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ABSTRACT

Current computer systems have evolved from featuring only a single processing unit and
limited RAM, in the order of kilobytes or few megabytes, to include several multicore
processors, offering in the order of several tens of concurrent execution contexts, and
have main memory in the order of several tens to hundreds of gigabytes. This allows to
keep all data of many applications in the main memory, leading to the development of in-
memory databases. Compared to disk-backed databases, in-memory databases (IMDBs)

are expected to provide better performance by incurring in less I/O overhead.

In this dissertation, we present a scalability study of two general purpose IMDBs on
multicore systems. The results show that current general purpose IMDBs do not scale
on multicores, due to contention among threads running concurrent transactions. In
this work, we explore different direction to overcome the scalability issues of IMDBs in

multicores, while enforcing strong isolation semantics.

First, we present a solution that requires no modification to either database systems
or to the applications, called MacroDB. MacroDB replicates the database among several
engines, using a master-slave replication scheme, where update transactions execute on
the master, while read-only transactions execute on slaves. This reduces contention, al-
lowing MacroDB to offer scalable performance under read-only workloads, while update-
intensive workloads suffer from performance loss, when compared to the standalone
engine.

Second, we delve into the database engine and identify the concurrency control mech-
anism used by the storage sub-component as a scalability bottleneck. We then propose
a new locking scheme that allows the removal of such mechanisms from the storage
sub-component. This modification offers performance improvement under all workloads,
when compared to the standalone engine, while scalability is limited to read-only work-
loads. Next we addressed the scalability limitations for update-intensive workloads, and
propose the reduction of locking granularity from the table level to the attribute level.
This further improved performance for intensive and moderate update workloads, at a
slight cost for read-only workloads. Scalability is limited to intensive-read and read-only

workloads.

Finally, we investigate the impact applications have on the performance of database

systems, by studying how operation order inside transactions influences the database
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performance. We then propose a Read before Write (RbW) interaction pattern, under
which transaction perform all read operations before executing write operations. The
RbW pattern allowed TPC-C to achieve scalable performance on our modified engine for
all workloads. Additionally, the RbW pattern allowed our modified engine to achieve scal-
able performance on multicores, almost up to the total number of cores, while enforcing

strong isolation.

Keywords: In-Memory Databases, Performance Study, Scalability Study, Contention, Se-
rializability, Replication, Latch-Free, Attribute Level Locking, Read-before-Write Pattern




REsumMmo

Os sistemas de computadores atuais evoluiram a partir de sistemas com uma Gnica uni-
dade de processamento e memoria RAM limitada, na ordem de kilobytes ou alguns me-
gabytes, para incluir varios processadores com multiplos niicleos, oferecendo na ordem
de varias dezenas de contextos de execu¢ao em simultaneo, e com memoria principal
na ordem de varias dezenas a centenas de gigabytes. Isto permite a muitas aplica¢des
manter todos os seus dados na memoria principal, conduzindo ao desenvolvimento de
bases de dados em memoria. Comparativamente aos sistemas de gestao de bases de dados
suportadas por disco, espera-se que os sistemas de gestao de bases de dados em memoria

(SGBDM) proporcionem um melhor desempenho por incorrer em menos I/0.

Nesta dissertagao, apresentamos um estudo da escalabilidade de dois SGBDM em
sistemas de computadores com multiplos niicleos. Os resultados mostram que as atuais
SGBDM nao escala em multicores, devido contengao entre fluxos de execucao quando
executam transagoes concurrentes. Neste trabalho, exploramos diferentes dire¢oes para
superar os problemas de escalabilidade de SGBDM em processadores com multiplos

nucleos, preservando uma semantica de isolamento forte.

Primeiro, apresentamos uma solu¢ao que nao requer quaisquer modificagdes para
ambos os sistemas de bases de dados ou para as aplicagoes, chamado MacroDB. MacroDB
replica a base de dados em varios SGBDM, usando um esquema de replicagao mestre-
escravo, onde transacoes de escrita executam no mestre, enquanto transagées de leitura
executam nos escravos. Este modelo de replicacao reduz a contencao, permitindo ao
MacroDB oferecer um desempenho escalavel sob cargas maioritariamente de leitura, en-
quanto cargas intensas de escritas sofrem de perda de desempenho, quando comparado

com o motor independente.

Seguidamente, focando-nos no motor de bases de dados, identificou-se o mecanismo
de controle de concorréncia usado pelo sub-componente de armazenamento como um gar-
galo escalabilidade. Propds-se entao um novo esquema de controlo de concorréncia que
permite a remogao de tais mecanismos no sub-componente de armazenamento. Esta alte-
racao oferece uma melhoria de desempenho em todas as cargas, quando comparado com
o motor original. No entanto, a mesma oferece a escalabilidade limitada somente a cargas
maioritariamente de leitura. Em seguida, focando-nos na escalabilidade para cargas de

escrita intensa, e propor-se uma reducao da granularidade do controlo de concorréncia
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do nivel da tabela para o nivel do atributo. Esta modificacao melhora o desempenho para
cargas maioritariamente de escritas, no entanto impoe um pequeno custo para cargas
maioritariamente de leitura. A escalabilidade é limitada a cargas maioritariamente de
leitura.

Por fim, investigou-se o impacto que as aplicagoes tém no desempenho dos sistemas
de bases de dados, estudando como a ordem das operacao dentro de transac¢oes influén-
cia o desempenho dos mesmos. Entao, propos-se um padrao de interacao no qual uma
transacao realiza todas as operagoes de leituras antes das operagoes de escrita, Ler antes
de Escrever (LaE). A modificacdo do TPC-C segundo o padrao LaE permite atingir um
desempenho escalavel no nosso motor modificado para todas as cargas. Além disso, o
padrao LaE permite ao nosso motor modificado atingir um desempenho escalavel em pro-
cessadores com multiplos nucleos, quase até o numero total de niicleos, mesmo quando

aplicando uma semantica de isolamento forte.

Palavras-chave: Sistema de gestao de bases de dados em memoria, Estudo de desempe-
nho, Estudo de escalabilidade, Contencao, Serializagao, Replicagao, Controlo de concor-

réncia ao nivel dos atributos, Padrao Ler antes de Escrever
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CHAPTER

INTRODUCTION

Gordon Moore, back in 1965, observed that the number of transistors in an integrated cir-
cuit would double every 12 to 24 months [M0o98]. This has proven to be true, namely in
CPUs, and, for a long period of time, as the number of transistors grew so did the proces-
sor clock frequency. This increase in clock frequency resulted in a direct improvement in
CPU performance, which in turn led to a free performance improvement for applications
[Pan+08; Sut05].

However, in the late 1990s, the traditional pursuit for improving CPU performance
ended, leading to the stabilization of CPU clock frequencies. This results from the fact
that further increasing the clock frequency leads to an unmanageable increase in energy

consumption and heat emission [Ham+97; Olu+96; Vac+05].

Although the CPU clock frequency has stabilized, it was still possible to continue
increasing the number of transistors in a single chip. This has led to a new paradigm
for improving CPU performance was adopted, based on new CPU designs. This new
paradigm improves CPU performance by increasing the number of processing units in-
stead of increasing the performance of a single unit [Ham+97; Olu+96; Vac+05]. Current
modern CPU architectures feature multiple processor cores per chip, and are known as
multicores. Additionally, each core often provides hardware support for multiple execu-
tion contexts, also known as hyper-threading [Tul+95].

Other components, namely main memory, have also benefitted from the increase in
transistor count. In this case, the increase resulted in a proportional growth of the total
amount of main memory supported by computer systems. Like CPUs, memory clock

frequencies, has also increased.

In summary, computer systems have evolved from, typically, featuring only a single
processing unit and limited RAM, in the order of kilobytes or few megabytes, to include

several multicore processors, offering in the order of several tens of concurrent execution
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CHAPTER 1. INTRODUCTION

contexts, and have main memory in the order of several tens to hundreds of gigabytes.
This evolution, in particular the existence of multiple cores, pose important chal-
lenges to the design of application in order to efficiently explore the power of current
systems [Bau+09; Har+07; Pan+08; Pap+08; Sal+11]. As a result, considerable research
efforts have been exploring new ways for developing applications for multicore systems
[AC09; Bau+09; Cle+13; HM93; Lea00; Meh+09; Pan+08; Son+11; Tiw+10; Wam+13;
Zha+07]. In this work we focus on some of the challenges that multicore systems impose

on Database Management Systems.

1.1 Database management systems

Database systems are the underlying building block of information systems. For over 50
years, databases became fundamental to the operations of most organizations, being a
central part of our day-to-day life [CB09; Sil+06; Zha+15].

Ever since the development and deployment of the first databases, back in the 1950s,
that database research has been an active and challenging field. In 1970, James Codd
proposed a new data model and nonprocedural ways of querying data [Cod70]. This
gave birth to the relational database, a key component of current information systems
architectures [BN97; Niu+13; Xull].

The foundations of modern general purpose relational database management systems
(RDBMS) were laid back in the 1970’s, with the pioneer work on early RDBMS, like System
R [Ast+76; Cha+81; Gra78] and Ingres [Sto+86]. Traditionally, RDBMSs feature a disk-
backed storage system, a log-based transaction manager, and a lock-based concurrency
control mechanism [Cha+81; Gra78; GR92].

Current database design is still highly influenced by these initial works, which were
developed when online transaction processing (OLTP) databases were many times larger
than main memory, and disk I/O was the predominant performance bottleneck [Sto81].
At the time, efficient I/O subsystems were critical for the overall performance of DBMS.
Thus, most of the research in DBMS focused, primarily, on buffer pool management, fine-
grain concurrency control and sophisticated caching and logging schemes for efficiently
multiplexing concurrent transactions, while hiding disk latency [Che+94; GR92].

As discussed before, resources available in current systems are considerably different.
When compared to single core processors, multicore architectures offer increased compu-
tational power provided by multiple processors running concurrently. Additionally, the
increasing amount of main-memory in current computer systems allows the working set
of many applications to fit entirely in main memory [Har+08; Joh+09b; Zha+15]. This
allows databases to move application data from disk to memory to a large extent or even
completely.

This evolution in hardware contributes to the improvement of performance in DBMS.
However, it also poses a number of challenges on how to fully explore the resources avail-

able in modern computing systems. In fact, for DBMSs to achieve scalable performance,
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1.2. PROBLEM STATEMENT

these must efficiently utilize the available hardware contexts offered by current multicore
systems. However, general purpose database design have changed little, still relying on

optimizations for computer technologies of the late 1970’s [Har+08].

1.2 Problem statement

It has been shown that current general purpose databases can spend more than 30% of
time in synchronization-related operations (e.g. locking and latching), even when only a
single client thread is running [Har+08; Pan+10]. It has also been shown that running two
concurrent database operations in parallel can be slower than running them in sequence,
due to workload interference [Pan+10; Sal+11]. These are some of limiting factors for
databases to scale on current multicore systems [Joh+09a; Joh+09b; Unt+09; Zho+05].

Several different approaches have been proposed for improving database resource
usage of multicore machines. Some of this research aims at using multiple threads to
execute query plans in parallel; using new algorithms to parallelize single steps of a
plan; or effectively parallelize multiple steps [Che+95; CR08; Cie+10; Ye+11; Zha+13;
Zho+05]. Other solutions try to reuse part of the work done during the execution of
multiple queries, or using additional threads for prefetching data that may be needed in
the future [Gia+12; Pap+08; Zho+05].

Additionally, some works propose the use of techniques from replicated and dis-
tributed systems, like data replication or partitioning, to multicore environments[Mao+12;
Pan+11; Sal+11]. Others propose a complete redesign of the database engine for effi-
ciently running on multicore machines [Dia+13; Tu+13].

However, most of these approaches require extensive database redesign, which con-
tributes negatively to the acceptance of these proposals by the community. Thus general
purpose databases have been slower to adopt them. Nonetheless, some of these solutions
start to appear in niche markets.

The goal of this work is to study how general purpose In-Memory Databases (IMDBs)
can benefit from the resources available in modern computer systems, namely the mul-
tiple cores and abundant memory. Compared to disk-backed databases, IMDBs are ex-
pected to provide high performance by incurring in less disk I/O overhead. Additionally,
since I/0 is the main bottleneck for disk-backed database systems, one could expect
IMDBs to scale better with the number of cores.

In this dissertation, we start by presenting an experimental study on the scalability
of two general purpose IMDBs, to understand the main bottlenecks that exist (Chapter
3.1). The results from this study show that current general purpose IMDBs do not scale
on multicores mainly due to contention among threads running concurrent transactions.
This contention occurs both due to concurrency control mechanisms for enforcing trans-
action serializability, and in the low-level concurrency control mechanisms used by the

internal data structures.
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Our thesis is that it is possible to scale IMDBs on multicores while enforcing strong
isolation semantics. To address this goal, we present the following contributions.

First, we propose a design that requires no modification to either the database systems
or to the applications, called MacroDB (Chapter 4). MacroDB uses database replication
techniques, maintaining several replicas of the same database, in a single multicore sys-
tem and distributes the load among the replicas. This helps improving the scalability
of the system by reducing contention. However, this approach is still limited by the
scalability of a single database for update-heavy workloads.

