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Abstract

In this study we apply an age-structured bio-economic model to the Ibero-Atlantic

sardine stock, and compute an optimal harvesting strategy. We compare it with the

ongoing harvest control rule, which overlooks economic incentives. We show that the

optimal plan entails greater net returns from the fishery, though at a cost of reducing

biomass below acceptable reference points. By incorporating precautionary constraints,

we find that an optimal plan still yields higher economic returns, while better adhering

to stock-recovery objectives.

Keywords: Fishery management; Harvest rule; Optimal harvesting; Age-structured

model.

1 Introduction

Fisheries are an important source of income, employment and food provision.1 Their

sustainability, however, has been compromised time and again (FAO 2014). Many stocks

are currently overexploited, and managers are looking for innovative ways to address

this issue. In the design of policy options for a fishery, control rules are often used to

dictate how harvesting is determined. These are frequently based on target reference

points related to the size of the stock biomass. However, economic criteria appear to

be absent from the process of determining allowable catch (Anderson 2013), despite it

being essential not only for efficiency considerations, but also to ensure the compliance

of the proposed regulations.

The Ibero-Atlantic sardine is one example of a species currently under pressure.

Sardine is a pelagic fish distributed along the continental shelf of the Atlantic Ocean

1 According to State of the World Fisheries 2014 (FAO 2014), more than 10% of the world’s population depend

on fisheries for their livelihoods.
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(ICES Divisions VIIIc and IXa). In the last decades, catches have exhibited fluctuations,

having peaked in 1981 with more than 200, 000 tons of landings, but showing a general

decrease ever since, with around 46, 000 tons in 2013 (ICES 2014). Biomass also shows

extensive variation. It is argued that in the early 90’s the sardine population may have

been more than two times its current size. This accentuated decrease is attributed to low

recruitment success and overfishing (ICES 2013b). All catches are taken by Spanish and

Portuguese fleets, but EU regulation does not establish Total Allowable Catches (TACs)

for the fishery. Instead, a reference-point stock-rebuilding plan has been enforced by

the two countries based on biological indicators. However, nowhere in the design of the

harvest control rule (HCR) does there appear to be an estimation of the economic rents

of alternative policies.

In this paper we apply an age-structured bio-economic model to the Ibero-Atlantic

sardine stock to determine the harvesting policy that maximizes economic returns over

time. The choice of an age-structured model hinges not only on the fact that technical

regulation of fisheries is becoming more prevalent within a cohort-based framework2,

but more importantly, because the HCR for the sardine fishery was designed using age-

structured information.

Our main objective is to assess quantitatively the performance of the currently im-

plemented rule, comparing it with an optimal plan delivered by a model that explicitly

incorporates economic considerations. We start by determining the equilibrium stock

levels under both plans, as well as the economic returns associated with their transi-

tion paths. However, it will be shown that a profit maximizing trajectory leads to a

non-precautionary stock level. As a consequence, we induce several stock rebuilding

strategies and evaluate how they perform against the ongoing HCR. We find that there

may be great losses in efficiency under the currently implemented rule, either from an

economic or biological perspective. This result carries important management implica-

tions, considering the vulnerable state of the sardine stock, and the historically low levels

of allowed catch for the fishery.

The paper is organized as follows. The next section briefly reviews the literature on

bio-economic modeling in fisheries, while motivating our discussion in light of existing

studies. Section 3 presents the age-structured bio-economic model. In Section 4 we

provide a brief description of the Ibero-Atlantic sardine fishery, and calibrate the model

to empirical data. Section 5 presents our results, and in Section 6 we conclude.

2 Literature Review

Economists have sought to create the appropriate environment to establish a clear link

between economics and biological systems. Bio-economic modeling in fisheries is a math-

ematical representation that integrates biological components to represent the natural

2 Mesh sizes or other gear selectivity measures, moratoria and area closure (FAO 2014).
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resource dynamics, and economic components to represent resource users (Grafton et

al. 2004, Clark 2010). Their objective is to determine the optimal level of resource ex-

traction that maximizes economic profits, this way providing an important support for

decision making.

Traditionally, bio-economic analyses are based on modeling fish populations as a

uniform dynamic quantity - the resource biomass (Schaefer 1954, Smith 1969, Clark

2010). While these provide valuable insights over basic fishery economic principles,

one crucial question is the level of biological detail that is needed to address specific

problems, such as reproduction success or age-specific vulnerability to fishing. Age-

structured models are increasingly used in the analysis of fisheries management, as they

include greater detail regarding fish stock structure, individual weights, sizes, fecundity

and mortality characteristics.

In age-structured bio-economic models the optimal harvest strategy specifies the num-

ber and age of harvested individuals (see Hilborn and Walters (1992), and Quinn and

Deriso (1999) for a review of age-structured models). However, simplifying assumptions

such as imperfectly selective gear, would generally lead to pulse fishing as an optimal

strategy —a highly irregular policy of stock rehabilitation that may be ill advised, es-

pecially if vessel capital is imperfectly malleable (Clark et al. 1979). Nevertheless, some

pioneering studies have embodied more realism, and thus complexity, in the multicohort

dynamics, discussing smoother harvesting profiles in the event of risk aversion, adjust-

ment costs, endogenous price and cost of catch (Hannesson 1975, 1988, Kennedy 1992),

as well as stochastic recruitment to account for environmental uncertainty (Getz 1984).

Recently, some authors have also employed age-structured models in their studies

(Bjørndal and Brasão 2006, Stage 2006, Tahvonen et al. 2013). Economic research in

multicohort fisheries is almost exclusively based on case studies and numerical compu-

tations, that are not easily accessible as a management tool. However, Tahvonen (2008,

2009a,b) has developed analytical and numerical results on the optimal harvesting prob-

lem of an age-structured population, with a more general, and theoretical understanding

of its optimization problem. The greatest features of Tahvonen’s model are its sim-

plicity, and flexibility to changes under different simplifying assumptions, such as the

objective function specification, cohort dynamics, gear selectivity and other economic

considerations.

