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Abstract 

 

This thesis addresses mainly two issues that have not been addressed in Statis-

tical Machine Translation. One issue is that even though research has been 

evolving from word-based approaches to phrase-based ones, because words 

were consistently found to be inappropriate translation units, the fact is that 

words are still considered in the composition of phrases, either to determine 

translation equivalents or to check language fluency. Such consideration might 

result in the attempt of establishing relations between words within a phrase 

translation equivalent even when sometimes its phrases should be considered 

as a whole. Attempts to further partition such phrases would produce incorrect 

translation units that would introduce unwanted noise in the translation pro-

cess. Besides, the internal fluency of an identified multi-word phrase should not 

require checking. As such, phrases should indeed be considered units, avoiding 

incorrect translation equivalents that might be identified from their partition, as 

well as only considering the fluency of a phrase with other phrases and not 

within the phrase itself. The other issue is that supervision, in the form of trans-

lation lexica, is generally overlooked, with SMT research focusing mainly on the 

identification of translation units without any human intervention and without 

considering already known translation units. As such, no importance has been 

attributed to the inclusion of verified lexica, with only some rarely used dic-

tionaries to score translation candidates and not really as a source of translation 

units. Indeed, translation equivalents should be memorized, checked and used 

as a source of translation units, avoiding the need to keep identifying the same 

translation units, in particular if those are frequently used. This Thesis presents 

a truly Phrase-Based approach to SMT, using contiguous and non-contiguous 

phrases, along with Supervision, in which phrases are not divided and verified 

lexica is built, kept and used to propose translations of complete sentences. 

Keywords: Statistical Machine Translation, Phrase-Based, Non-contiguous 

Equivalents, Suffix Arrays, Verified Lexicon. 





 

Resumo 

 

Esta Tese trata principalmente dois problemas que não foram devidamente tra-

tados na Tradução Máquina Estatística. Um deles é que, apesar de a investiga-

ção ter passado a considerar multi-palavras como unidades e não apenas pala-

vras, por se constatar que as palavras não constituem unidades de tradução 

adequadas, o facto é que as palavras são ainda consideradas na composição de 

multi-palavras, quer em equivalentes de tradução, quer na verificação de fluên-

cia de língua. Tal consideração pode resultar na tentativa de estabelecer rela-

ções entre palavras mesmo quando por vezes as multi-palavras devem ser con-

sideradas como um todo. Particionar tais multi-palavras produzirá unidades de 

tradução incorrectas que introduzirão ruído no processo de tradução. Além dis-

so, a fluência interna dessas multi-palavras não deve ser verificada. Como tal, 

multi-palavras deverão ser consideradas unidades, evitando equivalentes de 

tradução incorrectos resultantes da sua partição, e considerando apenas a flu-

ência de multi-palavras com outras e não a sua fluência interna. O outro pro-

blema é que a supervisão, na forma de léxicos de tradução, é geralmente desva-

lorizada, com a investigação em SMT a ser focada na identificação de unidades 

de tradução sem qualquer intervenção humana e sem considerar unidades de 

tradução já conhecidas, com apenas algumas utilizações de dicionários para 

atribuir valores a candidatos de tradução e não propriamente como fonte de 

unidades de tradução. Efectivamente, equivalentes de tradução devem ser me-

morizados, verificados e utilizados como fonte de unidades de tradução, evi-

tando a necessidade da sua repetida identificação, em particular os frequente-

mente usados. Esta Tese apresenta uma abordagem de SMT verdadeiramente 

baseada em multi-palavras, tanto contíguas como descontíguas, em conjugação 

com supervisão, na qual as multi-palavras não são divididas e o léxico verifica-

do é construído, mantido e utilizado para propor traduções de frases completas. 

Palavras-chave: Tradução Máquina Estatística, Baseada em Elementos Sub-

frásicos, Vectores de Sufixos, Equivalentes Descontíguos, Léxico Verificado. 
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1 INTRODUCTION 

The work underlying this thesis began mainly within the framework of project 

PATRAS (contract POSC/PLP/61520/2004) where the main goal was to devel-

op methodologies supported on Suffix Arrays with the purpose of extracting 

phrase1 translations from aligned parallel texts2. The good results obtained pro-

vided the motivation to use those extracted phrase translations to produce 

translations of complete texts, this way leading research towards a Machine 

Translation (MT) system, a research mainly carried out under project ISTRION 

(contract PTDC/EIA-EIA/114521/2009), improving the developed translation 

work and extensively experimenting it on both translation directions of eight 

language pairs. The resulting MT system received the name of Transtor and 

implements a semi-supervised, phrase-based, statistical approach to machine 

translation that, as it will be shown in this thesis, is clearly distinguished from 

existing Statistical Machine Translation (SMT) approaches mainly developed 

after 1990 (Brown et al., 1990). 

1.1 RESEARCH FRAMEWORK AND MOTIVATION 

The research carried out on earlier projects (DIXIT, contract PRAXIS 

2/2.1/TIT/1670/95; TRADAUT-PT, European contract MLIS-4005 TRADAUT-

PT 26192; ASTROLABIUM, European contract MOBI-CT-2003-003344; PA-

TRAS, contract POSC/PLP/61520/2004; and VIP-ACCESS, contract 

PTDC/PLP/72142/2006) led the research group I integrate to develop innova-

tive, language independent, text mining procedures applied to raw text. Those 

developed procedures include: 

 alignment of parallel texts, breaking those texts into segments that should 

continue to be translations of each other (Ribeiro, Lopes and Mexia, 2000a), 

(Ribeiro, 2002), (Gomes, Aires and Lopes, 2009); 

 extraction of word and phrase translations (Ribeiro, Lopes and Mexia, 

2000d), (Aires, Lopes and Gomes, 2009), (Gomes, Aires and Lopes, 2009); 

 extraction of multi-word terms (Silva et al., 1999), (Aires, Lopes and Silva, 

2008); 

 clustering of documents (Silva et al., 2001), (Peleja, Silva and Lopes, 2011); 

 identification of the language in which a document is written (Silva and 

Lopes, 2006); 

                                                 
1 A phrase, as is usual in Machine Translation literature, is used as a string of words, independently of 

being or not a phrase in linguistically precise terms. From here onwards this designation, “phrase” will 
be used as a string of words. 

2 Two texts in different languages are parallel if they are a translation of each other. 
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 identification of phrases having similar meanings, because they occur in 

similar local lexical contexts (Gamallo, Agustini and Lopes, 2005), (Gamallo, 

Agustini and Lopes, 2008), (Casteleiro, Lopes and Silva, 2014); and 

 identification of key terms in documents (Silva and Lopes, 2009), (Teixeira, 

Lopes and Ribeiro, 2013). 

As a result of this wide range of activities, Machine Translation was set in the 

ISTRION project (contract PTDC/EIA-EIA/114521/2009) as one of our research 

group’s leading goals. I, myself, took on the task of building a new approach to 

Machine Translation, following the preliminary results I had obtained in this 

area in the framework of PATRAS project, following a different and new ap-

proach to Phrase-Based Statistical Machine Translation (PBSMT) regarding the 

state-of-the-art in this research area (Och and Ney, 2004).  

A first difference was introduced by assuming that word and phrase transla-

tions extracted from aligned parallel corpora should be validated, thus intro-

ducing a first level of supervision. We verified that alignment precision im-

proved when correctly acquired term translations were iteratively reused in 

subsequent parallel corpora alignment. Such precision improvement, for the 

alignment of parallel texts belonging to the Portuguese (PT) English (EN) pair, 

ranged from a maximum of 75.5% precision, when absolutely no translation 

knowledge was used (Darriba Bilbao, Lopes and Ildefonso, 2005), to 84.5% pre-

cision (Gomes, Aires and Lopes, 2009) at a very early stage of the mentioned 

reuse iteration. The precision improvement of the alignment also contributes to 

the precision improvement of extracted unknown term translations, even for 

very low occurrence frequencies (Aires, Lopes and Gomes, 2009). 

As a consequence of using this perspective, in which the automatic phrase 

translation extraction stage of the training process of a machine translation en-

gine involves some remote supervision (prior to the realignment of the parallel 

corpora used to train our system), we managed to develop a competitive MT 

system capable of beating Moses3, which is the state-of-the-art system for Statis-

tical Machine Translation. Such conclusion was drawn after training Transtor 

and Moses on the same parallel corpora and realizing that Transtor had an av-

erage advantage of 12 BLEU points on both directions on the 8 analyzed lan-

guage pairs between Portuguese, English, French, Spanish, and German (check 

Chapter 4 for a detailed analysis of results). The German-French and French-

Spanish language pairs were not analyzed, but three very difficult language 

                                                 
3 http://www.statmt.org/moses/ 
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pairs which comprise the German language (German-English, German-Spanish 

and German-Portuguese) were included in the tests. 

The idea of introducing supervision on phrase translations extraction resulted 

from the fact that the SMT approach does not include a memory of what has 

been learned earlier, and always learns everything from scratch. Indeed, it be-

haves as a ship commander who never knows where the borders/extremes of 

his ship are and needs some kind of device to measure/calculate from scratch 

where they are, whenever necessary. And this also applies to any frequently 

visited port. He never knows where wharf and piers are. He needs to recalcu-

late everything prior to docking. Actually, it learns but everything is fuzzy. The 

importance of supervision is confirmed by the considerable improvement on 

translation quality produced by Transtor, our MT system. 

A second difference is a direct consequence of our way of addressing align-

ment. In SMT, the alignment of parallel corpora requires parallel texts to be 

aligned at the sentence level. Then, for each pair of parallel sentences, word fre-

quencies are determined, as well as the number of co-occurrences of words in 

each parallel sentence, for the whole parallel corpora. Each word in one sen-

tence can be the translation of any word of the parallel sentence. This way the 

probability of each word being a translation of any word of the parallel corpora 

is determined. The alignment is then defined as the probability of a word being 

the translation of other words in the other language. This is the basis for word-

based SMT. The evolution of word-based alignment into phrase-based align-

ment is, in most approaches, still dependent on word-based alignment that is 

further refined to produce alignments at the phrase level (Tillmann, 2003), 

(Zhang, Vogel and Waibel, 2003), (Zhao and Vogel, 2005), (Zhang and Vogel, 

2005), (Setiawan, Li and Zhang, 2005). 

Ever since we started working on this area, our perspective of alignment was a 

bit different. Given two parallel texts, we were interested in dividing them into 

parallel segments (composed of one or more tokens) for which there is a high 

degree of certainty that they are translations of each other, using those parallel 

segments as alignment anchors. A first approach to determine such certainty 

degree was accomplished by linear regression and applying statistical filters to 

remove outliers (Ribeiro, Lopes and Mexia, 2000a). The procedure was then re-

cursively applied to each candidate of parallel segments until no more align-

ments could be discovered. Considering that some of the statistical filters were 

too strict and removed far more alignment anchors than necessary, an im-

provement was later introduced which consisted in replacing one of the statisti-

cal filters by an algorithmic filter (Ildefonso and Lopes, 2005). Further im-
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provement led to using bilingual lexica of phrase translations that were auto-

matically extracted and manually validated (Gomes, Aires and Lopes, 2009), an 

approach that keeps improving, particularly in the extraction of high quality 

phrase translations.  

The major difference between the two methods of addressing alignment is re-

lated to the determination of word or phrase translation probabilities. SMT 

starts determining word translation probabilities for the whole parallel corpora. 

We start dividing the parallel corpora into candidates of parallel segments cur-

rently using a bilingual phrase lexicon. The determination of word and phrase 

translation probabilities is made later, at a stage where phrase translations are 

spatially located and trapped, thus becoming much more focused and computa-

tionally less heavy. 

A third difference is a direct consequence of both differences mentioned above: 

the periodic supervision of term translation extraction enables us to take known 

phrase translation equivalents as possibly adequate anchors and filter out 

alignment outliers, this way reducing phrase realignment imprecision and ena-

bling us to give more credit to obtained alignments. As a result, the extraction 

of new phrase translation equivalents with very low frequencies becomes more 

precise and its use in translation situations enables the achievement of better 

quality translations. It is not by chance that in SMT, either word-based or 

phrase-based, alignment is taken as a hidden variable because nothing is 

known for sure, since it is never assumed the existence of previous knowledge. 

According to our understanding, another problem afflicting SMT is related to 

its intrinsic dependency on discovering word translations taken as words, even 

in their more recent evolutions towards Phrase-Based Statistical Machine Trans-

lation (PBSMT). As a matter of fact, we all know that many words need to be 

translated by multi-words, as is the simple case of “penso”, in Portuguese, 

which requires two words to be translated into English (“I think”) or into 

French (“je pense”). Other cases would be “from” <=> “a partir de”, not 

to mention the case of “counterclockwise”, which needs many words to be 

translated into its Portuguese equivalent “no sentido contrário ao do 

movimento dos ponteiros do relógio”, or the many alternatives this 

phrase may assume. For this problem, word-based SMT requires considering 

empty word and word translation fertility. In our case, as a consequence of our 

aligning procedure, together with the vocabulary validation, and the extraction 

methods used during our training stage, we take for granted that a source 

phrase is translated by a target phrase (with either phrase having one or more 

words), depending on the degree of knowledge acquired by our system. Our 
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approach is clearly a phrase-based approach. Yet, within this topic, knowing 

that word order is not the same in the various languages, we distinguish two 

types of word order: local word order and long distance word order. 

Local word order occurs inside linguistically motivated phrases. Some exam-

ples are: 

 “social policy” <=> “política social”, where the adjective occurs 

before the noun in English and after it in Portuguese; 

 “acp-eu council of ministers” <=> “conselho de ministros 

acp-ue”, where the nominal part “council of ministers” <=> “con-

selho de ministros” may be translated without no order change, but, 

as for the first example, the adjective part “acp-eu” <=> “acp-ue” occurs 

in different positions in both languages; 

 but much more complex examples could be presented. 

Some examples of long distance word order in sentences are: 

 “the decision of the council of ministers was taken into 

account” <=> “considerou-se a decisão do conselho de min-

istros”, where the subject of the sentence in the passive voice may appear 

after the passive verbal form in Portuguese.  

Either SMT or PBSMT handle both problems by taking into consideration a 

word order model which determines the probabilities of word translations 

changing positions. Those movements are learned from parallel training corpo-

ra, usually defining as a parameter the maximum moving distance allowed for 

word translations. In contrast, we are capable of handling both order types with 

translation patterns which implement an approach comparable to the Hierar-

chical Phrase-Based Translation approach (Chiang, 2007). Local order patterns 

are mostly used for extracting phrase translations in the framework of the ongo-

ing Ph.D. research of Luís Gomes and the result of this work is available in our 

validated bilingual phrase lexica. Longer distance patterns are mostly used for 

translation, as will be shown later in this thesis (Sub-Section 3.1.1.2). 

Additionally, many of the new concepts introduced in this new approach de-

pend on efficient retrieval operations from the base texts used to support the 

models involved in the translation process. Those retrieval operations are in 

turn carried out efficiently by indexing the base texts with Suffix Arrays and 

other structures built on top of the Suffix Arrays in order to make some of their 

properties stand out. 
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In sum, our approach to Machine Translation can be classified as Semi-

Supervised Phrase-Based Statistical Machine Translation (SSPBSMT). As ex-

plained earlier, it diverges from main trends in PBSMT in several aspects, re-

sulting from our own research background in the area. One of the main differ-

ences results from the fact that Transtor considers phrases as the nuclear units 

used in every model and feature involved (namely the translation model4, the 

language model5 and the penalty feature6), something that is in contrast with 

other approaches claiming to be phrase-based even though their phrase transla-

tion models are obtained from a word-based alignment and their language 

models are word-based. The mentioned differences led us towards a simpler 

translation process which enabled us reaching a BLEU translation scores 

(Papineni et al., 2002) higher on average than the ones obtained using MOSES, 

for several language pairs in both directions. In addition, the fact that we were 

using a much simpler translation machinery and did not consider any reorder-

ing model along with many other aspects taken by SMT or PBSMT, makes our 

advantage yet more impressive. 

1.2 A VERY SHORT OVERVIEW OF COMPARABLE WORK 

In the last few years, main trends in Statistical Machine Translation (SMT) have 

evolved from word-based (Brown et al., 1993) towards-phrase based (Och and 

Ney, 2004), (Lopez, 2008). This evolution aimed at rationalizing some of the cen-

tral hypotheses in word-based SMT that mismatch reality, namely those hy-

potheses related to translation correspondences between words in two lan-

guages: not all words are translated by single words, there are words having no 

direct translation, some word translation correspondences are only valid in spe-

cific lexical contexts, etc. By moving towards phrases (uninterrupted sequences 

of words) some of these translation correspondences were simplified, as well as 

local (in phrase) word order. Despite this evolution, the alignment procedure 

remained basically the same: texts continued to be aligned at sentence level and 

only then sentences are aligned at a word level (Brown, Lai and Mercer, 1991b), 

(Gale and Church, 1993), (Och and Ney, 2003) and word and phrase transla-

tions are extracted together with their translation statistics. No supervision is 

made. As a consequence, a huge number of incorrect translations and corre-

sponding statistics are extracted and used in the translation process, leaving the 

burden of selection to the search procedure of decoding (Germann et al., 2001), 

                                                 
4 A translation model is the probability that a source string is a translation of a target string. 
5 A language model measures the fluency of the sequencing of translation phrases in the translation target 

language. 
6 The penalty feature tries to guarantee a balance between the number of words between a source lan-

guage sentence and its translation. 
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making the translation process heavier. This probably explains, according to 

our perspective, why some supervision improved our own translation results. 

Some proposals have appeared in the last few years to improve this state of af-

fairs, in particular for filtering out unproductive phrase table entries (Deng, Xu 

and Gao, 2008). 

Yet, no one still assumes the need for manual validation of extracted phrase 

translations, not only to be used directly in the production of new translations, 

but also to be used for improving future validations of extracted phrase transla-

tions, something that could be accomplished by reusing the validated positive 

and negative examples to train good classifiers, implemented, for instance, with 

SVMs (Mahesh, Gomes and Lopes, 2011). Those classifiers would then be ap-

plied on not yet known newly extracted translations from newly realigned par-

allel corpora (Aires, Lopes and Gomes, 2009), having the results manually vali-

dated, having the classifiers retrained on the newly augmented set of validated 

phrase translations, and iterating this process until no improvement is 

achieved, if this can ever be achieved. 

In order to better tackle long distance reordering phenomena, resulting from 

the fact that there are words and phrases that translate as gapped phrases (dis-

continuous patterns), (Chiang, 2007) proposed the use of hierarchical Phrase-

Based SMT. In this thesis I will incorporate a similar proposal in our own trans-

lation engine. According to our perspective and experience, a huge number of 

gapped patterns result from coordination (apart from other sources) (Silva et 

al., 1999) and its extraction may be improved by taking into account phrase 

meaning similarity (Gamallo, Agustini and Lopes, 2005), (Gamallo, Agustini 

and Lopes, 2008), (Casteleiro, Lopes and Silva, 2014) whose extraction may be 

aided by handling phrase alignment results if we improve our robust phrase-

based alignment approach (Gomes, Aires and Lopes, 2009). (Carbonell et al., 

2006) use a technique quite similar to the one we used for word sense disam-

biguation (Gamallo, Agustini and Lopes, 2005), (Gamallo, Agustini and Lopes, 

2008) for improving the extraction of translation equivalents from non-parallel 

corpora. 

In (Barrachina et al., 2009) it is recognized that despite the advances made in 

SMT, translations still need to be edited to correct the errors. As a consequence, 

they propose an interactive phrase-based SMT that accepts corrections and 

adapts its own output to those corrections while translation is being made from 

left to right. This interaction just contributes to reduce the search space. It is not 

clear that it is intended for having a lasting effect on the knowledge confidence 

the machine will use henceforth. According to our perspective, translation er-
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rors made by the system must be manually corrected and reused at the align-

ment stage for new phrase translation extraction and validation. They may also 

be used for manual extraction of problematic gapped phrases translations. 

Text Mining applied to raw text requires the use of huge quantities of text and 

data structures powerful enough for efficient string frequency counting, full 

text indexing, and efficient string matching and retrieval. Suffix Arrays are 

known to support these requirements. (Yamamoto and Church, 2001) are 

among the users of this data structure for Text Mining purposes. Results report-

ed by (Abouelhoda, Kurtz and Ohlebush, 2004), related to the construction and 

use of compressed and succinct suffix arrays, lead us to prefer suffix arrays to 

suffix trees in the framework of PATRAS project. In the last few years, many 

authors have resorted to use these data structures for indexing and representing 

huge parallel corpora and the translation tables extracted from that corpora. 

Recently it was discovered that suffix trees can be represented with a suffix ar-

ray plus a tree layer (Sadakane, 2007), (Russo, Navarro and Oliveira, 2008), 

(Fischer, Mäkinen and Navarro, 2008), this layer requires only marginal space. 

In essence this result is similar to the one obtained by (Abouelhoda, Kurtz and 

Ohlebush, 2004), only that the space requirements are much smaller, around 9 

times for natural text, and it supports more operations. Hence it is nowadays 

possible to provide a functional suffix tree layer for translation software, which 

simplifies the resulting algorithms while being time and space efficient. Due to 

this evolution we will also explore suffix trees in this project in order to com-

pare both structures in the same application area. Just recently results on com-

pression by (Costa et al., 2013), obtained in the research group I integrate, ena-

bled very competitive data structures occupying 0.4% of the original text while 

being very efficient for carrying out online queries. However, more work will 

be necessary to integrate them in a framework as the one that is explained in 

this thesis, as query time response is adequate for human users (i.e. using a con-

cordancer) but are still too slow for being directly used by an MT system to 

translate text. Probably they will be adequate for implementing a full interactive 

machine translation engine of the kind proposed by (Barrachina et al., 2009). 

1.3 INNOVATIVE CONTRIBUTIONS 

In the approach presented in this thesis, phrases are always considered as units 

and not just a composition of words which eventually might have to be indi-

vidually analyzed. Most popular phrase-based approaches still have one or 

more components built on top of word-based concepts: phrase translation 

equivalents extracted from a word-based alignment, as well as text fluency de-

termined by a word-based language model. On the contrary, the approach pre-
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sented in this thesis is truly phrase-based in the sense that phrases are first de-

gree citizens: translation units consist of phrases, the language model considers 

phrases and the penalty model is also accounted for phrases. In sum, phrases 

are not divided. 

In this approach, the translation model is capable of producing balanced scores 

to equally correct translations, leaving to the language model the task of select-

ing the ones that compose the most fluent combinations of phrases. The lan-

guage model does not produce an absolute model and does not use any tech-

niques to model unseen data, only worrying about scoring the options available 

from observed data. 

Both the translation model and the language model are supported by indexing 

structures based on Suffix Arrays which allow their efficient calculation. Those 

indexing structures also support the actual translation process as well, by iden-

tifying every phrase from the original text to then be used to retrieve their cor-

responding translations which will be then combined to produce a complete 

translation. 

Producing either the translation model or the language model does not require 

the use of a whole set of available corpora in a single unit (taken as an indivisi-

ble whole). Several different corpora can be processed and used separately, this 

way allowing the production of translations using the corpora sets considered 

to be the most relevant for the translation in question. This greatly simplifies the 

management of different models produced with different corpora. 

Previously acquired knowledge is included in the form of phrase-based bilin-

gual lexica (for both contiguous and non-contiguous phrases), containing vali-

dated entries used as a source of phrase translations, with tests confirming their 

positive impact on translation results. Translation patterns are capable of mod-

eling syntax supported in lexical evidence, constituting a serious alternative to 

using syntax supported by text tagging and avoiding the introduction of other 

errors that might result from the tagging procedure. 

The translation probability score developed for the Transtor decoding is im-

plemented by the sentence translation model, as an alternative to the log-linear 

approach. This is because I argue that the log-linear approach might not be the 

most appropriate framework to model the probability of a translation, particu-

larly because of its definition as a product of scores which makes it very sensi-

tive to low probabilities and does not allow null probabilities, a problem that 

requires smoothing techniques applied to any model that might produce such 

null probabilities. The sentence translation model from Transtor is capable of 
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better dealing with such situations because of its implementation as an average 

of scores. 

1.4 READING PLAN 

This section provides a general overview of how this thesis is organized from 

now on. It continues with the chapter “State of the Art”, in which approaches to 

Statistical Machine Translation, most important and most relevant to the work 

proposed here, will be further analyzed under a critical point of view, along 

with the several concepts that support them. The chapter starts by introducing 

Statistical Machine Translation (Section 2.1) with its individual components and 

concepts. Translation evaluation (Section 2.2) is discussed for its importance in 

system comparison and improvement. The following sections will describe oth-

er concepts supporting Transtor, namely: a different approach on alignment, 

the FCT Alignment (Section 2.3), used to guide the translation extraction pro-

cess; and the indexing structures (Section 2.4), used to support phrase identifi-

cation and retrieval operations. This chapter will end with some conclusions 

(Section 2.5) in order to provide an overview on how Transtor overcomes some 

limitations or uses alternative methods to solve common problems more effi-

ciently. 

The chapter “Translation Process” will describe the concepts, structures and 

algorithms supporting Transtor in order to produce translations of complete 

texts. Section 3.1 is dedicated to the description of underlying concepts support-

ing this approach, like the phrase translation equivalents and the adapted in-

dexing structures, which support many of the operations required by Transtor; 

Section 3.2 explains the pre-processing stage, responsible for ensuring the texts 

involved in the process follow a structure that improves their analysis; Section 

3.3 describes the training stage supporting the translation process, like the iden-

tification of contiguous phrase translation equivalents from aligned parallel 

texts and the feature models involved in scoring translation candidates; Section 

3.4 describes the translation stage, which integrates all the previous elements 

and concepts to produce the translations of full sentences; and Section 3.5 will 

highlight the main differences between Transtor and Moses. 

The chapter “Results” will be dedicated to evaluate the results of the transla-

tions made by Transtor and compare them with those obtained by Moses 

(Koehn et al., 2007), the PBSMT system state-of-the-art. This will be made by 

presenting the BLEU evaluation scores of translations of several texts obtained 

by both Moses and Transtor, for several language pairs. A first section will de-

scribe the conditions set to produce the translations to be evaluated, another 
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will describe the data produced by each tool after training, another will show 

the results using common data, another will show additional evaluation scores 

for Transtor, and a final one will analyze and compare results from both sys-

tems. 

The final chapter “Conclusions and Future Work” will be dedicated to the anal-

ysis of the developed work presented here, namely identifying the innovations 

introduced, and refer a few changes already planned in order to deal with iden-

tified limitations of Transtor, aiming at its improvement on both performance 

and quality of results. 
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2 STATE OF THE ART 

This chapter is dedicated to the description of the state-of-the-art of the ele-

ments most relevant to the work presented in this thesis. This chapter will start 

by introducing the main concepts of SMT in Section 2.1, then mention automat-

ic translation evaluation in Section 2.2, present the FCT Alignment in Section 

2.3, introduce the indexing structures in Section 2.4 and provide conclusions in 

Section 2.5 in order to provide a glimpse on how Transtor overcomes some limi-

tations or uses alternative methods to solve more efficiently the same problems 

faced by others. 

2.1 STATISTICAL MACHINE TRANSLATION 

In 1949, at a time when computers were first being considered for the problem 

of natural language translation, Warren Weaver suggested the application of 

statistical and cryptanalytic techniques (Weaver, 1955), after their successful use 

in breaking the Enigma Code. However, computational limitations at the time 

kept this approach from being further explored. 

It was only when such limitation began to fade, in the late 1980’s and early 

1990’s, that Statistical Machine Translation (SMT), an approach to Machine 

Translation (MT), appeared. Such an approach resulted from the back and forth 

movements in the research area of speech recognition, where the application of 

linguistic rules developed for phonetics led Frederick Jelinek to say “every time 

I fire a linguist, the performance of the speech recognizer goes up” because the 

use of Information Theory (Shannon, 1948) and statistics revealed to be more 

beneficial. Not only that, by the end of the eighties it was obvious that the logi-

co-symbolic approach, heavily based on variations of Chomskian Linguistics, 

had failed to reveal Human Languages Code. SMT started to emerge as a new 

research paradigm based on Statistics and on unsupervised Machine Learning 

methods, producing results unthinkable until then (Brown et al., 1988), (Brown 

et al., 1990), (Brown et al., 1991a), (Brown, Lai and Mercer, 1991b), and (Brown 

et al., 1993). 

SMT employs a learning algorithm to a large body of texts and their transla-

tions, forming the so called parallel text (or parallel corpus). From such applica-

tion of the learning algorithm, the learner is then able to translate previously 

unseen sentences. With an SMT toolkit and enough parallel text an MT system 

can be built for any new language pair within a very short period of time. The 

accuracy of these systems depends crucially on the quantity, quality, and do-
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main of the data, but there are many tasks for which even poor translation is 

useful (Lopez, 2008). 

The groundbreaking approach, which resulted from the original work on SMT 

with the pioneer IBM Candide project, continues to influence SMT today, illus-

trating many common modeling concepts (Koehn, 2009). In less than two dec-

ades, SMT has come to dominate the academic MT research, and has gained an 

important share of the commercial MT market. 

The following sections will describe the main principles and methods shared by 

the main SMT approaches that are known, in particular the probability of a 

translation in Sub-Section 2.1.1, the alignment in Sub-Section 2.1.2, the transla-

tion feature models in Sub-Section 2.1.3, and the decoding process in Sub-

Section 2.1.4. Finally, an introduction is presented for the tree-based approaches 

in Sub-Section 2.1.5. 

2.1.1 PROBABILITY OF A TRANSLATION 

The main concept supporting SMT is the definition of 𝑃(𝑒|𝑓) as the probability 

of a translation e given a foreign sentence f. Such probability is usually defined 

as the combination of the probability of smaller parts (words or phrases) that 

compose the given translation and its original sentence. This is because evi-

dence to determine the probability of those smaller parts is more likely to be 

found than for the complete sentences. Following this, the purpose of SMT is 

then to find the combination of smaller parts that produce a translation of a 

complete original sentence for which the probability is the highest (or closest to 

the highest), a process that is called decoding (Sub-Section 2.1.4). 

The following sub-sections will describe the main approaches developed to 

model a translation probability, first describing the pioneer noisy-channel ap-

proach (Sub-Section 2.1.1.1), followed by its generalization into the log-linear 

approach (Sub-Section 2.1.1.2). 

2.1.1.1 Noisy-Channel Approach 

The noisy-channel approach was the probability score applied in the first suc-

cessful statistical approach to language translation, introduced by (Brown et al., 

1988). That statistical approach was word-based and established the concept 

that a string of English words, e, can be translated into a string of French words, 

f, in many different ways, introducing the view that every French string, f, is a 

possible translation of e. As such, to every pair of strings (e, f), a number 𝑃(𝑓|𝑒) 

is assigned, which can be interpreted as the probability of f being a translation 

of e. With these concepts, given a French string f, the purpose of an SMT system 
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is to find the English string ê for which 𝑃(𝑒|𝑓) is greatest, illustrated in Equation 

1. 

ê = argmax
𝑒

𝑃(𝑒|𝑓) 

Equation 1. Obtaining the English string with the greatest probability 

Using Bayes' theorem, 𝑃(𝑒|𝑓) can be written as shown in Equation 2. 

𝑃(𝑒|𝑓) =
𝑃(𝑒)𝑃(𝑓|𝑒)

𝑃(𝑓)
 

Equation 2. Noisy-channel model 

Considering that the denominator is independent of e, finding ê corresponds to 

finding the translation e for which the product 𝑃(𝑒)𝑃(𝑓|𝑒) is the largest. The 

resulting expression is the Fundamental Equation of Machine Translation, 

shown in Equation 3. 

ê = argmax
𝑒

𝑃(𝑒)𝑃(𝑓|𝑒) 

Equation 3. Fundamental equation of machine translation 

The expression in Equation 3 benefits from the combination of the two factors. 

The translation model probability, 𝑃(𝑓|𝑒), is higher for English strings that have 

the necessary words in them to translate the French, but those are not necessari-

ly well-formed. The language model probability, 𝑃(𝑒), is higher for well-formed 

English strings, but those might not correctly translate the French. Together, 

both models produce a large probability for well-formed English strings that 

account well for the French. The advantage of this approach over modeling 

𝑃(𝑒|𝑓) directly is that two independent models can be applied to the disambig-

uation of e (Brown et al., 1990), something that is beneficial because the esti-

mates of each model can contain errors. By applying them together it is hoped 

that the errors of each of the models are compensated by the other model. 

This modeling approach follows the idea introduced by Weaver, who made the 

analogy to information theoretic work (Shannon, 1948), (Shannon, 1951) on sig-

nal transmission over a physical medium, called the noisy channel problem, 

hence the noisy-channel designation of this approach. Weaver suggested the 

following. 

One naturally wonders if the problem of translation could conceivably be 

treated as a problem in cryptography. When I look at an article in Rus-

sian, I say: “This is really written in English, but it has been coded in 

some strange symbols. I will now proceed to decode.” (Weaver, 1955) 
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As a result of the idea introduced by Weaver, the process to recover e is called 

decoding, described in Sub-Section 2.1.4. 

2.1.1.2 Log-Linear Approach 

The log-linear approach (Berger, Pietra and Pietra, 1996), (Och and Ney, 2002) is 

a model structure that is well known in the machine learning community. It 

allows including several models (besides the translation and language models) 

for features that are suspected to contribute to the improvement of translation 

quality. The model is shown in Equation 4. 

𝑃(𝑒|𝑓) = exp ∑ 𝜆𝑖ℎ𝑖(𝑒, 𝑓)

𝑛

𝑖=1

 

Equation 4. Log-linear model 

More specifically, this approach determines the probability of a translation 

through the combination of n feature models ℎ𝑖, with each feature model being 

attributed a feature weight 𝜆𝑖 to express how much the feature contributes to 

the total translation probability score. 

The log-linear model can be seen as a generalization from the earlier noisy-

channel approach (Sub-Section 2.1.1.1), as shown by the following conditions 

 number of feature functions 𝑛 = 2; 

 𝜆1 = 𝜆2 = 1; 

 ℎ1(𝑒, 𝑓) = log(𝑃(𝑓|𝑒)); 

 ℎ2(𝑒, 𝑓) = log(𝑃(𝑒)). 

with which the expression in Equation 5 is produced. 

𝑃(𝑒|𝑓) = exp[1 ∙ log(𝑃(𝑓|𝑒)) + 1 ∙ log(𝑃(𝑒))] = 𝑃(𝑓|𝑒)𝑃(𝑒) 

Equation 5. Noisy-channel model expressed with the log-linear model 

This model does not impose any limitation on the number of features nor on 

what those features are intended to model, which can range from the already 

mentioned translation and language models to morphologic, semantic or prag-

matic models. 

2.1.2 ALIGNMENT 

The alignment is an operation carried out over a pair of parallel texts (texts in 

different languages, with each text being a translation of the other) with the 

purpose of mapping units in one language to units in the other language. Those 

mapped units will then support the creation of the translation tables which, in 

turn, support translation in SMT. Usually, alignment requires that the parallel 



 

17 
 

texts have the same number of lines, with the mapping being carried out within 

each parallel pair of lines. 

The main challenge of the alignment comes from the fact that it is not known 

which units from the source language correspond to which units from the tar-

get language. For this reason, it is necessary to estimate the alignment model 

from incomplete data. As such, the alignment between translation units is “hid-

den from plain view” which is why the alignment is considered a hidden varia-

ble. SMT approaches depend on the resulting mapped units to build their trans-

lation lexica, which can then be used to produce translations. Those corre-

spondences can be scored according to a defined translation model (Sub-Section 

2.1.3.1). 

The first alignment approaches were word-based, meaning that the units to be 

mapped consisted of single words. The word-based approach is described be-

low in Sub-Section 2.1.2.1. The limitations faced by word-based approaches led 

further research towards phrase-based alignment proposals, described in Sub-

Section 2.1.2.2. Additionally, the description of a phrase-based approach using 

word categories instead of literal words, the alignment template approach, is 

included in Sub-Section 2.1.2.3. 

2.1.2.1 Word-Based Alignment 

The purpose of word-based alignment is to map words from a sentence consid-

ered to be the target to words from a sentence considered to be the source 

(Brown et al., 1988), (Brown et al., 1990). Formally, given a sentence 𝑒1
𝐼 with I 

words and a foreign sentence 𝑓1
𝐽 with J words, the goal of word alignment is to 

establish word-to-word correspondences between those sentences. Those corre-

spondences can be represented by a matrix A, such as 𝐴 ⊂ [1, 𝐼] × [1, 𝐽], where 

(𝑖, 𝑗) ∈ 𝐴 if word 𝑒𝑖 is aligned with word 𝑓𝑗. 

An example taken from (Koehn, 2009) is shown in Figure 1, where words in the 

English sentence (rows) are aligned to words in the German sentence (col-

umns), as indicated by the filled points in the matrix. 

The main challenge of this simple approach resides on the fact that a sentence 

expressed in different languages is not guaranteed to have the same number of 

words. This is not only because some words in one language can be translated 

by more than one word, but also because some words may have no direct cor-

respondence in the other language. The concepts of “empty word” (a word 

could remain unmapped) and “word fertility” (a word may be mapped to one 

or more words) were introduced to deal with such situations. 
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Further development of word-based alignment led to its symmetrization (Och, 

Tillman and Ney, 1999), (Koehn, Och and Marcu, 2003). It consists in taking a 

word-based alignment 𝐴0 in one direction (e to f) and a word-based alignment 

𝐴1 in the other direction (f to e), producing a single symmetrized word-based 

alignment A. Some simple criteria of symmetrization consist of the intersection 

(𝐴 = 𝐴0 ∩ 𝐴1), or the union (𝐴 = 𝐴0 ∪ 𝐴1) of the alignments in each direction. 

The intersection produces a higher precision with lower recall, while the union 

produces a higher recall with lower precision. 

An example, taken from (Koehn, 2009) and shown in Figure 2, illustrates the 

intersection (in black) and union (in either black or gray) of a pair of alignments 

taken in each language direction. 

Alternatively, a refined symmetrization method starts from the intersection be-

tween alignments on each direction, iteratively extending the resulting align-

ment by including neighbor elements. In a first step, the intersection 𝐴 = 𝐴0 ∩

𝐴1  is determined. Then, the alignment A is iteratively extended by adding 

alignments (𝑖, 𝑗), occurring only in the alignment 𝐴0 or in the alignment 𝐴1, if 

neither 𝑒𝑖  nor 𝑓𝑗  have an alignment in A, or if the following conditions both 

hold: 

 The alignment (𝑖, 𝑗) has a horizontal neighbor (𝑖 − 1, 𝑗), (𝑖 + 1, 𝑗) or a vertical 

neighbor (𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1) that is already in A. 

 The set 𝐴 ∪ {(𝑖, 𝑗)} does not contain alignments with both horizontal and ver-

tical neighbors. 

Figure 1. Example of word alignment 
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The refined method is often able to improve precision and recall when com-

pared with the initial directed word alignments. 

