line are just a guide to the eye. 

 

 

Figure S6 | Comparison between the distribution coefficient values, β2, of the systems studied in this 

work, other IL-IS mixtures23 and neat ILs found in literature.5, 7, 9, 11-14, 17, 18 The comparison was done at 298.15 K 

and 0.1 MPa. 
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Figure S7 | Comparison between the selectivity values, S, of the systems studied in this work, other IL-IS 

mixtures23 and neat ILs found in literature.5, 7, 9, 11-14, 17, 18 The comparison was done at 298.15 K and 0.1 MPa. 
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1. Abstract 

In this work, deep eutectic solvents (DES) are tested as extraction solvents in the 

liquid-liquid separation of azeotropic mixtures. For this study three different DES, all based 

on choline chloride, were used as solvents for the liquid-liquid separation of the azeotropic 

mixture of n-heptane + ethanol at 298.15 K. The feasibility of DES as extraction solvents 

was assessed by the determination of the selectivities and distribution coefficients, and 

compared with literature data. The data obtained show that DES surpass the performance 

of the existing extraction solvents, leading to an increase in efficiency and a reduction in 

energy consumption of the overall process. 

 

2. Introduction 

In order to compensate for the continuous decrease of oil reserves, the search for 

alternative fuels and renewable energy sources has been the focus of many studies in 

recent years. Ethanol is viewed as an attractive alternative fuel since it is a renewable bio-

based resource that can be used both as a fuel and as a gasoline oxygenated additive. In 

recent decades, oxygenated additives such as ethanol, methanol and methyl tert-butyl ether 

(MTBE) have been commonly used to replace lead in petrol. However, due to the growth in 

the production of oxygenated additives, several petrochemical industries face the presence 

of azeotropic or close-boiling mixtures in many processes, namely mixtures of alcohols and 

alkanes, which are impossible to separate by simple distillation processes.1, 2 

The current solution for this problem resides in the highly effective use of extractive or 

azeotropic distillation processes. Nevertheless, these techniques require high pressures or 

high temperatures and, thus, high quantities of energy to obtain one fluid-phase system. 

Alternatively, liquid-liquid extraction has become more attractive since it provides greater 

energy efficiency as well as being more economic and environmentally friendly.3-5 

In liquid-liquid extraction (LLE) processes, the separation is carried out by the 

introduction of a third component in the azeotropic mixture (extraction solvent) which 
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preferentially dissolves one of the components of the mixture and thus separates it from the 

initial liquid phase to a different one.6 The most common extraction solvents used in industry 

are organic solvents, such as sulfolane, tetraethylene glycol and N-methylpyrrolidone, 

which, due to their general volatile, toxic and/or flammable natures, require additional 

investments and energy consumption for their recovery. To this end, ionic liquids (ILs) have 

emerged as an appealing alternative, since their use requires fewer separation steps and 

less energy.7 

Ionic liquids are known for their negligible vapour pressures at room temperature 

which, in turn, facilitates their recovery and reusability in separation and purification 

processes.8 Moreover, ILs have already been recognized for their remarkable azeotrope-

breaking ability in ethanol or THF + water mixtures, alcohols + alkanes mixtures, aromatic + 

aliphatic mixtures, ethyl acetate + alcohols or hexane, ketones + alkanes or alcohols 

mixtures, and ethyl tert-butyl ether (ETBE) + ethanol mixtures.6 The highest separation 

efficiency was obtained for azeotropic mixtures of alkanes + alcohols, in particular of n-

hexane or n-heptane + ethanol. However, despite their clear advantages, most ILs are more 

difficult and more costly to prepare than organic solvents. Also, the environmental impact of 

ILs is largely dependent on the cation or anion in their structure, meaning that ILs are not 

universally green.9-12 

Recently, deep eutectic solvents (DES) have been proposed as a versatile alternative 

to ionic liquids, since their physicochemical properties resemble those of ILs. DES are 

eutectic mixtures of halide salts with hydrogen bond donors (HBD) such as amines, amides, 

alcohols or carboxylic acids that have much lower melting points than the starting materials. 

The mixing of these two types of compounds leads to their self-association via hydrogen 

bonding, generating a new single compound, a new liquid phase. The main advantage of 

DES over ILs is related to the sustainable character of the former. These compounds can be 

produced from cheap, non-toxic, completely biodegradable and biocompatible materials and 

their preparation is very simple, requiring only heating and mechanical stirring to perform the 

synthesis in just one step. This fact makes the production of DES much cheaper than that of 

ILs, which require expensive starting materials and numerous purification steps. 