Next, we delve into the database engine and identify the major performance bottle-
necks to the scalability problem of IMDBs (Chapter 5). We then propose a series of engine
modifications for addressing these bottlenecks, reducing internal contention points for
improving the system scalability.

Finally, we investigate the impact applications have on the performance of database
systems (Chapter 6). We start by studying how operation order, inside transactions, influ-
ence the database performance. We then propose combining modifications to the trans-
actions, defined in the applications, and to database engines for improving concurrency

among transactions, which leads to improved database scalability.

1.3 List of Publications

We present the list of publications that resulted from the work presented in this docu-

ment.

* [Mar+10] Paulo Mariano, Joao Soares, and Nuno Preguica. Replicated Software
Components for Improved Performance. In proceedings of InForum 2010, Septem-
ber 2010.

* [Soa+13a]Joao Soares, Joao Lourenco, and Nuno Preguica. MacroDB: Scaling Data-
base Engines on Multicores. In proceedings of the 19th International Conference

on Parallel Processing (EuroPar’13), August 2013.

These papers present Macro Components and Macro DB design for improving

performance on multicores based on replication (Chapter 4.1))

* [SP12] Joao Soares, and Nuno Preguica. Improving Application Fault-Tolerance
with Diverse Component Replication. In Euro-TM Workshop on Transactional Mem-
ory (WTM 2012), April 2012.

* [Soa+13b] Joao Soares, Joao Lourenco, and Nuno Preguica. Software Component
Replication for Improved Fault-Tolerance: Can Multicore Processors Make It Work?.
In proceedings of 14th European Workshop on Dependable Computing (EWDC’13),
May 2013.
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These works discuss how to build on the previous design for improving fault-

tolerance.

* [Mar+13] Helder Martins, Joao Soares, Joao Lourenco, and Nuno Pregui¢a. Repli-
ca¢ao Multi-nivel de Bases de Dados em Memdria. In proceedings of InForum 2013,
September 2013.

This work presents a distributed version of MacroDB proposed in [Soa+13a].

* [SP15] Joao Soares, and Nuno Preguica. Database Engines on Multicores Scale: A
Practical Approach. In proceedings of 30th ACM/SIGAPP Symposium On Applied
Computing (SAC 2015), April 2015.

Report on the performance and scalability evaluation of in-memory databases
on multicores (Section 3.1.1). Proposal for a new locking protocol that allows
the removal of locks from the underlying data structures, for improving in-

memory database scalability (Chapter 5).

1.4 Outline of the Dissertation
The remainder of this dissertation is organized as follows:

Chapter 2 This chapter introduces the fundamental concepts for understanding the re-

maining discussion.

Chapter 3 This chapter presents a performance study of two general purpose IMDB en-
gines on multicores, and discusses the implications that the different database com-
ponents have on the performance of these systems. It also presents the state-of-
the-art of in-memory database management systems and some related work on the

techniques and tools related to the matters addressed by this dissertation.

Chapter 4 This chapter presents a generic design for addressing the scalability problem
on IMDBs that requires no modifications to either databases or to the applications.
This solution builds on the knowledge from distributed and replicated systems,

applying them to multicore environments.

Chapter 5 In this chapter we delve into the database engine to fix the major contributors
to the scalability problem, i.e., the engine’s major performance bottlenecks. To this

end, we propose a series of modifications for addressing these problems.

Chapter 6 This chapter presents a study on the impact applications have on the perfor-
mance of the database, and propose a set of guidelines for modifying transactions

that combined with a modified database engine can offer increased concurrency.

5



CHAPTER 1. INTRODUCTION

Chapter 7 This chapter summarizes the main results and contributions of the research
work described in this dissertation, and lists some directions for future research

activities.



CHAPTER

FuNDAMENTAL CONCEPTS

In this chapter we present the research context of this dissertation. We start by describ-
ing the main architectural aspects of database management systems. Next, we discuss
the major differences between traditional, disk-backed, databases and their memory-
backed counterparts, and discuss the design of two general purpose in-memory databases,
HSQLDB and H2.

2.1 Relational Databases

Relational database management systems (RDBMS) are the most mature and widely used
database systems in production today [JMHHO7]. These systems are a fundamental part
of the infrastructure that supports many applications including e-commerce, stock man-
agement, billing, health and medical records, human resources and payroll management,
to name a few.

The foundations of modern RDBMS were laid back in the 1970’s, with the pioneer
work like System R [Ast+76; Cha+81; Gra78] and Ingres [Sto+86]. Current RDBMS design
is still highly influenced by these initial works.

At its core, a RDBMS has four main components[Cha+81; Gra78; GR92; JMHHO07]: the
communication manager; the process manager; the query processor and the transaction
manager, as well as series of additional subcomponents, as illustrated in Figure 2.1. To
better understand the function of each of the main components, as well as their interac-
tions, we briefly describe the life of a transaction during its execution. Transactions are a
sequence of query and/or update operations delimited by a commit or rollback operation,
performed by database clients. In this document, transactions with, at least, one update
operation (be it an insert, delete or update operation) are referred to as update transactions,

while transactions without update operations are referred to as read-only transactions.
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Figure 2.1: General DBMS architecture (Adapted from [JMHHO07]).

Consider a simple database interaction where a teacher requests the list of enrolled
student in one of its classes. This interaction results in a single-query transaction that

follows these, simplified, steps:

1. The client application calls the database API to establish a new connection. A
connection can be established directly, via the ODBC or JDBC protocol, or using
additional middleware, such as a web or an application server. Each connection is
used to send SQL commands from a client to the database and to receive responses

from the database (Communication Manager).

2. Upon receiving a connection request, the database server assigns a process, or
thread, to answer/serve that connection. A connection waits until the Process Man-
ager has enough resources available to answer it. When a database process/thread
is assigned to a connection, and before executing any SQL commands, it checks and
validates user credentials with the Access Control component. Connections from

non authorized users are dropped.

3. Client can use connections to send SQL operations to the database. These operations
are first parsed and checked for syntactic errors by the SQL Parser. If error free,
operations are compiled and sent to the Query Optimizer, which creates a query
execution plan. Query Executors implement a suite of operators, including joins,

selection, projection, aggregation, sorting and so on, for executing query plans.

4. Operators that require data from the database use the Transactional Manager to
access it. This component includes algorithms for managing access to data (Lock
Manager), and data structures for organizing data on disk (Storage Manager). The
Transactional Manager also ensures that the ACID properties [HR83] of transactions

are preserved.
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5. After retrieving data from the database, executors produce query results that are
sent back to the client. When a client finishes the database interaction it closes
the database connection, at which point the database communication manager and

transaction manager clean the connection and transaction state, respectively.

Most of the described components impact the overall performance of databases, name-
ly parsers and query optimizers. These components have been extensively studied by
the research community and several proposal exist to improve their performance on
multicore systems [Che+95; HL09; Kri+09]. Our work is orthogonal to these proposal,
focusing on mechanisms for managing concurrent accesses to data.

We now discuss how a database guarantees transactions execute respecting the ACID

properties, during (concurrent) execution.

2.1.1 ACID properties

The common database correcteness criteria is that databases must ensure transactions
execute according to the four ACID properties: Atomicity, Consistency, Isolation and Dura-

bility. We now describe these properties, and present how a database guarantees them.

» Atomicity defines transaction behavior. According to this property, transactions
performed on a database must execute in an “all or nothing” manner, i.e., either all

operations of a transaction succeed or non do.

* Consistency defines how data evolves from one state to another. Under this property,
a database must guarantee its data persist in a consistent state, where all success-
fully committing transactions must evolve the database from an initial consistent

state to a final consistent state.

e Isolation defines the allowed interference between concurrent transactions. When
taking this property strictly, all operations performed by a transaction must be
hidden from all other concurrent transactions, i.e., transactions can only observe

changes made by previously committed transactions, prior to its beginning.

* Durability defines how the data, and respective changes, must be preserved. Accord-
ing to this property, a database must guarantee that once a transaction completes
and successfully commits its results, these results will be visible to subsequent
transactions, and will survive the occurrence of any software errors or hardware

malfunctions.

Consistency is typically application-specific, with applications being able to capture
part of the consistency properties using SQL integrity constraints. Consistency is en-
forced by runtime checks, that allow transactions to commits only if the constraints are

preserved, aborting otherwise.
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For the remaining properties, databases guarantee them using a combination of sub-
components, namely: the Lock Manager; the Log Manager; and the Storage Manager.
These subcomponents tend to be managed and orchestrated by the Transactional Man-
ager. We now describe each of these subcomponents, and how these are used to ensure
the ACID properties.

2.1.2 Storage Manager

The Storage Manager is responsible for managing the database data. Traditional disk-
backed databases maintain data in hard disk drives. This includes not only the database
data but also the necessary data structures needed for efficiently accessing this data.
Typically, a database contains a set of files, with each file containing a set of pages and
each page containing a set of records (or tuples). These files, pages and records are used
not only to preserve database data but also the necessary meta-data for managing it.

Since the cost of page I/O (Input from disk to memory and Output from memory
to disk) dominates the transaction cost for disk-backed database operations, indices are
commonly used for efficiently locating data on disk. Whenever a query requires data
from the database, the Storage Manager searches the corresponding index to locate the
disk page that holds the data. Traditionally, an index structure is stored in disk, in several
blocks, and is loaded into memory as needed, i.e., when the respective blocks are required.

The Storage Manager is also responsible for maintaining the necessary data near the
processor, i.e., managing memory buffers that cache the disk data for increased perfor-
mance. Buffers are extremely important for disk-backed databases due to the difference
in bandwidth and latency when accessing data on disk compared to memory. Buffers are
arrays of memory stored disk pages called frames, and are used to maintain recently ac-
cessed disk pages in memory. For identifying if a given page is presently buffered, a frame
table is typically used for checking if a frame has already been loaded. When an executor
requests for data, if the corresponding frames are present in the buffer, the corresponding
data is passed to the executor. If a requested page is not buffered, the Storage Manager
issues na I/O request for reading the page from disk into the buffer, before passing the
data to the executor.

For preserving database integrity and consistency, buffered frames need to be periodi-
cally flushed to disk. Thus, each frame maintains associated metadata for management
purposes. This metadata includes, among other information, an access counter (also
known as a pin counter), used to register the number of executors accessing the frame,
and a dirty bit, for identifying modified frames. The pin counter allows the Storage Man-
ager to know which frames are being used and which are not, preventing used ones from
being evicted from the buffer, while the dirty bit signals frames that need to be written
to disk before being removed from the buffer. Periodically, or before replacing a frame in
the buffer (for example, due to the buffer being full), modified frames, i.e., frames whose
dirty bit are set, are flushed back to disk.
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In terms of ACID properties, the Storage Manager is in part responsible for the dura-
bility of the database. We say in part since durability does not depend solely of the Storage
Manager. While in normal operation, i.e., when the database is properly shutdown, the
Storage Manager guarantees that the stored data is consistent, when faults occur this may
not be true. For instance, if some buffered frames are dirty and have not been written
to disk, database state may become corrupted in the occurrence of a fail stop fault, since
some modifications were not propagated to disk. Also, even if dirty buffered frames have
been flushed to disk, the corresponding indices stored on disk may not reflect these mod-
ifications, since the memory resident versions were not flushed to disk. Like before, a fail
stop fault would corrupt the state of the database since, when recovering from the fault
(i.e., rebooting), the indices would not be coherent with the stored data. For this reason,

additional mechanisms are needed to guarantee durability.

2.1.3 Log Manager

The Log Manager is responsible for recording the modifications performed on a database.
Like presented before, durability is not solely guaranteed by the Storage Manager. Instead,
databases rely on the Log Manager to achieve this property. To this end, the Log Manager
maintains a journal, also know as log, of every modification made to the database and
writes this log on disk whenever the database is modified. This guarantees the durability
of committed transactions, and provides a recovery mechanisms for allowing the database
to overcome possible software of hardware faults. Additionally, it also allows aborted
transactions to rollback their actions, thus contributing to the atomicity property.

For providing these features, a Log Manager typically maintains a log file on persistent
storage (e.g. a file on disk), and a set of related data structures in memory. These data
structures maintain the records associated with every update operation performed on
the database. For this, databases typically use a Write-Ahead Log (WAL) protocol that

operates as follows:

1. Each modification to a database page generates a log record, and the log record
must be flushed to the log file before the database page is flushed to disk.

2. Log records must be flushed in order, i.e., a log record cannot be flushed until all

log records preceding it have been successfully flushed to disk.

3. Upon a transaction commit request, a commit log record must be flushed to the log

file before the commit request returns successfully.

The first rule guarantees that the operations of a transaction can be undone, in the
event of a transaction abort. Undoing operations is crucial for achieving atomicity, since
without the possibility for recovering actions, a transactions could not undo its modifi-
cations in case of an abort. The combination of the other two rules ensure durability,

i.e., that the actions of a committed transaction can be recovered after a system crash,
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even if these actions are not reflected in the database. This is achieved by redoing every
logged operation, including commit requests, and then undoing all operations without a
corresponding commit request.

To reduce recovery overhead, by minimizing the work needed to recover from data-
base failures, databases typically rely on Checkpoints. A checkpoint reflects all changes
made to the database up to a certain point. This allows the corresponding WAL entries

to be dropped, since their resulting actions are already reflected in the checkpoint.