However, even with symmetrization, single words are still considered single 

units, something that can represent a problem because single words are not the 

best candidates for the smallest units of translation equivalence. In fact, there 

are cases in which contiguous sequences of words are commonly translated as a 

unit, with idiomatic expressions representing a typical example of such cases, in 

which possible word correspondences only make sense in the context of the 

expression being considered. 

A particular example is the translation equivalent “de volta a a estaca 

zero” <=> “back to square one”, which cannot be properly translated 

word by word (a more literal translation into English would be “back to 

pillar zero”). In this case, the best option would be associating “de volta 

a” with “back to”, which is correct, and “a estaca zero” with “square 

one”, which is an association that should only happen within this context. 

Another example is the translation equivalent “clockwise” <=> “em o sen-

tido de os ponteiros de o relógio”, in which 9 words in Portuguese 

correspond to one word in English, pose a challenge to the word-based ap-

Figure 2. Example of symmetrization of IBM model alignments 
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proach. Situations like these are better handled with phrases, inspiring the de-

velopment of phrase-based alignment, described below (Sub-Section 2.1.2.2). 

2.1.2.2 Phrase-Based Alignment 

In phrase-based alignment, the units mapped now consist of phrases which, in 

turn, consist of one or more words, not necessarily following grammatical con-

cerns. As mentioned in word-based alignment (Sub-Section 2.1.2.1), translating 

contiguous sequences of words, like idiomatic expressions, can be more natu-

rally accomplished with phrases. Both the “empty word” translation and “word 

fertility” from word-based alignment are abandoned. Instead, phrases from a 

phrase translation equivalent are nonempty and can have a different number of 

words. 

A typical way to produce phrase-based alignment is from the symmetrization 

of the previous word-based alignments of parallel corpora (Tillmann, 2003), 

(Zhang, Vogel and Waibel, 2003), (Zhao and Vogel, 2005), (Zhang and Vogel, 

2005), (Setiawan, Li and Zhang, 2005). Groups of words that may constitute 

phrase translation equivalents are then identified using consistency rules. A 

phrase pair (𝑒1
𝐼 , 𝑓1

𝐽) is said to be consistent with an alignment A if all words 𝑒𝑖 

from e, that have alignment points in A, have those alignment points with 

words 𝑓𝑗 from f, and vice versa. So, basically, any aligned words from a phrase 

will only align to one or more words from the other. 

As shown in Figure 3, also taken from (Koehn, 2009), the first example is con-

sistent because all aligned words are included in the phrase pair, the second 

example is not consistent because one alignment point in the second column is 

not included in the phrase pair, and the third example is consistent because the 

unaligned word on the right is allowed by the consistency rules. 

However, obtaining phrase-based alignment from previous word-based align-

ment can still face some challenges inherited from the limitations of word-based 

alignment. As noted before, idiomatic expressions, as well as other expressions, 

usually cannot be correctly aligned at a word level (as shown in the example 

“de volta a a estaca zero” <=> “back to square one”), which can 

Figure 3. Examples of consistency and inconsistency 
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consequently limit the quality of phrase-based alignment obtained from word-

based alignment. 

As an alternative to using word-aligned parallel corpus, phrase alignment may 

be done directly from sentence-aligned corpora using a probabilistic model 

(Shin, Han and Choi, 1996), pattern mining methods (Yamamoto et al., 2003), or 

matrix factorization (Goutte, Yamada and Gaussier, 2004). Still, as referred in 

(Koehn, 2009) results are generally no better than learning phrases from word-

alignments. 

In the end, as mentioned in (Lopez, 2008), Phrase-based models have quickly 

become standard, as results have consistently proven to be better than the ones 

obtained by word-based approaches. 

2.1.2.3 Alignment Template 

The alignment template approach (Och and Ney, 2004) is a particular imple-

mentation of a phrase-based model. Instead of using explicit phrase-to-phrase 

translations, this approach associates phrases through an alignment template 

which consists of a reordering of the words composing the phrase. However, 

that reordering is based on word classes (or categories) rather than specific 

words. Those classes are automatically trained bilingual classes using the meth-

od described in (Och, 1999) and constitute a partition of the vocabulary of the 

source and target languages. 

Using classes instead of the actual words improves generalization because, for 

instance, if there are classes in the source and target languages that contain 

town names, it is possible for an alignment template learned using a specific 

town name to be generalized to other town names. Once the words in the 

phrase have been assigned to classes, the words can then be translated using 

word-to-word translation, with the alignment templates being reordered as in 

phrase-based models. 

In sum, the alignment templates are a generalization capability of a bilingual 

phrase lexicon in which words are replaced by word classes and contain the 

alignment information for each phrase pair. However, such alignment infor-

mation is still word-based (or word-class-based, to be more precise), so it will 

still inherit limitations from word-based approaches, in particular when dealing 

with idiomatic expressions. 

2.1.3 TRANSLATION FEATURE MODELS 

In order to determine the probability of a translation (Sub-Section 2.1.1), transla-

tion feature models are considered with the purpose of trying to assess the 
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quality of different specific features that might contribute to the overall quality 

of a translation to be produced. Some feature examples include language fluen-

cy, translation relevance, or even the likeliness of occurrence of a specific word. 

In the case of the noisy-channel approach (Sub-Section 2.1.1.1), only two trans-

lation feature models were considered (the translation model and the language 

model), unlike the log-linear approach (Sub-Section 2.1.1.2), which allows for 

any number of translation feature models. Particularly considering the wide-

spread use of the log-linear approach, the identification of the features that pro-

vide the most significant information about translation quality (feature selec-

tion) is an open problem in SMT, as mentioned in (Lopez, 2008). In fact, as stat-

ed in (Koehn, 2009), millions of features can be introduced to score a translation 

candidate, such as features that can indicate the use of a specific phrase transla-

tion. 

The following sub-sections will describe the most relevant and the most com-

monly used feature models, namely the translation model (Sub-Section 2.1.3.1), 

the language model (Sub-Section 2.1.3.2), the reordering or distortion model 

(Sub-Section 2.1.3.3), and the penalty models (Sub-Section 2.1.3.4). 

2.1.3.1 Translation Model 

The Translation Model (TM) is a statistical model developed with the purpose 

of scoring how likely a translation unit e in one language is to translate a given 

translation unit f in another language. 

The most common approach, resulting from the initial work proposed in 

(Brown et al., 1988) and (Brown et al., 1990), considers the number of times each 

different translation e is associated with f, using the formula in Equation 6, in 

which the 𝑐𝑜𝑢𝑛𝑡(𝑒, 𝑓) function considers the number of associations established 

between e and f. The result is a non-null probability score, where the sum of the 

probabilities of every translation alternative is 1.0, this way constituting a prob-

ability distribution. 

𝑝𝑡𝑚(𝑒|𝑓) =
𝑐𝑜𝑢𝑛𝑡(𝑒, 𝑓)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑒𝑖, 𝑓)𝑛
𝑖=1

 

Equation 6. Formula for the direct translation probability 

Besides the direct translation probability 𝑝𝑡𝑚(𝑒|𝑓), the inverse translation prob-

ability 𝑝𝑡𝑚(𝑓|𝑒) can also be considered. However, such scores reflect how fre-

quently each translation unit in one language has been found together with a 

given translation unit in another language, according to the aligned parallel 

texts from which the model has been produced. The main disadvantage of such 

an approach consists in the inability to provide a higher score to a perfectly cor-
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rect translation that is not so frequently used, and assigning a high score to a 

very frequent translation that might not be the most appropriate choice within a 

given context. One such example is represented by the Portuguese source 

phrase (a single word) “casa”, which might be translated into English by 

“house” or by “gets married”, with the first one generally being much 

more frequent (depending on the texts being analyzed), even though the second 

one is also a perfectly valid translation. 

Additionally, when phrases are the translation units being used, avoiding the 

overestimation of a rare phrase pair is accomplished by decomposing it into its 

word translations and checking how well they match up. The method is called 

lexical weighting, which is basically a smoothing method that uses the richer 

statistics provided by lexical translation to produce more reliable probability 

estimates. Either the direct lexical weighting 𝑙𝑒𝑥(𝑒|𝑓)  or the inverse lexical 

weighting 𝑙𝑒𝑥(𝑓|𝑒), can be considered. However, the main problem with lexical 

weighting is that it cannot be correctly applied to expressions like “clock-

wise” <=> “em o sentido de os ponteiros de o relógio”. 

From my point of view, the choice of a translation phrase, once its correction 

has been determined, should mainly depend on its context and not so much on 

how frequently it has been associated to an original phrase. The translation 

model proposed in this thesis minimizes such problem by admitting more than 

one source of phrase translations separately, as described in Section 3.3.2.1 

ahead. 

2.1.3.2 Language Model 

The Language Model (LM) is a statistical model developed to score the fluency 

of a general sentence, initially proposed and inspired by (Brown et al., 1988) 

and (Brown et al., 1990), measuring how well a sequence of words might be fol-

lowed by another word. 

The generally accepted approach is the n-gram language model which inherits 

its form from speech recognition (Jelinek and Mercer, 1980) and uses the Mar-

kov assumption, which is an independence assumption that breaks a sentence 

probability into the product of the probability of each word given a limited his-

tory of preceding words, instead of a history considering every preceding word. 

More specifically, the fluency score of a sentence with m words 𝑤1, 𝑤2, … , 𝑤𝑚 is 

determined according to the preceding n – 1 words of each 𝑤𝑖, as shown in 

Equation 7. 
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𝑝𝑙𝑚(𝑤1, 𝑤2, … , 𝑤𝑚) = ∏ 𝑝(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

𝑚

𝑖=1

 

Equation 7. Formula for the general language model 

The model is named the n-gram history model, with the most common value of 

n being 3 for the tri-gram language model (Equation 8). 

𝑝𝑙𝑚(𝑤1 , 𝑤2, … , 𝑤𝑚) = ∏ 𝑝(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)

𝑚

𝑖=1

 

Equation 8. Formula for the tri-gram history language model 

Such score reflects how frequently each word follows a set of previous n–1 

words, according to the monolingual texts from which the model has been pro-

duced. 

The main challenge in language models is dealing with sparse data because it 

will make unclear the distinction between something that never occurs and 

something that simply has not been observed. In order to deal with the sparse-

ness, methods such as add-one smoothing, deleted estimation or Good-Turing 

smoothing, for which an efficient implementation is presented by (Gale and 

Sampson, 1995), take probability mass from evident events and assign it to un-

seen events, but this, in turn, prevents an impossible combination from getting 

its adequate probability of zero. 

The main disadvantage of such model has to do with the fact that phrases have 

to be decomposed into their individual words to be checked for their language 

model, when very often those phrases should be considered as a single unit. 

The phrase “in spite of” is such an example, where the probability of “of” 

given the occurrence of the previous two words “in spite” (considering the 

tri-gram history model) is 1 in many texts, meaning that the word “of” is the 

only word that follows “in spite” in those texts. The phrase “in accord-

ance with” can be a similar example. Besides, when both the previous phrase 

examples come after two other words, for instance “the rules”, their contri-

bution will be the same when their first word is analyzed, as both phrases begin 

by “in”. More specifically, the fluency of the phrase “the rules in” will be 

the same in both “the rules in accordance with” and in “the rules 

in spite of”. 

From my point of view, phrases should always be considered as units, which 

do not need to have their internal fluency analyzed. The language model pro-

posed in this thesis implements such an idea by determining the likeliness of 
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adjacent contiguous phrases according to other adjacent alternatives, as de-

scribed in Section 3.3.2.2 ahead. 

2.1.3.3 Reordering or Distortion Model 

The purpose of the reordering or distortion feature, resulting from the original 

work by (Brown et al., 1988) and (Brown et al., 1990), is to model the likelihood 

of translation units changing places when translated. An example of such situa-

tion is the equivalent “European Community” <=> “Comunidade Europe-

ia”, in which a word-by-word translation still requires the words to be 

swapped in order to obtain a correct translation equivalent. 

Modeling such reordering is typically accomplished by a distance-based reor-

dering cost which allows translation units to be moved from their original posi-

tion to another position on the translation. The model penalizes reordering in 

general, leaving to the language model (Sub-Section 2.1.3.2) the responsibility of 

justifying it. The movement of translation units is often limited to a maximum 

number of positions. However, translations between some language pairs may 

require large position movements that can easily exceed the generally small 

windows of words (usually three words) used by the language model. Given its 

limitations, disregarding the reordering model does not significantly affect 

translation quality, but reduces the complexity of the search problem from ex-

ponential to polynomial, turning decoding much faster. Yet, including limited 

reordering still yields better translation results. 

In sum, admitting moves within a window of a few words can be handled by 

the language model, often representing the best that can be done with reorder-

ing. Larger reordering windows or completely unrestricted reordering, besides 

increasing complexity and execution time, often leads to worse results (Koehn, 

2009). 

The lexicalized reordering model (Tillmann, 2004) is an improvement over the 

one simply conditioned on movement distance described above. Such model 

intends to assign a translation unit with a score that will indicate how likely the 

translation unit is to be maintained, swapped with the previous, or placed dis-

continuously. 

2.1.3.4 Penalty Models 

The purpose of the penalty models is to keep a balance between the length of a 

translation and the corresponding source sentence. In the case of the word pen-

alty model, it intends to maintain a balance between the number of words from 

the sentence being translated and its translation. This is mainly because of the 
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preference the language model (Sub-Section 2.1.3.2) has for shorter translations, 

simply because fewer trigrams have to be scored. As such, the penalty model 

helps preventing translations from being too short relatively to its original, and 

is generally responsible for a significant improvement in translation quality. 

Yet, the word penalty model is unable to deal properly with situations in which 

an original sentence and its translation have a significant difference in their cor-

responding number of words. Sentences containing translation equivalents like 

“clockwise” <=> “em o sentido de os ponteiros de o relógio”, 

in which 9 words in Portuguese correspond to 1 word in English, constitute an 

example. 

To deal with such situations, the phrase penalty model was developed, in 

which phases are considered units, instead of single words. In this case, the 

choice is between using either fewer or more phrases. When fewer phrases are 

considered, each phrase will be generally longer than when more phrases are 

considered, in which case each phrase will generally be shorter. In practice, it is 

preferable to use longer phrases, even though these are less frequent. The lack 

of statistical support is generally compensated not only because longer phrases 

include more context but also because the translation model (Sub-Section 

2.1.3.1) has a contribution in filtering bad phrase pairs. 

2.1.4 DECODING 

The objective of decoding is to determine the translation for which the highest 

score is achieved according to a defined translation probability score, usually 

one of the translation probability scores described in Sub-Section 2.1.1: the orig-

inal noisy-channel approach (Sub-Section 2.1.1.1); and the log-linear approach 

generalization (Sub-Section 2.1.1.2), adopted from the machine learning field. 

Decoding is a very hard problem because of the exponential number of possible 

choices for a specific input sentence. In fact, (Knight, 1999) has shown that the 

decoding problem is NP-complete. Consequently, examining all possible trans-

lations, scoring them, and determining the best is computationally too expen-

sive. 

Beam search decoding, described by (Wang and Waibel, 1997) and (Koehn, 

2004), is a general framework followed by almost every approach. Such general 

framework is inspired by speech recognition algorithms which date back to 

(Jelinek, 1969). 

Before translating a sentence, the applicable word or phrase translations are 

obtained from the translation table. Then, a translation is built word by word, 
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until all words have been contemplated in the decoding process. While compos-

ing the translation word by word, partial hypotheses are produced before ob-

taining a complete translation, represented by a complete hypothesis. 

A hypothesis most notably contains information about what translation words 

have been produced, which source words have been covered, and the partial 

translation probability score. So, decoding starts with the empty hypothesis, 

expanding hypotheses whenever a new word is contemplated in the transla-

tion, until complete hypotheses are obtained. 

As mentioned above, the computational complexity of decoding implies the 

need of restricting the search space. Such restriction is accomplished by: 

 hypothesis recombination, in which partial hypotheses that cannot be part 

of the best translation are discarded; 

 pruning out bad hypotheses early on, in which case the translation cost of 

the remaining untranslated words also has to be considered. A fair compari-

son of hypotheses covering different parts of the input sentence implies con-

sidering an estimate of the future cost of translating the rest of the input sen-

tence, called rest cost or outside cost; and 

 including limits on reordering, which significantly reduce the search space. 

The methods mentioned above are heuristic because they do not guarantee to 

always find the best translation, but the best one could be found often enough, 

or at least a translation that is very close to being the best. 

2.1.5 TREE-BASED APPROACHES 

Given that the grammar structure of a sentence is represented in linguistic theo-

ries by a tree structure, it is only natural to try to extend those trees to express 

translation models. Such extension results in synchronous grammars expressed 

by pairs of trees, one for the original sentence and the other for the translation 

sentence. 

A Context-Free Grammar (CFG), can be represented by a tuple (N, T, D), in 

which N represents a set of non-terminal symbols, T represents a set of terminal 

symbols, and D represents a set of productions 𝐷 = {𝑁 → {𝑁 ∪ 𝑇} ∗}, where each 

production defines how a non-terminal symbol can be mapped to a sequence of 

terminal and non-terminal symbols. The popularity of CFG’s in natural lan-

guage parsing comes from the fact that terminal symbols can naturally repre-

sent words and that non-terminal symbols can represent syntactic categories. 

Extending a CFG to express translations is accomplished with a Synchronous 

Context-Free Grammar (SCFG) from a tree-based approach. The grammar of an 
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SCFG is composed of a pair of productions and a definition of a correspondence 

between non-terminals from the productions. The elementary structures of an 

SCFG are rewrite rules of the form 𝑋 → 〈𝐸, 𝐹, 𝑀〉, where X is a non-terminal, E 

and F are both strings of terminals and non-terminals, and M is a one-to-one 

correspondence between non-terminal occurrences in E and non-terminal oc-

currences in F. 

The methods for building phrase models can be used to learn synchronous 

grammars: 

 Extract all rules that are consistent with the carried out word alignment. 

 Create hierarchical phrase pairs by allowing phrases to include other 

phrases. 

 Use syntactic markup to create grammar rules with non-terminal nodes cov-

ering underlying phrase mappings. 

 Estimate probability distributions for grammar rules based on relative 

counts. 

It should be noted that the beam search decoding algorithm for phrase-based 

models (Sub-Section 2.1.4) does not work for tree-based models, since the trans-

lation cannot be built from left to right straightforwardly. Instead, decoding by 

parsing is carried out with a chart parsing algorithm, which may require effi-

cient methods to access grammar rules, as well as recombination, pruning and 

grammar binarization to improve parsing efficiency. Chart parsing was first 

proposed by (Kay, 1985), for which a common approach is a variant of the 

Viterbi algorithm (Viterbi, 1967), but the Earley parser (Earley, 1970) is the one 

mainly used for parsing in computational linguistics, as is the case of SMT. 

2.1.5.1 Hierarchical Approach 

The hierarchical approach (Chiang, 2007) is a phrase-based system that uses 

SCFG rules that can be learned automatically from a parallel text without any 

syntactic annotation. The main productions use a single undifferentiated non-

terminal X, allowing a maximum of two non-terminals in the right-hand side of 

any rule, as well as a number of terminal symbols in both languages. Each rule 

can represent a mapping between phrases, which may be reordered recursively. 

Consider the following grammar fragment. 

 𝐻1: 𝑋 → 𝑡ℎ𝑒 𝑋1 𝑋2 | 𝑋2 𝑜 𝑋1 

 𝐻2: 𝑋 → ℎ𝑎𝑠 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 | 𝑐ℎ𝑒𝑔𝑜𝑢 

 𝐻3: 𝑋 → 𝑝𝑙𝑎𝑛𝑒 | 𝑎𝑣𝑖ã𝑜 
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Recursivity is expressed by rule 𝐻1  which, besides containing the terminal 

equivalence “the” <=> “o” to ensure some lexical evidence, it has the non-

terminals 𝑋1 and 𝑋2. Applying 𝐻3 to instantiate 𝑋1 with “plane” <=> “avião”, 

and applying 𝐻2 to instantiate 𝑋2 with “has arrived” <=> “chegou”, allows 

𝐻1 producing the translation “the plane has arrived” from “chegou o 

avião”, and vice-versa. 

The rule extraction is accomplished using a symmetrized word alignment ob-

tained from a word-aligned parallel corpus calculated on both directions and 

exploring common sub-phrases between consistent aligned phrases, which will 

then have differing parts replaced with non-terminal symbols. The grammar is 

filtered using some constraints in order to avoid producing a very large number 

of rules, an undesirable consequence not only because it significantly burdens 

the process but also because it creates spurious ambiguity, producing many 

different derivations for the same translations. Some constraints examples are 

the following: 

 limiting the phrases to a length of 10 words on either side; 

 limiting the rules to five non-terminals plus terminals on the foreign side; 

 rules can have at most two non-terminals, simplifying the decoder imple-

mentation; 

 non-terminals cannot be adjacent on the foreign side, a major cause of spuri-

ous ambiguity; and 

 a rule must have at least one pair of aligned words, so that translation deci-

sions are always based on some lexical evidence. 

Besides the extracted rules, the process includes a set of special rules, which are 

the glue rules and the entity rules. 

Once rules have been extracted from the training data, X could be the start 

symbol of the grammar, translating new sentences only using the extracted 

rules. However, the grammar may divide a source sentence into segments, 

translating one segment at a time, something that is formalized using the glue 

rules, shown below. Glue rules analyze a start symbol S as a sequence of Xs 

which are then translated without reordering. 

𝑆 → 〈𝑆1𝑋2, 𝑆1𝑋2〉 

𝑆 → 〈𝑋1, 𝑋1〉 

Finally, a specialized set of translation modules are applied in order to translate 

names, dates, numbers, and bylines that might occur in a sentence, inserting 
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those translations into the grammar as new rules. Such rules are called entity 

rules and a generalization example over numbers of years is shown below.  

𝑋 → 〈ℎá 𝑋1 𝑎𝑛𝑜𝑠, 𝑋1 𝑦𝑒𝑎𝑟𝑠 𝑎𝑔𝑜〉 

Penalties are applied on several components: on extracted rules in order to al-

low the model to learn a preference for longer or shorter derivations; on glue 

rules so that the model can learn a preference for hierarchical phrases over a 

serial combination of phrases; on the four types of entity rules (concerning 

numbers, dates, names and bylines) so that the model can learn how much to 

rely on each of them; and, finally, a word penalty, which only considers termi-

nal symbols, is applied on all the rules to learn general preferences. 

The hierarchical approach is a more powerful generalization than the alignment 

template approach (Sub-Section 2.1.2.3). Both use word-based alignment to 

build their generalization bilingual lexica, but the hierarchical approach can be 

recursively applied to any phrase, while the alignment template (Och and Ney, 

2004) only admits words that fit into word classes (Och, 1999) within the 

phrase, with no recursion. 

Because of its flexibility, this approach also faces some challenges. First of all, 

given that the derivations cannot be directly observed, training has to consider 

heuristic approximations. Then, implementing every translation decision as a 

rule application contributes to the very high complexity of the approach, imply-

ing the need of using heuristic methods and the need of introducing constraints, 

as already shown above in the derivation rules. Finally, the cubic complexity of 

the decoding algorithm is reduced to linear at the cost of introducing a length 

limit for spanned sub-strings and the language model is included using a cube 

pruning algorithm. 

2.2 TRANSLATION EVALUATION 

Evaluation of translations is a serious challenge, mainly because each original 

sentence admits many valid translations. In fact, (Hovy, King and Popescu-

Belis, 2002) attribute to Yorick Wilks the remark that “more has been written 

about MT evaluation over the past 50 years than about MT itself”. 

Evaluation carried out by humans is very expensive and time consuming, 

which motivated the development of automatic metrics. Particularly for MT, it 

can be very useful having an automatic metric that quickly allows assessing the 

quality of MT systems, assessing if one system is better than another, or even 

assessing if a change in the system led to an improvement. 
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Automatic metrics involve the use of reference translations. These consist of a 

set of test sentences for which translations made by humans are already availa-

ble. The reasoning behind the use of reference sentences is that a close resem-

blance to a human translation must be an indicator of the good quality achieved 

by an MT system (Papineni et al., 2002). These metrics are based on partial 

string matching between the output and the reference translations.  

The most popular automatic evaluation metric, and the one used for the pre-

sented results (Chapter 4), is BLEU, described in Sub-Section 2.2.1 below. 

2.2.1 BLEU 

The currently most widely used evaluation score is the Bi-Lingual Evaluation 

Understudy (BLEU) (Papineni et al., 2002), in which the matches between the 

output and the reference sentence consider not only the single words but also 

the n-grams up to some maximum n, enabling the metric to reward sentences 

where local word order is closer to the local word order in the reference. 

The generic n-gram precision of order n is expressed in Equation 9. 

precision(𝑛) =
matched_ngrams(𝑛)

total_ngrams(𝑛)
 

Equation 9. The n-gram precision of order n 

The generic BLEU metric, for a maximum order n of n-grams to be matched, is 

defined in Equation 10. 

BLEU(𝑛) = brevity_penalty ∙ exp ∑ 𝜆𝑖 ∙ log(precision(𝑖))

𝑛

𝑖=1

 

Equation 10. The BLEU score of order n 

BLEU considers the number of n-gram matches as a fraction of the number of 

total n-grams in the output sentence, making it a precision-oriented metric. The 

problem with such metrics is that dropping words is not penalized. Such prob-

lem is addressed by BLEU with a brevity penalty, which has the purpose of re-

ducing the score of a produced sentence that is much shorter than its reference. 

The brevity penalty is defined in Equation 11. 

brevity_penalty = min (1,
output_length

reference_length
) 

Equation 11. Brevity penalty 

Typically, the maximum order n of n-grams to be matched is set to 4, in which 

case the metric is then called BLEU-4. Besides, the weights 𝜆𝑖 for the different 
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precisions are all typically set to 1, resulting in the simplified BLEU-4 formula 

expressed in Equation 12. 

BLEU(4) = brevity_penalty ∙ ∏ precision(𝑖)

4

𝑖=1

 

Equation 12. Simplified BLEU score of order 4 

As an example, taken from (Koehn, 2009), consider the sentences below. 

 Reference: Israeli officials are responsible for airport 

security. 

 System A: [Israeli officials] responsibility of [airport] 

safety. 

 System B: [airport security] [Israeli officials are re-

sponsible]. 

The matches from the output of System A consist of a 2-gram match for “Is-

raeli officials” and a 1-gram match for “airport”, while all output 

words of System B have a match, in particular “airport security” is a 2-

gram match and “Israeli officials are responsible” is a 4-gram 

match. Given the n-gram matches, the n-gram precision can be computed, 

which is the ratio of correct n-grams of a certain order n in relation to the total 

number of generated n-grams of that order. Again, considering the example 

sentences above, the 1-gram, 2-gram, 3-gram and 4-gram precisions of each sys-

tem are shown below: 

 System A: the 1-gram precision is 3/6; the 2-gram precision is 1/5; the 3-

gram precision is 0/4; the 4-gram precision is 0/3. 

 System B: the 1-gram precision is 6/6; the 2-gram precision is 4/5; the 3-

gram precision is 2/4; the 4-gram precision is 1/3. 

The fact that if any of the n-gram precisions is 0 will result in the whole score 

also being 0, can become a problem, particularly because the larger the n-grams 

considered, the most likely it is to produce a 0 score. This is why BLEU scores 

are commonly calculated over an entire test set. 

As a final note, BLEU scores are commonly calculated over an entire test set in 

order to reduce the probability of obtaining an n-gram precision of 0, something 

that is most likely to happen for the larger n-grams considered. Avoiding a pre-

cision of 0 is necessary because the whole score would also be 0. 
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2.3 FCT ALIGNMENT 

As mentioned before, two texts in different languages are parallel if each one is 

the translation of the other, and their alignment divides them into text segments 

that should continue to be translations of each other. As such, aligning a pair of 

parallel text C and D implies the determination of their corresponding segmen-

tations {𝐶1, 𝐶2, … , 𝐶𝑘} and {𝐷1, 𝐷2, … , 𝐷𝑘} such that 𝐶𝑖 is a translation of 𝐷𝑖, ∀𝑖: 1 ≤

𝑖 ≤ 𝑘. 

The most explored alignment methodologies, like (Och, Tillman and Ney, 1999), 

(Och and Ney, 2004) or (Koehn, 2004), assume that the beginning and the end of 

both parallel texts should align. As such, with the definition of a rectangle from 

points (0,0), (0,|D|), (|C|,|D|) and (|C|,0), where |C| and |D| represent the 

last offsets of parallel texts C and D, respectively, then points (0,0) and 

(|C|,|D|) define a diagonal from which alignment anchors should not be far. 

So, the chosen alignment anchors will be the ones closer to this “golden” diago-

nal, where the criteria for determining such closeness differ with author. 

Those alignment algorithms determine paragraph and sentence boundaries by 

using all the information available from marked-up texts. Alignment anchors 

for sentence boundaries are then determined using Dynamic Programming al-

gorithms and some other hypothesis. Once sentence boundaries have been set, 

the alignment follows the methodologies described above in Sub-Section 2.1.2. 

In contrast, (Ribeiro, Lopes and Mexia, 2000b), (Ribeiro, Lopes and Mexia, 

2000c), (Ribeiro, Lopes and Mexia, 2000e), (Ribeiro, Lopes and Mexia, 2000f), 

(Ribeiro, Lopes and Mexia, 2000g), (Ribeiro et al., 2001) and (Ribeiro, 2002) con-

sider the alignment problem as a global restriction on possible alignment an-

chors that should be near the golden diagonal. A first approach (Ribeiro, Lopes 

and Mexia, 2000e) used as possible anchors just homograph tokens (like num-

bers, proper names and punctuation signs) having the same number of occur-

rences in the two parallel texts, enabling (Ribeiro, 2002) to determine by linear 

regression the best fit to be closer the golden diagonal. Then, by applying statis-

tical filtering algorithms, outliers were removed while unfiltered pairs were 

used as anchors to break the whole texts into smaller segments. The same pro-

cedures were applied recursively to these text segments until no more anchors 

were found. 

In a subsequent approach (Ribeiro et al., 2001), the number of candidate align-

ment anchors was considerably enlarged by taking into account possible cog-

nates with identical frequency. This decision was considered because European 

languages have a significant number of cognates (words having similar forms 
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and meaning the same, as is the case for “constitution” and “constitui-

ção”), for which homographs are a particular case. Following this idea, (Ribeiro 

et al., 2001) extracted gapped and contiguous homograph sequences of charac-

ters from the joining of the two texts to be aligned. The technique employed in 

extracting these sequences was the one which originated Gael’s Ph.D. Thesis 

(Dias, 2002) and (Silva et al., 1999) now applied to character sequences instead 

of word sequences. The objective was to identify possible cognates. 

By observing that the Confidence Band filter from the previous approach was 

processing demanding and discarded a significant number of perfectly good 

candidate alignment anchors, (Ildefonso and Lopes, 2005) substituted that filter 

by the Longest Sorted Sequence Algorithm and used the Levenshtein Distance 

(or edit distance) to determine possible candidate cognates, instead of using the 

method proposed by (Ribeiro et al., 2001) for cognate extraction. 

In the latest approach, the FCT Aligner (Gomes, Aires and Lopes, 2009), statisti-

cal filters were dropped as well as the hypothesis of identical number of single-

word and multi-word translations, that had been previously automatically ex-

tracted and validated and were used as candidate anchors. Also, it simplified 

many procedures, abandoned the filters used as mentioned above, and estab-

lished the phrase as the unit considered for alignment anchors. This alignment 

approach was named after the institution in which it was developed: 

FCT/UNL. 

The FCT Aligner, used by Transtor, produces a symmetrical phrase-based 

alignment, relying on validated bilingual phrase lexica to identify relations be-

tween phrases of parallel texts to produce a monotonic alignment. The relations 

between text fragments are expressed through the alignment segments, which 

are classified as “recognized” if the relations result from any evidence indicat-

ing that the text fragments involved constitute a translation equivalent. 

EN PT 

Eurojust ' s mission shall be to 

support and strengthen coordina-

tion and cooperation between na-

tional investigating and prosecut-

ing authorities in relation to 

serious crime affecting more than 

one European country . 

A Eurojust tem por missão apoiar e 

reforçar a coordenação e a coope-

ração entre as autoridades nacio-

nais competentes para a investiga-

ção e o exercício de a acção penal 

em matéria de criminalidade grave 

que afecte mais de o que um país 

Europeu . 

Table 1. Fragment of parallel texts. 

Table 1 shows a sample of a pair of parallel texts, in English and Portuguese. 

The equivalence between those texts can be further refined, establishing corre-

spondences between smaller parallel text fragments as the ones produced by 
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the FCT Alignment presented in Table 2, where the “recognized” column con-

tains ‘*’ characters marking phrase pairs considered to be translations because 

some evidence has been found confirming such relation, like being found in a 

validated bilingual phrase lexicon used to assist in the alignment process. Such 

recognized phrase pairs are called “alignment anchors”. 

Any segments occurring between recognized segments (or between a recog-

nized segment and either the beginning or the end of the text) are considered to 

be implicit, because they are not directly supported by acquired and validated 

translation knowledge about word and multi-word translations. Those implicit 

segments can occur either because they are not indeed proper translations, be-

cause the aligner did not have enough evidence to identify them as translations, 

or because of an error resulting from some misalignment, like the one in the 

example shown in Table 4, described ahead. 

# EN recognized PT 

1 Eurojust ' s   A Eurojust tem por  

2 mission * missão 

3 shall be to support   apoiar  

4 and * e 

5 strengthen   reforçar  

6 
coordination and coopera-

tion 
* 

a coordenação e a coopera-

ção 

7 between * entre 

8 
national investigating and 

prosecuting  
  

9 authorities * as autoridades 

10 
 

 
nacionais competentes para 

a investigação e o exercí-

cio de a acção penal  

11 in relation to * em matéria de 

12 
 

 criminalidade  

13 serious * grave 

14 crime   
 

15 affecting * que afecte 

16 more than * mais de o que 

17 one * um 

18 European country * país Europeu 

19 . * . 

Table 2. An alignment example 

Even though the FCT Aligner was unable to find evidence to recognize the im-

plicit segments, many of those segments represent correct phrase translations. 

Examples of both situations can be found on Table 2 above, where implicit en-

try 5 corresponds to a correct equivalent (“strengthen” is a translation for 
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“reforçar”) while implicit entry 3 does not (“shall be to support” is 

not a translation for “apoiar”). Additionally, a recurring pattern in the Eng-

lish/Portuguese language pair, already explored in (Aires, Lopes and Gomes, 

2009), can be identified from the structure of the alignment segments, consisting 

of a word or phrase aligning with nothing before and after an alignment an-

chor. Entries from Table 2 “” <=> “criminalidade” (entry 12), “serious” 

<=> “grave” (entry 13), and “crime” <=> “” (entry 14) verify such pattern 

and, guided by it, it is possible to extract the correct translation equivalent “se-

rious crime” <=> “criminalidade grave”. 

Exploring the above allows the identification of additional phrase translations 

which contribute to a higher phrase translation coverage, or higher recall. The 

extraction of phrase translations is described ahead in more detail (Section 

3.3.1), and those phrase translations are then used to compose translations of 

complete texts (Section 3.4). 

However, as noted above, these implicit segments do not always correspond to 

correct equivalents and should be considered with caution, simultaneously try-

ing to avoid incorrectly associated entries while trying to avoid discarding cor-

rect associations (Section 3.3.2.1). 

Another important feature of the FCT Aligner is its ability to improve the 

alignment quality with the improvement of the verified bilingual phrase lexi-

con. Table 3 shows a small sample of a pair of parallel texts that will be used to 

illustrate how the alignment evolved between iterations in which new infor-

mation is included in the verified bilingual phrase lexicon. 

EN PT 

… use the following bridging ta-

bles in their regular monitoring 

of the consistency between … 

… utilizam as seguintes tabelas 

de correspondência a o controla-

rem regularmente a coerência en-

tre … 

Table 3. Sample of a pair of parallel texts 

Table 4 shows an alignment, obtained for the pair of parallel texts illustrated in 

Table 3, which suffers from some misalignment. Such situation results from the 

incorrect association between the English article “the” and the Portuguese 

preposition “a” in segment 9, when the correct association would have been 

between the English article “the” in segment 9 and the Portuguese article “a” 

in segment 10. Without enough information, the choice is ambiguous and, in 

this case, the wrong choice was made. 
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# EN recognized PT 

1 use * utilizam 

2 the * as 

3 following * seguintes 

4 bridging   

5 tables * tabelas 

6 in their regular monitoring   

7 of * de 

8   correspondência 

9 the * a 

10   o controlarem regularmente a 

11 consistency * coerência 

12 between * entre 

Table 4. First iteration alignment 

However, the alignment is significantly improved when the equivalent “in 

their regular monitoring of” <=> “a o controlarem regular-

mente” (a correct nonliteral translation, highlighted in bold in Table 4) is in-

serted, in which case a subsequent processing of the aligner produces the 

alignment depicted in Table 5, where the mentioned phrase translation equiva-

lent is captured in segment 7, improving the alignment quality and identifying 

the translation equivalent “the” <=> “a”, in segment 8, between the correct 

instances of “the” and “a”. 

# EN recognized PT 

1 use * utilizam 

2 the * as 

3 following * seguintes 

4 
 

 tabelas de 

5 bridging * correspondência 

6 tables  
 

7 in their regular monitoring of * a o controlarem regularmente 

8 the * a 

9 consistency * coerência 

10 between * entre 

Table 5. Improved alignment after iteration 

While in situation depicted in Table 4, the alignment was made by the known 

translation pair “tables” <=> “tabelas” due to local misalignment, in Table 

5, due to better alignment, the aligner prefers to use the translation pair 

“bridging” <=> “correspondência” because it is longer, in number of 

characters than “tables” <=> “tabelas”. Such improvement allows the iden-

tification of the equivalent “bridging tables” <=> “tabelas de corre-

spondência” in a sub-sequent use of the re-aligned parallel text to extract con-
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tiguous phrase translation equivalents (Section 3.3.1). With the additional iden-

tified equivalent, the alignment would be further improved, as shown in Table 

6. 

# EN recognized PT 

1 use * utilizam 

2 the * as 

3 following * seguintes 

4 bridging tables * tabelas de correspondência 

5 in their regular monitoring of * a o controlarem regularmente 

6 the * a 

7 consistency * coerência 

8 between * entre 

Table 6. Further alignment improvement 

As a conclusion, it should be pointed out that other alignment procedures do 

not keep any memory of previously identified translation equivalents, so re-

training those translation engines might produce slightly different results simp-

ly because of approximation techniques like hill-climbing, but any improve-

ment will never be significant. With the FCT Alignment, using translation pairs 

that were previously memorized allows alignments to evolve and improve at 

each subsequent retraining process and, with it, the quality of newly extracted 

translation pairs and the quality of the translations made also improves. 

