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Summary 

The Unfolded Protein Response (UPR) is a signaling pathway that is 

activated by an accumulation of unfolded or misfolded proteins in the 

endoplasmic reticulum (ER) that causes ER stress. The activation of the 

UPR aims to restore ER homeostasis by attenuation of ER client protein 

translation, increased transcription of ER chaperones and ER associated 

degradation (ERAD) factors. If ER stress is too long or too strong, cells may 

die. The main signaling branch of the UPR is mediated by the ER 

transmembrane protein IRE1 and the transcription factor Xbp1. The active, 

spliced form of Xbp1 (Xbp1spliced) acts as a transcription factor with 

protective function against toxic protein aggregation. However, over-

expression of Xbp1spliced in the developing Drosophila eye causes 

degeneration of the eye (“glossy” eye phenotype).  

In this work, we performed a mosaic genetic screen to identify downstream 

mediators of Xbp1spliced-induced cell death in the Drosophila eye and 

found that mutations in the gene CG6758, encoding an Fbox protein with 

unknown biological function, suppress Xbp1spliced-induced “glossy” eye 

phenotype. Fbox proteins form complexes with Skp, Cullin-1 and E2 

ubiquitin ligases (SCF complexes) to mediate the ubiquitination of specific 

substrates, and leading to the degradation of these substrates by the 

proteasome. In these SCF complexes, the Fbox protein is responsible for 

substrate specificity, while Skp, Cullin-1 and the E2 ubiquitin ligases can 

associate with distinct Fbox proteins to ubiquitinate different substrates. We 

tested several CG6758 candidate substrates, such as Xbp1spliced, 

Xbp1unspliced, VCP, p53, CHK1 and Hrd1, but for all these we failed to 

see an accumulation of the protein levels in CG6758 mutant clones. We 

also found that CG6758 suppresses the “glossy” eye phenotype induced by 

over-expression of Rhodopsin-1 (Rh-1), which is an ER “client” protein and 

constitutes an alternative model for ER stress induced cell death. In this 



model, CG6758 mutations suppress apoptosis by reducing the levels of Rh-

1 in the ER, by a mechanism that is dependent on the activity of the 

proteasome. We conclude that it is likely that CG6758 substrates somehow 

regulate ERAD factors that are important for the proteasomal degradation 

of Rh-1.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sumário 

A Unfolded Protein Response (UPR) é uma via de sinalização que é 

ativada por uma acumulação de proteínas malformadas no retículo 

endoplasmático (RE), o que provoca stress no RE. A ativação da UPR visa 

restaurar a homeostase no RE pela atenuação da tradução de proteínas 

clients do ER, aumento da transcrição de chaperones do RE e fatores 

reguladores da degradação de proteínas associadas ao RE (ERAD). Se o 

stress no RE for muito longo ou forte, as células podem morrer. O principal 

ramo de sinalização da UPR é mediada pela proteína transmembranar 

residente no RE IRE1 e o fator de transcrição XBP1. Na sua forma ativa, 

Xbp1-spliced atua como um fator de transcrição com função protetora 

contra a agregação da proteína tóxica. No entanto, a sobre-expressão de 

Xbp1spliced no olho de Drosophila durante o desenvolvimento provoca 

degeneração dos olhos (fenótipo "glossy" no olho). 

Neste trabalho, foi realizada um screen genético para identificar 

mediadores da morte celular induzida por Xbp1spliced no olho Drosophila.  

Descobrimos que mutações no gene CG6758, que codificam uma proteína 

Fbox com função biológica desconhecida, suprimem o olho "glossy" 

induzido por Xbp1spliced.  Proteínas Fbox formam complexos com Skp, 

Cullin-1 e ligases E2 de ubiquitina (complexos SCF) para ubiquitinar  

substratos específicos, o que conduz à degradação destes substratos pelo 

proteassoma. Nestes complexos SCF, a proteína  Fbox é responsável pela 

especificidade do substrato, enquanto Skp, as ligases E2 de ubiquitina e 

Cullin-1 podem associar-se com proteínas Fbox distintas para ubiquitinar 

substratos diferentes. Testamos várias proteinas como candidatos a 

substrato de CG6758, como Xbp1spliced, Xbp1unspliced, VCP, p53, CHK1 

e Hrd1, mas para todos estas proteínas não conseguimos ver uma 

acumulação dos seus níveis em clones mutantes de CG6758. 

Descobrimos também que CG6758 suprime "glossy" fenótipo olho induzida 



pela sobre-expressão de Rhodopsin-1 (Rh-1), que é uma proteína ER 

"cliente" e constitui um modelo alternativo para morte celular induzida por 

stress no RE. Neste modelo, as mutações em CG6758 suprimem a 

apoptose através da redução dos níveis de Rh-1 no RE, por um 

mecanismo que é dependente da actividade do proteassoma. Concluimos 

que é provável que os substratos de CG6758 devem regular factores de 

ERAD que são importantes para a degradação pelo proteossoma de Rh-1. 
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Summary 

The Unfolded Protein Response (UPR) is a signaling pathway that is 

activated by an accumulation of unfolded or misfolded proteins in the 

endoplasmic reticulum (ER) that causes ER stress. The activation of the 

UPR aims to restore ER homeostasis by attenuation of ER client protein 

translation, increased transcription of ER chaperones and ER associated 

degradation (ERAD) factors. If ER stress is too long or too strong, cells may 

die. The main signaling branch of the UPR is mediated by the ER 

transmembrane protein IRE1 and the transcription factor Xbp1. The active, 

spliced form of Xbp1 (Xbp1spliced) acts as a transcription factor with 

protective function against toxic protein aggregation. However, over-

expression of Xbp1spliced in the developing Drosophila eye causes 

degeneration of the eye (“glossy” eye phenotype).  

In this work, we performed a mosaic genetic screen to identify downstream 

mediators of Xbp1spliced-induced cell death in the Drosophila eye and 

found that mutations in the gene CG6758, encoding an Fbox protein with 

unknown biological function, suppress Xbp1spliced-induced “glossy” eye 

phenotype. Fbox proteins form complexes with Skp, Cullin-1 and E2 

ubiquitin ligases (SCF complexes) to mediate the ubiquitination of specific 

substrates, and leading to the degradation of these substrates by the 

proteasome. In these SCF complexes, the Fbox protein is responsible for 

substrate specificity, while Skp, Cullin-1 and the E2 ubiquitin ligases can 

associate with distinct Fbox proteins to ubiquitinate different substrates. We 

tested several CG6758 candidate substrates, such as Xbp1spliced, 

Xbp1unspliced, VCP, p53, CHK1 and Hrd1, but for all these we failed to 

see an accumulation of the protein levels in CG6758 mutant clones. We 

also found that CG6758 suppresses the “glossy” eye phenotype induced by 

over-expression of Rhodopsin-1 (Rh-1), which is an ER “client” protein and 

constitutes an alternative model for ER stress induced cell death. In this 



model, CG6758 mutations suppress apoptosis by reducing the levels of Rh-

1 in the ER, by a mechanism that is dependent on the activity of the 

proteasome. We conclude that it is likely that CG6758 substrates somehow 

regulate ERAD factors that are important for the proteasomal degradation 

of Rh-1.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sumário 

A Unfolded Protein Response (UPR) é uma via de sinalização que é 

ativada por uma acumulação de proteínas malformadas no retículo 

endoplasmático (RE), o que provoca stress no RE. A ativação da UPR visa 

restaurar a homeostase no RE pela atenuação da tradução de proteínas 

clients do ER, aumento da transcrição de chaperones do RE e fatores 

reguladores da degradação de proteínas associadas ao RE (ERAD). Se o 

stress no RE for muito longo ou forte, as células podem morrer. O principal 

ramo de sinalização da UPR é mediada pela proteína transmembranar 

residente no RE IRE1 e o fator de transcrição XBP1. Na sua forma ativa, 

Xbp1-spliced atua como um fator de transcrição com função protetora 

contra a agregação da proteína tóxica. No entanto, a sobre-expressão de 

Xbp1spliced no olho de Drosophila durante o desenvolvimento provoca 

degeneração dos olhos (fenótipo "glossy" no olho). 

Neste trabalho, foi realizada um screen genético para identificar 

mediadores da morte celular induzida por Xbp1spliced no olho Drosophila.  

Descobrimos que mutações no gene CG6758, que codificam uma proteína 

Fbox com função biológica desconhecida, suprimem o olho "glossy" 

induzido por Xbp1spliced.  Proteínas Fbox formam complexos com Skp, 

Cullin-1 e ligases E2 de ubiquitina (complexos SCF) para ubiquitinar  

substratos específicos, o que conduz à degradação destes substratos pelo 

proteassoma. Nestes complexos SCF, a proteína  Fbox é responsável pela 

especificidade do substrato, enquanto Skp, as ligases E2 de ubiquitina e 

Cullin-1 podem associar-se com proteínas Fbox distintas para ubiquitinar 

substratos diferentes. Testamos várias proteinas como candidatos a 

substrato de CG6758, como Xbp1spliced, Xbp1unspliced, VCP, p53, CHK1 

e Hrd1, mas para todos estas proteínas não conseguimos ver uma 

acumulação dos seus níveis em clones mutantes de CG6758. 

Descobrimos também que CG6758 suprime "glossy" fenótipo olho induzida 



pela sobre-expressão de Rhodopsin-1 (Rh-1), que é uma proteína ER 

"cliente" e constitui um modelo alternativo para morte celular induzida por 

stress no RE. Neste modelo, as mutações em CG6758 suprimem a 

apoptose através da redução dos níveis de Rh-1 no RE, por um 

mecanismo que é dependente da actividade do proteassoma. Concluimos 

que é provável que os substratos de CG6758 devem regular factores de 

ERAD que são importantes para a degradação pelo proteossoma de Rh-1. 
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1.1. The Endoplasmic Reticulum 

All eukaryotic cells contain an endoplasmic reticulum (ER), a cell organelle 

that consists of an interconnected network of flattened, membrane-

enclosed sacs or tubes known as cisternae. The ER extends from the cell 

membrane to the cytoplasm, forming a continuous connection with the 

outer membrane of the nuclear envelope (Alberts et al., 2002).  

There are two types of the ER, the smooth and the rough ER, which differ 

in their functions. Ribosomes sit on the rough ER, whereas the smooth ER 

is ribosome free.  

At and in the ER, translation, protein folding, protein quality control, 

posttranslational modifications of proteins and protein transport of 

transmembrane and secretory proteins take place. The ER is also the place 

for lipid synthesis and the major calcium storage in the cell (Alberts et al., 

2002). 

Polypeptide chains produced by the ribosomes of the rough ER and in the 

cytosol are translocated via pore complexes composed of Sec61 and 

adaptor proteins into the lumen of the ER (Robson and Collinson, 2006), 

where they are processed and properly folded, a process in which 

chaperones and foldases take part. Translocation can be either co-

translationally or post-translationally, whereby co-translational translocation 

is initiated when a signal recognition particle (SRP) detects a hydrophobic 

signal sequence in the nascent polypeptide chain and directs it to the ER 

membrane (Lütcke, 1995). In post-translational translocation the signal 

sequence is recognized by receptor proteins of the Sec62/63 complex 

associated with Sec61 in the ER membrane (Ng et al., 1996). 

Most of the secreted proteins are glycosylated and leave the ER lumen in 

transport vesicles which merge with the Golgi apparatus. 

Protein glycosylation includes various glycosidic linkages, including N-, O- 

and C-linked glycosylation, glypiation (GPI anchor attachment) and 

phospho-glycosylation. Glycosylation in the ER acts as a quality control 
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mechanism where it is used to monitor the status of protein folding. Only 

properly folded proteins are trafficked to the Golgi.  

Misfolded or unfolded proteins activate the Unfolded Protein Response 

(UPR) (see 1.3.) and are degraded by a mechanism called ER associated 

degradation (ERAD), whereby the proteins are targeted, dislocated to the 

cytoplasm, ubiquitinated and subsequently degraded by a protein-

degrading complex, called the proteasome (see 1.2.). Protein folding in the 

ER is depicted in fig.1. 

 

 

 

 

 

 

 

 

 

 



 4 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

 

 

 

 

 

 

Fig.1: Protein folding in the ER. The port of entry for proteins destined for 

the secretory pathway is the ER. These proteins are synthesized by ER-

associated ribosomes and co-translationally translocated across the 

membrane through the Sec61 complex. The ER is rich in chaperones and 

folding enzymes (folding factors), in molecules involved in mediating 

transport to the cytosol for proteasomal degradation (ERAD factors) or to the 

downstream stations of the secretory pathway (escort and guides). Some 

ER-resident proteins seem to form multi-molecular complexes, which can be 

excluded from transport by size selection, and provide a matrix that couples 

retention to folding. A distinctive feature of the ER is its ability to catalyse 

opposite reactions: folding and unfolding, oxidation and reduction, protein 

import and export through Sec61. It is debated whether a quality-control 

compartment, involved in the recognition and targeting of terminally 

misfolded proteins (alluded to in the picture by having ERAD factors 

concentrated on the left), exists. ERGIC, ER–Golgi intermediate 

compartment. 

From the following article: Quality control in the endoplasmic reticulum 

protein factory. (2003). Roberto Sitia & Ineke Braakman. Nature 426, 891-

894  
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1.2. ERAD 

Endoplasmic Reticulum Associated Degradation (ERAD) is a process in 

which misfolded or unfolded proteins are cleared from the ER and are 

degraded by a protein-degrading complex, called the proteasome. The 

proteasome is a protein complex that serves to degrade most cellular 

proteins (Rock et al., 1994) and in eukaryotic cells it is located in the 

nucleus, the cytoplasm and is also associated with the ER (Rivett el al., 

1992) and the cytoskeleton (Schemer and Bey, 1994). The proteasome is 

an essential component of the ATP-dependent proteolytic pathway to 

degrade rate-limiting enzymes, transcriptional regulators, regulatory 

proteins and abnormal proteins. 

In eukaryotes, the proteasome consists of a big subunit (20S-proteasome) 

and two small subunits (19S-proteasome), which consist of different 

proteins (reviewed in McNaught et al., 2001). The 20S-proteasome has a 

hollow cylindric structure and acts as a multi-catalytic protease. It is built up 

of two outer rings consisting of 7 distinct α-subunits and two inner rings, 

consisting of 7 distinct ß-subunits (fig.2). The α-subunits are responsible for 

the substrate recognition and the entry of the unfolded proteins, the ß-

subunits confer the proteolytic activity. The 19S-proteasome builds the cap 

on both sides of the cylindric 20S-proteasome. The 19S-proteasome is 

responsible for the recognition and unfolding of the delivered proteins. It 

consists of Rpn and Rpt proteins, whereby Rpn proteins recognize and bind 

ubiquitinated proteins fated to be degraded, Rpt proteins hydrolyse ATP to 

deliver the energy required for this process (fig.2). 
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Fig.2:  Composition of the 26S-proteasome. The 20S-proteasome is 

built up of seven a-subunits and seven ß-subunits, forming a cylindric 

complex in which proteolysis occurs. The two 19S-proteasome subunits 

form a cap on both sides of the cylinder and serve as ATPases to unfold the 

delivered proteins fated to be degraded and promote the entry of those 

unfolded proteins into the 20S-proteasome.  

The PA28 (11S) regulatory (REG) complex (180 kDa) can also bind to the 

20S proteasome and open the channel through the complex, but this 

process is ATP-independent, and mediates the degradation of non-

ubiquitinated short peptides. 

From the following article: Failure of the ubiquitin-proteasome system in 

Parkinson’s disease. McNaught et al. (2001). Nature Reviews Neuroscience 

2, 589-594 
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As mentioned above, ERAD serves to degrade unfolded or misfolded 

proteins from the ER. 

Through studies in Saccharomyces cerevisiae three major ERAD sub-

pathways are postulated, depending where the lesion that causes protein 

misfolding is subcellularily located.  A misfolded protein with its lesion in 

the ER lumen is substrate of the ERAD-L sub-pathway, if the lesion is in a 

trans-membrane domain, degradation is targeted by the ERAD-M sub-

pathway and proteins with lesions in the cytoplasmic domain are degraded 

via the ERAD-C sub-pathway (Vashist and Ng, 2004, Carvalho et al., 2006, 

Denic et al., 2006). 

E3 ubiquitin ligase complexes (E3s) play a central role in all ERAD 

pathways, since they transfer ubiquitin chains to the misfolded or unfolded 

proteins, in order to direct them to the proteasome. E3s contain various 

numbers of trans-membrane domains and a RING domain at the cytosolic 

site of the ER membrane. E3s catalyze protein ubiquitination (Gardner, R. 

G. et al., 2000) and act in protein complexes, adaptor molecules facilitate 

substrate recognition, substrate delivery and regulate the activity of the 

E3s.  

In yeast there are at least three E3 complexes involved in ERAD, Hrd1p 

(Bordallo et al., 1998), Doa10p (Swanson et al., 2001) and Asi1/2/3 

(Ombretta et al., 2014), while in metazoans there are several E3s acting in 

ERAD, like HRD1, gp78, RMA1(RNF5), TRC8, and TEB4 (MARCH IV) 

(Kostova et al., 2007). The HRD ligases, which include Hrd1p in yeast as 

well as HRD1 and gp78 in metazoans are the most characterized E3s 

involved in ERAD. Adaptor molecules confer specificity to the E3s, Hrd3p in 

yeast or SEL1L in metazoans are the most characterized adaptor 

molecules (Gauss et al., 2006a). Hrd3p is a transmembrane protein and its 

luminal domain contains multiple tetratricopeptide repeats (TPRs) that are 

thought to facilitate protein-protein interaction. Hrd3p can directly bind to 

misfolded proteins, recruiting them to the E3 ligase (Denic et al., 2006; 

Gauss et al., 2006b). Furthermore, Hrd3p/SEL1L can bind to other adaptor 
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proteins, like the glycan-binding (lectin) protein Yos9p in yeast (Gauss et al., 

2006) and OS-9 and XTP3 in mammals (Christianson 2008), recruiting 

them to the E3. Also house-keeping chaperones may act as adaptors, in 

mammals Bip was shown to interact with OS-9/XTP3-B-SEL1L (Hosokawa 

et al., 2008). Bip also interacts with other ERAD components (Ushioda et 

al., 2008) and substrates (Okuda-Shimizu et al., 2007), facilitating their 

localisation in proximity to the E3s.  

E3s are regulated by their intrinsic stability, e.g. Hrd1p can confer its auto-

ubiquitination (Gardner, R. G. et al., 2000), which is inhibited when it is 

bound to the adaptor protein Hrd3p, ensuring that Hrd1p is only active in 

the presence of controlled substrate delivery. In metazoans Hrd1 seems to 

stabilize SEL1L (Iida et al., 2011). Hrd1p forms oligomeres which modulate 

its activity, oligomerization is conferred by Usa1p (Carvalho et al., 2010; 

Horn et al., 2009).  

The Unfolded Protein Response (see 1.3.) leads to the transcriptional 

activation of different ERAD components to increase ERAD activity and 

capacity (Yoshida et al., 2003; Bernasconi et al., 2008). Other central 

players of the ERAD machinery are the Derlins like Der1p which is a multi-

pass trans-membrane protein and interacts with Hrd1p and Hrd3p (Gauss 

et al., 2006), having an adaptor function. Derlins contain a motif shared with 

rhomboid proteases, which cleave protein sequences within the membrane. 

Derlins lack the catalytic sites of rhomboid proteases and the shared motif 

is assumed to be involved in protein interaction.  

Upstream of the E3s, oxidoreductases, like Pdi1p are required to dismantle 

the compact folds of disulfide-bonded substrates to make them accessible 

for the degradation pathway. ERAD may also require isomerization of 

trans-peptidyl-prolyl bonds to eliminate turns (Bernasconi et al., 2010).  

Besides the E3s, Vcp (Valosin containing protein, also known as 

p97/Cdc48p), a cytosolic AAA-ATPase (ATPase associated with diverse 

cellular activities) also plays a central role in ERAD. Vcp is hexameric and 

physically interacts with ERAD substrates (Rabinovich et al., 2002), acting 
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as a chaperone with unfoldase activity and multiubiquitin binding capacity in 

order to present the ubiquitinated target proteins to the proteasome. Vcp 

physically interacts with its substrates at the ER membrane, where they 

become poly-ubiquitinated and are released into the cytosol (Ye, Y. et al., 

2001). The Vcp complex is also associated with several deubiquitinating 

enzymes, including YOD1 and USP13 (Sowa et al., 2009). It was 

suggested that deubiquitination is required for protein dislocation from the 

ER (Ernst et al., 2009), with trimming of the poly-ubiquitin chain being 

necessary to allow the substrate to enter the central channel of the Vcp 

complex. 

The most detailed mechanism of how substrates are delivered to the ERAD 

pathway is that for luminal glycoproteins. Prior to folding, most 

glycoproteins interact with the chaperone lectins calnexin (CNX) or 

calreticulin (CRT), or both; the interaction with these proteins is regulated 

by the glucosylation state of the oligosaccharide side chain (Helenius et al., 

1997). The interaction between calnexin and the nascent proteins is 

enhanced by additional binding of Erp57, a calnexin-associated disulfide 

isomerase which stabilizes immature polypeptides and promotes folding 

(Oliver et al., 1997; Frenkel et al., 2004). Soon after entry into the ER, the 

gycoproteins enter the “calnexin/calreticulin cycle” (Ellgaard and Helenius, 

2003), which is a cycle of binding to and release from these chaperones. 

CNX and CRT bind to monoglucosylated mannose, followed by removal of 

the innermost glucose of the glycoproteins due to the action of glucosidase 

II. The protein-linked glycan is then reglucosylated by the soluble ER 

enzyme UDP-Glc:glycoprotein glucosyltransferase, which acts as 

conformational sensor, only if the protein moiety displays non-native three- 

dimensional structures. When the glycoproteins attain their final native 

structure, they exit from the CNX/CRT cycle and are channeled to the 

secretory pathway. Besides the enzymes of the CNX/CRT cycle, 

mannosidases carry out competing reactions that remove mannose 

residues, decreasing the likelihood of entry into further folding cycles. The 
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action of EDEMs (Htm1p in yeast) e.g. lead to the exposure of a terminal 

α1,6–linked mannose that acts as a key signal for degradation (Molinari et 

al., 2003; Oda et al., 2003; Gauss et al. 2011). If EDEMs themselves are 

responsible for targeting the ERAD substrates to the E3 complex is 

unknown. 

Autophagy (see 1.4.2.) is a catabolic process which can also be used to 

clear the ER from misfolded or unfolded proteins, ERAD and autophagy are 

coordinated and autophagy is for example activated when the proteasome 

is impaired (Nedelsky et al., 2008) or when misfolded proteins are resistant 

to ERAD (Houck et al., 2014). The events and components of ERAD are 

depicted in fig.3. 
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Fig.3: The events and components of ERAD. (A) The key steps of ERAD 

as shown for a luminal glycoprotein as applied to yeast or metazoans, and 

thus only the transmembrane E3 ubiquitin ligase complex is labeled along 

with its catalytic RING domain. (B) Overlapping substrate specificity of E3 

ubiquitin ligases can be modulated by the presence of adaptors. Adaptors are 

depicted in purple and blue. (C) The core Hrd1p complex in yeast. (D) The 

core HRD1 complex in metazoans. 

From the following article: Road to Ruin: Targeting Proteins for Degradation in 

the Endoplasmic Reticulum. Smith, M. H. et al., 2011. Science 334 (6059) 
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1.3. The Unfolded Protein Response 

Perturbations in protein folding for example due to mutations in the coding 

sequence, mistakes in transcription or translation or oxidative stress can 

lead to an accumulataion of misfolded or unfolded proteins in the ER. 

Those unfolded or misfolded proteins lead to ER stress and cells cope with 

it by activating a diverse set of signaling mechanisms, collectively known as 

the Unfolded Protein Response (UPR).  

The UPR aims to restore ER homeostasis by several mechanisms 

including the inhibition of protein translation to stop the load of newly 

synthesized proteins into the ER, upregulation of ER protein degradation 

(ERAD) and by increasing the folding capacity of the ER by the 

transcriptional activation of ER chaperones and foldases. Prolonged or 

severe ER stress, which can not be resolved by these mechanisms, may 

lead to apoptosis. 

The UPR is composed of three ER stress sensors: Ire1 (Inositol-requiring 

Enzyme 1), PERK (Protein Kinase RNA-like Endoplasmic Reticulum 

Kinase) and ATF6 (Activating Transcription Factor 6), which trigger the 

interconnected pathways of the UPR. 

Defective UPR signaling is associated with severe diseases like cancer, 

degenerative disorders and diabetes. 

 

 

1.3.1. Ire1 signaling 

Ire1 signaling is the most conserved arm of the UPR with homology in 

yeast, plants, worms, flies and vertebrates (Calfon et al., 2002; Yoshida et 

al., 1998; Ryoo et al., 2007; Souid et al., 2007). IRE1 is a type I trans-

membrane protein, with Ser/Thr kinase and endoribonuclease activities. 

IRE1 is activated by direct binding of misfolded proteins to the luminal 

domain of IRE1 and dimerization is also required for activation (Liu, C. Y. et 

al., 2000; Papa et al., 2003; Shamu and Walter, 1996; Welihinda and 
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Kaufman, 1996). The cytosolic domain of IRE1 confers the kinase and 

endoribonuclease activities (Shamu and Walter, 1996; Tirasophon et al., 

1998; Liu, C. Y. et al., 2002). 

