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Resumo 
 

As relações entre precisão e velocidade em tomadas de decisão, 

ou relações velocidade-precisão (speed-accuracy tradeoff, SAT), 

têm sido estudadas extensivamente. No entanto, existe alguma 

variabilidade nos valores de SAT observados entre estudos, e as 

causas que poderão estar na origem desta variabilidade são ainda 

desconhecidas. 

Diversas explicações têm sido sugeridas, incluindo motivação ou 

incentivo para velocidade vs. precisão, espécie ou modalidade 

sensorial. No entanto, nenhuma destas hipóteses foi ainda testada 

directamente. Uma explicação alternativa seria que os diferentes 

graus de SAT obervados estariam relacionados com a tarefa que 

está a ser desempenhada. Neste estudo, abordámos este problema 

através da comparação de SAT em duas tarefas comportamentais 

baseadas em odores, idênticas excepto na natureza da incerteza 

associada a cada tarefa: uma tarefa de categorização com misturas 

de odores, onde a informação relevante é manipulada variando o 

grau de semelhança entre os estímulos que compõem a mistura; e 

uma tarefa de identificação com odores puros, na qual a 

informação relevante é reduzida diminuindo a intensidade dos 

estímulos num gama de três passos logarítmicos.  

Observámos que a duração de amostragem do odor (odor 

sampling duration, OSD) em relação à dificuldade do estímulo foi 

substancialmente maior na tarefa de identificação, em 
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comparação com a de categorização. Esta observação foi também 

verificada quando as duas tarefas foram combinadas, intercalando 

o conjunto de estímulos das tarefas de categorização e 

identificação bem como misturas intermédias. Estas duas 

manipulações interagiram de forma linear em relação ao OSD, 

sendo consistente com a ideia de que concentrações baixas de 

odores e contrastes reduzidos de misturas colocam fontes 

independentes de incerteza.  

Baseado nestas observações, formulámos a hipótese de que na 

identificação de odores, a performance é limitada pela incerteza 

do estímulo, ao passo que na categorização de misturas, a 

performance é limitada pela variabilidade no mapeamento do 

estímulo a resposta, que vai sendo aprendido sequencialmente, a 

casa tentativa. Dada esta hipótese, investigámos se esta 

aprendizagem teria uma influência diferente na escolha dos 

animais na identificação de odores ou na categorização de 

misturas. Verificámos, em ambas as tarefas, uma actualização da 

escolha dos animais a cada tentativa. Contudo, enquanto que na 

tarefa de categorização o viés na escolha dos animais aumentou 

com a dificuldade da tentativa anterior e do respectivo resultado, 

na tarefa de identificação este viés dependeu apenas da identidade 

do odor e do resultado. 

Em seguida, utilizámos uma estratégia de modelação para 

investigar que mecanismos computacionais poderiam explicar as 

mudanças comportamentais observadas na tarefa de identificação. 

Interessantemente, observámos que os nossos resultados poderiam 
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ser descritos tanto por modelos com e sem integração temporal, 

colocando em perspectiva o uso generalizado de modelos de 

integração para explicar tanto a escolha como o tempo de resposta 

numa gama alargada de tarefas de decisão baseadas em percepção 

(perceptual decision-making). 

Finalmente, explorámos o papel da incerteza temporal em tarefas 

de decisão baseadas em percepção, olhando para o impacto no 

OSD da expectativa em relação ao início do estímulo. 

Observámos uma relação linear entre a média e o desvio padrão 

de OSD para os diferentes constrastes de misturas e concentrações 

de odores, consistente com a lei de Weber no domínio temporal. 

Para ambas as tarefas, a média de OSD foi menor quando o início 

do estímulo foi mais tardio (expectativa elevada). Esta diminuição 

foi acompanhada por um decréscimo proporcional do desvio 

padrão, tal como é previsto pela propriedade de escalonamento de 

estimativa temporal para diferentes condições de expectativa 

temporal. Verificámos que a magnitude desta componente 

sensível a expectativa está correlacionada com a dificuldade do 

estímulo, sendo que variações maiores no OSD correspondem a 

valores menores de performance. Estes resultados demonstram 

que o OSD é modulado por componentes não sensoriais, como a 

expectactiva temporal, sugerindo que os tempos de reacção são 

uma combinação entre processos de tomada de decisão e  

mecanismos relacionados com atenção que são, por sua vez, 

afectados por processos de estimativa temporal. 
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Abstract 

 

Relationships between accuracy and speed of decision-making, or 

speed-accuracy tradeoffs (SAT), have been extensively studied. 

However, the range of SAT observed varies widely across studies 

for reasons that are unclear. Several explanations have been 

proposed, including motivation or incentive for speed vs. 

accuracy, species and modality but none of these hypotheses has 

been directly tested. An alternative explanation is that the 

different degrees of SAT are related to the nature of the task being 

performed. Here, we addressed this problem by comparing SAT 

in two odor-guided decision tasks that were identical except for 

the nature of the task uncertainty: an odor mixture categorization 

task, where the distinguishing information is reduced by making 

the stimuli more similar to each other; and an odor identification 

task in which the information is reduced by lowering the intensity 

over a range of three log steps. We found a much larger increase 

in odor sampling duration (OSD) with difficulty for stimulus 

detection compared to categorization. This was also observed 

when the two tasks were combined, by interleaving the full set of 

stimuli from the categorization and identification tasks as well as 

intermediate mixtures. These two manipulations interacted 

linearly with respect to OSD, consistent with the idea that low 

concentrations and low mixture contrast pose independent sources 

of uncertainty. We hypothesized that in odor identification, 
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accuracy is limited by stimulus uncertainty, whereas in mixture 

categorization, accuracy is limited by variability in the mapping 

of the stimulus to the response, which must be learnt on a trial-by 

trial basis. Given this hypothesis, we investigated whether 

ongoing learning has a different influence on the choice of 

animals in identification and categorization. In both tasks there 

was a clear trial-by-trial updating of the animal’s choice function. 

However, whereas in categorization choice bias increased with 

difficulty of the previous trial and outcome, in identification this 

bias was dependent only on choice side and outcome. 

Next, we used a modeling approach to investigate which 

computational mechanisms might account for the behavioral 

changes observed in the identification task. Interestingly, we 

observed that our results were well described both by models with 

and without temporal integration, putting into perspective the 

generalized use of integrator models to explain choice behavior 

and response times across a wide range of perceptual decision-

making tasks. 

Finally, we explored the role of temporal uncertainty in 

perceptual decision-making, by focusing on the impact of 

stimulus onset expectation on OSD. We observed a linear 

relationship between the mean and standard deviation of OSD 

across mixture contrasts and odor concentrations, consistent with 

Weber’s law in the temporal domain. For both tasks, mean OSD 

was smaller for longer onsets (higher expectation), and this 

decrease was accompanied by a proportional decrease of the 
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standard deviation, as would be expected from the scalar property 

of interval timing for different temporal expectation conditions. 

The magnitude of this expectation-sensitive component was 

correlated with stimulus difficulty, with lower accuracies 

displaying larger changes in OSD. These results showed that 

OSDs are modulated by non-sensory components such as 

temporal expectation, suggesting that reaction times are a 

combination between decision-making processes and attention-

related mechanisms that are affected by time estimation 

processes. 
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1 General Introduction 

 



	   2	  

1.1 Introduction 

 

The evolution of sophisticated brains has given us the capacity for 

flexible decision-making. The evidence we obtain through our 

senses (or from memory) need not precipitate an immediate, 

reflexive response. Instead our decisions can be deliberative and 

conditional, contingent on other sources of information, long-term 

goals, history and values. 

A decision is a commitment to a categorical proposition and is 

based on a variety of factors: quality of the evidence for a 

particular option, prior knowledge concerning the relative merit of 

the options, expected costs and rewards associated with the 

possible decisions and their outcomes, and other costs associated 

with gathering evidence (e.g., the cost of elapsed time). In 

addition, decisions are always made in the face of uncertainty. 

Both natural events in the world and the consequences of our 

actions are fraught with unpredictability, and the neural processes 

generating our percepts and memories may be unreliable and 

introduce additional variability. Unraveling the relationship 

between neural and behavioral variability is fundamental to 

understanding how decisions are formed in the brain. 

 

The present work has investigated the contributions of different 

sources of uncertainty in perceptual decision-making, by 

employing a combination of behavioral and modeling approaches.  
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In the following sections, we will: review the conceptual 

framework and quantitative models used to study perceptual 

decision-making (1.2 Perceptual decision-making); consider the 

contribution of different sources of uncertainty in perceptual 

decision-making, while focusing on the relation between choice 

behavior and response times across different perceptual decision-

making tasks (1.3 Sources of uncertainty in perceptual 

decision-making); and explore the role of temporal uncertainty 

on perceptual decision-making and the relationship between 

decision-making and time estimation processes (1.4 Temporal 

uncertainty in perceptual decision-making). 

 

1.2 Perceptual decision-making 

1.2.1 Conceptual framework for studying perceptual 

decision-making 

Perceptual decision-making is the process by which sensory 

information is used to guide behavior toward the external world. 

This involves gathering information through the senses, 

evaluating and integrating it according to the current goals and 

internal state of the subject, and using it to produce motor 

responses1,2. 

At any given point in time, the state of the world must be inferred 

based on the noisy data provided by the sensory systems, and 

behavior is critically dependent on the ability to quickly and 

accurately decide amongst the possible different states. For 
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instance, deciding whether or not a predator is present in a 

shadowy corner will dictate an animal’s subsequent action and 

survival. Various factors must be taken into account before 

committing to a decision and executing the appropriate behavioral 

response. These include the quality of the evidence derived from 

the sensory observations; prior history, which determines the 

predicted probability of seeing a particular stimulus or receiving a 

particular reward in the future3–6; and value, the subjective costs 

and benefits that can be attributed to each of the potential 

outcomes of the decision process. These different sources of 

information are then accrued into a quantity – the decision 

variable (DV) – that is then interpreted by the decision rule to 

produce a particular choice1. A conceptually simple rule is to 

place a criterion value on the DV. Like this, the magnitude of the 

DV reflects the balance of support/opposition for a given choice, 

allowing the decision maker to achieve different goals, including 

maximizing accuracy or reward or achieving a target decision 

time1. Post-decisional processes also play a critical role in shaping 

future decisions, namely via learning mechanisms mediated by 

the evaluation, or performance monitoring, of the choice with 

respect to its particular goals5,7. 

 

1.2.2 Theoretical framework for studying perceptual 

decision-making 

The quantitative study of perception, or psychophysics, has 

embraced decision theory since its inception by Fechner in 
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18608,9. Since then, different mathematical descriptions have been 

proposed to better test and understand perceptual decision-

making, namely signal detection theory (SDT) and sequential 

analysis (SA). 

SDT is one of the most widely used formalisms to study 

perception10,11. It prescribes a process where performance of 

perceptual tasks reflects not just the inherent sensitivity of the 

subject to the relevant stimuli but also how the subject uses that 

information to generate a choice. According to SDT, the decision-

maker obtains an observation of noisy evidence from the 

stimulus, which gives rise to the DV that is then evaluated 

according to the decision rule. In simple binary decisions, the DV 

is typically related to the likelihood ratio of the different 

alternatives, and then compared to a criterion. This criterion can 

also incorporate different priors and value, allowing SDT to 

provide a flexible framework to form decisions and achieve a 

variety of goals1,12. 

SA is a natural extension to SDT that accommodates multiple 

pieces of evidence observed over time. Conceptually, the idea is 

that in the presence of uncertainty or noise, the decision maker 

can benefit from sampling multiple times from the noisy 

distribution of values representing the stimulus. After each 

acquisition, a DV is calculated from the evidence obtained up to 

that point and compared to the decision rule, normally represented 

by a positive and negative criterion, which correspond to each 

choice alternative. Once the DV exceeds (or falls below) the 
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criterion bounds, the bound that is first reached determines the 

decision and response time of the decision maker. There are 

several instantiations of sequential sampling models1,13–19. For 

example, in random walk models, the DV is a cumulative sum of 

evidence over discrete time steps. If the evidence is the logarithm 

of the likelihood ratio, then this process corresponds to the 

statistically-optimal Sequential Probability Ratio Test20, which 

anecdotally played a prominent role in World War II allowing to 

break the German enigma cipher21,22. Instead, if the evidence is 

sampled from a Gaussian distribution in infinitesimal time steps, 

the process is termed diffusion with drift or bounded diffusion. 

While many models provide an account of either RT14,23 or 

accuracy (SDT10), sequential sampling models relate shapes of 

RT distributions with probabilities of correct and incorrect 

responses, thereby explaining how RT and choice accuracy jointly 

vary as a function of the experimental conditions of interest. 

The parameters of these sequential sampling models allow 

quantifying several latent psychophysical processes, namely the 

speed of sensory information processing, given by the rate of 

accumulation; response caution, from the bound height; and the 

amount of time spent on processes unrelated to decision 

formation.  

In recent years, integrator models have gained prominence in the 

field of decision-making due to its ability to explain several 

features of behavioral and neural data. First, they have described 

accuracy as well as RTs in a variety of psychophysical tasks, 
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including perceptual discrimination and value-based choices24–29. 

Second, they can be tuned to fit task conditions, such as reward 

ratios or prior probability30–32. And third, these models have been 

used to explain neurophysiological data1,33 and recordings of 

neural activity in primates have shown neural correlates 

resembling the DV34. 

 

1.3 Sources of uncertainty in decision-making 

1.3.1 Speed-accuracy tradeoffs 

The relationships between accuracy and speed of decision-

making, or speed-accuracy tradeoffs (SATs), have been 

effectively modeled as integration of sensory information to a 

bound13,25,34–37. Speed and accuracy in perceptual decisions show 

characteristic relationships and there are at least three 

psychophysical experimental contexts in which the relationship 

between speed and accuracy has been studied: 1) sampling time 

manipulation: when the experimenter limits the duration of the 

stimulus and/or sets a deadline for response time, performance 

accuracy decreases with shorter sampling times; 2) speed-

accuracy tradeoff: when subjects are instructed to perform 

rapidly, accuracy drops; conversely, when instructed to emphasize 

accuracy, performance slows (traditionally, this is the technical 

definition of ‘speed-accuracy tradeoff’); 3) difficulty effects: 

when a participant is free to choose when to respond (a reaction 

time task), average reaction times increase with difficulty38. 
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The random-dot motion discrimination (RDMD) task, which has 

been extensively studied in the field of perceptual decision-

making, is a good example of a task where SAT has been 

observed and how this relationship can be well explained by 

integrator models. In this task, participants are presented with a 

field of flickering dots, some of which move randomly and some 

of which move coherently in one of two possible directions, and 

asked to report the net direction of motion. The difficulty of the 

task is changed by manipulating the fraction of coherently moving 

dots. SAT and the impact of temporal integration in this task have 

been investigated in humans and monkeys in two ways. First, by 

varying the viewing time and measuring the discrimination 

threshold for each duration, it was shown that sensitivity increases 

with viewing times up to ~2 s39,40. Then, in a reaction time (RT) 

version of this task, it was found that as motion coherence was 

decreased, RTs increased from 300 to >800 ms25,34. Moreover, 

these data could not only be fit quantitatively with a simple 

diffusion model25, but neurophysiological recordings and 

manipulations also provided strong evidence sustaining the idea 

of a neural integrator that underlies the decision process34,41–43. 

Recordings from the parietal cortex (the lateral intraparietal area, 

LIP) showed that neuronal activity ramps up at a rate correlated 

with the strength of the motion signal until it reaches a level that 

is constant across motion strengths, as if a decision threshold was 

reached34,42,44–46. This pattern of firing matches quite closely to 

what is expected of the DVs posited by integrator models45,47. 

Furthermore, microstimulation experiments used to read out the 
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state of the DV provided added evidence supporting the integrator 

model as a substrate of the decision process48,49. 

In addition to the studies using the RDMD task and performed in 

humans and monkeys, SATs have been extensively studied across 

different tasks, modalities and species, including rodents and 

insects1,13,25,34,36,38,50–58. However, the range of SATs observed 

varies widely across studies for reasons that are unclear. For 

example, reported increases in RT with increased difficulty of 

perceptual discrimination range from over 500 ms in humans25 

and monkeys34 performing the RDMD task, to 100 ms in mice 

performing a visual contrast detection task55, to less than 30 ms in 

rats performing an odor mixture discrimination task52. 

In particular, studies of odor discrimination in rodents have 

reported SATs of different magnitudes52–54. Uchida and Mainen 

(2003)52 used a two-alternative forced-choice (2-AFC) task in 

which eight different binary odor mixture stimuli were randomly 

interleaved and rewarded according to a categorical boundary. As 

mixture ratios approached the category boundary, choice accuracy 

dropped to near chance, yet odor sampling time increased only 30 

ms52. On the other hand, Abraham et al. (2004)53, using a go/no-

go odor paradigm where odor mixture stimuli were presented in 

blocks of trials, reported that for a high level of accuracy, mice 

took an additional time of 70-100 ms to discriminate closely 

related mixtures. In addition, in mice performing a 2-AFC where 

the duration of odorant sampling was controlled by the 

experimenter in a random fashion and signaled with a ‘go’ tone, 
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Rinberg et al. (2006)54 observed an improvement in performance 

as a function of stimulus duration across different mixture 

difficulties.  

These apparent discrepancies were interpreted as a manifestation 

of SAT in olfaction59, where speed had been favored over 

accuracy in the study from Uchida and Mainen (2003)52, and the 

opposite in Abraham et al. (2004)53 and Rinberg et al. (2006)54 

(accuracy had been privileged at the expense of speed).  