One important contribution of bio-economic models is the estimation of the eco-

nomic returns of different fishing policies. Sandberg (2005), for instance, although not

determining an optimal harvest plan, compares a target escapement harvest rule with

an already established reference-point rule for the Norwegian spring spawning herring,

showing under which conditions one may yield higher economic returns than the other.

Eikeset el al. (2013) by developing a bio-economic model for the Northeast Arctic cod

fishery derive different HCRs, and conclude that the HCR that maximizes profits is the

most precautionary among all. More recently, Yamazaki et al. (2015) report simulation

results on how HCRs and no-take marine reserves perform in stock recovery plans, using
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a lumped-parameter bio-economic model.

Our study can be included in the body of literature on the optimal harvesting strategy

of an age-structured population. We adopt Tahvonen et al. (2013) model specification,

but we modify some of its attributes to reflect the sardine population dynamics, such

as the inclusion of intra-seasonal growth, and the specification of a different timing

for the harvesting season to occur (Tahvonen 2009b). Additionally, and unlike other

bio-economic studies, rather than simply comparing between alternative policies or for-

mulating reference-point rules that are optimized for different objectives, we compute

an optimal harvesting trajectory and compare it with a currently implemented harvest

rule.

3 Model

We adopt the modeling framework developed in Tahvonen (2009b) and Tahvonen et al.

(2013).

There are n age classes. The number of individuals in age class s = 1, ..., n in year

t = 0, 1... is denoted by xst (in 109 individuals). Let γs be the proportion of stock in the

s-th age class which is sexually mature, and ws the average weight-in-stock at spawning

time. The spawning stock biomass, x0t (1,000 tons), is given by

x0t =
n∑
s=1

γswsxst (3.1)

We assume that spawning occurs in the beginning of each period, and only a fraction

of the eggs will survive as recruits. Let φ denote the spawner-recruit relation, where

the number of young fish (recruits) entering a population is related to the number of

parent-fish (spawners). The next period number of recruits is given by

x1,t+1 = φ(x0t) (3.2)

Let ms denote the age-specific instantaneous natural mortality rate within each pe-

riod. The fish population is also subject to fishing mortality, or harvesting, that we

assume to happen after recruitment and at the middle of each period.3 If fishing mortal-

ity is zero, a fraction e−ms of an age class s = 1, ..., n will survive for the next period.4

After half a year, e−
ms
2 corresponds to the fraction that is still alive. Given an effort

level5 Et, harvest from age class s = 1, ..., n is determined by the age-specific catch-effort

3 Sardines spawn in winter months which we assume to correspond to the beginning of each period, whereas

catches are mostly taken in summer months. Hence our assumption of a different timing for the harvest season.

4 If we let ms denote the instantaneous natural mortality (units t−1), and treating mortality as negative popu-

lation growth, the population numbers evolve according to dxs(t)
dt = −msxs, with xs(0) = xs0. The solution to

this differential equation is xs(t) = xs0e
−mst. After one year, the size of age-class s is xs(1) = xs0e

−ms . Thus

the yearly natural survival fraction is e−ms .

5 Effort is commonly referred as an aggregate measure of several economic inputs devoted to fishing.
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relationship hst = qsEte
−ms

2 xst, where qs are the age-specific catchabilities (Schaefer

1957). The stock updating equations can be defined as

xs+1,t+1 = e−
ms
2 (e−

ms
2 xst − hst), s = 1, ..., n− 2 (3.3)

xn,t+1 = e−
mn−1

2 (e−
mn−1

2 xn−1,t − hn−1,t) + e−
mn
2 (e−

mn
2 xnt − hnt) (3.4)

where Eq.(3.4) for the oldest age class shows that fish in this cohort remain there, if they

have survived natural and fishing mortality.

The total annual catch Ht (1, 000 tons) can be obtained by summing harvest over all

age classes, evaluated at their average weight-in-catch6 wcs, and is equal to

Ht =
n∑
s=1

wcshst =
n∑
s=1

wcsqsEte
−ms

2 xst (3.5)

To accommodate Ht as the control variable, we can rewrite our stock updating equa-

tions explicitly as a function of total catch since by Eq.(3.5) we have

Et =
Ht∑n

s=1w
c
sqse

−ms
2 xst

(3.6)

Thus Eqs.(3.3) and (3.4) can be rewritten as

xs+1,t+1 = e−msxst −HtGst, s = 1, ..., n− 2 (3.7)

xn,t+1 = e−mn−1xn−1,t + e−mnxnt −Ht(Gn−1,t +Gnt) (3.8)

where

Gst =
e−msqsxst∑n

s=1 qsw
c
se
−ms

2 xst
, s = 1, ..., n (3.9)

are functions that transform total harvest, Ht, into the number of harvested individuals

in a given age class s at time t.

Notice that the age-specific harvest strategies, hst, are found by allocating total

harvest, Ht, among all age classes using the catchability coefficients and stock numbers.7

It follows that harvest is non-selective, that is, different age-classes cannot be harvested

independently. To make sure that the number of harvested fish does not exceed the

number that exists in a given age-class, i.e., hst ≤ e−
ms
2 xst, we place an additional set

of restrictions that can be formulated as complementary constraints

hst −HtGste
ms
2 + y1

st = 0 (3.10)

6 In contrast to weight-in-stock (ws) which corresponds to weight at the time of spawning, weight-in-catch (wc
s)

corresponds to weight at the time of harvesting. These will be different as sardine weight increases substantially

in summer months.

7 Since we modified our equations to accommodate Ht as the control variable, the age-specific production

function will now be given by hst = HtGste
ms
2 , for s = 1, ..., n.
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hst − e−
ms
2 xst + y2

st = 0 (3.11)

y1
st ≥ 0, y2

st ≥ 0, y1
sty

2
st = 0 (3.12)

where yist for i = 1, 2, s = 1, ..., n and t = 0, 1, ... are slack variables.