In budding yeast (Saccharomyces cerevisiae), IRE1 signaling is linear. The 

only substrate to be cleaved by IRE1 endoribonuclease activity, is the 

mRNA of Hac1 (Cox and Walter, 1996; Mori et al., 1996; Nikawa et al., 

1996). Hac1 mRNA is cleaved twice, removing a 252bp intron (Sidrauski 

and Walter, 1997) and both ends of the exons are joined by the tRNA 

ligase Trl1 (Sidrauski et al., 1996). This unconventional splicing event 

occurs in the cytoplasm leading to a translational frameshift and generating 

an active bZIP (basic Leucine zipper) transcription factor. The unspliced 

mRNA of Hac1 is not translated due to translational repression (Chapman 

and Walter, 1997; Cox and Walter, 1996). Xbp1 is the functional 

homologue of Hac1 in worms, flies and mammals (Calfon et al., 2002; 

Yoshida et al., 2001; Ryoo et al., 2007; Souid et al., 2007). In mammals the 

intron to be spliced out by IRE1 activity is 26bp and in flies 23bp. The RNA 

ligase which joins both ends of the Xbp1 mRNA has not been identified to 

date. Unspliced Xbp1 (Xbp1u) is translated with a C-terminal frameshift and 

depicts an inhibitory molecule for the active transcription factor Xbp1spliced 

(Xbp1s). Xbp1u shuttles between the cytoplasm and the nucleus where it 

interacts with Xbp1s, leading to the degradation of both proteins (Calfon et 

al., 2002; Yoshida et al., 2006). The bZIP transcription factor Xbp1s 

activates the transcription of UPR target genes, like ERAD factors and 

chaperones and also leads to its own transcription (Lee et al., 2003; Shaffer 

et al., 2004). In mammals, Xbp1s dependent transcription is linked to cell 

differentiation, signaling and DNA damage (Acosta-Alvear et al., 2007). 

Hac1 mRNA is recruited to IRE1 clusters in the ER membrane, depending 

on translational repression of Hac1 mRNA and on a bipartite element (BE) 

at its 3’ UTR (Aragón et al., 2009). In human cells, bringing Xbp1 mRNA in 

proximity to IRE1 depends on 2 hydrophobic regions (hydrophobic regions 

1 and 2, HR1 and HR2) in the nascent chain of the Xbp1u polypeptide. 
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HR1 and HR2 interact with the ER membrane bringing the Xbp1 mRNA-

ribosome-nascent chain (RNC) complex to the proximity of Ire1 (Yanagitani 

et al., 2009). The C-terminal region of the Xbp1u polypeptide is essential 

for translational elongation pausing, when the Xbp1u polypeptide protrudes 

from the ribosome exit tunnel. This translational pausing gives time for 

recruitment of HR1 and HR2 to the ER membrane and stabilizes the RNC 

complex (Yanagitani et al., 2011). 

In unstressed conditions the ER chaperone Bip is bound to the luminal 

domain of IRE1 and keeps the enzyme inactive (Bertolotti et al., 2000; 

Okamura et al., 2000). The presence of unfolded or misfolded proteins in 

the ER titrates Bip away from IRE1, which in turn leads to its 

oligomerization and activation by auto-phosphorylation. However, it was 

shown that variants of IRE1 which can not bind to Bip confer IRE1 

dependent activity, leading to the suggestion that the Bip titration model is 

more for inhibiting inappropriate IRE1 activation (Kimata et al., 2003). A 

study in yeast shows that IRE1 senses ER stress by directly binding to 

misfolded proteins (Gardner, B. M. and Walter, 2011). However, this 

mechanism does not seem to be conserved in mammals (Oikawa et al., 

2009). In mammals, IRE1α is tissue-specific regulated by distinct regulatory 

protein complexes through binding of adaptor and modulator proteins 

(reviewed in Hetz and Glimcher, 2009), like the pro-apoptotic factor BAX 

and BAK, which modulate the unfolded protein response by a direct 

interaction with IRE1a (Hetz et al., 2006). 

In addition to the transcriptional remodeling of the ER folding environment 

via IRE1/Xbp1 signaling, IRE1 in metazoans is also involved in the 

activation of cell death pathways in response to prolonged or strong ER 

stress, for example activated IRE1 associates with the tumor necrosis 

associated factor 2 (TRAF2), leading to the activation of the c-Jun N-

terminal kinase (JNK) pathway via the apoptosis signaling-regulating kinase 

(ASK1) (Urano et al., 2000; Nishito et al., 2002). JNK activation then 

triggers an apoptotic response. Besides a link between IRE signaling and 
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apoptosis (see 1.4.1.), IRE1 signaling is also linked to autophagy (see 

1.4.2.). Another mechanism in which activated IRE1 plays a role, is the 

degradation of mRNA localized to the ER membrane conferred by its 

RNAse activity (Hollien and Weissman, 2006; Hollien et al., 2009), leading 

to a global reduction in the load of newly synthesized proteins into the ER. 

This mRNA degradation is called RIDD for regulated Ire1 dependent decay. 

The different IRE1 signaling pathways are shown in fig.4. 
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1.3.2. PERK signalling 

 

 

 

 

1.3.2. PERK signaling 

Like IRE1, also PERK is a type I trans-membrane protein spanning the ER 

membrane. It has an ER luminal stress-sensing domain and a cytoplasmic 

kinase domain which undergoes activation by oligomerization and trans-

autophosphorylation upon ER stress (Bertolotti et al., 2000). Activated 

PERK phosphorylates eukaryotic translation initiation factor 2 α (eIF2α) at 

Ser51. This phosphorylation inhibits the guanine nucleotide exchange 

Fig.4:  IRE1 signaling. Inositol-requiring protein-1 (IRE1) oligomerizes in 
the plane of the endoplasmic reticulum (ER) membrane in stressed cells. 
Trans-autophosphorylation in its cytosolic kinase domain increases the 
affinity for nucleotides (N), which allosterically activate IRE1 and unmask a 
dormant endoribonucleolytic activity. IRE1-mediated sequence-specific 
cleavage of a single known mRNA (X-box binding protein-1 (XBP1) in 
higher eukaryotes, HAC1 (homologous to ATF/CREB1) in yeast) excises a 
small RNA fragment (intron). The two ends of the mRNA are ligated (tRNA 
ligase (Trl1) has this role in yeast but the identity of the ligase is unknown 
in metazoans), which leads to a frame shift in the coding sequence (shown 
in the figure as a colour change from yellow to red after removal of the 
intron). Spliced XBP1 mRNA encodes a potent transcriptional activator 
(XBP1s), whereas the unspliced XBP1 mRNA encodes XBP1u, an 
inhibitor of the unfolded protein response (UPR). In yeast, the Hac1/XBP1 
pathway activates most of the UPR, whereas in mammals, it appears that 
XBP1 regulates a subset of UPR genes that promote ER-associated 
degradation (ERAD) of misfolded proteins and ER biogenesis. IRE1 can 
also act by alternative means. In mammals, recruitment of TRAF2 (tumour 
necrosis factor receptor (TNFR)-associated factor-2) by phosphorylated 
IRE1 allows it to signal to Jun N-terminal kinase (JNK) and alter 
intracellular signaling (for example, resulting in insulin resistance). The 
IRE1–TRAF2 complex has also been linked to caspase-12 activation and 
cell death. In cultured Drosophila melanogaster cells, activated IRE1 can 
promote the cleavage of various ER-localized mRNAs, leading to their 
degradation called Regulated IRE1-Dependent Decay (RIDD). This 
reduces the load on the stressed ER and might facilitate reprogramming of 
the ER-associated protein synthesis and translocation machinery. It is 
unknown whether IRE1 cleaves these mRNAs directly or whether it 
promotes their degradation by activating or recruiting other RNases. 
JNKK, JNK kinase; JNKKK, JNKK kinase.  

From the following article: Signal integration in the endoplasmic reticulum 
unfolded protein response. David Ron & Peter Walter. (2007). Nature 
Reviews Molecular Cell Biology 8, 519-529  
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factor eIF2ß, a pentameric complex that recycles eIF2 to its active GTP-

bound form. Inhibition of eIF2 activity leads to a global decrease in protein 

translation initiation preventing the additional load of newly synthesized 

proteins into the stressed ER lumen (Harding et al., 1999). The 

phosphatase responsible for the dephosphorylation of eIF2α and 

restoration of normal protein translation when ER stress is resolved, is the 

protein phosphatase 1 (PP1) in association with CReP (constitutive 

repressor of eIF2α phosphorylation) and GADD34 (growth arrest and DNA-

damage-inducible protein-34) (Jousseet al. 2003; Connor et al., 2001; 

Novoa et al., 2001).  

Although PERK1 leads to translational repression, some proteins can avoid 

translation inhibition because they have inhibitory upstream open reading 

frames (uORFs) before the main ORF. Inhibition of eIF2 by phosphorylation 

of eIF2α leads to ribosomes skipping the inhibitory uORFs and the main 

ORF is then translated. One of such proteins which is translated upon 

PERK activation is the yeast transcription factor GCN4 (Hinnebusch et al., 

2002) and its mammallian homologue ATF4 (Vattem et al., 2004; Lu, P. D. 

et al., 2004). ATF4 is a transcription factor that induces upregulation of 

genes encoding amino acid transporters, redox enzymes that promote 

protein folding within the ER lumen (e.g., ERO1), and a pro-apoptotic 

transcription factor called the CCAAT enhancer-binding homologous 

protein (CHOP) (Ma, Y. et al., 2002). It has been proposed that CHOP 

indirectly affects cell death by inducing the expression of ER oxireductin 1 

(Ero-1, see 1.4.1.), an oxireductase enzyme that catalyses the formation of 

disulfide bonds in ER proteins (Marciniak et al., 2004). The PERK signaling 

pathway is shown in fig.5. 
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Fig.5: Signaling by PERK to the translational machinery. In response to 

endoplasmic reticulum (ER) stress, protein kinase RNA (PKR)-like ER 

kinase (PERK), similar to inositol-requiring protein-1 (IRE1), oligomerizes in 

the plane of the membrane and is activated by trans-autophosphorylation of 

its activation loop. Extensive further phosphorylation of the large kinase 

insert loop facilitates substrate recruitment. Phosphorylation of a single 

known substrate, the α subunit of eukaryotic translation initiation factor-2 

(eIF2) on Ser51, inhibits the pentameric guanine nucleotide exchange factor 

eIF2B from recycling eIF2 to its active GTP-bound form. The resulting 

reduced activities of eIF2B and the eIF2 complex account for all of the 

important consequences of PERK activity. Because other eIF2 kinases 

(PKR, haem-regulated inhibitor kinase (HRI) and general control non-

derepressible-2 (GCN2)) can activate this pathway independently of ER 

stress, this portion of the unfolded protein response (UPR) is termed the 

integrated stress response (ISR). Lower global protein synthesis reduces 

ER unfolded protein load but also affects gene transcription. For example, 

translation of the activating transcription factor-4 (ATF4) is increased under 

conditions of limiting eIF2, whereas nuclear factor κB (NFκB) is activated 

post-translationally. The ISR activates genes that encode amino-acid 

transporters and genes that protect against oxidative stress, and it 

contributes to the transcriptional activation of XBP1. The transcription factor 

CHOP (C/EBP homologous protein) is also activated transcriptionally by 

ATF4 and its target genes include GADD34 (growth arrest and DNA 

damage-inducible protein-34), a regulatory subunit of phosphatase PP1 that 

dephosphorylates eIF2α and terminates signaling in the ISR77, and ER 

oxidase-1 (ERO1), which is required for disulphide bond formation in protein 

folding. A constitutive phosphatase CReP (constitutive repressor of eIF2α 

phosphorylation) assists GADD34 in this task. 

From the following article: Signal integration in the endoplasmic reticulum 
unfolded protein response. David Ron & Peter Walter (2007). Nature 
Reviews Molecular Cell Biology 8, 519-529.  
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1.3.3. ATF6 signaling 

ATF6 is an UPR transducer that is synthesized as an inactive precursor, 

which is tethered to the ER membrane by a transmembrane segment and 

has a stress-sensing portion that projects into the ER lumen. The cytosolic 

portion encodes a transcription factor (Haze et al., 1999; Wang et al., 2000; 

Yoshida et al., 2000).  

Upon ER stress, ATF6 translocates to the Golgi apparatus where it is 

cleaved by Golgi-resident proteases, S1P (site 1 protease) and then in an 

intramembrane region by S2P (site 2 protease) to release the cytosolic 

DNA-binding portion, ATF6f (‘f’ for fragment) (Ye, J. et al., 2000). ATF6f 

then translocates to the nucleus where it is responsible for the transcription 

of target genes. ATF6 binds to the ATF/CRE element and the ER stress 

response elements I and II (ERSE), to induce the transcription of many 

UPR genes like ERAD factors and chaperones as well as Xbp1 (Yoshida et 

al., 2003; Kokame, 2000; Yoshida, 1998). ATF6 processing is shown in 

fig.6. 
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Fig.6: Signaling by ATF6. Activating transcription factor-6 (ATF6) and 

cyclic AMP response element binding protein hepatocyte (CREBH) are 

transmembrane proteins with a cytoplasmic portion that, when liberated 

from its transmembrane tether, can bind to DNA and activate target genes. 

In unstressed cells, ATF6 and CREBH reside in the endoplasmic reticulum 

(ER) membrane. ATF6 trafficking appears to be hindered by binding of the 

ER chaperone immunoglobulinbinding protein (BiP) to its lumenal domain. 

ER stress disrupts BiP binding and ATF6 (and CREBH) are delivered to the 

Golgi apparatus. The details of this vesicular transport event remain 

unknown. In the Golgi apparatus, these proteins are subject to consecutive 

cleavage, first by the lumenal site 1 protease (S1P) and then the intra-

membrane site 2 protease (S2P), which liberates the cytosolic effector 

portions of the proteins from the membrane and allows their import into the 

nucleus. ATF6 probably activates a subset of UPR target genes, although 

these remain to be characterized, whereas CREBH activates acute-phase 

response genes that encode secreted proteins involved in inflammation. 

From the following article: Signal integration in the endoplasmic reticulum 
unfolded protein response. David Ron & Peter Walter. Nature Reviews 
Molecular Cell Biology 8, 519-529 (2007). 
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1.4. Cell death and the UPR  

1.4.1. Apoptosis 

Apoptosis is a distinct form of programmed cell death. Apoptosis is 

executed by caspases, a unique group of cysteine proteases, which cleave 

their target proteins at a peptide bond C-terminally from aspartate and are 

expressed in the cytoplasm as inactive zymogens. Caspases are part of an 

enzymatic cascade, at the beginning of which there are the initiator 

caspases, which are activated first. The initiator caspases cleave the 

effector caspases, which become active and are responsible for the 

cleavage of target proteins, like actin and lamin (Degterev et al., 2003; 

Chowdhury et al., 2008). Additionally, the effector caspases activate 

nucleases, which in turn cleave DNA.  

The apoptotic cells shrink and are eliminated by macrophages. Apoptosis is 

required for normal embryonic development as well as for the destruction of 

cells that may become a threat to the integrity of the adult organism.  

There are three ways by which a cell commits apoptotic suicide, one 

generated by signals within the cell (intrinsic pathway), one triggered by 

death activators that bind to special receptors within the cell membrane 

(extrinsic pathway) and one which can be caused by dangerous reactive 

oxygen species. 

In the extrinsic pathway, death activators bind to death receptors sitting in 

the cell membrane, for example the death activator FasL binds to the Fas 

receptor and TNF activators to the TNF receptor, respectively (Chen, G. 

and Goeddel, 2002; Wajant et al., 2003). This leads to the activation of 

caspase-8, which similar to caspase-9 triggers the apoptotic pathway 

leading to suicide of the cell. 

In the intrinsic pathway, Bcl-2 family members like Bcl-2 and Bax/Bak play 

an important role (Cheng et al., 2001). Bcl-2 (anti-apoptotic) sits in the outer 

membrane of mitochondria and prevents apoptosis by inhibiting Bax/Bak 

(pro-apoptotic) which themselves are integrated into the outer mitochondrial 
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membrane. Upon apoptotic stimuli Bcl-2 is released from Bax/Bak leading 

to holes in the outer mitochondrial membrane and to the leaking of 

cytochrome-c to the cytoplasm, where it binds to Apaf-1 (apoptotic protease 

activating factor 1). Cytochrome-c and Apaf-1 form a large mulimeric 

complex - the apoptosome - which binds and activates caspase-9 (Riedl 

and Salvesen, 2007). Caspase-9 in turn cleaves and activates the 

executioner caspases caspase-3 and caspase-7, which in turn trigger the 

proteolytic cascade leading to apoptotic cell death.  

In Drosophila the importance of cytochrome-c and Bcl-2 family members 

(debcl/Buffy) are still not clear, however the formation of an apoptosome is 

known to be involved in apoptosis (Rodriguez et al., 1999; Zhou et al., 1999; 

Kanuka et al., 1999a; Mills et al., 2006; Srivastava et al., 2007).  

Ark (Apaf-1-related killer), the Drosophila homologue of mammalian Apaf-1 

provides the structural backbone of the Drosophila apoptosome. Ark is an 

essential pro-apoptotic protein; most cell death is blocked in ark mutants 

(Zhou et al., 1999; Igaki et al., 2002; Srivastava et al., 2007). Ark contains a 

CARD (caspase activation and recruitment domain).  

The Drosophila genome encodes seven caspase genes: dronc, dredd, 

strica, drICE, dcp-1, decay and damm. Dronc is similar to the initiator 

caspase-9 in humans, has a CARD domain and binds to Ark via a 

CARD/CARD interaction (Dorstyn et al., 1999; Rodriguez et al., 1999; 

Kanuka et al., 1999b). Dronc cleaves and activates the effector caspase 

drICE (Hawkins et al., 2000). 

Inhibition of caspase activation is also part of the intrinsic pathway, where 

inhibitors of apoptosis proteins (IAPs) play a crucial role. Apotosis is 

induced by the expression of IAP antagonists like reaper, grim and head 

involution defective (hid) in Drosophila (Song and Steller, 1999) or Smac 

and Diablo in humans. Fly embryos lacking the IAP antagonists reaper, hid 

and grim display no apoptosis at all (White et al., 1994). The expression of 

reaper, hid and grim must somehow rely on the interpretation of the various 

pro-apoptotic stress signals and pathways. This interpretation is possible by 
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different regulation of the gene locus of those IAP antagonists, which spans 

more than 150kb and contains specific binding sites for mediators of 

apoptosis (Brodsky et al., 2000; Lohmann et al., 2002). Additionally, the 

locus is regulated epigenetically (Zhang, Y. et al., 2006). Furthermore, hid, 

for example is regulated by phosphorylation by MAP kinase (Bergmann et 

al., 1998; Bergmann et al., 2002). 

In Drosophila there are at least four IAP proteins, namely Diap1, Diap2, 

bruce and deterin. The highly conserved baculovirus IAP repeats (BIRs) 

are essential for the function of IAPs. The BIR domains of IAPs bind to pro-

apoptotic factors, such as caspases, inhibiting their function. Diap1, which 

is encoded by the gene thread, is the most important IAP in Drosophila, 

inhibiting pro-apoptotic factors, like caspases (Tenev et al., 2004). Diap1 

also has a RING domain with E3 ubiquitin ligase activity, which is 

responsible for the ubiquitination of its substrates, leading either to their 

degradation by the proteasome or their inhibition, depending on the 

ubiquitin configuration. The binding of IAP antagonists to Diap1 leads to 

self-ubiquitination and degradation of Diap1, resulting in the activation of 

caspases (Chai et al., 2003; Holley et al., 2002; Ryoo et al., 2002; Yoo et 

al., 2002; Tenev et al., 2004; Yokokura et al., 2004). 

It was suggested that the IAP antagonists help Diap1 to translocate to the 

mitochondrial membrane where factors for self-ubiquitination of Diap1 

reside (Freel et al., 2008). Furthermore, it was suggested that IAP 

antagonist involved down-regulation of global protein synthesis regulates 

Diap1 levels (Yoo et al., 2002). Diap1 over-expression in the Drosophila 

eye with the GMR-GAL4 driver leads to suppression of reaper and hid 

induced cell death (Hay et al., 1995). 

The UPR influences cell fate by promoting either cell adaptation or 

apoptosis when protein folding homeostasis is perturbed.  Upon ER 

stress, pro-apoptotic BH3-only proteins are transcriptionally or post-

translationally activated to stimulate pro-apoptotic Bax and Bak either 

directly or indirectly through antagonizing anti-apoptotic members, like Bcl-
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2. The BH3-only family members, Puma, Noxa, Bid and Bim have been 

described to mediate apoptosis triggered by ER stress (Li, J. et al., 2006; 

Puthalakath et al., 2007; Upton et al., 2008). CHOP, which is expressed 

during ER stress, seems to be a link between BH3-only proteins and the 

UPR as CHOP was shown to induce bim expression (Puthalakath et al., 

2007). Furthermore, CHOP antagonizes the expression of anti-apoptotic 

Bcl-2.  

CHOP expression can also lead to the production of reactive oxygen 

species induced by the CHOP transcriptional target ER oxidase 1α 

(ERO1α) which oxidizes client proteins in the ER lumen, leading to hyper-

oxidation and apoptosis (Marciniak et al., 2004). ERO1α is also linked to 

CHOP mediated apoptosis via activation the ER calcium release channel 

IP3R1, which leads to activation of pro-apoptotic cytoplasmic calcium 

signaling. Cytoplasmic calcium triggers apoptosis by activating the calcium 

sensing kinase CaMKII, which in turns phosphorylates downstream targets, 

leading to apoptosis (Seimon et al., 2006; Timmins et al., 2009; Li, G. et al., 

2010). 

There are other CHOP induced proteins that have been implicated in 

apoptosis, e.g. death receptor-5 (DR5) and Tribbles related protein 3 

(TRB3). DR5 was shown to be involved in apoptosis in different cultured 

cancer cell lines (Yamaguchi et al., 2004). Persistent ER stress built up 

intracellular DR5 protein, driving ligand-independent DR5 activation and 

apoptosis engagement via caspase-8 (Lu, M. et al., 2014). It was shown 

that TRB3 is required for the full apoptotic response in cultured 293 and 

HeLa cells exposed to tunicamycin (Ohoka et al. 2005). 

Ire1 signaling could also be associated with apoptosis by JNK activation via 

the association of IRE1 and tumor necrosis factor receptor-associated 

factor 2 (TRAF2) and activation of the MAPK kinase kinase (MAP3K) 

apoptosis signal-regulating kinase 1 (ASK1) (Nishitoh et al., 2002, Urano et 

al., 2000). JNK signaling can trigger protective or apoptotic mechanisms, 

depending on the context (Weston and Davis 2007).  
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Another link between IRE1 signaling and apoptosis may be conferred 

through the interaction of IRE1a with Bax and Bak which seems to be 

required for IRE1a activation (Hetz et al., 2006).  

RIDD, which normally degrades mRNA to reduce the load of new proteins 

into the ER may also be a mechanism of apoptosis when ER stress is 

prolonged or too strong. Experiments in which IRE1 activity was 

manipulated towards RIDD showed ER stress induced apoptosis (Tabas 

and Ron, 2011). It was found that sustained IRE1α RNase activation 

caused rapid decay of selected microRNAs that normally repress 

translation of Caspase-2 mRNA, which encodes the initiator protease of the 

mitochondrial apoptotic pathway (Upton et al., 2012). Furthermore, 

allosteric inhibition of the IRE1α RNAse preserves cell viability and function 

during ER stress (Gosh et al., 2014). IRE1 has distinct catalytic 

mechanisms for Xbp1 splicing and RIDD, selective activation of RIDD 

promotes cell death (Tam et al., 2014). 

In Drosophila a link of a special UPR branch to apoptosis has not been 

shown to date. Kang and Ryoo showed that the over-expression of 

Rhodopsin-1 in eye imaginal discs leads to ER stress and apoptosis which 

can be suppressed by ERAD (Kang et al., 2009). However, the involvement 

of a special UPR arm was not shown. It was also shown that Cdk5 and 

Mekk1 mediate a pro-apoptotic signaling response to ER stress in a 

Drosophila model for Autosomal Dominant Retinitis Pigmentosa (ADRP), 

whereby Cdk5 phosphorylates Mekk1, and together, activate the JNK 

pathway for apoptosis (Kang et al., 2012). However, also here, the 

involvement of a special UPR arm is not clear. In the Drosophila genome 

there are no obvious CHOP homologues, which could be expressed upon 

ER stress to trigger a pro-apoptotic response. 
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1.4.2. Autophagy 

Autophagy which means „self-digestion“ is a catabolic process in which 

unnecessary or malfunctioning cellular components are degraded via the 

lysosomal pathway. The degradation of these components allows the 

recycling of cellular building blocks and promotes cellular survival during 

starvation by providing new energy (reviewed in Mizushima, 2014).  

There are three forms of autophagy: macroautophagy, microautophagy and 

chaperone-mediated autophagy. Autophagy consists of the following steps: 

sequestration, transport to lysosomes, degradation, and utilization of 

degradation products. 

Autophagy can mediate a variety of cellular processes like adaptation to 

starvation, intracellular protein and organelle clearance, differentiation, anti-

aging, elimination of microorganisms, tumour suppression, antigen 

presentation and cell death (Mizushima, 2005). Thus autophagy can be 

pro-survival or pro-death. In macroautophagy, unique cell organelles, the 

autophagosomes engulf and fuse a portion of the cytoplasm with 

endosomes, which then fuse with the lysosomes, forming the so called 

autolysosomes. All these steps are mediated by the autophagy-related 

proteins (ATG proteins). The process is initiated when an isolation 

membrane is formed under the guidance of the class III PI3-kinase complex 

and ATG proteins. The expansion of the isolation membrane occurs by the 

translocation of Microtubule-associated protein light chain 3 II (LC3-II), 

which is formed by phosphatidylethanolamine conjugation of LC3-I, to the 

autophagosome membrane.  

It was shown that under conditions of ER stress, the autophagy system is 

activated (Ogata et al., 2006). The first link between aggregated proteins in 

the ER and autophagy came from studies in mammalian cells, where the 

accumulation of a mutant form of a cell surface protein, decay accelerating 

factor, was associated with autophagy (Field et al., 1994).  
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The direct link between ER stress and autophagy was derived from studies 

in Saccharomyces cerevisiae, showing that ER stress inducing agents lead 

to the activation of autophagy (Yorimitsu et al., 2006). In these cases, it is 

unclear if activation of autophagy represents an attempt to survive, for 

example through the degradation of misfolded proteins, or a mechanism for 

induction of cell death. 

The IRE1/Xbp1 pathway leads to the expansion of the ER and activation of 

autophagy could be required, as a regulatory feedback loop, to limit ER 

expansion and to maintain ER integrity (Schuck et al., 2014; Lee et al., 

2005). The association of JNK signaling with IRE1α activity links autophagy 

to ER stress. JNK appears to phosphorylate Bcl-2, which no longer can 

repress Beclin and leads to the induction of autophagy mediated by Beclin 

(reviewed in Verfaillie et al., 2010).  