2.1.4 Lock Manager

The Lock Manager is responsible for controlling transaction concurrency. Its main func-
tion is to guarantee the isolation property. Also, together with the Log Manager provides
the atomicity property.

To achieve this, the Lock Manager enforces concurrency control policies on the op-
erations executed by each transaction. Current concurrency control techniques fall into
three categories: pessimistic, optimistic or multi-version [Ber+87; JMHHO07; KR79]. All
concurrency control techniques have the same purpose, to allow non conflicting opera-
tions to execute concurrently and prevent conflicting ones from doing so. Conflicts are
defined by the type of the operation, and depend on the isolation level being enforced.
Generically, read operations do not conflicts with other concurrent read operations, since
these do not modify the state of the database, while write operations conflict with every
other concurrent operations, since these modify the state of the database. Each concur-
rency control mechanism prevents the occurrence of conflicts differently, as described

next:

* Pessimistic concurrency control enforce concurrency control before operations ex-
ecute. Under this policy, an operation is only allowed to execute if, at the time the
operation will execute, only non conflicting operations are executing. Thus, read op-
erations are only allowed to execute concurrently with other read operations, while
a write operation is only allowed to execute in exclusion, i.e., if no other operation

is executing concurrently.

* Optimistic concurrency control (OCC) enforces concurrency control after opera-
tions execute. Under this policy, an operation in allowed to execute independently
of concurrent operations, under the assumption that no conflicts will occur. Addi-
tionally, operations do not apply changes directly to the database, tentative changes
are kept private to each transaction. Before committing any changes, i.e., before
transactions apply the corresponding changes to the database, OCC validates both
read and write sets. This validation guarantees that read and written values have
not been modified concurrently. A transaction is only allowed to commit if no

concurrent modifications are detected, otherwise it must abort.

12
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* Multi-version concurrency control (MVCC) enforces isolation by maintaining mul-
tiple versions of each data item, where write operations create new versions of
the corresponding item. From a conceptual point of view, transactions execute
in a consistent database view (i.e., version), typically defined at the beginning of
the transaction. This view remains untouched by any concurrent write operations
during the transaction lifespan, i.e., concurrent write operations do not affect the
snapshot. Thus, read operations can execute without blocking and never conflict
with other operations (by reading in the past). Write operations, made by a trans-
action, are kept private to each transaction, either in an optimistic or pessimistic
way. In an optimistic approach, write operations only modify the corresponding
transaction’s view, and are maintained by the transaction’s write set. This requires
an additional validation phase for detecting conflicts. This detection is made before
committing changes by validating the transaction’s write set. A transaction is only
allowed to commit if no concurrent modifications are detected, i.e., if the current
version of each item is the same as the transaction’s view, otherwise these abort. In
a pessimistic approach, write operations execute in place, creating a new version
of the corresponding item, and in exclusion. This prevents other concurrent write
operations from executing on the same items (e.g., by acquiring locks). This allows

transactions to commit without requiring a validation phase.

Concurrency Concurrent | Concurrent Validation
Control Reads Writes
Pessimistic Yes No -
Optimistic Yes Yes Read and Write Sets
MVCC Opti'mi'sti.c Yes Yes Write Sets
Pessimistic Yes No -

Table 2.1: Comparison concurrency control mechanisms

Comparing the different concurrency control mechanisms (Table 2.1), OCC provides
increased concurrency, since it does not prevent read and write operations from executing
concurrently. However, OCC require an additional validation phase before transaction
commit, which increases overhead. Additionally, OCC can result in higher penalties when
conflicting transactions are detected, leading to an higher abort rate [Agr+87; JMHHO07].

MVCC mitigates some of the overhead imposed by OCC, since transactions execute in
a consistent database view defined at start time. This allows read operations to execute
concurrently with every other operations, without conflicts. Thus, under MVCC read-
only transactions can execute to completion without aborting. However, MVCC treats
write operations differently, either using an optimistic or pessimistic approach.

Under an optimistic approach, MVCC behaves similarly to OCC in respect with writes.
Write operations are allowed to execute concurrently. This requires an additional valida-

tion phase before committing changes, for checking conflicts.
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Under a pessimistic approach, MVCC reduces concurrency for write operations, when
compared to OCC, since the pessimistic approach prevents other transactions from ac-
cessing written items. However, this allows MVCC to commit update transaction without
requiring a validation phase.

Compared to these, pessimistic concurrency control imposes additional restrictions
to concurrency, since only read operations are allowed to execute concurrently with each
other, while write operations execute in exclusion. However, under a pessimistic ap-
proach, transactions that try to commit will do so successfully, since this approach pre-
vents any conflicting transactions from executing. Thus, pessimistic concurrency control
reduces the waste of computational resources. Additionally, when compared to OCC,
it does not require an additional validation phase prior to commit, thus reducing over-
head. Still, pessimistic concurrency control requires a deadlock prevention mechanism
to guarantee progress.

To mitigate the probability of conflicts, and increase concurrency, databases offer

different granularities in which to apply concurrency control. These include:

* Database level, where only non conflicting operations can execute concurrently on

the entire database;

* Table level, where only non conflicting operations can execute concurrently on a

same database table;

* Row level, where only non conflicting operations can execute concurrently on the

same table row;

Besides these logical levels, traditional disk-backed databases also allow concurrency
control mechanisms to operate at the storage granularity, by using the Storage Manager
internal structures. These, include page level and record level.

The level of concurrency and the conflicts that may occur among concurrent transac-

tions depends on the isolation level enforced. Next, we discuss database isolation levels.

2.1.4.1 Isolation Levels

A common way to increase transaction concurrency is to reduce isolation semantics. The
ANSI SQL [ISDLS92] standard defines four isolation levels, which are: Read Uncommitted,
Read Committed, Repeatable Read and Serializable. From these, the serializable isolation
level is the highest isolation level possible, while the read uncommitted is the least intru-
sive, making no assumption on read data.

The defined isolation levels are the following:

* Read Uncommitted - under Read Uncommitted, a transaction can read any data,

independently of being committed or not by any concurrent transaction.
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* Read Committed - under Read Committed, a transaction can only read committed
data, i.e., data that has been committed by some transaction. Note that repeated
reads of the same item by the same transaction may result in different values, since
concurrent transactions may have successfully committed changes between these

reads.

* Repeatable Read - under Repeatable Read, a transaction can only read committed
data, and repeated reads of the same item, by a transaction, always return the same
(committed) value. Repeated reads of the same predicate may return additional

results.

* Serializable - under Serializable, a transaction can only read committed data, and
repeated read of the same item and the same predicate always return the same

(committed) values.

From the previous description it is possible to see that relaxing a transaction’s isolation
level may allow otherwise conflicting operations to execute. For instance, relaxing from
serializable to the read committed isolation level, allows writing an item that has been
read by another concurrent transaction, thus increasing concurrency [Ber+95].

However, this relaxation leads to the occurrence of some concurrency anomalies,
called phenomena. These anomalies include: Dirty Read; Non-Repeatable Read; and
Phantom Read. The different isolation levels are defined based on these three concurrency

anomalies, as presented in Table 2.2.

Isolation Dirty Non-Repeatable | Phantom
level Read Read Read
Read Uncommitted Possible Possible Possible
Read Committed | Not Possible Possible Possible
Repeatable Read | Not Possible Not Possible Possible
Serializable Not Possible Not Possible Not Possible

Table 2.2: Isolation Levels and concurrency anomalies (i.e., phenomena)

The Dirty Read phenomena occurs when transactions are allowed to read non-com-
mitted values modified by concurrent transactions. The Non-Repeatable Read phenom-
ena occurs when transactions are allowed to modify and commit an item concurrently
read by other transactions, thus repeated reads of the same item may give a different
results, where initially read values are non-repeatable. Finally, the Phantom Read phe-
nomena is similar to the Non-Repeatable Read phenomena but applied to the set of rows
returned by a given predicate, where consecutive read operations of the same predicate
may return different rows.

The presented anomalies are independent of the concurrency control strategy used
being optimistic or pessimistic. MVCC supports additional isolations levels, namely

Snapshot Isolation (SI) [Ber+95]. In SI, a transaction conceptually executes in snapshot of
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the database obtained when the transactions starts. At commit time, a transaction must
abort if there is a write-write conflict with some other transaction that has committed
after the snapshot has been taken. SI is stronger than Repeatable Read, since it may
prevent the phantom read phenomena, but is weaker than the Serializable isolation level,
since it sometimes allows that phenomena. Also, SI allows an additional phenomena

called write skew, which is prevented under the Serializable isolation level [Ber+95].

Summing up, the Lock Manager provides isolation by using concurrency control
mechanisms, guaranteeing non conflicting operations execute concurrently and prevent-
ing conflicting operations for doing so. These conflicts result in the occurrence of well
defined anomalies (phenomena), and different isolation levels provide a tradeoff between
performance, due to an increase in concurrency, and the occurrence of these anoma-
lies. For example, the relaxation from Serializability to Read Committed should increase
throughput of update transactions since these transactions can update values concur-
rently read by other transactions. However, the relaxation of isolation levels forces appli-
cation developers to deal with possible concurrency anomalies.

Finally, it is important to note that, while the relaxation of isolation levels modifies
the behavior of the concurrency control protocol, increasing or decreasing concurrency of
database operations, it does not in any way guarantee the integrity of the data structures
used by the database to store data. Since the database concurrency control may allow
operations to access or modify database data concurrently, the internal data structures
used for maintaining this data must be able to handle concurrent accesses. To this end,
these tend to employ additional concurrency control mechanisms, for guaranteeing their

integrity when accessed concurrently, as described next.

2.1.5 Preserving Consistency

Besides transaction concurrency, databases must deal with threads concurrently accessing
the database’s internal data structures. Latches are commonly used for providing mutual
exclusion on shared data structures. Contrarily to locks, latches are similar to operating
system monitors or semaphores [Hoa74].

Latches differ from locks used for concurrency control at the transactional level in a

number of ways:

* Locks are kept in the lock table and located via hash functions; latches reside in

memory near the resources they protect, and are accessed directly.

* Lock acquisition is driven by data access, where the order and lifespan of lock
acquisitions is related to applications and the query optimizer. Latches are acquired
by specialized code inside the DBMS, for preventing state corruption of shared

database data structures.

16



2.2. CLASSICISOLATION IMPLEMENTATION

* Locks acquisition may produce deadlocks, which must be detected and resolved by
the Transactional Manager. Latch deadlock must be avoided, since its occurrence

represents a bug in the DBMS code.

* Latches are implemented using an atomic hardware instruction or, via mutual ex-

clusion in the OS kernel.

* Latch calls take at most a few dozen CPU cycles whereas lock requests take hun-
dreds of CPU cycles.

* The Lock Manager tracks all the locks held by living transactions, automatically
releasing locks when transactions commit or abort. Latches are not tracked and
cannot be automatically released if the task fails. The internal DBMS routines that

manipulate latches must track and manage them when an exception occurs.

Latches are used to provide mutual exclusion for concurrently accessed data struc-
tures. For instance, a page table, used for managing the buffer of traditional disk-backed
databases, maintains a latch associated with each frame, to guarantee that only one data-
base thread is replacing a given frame at any time. Latches are also used in other data
structures like the lock table, used by Lock Manager for providing transaction concur-
rency control. Indices also use latches for preventing the corruption of these data struc-

tures when concurrently accessed or modified.

2.2 Classic Isolation Implementation

Classic Lock Managers enforce isolation by using pessimistic concurrency control, obtain-
ing locks before accessing items. Typically, read operations obtain shared locks on the
accessed items, while write operations obtain exclusive locks.

By convention, database locks are names, used within the system, that represent
either physical (e.g., disk pages) or logical items (e.g., tuples, tables). Any name can have
an associated lock, and the locking mechanism provides a place to register and check
for names. Traditional lock manager typically associate locks with transactions, using a
transaction’s unique identifier, and have different “modes” [Gra+75].

For this, the Lock Manager maintains a global lock table that holds lock names and
their respective information. This information includes the mode flag, used to indicate
the lock mode, and a wait queue of lock requests consisting of pairs (transactionID, mode).
The lock table typically uses a dynamic hash table, where lock names are the keys.

The Lock Manager also maintains a transaction table that associates transactions with
their respective locks. Each transaction maintains a list of acquired locks as well as an
associated thread state. The thread state allows the DBMS to reschedule threads when
transactions have to wait before acquiring locks, while the former is used to facilitate the
release of all locks associated with a particular transaction (e.g., upon transaction commit

or abort).
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For achieving the different isolation levels, lock based concurrency control acquires
locks in different ways. Table 2.3 presents the different lock acquisition patterns, includ-
ing the duration of acquired locks. Long duration means that locks are acquired before
accessing an item and are preserved until the transaction commits, while short duration
means locks are acquired before accessing an item and released immediately after. Also,
item means locks are acquired on a single item, while predicate means lock are acquired

on a set of items that respect a given predicate, or condition.

Read Lock Write Lock
Isolation Level Duration Duration
Item \ Predicate | Item \ Predicate

Read Uncommitted - - Long Long
Read Committed Short Short Long Long
Repeatable Read Long Short Long Long
Serializable Long Long Long Long

Table 2.3: Locks and Isolation Levels (adapted from [Ber+95]).

It is important to note that the different isolation levels differ solely on the duration
of acquired locks for read operations, with all write operations acquiring long duration

write locks on both item and predicate.