However, in a further twist, Zariwala et al. (2013)56, by 

performing a large battery of variants of the categorization task 

from Uchida and Mainen (2003)52, suggested an alternative 

explanation for the differences amongst these tasks that was not 

based on differences in SAT. According to this study, the higher 

accuracy reported in Abraham et al. (2004)53 and Rinberg et al. 

(2006)54 could be attributed to the use of blocked rather than 

interleaved stimulus difficulties, which leads to a better 

anticipation of stimulus identity. The greater change in RTs with 

difficulty reported by Abraham et al. (2004)53 could be explained 

by the effect of reward expectation on response speed. And 

finally, the increase in performance as a function of stimulus 

duration reported in Rinberg et al. (2006)54 could be explained by 

the increase of go-signal anticipation over time (i.e. increase in 

hazard rate) stemming from the temporal statistics of the uniform 

distribution used for the go-signals in this study. In agreement 

with this, when Zariwala et al. (2013)56 performed a similar 

manipulation, but now in a blocked fashion, i.e. by keeping 
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constant the time of go-signal within a block, hence not changing 

the anticipation, they failed to observe an increase in accuracy 

when the amount of time at the odor port augmented. 

Together these results highlight a dissociation of accuracy from 

RT in the odor mixture categorization task56, suggesting that the 

noise related with the stimulus is not the dominant source of 

uncertainty. Which other sources of uncertainty could then be 

limiting performance in the mixture categorization task? 

 

1.3.2 Bridging perceptual and economic decision-making 

There is a common structure to virtually all decision-making tasks 

employed across the literature: an agent is required to identify one 

or more stimuli in a given sensory modality (what is it?), and then 

to select a response which will maximize the probability of 

positive feedback or reward (what is it worth?).  

Perceptual decision-making, as described above, is concerned 

with how observers detect, discriminate, and categorize noisy 

sensory information. Because uncertainty in perceptual decision-

making tasks is assumed to be due to the noise associated with the 

stimulus, these experiments often take place in a constant stage of 

task performance, where the stimulus-response-reward 

contingencies have been learnt through extensive training, and 

learning is thought to be stationary. Thus, the computational 

models that have been used to characterize performance have 

focused on the choice period itself, rather than on any 
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reinforcement learning that occurs following feedback60. In the 

standard model of perceptual decision-making, based on the 

discrimination of motion direction of randomly moving dots61, 

sensory neurons in the middle temporal visual area (MT) vote 

with their firing rates for the perceived direction of motion and 

their responses are then weighted, summed, and passed through a 

binary decision function. In this model, behavioral variability 

mainly arises through noise introduced in the responses of the 

individual neurons. Sequential sampling models, as described 

above, are an example of this kind of architecture, where choices 

depend on a serial sampling mechanism, in which evidence about 

the identity of the stimulus is collected and integrated until a 

criterion level of certainty is reached20,37,62. 

However, all perceptual decisions are ultimately motivated by 

reward (or the avoidance of loss). Indeed, there are examples in 

the literature focusing on how reward might influence sensory 

discrimination30,32,63–65 and showing that rewards (or informative 

feedback) play a role on learning about sensorimotor acts5,7,66,67. 

This implies that, although perceptual decision-making tasks have 

focused on the optimization of detection or categorization 

judgments guided by sensory stimuli, subjects are swayed by 

factors mediated by reinforcement statistics. Hence, the 

environmental structure and the way it influences the tradeoff 

between information and reward acquisition should also be 

considered for the assessment of choice optimality60. In 

agreement with this idea, recent work has shown that, in a visual 

detection task, choice behavior is captured by a model involving 
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not only the visual responses to the current stimulus but also a 

bias and history term depending on the outcome of the previous 

trial7. 

The field of decision-making that is concerned with how subjects 

choose among different options on the basis of their associated 

reinforcement history is economic decision-making. In contrast to 

perceptual decision-making, economic decision-making tasks 

tend to employ stimuli that are perceptually unambiguous but 

associated with distinct reward statistics, where the uncertainty is 

derived from variability in internal information about the 

expected value of each option. One very successful class of 

models used in economic decision-making, that draws upon a rich 

literature from learning theory in experimental psychology68 and 

machine learning69, is reinforcement learning (RL), which 

describes the mechanisms by which the value of stimuli or actions 

is learned. RL proposes that these values are updated according to 

how surprising an outcome is – a prediction error – scaled by a 

further parameter that controls the rate of learning. Recently, the 

RL framework has been successfully applied to a perceptual 

decision-making task to explain improvements in perceptual 

performance67. In monkeys trained on a visual motion 

discrimination task, improvements in perceptual sensitivity were 

shown to correspond to changes in motion-driven responses of 

neurons in area LIP, which represents the readout to motion 

information to form a direction decision, but not area MT, a likely 

source of that motion information70. These changes were well 

described by a RL scheme in which the weights between MT-like 
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sensory neurons and LIP-like decision neurons were adjusted 

according to a prediction error signal67. Evidence from 

neurophysiological recordings, namely from parietal cortex, basal 

ganglia and orbitofrontal cortex (OFC), have also supported this 

bridge between perceptual and economic-decision making60. 

 

1.4 Temporal uncertainty in perceptual decision-making 

Animals live in naturally complex, ever-changing environments, 

where identifying temporal regularities is extremely important, 

enabling them to predict behaviorally relevant events. Hence, to 

behave adaptively in these environments, animals must not only 

learn which actions to take in a particular context given their past 

experience, but also to learn the temporal information about when 

those actions and the respective consequences occur. 

Time is a fundamental dimension of animals’ experience in the 

world. As such, temporal information provided by stimuli that 

predict salient events can be shown to exert a powerful influence 

on the organization of behavior, suggesting that the computation 

of time represents a basic aspect of cognition71,72. 
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1.4.1 Interval timing  

Time is not sensed through a sensory epithelium, but timing is 

key to many aspects of behavior, especially foraging and learning. 

Importantly, interval timing exhibits regularities that mimic those 

of traditional sensory systems. The best known is a strong version 

of Weber’s law (i.e., the just noticeable difference is proportional 

to the baseline for comparison73) known as scalar timing (ST)74,75. 

For example, in a typical duration reproduction procedure, known 

as ‘peak-interval procedure’, when participants are asked to 

reproduce a criterion interval that was previously learnt, the 

responses typically distribute around the criterion interval with a 

width that is proportional to the temporal criterion. Moreover, the 

relative trial-to-trial response variability, e.g., the coefficient of 

variation (CV) associated to the estimation of different intervals, 

appears to be constant regardless of the estimated time74,76. 

Remarkably, not only the CV, but also the entire distribution of 

timed responses is scale invariant, i.e., identical when plotted as a 

function of time relative to the mean. The ST property holds for 

many species and over a broad range of temporal intervals74,75, 

suggesting that ST reflects something fundamental about the way 

organisms structure their behavior in time. In addition, it 

represents a very strong quantitative constraint on the neuronal 

mechanisms responsible for the timing of actions. 
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1.4.2 Models of interval timing 

Traditional sensory modalities such as vision, audition or 

olfaction are processed by known sensory organs and brain areas. 

Time perception, on the other hand, still lacks a clear and direct 

demonstration of how it would be implemented within the 

nervous system. Whether the representation of temporal 

information is instantiated within a dedicated timing network, or 

distributed across different brain areas as a common property of 

many or all neural systems, is still a matter of debate and ongoing 

research77. 

Neurally-inspired models have suggested different encoding 

schemes for time related information, namely oscillatory or 

periodic activity in neural circuits78,79, integration of noisy firing 

of neural populations80 and state-dependent changes in network 

dynamics81.  

Additionally, several abstract models of how animals track the 

passage of time have been proposed, many of which fall in one of 

two categories: accumulator models tell time by counting pulses 

emitted by a pacemaker and comparing it to a remembered value 

(Scalar expectancy theory, SET76), while state based models 

represent time as a trajectory progressing through a sequence of 

states (Behavioral theory of timing, BeT82; Learning-to-time, 

LeT83). 

SET is based on an internal clock model, in which pulses that are 

emitted regularly by a pacemaker are temporarily stored in an 
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accumulator. During training, at the time of reward or feedback, 

the number of pulses that have been received from the 

accumulator is stored in reference memory. For test trials, the 

response is controlled by the ratio comparison between the current 

subjective time/clock reading – stored in the accumulator – and a 

sample taken from the distribution of remembered criterion 

durations, which are represented as the number of pulses from 

previously reinforced clock readings stored in reference memory. 

In this framework, the scalar property derives from the 

assumption that the accumulation error is proportional to the 

criterion duration76,79,84. 

BeT (as well as LeT, a derivative of BeT) emphasizes the role of 

behavior in temporal discrimination82,85. According to this theory, 

certain kinds of adjunctive or superstitious behaviors, such as 

turning, scanning a corner, hopper inspection, occur in a 

consistent fashion such that they are temporally related to 

reinforcement delivery. These kinds of behavior may then act as 

conditional discriminative stimuli when an animal is required to 

make a temporal discrimination. Formally, these classes of 

adjunctive behavior correspond to hypothetical states, whose 

transitions are driven by pulses from a hypothetical pacemaker 

described by a Poisson process, with a rate proportional to the 

reinforcement rate. The question that is then asked is: what is the 

probability that an animal is in state n at time t? Varying the rate 

of reinforcement will generate distributions of behavior whose 

mean and standard deviation (SD) vary proportionately82. 
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Recent work has suggested a hybrid model between SET and 

LeT, that preserves the overall learning structure of LeT but 

replaces its state-activation dynamics by a scalar-inducing 

dynamics equivalent to the pacemaker-accumulator structure of 

SET86. 

 

1.4.3 Temporal expectation 

Our sensory systems are consistently being exposed to a rich and 

rapidly changing scenery. To cope with the overwhelming amount 

of stimulation, we constantly generate and update expectations 

about critical events, such as the onset of behavioral relevant 

stimuli, in order to optimize our interaction with unfolding 

sensory stimulation. Temporal anticipation has been generally 

studied by manipulating stimulus predictability through the 

hazard rate, which specifies the likelihood of a stimulus 

appearing, given it has not appeared so far. A long tradition of RT 

experiments has documented that RT decreases as the stimulus 

becomes more likely. These findings have been interpreted to 

show that observers implicitly learn to use changes in stimulus 

likelihood to change RTs87–89. And what are the underpinnings of 

the effects of temporal expectation on RT? Research in this field 

has revealed that the temporal prediction of events has pervasive 

effects in modulating perception and action90.  

The ability to extract temporal patterns and regularity of events 

has long been known to improve action preparation and 
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execution90. Early behavioral studies in humans have led to the 

general interpretation that stimulus predictability mainly changes 

the willingness of the subjects to respond13,91. A more recent 

study, using sequential sampling models to analyze the observed 

temporal expectation effects on task performance, showed that 

temporal prediction mainly affects the duration of non-decision 

processes92. In addition, electrophysiological recordings in 

monkeys revealed systematic changes in neural firing patterns as 

a function of temporal expectation in motor-related regions89,93–97. 

For instance, in primary motor cortex, neurons become more 

synchronized around the expected time of an imperative go-

signal93; and in LIP, which has also been implicated in perceptual 

decision-making, saccade-related activity varies according to the 

evolving temporal conditional probability for the appearance of 

the task-relevant target89,97. Electroencephalography (EEG) and 

neuroimaging studies in humans have supported the interpretation 

that temporal expectancies modulate motor-related processese.g.,98–

101. 

However, the effects of temporal prediction are not confined to 

motor-related variables. The temporal certainty between events 

can modulate perceptual thresholds for detecting visual 

features102,103 and increase perceptual processing104–106, namely by 

improving the quality of sensory information, as revealed by a 

diffusion model-based analysis106. However, response criteria 

adjustments were also shown to be responsible for behavioral 

performance improvements107. Moreover, it has been 

demonstrated that perceptual judgments are enhanced by overt 
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rhythmic motor activity108–112. Electrophysiological recordings 

showed that temporal expectation modulates neuronal activity in 

the visual cortex of monkeys, namely in V1113,114, V4115, MT116 

and inferotemporal cortex (IT)117, and in the primary auditory 

cortex of rats118. In humans, EEG and neuroimaging studies have 

also implicated sensory-related areas in temporal 

predictability99,119,120. 

As it is not yet clear how time perception is implemented in the 

brain, these studies demonstrate that there is also not a consensus 

about the impact of temporal expectation in modulating sensory 

processing and motor-related variables. 

There has been the suggestion that the mechanisms that underlie 

temporal processing are also shared by perceptual decision-

making processes80,121,122. Evidence has shown that time is 

represented in the form of a hazard function by the same type of 

neurons that represent a DV in area LIP89,97. In addition, the scalar 

property between the mean and SD of responses times is also 

predicted by diffusion models123. Interestingly, it was also 

proposed that time estimation can be explained by a bounded 

accumulation mechanism80. In future research, the use of properly 

designed tasks that allow manipulating independently the 

variables associated with the axes of perceptual decision-making 

(e.g., stimulus uncertainty) and time estimation (e.g., hazard rate), 

and evaluating how RT and accuracy are jointly modified, will 

give further insight about the relationship between perceptual and 

temporal processing. 
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1.5 Objectives and organization of the thesis 

The present work has focused on the contributions of different 

sources of uncertainty in perceptual decision-making, in particular 

in the relationship between speed and accuracy. 

In Chapters 2 and 3 we took a behavioral approach to 

investigate what accounts for the different degrees of SAT 

observed across behavioral studies. Our approach was to compare 

SAT in odor-guided decision tasks that would pose different 

sources of uncertainty for the brain. A first objective was to 

develop an olfactory task that would display a robust degree of 

SAT to be then compared to the previously described mixture 

categorization task52. Chapter 2 describes the behavioral tasks 

used to study this problem (odor identification and odor mixture 

categorization tasks) and how the data was analyzed. The 

behavioral results are presented in Chapter 3. 

In Chapter 4 we used a modeling approach to study the 

computational mechanisms that underlie the behavioral changes 

observed in the odor identification task developed in the previous 

chapters. 

In Chapter 5 we explored the role of temporal uncertainty in 

perceptual decision-making. More specifically we investigated the 

impact of the temporal expectation about stimulus onset on 

responses times and accuracy. 
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2 Odor identification and odor 

mixture categorization tasks 
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2.1 Introduction 

Relationships between accuracy and speed of decision-making, or 

speed-accuracy tradeoffs (SATs), have been extensively studied 

in humans and other species including monkeys, rodents and 

insects1,13,25,34,38,50–57. However, the range of SAT observed varies 

widely across studies for reasons that are unclear. For example, 

reported increases in RT with increased difficulty of perceptual 

discrimination range from over 500 ms in humans25 and 

monkeys34 performing a RDMD task, to 100 ms in mice 

performing a visual contrast detection task55, to less than 30 ms in 

rats performing an odor mixture discrimination task52. It is not 

known what accounts for such different degrees of SAT observed 

across different studies.  

Motivation for speed vs. accuracy is thought to be a key 

parameter affecting SAT59 and is a possible explanation for the 

differences observed across similar studies showing SAT of 

smaller52 or larger53,54 magnitudes. Two alternative possibilities 

are that longer SAT tradeoffs reflect neural mechanisms that are 

species-specific or sensory modality-specific. An additional 

possibility is that SAT differences arise from differences in the 

underlying computational requirements of different decision-

making tasks56. Given that species, modality, task structure all 

vary across the different studies in question, these possibilities are 

not possible to distinguish from existing data. 

Our strategy was to compare SAT in two behavioral tasks that 

were identical except for the nature of the stimuli that gives rise to 
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task difficulty. The first was an odor mixture categorization task52 

in which the difficulty was increased by making the stimuli closer 

to a decision or category boundary. The second was an odor 

identification task in which the difficulty was increased by 

lowering stimulus concentration. Thus, by having the same 

subjects performing two tasks that were different only for the set 

of stimuli, and by holding species, modality and motivation, we 

were in a condition that allowed us to test if SAT was dependent 

on the nature of the task. 

In comparison with visual and auditory stimuli, odors are harder 

to control because of their intrinsic temporal dynamics124. 

Nevertheless, the use of automated olfactometers52 has allowed a 

tight control of stimulus conditions, namely controlling precisely 

the time of odor delivery and guarantying the reproducibility of 

odor amplitude and time-course125. In addition, odor temporal 

profiles have been successfully used in models of the olfactory 

receptor neurons124 (ORNs) and of the olfactory bulb125 (OB) to 

predict physiological responses. In Chapter 4, we investigated the 

contribution of the odor temporal profiles on the observed 

behavioral data, showing that, in addition to vision and audition, 

odor-guided tasks are also suitable to study the relationship 

between time and choice in decision-making. 