2.4 INDEXING STRUCTURES 

Several calculation stages in Transtor require the identification of unique 

phrases, fast counting of occurrences and fast access to all their occurrences. A 

unique phrase is considered a unique word or multi-word term despite the 

number of occurrences the phrase has in a text. As an example, consider the text 

“rose is a rose is a rose is a rose”. The text has 3 unique phrases 

of one word (“rose”, “is”, “a”) and 1 unique phrase of 3 words (“is a 

rose”) which occurs 3 times.  

Many of those requirements have already been met in previous work done in 

phrase translation extraction (Aires, Lopes and Gomes, 2009) and, before that, 

in multi-word expressions extraction (Aires, Lopes and Silva, 2008), which in-

volved the use of Suffix Arrays and other support structures. Such previous 

work was also reused and adapted to support the following Transtor tasks: 

 extraction of contiguous phrase translations from aligned parallel corpora 

(Section 3.3.1); 

 calculation of the phrase translation model (Section 3.3.2.1); and 

 calculation of the phrase language model (Section 3.3.2.2). 
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This section is dedicated to the description of the structures, in their original 

character-based form, for a generic text T having a generic size of N characters. 

Suffix Arrays (Sub-Section 2.4.1) are the basic indexing structures, having addi-

tional structures built on top of them to support and improve some text analysis 

features, like term frequency, occurrence identification and unique phrase iden-

tification. Those additional structures consist of the LCP Array (Sub-Section 

2.4.2), the Suffix Class Array (Sub-Section 2.4.3) and the Term Array (Sub-

Section 2.4.4). Each individual structure is described in the following sub-

sections, using text T = to_be_or_not_to_be when necessary to exemplify 

some concepts, where the ‘_’ character represents a space. 

2.4.1 SUFFIX ARRAY 

Suffix Arrays (Manber and Myers, 1990) are an indexing structure, calculated 

using a very efficient suffix sort algorithm (Larsson and Sadakane, 1999), allow-

ing efficient access to term occurrences and efficient determination of term fre-

quency. To better understand this structure, consider the text T along with the 

offsets of each character, as shown in Table 7. 

T t o _ b e _ o r _ n o t _ t o _ b e 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Table 7. Text T with its offsets 

First of all, each offset i represents a suffix from T, consisting on a string com-

posed by the characters from offset i through offset N–1, represented by T[i, N–

1], or simply T[i]. Table 8 shows the suffixes of T. 
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i T[i] 

0 to_be_or_not_to_be 

1 o_be_or_not_to_be 

2 _be_or_not_to_be 

3 be_or_not_to_be 

4 e_or_not_to_be 

5 _or_not_to_be 

6 or_not_to_be 

7 r_not_to_be 

8 _not_to_be 

9 not_to_be 

10 ot_to_be 

11 t_to_be 

12 _to_be 

13 to_be 

14 o_be 

15 _be 

16 be 

17 e 

Table 8. Suffixes from T 

Each index i of a Suffix Array contains an index SA[i] of text T, representing a 

suffix T[SA[i]]. The Suffix Array will store the suffixes in lexicographical order 

such that T[SA[i]] < T[SA[i+1]], as shown in Table 9. Such order allows efficient 

binary phrase search in P∙log(N) time complexity, with P corresponding to the 

character length of the phrase being searched. 
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i SA[i] T[SA[i]] 

0 15 _be 

1 2 _be_or_not_to_be 

2 8 _not_to_be 

3 5 _or_not_to_be 

4 12 _to_be 

5 16 be 

6 3 be_or_not_to_be 

7 17 e 

8 4 e_or_not_to_be 

9 9 not_to_be 

10 14 o_be 

11 1 o_be_or_not_to_be 

12 6 or_not_to_be 

13 10 ot_to_be 

14 7 r_not_to_be 

15 11 t_to_be 

16 13 to_be 

17 0 to_be_or_not_to_be 

Table 9. Suffix Array of T 

As a consequence of the lexicographical order, references to common prefixes of 

suffixes are located next to each other. Some examples are the range of entries 

10 through 13 of Table 9, which share the common prefix “o”, the range of en-

tries 15 through 17, which share the common prefix “t”, and entries 16 and 17, 

which share the prefixes enumerated in Table 10. The Suffix Classes (Sub-

Section 2.4.3) take advantage of this locality property to efficiently identify 

unique phrases sharing the same frequency. 

prefix 

to_be 

to_b 

to_ 

to 

t 

Table 10. Character prefixes of the phrase to_be 

The Suffix Array will have some of its features enhanced by the structures de-

scribed in the following sub-sections: the LCP Array, the Suffix Class Array and 

the Term Array. Those structures will improve the identification of unique 

phrases, the determination of the term frequency of those unique phrases, and 

the identification of every occurrence of a given unique phrase. 
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2.4.2 LCP ARRAY 

The Longest Common Prefix (LCP) between two character strings consists of 

the number of contiguous common characters, determined from the start of 

both strings. In other words, the counting process starts from the first characters 

of both strings and increments the count for every common character between 

those strings until a different one is found. Table 11 shows a few examples, 

where the common prefix between “phrase 0” and “phrase 1” is highlighted in 

bold and explicitly shown in “common prefix”. 

phrase 0 phrase 1 
common 

prefix 
LCP 

abc abd ab 2 

abc bbc <empty> 0 

abc acb a 1 

Table 11. lcp values for some phrases 

The LCP Array (Yamamoto and Church, 2001) keeps the LCP values for every 

adjacent Suffix Array entry, in which LCP[i] consists of the lcp value between 

suffixes T[SA[i]] and T[SA[i–1]]. Table 12 shows the LCP Array of the Suffix Ar-

ray depicted in Table 9. An LCP Array will have N+1entries, with its limit val-

ues set to 0. The limit values are: 

 LCP[0] – referring to suffixes T[SA[–1]] and T[SA[0]], in which SA[–1] is out 

of the Suffix Array bounds; and 

 LCP[N] – referring to suffixes T[SA[N–1]] and T[SA[N]], in which T[SA[N]] 

is out of the Suffix Array bounds. 

As an example, entry 17 from Table 12 corresponds to suffix array entries 16 

and 17 represented in Table 9. Those entries correspond to “to_be” and 

“to_be_or_not_to_be”, respectively, having “to_be” as their longest com-

mon prefix. This common prefix has a length of 5 characters and, therefore, the 

LCP value between those entries is 5. 
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i T[SA[i – 1]] T[SA[i]] 
common 

prefix 
LCP[i] 

0 <out of bounds> _be <empty> 0 

1 _be _be_or_not_to_be _be 3 

2 _be_or_not_to_be _not_to_be _ 1 

3 _not_to_be _or_not_to_be _ 1 

4 _or_not_to_be _to_be _ 1 

5 _to_be be <empty> 0 

6 be be_or_not_to_be be 2 

7 be_or_not_to_be e <empty> 0 

8 e e_or_not_to_be e 1 

9 e_or_not_to_be not_to_be <empty> 0 

10 not_to_be o_be <empty> 0 

11 o_be o_be_or_not_to_be o_be 4 

12 o_be_or_not_to_be or_not_to_be o 1 

13 or_not_to_be ot_to_be o 1 

14 ot_to_be r_not_to_be <empty> 0 

15 r_not_to_be t_to_be <empty> 0 

16 t_to_be to_be t 1 

17 to_be to_be_or_not_to_be to_be 5 

18 to_be_or_not_to_be <out of bounds> <empty> 0 

Table 12. LCP Array of Suffix Array from text T 

The main purpose of this structure is to assist in the construction of the Suffix 

Class Array, described in Sub-Section 2.4.3 below. 

2.4.3 SUFFIX CLASS ARRAY 

A Suffix Class represents a set of Suffix Array prefixes sharing the same fre-

quency. The Suffix Class Array is calculated by an algorithm (Yamamoto and 

Church, 2001) based on suffix arrays for computing the term frequency (and 

other statistics, like document frequency) for all substrings in a corpus in 

𝑂(𝑁 log 𝑁) time, even though there are N(N + 1)/2 such substrings in a corpus 

of size N, grouping the N(N + 1)/2 substrings into at most 2N – 1 equivalence 

classes. By grouping substrings in this way, many of the statistics of interest can 

be computed over the relatively small number of classes, which is manageable, 

rather than over the quadratic number of substrings. Table 13 shows the Suffix 

Class Array of T. 
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i LBL SIL lb rb tf phrase 

0 0 1 0 4 5 _ 

1 1 3 0 1 2 _be 

2 3 16 1 1 1 _be_or_not_to_be 

3 1 10 2 2 1 _not_to_be 

4 1 13 3 3 1 _or_not_to_be 

5 1 6 4 4 1 _to_be 

6 0 2 5 6 2 be 

7 2 15 6 6 1 be_or_not_to_be 

8 0 1 7 8 2 e 

9 1 14 8 8 1 e_or_not_to_be 

10 0 9 9 9 1 not_to_be 

11 0 1 10 13 4 o 

12 1 4 10 11 2 o_be 

13 4 17 11 11 1 o_be_or_not_to_be 

14 1 12 12 12 1 or_not_to_be 

15 1 8 13 13 1 ot_to_be 

16 0 11 14 14 1 r_not_to_be 

17 0 1 15 17 3 t 

18 1 7 15 15 1 t_to_be 

19 1 5 16 17 2 to_be 

20 5 18 17 17 1 to_be_or_not_to_be 

Table 13. Suffix Class Array of Suffix Array from text T 

The column headers represent the following: 

 LBL (Longest Bounding LCP): only prefixes with length greater than this 

number belong to the Suffix Class. For instance, Suffix Class 7, with an LBL 

of 2, represents phrases “be_”, “be_o”, …, “be_or_not_to_be”, 

excluding prefixes “b” and “be” because their lengths are not greater than 2, 

belonging to Suffix Class 6. 

 SIL (Shortest Interior LCP): corresponds to the length limit of the prefixes 

represented by the Suffix Class. 

 lb: the index of the left most Suffix Array entry having a prefix belonging to 

the Suffix Class. As an example, the lb of Suffix Class 11 is 10. 

 rb: the index of the right most Suffix Array entry having a prefix belonging 

to the Suffix Class. As an example, the rb of Suffix Class 11 is 13. 

 tf: the term frequency of all the phrases represented by the Suffix Class, 

corresponding to rb–lb+1. 
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prefix 

t_to_be 

t_to_b 

t_to_ 

t_to 

t_t 

t_ 

Table 14. Prefixes represented by Suffix Class 18 

As another example, Table 14 shows the character prefixes represented by the 

Suffix Class Array entry 18 on Table 13, to which prefix “t” does not belong 

because it does not share the same frequency, being represented by the Suffix 

Class Array entry 17. Each Suffix Class identifies the occurrences of the prefixes 

it represents through the range of Suffix Array indices represented by lb and rb. 

A Suffix Class Array is built with the aid of the LCP Array and there can be at 

most 2N–1 Suffix Classes, as shown in (Yamamoto and Church, 2001). Now, the 

fact that common prefixes with a common frequency are represented by the 

same Suffix Class poses a problem when those common prefixes need to be dis-

tinguished. The Term Array was designed to overcome such limitation, de-

scribed in Sub-Section 2.4.4 below. 

2.4.4 TERM ARRAY 

As noted above, two different phrases in which one is a prefix of the other and 

having both the same frequency are represented by the same Suffix Class, but it 

might be necessary to deal with both phrases separately. For instance, if 

“presidente de a república” occurs the same number of times as 

“presidente”, they will be represented by the same Suffix Class, but they 

need to be separated to allow the identification of their separate translations. 

The Term Array (Aires, Lopes and Silva, 2008) is built by unfolding every Suffix 

Class to show all their prefixes, and each such prefix originates a Term Array 

entry. As an example, Suffix Class entry 18 is unfolded into the prefixes it rep-

resents, shown in Table 14. Table 15 shows the Term Array of text T. 

 

 

 

 

 



 

46 
 

 

i SC index phrase 

0 0 _ 

1 1 _b 

2 1 _be 

3 2 _be_ 

4 2 _be_o 

5 2 _be_or 

6 2 _be_or_ 

7 2 _be_or_n 

8 2 _be_or_no 

9 2 _be_or_not 

10 2 _be_or_not_ 

11 2 _be_or_not_t 

12 2 _be_or_not_to 

13 2 _be_or_not_to_ 

14 2 _be_or_not_to_b 

15 2 _be_or_not_to_be 

16 3 _n 

… … … 

133 19 to 

134 19 to_ 

135 19 to_b 

136 19 to_be 

137 20 to_be_ 

138 20 to_be_o 

139 20 to_be_or 

140 20 to_be_or_ 

141 20 to_be_or_n 

142 20 to_be_or_no 

143 20 to_be_or_not 

144 20 to_be_or_not_ 

145 20 to_be_or_not_t 

146 20 to_be_or_not_to 

147 20 to_be_or_not_to_ 

148 20 to_be_or_not_to_b 

149 20 to_be_or_not_to_be 

Table 15. Term Array (partial) 

The SC index is the index of the corresponding entry in the Suffix Class Array. 

A Term Array entry represents a unique phrase, allowing access to all the corre-

sponding occurrences of the given phrase through the corresponding Suffix 

Class (through the SC index). 
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Introducing a limit of L characters to avoid the analysis of extremely large 

terms, and knowing that there will be at most 2N–1 Suffix Classes (Yamamoto 

and Church, 2001), each Suffix Class will generate L Terms in the worst case, so 

the number of elements of this structure would be (2N–1)L. Knowing that L is a 

constant much smaller than N, the resulting size complexity is O(N). 

2.5 CONCLUSIONS 

This section discusses the main SMT concepts along with their implementa-

tions, introduced in the previous sub-sections, focusing on flaws and proposing 

improvements, this way preparing for the introduction of the advantages 

achieved by the alternatives supporting Transtor. 

Starting by the probability score of a translation (Sub-Section 2.1.1), being de-

fined as a product of probabilities (the log-linear model, described in Sub-

Section 2.1.1.2, is an alternative way to represent a product of scores) of smaller 

parts or components, the main flaw that could be identified is its sensitivity to 

low values, reflecting those low values throughout a complete translation can-

didate being scored. In particular, null values have to be avoided, possibly in-

troducing other errors. The alternative presented here (Sub-Section 3.4.7) con-

sists in the definition of a simple score based on an average of feature models 

which prevents any low values from ruining the score of a generically accepta-

ble translation candidate, even allowing them to be null. From my perspective, 

such an approach allows a better assessment of the quality of a translation can-

didate, as will be shown ahead. 

In case of the alignment and extraction of translation equivalents, the original 

word-based approaches (Sub-Section 2.1.2.1) are being gradually replaced by 

phrase-based ones (Sub-Section 2.1.2.2), but these are still mostly based on a 

primary word-based stage that is processed to produce a phrase-based result. 

Even the generalization proposal of the alignment template (Sub-Section 2.1.2.3) 

considers categories of words. None of these cases considers previous 

knowledge, neither in an earlier nor in a later stage. This is in contrast with the 

alignment approach (Section 2.3) that supports the system presented in this 

document, which considers phrases, not as a simple composition of words, but 

as basic translation units, and also considers previous knowledge already vali-

dated. 

The widely used log-linear approach (Sub-Section 2.1.1.2) admits the inclusion 

of any number of translation feature models that will contribute to assess the 

quality of a translation candidate. Yet, the most common translation feature 

models are the translation model (Sub-Section 2.1.3.1), the language model 
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(Sub-Section 2.1.3.2), the reordering model (Sub-Section 2.1.3.3) and the penalty 

model (Sub-Section 2.1.3.4). In fact, the ability to include a great number of fea-

ture models might not necessarily be an advantage since the task of identifying 

relevant features can also be overwhelming (Sub-Section 2.1.3). Transtor, how-

ever, only focuses on a very simple set of feature models (translation model, 

language model and penalty model), also common amongst SMT approaches, 

but the ones supporting Transtor can be set apart from the main approaches, as 

will be seen ahead. 

The translation model (Sub-Section 2.1.3.1) applied to phrases, besides consider-

ing the conditional probability of a phrase translation equivalent, on both trans-

lation directions, based on the number of times they have been associated in a 

given parallel corpus, it can also consider the lexical weighting by analyzing the 

individual words composing the phrases involved in the equivalent so, once 

again, words are considered. The translation model approach presented here 

(Sub-Section 3.3.2.1) will consider phrases as units not to be decomposed and 

will simply use a simple conditional probability based on the number of times 

they have been associated in a given parallel corpus aligned with the FCT 

Alignment (Section 2.3). The language model (Sub-Section 2.1.3.2) is another 

example in which the word-based approach prevails, instead of a truly phrase-

based approach. Such model will consider the n-gram history of words compos-

ing a sentence translation candidate independently of how those words were 

produced, either from a single phrase of n words or from a composition of n 

individual words. The language model approach presented here (Sub-Section 

3.3.2.2) distinguishes such different situations of sentence composition while 

considering combinations of phrases with one or more words and not just sin-

gle words. The penalty model (Sub-Section 2.1.3.4) is yet another feature model 

that is frequently considered at the word level by most approaches whereas 

Transtor takes into account the number of phrases. In sum, most approaches 

claim to be phrase-based simply because they identify translation equivalents of 

phrases, but those phrase translation equivalents are mostly produced from 

word-based alignments, as well as the remaining models will also consider 

those phrases at their word level. 

In this thesis, I argue that a word level approach is not the most adequate for 

translation since there are many phrases that should not be analyzed at the 

word level, as shown by the English/Portuguese translation equivalents “in 

accordance with” <=> “de acordo com”, “however” <=> “em o en-

tanto”, “considering” <=> “tendo em conta”, or “back to square 

one” <=> “de volta a a estaca zero”, to name only a few examples. As 
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such, phrases should be considered as units, not only while extracted but also 

on the remaining components and stages of the translation process. Such an 

approach is the one followed by Transtor, which also includes validated phrase 

translation lexica, mainly because phrase translations should not have to be 

learned over and over again. The inclusion of supervision by validating transla-

tion pairs extracted and classified and by including post-edited versions of new 

texts translated by the system provides an additional level of quality. 

The most popular decoding algorithm (Sub-Section 2.1.4) produces partial hy-

potheses on-demand and requires a cover vector to keep track of the words al-

ready covered in the translation. In contrast, Transtor will first produce a com-

plete graph of the possible translations which will then be traversed with a few 

optimizations, while the phrases covered are implicitly tracked by the graph 

(Sub-Section 3.4.8). 

The representation power of a tree-based approach implementation like the hi-

erarchical approach (Sub-Section 2.1.5.1) is ensured at the cost of representing 

every phrase translation as a rule and at the cost of including some special set of 

rules (the glue rules). Such decision implies carrying out its decoding as chart 

parsing because there is no obvious way to build the translation from left to 

right as with beam search decoding. In contrast, the translation patterns (Sub-

Section 3.1.1.2) provide Transtor with additional representation power by simp-

ly enabling the rearrangement of the translation graph. This allows the initial 

contiguous phrase translation equivalents (Sub-Section 3.1.1.1), which cover a 

significant number of cases, to be used as always while leaving unchanged the 

initial decoding algorithm developed for Transtor (Sub-Section 3.4.8). 

Additionally, the use of suffix arrays and their related structures (Sub-Section 

2.4) provides an efficient and compact support for the retrieval operations re-

quired by Transtor. 
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3 TRANSLATION PROCESS 

The translation process presented in this thesis, Transtor, has several essential 

procedures and components that differ from the ones presented in the state-of-

the-art, allowing Transtor to obtain the competitive results presented in Chap-

ter 4. It is possible to state that the translation process is divided into three im-

portant steps: pre-processing, training and translation. 

In this section, I introduce the implementation details of Transtor, distinguish-

ing the three mentioned stages of the complete process. After the details, Sec-

tion 3.5 presents the main differences between Transtor and Moses, the most 

used state-of-the-art translation engine, as well as the justifications for the 

choices made in Transtor implementation. 

3.1 UNDERLYING CONCEPTS 

Before moving to the details, I introduce some key concepts which are crucial 

for the several stages of the translation process, namely the notion of phrase 

translation equivalents, contiguous and non-contiguous, the importance of a 

verified bilingual phrase lexicon and the data structures presented in Section 

2.4, with some adaptations made specifically for Transtor. 

3.1.1 PHRASE TRANSLATION EQUIVALENTS 

A phrase translation equivalent consists of a pair of phrases, in different lan-

guages, where each phrase is a translation of the other (some examples are 

“house” <=> “casa” and “considering” <=> “tendo em conta”). Phrase 

translation equivalents are the building blocks of the system presented here 

since translations of complete texts are produced by dividing the text into 

phrases (taken as sequences of words, not necessarily with any linguistic or 

grammatical sense), obtaining the translations of those phrases and combining 

those phrase translations to produce the translation of the whole text. These 

equivalents can either be contiguous (Sub-Section 3.1.1.1) or non-contiguous 

(Sub-Section 3.1.1.2), where both types complement each other and are ex-

plained in detail in the sub-sections below. 

3.1.1.1 Contiguous Phrase Translation Equivalents 

Both phrases composing a contiguous phrase translation equivalent are contig-

uous, as implied by the type name. Table 16 shows some examples for the Eng-

lish-Portuguese language pair, which has some highlighted parts that will be-

come evident in the next sub-section. 

 



 

52 
 

# EN PT 

1 house casa 

2 park parque 

3 considering tendo em conta 

4 in case of em o caso de 

5 in accordance with de acordo com 

6 with respect to em o que toca a 

7 in spite of apesar de 

8 European Community Comunidade Europeia 

9 European Council Concelho Europeu 

10 serious crime criminalidade grave 

11 international law legislação internacional 

12 social policy política social 

13 turn the light off desligar a luz 

14 turn all lights off desligar todas as luzes 

15 turn each light off desligar cada luz 

16 turn every light off desligar todas as luzes 

17 turn many lights off desligar muitas luzes 

18 turn some lights off desligar algumas luzes 

19 bring a case against instaurar um caso contra 

20 bring the process against instaurar o processo contra 

21 bring all cases against instaurar todos os casos contra 

Table 16. Contiguous phrase translation equivalents 

Contiguous phrase translation equivalents cover a significant number of trans-

lation equivalents, which can be composed by one of the following: a pair of 

single-words; a single-word and a multi-word; or a pair of multi-words. 

Equivalents composed by a pair of single-words are mandatory (like entries 1 

and 2 in Table 16), but there are also many situations in which a single-word 

requires a multi-word translation and vice-versa, like “considering” <=> 

“tendo em conta” (entry 3 in Table 16), strengthening the idea that some 

multi-word phrases should be considered units. Now, translations involving a 

pair of multi-words are also very common. In some cases, those equivalents can 

result from the composition of smaller translation equivalent units, like “in 

case of” <=> “em o caso de” (entry 4 in Table 16), sometimes involving 

reordering, like “European Community” <=> “Comunidade Europeia” 

(entry 8 in Table 16). Still, such equivalents are included in the verified bilingual 

phrase lexicon because they can be used very frequently, this way avoiding ad-

ditional processing with a simple retrieval operation over such lexicon. 

Nonetheless, for translation equivalents involving a pair of multi-words, estab-

lishing internal relations is not always clear, for which idiomatic expressions are 

very good examples. Some of those equivalents only allow a partial internal 



 

53 
 

equivalence relation, like “in accordance with” <=> “de acordo com” 

(entry 5 in Table 16), in which internal equivalence relations “accordance” 

<=> “acordo” and “with” <=> “com” can be correctly established, leaving 

“in” to be related to “de”, but this last one is generally not correct unless it oc-

curs before “accordance with” <=> “acordo com”. There are some other 

examples in which “in” and “de” might be considered equivalents, like “in 

many ways” <=> “de muitas maneiras”, but there are many more exam-

ples in which the relation is incorrect, like “in the house” <=> “em a 

casa”. Other translation equivalents involving a pair of multi-words do not 

allow any clearly correct internal equivalence, like “how old” <=> “que 

idade”, reinforcing the idea of such equivalents being considered units. 

In such cases where internal equivalence relations are not very clear, there is 

still the option of establishing them in order to be used to compose the larger 

ones, a decision that is complemented with the expectation that any models in-

volved in the translation process will contribute to their correct selection, par-

ticularly because some of those internal relations can be very close translations 

(like “how” with “que”, and “old” with “idade”), but this decision comes 

with the overhead of allowing many generally incorrect entries, so discarding 

such unclear internal relations would be more efficient than allowing them and 

depending on the models to use them properly. 

In cases like the ones described so far, and because the phrases are contiguous, 

there is no problem in considering them as units (in the example, the unit 

would be “in accordance with” and “de acordo com”), avoiding any 

uncertain internal equivalence relations that would create an unwanted over-

head. However, such a simple solution is not always very efficient. As an ex-

ample, consider a similar case as the equivalent “in accordance with” <=> 

“de acordo com” described above, presented by the equivalent “bring a 

case against” <=> “instaurar um caso contra” (entry 19 in Table 16). 

In this last example, internal equivalence relations “a” <=> “um”, “case” <=> 

“caso” and “against” <=> “contra” can be established, leaving open the 

option of relating “bring” with “instaurar”. If this last relation was correct, 

the whole equivalent could be produced as a monotonic combination of the 

equivalents composing it, but since the equivalent “bring” <=> “instaurar” 

is not generally correct, allowing it could produce the same negative effects as 

allowing the equivalent “in” <=> “de” in the previous example, for which the 

solution was to consider the larger phrase as a unit. 
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The problem in this case is that, even though applying such a solution of con-

sidering the larger phrase would produce a correct unit, it would not be very 

efficient because it would not allow translating “bring all charges 

against”, despite the fact that the English phrases only differ by two contigu-

ous words (“the case” occurring in the resulting equivalent, and “all 

charges” occurring in the phrase to be translated). An alternative solution re-

quires looking at the other similar examples (entries 20 and 21 in Table 16), in 

which their generalization shows that “bring” <=> “instaurar” should not 

be associated to the whole equivalent, but only to “against” <=> “contra”, 

while allowing some other phrases in the middle: “bring * against” <=> 

“instaurar * contra”. This introduces the concept of non-contiguous 

phrases, where some fixed phrase literals are separated by some variable 

phrases. 

With the previous example, one might still argue that the generally incorrect 

equivalent “bring” <=> “instaurar” could be allowed while depending on 

the models to make the right choice, particularly because the monotonic com-

position of the larger equivalent can be obtained with such generally incorrect 

equivalent, this way avoiding the complexity of introducing non-contiguous 

phrases. However, avoiding generally incorrect equivalents is not the only ad-

vantage of non-contiguous phrases. In fact, examples like “turn * off” <=> 

“desligar *” (a generalization from entries 13 through 18 in Table 16), in 

which a single word is translated by a non-contiguous phrase, show that non-

contiguous phrases are absolutely necessary, allowing phrase translation gener-

alization. Another example illustrating such need is the French negation that 

requires the two non-contiguous words “ne * pas” to translate the Portu-

guese negation “não *”. 

Cases benefitting from non-contiguous phrases can be very common but are 

also the most challenging ones, requiring being handled with a different meth-

odology. Phrase lexicon equivalents do not support their generalized applica-

tion because they simply replace a fixed phrase by another, which motivated 

the development of translation patterns, described in Sub-Section 3.1.1.2 below. 

3.1.1.2 Non-Contiguous Phrase Translation Equivalents 

As mentioned in the previous sub-section, the non-contiguous phrase transla-

tions (or translation patterns) were introduced to support phrase translation 

generalizations. Those generalizations consist of a pair of non-contiguous 

phrases (pattern phrases), each containing the same number of variables, and a 

mapping establishing an association between the variables in one pattern 
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phrase to variables in the other pattern phrase, which provides support for the 

order change of variables. Both pattern phrases can be used either as a source or 

as a target, where the translation of a phrase, associated to a given source varia-

ble, will be associated to its corresponding target variable, on the target phrase. 

As an example, entries 19 through 21 in Table 16 have some common phrases 

(highlighted on the table), which allow those entries to be generalized to pro-

duce the translation pattern depicted in Figure 4, where the variables on each 

pattern phrase, connected by an edge, represent the contiguous phrase transla-

tion equivalents not shared between those entries (“a case” <=> “um caso”, 

“all cases” <=> “todos os casos”, and so on). In this case, as mentioned 

earlier, the relation between “bring” and “instaurar” is intrinsically de-

pendent on this phrase translation pattern, which includes “against” and 

“contra”. With this feature, it is not established any kind of equivalence rela-

tion between “bring” and “instaurar” outside the translation pattern. From 

my point of view, allowing such equivalence relation while depending on other 

methodologies like, for instance, word sense disambiguation (Casteleiro, Lopes 

and Silva, 2014), will only increase the complexity of the solution, so it is prefer-

able to avoid those generally incorrect equivalence relations, something that is 

addressed in more detail in Sub-Section 3.1.1.2.4 below. 

As another example, entries 13 through 18 in the same table share the (single-

word) phrases “turn” and “off” on the English part, and “desligar” on the 

Portuguese part, enabling those entries to be generalized to the non-contiguous 

phrase translation equivalent “turn <var> off” <=> “desligar <var>”, 

depicted in Figure 5. 

This translation pattern allows the translation of the phrase “turn all 

lights off” even if its literal translation is not available in the verified bilin-

gual phrase lexicon, as long as it is possible to translate “all lights”: the 

Figure 4. Example of a translation pattern 

 PT pattern phrase 

(target/source) 

 EN pattern phrase 

(source/target) bring against <var> 

instaurar contra <var> 

Figure 5. Another example of a translation pattern 

 

 

PT pattern phrase 

(target/source) 

EN pattern phrase 

(source/target) turn off <var> 

desligar <var> 
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contiguous phrase “all lights” would be associated to the variable in the 

English phrase, translated as “todas as luzes” (if available), and placed 

after “desligar” in the Portuguese phrase. However, it should be noted that 

the generalization process described here is only used to explain the motivation 

behind the feature, since Transtor is only responsible for using translation pat-

terns that have been previously and separately identified. 

The following sub-chapters will describe the translation pattern feature in more 

detail, namely its structure and its constraints (Sub-Section 3.1.1.2.1), the aspects 

of its application (Sub-Section 3.1.1.2.2), the numerical translation patterns (Sub-

Section 3.1.1.2.3), and discuss some final considerations about the translation 

pattern feature (Sub-Section 3.1.1.2.4). 

3.1.1.2.1 Translation Pattern Composition 

As mentioned above, translation patterns are composed by a pair of non-

contiguous phrases and a mapping. Each non-contiguous phrase is composed 

by a number of variable elements separated by literal elements. The variable 

elements (represented by both <var> in either Figure 5 or Figure 4) represent 

phrase sections that can hold a yet unknown phrase, while the literal elements 

represent phrase elements that have to be matched exactly (“instaurar” or 

“against” in Figure 4), providing lexical evidence about the pattern applica-

tion to a candidate. Both non-contiguous phrases composing a translation pat-

tern will have the same number of variable elements, with the mapping estab-

lishing a relation of translation equivalence between a variable element in one 

non-contiguous phrase and a variable element in the other non-contiguous 

phrase, with every variable element in one non-contiguous phrase being con-

nected to only one variable element in the other non-contiguous phrase. Adja-

cent variable elements are not allowed for translation purposes, meaning that 

they must always be separated by a literal element, this way avoiding ambigui-

ty and also improving efficiency. Both non-contiguous phrases can either work 

as a source or as a target. Table 17 shows some translation pattern examples for 

the English-Portuguese language pair. 

# EN (source / target) PT (target / source) 

1 bring <var> against instaurar <var> contra 

2 shut <var> off desligar <var> 

3 allow <var> to be attained atingir <var> 

4 <var> should be awaited é oportuno esperar por <var> 

5 bring <var> to the attention of comunicar <var> a 

6 bring <var> closer aproximar <var> 

7 turn <var> off desligar <var> 

Table 17. Translation pattern examples 
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Empty variables are not allowed on translation pattern applications, meaning 

that a variable instantiation requires a non-empty contiguous phrase. This deci-

sion was taken mainly because allowing empty variables will turn non-

contiguous phrases into contiguous ones, and these are highly likely covered by 

the verified bilingual phrase lexicon (Sub-Section 3.1.2). This way redundancy is 

avoided in favor of lexicon entries because they are applied more efficiently. 

Another reason to avoid empty variables has to do with the fact that it is not 

very clear that it will always produce correct translations. As examples, entry 1 

in Table 17 can produce a perfectly fine contiguous phrase translation equiva-

lent, but entry 3 in the same table and, most definitely entry 4, need an element 

to which the verb action is applied, in which case the empty variable should not 

be allowed. 

Additionally, in the case of entry 2 in the table above, the empty variable will 

result in the contiguous phrase translation equivalent “shut off” <=> “de-

sligar”, but contiguous “shut off” should also have as contiguous phrase 

translation equivalents “desligado”, “desligada”, “desligados” and 

“desligadas”, which should all be present in the verified bilingual phrase 

lexicon. 

For the reasons above, translation patterns are required to have all their varia-

bles instantiated, leaving contiguous phrase translation equivalents to the veri-

fied bilingual phrase lexicon. 

3.1.1.2.2 Translation Pattern Application 

The application of a translation pattern to a candidate phrase to be translated 

has to consider the matching of the source phrase to the candidate according to 

the fixed parts and identifying the variable parts. 

Taking the English phrase from the translation pattern depicted in Figure 4 and 

applying it to the candidate phrase “bring all charges against”, as 

shown in Figure 6, both fixed parts (“bring” and “against”) find a match on 

the candidate phrase. The remaining part (the phrase “all charges”) is then 

associated to the variable part, resulting in the translation of the phrase “all 

Figure 6. Matching of a candidate phrase 

 

 

EN pattern phrase 

(applied to candidate) 

EN pattern phrase 

(source) bring against <var> 

bring against all charges 
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charges” being associated to the variable part on the Portuguese phrase from 

the same translation pattern. 

The final application of the translation pattern, while having the contiguous 

phrase translation equivalent “all charges” <=> “todas as acusações”, 

will produce the final phrase translation “instaurar todas as acusações 

contra”, as shown in Figure 7, which is a correct translation. 

The example above shows a situation in which the phrase associated to the var-

iable (“all charges”) is translated by a single phrase (“todas as 

acusações”), which simplifies the explanation of this translation pattern fea-

ture. However, this is not always the case, and the situations where there is 

more than one phrase translation available require making a choice that de-

pends on other concepts not yet introduced. Such situations will be discussed in 

Section 3.4.5. 

3.1.1.2.3 Numerical Translation Patterns 

Considering the significant number of phrase translations that deal with num-

bers (law articles, measurements, and so on), and also considering how efficient 

the application of a translation pattern is when its variable elements consist of 

numbers, numerical translation patterns were also developed. 

The numerical translation patterns represent non-contiguous phrases where all 

the variable elements refer to numbers and their efficiency comes from the fact 

that searching for a number (the variable element) simply requires a string 

match to the number tag, represented by the literal <number>, because the text 

is normalized (Sub-Section 3.2.2). 

The example in Figure 8 shows the phrase translation equivalent “articles 1 

( 2 ) and ( 3 )” <=> “parágrafos 2 e 3 de o artigo 1 º”, which 

shows how the numbers can change order and how some elements do not have 

Figure 7. Application of a general translation pattern 

 

 

PT pattern phrase 

(target) 

EN pattern phrase 

(applied to candidate) bring against all charges 

instaurar contra todas as acusações 

Figure 8. Numerical translation correspondences 

 PT 
phrase 

 EN 
phrase articles ( ) and ( ) 1 2 3 

parágrafos e de o artigo º 1 2 3 
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a correspondence with each other: the parentheses on the English phrase are 

not used on the Portuguese phrase; “parágrafos” on the Portuguese phrase 

does not have a correspondence on the English phrase; and even “articles” 

(plural) is not equivalent to “artigo” (singular). Such lack of correspondences 

could be tackled with the flexibility option described ahead (Sub-Section 

3.1.1.2.4), but its negative consequences would far surpass its benefits. 

The phrase translation equivalence in Figure 8 is supported by the numerical 

translation pattern “articles <number1> ( <number2> ) and ( <num-

ber3> )” <=> “parágrafos <number2> e <number3> de o artigo 

<number1> º”, depicted in Figure 9, where the number contained on source 

<number1> will be placed on target <number1>, and so on. 

EN PT 

article <number> o artigo <number> º 

article <number1> ( <number2> ) 
parágrafo <number2> de o artigo 

<number1> º 

articles <number1> ( <number2> ) and 

( <number3> ) 

parágrafos <number2> e <number3> de 

o artigo <number1> º 

<number> ml flask balão de <number> ml 

<number> kg weight peso de <number> kg 

<number> km away a uma distância de <number> km 

Table 18. Textual representation of numerical translation patterns 

Table 18 shows the textual representation of a few examples of numerical trans-

lation patterns. 

3.1.1.2.4 Advantages of Translation Patterns 

Without the translation pattern feature, the best way to propose a translation 

for “bring a case against” would be to have the translation of the whole 

phrase, but this could not be used to deal with new cases like “bring all 

charges against”. A more flexible alternative might try to take advantage 

of the fact that the literal elements “against” <=> “contra” are a phrase 

translation equivalent in their own right, which opens the possibility of consid-

ering the literal elements “bring” <=> “instaurar” also as a phrase transla-

tion equivalent and count on the language model or word sense disambiguation 

to be able to select it according to the context, even though this last equivalence 

can only be considered as such in the context of the shown translation pattern. 

Figure 9. Numerical translation pattern 

 PT 

phrase 

 articles ( ) and ( ) <number1> <number2> <number3> 

parágrafos e de o artigo º <number1> <number2> <number3> 

EN 

phrase 
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However, the flexibility of allowing such phrase translations with the purpose 

of them being used in very particular conditions (again, “bring” <=> “in-

staurar” only makes sense when occurring near “against” <=> “contra”) 

has two immediate problems: 

 It increases the possibility of producing wrong translations, along with an 

increase in the processing time for considering such additional phrase trans-

lations. Such overhead can be avoided by the pattern feature which will only 

allow the translation whenever the context conditions (established by the 

literal elements) are met. 

 Admitting such phrase translations is not always possible, with Figure 5 

showing such a situation. Unlike the previous case (Figure 4), in which a re-

lation could be allowed between “bring” and “instaurar” (in spite of it 

being generally wrong), in this case one literal (“desligar”) is translated 

by two literals (“turn” and “off”) separated by a phrase, which means that 

one of those words (typically “off”) will not have a corresponding literal. 

The numerical pattern example depicted in Figure 9 also shows that the flex-

ibility option would not really help because allowing equivalents like “ar-

ticles” <=> “parágrafos”, “(” <=> “e”, “) and (” <=> “de o ar-

tigo”, or “)” <=> “º”, would be a tremendous stretch, resulting in more 

problems than benefits. Such situations do not represent a problem to the 

translation pattern feature, because explicit relations between literals are not 

required. 

With the introduction of the translation pattern feature, the problems described 

above can be avoided because such feature allows the generalization of transla-

tion equivalents by establishing relations between phrases that should be con-

sidered as non-contiguous units, which allows discarding generally incorrect 

translation equivalents like the ones mentioned above. 