This way, Read Uncommitted is achieved by not acquiring any locks for read oper-
ations, which eliminates any conflicts with concurrent write operations, thus allowing
read operations to read any value independently of being committed or not. Read Com-
mitted acquires short duration read locks on both item and predicate, which conflicts
with any concurrent write on the same items. Thus read operations are only allowed
to read unlocked items, i.e., committed values. By immediately releasing read locks, it
improves concurrency for write operations. Repeatable Read and Serializable locking
patterns are identical for single item locking, with both acquiring long duration read
locks, which guarantees only committed values are read and prevents any concurrent
write operation from executing on the same items during the duration of the transaction.
However, this differs for predicate locking. Repeatable Read acquires short duration read
locks on predicate, which are immediately released after executing, thus not preventing
rows from being inserted or deleted by concurrent transactions during the duration of
a transaction. This results in the “phantom read” phenomena, where consecutive reads
may return different results. On the other hand, serializable acquires long duration read
locks on both item and predicate. This guarantees that write operations do not compro-
mise the results returned by consecutive predicate reads, thus the serializable isolation

level prevents the “phantom read” phenomena [Ber+95].

Conflicting concurrent lock requests may result in the occurrence of deadlocks, when-
ever concurrent transactions require locks held by each other. A deadlock detection

algorithm needs to examine the lock table to detect waits-for cycles (a cycle occurs when
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two or more executors wait for one another for needed locks). When a deadlock is de-
tected, a transaction is chosen and aborted, thus breaking the cycle. The decision of
which transaction to abort is based on heuristics [GR92; Ros+78].

As a particular case of a locking scheme, two-phase locking (2PL) divides locking into
2 separate phases: lock acquiring and lock releasing, with the restriction that no new lock
is acquired after the release of a lock. It has been shown that using 2PL allows a database
system to provide serializable isolation level [Ber+95; Esw+76].

Lock Managers provide two basic methods: 1lock (lockname, transactionID,
mode), for a transaction transactionID locking item lockname in mode mode, and unlock
(transactionID), for unlocking all locks held by transactionID. Due to different iso-
lation levels, other than serializable (as discussed in Section 2.1.4.1), additional meth-
ods are provided: unlock (lockname, transactionID), for transaction transac-
tionID to unlock a given item lockname. There is also a lock_upgrade (lockname,
transactionID, newMode), for transaction transactionID to upgrade lock lockname
to a higher lock mode newMode (e.g., from shared to exclusive), without having to release

and acquire a new lock. This is important to avoid breaking 2PL semantics.

2.3 From disk to main memory

Most current general purpose IMDBs have evolved from this traditional design, replac-
ing the disk-backed storage systems with in-memory ones [Sto+07]. In this section we
discuss in detail the design differences between disk-backed and in-memory databases,
and present the implementation of two general purpose IMDBs, HSQLDB [Gro12] and
H2 [H212].

2.3.1 Storage Management

Contrarily to in-memory databases, disk-backed databases store data on disk. To reduce
costly I/0, disk-backed databases maintain copies of most recently accessed pages in
memory buffers. Thus, main memory is used as a cache mechanism for the accessed data.

Compared to disk-backed databases, in-memory databases store data directly on mem-
ory, without need for any buffers. In fact, data is maintained directly on indices, with each
table having, at least, one associated index structures. Indices are, typically, tree based
implementation (e.g., AVL-Tree, B+-Tree, etc.), and maintain the table rows sorted by the
respective key attributes. Since no buffering is used, there is no need for maintaining a
complex buffer pool management with executors accessing database data stored directly
on the indices.

For SQL SELECT statements, the storage manager locates the corresponding data
and returns it to the corresponding executor for returning it to the clients. Updates

are typically implemented as a remove operation followed by an insert operations, to
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maintain index integrity due to possible index restructuring. Insert and delete operations

modify the structure of the index by indexing new tuple(s) or removing existing ones.

2.3.2 Log Management

Database durability is achieved by logging operations. The database guarantees that
committed transactions are durable in the sense that the respective database modification
will endure (until overwritten by any later transaction) even in the event of database
faults. Hence, databases only commit transactions after logging the respective operations
(including the commit operation itself) durably.

In-memory database achieve durability in a similar fashion, by recording update op-
erations, and keeping this log in persistent storage. However, since in-memory databases
keep both data and index structures in memory, logging operates differently from disk-
backed databases. While disk-backed databases need to log every successfully executed
update operation, since disk pages may reflect changes made by non committed opera-
tions, which need to be rolled back when recovering from faults, their in-memory siblings
do not. Since data is kept only in main memory, when a system crash occurs all data is
lost. Thus, there is no need to undo previously uncommitted changes since all data is lost
when restarting after a crash. Therefore, in-memory databases achieve durability by only
logging update operations that successfully commit. Recovery is achieved by redoing all
previously committed changes. Like in traditional disk-backed databases, checkpoints
may be used to speed-up the recovery process.

For guaranteeing atomicity, both studied databases maintain per session undo logs,

for undoing modifications when rolling back operations.

2.3.2.1 Trading durability for performance

Maintaining a REDO log on persistent storage (e.g., disk) can compromise IMDBs perfor-
mance, since, before committing every update transaction, the database must flush the
log to persistent storage to ensure durability.

To deal with this possible performance bottleneck, most in-memory databases trade
durability for performance. Instead of flushing the REDO log to disk in every commit
operation, this process is done periodically and asynchronously, by batching a series of
records before flushing them to disk. This means that, in the event of a failure, some
transactions may be lost, since their corresponding log entries have yet to be flushed.
This is a tradeoff that allows in-memory databases to offer increases performance, by not
incurring in disk I/O operations, while still offering some level of durability. Similar
approaches are used in disk-based databases.

An alternative approach to provide durability is to rely on replication techniques,
where it is assumed that data replicated in f + 1 nodes is durable [Cam+07].
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2.3.3 Lock Management

In-memory database offer identical concurrency control mechanisms and isolation levels
when compared with disk-backed databases. However disk-backed databases can use
locking granularities not available to in-memory databases.

For instance, disk-backed databases can offer page level locking, besides table level or
row level locking, due to the buffering of database pages from disk. In-memory databases
commonly offer table or row level locking, using either pessimistic, optimistic or multi-
version concurrency control.

Compared to table level locking, both page level locking and row level locking offer
increased concurrency, since conflicts are prevented at a finner grain. However, guaran-
teeing serializable semantics under these locking granularities requires a complex mix of
row level locking and predicate locking, for addressing SQL statements accessing data
based on conditions [RS77], and for avoiding phenomena such as Phantom Read. Ad-
ditionally, the problem of testing predicate locks has been shown to be NP-complete
[HR79] (and complex to implement). Table level locking prevents the occurrence of these

phenomena, since all modifications are executed in exclusion.

2.3.4 H2 and HSQLDB behavior

We now present the implementation details the two general purpose IMDBs, HSQLDB
[Grol2] and H2 [H212], used in our work. Both engines interact with client applications
through a JDBC interface. Whenever a client establishes a new connection to the database
a new Session is created. Sessions are used by the database for guaranteeing atomicity
and isolation to the statements performed by different clients, in the context of different
transactions. A simplified algorithm of statement execution is presented in Listing 2.1.

We omit error and conflict verification for simplicity of presentation.

Listing 2.1: Lock Based Statement Execution.

var global:
Transaction_Manager tx_mngr
Storage_Manager storage_mngr

Log_Manager log_mngr

var per client:
Session session
Result result

Command command

function executeCommon ( statement )
if ( NOT valid_connection ( session ) )
throw DBError
if ( NOT validate_syntax ( statement ) )
throw SyntaxError
valid_statement = parse_and_compile ( statement )
result = create_result_set ( valid_statement )
command = optimize ( valid_statement )

tx_manager.aquire_table_locks ( session, command )
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function executeQuery ( statement )
executeCommon ( statement )
storage_mngr.read_data ( command, result )
return result

function executeUpdate ( statement )
executeCommon ( statement )
log_previous_data ( session, command )
storage_mngr.delete_row ( session, command )
storage_mngr.insert_row ( session, command )
storage_mngr.verify_integrity ( session )
fire_table_triggers ( )

return result;
function commitCommon ( )
tx_manager.unlock_tables ( session )

tx_manager.awake_awaiting_txs ( )

function commitQuery ( )

commitCommon ( )

function commitUpdate ( )

log_mngr.log_actions ( session )
log_mngr.log_commit ( session )
commitCommon ( )

Whenever a statement is executed by a client, both databases start by validating the
connection state, and checking that the statement is syntactically correct. If no error
occurs, then a new result object for that statement is created. This object is used to
maintain the statement’s result set and its respective metadata (e.g. the information on
the tables and columns being read, the columns data types and the number of lines of
the result set). After this, an optimization stage selects an execution plan suitable for the
statement’s execution, as presented in lines 11-18.

Sessions proceed by interacting with the transaction manager for executing the state-
ment in isolation (line 19). Both databases support different isolation levels, based on
two kinds of concurrency control mechanisms: Multi-version concurrency control and
lock based concurrency control (pessimistic) [Ber+87; KR79]. In this discussion we focus
on lock based concurrency control.

Both databases implement lock-based concurrency control based on 2PL at the table
level, using shared and exclusive table level locks, for read and write operations respec-
tively. Sessions are only allowed to execute each statement after acquiring the necessary
table locks. If a session fails to acquire a table lock, due to a conflicting concurrent session,
then it will wait until the necessary locks are released.

While semantically identical, the locking implementation differs on both engines. In
H2, each session maintains a set of table reference for which it has acquired locks (shared
or exclusive) during its execution. Also, each table object maintains the set of sessions
that have acquired shared locks on it, and a single reference to the session holding it

exclusively. On the other hand, HSQLDB follows a more traditional design, where a
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single entity, the lock manager, maintains a multi-value map for keeping shared table
locks and their associated sessions, and a single-value map for exclusive table locks, and
their associated session.

After acquiring table locks, sessions proceed by interacting with the storage manager.
For query statements, the corresponding data is copied from the database to the session’s
result set and it is returned to the client (lines 23 and 24). For update statements, the cor-
responding data items are first read and logged, for recovery purposes (line 28). After this,
the storage manager updates the necessary table indices (lines 29-32) with the modified
values. A similar situation occurs for insert and delete statements. For insert statements,
a compensatory action (i.e., a delete of the inserted rows) is defined for undoing the insert,
while for delete statements, the deleted items are logged for recovery purposes, in case
the transaction aborts or the client issues a rollback. In both databases, sessions maintain
logged data until a commit or rollback operation ends. Also, both engines implement in-
dices using AVL-trees, and updates are executed as an index delete followed by an insert
operation.

All commit operations release acquired locks and notify existing waiting concurrent
sessions. For update transactions, sessions first interact with the log manager, logging all
performed actions (lines 43 and 44). It logs data updated during the transaction execution,
old and new values, followed by the commit operation itself. Rollback operations undo

the necessary changes before releasing locks.

2.4 Summing up

General purpose in-memory databases have evolved from their traditional disk-backed
siblings by trading disk for main memory storage. This allows IMDBs to abandon cache
mechanisms, used for reducing latency when accessing data and increase performance,
as well as complex buffer management algorithms. Additionally, IMDBs trade durability
for performance by eliminating disk I/O during transaction commit phase. Instead these
batch several update records before asynchronously writing to disk, for minimizing I/O
and efficiently utilizing bandwidth. All these design diferences have the same purpose,
to reduce or even eliminate I/O overhead for increasing performance. Thus, one expects
these systems to scale on current multicore systems, since available hardware contexts
can access data without having to wait for expensive I/O operations. Next we present a

scalability study of the studied engines.
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CHAPTER

RESEARCH PROBLEM

In this chapter we present a study on the scalability of two general purpose in-memory
databases, HSQLDB [Grol2] and H2[H212]. In this study, we analyze how different as-
pects influence the scalability of the databases. This study both demonstrates the research
problem being addressed in this dissertation and serves as guidance to the directions ex-
plored, which are detailed in Section 3.3. This chapter ends with a brief overview of
database research addressing the use of multicore machines, which is complemented in

the following sections with related work specific to the techniques being explored.

3.1 H2 & HSQLDB scalability study

To verify the scalability of IMDBs, we studied how two general purpose IMDBs, HSQLDB
[Grol2] and H2 [H212], perform on a multicore system. To this end, we measured the
throughput of successfully committed transactions, when running a well established
benchmark, TPC-C [Coul2]. For these experiments we analyzed the impact of different
parameters in the performance of these systems.

First, we have varied the mix of read-only and update transactions in the workload.
The goal is to study how the database behaves under different workloads. Second, we
varied the isolation level under which transactions execute. Isolation levels have a direct
impact on the contention and interference among transactions. Thus, weaker isolation
levels are expected to offer increased concurrency, compared to higher isolation levels, by
reducing interference between concurrent transactions. For example, the relaxation from
serializability to snapshot isolation should increase throughput of read-only transactions
since these can execute on a different database snapshot from update transactions, thus
are not aborted or delayed by concurrent updates.