Let π denote a concave and twice differentiable function for annual net revenues from

the fishery that depends on total catch Ht. Let d = 1
1+i be the discount factor, with i as

the interest rate. The problem consists of finding the harvest strategy that maximizes

the present value of net economic returns, given the dynamics of an age-structured fish

population. Thus we have a discrete-time optimal-control problem. Our optimization

problem becomes

max
Ht

∞∑
t=0

dtπ(Ht) (3.13)

subject to (3.1),(3.2),(3.7)-(3.12), an initial condition xs0 for each age class s = 1, ..., n,

Ht ≥ 0 and xst ≥ 0, for each s = 1, ..., n and t = 0, 1, ....

4 Ibero-Atlantic Sardine Fishery

Sardine (Sardina Pilchardus) is a pelagic fish that forms large schools distributed along

the Atlantic coast, delimited in the north by southern Biscay, and by the Strait of

Gibraltar in the south (ICES Divisions VIIIc and IXa). It is one of the most important

species for the Portuguese fishing community and industry.

The International Council for the Exploration of the Sea (ICES) publishes data on

sardine landings dating back from 1940. Catches have fluctuated considerably, showing

a peak in 1981 with roughly 217, 000 tons, and an overall downward trend ever since,

reaching a minimum of approximately 46, 000 tons in 2013. Also, from 1993 onwards,

the combination of high fishing pressure and low recruitment resulted in a decrease of

sardine biomass from over 900, 000 tons, to less than 200, 000 tons from 2011 onwards

(Fig.1).

Figure 1: Sardine historical landings (line) and biomass (columns) (ICES 2014). Values in 1, 000 tons
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Over the last 35 years, sardine has shown extreme variation in recruitment, ranging

from over 48 billion to less than 3 billion individuals (ICES 2014). Spawning takes places

mostly in the winter months, and strong year classes are thought to be due to favorable

environmental conditions (ICES 2013b). Another important biological factor is intra-

seasonal growth. Sardine weight increases substantially in the summer months, the time

at which most harvest takes place (INE 2008-2014).

The sardine population in ICES Divisions VIIIc and IXa is sufficiently discreet to be

considered as a single stock for management purposes (ICES 2013b). Currently, there is

no formal international TAC, but in order to ensure the recovery of the sardine stock,

Portugal and Spain have developed a management plan that includes, among other

measures, a limitation of total catches.8 The plan was developed in 2013 and took effect

in 2014 (ICES 2013b). It consists of a reference-point strategy for the determination of

harvest. The rule fixes a maximum TAC of 86, 000 tons if biomass is greater than 368, 400

tons.9 If below that threshold, catches are gradually reduced according to a predefined

formula, 0.36(B − 135), where B is biomass in 1, 000 tons. The fishery closes if sardine

biomass is found below another reference point, 135, 000 tons. Another indicator was set

at 307, 000 tons, the Blim, above which biomass should lie for stock recovery purposes

(Fig.2).

Figure 2: HCR (full line), and Blim reference point (dotted line) (ICES 2013b). Values in 1, 000 tons

4.1 Data and Calibration of the Model

The age-specific population parameters are taken from the 2014 ICES WGHANSA report

(ICES 2014), and are listed in Table 1. Natural mortality rates (ms) and maturities (γs)

correspond to estimates reported by ICES. Input values for the numbers-at-age (xs0) are

those used in ICES (2013a) simulations. Catchabilities (qs) are based on the average

age-specific fishing mortalities from 1993 to 2013, where qs = 1 for the age group with

the highest fishing mortality, by normalization. Weights-in-stock (ws) and catch (wcs)

also correspond to their mean values from 1993 to 2013.

8 The quota amount is informally split between the two countries on a 70-30% ratio for Portugal and Spain,

respectively.

9 The maximum catch was established so as to meet the demand requirements of the transforming industry.
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Age-Class Numbers (109) Maturity (γs) Natural Mortality (ms) Weight in Stock (ws) Weight in Catch (wcs) Catchability (qs)

1 6.247 0 0.8 0 0.024 0.130

2 1.652 1 0.5 0.024 0.043 0.371

3 0.636 1 0.4 0.044 0.059 0.697

4 0.276 1 0.3 0.057 0.068 1

5 0.222 1 0.3 0.065 0.074 1

6 0.076 1 0.3 0.070 0.079 1

7 0.234 1 0.3 0.079 0.1 0.325

Table 1: Population Parameters (ICES 2014)

Recruitment is assumed to follow the Ricker (1975) specification

φ(x0t) = ax0te
−bx0t (4.1)

where a is the productivity parameter, and b the (inverse) capacity parameter of the

Ricker stock-recruiment relationship. Recruits were assumed to follow an autoregres-

sive lag-4 lognormal error. The choice of an AR(4) error structure followed Santos et

al. (2011) assertion of a cyclic 4-year recruiment periodicity, and later confirmed by

inspecting autocorrelation of our model residuals. The stock-recruitment function pa-

rameters were obtained by fitting the Ricker model to data collected from ICES (2014)

for 1993-2013.10 We used data on the number of recruits, and biomass of ages 2− 7, as

an indicator of spawning abundance (ICES 2013a). We linearized the Ricker model, and

estimated the following equations

ln

(
Rt
x0t

)
= ln(a)− b · ln(x0t) + ut (4.2)

ut = ρut−4 + vt (4.3)

where Rt refers to recruits in 109 individuals, x0t is spawning biomass in 106 tons,

and {vt} are independent normally distributed errors with standard deviation σv. We

obtained estimates ln(â) = 3.63 (0.39), b̂ = 1.61 (0.85), ρ̂ = 1.43 (0.2), and σ̂v = 0.46

(0.08); standard errors in parentheses.

Because it is assumed that recruitment conditional on parental stock follows a log-

normal distribution, Eq.(4.1) corresponds to the median recruit-production and not the

mean, or expected recruitment. To allow for long-term trends over recruitment, we

accounted for the difference between the median and the mean of a lognormal distri-

bution from an AR(4) process by changing our productivity parameter a, such that

ln(a′) = ln(a)+ σ2
v

2(1−ρ2)
(Appendix A). Thus we calibrated the deterministic recruitment

function with the corrected estimates â′ = 42.9 and b̂ = 1.61.