Below, we will depict the odor-guided behavioral tasks employed 

to study SAT and the analysis used to describe the data. 
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2.2 Animal subjects 

Four Long Evans rats (200-250 g at the start of training) were 

trained and tested in accordance with European Union Directive 

86/609/EEC and approved by Direcção-Geral de Veterinária 

(DGV) of Portugal. Rats were trained and tested on three different 

tasks: (1) a two-alternative choice odor identification task; (2) a 

two-alternative choice odor mixture categorization task52; and (3) 

a two-alternative choice “odor mixture identification” task. The 

same rats performed all three tasks and all other task variables 

were held constant. Each rat performed one session of 90-120 

minutes per day (300–500 trials), 5 days per week for a period of 

~120 weeks. Each task was tested independently in blocks of 

sessions numbering 10–20 for odor identification and mixture 

categorization tasks; 5–10 for odor mixture identification and 

categorization with lower contrast stimuli. Rats were pair-housed 

and maintained on a normal 12 hr light/dark cycle and tested 

during the daylight period. Rats were allowed free access to food 

but were water-restricted. Water was available during the 

behavioral session and for 20 minutes after the session at a 

random time as well as on non-training days. Water availability 

was adjusted to ensure animals maintained no less than 85% of ad 

libitum weight at any time. 
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2.3 Testing apparatus and odor stimuli 

The behavioral apparatus for the task was designed by Z.F.M. in 

collaboration with M. Recchia (Island Motion Corporation, 

Tappan, NY). The behavioral control system (BControl) was 

developed by Z.F.M, C. Brody (Princeton University) in 

collaboration with A. Zador (Cold Spring Harbor Laboratory). 

The behavioral setup consisted of a box (27 x 36 cm) with a panel 

containing three conical ports (2.5 cm diameter, 1 cm depth)52. 

Each port was equipped with an infrared 

photodiode/phototransistor pair that registered a digital signal 

when the rat‘s snout was introduced into the port (“nose poke”), 

allowing us to determine the position of the animal during the task 

with high temporal precision. Odors were delivered from the 

center port and water from the left and right ports. Odor delivery 

was controlled by a custom made olfactometer52 designed by 

Z.F.M.. During training and testing the rats alternated between 

two different boxes; the manifolds were changed every 2/3 days 

and the correspondence between odor valve and stimulus 

difficulty was not always the same. 

The test odors were S-(+) and R-(-) stereoisomers of 2-octanol, 

chosen because they have identical vapor pressures and similar 

intensities. In the odor identification task, difficulty was 

manipulated by using different concentrations of pure odors, 

ranging from 10-4 to 10-1 (v/v) (Fig. 2.1b). The different 

concentrations were produced by serial liquid dilution using 

propylene glycol (PG; 1,2-propanediol). Eight stimuli were 
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loaded in a different holder (Puradisc 13 Syringe Filter, 2.7 mm 

pore size, #6823-1327, GE Healthcare), joining in a symmetric 

manifold, about 10 cm from the odor port52. In the odor mixture 

categorization task, we used binary mixtures of these two 

odorants at different ratios, with the sum held constant: 0/100, 

20/80, 32/68, 44/56 and their complements (100/0, etc.) (Fig. 

2.1a). Difficulty was determined by the distance of the mixtures 

to the category boundary (50/50), denoted as “mixture contrast” 

(e.g., 80/20 and 20/80 stimuli correspond to 60% mixture 

contrast). Choices were rewarded at the left choice port for 

odorant A (identification task) or for mixtures A/B > 50/50 

(categorization task) and at the right choice port for odorant B 

(identification task) or for mixtures A/B < 50/50 (categorization 

task). In both tasks, a set of eight stimuli was randomly 

interleaved within the session. During testing, the probability of 

each stimulus being selected on a given trial was the same.  

 

 

 

(Fig. 2.1 continues in the next page) 
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Figure 2.1 | Stimulus design for the different behavioral tasks 
(a,b) Odor mixture categorization and odor identification tasks. In the mixture 
categorization task, two odorants, (S-(+)-2-octanol and R-(-)-2-octanol), were 
mixed in different ratios – 0/100, 20/80, 32/68, 44/56 and their complements – 
presented at a fixed total concentration of 10-1, and rats were rewarded 
according to the majority component (a). In the odor detection or identification 
task, the same odorants were presented independently at concentrations ranging 
from 10-1 to 10-4 (v/v) and sides rewarded accordingly (b). Dot shading 
represents odor concentration, with highest concentration corresponding to the 
darkest shade. (c) Comparison between the different datasets used for the 
mixture categorization task. Black circles same as in (a). Blue crosses represent 
the set of stimuli with the following mixture ratios: 0/100, 17/83, 33.5/66.5, 
50/50; magenta circles: 0/100, 39/61, 47.5/52.5, 49.5/50.5. (d) Odor mixture 
identification task. The same odorants were presented at different 
concentrations and in different ratios as indicated by dot positions. In each 
session, four different mixture pairs (i.e. a mixture of specific ratio and 
concentration and its complementary ratio) were pseudo-randomly selected 
from the total set of 16 mixture pairs and presented in an interleaved fashion. 
 

Odor traces were measured using a photo ionization detector 

(mini-PID, Aurora Scientific, Inc). In Chapter 4 we will examine 

how much of the observed changes in the behavioral data can be 

explained by the odor temporal dynamics. For this analysis, the 

solvent used was mineral oil (MO) because, in contrast to MO, 

PG elicits a PID response, which didn’t allow us to measure the 

actual trace corresponding to the different concentrations of 

odors. For each stimulus / odor valve, 50 trials were collected 

(Fig. 2.2).  
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Figure 2.2 | PID signal for different odor concentrations 
The PID signal was measured for the different concentrations of odorants used 
in the identification task. Error bars are mean ± SD (n = 400 traces). Scale bar: 
500 ms. Each line corresponds to a different stimulus concentration (v/v): 10-1, 
10-2, 10-3, 10-4, as indicated by color shading (highest concentration 
corresponding to the darkest shade). Stimulus onset (valve signal) corresponds 
in each case to the left-most edge of the trace. 
 

For the experiments in Figs. 3.1-3.4, only mixtures with a total 

odor concentration of 10-1 were used (Fig. 2.1a). For the 

experiment in Fig. 3.5, we used the same mixture contrasts with 

total concentrations ranging from 10-1 to 10-4 prepared using the 

diluted odorants used for the identification task (Fig. 2.1d). In 

each session, four different mixture pairs were pseudo-randomly 

selected from the total set of 32 stimuli (8 contrasts at 4 different 

total concentrations). Thus, for this task, a full data set comprised 

4 individual sessions. For the experiments in Figs. 3.4a, b we 

used two different sets of mixture ratios: 0/100, 17/83, 33.5/66.5, 

50/50 in one experiment and 0/100, 39/61, 47.5/52.5, 49.5/50.5 in 

the second experiment (Fig. 2.1c). In the experiment using 50/50 

mixture ratios we used two filters both with the mixture 50/50, 

one corresponding to the left-rewarded stimulus and the other one 

500 ms



	   30	  

to the right-rewarded stimulus. Thus, for the 50/50 mixtures, rats 

were rewarded randomly, with equal probability for both sides. 

 

2.4 Reaction time paradigm 

The sequence and timing of task events is illustrated in Fig. 2.3. 

Rats initiated a trial by entering the central odor-sampling port, 

which triggered the delivery of an odor with delay (dodor) drawn 

from a uniform distribution with a range of 300-600 ms. The odor 

was available for up to 1 s after odor onset. Rats could exit from 

the odor port at any time after odor valve opening, and make a 

movement to either of the two reward ports. Trials in which the 

rat left the odor sampling port before odor valve opening (4.2% of 

trials) or before a minimum odor sampling time of 100 ms had 

elapsed (1.1% of trials) were considered invalid. Odor delivery 

was terminated as soon as the rat exited the odor port. Odor 

sampling duration (OSD) was calculated as the difference 

between odor valve actuation until odor port exit (Fig. 2.3b). 

 

(Fig. 2.3 continues in the next page) 
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Figure 2.3 | Two-alternative odor choice task 
(a) Sequence of events in a behavioral trial, illustrated using a schematic of the 
ports and the position of the snout of the rat. (b) Illustration of the timing of 
events in a typical trial. Nose port photodiode and valve command signals are 
shown (thick lines). Measurements of odor sampling duration (OSD) and 
movement time (MT), as well as imposed delays (dodor, dwater and dinter-trial) are 
indicated by arrows. Dashed lines indicate omitted time. 
 

The stimulus onset delay (dodor) was drawn from a uniform 

distribution between 300 and 600 ms, which creates a rising 

hazard rate (i.e., the probability that an event is likely to occur, 

given that it hasn’t occurred already), hence increasing stimulus 

onset expectation during this period56,107. For comparison of low 

and high stimulus-expectation, two groups of trials were selected, 

an early onset, low stimulus-expectation condition, dodor = 300-

400 ms, and a late onset, high stimulus-expectation condition, 

dodor = 500-600 ms. Analysis of OSD and accuracy for these two 

stimulus-expectation conditions were performed by conditioning 

OSD and accuracy on these two different time periods of dodor. 

The CV was calculated as the ratio of the SD to the mean of OSD. 

Movement time (MT) was defined as the difference between odor 

port exit and choice port entry time. For correct trials, water was 

delivered from gravity-fed reservoirs regulated by solenoid valves 

after the rat entered the choice port, with a delay (dwater) drawn 
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from a uniform distribution with a range of [0.1, 0.3] s. Reward 

was available for correct choices for up to 4 s after the rat left the 

odor sampling port. Trials in which the rat failed to respond to 

one of the two choice ports within the reward availability period 

(0.5% of trials) were also considered invalid. Reward amount 

(wrew), determined by valve opening duration, was set to 0.024 ml 

and calibrated regularly. A new trial was initiated when the rat 

entered odor port, as long as a minimum interval (dinter-trial), of 4 s 

from water delivery, had elapsed. Error choices resulted in water 

omission and a “time-out” penalty of 4 s added to dinter-trial. 

Behavioral accuracy was defined as the number of correct choices 

over the total number of correct and incorrect choices. 

The influence of previous rewards on the choice function of the 

rats was estimated by calculating the psychometric curve 

conditional on the presence of a reward in the preceding trial for 

each odor stimulus (odor A or odor B). 

Choice bias was calculated as the difference between left (“A-

side”) and right (“B-side”) choices divided by the total number of 

choices, averaged across all trials. This measures the overall 

tendency of the rats to go left (Choice bias > 0) or right (Choice 

bias  < 0). The influence of reward and difficulty of previous 

stimuli on choice bias was estimated by calculating the choice 

bias for each current stimulus difficulty conditional on the 

previous reward and stimulus difficulty. 

The three types of invalid trials (in total 5.8 ± 0.8% of trials, mean 

± SEM, n = 4 rats) were not included in the calculation of 
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performance accuracy or reaction times (odor sampling duration 

or movement time). 

 

2.5 Training 

The training sequence consisted of: (I) handling (2 sessions); (II) 

water port training (1 session); (III) odor port training, in which a 

nose poke at the odor sampling port was required before water 

was available at the choice port. The required center poke 

duration was increased from 0 to 300 ms (4 – 8 sessions); (IV) 

introduction of test odors at a concentration of 10-1, rewarded at 

left and right choice ports according to the identity of the odor 

presented (1 – 5 sessions); (V) introduction of increasingly lower 

concentrations (more difficult stimuli) (5 – 10 sessions); (VI) 

training on odor identification task (10 – 20 sessions); (VII) 

training on mixture categorization task (10 – 20 sessions). Testing 

was done afterwards. 

During training, in phases V-VII, we used adaptive algorithms to 

adjust the difficulty and to minimize bias of the animals. We 

computed an online estimate of bias: 

€ 

xt = (1− λ)rt + λxt−1                                         (1.1) 

where 

€ 

xt  is the estimated bias in the current trial, 

€ 

xt−1 is the 

estimated bias in the previous trial, 

€ 

rt  is the choice of the current 

trial (0 if right, 1 if left) and 

€ 

λ  is the decay rate (

€ 

λ  = 0.05 in our 

experiments). The probability of being presented with a right-side 
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rewarded odor 

€ 

α = p(st = right) was adjusted to counteract the 

measured bias using: 

€ 

α t+1 =1− 1
1+ e(xt −x0 ) /β

                          (1.2)                                                           

where 

€ 

x0  is the target bias (set to 0.5), and 

€ 

β (set to 0.25) 

describes the degree of non-linearity.  

Analogously, the probability of a given stimulus difficulty was 

dependent on the performance of the animal, i.e., the relative 

probability of difficult stimuli was set to increase with 

performance. Performance was calculated using Equation 1.1 

where 

€ 

xt  estimates the performance at the current trial and 

€ 

rt  is 

the outcome of the current trial (0 if error, 1 if correct). A 

difficulty parameter, 

€ 

δ , was adjusted as a function of the 

performance,  

€ 

δ t+1 = −1+
2

1+ e(xt −x0 ) β
                                                             (1.3) 

where 

€ 

x0  is the target performance (set to 0.95), and 

€ 

β (set to 

0.25) describes the degree of non-linearity. The probability of 

each stimulus difficulty, 

€ 

γ = p(s = si), was drawn from a 

geometric cumulative distribution function (GEOCDF, Matlab)

€ 

γ t+1 =
1−GEOCDF(i,δ t+1 )

1−GEOCDF( j,δ t+1 )
j=1

N

∑
                                                (1.4) 

where 

€ 

N  is the number of stimulus difficulties in the session, and 

takes a value from 2 to 4 (when 

€ 

N  = 1, i.e. only one stimulus 
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difficulty, this algorithm is not needed); 

€ 

i  corresponds to the 

stimulus difficulty and is an integer from 1 to 4 (when 

€ 

δ  > 0, the 

value 1 corresponds to the easiest stimuli and 4 to the most 

difficult one, and vice-versa when 

€ 

δ  < 0). In this way, when 

€ 

δ  is 

close to 0, corresponding to an average performance close to 0.95, 

the distribution of stimuli was close to uniform (i.e. all difficulties 

are equally likely to be presented). When performance is greater, 

then the relative probability of difficult trials increased; 

conversely, when the performance is lower, the relative 

probability of difficult trials decreased. 

 

2.6 Statistical analysis 

All the analysis was performed in Matlab® 2010a (7.10.0, The 

MathWorks, Inc). Psychometric and accuracy curves were fitted 

with a cumulative Weibull function using a maximum-likelihood 

procedure (FMINSEARCH, Matlab). OSD curves were fitted to a 

quadratic regression, for individual odors, and to a linear 

regression, for collapsed odors, using a least squares approach 

(NLINFIT, Matlab). 

For Fig. 2.2, error bars are mean ± SD (n across number of PID 

traces). For Fig. 3.1, error bars are 95% confidence intervals (n 

across trials for Figs. 3.1 a-d; n across sessions for Figs. 3.1 e-h) 

calculated using a bootstrap procedure (BOOTCI, Matlab). For 

the remainder figures, error bars are mean ± SEM (n across rats, 

except for Fig. 5.3, n across trials). 
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To evaluate the dependence of OSD on stimulus difficulty, we 

used a one-way ANOVA (ANOVA1, Matlab) for the 

identification and categorization tasks and a two-way ANOVA 

(ANOVA2, Matlab) for the mixture identification task. The 

dependence of the CV on stimulus difficulty was evaluated using 

a one-way ANOVA. To assess the dependence of accuracy, OSD 

and CV for the different odor delay conditions, we used a two-

way ANOVA. ANCOVA (AOCTOOL, Matlab) and post-hoc 

Tukey-Kramer (MULTCOMPARE, Matlab) tests were used to 

evaluate the linear relationship between OSD mean and OSD SD 

across the different odor delay conditions. The change in slopes of 

the linear regression between OSD and mixture contrast or odor 

concentration for the different odor delay conditions were 

assessed using a paired sample t-test (TTEST, Matlab). 

Differences were considered significant if P < 0.05.  
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3 Speed-accuracy tradeoffs in 

olfaction 
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3.1 Introduction 

In this chapter, we summarize the behavior of the rats trained on 

the odor identification and mixture categorization tasks described 

in Chapter 2. 

First, we characterized the behavior in terms of response accuracy 

and average reaction times (odor sampling duration, OSD) as a 

function of the stimulus parameters. In the last section, we 

investigated the impact of trial history on the animal’s choice 

function.  

 

3.2 Odor identification and odor mixture categorization 

tasks 

We trained and tested Long Evans rats on two different two-

alternative choice olfactory reaction time tasks that were similar 

except for the stimulus concentrations (Figs. 2.1a, b and 2.3). 

The first task was a previously studied odor mixture 

categorization task52 in which two odors were presented at a fixed 

total concentration but in different ratios. The task difficulty was 

determined by the distance of the stimulus to the category 

boundary (50/50), denoted as “mixture contrast” (e.g., 56/44 and 

44/56 stimuli correspond to 12% mixture contrast) (Fig. 2.1a). 

The second task was an odor identification task in which only one 

of the two odors was presented on a given trial, but difficulty was 

increased by diluting odors over a range of three log steps (1000-

fold) (Fig. 2.1b). To quantify reaction time, we used the odor 
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sampling duration (OSD) (Fig. 2.3b) – throughout the thesis, 

OSD and RT will be used interchangeably. In a given session, 

eight randomly interleaved stimuli from one of the two tasks were 

presented. Critically, to ensure that any differences in 

performance were due to the manipulated stimulus parameters, all 

comparisons were done using the same rats performing the two 

tasks on different days with all other task variables being held 

constant.  

We observed a strong dependence of performance accuracy on 

both mixture contrast and stimulus concentration (representative 

session, Fig. 3.1a, c; representative rat, Fig. 3.1e, g; all rats, Fig. 

3.2a, c). As described previously52, for the mixture categorization 

task, RTs showed a small and not significant increase from the 

easiest to the most difficult stimuli (31 ± 18 ms; mean ± SEM, n = 

4 rats; F(3,12) = 1.14, P > 0.2, ANOVA; representative session, 

Fig. 3.1b, d left; representative rat, Fig. 3.1f, h left; all rats, Fig. 