PERK activity leads to the transcriptional upregulation of ATG genes by 

ATF4 (B’chir et al., 2014). ATF4 dependent transcription of CHOP can also 

lead to autophagy via calcium release from the ER into the cytoplasm, this 

is mediated by ERO1α and its activation of the ER calcium release channel 

IP3R1. The cytoplasmic calcium signals via stimulation of AMPK (reviewed 

in Verfaillie et al., 2010).   

Also the ATF6 arm of the UPR seems to be involved in autophagy as 

depletion of ATF6 inhibits autophagy induced by S1P Phosphatase in 

human breast cancer cells (Lépine et al., 2010). 

Furthermore, it was shown that Bip is required for ER stress induced 

autophagy in mammalian cells (Li, J. et al., 2008). 

 

 

1.5. The Drosophila eye 

The Drosophila compound eye is composed of about 800 units, called 

ommatidia, which are organized into a regular hexagonally packed array. 
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Each ommatidium consists of 20 cells: eight photoreceptors and 12 

accessory cells, including the bristles, lens-secreting cone cells and 

pigment cells (Wolff and Ready 1993).  

The rhabdomeres are microvillar membrane stacks in the photoreceptors 

that contain rhodopsin, the light sensitive protein. Rhabdomere 

morphogenesis starts around 67% of pupal development. Photoreceptors 

(R) R1-R6 express the blue sensitive opsin Rhodopsin-1 (Rh-1), R7 

expresses two UV opsins (Rh-3 and Rh-4) and R8 is generally blue-green 

sensitive (Cook and Desplan, 2001; Mollereau and Domingos, 2005).  

The eight photoreceptors are arranged in a stereotypical pattern and can 

be identified by their position in each ommatidium. Photoreceptor cells R1 

to R6 of each ommatidium are placed radially around R7 and R8, forming 

an irregular trapezoid, while R7 sits on top of R8 (Wolff and Ready, 1993). 

The photoreceptors project their axons retinotopically to targets in the optic 

lobe of the brain, R1-R6 project their axons to the first optic ganglion, the 

lamina, while the axons of R7 and R8 terminate in the medulla, the second 

ganglion. Higher-order integration and image formation occurs at the lobula 

(Hardie, 1985; Braitenberg, 1967; Kunes and Steller, 1993). The structure 

of the compound Drosophila eye is depicted in fig.7. 

The Drosophila eye develops during late larval stages from a monolayer 

epithelium, called the eye-antenna imaginal disc (Haynie and Bryant, 1986; 

Cohen, 1993). During development of the eye, a wave of differentiation 

sweeps from posterior to anterior across the eye imaginal disc, this wave of 

differentiation is called the morphogenetic furrow (MF) (Heberlein and 

Moses, 1995). The MF results from an apical constriction and apical-basal 

contraction of the cells. Anterior to the MF, cells are undifferentiated and 

divide asynchronously, whereas posterior to the MF, the photoreceptors are 

specified. The progression of the MF requires hedgehog (hh) function (Ma, 

C. et al.1993), and is the place where commitment to photoreceptor fate is 

initiated. Depending on hh activity, decapentaplegic and the proneural gene 

atonal (ato) are expressed in the furrow. Ato expression is required for R8 
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development. Posterior to the furrow, preclusters of R8, R2, R3, R4 and R5 

are specified. R8 is the first photoreceptor to be specified in each 

ommatidium, followed by R2/5, R3/4, R1/6 and finally R7 is recruited to the 

ommatidial cluster (Wolff and Ready, 1993). These photoreceptors and 

accessory cells are recruited to each ommatidial cluster by waves of 

expression of the ligand spitz (spi), which binds to the EGF receptor 

(Freeman, 1996; Freeman, 1997; Kumar et al., 1998).   

The developing ommatidia are organized in columns of regularly spaced 

clusters, with a new column of clusters appearing posterior to the MF 

approximately every two hours (Campos-Ortega and Hofbauer, 1977; 

Tomlinson and Ready, 1987). Immediately anterior to and in the MF, cells 

arrest in G1 phase of cell cycle. Cells that emerge posterior to the MF can 

be divided in two subpopulations, the cells of the ommatidial preclusters, 

which exit cell cycle and acquire a neuronal fate and undifferentiated cells 

surrounding the preclusters. The undifferentiated cells enter a terminal cell 

cycle called second mitotic wave (SMW). The cells of this second mitotic 

wave give rise to the photoreceptor cells R1, R6, R7, the cone cells, the 

pigment cells as well as the precursors of the mechanosensory bristles 

(Ready et al., 1976; Wolff and Ready, 1991a). The remaining 

undifferentiated cells undergo apoptosis (Wolff and Ready, 1991b).  

The Drosophila retina exhibits planar polarity, there is a line of mirror 

symmetry, the “equator”, bisecting the retina horizontally. Within each adult 

ommatidium, the photoreceptors form an arranged trapezoid array. In the 

dorsal half of the eye the tip of the trapezoid (the R3/R4 pair) points up, 

while in the ventral half of the eye it points down (Ready et al., 1976; Wolff 

and Ready, 1991).  
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Fig.7: Structure of the compound eye. (A) A scanning electron micrograph 
of the compound eye. Anterior is to the right and dorsal is up. Note the 
regular array of lenses which overly each ommatidium and the 
mechanosensory bristles in each alternate vertex. The height of the eye is 
approximately 0.5 mm. (B) A diagram of the cells in one ommatidium. A 
longitudinal section is shown to the left, and three cross-sections to the right 
at the levels indicated. The cells of the ommatidium can be classified into 
four functional groups: (i) the light-sensitive photoreceptors (shown in blue, 
green, and violet); (ii) the screening pigment cells (red); (iii) the dioptic 
elements secreted by the cone cells (gray), and (iv) the mechanosensory 
bristle (yellow). (i) The photoreceptors: the six blue-sensitive outer 
photoreceptor cells are shown in shades of blue, and numbered in one of the 
two sections in which they can be seen. Their rhabdomeres are shown in 
black. Note the asymmetric trapezoidal arrangement of the rhabdomeres. 
The ultraviolet-sensitive apical central photoreceptor (R7) is shown in violet, 
and the blue/green-sensitive basal central cell (R8) is shown in green. Note 
the axons (labeled Ax) which project from the base of the ommatidium and 
innervate the optic lobes of the brain (not shown). (ii) The 1°, 2°, and 3° 
pigment cells are shown in shades of red, and one example of each class is 
labeled in the uppermost cross-section (1° pigment cells are in lightest red, 
and 3° in darkest). (iii) The cone cells (labeled CC in the uppermost section) 
secrete the lens (L) and the fluid-filled pseudocone (C). (iv) The two cells 
that make up the mechanosensory bristle (b) are shown in yellow. Note that 
the bristle and 2° and 3° cells are shared among ommatidia. The convention 
is to count 20 cells per ommatidium: 8 photoreceptors, 4 cone cells, 2 1° 
pigment cells, 3 2° pigment cells, 1 3° pigment cell, and 2 bristle cells. (C) A 
scanning electron micrographsh owing ommatidial axons (Ax) emerging from 
the fenestrated membrane (formed by the feet of the 2° and 3° pigment cells) 

on the basal side of the retina. 

From the following article: Determination of Drosophila photoreceptors: 
timing is everything. C. A. Brennan and K. Moses. CMLS, Cell. Mol. Life Sci. 
57 (2000) 195–214. 
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1.6. Rhodopsin-1 mediated retinal degeneration 

Rhodopsin-1 (Rh-1) is a seven transmembrane domain glycoprotein which 

is synthesized and processed in the ER. Rh-1 is highly conserved and 

undergoes several types of post-translational modifications such as binding 

of the chromophore 3-hydroxyretinal and glycosylation (Webel et al., 2000). 

The post-translational modifications of Rh-1 are essential to maintain the 

proteins structure as well as its proper function in the visual transduction 

cycle.  

When properly folded and processed, Rh-1 is delivered via the secretory 

pathway to the rhabdomere membranes. Rh-1 requires the cyclophilin 

homolog NinaA as a chaperone for its exit from the ER and proper 

secretion (Colley et al., 1991; Ondek et al., 1992; Baker, E. K. et al., 1994). 

In addition, Xbp1-independent Ire1 signaling is required for proper 

rhabdomeric localization of Rh-1 and for the formation of the rhabdomere 

(Coelho et al, 2013). 

Mutations that affect Rh-1 maturation or its delivery to the rhabdomere can 

cause retinal degeneration in flies and in humans. Rh-1 expression starts 

around 75-78% of pupal development and Rh-1 reaches the rhabdomere at 

around 84% of pupal development (Kumar and Ready, 1995). Rhodopsin is 

the most abundant membrane protein in the rhabdomere and plays a 

fundamental role in establishing and maintaining the rhabdomeres’ 

architecture. Null mutations of the Drosophila gene encoding Rh-1, ninaE, 

result in severe defects in the formation of the rhabdomeres. By 90% of 

pupal development, a specialized catacomb-like membrane structure 

develops at the base of the rhabdomeres. In ninaE null mutants this 

membrane structure does not develop and rhabdomeres start to 

degenerate and disappear one day after eclosion (Kumar and Ready, 

1995). It was shown that flies heterozygous for a wildtype rhodopsin gene 

and a deletion of Rh-1 display normal retinal morphology, demonstrating 

that one copy of the Rh-1 gene is sufficient to maintain a normal 
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photoreceptor cell structure. Whereas animals heterozygous for a wildtype 

gene and a mutated form show severe photoreceptor defects with missing 

rhabdomeres (Rh-1G69D). Retinal degeneration was shown to result from 

interference of the wildtype protein with the mutated form (Colley et al., 

1995).  

Misfolded Rh-1 can cause Retinitis Pigmentosa (RP), which is a group of 

hereditary human diseases that cause retinal degeneration and eventually 

lead to blindness. More than 25% of all RP cases in humans appear to be 

caused by dominant mutations in the rhodopsin gene, which shows 22% 

amino acid identity with the fly Rh-1 (Zuker et al., 1985; O’Tousa et al., 

1985). In Drosophila, mutations such as Rh-1G69D (Colley et al., 1995) or 

other mutations (for example in ninaA or Ire1), that affect the maturation of 

Rh-1 or its delivery to the rhabdomere, cause retinal degeneration. Another 

example is the mutation (Rh-1N20I) in the N-linked glycolysation 

consensus motif, which causes the retention of the wildtype as well as 

mutated Rh-1 in the ER or Golgi (Webel 2000).  

 

 

1.7. The cell cycle  

The cell cycle consists of periodic events ultimately leading to cell 

duplication, which is fundamental for the development of multi-cellular 

organisms (reviewed in Vermeulen et al, 2003). Classically, the cell cycle is 

divided into four distinct phases: G(GAP)-1, S-(synthesis) phase, G(GAP)-2 

and M-phase which consists of mitosis (nuclear division) and cytokinesis 

(division of the cytoplasm). G1, S-Phase and G2 together are also known 

as interphase. The crucial steps during cell proliferation are the duplication 

of genetic material and the equal separation of this material into two 

daughter cells. The first task is achieved during S-phase when DNA 

replication occurs. During mitosis, which is subdivided into five stages, 
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duplicated chromosomes are segregated to opposite sides of the cell where 

two daughter nuclei form, before the cytoplasm is cleaved (Pines and 

Rieder, 2001). G1 and G2 phases are characterized by cell growth and 

prepare the cell for S-phase and mitosis, respectively. Once a cell passed 

through the cell cycle it either prepares for a new round of cell division, or 

alternatively, it can leave the cell cycle to enter a dormant state, called the 

G (Gap)0 phase (Vermeulen et al., 2003). Some cells remain in this stage 

for ever, others might re-enter the cell cycle once growth factors are 

received. 

Progression through the cell cycle is regulated by the activity of cyclin-

dependent kinases (Cdks) and tightly controlled by several checkpoints. 

Cdks are proline-directed serine/threonine kinases that are only active 

when bound to cell cycle specific cyclins. However, Cdk activity is 

additionally regulated by Cdk inhibitors (CDKIs) and by its own 

phosphorylation status. Activated Cdks phosphorylate a wide range of 

substrates thereby orchestrating coordinated progression into the next cell 

cycle stage. While Cdks are expressed constitutively, levels of stage 

specific cyclins oscillate and thus modulate Cdk activity throughout the cell 

cycle.   

In the MF of the Drosophila eye imaginal discs, cells are in G1 and either 

differentiate into a neuronal fate or stay in G1, possibly re-entering the cell 

cycle in the SMW, posterior to the MF (Ready et al, 1976; Thomas et al., 

1994; Baker, 2001). The different cell cycle stages in Drosophila eye 

imaginal discs are shown in fig.8. 
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1.8. The GAL4-UAS System and mitotic recombination 

The GAL4/UAS system allows the ectopic expression of a gene in a 

specific tissue or cell type. Two transgenic fly lines are crossed, one parent 

fly wich is the UAS line (Upstream Activating Sequence where the gene to 

be expressed is placed downstream of the UAS) to the other parent fly 

Fig.8: Cell cycle stages in Drosophila eye imaginal discs. (A) Cartoon of 
an eye disc that shows populations of dividing and cell-cycle-arrested cells. I, 
first mitotic wave; II, second mitotic wave. G2-arrested cells have filled nuclei 
and are located basally posterior to the furrow. (B) Cartoon of same disc 
viewed from above (apical side of disk). Anterior is to the left. 

From the following article: Cell-by-Cell Dissection of Gene Expression and 
Chromosomal Interactions Reveals Consequences of Nuclear 
Reorganization. (2005). Brian Harmon, John Sedat. PLoS Biol 3 (3): e67 

 

 

 

David Ron & Peter Walter 

Nature Reviews Molecular Cell Biology 8, 519-529 (July 2007) 
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which is the GAL-4 line (contains the yeast transcriptional activator GAL-4). 

GAL-4 is under the control of a tissue specific promoter. The gene under 

control of the UAS is only activated when these flies are crossed with the 

GAL-4 line, also known as “driver”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Gal4-UAS system for targeted gene expression. The yeast 
transcriptional activator Gal4 can be used to regulate gene expression in 
Drosophila by inserting the upstream activating sequence (UAS) to which it 
binds next to a gene of interest (gene X). The GAL4 gene has been inserted at 
random positions in the Drosophila genome to generate 'enhancer-trap' lines 
that express GAL4 under the control of nearby genomic enhancers, and there 
is now a large collection of lines that express GAL4 in a huge variety of cell-
type and tissue-specific patterns. Therefore, the expression of gene X can be 
driven in any of these patterns by crossing the appropriate GAL4 enhancer-
trap line to flies that carry the UAS–gene X transgene. This system has been 
adapted to carry out genetic screens for genes that give phenotypes when 
misexpressed in a particular tissue (modular misexpression screens). From: St. 
Johnston, 2002 
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A mitotically dividing cell normally gives rise to daughter cells that are 

genotypically identical. However, if exchange of sister chromatids (mitotic 

recombination) occurs, the resulting daughter cells can be genotypically 

different provided that the mother cell is heterozygous for the marker/ 

mutation under study. Mitotic recombination can be induced between FRTs 

by a site-specific recombinase (FLPase), and clones of cells that are 

homozygous for a mutation can be generated during development.  

                                                            

 

 

 

 

Fig.10: Induction of mitotic clones by the Flp/FRT system. A 
mitotically dividing cell normally gives rise to daughter cells that are 
genotypically identical to itself. However, if the exchange of sister 
chromatids (mitotic recombination) occurs, the resulting daughter cells 
can be genotypically different provided that the mother cell is 
heterozygous for the marker/mutation under study. 
Mitotic recombination can be induced between FRTs by a site-specific 
recombinase (FLPase), and clones of cells that are homozygous for a 
mutation can be generated during development.  
From: Tabata, T., 2001. 
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1.9. Aims of the work 

The over-expression of the active transcription factor Xbp1s in the 

developing Drosophila eye leads to an eye degeneration phenotype. We 

wanted to investigate if this atrophic “glossy” eye phenotype is amenable 

for a modifier screen with EMS induced mutations making use of the 

Flp/FRT technique (Golic, 1991), in order to find downstream mediators of 

the Xbp1s induced cell death. 

From this genetic screen, we could recover and identify suppressor 

mutations in the gene CG6758, encoding an Fbox protein with unkown 

biological role. We further investigated the role of CG6758 in Xbp1s 

induced cell death and in other models of ER stress induced cell death in 

the Drosophila eye. We aimed at identifying the contribution of apoptosis 

and autophagy in Xbp1s conferred cell death and the involvement of 

CG6758 mutations in these processes. 
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Chapter II 

 

Identification of the SCF complex 

component Fbox
CG6758

 as a 

downstream mediator in Xbp1s 

induced “glossy” eye phenotype in 

Drosophila 
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Summary 

We performed a mosaic genetic screen aimed to identify suppressors 

of the retinal degeneration phenotype caused by Xbp1spliced (Xbp1s) 

over-expression in the Drosophila eye. By screening around 80.000 

mutagenized chromosome arms of the right arm of the second 

chromosome (2R), we could recover 32 lethal suppressor mutations, 

which form four different complementation groups. By mapping the 

mutations with the Bloomington deficiency kit and sequencing of 

candidate genes, we identified the molecular lesion for three of the 

complementation groups. To test if the complementation groups are 

real downstream mediators of Xbp1s conferred cell death, we tested 

our complementation groups in a secondary screen where we 

analysed whether GMR-GAL4>UAS-DsRed expression in eye imaginal 

discs or pupa is reduced in clones homozygous for the suppressor 

mutations. Only for CG6758, the transgene expression was equal in 

mutant and wildtype tissue. To test whether CG6758 is a downstream 

mediator of Xbp1s or modulates Xbp1s protein levels, we also tested 

Xbp1s protein levels in mosaic eye discs and pupal eyes. Xbp1s 

protein levels were equal in CG6758 mutant clones and control tissue, 

making CG6758 a real downstream mediator of GMR-GAL4>UAS-

Xbp1s induced cell death. To be absolutely sure that the suppression 

effect of the mutant CG6758 alleles in the “glossy” eye is due to 

mutations in CG6758, we tested different rescue constructs for their 

ability to revert the suppression effect ([P]acman reagent CH322-

12H15, UAS-CG6758-GFP, UAS-3xHA-3xFlag-CG6758) and found for 

all the constructs rescue.  

To test whether CG6758 acts in an SCF E3 ubiquitin ligase complex in 

the context of the Xbp1s induced “glossy” eye and not independenty, 

we analysed RNA interference (RNAi) constructs of different SCF 

complex components for their ability to suppress the “glossy” eye.                                                                                  
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phenotype. Most of the tested constructs showed a suppression of 

the “glossy” eye phenotype. 
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Introduction 

We performed a mosaic genetic screen in the Drosophila eye to identify 

novel mediators of IRE1/Xbp1 signaling. Over-expression of Xbp1spliced 

(Xbp1s) in the Drosophila eye by the GMR-GAL4 driver leads to flies with 

“glossy” eyes (fig.11). The GMR-GAL4 driver is active in all cells posterior 

to the morphogenetic furrow except in the peripodial membrane.            

Cells that emerge posterior to the MF can be divided in two subpopulations, 

the cells of the ommatidial preclusters, which acquire a neuronal fate (R8, 

R2/R5, R3/R4) and undifferentiated cells surrounding the preclusters. 

Subsequently, after a last round of cell division, R1 and R6, and, finally, R7 

as well as the cone cells are recruited and begin differentiating within the 

newly formed ommatidium. Specification of the primary, secondary and 

terciary cells as well as the bristle cells only occur in the first half of pupal 

development. By mid pupal stages, after specification of all cell types, there 

is a wave of cell death that eliminates extra cells that do not fit in the lattice 

(Wolff and Ready, 1991b). GMR is active in all cells of the retina in the 

pupa and adult stages, meaning that we induced Xbp1s over-expression in 

all ommatidial cell types.                                                            

The external visible induced “glossy” eye phenotype is based on decreased 

lens and pigment deposition due to cell death induced by Xbp1s over-

expression.  
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In our screen, we induced mosaic eyes by the Flp/FRT technique (Golic 

1991, fig.10) and searched for mutations that suppress the „glossy“ eye 

phenotype caused by GMR-GAL4 driven over-expression of Xbp1s and 

could be defined by more pigmentation (and more structured ommatidial 

patterning) (fig.11). First, we tested the right chromosome arm of the 

second chromosome (2R) for downstream mediators of Xbp1s induced cell 

death. 

 

Fig.11: Over-expression of Xbp1s in the developing Drosophila eye 
leads to cell death. (A) Wildtype Drosophila eye. (B, C) Over-expression of 
UAS-Xbp1s with the GMR-GAL4 driver leads to a “glossy” eye phenotype. 
The external visible “glossy” eye phenotype is based on decreased lens and 
pigment deposition due to cell death induced by Xbp1s and is amenable to 
modifier genetic screens. (B) UAS-Xbp1s-HA construct. (C) UAS-Xbp1s 
construct with no tag. 

WT 
GMR-GAL4>       GMR-GAL4> 
UAS-Xbp1s-HA     UAS-Xbp1s 
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In our large-scale mutagenesis screen we used the mutagenic agent Ethyl 

methanesulfonate (EMS) to induce point mutations by alkylation of 

guanines. For mutagenesis, males with the appropriate FRT chromosome 

were starved for 8 hours and fed with a sugar-EMS solution (25mM EMS) 

overnight before being crossed with female virgins carrying eyFlp, GMR-

Gal4, UAS-Xbp1s and the corresponding FRT, UbiGFP chromosomes.  

Progeny of this genetic cross with cell clones showing suppression of 

“glossyness” in the eye (more pigmentation and maybe more ommatidial 

patterning in the clones), potentially harboured a mutation in a gene 

required for Xbp1s induced cell death. 

In our screen we could recover 32 suppressor mutations, meaning that 

those genes in which we obtained mutations could be required for cell 

death downstream of Xbp1s. It is also possible that the mutations somehow 

Fig. 12: Crossing scheme for the mosaic genetic screen. Virgin females 

over-expressing GMR-GAL4>UAS-Xbp1s with the FRT42D, UbiGFP 

chromosome were crossed to males treated with EMS, bearing the FRT42D 

chromosome. The F1 generation was screened for suppressors of the 

“glossy” eye phentotype. Such suppressors were crossed to double 

balancer flies to establish stable lines. 
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affect the UAS-Xbp1s transgene expression. For example, some mutations 

could lead to decreased levels of UAS-Xbp1s transgene expression, due to 

a reduction in overall transcription levels, or to some detrimental 

modification of GMR-GAL4, which is responsible for driving the UAS-Xbp1s 

transgene expression. 

It is also possible that the suppressor mutation is in a gene that is involved 

in Xbp1s protein levels (for example by conferring stability). In homozygous 

clones of such suppressor mutations, there would be less Xbp1s protein, 

leading to a suppression of the “glossy“ eye phenotype. 

To distinguish between the possibilities of how a suppressor mutation can 

lead to reduced “glossyness” in the eye, we performed a secondary screen 

where we analyzed the expression of an unrelated GAL4/ UAS driven 

transgene (UAS-DsRed) in homozygous suppressor mutant clones. In 

addition, we analysed Xbp1s protein levels in homozygous suppressor 

mutant clones by immunofluorescent staining. 

In our screen we identified CG6758, an Fbox protein with unknown function 

as a downstream mediator of Xbp1s induced cell death. 

Phenotype driven genetic screens require an approach to identify the 

isolated mutations. Most of the mutations in CG6758, which suppress the 

“glossy” eye phenotype, are premature STOP codons that likely constitute 

strong loss of function alleles or even protein nulls. For these mutations, a 

rescue of the suppression effect leading to “normal glossyness” should be 

achieved by expressing CG6758 function in the background of 

homozygous CG6758 mutant suppressor clones. This can be done by 

using either a rescue construct which harbours the genomic region of 

CG6758, including its regulatory sequences, or by expression of UAS-

CG6758 under the control of an eye specific GAL4 driver. 

 

Fbox proteins are part of SCF ubiquitin ligase complexes which consist of 

three core units, an Fbox protein, SkpA and Cullin, whereby the Fbox 
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protein is linked to SkpA via its N-terminal Fbox domain. Besides being part 

of an SCF E3 ubiquitin ligase complex, Fbox proteins may also act 

independently of SCF complexes (reviewed in Hermand 2006). 

To analyse the function of a newly discovered Fbox protein, it is necessary 

first to differentiate if it is acting as part of an SCF complex or 

independently of an E3 ubiquitin ligase complex. 

 

 

Material and Methods 

Genetic Screen: 

The FRT42D stock was isogenized for the second chromosome and males 

were collected for EMS treatment. The males were starved for 8 hours in 

empty plastic vials and fed with a 25mM EMS solution overnight for 16-18 

hours (paper tissue soaked with EMS solution on the bottom of the vials). 

After EMS treatment, around 60 males were given one hour for recovery on 

tissue paper and were then crossed en masse to around 150 virgins of the 

genotype eyFlp, GMR-GAL4, UAS-Xbp1spliced (fig.10). The crosses were 

settled in new bottles every day, for four days in total and the F1 generation 

was screened for suppressors of the “glossy” eye phenotype. Suppressors 

of the “glossy” eye phenotype were crossed to double balancer flies and 

the potential mutation was balanced over CyO. After establishment of a 

stock, the flies were retested for a reproducible phenotype. Only 

suppressor stocks with a lethal mutation were kept, which was necessary 

for mapping of the mutations (see 2.2. and 2.3.).  

 

Preparation of EMS solution: 

0,18g sucrose 
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16ml H2O 

2ml 1M Tris-HCL (pH 7,5) 

48,7µl EMS (1.206 g/mL at 20 °C)  

 

Complementation analysis: 

Each suppressor line obtained in the screen was crossed to each other to 

bring the mutations in trans and the progeny was analysed if unbalanced 

flies or flies only with the balancer CyO existed. If there were only CyO 

balanced progeny, it means that the two suppressor mutations are lethal in 

trans and probably have a lethal hit in the same gene. 