Furthermore, the synthesis of DES has 100% reaction mass efficiency, which means that 
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the purity of DES is only dependent on the purity of the starting materials.13-15 

In this work, three different DES were tested for the separation of n-heptane + ethanol 

azeotropic mixtures. All the DES used were based on choline chloride and combined with 

HBD glycerol (DES1), levulinic acid (DES2) and ethylene glycol (DES3), in the molar ratio of 

1 choline chloride : 2 HBD, which represent the respective eutectic composition.16-18 

Preliminary work showed that these DES have much lower viscosities than other common 

DES composed of choline chloride and urea or xylitol. Furthermore, all of the DES in this 

study are liquid at 298.15 K. 

Deep Eutectic Solvents based on choline chloride have already been used 

successfully in the separation of glycerol from biodiesel,16 alcohols from esters,19 

hydroxymethylfurfural (HMF) from HMF-esters20 and phenol from oils (hexane, toluene and 

p-xylene).21 Moreover, Kareem et al.22 synthesized DES using phosphonium-based ILs and 

ethylene glycol as HBD, for the selective separation of aromatic/aliphatic mixtures 

(benzene/hexane) and superior results to those of the commonly used sulfolane were 

obtained. Concerning the azeotrope n-heptane + ethanol, the most studied extraction 

solvents have been the imidazolium-based ILs. Letcher et al.23 studied the effectiveness of 

1-methyl-3-octylimidazolium chloride as an extraction solvent for several alkanol-alkane 

mixtures. Seoane et al.24 used different alkyl-imidazolium ILs all with the same anion, 

bis(trifluoromethylsulfonyl)imide (NTf2), and obtained distribution coefficient values between 

1.81 and 26.72 and values of selectivity between 18.84 and 474.16. Pereiro et al.3-5, 25 

studied the extraction of ethanol from n-hexane and n-heptane with several 1-alkyl-3-

methylimidazolium ILs with different anions. The highest distribution coefficient and 

selectivity values were obtained with the 1,3-dimethylimidazolium methyl sulfate 

([C1MIM][C1SO4]) IL and a laboratory-scale packed column achieved a raffinate purity of 

over 98 wt%. 

The main goal of this work is to evaluate the potential of DES as extraction solvents for 

azeotropic mixtures of n-heptane + ethanol in liquid-liquid extraction processes. For that 

purpose, the binodal curves and tie lines for each ternary system were obtained, and the 

selectivities and distribution coefficients were determined in order to establish which DES is 

the most suitable solvent for the extraction of ethanol by liquid-liquid extraction. 
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3. Experimental Section 

3.1. Materials 

The eutectic mixtures were prepared in a glove box within nitrogen atmosphere. The 

choline chloride was first dried at 323.15 K under vaccum for at least 2 days, whilst the HBD 

were used as received and without any further purification. The DES were synthesized by 

heating the two components at 373.15 K and stirring until a homogeneous liquid was 

formed. Figure 1, presents the chemical structures of the DES used in this work. 

In order to prove the reusability of the DES, after their used in the extraction of ethanol 

from the n-heptane + ethanol mixtures, the DES were dried in a high vacuum pump at 

ambient temperature to evaporate the ethanol extracted and the n-heptane remains. The 

composition of the synthesized DES, as well as the recovered DES, was checked by 1H 

NMR (see SI) and it could be seen that the reusability of the DES tested is possible. 

 

 

Figure 1 | Chemical structure of the DES studied in this work. 
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3.2. Liquid-liquid equilibria measurements 

The ternary LLE experiments were performed at 298.15 K in a glass cell containing a 

magnetic stirrer and thermostat regulated by a water jacket connected to a bath controlled 

to ± 0.01 K. The temperature in the cell was measured by means of a platinum resistance 

thermometer coupled to a Keithley 199 System DMM/Scanner. The thermometer was 

calibrated against high-accuracy mercury thermometers (0.01 K). The binodal curve of the 

ternary system was determined by preparing several binary mixtures of n-heptane + DES in 

the immiscible region and then ethanol was added until the ternary mixture became 

miscible. The refractive index of those ternary mixtures was determined in triplicate. The 

measurements of refractive index were performed at 298.15 K and atmospheric pressure, 

using an automated Anton Paar Refractometer Abbemat 500 with an absolute uncertainty of 

the refractive indexes of ± 5 x 10-4. 