3.2b, d left). In contrast, for the same animals performing the 

identification task, RTs increased much more substantially (108 ± 

29 ms; F(3,12) = 7.77, P < 0.005; representative session, Fig. 

3.1b, d right; representative rat, Fig. 3.1f, h right; all rats, Fig. 

3.2b, d right). 
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Figure 3.1 | Comparison between odor mixture categorization and odor 
identification tasks – session and rat data 
(a-d) Data from a representative session. (a) Psychometric curve in 
discriminating S-(+)-2-octanol from R-(-)-2-octanol as a function of odor 
percentage in the mixture (a, left) or odor concentration (a, right). Dot shading 
represents odor concentration, with highest concentration corresponding to the 
darkest shade. (b) Median odor sampling duration (OSD) plotted as a function 
of odor percentage in the mixture (b, left) or odor concentration (b, right). (c) 
Accuracy as a function of mixture contrast (c, right) or odor concentration (c, 
left). Mixture contrast is defined as the absolute percent difference between the 
two odors (i.e. the pair 100/0 and 0/100 yield 100% contrast, 80/20 and 20/80 
yield 60% contrast and so on). (d) Median OSD plotted as a function of 
mixture contrast (d, right) or odor concentration (d, left). Error bars are 95% 
bootstrap confidence intervals (n across trials, 367 and 562 trials for 
categorization and identification, respectively). (e-h) Data from a 
representative rat. (e) Mean psychometric curve as a function of odor 
percentage in the mixture (e, left) or odor concentration (e right). (f) Mean of 
median OSD plotted as a function of odor percentage in the mixture (f, left) or 
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odor concentration (f, right). (g) Mean accuracy as a function of mixture 
contrast (g, right) or odor concentration (g, left). (h) Mean of median OSD 
plotted as a function of mixture contrast (h, right) or odor concentration (h, 
left). Error bars 95% bootstrap confidence intervals (n across sessions, 14 and 
13 sessions for categorization and identification, respectively).  
 

 

Figure 3.2 | Comparison between odor mixture categorization and odor 
identification tasks – population data 
(a) Mean psychometric curve in discriminating S-(+)-2-octanol from R-(-)-2-
octanol as a function of odor percentage in the mixture (a, left) or odor 
concentration (a, right). Dot shading represents odor concentration, with 
highest concentration corresponding to the darkest shade. (b) Mean of median 
OSD plotted as a function of odor percentage in the mixture (b, left) or odor 
concentration (b, right). (c) Mean accuracy as a function of mixture contrast (c, 
right) or odor concentration (c, left). (d) Mean of median OSD plotted as a 
function of mixture contrast (d, right) or odor concentration (d, left). Error bars 
are mean ± SEM (n = 4 rats). 
 

Movement times did not vary significantly with difficulty in 

either task (categorization, F(3,12) = 0.05, P > 0.8; identification, 

F(3,12) = 0.23, P > 0.8, ANOVA; Fig. 3.3). 
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Figure 3.3 | Movement time for odor mixture categorization and odor 
identification tasks 
(a,b) Mean of the median movement time plotted as a function of mixture 
contrast (a) or odor concentration (b). Dot shading represents odor 
concentration, with highest concentration corresponding to the darkest shade. 
Error bars are mean ± SEM (n = 4 rats). 
 

In order to control for the possibility that a slightly smaller range 

of performance accuracy for the categorization task accounted for 

differences in SAT, we re-ran this task with two sets of stimuli 

with wider ranges of mixture contrasts including harder, lower 

contrast stimuli (Fig. 2.1c). This yielded a range of accuracies as 

broad as those in the identification task (Fig. 3.4a). The change in 

OSD across all difficulties was 39 ± 25 ms and 48 ± 19 ms for the 

two datasets tested (Fig. 3.4b), slightly higher than the one 

observed for the original categorization dataset, yet still much 

smaller than the OSD change for identification (Figs. 3.4c, d). 

Therefore, the difference observed in SAT for odor identification 

vs. mixture categorization was not due to differences in the range 

of task difficulties. 
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Figure 3.4 | Odor mixture categorization with lower contrast stimuli 
(a) Mean accuracy (b) and mean of median odor sampling duration (OSD) 
plotted as a function of mixture contrast. Blue circles represent the set of 
stimuli: 0, 33, 66, 100% contrast; magenta circles: 1, 5, 22, 100% contrast. 
These sets of stimuli were run in different sessions. For the first dataset (blue 
circles), OSD showed an increase of 48 ± 19 ms, from 283 ± 8 to 331 ± 17 ms, 
from the easiest to the most difficult stimuli (F(3,12) = 3.61, P = 0.046, one-
way ANOVA); for the second dataset (green circles), OSD increased by 39 ± 
25 ms, from 279 ± 11 to 318 ± 23 ms (F(3,12) = 1.17, P > 0.3, one-way 
ANOVA). (c) Mean of median OSD as a function of mean accuracy. Dot 
shading represents odor concentration, with highest concentration 
corresponding to the darkest shade; black circles represent the set of stimuli: 
12, 36, 60, 100% contrast; blue and magenta circles are the same as in (a,b). (d) 
Normalized mean of median OSD as a function of normalized mean accuracy. 
Error bars are mean ± SEM (n = 4 rats). 
 

3.3 Odor mixture identification task 

Because identification and categorization tasks were run in 

separate sessions, we also considered the possibility that rats 

might shift their decision criteria between tasks. To address this, 
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and to cover the stimulus space more thoroughly, we devised a 

“mixture identification” task in which we interleaved the full set 

of stimuli from the categorization and identification tasks as well 

as intermediate mixtures (Fig. 2.1d). Thus, on each trial the 

stimulus was chosen randomly from one of four mixture ratios at 

one of four concentrations. Consistent with the previous 

observations, reaction times in this joint task were strongly 

affected by concentration but not by mixture contrast (Figs. 3.5b-

d). A two-way ANOVA showed that OSD changed significantly 

across the different odorant concentrations (F(3,48) = 17.68, P < 

10-7); but for a given total concentration of the odorants, this 

change was not significant across the different mixture contrasts 

(F(3,48) = 1.47, P = 0.2). There was no significant interaction of 

odorant concentration and mixture contrast (F(9,48) = 0.18, P > 

0.9).  

 

 

(Fig. 3.5 continues in the next page) 
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Figure 3.5 | Odor mixture identification task 
(a,b) Mean accuracy (a) and mean of median odor sampling duration (OSD)  
(b) plotted as a function of mixture contrast. (c) Mean of median OSD plotted 
as a function of mean accuracy. (d) Normalized mean of median OSD plotted 
as a function of normalized mean accuracy. Each point represents a single 
mixture ratio. Dot shading represents odor concentration, with highest 
concentration corresponding to the darkest shade. Error bars are mean ± SEM 
(n = 4 rats). 
 

3.4 Trial-by-trial learning 

The results from the previous sections are consistent with the idea 

that low concentration and low mixture contrast create 

independent sources of uncertainty. We hypothesized than in odor 

identification, accuracy is limited by stimulus uncertainty whereas 

in mixture categorization, accuracy is limited by variability 

arising from the constant updating of the category boundary based 

on the outcome of previous trials. Given this hypothesis, we 

investigated whether ongoing learning has a different influence on 

the choice of animals in identification and categorization. 

In both tasks there was a clear trial-by-trial updating of the 

animal’s choice function, i.e., after a correct trial, the choice was 

biased towards the side that had been rewarded in the previous 

trial (Fig. 3.6a). 
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We next asked whether this trial-by-trial learning also depended 

on the difficulty of the previous trial. We observed that, after a 

correct trial, in the categorization task choice bias increased with 

the difficulty of the previous trial (Fig. 3.6c, left), whereas in 

identification this bias was dependent only on choice side (Fig. 

3.6c, right).  

 

 

Figure 3.6 | Trial-by-trial learning 
(a) Mean psychometric curve as a function of odor percentage in the mixture 
(left) or odor concentration (right) after a correct trial. Green and blue 
correspond to odor A and odor B-rewarded stimuli, respectively. Dashed line 
corresponds to the mean psychometric function. (b) Choice bias as a function 
of previous odor percentage in the mixture (left) or odor concentration (right) 
after a correct response for easy (100% contrast or 10-1 concentration; black 
curve) and hard (12% contrast or 10-4 concentration; gray curve) current 
stimuli. Corrected for average bias. Error bars are mean ± S.E.M (n = 4 rats). 
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3.5 Discussion 

These results demonstrate the existence of robust SAT in rats 

when task difficulty was increased by lowering concentration. 

This change was much larger compared to that observed when 

difficulty was increased by decreasing the distance of stimuli 

from the response category boundary. Thus, holding other 

parameters (species, modality, motivation, etc.), SAT was 

dependent on the nature of the task, as defined here by the set of 

stimuli. When the two tasks were combined, the two 

manipulations interacted linearly with respect to RT, consistent 

with the idea that low concentrations and low mixture contrast 

pose independent sources of uncertainty. 

In both tasks, choice behavior depended partly on reward history, 

as shown recently for mice performing a visual contrast detection 

task7. However, whereas in odor identification choice bias was 

only dependent on previous side and outcome, for mixture 

categorization this bias was also modulated by the difficulty of 

the previous stimulus. These biases might generate fluctuations in 

the internal decision criterion, useful in initial learning but 

suboptimal in a task with fixed categories7,126,127. How are these 

priors incorporated into the developing decisions? We 

hypothesize that for categorization, this trial-by-trial learning 

leads to a continual updating of the category boundary, i.e., the 

mapping of the stimulus to the appropriate response, which we 

believe is the dominant source of uncertainty in this task. Because 

this mapping can only be improved when reinforcement is given 

after a trial, prolonged stimulus sampling on a single trial is 
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ineffective at improving performance56. On the other hand, for 

odor identification, although ongoing learning leads to a choice 

bias towards the rewarded side, we believe accuracy is limited by 

rapid (millisecond-by-millisecond) fluctuations in the firing of 

sensory neurons that can be mitigated by integration25,34,37, and 

that the increase in RTs is due to the reduced amount of odor 

information at lower concentrations. Our results are therefore 

consistent with our initial hypothesis that SAT is dependent on 

the nature of the task, suggesting that the problem of identifying 

an odor at low concentrations and the problem of distinguishing 

closely related odors make very different demands for the brain.  

 

In the last two chapters, we described the behavioural approach 

taken to investigate why the range of SAT varies widely across 

studies. By comparing two behavioural tasks that were identical 

except for the stimuli that gave rise to task difficulty, we proposed 

that SAT is dependent on the nature of task. 

In the next chapter, we will focus on the task that showed the 

higher degree of SAT – the identification task – and by taking a 

modelling approach, we will investigate the underlying 

computational mechanisms that might explain the changes 

observed in response time and choice behavior. 
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4 A modeling approach for the 

study of the identification 

task 
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4.1 Introduction 

In Chapter 3 we showed that for a similar level of difficulty, 

identifying odors at low concentrations requires a much larger 

increase in stimulus sampling time than does discriminating 

similar mixtures, even when species, modality and motivation are 

controlled for. 

In Chapter 4, by taking a modeling approach, we want to 

investigate the computational mechanisms that might account for 

the changes in RT and response accuracy observed in the task 

with the higher degree of SAT – the identification task. 

 

Integrator or accumulator models, such as the drift-diffusion 

model (DDM), have been used to explain a wide range of 

response time and choice behavior data in species from 

primates25,128 to insects36. The DDM posits that decisions are 

made when a decision variable (DV), whose drift rate reflects the 

accumulating evidence and that has some internal noise, reaches a 

response bound18,37,62,129,130. The drift rate is proportional to the 

strength of the evidence but noise gives rise to variability in the 

response even upon repeated presentation of the identical 

stimulus. 

Despite the general use of integrator models to describe RT and 

choice behavior, it was shown that integration is not the only 

operation that can be used in decision-making processes, and 

different operations have also been applied and suggested131–134. 
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Namely, an exhaustive modeling study focused on the RDMD 

task, which has been widely modeled as accumulation of sensory 

information to a bound25,47, revealed that this task can be 

explained by a variety of models, including ones without temporal 

integration131. This indicates that identifying a computational 

mechanism that can account for a particular dataset does not 

automatically mean that it is the only one that could explain the 

data. In addition, this study also showed that a standard DDM was 

incompatible with the observed RT distributions, calling for 

additional components and parameters in the DDM in order to be 

able to explain the distributions131. 

To investigate the computational mechanisms underlying the 

behavior in the identification task, we used a modeling strategy 

where we took the DDM framework as a starting point and 

implemented a flexible model structure that allowed us to explore 

different mechanisms. These different mechanisms were 

implemented by changing the combination of components active 

in the model: temporal integration, ‘noise’, and variability in non-

decision time. This allowed us to explore which combinations of 

model features were able to describe the data from the 

identification task and which components of the model were well 

constrained by the data. 

Another important objective of this approach was also to evaluate 

the contribution of the odor’s temporal dynamics on the observed 

behavioral changes. For that, a time-varying input described by 
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the measured odor waveforms was also considered as a 

component of the model. 

Finally, we wanted to investigate how sniffing dynamics, namely 

inhalation variability, influences the model predictions. Although 

sniffing hasn’t been measured in the identification task, a 

previous study reported that sniff frequency does not change as 

task difficulty is increased by lowering odorant concentration135. 

Moreover, it was shown that the rate of respiration in an olfactory 

discrimination task, similar to the categorization task used here, 

increases before rats enter the odor sampling port, going from a 

low frequency (2-4 Hz) mode before entry, to a high-frequency 

(6-9 Hz) mode during odor sampling135. This change in sniff 

frequency was mainly attributed to a truncation of exhalation 

periods135. Here, we looked at the impact of inhalation variability 

by adding variance to the starting time of stimulus sampling, and 

by testing different durations of exhalation periods. 

 

In this chapter, we start by describing the modeling approach used 

to investigate the computational mechanisms underlying the 

behavior in the identification task (4.1 Modeling framework 

approach), and after that, we present the model fitting results and 

predictions (4.2 Model fitting results). 
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4.2 Modeling framework approach 

 

4.2.1 The diffusion model framework 

The basis structure of the model implemented here was grounded 

on the bounded DDM25, which has been applied to several 

datasets to explain choice behavior and response time25,36,128. 

In the diffusion model, evidence in favor of stimuli 

€ 

SA  and 

€ 

SB  is 

accumulated over continuous time until an upper or lower bound 

is reached (

€ 

A  or 

€ 

−B), which triggers a response, 

€ 

RA  or 

€ 

RB . The 

expected rate at which evidence accumulates is determined by the 

drift rate 

€ 

µ and the expected rate of growth of the variance of the 

evidence by the squared diffusion coefficient 

€ 

σ2. Bias toward one 

or the other response can be represented by the relative values of 

the bounds 

€ 

A  and 

€ 

B.  

In a discrete time version of this process, the momentary 

evidence, 

€ 

e , gathered in each time step 

€ 

Δt , is drawn from a 

Gaussian distribution with mean and variance of 

€ 

µΔt  and 

€ 

σ2Δt , 

respectively. Thus, the accumulated evidence, termed the decision 

variable, 

€ 

DV , at time 

€ 

t = nΔt , is given by: 

€ 

DV (nΔt) = ei
i=1

n

∑
                         (4.1) 

The process terminates when the 

€ 

DV  reaches the upper or lower 

decision bound. The bound reached first by the accumulated 

evidence determines the choice, and the decision time, 

€ 

tD , is 
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determined by how long it takes to reach that bound. Response 

time is a combination of this decision time and an additional non-

decision time, 

€ 

tND , which accounts for any non-decision-related 

delays (sensory delays, motor preparation, etc.). 

In this model, three assumptions were made. First, the drift rate 

was assumed to be the only parameter affected by stimulus 

strength, , and was determined by: 

€ 

µ = sign(x) kx β               (4.2) 

where 

€ 

k  is a measure of sensitivity and 

€ 

β a scaling exponent25. 

The sign function is defined as –1 if 

€ 

x  < 0 and 1 if 

€ 

x  > 0. 

Second, no response bias was assumed, thus 

€ 

A = B . And third, 

the noise defined by the diffusion coefficient 

€ 

σ was assumed to 

be constant for all conditions and set to 0.1. In summary, the 

model parameters were the following: bound 

€ 

A , sensitivity 

€ 

k , 

scaling exponent 

€ 

β and mean non-decision time 

€ 

tND . 

 

The structure described above constitutes the basis of the model 

used in this study and upon which the different model variants 

were implemented by changing the combination of components 

active in the model (temporal integration, ‘noise’ and variability 

in non-decision time) and the type of input (constant or time-

varying). In the next section, we describe the different variants of 

the model. 

 

! 

x
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4.2.2 Variants of the model 

The different model variants were characterized by different 

combinations of the following features: 

1) Stimulus strength, 

€ 

x . For a given concentration, the stimulus 

strength could be: 1) constant, as in the DDM described above; 2) 

time-varying, being described by an exponential function which 

corresponds to the best-fit curve of the mean of the odor time-

courses (Fig. 4.1; exponential function, 

€ 

C(1− e−t τ ) , least-squares 

procedure, FMINSEARCH, Matlab); or 3) time-varying, being 

described, on each trial, by a single-trial odor time-course. 

2) ‘Noise’, diffusion coefficient, 

€ 

σ. The diffusion coefficient was 

a constant that and could be: 1) different from zero, as in the 

DDM; or 2) equal to zero. 

3) Temporal integration. There could be: 1) temporal integration, 

by accumulating evidence, as in the DDM; or 2) no temporal 

integration, by comparing directly the evidence to the bound. 