3.1.2 VERIFIED BILINGUAL PHRASE LEXICON 

Supervision in Transtor is present in several levels: in the verified bilingual 

phrase lexicon; in the verification of parallel texts used as a base; and in the 

produced post-edited translations. 

The verified bilingual phrase lexicon is a set of translation equivalents, verified 

by human translators and linguists, which classify translation candidates ac-

cording to their correction. Many of the first verified entries came from previ-

ous contiguous phrase translations extractions carried out by the procedures 

developed in previous work (Aires, Lopes and Gomes, 2009). Many more are 
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periodically being extracted with new procedures being developed in the 

framework of the ongoing Ph.D. research of Luis Gomes. 

The supervision introduced with the verification of phrase translation entries, 

either contiguous or non-contiguous, is justified not only because it allows a 

more accurate alignment (as shown in Section 2.3), but also because it allows 

the system to produce higher quality translations. As the base knowledge in-

creases with the correctly evaluated and accepted translation candidates (the 

verified bilingual phrase lexicon gains new translation equivalents), the quality 

of subsequent extractions also improves. 

The verified bilingual phrase lexicon used by Transtor is the result of the hu-

man validation of automatically extracted contiguous phrase translation equiv-

alents, which can be classified as follows: 

 Accepted: the phrase translation has been accepted as correct by some 

human validator. 

 Rejected: the phrase translation has been considered as incorrect; this is 

used by the extractor of translation equivalents for validation, to avoid 

reconsidering translations that were already rejected, but might arise 

systematically as a consequence of the statistical methods used in the 

process. 

 Postponed: equivalents that might raise some doubts to the evaluators and 

that require some more thought and attention. 

 Correct, but longer than necessary: correct entries that are obtained by a 

monotonic composition of smaller equivalents. For example, “a combined 

market share of” <=> “uma quota de mercado combinada de” is 

longer than necessary because “a” translates as “uma”, “combined market 

share” translates as “quota de mercado combinada” and “of” 

translates as “de”. As such, the correct translation “a combined market 

share of” <=> “uma quota de mercado combinada de” is longer 

than necessary for alignment purposes. 

 Correct, but shorter than necessary: actually incorrect entries that require 

one or more additional words to be entirely correct. This is mainly applied 

in the alignment of declined languages like German, Czech and others. 

 Unverified: for those extracted entries that have not yet been validated. 

All of the entries above, except the unverified ones, are very helpful in the FCT 

Alignment process as well, as they provide it with additional filters (either posi-

tive or negative) to improve the final result of the alignment and to avoid mak-

ing the same mistakes over and over again. 
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Prior to the human validation there is a step of automatic classification which 

helps speeding up the validation process and increasing the precision of subse-

quent extractions and validations. Such classification is implemented with an 

SVM classifier, trained with the translation equivalents validated as correct and 

incorrect (Mahesh, Gomes and Lopes, 2011). The result of this automatic classi-

fication step is also a set of possibly correct and incorrect translation equiva-

lents, which are used to filter the entries to be validated, since it is more produc-

tive for a human validator to look for correct occurrences in a set of candidates 

classified as possibly correct. 

3.1.3 ADAPTED INDEXING STRUCTURES 

The original indexing structures described in Section 2.4 are character-based 

(allowing full-text search and analysis) and were generically developed to allow 

the analysis of every string occurring in a text, regardless of the size of the 

strings. Such situation allows the inclusion of a great number of strings which 

can be considered too large, and therefore having from little to no statistical in-

terest, significantly increasing the number of analyzed elements, without a cor-

responding significant gain. Another circumstance to consider was the fact that 

Western languages were the ones analyzed while developing Transtor, inspir-

ing a word-based solution to better focus on complete words. These reasons led 

to the development of new versions of the indexing structures, adapted in order 

to: discard string entries corresponding to incomplete words; and introduce a 

limit on the number of words to avoid the analysis of indefinitely large strings. 

Both changes contributed not only to keep the focus on the smaller strings 

(which are statistically more significant), but also to reduce the number of 

strings to analyze, with a corresponding reduction on the size of the structures. 

An additional change consisted in making the character string comparisons case 

insensitive, ensuring a match when comparing, for instance, community with 

Community or COMMUNITY. 

As with the original versions of the indexing structures (Section 2.4), the follow-

ing sub-sections will describe each structure individually for a generic text T of 

size N. When necessary, T = _to_be_or_not_to_be_or_not_to_be will be 

used to help in the description and a limit of 5 words will be used as an exam-

ple. Note that the text T used in this section is different than the one used in 

Section 2.4 (“or_not_to_be” is repeated), changed with the purpose of high-

lighting some properties. 
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3.1.3.1 Adapted Suffix Array 

As a consequence of dealing with complete words, Suffix Array entries refer-

ring to partial words became unnecessary. However, since determining the or-

der between two suffixes requires access to their individual characters, even in 

a word-based solution, the suffix sort algorithm (Larsson and Sadakane, 1999), 

optimized for full-text indexing, was maintained. This way, the word-based 

Suffix Array of a text is obtained from the original character-based Suffix Array 

of the same text by simply discarding the entries corresponding to partial 

words. As an example, consider the character-based Suffix Array of T, shown in 

Table 19. 
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i SA[i] T[SA[i]] 

0 29 _be 

1 16 _be_or_not_to_be 

2 3 _be_or_not_to_be_or_not_to_be 

3 22 _not_to_be 

4 9 _not_to_be_or_not_to_be 

5 19 _or_not_to_be 

6 6 _or_not_to_be_or_not_to_be 

7 26 _to_be 

8 13 _to_be_or_not_to_be 

9 0 _to_be_or_not_to_be_or_not_to_be 

10 30 be 

11 17 be_or_not_to_be 

12 4 be_or_not_to_be_or_not_to_be 

13 31 e 

14 18 e_or_not_to_be 

15 5 e_or_not_to_be_or_not_to_be 

16 23 not_to_be 

17 10 not_to_be_or_not_to_be 

18 28 o_be 

19 15 o_be_or_not_to_be 

20 2 o_be_or_not_to_be_or_not_to_be 

21 20 or_not_to_be 

22 7 or_not_to_be_or_not_to_be 

23 24 ot_to_be 

24 11 ot_to_be_or_not_to_be 

25 21 r_not_to_be 

26 8 r_not_to_be_or_not_to_be 

27 25 t_to_be 

28 12 t_to_be_or_not_to_be 

29 27 to_be 

30 14 to_be_or_not_to_be 

31 1 to_be_or_not_to_be_or_not_to_be 

Table 19. Character-based Suffix Array from T 

Creating the word-based Suffix Array of T is as simple as keeping the suffix 

entries starting by a space character (in this case, entries 0 through 9), and dis-

carding the remaining entries. The kept entries are then incremented by one so 

that the suffixes refer to the first character of the corresponding words and not 

the space characters preceding those words. The resulting word-based Suffix 

Array of T is represented in Table 20. 
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i SA[i] T[SA[i]] 

0 30 be 

1 17 be_or_not_to_be 

2 4 be_or_not_to_be_or_not_to_be 

3 23 not_to_be 

4 10 not_to_be_or_not_to_be 

5 20 or_not_to_be 

6 7 or_not_to_be_or_not_to_be 

7 27 to_be 

8 14 to_be_or_not_to_be 

9 1 to_be_or_not_to_be_or_not_to_be 

Table 20. Word-based Suffix Array of T 

This structure only refers to the beginning of each string, so changes to ensure a 

limitation on the number of words are only required in the remaining indexing 

structures, described in the following sub-sections. 

3.1.3.2 Adapted LCP Array 

Following the word-based Suffix Arrays, the entries of word-based LCP Arrays 

must also correspond to complete words. This means, as an example, that the 

word-based LCP between “Europe” and “European” will be 0 because the 

common prefix shared (“Europe”) does not correspond to a complete word in 

“European”. The word-based LCP value will consist of the number of charac-

ters of the complete words shared by a pair of character strings. The reason why 

the number of characters is used instead of a word count has to do with the fact 

that many required operations involving offset manipulation can be executed 

more efficiently. Some examples of LCP values are shown in Table 21. 

# phrase 0 phrase 1 common prefix LCP 

1 European_Community European_Community European_Community 18 

2 European_Communities European_Community European 8 

Table 21. Other LCP example 

The first entry of the table has both words (“European” and “Community”) 

shared by both phrases, so the LCP corresponds to the character length of the 

complete phrases which include the separating space (18), but the second entry 

only has the first word (“European”) shared by both phrases, so the LCP value 

corresponds to the character length of that word (8). 
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i LCP[i] common phrase 

0 0 <empty> 

1 2 be 

2 15 be_or_not_to_be 

3 0 <empty> 

4 9 not_to_be 

5 0 <empty> 

6 12 or_not_to_be 

7 0 <empty> 

8 5 to_be 

9 18 to_be_or_not_to_be 

10 0 <empty> 

Table 22. Word-based LCP Array 

Table 22 shows the word-based LCP Array of text T, calculated from the corre-

sponding word-based Suffix Array shown in Table 20. 

i LCP[i] common phrase 

0 0 <empty> 

1 2 be 

2 15 be_or_not_to_be 

3 0 <empty> 

4 9 not_to_be 

5 0 <empty> 

6 12 or_not_to_be 

7 0 <empty> 

8 5 to_be 

9 15 to_be_or_not_to 

10 0 <empty> 

Table 23. Limited word-based LCP Array 

Table 23 shows the resulting LCP Array when a limit of 5 words is considered, 

where entry number 9 has now a length of 15 characters (corresponding to the 5 

words limit), as opposed to entry number 9 in Table 22, where such word count 

limitation was not imposed. 

With the introduction of the word count limitation, an adapted Suffix Array 

with N entries will have an adapted LCP Array with N + 1 entries. 

3.1.3.3 Adapted Suffix Class Array 

As with the previous adapted structures, the word-based Suffix Class Array 

required making sure the entries correspond to full words. This means that 

“europe” and “european” should belong do distinct entries even when they 

share the same tf because the only allowed word prefix of “european” is “eu-

ropean” itself. 
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i LBL SIL lb rb tf phrase 

0 0 2 0 2 3 be 

1 2 15 1 2 2 be_or_not_to_be 

2 15 28 2 2 1 be_or_not_to_be_or_not_to_be 

3 0 9 3 4 2 not_to_be 

4 9 22 4 4 1 not_to_be_or_not_to_be 

5 0 12 5 6 2 or_not_to_be 

6 12 25 6 6 1 or_not_to_be_or_not_to_be 

7 0 5 7 9 3 to_be 

8 5 18 8 9 2 to_be_or_not_to_be 

9 18 31 9 9 1 to_be_or_not_to_be_or_not_to_be 

Table 24. Word-based Suffix Class Array 

Table 24 shows the resulting word-based Suffix Class Array of text T, calculated 

from the corresponding word-based Suffix Array and word-based LCP Array. 

i LBL SIL lb rb tf phrase 

0 0 2 0 2 3 be 

1 2 15 1 2 2 be_or_not_to_be 

2 0 9 3 4 2 not_to_be 

3 9 16 4 4 1 not_to_be_or_not 

4 0 12 5 6 2 or_not_to_be 

5 12 15 6 6 1 or_not_to_be_or 

6 0 5 7 9 3 to_be 

7 5 15 8 9 2 to_be_or_not_to 

Table 25. Limited word-based Suffix Class Array 

Table 25 shows the resulting Suffix Class Array when a limit of 5 words is con-

sidered, built with the assistance of the limited word-based LCP Array shown 

in Table 23. This Suffix Class Array can be seen as the result of applying the 

necessary changes to the Suffix Class Array shown in Table 24 in order to re-

spect the limit of 5 words. In the example, such changes imply the removal of 

entries 2 and 9, since their terms within the given word count limit are already 

covered by their previous entries (1 and 8, respectively) and would also imply 

the adjustment of entries 4, 6, and 8 in order to only consider the terms within 

the same word count limit, becoming entries 3, 5 and 7, respectively, in Table 

25. 

With the introduction of the word count limitation, the worst case space com-

plexity of the Suffix Class Array is not affected, so an adapted Suffix Array with 

N entries still produces a Suffix Class Array with at most 2N – 1 entries. 
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3.1.3.4 Adapted Term Array 

Following the same concerns as with the previous structures, the word-based 

Term Array required the prefixes to correspond to complete words. Table 26 

shows the word-based Term Array calculated from the previous structures. 

i SC index phrase 

0 0 be 

1 1 be_or 

2 1 be_or_not 

3 1 be_or_not_to 

4 1 be_or_not_to_be 

5 2 be_or_not_to_be_or 

6 2 be_or_not_to_be_or_not 

7 2 be_or_not_to_be_or_not_to 

8 2 be_or_not_to_be_or_not_to_be 

9 3 not 

10 3 not_to 

11 3 not_to_be 

12 4 not_to_be_or 

13 4 not_to_be_or_not 

14 4 not_to_be_or_not_to 

15 4 not_to_be_or_not_to_be 

16 5 or 

17 5 or_not 

18 5 or_not_to 

19 5 or_not_to_be 

20 6 or_not_to_be_or 

21 6 or_not_to_be_or_not 

22 6 or_not_to_be_or_not_to 

23 6 or_not_to_be_or_not_to_be 

24 7 to 

25 7 to_be 

26 8 to_be_or 

27 8 to_be_or_not 

28 8 to_be_or_not_to 

29 8 to_be_or_not_to_be 

30 9 to_be_or_not_to_be_or 

31 9 to_be_or_not_to_be_or_not 

32 9 to_be_or_not_to_be_or_not_to 

33 9 to_be_or_not_to_be_or_not_to_be 

Table 26. Word-based Term Array 

As it can be confirmed, this version is significantly smaller than the original 

character-based one (Sub-Section 2.4.4). In this particular case, the gain reaches 

an order of 9 times smaller. 
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i SC index phrase 

0 0 be 

1 1 be_or 

2 1 be_or_not 

3 1 be_or_not_to 

4 1 be_or_not_to_be 

5 2 not 

6 2 not_to 

7 2 not_to_be 

8 3 not_to_be_or 

9 3 not_to_be_or_not 

10 4 or 

11 4 or_not 

12 4 or_not_to 

13 4 or_not_to_be 

14 5 or_not_to_be_or 

15 6 to 

16 6 to_be 

17 7 to_be_or 

18 7 to_be_or_not 

19 7 to_be_or_not_to 

Table 27. Limited word-based Term Array 

Table 27 shows the resulting Term Array when a limit of 5 words is considered, 

built from the Suffix Class Array shown in Table 25. 

As noted in (Aires, Lopes and Gomes, 2009), when considering a word count 

limitation of L words, each adapted Suffix Class will produce at most L terms, 

so an adapted Suffix Array with N words will produce an adapted Term Array 

with at most (2N – 1)L entries. 

3.1.3.5 Merging Process for the Indexing Structures 

The indexing structures described in the previous sub-sections grow much 

larger than their corresponding text, resulting in the impossibility to fit all 

structures in main memory for relatively large corpora. To cope with such limi-

tation, all the calculated structures are stored on disk because they take signifi-

cantly more space and can be accessed through efficient binary searches, while 

the text, much smaller in comparison and needing a more immediate access 

(because its access is generally random and widespread), is kept on main 

memory. 

Still, during the normal calculation process of the Suffix Array of a text, both the 

text and its Suffix Array need to fit in main memory at the same time because, 

in general, very distant memory addresses need to be accessed, which can re-



 

70 
 

sult in severe swap memory thrashing, therefore resulting in a severe perfor-

mance degradation. However, as long as the whole text fits in main memory 

(without its Suffix Array), such degradation can be greatly minimized by frag-

menting the text in chunks. Each chunk should allow the corresponding text 

fragment to fit in main memory along with its Suffix Array, processing each 

chunk individually and merging them in the end. This approach is more effi-

cient because it takes advantage of the sequential access of the Suffix Array of 

each chunk from disk (which can benefit from reading disk blocks) while keep-

ing only the text in main memory. 

The set of chunks will consist of a partial order, in which the order of every suf-

fix within each chunk is established, but the order of suffixes between chunks, 

necessary to merge them, is not determined. In other words, in generic terms, 

the merging problem consists in determining a complete order between charac-

ter strings {𝑎0, … , 𝑎𝑛}  from chunk A, and character strings {𝑏0, … , 𝑏𝑚}  from 

chunk B, knowing that 𝑎𝑖 < 𝑎𝑖+1, ∀𝑖: 0 ≤ 𝑖 < 𝑛, and 𝑏𝑗 < 𝑏𝑗+1, ∀𝑗: 0 ≤ 𝑗 < 𝑚. De-

termining a complete order implies determining a relation between all strings 

𝑎𝑖 and 𝑏𝑗. The final order of the merged chunks will only need examining the 

first suffix of each chunk to determine which one comes first, taking the follow-

ing suffix from the chunk that provided the previously selected suffix, and re-

peating the process until every suffix of every chunk has been processed. For 

instance, suffix 𝑎0 from chunk A and suffix 𝑏0 from chunk B are compared: if 

𝑎0 < 𝑏0, then 𝑎0 becomes the first suffix of the merged chunk, and 𝑎1 and 𝑏0 are 

compared next; otherwise, 𝑏0 becomes the first suffix of the merged chunk, and 

𝑎0 and 𝑏1 are compared next; and so on. 

Nonetheless, however, the suffixes of the sorted chunks can share many long 

prefixes, resulting in the need to carry out a large number of very long compari-

sons to be able to decide their lexicographical order, seriously affecting the 

merging efficiency. In particular, it can be very common to find a generic num-

ber of l suffixes of a chunk sharing an LCP with a suffix of the other chunk, 

which can lead to the need of carrying out l∙LCP comparisons to determine 

their relative order, with longer LCP’s causing greater degradation in perfor-

mance. Fortunately, such long comparisons can be avoided by exploring some 

mathematical properties of character strings and their LCP values. 

The following sub-sections will describe the improved merging process in de-

tail, starting by presenting the properties of the LCP values (Sub-Section 

3.1.3.5.1), which allow improving string comparison, describing the actual 

merging of two chunks of Suffix Arrays and LCP Arrays (Sub-Section 3.1.3.5.2) 
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and explaining an exceptional case that can arise during the merging process 

(Sub-Section 3.1.3.5.3). 

3.1.3.5.1 Using LCP Values to Improve String Comparison 

As a simple example, consider a partial order a < b and a < c, established be-

tween character strings a, b and c. In this case, in order to produce a complete 

order, it will be necessary to determine if b < c (leading to the complete order a 

< b < c) or c < b (leading to the complete order a < c < b). Establishing that x[i] 

represents the character located at offset i on a generic character string x, with-

out any additional knowledge, determining if b < c or if c < b requires compari-

sons between b[i] and c[i], starting at i = 0, until a different character is found. 

So, the more initial characters are shared by both strings, the more comparisons 

are required. However, if LCP(a, b) and LCP(a, c) are determined, something 

that could be accomplished very easily at the same time the relations a < b and a 

< c were established, the merging process can be carried out more efficiently, as 

will be shown below. 

Once established that LCP(x, y) is the length of the longest common prefix be-

tween generic character strings x and y, the following conditions hold: 

(1) x[i] = y[i], ∀𝑖: 0 ≤ 𝑖 < LCP(x, y); 

(2) x < y <=> x[LCP(x, y)] < y[LCP(x, y)]. 

So, using the conditions above with the previously calculated LCP(a, b) and 

LCP(a, c), it is possible to establish a complete order between a, b and c just by 

comparing LCP(a, b) with LCP(a, c). 

First of all, knowing the mentioned LCP’s and from condition (1) above, it fol-

lows that: 

(1.1) a[i] = b[i], ∀𝑖: 0 ≤ 𝑖 < LCP(a, b); and 

(1.2) a[i] = c[i], ∀𝑖: 0 ≤ 𝑖 < LCP(a, c). 

So, if the LCP comparison determines that LCP(a, c) < LCP(a, b), from (1.1) and 

(1.2), it follows that: 

(1.3) a[i] = b[i] = c[i], ∀𝑖: 0 ≤ 𝑖 < LCP(a, c). 

But, for the particular case in which i = LCP(a, c), it follows that: 

(1.4) a[i] = b[i] < c[i]. 

This way, from (1.3), (1.4) and (2), it can be concluded that LCP(a, c) = LCP(b, c) 

and b < c, therefore concluding that a < b < c. The same reasoning can be applied 
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to conclude that a < c < b, if the lcp comparison above determines that LCP(a, b) 

< LCP(a, c). 

So far, it has been shown that, as long as the LCP values are different, a compar-

ison between them is enough to make a decision about the complete order of 

the strings a, b and c above. However, in case LCP(a, b) = LCP(a, c) = lcp, it is 

necessary to analyze the actual b and c strings, but only from offset lcp onward, 

because the characters are equal until offset lcp–1. In such case, the lcp value is 

incremented every time the characters are equal until different characters are 

found, updating the corresponding lcp value at the same time the order be-

tween b and c strings is determined. 

With this analysis, the merging process of Suffix Arrays can be significantly im-

proved. Going back to the example in which a generic number of l suffixes of 

one chunk share the same LCP with a suffix of the other chunk, this approach 

allows the number of comparisons to be reduced from l∙LCP to just l, which can 

be a very significant gain, particularly because such shared LCP’s are very 

common. 

Using these results to improve the merging process implies the calculation of 

the LCP Array of each chunk, with a final LCP Array being produced corre-

sponding to the final merged Suffix Array. The process is described in Sub-

Section 3.1.3.5.2 below. 

3.1.3.5.2 Merging the Structures 

Confronted with the need of having to partition a text in smaller chunks, it is 

necessary to merge those chunks in order to obtain a final single text, a final 

single Suffix Array and a final single LCP Array. The process will be described, 

using the results shown in Sub-Section 3.1.3.5.1 above, for an example text di-

vided into two texts (𝑡0 and 𝑡1), along with the corresponding Suffix Arrays (𝑠𝑎0 

and 𝑠𝑎1) and corresponding LCP Arrays (𝑙𝑎0 and 𝑙𝑎1). 

First of all, 𝑡0 and 𝑡1 are merged back into a single text (mt), something that is 

accomplished by concatenating 𝑡1 to the end of 𝑡0. As a consequence, the Suffix 

Arrays and the LCP Arrays can be used unchanged, but the offsets of 𝑠𝑎1 re-

quire a base offset equal to the size of 𝑡0 (𝑙𝑒𝑛0) to be able to refer to its corre-

sponding 𝑡1 suffixes, now placed after 𝑡0 in the merged text mt. So, considering 

that mt[i] represents the mt suffix starting at offset i, element 𝑖0 from 𝑠𝑎0 repre-

sents suffix mt[𝑖0] while element 𝑖1 from 𝑠𝑎1 represents suffix mt[𝑖1+𝑙𝑒𝑛0]. Be-

sides mt, the merging process will produce the corresponding msa (from 𝑠𝑎0 

and 𝑠𝑎1), and mla (from 𝑙𝑎0 and 𝑙𝑎1). 
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Producing a merged array will consist in taking the elements at the head of the 

arrays to be merged, to then insert them in order at the tail of the merged array. 

Using the properties above requires the analysis of LCP(mt[tail(msa)], 

mt[head(𝑠𝑎0)]) = head(𝑙𝑎0) and LCP(mt[tail(msa)], mt[head(𝑠𝑎1)]) = head(𝑙𝑎1), 

which greatly simplify the selection between both head elements. So, generical-

ly: 

if head(𝑙𝑎0) < head(𝑙𝑎1) then 

update tail(msa) to head(𝑠𝑎1)+𝑙𝑒𝑛0; advance msa tail; advance 𝑠𝑎1 head 

update tail(mla) to head(𝑙𝑎1); advance mla tail; advance 𝑙𝑎1 head 

if head(𝑙𝑎0) > head(𝑙𝑎1) then 

update tail(msa) to head(𝑠𝑎0); advance msa tail; advance 𝑠𝑎0 head 

update tail(mla) to head(𝑙𝑎0); advance mla tail; advance 𝑙𝑎0 head 

if head(𝑙𝑎0) = head(𝑙𝑎1) = lcp then 

determine nlcp = LCP(mt[head(𝑠𝑎0)+lcp], mt[head(𝑠𝑎1)+𝑙𝑒𝑛0+lcp])+lcp 

if mt[head(𝑠𝑎0)+nlcp] < mt[head(𝑠𝑎1)+𝑙𝑒𝑛0+nlcp] then 

update head(la0) to nlcp 

update tail(msa) to head(𝑠𝑎0); advance msa tail; advance 𝑠𝑎0 head 

update tail(mla) to head(𝑙𝑎0); advance mla tail; advance 𝑙𝑎0 head 

if mt[head(𝑠𝑎0)+nlcp] > mt[head(𝑠𝑎1)+𝑙𝑒𝑛0+nlcp] then 

update head(𝑙𝑎1) to nlcp 

update tail(msa) to head(𝑠𝑎1)+𝑙𝑒𝑛0; advance msa tail; advance 𝑠𝑎1 
head 

update tail(mla) to head(𝑙𝑎1); advance mla tail; advance 𝑙𝑎1 head 

As mentioned in the description of the structure (Sub-Section 2.4.2), an LCP Ar-

ray is padded with a 0 lcp value at the beginning of the array and another at the 

end, so the same applies to the LCP Array of each chunk. This means that the 

first comparison needs to be a complete one, which is consistent with the fact 

that the order between the very first suffixes of each chunk is not known and a 

complete comparison is required to establish such order. 

This way, by following the procedure above, selecting which suffix comes first 

will imply: putting the corresponding 0 lcp value to the tail of mla; updating the 

other 0 lcp value to the resulting lcp from the comparison of the first suffixes of 

each chunk; and adding a final 0 lcp value to the end of mla when the process is 

finished. This ensures that mla is also padded with 0 lcp values at its beginning 

and at its end. 
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Once all the elements from both chunks have been processed with the compari-

sons above, the merging process for the Suffix Arrays and the LCP Arrays of 

the individual chunks is finished. 

Both the Suffix Class Array and the Term Array do not represent such a serious 

problem since the locality of their data avoids the previous swap memory 

thrashing, allowing them to be processed in sequential contiguous chunks that 

fit into the available memory along with the text, from both the final Suffix Ar-

ray and the final LCP Array. Nonetheless, the final Suffix Class Array is com-

pletely determined before moving on to determining the final Term Array. 

3.1.3.5.3 Exceptional Cases while Merging the Suffix and LCP Arrays 

The concatenation of the texts of two separately processed chunks being 

merged might raise some exceptional cases. To illustrate those cases, consider 

the Suffix Array SA of a text T = “3211” shown in Table 28. 

i SA[i] T[SA[i]] 

0 3 1 

1 2 11 

2 1 211 

3 0 3211 

Table 28. Suffix Array from text T 

Depending on the text being merged to T, the final order of the Suffix Array 

might require additional attention. As a first example, consider concatenating 

“0” to T, producing the text MT = “32110”, with its Suffix Array MSA shown in 

Table 29. 

j MSA[j] MT[MSA[j]] 

0 4 0 

1 3 10 

2 2 110 

3 1 2110 

4 0 32110 

Table 29. Suffix Array from text T, after a concatenation with no consequences 

As it can be seen, such concatenation represents no problem. The final MSA on-

ly requires an additional entry corresponding to the concatenated “0” but the 

relative order of the initial SA is kept (consider i = 0…3 in Table 28 and j = 1…4 

in Table 29).  

However, the initial order of SA is not always kept. Consider the concatenation 

of “2” to T, this time producing the text MT = “32112”, with its corresponding 

Suffix Array MSA shown in Table 30. 
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j MSA[j] MT[MSA[j]] 

0 3 12 

1 2 112 

2 4 2 

3 1 2112 

4 0 32112 

Table 30. Suffix Array from text T, after a concatenation with consequences 

In this case, the concatenation of “2” to the end of T results in the lexicograph-

ically out of order entries MT[MSA[0]] and MT[MSA[1]], highlighted in the ta-

ble. Switching the order of MSA[0] and MSA[1] results in the correct Suffix Ar-

ray for MT = “32112”, shown in Table 31. 

j MSA[j] MT[MSA[j]] 

0 2 112 

1 3 12 

2 4 2 

3 1 2112 

4 0 32112 

Table 31. Corrected Suffix Array from text T after the previous concatenation with consequences 

In sum, when merging the Suffix Arrays and the LCP Arrays of a pair of texts 

already concatenated, suffixes 𝑠𝑎0[i] and 𝑠𝑎0[i+1] may require: their order to be 

changed; their lcp value to be updated; or both. Such requirements will only 

need to be checked if 𝑠𝑎0[i]+𝑙𝑎0[i+1] = 𝑙𝑒𝑛0, for any 0 <= i < 𝑙𝑒𝑛0, in which case a 

stack is used in order to ensure the correct final order of the entries. So, after 

determining that 𝑠𝑎0[i]+𝑙𝑎0[i+1] = 𝑙𝑒𝑛0, it will be necessary to confirm the order 

between suffixes 𝑠𝑎0[i] and 𝑠𝑎0[i+1]. In case it is determined that they change 

their order, 𝑠𝑎0[i] will be placed in the stack and index i is moved forward. 

Whenever the stack is not empty, the above comparisons will not only involve 

the head entries from the blocks being merged, but also the head entries from 

the stack. 

3.2 PRE-PROCESSING 

Texts involved in the translation process (either to support the language model, 

to support the translation model or to be translated) are first pre-processed, for 

text normalization (Sub-Section 3.2.1) and number replacement (Sub-Section 

3.2.2), as described and justified in the sub-sections below, in order to simplify 

all processes required for translation. 

All the adapted indexing structures (Section 3.1.3) are calculated after the pre-

processing stage, which has been developed precisely to improve the identifica-
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tion of individual words and to ensure that the analysis corresponds to a gener-

ic number entity instead of a specific number literal. 

3.2.1 TEXT NORMALIZATION 

The purpose of text normalization is to format the texts in order to relieve the 

system from carrying out extra checks that would burden the process. The text 

normalization consists of contractions expansion (Sub-Section 3.2.1.1), and to-

kenization (Sub-Section 3.2.1.2), described below. 

3.2.1.1 Contractions Expansion 

This procedure is carried out particularly for the Portuguese, Spanish, French 

and German languages and consists in separating the elements (usually prepo-

sitions and articles) hidden in a contraction, like the examples shown in Table 

32. 

Portuguese 
contraction 

Corresponding 
expansion 

English 
translation 

da de a of the 

do de o of the 

na em a on the 

neste em este in this 

daquele de aquele of that 

daquela de aquela of that 

Table 32. Examples of contractions in Portuguese 

Such separation allows a clear identification of the words involved, which in 

turn allows the factorization of their translations. For instance, with contrac-

tions, the phrase translation equivalent “daquele” <=> “of that” would 

have to be kept as a whole, unlike when the contraction is expanded, which 

would convert the equivalent into “de aquele” <=> “of that”, which is 

longer than necessary because it can be produced with the individual phrase 

translation equivalents “de” <=> “of” and “aquele” <=> “that”. 

PT EN 

de of 

em in 

o the 

a the 

este this 

aquele that 

aquela that 

Table 33. Some article and preposition Portuguese entries with their English translations 

With expansion of contractions, the previous 6 entries in Table 32 can be con-

verted in the 7 entries in Table 33, which are more productive as they adequate-
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ly express the information needed for alignment and translation purposes. 

Keeping the contractions would require entries from both Table 32 and Table 33 

because entries from either of the tables could not be used to produce entries of 

the other table. Moreover, it would make the translation problem more difficult 

as the preposition depends on some word that generally appears to the left of 

the contraction (and preposition), while the article depends on a word that ap-

pears to the right of the contraction (and the article it includes). This will be bet-

ter understood if we look at examples in Table 34. 

PT EN 

a partir da from the 

a partir do from the 

a partir das from the 

a partir dos from the 

a partir daquele from that 

a partir daquela from that 

gosto da I like the 

gosto do I like the 

gosto das I like the 

gosto da I like the 

gosto daquele I like that 

gosto daquela I like that 

Table 34. Unexpanded Portuguese entries and their English translations 

Portuguese phrase “a partir de” works as a unit (a compound preposition) 

and should not be divided into its constituents. As a matter of fact, it is translat-

ed by single word preposition “from” and can appear in many contexts trans-

lated by “after”, “as from”, “as of”, “beginning in”, “with effect 

from”, and by many other expressions. If any of these translations would be 

appended with the English article or demonstrative adjective, one can figure 

out the huge number of entries that would be necessary. Moreover, the use of 

an article in Portuguese (or in English) does not necessarily require the use of its 

translation in the other language. As a consequence, the number of bilingual 

phrase lexicon entries should still increase to tackle the presence or absence of 

an article in any of the languages of the pair considered.  If this is a problem for 

a pair of languages where one of the languages (English) is morphologically 

poor, when one considers a pair of languages not morphologically poor, where 

articles may be marked with gender, number and/or case, the explosion of en-

tries necessary would be huge. 

Another example is the Portuguese phrase “gosto de”, translated as the Eng-

lish phrase “I like”, where Portuguese preposition “de” is not expressly 

translated as well as the English pronoun “I” does not need to be explicitly 



 

78 
 

translated. Allowing contractions would require the translation of several Por-

tuguese expressions with contractions to be merged into the translation of a 

single English expression, as shown in Table 34, where its entries, along with 

entries from Table 35 and Table 36 would all be required in the translation pro-

cess, again, because entries from either one would be unable to produce entries 

from any other. 

PT EN 

a the 

o the 

as the 

os the 

aquele that 

aquela that 

Table 35. Portuguese article and demonstrative adjectives and their English translations 

Expanding the contractions makes it possible to classify the entries from Table 

34 as longer than necessary because the translations contained in such table can 

be obtained through the combination of entries from Table 35 and Table 36. 

Without this expansion of contractions, the bilingual phrase lexicon would have 

to be much larger. 

PT EN 

a partir de from 

gosto de I like 

Table 36. Phrase entries that can be considered units 

The expansion of contractions will also benefit the language model (Section 

3.3.2.2) because of the clear identification of previously contracted words. 

3.2.1.2 Tokenization 

Since the several structures used in the translation process find exact matches 

and rely on single space characters to identify individual tokens, the tokeniza-

tion process aims at facilitating such identification. Texts are not guaranteed to 

have such a clear separation between tokens, so a single space is used to replace 

contiguous blank characters (spaces or tabs) and to separate words from punc-

tuation. Table 37 shows some tokenization examples, where the character “_” 

represents a space. Without the elimination of extra blanks, the first three terms 

would be considered different from each other, as the extra blank spaces will 

result in different lengths. In the last three terms from the same table, the ab-

sence of the blank space prevents the identification of the three instances of 

word “world”. 
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# Original Tokenized 

1 European_Community European_Community 

2 European____Community European_Community 

3 European__Community European_Community 

4 world. world_. 

5 world, world_, 

6 world world 

Table 37. Tokenization examples 

Also, to avoid limit checks, a single space character is added at the beginning of 

a text, as will become clear ahead (Section 3.1.3). 

3.2.2 NUMBER REPLACEMENT 

The occurrence of a numerical literal in a text should not be treated as any other 

type of text. For instance, having to translate the phrase “Article 101” 

should not depend on actually having a translation for the literal “Article 

101” but rather on having a translation for its generalized representation “Ar-

ticle <number>”. Besides, for both the translation and the language models, 

it should not be considered the co-occurrence of “Article” with the literal 

“101” but rather the co-occurrence of “Article” with a general number, not 

to mention it would be impossible to store translations for every number literal 

(the number of law articles is limited, but number literals occur in many situa-

tions in which such limitation does not hold). 

This replacement greatly simplifies the process, considering most structures 

and procedures are kept unchanged because the number tags are also repre-

sented in plain text (in the example, the numbers ‘1’, ‘2’ and ‘3’ are each re-

Figure 10. Example of number replacement on a text to be translated 

 

   
13 24 41 

Original number 

Key (converted offset) 

1 2 3 

  

the articles ( ) and ( ) applied 

Original text 

13 17 27 Original 

offsets 

1 2 3 

 13 24 41 

the articles ( ) and ( ) applied 

Converted text 

Converted 

offsets 

<number> <number> <number> 
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placed by the plain text tag “<number>”). For these reasons, number literals are 

replaced by a general tag <number>, but those replacements follow different 

concerns depending on the purpose of the texts, as described below. 

 Monolingual texts: These texts can have their numbers replaced without 

having to obey any constraints. However, this should only be done after 

normalization to avoid converting the tag <number> into the set of tokens 

<_number_>, a consequence of the tokenization described above. 

 Aligned parallel texts: The number replacement on these texts must take 

place after the alignment (Section 2.3) since the actual number literals are 

useful alignment anchors. The alignment is represented by the limit offsets 

of the aligned phrases in each text, and replacing the number literals by the 

<number> tags (which do not necessarily share the same character length) 

will have an impact on those offsets, which have to be updated to preserve 

the consistency of the aligned phrases. 

 Texts to be translated: In this case the original numbers have to be kept to be 

appropriately restored on the final translation and, again, this must be done 

after the normalization stage described above. A hash table is used to keep 

the original numbers, which are accessed by the offsets of their 

corresponding tag in the converted text. An example is shown in Figure 10. 

The only situation requiring more attention is when the texts are to be 

translated because it is necessary to store the original numbers so that they can 

be restored for the final translation. 

3.3 TRAINING STAGE 

The training stage involves the preparation of the models to be used in the 

translation process. As such, it involves: the extraction of phrase translation 

equivalents, which are the building blocks of the solution presented in this the-

sis; and the calculation of the models, which will provide some guidance as to 

how those building blocks are to be displaced to produce a sentence translation. 

3.3.1 CONTIGUOUS PHRASE TRANSLATION EXTRACTION FROM 

ALIGNED PARALLEL CORPORA 

By using a genuine phrase-based approach, Transtor needs phrase translation 

equivalents to translate complete texts. Apart from the translations existing in 

the human verified bilingual phrase lexicon, the extraction of contiguous phrase 

translations (probably longer than those existing in the verified bilingual phrase 

lexicon, as well as other possible translations that do not yet exist in that lexi-

con) is a very important task and component. This component supports the 
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translation process by providing contiguous phrase translation equivalents 

even when a verified bilingual phrase lexicon is not available (Aires, Lopes and 

Gomes, 2009). When a verified bilingual phrase lexicon is indeed available, ex-

tracted contiguous phrase translation equivalents allow a higher precision be-

cause its entries are known to be correct, and a higher recall by increasing the 

number of phrases for which a translation is available. 

The implementation of the contiguous phrase translations extraction relies on: 

the adapted indexing structures (Section 3.1.3) to identify phrases in each lan-

guage; and on parallel corpora that has been aligned with the FCT Aligner (Sec-

tion 2.3) to help establishing an association between the identified contiguous 

phrases in one language to the identified contiguous phrases in the other lan-

guage. 

The following sub-sections describe the extraction process in detail, starting by 

a general description about how the alignment is used to guide the identifica-

tion of contiguous phrase translation equivalents (Sub-Section 3.3.1.1), moving 

on to the identification of unique phrases (the vocabulary) in each language 

(Sub-Section 3.3.1.2), and finishing with the association of the identified unique 

phrases, in both languages, to express their translation equivalence (Sub-Section 

3.3.1.3), to be included in the translation stage (Section 3.4). 