This experiment ran on a 16 core Sun Fire x4600, with 32 GBytes of RAM. Workloads
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varied from update intensive ones: §-92 and 50-50 with 92% and 50% update transac-
tion, respectively; to read intensive ones: 80-20 and 100-0 with 80% read transactions
and 100% read transactions, respectively. The TPC-C specification defines five different
transactions: new order; payment; stock level; order status, and delivery. From these, two
are read only: stock level and order status. Also, the 8-92 workload is composed of 45%
new order transactions, 43% payment transactions, 4% delivery, and 4% for both stock
level and order status. The remaining workloads used for our experiments maintained a
similar ratio between the different transaction. For instance, in the 50-50 workload both
stock level and order status account each for 25% of all transactions, while new order and
payment account for 25% and 23% respectively, with the remaining 2% for delivery.

The studied isolation levels were: i) serializable, relying on two-phase locking; ii) read-
committed, relying on two-phase locking with early release of read locks; and iii) snapshot
isolation (SI), relying on a multi-version concurrency control algorithm. To test the scala-
bility of the systems, we have increased the number of clients from 1 to 18. The bench-
mark ran for 2 minutes, using an approximately 2 gigabyte database (4 warehouses). The
presented results are the average of 5 runs, performed on a fresh database, disregarding
the best and the worst results.

During the remainder of this document, several other experiments will be discussed,
including the evaluation of our proposed solutions. All have been performed on this same

configuration, unless stated otherwise.

3.1.1 HSQLDB scalability results

We start by presenting the results for HSQLDB. HSQLDB implements serializable and
read committed isolation levels using table level 2PL, acquiring shared table locks for
read operations and exclusive table locks for update operations (including SQL UPDATE,
INSERT and DELETE statements). Under the serializable isolation level, shared lock are
kept until the end of the transaction, i.e., until the transaction commits or rollbacks, while
for the read committed isolation level, shared locks are released immediately after the
corresponding read operation.

For snapshot isolation, HSQLDB allows read operations to execute without locking,
executing on a database snapshot defined at the start of each transaction. To this end,
table rows have an associated timestamp, that defines when these were last modified.
Timestamps are assigned during the commit phase of the corresponding update trans-
actions, by incrementing and reading the value of a monotonically increasing counter.
Also, before their first operation, transactions read the current value of this counter, thus
defining which items are allowed to read. Additionally, HSQLDB uses a pessimistic ap-
proach where update operations acquire exclusive table locks before executing, writing
tentative values directly in place. These locks are kept until the end of the corresponding
transaction, thus preventing other write operations from executing on the same table.

This allows transactions to commit without an additional validation phase.
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Figure 3.1 shows the TPC-C results for the different isolation levels, serializable (Fig-
ure 3.1(a)), read committed (Figure 3.1(b)) and snapshot isolation (Figure 3.1(c)). Each

graph shows the measured throughput for the different workloads, varying the number
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Figure 3.1: HSQLDB performance under different TPC-C workloads and isolation levels.

From these results, it is possible to observe that database performance varies with
the workload nature, achieving higher performance as the ratio of read-only transactions
increases in the workload. This behavior is observable for all isolation levels. This increase
in throughput with the ratio of read-only transactions in the workloads is expected. It
results from lock based isolation levels acquiring shared locks before executing read
operations, which allows them to run concurrently with other read-only transactions
on the same tables. Thus, increasing the read-only transaction ratio in the workload
reduces the probability of interference between concurrent transactions and increases
throughput.

SI achieved a similar throughput to the other isolation levels. We were expecting
this isolation level to achieve higher performance than the others, since under SI read
operations do not acquire locks, which allows them to execute concurrently with updates.
However this does not happen, with the performance of SI being similar to the other iso-
lation levels. For update intensive workloads, the pessimistic approach used by HSQDB,
seems to explain why these workloads do not scale. However, the same reason is not
valid when the increasing the ratio of read-only transactions in the workload. A possible
explanation for this can be that, while read operations do not acquire locks before exe-
cuting, their results need to be validated before being retuned to the applications. Since
this is done in mutual exclusion, this validation increases contention, thus compromising
performance.

Next we analyze in greater depth the performance differences achieved by the different
isolation levels, for each workload.

3.1.1.1 8-92 and 50-50 workloads

Figures 3.2(a) and 3.2(b) present the TPC-C results for the 8-92 and 50-50 workloads
respectively.
When analyzing the results, it is possible to observe that, although the different iso-

lation levels offer different performances, these show an identical behavior. Throughput

27



CHAPTER 3. RESEARCH PROBLEM

16
15 f
14F

; |
13-/ 1
12} 1
1+ 1

10

22
20
18 |
16 |
14
12 | A
10

Throughput (Trans x 103/min)
Throughput (Trans x 103/min)

Clients Clients
Isolation Level Isolation Level
Serializable —+— SI —k— Serializable —+— SI —%—
Read Committed Read Committed
(a) 8-92 workload (b) 50-50 workload

Figure 3.2: HSQLDB TPC-C performance for different isolation levels (8-92 and 50-50
workloads).

tends to increase slightly up to 4 clients, maintains its value as the number of clients in-
creases up to approximately 10, and then decreases as the number of clients approaches
the number of available hardware threads.

This is especially true for the 50-50 workload (Figure 3.2(b)), where the differences
between the best performing isolation level (read committed) and the worst performing
isolation level (SI) does not exceed 15%. While, for the 8-92 workload (Figure 3.2(a)),
the difference between these read committed and SI is identical, serializable isolation
level decreases performance more quickly as the level of concurrency increases. This is
expected, since, under this workload, the conflicting nature of TPC-C has a considerable
impact on concurrency. This leads transactions to block or even abort due to conflicting
updates, which impact the performance. As expected, increasing the ratio of read-only
transaction balances this due to the reduction of conflicting transactions.

As discussed before, an interesting and unexpected result comes from the throughput
values obtained for the SI level. In both workloads, SI performed worst than the read
committed isolation level, while in the 50-50 workload it was the worst performing.

We believe this decrease in performance results from the pessimistic approach used
by HSQLDB, and from the increase in overhead due to result validation before returning
them to the application. This is not necessary for the other isolation levels since these
acquire shared locks before reading an item. This gives them the guarantee that the read
values remain the same during the execution of the transaction, since any concurrent
updates will block trying to acquire an exclusive lock on the same item.

For these workloads, the read committed isolation level offers the best performance of
the three isolation levels. This is a direct result of the immediate release of shared locks
after read operations execute, which reduces the waiting time for concurrent updates to

acquire exclusive locks on the same tables.

3.1.1.2 80-20 and 100-0 workloads

The results obtained when increasing the ratio of read-only transactions show a similar
behavior. These results are presented in Figures 3.3(a) and 3.3(b), for the 80-20 and 100-0
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workloads respectively.
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Figure 3.3: HSQLDB TPC-C performance for different isolation levels (80-20 and 100-0
workloads).

When analyzing these results, we can see that although the different isolation levels
offer different performances, their performance follows an identical behavior. Through-
put increases up to 4 or 6 clients, and then gradually decreases as the number of clients
reaches the maximum number of hardware threads. Again, the differences between the
best and worst performing do not exceed 18% for both workloads.

Again, like in the previous results, SI is unable to offer the best performance. In fact
it offers the worst performance of the three isolation levels in the 80-20 workloads, with
the read committed out performing the others or the same workload. For the read-only
workload, the serializable isolation level offers the best performance of the three.

Although, the validation overhead of SI can explain its performance penalty for the
80-20 workload, for the read-only workload one would expect that the absence of locking
would make up for this overhead. Yet, it performs worst that the lock based serializable
isolation level.

An interesting result comes from the fact that the serializable isolation level offers
the best performance for the read-only workload. While, for all other workloads, read-
committed isolation level provided higher concurrency, this does not occur for this work-
load. This results from the fact that releasing shared locks after read operations execute
does not increase concurrency for read-only transactions. In fact, this contributes to an
increase in overhead, since every operation forces lock management algorithms to exe-
cute in two different moments, when operations begin (for acquiring locks) and when
operations end (for releasing locks). Since lock management algorithms execute in mu-
tual exclusion, it prevents concurrent transactions from acquiring or releasing any lock,
increasing contention and reducing concurrency. By releasing all acquired locks during
its commit or rollback phase, the serializable isolation level reduces contention due to
lock management, which results in better performance.

Above all, these graphs show that, although different workloads offer different perfor-
mances, HSQL does not scale with the number of clients, independently of isolation level

and workload.
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3.1.2 H2 scalability results

We now present the results for H2. Like HSQLDB, H2 also implements serializable and
read committed isolation levels using table level 2PL, acquiring shared table lock for
read operations and exclusive table locks for update operations (including SQL UPDATE,
INSERT and DELETE statements). Under the serializable isolation level, shared lock are
kept until the end of the transaction, i.e., until the transaction commits or rollback, while
for the read committed isolation level, shared locks are released immediately after the
corresponding read operation.

For snapshot isolation, H2 uses MVCC allowing concurrent read and write operations to
execute on the same table. Under SI, each table index is composed by two distinct indices,
a base index and a delta index. The base index only contains committed modifications,
while uncommitted modifications are reflected in the delta index. Update operations
only modify the delta index, while read operations use both indices before returning
values for reading values, since queries may return previously modified values made
by the same transaction. H2 detects conflicts during transaction execution at the row
level. Transactions abort whenever update or a read operations encounter uncommitted
changes made by concurrent transactions. Otherwise, operations execute successfully.
Although this is a pessimistic approach, it allows H2 to commit transaction without
further validation overhead. Thus, transactions that execute without conflicts commit
successfully.

Figure 3.4 shows the TPC-C results for the different isolation levels, serializable (Fig-
ure 3.4(a)), read committed (Figure 3.4(b)) and snapshot isolation (Figure 3.1(c)).
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Figure 3.4: H2 performance under different TPC-C workloads and isolation levels.

Like in the previous results, H2 performance varies with the workload nature, achiev-
ing higher performance as the read ratio increases in the workload. This is specially true
for the serializable and read committed isolation levels (Figures 3.4(a) and 3.4(b)), where
the 100-0 workload achieves the best performance. Again, this behavior is expected, since,
for lock based isolation levels, read operations are allowed to execute concurrently with
each other by acquiring shared locks on the accessed tables.

Again, the throughput achieved by SI in H2 does not correspond to what was expected.
The throughput is fairly constant with the increasing number of clients, independently

of the workloads. This is unexpected since read and write operations are allowed to
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execute concurrently. However, we believe that the pessimistic approach used by H2 is

responsible for this behavior.

Next we analyze in greater depth the performance differences offered by the different

isolation levels, for each workload.

3.1.2.1 8-92 and 50-50 workloads

Figures 3.5(a) and 3.5(b) present the TPC-C throughput under the 8-92 and 50-50 work-

loads.
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Figure 3.5: H2 TPC-C performance under different Isolation levels.

When analyzing the results for update intensive workloads, it is possible to observe
that the serializable isolation levels offers the worst performance of the three for the 8-92
workload (Figure 3.5(a)). While the read committed offers the best performance up to 8
clients, SI outperforms both when increasing load beyond 10 clients. A similar behavior
is observed for the 50-50 workload (Figure 3.5(b)), although, for this workloads, the read
committed isolation level is the worst performing of the three.

These results are somewhat expected for the lock based isolation level, since the con-
flicting nature of TPC-C greatly compromises concurrency. However, we were expecting
a better performance from SI. Although SI is able to offer better performance than the
other isolation levels, the throughput achieved by SI remains constant with the increase in
the number of clients, independently of the workloads. This is unexpected since read and
write operations are allowed to execute concurrently. However, we believe the pessimistic
approach used by H2, combined with the conflicting nature of TPC-C, prevents SI to
achieve better performance under these workloads. Also, since result validation requires
coordination between transactions it increases contentions, which reduces concurrency
and performance.

Another interesting result comes from the fact that serializable isolation level is able
to outperform the read committed when increasing the ratio of read only transactions in
the workload. Although this behavior is different from the one observed for HSQLDB,
it can be explained by the different implementations these databases use for managing

transactions and locks.
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3.1.2.2 80-20 and 100-0 workloads

Figures 3.6(a) and 3.6(b) present the TPC-C throughput for the different isolation levels,
under the 80-20 and 100-0 workloads.
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Figure 3.6: H2 TPC-C performance under different Isolation levels.

When analyzing the results for the 80-20 and 100-0 workloads, we can see that, as
before, the serializable isolation level achieves better performance as the ratio of read-
only transactions increases. In fact, for these workloads, serializable achieves the best
performance of the three, with read committed achieving the worst for the 80-20 work-
load (Figure 3.6(a)) while SI is the worst performing for the read-only workloads (Figure
3.6(b)).

Again, this is somewhat expected since increasing the ratio of read-only transactions
reduces the probability of conflicts, thus allowing higher levels of concurrency. However,
the behavior of read committed isolation level is difficult to explain, since it evolves from
the worst performing of the three, for the 80-20 workload, to achieving a performance
similar to the serializable isolation level, for the 100-0 workload. This is unexpected since
the immediate release of shared locks should reduce the wait time for update transactions
to acquire exclusive locks on the same tables, which should increase throughput. Also, the
contention imposed by the immediate release of shared locks, compared to serializable,
should compromise its performance for read-only workloads (a behavior presented by
HSQLDB). Again, this could be explained by the difference in the implementations of
transaction and lock management between the two databases.