Sardines are mostly caught by purse-seiners (ICES 2014). To estimate the harvesting

cost function, we used the available data on variable fishing cost for the Portuguese

10Based on recruitment series for the sardine stock, ICES (2013a) proposes a separation of the stock in two

productivity regimes, before and after 1993. It is argued that the mean productivity (recruits per spawner) of

the period after 1993 is a good indicator of future stock productivity.
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purse-seiner fleets from STECF (2014) for 2008-2012.11,12 In support of the schooling

behavior of the sardine species, costs were found to be independent of stock biomass.

Thus we estimated the non-linear cost function, C(Ht) = β0H
β1
t , by means of the OLS

regression

ln(ct) = ln(β0) + β1ln(lt) + εt (4.4)

where ct is the sum of variable costs in emillion, and lt is sardine landings in 1,000

tons by purse-seiners in Portugal (INE 2008-2012). The data used is listed in Table 2.

We obtained estimates ln(β̂0) = −0.9 (0.64), and β̂1 = 1.1 (0.17); standard errors in

parentheses. The harvesting cost function is then given by C(Ht) = 0.4H1.1
t .

Price is assumed to be independent of age, or size, and equal to the mean price

p = 0.8e/kg (INE 2008-2012).13 Finally, the net revenue function, π(Ht) = pHt−C(Ht),

is given by

π(Ht) = 0.8Ht − 0.4H1.1
t (4.5)

Year Total Landings Sardine Landings Sardine Landings/Total Costs Price

2008 74.78 56.05 0.75 39.26 0.69

2009 57.96 45.66 0.79 34.38 0.76

2010 67.49 48.86 0.72 32.64 0.68

2011 71.86 45.29 0.63 27.42 0.78

2012 66.59 27.97 0.42 17.78 1.30

Table 2: Purse-seiners total landings and sardine landings in Portugal (1,000 tons) from INE (2008-2012),

costs (emillion), as the sum of energy, crew, repair and other variable costs from STECF (2014), and price

of sardine (e/kg) from INE (2008-2012). Costs and prices in real value, base 2012

5 Results

The objective is to make an investigation of different management plans applied to the

sardine stock, comparing the ongoing HCR (Fig.2) to an optimal plan derived from our

bio-economic model. The comparison will be based on the calculation of the fisheries’

net present value (NPV) from 2014 to 2030, at a constant 5% interest rate. To determine

the optimal development plan, we solve the dynamic optimization problem numerically

using the Knitro optimization software with AMPL (Byrd et al. 2006). The AMPL code

is provided in Appendix C.

11The Scientific, Technical and Economic Committe for Fisheries (STECF) is the entity responsible for publishing

information on the structure and economic performance of EU Member States fishing fleets.

12There was only one data point available for Spanish purse-seiners costs, thus we assumed Portuguese purse-

seiners to be representative of the entire fleet.

13Prices show little variation in the period considered for economic calibration. The price figures in Table 2

correspond to the price of the first sale of sardine landings happening in fish markets by means of a descending

price auction.
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5.1 Steady-state Analysis

Before comparing the results, it is informative to make a steady-state analysis of the

sardine fishery, since it is possible to represent the age-structured equilibrium as in

the biomass model (Tahvonen 2009b). If we let xs, s = 1, ..., n, denote the equilibrium

number of individuals, and take effort E as constant, we can obtain the equilibrium yield-

biomass relationship from the age-structured model using Eqs.(3.1)-(3.5), and population

data from Table 1. Notice that the outcome is not purely derived from biological factors,

as it is partly determined by fishing technology as well (Appendix B).

Fig.3 illustrates the parabola relating equilibrium yield and biomass. Our calculations

led us to a pristine equilibrium of approximately 700, 000 tons of sardine stock, and a

maximum sustainable yield (MSY) of about 73, 000 tons (with an associated 303, 000

tons of biomass). In this deterministic setting, any point along this curve corresponds to

a combination of harvest and biomass that can be sustained as a long-run equilibrium.

Thus any trajectory, either the one prescribed by the HCR or our optimal plan, is

expected to converge to a point along this curve.

Figure 3: Equilibrium yield-biomass curve. Values in 1, 000 tons

5.2 Temporal Dynamics

The yearly development of harvest under the HCR is illustrated in Fig.4B. Harvest

in 2014 and 2015 was set at 20, 520 tons and 19, 095, respectively, representing the

quota amounts established for those years. From 2016 onwards, harvest was calculated

using the reference-point rule, as a function of our biomass estimates. We can see that

both biomass and harvest increase smoothly, until they reach their equilibrium values of

roughly 336, 200 tons of biomass and 72, 400 tons of harvest by 2060 (not shown).

The optimal development, considering our bio-economic model, gives a smooth in-

crease of harvest and biomass (Fig.4C). A 100-period run of our model14, shows that

the steady-state level of harvest is reached at around 70, 700 tons, with an associated

biomass of approximately 243, 400 tons.

14Since it is not possible to perform a numerical simulation over an infinite-horizon, we made multiple runs with

different horizons to make sure that our choice of a time-window did not affect the results.
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Notice that long-run harvest under the HCR is maintained at a similar level as that

of the optimal plan (at approximately 70, 000 tons). However, the optimal plan reduces

the stock to a lower equilibrium level by overharvesting in the initial periods. This is

illustrated in Fig.5. We see that both development paths converge to a point in the

equilibrium yield-biomass curve.15 However, while harvest converges to similar amounts

in both trajectories, they will lie in opposite sides of the equilibrium curve. The optimal

plan converges to an equilibrium where biomass is below 303, 000 tons, the biomass

level that sustains the MSY, whereas the equilibrium biomass under the HCR is more

precautionary, with more than 330, 000 tons.

If we compute the net present value of the two plans for 2014-2030, we obtain an

estimated e111.73 million for the HCR, against e126.33 million for the optimal plan,

thus amounting to a 13.07% higher discounted value for the sardine fishery.