For the determination of the tie-lines, ternary mixtures of known composition were 

prepared in vials and were vigorously stirred for at least 1 h and left to settle for at least 12 h 

in a thermostatic bath at 298.15 K. Samples from both phases were taken with a syringe 

and their refractive indexes were determined in triplicate. Deviation between the triplicates 

of the refractive indexes was always lower than 8 x 10-4. The composition of both phases in 

equilibrium was determined using the fitting refractive indexes with the composition along 

the binodal curve using the following equations: 
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where, w1, w2 and w3 correspond to the mass fraction compositions of n-heptane, 
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ethanol and DES, respectively, and the parameters A to O are adjustable parameters which 

are given in Table S1 in the SI. 

The method was validated by using experimental data for the ternary system of n-

heptane + ethanol + [C2MIM][C2SO4] from the literature.3 The measurements obtained were 

estimated to be precise to ± 0.009 in mass fraction in comparison with the method used in 

literature and the uncertainty in the composition is estimated to be ± 0.006 in mass fraction. 

 

4. Results and discussion 

The experimental results for the liquid-liquid extractions of ethanol from the n-heptane 

+ ethanol azeotropic mixtures with the three DES are presented in Table 1. Figure 2 to 4, 

indicate the immiscibility region of the ternary diagram for the systems n-heptane + ethanol 

+ DES as well as the binodal curve and the tie-lines. It can be seen that all DES and n-

heptane are practically immiscible and that the ternary diagram presents a great 

immiscibility region between the three components in the mixture. Furthermore, the tie lines 

obtained present positive slopes which imply distribution coefficient values higher than the 

unity and also that the extraction of ethanol is favoured. In addition it can also be seen that 

the immiscibility region for the systems containing DES1 and DES3 in slightly larger than 

that of DES2. 
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Figure 2 | Ternary diagram for the system n-heptane + ethanol + DES1 at 298.15 K. The red dots 

represent the binodal, the red squares the experimental starting point of the mixture and the black dots and lines 

the system tie-lines. 
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Figure 3 | Ternary diagram for the system n-heptane + ethanol + DES2 at 298.15 K. The blue dots 

represent the binodal, the blue squares the experimental starting point of the mixture and the black dots and 

lines the system tie-lines. 
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Figure 4 | Ternary diagram for the system n-heptane + ethanol + DES3 at 298.15 K. The green dots 

represent the binodal, the green squares the experimental starting point of the mixture and the black dots and 

lines the system tie-lines. 

 

Two crucial parameters widely used in the assessment of an extraction solvent 

feasibility are the distribution coefficient, β and the selectivity, S, which are defined as 

follows: 
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where w1
I and w2

I are the mass fractions of n-heptane and ethanol in the upper phase 

(n-heptane-rich phase), respectively, and w1
II and w2

II are the mass fractions of n-heptane 

and ethanol in the lower phase (DES-rich phase). These parameters are also listed in Table 

S2 in the SI. 
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The distribution coefficient is related to the solute-carrying capacity of the DES and it 

determines the amount of DES required for the extraction process. Selectivity is related to 

the efficiency of the DES, indicating the ease of extraction of a solute (ethanol) from a 

diluent (inert, n-heptane). The ideal extraction solvent should have both high values of 

distribution coefficient and selectivity, since high selectivity values usually lead to fewer 

stages in the process and lesser amounts of inert residual in the extract, while high 

distribution coefficient values correspond to a lower solvent flow rate, a smaller-diameter 

column and lower operating costs.3 

Figures 4 and 5 compare the distribution coefficient and selectivity values of the 

different DES used in this work, respectively. It can be observed that DES1 had the lowest 

distribution coefficient values and the highest selectivity values, while DES2 presented the 

highest distribution coefficient values (along with DES3) and the lowest selectivity values. 