Again, like in the previous results, SI offers a fairly constant throughput as the level of
concurrency increases. This seems to confirm that the increased overhead for validation
purposes considerably compromises performance. This compromises any performance
improvement that SI should offer, since read operations are allowed to execute without

using locks.

Also, like HSQLDB, although H2 offers performance differences between the different
isolation levels, no single isolation level is able to offer scalable performance for any

workload.
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3.1.3 Understanding Scalability Results

To better understand if the lack of scalability of the two databases are due to the lack of
computational resources, we conducted an experiment that ran an increasing number of
pairs client/database concurrently on the same machine, i.e., one database per client. We
used two different workloads for this experiment, 8-92 and 100-0, and the database used
the serializable isolation level (although not relevant in this experiment).

Figures 3.7(a) and 3.7(b), show the aggregate throughput for each of these experi-
ments, represented as HSQLDB (aggr) and H2 (aggr), for the 8-92 and 100-0 workloads
respectively. These results show that the aggregate throughput increases with the number

of clients, under both workloads.
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Figure 3.7: H2 Isolation level impact on TPC-C performance.

In fact, the aggregate throughput achieves near linear scalability up to 12 clients for
both engines and both workloads. Above 12 clients the increase in performance in not as
accentuated, due to operating system overhead for managing the concurrent execution of
all processes. Above 16 client there is a considerable drop in performance. This results
from lack of computational resources, namely main memory, since the aggregate space
needed for 18 databases exceeded the total amount of main memory of the machine,
and hardware threads, since the number of concurrent processes exceeds the number of
available hardware threads requiring expensive (cache wise) context switching between
them, something that is disguised when running fewer processes.

Above all, these results put into evidence that the general lack of scalability for general
purpose IMDBs is not due to lack of system resources, but it is a direct result of their
design.

Additionally, this experiment allows us to define the highest expected achievable through-
put for update intensive and read-only workloads, thus establishing the upper bound for
the achievable throughput for these databases. Although for read-only transactions it is
realistic to expect a database to offer a throughput identical to the one obtained here, this
is less realistic for update transaction due to interference. Nonetheless, if the conflict rate
of updates is low enough we believe this lower bound can be representative of the highest

possible achievable throughput for update intensive workloads.
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3.2 Identifying performance bottlenecks

The previous study exposed the general lack of scalability of both database engines. In this

section, we will try to identify possible bottlenecks responsible for this lack of scalability.

3.2.1 Transaction Management

We begin by discussing the possible implications transaction management may have
in the performance of the databases. As discussed in Section 2.1.4, databases employ
concurrency control mechanisms to preserve ACID properties, namely isolation.

Unlike traditional disk-backed databases, both databases implement transaction con-
currency control using table-level locking. This is a pragmatic approach that avoids the
complexity and overhead of semantic locks. While locking has an impact on database
performance, specially for update workloads, such as 8-92, 50-50 and 80-20, locking is

not the solely responsible for the lack of scalability, specially for read-only workloads.

3.2.1.1 Update workloads

Focusing on update workloads (8-92, 50-50 and 80-20) and the serializable isolation level,
the previous results show that increasing the ratio of read-only transactions influences
performance positively, especially for HSQLDB (Figures 3.1(a) and 3.4(a)). This puts into
evidence that table level locking has a considerable impact on database performance,
since decreasing the ratio of update transactions in the workload increases concurrency.
This results from the fact that all update operations have to acquire an exclusive lock
before executing, which prevents every other operation from concurrently accessing the
same tables.

However, if table level locking were the solely responsible for the lack of scalability, SI
should scale much better, especially for moderate update transaction (50-50 and 80-20).
In both engines, SI allows read operations to execute without acquiring any locks. This
allows read-only transaction to execute concurrently with every other transaction. Thus,
under SI, one would expects database throughput to increase with the ratio of read-only
transactions in the workload, since the total number of read-only transactions increases.
However, this does not occur, with the performance of SI being the worst of the three
isolation levels for most of the workloads (except to the 8-92 workload).

Although one may argue that, under SI, both engines still use table level locks for
update operations, this does not influence read operations, since these execute without
locking. Thus, increasing the ratio of read-only transactions should compensate, by far,
the possible conflicts of update transactions. This should be especially true for the 80-20
workload since the total amount of read-only transactions is more than double the total
amount of update transactions.

Yet, this is not the case, as confirmed by the previous results. In fact, independently

of the workload, SI tends to offer worst performance than the serializable isolation level,
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with the only exception being the 8-92 workload in both databases. Although one may
argue that conflicting nature of TPC-C may increase the abort rate for transactions ex-
ecuted under SI, this does not apply to read-only transactions since these do not need
validation before committing. Even so, if this was true read only workloads would scale

much better under this isolation level yet they do not, as discussed next.

3.2.1.2 Read-only workloads

When focusing on read-only workloads, one expects these workloads to scale with the
number of clients. This is based on the fact that read-only transactions do not interfere
with each other, thus can successfully execute concurrently. However, read-only work-
loads does not scale in either database, independently of the isolation level. This is put

into evidence by the results presented in Figures 3.3(b) and 3.6(b).

It is true that, for lock based isolation levels, read-only transactions still need to
acquire shared locks before executing. Also, while shared locks do not prevent concur-
rent read-transactions from executing, their acquisition, i.e., transaction management,
increases overhead that could be responsible for restricting performance. However, if
transaction management where the solely responsible for this behavior, performance for
read-only workloads would have to scale much better under SI, since, under SI, read-only
transaction are allowed to execute without acquiring any locks. However, like in the re-
maining workloads, SI provides worst performance than lock based serializable isolation

level, for read-only workloads.

SI further puts into evidence that the additional factors, other than transaction man-
agement, are responsible for the lack of scalable performance of both databases. This is
supported by the fact that SI performance does not scale in either database, for read-only
workloads. While, under update workloads, one may argue that a significative number of
transactions abort due to conflicts detected during their validation phase, under read-only
workloads no such conflicts exist. Thus, if transactions are allowed to execute without
acquiring locks, and no conflicting transactions exist in the workloads, then there is no
reason why read-only workloads should not scale. This put into evidence that additional

factors, other than transaction management, restraint the performance of both databases.

Summing up, while we do believe that table level locking has an impact in database
performance, we do believe that the lack of scalability of these databases is not solely
due to lock based concurrency control. Additionally, while we do believe that transaction
management, be it lock based or not, has a negative impact in the database performance,

we also believe additional factors are responsible for this as well.

This impact can be observed by the decrease in performance when increasing the level

of concurrency, specially for H2.
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3.2.2 Logging

Now we discuss the possible implications logging may have in the performance of the
databases. As discussed in Section 2.1.3, databases rely on logging for providing dura-
bility. Update transactions are added to the log, and the log is written to disk before
transactions commit and return to clients. This allows databases to recover from possible
failures, by replaying missed logged operations or rolling back incomplete transactions
Thus, logging allows databases to guarantee that transactions, when successfully commit-

ted, are durable, while also guaranteeing database consistency.

Both studied databases provide durability by writing their log to disk. However, for
minimizing overhead, and contrarily to traditional disk-backed databases, this process
is done asynchronously and periodically, instead of being performed in every commit
operation. While this means that, is case of failure, some transactions may be loss dur-
ing the process, it also minimizes overhead for successfully committing transactions.
As discussed in Section 2.3.1, this is the tradeoff IMDBs make between durability and

performance.

However, logging does not seem to be the main performance bottleneck for these
databases. If this was the case, read-only workloads would scale much better since these
transactions do not log any information during execution. As presented in the previous

results, read-only workloads also do not scale.

Nonetheless, we studied the impact logging has on the performance by configuring
both databases to bypass logging and compared the TPC-C results withand without log-
ging. For this experiment, read-only workloads were not used since these do not modify
the database, thus do not interact with the durability log.

Figures 3.8 and 3.9 present the performance differences resulting from disabling the
durability log for serializable and snapshot isolation levels respectively. Each Figure
shows the speedup for the different workloads, for both HSQL (Figures 3.8(a) and 3.9(a))
and H2 (Figures 3.8(b) and 3.9(b)).

22— —m 12—

I e i =S L BRI > SSOESTES e s e

2 o8} 1 2 o8} 1

£ 8

x 06F x 06

S o4f S o4l

el kel

3 o2}t & 02}

joN joR

(2] 0 L N N N N N N N N ) 0 L N N N N N N N N
12 4 6 8 10 12 14 16 18 12 4 6 8 10 12 14 16 18

Clients Clients
[ Workload ] [ Workload ]
[ 892 —— 50-50 80-20 —¥— | [ 892 —— 50-50 80-20 —¥— |
(a) HSQLDB speedup (b) H2 speedup

Figure 3.8: Durability log overhead under serializable isolation level.

When analyzing the results, we can see that the performance differences between
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Figure 3.9: Durability log overhead under snapshot isolation level.

both configurations are negligible, with no single configuration offering consistently bet-
ter performance than the other. This puts into evidence that logging has no significative
performance impact on the performance of both databases, independently of isolation
level and workload. Like discussed before, this is expected since durability of both data-
bases is guaranteed by asynchronously and periodically writing the log to disk, instead

of doing so at every commit operation.

3.2.3 Storage subsystem

From the results presented so far, we can see that the relaxation of isolation levels does not
help scalability. In fact, and contrarily to what one may expect, in both engines snapshot
isolation level offers worst performance than serializable isolation level. Additionally,
the performance for read-only workloads does not scale independently of the isolation
level. This is true even for SI, under which read operations execute without acquiring any
locks. In fact, the obtained results show that the performance for read-only workloads
exhibits a behavior identical to all other isolation levels, with a decreasing throughput as
the concurrency degree increases (Figure 3.1(a) and 3.4(a)).

Since, for read-only workloads, we can rule out the transactional management and the
durability logging from being responsible for this lack of performance, we investigated
if this lack of performance was a direct result of the underlying storage component. As
discussed in Section 2.1.5, databases rely on latching for guaranteeing the underlying data
structures, used to manage and store data, remain consistent when accessed concurrently.
The increase in concurrency attained from relaxing isolation levels increases contention
on the storage subsystem, due to the use of latching mechanisms, thus producing no
benefit on performance.

To test this theory we modified both databases by removing all latches used in the
storage sub-component, i.e., we removed all concurrency control mechanisms (e.g., locks)
from the index data structures, and ran the TPC-C benchmark under a read-only work-
load. For this experiment, both databases used the serializable isolation level.

Figure 3.10(a) compares the TPC-C results from the original HSQLDB and H2 engines
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with the ones obtained by the latch free modified engines, presented as HSQLDB (LF) and
H2 (LF), respectively. These results show the significative performance restraint imposed
by latches used in the storage sub-component of these systems. Their removal allowed an
almost 11 and 7 fold performance increase for the modified H2 and HSQLDB compared

to the unmodified engines, as presented in Figure 3.10(b).
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Figure 3.10: TPC-C read-only workload on the modified engines.

Moreover, both modified engines scale up almost to the number of cores in the sys-
tems. Thus, one can conclude that the scalability of DBMS is greatly restricted by the

concurrency control mechanisms of the storage subsystem.

3.3 Research Questions

As presented in this chapter, general purpose IMDBs are unable to offer scalable per-
formance on multicore machines. Our study has shown that this lack of scalability is
independent of the type of the workloads and also isolation level. Contrarily to what
one could expect, relaxing the isolation level, although theoretically reduces contention
among transactions, seems to be inefficient in improving scalability (and in some cases
even performance). The presented results put into evidence that this lack of scalability is
true even on a system with a reduced number of processor cores (16 cores in total).

Although this is an active research topic among the database research community,
many works improve database scalability on multicores by proposing a complete redesign
of the database engine. Thus, general purpose databases have been shy on adapting them
since these require considerable architectural modifications.

In our work we explored the approach of scaling IMDBs on multicore without a com-
plete redesign of the database engine. Our study suggests that not all components have
the same influence in the lack of scalability of databases. For instance, our results show
that the traditional implementation of underlying data structures, used by the storage
subcomponent, imposes a considerable bottleneck in the scalability of these systems.
Our work focused on designing techniques for improving the scalability of IMDBs while

enforcing strong isolation semantics (i.e., Serializability).
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To this end, we followed different paths for addressing the scalability problem on gen-
eral purpose IMDBs. We started by trying to answer the question of whether it is possible
to improve scalability without modifying the database and the applications (Chapter 4).
To address this question, we designed and implemented a system, MacroDB, that explores
database replication in a single multicore machine. This work treats multicore machines
as extremely low latency clusters extended with some shared memory, and builds on the
knowledge of distributed and replicated databases, addressing the scalability problem by
distributing and balancing the load among different replicas.

Next, we tried to answer the question of how to scale IMDBs by modifying the data-
base engine, without fully rethinking its architecture. In this approach, we delved into
the database engine and tried to fix the major performance bottlenecks (Chapter 5). We
propose a series of modifications to the database for addressing these bottlenecks. We
start by addressing the scalability problem under read-intensive workloads, and then
proceed by addressing the problem for update-intensive workloads.

Finally, we tried to address the question of what is the impact of the application code
in the performance of the database, and whether it is possible to change the applica-
tion code to improve scalability while retaining the same semantics (Chapter 6). We
start by analyzing how operation order inside transactions influences the database per-
formance. We then study how transactions can be modified in a database friendly way,
i.e., for reducing interference, and improving database performance. Finally, we study
how the database can take advantage of these modifications to further improve database

performance, which again required modifying the database engine.