4) Non-decision time, 

€ 

tND . The non-decision time could be: 1) 

constant; or 2) variable, following a Gaussian distribution131,136. 

In the latter case, the SD of the non-decision time distribution was 

also a free parameter of the model. 
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Figure 4.1 | Exponential fit of the odor temporal profiles for different 
concentrations 
(a-d) Mean PID signal for the different concentrations of odorants (v/v) used in 
the identification task: 10-1 (a), 10-2 (b), 10-3 (c) and 10-4 (d). Red line 
corresponds to the fit to an exponential function, 

€ 

y = C(1− e−t /τ ) . 
 

Figure 4.1 illustrates the general structure of the model and Table 

4.1 summarizes the different model variants. 

 

a

500 ms

c

500 ms

500 ms500 ms

b d
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Figure 4.2 | Model structure 
Structure of the model used to fit the behavioral data from the identification 
task. The details of the model were described in 4.2.1 The diffusion model 
framework and 4.2.2 Variants of the model. 
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Table 4.1 | Model variants used to fit the behavioral data from the 
identification task 

Model # Stimulus strength 
Diffusion 

coefficient 

Temporal 

integration 

Non-decision 

time 

1 Constant 0.1 Yes Fixed 

2 
Time-varying 

PID-fit 
0.1 Yes Fixed 

3 Constant 0.1 No Fixed 

4 
Time-varying 

PID-fit 
0.1 No Fixed 

5 Constant 0 Yes Fixed 

6 
Time-varying 

PID-fit 
0 Yes Fixed 

7 
Time-varying 

PID-fit 
0 No Fixed 

8 
Time-varying 

Single trial PID trace 
0 No Fixed 

9 Constant 0.1 Yes Gaussian 

10 
Time-varying 

PID-fit 
0.1 Yes Gaussian 

11 Constant 0.1 No Gaussian 

12 
Time-varying 

PID-fit 
0.1 No Gaussian 

 

Accuracy and RTs were generated by running numerical 

simulations of the models described above. 
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Model 1 also has analytical solutions for response accuracy 

€ 

PC , 

mean RT 

€ 

tT  and variance of RTs 

€ 

VAR25, which are respectively: 

€ 

Pc (µ) = δ
1

1+ e−2A 'µ'
 
              (4.3)

 

€ 

tT (µ) =
A'
µ'
tanh(A'µ') + tND

       (4.4) 

€ 

VAR[Tt (µ)] =
A'[tanh(A'µ') − A'µ'sech(A'µ')2]

µ'3      (4.5) 

where 

€ 

A'  and 

€ 

µ'  are the bound and drift rate normalized by the 

diffusion coefficient, and 

€ 

δ  is the empirically determined fraction 

of correct choices for the easiest concentration, 10-1 (0.97, mean 

across 4 rats). 

 

For Model 7, the analytical solution for the decision time 

€ 

tD  was 

derived as follows. The mean of the odor time-courses was fit to a 

single-exponential, 

€ 

C(1− e−t τ ) . For a stimulus strength 

€ 

x  

described by a single-exponential, according to Eq. 4.2 the drift 

rate 

€ 

µ  is given by 

€ 

µ = kC(1− e−t /τ )[ ]β       (4.6)
 

Since in Model 7 the diffusion coefficient was set to 0 and there is 

no temporal integration, the evidence is equal to the values of the 

drift rate for the different time steps, and the decision time is then 
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determined by the time 

€ 

t  at the which the values of the drift rate 

cross the bound 

€ 

A . Therefore, by setting 

€ 

µ = A, and replacing 

€ 

t  

by 

€ 

tD , we get the following expression: 

€ 

A = kC(1− e−tD /τ )[ ]β       (4.7)
 

By solving this equation for 

€ 

tD , the analytical solution for the 

decision time as a function of odor stimulus, here defined by 

€ 

C  

and 

€ 

τ , is the following: 

€ 

tD C,τ( ) = −τ ln 1− A
1 β

kC
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟      (4.8) 

 

4.2.3 Model fitting 

Accuracy and mean RT, calculated from the pooled data of all 

sessions from all rats (‘super-rat’), were simultaneously fit to the 

accuracy and mean RT functions given by Eqs. 4.3 and 4.4 using 

a maximum likelihood procedure25. For mean response time, the 

relevant distribution is the sampling distribution of the sample 

mean, rather than the sample distribution across individual trials. 

According to the Central Limit Theorem, the sampling 

distribution of the sample mean has a Gaussian distribution for 

asymptotically large samples. It can be described by the predicted 

mean RT 

€ 

tT (µ)  and predicted standard error of the mean, 

€ 

σ
t
− = VAR[TT (µ) /n] , where 

€ 

VAR  is the predicted variance and 

€ 

n  

is the number of trials. Given this Gaussian approximation, the 



	   61	  

likelihood 

€ 

LT  of the observed mean RT 

€ 

t
_
T (µ), given the 

predicted mean response times 

€ 

tT (µ) , is 

€ 

LT =
1

σ 2π
e
−[ tT (µ )− t

_
T (µ )]2 (2σ

t
_
2 )

                                       (4.9) 

For accuracy, we assume the probability of observing 

€ 

r  correct 

choices out of 

€ 

n  trials obeys the binomial distribution. Thus, the 

likelihood 

€ 

LP  of the observed proportions of correct responses 

€ 

r
n  given the predicted proportion correct 

€ 

PC  is 

€ 

LP (x) =
n!

r!(n − r)!
PC (x)

r(1− PC (x))
n−r  

   (4.10)
 

The log likelihoods were summed over stimulus strength 

conditions to produce a combined log likelihood of 

€ 

ln(L) = ln[LT (x)]+ ln[LP (x)]x
∑                                             (4.11) 

which was maximized by iteratively adjusting the model 

parameters (FMINSEARCH, Matlab). 

RT distributions and SD predictions were generated by running a 

numerical simulation of the DDM, which corresponds to Model 1 

from Table 4.1, using the resulting best-fit parameter values. 

 

For the fit of RT mean and variance, Eqs. 4.4 and 4.5 were used, 

and a maximum likelihood procedure was also applied. For the 
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variance of RTs, the relevant distribution is the sampling 

distribution of the sample variance. Under the assumption that the 

samples are drawn from a normal distribution, 

€ 

VAR[TT (µ)
_
] × (n −1) VAR[TT (µ)] follows a Chi-square 

distribution with (n-1) degrees of freedom. Given this 

approximation, the likelihood 

€ 

LVAR  of 

€ 

z =VAR[T
_
T (µ) × (n −1)] VAR[TT (µ)]  is given by: 

€ 

LVAR =
zn−3 2 exp(−z 2)
2(n−1)/ 2Γ[(n −1) 2]                                                  (4.12)

 

where  is the Gamma function. 

The log likelihoods were summed over stimulus strength 

conditions to produce a combined log likelihood of 

€ 

ln(L) = ln[LT (x)]+ ln[LVAR (x)]x
∑                                          (4.13) 

which was maximized by iteratively adjusting the model 

parameters. 

RT distribution predictions were generated by running a 

numerical simulation of the DDM (Model 1), using the resulting 

best-fit parameter values. 

 

Accuracy and mean RTs were fitted to the Models 2-7 described 

in Table 4.1 using a least-squares approach (FMINSEARCH, 

Matlab). 

! 

"(.)
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The goal of Model 8 was to examine if the changes observed in 

the identification task, particularly for the RTs, could be solely 

explained by the trial-by-trial odor dynamics. Therefore, to allow 

the model to try to explain as best as possible the RT data, only 

mean RT was fit to this model; accuracy was predicted using the 

resulting best-fit parameter values. 

 

The objective of Models 9-12 was to investigate the contribution 

of variability in non-decision times to explaining the RT 

distributions. For that, we fitted the SD of RTs to Models 9-12, 

where the parameters 

€ 

A  (bound), 

€ 

k  (sensitivity), 

€ 

β (scaling 

exponent) and 

€ 

tND  (mean non-decision time) were fixed and set to 

the best-fit parameter values from Models 1-4, respectively, and 

the only free parameter was the SD of the Gaussian distribution 

for non-decision times. A least-squares approach 

(FMINSEARCH, Matlab) was used. Accuracy, RT distributions, 

and mean RT predictions were generated using the resulting best-

fit parameter values. 

 

4.2.4 Inhalation variability 

We tested the influence of inhalation (sniffing) variability by 

running a simulation with Model 8, using the resulting best-fit 

parameter values from this model, but where the time for the 
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beginning of stimulus sampling was given by a uniform 

distribution ranging from 0 to 

€ 

v . We ran this simulation for the 

following values of 

€ 

v : 50, 150 and 250 ms; these values were 

chosen based on the duration of exhalations during an olfactory 

task (Fig. 5c, d from reference 135). Stimulus values below the 

sampled time for inhalation were set to zero. 

 

 

4.3 Model fitting results 

This section is divided into three sub-sections. In the first sub-

section (4.3.1 Fitting mean reaction time and accuracy), we 

used Models 1-8 (see 4.2.2 Variants of the model) to fit response 

accuracy and mean RT and to predict RT distributions. We 

observed that even the models that matched the data for accuracy 

and mean RT were incompatible with the RT distributions. In the 

second sub-section (4.3.2 An attempt to capture the reaction 

time distributions), we focused on this issue and we explored 

two different approaches to try to capture the RT distributions. 

Finally, given that odor stimuli are only sampled during the 

inhalation phase of sniffing, we investigated the impact of 

incorporating inhalation variability into the model (4.3.3 

Inhalation variability). 
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4.3.1 Fitting mean reaction time and accuracy 

Our first approach was to confirm that the DDM could capture the 

choice behavior and response times from the identification task, 

as shown for many other datasetse.g.,25,36,128. For that, first we 

fitted the accuracy and mean RT to the analytical expressions for 

the psychometric and chronometric functions (Eqs. 4.3 and 4.4, 

respectively25), and we observed that the DDM provided a good 

match to the behavioral data (Fig. 4.3d, e). Next, we ran the 

corresponding numerical simulation of this model (Model 1, Fig. 

4.3a-c) with the resulting best-fit parameter values (Table 4.2). 

This confirmed the fits from the analytical solutions for accuracy 

and mean RT (Fig. 4.3d, e) and allowed us to predict the RT 

distributions (Fig. 4.3g) and respective SD (Fig. 4.3f). 

 

 

(Fig. 4.3 continues in the next page) 
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Figure 4.3 | Drift-diffusion model with constant input (Model 1) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (b) and mean odor 
sampling duration (OSD) (c) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; green and red lines 
correspond to the best-fit curves from the analytical and numerical solutions of 
the model, respectively. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves from the numerical solution of the model. 
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Table 4.2 | Best-fit parameter values from the different models (

€ 

k , 
sensitivity; 

€ 

β , scaling exponent; 

€ 

A , bound; 

€ 

tND , mean non-decision time; 

€ 

σ tND , standard deviation of non-decision time; Acc, accuracy; mRT, mean 
reaction times; vRT, variance of reaction times; sdRT, standard deviation of 
reaction times) 

Model # 

€ 

k  

€ 

β  

€ 

A  

€ 

tND  

€ 

σ tND  
Fitted 

variables 

1 58.08 4.73 x 10-1 3.50 x 10-2 2.73 x 10-1 _ Acc, mRT 

1 1.66 x 10-3 4.67 x 10-2 1.93 x 10-1 9.0 x 10-15 _ mRT, vRT 

2 67.53 4.75 x 10-1 4.05 x 10-2 2.35 x 10-1 _ Acc, mRT 

3 1.0 x 103 4.73 x 10-1 8.30 x 10-3 2.90 x 10-1 _ Acc, mRT 

4 2.24 x 103 5.95 x 10-1 8.35 x 10-3 2.87 x 10-1 _ Acc, mRT 

5 1.27 x 104 1.93 x 10-1 1.54 x 10-1 2.57 x 10-1 _ Acc, mRT 

6 1.33 x 104 2.02 x 10-1 1.53 x 10-1 2.40 x 10-1 _ Acc, mRT 

7 1.27 x 104 2.04 x 10-1 9.78 x 10-4 3.20 x 10-1 _ Acc, mRT 

8 6.43 x 103 5.16 x 10-1 5.52 x 10-3 2.95 x 10-1 _ Acc, mRT 

9 _ _ _ _ 8.33 x 10-2 sdRT 

10 _ _ _ _ 7.17 x 10-2 sdRT 

11 _ _ _ _ 8.15 x 10-2 sdRT 

12 _ _ _ _ 8.57 x 10-2 sdRT 

	  

	  

The model structure of the numerical simulation of the DDM was 

used as the basic structure upon which all the different model 

variants were implemented. 

The sequence of models tested and the respective similarities and 

differences are depicted in Table 4.3 (for all these models non-

decision time was defined as a constant value). 
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Table 4.3 | Sequence of model variants tested with constant non-decision 
time 

Model # 
Stimulus 

strength 

Diffusion 

coefficient 

Temporal 

integration 

1    

2 *   

3    

4 *   

5    

6 *   

7 *   

8 **   

 

Green: Constant 

Blue: Time-varying 

* PID fit 

** Single trial trace 

Orange: 0.1 

Purple: 0 

Red: Yes 

Brown: No 

 

Figures 4.3 and 4.4 show that both Model 1 (constant input, Fig. 

4.3 a-c) and Model 2 (time-varying input, Fig. 4.4 a-c) – with 

temporal integration and ‘noise’ – were able to explain accuracy 

and mean RT as a function of concentration reasonably well 

(Figs. 4.3d, e and 4.4d, e). However, these models did not 

capture the shape of the RT distributions (Figs. 4.3g and 4.4g) 

and consequently the relationship between the mean and SD of 

RT (Figs. 4.3f and 4.4f). This was consistent with a previous 

study showing that while a standard DDM model could account 

for the choice behavior and mean RT of the RDMD task, it turned 

out to be incompatible with the observed RT distributions131. 

Nevertheless, it was interesting to note that both Models 1 and 2 
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predicted a linear relationship between the mean and SD of RT, as 

had been described for the DDM123, however the slope was much 

steeper when compared to the data. We explored this issue later, 

in 4.3.2 An attempt to capture the reaction time distributions. 

 

Figure 4.4 | Drift-diffusion model with time-varying input from 
exponential fit of mean odor time-courses (Model 2) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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Next, we asked if a model without temporal integration, where the 

evidence is compared directly to the bound (Figs. 4.5a-c and 

4.6a-c), could capture the data, as had been shown before for the 

RDMD task131. Indeed, a model like this was also able to explain 

accuracy and mean RT, both with constant (Model 3; Figs. 4.5a-

e) and time-varying stimulus (Model 4; Figs. 4.6a-e). Again, 

these models failed to capture the shape of the RT distributions 

(Figs. 4.5f-g and 4.6f-g). 

 

(Legend of Fig. 4.5 in the next page) 
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Figure 4.5 | Model with no temporal integration and constant input (Model 
3) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
	  

	  

 

(Legend of Fig. 4.6 in the next page) 
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Figure 4.6 | Model with no temporal integration and time-varying input 
from exponential fit of mean odor time-courses (Model 4) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
 

We next asked what happens when the model includes temporal 

integration but no ‘noise’ (diffusion coefficient equal to zero; 

Figs. 4.7a-c and 4.8a-c). In this case, the models captured the RT 

changes (Figs. 4.7e and 4.8e) but not the accuracy (Figs. 4.7d 

and 4.8d), showing that the within-trial variability is essential for 

explaining the accuracy. Similar results were obtained for the 

constant (Model 5; Fig. 4.7a-c) and time-varying stimulus (Model 

6; Fig. 4.8a-c). As expected in a situation when there is no noise 

in the decision process, the SD of the RT distributions was equal 

to zero (Figs. 4.7f-g and 4.8f-g). 
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Figure 4.7 | Evidence-accumulation model with diffusion coefficient set to 
zero and constant input (Model 5) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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Figure 4.8 | Evidence-accumulation model with diffusion coefficient set to 
zero and time-varying input from exponential fit of mean odor time-
courses (Model 6) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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sufficient to explain the behavioral changes observed across 
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analytically, as demonstrated in Chapter 4 (4.2.2 Variants of the 

model), showing that for Model 7 the decision time 

€ 

tD  as a 

function of odor stimulus was described by a logarithmic function 

– Eq. 4.8. 

Both the analytical and the numerical solution (Fig. 4.9) led to the 

same type of result: for a model where the input is time-varying 

and described by an exponential function (Fig. 4.1) and there is 

no temporal integration, the shape of the curve for mean RT as a 

function of stimulus intensity follows a logarithmic shape (Fig. 

4.9e), which is in contrast with the linear relationship describing 

the behavioral RT as a function of odor concentration (Figs. 3.1 

and 3.2).  

 

 

(Fig. 4.9 continues in the next page) 
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Figure 4.9 | Model with no temporal integration, diffusion coefficient set to 
zero and time-varying input from exponential fit of mean odor time-
courses (Model 7) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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variability in the odor time-course, the shape of the RT curve was 

qualitatively different from the one observed in the data (Fig. 

4.10e). This model also did not capture the shape of the RT 

distributions (Fig. 4.10f-g). 

 

 

Figure 4.10 | Model with no temporal integration, diffusion coefficient set 
to zero and time-varying input from single-trial odor time-courses (Model 
8) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
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to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
 

In summary, with the model structure described in Chapter 4 (Fig. 

4.2), we observed that both models with or without temporal 

integration, and with constant or time-varying input were 

compatible with the behavioral data in terms of accuracy and 

mean RT as long as the diffusion (noise) coefficient was different 

from zero (Models 1-4). However, none of these models was able 

to capture the RT distributions. 