3.3.1.1 Alignment Guidance 

As mentioned before, besides the many phrase translations used as anchors by 

the alignment, additional phrase translations can be extracted to increase the 

number of phrases for which a translation is available (a higher recall), which 

particularly benefits the process of translating new texts. Table 38 shows a very 

small alignment improvement over the alignment represented in Table 2 (locat-

ed in Sub-Section 2.3), where the equivalent “support” <=> “apoiar”, on en-

try 4, is now recognized and used as an anchor. 
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# EN recognized PT 

1 Eurojust ' s   A Eurojust tem por 

2 mission * missão 

3 shall be to   

4 support  * apoiar 

5 and * e 

6 strengthen  * reforçar 

7 
coordination and coopera-

tion 
* 

a coordenação e a coopera-

ção 

8 between * entre 

9 
national investigating and 

prosecuting  
  

10 authorities * as autoridades 

11 
 

 
nacionais competentes para 

a investigação e o exercí-

cio de a acção penal 

12 in relation to * em matéria de 

13 
 

 criminalidade 

14 serious * grave 

15 crime   
 

16 affecting * que afecte 

17 more than * mais de o que 

18 one * um 

19 European country * país Europeu 

20 . * . 

Table 38. Improved alignment example 

The exemplified alignment already recognizes a few phrase translations 

(marked with ‘*’), like “mission” <=> “missão” on entry 2, and “strength-

en” <=> “reforçar” on entry 6, but additional phrase translation equivalents 

can be extracted with the guidance of such alignment. 
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# correct EN PT 

1  Eurojust ' s A Eurojust tem por 

2  Eurojust ' s mission A Eurojust tem por missão 

3 * 
Eurojust ' s mission shall be 

to 
A Eurojust tem por missão 

4 * 
Eurojust ' s mission shall be 

to support 
A Eurojust tem por missão 

apoiar 

5 * 
Eurojust ' s mission shall be 

to support and 
A Eurojust tem por missão 

apoiar e 

6 * 
Eurojust ' s mission shall be 

to support and strengthen 
A Eurojust tem por missão 

apoiar e reforçar 

7 * 
Eurojust ' s mission shall be 

to support and strengthen co-

ordination and cooperation 

A Eurojust tem por missão 

apoiar e reforçar a coordena-

ção e a cooperação 

8 * 

Eurojust ' s mission shall be 

to support and strengthen co-

ordination and cooperation 

between 

A Eurojust tem por missão 

apoiar e reforçar a coordena-

ção e a cooperação entre 

9  

Eurojust ' s mission shall be 

to support and strengthen co-

ordination and cooperation 

between national investigating 

and prosecuting 

A Eurojust tem por missão 

apoiar e reforçar a coordena-

ção e a cooperação entre 

10  
national investigating and 

prosecuting 

authorities 

as autoridades 

11 * 
national investigating and 

prosecuting 

authorities 

as autoridades 

nacionais competentes para a 

investigação e o exercício de 

a acção penal 

12 * 

national investigating and 

prosecuting 

authorities 

in relation to 

as autoridades 

nacionais competentes para a 

investigação e o exercício de 

a acção penal 

em matéria de 

13  

national investigating and 

prosecuting 

authorities 

in relation to 

as autoridades 

nacionais competentes para a 

investigação e o exercício de 

a acção penal 

em matéria de 

criminalidade 

14  

national investigating and 

prosecuting 

authorities 

in relation to 

serious 

as autoridades 

nacionais competentes para a 

investigação e o exercício de 

a acção penal 

em matéria de 

criminalidade 

grave 

15 * 

national investigating and 

prosecuting 

authorities 

in relation to 

serious 

crime 

as autoridades 

nacionais competentes para a 

investigação e o exercício de 

a acção penal 

em matéria de 

criminalidade 

grave 

16  serious criminalidade grave 

17 * serious crime criminalidade grave 

18  serious crime grave 

Table 39. Some extracted phrase translation equivalents 

Table 39 shows some examples of the translation equivalents that can be ex-

tracted from the previous alignment while using a count limit of 20 words. En-
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tries 1 through 9 show extracted equivalents beginning with “Eurojust ' s” 

(entry 1 on Table 38), entries 10 through 15 show extracted equivalents begin-

ning with “national investigating and prosecuting” (entry 9 on Ta-

ble 38), and the last 3 entries show the possible combinations of translation 

equivalents that can be extracted from the alignment entries 13 through 15 from 

Table 38. The column “correct” indicates correct entries marked with a “*” 

character, showing that not every extracted equivalent is correct. 

The identification of such translation equivalents can be carried out by consid-

ering a given phrase, checking the corresponding segments on which the phrase 

occurs, and identifying the corresponding phrase translation. Such correspond-

ence will only consider combinations of segments without partitioning any of 

them. As an example, considering again the alignment in Table 38, it would not 

be possible to identify a translation for “mission shall be” (segment entry 

2 and partial segment entry 3), “prosecuting” (partial segment entry 9) or 

“relation” (partial segment entry 12) because all of them involve at least one 

partial segment. 

The number of tokens allowed for a phrase is limited mainly for practical rea-

sons and is applied to both phrases of a translation equivalent candidate. For 

example, if a limit of 6 tokens were to be considered, it would not be possible to 

extract a translation for “Eurojust ' s mission shall be to” because it 

has 7 tokens, but if a limit of 7 tokens was to be considered it would be possible 

to extract the translation equivalent “Eurojust ' s mission shall be 

to” <=> “A Eurojust tem por missão” because it can be obtained by a 

composition of one or more complete segments (in this case, segment entries 1, 

2 and 3), with one phrase having 7 tokens and the other having 5. In Chapter 4, 

results will show how the number of tokens affects translation quality. 

Additionally, it has been noted that equivalents “delimited” by empty segments 

(an empty segment in the beginning of one language and an empty segment in 

the end of the other language) are a common pattern (Aires, Lopes and Gomes, 

2009) found when parallel texts have been aligned using the procedures and 

concepts described in Section 2.3. A couple of examples are identified in entries 

9 through 11 and in entries 13 through 15, taken from Table 38 and shown again 

in Table 40 with the empty segments highlighted. Those entry sets allow the 

identification of translation equivalents “national investigating and 

prosecuting authorities” <=> “as autoridades nacionais com-

petentes para a investigação e o exercício de a acção pe-

nal” and “serious crime” <=> “criminalidade grave”, respectively. 

An observation that could justify this is the fact that any other combination 
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would leave an alternative aligning with an empty segment while “consuming” 

another. For instance, admitting “serious crime” <=> “grave <empty>” 

would, in a way, imply “<empty>” <=> “criminalidade”, which does not 

make sense because a phrase can never be translated by an empty phrase, and 

so the segments should be merged. 

# EN recognized PT 

… …  … 

9 
national investigating and 

prosecuting  
  

10 authorities * as autoridades 

11 
 

 
nacionais competentes para 

a investigação e o exercí-

cio de a acção penal 

… …  … 

13 
 

 criminalidade 

14 serious * grave 

15 crime   
 

… …  … 

Table 40. Examples surrounded by empty segments 

The reasoning supporting the use of surrounding empty segments is similar to 

the reasoning supporting the application of consistency rules in other phrase 

translation extraction approaches (Section 2.1.2.2). 

The quality of each extracted translation equivalent is left up to the translation 

model (Section 3.3.2.1), and the context relevance of their use is left up to the 

target language model (Section 3.3.2.2). The following sub-sections will describe 

the contiguous phrase translation extraction process in more detail, particularly 

the phrase identification stage (Sub-Section 3.3.1.2), and the phrase association 

stage (Sub-Section 3.3.1.3). 

3.3.1.2 Phrase Identification Stage 

Unlike the alignment, which establishes relations between phrase instances or 

occurrences, the phrase translation extraction will relate unique phrases, but it 

will do so through their aligned phrase occurrences. 

In order to identify the unique phrases along with their individual occurrences 

in both languages, their corresponding monolingual texts are first processed 

separately, consisting in the calculation of the adapted indexing structures (Sec-

tion 3.1.3) for each language text, namely the Suffix Array, the LCP Array, the 

Suffix Class Array and, finally, the Term Array, with this last one being the goal 

structure because it contains the information about the unique phrases. 
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Figure 11 intends to show a simple representation of the English and Portuguese 

Term Arrays, calculated from a given pair of aligned parallel texts in those lan-

guages. Those Term Arrays will contain every unique phrase present in their 

corresponding languages, but only some entries are highlighted in the figure in 

order to simplify the description, including the English phrase “serious 

crime” and the Portuguese phrase “criminalidade grave”, present in the 

alignment example in Table 38 above. In an actual implementation, tests have 

been carried out with phrases having up to 20 tokens, allowing the identifica-

tion of phrases like “Eurojust ' s mission shall be to support 

and strengthen” in English and “A Eurojust tem por missão 

apoiar e reforçar” in Portuguese. 

Once the several unique phrases present in each language have been deter-

mined, it is possible to establish the associations between them, which will rep-

resent the identified contiguous phrase translation equivalents to be extracted, 

as explained in the phrase association stage below (Sub-Section 3.3.1.3). 

3.3.1.3 Phrase Association Stage 

With both Term Arrays calculated in the identification stage described above 

(Sub-Section 3.3.1.2), entries from each array can be associated to entries from 

the other array, which will be equivalent to having unique phrases in each lan-

Figure 11. Term Arrays from both languages 

  

casa 

building 
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PT Term Array EN Term Array 
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guage associated to unique phrases in the other language, which in turn repre-

sent the wanted phrase translation equivalents. 

Figure 12 shows the associations established between the highlighted entries of 

the pair of Term Arrays depicted in Figure 11, with the associations indicating, 

for instance, that the English phrases “building”, “gets married”, “home” 

and “house” are phrase translation equivalents of the Portuguese phrase 

“casa”. Again, in an actual implementation, carried out tests with phrases hav-

ing up to 20 tokens allowed the association of the example contiguous phrases 

presented in the previous sub-section to produce the translation equivalent 

“Eurojust ' s mission shall be to support and strengthen 

coordination and cooperation” <=> “a Eurojust tem por missão 

apoiar e reforçar a coordenação e a cooperação”. 

Each target Term Array entry associated to a source Term Array entry is repre-

sented on the source entry by an association element containing the identifier of 

the target entry. Figure 13 illustrates how the associations of Figure 12 are actual-

ly implemented where, for instance, PT Term Array entry 20 (representing the 

phrase “casa”) has its 4 phrase associations represented by EN Term Array 

entries 19 (corresponding to “building”), 36 (corresponding to “gets mar-

ried”), 81 (corresponding to “home”) and 87 (corresponding to “house”). For 

practical reasons, this example only shows a few phrase associations but, for 

instance, a lot more could be considered for “serious crime”, like “crimi-

Figure 12. Some associated Term Arrays entries 
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nalidade grave”, “crime grave”, “crimes graves” and “infracções 

graves”. 

Besides the identifier of the target entry, the association element contains the 

corresponding number of matches and the translation model score (Section 

3.3.2.1). Table 41 shows how the target entries associated to the source entry 

representing the phrase “casa” are actually implemented, where: “ID” is the 

Term Array entry of the associated phrase; “matches” is the number of times 

each phrase has been matched to “casa”; and “score” is the translation model 

score of each phrase relatively to “casa”. The “represented phrase” is only 

added to the table for illustrative purposes to show which phrase is represented 

by the ID. 

represented 
phrase 

ID matches score 

house 87 296 0.5451 

home 81 129 0.2376 

gets married 19 92 0.1694 

building 36 26 0.0479 

Table 41. Associations established for Portuguese phrase “casa” 

The association elements are processed for each Term Array entry using the 

alignment of its individual occurrences (because those are the ones that have 

been aligned, either explicitly or implicitly). Each of those occurrences is used to 

determine the corresponding source segments containing the occurrence, using 

 

20 

97 

59 
 

19 
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87 
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20 
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Figure 13. Implementation for the association of Term Array entries  
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those source segments to obtain the corresponding target segments, and identi-

fying the phrases contained in those target segments. Again, both explicit and 

implicit entries will be considered, but those different alignment types will be 

analyzed in the results (Chapter 4) to check how they can affect the translation 

model (Sub-Section 3.3.2.1). 

Each found target phrase is used to retrieve the corresponding target Term Ar-

ray entry, using that entry to confirm if it has already been associated to the 

source entry. In case an association entry is found it will be incremented, oth-

erwise a new association entry is created and included. The result of processing 

every occurrence of a Term Array entry will be the set of association elements 

for that entry, which could be empty if no associations are found. 

As an example, consider the individual occurrence of the source Term Array 

entry representing the phrase “serious crime”, which is found on the 

alignment represented on Table 38. The occurrence is contained in complete 

segments 14 and 15, but since this is a situation in which an empty segment 

(segment 13) is adjacent to the segments containing the wanted phrase, seg-

ments 13 through 15 are considered, obtaining the corresponding target phrase 

“criminalidade grave”, which is used to find its corresponding Term Ar-

ray entry (check the use of surrounding empty segments introduced in Sub-

Section 3.3.1.1). The found target entry is then used to check if it has been asso-

ciated to the source entry, adding an association element if no previous associa-

tion has been established or incrementing the counter of the corresponding as-

sociation element by one. 

Once all the occurrences of a given source entry have been processed, the asso-

ciation elements of the resulting set will be sorted from highest to lowest num-

ber of matches, keeping the first n most matched association elements and dis-

carding the remaining ones. Only then the translation model score is calculated 

for every association element. As an example, with translations for “casa” 

shown in Table 41, if n=3 then the entry corresponding to “building” would 

be discarded, and if n>=4 none of the entries would be discarded. This associa-

tion process is carried out for every Term Array entry, in both directions. 

Carried out tests (Chapter 4) have considered a limit of 7 translation equivalents 

for each phrase. Such limit has proven to be adequate not only because the vast 

majority of most significant equivalents are included with such limit, but also 

because performance is improved by avoiding a great number of translation 

equivalents that have very low translation model scores. 
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The result of the association stage described above is stored with the purpose of 

being used in the translation process, particularly because they can be required 

very frequently during the translation of many texts. Once processed and 

stored, translations for a phrase having a length of P characters can be retrieved 

with a complexity of 𝑂(𝑃 log 𝑁) (Manber and Myers, 1990). 

In sum, this solution first sequentially accesses all source Term Array entries, 

sequentially takes the occurrences of each entry, identifies the alignment seg-

ments of each occurrence through binary searches, and finally accesses the cor-

responding target Term Array entries through additional binary searches. 

Thanks to the alignment guidance, the structures that allow efficient identifica-

tion, storage and retrieval of phrases, and the word limitation, the complexity of 

this solution, when processing a parallel corpus of size 2N words (N words for 

each corpus in each language), is 𝑂(𝑁 × (log2 𝑁)2) (Aires, Lopes and Gomes, 

2009), far better than the 𝑂(𝑁4)  that would be required if all possible 𝑁2 

phrases from one text were to be combined with the 𝑁2 phrases from the other 

text. 

3.3.2 MODELS INVOLVED IN TRANSLATION SCORING 

In order to score the translation candidates produced during the decoding pro-

cess (Sub-Section 3.4.8), a model has been developed for Transtor as a combina-

tion of other two models, which will in turn evaluate meaning and fluency sep-

arately. Models for meaning and fluency are typically present in every SMT 

approach, but the implementations of those models in this approach have a few 

differences, as will be discussed ahead. 

The phrase translation model (Sub-Section 3.3.2.1) is calculated to be applied for 

meaning and the phrase language model (Sub-Section 3.3.2.2) is calculated to be 

applied for fluency, where each model can be trained with separate dedicated 

corpora (Sub-Section 3.4.6). Both models are finally combined in the sentence 

translation model (Sub-Section 3.4.7), which is the model actually responsible 

for scoring translations of complete sentences. 

3.3.2.1 Phrase Translation Model 

The phrase translation model (ptm) developed for Transtor is responsible for 

assigning a score to each of the phrase translation equivalents of an original 

phrase. In general terms, given an original phrase 𝑓, with n extracted phrase 

translations 𝑒𝑖, the ptm score of e, as a translation of f, is expressed in Equation 

13, resulting in a score between 0.0 and 1.0, inclusively. 
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𝑝𝑡𝑚(𝑒|𝑓) =
𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑒|𝑓)

∑ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑒𝑖|𝑓)𝑛
𝑖=1

 

Equation 13. Phrase translation model within a source 

Sometimes 𝑝𝑡𝑚(𝑒|𝑓) is simplified to 𝑝𝑡𝑚(𝑒), in which case the original phrase f 

is implicit. The function 𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑒|𝑓) returns the number of times a given tar-

get phrase e has been associated to a source phrase f within the source from 

where the phrase translation equivalent e <=> f has been extracted. Table 42 

presents the ptm scores for the examples introduced in Table 41 for a given 

aligned parallel corpus, already presented in Sub-Section 3.3.1.3. 

translations 
of “casa” 

matches ptm 

house 296 0.5451 

home 129 0.2376 

gets married 92 0.1694 

building 26 0.0479 

total 543 1.0000 

Table 42. The ptm scores from an example aligned parallel corpus 

So far, the model will assign high scores to frequent translations and low scores 

to infrequent ones. In an attempt to produce more balanced scores, several sep-

arate and independently analyzed phrase translation sources can be combined 

using their individual scores. The concern about trying to assign more balanced 

scores is the main distinction between this model and the one presented in Sub-

Section 2.1.3.1, which only expresses association frequency and lexical 

weighting in both translation directions. The combination of several sources is 

discussed ahead in Sub-Section 3.4.6.1. 

3.3.2.2 Phrase Language Model 

The phrase language model (plm) developed for Transtor is responsible for as-

signing a score to each of the translation phrases that follow a given translation 

phrase. In general terms, given a translation phrase e, with n following transla-

tion phrases 𝑓𝑒𝑖, the plm score of translation phrase fe, as a following of (occur-

ring exactly after) e, is expressed in Equation 14, resulting in a score between 0.0 

and 1.0, inclusively. 

𝑝𝑙𝑚(𝑓𝑒|𝑒) =
𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑎𝑙𝑢𝑒(𝑒, 𝑓𝑒)

∑ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑎𝑙𝑢𝑒(𝑒, 𝑓𝑒𝑖)
𝑛
𝑖=1

 

Equation 14. Phrase language model 

In order to understand the concept of “following phrase translation” (and be-

fore explaining the “context_value”), consider the example shown in Figure 14, 
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illustrating the analysis of a fragment of an original English sentence “the 

procedures described in”. The figure shows the original phrase “the” 

being followed by original phrases “procedures”, “procedures de-

scribed” or “procedures described in”, as shown by the corresponding 

edges connecting those phrases. As a consequence, available phrase translations 

of “the” might be followed by available phrase translations of “procedures”, 

“procedures described” and “procedures described in”, also repre-

sented by edges on the figure. More specifically, translations “o”, “a”,  “os” or 

“as” of the English word “the” might be followed by phrase translations 

“acções”, “procedimentos”, “acções descritas”, “procedimentos 

descritos”, “acções descritas em” or “procedimentos descritos 

em”. 

The purpose of the plm score is to evaluate how likely a translation phrase 

(named as fe, above) may occur after a given e phrase. Determining such score 

depends on the “context value” introduced in Equation 15, in which tf corre-

sponds to the term frequency of a phrase, the ‘+’ sign represents a concatena-

tion operation and the “_” character represents the space character. 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑎𝑙𝑢𝑒(𝑒, 𝑓𝑒) = 𝑡𝑓(𝑒 + "_" + 𝑓𝑒) 

Equation 15. Context value of an adjacent pair of phrase translations 

So, the context value is determined by the term frequency of the phrase result-

ing from the concatenation of e and fe, separated by a space character. As an 

example, considering the current phrase “os” and the following phrase 

Figure 14. Original adjacent phrases with their translations 
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“acções”, the context value consists of the term frequency of the phrase “os 

acções”. The term frequency is obtained from one or more indexed monolin-

gual corpora, used as a base for plm. Table 43 shows the concatenation of each 

“current” phrase with each of their “following” phrases from Figure 14. The 

columns represent the “current” phrase and the rows represent the “following” 

phrase, with each cell representing the described concatenations used to obtain 

the corresponding “context values”. 

the 
 

o a os as 

o acções a acções os acções as acções acções 

procedures o procedimen-
tos 

a procedimen-
tos 

os procedi-
mentos 

as procedi-
mentos 

procedimentos 

o acções des-
critas 

a acções des-
critas 

os acções 
descritas 

as acções 
descritas 

acções descri-
tas 

procedures 
described o procedimen-

tos descritos 
a procedimen-
tos descritos 

os procedi-
mentos descri-

tos 

as procedi-
mentos descri-

tos 

procedimentos 
descritos 

o acções des-
critas em 

a acções des-
critas em 

os acções 
descritas em 

as acções 
descritas em 

acções descri-
tas em procedures 

described 
in 

o procedimen-
tos descritos 

em 

a procedimen-
tos descritos 

em 

os procedi-
mentos descri-

tos em 

as procedi-
mentos descri-

tos em 

procedimentos 
descritos em 

Table 43. Concatenation of adjacent phrases 

Table 44 shows the context values obtained for Figure 14, corresponding to the 

term frequencies of the entries from Table 43. The totals are also included in 

Table 44, representing the sum of all the values in each column, and are used to 

normalize the values to produce the actual plm scores, shown in Table 45. 

A person familiar with English and Portuguese languages would know that: 

“o”, as a translation of “the”, would be almost for sure not supported by any 

of those other proposed translations following it; “a” as a possible translation of 

“the” may be supported because in Portuguese “a” can also be a preposition; 

“os” may support to be followed by “procedimentos”, “procedimentos 

descritos” or “procedimentos descritos em”; and “os” will not sup-

port “acções”, “acções descritas” or  “acções descritas em”. The 

kind of knowledge just described is related to the concept of language model-

ing, and the model presented here tries to infer the same conclusions through 

the frequencies of the concatenations of a phrase translation with each of its fol-

lowing phrase translations, as shown in Table 44. 
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the 
 

o a os as 

0 371 0 797 acções 
procedures 

0 418 523 0 procedimentos 

0 284 0 765 acções descritas 
procedures described 

0 396 492 0 procedimentos descritos 

0 281 0 726 acções descritas em 
procedures described in 

0 349 480 0 procedimentos descritos em 

0 2099 1495 2288 total 

Table 44. Context values 

Table 45 shows the plm scores, obtained after normalizing the values from Table 

44 with the totals of the corresponding columns. As an example, the plm score 

between “a” and “acções” is 371/2099=0.1768. If the total is 0, as is the case 

with the “o” column, the score is also defined to be 0. The “o” column also 

shows that this is not a probability distribution because the sum of every score 

is not guaranteed to be 1.0. 

the 
 

o a os as 

0.0000 0.1768 0.0000 0.3483 acções 
procedures 

0.0000 0.1991 0.3498 0.0000 procedimentos 

0.0000 0.1353 0.0000 0.3344 acções descritas 
procedures described 

0.0000 0.1887 0.3291 0.0000 procedimentos descritos 

0.0000 0.1339 0.0000 0.3173 acções descritas em 
procedures described in 

0.0000 0.1663 0.3211 0.0000 procedimentos descritos em 

Table 45. The plm scores from the example 

Intuitively, the plm score expresses the likelihood of a given phrase occurring 

after another, considering the alternatives, unlike the history model which is 

absolute and, therefore, independent of such alternatives. Using translation 

phrases as units (and not checking for fluency within a phrase) can be justified 

by the fact that those phrases already have some degree of quality ensured by 

the ptm score (Section 3.3.2.1). As an example, the plm score evaluates how like-

ly the phrase “the rules” is to be followed by, for instance, the phrase “in 

spite of”, without the need to check for the internal fluency of either “the 

rules” or “in spite of”. The model only intends to determine how well a 

unit phrase is to be followed by another unit phrase. 

This model considers phrases as units, unlike the n-gram history model de-

scribed in Sub-Section 2.1.3.2, which evaluates the fluency of a sentence through 

the combined analysis of every word that composes the sentence with its previ-

ous n–1 words. As such, this model can be viewed as a local history model of 
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adjacent pairs of phrases, independently of the number of words making up 

those phrases, even though a limit is imposed on each phrase, but such limit 

can reach 20 words (Chapter 4). Also, another difference of this model is its abil-

ity to combine individual scores from several separate and independently ana-

lyzed monolingual sources. Such ability is discussed ahead in Sub-Section 

3.4.6.2. 

3.4 TRANSLATION STAGE 

In this final step of the whole translation process, all the concepts and results 

from the previous steps are combined to support several techniques, which to-

gether with some additional concepts, leads to the final translation result. 

The translation stage begins with the partitioning of the source text to be trans-

lated into all its possible unique phrases (Sub-Section 3.4.1), limited by a pa-

rameterized maximum phrase length. Then, the process moves on to obtaining 

the translation model scores and determining the language model scores. These 

scores will support the determination of the final sentence model score. 

The partitioned phrases are then used to retrieve their corresponding phrase 

translation equivalents: contiguous phrase translation equivalents will be de-

scribed first (Sub-Section 3.4.2), while the inclusion of translation patterns, 

which depend on additional concepts, are described later (Sub-Section 3.4.5). 

Once the phrase translations have been retrieved for the unique phrases identi-

fied in the text partitioning stage, the several occurrences of the unique phrases 

for which translations are available are used to create the cover graph (Sub-

Section 3.4.3) with the main purpose of assisting in the creation of the transla-

tion graph (Sub-Section 3.4.4). With the translation graph, the plm score can be 

effectively included in the process (Sub-Section 3.4.6.3), finally allowing the tra-

versal of the translation graph (Sub-Section 3.4.8) in order to determine a com-

bination of translation phrases that maximizes the stm score. Untranslatable 

phrases can result in problems that have to be considered, namely the existence 

of untranslatable sections (Sub-Section 3.4.9.1) and the existence of dangling 

nodes (Sub-Section 3.4.9.2). Finally, once the decoding traversal is completed, it 

is necessary to traverse the translation graph once more (Sub-Section 3.4.10) in 

order to present the identified combination of phrase translations that maxim-

izes the stm score, which will be the final translation. 

3.4.1 TEXT PARTITIONING 

The text partitioning consists in taking the text to be translated and identifying 

the several phrases contained in it, which will then be used to retrieve their 
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phrase translations and produce a final translation for the whole original text. 

In order to simplify the explanation, text T = “the rules in accordance 

with the national law” will be used as an example. Table 46 shows the 

offsets corresponding to the beginning of each word in T which, along with the 

lengths of the phrases, are used to represent the several phrases present in T. 

text the rules in accordance with the national law 

offset 1 5 11 14 25 30 34 43 

Table 46. Example of a text to be partitioned 

The text partitioning task is efficiently accomplished by calculating the adapted 

Term Array (Sub-Section 3.1.3.4) of the text, which will represent every occur-

rence of every unique phrase present in a text, within the word count limitation 

introduced. The Term Array of T is represented in Table 47, showing that only 

entry 22 (corresponding to the term “the”), with a length of 3 characters, has 

two occurrences, corresponding to offsets 1 and 30. Every other entry of the 

Term Array represented by the table occurs only once. 

Table 47 also shows, for instance, that entries 6 and 7 both start at offset 11, but 

entry 6 (corresponding to the phrase “in”) has a length of 2 characters while 

entry 7 (corresponding to the entry “in accordance”) has a length of 13 

characters. This table represents every possible phrase occurring in T, with the 

length corresponding to the phrase length in characters and the offset corre-

sponding to the starting point, also in characters, where the phrase occurs in T. 

In this situation, the character-based lengths are used instead, to better support 

operations requiring offset calculations. 
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# phrase/term length offsets 

1 accordance 10 14 

2 accordance with 15 14 

3 accordance with the 19 14 

4 accordance with the national 28 14 

5 accordance with the national law 32 14 

6 in 2 11 

7 in accordance 13 11 

8 in accordance with 18 11 

9 in accordance with the 22 11 

10 in accordance with the national 31 11 

11 in accordance with the national law 35 11 

12 law 3 43 

13 national 8 34 

14 national law 12 34 

15 rules 5 5 

16 rules in 8 5 

17 rules in accordance 19 5 

18 rules in accordance with 24 5 

19 rules in accordance with the 28 5 

20 rules in accordance with the national 37 5 

21 rules in accordance with the national law 41 5 

22 the 3 1 30 

23 the national 12 30 

24 the national law 16 30 

25 the rules 9 1 

26 the rules in 12 1 

27 the rules in accordance 23 1 

28 the rules in accordance with 28 1 

29 the rules in accordance with the 32 1 

30 the rules in accordance with the national 41 1 

31 the rules in accordance with the national law 45 1 

32 with 4 25 

33 with the 8 25 

34 with the national 17 25 

35 with the national law 21 25 

Table 47. Term Array representing the partitioned text example 

With the entries from the Term Array representing every phrase present in T, 

they can then be used to obtain their corresponding phrase translations. Since 

obtaining translations for the several individual occurrences of a phrase would 

necessarily return the same results for each occurrence (for instance, retrieving 

translations of the word “the” would always return the same results for any of 

its occurrences), using unique phrases represents an advantage because a trans-
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lation is obtained and made available for every occurrence with a single opera-

tion. For contiguous phrase translations equivalents (Sub-Section 3.1.1.1), the 

operation involved is a simple retrieval operation, described in Sub-Section 

3.4.2 below, while for translation patterns (Sub-Section 3.1.1.2), the operation 

involved is a more elaborate matching operation, described later in Sub-Section 

3.4.5. 

3.4.2 RETRIEVAL OF CONTIGUOUS PHRASE TRANSLATION 

EQUIVALENTS 

Once the adapted Term Array (Sub-Section 3.1.3.4) of a text has been produced 

in the partitioning stage described in Sub-Section 3.4.1 above, the entries from 

the Term Array are then used to obtain their corresponding contiguous phrase 

translation equivalents (Sub-Section 3.1.1.1) that have been previously extracted 

(Section 3.3.1), to be later combined according to the several models and pro-

duce the final translation of the text. Contiguous phrase translation equivalents, 

that have been previously extracted, are retrieved using a simple string match, 

along with their corresponding ptm scores (Sub-Section 3.3.2.1). Table 48 shows 

some examples produced from an aligned parallel corpus. 

original translation score 

the 

o 0.3264 

a 0.2613 

os 0.2117 

as 0.2007 

national 
nacional 0.6170 

nacionais 0.3830 

law 
lei 0.6462 

legislação 0.3538 

national law 
legislação nacional 0.4865 

leis nacionais 0.5135 

rules 
regras 0.7073 

normas 0.2927 

the rules as regras 1.0000 

in 
em 0.5862 

dentro 0.4138 

with 

com 0.5966 

acompanhado 0.2017 

acompanhada 0.2017 

in accordance with de acordo com 1.0000 

Table 48. Entries with scores 
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In the end, Term Array entries for which translations are found are then used to 

create the cover graph, described in Sub-Section 3.4.3 below. If more than one 

source is used, the scores from each source are combined to produce a single 

score, as described ahead in Sub-Section 3.4.6.1. However, Term Array entries 

for which phrase translation equivalents are not found represent untranslatable 

phrases and are disregarded from the remainder of the process. The untranslat-

able phrases might lead to untranslatable sections (Sub-Section 3.4.9.1) and to 

dangling nodes (Sub-Section 3.4.9.2), which require additional processing but, 

for simplicity, those will be described later. 

3.4.3 COVER GRAPH 

A cover of an original text consists of a combination of its phrases that com-

pletely rebuild the original text. One such example is depicted in Figure 15 for 

the text T, also represented in Table 46. Other covers for the same text exist. 

A valid cover does not contain any gaps or overlaps. An example of a cover 

with a gap is shown in Figure 16, in which the single-word phrase “accord-

ance” is missing and does not enable to obtain a complete cover of T. 

An example of a cover with an overlap is shown in Figure 17, where the single-

word phrase “accordance” is covered by both “in accordance” and “ac-

cordance with”. 

Considering the many ways in which a text can be partitioned, there can be 

many possible covers. All those covers can be represented by a cover graph, 

with any individual path on such graph representing a single cover. A cover 

graph example for text T is shown in Figure 18, where the cover from Figure 15 is 

Figure 15. An example of a valid cover 

the rules national law the in accordance with 

Figure 16. A cover with a gap 

gap 

accordance 
the rules in with the national law 

Figure 17. A cover with an overlap 

 
the rules in accordance 

accordance with the national law 

overlap 
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highlighted. Two artificial nodes are included: one, labeled as “<start>”, to 

keep a reference to the starting cover nodes; and another, labeled as “<end>”, 

to which the ending cover nodes will refer. 

The cover graph representation has the following properties: it only allows its 

traversal in one direction (from the node <start> to the node <end>); it does 

not contain cycles; and it allows taking advantage of common sub-paths shared 

by alternative covers. Identifying common sub-paths allows avoiding duplicate 

processing and consequently improving performance: the complexity goes from 

the number of paths to the number of edges. Considering a text of N words, and 

considering a limit of L words for any given phrase from the text, there will be 

O(NL) phrases. Each phrase will connect to at most L following phrases, so 

there will be O(NL2) possible edges, while there will be O(LNL) possible paths. 

The main purpose of the cover graph, in the Transtor translation process, is to 

simplify the translation graph creation, which is why the original phrases con-

sidered for this stage are the ones that are indeed translatable (having at least 

one phrase translation equivalent). Using the cover graph simplifies the process 

of ensuring the phrase translations do not have gaps or overlaps according to 

their original phrases: using the cover from Figure 16 would result in a transla-

tion that would not contain a translation for “accordance”; using the cover 

from Figure 17 would result in a translation that would contain a duplicate 

translation for “accordance”. 

Producing the cover graph requires using every instance (or occurrence) of the 

identified translatable entries (Sub-Section 3.4.2) from the Term Array calculat-

ed previously (Sub-Section 3.4.1). Each instance will produce a cover node con-

taining the information about the offset and the length of the phrase instance 

represented by the node, as well as a set containing the references to the nodes 

that follow it on the cover graph. The set of references on every cover node 

support the cover edges. 

The set of references on a cover node is determined using the corresponding 

ending offset (obtained with the offset and length of the node) to identify the 

cover nodes having an offset consistent with the given ending offset and sepa-

rated by a blank space character. The node <start> will reference the starting 

Figure 18. A cover graph example 

in accordance with the national law the rules 

the accordance 
rules with 

the national law 

law 

<
s
t
a
r
t
>
 

<
e
n
d
> 

in 

national 
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cover nodes (the ones with an offset of 1), and the node <end> will be refer-

enced by the ending cover nodes (the ones having the sum of their offset and 

their length equal to the length of the original text). Once the cover graph is 

complete, the translation graph can be created from it, as explained in Sub-

Section 3.4.4 below. 

3.4.4 TRANSLATION GRAPH 

The cover graph (Sub-Section 3.4.3) allows establishing a meaningful traversal 

of the translatable original phrases, but in order to produce the translations, the 

goal is to traverse the corresponding translation phrases, which is supported by 

the translation graph. Again, the cover graph will assist in creating the transla-

tion graph, simplifying the edge creation between the phrase translations of 

adjacent original phrases and ensuring every original phrase is covered only 

once. 

First, each node of the cover graph will produce a set of translation nodes. Such 

set will contain one translation node for each phrase translation of the original 

phrase represented by the cover node. Then, each translation node produced by 

a cover node 𝑛0 will be connected to each translation node produced by a cover 

node 𝑛1, for every pair of cover nodes 𝑛0 and 𝑛1 connected by an edge. Figure 19 

illustrates the several stages on how cover edges produce translation edges: 

stage (1) presents two cover nodes connected by a cover edge; stage (2) presents 

the translation nodes produced by the cover nodes presented in stage (1); and 

stage (3) presents the translation edges connecting the translation nodes pre-

sented in stage (2). 

An example of a translation graph produced from a cover graph is shown in 

Figure 20. As with the cover graph, artificial starting and ending nodes are in-

cluded in the translation graph. 

 rules the 

(1) 

 

rules the 

 regras 

normas  

o 

a 

os 

as 

(2) 

 

rules the 

 regras 

normas  

o 

a 

os 

as 

(3) 

Figure 19. The several stages for producing translation edges from a cover edge 
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The translation graph enjoys the same properties as the cover graph: unidirec-

tional; no cycles; and exploring common sub-paths. Consequently, the complex-

ity improvement from the number of paths to the number of edges is also veri-

fied in this case. 

Once the translation graph has been created, the nodes already include the ptm 

scores (Section 3.3.2.1), but the plm scores (Section 3.3.2.2) are still missing for 

the edges, so an additional stage has to be carried out in order to include them, 

with such stage being described in Sub-Section 3.4.6.3 below. 

3.4.5 INCLUDING THE TRANSLATION PATTERN FEATURE 

The translation pattern feature (Sub-Section 3.1.1.2) is included in the transla-

tion process of Transtor through three different stages: matching; validation; 

and graph integration. The matching stage, described in Sub-Section 3.4.5.1, will 

confirm if a translation pattern can be applied to a candidate phrase and will 

instantiate the pattern variables with the corresponding sub-phrases of the can-

didate phrase. The validation stage, described in Sub-Section 3.4.5.2, will ensure 

the instantiated pattern variables from a previously matched translation pattern 

are translatable. Finally, the graph integration stage, described in Sub-Section 

3.4.5.3, will integrate a previously validated translation pattern into the transla-

tion graph. As a final note, the translation pattern feature requires the inclusion 

of at least one source of contiguous phrase translation equivalents. 

 

 

Figure 20. Translation graph resulting from a cover graph 
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3.4.5.1 Matching a Translation Pattern to a Candidate Phrase 

Matching the source part of a translation pattern to a candidate phrase requires 

that the literal parts find their exact matches on the candidate, while the re-

mainder sub-phrases (not matched with the literal parts) of the candidate will 

instantiate their corresponding pattern variable elements. 

A matching example is shown in Figure 21, in which it is intended to obtain the 

Portuguese (target language) translation of the English (source language) can-

didate phrase T = “turn the lights off” using the translation pattern on 

entry number 7 of Table 17. Matching the corresponding source and target lan-

guages on the translation pattern, “turn <var> off” is considered the source 

pattern and “desligar <var>” is considered the target pattern. 

The figure illustrates the source pattern literals “turn” and “off” being 

matched by the candidate sub-phrases “turn” and “off” respectively, leaving 

the variable from the translation pattern to be instantiated with the candidate 

sub-phrase “the lights”. 

Once the variables have been effectively instantiated with their corresponding 

sub-phrases, a validation process needs to be carried out on those sub-phrases 

in order to make sure each one is translatable. Going back to the example from 

Figure 21, it will be necessary to confirm that the sub-phrase “the lights” is 

translatable. 

Such verification is required to ensure the matched translation pattern is trans-

latable, and is carried out in the validation process, described in Sub-Section 

3.4.5.2 below. 