These results can be explained by the different HBD present in the DES. In DES1 and 

DES3, the HBD are glycerol and ethylene glycol, which have 3 and 2 hydroxyl groups (-OH), 

respectively, whilst in DES2 the HBD is levulinic acid, which is a carboxylic acid, presenting 

a carboxylic group (-COOH) and also a carbonyl group (-C=O). 
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Figure 4 | Distribution coefficient values, β2, for the systems n-heptane (1) + ethanol (2) + DES (3) studied 

in this work, as a function of the ethanol mass fraction in n-heptane-rich phase at 298.15 K. 
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In the case of DES2, the O-H bond in the carboxylic group is more strongly polarized 

than that of the alcohols, due to the presence of the adjacent carbonyl moiety. This 

structural feature enhances dipole magnitude and allows for the creation of a higher number 

and stronger dipoles, thus forming a larger number and stronger H-bonds with other 

substances capable of H-bonding interactions. The total energy of H-bonding interactions 

for carboxylic acids is greater than that observed for other organic compounds containing 

OH and/or C=O dipoles such as amines, alcohols, phenols, aldehydes, ketones, esters, 

amides and isosteric compounds.26 This fact enables DES2 to form stronger H-bonding 

interactions with ethanol than DES1 or DES3, meaning that DES2 has higher solute-

carrying capacity than the other DES used, which is explained by the higher distribution 

coefficients obtained. 

On the other hand, DES2 presents lower selectivity values than the other two DES, 

which may be attributed to the number of O-H groups in DES1 and DES3. DES1 and DES3 

present more groups capable of establishing H-bonding with the O-H group of ethanol, 

meaning that these two solvents can extract ethanol more easily than DES2, resulting in 

higher values of selectivity, which could also be related to the higher immiscibility regions 

observed. In addition, it can also be seen that DES3 presented high distribution coefficient 

values, in the same range as those of DES2. These results could be attributed to the 

smaller size of the ethylene glycol HBD, as well as the chemical similarity to the ethanol 

molecule, opposite to the glycerol molecule which is larger and could lead to steric effects. 
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Figure 5 | Selectivity, S, for the systems n-heptane (1) + ethanol (2) + DES (3) studied in this work, as a 

function of the ethanol mass fraction in n-heptane-rich phase at 298.15 K. 

 

Figures 6 and 7 compare the results obtained in this work with those found in literature 

for neat ILs at a specific ethanol mass fraction.3-5, 24, 25 The comparison in the whole range of 

ethanol concentrations studied is depicted in Figures S1 and S2 in the SI. It can be seen 

that the DES used in this work surpass the performance of ILs with 

bis(trifluoromethylsulfonyl)imide (NTf2) as anion, both in terms of distribution coefficient and 

selectivity values, since these ILs can only establish weak hydrogen bonds. Nevertheless, 

when comparing the distribution coefficient values, DES1 presented lower values than the 

alkylsulfate-based ILs. This is due to the stronger hydrogen bonds that can be formed by the 

oxygen atoms of the sulfate anion. Meanwhile, DES2 and DES3 presented some of the 

highest values of all the extraction solvents studied so far for this azeotrope. Regarding the 

selectivity values, all the DES tested presented better results than the ILs reported in the 

literature. So far, the best IL solvent identified to date for the extraction of this azeotropic 

mixture was the [C1MIM][C1SO4], due to its high distribution coefficient and selectivity 

values. Furthermore, Pereiro et al.25 showed that not only could this IL be recovered, but the 

scaling up of the extraction process is feasible. 

Comparing the performance of the DES used in this work with that of [C1MIM][C1SO4] 
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IL, in the whole range of ethanol concentrations studied (Figures S1 and S2), all these 

compounds combine good distribution coefficient and high selectivity values. Moreover, the 

extraction solvent should meet the define criteria for the design of the operation. For 

instance, if DES1 or DES3 are used, fewer extraction stages will be required and the extract 

will present a high purity degree, due to their higher selectivity; if DES2 or DES3 are used, 

the extraction process will require less amounts of solvent since the distribution coefficients 

are higher for these solvents. 
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Figure 6 | Distribution coefficient values, β2, of the system with the azeotrope n-heptane (1) + ethanol (2), 

at an ethanol mass fraction of approximately 3 wt% in n-heptane-rich phase at 298.15 K.3-5, 24, 25 
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Figure 7 | Selectivity, S, of the system with the azeotrope n-heptane (1) + ethanol (2), at an ethanol mass 

fraction of approximately 3 wt% in n-heptane-rich phase at 298.15 K.3-5, 24, 25 

 

5. Conclusions 

The data obtained in this study show that DES are interesting alternatives to ILs as 

extraction solvents in the separation of ethanol-heptane mixtures. However, both the 

distribution coefficient and the selectivity values need to be considered in order to evaluate 

the real performance of an extraction solvent. It can be observed that the DES containing 

HBD with hydroxyl groups (1 and 3) exhibit greater selectivity, while the presence of the 

carboxylic group in the HBD (DES2) enhanced its distribution coefficient. In all studied DES 

the combination of the high selectivity and the high distribution coefficient values shows that 

DES are very promising for this application. Moreover, the recovery of the DES was also 

possible by evaporation of the ethanol and heptane after the extractions. 