Additionally, Models 7 and 8 showed that the odor temporal 

dynamics led to qualitatively different predictions for the mean 

RT when compared to the data: whereas these models predict a 

logarithmic-like shape for the RT curve, the behavioral data is 

better described by a linear relationship. This suggests that the 

odor dynamics cannot readily explain the changes in RTs 

observed for the identification task. 

 

4.3.2 An attempt to capture the reaction time distributions 

None of the models tested in the previous section was able to 

capture the shape of RT distributions. We attempted to address 

this by introducing trial-by-trial variability in the non-decision 

time131,136 to the diffusion models that were able to match 

accuracy and RT data in the previous section (Models 1-4). Given 
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that the distributions of non-decision times could not be directly 

derived from the data, we made the simplifying assumption that 

non-decision times were normally distributed131,136. Since we 

wanted to examine the impact of this variability on the RT 

distributions as well as on the mean RT and accuracy, we took the 

following approach: 1) the parameters 

€ 

A  (bound), 

€ 

k  (sensitivity), 

€ 

β (scaling exponent) and 

€ 

tND  (mean non-decision time) were 

fixed and set to the values of the best-fit parameters from Models 

1-4; 2) the only parameter allowed to vary was the SD of the 

Gaussian distribution of non-decision times; and 3) only the SD 

of RTs was fit to these models. In this way we were able to test if 

variability in non-decision times alone could rescue the shape of 

RT distributions, and then ask, by looking at the predictions for 

mean RT and accuracy, what was the impact of this extra 

variability in these features of the data. 

For all the models tested (Models 9-12), we observed that the 

variability in non-decision times helped indeed capturing the RT 

distributions (Figs. 4.11g – 4.14g), as well as the relationship 

between mean and SD of RTs (Figs. 4.11f – 4.14f). The addition 

of this parameter did not have any apparent impact on accuracy 

and mean RT (Figs. 4.11d, e – 4.14d, e). 
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Figure 4.11  | Model 1 with Gaussian variability in non-decision time 
(Model 9) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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Figure 4.12 | Model 2 with Gaussian variability in non-decision time 
(Model 10) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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Figure 4.13 | Model 3 with Gaussian variability in non-decision time 
(Model 11) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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Figure 4.14 | Model 4 with Gaussian variability in non-decision time 
(Model 12) 
(a-c) Model components: Drift rate (a) and evidence (b) as a function of time 
and distribution of non-decision times (c). (d,e) Accuracy (d) and mean odor 
sampling duration (OSD) (e) plotted as a function of odor concentration. Black 
lines correspond to the behavioral data from a ‘super-rat’; red lines correspond 
to the best-fit curves. (f) Standard deviation of OSD as a function of mean 
OSD. (g) Histograms of OSD (10 ms bin) for the different odor concentration 
stimuli. Line shading represents stimulus difficulty, with easier stimuli 
corresponding to the darkest shade. Colored lines correspond to the best-fit 
curves. 
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DDM and random walk models predict an approximately linear 

relation between RT mean and SD for changing drift rates123,137. 

However, in these studies accuracy was not considered, so we 

wondered if by fitting mean and variance of RTs, instead of 

accuracy and mean RT, we could find a combination of parameter 

values that could actually capture the RT distributions without 

having to add any extra variability to the parameters. Indeed, that 

was the case. We observed that the RT distributions and the 

relation between mean and SD, as well as the actual shape of the 

RT distributions, were very nicely captured by this procedure 

(Fig. 4.15b-d); however the predicted accuracy was very high 

(Fig. 4.15a). This shows that there is a combination of the 

parameter values that allows capturing the RT distributions 

without the need of having variability in non-decision times or 

any other additional parameter. However, it also suggests the need 

for an additional source of uncertainty that would affect accuracy 

but not RTs. This is actually in agreement with our main 

hypothesis, which proposes that the differences in SAT in the 

identification and categorization tasks arise from differences in 

the sources of noise that are limiting performance. 
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Figure 4.15 | Drift-diffusion model fit to mean and standard deviation of 
reaction times 
(a,b) Accuracy (a) and mean odor sampling duration (OSD) (b) plotted as a 
function of odor concentration. Black lines correspond to the behavioral data 
from a ‘super-rat’. (c) Standard deviation of OSD as a function of mean OSD. 
Green and red lines correspond to the best-fit curves from the analytical and 
numerical solutions of the model, respectively; for accuracy, these lines are 
model predictions and not fits. (d) Histograms of OSD (10 ms bin) for the 
different odor concentration stimuli. Line shading represents stimulus 
difficulty, with easier stimuli corresponding to the darkest shade. Colored lines 
correspond to the best-fit curves from the numerical solution of the model. 
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the categorization task used here, showed that the rate of 

respiration increases before rats enter the odor sampling port, 

going from a low frequency (2-4 Hz) mode before entry, to a 

high-frequency (6-9 Hz) mode during odor sampling135. This 

change in sniff frequency was mainly due to a reduction in the 

exhalation duration or equivalently an increase in the rate at 

which inhalations occurred, i.e. while the exhalation periods 

decreased from approximately 250 ms to 50 ms, the change in 

inhalation was relatively small (~10-30 ms)135. 

We wanted to investigate the impact of adding inhalation 

variability to Model 8 on accuracy and RTs. For that, we ran a 

simulation with this model with three different inhalation 

variability conditions, where the time for the beginning of 

stimulus sampling was given by a uniform distribution ranging 

from 0 to 50, 150 or 250 ms; these values were chosen based on 

the duration of exhalations reported previously during the 

categorization task (Fig. 5c, d from reference 135). In other words, 

the odor stimulus would be turned on in the beginning of each 

simulated trial, but the sampling of the stimulus would only start 

at the sampled inhalation time for that specific trial (described by 

a uniform distribution ranging from 0 to 50, 150 or 250 ms, 

depending on the condition). 

We predicted that the accuracy and RTs resulting from this 

manipulation would be a combination of, at least, two different 

scenarios: 1) if the stimulus evidence at the sampled inhalation 

time is smaller than the bound, the decision happens when the 
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evidence crosses the bound – this type of trials leads to the same 

accuracy and RTs independently of the manipulation; 2) if the 

stimulus evidence at the sampled inhalation time is higher than 

the bound, the decision time is given by the inhalation time – for 

distributions of inhalation times with higher upper limits, this type 

of trials leads to larger values of mean and SD of RT and higher 

values of accuracy (since it’s a rising stimulus, the probability of 

making a correct response increases with time). This type of trials 

will be more frequent for higher concentrations and for inhalation 

time distributions with higher upper limits. 

As predicted, when compared to the no-exhalation condition (blue 

trace; this condition is the same as Model 8), we observed an 

overall increase in accuracy (Fig. 4.16a), RT mean (Fig. 4.16b) 

and SD, particularly for higher concentrations (Fig. 4.16c), for the 

three different conditions, which was larger for inhalation time 

distributions with higher upper limits (Fig 4.16, from blue to 

purple: no exhalation, 50 ms, 150 ms, 250 ms). Moreover, the 

obtained shape of the curve for mean RT as a function of stimulus 

concentration was qualitatively similar to the one without 

inhalation variability (Fig 4.16b), resembling a logarithmic-like 

shape, whereas the behavioral RTs were better described by a 

linear relationship (Figs. 3.1 and 3.2). This suggests that even in 

the presence of inhalation variability, the odor dynamics cannot 

readily explain the changes in RTs observed for the identification 

task. 
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We are aware that this is a quite simplistic approach for 

simulating inhalation variability – although we varied the starting 

time of stimulus sampling, we did not impose any time 

constraints on the inhalation period and we did not take into 

account any putative dynamics that could be happening in the 

beginning of inhalation. However, these features would be more 

relevant if there was evidence that sniff frequency was changing 

across concentrations or if neuronal response latencies depended 

on sniff frequency, which doesn’t seem to be the case based on 

previous studies125,138,141. Nevertheless, measurements of the 

temporal odor profiles and respiration while the animal is 

performing the identification task would clearly provide important 

information and help to constrain future versions of the 

model35,124,125.  

 

 

Figure 4.16 | Inhalation variability simulation 
Inhalation variability was tested by performing a simulation with Model 8, 
using the resulting best-fit parameter values from this model, where the time 
for the beginning of stimulus sampling was given by a uniform distribution 
ranging from 0 to 50, 150 and 250 ms. (a,b) Accuracy (a) and mean odor 
sampling duration (OSD) (b) plotted as a function of odor concentration. (c) 
Standard deviation of OSD as a function of mean OSD. Colors from blue to 
purple indicate increasing values of exhalation duration (no exhalation, 50 ms, 
150 ms, 250 ms).	  

a

Ac
cu

ra
cy

 (%
)

50

75

100

10-4 10-3 10-2 10-1

Odor conc. (v/v)

b

O
SD

 (m
s)

Odor conc. (v/v)

260

400

540

10-4 10-3 10-2 10-1

c

St
an

da
rd

 d
ev

ia
tio

n
O

SD
 (m

s)

Mean OSD (ms)

0

160

260 400 540

80



	   89	  

4.4 Discussion 

We showed that different variants of the model, which included 

temporal integration or not, either with constant or time-varying 

input, were able to reproduce the behavioral data for response 

accuracy and mean RTs, but they required that the diffusion 

coefficient was different from zero. Our results are consistent 

with a modeling study showing that the behavioral data from the 

RDMD task could be captured by a variety of models based on a 

‘race-to-threshold model’, including models with or without 

temporal integration131. In addition, it has been shown that models 

based on independent sampling, often known as probability 

summation134,142,143, can also produce dependence of reaction 

times and performance on stimulus difficulty131–133. For example, 

for a visual detection task, an independent sampling model was 

able to predict the Weibull psychometric function and similarly 

shaped chronometric function132,133. Although with our current 

dataset we were not able to tease apart between the models with 

and without temporal integration, our results support the 

contention131 that presumably many behavioral datasets that have 

been modeled as integration of sensory information to a bound 

could also be captured without invoking integration. 

It was previously shown that standard DDMs predict a linear 

relationship between the mean and SD of RTs for changing drift 

rates123 and that random walk models are able to explain the RT 

distributions from a RT cognitive task137; it is important to 

mention that in both studies, accuracy was not considered in the 
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models. Conversely, there is also evidence that a standard DDM 

does not capture the RT distributions from the RDMD task131 and 

that more parameters are needed to explain the data131,136. Our 

results are consistent with this apparent conundrum: fitting mean 

RT and accuracy does not capture the RT distributions, while 

fitting mean and variance of RTs explains the distributions but 

predicts a very high accuracy. This demonstrates that depending 

on the combination of parameter values, the DDM can lead to one 

solution or to the other. However, in order to be able to fit 

simultaneously accuracy, mean and variance of RTs, extra 

parameters would be needed, either: 1) variability in non-decision 

times if we are fitting mean RT and accuracy; or 2) a source of 

uncertainty that would affect accuracy but not RTs if mean and 

variance of RT are being fit. Work in progress from our 

laboratory has shown that adding variance to the drift rate leads to 

a decrease in accuracy, particularly for more difficult stimuli, and 

has a small impact on mean RT144, making this source of 

variability a likely candidate. Importantly, it was also shown that 

the source of this trial-to-trial variability in the drift rate is related 

with an on-going learning based on the previous history of 

rewards and stimuli, which is fundamental to explain the choice 

behavior of the animals, particularly for the categorization 

task145,146. 

An important outcome of our modeling approach was the 

demonstration that the odor temporal dynamics, even in the 

presence of inhalation variability, led to qualitatively different 
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predictions from the data that could not explain the changes in 

RTs observed for the identification task. 

Overall, even though we were not able to distinguish between 

some of the proposed computational mechanisms, this modeling 

approach showed that: in order for the accuracy to be captured, 

the model has to include noise in the drift rate (diffusion 

coefficient); the increase in RTs observed in the identification 

task was mainly explained by the decrease in the amount of odor 

information at lower concentrations, and not much by the odor 

temporal dynamics. 
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5 Temporal uncertainty in 

odor identification and 

mixture categorization 
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5.1 Introduction 

The ability to prepare for future events, or to make decisions 

guided by their expected outcome, relies on our ability to predict 

such events, their timing and outcome. Prior information about 

the timing of future events induces temporal expectation and 

allows for temporal preparation90. However, if such information is 

partial or absent, this preparation will be limited by temporal 

uncertainty147,148. Temporal uncertainty affects temporal 

expectation, which in turn has been shown to have effects both at 

the level of sensory processing104–107 and action90,91. 

Perceptual decision-making and time estimation processes have 

been proposed to share the same underlying mechanisms80,121,122. 

The scalar property of interval timing, which posits a linear 

relationship between the mean and SD of response times75, can 

also be predicted by diffusion models, which have been 

extensively applied to perceptual decision-making123. 

Interestingly, it was also shown that time estimation can be 

accounted by a bounded accumulation mechanism that integrates 

the noisy firing of neural populations80. Furthermore, the same 

type of neurons from the area LIP that have been identified as 

representing the DV during perceptual decision-making tasks34 

were also shown to represent elapsed time in the form of a hazard 

function, i.e., the probability that the stimulus is about to 

occur89,97. 

In this chapter we want to investigate what is the impact of 

temporal uncertainty in perceptual decision-making. More 
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specifically, we ask how the uncertainty about the time of 

stimulus onset affects simultaneously RTs and accuracy In 

Chapters 2 and 3 we showed that odor identification and mixture 

categorization display different SAT relationships, suggesting that 

identifying an odor at low concentrations and distinguishing 

related odors pose different sources of uncertainty for the brain. In 

this chapter, we want to compare the effect of the same temporal 

expectation manipulation on these two different tasks, in order to 

disambiguate which components of the decision-making process 

are affected by this type of temporal uncertainty. 

 

5.2 Properties of reaction time distributions 

Our first approach was to examine the RT distributions, which 

have been shown before to display relevant properties that can 

provide important insights about the underlying mechanisms that 

generate them13,79,121,137,149. The OSD distributions, for both 

categorization and identification tasks and across the different 

stimuli, displayed an asymmetrical shape with a skew to the right, 

where the spread of the distributions increased with the mean 

(Fig. 5.1a). These distributions were scale invariant, as shown by 

the overlap of the distributions when plotted as a function of RT 

relative to the mean (Fig. 5.1b), and the CV did not show a 

significant change across the different mixture contrasts or odor 

concentrations (categorization, F(3,12) = 2.01, P = 0.17; 

identification, F(3,12) = 0.18, P = 0.91, ANOVA; Fig. 5.1c). 

Moreover, the relationship between the mean and SD of OSDs 
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was well described by a linear function (Fig. 5.1d). Interestingly, 

this scalar property between the mean and SD of response times, 

which resembles Weber’s Law73 in the temporal domain, has been 

described frequently in the literature of interval timing79,121. This 

shared property between perceptual decision-making and time 

estimation processes suggests that temporal contingencies might 

play a role in the observed RT distributions. We explored this 

question by looking at the impact of temporal expectation on both 

the identification and categorization tasks. 
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Figure 5.1 | Properties of reaction time distributions 
(a) Histograms of odor sampling duration (OSD; 10 ms bin) for the different 
mixture contrast (left) and odor concentration (right) stimuli for a 
representative rat (same rat as in Fig. 3.1). Line color represents stimulus 
difficulty, with the easiest stimuli corresponding to the red color. (b) 
Histograms of OSD normalized by the mean for the different mixture contrast 
(left) and odor concentration (right) stimuli. (c) Coefficient of variation (CV; 
OSD standard deviation / OSD mean) as a function of mixture contrast (left) or 
odor concentration (right). (d) Mean of the standard deviation of OSD as a 
function of the mean of mean OSD for the different mixture contrast (left) and 
odor concentration (right) stimuli. Error bars are mean ± SEM (n = 4 rats). 
 

5.3 Temporal expectation 

In our experiments, odor valve opening was randomly delayed 

using a uniform distribution from 300 to 600 ms (Fig. 5.2a; see 

Chapter 2, 2.4 Reaction time paradigm). This creates a rising 

hazard rate, hence increasing expectation of stimulus onset, from 

300 to 600 ms56,107. For comparison of low and high stimulus-

expectation, two groups of trials were selected, an early onset, 
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low stimulus-expectation condition, dodor  = 300-400 ms, and a 

late onset, high stimulus-expectation condition, dodor = 500-600 

ms. Analysis of OSD and accuracy for these two stimulus-

expectation conditions were performed by conditioning OSD and 

accuracy on these two different time periods of dodor.  

Insofar as RTs depend on temporal expectation, we expected to 

see a decrease in OSD with increasing anticipation88,90. The odor 

valve delay made no difference in accuracy (Fig. 5.2b; for 

categorization, F(1,24) = 1.78, P = 0.19; for identification, 

F(1,24) = 0.22, P = 0.64, 2-way ANOVA), but OSDs were 

significantly larger for shorter odor delays in both tasks (Fig. 