3.4.5.2 Validating a Matched Translation Pattern 

A matched translation pattern (Sub-Section 3.4.5.1) is only confirmed to match 

the candidate phrase, which means the literals have found their matches while 

the variables have been instantiated with their corresponding sub-phrases on 

the candidate phrase. 

Figure 21. Matching a translation pattern to a candidate 

 EN pattern phrase 

(applied to candidate) 

 

turn the lights off 

EN pattern phrase 

(source) turn <var> off  

variable in-

stantiation 
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However, the matching of a translation pattern does not ensure it is translata-

ble, which is a necessary condition for the translation pattern to be considered 

in the translation process. A matched translation pattern is translatable only if 

all of its instantiated variables are also translatable. An instantiated variable is 

translatable if the sub-phrase instantiating it can be translated. The translatabil-

ity of such sub-phrases follows the same criteria used for the translation of 

complete sentences, requiring each sub-phrase to be translated either by a sin-

gle phrase or by a combination of phrases covering the complete sub-phrase, 

with no gaps or overlaps. 

The several possible ways to translate sub-phrases associated to pattern varia-

bles are represented by variable cover graphs, which will, in turn, produce the 

corresponding variable translation graphs. Again, taking the example from Fig-

ure 21, the sub-phrase “the lights” (associated to the variable of the source 

pattern) needs to be translated either by the single phrase “the lights” or by 

both “the” and “lights” individually, so that a traversal from the node 

<start> until the node <end> of the variable cover graph is possible. In a case 

where a translation is available for all the mentioned phrases, the sub-phrase 

associated to the variable can be translated in two possible ways, as shown by 

the variable cover graph represented in Figure 22. 

Once it has been confirmed that every variable from a matched translation pat-

tern is translatable, the translation pattern can then be safely integrated into the 

translation graph, as described in Sub-Section 3.4.5.3 below. 

3.4.5.3 Integrating a Validated Translation Pattern 

Obtaining a translation through the application of a validated matched transla-

tion pattern (Sub-Section 3.4.5.2) requires its integration into the main transla-

tion graph. Such integration implies the placement of the cover graph of the 

translation pattern in its corresponding position in the main cover graph in or-

der to produce the corresponding final translation graph. 

Figure 22. Valid matched translation pattern 
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As an example, consider the partial sentence S = “must turn the lights 

off when”, which has T = “turn the lights off” as a sub-phrase that 

can be translated by the translation pattern shown in the previous sub-sections. 

The corresponding cover graph is shown in Figure 23, where the variable cover 

graph is still generically represented by a single node. 

Again, the purpose of the cover graph is to simplify the creation of the transla-

tion graph. Figure 24 shows the resulting translation graph from Figure 23, 

where the translation graph from the variable is also generically represented by 

a single node. 

Before moving on the final graphs, the variable cover graph presented in Figure 

22 will produce the variable translation graph represented in Figure 25. Those 

variable cover and translation graphs correspond to the ones generically repre-

sented in the previous figures. 

Figure 23. Cover graph integration 

  
turn off must when variable 

cover graph 

Figure 24. Translation and cover graphs 

 

 

   
desligar variable transla-

tion graph 
deve 

devem 

quando 

em a altura 

cover graph 

 

translation graph 

turn off must when variable 

cover graph 
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Having introduced the generic cover and translation graphs in Figure 24, and 

the variable cover and translation graphs in Figure 25, it becomes easier to ex-

plain how those are integrated to obtain the final cover and translation graphs 

in Figure 26. 

The figure shows that the phrase translations from “must” (“deve” and 

“devem”) are connected to the first element from the target part of the transla-

tion pattern (the literal “desligar”), the literal “desligar” is connected to 

the following element from the translation pattern (the variable), and the phrase 

translations from “when” (“quando” and “em a altura”) are connected to 

the last element from the target part of the translation pattern (the variable). 

So far, the variable has been connected to the corresponding elements but, in 

order to obtain the final graph, the elements from the variable are the ones that 

have to be connected. In the example, this means, the literal “desligar” is 

connected to the elements which are in turn connected to the artificial node 

<start> from the variable translation graph (“as luzes”, “o”, “a”, “os” and 

“as”) and, following the same logic, the elements connected to the artificial 

node <end> from the variable translation graph (“as luzes” and “luzes”) 

will now be connected to “quando” and “em a altura”. 

Figure 25. Translation graph from the variable 
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With the integrated translation pattern, in which the nodes already include 

their translation model, the remaining graph traversals can be carried out, 

namely for including the language model (Sub-Section 3.4.6.3), decoding (Sub-

Section 3.4.8), and showing the final translation (Sub-Section 3.4.10). 

Since the translation patterns used in Transtor have all been verified (another 

manifestation of supervision), and since the literal elements from one part of the 

translation pattern do not necessarily correspond to another literal on the other 

part of the translation pattern, the ptm scores of the literal elements is decided to 

be 1.0, expressing the certainty of their correction. 

3.4.6 INCLUDING THE TRANSLATION AND LANGUAGE MODELS 

Once the graph is composed, the translation and language models have to be 

used in the translation stage. The previous sub-sections described the ptm and 

plm models trained from a single source. However, as mentioned above, each 

model can use several sources to produce a combined final score. Using several 

distinct sources allows them to be kept separate, for instance by topics, domains 

or subjects, to then use the ones considered most relevant to any translation in 

question. 

3.4.6.1 Combining Several Sources for the Translation Model 

In this approach, several phrase translation sources (aligned parallel corpora) 

can be trained separately, as described above (Sub-Section 3.3.2.1), so that the 

ones considered most relevant for a given translation can be combined to pro-

Figure 26. Translation graph integration 
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duce a final ptm score. So, for a selection of n different sources, each with a 

model 𝑝𝑡𝑚𝑖, a combined ptm is obtained using the formula expressed in Equa-

tion 16. 

𝑝𝑡𝑚(𝑒|𝑓) = max
𝑖

(𝑝𝑡𝑚𝑖(𝑒|𝑓)) 

Equation 16. Combining several phrase translation model scores 

The combined ptm allows a more balanced score between the different alterna-

tives. With this solution, it would be possible to assign a score of 1.0 to several 

(or even all) alternative translations for a phrase, which is consistent with the 

goal of assigning balanced scores to equally correct entries. Because it is possi-

ble to assign a score of 1.0 to more than one alternative translation for a given 

phrase, it is not ensured that the sum of the probabilities of those alternative 

translations is 1.0, this way showing that the ptm score does not correspond to a 

probability distribution. 

3.4.6.2 Combining Several Sources for the Language Model 

As with the ptm score, in this approach, several separate monolingual sources 

can be trained separately, as described above (Sub-Section 3.3.2.2). So, for a se-

lection of n different sources, where each source provides a 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑎𝑙𝑢𝑒𝑖, the 

combined plm score of translation phrase fe, as a following of (occurring exactly 

after) a translation phrase e with m following translation phrases 𝑓𝑒𝑗 , is ob-

tained using the formula expressed in Equation 17. As with the individual plm, 

if every context value is 0, the final combined value is also defined to be 0. 

𝑝𝑙𝑚(𝑓𝑒|𝑒) =
∑ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑎𝑙𝑢𝑒𝑖

𝑛
𝑖=1 (𝑒, 𝑓𝑒)

∑ ∑ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑎𝑙𝑢𝑒𝑖
𝑚
𝑗=1 (𝑒, 𝑓𝑒𝑗)𝑛

𝑖=1

 

Equation 17. Combining several phrase language model scores 

In this case, such definition allows the results to be the same as merging all 

sources and training them as a single source but, again, this solution has the 

advantage of using combinations of sources considered most relevant for a giv-

en translation. 

3.4.6.3 Adding the Language Model 

The plm score (Section 3.3.2.2) considers a set of phrases following a current 

phrase and evaluates how likely each phrase is to follow the current one. Such 

relations between current and following phrases are established by the edges 

from the translation graph (Sub-Section 3.4.4), which is why the plm score de-

pends on the translation graph to be determined first. 
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Calculating the plm score for every edge is accomplished through a traversal of 

the translation graph, using a depth-first traversal to process each individual 

node along with their corresponding following nodes. Processing an individual 

node requires determining the corresponding context value for each of its fol-

lowing nodes (if any), with their sum being used to normalize each of the con-

text values individually, producing the intended plm score. 

Once the plm score has been determined for all the edges from the translation 

graph, the decoding process can begin, as described in Sub-Section 3.4.8 below. 

3.4.7 SENTENCE TRANSLATION MODEL 

The sentence translation model (stm) developed for Transtor combines the 

phrase translation model (Section 3.3.2.1) and the phrase language model (Sec-

tion 3.3.2.2) to determine the score of a translation produced for a sentence, this 

way allowing the selection of the best translation amongst several possible ones 

in the decoding stage described ahead (Sub-Section 3.4.8). 

When determining the stm score of a translation candidate of a sentence, every 

pair of adjacent translation phrases is analyzed by combining the ptm scores of 

the corresponding phrase translations and the plm score between the phrases of 

an adjacent pair. More specifically, for a particular pair of adjacent translation 

phrases e and fe, the ptm and plm scores involved are combined as shown by the 

edge score function 𝑒𝑠(𝑒, 𝑓𝑒) defined in Equation 18. 

𝑒𝑠(𝑒, 𝑓𝑒) = 𝑡𝑤 ∙ 𝑝𝑡𝑚(𝑒) + 𝑙𝑤 ∙ 𝑝𝑙𝑚(𝑒, 𝑓𝑒) + 𝑡𝑤 ∙ 𝑝𝑡𝑚(𝑓𝑒) 

Equation 18. Edge score between adjacent translation phrases 

The edge score considers 𝑝𝑡𝑚(𝑒) and 𝑝𝑡𝑚(𝑓𝑒), evaluating how likely e and fe 

translate their corresponding original phrases, and 𝑝𝑙𝑚(𝑒, 𝑓𝑒), evaluating how 

likely phrase translation fe is to follow phrase translation e, where tw is the 

weight of the ptm score and lw is the weight of the plm score. 

Since both score weights can be represented as a function of the other, there is 

only one degree of freedom. In this case, tw is represented as a function of lw, 

as 𝑡𝑤 =
1−𝑙𝑤

2
, with lw admitting a value between 0.0 (the language model is not 

considered) and 1.0 (the translation model is not considered). This way, the 

edge translation model represents an interpolation of the contribution of the 

translation model and the language model. 

Now, considering that, in general terms, an original sentence can be partitioned 

into n non-empty contiguous phrases 𝑓1, 𝑓2, … , 𝑓𝑛 to produce a translation sen-

tence 𝑒1, 𝑒2, … , 𝑒𝑛, with each 𝑒𝑖 being a non-empty phrase translation of the orig-

inal phrase 𝑓𝑖, the stm score for the translation sentence will evaluate every ad-
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jacent pair of phrase translations, using the edge score presented in Equation 18, 

as shown in Equation 19. 

𝑠𝑡𝑚(𝑒1, 𝑒2, … , 𝑒𝑛) = ∑
𝑒𝑠(𝑒𝑖, 𝑒𝑖+1)

(𝑛 − 1)𝛼

𝑛−1

𝑖=1

 

Equation 19. Score of a combination of translation phrases 

The division in Equation 19 allows the fair comparison between translation sen-

tences with different number of phrases, otherwise translation sentences with a 

higher number of phrases would have an unfair (and unwanted) advantage. 

The alpha parameter in stm allows increasing the penalization of translation 

sentences with more phrases: the higher the alpha, the lower the scores for sen-

tences with more phrases, consequently benefitting sentences with fewer 

phrases. In fact, tests have shown that translation sentences with fewer phrases 

have generally better quality, which is consistent with the fact that the longest 

possible phrase combinations represent word by word translations, which are 

known to be generally bad translations. This alpha parameter intends to ac-

complish the same purpose as the penalty models described in Sub-Section 

2.1.3.4, which in this case is a phrase-based penalty model. Finally, in cases 

where a sentence can be translated by a single phrase 𝑓1, the translation score is 

simply determined by 𝑝𝑡𝑚(𝑒1). 

The formula described here shows how a single translation possibility is evalu-

ated, but the problem consists in finding the best translation amongst a great 

number of translation candidates. Finding the best translation is accomplished 

in the Transtor decoding stage, described ahead in Sub-Section 3.4.8, where it is 

shown how the potentially immense number of possibilities can be processed 

efficiently. 

3.4.8 DECODING THROUGH GRAPH TRAVERSAL 

The stm score, presented in Section 3.4.7, evaluates a single translation candi-

date. However, the translation process can produce a great number of transla-

tion candidates and the purpose is to find one that maximizes the stm score. 

Such maximization process is called decoding which, in Transtor, is accom-

plished by traversing the translation graph (Sub-Section 3.4.4). However, the 

translation graph can have millions of different paths, with each individual 

path representing a single translation candidate, and calculating their individu-

al scores, in order to be compared against each other, to then select the one hav-

ing the highest score, would render the process impractical. Fortunately, decod-

ing can be efficiently processed following the observations described below. 



 

111 
 

First of all, 𝑒𝑛 will represent the first phrase of a sentence and 𝑒1 will represent 

the last, so a sentence divided into n phrases will be represented as 

𝑒𝑛, 𝑒𝑛−1, … , 𝑒1. Then, to enable a more natural application of the stm score ex-

pressed in Equation 19 on the graph, the recursive form of the stm score (the 

rstm score) is presented in Equation 20 (the equivalence between both formulas 

is shown in the Annex). These settings allow a more direct relation between the 

recursive formula and the actual graph traversal, where the cumulative score of 

a phrase depends on the cumulative score of its following phrase. 

𝑟𝑠𝑡𝑚(𝑒𝑛) = {

0, 𝑛 = 1
𝑒𝑠(𝑒𝑛, 𝑒𝑛−1) + 𝑟𝑠𝑡𝑚(𝑒𝑛−1) ∙ (𝑛 − 1)𝛼

𝑛𝛼
, 𝑛 > 1

 

Equation 20. Recursive form of the stm score 

The stm formula, either in its original or in its recursive form, scores a single 

translation candidate but the goal of decoding is to find the translation candi-

date with the score that maximizes the formula, so decoding is a maximization 

problem. Taking advantage of the graph structure, which allows reusing calcu-

lations shared by common sub-paths, in a maximization problem consists in 

keeping only the maximum cumulative values (because lower values will never 

contribute to a higher total value), so a depth-first traversal is carried out, 

where every translation node e, with n following translation nodes 𝑓𝑒𝑖, is trav-

ersed only once, having its maximum cumulative stm (mstm) score calculated 

with the formula presented in Equation 21, where 𝑑(𝑒) represents the depth of 

node e. 

𝑚𝑠𝑡𝑚(𝑒) = {

0, 𝑑(𝑒) = 1

max
𝑖

𝑒𝑠(𝑒, 𝑓𝑒𝑖) + 𝑚𝑠𝑡𝑚(𝑓𝑒𝑖) ∙ 𝑑(𝑓𝑒𝑖)
𝛼

(𝑑(𝑓𝑒𝑖) + 1)𝛼
, 𝑑(𝑒) > 1

 

Equation 21. Maximum cumulative stm score 

Unlike with rstm, in which the n is used in the formula because the number of 

phrases is known, in mstm the depth is used instead because it will depend on 

the depth of the following node fe with which the highest cumulative score is 

achieved. Each translation node includes information about the following trans-

lation node that maximizes the total up to that point, namely the reference to 

the node, the corresponding mstm and the corresponding depth. Once every 

translation node has been traversed, the path that provides the highest stm 

score can be reconstructed using the mentioned references. This procedure can 

be interpreted as the concern of determining which following phrase fe should 

be considered once the current phrase e has been reached. 
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In case the cover graph is composed by a single node, representing a single 

original translatable phrase, the translation graph will have one or more paths, 

each consisting of a single translation node, none of them having any adjacent 

translation phrases for which to calculate the plm score. Such situation results in 

the translation node with the highest plm score to be presented as the final 

translation. 

In the end, this traversal determines the information needed to traverse the 

graph once more in order to present the final translation, as described in Sub-

Section 3.4.10 ahead. 

3.4.9 NON-TRIVIAL CASES 

The description made so far assumed perfect conditions. However, this is not 

always the case and some non-trivial cases may surface during the translation 

stage. Those situations are explained in the sub-sections below. 

3.4.9.1 Untranslatable Sections 

As already mentioned above, the existence of untranslatable phrases might 

originate untranslatable text sections (portions of text that are not covered by 

any translation). For this reason, translation sections (either translatable or un-

translatable) are identified in order to apply the translation process to the sec-

tions that are indeed translatable. 

# phrase/term 

6 in 

12 law 

13 national 

14 national law 

15 rules 

22 the 

25 the rules 

32 with 

Table 49. Availability of phrase translations 

Consider again the text T = “the rules in accordance with the na-

tional law”, with Table 49 showing the phrases from Table 47 for which 

translations are available. The presented translatability of the phrases results in 

the text sectioning depicted in Figure 27, which has an untranslatable section 

composed by the phrase “accordance”. The figure shows that there is a con-

nection between the node representing the first occurrence of the phrase “the” 

and node “in” through node “rules”, a connection between node “with” and 

node “law” through the node representing the second occurrence of the phrase 

“the” and node “national”, but there is no way of reaching node “with” 



 

113 
 

from node “in”, resulting in the untranslatable section formed by the phrase 

“accordance”. 

The untranslatable section present in the graph shown in Figure 27 would not 

occur if Table 49, on which the graph is based, signaled a translation availability 

of either “in accordance”, “accordance with” or “in accordance 

with”. For instance, Figure 28 shows the text sectioning that would result from 

also having a translation for “in accordance with”, which consists of a sin-

gle section covering T completely. 

The identification of translation sections uses the offset ranges of the translata-

ble phrases to first determine the translatable sections, also represented by off-

set ranges. The identified offset ranges representing the translatable sections are 

then used to identify the ranges from the untranslatable sections through a 

complement set. 

It should be noted that before checking for translation sections, it is necessary to 

validate any matched translation patterns (Sub-Section 3.4.5.2) and that each 

translation section is considered separately to generate the cover graph of its 

corresponding text (Sub-Section 3.4.3). Untranslatable sections are presented 

unchanged. 

Figure 28. Translatable section covering the whole text 
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Figure 27. Translation sections 
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Figure 29. Translatable and untranslatable ranges 
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3.4.9.2 Dangling Nodes 

As mentioned above, besides the untranslatable sections, untranslatable origi-

nal phrases can also produce dangling nodes, which have no contribution in the 

production of complete translations, unnecessarily burdening the process. Such 

nodes are dangling on the graph, either because they cannot reach the end of 

the graph (end dangling nodes), or because they cannot be reached from the 

beginning of the graph (begin dangling nodes). Removing those nodes requires 

a consistency check since any nodes linked to them might become dangling too. 

In the particular example depicted in Figure 28, there are two dangling nodes, 

corresponding to phrases “in” (end dangling node) and “with” (begin dan-

gling node), shown in lighter colors in Figure 30. 

The removal of such nodes is carried out through a recursive depth-first tra-

versal of the graph, starting from the node <start> and analyzing each node 

with the purpose of reaching the node <end>. 

The analysis of a current node consists in checking all its following nodes before 

analyzing the current one, implementing the depth-first traversal. Once all the 

following nodes have been analyzed, the analysis of the current node consists in 

removing the references to its following nodes that do not reach the node 

<end>. In a case in which every following node is removed, the current node is 

marked as having been analyzed and as unable to reach the end. In the end of 

the traversal process, references to the end dangling nodes have been removed, 

making them inaccessible, and the begin dangling nodes were never accessed 

because the traversal started from the node <start>. Once the dangling nodes 

have been isolated, the cover graph is ready to support the translation graph 

creation (Sub-Section 3.4.4) while ignoring those identified dangling nodes. 

3.4.10 PRESENTING THE FINAL TRANSLATION 

The previous graph traversal carried out for decoding (Sub-Section 3.4.8) will 

leave each node with information about which is the best translation node to 

follow from that point onward. Such information is used to follow a left-to-right 

traversal of the path corresponding to the combination of phrases that maxim-

ize the stm score, presenting the phrase translation associated to each traversed 

Figure 30. Dangling nodes in a cover graph 
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node, beginning at the artificial node <start> and finishing at the artificial 

node <end>. In other words, the artificial node <start> points to the first 

node of the best path, which in turn points to the following node of the best 

path, and so on, until the artificial node <end> is reached. The nodes presented 

along the way will constitute the final translation. 

3.5 DIFFERENCES BETWEEN TRANSTOR AND MOSES 

Both Moses and Transtor depend on parallel corpora to calculate their transla-

tion models and depend on monolingual corpora to calculate their language 

models. However, before introducing the results obtained with both systems, it 

is important to stress out their differences. 

First of all, as mentioned earlier, the main distinctive character is the fact that 

Transtor is a truly phrase-based approach, since phrases are considered to be 

units by themselves and not just a composition of words. This is true in every 

element that composes the system, namely the alignment used as a base, the 

phrase translation extraction, the translation model, the language model and 

the penalty parameter. 

In the case of Moses, extracted translation equivalents and, consequently, the 

translation model, also apply to phrases. However, extracted phrase translation 

equivalents are obtained from a word-based alignment and the remaining lan-

guage model, reordering model and penalty model all consider words as their 

units. 

Another distinctive feature already mentioned is that Transtor considers super-

vision, mostly manifested through the use of validated bilingual phrase lexicon. 

These and other differences will be discussed individually and in detail in the 

sub-sections below. 

3.5.1 ALIGNMENT AND PHRASE TRANSLATION EQUIVALENTS 

In Moses, a parallel corpus is aligned using GIZA++7, which implements the 

IBM models (Brown et al., 1993). It requires sentence aligned texts and produces 

a word-based alignment without any supervision. Such alignment, run in both 

language directions, to produce a symmetrized word-based alignment, sup-

ports the extraction of phrase translation equivalents by considering phrases 

consistent with the symmetrized alignment. Yet, as mentioned earlier, a word-

based alignment will hardly deal with situations in which there is no clear rela-

tion between words, as shown by the phrase translation equivalent example 

“clockwise” <=> “em o sentido de os ponteiros de o relógio” 

                                                 
7 The GIZA++ toolkit (http://www.isi.edu/~och/GIZA++.html). 
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(Sub-Section 2.1.2.1). Such example can be used to show not only that phrases 

should be considered units, but also that lexica validation (Sub-Section 3.1.2) is 

necessary to prevent those problems, since there is no obvious way to associate 

such equivalents. 

When the alignment process only uses statistics to align words or phrases, it can 

be very difficult to avoid many recurring misalignment situations. These can be 

prevented more effectively with the use of supervision, where known entries, 

previously verified by a user, can help a system improve its process of detecting 

correct translation equivalents. 

In the case of Transtor, a parallel corpus is aligned with the FCT Aligner (Sub-

Section 2.3), which is phrase-based and uses previous knowledge in the form of 

verified bilingual phrase lexica to improve its quality (previously detected 

translation equivalents are used to provide support in detecting additional 

translation equivalents). Transtor then uses the resulting alignment not only to 

consider the phrases that were recognized in the alignment process, but also to 

identify additional phrase translations not yet recognized by the system, using 

some methodology which explores common alignment patterns (Sub-Section 

3.3.1.1). 

Also, as main SMT research, Moses is only focused on creating a bilingual 

phrase lexicon from scratch. In a way, it assumes that previous knowledge in 

the form of a validated bilingual phrase lexicon is never available. However, 

there can be information available about how to translate a great number of 

phrases, as well as there are language constructs that follow very specific rules. 

In the approach supporting Transtor, such knowledge can be expressed both in 

the literal form of bilingual phrase lexica (contiguous phrases) and in the more 

generic form of translation patterns (non-contiguous phrases). 

3.5.2 TRANSLATION MODEL 

Once Moses has identified the phrase translation equivalents, it computes five 

different phrase translation scores that compose its translation model (Sub-

Section 2.1.3.1): 

 the direct phrase translation probability 𝑝(𝑒|𝑓); 

 the inverse phrase translation probability 𝑝(𝑓|𝑒); 

 the inverse lexical weighting 𝑙𝑒𝑥(𝑓|𝑒); 

 the direct lexical weighting 𝑙𝑒𝑥(𝑒|𝑓); and 

 the phrase penalty, which is always 𝑒𝑥𝑝(1) = 2.718. 
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The purpose of combining all those probabilities is to improve the probability of 

assigning high scores to phrases that are highly likely to translate other phrases. 

However, phrases like “clockwise” <=> “em o sentido de os pon-

teiros de o relógio” will also present problems to lexical translation 

probabilities, and inverse translation probabilities are not intuitive, since they 

follow the inverse direction of translation. 

Transtor simplifies all of the above by using a simple translation model, consist-

ing of the direct phrase translation probability (Sub-Section 3.3.2.1). The combi-

nation of translation models from several sources (Sub-Section 3.4.6.1) reduces 

the problem of producing a score which would mainly reflect how frequently a 

phrase translation has been associated on another phrase. 

3.5.3 LANGUAGE MODEL 

One of the language models used by Moses (and the one used in the tests pre-

sented in Chapter 4) is IRSTLM8, which is an implementation of an n-gram his-

tory model (Sub-Section 2.1.3.2). Such model uses an absolute n-gram analysis 

to determine how likely a given word is to appear after a set of n – 1 words for 

any given sentence, so the analysis is done at the word level. Also, because of 

the nature of the translation probability score (Equation 22 in Sub-Section 3.5.5 

below), this model needs to avoid producing null values because they would 

nullify the whole translation probability, something that is avoided through 

smoothing techniques. 

The language model used by Transtor is very different. It begins by considering 

phrases as units, so the internal fluency of phrases like “in spite of” or “in 

accordance with” will not be considered (unlike with the n-gram history 

model). Instead, the model takes pairs of adjacent phrases, with each phrase 

having one or more words, and determines how likely they are to be found to-

gether according to their adjacent alternatives, as described in Section 3.3.2.2. 

Also, like the translation model, the language model can be the combination of 

language models from several sources (Sub-Section 3.4.6.2). As a final differ-

ence, null probabilities are not avoided in this model because, due to of the na-

ture of the translation probability score employed by Transtor (Equation 24 in 

Sub-Section 3.5.5 below), they do not represent a problem, even though such 

probability would not enable to discriminate between “never occurs” and “has 

not been observed”. However, with the alternative of preventing zero probabili-

ties with smoothing techniques, which assigns some small value to unobserved 

events, it would not be possible to discriminate between “never occurs”, “has 

                                                 
8 The IRSTLM language modeling toolkit (http://sourceforge.net/projects/irstlm). 
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not been observed” and “barely occurs”. This way, a model should be capable 

of dealing with unobserved events which could be compensated by other mod-

els or elements. In other words, a model should be prepared for the likely situa-

tion in which a particular event has not been observed, particularly by taking 

advantage of other events that have indeed been observed. 

3.5.4 PENALTY MODEL 

The penalty model used in Moses considers the number of words in the sen-

tence, expressed as 𝑊(𝑒) = exp (𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)). As explained earlier (Sub-Section 

2.1.3.4), the purpose of this model is to maintain a balance between the number 

of words from the sentence being translated and its translation, since the lan-

guage model (Sub-Section 2.1.3.2) employed by Moses prefers shorter transla-

tions. However, the translation equivalent “counterclockwise” <=> “em o 

sentido contrário a o de os ponteiros de o relógio” also rep-

resents a good example of how the word-based penalty model faces challenges, 

since there is no clear balance when a sentence and its translation involve such 

phrase translation equivalent. 

This is in contrast with Transtor, which can deal with such situations, particu-

larly if such equivalent is available in the verified bilingual phrase lexicon, con-

sidering it as a single element and not as a set of several words. Transtor uses a 

phrase-based penalty parameter (Sub-Section 3.4.7) that considers phrases as 

units, penalizing translations with the most phrases and, this way, favoring 

translations with fewer phrases. This penalty parameter also provides addition-

al balance between the phrase translation model and the phrase language mod-

el. In fact, smaller adjacent phrases might have higher language model scores 

because they are more likely to be found together but their overall quality 

might not be the best, while larger adjacent phrases usually have lower lan-

guage model scores but their overall quality might be very acceptable because 

their lower language model scores can be counterbalanced by the (general) 

greater quality of each phrase. As an example, translating “in spite of” 

with three phrases (each phrase corresponds to a single word) will have a high-

er penalty than translating it as a single phrase. Still, a translation having fewer 

phrases does not mean it has fewer words. Some translations with fewer 

phrases may be longer because each phrase may also contain more words. 

3.5.5 TRANSLATION PROBABILITY SCORE 

Besides the fact that some models are not shared between Moses and Transtor, 

and the fact that the ones that are shared have some differences, the translation 

probability score that combines the models on each system is also different. 
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In Moses, the probability 𝑝(𝑒|𝑓) of the translation sentence e given the original 

sentence f is broken up into the four models, as shown in Equation 22: 

 the translation model 𝑝𝑡𝑚(𝑓|𝑒); 

 the language model 𝑝𝑙𝑚(𝑒); 

 the distortion model 𝐷(𝑒, 𝑓); and 

 the word penalty 𝑊(𝑒) = exp (𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)). 

Each of the four models is weighted by a weight 𝑤𝑖. 

𝑝(𝑒|𝑓) = 𝑝𝑡𝑚(𝑓|𝑒)𝑤𝑡𝑚 × 𝑝𝑙𝑚(𝑒)𝑤𝑙𝑚 × 𝐷(𝑒, 𝑓)𝑤𝑑 × 𝑊(𝑒)𝑤𝑤  

Equation 22. Translation probability score applied in Moses 

In fact, given that the Moses decoder internally uses logarithms (hence, the 

“log-linear” designation), what is indeed computed is expressed in Equation 23, 

but both formulas are equivalent. 

𝑝(𝑒|𝑓) = exp(𝑤𝑡𝑚 log 𝑝𝑡𝑚(𝑒|𝑓) + 𝑤𝑙𝑚 log 𝑝𝑙𝑚(𝑒) + 𝑤𝑑 log 𝐷(𝑒, 𝑓) + 𝑤𝑤 log 𝑊(𝑒)) 

Equation 23. Log-linear model form of the translation probability score 

The log-linear approach is a very popular model, adopted from the machine 

learning field, used to determine the probability of a translation as a combina-

tion of several feature models (like the translation model, the language model, 

the reordering model and the penalty model). Taking advantage of already de-

veloped concepts, as well as allowing any number of feature models, are cer-

tainly advantages in favor of the log-linear model. However, from my point of 

view, its definition as a product of features can be considered a disadvantage 

since it nullifies total results when confronted with any null values. Avoiding 

such situation requires smoothing techniques for any models involved that 

could produce such values (for which the language model is an example) but at 

the risk of those techniques introducing other errors. Another problem resulting 

from being defined as a product of features has to do with low individual val-

ues having a big impact on the final result. 

The approach followed by Transtor is much simpler, using an average of the 

translation and language models, penalized by the number of phrases (Sub-

Section 3.4.7), as shown in Equation 24. 

𝑠𝑡𝑚(𝑒1, 𝑒2, … , 𝑒𝑛) = ∑
𝑡𝑤 ∙ 𝑝𝑡𝑚(𝑒𝑖) + 𝑙𝑤 ∙ 𝑝𝑙𝑚(𝑒𝑖, 𝑒𝑖+1) + 𝑡𝑤 ∙ 𝑝𝑡𝑚(𝑒𝑖+1)

(𝑛 − 1)𝛼

𝑛−1

𝑖=1

 

Equation 24. The stm score applied in Transtor 

Knowing that a translation candidate is produced by decomposing a source 

sentence into smaller units (words or phrases) which are translated individually 
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and then recombined to produce a complete translation for the source sentence, 

the purpose of either the log-linear model or the stm is to take the scores of 

those smaller units in order to produce a score for the whole translation candi-

date. 

To illustrate the advantage of stm over the log-linear model, consider a toy ex-

ample in which there are two alternative combinations, X and Y, which have to 

be evaluated in order to decide which combination is the best. Consider that 

each alternative combination has three elements (words or phrases), with the 

scores of alternative X as {𝑋} = {0.2,0.2,0.2} and the scores of alternative Y as 

{𝑌} = {0.02,0.5,0.5}. The scores of the individual elements of each alternative are 

then used to produce a final score for each alternative and those scores are then 

used to decide between X and Y. 

At a first glance, the scores from X are very balanced in comparison with the 

ones from Y. However, Y has two elements with a relatively high score and a 

third one with a very low score. Intuitively, even though the scores from Y are 

not as balanced scores as the ones from X, it could also mean that the two ele-

ments from Y having the highest scores are very adequate options, requiring Y 

only one edition on its element with the lowest score to turn the set into an ac-

ceptable choice, while in the case of X the balanced low scores could correspond 

to an average mediocre alternative which might require editing all of its ele-

ments. This intuitive analysis is better expressed with the average, as will be 

shown below. 

Going back to the need of deciding between X and Y, the product of scores will 

first be used, in which case 𝑃(𝑋) = 0.2 × 0.2 × 0.2 = 0.008 and 𝑃(𝑌) = 0.02 ×

0.5 × 0.5 = 0.005, so 𝑃(𝑋) > 𝑃(𝑌), resulting in the selection of combination X. 

This example shows that a very low score easily penalizes a total result when 

the probability is defined as a product of scores. Alternatively, if the simple av-

erage was used instead, 𝑃(𝑋) = (0.2 + 0.2 + 0.2)/3 = 0.2  and 𝑃(𝑌) =

(0.02 + 0.5 + 0.5)/3 = 0.34 , so 𝑃(𝑋) < 𝑃(𝑌) , in which case combination Y 

would be the one selected, in agreement with the intuitive observation in the 

paragraph above. This shows that while using the average, low values (and 

even null values) are only reflected locally without a significant negative impact 

on the complete set, as opposed to using a product for which the negative im-

pact of low scores is easily propagated, ruining the whole score. 

Another example supporting the intuitive notion above can be a situation in 

which a translation path is being selected from partial information. Consider 

another toy example in which a set of adjacent elements (again, words or 
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phrases) {A, B, C, D} has to be scored. For that purpose, it will be necessary to 

analyze the context between A and B, B and C, and C and D. In such analysis, 

there might not be available evidence supporting the consideration of B and C 

together. However, the information available between A and B and between C 

and D might compensate for the lack of evidence between B and C. In other 

words, B can be selected because of A, and C can be selected because of D. This 

is a flexible solution that does not require evidence for every adjacent pair to 

make a decision. Besides, if the translation model provides a high likelihood for 

a translation that is not supported by the language model (not because it does 

not occur but because it has not been observed), it could mean that a translation 

is being proposed to a perfectly admissible new context. As such, the approach 

presented here is flexible enough to deal with unobserved alternatives that 

might actually be correct, possibly compensated by adjacent alternatives, which 

should not be immediately discarded. With this approach, it is possible to admit 

“first”, “last”, “best”, or any other phrase to fill the blank (as long as it is 

admissible by the translation model) of, for instance, “the <blank> rule”, 

even if there is no actual evidence supporting the choice. Additionally, if the 

translation model suggests “best”, finding some partial evidence (like finding 

evidence for “the best” and not for “best rule”) could still justify the 

choice of “the best rule” as the final translation. 

3.5.6 DECODING 

Both approaches implement decoding as a best path search in a directed acyclic 

graph, but there are still differences to be pointed out. 

In the case of Moses, the search is implemented as the expansion of partial hy-

pothesis, from left to right, starting with an empty hypothesis until a complete 

hypothesis covering all words is found. A cover vector is required during the 

search to determine which words have already been covered in the partial 

translation built so far (Sub-Section 2.1.4). 

Unlike Moses, Transtor builds a complete directed acyclic graph with all the 

available phrase translations, implicitly determining which phrases (not simply 

words) are already covered. Each path represents a possible sentence transla-

tion (Sub-Section 3.4.8). Decoding is then accomplished through the depth-first 

traversal of the directed acyclic graph in order to determine the path with the 

highest score. Such path represents the combination of phrases to be presented 

as the translation of a full sentence. 
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4 RESULTS 

Having introduced Transtor as a new approach to Machine Translation, it is 

important to assess its quality. This chapter will present a translation evaluation 

carried out through a set of tests that were meant to be run by Transtor and 

Moses (Koehn et al., 2007). Moses was chosen to provide reference results be-

cause it “is considered the de facto benchmark for SMT”9. The results from both 

systems are then evaluated using BLEU (Papineni et al., 2002), which is the 

most commonly used evaluation score. Scores from both systems are then ana-

lyzed and compared for two sets of parallel corpora. Transtor is further ana-

lyzed with three more sets of parallel corpora, not only because it trains much 

faster, but also because Moses was not able to process the largest parallel corpo-

ra, which was the most interesting one to analyze. 

Yet, a note should be added about parameter tuning. The purpose of the tuning 

process is to determine the best values for the several weight parameters being 

used in translation and is the most expensive stage of SMT in terms of pro-

cessing time. Such process requires an additional parallel corpus, independent 

from the corpus used in the models training, but it should be of a similar do-

main as the texts being translated (Pecina, Toral and Genabith, 2012), since dif-

ferent tuning corpora will produce different sets of weight values which will 

reflect how the SMT system behaves with each given tuning corpus. In particu-

lar, in a case when an evaluation is to be carried out on several language pairs, 

ideally the same parallel corpora should be available between them in order to 

ensure the comparability of their results. On top of all that, tuning might be 

faced with local maxima that, given the non-deterministic nature of the process, 

might prevent the global maximum from being found. 

As such, given the difficulty to fulfill all the requirements above for every lan-

guage pair, at the cost of a tremendously significant increase in processing time 

per language pair (as mentioned, for instance, in the Moses manual), and at the 

risk of only minor improvements when compared to the default weight values 

made available by Moses (Haddow, Arun and Koehn, 2011), (Pecina, Toral and 

Genabith, 2012), a decision was made to not carry out the tuning process. This 

way, the purpose of this analysis is to produce translations with Moses using its 

default weight values for decoding and compare them with the ones produced 

by Transtor using a set of parameters chosen according to the intuitive notion of 

the relative relevance between the models and the importance of the number of 

                                                 
9 Quote from the Moses manual. 
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phrases composing a translation candidate. The parameter choice made for 

Transtor might not be the best or might even be some fortunate guess, also de-

pending on the corpora used for training to translate a given text, but the same 

applies to the default weight values from Moses, so the conditions are compa-

rable between both systems. 

A more detailed analysis of Transtor parameter values will be carried out for 

the language pair providing the best results and the one providing the worst 

results. This will be done not only to see if there is any margin for improve-

ment, but also with the purpose of determining how parameter values affect 

translation quality, hopefully determining a range of values for which it is most 

likely to obtain the best results. Such further analysis for Transtor is affordable 

because of the limited number of parameters involved (one to determine how 

relevant will be the language model against the translation model, and another 

to determine how much the number of phrases will penalize a total score) and 

their limited range of values. 