 

Mapping with the Bloomington 2R deficiency kit: 

For mapping the suppressor mutations with the 2R deficiency kit (from the 

Bloomington Drosophila Stock Center), virgins of the suppressors balanced 

over CyO were crossed to males of each of the stocks bearing the 

balanced deficiencies and the F1 generation was screened for trans-

heterozygosity. When we observed in the F1 generation balanced flies 

only, we were sure that the lethal hit of our mutation is located within the 

region of the deficiency. When we observed lethality in the 

suppressor/deficiency cross, we then crossed our suppressor mutations to 

additional deficiencies covering the region, until we could define the 

smallest region harbouring the suppressor mutation. We then tested lethal 

mutations in candidate genes in the region for trans-lethality with our 

mutations. The molecular identification of the mutations was done by 

genomic DNA sequencing of candidate genes from larvae homozygous for 

the suppressor mutations. 
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2R General deficiency kit   

Deficiency 

 

Deficient region 

 

Deficiency 

 

Deficient region 

Df(2R)M41A10  41A;41A Df(2R)BSC305  49A4;49A10 

Df(2R)BSC630 41D3;41F11 Df(2R)Exel7121  49B5;49B12 

Df(2R)ED1484  42A2;42A14 Df(2R)CX1  49C1--4;50C23--
D2 

Df(2R)ED1612  42A13;42E6 Df(2R)Exel6062  49E6;49F1 

Df(2R)ED1673  42E1;43D3 Df(2R)Exel8057  49F1;49F10 

Df(2R)ED1715  43A4;43F1 Df(2R)BSC361  50C3;50F1 

Df(2R)ED1725  43E4;44B5 Df(2R)BSC383  50C6;50D2 

Df(2R)BSC267  44A4;44C4 Df(2R)Exel7130  50D4;50E4 

Df(2R)ED1770  44D5;45B4 Df(2R)Exel7131  50E4;50F6 

Df(2R)ED1791  44F7;45F1 Df(2R)Jp6  52E--5;52F 

Df(2R)BSC280  45C4;45F4 Df(2R)Exel9060  52E11;52F1 

Df(2R)BSC132  45F6;46B4 Df(2R)Exel6063  52F6;53C4 

Df(2R)BSC298  46B2;46C7 Df(2R)BSC550  53C1;53C6 

Df(2R)X1, Mef2[X1] 46C;47A1 Df(2R)Exel7144 53C8;53D2 

Df(2R)BSC152  46C1;46D6 Df(2R)Exel6064  53C11;53D11 

Df(2R)BSC303  46E1;46F3 Df(2R)ED2747  53D11;53F8 

Df(2R)BSC281  46F1;47A9 Df(2R)BSC331  53D14;54A1 
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Additional deficiencies and lethal mutations tested for complementation 

group 1 

Df(2R)BSC595  47A3;47F1 Df(2R)Exel6066  53F8;54B6 

Df(2R)ED2219 47D6;48B6 Df(2R)BSC161  54B2;54B17 

Df(2R)ED2247  48A3;48D5 Df(2R)BSC355  54B16;54C3 

Df(2R)BSC199  48C5;48E4 Df(2R)Exel7149  54C10;54D5 

Df(2R)BSC699  48D7;48E6 Df(2R)BSC347  54D2;54E9 

Df(2R)BSC425  48F1;49A1 Df(2R)Kr10  60E10;60F5 

Df(2R)Exel6061  48F1;49A6 Df(2R)ED50004  60F5;60F5 

Df(2R)vg135  49A;49E1-2   

Deficiency Deficient region 

Df(2R)PK1 57C5-57F5-6 

Lethal mutation Affected gene 

Mi{ET1}Xpd[MB04535]  Xpd 

Pu[W]  Punch 

Pu[2]  Punch 

tud[1]  Tudor 

tud[1]  Tudor 
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Additional deficiencies and lethal mutations tested for complementation 

group 2 

P{GawB}NP4252  Glycogenin 

dom[3]  Domino 

dom[9]  Domino 

PBac{y[+mDint]=3HPy[+]}dom[C281]  Domino 

P{w[+mC]=lacW}Sdc[k10215]  Syndecan 

P{w[+mGT]=GT1}Sdc[BG02774]  Syndecan 

P{ry[+t7.2]=PZ}Fkbp14[00734]  CG9847 

P{w[+mC]y[+mDint2]=EPgy2}TAF1C-
like[EY20677]/  

 CG10496   

P{w[+mC]=lacW}MESK2[k00119]  MESK2  

P{ry[+t7.2]=PZ}MESK2[01467]  MESK2 

P{y[+mDint2]w[BR.E.BR]=SUPor-
P}MESK2[KG10185]  

MESK2 

Egfr[t1]  Egfr 

Egfr[f2]  Egfr 

Deficiency Deficient region 

Df(2R)BSC160  [47F12-47F12];[48A5-48A5]  

Df(2R)BSC259  [48A3-48A3];[48C4-48C4]  
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Additional deficiencies and lethal mutations tested for complementation 

group 3 

Df(2R)BSC263  [42F2-42F2];[43C1-43C1]  

Df(2R)BSC264  [43B2-43B2];[43C5-43C5]  

Df(2R)en[E]  47F17-48A1 

Lethal mutation Affected gene  

P{w[+mC]=EP}Eaf[E
P2475]  

ELL-associated factor  

P{w[+mC]=XP}so[d0
9734] 

sine oculis  

E(Pc)[1]  Enhancer of Polycomb  

qvr[Delta40]  quiver  

tou[2]  toutatis  

Deficiency Deficient region 

Df(2R)Pu-D17  57B4;58B1-2 

Df(2R)2-65  57C2;58B2 

Df(2R)XE3030  57C2;58C 

Df(2R)BSC484/  57C3;57C7 

Df(2R)Egfr5  57D--8;58D1 

Df(2R)BSC664  57D12;58A3 
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Df(2R)BSC360  57E6;58A4 

Df(2R)BSC813  57F5;58B3 

Df(2R)BSC786  57F6;58B3 

Df(2R)BSC424  57F8;58E3 

Df(2R)01D01Y-R21 57F9--58A2;58D1-2 

Df(2R)Exel6077  57F10;58A3 

Df(2R)ED3943  57F10;58D4 

Df(2R)BSC597  58A2;58F1 

Df(2R)BSC802  58A3;58B3 

Df(2R)Exel7170  58B1;58C1 

Df(2R)Exel6078  58B1;58D1 

Df(2R)X58-7  58B1-2;58E1--4 

Df(2R)X58-8  58B3;59A1 

Df(2R)01D01Y-R09  58B--10;58D1-2 

Df(2R)ED3952  58B10;58E5 

Df(2R)Exel7171  58C158D2 

Df(2R)01D01W-L133  58D1-2;58D2 

Df(2R)01D01W-L186  58D1-2;58D2--7 

Df(2R)01D01W-L197  58D1-2;58D2--7 

Df(2R)01D01W-L053  58D1-2;59A 
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Sequencing: 

For sequencing we collected homozygous mutant larvae (in all cases L3 

larvae could be observed) from apple agar plates and prepared genomic 

DNA for PCR. Homozygous larvae could be observed after replacing the 

CyO balancer with the CyO-GFP balancer. The absence of the GFP signal 

in the larvae indicated homozygosity for the suppressor mutation. As 

control, we also sequenced the candidate genes in the parental isogenized 

FRT42D chromosome. 

Df(2R)01D01W-L149  58D2;58E1 

Df(2R)02311  58D2;58E1 

Df(2R)Exel7173  58D4;58E5 

Df(2R)BSC598  58F3;59A1 

Df(2R)BSC787  58F4;59B1 

Lethal mutation Affected gene 

Df(2R)a[7]  arc 

Df(2R)a[EX1]  arc 

P{GawB}NP7371  CG3074 

P{w[+mC] 
y[+mDint2]=EPgy2}Vps35
[EY16641]  

Vps35 

P{w[+mC] 
y[+mDint2]=EPgy2}Vps35
[EY14200]/  

Vps35 
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Genomic DNA preparation was done with the High Pure PCR Template 

Preparation kit from Roche. The DNA was eluted in H2O. 

 

apple juice agar plates (for 1L): 

20g agar-agar 

750ml H2O 

20g sucrose 

250ml apple juice 

12ml Nipagin (10% in EtOH)   

 

PCR: 

The PCR was performed with Phusion Polymerase from 

Fermentas/Thermo. 

The primers for sequencing were chosen to include the region of the ORF. 

Primers for sequencing Eaf in Su 280 and Su344: 

forward primer 1: tccaagatgcacccatcttggc (Eaf1) 

reverse primer 1: gacaaaccagcgctttcg (Eaf6) 

Eaf1 + Eaf6 to PCR the ORF of Eaf 

forward primer 2: cggattgccagtgctttcgca (Eaf2) 

reverse primer 2: tgaacggcccaatactgttcc (Eaf3) 

forward primer 3: ccaccgacctgctggccacc (Eaf4) 

reverse primer 3: gcaggcagcttgccatcctgc (Eaf5) 

Eaf1, Eaf2, Eaf3, Eaf4, Eaf5, Eaf6 for sequencing the ORF of Eaf.  
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Primers for sequencing Xpd in Su95-a, Su102a, Su373 and Su396: 

forward primer 1: tgctcagctctaggaagaacatgtgc 

forward primer 2: cctgtgtggtctttgatgaggcgc 

forward primer 3: cacgcttgagatcagtgatttgacgg 

forward primer 4: caacgaccaggtgaccatttcgtcc 

forward primer 5: catgcatgtgcaaccagtctcaccg 

forward primer 6: gatccaagagcatctggtggacagc 

reverse primer 1: tgtgtgctagtgtacttcacgatcgc 

forward primer 1 + reverse primer 1 to PCR the ORF of Xpd, all primers for 

sequencing reaction. 

Primers for sequencing Med16 in Su218b and Su359: 

forward primer 1: agtagttggcagacgccg 

reverse primer 1: ctgggactcggatttgatggc 

forward primer 2: ccagaccagcatatttctgggtcc 

reverse primer 2: gctccactgtaaagtccttggcg 

forward primer 3: gctgatggtcctgccacgagg  

reverse primer 3: ccacgatgtctcggctgatatcg  

 

Primers for sequencing CG6758 in Su212b, Su217c, Su218b, Su226, 
Su357 and Su359: 

forward primer 1: gcacggtcacactgttcgcagc 

reverse primer 1: gcaggaattgctgcgcttgc  

forward primer 2: aaggggataccggataccag 

reverse primer 2: ccttcaaagttcggcgtaag 
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Sequencing was done by Stabvida. 

 

GMR-GAL4-UAS-DsRed expression 

To test the suppressor mutations for GMR-GAL4>UAS-DsRed expression, 

flies with the corresponding genotype were generated after the following 

crossing scheme: 

 

 

 

 

Immuno-staining of wing imaginal discs 

Wing imaginal discs of L3 larvae of the genotype T155-Gal4, UAS-Flp; 

FRT42D, UbiGFP/ FRT42D, Su226 were dissected in PBS and immuno-

stained with a guinea pig anti-senseless antibody (a gift from Hugo Bellen) 

as primary antibody and the appropriate secondary antibody (Jackson 

Fig.13: Crossing scheme to analyse GMR-GAL4>UAS-DsRed 

expression in the four complementation groups. Virgins expressing 

GMR-Gal4>UAS-DsRed and bear the corresponding FRT42D, UbiGFP 

chromosomes were crossed to the different suppressor lines. DsRed 

expression could be analysed in the F1 generation. 
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ImmunoResearch), following the protocol for staining of eye imgainal discs 

(see below, p.56).  

 

Immuno-staining of eye imaginal discs and pupal eyes: 

Eye imaginal discs were dissected in PBS and incubated with 4% 

Formaldehyde in PBS for fixation for more than 20 minutes. After washing 

the discs 3x with PBT for 10 minutes, they were incubated with the primary 

antibodies at 4°C, overnight. Following 3x10min washes in PBT, the discs 

were incubated with the secondary antibodies (here: Cy5/ Phalloidin-FITC 

from Sigma) for one up to three hours at RT and then washed with PBT 

(3x10min). Primary antibodies were rat anti-Elav (DSHB, 7E8A10) and 

mouse anti-HA (Covance, MMS101P). Fluorescent conjugated secondary 

antibodies were obtained from Jackson ImmunoResearch. The final 

dissection took place in PBT and the discs were mounted on a slide in 90% 

glycerol and analysed under the confocal microscope (Zeiss LSM710). 

Pupal eyes were dissected in 4% Formaldehyde and fixed for more than 

one hour, the staining procedure was the same as for the eye imaginal 

discs. 

 

Cloning: 

The CG6758 cDNA (cDNA clone GH08266, Drosophila Genome Resource 

Center) was cloned into the Gateway destination vectors pTWG and 

pTFHW following Invitrogen Gateway protocol.  

Primers to PCR CG6758 and create an entry clone: 

Entry clone for pTWG 
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Forward primer FP-GWS-C-Fbox: 

ggggacaagtttgtacaaaaaagcaggcttcaccatggacgcgagcagatacaagg 

Reverse primer RP-GWS-C-Fbox: 

ggggaccactttgtacaagaaagctgggtcgataatatcacgtggcacactcagg 

Entry clone for pTFHW 

Forward primer FP-GWS-N-Fbox: 

ggggacaagtttgtacaaaaaagcaggcttcgacgcgagcagatacaagg 

Reverse primer RP-GWS-N-Fbox: 

ggggaccactttgtacaagaaagctgggtcctagataatatcacgtggcacactcagg 

The generated plasmids were amplified and purified using the nzytech Midi-

prep kit and then sequenced by Stabvida. 

The UAS-CG6758-GFP (recombination into pTWG) and UAS-3xHA-

3xFlag-CG6758 (recombination into pTFHW) transgenic lines were 

generated by random P-element mediated transformation. The CH322-

12H15 genomic construct from the P[acman] library was integrated into the 

genome by ɸC31 integrase-mediated transgenesis (acceptor strain #8622, 

attP2). The injection of DNA into embryos to establish Drosophila 

transgenic lines was performed by BestGene. w+ transformants were 

selected and stable transgenic stocks were established.  

 

RNAi for SCF components in the adult “glossy” eye: 

Flies with the following genotype were generated: eyFlp, GMR-GAL4, UAS-

Xbp1s; [RNAi]/ CyO or Sco or eyFlp, GMR-GAL4, UAS-Xbp1s; (); [RNAi]/ 

+.  Flies were analysed under the dissecting microscope. 
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Results 

2.1. The mosaic genetic screen 

In order to do a saturation screen, we analysed around 80.000 progeny 

flies for the right arm of the second chromosome (2R) and we could recover 

32 lethal mutations that suppress the Xbp1s induced “glossyness” and 

could be identified by more pigmentation (and a more defined ommatidial 

patterning) in the homozygous mutant clones (fig.14).  

We recovered the following suppressor mutations (the number indicates the 

bottle in which the mutation was found): Su95-4, Su102a, Su110, Su138b, 

Su209b, Su212b, Su217c, Su218b, Su226a, Su233, Su273-1, Su274-1, 

Su280, Su282, Su287, Su289a2, Su289b, Su209-1, Su309-2, Su311, 

Su323, Su336, Su344, Su357-3; Su359, Su373, Su396, Su397, Su408, 

Su436, Su441, Su442. 

Additionally we could recover 9 enhancer mutations, where the 

pigmentation in clones homozygous for the mutations was less than in the 

control “wildtype” and heterozygous tissue. 

 

  

 

 

 

 

 

Fig.14: In the mosaic genetic screen, suppressors and enhancers 

were found. (A) “Glossy” eye phenotype due to the GMR-GAL4>UAS-

Xbp1s over-expression. (B) Supressor of “glossy” eye phenotype (Su274), 

the eye pigmentation is restored as well as there is a more defined 

ommatidial patterning in the homozygous mutant cell clones. (C) Enhancer 

of “glossy” eye phenotype (E317), there is less pigmentation in the 

homozygous mutant cell clones. 
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2.2. Complementation analysis between the suppressor mutations 

In our mosaic genetic screen we searched for mutations that suppressed 

the Xbp1s induced “glossy” eye phenotype, but for mapping we used 

lethality. In order to be sure that lethality and the suppression effect is due 

to a mutation in the same gene, and since EMS with a 25mM concentration 

can induce on average one mutation every 400kb (Cooper et al. 2008; 

Blumenstiel et al. 2009), we tried to find complementation groups among 

our suppressor mutations. If two suppressor mutations were lethal in trans, 

we could be sure that lethality and suppression in these mutants were due 

to hits in the same gene. 

Therefore we crossed every lethal stock obtaind from the screen to each 

other, and among the 32 isolated suppressor mutations we could identify 

four different complementation groups.  

The first complementation group consists of four alleles, Su95-4, Su102a, 

Su373 and Su396. The second complementation group consists of two 

alleles, Su 280 and Su344. In those two complementation groups, lethality 

was observed when bringing the alleles in trans. The third complementation 

group consists of 14 alleles, Su209b, Su212b, Su217c, Su218b, Su226a, 

Su273-1, Su274-1, Su311, Su323, Su336, Su357-3; Su359, Su397 and 

Su442. Not all of these alleles were lethal when in trans, for some 

combinations we could observe an out-held wing phenotype (fig.15), 

especially when the crosses were raised below 25°C. 

 

 

 

Fig.15: Out-held wing phenotype observed 

in complementation group three. Some of 

the alleles of complementation group three 

are not lethal in trans, but give rise to an out-

held wing phenotype. This wing phenotype is 

also observed with some deficiencies 

covering the mutated region (here: Su273). 
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The fourth complementation group consists of three alleles, Su309-2, 

Su434 and Su441. All these alleles were lethal when in trans. 

 

 

2.3. Mapping of the complementation groups with deficiencies 

Mapping was performed with the Bloomington deficiency kit. Lethality is 

necessary for mapping with deficiency kits, because mapping is done by 

complementation analysis with a collection of stocks containing different 

deletions in the genome. After mapping the mutations to a small region in 

the genome, we sequenced the candidate genes to identify the gene 

affected and the molecular nature of the mutations. 

 

Xeroderma pigmentosum group D (Xpd) 

For the first complementation group (Su95-4, Su102a, Su373, Su396) the 

deficiency with the common lethality when in trans over the suppressor 

mutations, was the deficiency Df(2R)ED3791 (57B1-57D4). After crossing 

Fig.16: Complementation analysis between some suppressors of 
complementation group three. Complementation between suppressor 
mutations of complementation group three leads to lethality (x) or the out-
held wing phenotype (w). 
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the mutations to the deficiency Df(2R)PK1 (57C5-57F5-6), we could render 

the mutation to 50 potential genes. We tested lethal mutations of those 

genes, when available, in trans over our mutations and lethality was found 

with a lethal transgenic element insertion in the gene Xeroderma 

pigmentosum group D (Xpd) (Mi{ET1}Xpd[MB04535]). After sequencing of 

the ORF of the four suppressor mutations, we found the following 

mutations:  For Su95-4/Su396 we found C134Y, for Su102a C513Y and 

for Su373 we found the amino acid substitution R630W. 

Xpd is a DNA helicase which is involved in three crucial cellular processes: 

DNA repair by nucleotide excision repair (NER), cell cycle regulation and 

transcription (reviewed in Cameroni et al, 2010). 

Mutations in the human gene ERCC2 , which encodes the human Xpd lead 

to the inherited rare disease of Xerodermis pigmentosum type D, which 

makes patients very sensitive for skin cancer. Mutations in ERCC2 can also 

lead to Cockayne Syndrome type 2.  

Xpd is part of the transcription factor IIH (TFIIH), which catalyses the 

opening of the DNA double strands during transcription after assembly of 

the pre-initiation complex. Xpd has a similar role during NER. 

As part of TFIIH, Xpd links the core TFIIH to the CDK activating kinase 

(CAK) complex. The TFIIH complex which consists of 10 subunits 

possesses helicase activity and kinase activity, provided by the cyclin-

dependent kinase 7 (Cdk7). Cdk7 is required to phosphorylate diverse 

transcription factors as well as the carboxy terminal domain (CTD) of RNA 

Polymerase II (RNA Pol II). Cdk7 in CAK also phosphorylates other Cdks 

as an essential step for Cdk activation during cell cycle. In Drosophila it 

was shown that CAK activity of Cdk7 is negatively regulated by Xpd (Chen, 

G. et al., 2003). Excess Xpd titrates CAK activity which results in less 

activation of Cdks, mitotic defects and lethality, whereas a decrease in Xpd 

leads to excess phosphorylation of Cdks leading to over-proliferation. Xpd 

is cell cycle dependently-expressed, its expression is downregulated at the 

beginning of mitosis which results in cell cycle progression due to increased 
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CAK activity. Since Xpd bridges the core TFIIH to the CAK complex, the 

downregulation of Xpd at the beginning of mitosis also leads to mitotic 

transcription silencing presumably due to diminished TFIIH/CAK-dependent 

phosphorylation of the RNA PolI CTD.  

 

Ell-associated factor (Eaf) 

The second complementation group (Su280, Su344) was lethal over the 

deficiencies Df(2R)Kr10, spanning from 60E10-60F5. Additionally it was 

lethal in trans with the deficiencies Df(2R)ED2219 (47D6-48B6), 

Df(2R)ED2222 (47F13-48B6) and the deficiencies Df(2R)ED1715 (43A4-

43F1) and Df(2R)ED1673 (42E1-43D3).  

 

Since Df(2R)Kr10 has more than 500kb deleted (flybase), which are 

replaced by known and unknown chromosomal material, we first focussed 

on the deficiencies Df(2R)ED2219 and Df(2R)ED2222, however, crossing 

the mutations to deficiencies that cover the region between 47F13 and 

48B6 revealed no lethality. Then we crossed Su280 and Su344 to different 

deficiencies that cover the region 43A4-43D3 and found lethality with the 

deficiencies Df(2R)BSC263 (42F2-43C1) and Df(2R)BSC264 (43B2-43C5), 

suggesting a hit in the region 43B2-43C1. In the region covered by these 

deficiencies, there were 14 candidate genes. We tested available lethal 

mutations of those genes for lethality in trans and found a lethal EP 

element insertion in the gene Ell-associated factor (Eaf) 

(P{w[+mC]=EP}Eaf[EP2475] ) to be lethal in trans with Su280 and Su344. 

To find the mutation in Su280 and Su344, we sequenced the ORF of these 

two mutations and found a hit in Su280 (C>T) leading to an early stop 

codon (CAG>TAG) at amino acid position 197. According to Flybase, Eaf 

protein has two isoforms which are 504 and 450 amino acids (aa) long. 



 64 

The human homologues of the Drosophila Ell-associated factor, Eaf1 and 

Eaf2 are strong positive regulators of ELL elongation activity. Ell (RNA 

polymerase II elongation factor eleven-nineteen lysine-rich in leukemia)  

transcription factors stimulate the overall rate of elongation by RNA Pol II 

due to suppression of transient pausing of RNA Pol II along the transcript 

by physically interacting with RNA Pol II (Kong et al., 2005). In Drosophila 

Ell also interacts with RNA Pol II at transcriptionally active sites on polytene 

chromososmes. Knockdown of dELL and dEaf by RNA interference shows 

that both proteins are essenial for fly development. Upon induction, dEll is 

recruited to heat shock loci and its presence together with RNA Pol II is 

essential for proper heat shock gene expression, only after recruitment of 

Ell to the heat shock loci, there is proper phosphorylation of RNA Pol II 

(Smith, E. R. et al., 2008). It was also shown in a genetic screen in 

Drosophila, that Eaf is involved in wound healing (Campos et al, 2010). 

In the mammalian system Xbp1s was shown to activate Ell transcription 

(Acosta-Alveolar et al., 2007).  

 

CG6758 

For the third and biggest complementation group (14 alleles) we found the 

non-overlapping deficiencies Df(2R)BSC19 (56F12-14-57A4) and 

Df(2R)BSC597 (58A2- 58F1) as common deficiencies which were lethal in 

trans over the tested alleles. Since the molecular lesion of Df(2R)BSC19 is 

not molecularly defined and we observed no lethality with the covering 

deficiencies Df(2R)Exel7162 (56F11-56F16) and Df(2R)BSC701 (56F15-

57A9), we focussed on the region 58A2-58F1 and tested different 

deficiencies covering this region (fig.17). With some deficiencies we found 

the out-held wing phenotype (fig.15), with others lethality, also the same 

region was supposed to be deleted, this can be due to chromosomal 

material that was deleted and integrated somewhere else in the genome. 
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However we could render the position of our mutations to the region 58C1-

58D2, harbouring 12 genes (fig.18). 

 

 

 

 

Fig.17: Mapping of complementation group three gave contradictory 
results. Additional deficiencies to the general deficiency kit were used to 
map complementation group three. Green bars represent deficiencies which 
were viable and red bars deficiencies that were lethal in trans over the 
suppressor mutations. Deficiencies represented by yellow bars gave rise to 
the outheld wing phenotype when crossed to suppressors of 
complementation group three. 
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With the deficiency Df(2R)aEX1 we found lethality or the held-out wing 

phenotype for all our 14 alleles. Crossing our suppressor mutations to 

Df(2R)a[7], a lethal deletion of the arc gene, gave non-balanced offspring, 

suggesting that the hit was not in arc or the two intergenic genes CG11629 

and gom. Since the 3 prime end of Df(2R)aEX1 is not defined molecularly 

(Liu, X. et al., 2000), we tested how far the deficiency reaches by crossing 

Df(2R)aEX1 to lethal P element insertions in Vps35 and CG3074. Since no 

lethality was observed, we could conclude that the deficiency does not 

reach the Vps35 gene. Additionally, our suppressor mutations were not 

lethal over the lethal P element insertion in Vps35. Nevertheless, we tested 

if Vps35 could be our gene of interest by checking senseless expression in 

clones of Su226 in wing imaginal discs (fig.18), since it was shown that  

senseless is not expressed in vps35 mutant clones (Franch-Marro et al., 

2008). We observed normal senseless expression in homozygous mutant 

clones for Su226 (fig.18) and so we rendered our region of interest to six 

genes.  

Fig.18: Zoom in of fig.16. 
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Since no lethal alleles of these six genes exist, we started to sequence the 

ORF of Med16 in two of the alleles (Su218 and Su359), but found no hit. 

Our second attempt was to sequence CG6758 and we found several 

mutations for the sequenced alleles. In total we sequenced seven of the 14 

alleles - Su209, Su212b, Su217c, Su218b, Su226, Su357 and Su359. The 

ORF of CG6758 encodes a 667 amino acid (aa) long protein. Su209 has a 

G>A mutation, leading to a premature STOP codon at position 130 aa. For 

Su212b, Su217c and Su218b we found the same 11bp deletion (aa 344-

347), leading to a frameshift and an early stop codon at position 423 aa. 