3.4 Related Work

Research in database system is an active research topic, with researchers focusing on all
aspects related to the design, deployment, and use of these system [SZ97; Sil+91]. With
the introduction of the multicore architecture, databases have been presented with the
challenge of efficiently utilizing the increased concurrency offered by these systems.

In this section, we discuss previous studies on the influence of multicore processors on
database management systems, namely on scalability, and compare them with our own.
Additionally, we overview some of the proposals to address these problems, namely those
that focus on the contention imposed by multicore processors. We present the state of the
art for in-memory databases on multicore systems. However, we defer comparing these
works with our proposed solutions to the corresponding chapters. Finally, we present

some additional works that have influenced our research.

3.4.1 Database performance and scalability studies

Previous works have study the implications of multicore processors on databases per-

formance, by focusing on disk-based database systems. Hardavellas et al. [Har+07],
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presented a study on the impact processor cache stalls (due to cache misses) have on data-
base performance. The study shows that stalls, due to cache misses, have a considerable
impact on database performance, with databases spending up to 60% of computational
time waiting on these stalls.

In a complementary study, Harizopoulos et al. [Har+08], dissected the kernel of
Shore [Car+94] database management system, and identify performance bottlenecks.
The study shows that traditional database engines can spend more than 30% of the time
in synchronization related operations (locking and latching) during transaction execu-
tion. Additionally, the authors study the impact of modifying the database engine by
consecutively removing different features of the database. These features include: buffer
management, lock management and latching and logging. The end result was a single-
threaded, lock-free, in-memory database kernel without recovery that achieved consider-
able performance improvement over the original engine. Although, the authors do not
propose specific changes to any of the different components, they give some insight on
possible DBMS modifications for reducing their overhead.

Johnson et al. [Joh+09b] focus on the scalability of several disk-backed database
engines. Their study shows the general lack of scalable performance of the studied en-
gines on multicore processors. Additionally, the authors focus on the performance of
Shore’s storage engine, and propose a series of modifications to address its performance
limitations. While focusing primarily on the storage engine, the authors considerably
modify other parts of the engine for improving its scalability, namely, log management
and transaction management. Although the authors do not propose fundamental design
modifications, with their primary focus being the reengineering of the original design,
the attained performance improvements are considerable, showing that databases can
scale on multicores without a complete system redesign.

Jung et al. [Jun+13], present a study on the scalability of disk-backed databases on
multicores. In this study the authors show that contention on lock management algo-
rithms greatly reduce concurrency on multicores, thus restricting database performance
even under non-conflicting workloads (such as read-only). Additionally, the authors pro-
pose a series of modifications to the transactional manager, by reengineering it using
a read-after-write (RAW) coding style [Att+11; HS08]. Two common synchronization
patterns are frequently used in the design of concurrent algorithms: read after write
(RAW) and atomic write after read (AWAR). RAW patterns consist on a thread writing
to some shared variable A, followed by the same thread reading a different shared vari-
able B, without writing to B in between. The AWAR pattern consists of a thread reading
some shared variable followed by the same thread writing to a shared variable (the write
could be to the same shared variable as the read), where the entire read-write sequence is
atomic. Examples of the AWAR pattern include read-modify-write operations such as a
Compare-and-Swap (CAS).

Our study is complementary to these works in several aspects. While these works

study the bottleneck of disk-based database, we focus on general purpose in-memory
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databases. Additionally, we compare two different database implementations for a better
understanding of how different development techniques affect the performance of the
database. Furthermore, we try to understand how database engines behave when sub-
jected, not only to different workloads, but also under different isolation levels. Finally,
we will later show how applications can influence the performance of the database, by
modifying the TPC-C bechmark in a database friendly way. Like some of these works
[Joh+09b; Jun+13], for addressing the scalability problems identified, we follow a sim-
ilar research path by reengineering some components for improving their efficiency in

multicore systems, rather than radically changing the database design.

3.4.2 Improving scalability by reducing contention

Several works have focused on contention related problems that reduce database ef-
ficiency on multicores. This problem influences database performance by reducing
throughput, since it greatly decreases concurrency. Proposed solutions for this problem
tend to mitigate synchronization overhead, by focusing on transactional management
(locks), and/or on low level concurrency control mechanisms used by the engine’s inter-
nal data structures and algorithms (latches). As further discussed in Chapter 5, in our
work, we also follow a similar direction but we take a more radical approach by com-
pletely avoiding any latches/locks in the data structures used to maintain data. Next we

describe some of these works.

Cha et al. [Cha+01] address the scalability problem by focusing on the concurrency
control mechanisms and algorithms used by main-memory index data structures. In
this context, the authors proposes OLFIT, a latch-free index transversal algorithm for
index trees (B+-Tree [Com79] and CSB+Tree [RR00]). OLFIT allows tree transversals
without acquiring latches, while preventing updates from interfering. This is achieved
by each node in the tree maintaining a latch and an associated version. This way, update
operations acquire the corresponding node’s latch (or latches if the update modifies a
set of nodes) before executing, incrementing the node’s version after updating it and
before releasing the latch. Read operations execute without latching, starting by reading
a node’s version, followed by reading the corresponding values. It then tests if the node
is latched and again reads its version. If the versions differ or if the node is latched, the
operation aborts and repeats, completing successfully otherwise. While this is not a pure
latch-free approach, it is one of the first proposals that address the problem of latching

in multi-processor environments.

Sewall et al. [Sew+11] propose an adaptation of the Bulk Synchronous Parallel (BSP)
concurrent execution model [Val90] for multicore environments, for allowing multiple
read/write queries to execute atomically on B+-Trees without the use of latches. Instead
of the traditional approach, where queries execute independently of each other, PALM

groups multiple queries (including write operations) into batches, executing batches
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sequentially. In each batch, the corresponding index operations are divided among con-
current threads. PALM executes read operations before write operations. This allows
all tree transversals to execute concurrently without synchronization overhead, since no
modification results from tree transversals. After executing read operations, PALM coor-
dinates the remaining threads (i.e., threads executing write operations) for performing
the corresponding tree modifications. These are allowed to execute concurrently on leaf
nodes, when modifying distinct nodes. Otherwise, the corresponding threads coordinate,
where one of them is elected for sequentially executing all the corresponding (batched)
modifications. Likewise, modifications to the internal nodes of the tree are also batched
and applied by a single thread. All necessary modifications are propagated up the tree in
a similar fashion, where the corresponding tree modifications are batched and executed
by a single thread. Thus, when reaching the root node, only a single thread executes
all the necessary modifications. This allows the removal of latches since all tree modifi-
cations are executed sequentially by a single thread at the node level. This also allows
PALM to eliminate possible deadlock occurrences that can occur when using conventional
latching mechanisms.

Pandis et al. [Pan+11] follow a different path for reducing contention at the data-
base storage level. The authors propose physiological partitioning (PLP), that combines
techniques taken from shared-nothing and shared-everything designs. Contrarily to the
traditional approach, where indices are implemented using a single data-structure, typi-
cally a B+-Tree, in this work the authors propose partitioning of data among several data
structures, similar to the work of Graefe et al. [Gra03]. Thus, PLP uses a multi-rooted
B+-Tree (called MRBTree), that partitions data among several B+-Trees. For identifying
which partition to access, PLP uses an additional structure, called a partitioning table,
which acts as the root of the index. Each tree maintains a subset of the entire key-space.
This partitioning scheme allows PLP to reduce contention, since different partition may
be transversed concurrently without coordination. Additionally, PLP further reduces
synchronization overhead by restricting access to each partition to a single thread. This
way, no concurrency control mechanisms (i.e., latches) are used at the index level. While
additional latches may still be necessary, like page level latches, the authors argue these
impose less contention then index latches.

Mao et al. [Mao+12] address database storage contention building on some of the
features of the previously described systems [Cha+01; Gra03; Pan+11]. In Masstree
[Mao+12] the authors present a key value store that partitions data among several B+-
Trees, concatenated into a trie-like structure [Fre60], where each partition coveres a subset
of the key-space. Like OLFIT, tree transversals do not acquire latches, while update
operations acquire fine grain latches (only on the involved tree nodes). Additionally,
for preventing inconsistent states from being exposed, Masstree employs an optimistic
concurrency control, where: update operations, before updating a node, mark updated
nodes as dirty and modify their version afterwards; and read operations, before reading

a node, check the version of the node. If the version of all read nodes remain consistent,
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and no node has been marked dirty, read operations execute successfully, otherwise these

retry on a fresh snapshot.

Bw-Tree [Lev+13b; Lom+13] is an adaptation of a classic B+-Tree index for secondary
storage (i.e., disk), designed for scaling on multicores. Bw-Tree addresses index contention
on multicores by using a latch free approach. Thus, Bw-Tree eliminates traditional latches
in favor of compare-and-swap (CAS) operations, for atomically modifying its state. Ad-
ditionally, Bw-Tree improves cache consistency by using out-of-place modifications, i.e.,
deltas. Contrarily to the traditional approach, update operations (such as inserts, deletes
or updates) do not directly modify tree nodes, instead these atomically append modifica-
tion deltas to the corresponding nodes. Deltas represent the corresponding state changes
and are transversed prior to the actual node, behaving as a stack of node modifications.
Bw-Tree follows a Blink-tree approach [LY81], where each node maintains a pointer to
the next node of the same level, allowing transversals on Bw-Tree to execute without
latching (since link pointers prevent transaversals from observing inconsistent states due
to concurrent state changes, i.e., node splits or merges [LY81]). Additionally, Bw-Tree
also allows state modifications, due to update operations, to execute without latching (al-
though assuming conflicting updates are prevented by external mechanisms, such as lock
management). For preserving state consistency, Bw-Tree treats state modification opera-
tions (node splits or merges) as a kind of “transaction”, where a termination delta is used
to identify if the corresponding modifications have ended. Additionally, any state mod-
ifying operations is only allowed to execute after all previously initiated modifications
have ended. To this end, whenever an operation identifies an incomplete modification,
for example when a state modifying operation detects an unfinished concurrent node
split (by reaching a new node through a link) that has yet to be propagated to the father
node, it will complete the previous operation before executing its own. This guarantees
that concurrent state modification operations execute in the same serialized order in all

nodes.

Jung et al. [Jun+13] address the contention problems of lock management algorithms.
In their study, the authors show that MySQL database performance in greatly compro-
mised due to contention created by concurrency control mechanisms (latches) used by the
lock management and deadlock detection algorithms. In this study, the authors discuss
that some data races are benign, and that memory barriers combined with read-after-write
(RAW) coding style [Att+11; HS08] have advantages over atomic write-after-read oper-
ations (CAS operations), due to increased cache efficiency. Thus, the authors propose
a solution for reducing latches used by the lock manager, that combines the RAW cod-
ing style with a new lock acquisition and release pattern, that separates allocation and
de-allocation of lock data structures from lock acquisition and release. Additionally, the
authors pre-allocate and de-allocate locks asynchronously. Contrarily to the original ap-
proach where locks are allocated when needed and de-allocated when released, under

the proposed modification locks are allocated before being needed (being maintained
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in a pool), and are de-allocated after transactions have release them. This further re-
duces contention by reducing the number of operations executed in exclusion (since lock

de-allocation is done asynchronously of locks releases).

3.4.3 State of the art in-memory databases

The mechanisms described in the previous section reduce contention in specific database
components. In this section we describe some state-of-the-art database systems designed
for multicore systems.

VoltDB [SW13], the commercial follow up of H-Store [Kal+08], follows the same de-
sign principles as H-Store. H-Store [Kal+08; Sto+07] is an OLTP system designed for
distributed clusters of shared-nothing machines. H-Store orchestrates the nodes of a clus-
ter, by partitioning the database among several single-threaded engines, called sites, each
running on a single processor core of a node. H-Store further replicates each partitions
to improve both performance and availability. Applications interact with H-Store by pre-
defined stored procedures, each identified by a unique name, consisting of structured
control code mixed with parameterized SQL commands. Data partitioning is done based
on the predefined stored procedures, in order to maximize efficiency. Transactions may
execute on a single site, or on multiple sites. When data is accessible on a single site, trans-
actions execute to completion on the corresponding site, without additional coordination
or logging overhead, since each site is single threaded. Serializability is achieved by run-
ning each transaction in sequence. When transactions require data from different sites,
additional coordination is required to provide isolation. In this case a global controller
is used for deciding a serial order for operations to execute in the corresponding sites.
Durability is maintained using asynchronous transaction-consistent checkpoints of the
state on each site’s main memory. Additionally, a transaction log records each transaction
with the corresponding identifiers.

In Oracle TimesTen [Lah+13] in-memory database, concurrency control mechanisms
are designed to scale on multicores by trading locks for latches, whenever possible, and
using fine-grain locking. Additionally, contrarily to the traditional approach, where
accessing items requires translating logical addresses (kept by indices) for physical ad-
dresses (associated to memory cache buffers), TimesTen maintains physical addresses
directly in the indices, i.e., indices maintain pointers to tuples. Durability in achieved
combining checkpointing and write-ahead logging. For minimizing overhead, logging
is divided into multiple partitions, that are written in parallel. Sequential order is re-
stored when reading the log from disk. Like most in-memory databases, TimesTen trades
durability for performance, by allowing transactions to commit without waiting for log
records to be flushed to disk. SolidDB uses a pessimistic concurrency control allowing
row or table level locking, offering the highest isolation level, serializable.