Figure 4: Sardine biomass (columns) and harvest (lines). (A) Historical development from 2000 to 2013

(ICES 2014). (B) Harvest and biomass stock development under the ongoing HCR. (C) Optimal develop-

ment of sardine stock and catch. Values in 1, 000 tons

Figure 5: Equilibrium yield-biomass curve (full line), HCR (dashed line), optimal development (squares)

and development under the HCR (circles). Values in 1, 000 tons

15Notice that the HCR path converges to the point at which the HCR intercepts the equilibrium yield-biomass

curve. The convergence path lies beneath the HCR dashed line since harvest is calculated as a function of

biomass in the preceding period.
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5.2.1 Precautionary Considerations

In the optimal plan, the sardine population stabilizes below the 307, 000 tons Blim refer-

ence point, at around 243, 400 tons. So low an amount of biomass can be considered non-

precautionary. We accommodated ecological concerns by including extra constraints. On

one case we guaranteed that sardine biomass had to lie above 307, 000 tons by the same

period at which the HCR does, i.e., by 2023. On another, we imposed that the HCR

equilibrium biomass of 336, 200 tons was attained under our optimal plan, yet much

sooner, by 2030.16

Fig.6B illustrates the case where the 307, 000 tons lower-limit objective has to be

satisfied. Our results show that it would be optimal to increase harvest until 2020,

following a similar path to that of the unconstrained problem. Harvest would then

decrease, to allow biomass to increase to 307, 000 tons in 2023. By then, harvest would

stabilize at around 73, 000 tons17, enough to sustain 307, 000 tons of biomass from 2023

onwards.

With this precautionary constraint, discounted profits over 2014−2030 would amount

to e116.63 million, yielding a 4.4% higher NPV than with the currently implemented

HCR in Fig.6A.

Figure 6: Sardine biomass (columns) and harvest (full lines). (A) Biomass and harvest under the HCR.

(B) Optimal development of sardine catch and biomass with precautionary constraint B ≥ 307 from

2023 onwards, where B is biomass in 1,000 tons. (C) Optimal development of sardine with precautionary

constraint B ≥ 336.2, from 2030 onwards. The horizontal dashed line marks the 307, 000 tons Blim

reference point, and the dotted line marks the 336, 200 tons equilibrium biomass under the HCR. Values

in 1, 000 tons

By setting a more stringent precautionary measure, in which it is established that by

2030 the sardine stock should not be below 336, 200 tons, our results indicate that it is

optimal to increase harvesting until 2023, and allow biomass to increase at a decreasing

rate. By then, harvest decreases so that biomass can gradually increase (at an increasing

16The final period we have considered for discounted benefits comparisons.

17This harvest amount is similar to the MSY, since 307, 000 tons is close to the biomass level that sustains the

MSY, i.e., 303, 000 tons.
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rate), and attain 336, 200 tons by 2030 (Fig.6C). From then onwards, harvest would be

maintained at roughly 72, 400 tons, the equilibrium equivalent to the HCR. This strategy

still entails higher discounted economic benefits, around e4.43 million more, than the

ongoing plan for the sardine fishery.

5.2.2 Stock Rebuilding Strategies

It is possible to generate several other stock rebuilding strategies. By forcing our regu-

lator to comply with different levels of biomass from 2030 onwards, and calculating the

NPV for 2014− 2030 of each trajectory, we can draw a collection of points relating dif-

ferent biomass targets with the discounted returns of their transition paths. Our results

are illustrated in Fig.7. We see that the greater the target level of biomass, the greater

the reduction in harvest (to allow biomass to increase by more). Thus the smaller the

discounted benefits of their adjustment paths.

These points can be compared with the equilibrium level of biomass and associated

NPV for 2014− 2030 under the HCR (Fig.7). The fact that it lies below the negatively

sloped curve demonstrates that the ongoing plan prescribes an underutilization of the

resource both in terms of economic returns and biological indicators. For the same

target level of biomass as the equilibrium equivalent under the HCR, we could realize

higher profits (e4.43 million more). We could also be more conservationist by allowing

approximately 40, 000 tons more biomass, when maintaining the same level of discounted

benefits as the HCR.

Figure 7: Target level of biomass from 2030 onwards, and associated NPV for 2014-2030 (line). Equilibrium

level of biomass and NPV under the HCR (dot). Biomass in 1, 000 tons, NPV in emillion

This analysis can be complemented by considering how fast we can force a stock

rebuilding strategy to attain the equilibrium levels of biomass under the HCR. Table 3

lists the NPV for 2014− 2030 associated with complying with the 336, 200 tons biomass

level in 8, 9,..., or 16 years. Since the rule entails a NPV of e111.73 million, we could

attain the HCR equilibrium biomass much sooner, by 2024, while still realizing higher

economic returns (e376 thousand more). Since a positive interest rate places more weight

over near-term profits, any sooner than 2024 would require a bigger reduction in harvest

in the initial years and, consequently, a bigger reduction in discounted benefits.
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Y ear 2022 2023 2024 2025 2026 2027 2028 2029 2030

NPV14−30 109.59 111 112.10 113.01 113.79 114.46 115.06 115.61 116.16

Table 3: NPV for 2014 − 2030 (emillion) associated with complying with 336, 200 tons of biomass in

different years

5.3 Sensitivity Analysis

5.3.1 Price

The price was set constant and equal to the average real price, given that over the period

considered for the economic calibration of our model prices showed little variation. More

recently, however, prices have behaved differently. There has been an increase in price,

now that harvest has reached historically low amounts. In fact, over only three years,

from 2011 to 2013, it has increased about 83%, from 0.8 to 1.4e/kg (INE 2000− 2014).

However, historical records did not prove helpful for estimating a price elasticity of

demand.18

In turn, we increased the price exogenously to capture some of its implications in

terms of net discounted benefits. Fig.8B illustrates the effect of increasing the price from

0.8 to 1.5e/kg on the NPV for 2014−2030. Not surprisingly, discounted profits increase

as the price level increases. We can also see that the more the price increases, the greater

the NPV of the optimal plan relative to the HCR (from 13.07% more when p = 0.8e/kg,

to 15.38% when p = 1.5e/kg).