For Su226a we found two mutations in the ORF (C>T) leading to an amino 

acid substitution (threonin to methionin at position 218) and an early stop 

codon at position 435 aa. Likely, these mutants with premature STOP 

codons encode protein nulls, as it is known that mRNA with premature 

STOP codons are degraded by nonsense-mediated RNA decay (reviewed 

in Brogna and Wen, 2009). For Su359 we found one mutation in the ORF 

Fig.19: Senseless staining in complementation group three is 

normal. Mosaic wing imaginal discs of suppressor Su226 were stained 

with an antibody against senseless and analysed if in clones homozygous 

mutant for Su226 (absence of GFP) there is reduced senseless 

expression. Note: There is no difference in senseless expression in 

mutant and “wildtype” tissue and a mutation in Vsp35 was excluded. 

GFP               senseless 



 68 

(C>T) leading to the exchange from glycine to glutamic acid at position 639 

(fig.20). For Su357 we could not detect any mutation in the ORF, maybe 

the mutation lays within the promotor region of CG6758.  

 

 

 

 

 

In our screen we found 14 mutations in CG6758, from which we sequenced 

seven alleles. CG6758, with the cytological map location 58C5 encodes a 

protein with a Kelch repeat domain formed by three Kelch repeats and an 

Fbox domain (flybase). 

The Kelch domain, first found in the Drosophila protein Kelch, is a protein-

protein interaction domain. Proteins with an Fbox domain are known to be 

part of E3 ubiquitin ligase complexes (Skip-Cullin-Fbox complexes) 

catalyzing the ubiquitination of proteins destined for proteasomal 

degradation, whereby the Fbox domain of Fbox proteins bind SkpA/Skp1 in 

the complex. 

The Fbox protein is responsible for specificity of the complex, since it binds 

specific substrates (mostly phosphorylated) bringing them in proximity of 

GFP                                 

senseless 

Fig.20: Scheme of the CG6758 protein with the obtained mutations. The 

domain structure of the CG6758 protein with its Fbox domain and the three 

Kelch repeats is depicted. The molecular lesions of the sequenced CG6758 

alleles are shown. 
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the E2 Ubiquitin conjugating protein. There are three families of Fbox 

proteins named after their protein-protein interaction domains: FBXWs 

(WD40 repeats), FBXLs (leucine-rich repeats), or FBXOs (variable or no 

homology domains). The Drosophila genome contains 45 Fbox proteins 

(Dui et al., 2012), which are implicated in diverse cellular processes. 

The CG6758 protein is 667 aa long and its biological function is unknown. 

 

 

 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

 

 

 

The fourth complementation group was not mapped so far. 

 

 

 

Fig.21: SCF complex-mediated protein ubiquitination. In the SCF 

ubiquitin ligase complex, Fbox proteins bind to Skp1 (SkpA, in Drosophila) 

via the Fbox domain and recruit a substrate/target that is ubiquitinated by 

the complex. Protein ubiquitination occurs via a linked E2 ubiquitin ligase. 

(fig. from Skaar et al. (2009). SnapShot: Fbox Proteins I. Cell 137) 
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2.4. Testing the suppressor mutations for an effect on GMR-

GAL4>UAS-DsRed expression 

All the recovered suppressor mutations were tested in a secondary screen, 

to confirm that the suppression effect is not just the result of reduced GMR-

GAL4>UAS-Xbp1s transgene expression. Therefore, males bearing the 

suppressor mutation were crossed with female virgins carrying eyFlp, 

GMR-Gal4, UAS-DsRed and the corresponding FRT42D, UbiGFP 

chromosome. The eye imaginal discs of the offspring were analysed by 

confocal microscopy after dissection from 3rd instar larvae. The DsRed 

expression levels were compared between homozygous mutant clones, 

which were marked by the absence of GFP and “wildtype” GFP expressing 

control tissue. To confirm that the homozygous mutant clones are not just 

holes in the eye discs due to dissection errors, we also stained the discs 

with Elav which marks the photoreceptors.  

For the first, second and fourth complementation group we found reduced 

levels of DsRed expression in the homozygous mutant clones (fig.22), 

meaning transcription from the UAS-DsRed transgene is reduced. For the 

third complementation group we found no difference in DsRed expression 

between homozygous clones and sorrounding control tissue (fig.22), 

indicating that those alleles are potential downstream targets of Xbp1s. To 

be sure that during later pupal stages of development there is no reduced 

transgene expression, we also analysed DsRed expression in homozygous 

CG6758 mutant clones in mid pupal stages (fig.22). Also in the pupa there 

is no difference in transgene expression in mutant, “wildtype” and 

heterozygous tissue. 

Since mutations in Xpd and Eaf as well as mutations in the fourth 

complementation group lead to reduced expression of Xbp1s and thereby 

suppress the “glossy” eye phenotype, we could exclude that they are 
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downstream mediators of Xbp1s induced cell death. We further focussed 

on exploring the function of CG6758. 
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2.5. CG6758 acts downstream of Xbp1spliced 

Although DsRed expression is not altered in homozygous mutant clones of 

CG6758, which indicates that UAS-transgene expression is not affected, it 

was still possible that CG6758 mutants cause a reduction in the protein 

levels of Xbp1s, thereby reducing the “glossyness” in the eye. To test this 

hypothesis, we analysed the Xbp1s protein levels in mosaic eye imaginal 

discs and in pupal eyes. The over-expressed Xbp1s protein is tagged with 

HA and therefore we could stain with an antibody against HA to detect 

protein levels. We observed no reduced levels of Xbp1s-HA staining in 

homozygous mutant clones compared to control tissue (fig.23, 24), neither 

in the eye imaginal discs nor in pupal eyes. We concluded that CG6758 is 

acting downstream of Xbp1s in the induced cell death signaling. 

 

 

 

 

 

 

Fig.22: UAS-DsRed expression in the four complementation groups. 

GMR-Gal4 driven UAS-DsRed expression was analysed in homozygous 

mutant clones in mosaic eye imaginal discs and pupal eyes (Su218).  

Absence of GFP marks homozygous mutant clones, as control photoreceptors 

were stained with Elav (blue) to be sure that clones lacking GFP are no holes 

in the disc. Note: in complementation group one, two and four, there is 

reduced DsRed staining in the clones, whereas in complementation group 

three DsRed expression is the same in mutant clones and surrounding control 

tissue. Only complementation group three is a potential downstream mediator 

of Xbp1s induced cell death. 
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  GFP                              HA                            Elav 

Fig.23: In eye discs, Xbp1s protein levels are not altered in CG6758 

mutant clones. In clones homozygous mutant for Su218 (absence of GFP) 

HA levels (red) are equal to wildtype and heterozygous tissue (green). As a 

control, photoreceptors are stained with Elav (blue) to be sure that clones 

lacking GFP expression are no holes in the disc. CG6758 seems to be a 

downstream mediator of Xbp1s induced cell death. 

Fig.24: In pupal eyes, Xbp1s protein levels are not altered in CG6758 

mutant clones. In clones homozygous mutant for Su218 (absence of GFP) 

HA levels (blue) are equal to wildtype and heterozygous tissue (green). 

Phalloidin stains Actin filaments to be sure that lack of GFP expression is not 

due to holes in the eye discs. CG6758 seems to be a downstream mediator of 

Xbp1s induced cell death. 

   GFP               HA              Elav        

   GFP             HA        Phalloidin        
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2.6. Rescue of the suppression effect with [P]acman vectors 

To ensure that the suppression effect in the “glossy” eye is really due to 

mutations in the Fbox protein CG6758, we tried to revert the suppression 

effect with the simultaneous expression of a genomic rescue construct. 

Therefore the genomic rescue constructs from the [P]acman library (BACs) 

CH322-12H15 and CH322-114L3 were injected into embryos for 

transformation. Since we were not able to balance the stock with CH322-

114L3 for the second and third chromosomes, we only tested the genomic 

rescue construct CH322-12H15 for its rescue ability. The construct spans 

the CG6758 ORF and 20kb upstream as well as 2,7kb downstream of it. 

Flies with the genotype eyFlp, GMR-GAL4, UAS-Xbp1s; FRT42D, Su357/ 

FRT42D, UbiGFP; CH322-12H15/ + were compared with their siblings with 

the genotype eyFlp, GMR-GAL4, UAS-Xbp1s; FRT42D, Su357/ FRT42D, 

UbiGFP; TM6B/ + and tested if the presence of CH322-12H15 can revert 

the suppression effect of CG6758 mutant clones in the “glossy” eye. 

In fact, the eyes of the eyFlp, GMR-GAL4, UAS-Xbp1s; FRT42D, Su357/ 

FRT42D, UbiGFP; CH322-12H15/ + flies were totally “glossy” and no 

suppressor clones were visible (fig.25). 

 

 

 

 

 

 

Fig.25: The [P]acman reagent CH322-12H15 is able to revert the 

suppression effect of CG6758 mutations. (A) GMR-GAL4>UAS-Xbp1s 

“glossy” eye with suppressor mutation Su357. (B) With the [P]acman 

reagent CH322-12H15 in the background. Note: The suppression effect of 

Su357 is completely reverted. Mutations in CG6758 seem to be the cause 

for the suppression effect. 

   A            B 
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Furthermore, the [P]acman reagent CH322-12H15 was able to rescue 

lethality of the CG6758 mutations. 

 

2.7. Rescue of the suppression effect with CG6758 cDNA 

We also rescued the suppression effect of CG6758 mutations with the co-

expression of CG6758 cDNA. We cloned CG6758 cDNA into the Gateway 

vectors pTFHW and pTWG to have tagged versions of CG6758. The 

pTFHW vector generates an N-terminally tagged fusion protein (3xFLAG-

3xHA) and the pTWG vector a C-terminally tagged fusion protein (GFP). 

With both UAS-constructs we were able to revert the suppression effect in 

the “glossy” eye when over-expressed with GMR-GAL4 (fig.26). These 

results confirm that CG6758 mutations, and not any other mutation that 

may be present in the chromosomes, lead to the suppression effect in the 

Xbp1s induced “glossy” eye. 

 

 

 

 

 

Fig.26: Rescue of the suppression effect with CG6758 cDNA. (A) 

Mutations of CG6758 (here: Su209) suppress the GMR-Gal4>UAS-Xbp1s 

“glossy” eye phenotype. With CG6758 cDNA CG6758-GFP (B), 3xHA-

3xFlag-CG6758 (C)) the suppression effect of the CG6758 mutations (here: 

Su209/ Su218) is completely reverted when the constructs are co-

expressed by GMR-GAL4. Mutations in CG6758 are the cause for the 

suppression effect. 

 

 A              B             C 
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2.8. RNA interference of SCF complex components can partially 

rescue the “glossy” eye phenotype 

Since the function of CG6758 is unknown, we tested if CG6758 is acting as 

part of an SCF complex, being responsible for ubiquitination of substrates. 

Therefore, we tested RNA-interference (RNAi) lines for the different 

components of an SCF complex for their ability to suppress the “glossy” 

eye phenotype (fig.27). 

 

                

 

 

 

 

RNAi constructs were over-expressed in the “glossy” eye by the GMR-

GAL4 driver. RNAi constructs for CG6758, SkpA, Cullin-1 and Roc1a were 

tested. In terms of eye pigmentation, CG6758-RNAi was the most potent 

suppressor, SkpA- and Cullin-RNAi showed less suppression and with the 

Roc1a-RNAi construct, no suppression was observed.  

The GMR-GAL4 driven expression of UAS-LacZ served as a control 

construct, with that control, no rescue of pigmentation could be observed, 

although the UAS-LacZ construct expresses the mini white gene strongly in 

the used line. 

LacZ              CG6758-RNAi     SkpA-RNAi       Cullin-RNAi       Roc1a-RNAi 

Fig.27: RNAi of SCF complex components can partially rescue the 

“glossy” eye phenotype. GMR-GAL4 driven expression CG6758-RNAi is 

the strongest suppressor among the tested components, SkpA-RNAi and 

Cullin-1-RNAi construct expression is weaker and Roc1a-RNAi does not 

suppress the “glossy eye” phenotype. Suppression with the RNAi 

constructs is mainly a rescue of the pigmentation. GMR-GAL4>UAS-LacZ 

serves as a control. 
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Since there was partial suppression with SkpA-RNAi and Cullin-RNAi, we 

proposed that CG6758 may act in an SCF ubiquitin ligase complex. 

 

 

 

Discussion: 

The UPR is activated when unfolded or misfolded proteins accumulate in 

the ER and serves to restore ER homeostasis by translational attenuation, 

the induction of chaperones and ERAD. However, if ER stress is too strong 

or prolonged, cells die. In mammals, IRE1 signaling is known to be involved 

in apoptosis and autophagy, one link is JNK activation via IRE1-Traf2 

interaction (Nishito et al., 2002, Urano et al., 2000). Depending on what 

signaling JNK triggers, this can lead to apoptosis or autophagy. There are 

also JNK-independent links between IRE1 activation and cell death, for 

example it could be shown that RIDD leads to degradation of microRNAs 

that normally repress translation of Caspase-2 mRNA, and thus sharply 

elevates protein levels of this initiator protease of the mitochondrial 

apoptotic pathway (Upton et al., 2012). 

The pathways linked to ER stress induced apoptosis and autophagy are 

independently of Xbp1s signaling, however over-expression of Xbp1s in the 

Drosophila eye driven by GMR-GAL4 leads to a “glossy” eye phenotype, 

which is due to cell death of the cells posterior to the morphogenetic furrow. 

We made use of this atrophic eye phenotype to identify genes which are 

involved downstream of Xbp1s induced cell death. We performed a mosaic 

genetic screen to identify EMS induced mutations that suppress the 

“glossy” eye phenotype in terms of pigementation (and ommatidial 

structure). We showed that our screen is amenable to the identification of 

Xbp1s downstream targets as we could recover 32 lethal suppressor 
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mutations. Since we found four complementation groups, lethality is due to 

a hit in the same gene that also causes the suppression effect and we were 

able to identify three of the four complementation groups by mapping with 

the Bloomington deficiency kit and sequencing of candidate genes. 

Complementation group one consists of four alleles of Xeroderma 

pigmentosum group D (Xpd), complementation group two consists of two 

alleles of Ell-associated factor (Eaf) and for complementation group three 

we could recover 14 alleles of the Fbox protein CG6758. 

Although those complementation groups could be potential downstream 

mediators of Xbp1s induced cell death, it was also possible that those 

mutations solely reduced the GMR-GAL4>UAS-Xbp1s transgene 

expression, e.g. due to modification of GMR-GAL4 or an overall repression 

of transcription. We tested this possibility by investigating if the mutations 

lead to reduced GMR-GAL4>UAS-DsRed expression and found for the 

first, the second and the fourth complementation group this to be true. 

Since Xpd and Eaf (complementation group one and two) are involved in 

the process of transcription, one can assume that overall transcription is 

repressed in the mutant clones. Since complementation group four was not 

mapped and we also observed a reduced DsRed expression, we decided 

to stop the mapping process for this complementation group. For CG6758 

(complementation group three) we did not observe any reduced DsRed 

expression, neither in eye imaginal discs nor at later stages in the pupa, 

making CG6758 a potential downstream mediator of Xbp1s. We excluded 

the possibility that mutations of CG6758 modulate the Xbp1s protein levels, 

by staining eye imaginal discs and pupal eyes with an HA antibody 

recognizing Xbp1s-HA. The protein levels of Xbp1s were not altered in 

CG6758 mutant clones. We concluded that CG6758 acts downstream of 

Xbp1s. It is also possible that CG6759 somehow regulates Xbp1s activity 

independently of Xbp1s protein levels. For example, CG6758 could 

promote the degratation of a negative regulator/ co-factor of Xbp1s. 
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The best method to test whether a distinct mutation is responsible for a 

given phenotype, is to test a rescue construct for its ability to revert the 

phenotype. In our case, we tested if mutations in CG6758 are responsible 

for the suppression effect in the Xbp1s induced “glossy” eye. We tested the 

[P]acman reagent CH322-12H15 for its rescue ability. With this construct in 

the background the suppression effect of the CG6758 mutations could be 

rescued. Furthermore, we could also rescue lethality of the CG6758 alleles. 

The construct spans the CG6758 ORF and 20kb upstream as well as 2,7kb 

downstream of CG6758. In this type of rescue experiments with genomic 

regions, failure in rescuing could be due to missing regulatory sequences of 

the gene of interest. Alternatively, it is also possible that the ability to 

rescue is due to a gene neighbouring the gene of interest (CG6758, in this 

case), which is also covered by the rescuing construct. So, we also 

performed the rescue experiment with cDNA of CG6758. We confirmed that 

GMR-GAL4 driven expression of CG6758-GFP and 3xHA-3xFlag-CG6758 

cDNA was able to revert the suppression effect of the CG6758 mutations in 

the Xbp1s induced “glossy” eye.   

To analyse whether there is a hint that CG6758 possibly acts in an SCF 

ubiquitin ligase complex, we conducted RNAi for the different complex 

components in the background of Xbp1s and found for CG6758-RNAi and 

RNAi of Skp1 and Cullin a partial rescue of eye pigmentation. If CG6758 

acts in an SCF complex, knockdown of the complex components should 

lead to a suppression of the “glossy” eye phenotype. A proof that CG6758 

acts in an SCF complex could be provided by Co-IP between CG6758 and 

components of the SCF complex, in transient transfections in S2 and 

human HEK cells such an interaction was found between CG6758 and 

Skp1 as well as Cullin (Catarina Gaspar, personal communication). 
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Chapter III 

 

 

The role of CG6758 in the regulation of 

cell death induced by Xbp1s 
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Summary 

In a Drosophila model for Autosomal Dominant Retinitis 

Pigmentosum (ADRP), Xbp1 was shown to have a protective function. 

However, over-expression of the active transcription factor Xbp1s 

with the GMR-GAL4 driver leads to an atrophic eye phenotype 

(“glossy” eye) with cell death of lattice and pigment cells. 

To analyse the cell death induced by Xbp1s, we generated eyes 

mosaic for Xbp1s over-expressing cells and found by TUNEL staining 

and by use of the CPV reporter, that apoptosis is involved in the cell 

death process. Mosaic adult eyes have only few Xbp1s over-

expressing cells, presumably due to apoptosis of most of these cells 

during development. The number of Xbp1s over-expressing cells 

could be rescued by the co-expression of P35, an inhibitor of 

caspases. Furthermore we observed autophagy activity. Eyes 

completely “glossy” due to heterozygous GMR-GAL4 driven over-

expression of Xbp1s can only be partially rescued by the co-

expression of P35. Diap-1 (Drosophila Inhibitor of Apoptosis Protein-

1) co-expression also leads only to a partial rescue of the eye 

phenotype, suggesting that there are additional mechanisms besides 

apoptosis that are involved in the induction of the “glossy” eye 

phenotype by Xbp1s. The co-expression of Xbp1unspliced (Xbp1u) 

was the most potent suppressor of the heterozygous Xbp1s over-

expressing eye phenotype. We analysed cell death in “glossy” eye 

imaginal discs with clones of the CG6758 mutations to test if 

apoptosis is reduced in homozygous mutant clones. We found with 

TUNEL staining only little apoptosis in the CG6758 mutant cells and 

with the CPV apoptosis marker we could not detect any cleaved parp 

which is the substrate for caspase 3. Since the whole “glossy” eye 

can only be partially rescued by apoptosis inhibitors and we could 
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only detect little apoptosis with TUNEL staining, we analysed 

autophagy levels in those discs and found no ATG8-GFP foci in the 

Xbp1s over-expressing GMR domain.  
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Introduction 

Cone cells are the ommatidial cells that secrete the lens-forming material. 

“Glossy” phenotypes are characteristic of retinas with faulty lens secretion 

due to defective cone cells (Cagan and Ready, 1989; Fu and Noll, 1997). 

A loss of cone cells either due to cell death or due to impaired specification 

can be responsible for the Xbp1s induced “glossy” eye phenotype.  

Cell death can be apoptotic, autophagic or necrotic. Apoptotic cell death is 

conferred by caspases and can be inhibited by IAPs (Diap in Drosophila) 

(Tenev et al., 2004) or the baculoviral protein P35 (Clem at al., 1991). The 

core components of autophagic cell death are the ATG proteins 

(Mizushima, 2005). Necrosis is a form of cell injury, leading to loss of cell 

membrane integrity and an uncontrolled release of cellular products into the 

intracellular space.  

The UPR is associated with apoptosis as well as autophagy (see 1.4.1. and 

1.4.2.), however Xbp1s signaling was known so far to be “protective” for 

cells in most paradigms (e.g. Sado et al., 2009) To test if prolonged and 

strong Xbp1s signaling can induce cell death, one needs to analyse if there 

are underlying cell death mechanisms, this can be done by special markers 

for the cell death types or by inhibiting the different forms of cell death.  

In a Drosophila model for Autosomal Dominant Retinitis Pigmentosa 

(ADRP), where flies are heterozygous for the Rh1G69D allele (ninaEG69D/+), it 

was shown that Xbp1 has a protective role against retinal degeneration 

(Ryoo et al., 2007). Reduction of Xbp1 gene dosage accelerated retinal 

degeneration of these animals. In the ADRP model the Ire1/Xbp1 pathway 

is activated, which was analysed with a specific UPR marker, xbp1-EGFP, 

in which EGFP is only expressed in frame in the presence of ER stress and 

Ire1 activation (Ryoo et al., 2007). 
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However, expressing the spliced form of Xbp1 (Xbp1s) under the control of 

GMR-GAL4 in the developing Drosophila eye, leads either to cell death or 

impaired specification of ommatidial cells (fig.11).  

 

 

 

Material and Methods 

 

Apoptosis markers: 

TUNEL staining 

TUNEL staining was done with the ApopTag Fluorescein In Situ Apoptosis 

Detection Kit from Millipore. 

Eye imaginal discs from flies with the following genotypes were TUNEL 

stained: eyFlp, GMR-GAL4;; FRT82B/ FRT82B, UAS-DsRed, UAS-Xbp1s 

and eyFlp, GMR-GAL4, UAS-Xbp1s; FRT42D, UbiRFP/ FRT42D, Su218. 

Eye discs were dissected and immuno-stained with rat-anti-Elav (for 

protocol see Chapter II, p.56), followed by analysis of the discs under the 

confocal microscope (Zeiss LSM710). 

 

CPV reporter 

Eye imaginal discs of flies with the following genotypes were dissected and 

immuno-stained with rabbit-anti-cleaved PARP (Abcam ab2317) following 

the protocol in Chapter II, p.55: eyFlp, GMR-GAL4; UAS-CPV; FRT82B/ 

FRT82B, UAS-DsRed, UAS-Xbp1s and eyFlp, GMR-GAL4, UAS-Xbp1s; 

FRT42D, UbiRFP/ FRT42D, Su218; UAS-CPV. The UAS-CPV flies were 

obtained from Florentin and Arama, 2012. 
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Apoptosis inhibitors: 

Co-expression of GMR-P35, GMR-GAL4>UAS-P35 and GMR-GAL4>UAS-

Diap was performed in adult whole “glossy” eyes (GMR-GAL4>UAS-

Xbp1s). 

 

Autophagy markers: 

The autophagy markers UAS-LC3-GFP and UAS-ATG8-GFP were used 

(Rusten et al., 2004). 

 

 

 

Results 

3.1. Cell death induced by Xbp1s 

Since the Xbp1s construct is C-terminally tagged with HA, we also tested 

whether untagged Xbp1s (Yanicostas) causes a “glossy” eye phenotype, 

when over-expressed by the GMR-GAL4 driver, to exclude that the HA tag 

is responsible for the cell death. GMR-GAL4 driven over-expression of 

UAS-Xbp1s without tag causes the same eye phenotype as our tagged 

construct (fig.11). 

We tested whether the cell death observed in the eye is due to apoptosis 

by analyzing mosaic eye discs with clones over-expressing Xbp1s with two 

different apoptosis markers, TUNEL staining and the CPV reporter (CD8-

parp-Venus) (Florentin and Arama, 2012). The CPV reporter is cleaved 

specifically in its parp portion (DEVD'G) by caspase-3, leading to a 

membrane-bound CD8-parp portion and a cytoplasmic parp-Venus portion, 
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which can specifically be recognized by an antibody against cleaved parp 

(fig.28). 

With both TUNEL staining and the CPV reporter, we could observe 

apoptosis in Xbp1s over-expressing cell clones (fig.29, 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.28: CPV reporter to detect active caspase 3. The CPV reporter 

consists of the membrane-bound CD8, the parp protein and a venus 

portion. Active caspase-3 cleaves its substrate parp at the motif DEVD*G 

which leads to relief of the venus and parp portion from the membrane. 

Furthermore, cleaved parp can be recognized by a specific antibody. 

Fig.29: There is apoptosis detection in Xbp1s over-expressing clones by 

TUNEL staining. TUNEL staining (in green) reveals apoptotic cells in Xbp1s 

over-expressing cell clones marked by DsRed (eyFlp, GMR-GAL4;; FRT82B/ 

FRT82B, UAS-DsRed, UAS-Xbp1s). Elav (blue) is a marker of the 

photoreceptors. 

DsRed              TUNEL               ELAV 
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Adult eyes which are mosaic for cells over-expressing UAS-Xbp1s have 

only few “glossy” areas (fig.31a,b), presumably because most of those 

cells die during development and are replaced by “wildtype” cells. The co-

expression of the baculoviral caspase inhibitor P35 could rescue the clone 

number and size, as well as it rescued partially the “glossyness” in 

heterozygous tissue (which can be identified by less DsRed expression 

than in tissue homozygous for the UAS-Xbp1s construct) (fig.31d,e).  