In conclusion, the data obtained in this work show that DES are an easier, cheaper 

and greener solution for the separation of azeotropic mixtures. The distribution coefficients 

and selectivity values obtained for the DES tested are high to justify a scaling up process by 

liquid-liquid extraction. 
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7. Supplementary Information 

7.1. Supporting tables 

Table S1 | Adjustable parameters in equations 1 and 2, for the different DES used. 

Parameters DES1 DES2 DES3 

A 1.3920 1.3935 1.3598 
B 0.0854 0.1346 0.2360 
C -0.0785 -0.1393 -0.2328 
D -0.0136 -0.0033 0.0226 
E 1.2388 1.1915 1.1795 
F 0.2300 0.3373 0.3807 
G -0.0297 -0.0672 -0.1120 
H -0.0629 -0.0688 -0.0558 
I 1.4359 1.4038 1.4204 
J 0.1782 0.2623 0.2114 
K -0.0870 -0.1691 -0.0882 
L -0.0416 -0.0276 -0.0720 
r2 1.0000 1.0000 0.9999 
M 97.1543 99.1621 97.2980 
N -0.3352 -0.2960 -0.3391 
O 2.8571×10-6 2.9399×10-6 1.7864×10-6 
r2 0.9960 0.9997 0.9976 
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Table S2 | Composition of the experimental tie-lines, ethanol distribution coefficient (β2) and selectivity (S) 

for the ternary systems at 298.15 K. 

n-heptane-rich phase DES-rich phase 
β2 S 

w1
I w2

I w1
II w2

II 

n-heptane (1) + ethanol (2) + DES1 (3) 

0.989 0.009 0.000 0.070 7.87 46028.30 
0.979 0.019 0.001 0.118 6.32 7214.35 
0.969 0.029 0.002 0.169 5.92 2537.51 
0.933 0.063 0.007 0.256 4.04 557.09 
0.892 0.103 0.014 0.330 3.22 209.63 
0.867 0.126 0.021 0.379 3.00 126.20 
0.847 0.146 0.031 0.429 2.95 81.48 
0.789 0.199 0.049 0.487 2.45 39.86 
0.744 0.240 0.086 0.551 2.30 19.90 
0.640 0.329 0.138 0.584 1.78 8.26 

n-heptane (1) + ethanol (2) + DES2 (3) 

0.994 0.004 0.002 0.118   
0.989 0.008 0.003 0.163 19.45 5594.74 
0.968 0.028 0.010 0.249 8.91 890.35 
0.958 0.038 0.020 0.330 8.72 411.02 
0.948 0.048 0.033 0.386 8.12 236.66 
0.938 0.057 0.050 0.440 7.68 142.88 
0.917 0.077 0.071 0.479 6.25 80.77 
0.897 0.096 0.093 0.506 5.27 50.88 
0.881 0.111 0.169 0.541 4.88 25.39 
0.777 0.205 0.270 0.529 2.58 7.43 

n-heptane (1) + ethanol (2) + DES3 (3) 

0.987 0.007 0.001 0.099 14.69 27838.66 
0.982 0.012 0.001 0.138 11.84 8978.41 
0.977 0.017 0.003 0.185 11.23 3855.75 
0.967 0.026 0.006 0.252 9.60 1452.08 
0.957 0.036 0.015 0.344 9.56 605.64 
0.947 0.046 0.026 0.410 9.00 328.63 
0.936 0.055 0.048 0.489 8.84 173.28 
0.926 0.065 0.077 0.544 8.37 100.40 
0.885 0.103 0.133 0.586 5.67 37.79 
0.855 0.131 0.236 0.581 4.42 16.04 
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7.2. Supporting figures 
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Figure S1 | Comparison of the distribution coefficient values, β2, between the systems studied in this work and 

those found in literature,3-5, 24, 25 as a function of the ethanol mass fraction in n-heptane-rich phase at 298.15 K 

and 0.1 MPa. 
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Figure S2 | Comparison of the selectivity, S, between the systems studied in this work and those found in 

literature,3-5, 24, 25 a function of the ethanol mass fraction in n-heptane-rich phase at 298.15 K and 0.1 MPa. 