It is interesting to note that increasing the price does not affect the long-run levels of

biomass and harvest under the optimal plan, i.e., 243, 400 and 70, 700 tons, respectively.

Only the transition paths change. The higher the price, the more rapidly are the steady-

state levels of biomass and harvest attained. In Fig.8A we can see that increasing the

price from 0.8 to 1.5e/kg would entail a lower harvest amount in the initial periods

(in 2014, with 0.8 and 1.5e/kg, catch would amount to 26, 500 tons and 6, 400 tons,

respectively). But also that harvest would converge to its long-run equilibrium much

faster (by 2020, harvest would amount to 55, 300 tons when p = 0.8 e/kg, and 64, 100

tons when p = 1.5e/kg). This happens because when the price increases, so does the

resource rent per unit of harvest. Thus the net gain from a marginal increase in the

stock level increases as well. Since, for the same rate of interest, the profitability of the

18The estimation of a constant elasticity demand function p(H) = kH−
1
η led to an optimal path that coincided

with the static solution in every period. Using data on sardine prices and landings from INE (2000−2014), we

estimated k = 22.3(11.73) and η = 1.15(0.19); standard errors in parentheses. The equilibrium instantaneous

profit function, π(H) = p(H)H − c(H), when evaluated at the sustainable harvest amounts, would have a

static maximum at π′(H) = 0. With our calibration, this would entail 7,014 tons of harvest and 675,000 tons of

biomass. In the dynamic optimization problem, the equilibrium level of harvest would be set at that amount

from t = 0 onwards, while biomass would increase to 675,000 tons according to the population dynamics.

Under this formulation, the regulator would maintain the maximum sustainable level of profits at all periods,

since the optimal rate of extraction would not be constrained by the biological dynamics of the species.
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fishery is higher, the more there is to gain to allow the stock to rebuild faster.19

Figure 8: Impact of varying prices between 0.8 and 1.5e/kg. (A) Harvest trajectories for 2014−2020 with

p = 0.8e/kg (full line) and p = 1.5e/kg (dashed line). (B) NPV for 2014-2030 under the HCR (dotted

line) and the optimal plan (full line). Harvest in 1, 000 tons, NPV in emillion

5.3.2 Recruitment

The recruitment estimates are a key element in our previous results. However, large

fluctuations in recruitment are typical of small pelagic species, and do not relate clearly to

the abundance of parent-stock (Santos et al. 2011). Traditional approaches to population

dynamics of small pelagic fishes based on invariant carrying capacity have been noted

to be inappropriate, considering the marked fluctuations of their population numbers,

and their high dependency on environmental and climatic factors (Solari et al. 2010).

To understand the impact of different recruitment productivity regimes we considered

three scenarios, the reference case as defined in the previous sections, and two others in

which we allow for a low and high productivity regime.20 Fig.9 illustrates the equilibrium

yield-biomass curves under these three scenarios. Notice that the carrying capacity would

change considerably, amounting to approximately 456, 000 and 938, 000 tons under the

low and high productivity regimes, respectively. The MSY would also be significantly

different, 28, 000 tons under the low recruitment scenario, and 147, 000 tons under high

recruitment.

In the reference case, our simulations indicate that harvest and biomass would in-

crease until they reach their equilibrium levels. Such trajectory contrasts with the marked

decrease in biomass and harvest from 2007 to 2013 (Fig.4A&C). If we assume the low

stock productivity scenario, harvest and biomass stabilize at around the same amounts as

those in the latter years. In Fig.10C we see that biomass would be maintained at 140,500

tons and harvest would stabilize at approximately 25, 600 tons. Under the HCR, biomass

19 If we had a downward-sloping demand curve, we would expect a delay of the moment at which the fishery

attains its long-run equilibrium, as we would benefit from a higher price when harvest is lower.

20The low and high regimes were obtained by subtracting or adding one standard deviation from the productivity

parameter a estimate, respectively. That is, a′L = 29.1 and a′H = 63.2.
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Figure 9: Equilibrium yield-biomass curves under the reference case (full line), high recruitment (dashed

line), and low recruitment (dotted line). Values in 1, 000 tons

would not increase above the Blim reference point, as it would converge to 213, 700 tons,

while harvest would amount to 28, 300 tons (Fig.10B). Under this scenario, our plan

would still realize e9.79 million more than the contrasting HCR, but e45.72 million less

than the reference optimal plan.21

These results indicate that there is a considerable impact due to recruitment uncer-

tainty. Especially since, if low recruitment is to be maintained, harvest would have to

lie at a remarkably low level, quite below its average records in the past decade (85, 000

tons (ICES 2014)).

Figure 10: Sardine biomass (columns) and harvest (lines) under low productivity regime. (A) Historical

development from 2000 to 2013 (ICES 2014). (B) Harvest and biomass stock development under the HCR.

(C) Optimal development of sardine stock and catch. Values in 1, 000 tons

5.3.3 Interest rate

The optimal long-run harvest and biomass levels, as well as the state of the fishery in

transition, may crucially depend on the discount factor. Figs.11B&D show the effect of

varying the rate of interest in the reference case and in the low productivity scenario.

21Under high recruitment, biomass and harvest would follow a similar increasing pattern as that of the reference

case, although much more accentuated. The optimal plan would still realize 36.23% higher discounted benefits

than the HCR.
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In both cases, we see that increasing the interest rate would lead to a lower equilibrium

level of biomass. This happens because a higher preference over profits at an earlier date

would entail a higher fishing effort during the initial years.

In the reference case, varying the interest rate between 0 and 30%, would lead a 1

percentage point increase in the rate of interest to a 4% average decrease in long-run

biomass. Also, if we increase it to 30% or above, the population would be driven to

extinction (Fig.11B). When comparing the discounted net benefits between our optimal

plan and the HCR, the NPV of the optimal reference case would be from 10 to e19

million higher than the HCR (Fig.11A).