5.2c; categorization, F(1,24) = 15.65, P = 0.006; identification, 

F(1,24) = 9.97, P = 0.0043, 2-way ANOVA). 
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Figure 5.2 | Effect of stimulus expectation on reaction times 
(a) Stimulus onset delay distribution (dodor). The stimulus onset delay, that is 
the time between identification of the subject at the odor sampling port and the 
time of the trigger sent to the odor valve, was drawn from a uniform 
distribution between 300 and 600 ms. The hazard rate for stimulus onset and 
therefore stimulus expectation is therefore rising during this period (see 
Chapter 2). For comparison of low (blue) and high (purple) stimulus 
expectation, two groups of trials are illustrated, an early onset, low stimulus 
expectation condition, dodor = 300–400 ms (blue), and a late onset, high 
stimulus expectation condition, dodor = 500–600 ms (purple). (b) Mean 
accuracy plotted as a function of mixture contrast (left) or odor concentration 
(right). Dot shading represents odor concentration, with the highest 
concentration corresponding to the darkest color. (c) Mean of median odor 
sampling duration (OSD) plotted as a function of mixture contrast (left) or odor 
concentration (right). (d) Mean of the coefficient of variation (CV) plotted as a 
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function of mixture contrast (left) or odor concentration (right). (e) Mean of the 
standard deviation of OSD as a function of mean of the mean OSD for the 
different mixture contrast (left) and odor concentration (right) stimuli. Error 
bars are mean ± SEM, n = 4 rats. 
 

If the animals were estimating the time for stimulus onset and 

considering that this estimation changes with temporal 

expectation, then we would expect to see a proportional change of 

the mean and SD of RTs for different temporal expectation 

conditions, as predicted from the scalar property of interval 

timing. This was the case for both tasks. For the high temporal 

expectation condition (higher odor delays), the mean and SD of 

OSD decreased proportionally when compared to the low 

temporal expectation condition (shorter odor delays) (Fig. 5.2e; 

for categorization, F(7,16) = 1.68, P = 0.19; for identification, 

F(7,16) = 1.3, P = 0.32, ANOCOVA; P > 0.05, post-hoc Tukey-

Kramer test for slope and intercept, identification and 

categorization). This was also demonstrated by the lack of change 

in the CVs across the odor delay conditions (Fig. 5.2d; 

categorization, F(1,24) = 2.03, P = 0.4; identification, F(1,24) 

<10-3, P = 0.98, 2-way ANOVA).  

 

Next we asked whether this expectation-sensitive component 

depended on the task parameters, like task difficulty or stimulus 

properties (e.g., odor concentration). First, we compared the 

slopes of the linear regression for OSD as a function of mixture 

contrast, or odor concentration, between the two temporal 

expectation conditions.  We observed that the variation in OSD 

was significantly larger for the low temporal expectation 



	   100	  

condition (categorization, t(3) = 5.97, P = 0.005; identification, 

t(3) = 7.11, P = 0.003, paired t-test), showing that the expectation-

sensitive component of RTs depends on the task parameters. We 

hypothesized that this effect could be either due to task difficulty 

or odor concentration. These two conditions could be easily 

disambiguated with our current behavioural setup, given that, in 

the categorization task, difficulty was manipulated by varying the 

relative concentration of the individual odors in the mixtures 

while keeping constant the total odor concentration, whereas in 

the identification task, the total odor concentration was the 

variable being changed. 

 

To investigate this question, we looked at the data from the 

mixture identification task, in order to eliminate any extra 

variability that could be introduced by running the identification 

and categorization tasks separately. Given that for the mixture 

identification task, the number of trials available per rat is 

smaller, we decided to pool the data from all the rats. For each 

stimulus and odor delay condition, we calculated the median OSD 

and then we quantified the expectation-sensitive component 

(eOSD) by calculating the difference between the respective 

median OSDs across the two odor delay conditions. 

To test the dependence on task difficulty we decided to look at 

eOSD as a function of accuracy. And to test the dependence on 

odor concentration, we looked at eOSD as a function of the 

concentration of the individual odors in the mixtures. 
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In order to disambiguate between the two different hypotheses 

that eOSD would be dependent either on task difficulty or 

concentration, we assumed a linear relationship between eOSD 

and accuracy (Fig. 5.3a, left) or concentration (Fig. 5.3b, right) 

that allowed us to predict the values of eOSD for the difficulty- 

and concentration-dependent conditions, respectively. Then, for 

the difficulty-dependent condition, we plotted the predicted eOSD 

as a function of the concentration of the individual odors in the 

mixtures (Fig. 5.3b, right); and for the concentration-dependent 

condition, we plotted the predicted eOSD as a function of the 

respective data values of accuracy (Fig. 5.3c, right). By 

comparing these predictions with the behavioural data (Fig. 5.3c), 

we observed that the condition that best described the data was 

the difficulty-dependent one (Fig. 5.3a). 

 

 
 

(Fig. 5.3 continues in the next page) 
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Figure 5.3 | Temporal expectation-sensitive component 
(a) Difficulty-dependent condition: the temporal expectation-sensitive 
component of odor sampling duration (eOSD) was calculated by assuming a 
linear relationship with accuracy. eOSD as a function of accuracy (left) or 
concentration of odor A (or B) in the mixture stimuli (right) from the mixture 
identification task. Each point represents a single mixture ratio. Dot color 
represents total odor concentration, with the highest concentration 
corresponding to the red color. (b) Concentration-dependent condition: eOSD 
was calculated by assuming a linear relationship with the concentration of the 
individual odors in the mixtures. Left and right figures are the same as in (a). 
(c) Behavioral data. eOSD corresponds to the difference between the median 
low expectation-OSD (dodor = 300–400 ms) and the median high expectation-
OSD (dodor = 500–600 ms). Left and right figures are the same as in (a). Error 
bars are ± SEM (n across trials for the data pooled across all sessions and all 
rats). 
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5.4 Discussion 

We showed, for both identification and categorization tasks, that 

the RT distributions mimic several properties observed in the 

literature of interval timing. The trial-to-trial response variability 

associated with the different mixtures contrasts or odor 

concentrations (quantified by the CV) was constant across the 

different odor stimuli, and interestingly the values of the CV were 

similar for both tasks. This is equivalent to the linear relationship 

observed between the mean and SD of RTs. Furthermore, the 

distributions of RTs were scale invariant, i.e., identical when 

plotted as a function of RT relative to the mean. These features of 

the RT distributions associated with the different odor stimuli 

resemble the scalar property of interval timing described for 

estimated times74,75 and not for stimulus-driven response times, 

suggesting that the observed RTs might be a combination of 

decision-making and time estimation processes80,121,122. Indeed, 

we observed that a component of the RTs was sensitive to 

temporal expectation, here manipulated by the time of stimulus 

onset, displaying smaller RTs when the temporal expectation was 

higher. Interestingly, we did not observe a change in accuracy for 

the different temporal expectation conditions suggesting that this 

manipulation is most likely affecting action preparation90 rather 

than stimulus processing. The decrease in mean RTs for higher 

expectation was accompanied by a proportional decrease of the 

SD, as would be expected from the scalar timing property for 

different temporal expectation conditions. This reinforces the 
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interpretation that animals are estimating time and this is being 

reflected in the properties of the distributions. 

 

Finally, we observed that the expectation-sensitive component of 

RTs seems to depend on task difficulty. Does this imply an 

interaction between temporal estimation processes and the 

mechanisms that account for choice accuracy in a decision-

making process? This seems unlikely given that such interaction 

would likely produce a change in accuracy for the different 

temporal expectation conditions, which we did not observe. An 

alternative explanation would be that it is not task difficulty that is 

mediating this modulation but a variable correlated with it, such 

as reward expectation for example, which has been shown before 

to influence RTs56,150,151. The design of behavioural experiments 

that allow disambiguating between all these different variables 

will be important to understand the mechanisms underlying RT 

distributions. 
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6 General discussion 
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6.1 Overview of empirical findings 

In this thesis we focused on the contributions of different sources 

of uncertainty in perceptual decision-making. More specifically, 

we explored why the range of SAT varies so widely across 

studies. We hypothesized that the different degrees of SAT are 

related to the nature of the task being performed. In order to 

address this issue, we studied odor identification and 

categorization in parallel in the same animals, using tasks that 

were identical except for the relevant stimulus parameters. We 

found that OSDs increased substantially when odor 

concentrations approached detection threshold but they remained 

almost constant as odor mixtures became closer to the category 

boundary. This was true even for categorization at threshold 

concentrations. We hypothesized that in odor identification, 

accuracy is limited by stimulus uncertainty, whereas in mixture 

categorization, accuracy is limited by variability in the mapping 

of the stimulus to the response, which must be learnt on a trial-by 

trial basis. Given this hypothesis, we investigated whether 

ongoing learning had a different influence on the choices of 

animals in identification and categorization. In both tasks there 

was a clear trial-by-trial updating of the animal’s choice function. 

However, whereas in categorization choice bias increased with 

difficulty of the previous trial and outcome, in identification this 

bias was dependent only on choice side and outcome. 

Next, we used a modeling approach to investigate which 

computational mechanisms might account for the behavioral 
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changes observed in the identification task. Interestingly, we 

observed that our results were well described both by models with 

and without temporal integration, as had been observed before for 

the RDMD task131, questioning the generalized use of integrator 

models to explain choice behavior and response times across a 

wide range of perceptual decision-making tasks. 

Finally, we explored the role of temporal uncertainty in 

perceptual decision-making, by focusing on the impact of 

stimulus onset expectation on OSD. We observed a linear 

relationship between the mean and SD of OSD across mixture 

contrasts and odor concentrations, consistent with Weber’s law in 

the temporal domain. For both tasks, mean OSD was smaller for 

longer onsets (higher expectation), and this decrease was 

accompanied by a proportional decrease of the SD, as would 

be expected from the scalar property of interval timing for 

different temporal expectation conditions. The magnitude of this 

expectation-sensitive component was correlated with stimulus 

difficulty, with lower accuracies displaying larger changes in 

OSD. These results show that RTs are modulated by non-sensory 

components such as temporal expectations, suggesting that RTs 

are a combination of decision-making processes and attention-

related mechanisms, which are in turn affected by time estimation 

processes. 
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6.2 Sources of uncertainty in decision-making 

6.2.1 Speed-accuracy tradeoff and the origin of decision 

noise 

In most perceptual decision-making tasks, variability in choice for 

difficult stimuli is assumed to be due to the uncertainty about the 

stimulus, or noise in the respective sensory system. In conformity 

with this assumption, performance typically increases with 

stimulus sampling duration35,152. However, there are situations, 

such as the odor mixture categorization task presented in this 

thesis and described before52,56 where SAT is not observed, 

suggesting that the rapid performance observed in this task is not 

simply a tradeoff of accuracy for speed. The rapid responses in 

odor categorization, even for low contrast mixtures, reflect the 

large amount of evidence available, relative to what is accessible 

for comparable accuracy in the identification task, but the 

accuracy is still low. As a specific hypothesis, we propose that the 

trial-by-trial variability in odor mixture categorization may arise 

from a constant updating of the category boundary between left 

and right odor classes that is set by the experimenter and must be 

learnt by the subjects through trial-by-trial reinforcement56. 

Indeed, by looking at the influence of trial history on the choice of 

the animals, we observed a clear trial-by-trial updating of the 

animal’s choice function, which depended both on the difficulty 

of previous trial and outcome153. 

Temporal integration benefits decision-making by averaging out 

noise over time, thereby increasing the signal-to-noise ratio. 
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However, this reduction of noise through averaging only works 

efficiently as long as the noise is not temporally correlated along 

the relevant dimension. For instance, correlated noise in the 

activity across a neuronal population can dramatically limit the 

usefulness of pooling spikes across more neurons in order to 

increase the signal-to-noise ratio154. Similarly, correlations of 

noise across time can defeat an integrator by limiting the ability of 

averaging to reduce noise, thereby diminishing the benefits of 

repeated sampling155. Therefore, the effectiveness of temporal 

integration depends on the nature of the limiting noise. 

Considering that the behavioral variability in the mixture 

categorization task arises from the constant updating of the 

category boundary based on the outcome of previous trials, then 

this source of noise would be completely correlated within 

individual trials. Therefore, if uncertainty about the precise 

category boundary dominates over stimulus uncertainty, the 

benefits of integration within a single trial would be curtailed. In 

this regard, tasks that are dominated by uncorrelated sensory 

noise may indeed show the expected benefits of extended 

stimulus sampling (RDMD task, e.g. 34; Poisson clicks task, 35). 

Based on our behavioral and modeling results, we believe that the 

identification task falls on this category. 

Work in progress145,146 has been taking a modeling approach to 

investigate the contribution of these different sources of 

uncertainty (fluctuations in sensory uncertainty vs. fluctuations in 

the weights of the stimulus-to-choice mapping) to explain the 

relationship between RT and performance in the identification 
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and categorization tasks146. Preliminary results have shown that a 

standard integration-to-bound model fails to capture the 

performance in both tasks simultaneously, leading to the 

hypothesis that the performance in the categorization task might 

be limited by trial-to-trial fluctuations introduced by RL. This 

hypothesis was tested by expanding the standard sensory 

integration model to include a learning rule that changes the 

mapping from sensory evidence to decision category after a 

decision has been made. After fitting the performance data, this 

model predicted a specific magnitude and pattern of history-

dependent choice biases, which were in quantitative agreement 

with the data. Altogether, this suggested that on-going RL is a 

critical non-stochastic source of decision variability that can limit 

the benefit of evidence accumulation favoring faster RTs in some 

decisions146. 

An optimal agent that runs through the same perceptual decision-

making task day after day would eventually learn that task 

contingencies do not change, and then switch to a deterministic 

strategy, as one could imagine for the animals performing the 

identification and categorization tasks. However, despite stable 

performance over sessions, we observed that learning of stimulus-

to-choice mapping is still occurring, implying that animals 

assume a non-stationary environment and might rely on simple 

and less computationally costly behavioral strategies while 

solving these tasks. It was recently proposed126 that one of the 

major causes of behavioral variability might not be internal noise, 

but suboptimal inference. Ideally, neural circuits should retain the 
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relevant aspects of their complex and high-dimensional inputs 

(the ‘signal’) and filter out all irrelevant aspects (the ‘noise’). 

However, the process of extracting the relevant information may 

allow some of the irrelevant input variability to leak into the 

circuit’s output and to potentially alter behavior126,156. According 

to this proposal, the bottleneck would then lie in the quality of the 

algorithm performing the inference. Recordings from the anterior 

piriform cortex (PC) of rats performing the odor mixture 

categorization task support this view. By monitoring spikes of 

only 50-100 aPC neurons, a simple decoder based on firing rates 

could extract more than enough information in a single sniff to 

account for the behavioral accuracy in this task, suggesting that 

rats might not use optimally the information contained in the 

activity of aPC. Similar observations have been made in the 

primary visual cortex of monkeys and rats7,157,158. 

 

6.2.2 Post-decisional processes and learning 

Statistical learning theory proposes that ‘active learners’ use not 

only reinforcement but also their current estimates of uncertainty 

to set the size of updates, i.e. learn more when uncertain and less 

when certain159. This implies that the animal’s choice in a given 

trial is not only influenced by previous reinforcement, but also by 

their current estimates of certainty (or confidence). Decision 

confidence has been measured previously for the mixture 

categorization task159–161 showing that it is correlated with choice 

accuracy. For correct trials, decision confidence increases as the 
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stimulus gets easier, whereas for error trials the opposite trend 

prevails, i.e., lower confidence for easier stimuli. Given that 

confidence is correlated with accuracy, one would expect to 

observe similar confidence curves for the identification and 

categorization tasks. If this was true and assuming that 

reinforcement and decision confidence are the main key players 

for learning, then the animal’s choice function relative to previous 

stimuli and outcome should be equivalent for both tasks. 

However, that is not the case: whereas in categorization choice 

bias increased with difficulty of previous trial and outcome, in 

identification this bias was dependent only on choice side and 

outcome. One possibility would be that the decision confidence 

profiles are different for the identification and categorization 

tasks. Another alternative could be that there is an additional 

source of uncertainty that does not depend on previous stimuli but 

that introduces a choice bias, being more predominant in the 

identification task. Preliminary work from our laboratory has 

shown that incorporating an additive choice bias term to the 

starting point of the expanded integration-to-bound model 

described above helps explaining the learning curve of the 

identification task. This bias term is equivalent to a prior that is 

being dynamically updated on a trial-by-trial basis depending on 

the outcome of the previous trial. This type of architecture has 

been used before to explain the effect of prior probability on 

choice and RT31 and similar response modulations have been 

observed in LIP activity in relation to prior expectation about the 

stimulus162.  
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What is then the relationship between decision confidence 

profiles and history-dependent choice functions? Comparing these 

two types of curves for the identification and categorization tasks 

would provide important insights regarding this question. Another 

relevant analysis would be to look at history-dependent choice 

bias as a function of decision confidence instead of stimulus 

difficulty. 

 

6.2.3 Decision response time and decision confidence 

A recent study showed that decision confidence in the RDMD 

task depends both on stimulus evidence and response times, with 

certainty being directly correlated with motion strength and 

inversely correlated with response times136. In the light of these 

observations, we would expect decision confidence to be smaller 

for identification compared to categorization, for the same level 

of accuracy, given the RT differences between these two tasks. 

This prediction could be easily tested by introducing a confidence 

report measure in the identification and categorization tasks159–161. 