 

7.3. NMR studies 

The 1H spectra of DES1, DES2 and DES3 are depicted in Figures S3, S4 and S5, 

respectively. The 1H spectra of the recovered DES is depicted in Figure S6, DES3 was used 

as proof of concept. All the experiments were carried out on a Bruker AVANCE 400 

spectrometer operated at room temperature with 16 scans for 1H NMR, using oxide 

deuterium as solvent. The chemical shifts of the spectra are listed in Table S3. 
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Table S3 | 1H NMR chemical shifts for the DES used in this work. 

 DES1 DES2 DES3 

1 3.98 3.98 3.98 

2 3.44 3.44 3.45 

3, 4, 5 3.12 3.12 3.13 

6, 6’ 3.55-3.59 – 3.58 

7, 7’ 3.70 2.79 3.58 

8, 8’ 3.44-3.49 2.52 – 
10, 10’ – 2.15 – 

 

 

 

Figure S3 | 1H NMR spectrum of DES1 in deuterium oxide at 298.15 K. The structure and numbering of 

the DES is also depicted. 
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Figure S4 | 1H NMR spectrum of DES2 in deuterium oxide at 298.15 K. The structure and numbering of 

the DES is also depicted. 

 

 

 
Figure S5 | 1H NMR spectrum of DES3 in deuterium oxide at 298.15 K. The structure and numbering of 

the DES is also depicted. 
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Figure S6 | 1H NMR spectrum of recovered DES3 (after evaporation of n-heptane and ethanol) in 

deuterium oxide at 298.15 K. The structure and numbering of the DES is also depicted. 
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The research described in this thesis aimed at separating azeotropic mixtures using 

combinations of IL and IS as separation agents. The most important results obtained during 

this PhD project are highlighted in this chapter. The following lines provide a critical 

evaluation of the work described before as well as an outlook for future research within this 

thesis subject. 

 

1. Improving the ionicity of ILs 

Up to date, besides the papers from this thesis, only one work found in literature 

reported the use of IL-IS mixtures as separation agents for azeotropic mixtures.1 This study, 

dated from 2014, explored the combination of the IL [C2MIM][Ac] with 10 different ISs, fixing 

the concentration of IS at a mass fraction of 5 wt%. The results showed that indeed by 

mixing an IS with an IL, higher efficiencies in the separation of the chosen azeotropic 

mixture (water + ethanol) could be obtained. However, the reason why some ISs work better 

than others was not presented. Therefore, in order to design a suitable IL-IS mixture for the 

separation of a specific azeotropic mixture, it is paramount to study the IL-IS mixture, 

namely in terms of its physical / chemical properties and ionicity. 

In an earlier work, Pereiro et al.2 studied the solubility of different ISs, that cover a 

substantial part of the Hofmeister series, both in terms of the cation and the anion, in a wide 

variety of ILs. The results obtained showed that [NH4][SCN] was the most soluble IS in 

different ILs, particularly in the ILs [C2MIM][Ac], [C2MIM][C2SO3] and [C2MIM][C2SO4]. 

Hence, the work developed in this thesis started by comparing the thermophysical 

properties of the binary IL-IS systems of [C2MIM][C2SO3] + [NH4][SCN] and [C2MIM][C2SO4] 

+ [NH4][SCN] (Chapter 2). The data obtained, showed that the addition of [NH4][SCN] had a 

higher impact on the [C2MIM][C2SO4] system properties than on those of [C2MIM][C2SO3]. 

Also, the ionicity of both systems, determined by the Walden plot approach, shown that the 

addition of [NH4][SCN] to the ionic liquid promoted an increase in both systems' ionicity. 

However, due to the fact that the neat IL [C2MIM][C2SO3] is much more viscous and also 

presents a smaller ionic conductivity than the [C2MIM][C2SO4], the increase in ionicity of the 
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former is lower. 

Furthermore, spectroscopic techniques and Molecular Dynamic studies revealed that 

the sulfate-based IL is capable of establishing stronger interactions with the [NH4][SCN] than 

the sulfonate-based one, with the extra oxygen of the sulfate-based IL playing a key role in 

the structuring of complexes between the IL and the IS (namely between the [C2SO4]- anion 

and the [NH4]+ cation). The presence of the extra oxygen atom allows more flexibility in the 

sulfate anion, which allows the formation of more aggregates than in the sulfonate-based IL. 