 

 

 

 

                                                                                          

Fig.30: There is apoptosis detection by the CPV reporter in Xbp1s 

over-expressing clones. Xbp1s over-expressing cells (DsRed) have less 

membrane bound CPV reporter (GFP). The cleaved parp antibody (in blue) 

recognizes cleaved parp in Xbp1s over-expressing cells. There is active 

caspase-3 in Xbp1s over-expressing cell clones. Genotype: eyFlp, GMR-

GAL4; UAS-CPV; FRT82B/ FRT82B, UAS-DsRed, UAS-Xbp1s 

A             B             C             D            E                                      

C 

DsRed         Venus-GFP       Cleaved PARP 



 91 

 

 

 

 

 

 

 

We tried to rescue the “glossy” eye phenotype when the whole eye is 

“glossy” by co-expression of the baculoviral caspase inhibitor P35, but 

could only observe little restoration of the ommatidial patterning (fig.32c,d), 

the same is true if we co-expressed Diap (fig.32e). Co-expression of UAS-

LacZ served as a control. 

 

 

         

 

 

On the other hand, co-expression of Xbp1unspliced (Xbp1u) led to a strong 

suppression of the “glossy” eye and restoration of the ommatidial patterning 

(fig.33). 

Fig.31: Xbp1s over-expressing cell clones in the adult eye are very 

small and can be partially be rescued by co-expression of P35. (A) 

Flies with the genotype eyFlp, GMR-GAL4; CyO/ Sco; FRT82B/ FRT82B, 

UAS-DsRed, UAS-Xbp1s have only very small “glossy” clones in the eye, 

which can be visualized by DsRed (B). (C) As control, in flies with the 

genotype eyFlp, GMR-GAL4; CyO/ Sco; FRT82B/ FRT82B, UAS-DsRed 

around two thirds of the eye consists of DsRed expressing cells, indicating 

that Xbp1s over-expressing cell clones are removed from the eye during 

development. (C) When P35 is co-expressed, the eyes consists more than 

2/3
rd

 of Xbp1s over-expressing cell clones and the ommatidial pattern can 

be partially restored. The clones are visualized by DsRed (E). Flies in D and 

E have the genotype: eyFlp, GMR-GAL4; CyO/ P35; FRT82B/ FRT82B, 

UAS-DsRed, UAS-Xbp1s 

A            B           C           D            E             

E 

Fig.32: Rescue of the glossy eye phenotype with apoptosis inhibitors. 

(A) GMR-GAL4>UAS-Xbp1s. (B) GMR-GAL4>UAS-Xbp1s, UAS-LacZ. (C) 

GMR-GAL4>UAS-Xbp1s, GMR-P35. (D) GMR-GAL4>UAS-Xbp1s, UAS-

P35. (E) GMR-GAL4>UAS-Xbp1s, UAS-Diap 
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Since it is also possible that other forms of cell death contribute to the 

“glossy eye” phenotype, we analysed autophagy in Xbp1s over-expressing 

cell clones (fig.34). Autophagy can be pro-survival and pro-death, 

depending on the context (Depnath et al., 2005). In the Xbp1s over-

expressing cell clones we found foci with elevated levels of the LC3-GFP 

autophagy marker (fig.34). This result is consistent with what was observed 

in the Drosophila fat body, where Xbp1s over-expression also induces 

Atg8-GFP (Arsham and Neufeld, 2009).  

 

 

 

 

 

 

 

 

 

Fig.33: Xbp1u rescues the glossy eye 

phenotype. (A) “Glossy” eye due to GMR-

GAL4>UAS-Xbp1s with LacZ in the 

backround as a control. (B) Co-expression of 

Xbp1u by GMR-GAL4 rescues the “glossy” 

eye phenotype. 

Fig.34: There is active autophagy in Xbp1s overexpressing cells. Flies 

have the genotype eyFlp, GMR-GAL4; CyO/ LC3-GFP; FRT82B/ FRT82B, 

UAS-DsRed, UAS-Xbp1s. Xbp1s over-expressing cell clones (DsRed) 

show elevated levels of LC3-GFP staining, indicating active autophagy. As 

a control photoreceptors are stained with Elav (blue) to make sure that 

clones lacking DsRed are no holes in the disc. 

DsRed         LC3-GFP           Elav              

Elav 
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3.2. Cell death in CG6758 mutant clones 

Since there is reduced “glossyness” in CG6758 mutant clones in the GMR-

GAL4>UAS-Xbp1s eye and we could also detect apoptosis in Xbp1s over-

expressing cell clones, we asked whether there is reduced apoptosis in 

CG6758 mutant clones. Therefore, we used the same two apoptosis 

markers as we used to detect cell death induced by Xbp1s in clones, the 

CPV reporter and TUNEL staining. With TUNEL staining we just saw very 

little apoptosis in the eye discs (fig.35) and with the CPV reporter we could 

not detect active caspase-3 at all, visualized by no cleaved parp staining 

and membrane bound Venus-GFP (fig.36).  

 

 

 

Fig.35: TUNEL staining in CG6758 mutant “glossy” eye discs reveals 

on very little TUNEL positive cells. Flies have the genotype eyFlp, GMR-

GAL4, UAS-Xbp1s; FRT42D, UbiRFP/ FRT42D, Su218. Absence of RFP 

marks homozygous mutant clones. There is only very little TUNEL staining 

(green) in those discs. Blue marks the HA-antibody indicating that the fly is 

from the right genotype and that there are no holes in the disc. 

DsRed              TUNEL               HA 
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The over-expression of Xbp1s in clones leads to an apoptosis pathway, 

and we wanted to test if there is any involvement of CG6758 in the 

apoptotic canonical pathway by testing if CG6758 mutations show any 

suppression of the GMR-Hid eye (Hid induces cell death by directly binding 

and inactivating Diap-1, see 1.4.1.). We did not observe any suppression of 

the atrophic eye phenotype in mosaic animals (fig.37). This result indicates 

that mutations in CG6758 are not general suppressors of apoptotic cell 

death but are instead specific suppressors of the Xbp1s phenotype. 

 

Fig.36: The CPV reporter is not cleaved in CG6758 mutant “glossy” eye 

discs. Flies have the genotype eyFlp, GMR-GAL4; FRT42D, UbiRFP/ 

FRT42D, Su218; CPV/ UAS-Xbp1s. Absence of RFP marks homozygous 

mutant clones. In the whole GMR-GAL4 domain, Venus-GFP is membrane-

bound and no cleaved parp staining is visible, indicating there is no 

apoptosis. 

UbiRFP        Venus-GFP       cleaved parp 
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Since we detected autophagy in Xbp1s over-expressing cell clones we also 

tested autophagy in whole “glossy” eye discs (fig.38). We wanted to test if 

there is a contribution of autophagy to the cell death leading to the atrophic 

eye, since there is only partial rescue with caspase inhibitors and only little 

apoptosis detection (TUNEL).  

We expressed in “glossy” eye discs the autophagy marker UAS-ATG8-GFP 

by the GMR-GAL4 driver to analyse if there is autophagy at all (fig.38). In 

the GMR-GAL4 domain, we could not detect any ATG8-GFP punctae as 

marker for active autophagy. 

 

   

 
Fig.38: There is no ATG8 induction in whole „glossy” eye discs. UAS-

ATG8-GFP expression is driven by the GMR-GAL4 driver and there are no 

ATG8-GFP foci (ATG8 activation) in the GMR-domain which is marked by 

Elav staining (blue). Genotype: GMR-GAL4>UAS-Xbp1s, UAS-ATG8 

 

Fig.37: CG6758 mutant clones in 

the GMR-Hid eye can not rescue 

the phenotype. (A) GMR-Hid eye. 

(B) GMR-Hid eye mosaic for a 

CG6758 mutation (Su218) presents 

no suppression. Genotype: eyFlp, 

GMR-hid; FRT42D, Su218/ FRT42D 

 ATG8-GFP           Elav 
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Discussion 

Although Xbp1 has a protective role during the disease process of ADRP, 

the over-expression of the spliced form with the GMR-GAL4 driver leads to 

cell death and an atrophic “glossy” eye phenotype. We analysed the cell 

death process which leads to the Xbp1s induced phenotype with markers 

for apoptosis and autophagy, which revealed apoptotic and autophagy 

activity in cell clones over-expressing Xbp1s. We could detect apoptosis 

with TUNEL staining as well as with the CPV reporter, autophagy was 

detected by use of the LC3-GFP marker.  

It was possible to partially rescue heterozygous cell clones over-expressing 

Xbp1s when P35 was co-expressed, although homozygous clones were 

still “glossy”. Furthermore, it was possible to rescue the clone number and 

size of heterozygous Xbp1s over-expressing clones. Adult eyes with cell 

clones over-expressing Xbp1s consists only very little of Xbp1s over-

expressing cell clones, suggesting that those cells are removed during 

pupal stages by cell death and that “wildtype” cells outcompete their 

neighbour cells by competitive proliferation, leading to apoptosis of the 

“glossy” clones. This apoptosis of looser cells which is due to competitive 

proliferation can be blocked by P35, the “wildtype” cells undergo 

compensatory proliferation. In the whole “glossy eye” there is also only 

partial rescue of the “glossyness” by P35 as well as by Diap, suggesting 

that cell death is triggered only partially by apoptosis. Furthermore there is 

only little TUNEL staining and the CPV reporter is not cleaved by caspase-

3. Maybe the underlying cell death pathway leading to Xbp1s induced 

“glossyness” is not solely apoptosis. In whole “glossy” eye discs there is no 

active autophagy indicated by the ATG8-GFP reporter. Since we could 

detect autophagy in Xbp1s over-expressing cell clones, it can be that 

autophagy contributes to the cell death conferred by Xbp1s. Autophagy can 

be pro-death or pro-survival, depending on the context (Depnath et al., 

2005).  
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The most potent suppressor of Xbp1s induced cell death was Xbp1u. In 

mammals, Xbp1u shuttles between the cytoplasm and the nucleus where it 

interacts with Xbp1s, leading to the degradation of both proteins (Calfon et 

al., 2002; Yoshida et al., 2006). Maybe in Drosophila such a mechanism 

also exists. 
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Summary 

Two human proteins are described to have some homology to 

Drosophila CG6758, namely FBXO42/JFK and the more distantly 

related FBXO6. Since some of the substrates for these two proteins 

are known, we tested the fly homologues as potential substrates for 

CG6758. CHK1 is a substrate of FBXO6 and P53 is a known substrate 

of FBXO42/JFK. We tested the fly homologues Grapes (CHK1) and 

Dp53 as candidate substrates of CG6758. We analysed if in 

homozygous CG6758 mutant clones in GMR-GAL4>UAS-Xbp1s 

“glossy” eye discs, there are elevated levels of these potential 

substrates. This would be the expected result if CG6758 is mediating 

the SCF complex-dependent ubiquitination and degradation of these 

candidate substrates. We found reduced levels of Grapes in CG6758 

homozygous mutant clones and for Dp53 there was no difference in 

protein levels between CG6758 homozygous mutant clones and 

control tissue. These results exclude that Dp53 or Chk1 are 

substrates for the CG6758. In addition, we tried to rescue the GMR-

P53 atrophic eye phenotype with over-expression of CG6758 cDNA 

and found no suppression. 

To test if CG6758 mutations can also suppress the cell death 

conferred by GMR-P53, we tested our CG6758 mutations in the GMR-

P53 atrophic eye and we found no suppression, arguing that GMR-P53 

mediated cell death is independent of CG6758. 

We also tested other proteins as potential candidate substrates for 

CG6758, namely Diap-1, the AAA-type ATPase Vcp, CycE and CycB, 

the phospho-histone-3 marker, the AAA-type ATPase CG16789, which 

is approximately 3-fold upregulated in adult Xbp1s induced “glossy” 

eyes (semiquantitative RT-PCR) and 7-fold upregulated in “glossy” 

eye imaginal discs (microarray, Domingos, unpublished) and seems 

to interact with CG6758 (Drosophila Protein Interaction Map, Mintseris 
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et al., 2007) and finally Xbp1u. For all the tested proteins, the results 

were negative, but with the phospho-histone-3 marker we found a 

disturbed mitotic pattern in the eye discs. To analyse if cone cells are 

specified in the “glossy” eye discs, we stained discs with clones over-

expressing Xbp1s for Cut, a cone cell marker and could identify cone 

cells in the “glossy” clones. 
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Introduction 

Our goal is to identify the downstream mechanisms that are required for 

Xbp1s induced cell death. We found that mutations in CG6758 are able to 

suppress the Xbp1s induced “glossy” eye. CG6758 encodes an Fbox 

protein acting in an SCF ubiquitin ligase complex. However, to elaborate 

Xbp1s cell death signaling, it is necessary to identify the substrates of 

CG6758 and to understand how accumulation of these substrates in 

CG6758 mutants impair Xbp1s signaling. One possible approach is to test 

if known substrates of the mammalian Fbox protein with higher homology to 

CG6758 are also regulated in the fly by CG6758. 

The two human proteins with higher homology to CG6758 are FBXO42 

(considered to be the orthologue of CG6758) and FBXO6. P53 was shown 

to be a substrate of FBXO42 (Sun et al., 2009) and Chk1 was shown to be 

a substrate of FBXO6 (Zhang, Y. W. et al., 2009). 

Chk1 is necessary for the G2-M DNA-damage checkpoint (Fogarty et al., 

1997; Liu, G. et al., 2000; Zachos et al., 2003). For the activation of Chk1, 

ATR-dependent phosphorylation is required, activated Chk1 

phosphorylates downstream targets and thereby triggers different cellular 

responses such as transcription regulation, energy consumption alteration, 

cell cycle arrest or delay, DNA repair or cell death if the damage is too 

severe to repair. Furthermore, it was shown that Chk1 is phosphorylated 

during ER stress as a consequence of eIF2α phosphorylation and 

subsequent translational repression. CDC25A is destabilized during ER 

stress in a Chk1-dependent manner to cause G2 cell cycle delay (Malzer et 

al., 2010). 

Drosophila Grapes regulates syncytial cell division fidelity, mitotic entry and 

CycA degradation and thereby plays a crucial role during embryogenesis. 

Grapes was found in a modifier screen of over-expression of the integrated 

stress response kinase PERK, which results in a atrophic “glossy” eye 

phenotype similar to the one obtained by Xbp1s over-expression. 
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Knockdown of Grapes by RNAi rescued the eye phenotype (Malzer et al. 

2010). 

P53 is a tumour suppressor protein that integrates endogenous and 

exogenous signals to modulate cell fate to stress and cellular 

environments. The human P53 regulates as a transcription factor the 

expression of genes involved in cell cycle regulation, induction of apoptosis 

and DNA repair after DNA damage (reviewed in Chumakov, 2007). The 

Drosophila genome contains one single P53 family member, Dp53. In 

contrast to human P53, it does not excert DNA damage induced cell cycle 

arrest, but the pro-apoptotic function is well conserved. Upon apoptotic 

stimulation, Reaper, Hid and Grim inhibit Diap which in turn leads to the 

activation of Dronc, DriCE and Dcp-1. It was shown in the developing 

Drosophila eye that Dp53 induced apoptosis is primarily dependent on Hid 

but not on Reaper and occurs through the canonical apoptosis pathway 

(Fan et al., 2010). Furthermore, Dp53 also inhibited cellular differentiation 

of photoreceptors and cone cells in the eye, independently of its apoptotic 

function (Fan et al., 2010).  

Besides testing Chk1 and Dp53 as potential candidate substrates for 

CG6758 dependent ubiquitination, we also analysed levels of different 

proteins. We tested levels of Diap, an anti-apoptotic protein which 

suppresses apoptosis by inhibiting Reaper, Hid and Grim activity as well as 

it inhibits the functions of caspases (Tenev et al., 2004) and it was shown to 

partially rescue the “glossy” eye phenotype (Chapter III, p.89). Furthermore 

we tested the two AAA-type ATPases Vcp and CG16789, which seems to 

be an interactor of CG6758 (DPIM) and which is upregulated in “glossy” 

eye discs (microarray; Domingos, P., unpublished) and adult “glossy” eyes 

(semiquantitative RT-PCR). We also tested CycB and CycE levels as well 

as the mitotic pattern in “glossy” eye imaginal discs, to analyse if the 

specification of cone cells is the underlaying process of “glossyness”. 

Finally we tested Xbp1u as the substrate for CG6758. Xbp1u in mammals 
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is known to interact with Xbp1s, leading to the degradation of Xbp1s/Xbp1u 

(Yoshida et al., 2006). Xbp1u is a target gene of Xbp1s as seen in its 

upregulation in “glossy” eye imaginal discs by microarray analysis 

(Domingos, P; unpublished). Furthermore, UAS-Xbp1u transgene 

expression can suppress the Xbp1s induced “glossy” eye phenotype (see 

Chapter III, p.90). 

 

 

 

Material and Methods 

Immunofluorescentstaining: 

Flies with the genotype eyFlp,  GMR-GAL4,  UAS-Xbp1s;  FRT42D, 

UbiRFP or UbiGFP/  FRT42D,  Su218 were generated and after 

dissection of eye imaginal discs immuno-stained with rat anti-CHK1 

(Abcam ab47574)/ mouse anti-Dp53 (anti-P53 H3-s from Developmental 

Studies Hybridoma Bank)/ guinea pig anti-Diap (kindly provided by H. D. 

Ryoo)/ rat anti-Vcp (kindly provided by D. McKearin)/ mouse anti-CycB 

(F2F4 from Developmental Studies Hybridoma Bank)/ mouse anti-CycE / 

rabbit anti-PH3 (Abcam ab5176) and rat anti-Elav (DSHB, 7E8A10) (for 

protocol see Chapter II, p.56), followed by analysis of the discs under the 

confocal microscope (Zeiss LSM710). 

 

Analysis of eye discs with Xbp1s over-expressing cell clones: 

Flies with the genotype eyFlp, GMR-GAL4; (); FRT82B/ FRT82B, UAS-

DsRed, UAS-Xbp1s were generated and the eye discs were dissected. The 

dissected eye discs were immuno-stained with rat anti-PH3 (Abcam 

ab5176) / mouse anti-Cut (2B10 from DSHB) and rat anti-Elav (DSHB, 
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7E8A10) (for protocol see Chapter II, p.56), followed by analysis of the 

discs under the confocal microscope (Zeiss LSM710). 

 

Rescue of the GMR-p53 eye phenotype with 3xHA-3xFlag-CG6758 cDNA: 

Flies of the genotype GMR-p53 were crossed to flies with UAS-3xHA-

3xFlag-CG6758. 

 

CG6758 mutant clones in the GMR-p53 eye: 

Flies with the genotype eyFlp, GMR-GAL4, FRT42D, UbiRFP/ FRT42D, 

Su218; GMR-P53/ + were established and analysed under the dissecting 

microscope. 

 

Semiquantitative RT-PCR: 

Fly heads of GMR-GAL4>UAS-Xbp1s flies and control flies (GMR-GAL4) 

were collected (150 flies each) by freezing the flies in a tube in liquid 

nitrogen and vortexing the flies. The heads were pooled in 30µl H2O and 

smashed with a pestle. For the isolation of total RNA, Zymo Quick-RNA 

mini-prep kit was used following the manufacturer protocol. For cDNA 

synthesis the Thermo/Fermentas Revert Aid First Strand kit was used. The 

semi-quantitative RT-PCR for CG16789 and the housekeeping gene RP49 

was performed with the following primers: 

FP-CG16789RT: ccgtgctctttgatctgactcc 

RP-CG16789RT: gacgggatctcgtgagcacag 

FP-Rp49: agatcgtgaagaagcgcaccaagc 

RP-Rp49: gcaccaggaacttcttgaatccgg 
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CG16789 levels in CG6789 mutant eye clones: 

The full length cDNA clone RH08189 of CG16789 was used as a template 

for PCR of CG16789 cDNA. The CG16789 PCR product was cloned into 

the Gateway vector PTWG following the Gateway protocol. Embryos were 

injected with the CG16789-GFP plasmid and random P-element 

transformation was performed by Stabvida. 

Flies with the genotype eyFlp, GMR-GAL4; FRT42D, UbiRFP/ FRT42D, 

Su218, UAS-CG16789-GFP were generated and the eye discs were 

dissected. The dissected eye discs were immuno-stained with rat anti-Elav 

(DSHB, 7E8A10) (for protocol see Chapter II, p.56), followed by analysis of 

the discs under the confocal microscope (Zeiss LSM710). 

 

Xbp1u levels in CG6758 mutant eye clones: 

Flies with the genotype eyFlp, GMR-GAL4, UAS-Xbp1s; FRT42D, UbiRFP/ 

FRT42D, Su218; UAS-Xbp1_HA_GFP were generated and the eye discs 

were dissected. The dissected eye discs were incubated over night with 

DTT (2mM) to induce ER stress, leading to splicing of the UAS-

Xbp1_HA_GFP transgene (Cairrao, F.; unpublished) which results in a 

frameshift and expression of Xbp1u-GFP. The discs were immuno-stained 

with rabbit anti-GFP (Abcam ab32146) and rat anti-Elav (DSHB, 7E8A10) 

(for protocol see Chapter II, p.56), followed by analysis of the discs under 

the confocal microscope (Zeiss LSM710). 
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Results 

4.1. Grapes as a potential substrate for CG6758 

To test whether Grapes is the substrate for CG6758 dependent 

ubiquitination, we generated “glossy” eye imaginal discs mosaic for Su218. 

Homozygous mutant clones were marked by the absence of RFP and the 

discs were stained with an antibody against CHK1 (fig.39). For a substrate 

of CG6758 one would expect an accumulation of the substrate in the 

CG6758 homozygous mutant clones. However, we found a reduction of 

Grapes staining in the clones lacking RFP, excluding Grapes as a substrate 

for CG6758. 

 

 

 

 

 

 

 

4.2. Dp53 as a potential substrate for CG6758 

To analyse if Dp53 is the substrate of CG6758 we checked Dp53 levels in 

CG6758 “glossy” mosaic eye discs (fig.40). We did not observe any 

Fig.39: Reduced levels of Grapes in CG6758 mutant clones in Xbp1s 

over-expressing discs indicate that grapes is not the substrate of 

CG6758. Flies have the genotype eyFlp, GMR-GAL4; FRT42D, UbiRFP/ 

FRT42D, Su218; UAS-Xbp1s/ +. In cell clones homozygous mutant for 

CG6758, marked by the absence of RFP, there are reduced levels of 

Grapes staining (in blue). Elav (green) serves as a control to be sure that 

cells lacking RFP are no holes in the discs. Note: Grapes is not the 

substrate of CG6758. 

  RFP          Grapes            Elav 
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difference in Dp53 levels in homozygous CG6758 mutant clones and 

surrounding control tissue, excluding Dp53 as a substrate for CG6758. 

 

 

 

 

 

 

Another way to test if Dp53 is the substrate of CG6758 is the over-

expression of CG6758 in the atrophic GMR-Dp53 eye, since over-

expression should lead to degradation of Dp53. We tested 3xHA-3xFlag-

CG6758 over-expression and found no rescue of the eye phenotype 

(fig.41). 

 

Fig.40: There are no elevated Dp53 levels in CG6758 mutant clones in 

Xbp1s over-expressing discs excluding p53 as the substrate for 

CG6758. Flies have the genotype eyFlp, GMR-GAL4; FRT42D, UbiGFP/ 

FRT42D, Su218; UAS-Xbp1s/ +. In cell clones homozygous mutant for 

CG6758, marked by the absence of UbiGFP, there are no elevated levels of 

Dp53 staining. Elav serves as a control to be sure that cells lacking RFP are 

no holes in the disc. Note: Dp53 is not the substrate of CG6758. 

GFP            Dp53            Elav 

Fig.41: There is no rescue of the 

GMR-Dp53 eye with CG6758 

over-expression. (A) GMR-Dp53 

over-expressing eye. (B) Co-

expression of 3xHA-3xFlag-

CG6758. Note: Dp53 is not the 

substrate of CG6758. 
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Anyway we wanted to know if CG6758 mutations maybe suppress the cell 

death induced by GMR-Dp53 and generated clones of Su218 in the GMR-

Dp53 eye (fig.42). CG6758 mutations do not suppress the atrophic eye 

phenotype. 

 

 

 

 

4.3. Diap as a potential candidate substrate for CG6758 

We wanted to know if increased Diap levels in the CG6758 mutant eye 

clones are responsible for the suppression effect conferred by the CG6758 

alleles.  

So we tested the levels of Diap in CG6758 mutant clones in comparison to 

“wildtype” and heterozygous tissue in eye imaginal discs which had Xbp1s 

in the background (fig.43). 

 

 

 

Fig.42: Mutations of CG6758 do not 

suppress the GMR-Dp53 eye. (A) GMR-

Dp53 eye. (B) Clones of Su218 are 

generated in the GMR-Dp53 eye. Note: 

CG6758 does not play a role in P53 

mediated cell death. 

GFP          Diap          Elav 
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We could not see any difference in Diap levels in the homozygous mutant 

clones compared with the surrounding heterozygous and “wildtype” tissue, 

excluding Diap1 as a substrate of CG6758 conferred ubiqutination. 

 

4.4. Vcp as a potential candidate substrate for CG6758 

We tested Vcp as a potential candidate substrate of CG6758. 

Also for Vcp, the protein levels were equal in homozygous mutant clones 

and surrounding heterozygous and “wildtype” tissue, excluding Vcp as a 

substrate of CG6758 (fig.44). 

 

 

 

 

Fig.43: There are no elevated Diap levels in homozygous CG6758 

mutant clones in Xbp1s over-expressing discs which indicates that 

Diap is not the substrate of CG6758. Absence of GFP indicates the 

homozygous mutant CG6758 clones, red are the Diap levels which are 

equal in the GMR domain, marked by stained photoreceptors with Elav 

(blue). Note: Diap is not the substrate of CG6758. 

  GFP                Vcp              Elav 
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4.5. Disturbed cell cycle as the reason for CG6758 induced cell death 

It could have been possible that a disturbed cell cycle is the cause for the 

“glossy” eye phenotype, for instance the SMW could be blocked, which 

inhibits differentiation of cone cells, responsible for secreting the overlying 

lens material. Degradation of the cone cells or missing cone cells lead to a 

“glossy” eye phenotype. So, first we checked the two cyclins, CycE and 

CycB for being decreased in heterozygous or “wildtype” tissue compared to 

CG6758 mutant clones in eye imaginal discs. CycE drives cells from G1 to 

S-phase in the SMW. In Drosophila, the CycE-CDK2 complex is both 

sufficient and rate-limiting for G1-S-phase transition (Knoblich et al., 1994; 

Richardson et al., 1995; Sauer and Lehner, 1995). The CycE-CDK2 

complex activates the Retinoblastoma protein (Rb), which in turn leads to 

the activation of the E2F/Dp transcription factors and S-phase promoting 

genes are expressed. The cycB-CDK1 complex is the main regulator of the 

G2-M-transition for the sychronized cells behind the MF and multiple 

factors control its activity (Harper and Elledge, 1996; Lew and Kornbluth, 

1996). 