Since we want to test the influence of decision response time on 

decision confidence, the best approach would be to use a metric 

for confidence that could be directly compared to decision time, 

i.e., a metric that uses time as a report of confidence. This could 

be implemented by incorporating the ‘leaving decision’ task159,161  

in our behavioral protocol, which provides a graded measure of 

decision confidence given by the amount of time that animals are 

willing to wait for the reward. The suitable behavioral protocol 
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for this would be the “mixture identification task”, where the two 

tasks are combined, by interleaving the full set of stimuli from the 

categorization and identification tasks as well as intermediate 

mixtures. Like this, it would be possible to compare, on a trial-by-

trial basis, decision response time and decision confidence in the 

two different tasks. According to our hypothesis, the sources of 

uncertainty that are limiting accuracy and RT in the identification 

and categorization tasks are different. In the identification task, 

errors are mainly due to the small amount of evidence for lower 

concentrations, which produces long RTs. On the other hand, in 

the categorization task, even for low contrast mixtures, there is 

actually a large rate of evidence, producing fast RTs, but the 

accuracy is low because the mean evidence is being updated on a 

trial-by-trial basis due to ongoing RL, leading to sub-optimal 

behavior; i.e., RTs reflect the amount of evidence available in 

both tasks, but accuracy is limited by different sources of 

uncertainty in identification and categorization. If decision 

confidence depends on the evidence and response times, as 

suggested by Kiani and colleagues136, one should observe a 

correlation between response time and decision confidence across 

the different stimuli of the “mixture identification task”. On the 

other hand, if decision confidence also depends on the distance 

between the sampled evidence and the evidence that was 

computed throughout the last trials due to RL, as we would 

hypothesize for categorization, this correlation between response 

time and decision confidence across the stimulus space would not 

be observed. 
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6.3 Olfactory coding: insights from neural circuits 

6.3.1 Coding of odor intensity in the olfactory system 

Our results are consistent with the idea that identifying an odor at 

low concentrations and distinguishing closely related odors poses 

very different demands for the brain. More specifically, we 

hypothesized that, in the case of the identification task, the 

observed accuracy and RTs are due to the reduced amount of odor 

information at lower concentrations.  

But how is odor intensity encoded in the olfactory system? What 

do we know already from physiology studies? First of all, it is 

important to mention that there is no data available, to our 

knowledge, from electrophysiological recordings in awake and 

behaving animals, from the ORNs, OB or PC for changing 

concentrations. Therefore, the available datasets are mainly from 

anesthetized animals, whose neural responses are very different 

from awake animals, namely in the OB, where the firing rates are 

much higher compared to anesthetized animals163. 

Overall, recordings from the ORNs and OB have shown that 

increasing odor concentration leads to an increase in the number 

of recruited ORNs and glomeruli and in response amplitude164–167, 

and to a decrease in response latency165,168–171. Based on these 

observations, a variety of schemes have been proposed for spike 

encoding of odor intensity, namely a spike rate code and a spike 

latency code. However, there is still not a unified view of how 

odor intensity is encoded in the brain. For example, although 
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some M/TCs respond to odor stimuli with increased spike 

excitation at higher odorant concentration, others are inhibited, or 

respond with more complex temporal patterns of mixed excitation 

and inhibition that may change with concentration138,172. On the 

other hand, even though it has been shown that response latency 

decreases with increasing concentration, the range of magnitudes 

observed is remarkably distinct, e.g. from 50 ms latency for a 10-

fold change in mouse isolated ORNs169 to > 900 ms change for a 

~150-fold difference in anesthetized rat ORNs170. Moreover, 

odor-evoked electro-olfactogram (EOG) recordings from the 

ORNs of anesthetized rats have shown that the EOG onset latency 

is almost unaltered across concentrations170. And there are also 

examples of MCs that show increased firing latencies with 

increasing concentration172. Furthermore, in awake rodents, 

spontaneous firing of M/TCs is generally high compared to 

anesthetized animals163, preventing reliable detection of the onset 

of odor-evoked activity138,173. Recently, it was also suggested that 

tufted cells (TCs) could transmit a parallel rate code of 

concentration173–175. TCs receive direct monosynaptic excitation 

from ORNs and respond to odorants with short latencies that 

display much smaller dependency on concentration. By contrast, 

MCs receive polysynaptic excitation via external TCs and show 

longer latencies with decreasing concentration173–175. 

Regarding our results on the odor identification task, although we 

cannot rule out the existence of sensory delays, the examples that 

we cited indicate that there are heterogeneous response profiles 

across the odor-responsive cells and that increases in response 
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latency with decreasing concentration are not a universal property 

of olfactory processing. This implies that the existence of neurons 

with minimally concentration-dependent delays (e.g, TCs in the 

OB) would be sufficient for animals to begin to perform odour 

identification rapidly. Comparing with the visual system, it was 

shown that the latency of visually responsive neurons increases 

with decreasing stimulus contrast in different structures along the 

visual pathway176–178. This increment in response latency is 

considerably greater in higher visual areas, such as the anterior 

superior temporal sulcus than in the primary visual cortex178,179. 

This increasing dependency of neuronal response latency on 

stimulus contrast reveals that latency change is not retinal or V1 

in origin, suggesting that each cortical processing step adds 

latency at lower contrasts. These observations are in agreement 

with the predictions of an optimal decoder applied to the neural 

population responses from V1 during a detection task157, which 

outperformed the monkey’s behavior in both speed and accuracy. 

Altogether, this implies that there might be sources of noise 

downstream to primary structures such as V1 or aPC127, that limit 

behavioral performance, both in terms of RTs and accuracy. 

 

6.3.2 Recordings from the olfactory system: future 

directions 

Evidence from the last years has suggested that there is a 

profound transformation in the way odors are represented in the 

OB138,140 and in the anterior PC127. First, spontaneous firing of 
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M/TCs in awake rodents is generally high (on average 10–25 

spikes per second163), whereas aPC shows relatively low 

spontaneous activity (6.15 ± 9.01, mean ± SD127). Second, each 

M/TC fires maximally at a particular latency from inhalation 

onset, tiling the entire cycle of sniffing138, and odor inhalation 

triggers rapid and reliable cell- and odor-specific temporal spike 

patterns138,140. On the other hand, the temporal responses of 

anterior PC neurons consist mainly of transient burst spiking that 

is tightly locked to sniff onset127. And third, in the OB most of the 

information is conveyed within the first 100 ms after inhalation 

onset at a resolution of tens of milliseconds138,140, while in the 

anterior aPC reliable odor information is provided by total spike 

counts over the entire sniff cycle127. Given these differential 

responses to odors in the OB and aPC, namely in terms of the 

type of information relevant for each area, simultaneous 

recordings from these two areas, in rats performing the odor 

identification task, would provide important insights about how 

odor intensity is encoded in the brain and how this information is 

used in a decision-making process. 

If the performance in the mixture categorization task is limited by 

trial-to-trial fluctuations introduced by RL signals, this influence 

of trial history on odor perception should be most likely reflected 

in the neural activity of a brain structure that receives coincident 

input from the olfactory and reward systems. A potential 

candidate is the olfactory tubercle (OT). The OT sits at the 

interface between olfactory and reward circuits. On one hand, it 

receives monosynaptic olfactory input from both the OB and the 
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PC180 and displays odorant-evoked responses180,181. On the other 

hand, the OT is considered part of the ventral striatum and is 

heavily interconnected with the reward system182, receiving 

projections from several areas including the ventral tegmental 

area, the nucleus accumbens and the substantia nigra180. 

The modulation of OT activity due to RL signals could be 

reflected in the variability of OT neuronal responses, as observed 

for single dorsal premotor neurons in an arm reach 

countermanding task183, where the variability (and not the mean) 

of neural activity in a given trial increased with the number of 

previous trials containing a stop signal. An alternative could be a 

change in the mean firing rate of the odor-evoked responses or a 

change in the spontaneous activity. This modulation could be 

mediated by neuromodulatory inputs, namely noradreneline from 

the locus coeruleus or serotonin (5-HT) from the raphe nucleus, 

which have been shown to influence OT activity in rats180. 

Preliminary work from our laboratory has shown that 5-HT 

neurons from the dorsal raphe nucleus (DRN) respond to reward-

predictive cues in a way similar to a prediction error184 and that 

optogenetic activation of DRN 5-HT neurons, in anesthetized rats, 

produces a rapid and profound inhibition of spontaneous (but not 

odor-evoked) firing of olfactory cortex neurons185, which was 

multiplicative and frequency-dependent. Slice experiments also 

revealed that DRN 5-HT activation inhibits cortical feedback 

compared to feedforward input185. We postulate that the same 

type of modulation that was observed in PC could also happen in 

the OT, which receives direct input from the raphe nucleus180. 
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Interestingly, based on differential projections from the OB, it has 

been suggested that the PC and OT may allow parallel processing 

of odors. Whereas OB input to the PC mostly stems from MCs, 

OB input to the OT originates predominately from TCs186. Given 

that MC and TC differ in their odor response thresholds175,187, 

width of odor receptive fields187, and local connectivity to 

interneuron networks188,189, this could imply that OT odor 

responses will differ from those of the PC, namely that the OT 

will be responsive to odors at much lower thresholds than the PC.  

Overall, these hints given by the olfactory neural circuits clearly 

indicate that recordings from the PC and OT in rats performing 

both the identification and categorization tasks would provide 

valuable information about the strategies employed by the brain to 

solve these tasks. 

 

6.3.3 Decision variables in the brain 

The behavioral results from the odor identification task, in terms 

of mean RT and accuracy, were captured by two different model 

variants based on ‘a integration-to-threshold’ model, one that 

included temporal integration, and another one where the 

evidence was directly compared to the bound (no integration). 

Although our behavioral dataset did not allow us to disambiguate 

between these two computational mechanisms, both of them were 

consistent with the hypothesis that the main cause for the increase 

in RTs was the reduced amount of odor information at lower 
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concentrations.  

One possibility to help constraining the model parameters would 

be to compare the predictions of the models with physiological 

data131. A neurophysiological expedition in search for neural 

activity resembling odor-driven DVs would be imperative to nail 

down this question. Previous studies have provided some clues of 

where to start looking. Neural representations of evidence 

accumulation have long been shown in monkeys34, however in 

rodents the evidence is scarce. Very recently, electrophysiological 

recordings in the posterior parietal cortex (PPC) and frontal 

orienting fields (FOF) of rats performing an auditory task 

(Poisson clicks task35) revealed classic neural correlates of 

evidence accumulation190. While PPC encoded graded value of 

the accumulating evidence, the FOF had a more categorical 

encoding that indicated, throughout the trial, the decision 

provisionally favoured by the evidence accumulated so far. 

Recordings in humans using functional magnetic resonance 

imaging (fMRI) during an olfactory categorization task have 

implicated the OFC in the integration of sensory evidence57; 

however, the authors could not rule out the hypothesis that the 

observed OFC activity could had been related with a confidence 

signal160. Another interesting structure where to look at would be 

the PC, in particular the posterior PC. On one hand, the PC has 

strong reciprocal connections with the OB and it is the largest 

recipient of afferent fibers from the bulb. On the other hand, all 

parts of the PC have direct cortico-cortical connections with 

higher-order association areas. However, the extent and patterns 
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of these connections is strongly subdivision-dependent, with the 

posterior PC establishing more reciprocal connections with 

higher-order brain structures, namely insular and infralimbic 

regions of prefrontal cortex, amygdala, and perirhinal and 

entorhinal cortices167.  

Another relevant question to the field of olfaction regards the 

impact of sniffing on sensory processing. When performing a 

mixture categorization task, similar to the one used in our study, 

rats sample odors at ~8 Hz52. Additionally, sniff frequency was 

shown not to change as task difficulty is increased by lowering 

odorant concentration141. Sniffing has not been measured for the 

identification task, but given the increased RTs for lower 

concentrations, if we consider that rats are sniffing at ~8 Hz and 

that sniff frequency is not changing across concentrations, then 

rats should be taking an extra 1-2 sniffs for lower concentrations. 

Sniffing has been shown to provide a reference frame for neural 

responses in the OB and PC127,138,140 and the timing of M/TCs 

firing in the OB is conserved across various respiration 

frequencies138. However, it is not known how this information is 

used to build a representation of the evidence, and what is the 

impact of extra sniffs. Does the sniff cycle reset or erase olfactory 

information? Recent evidence has shown that odor representation 

in the OB evolves after the first breath and persists as an odor 

afterimage191. Investigating how these representations contribute 

to the formation of the evidence will be critical to understand the 

mechanisms underlying the decision process across multiple 

sniffs. 
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Although standard accumulator models generally account for 

SAT with one parameter adjustment (threshold or baseline), 

interestingly a recent study showed that SAT is accomplished 

through multiple adjustments in the activity of visual, 

visuomovement and movement neurons in the monkey frontal eye 

fields, including baseline activity before stimulus onset, visual 

response gain and magnitude of movement activity192. These 

observations raise an important theoretical issue, suggesting that 

the mapping of SAT manipulations is not as straightforward as 

conceptualized before. 

 

6.4 Temporal uncertainty and decision-making: the 

multiple shades of reaction times 

RTs reflect the total amount of time consumed by all the 

subsystems that contribute to a choice or decision process. For 

instance, when a subject executes an action in response to a 

sensory scene, RT must comprise, at least, the time necessary for 

processing the sensory information plus the amount of time 

required to plan the motor action that is congruent with that 

information193. Discerning just these two components has been 

challenging because the underlying neural networks are 

themselves strongly interrelated: neurons that encode a subject’s 

perceptual decision, that participate in motor planning, or that do 

both, are typically found within the same local 
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microcircuitse.g.,42,194,195. On top of this, RTs are modulated by 

variables such as rewarde.g.,150,151, prior probabilitye.g.,31,196 and 

attention, especially temporal expectation88,90. 

In agreement with this, we showed that RTs, in both identification 

and categorization tasks, were modulated by non-sensory 

variables, namely by temporal expectation. This expectation-

sensitive component of RTs was correlated with task difficulty, 

with lower accuracies displaying larger changes in RT. 

This correlation between the magnitude of temporal modulation 

and task difficulty suggests that: 1) there is an interaction between 

temporal estimation processes and the mechanisms that account 

for choice accuracy in a decision-making process; or 2) it is not 

task difficulty that is mediating this modulation but a variable 

correlated with it, such as reward expectation. The first hypothesis 

is not likely given that it would predict a change in accuracy for 

the different temporal expectation conditions, which we did not 

observe. On the other hand, reward probability decreases with 

stimulus difficulty, and reward expectation has been shown before 

to influence RTs56,150,151, making it a likely candidate. 

In order to understand these putative interactions, it would be 

important to disambiguate the contributions of the different 

components. One important experiment would be to eliminate the 

stimulus difficulty variable and test if the effect still holds. For 

that, instead of having 4 odor mixture (or odor concentration) 

pairs, one would have 4 pairs of pure odors equally easy to 

discriminate. Each odor pair would be associated with a given 
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probability of reward, mimicking the different reward 

expectations for the different stimulus difficulties. 

Another strategy would be to have a behavioural manipulation 

where one would eliminate the effect of temporal expectation or 

the effect of reward expectation in order to reveal the other 

component. In our experiments, temporal expectation was 

manipulated by using a uniform distribution for odor onset, which 

created a rising hazard rate, leading to an increase in stimulus 

onset expectation. Then, for distributions with different hazard 

rate functions, one would expect RTs to change differently across 

different odor delay conditions89,107. Therefore, if instead we used 

an exponential distribution, which creates an almost flat hazard 

rate, i.e., constant temporal expectation across time, we would 

expect to see no difference in RTs for the different odor delay 

conditions. A way to eliminate the effect of reward expectation 

would be to equalize the reward rates. 

We also observed that the mean and SD of RTs, for both tasks, 

followed a linear relationship, as predicted by diffusion models123 

and by data from a wide range of RT tasks149. This scalar property 

has been widely observed in the field of interval timing regarding 

estimated times and is consistent with Weber’s law73 in the 

temporal domain. Interestingly, this scaling between the mean and 

SD of RT was conserved across the different temporal expectation 

conditions, as would be expected from the scalar timing property 

if time estimation is changing across these conditions. 

Linear scaling has been studied extensively in human and animal 
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models and holds over several orders of magnitude, though to 

date there is no clear explanation for its physiological basis. Over 

the years many theories have been proposed to account for scalar 

timing. SET72,76 is based on a counter and accumulator model, 

conceptually similar to counting the ticks of a mechanical clock, 

and variability arises from comparing errors with remembered 

reference values. Another class of models assumes an ensemble 

of neurons oscillating at different frequencies, and timing is 

produced by decision neurons which become active only when a 

precise set of the oscillating neurons are coactive78. DDMs have 

also been proposed to provide a mechanistic basis of interval 

timing80, suggesting that integration-based models should play as 

prominent a role in interval timing theory as they do in theories of 

perceptual decision-making, and that a common neural 

mechanism may underlie both types of behavior.  

Learned temporal relationships were shown to be represented in 

the frontal and parietal cortices89,97,197,198, namely by the same 

type of neurons that furnish a representation of the state of the 

evidence during perceptual decision-making tasks. Interestingly, 

neurons within the primary visual cortex are also capable of 

providing information about the learned timing of reward in 

relation to sensory input199. Very recently, it was also shown that 

striatal neurons fire over tens of seconds during timing behavior 

and that the timing of these neurons rescales with the interval 

being timed, reflecting an interaction between time and action200. 

Similar results have been observed in the medial prefrontal 

cortex201. 



	   127	  

These studies suggest that timing is a ubiquitous feature of the 

nervous system and is critical for guiding behavior. Although we 

cannot tell from our data what is the source of the linear scaling 

between the mean and SD of RTs, our results suggest that 

temporal estimation mechanisms might play a role in the observed 

response times. In future experiments, it would be interesting to 

manipulate the time before odor onset in a way that would allow 

disambiguating between the contribution of absolute preparation 

time and the perceived probability of stimulus time202. 

Understanding which factors govern the relationship between the 

mean and SD of response times will also provide important 

insights about the underlying mechanisms203. 
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