This fact permits the other ions in the system to become less engaged, which resulted in the 

increase of the ionicity. 

The other IL that also showed high solvation ability for [NH4][SCN] was [C2MIM][Ac]. 

This IL is also known for its great solvent abilities, proving to be capable of solubilising a 

wide range of different compounds in high concentrations.2-11 As shown by Pereiro et al.12 

the ionicity of this IL could also be increased with the addition of [NH4][SCN]. These facts led 

to the study of the thermophysical properties, and consequently of the ionicity, of binary 

mixtures of [C2MIM][Ac] and six different ISs (Chapter 3). With the aim of covering different 

effects of the IS on the properties and ionicity of the IL, the ISs chosen were based on two 

different cations, the ammonium and the sodium, had different anions such as, acetate, 

chloride, thiocyanate and ethyl sulfonate, and also a common ion with the IL, the acetate. 

The results described in Chapter 3 show that not all ISs can increase the ionicity of an 

IL, as observed for the sodium-based ISs. Also, the increase in ionicity can be well 

described by the ratio between the variation of viscosity and variation of ionic conductivity, 

meaning that even though the viscosity of the IL-IS system is increased by the addition of an 

IS, as long as the ionic conductivity does not decrease in an even way, the ionicity of the IL-

IS binary system can be increased. Furthermore, it was shown by spectroscopic and 

simulation techniques that the presence of an [NH4]+ cation allowed the establishment of 

stronger interactions between the IL and the IS, which were in part a result of the 

approximation of the [NH4]+ cation to the IL's [Ac]- anion. This approximation leads to the 

establishment of aggregates and to a more unengaged imidazolium cation, consequently 

increasing the ionicity, as seen in the study described in Chapter 2. The ionicity was also 

determined by two different methods, with the results showing divergent behaviours on both. 
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However, these results might be impacted by the presence of residual water on the 

samples. Nevertheless, the interplay between the interactions of ILs and ISs is much more 

complex than in the case of neat ILs or molten salts making the determination of the ionicity 

in IL-IS mixtures much more challenging. 

 

2. IL-IS mixtures as extraction solvents 

The results obtained from the studies of the properties of different IL-IS mixtures 

allowed the selection of the most promising combinations of IL and IS, in terms of ionicity, to 

be used in the separation of azeotropic mixtures. 

The azeotropic mixture of n-heptane + ethanol was selected because of the 

importance of ethanol as a biofuel and additive in gasoline. In addition, sulfate-based ILs 

were already shown to be the most effective in the separation of the aforementioned 

azeotropic mixture using liquid-liquid extraction, in particular the [C2MIM][C2SO4].13-15 

Taking into account the high solubility of [NH4][SCN] in [C2MIM][C2SO4] and the higher 

ionicity of its binary system, the combination of the latter compounds was chosen over the 

binary system of [C2MIM][C2SO3] and [NH4][SCN]. In order to check out the effect of the 

ionicity of the system in the separation of the n-heptane + ethanol azeotropic mixtures, three 

different concentration of IS were used (Chapter 4). The results, showed that the tested IL-

IS mixtures can provide higher selectivity values than the neat ILs described in literature, as 

well as distribution coefficient values of the same order of magnitude. In addition, the 

increase in the ionicity promoted by the addition of [NH4][SCN], proved to increase the 

selectivity of the IL-IS mixture in comparison with the neat [C2MIM][C2SO4]. 

Afterwards, the effect of different ISs was also tested in the separation of n-heptane + 

ethanol azeotropic mixtures, by using combinations of [C2MIM][Ac] with the most soluble 

ISs, at concentrations were the ionicity of the system was higher (Chapter 5). The results 

obtained in this study confirmed the increase in selectivity with the addition of IS and also 

showed that the distribution coefficient values were not significantly affected by the 

introduction of the IS. 
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Figure 1 summarizes the work presented in this thesis, where the values of both 

selectivity and distribution coefficients are plotted against the ionicity of the IL-IS mixtures 

tested in the separation of n-heptane + ethanol azeotropic mixture. In addition, the values 

for the neat ILs are also plotted for comparison purposes. 