4.1 DESCRIPTION OF TEST SETTINGS 

As mentioned before, comparability of results is ensured by translating a set of 

reference documents after training both MT systems with the same parallel cor-

pora. The quality achieved by each MT system is assessed with the BLEU scores 

of the translations obtained from the reference documents. The languages tested 

are “en” (English), “pt” (Portuguese), “es” (Spanish), “fr” (French) and “de” 

(German), while the language pairs, analyzed in both their directions, are de-en, 

de-es, de-pt, en-es, en-fr, en-pt, es-pt and fr-pt. 

Some characteristics of the corpora can influence the translation quality: being 

larger usually provides more information but processing it can also present a 

challenge; being from a domain relevant to the documents being translated can 

also contribute to improve quality; and having a controlled vocabulary, in 

which case the text is written more carefully, avoiding alternative meanings and 

using limited vocabulary, can also reduce problems. With this in mind, further 

testing was carried out for Transtor in order to see how it behaved with differ-

ent types of corpora, like being significantly larger in size, being from a not so 

relevant domain, and having a non-controlled vocabulary. 

The additional corpora were not processed with Moses because it takes a con-

siderably longer time to carry out the training process. In fact, we were unable 

to process the corpus APERTIUM EURLEX without Moses crashing. Besides, 

judging by the difference in processing time between Transtor and Moses for 



 

125 
 

the common corpora analyzed (Section 4.3), it would take around 100 hours of 

processing time for Moses to complete its training over APERTIUM EURLEX. 

Finally, tests were run on a machine consisting of a 64-bit, 4-core, 8-thread pro-

cessor running at 3.4 MHz, having 16 GB of RAM and 4 TB of disk space. 

4.1.1 REFERENCE DOCUMENTS 

Information about the reference documents, used to evaluate both systems, 

namely the number of words and their size in bytes, is found in Table 50 below, 

with the values representing the averages between all the languages involved. 

The reference documents are composed of five documents belonging to the Of-

ficial Journal of the European Union10 (with “eurlex” prefix) and four docu-

ments belonging to the European Constitution11 (with “euconst” prefix). 

File 
Words 
count 

Size in 
bytes 

eurlex1 2399 9870 

eurlex2 2794 15020 

eurlex3 1587 7435 

eurlex4 6740 38474 

eurlex5 669 3097 

euconst1 4245 28072 

euconst2 9553 65292 

euconst3 5057 32993 

euconst4 4483 31110 

Table 50. Data about the reference documents 

It should be noted that the reference documents are not included in any of the 

parallel corpora used to train the models, but there might be some document 

portions contemplated in some of those parallel corpora. Still, this is a realistic 

scenario and is presented to both systems. 

4.1.2 PARALLEL DATA 

Tests involving the use of the same parallel corpus with both systems were car-

ried out with OPUS EUCONST12 and DGT-TM 13. OPUS EUCONST is a very 

small parallel corpus, but with a very specific and controlled vocabulary, so 

using it provides an idea of how the systems behave in such “perfect” condi-

tions. DGT-TM is a significantly larger parallel corpus, but also more generic, so 

using it provides an idea of how the systems can handle a significant amount of 

                                                 
10 http://eur-lex.europa.eu/{de,en,es,fr,pt}/consleg/latest/index.htm 
11 http://eur-lex.europa.eu/{de,en,es,fr,pt}/treaties/index-old.htm 
12 The European Constitution (http://opus.lingfil.uu.se/EUconst.php). 
13 The Directorate-General for Translation (DGT) of the European Commission has made its multilingual 

Translation Memory (TM) publicly accessible (http://ipsc.jrc.ec.europa.eu/?id=197). 
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data. The number of millions of words (MW) and the size in Megabytes (MB) 

for each corpus, presented as the average between the languages analyzed, is 

shown in Table 51 below. 

Corpus MW MB 

OPUS EUCONST 0.138 0.810 

DGT-TM 54 305 

Table 51. Data about the common parallel data 

With the same set of reference documents, additional tests were carried out for 

Transtor using APERTIUM EURLEX14, OPUS EMEA15, and OPUS EUROPARL16. 

APERTIUM EURLEX is the largest parallel corpus and is used with the purpose 

of analyzing the performance when presented with such a large amount of data. 

OPUS EMEA is a large corpus about medicines and is used with the purpose of 

analyzing the translation quality when using a very specific domain not related 

to the domain of the reference documents. OPUS EUROPARL is a parallel cor-

pus consisting of transcripts of the European Parliament and is used with the 

purpose of analyzing the behavior of the tool when presented with data in 

which the language is not so controlled. The data about these additional parallel 

corpora is shown Table 52 below, also as an average between the languages. As 

a side note, the corpora prefixed by OPUS where obtained from the OPUS17 pro-

ject. 

Corpus MW MB 

APERTIUM EURLEX 79 456 

OPUS EMEA 13 77 

OPUS EUROPARL 32 183 

Table 52. Data about the additional parallel corpora 

The information presented in both Table 51 and Table 52 is an average between 

all the languages involved. 

In the case of Transtor, besides using the parallel corpus aligned with the FCT 

Aligner (Sub-Section 2.3), it also includes the verified bilingual phrase lexica 

(Section 3.1.2) and the translation patterns (Sub-Section 3.1.1.2) in the test sets. 

The verified bilingual phrase lexica do not have the same degree of develop-

ment for every language pair, as shown in Table 53 below. 

Language pair de-en de-es de-pt en-es en-fr en-pt es-pt fr-pt 

Count (thousands) 130 70 217 217 298 749 218 371 

Table 53. Number of entries of verified bilingual phrase lexica 

                                                 
14 Official Journal of the European Union (http://apertium.eu/data). 
15 Documents of the European Medicines Agency (http://opus.lingfil.uu.se/EMEA.php). 
16 European Parliament Proceedings (http://opus.lingfil.uu.se/Europarl3.php). 
17 The Open Parallel Corpus (http://opus.lingfil.uu.se/index.php). 
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Just like the verified bilingual phrase lexica, the translation patterns do not 

share the same level of development between every language pair, as shown in 

Table 54 below. 

Language pair de-en de-es de-pt en-es en-fr en-pt es-pt fr-pt 

Count 8 51 109 705 35 1589 2 9 

Table 54. Translation patterns count 

Producing translation patterns require an abstract thinking that has proven to 

be a challenge for the linguists that collaborated with us to produce them. Still, 

since the English-Portuguese language pair has been processed for a longer pe-

riod of time, such effort is reflected in its noticeable higher number of entries. 

4.1.3 TOOLS SETTINGS 

Transtor and Moses each include a set of several parameters that have to be set. 

Some parameters affect the training stage while other parameters influence the 

decoding stage. Both stages of Moses were carried out using its default settings, 

with Release 1.0 (the most recent to date). 

The fixed parameters set for Transtor are described in Table 55. The limit of 20 

words for the language model was set to be able to account for a pair of phrase 

translation equivalents, which have a limit of 7 words applied to the translation 

model. Depending on the relevance of the results, the language model weight, 

the translation model weight and the penalty parameter will be analyzed fur-

ther with other values in Sub-Section 4.5. 

Parameter Value  

translation model word limit per phrase 7 

language model word limit per phrase 20 

limit of translation equivalents per phrase 7 

language model weight 0.5 

translation model weight 0.5 

penalty parameter (α) 3 

Table 55. Parameters values from Transtor 

In the case of Moses, many different parameters are available, as shown in Ta-

ble 56 below. The parameters comparable with the ones from Transtor are high-

lighted and on top of the table. It should also be noted that the translation mod-

el is composed of 5 different scores, as mentioned in Sub-Section 3.5.2 above. 

The bottom three parameters from Moses have no direct correspondent param-

eter from Transtor. 
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Parameter Value 

translation model word limit per phrase 7 

language model word limit per phrase 3 

limit of translation equivalents per phrase 20 

language model weight 0.5 

translation model weight (5 in total) all set to 0.2 

word penalty –1 

distance reordering weight 0.3 

lexicalized reordering weight (6 in total) all set to 0.3 

distortion limit 6 

Table 56. Parameter set from Moses 

The limit of 20 words for the language model used by Transtor compares 

against the language model used by Moses which only considers 3 words. 

Moreover, Moses considers 20 translation equivalents per phrase while Tran-

stor considers only 7, which contributes to improve performance and can be 

justified by the good quality of the considered phrase translation equivalents 

enabled by supervision. 

4.2 RESULTS OF TRAINING THE DATA 

The training stage required by the tools needs some time to be carried out and 

produces a certain amount of data, which also constitute important elements to 

be compared between the tools. The following sub-sections will present the in-

formation relative to the corpora used for both tools (Sub-Section 4.2.1) and the 

additional corpora (Sub-Section 4.2.2) used to further analyze Transtor. All the 

information is presented as an average between the languages studied. 

4.2.1 DATA ABOUT COMMON CORPORA 

Starting with OPUS EUCONST, Table 57 shows such information, as well as the 

relative gains achieved by Transtor relative to Moses. The table shows that 

Transtor only takes 5% of the time taken by Moses to train the models and only 

consumes 53% of the size of the structures produced by Moses. 

 
Moses Transtor 

Transtor 
gain 

Time (mm:ss) 05:28 00:17 5% 

Size (GB) 0.249 0.132 53% 

Table 57. Training data for OPUS EUCONST 

Once trained, the tools take some time to translate the reference documents, as 

shown in Table 58, which also includes the relative gains achieved by Transtor. 

In this case, the table shows that Transtor takes, on average, 15% of the time 

Moses takes to produce a translation. 
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File 
Moses 

(mm:ss) 
Transtor 
(mm:ss) 

Transtor 
gain 

eurlex1 00:20 00:02 10% 

eurlex2 00:38 00:04 11% 

eurlex3 00:18 00:03 17% 

eurlex4 01:52 00:13 12% 

eurlex5 00:07 00:01 14% 

euconst1 01:16 00:13 17% 

euconst2 03:03 00:34 19% 

euconst3 01:36 00:18 19% 

euconst4 01:11 00:15 21% 

Average transtor gain 15% 

Table 58. Translation times using OPUS EUCONST 

Table 59 shows the corresponding training information for DGT-TM. Again, the 

average gains achieved by Transtor in relation to Moses are shown. With this 

larger corpus, Transtor takes 6% of the time and 64% of the space required by 

the structures in comparison with Moses. 

 Moses Transtor 
Transtor 

gain 

Time (hh:mm:ss) 45:15:19 02:46:49 6% 

Size (GB) 51 33 64% 

Table 59. Training data for DGT-TM 

Now, the corresponding translation times are presented in Table 60, again 

showing the gains achieved by Transtor in relation to Moses. On average, using 

the corpus DGT-TM, Transtor takes 26% of the time Moses takes to produce a 

translation. 

File Moses Transtor 
Transtor 

gain 

eurlex1 01:32 00:23 25% 

eurlex2 03:15 00:33 17% 

eurlex3 01:34 00:35 37% 

eurlex4 07:07 01:36 22% 

eurlex5 00:39 00:20 51% 

euconst1 07:57 01:36 20% 

euconst2 15:53 03:15 20% 

euconst3 06:18 01:34 25% 

euconst4 05:60 00:53 15% 

Average transtor gain 26% 

Table 60. Translation times using DGT-TM 

The tables above show that Transtor is capable of producing less training in-

formation in significantly less time, allowing the system to start producing 
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translations sooner while consuming less computational resources. This is due 

to the simplicity of the models (plm and ptm) and the efficiency of the structures 

supporting those models. This space and time efficiency is even more important 

when dealing with significant amounts of data (like APERTIUM EURLEX be-

low). Such time efficiency is also accompanied by the Transtor translation pro-

cess, which is also significantly faster than Moses. On top of that, and despite 

the reduction of space and processing time, the results for the translation quali-

ty (Section 4.3) confirm that Transtor is very competitive. 

4.2.2 DATA ABOUT ADDITIONAL CORPORA 

As mentioned before, additional corpora were used to further analyze Transtor. 

As such, APERTIUM EURLEX was used to see how the system deals with a 

significant amount of data, OPUS EMEA was used to see how the quality is af-

fected when a corpus from a not so relevant domain is used, and OPUS EURO-

PARL was used to see how the system behaves when presented with a corpus 

having a vocabulary that is not so controlled. Table 61 shows the time taken and 

the resulting data size for the training stage for each additional corpus. 

 
APERTIUM 

EURLEX 
OPUS 
EMEA 

OPUS EU-
ROPARL 

Time (hh:mm:ss) 05:37:42 01:56:03 01:17:46 

Size (GB) 50 7 30 

Table 61. Training data for the additional corpora 

After training the additional corpora, the reference documents were translated 

in the average times shown in Table 62. 

File 
APERTIUM 

EURLEX 
(mm:ss) 

OPUS 
EMEA 

(mm:ss) 

OPUS EU-
ROPARL 
(mm:ss) 

eurlex1 01:45 00:15 00:36 

eurlex2 00:47 00:08 00:19 

eurlex3 00:36 00:06 00:12 

eurlex4 05:51 00:17 00:55 

eurlex5 00:15 00:03 00:05 

euconst1 02:35 00:21 00:57 

euconst2 07:26 00:30 01:36 

euconst3 01:13 00:12 00:33 

euconst4 00:51 00:09 00:32 

Table 62. Translation times using the additional corpora 

Particularly when considering the times taken with DGT-TM, the translation 

times continue to be reasonable. The translation quality results are presented in 

Section 4.4.2 below. 
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4.3 RESULTS USING THE COMMON DATA 

This section presents the results obtained with both Moses and Transtor after 

being trained with the same corpora sets, in order to translate the reference 

documents using the test settings described in Section 4.1 above. Besides the 

scores obtained by each system for each corpora set, a table is included to show 

the differences between those scores, in which positive values reveal an ad-

vantage in favor of Transtor while the negative values reveal an advantage in 

favor of Moses. 

A small but specific corpus, OPUS EUCONST, is analyzed first in Sub-Section 

4.3.1, and then, a larger and more generic corpus, DGT-TM, is analyzed in Sub-

Section 4.3.2. 

4.3.1 OPUS EUCONST 

This sub-section presents the results obtained using OPUS EUCONST to train 

the models for each system. As mentioned before, this corpus set is relatively 

small but because it is very well-behaved, it still allows the production of inter-

esting results. Table 63 shows the results obtained with Moses. 

 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.6489 0.2148 0.4549 0.2615 0.5024 0.4296 0.4418 0.4713 0.6001 0.4473 

en-de 0.6146 0.1499 0.3547 0.1883 0.3682 0.4058 0.3477 0.4509 0.5575 0.3820 

de-es 0.5041 0.1328 0.2618 0.2446 0.3394 0.3767 0.3450 0.4472 0.5963 0.3609 

es-de 0.5470 0.1185 0.2862 0.1825 0.3165 0.3320 0.2789 0.3759 0.5875 0.3361 

de-pt 0.4676 0.0768 0.2417 0.1191 0.2487 0.1917 0.1748 0.2296 0.4006 0.2390 

pt-de 0.5082 0.0976 0.3025 0.1450 0.2752 0.2055 0.1932 0.2726 0.4657 0.2739 

en-es 0.6027 0.1783 0.3071 0.3105 0.3116 0.4722 0.4455 0.5322 0.7383 0.4332 

es-en 0.6501 0.2393 0.4351 0.3031 0.4503 0.5351 0.5037 0.5823 0.7522 0.4946 

en-fr 0.3368 0.1709 0.3229 0.2071 0.3566 0.3870 0.3712 0.4178 0.5499 0.3467 

fr-en 0.4183 0.2198 0.4116 0.2390 0.4744 0.4283 0.4542 0.4747 0.6052 0.4139 

en-pt 0.4977 0.1237 0.2788 0.1708 0.2535 0.2910 0.2510 0.3217 0.4756 0.2960 

pt-en 0.5409 0.1984 0.4061 0.2641 0.3891 0.4193 0.4000 0.4890 0.6155 0.4136 

es-pt 0.5579 0.2295 0.4270 0.2543 0.4021 0.3663 0.3238 0.4178 0.5363 0.3906 

pt-es 0.6404 0.3186 0.5751 0.4150 0.5882 0.4560 0.4703 0.5282 0.7305 0.5247 

fr-pt 0.5505 0.2209 0.3478 0.2450 0.3981 0.3025 0.3186 0.3381 0.4885 0.3567 

pt-fr 0.5764 0.2387 0.3898 0.2796 0.4982 0.3883 0.4147 0.4277 0.5391 0.4169 

Table 63. Moses results using OPUS EUCONST 

Table 64 shows the results obtained with Transtor. Again, in spite of being 

small, this corpus still allows Transtor to obtain interesting results, mostly for 

the reference documents from the European Constitution (with “euconst” pre-

fix), a set of documents for which this corpus is more relevant. 
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 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.6837 0.2626 0.4724 0.2919 0.4905 0.5724 0.4474 0.6324 0.5899 0.4937 

en-de 0.6313 0.1921 0.4227 0.1927 0.4420 0.5458 0.3793 0.6099 0.5509 0.4407 

de-es 0.6396 0.1888 0.4375 0.2877 0.4936 0.5210 0.3892 0.6163 0.6282 0.4669 

es-de 0.6146 0.1487 0.3788 0.2090 0.4215 0.4450 0.2855 0.5832 0.5838 0.4078 

de-pt 0.6558 0.2201 0.4691 0.3159 0.4947 0.4609 0.3802 0.5227 0.6824 0.4669 

pt-de 0.5997 0.1604 0.4107 0.2144 0.4455 0.3851 0.2956 0.4766 0.6071 0.3995 

en-es 0.6196 0.2518 0.4452 0.3353 0.5055 0.6757 0.5082 0.7542 0.8785 0.5527 

es-en 0.6543 0.2505 0.4674 0.3362 0.4468 0.6922 0.5384 0.7707 0.8856 0.5602 

en-fr 0.6760 0.2376 0.4353 0.2837 0.5380 0.6920 0.5411 0.7450 0.8770 0.5584 

fr-en 0.6053 0.2536 0.4481 0.2605 0.4981 0.6724 0.5724 0.7350 0.8721 0.5464 

en-pt 0.7108 0.2812 0.6066 0.3893 0.5172 0.6133 0.5328 0.7171 0.8608 0.5810 

pt-en 0.6683 0.2773 0.5746 0.3410 0.5348 0.6404 0.5508 0.7412 0.8338 0.5736 

es-pt 0.7216 0.3640 0.6617 0.5012 0.6459 0.6320 0.5726 0.7337 0.8849 0.6353 

pt-es 0.7227 0.3751 0.6596 0.5027 0.6868 0.6478 0.5795 0.7389 0.9056 0.6465 

fr-pt 0.7673 0.3323 0.5338 0.3860 0.5955 0.5856 0.5720 0.6708 0.8627 0.5896 

pt-fr 0.6901 0.3110 0.4421 0.3773 0.5546 0.6173 0.5699 0.6916 0.8828 0.5707 

Table 64. Transtor results using OPUS EUCONST 

Table 65 shows the differences between the results obtained by Transtor and 

Moses. These results show that the gains with Transtor are considerable. The 

small size of OPUS EUCONST is compensated by its topic relevance, showing 

that the approach supporting Transtor is more capable of taking advantage of a 

corpus relevant to the translation in question, despite its small size. 

 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.0348 0.0478 0.0175 0.0304 -0.0119 0.1428 0.0056 0.1611 -0.0102 0.0464 

en-de 0.0167 0.0422 0.0680 0.0044 0.0738 0.1400 0.0316 0.1590 -0.0066 0.0588 

de-es 0.1355 0.0560 0.1757 0.0431 0.1542 0.1443 0.0442 0.1691 0.0319 0.1060 

es-de 0.0676 0.0302 0.0926 0.0265 0.1050 0.1130 0.0066 0.2073 -0.0037 0.0717 

de-pt 0.1882 0.1433 0.2274 0.1968 0.2460 0.2692 0.2054 0.2931 0.2818 0.2279 

pt-de 0.0915 0.0628 0.1082 0.0694 0.1703 0.1796 0.1024 0.2040 0.1414 0.1255 

en-es 0.0169 0.0735 0.1381 0.0248 0.1939 0.2035 0.0627 0.2220 0.1402 0.1195 

es-en 0.0042 0.0112 0.0323 0.0331 -0.0035 0.1571 0.0347 0.1884 0.1334 0.0657 

en-fr 0.3392 0.0667 0.1124 0.0766 0.1814 0.3050 0.1699 0.3272 0.3271 0.2117 

fr-en 0.1870 0.0338 0.0365 0.0215 0.0237 0.2441 0.1182 0.2603 0.2669 0.1324 

en-pt 0.2131 0.1575 0.3278 0.2185 0.2637 0.3223 0.2818 0.3954 0.3852 0.2850 

pt-en 0.1274 0.0789 0.1685 0.0769 0.1457 0.2211 0.1508 0.2522 0.2183 0.1600 

es-pt 0.1637 0.1345 0.2347 0.2469 0.2438 0.2657 0.2488 0.3159 0.3486 0.2447 

pt-es 0.0823 0.0565 0.0845 0.0877 0.0986 0.1918 0.1092 0.2107 0.1751 0.1218 

fr-pt 0.2168 0.1114 0.1860 0.1410 0.1974 0.2831 0.2534 0.3327 0.3742 0.2329 

pt-fr 0.1137 0.0723 0.0523 0.0977 0.0564 0.2290 0.1552 0.2639 0.3437 0.1538 

Table 65. Differences for OPUS EUCONST 
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From the table above it can be seen that Transtor is capable of producing con-

sistently better results, only losing in five different cases, but only for a small 

margin, and yet it always wins on average. When using a larger corpus, Tran-

stor is still capable of producing interesting results, as shown in the following 

sub-section. 

4.3.2 DGT-TM 

This sub-section presents the results obtained using DGT-TM, which is signifi-

cantly larger than OPUS EUCONST, and also about a broader set of topics. Ta-

ble 66 shows the results obtained with Moses. 

 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.6546 0.3767 0.7113 0.4230 0.8009 0.3183 0.4522 0.3518 0.3964 0.4984 

en-de 0.6489 0.2946 0.6318 0.3259 0.6507 0.2157 0.3392 0.2429 0.3259 0.4084 

de-es 0.6608 0.3014 0.6159 0.3723 0.6957 0.2532 0.3694 0.2746 0.3875 0.4368 

es-de 0.5398 0.2488 0.6231 0.3090 0.6587 0.1986 0.3044 0.2311 0.3121 0.3806 

de-pt 0.5541 0.2219 0.5016 0.2397 0.4837 0.1575 0.2090 0.1584 0.2702 0.3107 

pt-de 0.5605 0.2328 0.6173 0.2759 0.5769 0.1581 0.2711 0.1707 0.2911 0.3505 

en-es 0.6336 0.3678 0.6176 0.4788 0.6834 0.3334 0.4600 0.3466 0.4672 0.4876 

es-en 0.5593 0.3986 0.6988 0.4780 0.7396 0.3961 0.5263 0.4187 0.4850 0.5223 

en-fr 0.6658 0.3239 0.5493 0.3697 0.5542 0.3140 0.4052 0.3151 0.3864 0.4315 

fr-en 0.5682 0.3708 0.7357 0.4353 0.7794 0.3941 0.5035 0.4257 0.4439 0.5174 

en-pt 0.4837 0.2790 0.5268 0.3103 0.4826 0.2292 0.2821 0.2340 0.3096 0.3486 

pt-en 0.5718 0.3566 0.7290 0.4354 0.7108 0.3723 0.4597 0.3916 0.4405 0.4964 

es-pt 0.6349 0.2981 0.5723 0.3188 0.5664 0.2832 0.3109 0.2768 0.3586 0.4022 

pt-es 0.6964 0.4072 0.6790 0.4851 0.7132 0.3877 0.5073 0.4107 0.5258 0.5347 

fr-pt 0.6097 0.3227 0.5422 0.3353 0.5513 0.2797 0.3228 0.2725 0.3651 0.4001 

pt-fr 0.7038 0.3593 0.6198 0.4212 0.6273 0.3505 0.4335 0.3437 0.4236 0.4759 

Table 66. Moses results using DGT-TM 

Table 67 shows the results obtained with Transtor. This corpus allows a signifi-

cant improvement on the translation of the reference documents from the Offi-

cial Journal of the European Union (with “eurlex” prefix), but its broader set of 

topics results in a significant deterioration on the translation of the reference 

documents from the European Constitution (with “euconst prefix”), emphasiz-

ing the importance of topic relevance in achieving higher scores. 
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 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.7485 0.3136 0.5932 0.3789 0.5712 0.3203 0.4178 0.3515 0.3321 0.4475 

en-de 0.7740 0.2322 0.5793 0.2713 0.5780 0.2206 0.3212 0.2366 0.2154 0.3810 

de-es 0.6883 0.2514 0.5821 0.3482 0.5857 0.3005 0.3522 0.3469 0.2895 0.4161 

es-de 0.7547 0.2079 0.5757 0.2621 0.5372 0.2111 0.2502 0.2370 0.2147 0.3612 

de-pt 0.7477 0.2634 0.6142 0.3766 0.5904 0.3198 0.3736 0.3333 0.3363 0.4395 

pt-de 0.6874 0.2027 0.5837 0.2655 0.5656 0.2149 0.2717 0.2171 0.2395 0.3609 

en-es 0.7526 0.3661 0.6525 0.4420 0.6333 0.3903 0.4492 0.4230 0.4271 0.5040 

es-en 0.7869 0.3548 0.6502 0.4520 0.6390 0.4146 0.4893 0.4563 0.4278 0.5190 

en-fr 0.8152 0.3172 0.5755 0.3406 0.5751 0.4662 0.4804 0.4616 0.4237 0.4951 

fr-en 0.7947 0.3125 0.6824 0.3964 0.6087 0.4694 0.4910 0.4903 0.4312 0.5196 

en-pt 0.7629 0.3610 0.6653 0.4752 0.5969 0.5365 0.5229 0.5998 0.7213 0.5824 

pt-en 0.7341 0.3770 0.6918 0.4644 0.6604 0.5343 0.5609 0.6133 0.6754 0.5902 

es-pt 0.7319 0.4292 0.7205 0.5237 0.6402 0.4955 0.5567 0.5167 0.5479 0.5736 

pt-es 0.7291 0.4393 0.7670 0.5361 0.7231 0.4875 0.5642 0.5101 0.5635 0.5911 

fr-pt 0.7806 0.3850 0.6394 0.4523 0.6238 0.4398 0.5020 0.4521 0.4852 0.5289 

pt-fr 0.7299 0.3694 0.5588 0.4262 0.5719 0.4489 0.5268 0.4642 0.4889 0.5094 

Table 67. Transtor results using DGT-TM 

Both tools achieve better results with this significantly larger corpus, showing 

that the amount of data also plays an important role to improve translation 

quality. Table 68 shows the differences between Transtor and Moses for the 

DGT-TM corpus. Unlike with OPUS EUCONST, results between both tools are 

more balanced. Still, Transtor keeps a general advantage over Moses, only los-

ing on average on both directions of the de-en and de-es language pairs. Addi-

tionally, even though Transtor loses in one direction of the en-es language pair 

by a small difference, the average on both directions of such pair is still favora-

ble to Transtor. 
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 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.0939 -0.0631 -0.1181 -0.0441 -0.2297 0.0020 -0.0344 -0.0003 -0.0643 -0.0509 

en-de 0.1251 -0.0624 -0.0525 -0.0546 -0.0727 0.0049 -0.0180 -0.0063 -0.1105 -0.0274 

de-es 0.0275 -0.0500 -0.0338 -0.0241 -0.1100 0.0473 -0.0172 0.0723 -0.0980 -0.0207 

es-de 0.2149 -0.0409 -0.0474 -0.0469 -0.1215 0.0125 -0.0542 0.0059 -0.0974 -0.0194 

de-pt 0.1936 0.0415 0.1126 0.1369 0.1067 0.1623 0.1646 0.1749 0.0661 0.1288 

pt-de 0.1269 -0.0301 -0.0336 -0.0104 -0.0113 0.0568 0.0006 0.0464 -0.0516 0.0104 

en-es 0.1190 -0.0017 0.0349 -0.0368 -0.0501 0.0569 -0.0108 0.0764 -0.0401 0.0164 

es-en 0.2276 -0.0438 -0.0486 -0.0260 -0.1006 0.0185 -0.0370 0.0376 -0.0572 -0.0033 

en-fr 0.1494 -0.0067 0.0262 -0.0291 0.0209 0.1522 0.0752 0.1465 0.0373 0.0635 

fr-en 0.2265 -0.0583 -0.0533 -0.0389 -0.1707 0.0753 -0.0125 0.0646 -0.0127 0.0022 

en-pt 0.2792 0.0820 0.1385 0.1649 0.1143 0.3073 0.2408 0.3658 0.4117 0.2338 

pt-en 0.1623 0.0204 -0.0372 0.0290 -0.0504 0.1620 0.1012 0.2217 0.2349 0.0938 

es-pt 0.0970 0.1311 0.1482 0.2049 0.0738 0.2123 0.2458 0.2399 0.1893 0.1714 

pt-es 0.0327 0.0321 0.0880 0.0510 0.0099 0.0998 0.0569 0.0994 0.0377 0.0564 

fr-pt 0.1709 0.0623 0.0972 0.1170 0.0725 0.1601 0.1792 0.1796 0.1201 0.1288 

pt-fr 0.0261 0.0101 -0.0610 0.0050 -0.0554 0.0984 0.0933 0.1205 0.0653 0.0336 

Table 68. Differences for DGT-TM 

These results, together with the results from the previous sub-section, confirm 

that the size, the controlled vocabulary, and the relevance of the corpus in rela-

tion to the documents being translated are very important factors in translation 

quality. 

4.4 TRANSTOR ADDITIONAL RESULTS AND ANALYSIS 

This section is dedicated to the further analysis of Transtor. Sub-Section 4.4.1 is 

dedicated to the check the impact of removing the translation patterns and then 

also removing the verified lexica from the translation process, an analysis car-

ried out for the en-pt language pair precisely because it is the most developed 

one. Then, Sub-Section 4.4.2 will check how Transtor deals with other corpora 

having different features. Lastly, Sub-Section 4.4.3 will consider the average 

behavior of the corpora in order to analyze which corpora features are the most 

important for translation. 

4.4.1 IMPACT OF USING LEXICA AND TRANSLATION PATTERNS 

The results shown so far have included all the sources available, namely the 

verified lexica and the translation patterns. In order to check for the effects of 

using those sources, as opposed to just using an aligned parallel corpus, the 

following results are shown in the tables below. To avoid the overwhelming 

amount of data, results are presented as averages. Additionally, the language 

pair that will be analyzed with more detail is en-pt, given that this is the one 

that has the largest number of translation patterns and the largest lexicon. The 
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losses verified in relation to using all sources are also included, where negative 

values represent an effective loss while positive values will actually represent a 

gain over the use of all sources. 

 
Average scores Loss 

en-pt pt-en en-pt pt-en 

eurlex1 0.7119 0.6673 0.0011 -0.0010 

eurlex2 0.2840 0.2786 0.0028 0.0013 

eurlex3 0.6095 0.5694 0.0029 -0.0052 

eurlex4 0.3883 0.3413 -0.0010 0.0003 

eurlex5 0.5172 0.5392 0.0000 0.0044 

euconst1 0.6385 0.6505 0.0252 0.0101 

euconst2 0.5397 0.5508 0.0069 0.0000 

euconst3 0.7513 0.7535 0.0342 0.0123 

euconst4 0.8673 0.8323 0.0065 -0.0015 

Average loss 0.0087 0.0023 

Table 69. OPUS EUCONST without patterns 

First, Table 69 shows the BLEU scores obtained using OPUS EUCONST, for 

each reference document and for each language direction, without using the 

translation patterns. From the table, it can be seen that there are only four cases 

in which the exclusion of the translation patterns provides worse results 

(eurlex4 for en-pt; and eurlex1, eurlex3 and euconst4 for pt-en) and there are 

two cases where their exclusion will have no impact (eurlex5 for en-pt; and eu-

cont2 for pt-en). However, on average, excluding the translation patterns will 

actually have a positive impact on results, but the gain is lower than 0.01 in 

both language directions. This could be because the translation patterns do not 

properly cover the reference documents, but also because using the translation 

patterns might require a different set of parameters. Nevertheless, the im-

portance of the inclusion of the translation patterns has been shown in Sub-

Section 3.1.1.2.4. 
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Average scores Loss 

en-pt pt-en en-pt pt-en 

eurlex1 0.6462 0.5496 -0.0646 -0.1187 

eurlex2 0.2308 0.2157 -0.0504 -0.0616 

eurlex3 0.5140 0.4650 -0.0926 -0.1096 

eurlex4 0.3315 0.2857 -0.0578 -0.0553 

eurlex5 0.4971 0.4604 -0.0201 -0.0744 

euconst1 0.6071 0.5819 -0.0062 -0.0585 

euconst2 0.5029 0.5100 -0.0299 -0.0408 

euconst3 0.7220 0.7223 0.0049 -0.0189 

euconst4 0.8547 0.8001 -0.0061 -0.0337 

Average loss -0.0359 -0.0635 

Table 70. OPUS EUCONST without both patterns and lexicon 

Still for OPUS EUCONST, this time Table 70 presents the results obtained when 

neither the translation patters nor the lexicon are included in the translation 

process. This time every reference document, in both language directions, pre-

sent an effective loss of score, confirming the importance of using a lexicon. 

 
Average scores Loss 

en-pt pt-en en-pt pt-en 

eurlex1 0.7638 0.7332 0.0009 -0.0009 

eurlex2 0.3604 0.3744 -0.0006 -0.0026 

eurlex3 0.6666 0.6912 0.0013 -0.0006 

eurlex4 0.4768 0.4616 0.0016 -0.0028 

eurlex5 0.6067 0.6486 0.0098 -0.0118 

euconst1 0.5377 0.5386 0.0012 0.0043 

euconst2 0.5274 0.5564 0.0045 -0.0045 

euconst3 0.6002 0.6168 0.0004 0.0035 

euconst4 0.7291 0.6991 0.0078 0.0237 

Average loss 0.0030 0.0009 

Table 71. DGT-TM without patterns 

When analyzing the corpus DGT-TM, Table 71 shows that not including the 

translation patterns results in a score loss in seven different cases (eurlex2 for 

en-pt; and all eurlex documents and euconst2 in pt-en). In this case, as with 

OPUS EUCONST, not considering the translation patterns improves results but 

by an even smaller margin than with OPUS EUCONST. 
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Average scores Loss 

en-pt pt-en en-pt pt-en 

eurlex1 0.7630 0.7198 0.0001 -0.0143 

eurlex2 0.3578 0.3583 -0.0032 -0.0187 

eurlex3 0.6662 0.6908 0.0009 -0.0010 

eurlex4 0.4696 0.4504 -0.0056 -0.0140 

eurlex5 0.6062 0.6486 0.0093 -0.0118 

euconst1 0.4380 0.4392 -0.0985 -0.0951 

euconst2 0.4915 0.5214 -0.0314 -0.0395 

euconst3 0.4697 0.4729 -0.1301 -0.1404 

euconst4 0.4867 0.5022 -0.2346 -0.1732 

Average loss -0.0548 -0.0564 

Table 72. DGT-TM without both patterns and lexicon 

Finally, Table 72 shows the results obtained when neither the translation pat-

terns nor the lexicon are included with DGT-TM. There are three exceptions 

(eurlex1, eurlex3, and eurlex5 for en-pt), again for a very low margin, but on 

average the scores are lower by more than 0.05 for each language direction, con-

firming once again the importance of using a verified lexicon. 

In the end, even though the importance of translation patterns has not been in-

disputably confirmed by the results above, this might be due to their low cov-

erage for the reference documents, and even by the need of using a different set 

of translation parameters for Transtor. In other words, in spite of the results, 

translation patterns (Sub-Section 3.1.1.2) are necessary to deal with translation 

situations that could not be tackled by simple contiguous phrase translations 

(Sub-Section 3.1.1.1). 

4.4.2 ADDITIONAL CORPORA 

With the purpose of further analyzing Transtor, this section presents results for 

additional corpora sets, analyzed individually in the following sub-sections. 

Again, these corpora were not processed with Moses because it takes a consid-

erably greater amount of time, with the particular case of not being able to pro-

cess the corpus APERTIUM EURLEX, which was the most interesting one be-

cause of its size and broad range of topics. 

4.4.2.1 APERTIUM EURLEX 

APERTIUM EURLEX is the largest corpus and, since it covers a wide range of 

topics while using a controlled vocabulary, both its size and its topic coverage 

contribute to a generally significant improvement on the quality of every refer-

ence document over the quality achieved either with OPUS EUCONST or with 

DGT-TM. Table 73 show the results obtained using APERTIUM EURLEX. 
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 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.7513 0.3401 0.5296 0.3722 0.5143 0.7226 0.7591 0.7951 0.7935 0.6198 

en-de 0.7370 0.2016 0.4941 0.2479 0.4643 0.6033 0.6952 0.6787 0.7294 0.5391 

de-es 0.6516 0.2312 0.5332 0.3538 0.5102 0.6537 0.7168 0.7928 0.8116 0.5839 

es-de 0.6490 0.1640 0.4815 0.2480 0.4336 0.5287 0.6539 0.6865 0.7140 0.5066 

de-pt 0.6781 0.2637 0.5747 0.3690 0.5330 0.6263 0.7088 0.7657 0.8357 0.5950 

pt-de 0.6351 0.1829 0.5042 0.2681 0.4647 0.4798 0.5944 0.6285 0.7270 0.4983 

en-es 0.7528 0.3533 0.6330 0.4499 0.6658 0.6881 0.7647 0.7943 0.8353 0.6597 

es-en 0.7541 0.3509 0.6312 0.4593 0.5852 0.7166 0.7996 0.7949 0.8237 0.6573 

en-fr 0.7738 0.2847 0.4719 0.3449 0.5020 0.7328 0.7216 0.7912 0.8365 0.6066 

fr-en 0.8002 0.3182 0.6505 0.3962 0.5594 0.7248 0.7219 0.7731 0.7672 0.6346 

en-pt 0.7657 0.3833 0.7091 0.4957 0.6365 0.6788 0.7570 0.8062 0.8449 0.6752 

pt-en 0.7464 0.3782 0.7560 0.4963 0.7042 0.6724 0.7778 0.8026 0.8202 0.6838 

es-pt 0.7104 0.4154 0.7255 0.5337 0.6797 0.6719 0.7583 0.8017 0.8332 0.6811 

pt-es 0.6742 0.4362 0.6733 0.5343 0.6876 0.6575 0.7606 0.8014 0.8420 0.6741 

fr-pt 0.7387 0.3707 0.6037 0.4460 0.6534 0.6461 0.7008 0.7418 0.7649 0.6296 

pt-fr 0.7268 0.3541 0.5312 0.4274 0.5957 0.6586 0.7143 0.7402 0.8334 0.6202 

Table 73. Transtor results using APERTIUM EURLEX 

In general, results improve when compared to either OPUS EUCONST or DGT-

TM, as will be seen in Sub-Section 4.4.3. 