For both cyclins we found no accumulation in the CG6758 mutant area 

(fig.45, 46), arguing that these two cyclins are not responsible for the cell 

death induced by Xbp1s. 

 

Fig.44: There are no elevated Vcp levels in homozygous CG6758 

mutant clones in Xbp1s over-expressing discs, excluding Vcp as the 

substrate for CG6758. Absence of GFP indicates the homozygous mutant 

CG6758 clones, red are the Vcp levels which are equal in the GMR domain, 

marked by stained photoreceptors with Elav (blue). Note: Vcp is not the 

substrate of CG6758. 
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Fig.45: There are no elevated CycB levels in homozygous CG6758 

mutant clones in Xbp1s over-expressing discs, excluding CcyB as 

that substrate for CG6758. The absence of GFP marks the homozygous 

CG6758 mutant clones. CycB levels (red) are equal in the GMR domain, 

marked by Elav staining (blue). Note: CycB is not the substrate of CG6758. 

Fig.46: There are no elevated levels of CycE in homozygous CG6758 

mutant clones in Xbp1s over-expressing discs, excluding CycE as the 

substrate for CG6758. The absence of GFP marks the homozygous 

CG6758 mutant clones. CycE levels (red) are equal in the GMR domain, 

marked by Elav staining (blue). Note: CycE is not the substrate of CG6758. 

 

GFP           CycB            Elav 

GFP             CycE              Elav 
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Next we analysed phosphohistone-3 (PH3) levels in control eye imaginal 

discs, discs over-expressing GMR-GAL4 driven UAS-Xbp1s (with and 

without clones of a CG6758 mutation) and discs with clones over-

expressing Xbp1s (GMR-GAL4 driven). Phosphohistone-3 is an immune-

marker specific for cells undergoing mitosis. With this immune-marker we 

analysed the mitotic pattern in the different discs and found that there is no 

clear SMW in eye discs, which over-express Xbp1s (fig.47a), this disturbed 

pattern of PH3 staining could also not be rescued in the clones of Su218 

(marked by the absence of GFP) (fig.47b). In clones of Xbp1s over-

expression (in red), it seems that there is no SMW at the border between 

the clones and the SMW (fig.47d). 

Since we observed a disturbed pattern of PH3 staining, we decided to 

analyse if cone cells are specified in Xbp1s over-expressing cell clones, 

since the cone cells give rise to the lens material. 

We could clearly detect cone cells in the Xbp1s over-expressing cell clones 

indicating that a second round of mitosis posterior to the MF has occurred 

(fig.48). 
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Fig.47: Disturbed mitotic patterning in Xbp1s 

over-expressing eye imaginal discs. (A) 

Control discs. Flies have the genotype w-; 

FRT42D/FRT42D. (B) Whole glossy eye 

imaginal discs. Flies have the genotype eyFlp, 

GMR-GAL4, UAS-Xbp1s; FRT42D, UbiGFP/ 

(CyO). (C) Whole glossy eye imaginal discs with 

mutant clones for Su218. Flies have the 

genotype eyFlp, GMR-GAL4, UAS-Xbp1s; 

FRT42D, UbiGFP/ FRT42D, Su218. (D) Eye 

imaginal discs with clones over-expressing 

Xbp1s posterior to the MF. Flies have the 

genotype eyFlp, GMR4; (); FRT82B, UAS-

Dsred, UAS-Xbp1s/ FRT82B. The discs were 

stained with PH3 (red in A, B and C; blue in D); 

the SMW is indicated by an arrowhead. Note: 

The mitotic patterning is disturbed in Xbp1s 

over-expressing discs, there is no clear SMW 

visible (B, C). At the border of Xbp1s over-

expressing cell clones there is no normal mitotic 

pattern (D). 

 

 

A 

B 

C 

D 

DsRed          Cut          Elav 
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4.6. CG16789 as a potential candidate substrate for CG6758 

CG16789 seems to be an interactor of the Fbox protein CG6758 (DPIM), 

and since it is around 7-fold upregulated in “glossy” eye discs, observed in 

a microarray (Domingos, P.; unpublished) and approximately 3-fold 

upregulated in adult “glossy” eyes in a semiquantitative RT-PCR (fig.49), 

we asked whether CG16789 could be substrate of CG6758. CG16789 

encodes an AAA-type ATPase with unknown cellular function. 

 

 

 

 

 

Fig.48: Cone cells are specified in Cut in Xbp1s over-expressing 

clones indicated by positive cut staining. The fly has the genotype 

eyFlp, GMR-GAL4; (); FRT82B, UAS-DsRed, UAS-Xbp1s/ FRT82B. Cell 

clones over-expressing GMR-driven UAS-Xbp1s are marked in red, cut 

staining (green) indicates the cone cells and Elav staining (blue) is a 

control that there are no holes in the disc due to the preparation. 

RFP          Cut           Elav 
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We tested two different CG16789-RNAi lines (v32730, v103617) for 

enhancement of the “glossy” eye phenotype, but did not observe any 

change in the atrophic eye appearance (fig.50). If CG16789 is the 

substrate of CG6758 one would expect an enhancement of the 

“glossyness”, due more reduction in the levels of CG16789.  

 

 

 

           RT+                                     RT- 

 Gl   C    Gl   C                        Gl   C    Gl   C 

 

CG16789 

RP49 

Fig.49: In adult „glossy” eyes, the ATPase CG16789 is upregulated. 

Semiquantitative RT-PCR reveals an upregulation of the factor ~3. Gl: 

“glossy” eyes; C: Control eyes. 

Fig.50: CG16789-RNAi has no effect on the GMR-GAL4>UAS-Xbp1s 

induced “glossy” eye. (A) GMR-GAL4>UAS-Xbp1s eye. (B, C) Co-

expression of CG16789 RNAi (v103617). 
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Next we tested if RNAi for CG16789 in the background (v103617 

recombined to the 3rd chromosome) of CG6758 mutant mosaic eyes 

suppresses the rescue effect of CG6758 mutant clones. We did not 

observe any rescue (fig.51), which one would expect if CG16789 is the 

substrate of CG6758, since loss of CG6758 functioning in the mutant 

clones would have been compensated. 

 

 

 

 

 

Finally, we cloned CG16789 cDNA into the fly gateway vector pTWG, 

which results in a GFP fusion protein and transgenic flies were generated. 

We created flies mosaic for CG6758 mutant clones with the CG16789-GFP 

construct in the background and tested whether in clones of CG6758 

mutants there are elevated levels of the GFP-signal (fig.52). GFP levels 

were equal in the GMR-domain where the CG16789-GFP construct was 

expressed. Anyway we did not have Xbp1s expression in the background, 

which maybe is needed to provide factors involved in CG6758 functioning. 

 

Fig.51: CG16789-RNAi has no effect on 

the suppression effect of CG6758 

mutants. (A) Su209 suppresses the 

“glossy” eye phenotype. (B) Co-expression 

of CG16789-RNAi (v103617). Note: Also 

with co-expression of CG16789-RNAi there 

are suppressor clones visible. CG16789 is 

not the substrate of CG6758. 
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4.7. Xbp1u as a potential candidate substrate for CG6758 

Finally we tested Xbp1u as a potential candidate substrate for CG6758-

mediated ubiquitination. Xbp1u in mammals is known as a negative 

regulator of Xbp1s, it shuttles between the cytoplasm and the nucleus, 

where it binds Xbp1s (Calfon et al., 2002; Yoshida et al., 2006). The 

interaction of Xbp1s and Xbp1u leads to their degradation. In mammals as 

well as in Drosophila, Xbp1 is transcribed as a target gene of Xbp1s 

(Acosta-Alvear et al., 2007, Domingos, P.; unpublished). Furthermore we 

showed that Xbp1u can rescue the “glossy” eye phenotype (Chapter III, 

p.90), so maybe also in flies there exists this negative feedback-loop, 

where Xbp1s leads to transcription of Xbp1, which results in the Xbp1u 

form and shuts down Xbp1s signaling. 

Fig.52: There are no elevated CG16789-GFP levels in CG6758 mutant 

clones, indicating that CG16789 is not the substrate of CG6758. Fly 

with the genotype eyFlp, GMR-GAL4; FRT42D, myrRFP/ FRT42D, Su218; 

UAS-CG16789-GFP/ +. The absence of Red marks the clones 

homozygous for the CG6758 mutation, green is the expression of 

CG16789, which is equal in mutant clones and surrounding heterozygous 

and “wildtype” tissue (red). Elav (blue) stains photoreceptors and is a 

control if absence of RFP is due to holes in the disc. Note: The over-

expressed CG16789-GFP is no substrate of CG6758. 

RFP     CG16789-GFP             Elav 
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We analysed if in clones homozygous for the CG6758 mutations there are 

elevated levels of Xbp1u (fig.53), but could not find any difference 

compared to surrounding heterozygous and “wildtype” tissue. 

 

 

 

 

 

 

Discussion 

To find the substrate of CG6758 destined for ubiquitination, followed by 

proteasomal degradation, we tested the known substrates of the Fbox 

proteins FBXO6 and FBXO42, the annotated human homologues of 

CG6758. The known substrates are CHK1 and P53, respectively, so we 

analysed the protein levels of Grapes (dCHK1) and Dp53 in CG6758 

Fig.53: There are no elevated Xbp1u levels in homozygous CG6758 

mutant clones, excluding Xbp1u as the substrate for CG6758. The 

absence of RFP marks the homozygous CG6758 mutant clones, there are 

no elevated levels of Xbp1u, excluding Xbp1u as a substrate for CG6758. 

Staining of the photoreceptors with Elav serves as an internal control to be 

sure that the absence of RFP is not due to holes in the disc. 

     RFP       Xbp1u-GFP              Elav 
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mutant mosaic eye discs to analyse whether those potential substrates are 

elevated in the homozygous mutant clones. 

For Grapes we found reduced protein levels in the homozygous mutant 

clones. The reduced Grapes levels could be a secondary effect, which 

could be explained by less pro-death ER stress signaling conferred by 

Xbp1s. The different UPR branches cross-talk and Grapes is known to 

undergo transient activation during ER stress mediated by PERK (Malzer et 

al., 2010), meaning that in the homozygous mutant clones there is less 

Grapes activation, maybe reflected in lower protein levels. 

By testing Dp53 as a potential substrate of CG6758, we did not observe 

any differences in protein levels between the homozygous mutant clones 

and the surrounding heterozygous and “wildtype” tissue. We also tested the 

over-expression of UAS-3xHA-3xFlag-full length-CG6758 in the atrophic 

eye phenotype caused by GMR-Dp53, if Dp53 is the substrate of CG6758. 

If Dp53 would be the substrate of G6758, the over-expression of CG6758 

should rescue the GMR-Dp53 eye phenptype due to Dp53 degradation, but 

we did not observe any rescue and excluded Dp53 as the substrate for 

CG6758. 

Anyway, we wanted to know, whether clones homozygous mutant for 

CG6758 suppress GMR-Dp53 induced cell death or if cell death conferred 

by CG6758 is ER stress specific. Clones homozygous for CG6758 can not 

suppress the atrophic eye phenotype induced by GMR-Dp53. 

We tested more potential candidate substrates for CG6758 mediated 

ubiquitination, but did not find any positive result. We tested the anti-

apoptotic protein Diap, the AAA-type ATPase Vcp, which is involved in 

ERAD, the cell cycle regulators CycB and CycE as well as the mitotic 

pattern in “glossy” eye imaginal discs and cut expression for the presence 

of cone cells in the “glossy” eye. Furthermore we also tested the potential 

CG6758 interactor CG16789 which is also an AAA-type ATPase and is 

upregulated in larval and adult “glossy” eyes upon Xbp1s over-expression.  
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Finally, we tested Xbp1u. 

In our analysis for enrichment of potential candidate substrates of CG6758, 

we put Xbp1s over-expression in the background (except for CG16789-

GFP levels), since it is possible that this over-expression provides factors 

for CG6758 functioning. 

The first potential candidate substrate we tested was Diap. Increased levels 

of Diap in the CG6758 mutant clones would lead to more suppression of 

apoptosis induced by Xbp1s and to suppressor clones in the adult “glossy” 

eye. Since there were no increased Diap levels in homozygous mutant 

clones in the “glossy” eye discs, we excluded Diap as a substrate for 

CG6758. 

Next we tested the AAA-type ATPase Vcp which is involved in ERAD, 

where it plays a crucial role in shuttling the misfolded or unfolded proteins 

to the proteasome (see 1.2.) for degradation. Enrichment of Vcp could lead 

to a better clearance of misfolded or unfolded proteins which accumulate in 

the ER upon prolonged or strong Xbp1s driven transcription. But also for 

Vcp, we did not find any difference in protein levels in homozygous mutant, 

heterozygous and “wildtype” clones, excluding Vcp as a substrate for 

CG6758. 

We examined, if a disturbed SMW is responsible for the suppression effect 

of CG6758 mutant clones in the GMR-GAL4>UAS-Xbp1s induced “glossy” 

eye. We tested levels of CycB, which in Drosophila is responsible for G2-M 

transition of synchronized cells behind the MF when in complex with Cdk1 

and CycE levels, the CycE/Cdk2 complex drives the cells into S-phase of 

the SMW. The degradation of one of the two proteins in the CG6758 

“wildtype” or heterozygous clones in CG6758 mutant mosaic “glossy” eye 

discs would result in a block in the SMW and no cone cells, which secrete 

the lens-forming material, would differentiate (see 1.5.). The loss or 

degradation of the lens is the cause for “glossy” eyes. We did not observe 

any differences of those protein levels in the mosaic eyes, however staining 

“glossy” eye discs with the mitosis marker PH3 revealed a disturbed SMW 
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pattern. Staining mosaic mutant “glossy” eye discs with PH3 did not show a 

restoration of the SMW pattern in the homozygous mutant clones. We also 

tested the SMW pattern in cell clones over-expressing Xbp1s, here it 

seems that the border of the cell clones is the area where the SMW is 

disturbed. 

To test if a disturbed SMW which would result in no differentiation of cone 

cells is responsible for the “glossy” eye phenotype, we stained discs with 

Xbp1s over-expressing cell clones with an antibody against Cut, positive 

cut staining indicates the presence of cone cells. We found positive cut 

signal in the Xbp1s over-expressing cell clones, arguing that the Xbp1s 

induced “glossy” eye phenotype does not result from differentiation defects 

but from cell death of the cone (and additional) cells.  

Afterwards, we wanted to know if CG16789, is the substrate of CG6758. 

Therefore, we tested two different available CG16789 RNAi lines for an 

enhancement of the Xbp1s induced “glossy” eye phenotype and did not 

observe any effect in the eye. However, RNAi lines not always provide 

sufficient knock down of the endogenous protein. Next we generated flies 

with mosaic eyes for CG6758 mutations and CG16789-RNAi in the 

background to test whether CG16789 is the substrate of CG6758, If this 

would be the case, one could expect that there are no suppressor clones 

visible in the “glossy” eye, because the loss of CG6758 funtioning would be 

compensated. No reversion of suppression in the mosaic eyes was visible, 

although maybe the used RNAi-line was not effective. We then tested 

whether UAS-CG16789 transgene expression is enhanced in the 

homozygous mutant clones due to impaired proteasomal degradation 

mediated by CG6758 substrate binding and ubiquitination of CG16789. We 

did not see any difference in the homozygous mutant clones compared to 

heterozygous and “wildtype” clones. However in this case, we did not 

provide Xbp1s over-expression in the background which is maybe required 

for the degradation of CG16789 due to delivery of essential factors. Since 
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in those flies, there was no Xbp1s in the backround, we also analysed if the 

over-expression of CG16789 could rescue the “glossy” eye phenotype 

conferred by GMR-GAL4>UAS-Xbp1s. We did not see any difference in the 

“glossy” eye phenotype and could exclude CG16789 as substrate for 

CG6758. 

As last potential candidate substrate, we tested Xbp1u. Xbp1u in mammals 

is known to interact with Xbp1s, leading to the degradation of Xbp1s/Xbp1u 

(Yoshida et al., 2006). Xbp1u is a target gene of Xbp1s as seen in its 

upregulation in “glossy” eye imaginal discs by microarray analysis 

(Domingos, P; unpublished). Furthermore, UAS-Xbp1u transgene 

expression can suppress the Xbp1s induced “glossy” eye phenotype (see 

Chapter III p.90), suggesting that also in Drosophila the Xbp1s/Xbp1u 

complex is degraded. If Xbp1u is the substrate for CG6758, then in 

homozygous mutant clones there should be more Xbp1u accumulation and 

more degradation of Xbp1s, to due Xbp1s/Xbp1u complex formation and 

reduced Xbp1s levels would lead to a suppression of the “glossy” eye 

phenotype. However by checking UAS-Xbp1u transgene levels in mutant 

mosaic “glossy” eye discs, we did not observe any difference of Xbp1u 

expression in homozygous CG6758 mutant clones, compared to 

heterozygous and “wildtype” tissue, excluding Xbp1u as a substrate of 

CG6758. 
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Summary 

Over-expression of Rhodopsin-1 wildtype (Rh-1WT) or mutated 

Rhodopsin-1 (Rh-1G69D) with the GMR-GAL4 driver leads to ER stress, 

cell death and an atrophic “glossy” eye phenotype, similar to that 

seen by GMR-GAL4>UAS-Xbp1s. ER stress occurs, because 

Rhodopsin-1 is  normally expressed in the pupa and the folding 

capacity of the ER in eye imaginal discs (GMR-GAL4 domain) is not 

sufficient for the processing of the over-expressed proteins. We 

tested our CG6758 mutations in this “glossy” eye phenotype to 

analyse an involvement in this cell death pathway. We observed a 

suppression of “glossyness” in the adult eye as well as suppression 

of apoptosis in cell clones homozygous mutant for Su218, arguing 

that CG6758 also plays a role in this ER stress model. 

Furthermore, we found reduced levels of Rh-1 in homozygous mutant 

clones, suggesting that CG6758 is somehow regulating the 

degradation of Rh1 by ERAD. For example, CG6758 could have as a 

substrate an ERAD factor, which would accumulate in CG6758 mutant 

cells and lead to the increased clearance of Rh-1. One ERAD factor 

that is responsible for the degradation of Rh-1 is Hrd1 and we tested 

whether Hrd1 accumulates in the homozygous CG6758 mutant clones. 

We did not find an accumulation of Hrd1 in the homozygous CG6758 

mutant clones.  

To be sure that the proteasomal degradation by an ERAD factor is 

responsible for the decreased levels of Rh-1WT in the homozygous 

mutant clones, we inhibited the proteasome with MG132. Compared to 

control discs, the inhibition of the proteasome leads to a restoration 

of Rh-1WT levels in the homozygous mutant cells, demonstrating that 

Rh-1WT is normally degraded in those clones. 
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Introduction 

The GMR-GAL4 driven over-expression of Rh-1 (wildtype or mutated form) 

leads to an atrophic “glossy” eye phenotype, similar to the phenotype seen 

by our GMR-GAL4>UAS-Xbp1s over-expression This phenotype results 

from over-expressing Rh-1 in the larval eye and thereby overloading the ER 

capacity in the larvae, since Rh-1 is normally expressed first in the pupa. 

Exceeding the folding capacity of the larval ER leads to ER stress (Kang et 

al., 2009). The GMR-GAL4>UAS-Rh-1 eye phenotype can be rescued by 

co-expression of ERAD components like the Drosophila Hrd1, resulting in 

partial restoration of the “glossy” eye (Kang et al., 2009). Furthermore, it 

was shown that the atrophic eye phenotype observed by Rh-1 mis-

expression is due to elevated levels of apoptosis in the GMR domain (Kang 

et al., 2009). 

 

 

 

Materials and Methods 

The pUAST-Rh-1WT and pUAST-Rh-1G69D vectors were amplified in DB3 

cells and a Midiprep with the NZY tech Midi Prep kit was performed. 

Sequencing of the vectors was done by Stabvida. The vectors were 

injected into embryos (BestGene) and stocks were generated by site-

specific recombination into the 68A4 site on the third chromosome. With the 

Flp/FRT system we were able to generate clones of our CG6758 alleles on 

the second chromosome in the background of Rh-1 over-expression on the 

third (eyFlp, GMR-Gal4; FRT42D, UbiRFP/ FRT42D, Su218; UAS-Rh-1WT 

or Rh-1G69D/ +. In the stock with wildtype Rh-1, apoptosis was analysed with 

the CPV reporter. Therefore, flies with the genotype eyFlp, GMR-GAL4; 

FRT42D, myrRFP/ FRT42D, Su218; CPV reporter/Rh-1WT were generated. 
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Staining with Elav to visualize cleaved parp was performed (for protocol 

see Chapter II, p.56). 

To analyse Rh-1WT levels in the CG6758 mosaic mutant disc, we stained 

the discs with an Rh-1 antibody (4C5-s from DSHB) and Elav antibody 

(7E8A10 from DSHB) (for protocol see Chapter III, p.56). 

For Hrd1 staining in “glossy” eye discs we generated the following flies: 

eyFlp, GMR-Gal4; FRT42D, UbiRFP/ FRT42D, Su218; UAS-Xbp1s/ +. 

Immuno-staining was performed with a Hrd1 antibody (a gift from Toshihiro 

Nakajima) and an Elav antibody (for protocol see Chapter III, p.56). 

We also stained for Hrd1 in “glossy” eye discs induced by Rh1WT 

expression. Therefore the flies with the genotype eyFlp, GMR-Gal4; 

FRT42D, UbiRFP/ FRT42D, Su218; UAS-Rh-1WT/ + were generated. 

For over-expression of Hrd1-myc and Rh-1WT, we used flies with the 

genotype eyFlp, GMR-Gal4; FRT42D, UbiGFP/ FRT42D, Su218; UAS-

Hrd1-myc/ UAS-Rh1WT .The staining with a Hrd1 and an Elav antibody was 

performed using the protocol in Chapter II, p.55. 

To test if Rh-1WT levels are reduced in CG6758 homozygous mutant clones 

due to proteasomal function, we used the proteasome inhibitor MG132, eye 

imaginal discs were incubated at RT over night with 200µM MG132 (in S2 

media), control discs were incubated in S2 media. 

All the discs were analysed under the confocal microscope (Zeiss 

LSM710). 
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Results 

5.1. CG6758 mutations in the GMR-GAL4>UAS-Rh-1 “glossy” eye  

Over-expression of wildtype and mutated Rhodopsin-1 (Rh-1WT, Rh-1G69D) 

in the eye imaginal discs also leads to a “glossy” eye phenotype in the 

adult, similar to the phenotype observed when over-expressing Xbp1s by 

the GMR-GAL4 driver. The eyes are much smaller than wild type eyes due 

to apoptosis. This phenotype is due to overloading the capacity of the ER in 

the eye imaginal discs since Rhodopsin-1, which is translated into the ER, 

is normally only expressed by late pupal stages (Kang et al., 2009). We 

chose the GMR-GAL4>UAS-Rh-1 eye as another model for ER stress and 

analysed if our alleles of CG6758 also suppress this “glossy” eye 

phenotype.  We could observe a suppression of the GMR-GAL4>UAS-Rh-

1WT and GMR-GAL4>UAS-Rh-1G69D “glossy” eye phenotype (fig.54,55), 

however flies with the right genetic constitution and the UAS-Rh-1G69D 

transgene were only viable at 18°C, meaning that the “glossyness” of the 

eye was not so dominant due to a weaker transgene expression. For the 

GMR-GAL4>UAS-Rh-1WT eye, we also generated eyes composed 

exclusively of homozygous mutant clones by the so called EGUF, Hid 

technique (Stowers and Schwarz, 1999). In those eyes one can easily see 

a restoration of the eye size and the ommaditial patterning (fig.54). 

 

 

 

 

Fig.54: CG6758 mutations suppress the GMR-GAL4>UAS-Rh-1
WT

 

“glossy” eye. (A)  GMR-GAL4>UAS-Rh-1
WT

 “glossy eye”. (B) Su218 

clones suppress the “glossy” eye phenotype. (C) “Glossy” eyes composed 

solely of Su218 clones have nearly normal size. 
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Since it was shown, that apoptosis leads to the GMR-GAL4>UAS-Rh-1 

“glossy eye” phenotype, we checked if we can detect reduced levels of 

apoptosis in our homozygous mutant clones in eye imaginal discs. 

We chose the GMR-GAL4>UAS-Rh-1WT eye for this purpose and used the 

CPV apoptosis reporter to detect apoptosis. We could clearly detect less 

apoptosis in clones homozygous for Su218 (fig.56). 

 

 

 

 

 

 

 

 

 

Fig.55: CG6758 mutations suppress 

the GMR-GAL4>UAS-Rh-1
G69D

 

“glossy” eye. (A)  GMR-GAL4>UAS-

Rh-1
G69D 

 “glossy” eye. The fly was 

raised at 18°C, at RT or higher 

temperatures the eye looks as “glossy” as 

the GMR-GAL4>UAS-Rh-1
WT 

eye in 

fig.49 (B) Su218 clones suppress the 

“glossy” eye phenotype. 

Fig.56: Apoptosis is suppressed in CG6758 mutant clones in GMR-

GAL4>UAS-Rh-1
WT

 “glossy” eye discs. Visualization of apoptosis with the 

CPV reporter. The genotype of the fly is eyFlp ,GMR-Gal4; FRT42D, 

UbiRFP/ FRT42D, Su218; CPV/ UAS-Rh1
WT

. In homozygous mutant clones 

marked by the absence of RFP there is less membrane-bound Venus-GFP 

and no cleaved parp staining, apoptosis is suppressed in the homozygous 

mutant clones. 
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5.2. Reduced apoptosis in CG6758 mutants due to proteasomal 

degradation of Rh-1 

To test if reduced levels of Rh-1WT in the homozygous mutant clones are 

responsible for the suppression effect and less cell death, we analysed Rh-

1WT levels with a Rh-1 antibody in eye discs mosaic for Su218 and could 

detect reduced Rh-1WT levels (fig.57) 

Since Rh-1WT levels are reduced in clones homozygous for Su218, we 

assumed that the substrate of CG6758 is an ERAD factor, since ERAD is 

responsible of clearing the cells of over-expressed Rh-1WT. Hrd1 is one of 

the ERAD factors known to promote the degradation of misfolded Rh-1 

(Kang et al., 2009). To test the possibility that Hrd1 is a substrate for 

CG6758, we stained CG6758 mutant eye discs (Xbp1s construct in the 

background) with a Hrd1 antibody to analyse whether in homozygous 

mutant clones there are elevated levels of endogenous Hrd1. We could not 

see any difference in the mutant and the “wildtype” clones (fig.58). 