In the low recruitment regime, depletion of the sardine stock would be optimal under

a lower rate of interest, around 16% (Fig.11D). Additionally, except for the case at which

interest is equal to 0%, our optimal plan would realize from 1 to e17 million more than

the HCR, when varying the rate of interest between 0 and 20%.

Figure 11: Impact of varying the interest rate on NPV for 2014 − 2030 and on the equilibrium biomass

level under the reference case (A)&(B), and under low recruitment (C)&(D). Full lines correspond to the

optimal plan, dotted lines to the HCR. Biomass in 1, 000 tons, NPV in emillion

6 Concluding Remarks

Reference-point strategies may be unsatisfactory since they tend to neglect other aspects

of fishery management such as economic incentives (Clark 2010). Our comparisons based

on discounted net returns between the HCR and an optimal plan for the sardine fishery

suggest that the currently implemented scheme may entail great losses in economic value

and possibly lead to non-compliance.
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Maximizing net economic returns, however, leads to a harvesting pattern that is not

compatible with what ICES considers to be precautionary, since biomass would fall below

the Blim reference point. Nevertheless, these results can be offset by accommodating

different precautionary constraints. Our findings show that several stock rebuilding

strategies can still realize higher profits under an optimal plan. We also found that

an optimal harvest trajectory may not only be superior in economic terms but also be

more conservationist. Our results revealed that we could allow for a greater long-run

biomass level, with higher economic returns over the adjustment period. This leads us

to conclude that the current HCR can be improved, as there exist efficiency gains that

are yet to be captured.

It is the case, however, that we made some simplifying assumptions regarding eco-

nomic and population dynamics. We assumed sardine recruitment to be deterministic,

even though in small pelagic fishes recruit production shows great volatility. It is also

argued that low recruitment success has been one of the most important factors affecting

the decline in sardine numbers (ICES 2013a). In any case, a simulation with different

productivity regimes revealed that under low recruitment, both the HCR and an optimal

plan would involve a severe decrease in the fishery’s economic returns and equilibrium

population numbers. However, the harvest trajectory under this scenario would agree

with the amounts observed in the most recent years. These have led to an unusual

increase in the price level, which we assumed to remain constant. A price response to

a reduced stock would most likely interact with harvesting strategies, as a higher price

may provide an incentive to increase fishing effort further. Studying the implications of

a stock-dependent price under a prolonged regime of impaired recruitment is beyond the

scope of this paper, but a possible matter of future research.

Our modeling framework is favorable to several developments. By changing its at-

tributes, we can evaluate the impact of different regulatory instruments, or include more

realism in the population dynamics. An important extension is the inclusion of multiple

species and their interactions into our age-structured model. Of particular note being

the chub mackerel species. Chub mackerel is mostly caught as by-catch by purse-seiners

that target sardine. In recent years, its landings have increased, given a decrease in

sardine abundance. Such an extension would allow us to answer questions on fleet and

market dynamics (Costa Duarte 1992, Skonhoft et al. 2012), as well as to relax some

simplifying assumptions on economic parameters such as constant prices. There also

seems to exist an interaction between the two species at the larval/juvenile stages, as

sardine recruitment may be impaired because of competition for food (Martins et al.

2013).

Another possible expansion is to follow a multiobjective optimization approach to

analyze the trade-offs between biological and economic goals. As previously mentioned,

fishery policies are almost exclusively centered on single objectives, whose focus falls

mainly on conservation. In contrast, economists have favored the objective of maximiz-

ing the present value of economic returns in their analyses. However, either of these
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two independent approaches is incompatible with a more integrated consideration over

societal goals for fisheries management (FAO 2014). Our analysis, despite having incor-

porated precautionary constraints to account for ecological objectives, does not capture

the idea of a regulator who wishes to manage a fishery bearing in mind conflicting in-

terests. A multiobjective optimization would allow for the determination of a policy

frontier revealing the efficient utilization of the resource in terms of conservation and

economic benefits (Sylvia and Enŕıquez 1994) and, in particular, answer the need to

employ ecosystem-based approaches to fisheries management.
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A Stock Recruitment

The lognormal distribution is a common assumption for the random variability associated

with observed recruitment

R ∼ φ(x0)ε (A.1)

where ε is lognormally distributed, x0 is spawning abundance and φ(.) is the functional

form of the stock-recruitment curve.

We can write ε ≡ eu, with u being normally distributed. Thus expression (A.1) can

be rewritten as

R ∼ φ(x0)eu (A.2)

where it is assumed that u has mean 0 and variance σ2
u.

It can be shown that E[eu] = e
σ2u
2 . The arithmetic mean number of recruits is then

given by

AM [R] = φ(x0)e
σ2u
2 (A.3)

although it is the case that the geometric mean (or median in lognormally distributed

variables) is

GM [R] = φ(x0) (A.4)

When fitting the Ricker model φ(x0t) = ax0e
−bx0 to observed data using Eq.(4.2), we

obtain the geometric mean estimates for a and b. While these provide the most probable

value for recruitment in any year for the observed spawning abundance, they do not

provide the long-term arithmetic average value of recruitments (Ricker 1975). Following

Hilborn (1985), to analyze long-term trends we modified our productivity parameter a,

such that

E[R] = ax0e
−bx0E[eu] = ax0e

−bx0e
σ2u
2 = a′x0e

−bx0 (A.5)
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where a′ = ae
σ2u
2 .

We further assumed that u followed an AR(4) (Santos et al. 2011), that is, ut =

ρut−4 + vt, where {vt} are independent normally distributed errors with standard de-

viation σv, and ρ is the autoregressive parameter. Thus variance σ2
u will be given by

σ2
u = σ2

v
2(1−ρ2)

, which will then be substituted into a′, meaning

a′ = ae
σ2v

2(1−ρ2) (A.6)

B Equilibrium Yield-biomass Curve

Following Tahvonen (2008, 2009b), and under the assumption that the age-class distribu-

tion represents an equilibrium for a given biomass level B, the growth function from the

biomass model can be obtained by solving numerically Eqs.(3.1)-(3.5), combined with

total biomass Bt =
∑n

s=1wsxst.