4.4.2.2 OPUS EMEA 

OPUS EMEA is also a corpus with a significant size, but being about a very spe-

cific and different topic keeps the system from getting better results, in particu-

lar for the reference documents from the European Constitution (with “eu-

const” prefix). Table 74 shows the results obtained using OPUS EMEA, confirm-

ing that its very distinct topic from the reference documents prevent the system 

from obtaining competitive results even with the smallest corpus used (OPUS 

EUCONST). 
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 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.6032 0.2328 0.4543 0.2494 0.4351 0.1624 0.2448 0.1584 0.1774 0.3020 

en-de 0.4455 0.1424 0.3312 0.1325 0.2605 0.0856 0.1486 0.0977 0.1127 0.1952 

de-es 0.6052 0.1459 0.3343 0.1890 0.3243 0.1420 0.1976 0.1750 0.1426 0.2507 

es-de 0.6225 0.1084 0.3111 0.1250 0.3050 0.0822 0.1274 0.0896 0.0901 0.2068 

de-pt 0.6242 0.1963 0.4320 0.2555 0.3970 0.1721 0.2555 0.1901 0.2377 0.3067 

pt-de 0.3272 0.1452 0.3574 0.1715 0.3597 0.0896 0.1502 0.0888 0.1374 0.2030 

en-es 0.4218 0.2228 0.3799 0.2535 0.4077 0.2354 0.2764 0.2407 0.2374 0.2973 

es-en 0.5435 0.2352 0.4551 0.2572 0.5167 0.2253 0.2622 0.2410 0.2203 0.3285 

en-fr 0.4813 0.2178 0.4038 0.2030 0.3893 0.1742 0.2626 0.1862 0.1868 0.2783 

fr-en 0.5549 0.2284 0.4401 0.2226 0.4824 0.1926 0.2801 0.2070 0.2122 0.3134 

en-pt 0.4554 0.2588 0.4948 0.3619 0.4261 0.5111 0.4723 0.5850 0.7606 0.4807 

pt-en 0.3566 0.2629 0.5025 0.3347 0.4609 0.4625 0.4564 0.5523 0.6763 0.4517 

es-pt 0.7001 0.3405 0.6328 0.4425 0.6323 0.3956 0.4553 0.4088 0.4504 0.4954 

pt-es 0.5068 0.3519 0.6194 0.4526 0.6280 0.3900 0.4482 0.4020 0.4528 0.4724 

fr-pt 0.7111 0.3184 0.5683 0.4082 0.6166 0.2901 0.4020 0.2939 0.3727 0.4424 

pt-fr 0.3660 0.2780 0.4457 0.3286 0.5257 0.2771 0.3718 0.2755 0.3311 0.3555 

Table 74. Transtor results using OPUS EMEA 

Unlike APERTIUM EURLEX, results do not generally improve, as will be con-

firmed in Sub-Section 4.4.3 ahead. 

4.4.2.3 OPUS EUROPARL 

OPUS EUROPARL is another significantly large corpus, but since these are 

transcripts from the European Parliament, its language and vocabulary are not 

very controlled, keeping it from having a greater contribution on translation 

quality. Table 75 shows the results obtained using OPUS EUROPARL. 
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 eurlex1 eurlex2 eurlex3 eurlex4 eurlex5 euconst1 euconst2 euconst3 euconst4 avg 

de-en 0.6609 0.2730 0.4084 0.2929 0.4120 0.1938 0.3494 0.2023 0.3572 0.3500 

en-de 0.5959 0.1897 0.3748 0.1827 0.3447 0.1190 0.2715 0.1290 0.2650 0.2747 

de-es 0.6024 0.1949 0.3837 0.2736 0.4372 0.1734 0.3125 0.2044 0.3336 0.3240 

es-de 0.6342 0.1525 0.3226 0.1818 0.4050 0.0962 0.2174 0.1005 0.2241 0.2594 

de-pt 0.5783 0.2164 0.3899 0.3087 0.4745 0.2037 0.3268 0.2176 0.3662 0.3425 

pt-de 0.5866 0.1623 0.3489 0.2018 0.3641 0.1221 0.2402 0.1100 0.2471 0.2648 

en-es 0.6317 0.2853 0.4481 0.3468 0.4091 0.2845 0.4186 0.2897 0.3957 0.3899 

es-en 0.6501 0.2780 0.4651 0.3427 0.4793 0.2924 0.4346 0.3147 0.4324 0.4099 

en-fr 0.6561 0.2248 0.3569 0.2876 0.4134 0.2476 0.4145 0.2531 0.4335 0.3653 

fr-en 0.6828 0.2564 0.4298 0.3070 0.4301 0.2320 0.4149 0.2671 0.4474 0.3853 

en-pt 0.6743 0.3190 0.5803 0.4281 0.5263 0.5021 0.4952 0.5682 0.7289 0.5358 

pt-en 0.6352 0.2936 0.5512 0.3797 0.5231 0.4760 0.5062 0.5462 0.6606 0.5080 

es-pt 0.6777 0.3659 0.6420 0.5048 0.6200 0.4088 0.5208 0.4223 0.5735 0.5262 

pt-es 0.6840 0.3810 0.6032 0.4900 0.5711 0.3968 0.5182 0.4094 0.5611 0.5128 

fr-pt 0.7380 0.3433 0.5236 0.4138 0.5374 0.3394 0.4810 0.3530 0.4998 0.4699 

pt-fr 0.6816 0.3240 0.4512 0.3761 0.5617 0.3420 0.4785 0.3451 0.4867 0.4497 

Table 75. Transtor results using OPUS EUROPARL 

Again, unlike APERTIUM EURLEX, results do not generally improve, as will be 

seen in Sub-Section 4.4.3, below. 

4.4.3 CORPORA INFLUENCE ON TRANSTOR RESULTS 

Having produced different sets of results according to different corpora, it 

would be interesting to see how each affects translation. Considering the differ-

ent features of each corpus, such analysis will allow inferring which features 

benefit translation and which ones will degrade it. Table 76 presents the gains, 

for the average scores of the reference documents by language pair, of corpus1 

over corpus2, with positive values representing a gain for corpus1 while a gain 

for corpus2 is represented by negative values. 
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OPUS 
EUCONST 

over 
DGT-TM 

APERTIUM 
EURLEX 

over 
OPUS 

EUCONST 

APERTIUM 
EURLEX 

over 
DGT-TM 

OPUS 
EMEA 

over 
DGT-TM 

OPUS 
EUROPARL 

over 
DGT-TM 

de-en 0.0462 0.1261 0.1723 -0.1455 -0.0975 

en-de 0.0598 0.0983 0.1581 -0.1858 -0.1063 

de-es 0.0508 0.1170 0.1678 -0.1654 -0.0921 

es-de 0.0466 0.0988 0.1454 -0.1544 -0.1018 

de-pt 0.0274 0.1281 0.1555 -0.1328 -0.0970 

pt-de 0.0386 0.0988 0.1374 -0.1579 -0.0961 

en-es 0.0487 0.1070 0.1557 -0.2067 -0.1141 

es-en 0.0412 0.0970 0.1383 -0.1905 -0.1091 

en-fr 0.0634 0.0482 0.1115 -0.2167 -0.1298 

fr-en 0.0268 0.0882 0.1150 -0.2063 -0.1343 

en-pt -0.0014 0.0942 0.0928 -0.1018 -0.0466 

pt-en -0.0166 0.1102 0.0936 -0.1385 -0.0822 

es-pt 0.0617 0.0458 0.1075 -0.0782 -0.0474 

pt-es 0.0554 0.0276 0.0830 -0.1187 -0.0783 

fr-pt 0.0606 0.0400 0.1007 -0.0865 -0.0590 

pt-fr 0.0613 0.0494 0.1107 -0.1539 -0.0598 

average 0.0419 0.0859 0.1278 -0.1525 -0.0907 

Table 76. Results comparison by corpora 

The table above shows that, on average, OPUS EUCONST wins over DGT-TM. 

Such relation means that a corpus with a controlled language and from a topic 

relevant to the documents being translated are two properties that are more 

important than size. The exception is for both directions of the en-pt language 

pair, something that could be explained by the significantly larger lexicon for 

that language pair. The systematic gain of APERTIUM EURLEX over OPUS 

EUCONST and over DGT-TM shows that when size is added to controlled lan-

guage and topic relevance, the results always improve. On the contrary, when 

analyzing OPUS EMEA and OPUS EUROPARL, both lose to DGT-TM, with 

OPUS EMEA losing more severely because of the lack of topic relevance, while 

OPUS EUROPARL, consisting of transcripts of the European Parliament, loses 

because of its non-controlled language. 

4.5 TRANSTOR PARAMETER ANALYSIS 

With the purpose of determining if there is any room for improvement, the pa-

rameters lw (and, indirectly tw) and α were changed to see how they affect 

translation quality. In order to avoid an overwhelming amount of data, only the 

language pairs for which, compared to Moses, the results are worst (de-en) and 

best (en-pt). 
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The tables below will present the current values obtained with the parameters 

lw=0.5 and α=3, comparing them with the maximum values. The potential gain 

and the corresponding parameters (lw;α) are also included in the tables. 

 

Current value Maximum value Potential gain Parameters 

de-en en-de de-en en-de de-en en-de de-en en-de 

eurlex1 0.6837 0.6313 0.6885 0.6313 0.0048 0.0000 0.3;7 0.5;3 

eurlex2 0.2626 0.1921 0.2644 0.1941 0.0018 0.0020 0.5;2 0.5;4 

eurlex3 0.4724 0.4227 0.4759 0.4240 0.0035 0.0013 0.3;7 0.5;2 

eurlex4 0.2919 0.1927 0.2919 0.1950 0.0000 0.0023 0.5;3 0.6;3 

eurlex5 0.4905 0.4420 0.5035 0.4552 0.0130 0.0132 0.5;2 0.3;6 

euconst1 0.5724 0.5458 0.5947 0.5629 0.0223 0.0171 0.9;6 0.9;5 

euconst2 0.4474 0.3793 0.4505 0.3801 0.0031 0.0008 0.7;3 0.6;4 

euconst3 0.6324 0.6099 0.6562 0.6374 0.0238 0.0275 0.9;7 0.8;3 

euconst4 0.5899 0.5509 0.6032 0.5862 0.0133 0.0353 0.6;7 0.9;5 

Table 77. Analysis with OPUS EUCONST for de-en 

Table 77 shows that the best score using OPUS EUCONST was only achieved 

for a single reference document, which is the en-de language direction of 

eurlex1. The highest improvements, on average, are achieved for the euconst1, 

euconst3 and euconst4 reference documents. 

 

Current value Maximum value Potential gain Parameters 

de-en en-de de-en en-de de-en en-de de-en en-de 

eurlex1 0.7485 0.7740 0.8005 0.7937 0.0520 0.0197 0.3;3 0.3;3 

eurlex2 0.3136 0.2322 0.3386 0.2441 0.0250 0.0119 0.4;7 0.5;5 

eurlex3 0.5932 0.5793 0.7040 0.6148 0.1108 0.0355 0.4;7 0.5;5 

eurlex4 0.3789 0.2713 0.4071 0.2928 0.0282 0.0215 0.8;6 1.0;6 

eurlex5 0.5712 0.5780 0.7069 0.6559 0.1357 0.0779 0.3;7 1.0;3 

euconst1 0.3203 0.2206 0.3284 0.2500 0.0081 0.0294 0.6;7 0.8;6 

euconst2 0.4178 0.3212 0.4216 0.3251 0.0038 0.0039 0.5;7 0.8;7 

euconst3 0.3515 0.2366 0.3668 0.2722 0.0153 0.0356 0.6;7 0.8;6 

euconst4 0.3321 0.2154 0.3377 0.2256 0.0056 0.0102 0.6;3 1.0;7 

Table 78. Analysis with DGT-TM for de-en 

Table 78 shows that both language directions of every reference document can 

improve when using corpus DGT-TM. The most significant improvement is 

achieved for the eurlex3 and eurlex5 reference documents, in particular for the 

de-en language direction. Generally, the best values are achieved with a higher 

phrase penalty. 
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Current value Maximum value Potential gain Parameters 

en-pt pt-en en-pt pt-en en-pt pt-en en-pt pt-en 

eurlex1 0.7108 0.6683 0.7132 0.6979 0.0024 0.0296 0.4;4 0.2;2 

eurlex2 0.2812 0.2773 0.2957 0.2868 0.0145 0.0095 0.2;3 0.4;2 

eurlex3 0.6066 0.5746 0.6173 0.5746 0.0107 0.0000 0.3;3 0.5;3 

eurlex4 0.3893 0.341 0.3926 0.3423 0.0033 0.0013 0.4;4 0.3;2 

eurlex5 0.5172 0.5348 0.5214 0.5433 0.0042 0.0085 0.4;4 0.1;2 

euconst1 0.6133 0.6404 0.6184 0.6666 0.0051 0.0262 0.8;6 0.8;7 

euconst2 0.5328 0.5508 0.5343 0.5627 0.0015 0.0119 0.5;2 0.8;6 

euconst3 0.7171 0.7412 0.7243 0.7684 0.0072 0.0272 0.8;6 0.9;5 

euconst4 0.8608 0.8338 0.8704 0.8509 0.0096 0.0171 0.9;6 0.9;7 

Table 79. Analysis with OPUS EUCONST for en-pt 

As for the en-pt language pair, Table 79 shows that the best value using OPUS 

EUCONST was only obtained in a single situation (eurlex3, pt-en), but on aver-

age it is still possible to improve results when using other parameters, in par-

ticular for the pt-en language direction of the euconst3 reference document, 

which can still improve a value of 0.7412, a value that can already be considered 

good, to 0.7684, gaining 0.0272 BLEU points. The results also show that the 

eurlex reference documents benefit from a lower lw (higher tw) and a lower 

phrase penalty, unlike the euconst reference documents which, on average, 

benefit from a higher lw (lower tw) and a higher phrase penalty, for which the 

en-pt language direction of euconst2 is an exception. 

 

Current value Maximum value Potential gain Parameters 

en-pt pt-en en-pt pt-en en-pt pt-en en-pt pt-en 

eurlex1 0.7629 0.7341 0.8017 0.7751 0.0388 0.0410 0.2;3 0.4;5 

eurlex2 0.3610 0.3770 0.3909 0.3989 0.0299 0.0219 0.1;4 0.4;5 

eurlex3 0.6653 0.6918 0.7331 0.7778 0.0678 0.0860 0.3;6 0.4;5 

eurlex4 0.4752 0.4644 0.4935 0.4819 0.0183 0.0175 0.3;5 0.4;7 

eurlex5 0.5969 0.6604 0.7045 0.7155 0.1076 0.0551 0.9;7 0.3;6 

euconst1 0.5365 0.5343 0.5398 0.5418 0.0033 0.0075 0.3;7 0.4;4 

euconst2 0.5229 0.5609 0.5304 0.5609 0.0075 0.0000 0.3;7 0.5;3 

euconst3 0.5998 0.6133 0.6103 0.6136 0.0105 0.0003 0.3;4 0.3;3 

euconst4 0.7213 0.6754 0.7386 0.6780 0.0173 0.0026 0.3;2 0.3;3 

Table 80. Analysis with DGT-TM for en-pt 

Similarly to the previous example, Table 80 shows that the best value using 

DGT-TM is only achieved in a single situation, this time for the pt-en language 

direction of euconst2. In this case, the most significant gains are achieved for the 

eurlex5 reference document, with most documents generally benefiting from a 

lower lw (higher tw) and a higher phrase penalty. 



 

145 
 

To provide a more detailed picture of how the parameter change affects the 

translation quality, below are presented some tables which show the BLEU 

scores obtained on average when using APERTIUM EURLEX when translating 

the eurlex and the euconst reference documents, on both language directions of 

the en-pt language pair. The eurlex and euconst documents are shown separate-

ly since their quality behavior also differs. The tables show higher values high-

lighted with darker green, lower values highlighted with darker red, and in-

termediate values highlighted with yellow. 

The first two tables below show the score change for the eurlex reference doc-

uments, one table for each language pair direction. 

 
phrase penalty 

1 2 3 4 5 6 7 

tw 

0.0 0.5324 0.5882 0.5966 0.6054 0.6058 0.6058 0.6062 

0.1 0.5335 0.5916 0.6018 0.6098 0.6090 0.6099 0.6099 

0.2 0.5316 0.5976 0.6010 0.6090 0.6083 0.6085 0.6084 

0.3 0.5310 0.5958 0.6036 0.6099 0.6106 0.6102 0.6097 

0.4 0.5175 0.5968 0.6005 0.6103 0.6103 0.6101 0.6097 

0.5 0.4953 0.5932 0.5981 0.6116 0.6128 0.6140 0.6133 

0.6 0.4209 0.5233 0.5557 0.5627 0.5639 0.5650 0.5651 

0.7 0.3207 0.4753 0.5236 0.5464 0.5545 0.5549 0.5544 

0.8 0.2341 0.4548 0.4905 0.5120 0.5260 0.5467 0.5535 

0.9 0.1846 0.4259 0.4698 0.4926 0.5002 0.5088 0.5146 

1.0 0.1739 0.3622 0.4090 0.4569 0.4670 0.4793 0.4887 

Table 81. Eurlex reference documents for en-pt language direction 

Table 81 shows that the higher scores for the en-pt language direction are ob-

tained for lower lw values (higher tw values) and higher phrase penalty values. 

 
phrase penalty 

1 2 3 4 5 6 7 

tw 

0.0 0.4552 0.5913 0.6044 0.6096 0.6118 0.6116 0.6104 

0.1 0.4595 0.5964 0.6143 0.6208 0.6225 0.6222 0.6210 

0.2 0.4554 0.5987 0.6161 0.6205 0.6230 0.6230 0.6242 

0.3 0.4612 0.6075 0.6207 0.6243 0.6272 0.6270 0.6283 

0.4 0.4613 0.6189 0.6229 0.6281 0.6294 0.6297 0.6305 

0.5 0.4576 0.6094 0.6162 0.6224 0.6233 0.6238 0.6245 

0.6 0.3805 0.5642 0.5679 0.5755 0.5792 0.5805 0.5801 

0.7 0.3306 0.5459 0.5579 0.5631 0.5722 0.5739 0.5747 

0.8 0.2816 0.5216 0.5514 0.5602 0.5641 0.5658 0.5683 

0.9 0.2600 0.4795 0.5152 0.5236 0.5307 0.5206 0.5412 

1.0 0.2389 0.4379 0.4628 0.4537 0.4548 0.4832 0.4944 

Table 82. Eurlex reference documents for pt-en language direction 
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Table 82 shows that the higher scores for the pt-en language direction are 

achieved in very similar circumstances as with the en-pt language direction. 

The following two tables show the score behavior for the euconst reference 

documents, which is a bit different from the eurlex reference documents. 

 
phrase penalty 

1 2 3 4 5 6 7 

tw 

0.0 0.5161 0.6842 0.7165 0.7361 0.7438 0.7477 0.7506 

0.1 0.5281 0.6989 0.7355 0.7538 0.7613 0.7654 0.7666 

0.2 0.5314 0.7093 0.7429 0.7586 0.7659 0.7687 0.7712 

0.3 0.5305 0.7238 0.7539 0.7665 0.7719 0.7756 0.7774 

0.4 0.5124 0.7299 0.7582 0.7698 0.7755 0.7782 0.7795 

0.5 0.4692 0.7533 0.7717 0.7797 0.7828 0.7847 0.7851 

0.6 0.3883 0.7684 0.7848 0.7878 0.7909 0.7909 0.7911 

0.7 0.2914 0.7722 0.7910 0.7953 0.7983 0.8004 0.8007 

0.8 0.2086 0.7621 0.7955 0.8045 0.8075 0.8094 0.8104 

0.9 0.1669 0.7229 0.7913 0.8063 0.8106 0.8158 0.8168 

1.0 0.1463 0.6774 0.7713 0.7945 0.8007 0.8043 0.8075 

Table 83. Euconst reference documents for en-pt language direction 

Table 83 shows that the higher scores for the en-pt language direction are 

achieved for higher lw values (lower tw values) and for higher phrase penalty 

values. 

 
phrase penalty 

1 2 3 4 5 6 7 

tw 

0.0 0.4100 0.6566 0.7015 0.7211 0.7248 0.7262 0.7272 

0.1 0.4344 0.6723 0.7216 0.7384 0.7426 0.7438 0.7453 

0.2 0.4442 0.6866 0.7285 0.7426 0.7470 0.7476 0.7504 

0.3 0.4396 0.7006 0.7401 0.7484 0.7530 0.7539 0.7550 

0.4 0.4283 0.7207 0.7542 0.7590 0.7626 0.7631 0.7641 

0.5 0.4027 0.7466 0.7683 0.7736 0.7744 0.7732 0.7726 

0.6 0.3627 0.7626 0.7834 0.7860 0.7866 0.7859 0.7852 

0.7 0.3040 0.7636 0.7955 0.8025 0.7996 0.8004 0.7989 

0.8 0.2524 0.7425 0.7934 0.8047 0.8097 0.8068 0.8063 

0.9 0.2151 0.7129 0.7813 0.7970 0.8059 0.8089 0.8088 

1.0 0.1881 0.6546 0.7510 0.7735 0.7823 0.7858 0.7883 

Table 84. Euconst reference documents for pt-en language direction 

Table 84 shows that the higher scores for the pt-en language direction are also 

achieved in very similar circumstances as with the en-pt language direction. 

Most likely the main reason behind the difference between the eurlex and eu-

const reference documents has to do with the fact that the eurlex documents 

have smaller sentences than the euconst documents and, intuitively, given the 
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size of the n-grams used (up to 7 words), it is not surprising that the language 

model does not require such a high relevance for the eurlex documents as for 

the euconst documents. 

The fact that the worse values are always achieved for α=1 is a common factor 

shared between every language pair, in every language direction, and in every 

corpus analyzed. Another common factor is that the best values are usually 

clustered together, with the values often changing very slightly between them. 

These results contribute to provide some guarantee that choosing a value from 

a range of possible values will produce good results. This is because it will be 

reasonable to assume that even if the best value is not the one chosen, there is a 

good chance that another value will be very close to it. 

4.6 RESULTS ANALYSIS 

The results presented in Section 4.3 above show that the gains with Transtor are 

most considerable for the smaller corpus OPUS EUCONST, which topic is also 

the most relevant to the reference documents. This means that Transtor is more 

capable of taking advantage of a corpus with a topic relevant to the translation 

in question even if it is very small. The larger corpus DGT-TM is not as relevant 

to the reference documents as the smaller one and, therefore, its results are not 

as good as with OPUS EUCONST. Yet, on average, Transtor is still capable of 

producing better results than Moses when using DGT-TM. 

When also considering the additional results presented in Section 4.4 above, it 

can be seen that a bilingual phrase lexicon can have a significant positive im-

pact on translation quality. Additionally, it can be established that size can be a 

very important factor to achieve good results, but topic relevance as well as a 

controlled language and vocabulary are even more important in translation 

quality. 

Additionally, the differences in space and time efficiency between both tools in 

favor of Transtor, presented in Section 4.2, have shown that the structures used 

were very appropriate, even though they were not explored to their full poten-

tial as they still allow some optimizations. Even with a rough estimate, it will be 

possible to achieve an improvement in the order of at least 50% for the space 

occupied by the training data, in future work. This is space saving estimate re-

sults from the realization that some data members from the structures are re-

dundant while others can be represented with fewer bytes. 

From the data presented on Section 4.5 above, it can be confirmed that there is 

room for translation quality improvement when using other parameters, show-



 

148 
 

ing that the higher values obtained when compared to Moses on Section 4.3 and 

the good values obtained for additional corpora on Section 4.4.2 did not result 

from a simple stroke of luck. 

As a final remark, it should be noted that some scores involving the Portuguese 

language have been penalized because changes in written language with the 

orthographical agreement were not completely reflected into the validated bi-

lingual phrase lexica, as well as because the corpora were still using the previ-

ous Portuguese writing while some of the reference documents already had the 

new Portuguese writing agreement. 
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5 CONCLUSIONS AND FUTURE WORK 

Transtor, the system presented in this thesis, proposes a truly phrase-based ap-

proach to SMT (Section 2.1), since no sub-phrasal analysis is carried out in any 

of its components. The system includes a feature implementation that allows 

the expression power of tree-based approaches, as well as the inclusion of vali-

dated knowledge. The approach is supported by efficient structures and meth-

odologies (Chapter 3) even though they still allow room for further improve-

ment. Some of the main differences have already been highlighted and dis-

cussed when comparing Transtor against Moses above (Section 3.5), but it is 

still important to stress out some of its main features. 

The main challenges faced by a word-level analysis of translations can be repre-

sented by English/Portuguese translation equivalents like “in order to” 

<=> “a fim de”, “however” <=> “em o entanto”, “considering” <=> 

“tendo em conta”, or “back to square one” <=> “de volta a a es-

taca zero”, where there is no clear word-to-word correspondence between 

the equivalents. In such cases, phrases should not be partitioned into their com-

posing words. The inclusion of validated phrase translation lexica also prevents 

the system from having to identify the same phrase translation equivalents over 

and over again, this way improving subsequent translations. This is in contrast 

with main approaches (Sub-Section 2.1.2) because each time they are presented 

with the same parallel corpora they learn exactly the same they had learned in 

previous training sessions, with the only factor that might contribute to get 

some different results is the heuristic nature of some procedures involved in 

their training process. 

Again, this approach is truly phrase-based since phrases are considered to be 

units by themselves and not just a composition of words, unlike many of the 

approaches that claim to be phrase-based while considering individual words 

at any given point in their process. The phrase decomposition into words can be 

a disadvantage, particularly when considering the problems faced in some cas-

es, for which idiomatic expressions constitute very good examples, like “back 

to square one” <=> “de volta a a estaca zero”. On the contrary, 

Transtor keeps phrases undivided in every component from the system, namely 

the alignment used, the phrase translation extraction, the translation model, the 

language model, the penalty model and its final translation probability score 

(Sub-Section 3.4.7). 

The contiguous phrase translation equivalents used by Transtor (Sub-Section 

3.1.1.1) are identified (Sub-Section 3.3.1) from parallel corpora that have been 
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aligned (Section 2.3) at the phrase level and considering previous validated 

knowledge, unlike most approaches claiming to be phrase-based at the cost of 

an initial bidirectional word-based alignment stage (Sub-Section 2.1.2), with the 

disadvantages noted above, and never considering previously validated 

knowledge. The use of validated knowledge allows focusing on the identifica-

tion of new knowledge and reducing systematic mistakes in alignment or in 

phrase translation identification. 

The sentence translation probability score (stm) used by Transtor (Sub-Section 

3.4.7) is also different from the widely used log-linear model approach (Sub-

Section 2.1.1.2). The latter is defined as a product of probabilities which is over-

ly sensitive to low local scores that will penalize a whole translation candidate, 

and require the models involved to have smoothing techniques applied to them 

in order to avoid any probabilities of zero but at the risk of introducing other 

errors. On the contrary, stm is defined as a weighted average of the translation 

model and the language model, normalized by the number of phrases compos-

ing the translation candidate, which is not so sensitive to lower local scores, as 

well as zero local scores do not invalidate a whole candidate, particularly if a 

high adjacent score ends up compensating for such low values. Besides, its pen-

alty parameter helps in the choice of translation candidates which have fewer 

and, therefore, longer phrases, which is an advantage because, as mentioned in 

(Koehn, 2009), shorter phrases occur more frequently so they will more often be 

applicable to previously unseen sentences but longer phrases capture more lo-

cal context and help translating larger chunks of text at one time. 

Additionally, the log-linear approach does not limit the number of translation 

feature models that can be used to define the quality score of a translation can-

didate. However, such limitation absence is not necessarily an advantage, not 

only because the most prevalent models are only four (translation model, lan-

guage model, reordering model and penalty model) but also because identify-

ing relevant features can be a very challenging task (Sub-Section 2.1.3). 

On the contrary, Transtor only depends on three simple feature models, which 

are the translation model, the language model and the penalty model. These 

models, while common to many approaches, still have some differences in rela-

tion to their main implementations. 

The translation model ptm Sub-Section (3.3.2.1) is simply defined by the direct 

translation probability of the translation phrase in relation to the original 

phrase, a probability obtained based on the alignment produced from a given 

parallel corpus. No additional inverse translation probabilities or lexical transla-
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tion probabilities are included in ptm. Lexical probabilities analyze a phrase 

translation equivalent at their word-level, again facing the problems mentioned 

above (Sub-Section 2.1.3.1). 

The language model plm Sub-Section (3.3.2.2) is the one having the most signifi-

cant differences, not only because it considers phrases without decomposing 

them into their words, but also because it is determined according to adjacent 

phrase translation alternatives and not as an absolute model. The prevalent n-

gram history model (Sub-Section 2.1.3.2) will consider “in spite of”, “in 

spite” “of”, “in” “spite of” or “in” “spite” “of” to be same. Since 

phrases are not decomposed, the internal fluency of a phrase like “in spite 

of” is not determined by plm, only considering the fluency of such phrase 

against other adjacent phrases. 

In a sense, the current version of the language model establishes a degree of 

agreement between adjacent phrases through their literal representation. How-

ever, sometimes such degree of agreement has to be established between 

phrases that are not adjacent, as well as it is necessary to generalize beyond 

their literal form or determine the meaning of phrases. For this purpose, it is 

planned to integrate word sense disambiguation work (Casteleiro, Lopes and 

Silva, 2014) to help select phrase translations according to context. 

The decoding algorithm developed for Transtor (Sub-Section 3.4.8) is imple-

mented as best path finding by the traversal of the complete graph created after 

the sentence to be translated, implicitly determining the original phrases that 

have been covered in the translation. Every possible partition of a sentence is 

currently considered in decoding, but future work might include the analysis of 

other elements like capitalized words or the identification of functional words, 

like “of” and “in”, which might provide additional clues as to how to partition 

a sentence. 

Contiguous phrase translations (Sub-Section 3.1.1.1) cover a significant number 

of situations required to translate a text and are very efficient to apply, but these 

are static and some translation cases require some flexibility. For this reason, 

translation patterns (Sub-Section 3.1.1.2) were introduced in order to support 

translation generalizations that can additionally implement reordering with 

some lexical evidence. The translation patterns constitute a feature that can be 

compared to the hierarchical approach (Sub-Section 2.1.5.1), but the representa-

tion power of the latter is implemented in a way that requires every phrase 

translation to be represented as a rule, including some special set of rules (the 

glue rules), while its decoding has to be carried out by chart parsing. In con-
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trast, the translation patterns introduced in this approach simply allow Transtor 

to rearrange the translation graph in order to accomplish the potential for the 

same expression power, this way keeping the application efficiency allowed by 

contiguous phrase translation equivalents, which are the most common equiva-

lents, while keeping the same decoding algorithm developed before the transla-

tion patterns were contemplated by Transtor. This is because the translation 

patterns simply provide information for alternative placements of phrase trans-

lations on the translation graph, applying the models as if such placement re-

sulted from the normal combination of the simple phrase translations, so the 

models do not require any additional change. 

In a sense, translation patterns are used as hint elements that provide additional 

information about how to rearrange the graph in order to produce non-

monotonic translations. Yet, it should be noted that the immediate purpose of 

the inclusion of the translation pattern feature is to assess their impact on re-

sults (Sub-Section 4.4.1). The next challenge is to ensure the importance of trans-

lation patterns is reflected in an increase in translation quality. Such reflection 

should be achieved by increasing the translation pattern coverage, including 

recursivity and implementing them in a more efficient way while preventing its 

complexity to escalate to the point where results can no longer be obtained in 

useful time, besides extending the translation pattern feature to include other 

generic symbols like letters, admitting the use of mixed tags in a single pattern, 

like <var> and <number>, and the ability to deal with patterns at a sub-word 

level, or morphology level. 

Additionally, all the introduced SMT approaches (Section 2.1) contribute to the 

idea that producing a translation is a process for which there is never a clue on 

how to translate a text from one language to another, being largely focused on 

learning translation models and producing translations from a stage where no 

previously acquired or validated knowledge is available, but storing such 

knowledge to be used in future translations is a realistic approach that should 

deserve more attention. In fact, as mentioned before, most research is focused 

on creating a bilingual phrase lexicon from scratch without ever considering the 

advantages of using bilingual phrase lexicon entries that are already known and 

have been validated. Actually, even when known entries are considered, these 

are superficially approached, simply using a dictionary (the closest thing to a 

bilingual phrase lexicon) for scoring translations, as is the case of the lexical 

probability applied to phrase translation equivalents. However, there can be 

information available about how to translate a great number of phrases, as well 

as there are language constructs that follow very specific rules. In the approach 
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supporting Transtor, such knowledge can be expressed both in the literal form 

of bilingual phrase lexica (contiguous phrases) and in the more generic form of 

translation patterns (non-contiguous phrases). 

All the retrieval operations required by Transtor are supported by indexing 

structures based on suffix arrays (3.1.3), which provide an efficient and compact 

support for such operations. In fact, those indexing structures allow using a 

simple integer value as an identifier of an individual unique phrase, not only 

avoiding the replication of the text, but also improving space efficiency, since 

this decision enables the monolingual phrases (with sizes ranging from 1 byte 

to 100 bytes or more) to be represented by a single integer (having a fixed size 

of 4 or 8 bytes). The mentioned identifiers can be obtained through a binary 

search of the phrase on the corresponding indexing structure, so space efficien-

cy is accompanied by search efficiency. Nevertheless, the indexing structures 

still have room for significant improvement, namely in the occupied space, for 

which the integration with compressed indexing structures (Costa et al., 2013) is 

planned. 

In sum, this thesis has introduced Transtor, an innovative and truly phrase-

based SMT approach which, despite of being very simple, the sum of all the 

features mentioned above, along with the way they are combined, certainly 

play an important role on the higher quality of the results. Its simplicity is man-

ifested not only in the definition of the procedures involved, but also by the 

smaller amount of data produced and the shorter period of processing time. In 

fact, the amount of data and the processing time both have significant room for 

improvement since the current version of the tool has been mostly developed as 

a “proof of concept”. Nevertheless, even at its current stage of development, the 

results obtained so far are an encouragement to proceed exploring and develop-

ing this new approach for Machine Translation. 
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ANNEX 

In order to express a direct relation between the formulas and the right-to-left 

implementation of the decoding algorithm, a sentence divided into n non-

empty phrases will be represented as 𝑒𝑛, 𝑒𝑛−1, … , 𝑒1 , where 𝑒𝑛  represents the 

first phrase, 𝑒𝑛−1 represents the second phrase, 𝑒𝑛−2 represents the third phrase, 

and so on, with 𝑒1 representing the last (𝑛𝑡ℎ) phrase. This way, 𝑠𝑡𝑚(𝑒𝑛) repre-

sents the stm score of a sentence 𝑒𝑛, 𝑒𝑛−1, … , 𝑒1, with its formula shown below. 

𝑠𝑡𝑚(𝑒𝑛) = ∑
𝑒𝑠(𝑒𝑖+1, 𝑒𝑖)

𝑛𝛼

𝑛−1

𝑖=1

 

Following the same logic, 𝑟𝑠𝑡𝑚(𝑒𝑛) represents the stm score for the same sen-

tence which, being recursive, will depend on 𝑟𝑠𝑡𝑚(𝑒𝑛−1). The base case of the 

recursive function will be the rstm value of 𝑒2, since there has to be at least a 

pair of phrases. The rstm formula is shown below. 

𝑟𝑠𝑡𝑚(𝑒𝑛) = {
0, 𝑛 = 1

𝑒𝑠(𝑒𝑛, 𝑒𝑛−1) + 𝑟𝑠𝑡𝑚(𝑒𝑛−1) ∙ (𝑛 − 1)𝛼

𝑛𝛼
, 𝑛 > 1

 

The equivalence between stm and rstm is demonstrated by induction, as shown 

below. 

The Base Case 

Since the formulas are applied for n>1, the base case is n=2. Applied to the orig-

inal form, stm: 

𝑠𝑡𝑚(𝑒2) = ∑
𝑒𝑠(𝑒𝑖+1, 𝑒𝑖)

2𝛼

2−1

𝑖=1

 

= ∑
𝑒𝑠(𝑒𝑖+1, 𝑒𝑖)

2𝛼

1

𝑖=1

 

=
𝑒𝑠(𝑒2, 𝑒1)

2𝛼
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Applied to the recursive form, rstm: 

𝑟𝑠𝑡𝑚(𝑒2) =
𝑒𝑠(𝑒2, 𝑒1) + 𝑟𝑠𝑡𝑚(𝑒1) ∙ (2 − 1)𝛼

2𝛼
 

=
𝑒𝑠(𝑒2, 𝑒1) + 0 ∙ 1𝛼

2𝛼
 

=
𝑒𝑠(𝑒2, 𝑒1)

2𝛼
= 𝑠𝑡𝑚(𝑒2) 

So the equivalence for the base case is confirmed. 

The General Case 

Proceeding with the induction proof, n+1 is verified for stm 

𝑠𝑡𝑚(𝑒𝑛+1) = ∑
𝑒𝑠(𝑒𝑖+1, 𝑒𝑖)

(𝑛 + 1)𝛼

𝑛+1−1

𝑖=1

 

= ∑
𝑒𝑠(𝑒𝑖+1, 𝑒𝑖)

(𝑛 + 1)𝛼

𝑛

𝑖=1

 

= ∑
𝑒𝑠(𝑒𝑖+1, 𝑒𝑖) + 𝑒𝑠(𝑒𝑛+1, 𝑒𝑛)

(𝑛 + 1)𝛼

𝑛−1

𝑖=1

 

And also for rstm 

𝑟𝑠𝑡𝑚(𝑒𝑛+1) =
𝑒𝑠(𝑒𝑛+1, 𝑒𝑛) + 𝑟𝑠𝑡𝑚(𝑒𝑛) ∙ 𝑛𝛼

(𝑛 + 1)𝛼
 

Applying the rule, assuming 𝑟𝑠𝑡𝑚(𝑒𝑛) = 𝑠𝑡𝑚(𝑒𝑛) 

𝑟𝑠𝑡𝑚(𝑒𝑛+1) =
𝑒𝑠(𝑒𝑛+1, 𝑒𝑛) + 𝑟𝑠𝑡𝑚(𝑒𝑛) ∙ 𝑛𝛼

(𝑛 + 1)𝛼
 

=
𝑒𝑠(𝑒𝑛+1, 𝑒𝑛) + ∑

𝑒𝑠(𝑒𝑖+1, 𝑒𝑖)
𝑛𝛼

𝑛−1
𝑖=1 ∙ 𝑛𝛼

(𝑛 + 1)𝛼
 

=
∑ 𝑒𝑠(𝑒𝑖+1, 𝑒𝑖) + 𝑒𝑠(𝑒𝑛+1, 𝑒𝑛)𝑛−1

𝑖=1

(𝑛 + 1)𝛼
 

= ∑
𝑒𝑠(𝑒𝑛+1, 𝑒𝑛)

(𝑛 + 1)𝛼

𝑛

𝑖=1

= 𝑠𝑡𝑚(𝑒𝑛+1) 

this way demonstrating, by induction, the equivalence between stm and rstm. 

 