 

Figure 1 | Comparison between β2 (●) and S (▲) as a function of ionicity for all the IL-IS mixtures and 

neat ILs tested as extraction solvents in n-heptane + ethanol mixtures. Each colour represents a different 

extraction solvent. The β2 and S values are given for ethanol mass fractions between 0.02 - 0.03 wt% in the n-

heptane-rich phase at 298.15 K. 

 

From Figure 1, it can be seen that the addition of the IS in the IL increases the ionicity 

of the mixture and at the same time can increase both the selectivity and the distribution 

coefficient. However, the increase in the ionicity of the IL-IS mixture can only be related to 

the selectivity of the mixture, in a close to a linear way (Figure 2). In the case of the 

distribution coefficient, the increase in ionicity does not have the same effect. Indeed, the 

impact of the increase in ionicity on the distribution coefficients changes with the IL-IS 

mixture in question. For the sulfate-based IL-IS mixtures, the increase in ionicity leads to 

similar or lower distribution coefficients when compared to the neat [C2MIM][C2SO4], 

whereas in the acetate-based IL-IS mixtures the distribution coefficient suffers slight 

increases for the [NH4][Cl] and [NH4][SCN] and a large increase for [NH4][Ac]. 
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Figure 2 | Selectivity (▲) as a function of ionicity for all the IL-IS mixtures and neat ILs tested as 

extraction solvents in n-heptane + ethanol mixtures. Each colour represents a different extraction solvent. The 

Selectivity values are given for ethanol mass fractions between 0.02 - 0.03 wt% in the n-heptane-rich phase at 

298.15 K. Black lines merely represent an eye's guide. 

 

These results show that the addition of ISs, may provide a boost in the feasibility of the 

ILs as extraction solvents for the separation of azeotropic mixtures. Nevertheless, a careful 

selection of the IL-IS mixtures must be taken into account, as shown by the higher 

selectivity and lower distribution coefficient values of the sulfate-based IL-IS mixtures 

opposed to the higher distribution coefficients and lower selectivity values of the acetate-

based IL-IS mixtures. Therefore, the knowledge gained by the work presented in this thesis 

may open the door for the production of more promising extraction solvents for azeotropic 

mixtures, due to the wide range of combinations that can be established between ILs and 

ISs. For that purpose, other azeotropic mixtures need to be studied within this context. 

In addition, the possible application of DES as separation agents for the breaking of 

azeotropic mixtures was also considered in this thesis (Chapter 6). The results provided in 

this work showed that DES containing HBD with hydroxyl groups (DES1 and DES3) can 

exhibit greater selectivity, while the presence of the carboxylic group in the HBD (DES2) 

enhanced the distribution coefficient over the selectivity. The distribution coefficients and 

selectivity values obtained for the DES tested are sufficiently high in order to justify a scaling 
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up process by liquid-liquid extraction, proving that DES may become an easier, cheaper and 

greener solution for the separation of azeotropic mixtures. 

 

3. Outlook 

During the work of this thesis promising and innovative results were achieved for the 

separation of n-heptane + ethanol azeotropic mixtures. The work developed herein shows 

that the use of IL-IS mixtures as extraction solvents can significantly improve the efficiency 

of the separation. However, the study of more combinations of IL-IS mixtures as well as 

their application in different azeotropic mixtures is still required. The employment of 

simulation programs such as COSMO-RS among others may provide further insights into 

the feasibility of IL-IS mixtures for the separation of azeotropic mixtures. Moreover, other 

programs such as HYSYS can generate data concerning the scaling up of the separation 

process using IL-IS mixtures as separation agents, which can provide helpful information in 

order to achieve the application of these mixtures at an industrial level. 

In addition, the corrosion capacity of the ISs is still a fact that has to be taken into 

consideration. Although, recent studies have shown that ILs can provide an inhibitory effect 

on the corrosion behaviour of metals in aggressive media,16-19 studies of the corrosion of IL-

IS mixtures in metals are vital to developing a feasible separation agent. Furthermore, the 

recovery of the separation agent, either the IL-IS mixture or the DES, must always be taken 

into account and further studies should be addressed, since in the case of IL-IS mixtures, 

depending on the IS chosen, the IS could decompose inside the IL while in the case of DES 

the use of high vacuum can disrupt the H-bonds of the compounds and thus destroy the 

DES. 

In conclusion, the affinity of the separation agent for the solute has to be high enough 

in order to lead to high selectivity values and high distribution coefficients but not so high 

that irreversible interactions are established, hindering the recovery and subsequent re-use 

of the separation agent. 
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