If we let xs, s = 1, ..., n, denote the equilibrium number of individuals, and take effort

E as constant, we obtain the following nonlinear equation system (B.1)-(B.5)

x1 = φ

(
n∑
s=1

γswsxs

)
(B.1)

xs+1 = e−ms(1− qsE)xs, s = 1, ..., n− 2 (B.2)

xn = e−mn−1(1− qn−1E)xn−1 + e−mn(1− qnE)xn (B.3)

B =

n∑
s=1

wsxs (B.4)

H = E

n∑
s=1

wcsqse
−ms

2 xs (B.5)

If we define µs = e−ms(1−qsE) and µn−1 = e−mn−1 (1−qn−1E)
(1−e−mn (1−qnE))

, we can rewrite Eqs.(B.2)

and (B.3) as

xs+1 = µsxs, s = 1, ..., n− 1 (B.6)

making it possible to write the equilibrium number of individuals in each age-class for

s = 2, ..., n as a function of x1

xs = ψsx1 (B.7)

for ψs =
∏s−1
i=1 µi, s = 2, ..., n. Finally, the equilibrium number of individuals in age-class

1 will be given by

x1 = φ

(
n∑
s=1

γswsψsx1

)
(B.8)
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where ψ1 ≡ 1. Given that we assumed the Ricker (1975) specification, and setting∑n
s=1 γswsψs = Φ, write Eq.(B.8) as

x1 = aΦx1e
−bΦx1 (B.9)

where a and b are parameters of the Ricker recruitment function. The above equation

can be solved for x1, that is

x1 =
ln(aΦ)

bΦ
(B.10)

And now, since by Eq.(B.4) B =
∑n

s=1wsxs = x1
∑n

s=1wsψs, it is possible to

vary the level of biomass between [0, BK ], where BK is the carrying capacity (when

E = 0), and solve for the equilibrium effort and sustainable level of harvest H =

x1E
∑n

s=1w
c
sqsψse

−ms
2 .

C AMPL Code

# sard.mod file

param T; #time horizon (years)

param n; #number of age classes

param r; #annual interest rate

param w {s in 1..n}; #weight in stock; unit kg per individual in age class

param c {s in 1..n}; #weight in catch;

param g {s in 1..n}; #maturity

param q {s in 1..n}; #catchability coefficents

param m {s in 1..n}; #natural mortality

param x0 {s in 1..n}; #initial state , number of individuals; unit 10^9

var H {t in 0..T-1} >=0; #total harvest; unit 10^3 tonns; weight in catch

var x {s in 1..n,t in 0..T} >= 0; #number of individuals; unit 10^9

var B {t in 0..T-1}= sum{s in 1..n} w[s]*x[s,t]*1000; #biomass; unit 10^3 tons

var Xo {t in 0..T-1}= sum{s in 1..n} w[s]*g[s]*x[s,t]*1000; #spawning stock; unit 10^3 tonns

var G {s in 1..n, t in 0..T}; #transformation function;

var h {s in 1..n,t in 0..T-1} >=0; #harvested individuals; unit 10^9

var y_1 {s in 1..n, t in 0..T-1} >=0; #slack variable 1

var y_2 {s in 1..n, t in 0..T-1} >=0; #slack variable 2

maximize objective_function: sum{t in 0..T-1} ((1/(1+r))^t)*(0.8*H[t] -0.4*H[t]^1.1);

subject to constraint1 {t in 0..T-1}: x[1,t+1]=42.9*( Xo[t]/1000)* exp ( -1.61*(Xo[t]/1000));

subject to constraint2 {s in 1..n-2, t in 0..T-1}: x[s+1,t+1]= exp(-m[s])*x[s,t]-H[t]*(G[s,t]/1000);

subject to constraint3 {t in 0..T-1}: x[n,t+1]= exp(-m[n-1])*x[n-1,t]+exp(-m[n])*x[n,t]-H[t]*(G[n-1,t]/1000+G[n,t]/1000);

subject to constraint4 {t in 0..T, s in 1..n}: G[s,t]=exp(-m[s])*q[s]*x[s,t]/(sum{i in 1..n} c[i]*q[i]*x[i,t]*exp(-m[i]/2));

subject to initial_condition {s in 1..n}: x[s,0] = x0[s];

# complementary constraints

subject to constraint5 {s in 1..n, t in 0..T-1}: h[s,t]-H[t]*(G[s,t]/1000)* exp(m[s]/2)+ y_1[s,t]=0;

subject to constraint6 {s in 1..n, t in 0..T-1}: h[s,t]-exp(-m[s]/2)*x[s,t]+y_2[s,t]=0;

subject to constraint7 {s in 1..n, t in 0..T-1}: 0 <= y_1[s,t] complements y_2[s,t] >= 0;

-----------------------------------------------------------------------

# sard.dat file

param T := 200;

param n := 7;
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param r := 0.05;

param w:=

1 0.000

2 0.024

3 0.044

4 0.057

5 0.065

6 0.070

7 0.079;

param c:=

1 0.024

2 0.043

3 0.059

4 0.068

5 0.074

6 0.079

7 0.100;

param q:=

1 0.130

2 0.371

3 0.697

4 1

5 1

6 1

7 0.325;

param g:=

1 0

2 1

3 1

4 1

5 1

6 1

7 1;

param m:=

1 0.80

2 0.50

3 0.40

4 0.30

5 0.30

6 0.30

7 0.30;

param x0:=

1 6.247

2 1.652

3 0.636

4 0.276

5 0.222

6 0.076

7 0.234;

-----------------------------------------------------------------------

# sard.run file

reset;

model sard.mod.txt

data sard.dat.txt

option solver knitro;

solve;

display H;

display B;

display x;

#table sardH OUT:[T] H;

#write table sardH;

#table sardB OUT:[T] B;

#write table sardB;
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