 

 

 

 

Fig.57: Reduced Rh-1
WT

 levels in CG6758 mutant clones lead to the 

suppression effect. The fly has the genotype eyFlp, GMR-Gal4; FRT42D, 

UbiRFP/ FRT42D, Su218; +/ UAS-Rh1
WT

. In clones homozygous for 

Su218, marked by the absence of RFP, there are reduced levels of Rh-1
WT

 

as seen with the Rh-1 antibody (GFP). Elav staining marks the 

photoreceptors and serves as a control to ensure that the area which lacks 

RFP are no holes in the eye disc. 

RFP            Rh-1
WT

            Elav 
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We also tested Hrd1 levels in homozygous mutant clones for Su218 with 

Rh-1WT in the background and did not observe any difference in 

endogenous Hrd1 levels when compared to “wildtype” tissue (fig.59). 

 

 

 

 

Fig.58: There are no elevated Hrd1 levels in CG6758 mutant clones in 

GMR-GAL4>UAS-Xbp1s “glossy” eye discs, excluding Hrd1 as the 

substrate for CG6758. The fly has the genotype eyFlp, GMR-Gal4; 

FRT42D, UbiRFP/ FRT42D, Su218; UAS-Xbp1s/ +. In clones homozygous 

for Su218, marked by the absence of RFP, Hrd1 levels (GFP) are equal to 

the surrounding “wildtype” and heterozygous tissue. Elav staining marks 

the photoreceptors and serves as a control that the area which lacks RFP 

are no holes in the eye disc due to the preparation. Note: In Xbp1s over-

expressing discs, Hrd1 can be excluded as the substrate for CG6758. 

RFP            Hrd1            Elav 



 135 

 

 

 

 

 

 

Next we tested, wether we could observe any difference in Hrd1 levels in 

the mutant clones when compared to “wildtype” tissue when UAS-Hrd1-

myc is over-expressed, furthermore we wanted to see if over-expressed 

Rh-1WT colocalizes with Hrd1. We generated flies with the genotype eyFlp, 

GMR-Gal4; FRT42D, UbiGFP/ FRT42D, Su218; UAS-Hrd1-myc/ UAS-

Rh1WT. As expected, there are reduced levels of over-expressed Rh1WT in 

the Su218 mutant clones, but we could not find different Hrd1-myc levels in 

the homozygous mutant clones when compared to the control tissue 

(fig.60). 

Fig.59: There are no elevated Hrd1 levels in CG6758 mutant clones in 

GMR-GAL4>UAS-Rh-1
WT

 “glossy” eye discs, excluding Hrd1 as the 

substrate for CG6758. The fly has the genotype eyFlp, GMR-Gal4; 

FRT42D, UbiRFP/ FRT42D, Su218; UAS-Rh-1
WT

/ +. In clones homozygous 

for Su218, marked by the absence of RFP, Hrd1 levels (GFP) are equal to 

the surrounding “wildtype” and heterozygous tissue. Elav staining marks the 

photoreceptors and serves as a control that the area which lacks RFP are 

no holes in the eye disc. Note: Hrd1 can be excluded as substrate for 

CG6758. 

       RFP           Hrd1             Elav 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

 

To confirm that reduced levels of over-expressed Rh-1WT in Su218 mutant 

clones are due to proteasomal degradation, we tested the influence of the 

proteasome inhibitor MG132 on the Rh-1WT levels in those discs. Eye discs 

were incubated in 200µM MG132 in Schneider S2 media over night before 

fixation, as control, we also incubated discs solely in Schneider S2 media 

over night. The incubation took place at room temperature. At 25°C every  

row of photoreceptors develops approximately every two hours, meaning 

that for an incubation of 16h in MG132, there should be eight rows of 

photoreceptors in the anterior part of the GMR domain in which the 

proteasome should have been inhibited since the onset of photoreceptor 

differentiation. We compared the over-expressed Rh-1WT levels in Su218 

mutant clones in the anterior GMR domain of MG132 incubated discs with 

those of control discs and found that incubation with MG132 leads to 

elevated levels of Rh-1WT (fig.62), meaning Rh-1WT is cleared from the 

homozygous mutant clones by proteasomal function. 

Fig.60: There are no elevated over-expressed Hrd1 levels but reduced 

Rh-1
WT

 in homozygous mutant CG6758 clones. The fly has the genoype 

eyFlp, GMR-Gal4; FRT42D, UbiGFP/ FRT42D, Su218; UAS-Hrd1-myc/ 

UAS-Rh1
WT

. Clones homozygous for the CG6758 mutation are marked by 

the absence of GFP. Rh-1 levels are reduced in those clones, Hrd1 levels 

are the same in mutant and control tissue. 

GFP           Rh1
WT

       Hrd1-myc 
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Discussion 

Over-expression of Rh-1 with the GMR-GAL4 driver leads to ER stress, 

apoptosis and a “glossy” eye phenotype which is an amenable model to 

screen for suppressors of this phenotype. In our ER stress model where we 

mimic strong and prolonged ER stress by the over-expression of Xbp1s we 

Control 

 

 

 

 

MG132 

 

 

 

 

MG132 

UbiRFP         Rh-1        Elav         

Elav 

Fig.61: Rh-1
WT

 levels are reduced in CG6758 homozygous mutant 

clones due to proteasomal function. CG6758 homozygous mutant clones 

are marked by the absence of UbiRFP, Elav serves as a control to be sure 

that lack of RFP is not due to holes in the discs. In the control experiment 

where discs were incubated with S2 media, Rh-1 levels are reduced in 

homozygous mutant clones, whereas when discs are incubated with 

MG132, Rh-1 levels are restored in the anterior part of the GMR-GAL4 

domain. 
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identified CG6758 as a downstream mediator of the Xbp1s induced cell 

death. We showed that CG6758 mutations also suppress the “glossy” eye 

phenotype caused by the GMR-GAL4 driven over-expression of Rh-1, 

which is a valid model for ER stress induced cell death, since it was shown 

that the co-expression of ERAD factors can suppress this atrophic eye 

phenotype (Kang et al., 2009). The suppression of the GMR-GAL4>UAS-

Rh-1 eye phenotype by CG6758 suppressor mutations obtained from the 

Xbp1s over-expression screen makes our model valid as another ER stress 

induced cell death model and shows that the GMR-GAL4>UAS-Xbp1s 

induced cell death is not an artefact. 

In the GMR-GAL4>UAS-Rh-1 atrophic eye, apoptosis is a mechanism 

responsible for cell death and mutations of CG6758 homozygous mutant 

clones suppress the apoptosis in this model. In GMR-GAL4>UAS-Xbp1s 

discs, we could only detect little apoptosis and we could not show that there 

is a suppression of apoptosis by CG6758 mutations. 

We also showed that reduced levels of Rh-1WT in CG6758 homozygous 

mutant clones are responsible for the suppression of cell death which leads 

to the assumption that an ERAD factor, responsible for the degradation of 

Rh-1WT, is the substrate for CG6758 dependent ubiquitination. In CG6758 

homozygous mutant clones, the substrate of CG6758 should accumulate 

and an accumulation of an ERAD factor responsible for Rh-1WT clearance 

would lead to the increased degradation of Rh-1WT. Hrd1 is one ERAD 

factor known to be involved in the degradation of Rh-1WT, so we tested 

Hrd1 levels in homozygous mutant clones of GMR-GAL4>UAS-Xbp1s and 

GMR-GAL4>UAS-Rh-1WT discs, we found no accumulation of Hrd1 in the 

clones. We also checked over-expressed Hrd1-myc levels in GMR-

GAL4>UAS-Rh-1WT discs and found no accumulation of Hrd1-myc in the 

homozygous mutant clones. We excluded Hrd1 as the substrate of 

CG6758. 
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To show that proteasomal degradation is responsible for the decreased 

levels of Rh-1WT in CG6758 homozygous mutant clones, we made use of 

the proteasome inhibitor MG132. Inhibition of the proteasome restored Rh-

1WT levels in the mutant clones. From these experiments we can conclude 

that the substrate of CG6758 is an ERAD component responsible for the 

degradation of mifolded Rh-1 in the ER. 
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The UPR is activated under conditions of ER stress, due to unfolded or 

misfolded proteins in the ER and serves to restore ER homeostasis by 

translational attenuation to prevent that newly synthesized proteins enter 

the overloaded ER and by upregulation of ERAD components, chaperones 

and folding enzymes. However, if ER stress is too strong or prolonged, the 

different UPR branches do not only elicit protective mechanisms, but also 

induce cell death.  

In humans, IRE1 activity was shown to induce apoptosis via association 

with TRAF2 and activation of JNK signaling (Nishitoh et al., 2002, Urano et 

al., 2000; Verfaillie et al., review, 2010). Furthermore, RIDD conferred by 

the endonuclease activity of IRE1α is responsible for the induction of 

apoptosis by degradation of microRNAs that normally repress translation of 

caspase-2 mRNA (Upton et al., 2012).  

The pathways which link IRE1 activity to cell death are independent of 

Xbp1s signaling and so far it was not shown that Xbp1s activity can lead to 

cell death.  

With this work we show for the first time that prolonged and strong Xbp1s 

signaling leads to cell death by using the Drosophila eye as our model 

system. In our ER stress model we over-express Xbp1s with the GMR-

GAL4 driver which leads to cell death in all cells posterior to the 

morphogenetic furrow. In the external eye structure this cell death is visible 

as the so called “glossy” eye phenotype which is due to loss of cone, lattice 

and pigment cells. The “glossy” eye phenotype is amenable for suppressor 

screens and we decided to perform a mosaic genetic screen by inducing 

point mutations in the fly genome and searching for mutations that can 

suppress the “glossyness” and potentially act downstream of Xbp1s in the 

cell death pathway. Therefore, we made use of the Flp/FRT technique. 

(Golic, 1991). 

By complementation analysis, mapping with deficiencies and sequencing of 

candidate genes, we found four complementation groups among our 
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suppressors, with mutations in Xpd, in Eaf and CG6758. The fourth 

complementation group was not mapped. 

However, to be sure that our generated alleles are real downstream targets 

of Xbp1s cell death signaling, we had to exclude that the suppression effect 

is due to reduced UAS-Xbp1s transgene expression or due to modulation 

of Xbp1s protein levels. Both possibilities could only be excluded for the 

CG6758 alleles, so we proceeded our studies with CG6758, a real 

downstream mediator of Xbp1s. 

To be sure that the mutations found in CG6758 are responsible for rescuing 

the GAL4>UAS-Xbp1s “glossy” eye phenotype, we reverted the 

suppression effect of the alleles by co-expression of CG6758 cDNA and a 

genomic rescue construct.  

CG6758 encodes an Fbox protein with unknown biological function 

(Flybase). Fbox proteins are known to be part of SCF E3 ubiquitin ligase 

complexes, whereby the Fbox protein binds the substrate destined for 

proteasomal degradation (Kipreos and Pagano, 2000). Fbox proteins can 

also act independently of SCF complexes in various contexts (reviewed in 

Hermand 2006). To analyse if CG6758 acts in an SCF complex, we 

performed RNAi of different SCF complex components in the GMR-

GAL4>UAS-Xbp1s “glossy” eye. RNAi for CG6758, for SkpA and for Cullin-

1 could partially rescue the eye phenotype, giving a hint that CG6758 acts 

in an SCF E3 ubiqutin ligase complex. Furhtermore CG6758 seems to co-

IP with Skp1 and Cullin1 in transiently transfected S2 and HEK cells 

(personal communication, Catarina Gaspar). 

By analysing cell death mechanisms leading to the Xbp1s induced atrophic 

eye phenotype, we found in cell clones over-expressing Xbp1s apoptosis 

and autophagy. The adult eye with Xbp1s over-expressing cell clones is 

only very little composed of Xbp1s expressing cells. This is not true when 

co-expressing P35, however P35 can only partially rescue the 

“glossyness”. We assume that Xbp1s over-expressing cells are removed 

during eye development by apoptosis and replaced by “wildtype” tissue. 
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Co-expression of P35 inhibits apoptosis of Xbp1 over-expressing cells, but 

is not fully able to rescue the “glossyness”, as it seems that only 

heterozygous tissue for Xbp1 over-expression can be partially rescued. 

We also analysed apoptosis in the GMR-GAL4>UAS-Xbp1s eye and did 

not observe any induction of apoptosis in the larvae. However, we could 

see a partial rescue of the GMR-GAL4>UAS-Xbp1s “glossy” eye when P35 

and Diap were co-expressed. It is likely that apoptosis contributes to the 

atrophic eye phenotype later in development, but apoptosis does not seem 

to be the sole mechanism of cell death in our model. Besides analysing 

apoptosis in Xbp1s over-expressing cell clones and GMR-GAL4>UAS-

Xbp1s discs, we also tested markers for autophagy in these both contexts. 

We found autophagy activity in Xbp1s over-expressing cell clones but not in 

discs of GMR-GAL4>UAS-Xbp1s over-expression.  

Since there is only partial rescue of “glossyness” with apoptosis inhibitors, 

but autophagy activity in Xbp1s over-expressing cell clones, one other 

mechanism that could contribute to the death of cells may be autosis, a 

form of non-apoptotic cell death recently described (reviewed in Liu et al., 

2015). In our setting, the autophagy machinery may be essential for cell 

death. One unique morphological feature of autosis is ER dilatation. It was 

shown that XBP1s activity increases synthesis of phosphatidylcholine, a 

key ER lipid and induced the expansion of the ER. Cells over-expressing 

XBP1s had enhanced activity of the cytidine diphosphocholine pathway of 

phosphatidylcholine biosynthesis and exhibited elevated levels of 

membrane phospholipids, increased surface area and volume of rough ER 

(Sriburi et al., 2004). 

 

We tested if Xbp1u can revert the “glossy” eye phenotype and found that 

Xbp1u can strongly suppress the Xbp1s induced cell death, thus it is likely 

that also in Drosophila Xbp1u interaction with Xbp1s leads to degradation 

of the Xbp1u/ Xbp1s complex as seen in mammals (Yoshida et al., 2006). 
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Next we wanted to find the substrate for CG6758 mediated ubiquitination 

and proteasomal degradation. Therefore we tested the substrates of the 

CG6758 human homologues (FBXO6 and FBXO42), namely CHK1 

(Grapes in Drosophila) and P53. For a putative substrate of CG6758, one 

can expect an accumulation of protein levels in CG6758 homozygous 

mutant clones, which we did not find, neither for Grapes nor for Dp53. We 

further tested other potential substrates for being degraded by the 

SCFCG6758 complex, such as Diap, Vcp, several cell cycle components, 

CG16789 and Xbp1u, but we did not find the substrate of CG6758 among 

these proteins. 

To be sure that our Xbp1s ER stress model is valid and not an artifact, we 

tested our CG6758 alleles in another ER stress model, where the over-

expression of Rh-1WT/ Rh-1G69D by the GMR-GAL4 driver leads to ER stress 

and apoptosis and a “glossy” eye phenotype (Kang et al., 2009), similar to 

what is seen for Xbp1s over-expression. Our CG6758 alleles also suppress 

this “glossy” eye phenotype induced by GMR-GAL4 driven over-expression 

of Rh-1. Furthermore we could show that CG6758 mutants suppress 

apoptosis, by reducing the Rh-1WT levels in the homozygous mutant clones. 

This is likely due to proteasomal degradation of Rh-1WT, since inhibition of 

the proteasome with MG132 led to the restoration of Rh-1WT protein levels. 

These results lead us to the conclusion that the substrate of CG6758 

should be an ERAD factor which accumulates in the CG6758 mutant 

clones and causes the increased clearance of misfolded Rh-1 from the ER. 

We analysed if Hrd1 is the substrate of CG6758, since Hrd1 was shown to 

rescue the Rh-1WT eye (Kang et al., 2009). We did not observe any 

accumulation of Hrd1 in homozygous CG6758 mutant clones, neither 

endogenous Hrd1 accumulation nor accumulation of over-expressed Hrd1-

myc. 

We conclude that prolonged and strong Xbp1s signaling leads to cell death 

and that CG6758 is acting downstream of Xbp1s in this cell death pathway. 

Since CG6758 is an Fbox protein acting in an SCF complex mediating 
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protein ubiquitination, we assume that substrate accumulation in CG6758 

mutants somehow leads to suppression of the Xbp1s induced cell death. 

From our experiments in the GMR-GAL4>UAS-Rh-1WT eye, we believe that 

the substrate of CG6758 could be an ERAD component that is involved in 

degradation of misfolded Rh-1, because in CG6758 mutants Rh-1 

degradation is increased. Xbp1s activates the transcription of many ERAD 

components (Shoulders et al 2013; Acosta-Alvear et al 2007), including 

Hrd1, Edem, DERL1 and Vcp. The transcriptional activation of ERAD 

components should be protective to the cell, since it causes the increased 

degradation of misfolded proteins from the ER. However, under certain 

conditions ERAD over-activation may lead to cell death. This was 

demonstrated by suppression of retinal pathology caused by misfolded 

Rhodopsin when Vcp was inactivated (Griciuc et al., 2010).  

It could be possible that the sustained and strong transcriptional activity of 

the over-expressed Xbp1s by the GMR-GAL4 driver leads by itself to ER 

stress, since the transcriptional targets include many ER resident proteins 

(ERAD factors, chaperones) which also need to be properly folded. In this 

context one could explain that the impaired function of CG6758 leading to 

the accumulation of an ERAD factor is responsible for suppression of the 

“glossy” eye phenotype, since this ERAD factor could help to alleviate the 

induced ER stress. 

This ERAD factor which could be the substrate of CG6758 mediated 

ubiquitinationcould also be responsible for the clearance of misfolded Rh-1 

from mis-expressing eye imaginal discs in homozygous mutant clones in 

the GMR-GAL4>UAS-Rh-1WT eye, thereby suppressing apoptosis and the 

atrophic eye phenotype. 

The identification of cell death pathways conferred by the UPR transducer 

Xbp1s and the involvement of mediators in this process will provide new 

insights into molecular and cellular mechanisms underlying 

neurodegenerative diseases caused by ER stress. 
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Fig.53: There are no elevated Xbp1u levels in homozygous CG6758 mutant 

clones, excluding Xbp1u as the substrate for CG6758. P.119 
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Fig.54: CG6758 mutations suppress the GMR-GAL4>UAS-Rh-1
WT

 “glossy” 

eye. P.131 

Fig.55: CG6758 mutations suppress the GMR-GAL4>UAS-Rh-1
G69D

 “glossy” 

eye. P.132 

Fig.56: Apoptosis is suppressed in CG6758 mutant clones in GMR-

GAL4>UAS-Rh-1
WT

 “glossy” eye discs. P.132 

Fig.57: Reduced Rh-1
WT

 levels in CG6758 mutant clones lead to the 

suppression effect. P.133 

Fig.58: There are no elevated Hrd1 levels in CG6758 mutant clones in GMR-

GAL4>UAS-Xbp1s “glossy” eye discs, excluding Hrd1 as the substrate for 

CG6758. P.134 

Fig.59: There are no elevated Hrd1 levels in CG6758 mutant clones in GMR-

GAL4>UAS-Rh-1
WT

 “glossy” eye discs, excluding Hrd1 as the substrate for 

CG6758. P.135 

Fig.60: There are no elevated over-expressed Hrd1 levels but reduced Rh-1
WT

 

in homozygous mutant CG6758 clones. P.136 

Fig.61: Rh-1
WT

 levels are reduced in CG6758 homozygous mutant clones due 

to proteasomal function. P.137 
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X – Abbreviations 

 

aa: amino acid 

AAA-ATPase: ATPase associated with diverse cellular activities 

ADRP: Autosomal Dominant Retinitis Pigmentosa 

AMPK: adenosine monophosphate-activated protein kinase 

Apaf-1: apoptotic protease activating factor 1 

Ark: Apaf-1-related killer 

ASK1: apoptosis signaling-regulating kinase 1  

ASK1: apoptosis signal-regulating kinase 1 

ATF: Activating Transcription Factor  

ATF6f: ATF6fragment 

ATG: autophagy-related 

Ato: Atonal 

ATP: Adenosintriphosphate 

ATR: ataxia telangiectasia and Rad3-related protein 

BAC: bacterial artificial chromosome 

BAK: Bcl-2 homologous antagonist killer 

BAX: Bcl-2-associated X protein 

Bcl-2: B-cell lymphoma 2 

Bip: Binding immunoglobulin protein 

Bp: base pairs 

bZIP: basic Leucine zipper 

CAK: CDK activating kinase 
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CARD: caspase activation and recruitment domain 

CaMK: Calcium monitoring kinase 

Cdc48: cell division protein 48 

Cdk: cyclin dependent kinase 

CDKI: Cdk inhibitor 

cDNA: complementary DNA 

CHK1: Checkpoint kinase 1 

Chop1: CCAAT enhancer-binding homologous protein 1 

CHOP: C/EBP homologous protein 

CNX: Calnexin 

COP: Coat Protein 

CPV: CD8-parp-Venus 

CreP: constitutive repressor of eIF2α phosphorylation 

CRT: Calreticulin 

CTD: carboxil terminal domain  

C-terminal: Carboxy-terminal 

Cy: Curly 

Cyc: cyclin 

CyO: Curly of Oister 

Dcp-1: mRNA-decapping enzyme 1 

Der: Derlin 

DIAP: Drosophila IAP 

DNA: Desoxyribonucleine acid 

DR5: death receptor-5 
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Dredd: Death related ced-3/Nedd2-like protein 

DrICE: Drosophila ICE 

Dronc: Drosophila melanogaster NEDD2-like caspase 

DSHB: Developmental Studies Hybridoma Bank 

DTT: Dithiothreitol 

E: enhancer 

Eaf: Ell-associated factor 

EDEM: ER degradation-enhancing α-mannosidase– like protein 

EGF: Epidermal Growth Factor 

EGUF: eyGAL4/UAS-flp 

Elav: embryonic lethal abnormal vision 

eIF2α : eukaryotic translation initiation factor 2 α 

Ell: elongation factor eleven-nineteen lysine-rich in leukemia  transcription 

factor 

EMS: Ethyl methanesulfonate 

ER: Endoplasmic Reticulum 

ERAD: ER Associated Degradation 

ERGIC: ER–Golgi intermediate compartment 

ERO1: ER oxireductin 1 

ERSE: ER stress response element 

Flp: Flipase 

FP: forward primer 

FRT: flipase recognition target 

G: gap 
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g: gram 

GADD34:  growth arrest and DNA-damage-inducible protein-34) 

Gcn: general control non-derepressible 

GFP: green fluorescent protein 

Glc: Glucose 

GMR: Glass Multimer Reporter 

GPI: Glycosylphosphatidylinositol 

GTP: Guanosinetriphosphate 

GWS: Gateway System 

HA: hemagglutinin 

Hac1: homologous to ATF/CREB1 

Hh: hedgehog 

Hid: head involution defective 

HR: hydrophobic region 

HRD: HMG-CoA reductase degradation 

HRI: haem-regulated inhibitor kinase 

IAP: inhibitor of apoptosis protein 

IP3R1: inositol 1,4,5-triphosphate receptor, type 1 

IRE1: Inositol-requiring Enzyme 1 

ISR: Integrated Stress Response 

JNK: c-Jun N-terminale Kinase 

L: liter 

LC3: Microtubule-associated protein light chain 3  

M: mitosis 
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M: Mol 

MAP kinase: mitogen activating protein kinase 

Mekk1: MAP/ERK kinase kinase 1 

ml: milli liter 

MF: morphogenetic furrow 

mRNA: messenger RNA 

NER: nucleotide excision repair 

NFkB: nuclear factor κB 

Nina: neither inactivation nor afterpotential 

OS-9: osteosarcoma amplified 9 

ORF: open reading frame 

PBS: phosphate buffered saline 

PBT: phosphate buffered saline with triton 

PCR: Polymerase chain reaction 

PERK: Protein Kinase RNA-like Endoplasmic Reticulum Kinase 

Pdi1p: Protein disulfide isomerase 1p 

PH3: phosphohistone-3 

PKR: Protein kinase R 

Pol: Polymerase 

PP1: protein phosphatase 1 

R: photoreceptor 

Rb: Retinoblastoma protein 

RFP: red fluorescent protein 

Rh: rhodopsin 
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RIDD: Regulated Ire1 Dependent Decay 

RING: Really interesting gene 

RNAi: RNA-Interference 

RNC: mRNA- ribosome-nascent chain 

RP: Retinitis pigmentosa 

RP: reverse primer 

RT: room temperature 

RT-PCR: Reverse Transcriptase PCR 

S: synthesis 

S1P: site 1 protease 

S2P: site 2 protease 

SCF: Skip-Cullin-Fbox 

Sco: Scutoid 

Ser: Serine 

SMW: second mitotic wave 

Spi: Spiz 

SRP: Signal recognition Particle 

Su: suppressor 

TF: transcription factor 

Thr: Threonine 

TM6b: Third Multiple 6b 

TNF: tumour necrosis factor 

TPR: tetratricopeptide repeats 

TRAF2: tumor necrosis associated factor 2 
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TRB3: Tribbles related protein 3 

TRC8:  Tricornered 8 

Trl1: tRNA ligase 1 

tRNA: transfer RNA 

TUNEL: TdT-mediated dUTP-biotin nick end labeling 

UAS: upstream activating sequence 

UDP: Uracildiphosphate 

uORF: upstream open reading frame 

UPR: Unfolded Protein Response 

USP13: ubiquitin specific peptidase 13 

Vcp: Valosin containing protein 

Vps35: Vacuolar protein sorting 35 

Xbp1s: Xbox binding protein 1 

Xbp1s: Xbp1spliced 

Xbp1u: Xbp1unspliced 

Xpd: Xeroderma pigmentosum group D 

 