SolidDB [Lin+13] is a relational database that combines in-memory and disk-backed

tables. Pure memory configurations maintains data directly on indices, using custom
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built trie like structures [Fre60]. These data structures use a variation of path- and
level-compression and are built on top on leaf nodes similar to B+-trees. For addressing
contention, indice transversals do not use locks or latches, while write operations use two-
level locking for protecting agains conflicting concurrent writes. Indices uses optimistic
concurrency control, associating data with versions. These are used for detecting conflicts
during read operations, similar to OLFIT [Cha+01]. SolidDB uses a pessimistic concur-
rency control using row level locking (optimistic concurrency control is only available
for disk-backed tables), offering repeatable read as the highest isolation level (serializable
isolation level is available only for disk-backed tables).

Tu et al. [Tu+13] have proposed Silo, an in-memory transactional database for mul-
ticore systems. Silo addresses scalability limitations of traditional databases by building
on a Masstree-inspired [Mao+12] storage engine, and relying on an optimistic concur-
rency control (OCC) that offers serializable isolation semantics. Silo assumes a one-shot
request model, where all parameters for each request are available at the start. Thus,
requests complete without further client interaction. For providing serializable isola-
tion semantics, the authors define time periods called epochs. Committing transactions
start by acquiring locks on all modified records. After this point, the epoch number is
registered (a memory fence/barrier is used to prevent code reordering due to processor
optimizations). This defines the serialization order for the transactions. On a second
phase, read records are examined to guarantee these have not been modified during the
duration of the transaction (using the records transaction identifier (TID)). If some record
has been modified, or is locked by a concurrent transaction, the committing transaction
aborts releasing all locks. Otherwise the transaction is allowed to commit. Finally, all
modified records and respective TIDs are updated accordingly.

Hekaton [Dia+13] is an in-memory extension for SQLServer, built on top of Bw-Tree
[Lev+13b; Lom+13] and LLAMA [Lev+13a]. Transaction isolation is supported by a
multi-version concurrency control that requires no locks or lock tables. Read only trans-
actions are serialized in the past, thus do not require additional validation. For update
transaction, serialization is achieved by each transaction maintaining both its read and
write set, for validation during commit. This is done by revisiting all previously read
locations and verify their validity (if their versions remain unchanged) [Lar+11]. Hekaton
builds on the Bw-Tree, used as index data-structure, and LLAMA [Lev+13a] a cache/stor-
age subsystem designed for modern hardware. LLAMA’s design is based on traditional
cache/storage subsystems, where pages are read from secondary storage to main mem-
ory on demand. However, LLAMA supports latch-free page modification operations,
using compare-and-swap atomic operations, replacing traditional latches used to guard
pages from concurrent accesses. Additionally, page modifications are accomplished using
deltas, appended to pages using compare-and-swap operations, thus avoiding in-place
modifications. Deltas are applied to physical pages based on heuristics (when the number
of deltas per page exceeds 10). This allows LLAMA to deal with the overhead on write

operations in modern SSDs, since modifying a disk page results in writing a new page,
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i.e. requires reading the original page and writing it with the respective modification to
a different locations. Deltas prevent original pages from being modified, thus only delta
pages are written to disk. Additionally, LLAMA organizes data on secondary storage in
a log structured manner [RO92], where all updates are written sequentially in a log-like
structure. Like before, this approach helps in reducing the overhead when writing pages
to disk. Durability relies on both logging and checkpointing to external storage, with no
logging being done during transaction execution. Only transactions that pass their valida-
tion phase write to log their corresponding modifications. Similar to TimesTen [Lah+13],
Hekaton allows log to be partitioned over multiple devices, since commit ordering is

determined by each transaction’s end timestamp.

System Architecture Concurrency Isolation Index Client
Y Control Level (highest) Conc. Control Interactions
VoltDB/ Distributed Single threaded Serializable Non (Single Single
H-Store (Partition + Replication) | (1 per CPU core) threaded storage) shot
Oracle Centralized + Pessimistic Serializable Latches + ODBC/
TimesTen Replicated Fine-grained locking JDBC
. Centralized + o Repeatable Non + Locks ODBC/
SolidDB Replicated Pessimistic Read (w/ writing) JDBC
. . S Non + Single
Silo Centralized OCC Serializable latches (w/ writing) shot
Centralized + . Non + CAS ODBC/
Hekaton Replicated MVCC Serializable ops. (w/ writing) JDBC

Table 3.1: State of the art comparison.

Table 3.1 compares some of the features of the previously described systems. From this
comparison it is possible to see that no consensus exists in terms of concurrency control
mechanisms, with each system using a different approach. It is also possible to see that
most systems try to offer the highest isolation level, serializable. This is of considerable
importance since it relinquishes application developers from reasoning about isolation
phenomena. Finally, all systems take into consideration the implication that latching has
on index, and consequently, database performance, with most systems using latch free
index transversal solutions. In our work, we also follow a similar direction, to reduce the
overhead of latching in data structures. However, we take a more radical approach by

completely eliminating latches/locks in the data structures used to maintain data.

3.4.4 Alternative database designs

Column based Databases Besides previously described works, which rely on tradi-
tional row-based storage, recent works have proposed the use of column-based storage.
These approaches are often focused on business intelligence and analytical processing
(OLAP) workloads, we briefly describe some of these proposals here and discuss the major
differences of column-based storage.

MonetDB [Bon+08; Man+09], C-Store [Sto+05], and SAP HANA [F+12; Sik+12] are
examples of database management systems that trade traditional row-oriented storage

systems for column-oriented ones. Row-stores typically store the database tables as arrays
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of records (i.e., tuples), where each entry of the array holds a record. Also, each record
holds the corresponding values of its respective attributes. On the other hand, column-
store vertically partition each database table into a collection of individual columns, each
stored separately. Thus, in column-stores, database tables are decomposed in a collection
of arrays (one for each attribute), where the corresponding attribute values of each record
are stored.

Row-stores have been the norm for relational databases, since these offer improved
data access efficiency for disk based storage by allowing records to be written to, and
read from, disk in a single operation[Aba+12]. This is especially important to reduce I/O
overhead due to disk search, since reading or writing to the same disk position reduces
latency. On the other hand, column-stores tend to require additional disk accesses when-
ever reading or writing more than one attribute [CK85]. This is particularly prominent
for insert and remove operations, since all table attributes need to be accessed. The same
may not hold true for main memory, since memory access time is identical independently
of being sequential or random.

Row-stores offer some advantages, over column-based stores, on memory resident
databases. Especially when reading only a subset of attributes on a set of records. This is
a result of CPUs caching entire memory rows. Since row-stores store records contiguously
in main memory, cache space is wasted by values of attributes that are not required. On
the other hand, column-stores use the CPU cache more efficiently by eliminating waist,
since the set of values of each attribute are contiguously stored in main memory, thus
occupy cache lines without waste [Aba+12; Man+09]. For this reason column-stores have
been used for some specific read-intensive workloads, like OLAP. Update operations,
such as inserts and deletes, still require additional memory accesses when using column-
stores. Under these conditions cache utilization is not as efficient as in read operations,
further compromising performance.

Thus, the major weakness of column-stores, compared to traditional row-stores, is
their performance under update workloads. For dealing with this, some systems resort
to a slipt architecture by using a “read-store” and a “write-store” [Man+09; Sto+05].
The read-store maintains stale information using a column-store, while the write-store
maintains the more recent updates. MonetDB uses two additional columns for each
column base in the scheme, for marking pending inserts and deletes (updates are mapped
as a delete followed by an insert). C-Store follows a different approach, maintaining stale
data in a column-store and updates on a row-store. Both systems merge read- and write-
store information during query execution. For minimizing the size of the write-store,
updates are propagated periodically to the read-store. SAP HANA uses a hybrid approach
for dealing with these scenarios, replicating data among row and column storage, and
dividing operations accordingly. OLTP transactions execute primarily on a row-store
being propagated asynchronously to the column-store, while OLAP transactions execute
on a column-store [F+12].

These approaches result from the traditional practice for data warehouses, where
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large data set are queried ad-hoc and updated in bulk. This is compatible with OLAP
workloads, since business intelligence and analytical processing may use stale data with-
out compromising results [Pla09; Sto+05]. Column-stores are also favorable to OLAP
workloads, since these workloads tend to analyse data from specific subsets of attributes.

Focusing on concurrency control mechanisms, these systems tend to use multiversion

concurrency control, providing snapshot isolation [F+12; Man+09; Sik+12].
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As put in evidence in the previous chapter, current general purpose IMDBs do not scale
on multicore systems, independently of the isolation semantics and workload nature.
Additionally, we have identified contention on the storage sub-component as a major
performance bottleneck of these systems under read-only workloads.

In this chapter we present a generic solution, that requires no modifications to ei-
ther databases or to the applications, for reducing the contention among transactions.
By treating multicore machines as extremely low latency clusters, extended with some
shared memory, we propose a middleware system, called MacroDB, that coordinates a
set of database replicas. MacroDB, an example of a Macro-Component [Mar+10], builds
from the knowledge of distributed and replicated databases and improves scalability by

distributing and balancing load among different replicas.

4.1 Modification-free approach

In our quest to improve the scalability of in-memory databases, our initial approach is
to use databases as black-boxes. This approach uses database replication techniques and
builds on the knowledge from distributed and replicated database systems. By treating
a multicore machine as an extremely low latency cluster, extended with shared memory,
we design a middleware system, called MacroDB, as a collection of coordinated database
replicas.

MacroDB is designed to offer improved database scalability and performance by dis-
tributing load among the several internal replicas, reducing contention. To this end,
it uses a master/slave replication approach, where update transactions execute on the
master replica, which holds the primary copy of the database. The slaves maintain inde-

pendent secondary copies of the database, receiving read-only transactions from clients,
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while updates are asynchronously propagated to them, upon committing on the primary
replica. This approach reduces contention since: i) Update transactions do not block, nor
are they blocked, by concurrent read-only transactions, since different types of transac-
tions execute in different replicas; ii) Read-only transactions are fully executed on slave
replicas, reducing the number of transactions each replica processes, thus distributing
load among the available replicas, and iii) Update transactions executed in slave replicas
as sequential batches of updates, thus leading to no contention among them.

MacroDB provides a scalable data management solution that does not require any
modifications to neither the database engines or to the applications. Our experiments
show that MacroDB is able to provide performance benefits up to 4x over the standalone
database engines under read-dominate workloads, while for write-dominant workloads

MacroDB suffers from a 25% overhead over the non-replicated database.

4.2 Macro-Components

Macro-Component

— Manager Runtime
Applications w

3 Replicas

[

o

= i I

z | !
! Validator !
I I Replica
S

Figure 4.1: Macro-Component design and behavior

MacroDB follows the design principles of Macro-Components. Macro-Components
are software components designed to offer improved performance and/or reliability com-
pared to their standard siblings. Taking advantage of the available computational re-
sources offered by multicore machines, Macro-Components maintain a set of, possibly
diverse, component implementations of the same interface (called replicas), as presented
in Figure 4.1. Applications can benefit from the use of Macro-Components, simply by
replacing standard components by their Macro-Components siblings.

By treating multicore machines as extremely low latency clusters, extended with
shared memory, Macro-Components adopt identical principles as traditional replicated
systems, applying them on a single multicore machine. Thus, instead of distributing
replicas on to distinct machines, Macro-Component maintain replicas on the same ma-
chine.

This allows Macro-Components to offer improved performance, over standard com-

ponents, in a similar manner as traditional replicated systems, i.e., by distributing and
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balancing concurrent method calls among the available replicas. Additionally, Macro-
Components offer an asynchronous execution model that allows methods to execute
concurrently with the calling application thread. This, prevents application threads from
being held by methods that return no results, or by methods returning values that are
non-relevant for the application.

Following the same principles as N-version programming [Avi85; AK84], when us-
ing replicas with diverse implementations, Macro-Components offer improved reliability,
compared to standard components. Implementation diversity allows Macro-Components
to detect buggy behavior of replicas, preventing these bugs from being exposed and af-
fecting the reliability of applications. Since different implementations offer the same
functionality and maintain the same abstract state, buggy behavior is detected by identi-
fying state or result divergences amongst replicas.

Combining diversity and method call distribution allows Macro-Components to ex-
ploit the performance differences of the diverse replicas. Since different implementations
tend to offer different performances, and no single implementation is the fastest for all
operations, Macro-Components can be implemented to exploit these differences by exe-
cuting each operation in the corresponding fastest replica, allowing the fastest result to
be returned to the calling application. This way, Macro-Components can offer the best
performing result to the application. Next we detail the generic design and behavior of

the Macro-Component abstraction.

4.2.1 Macro-Component design and behavior

As previously presented, Macro-Components are software components that encapsulate
several, possibly diverse, implementations of the same specification, called Replicas. The
generic design of a Macro-Component, as depicted in Figure 4.1, is composed by three
main sub-components: the Manager, responsible for coordinating method execution on
the replicas, the Runtime, responsible for executing operations on the replicas, and the
Replicas, the components responsible for maintaining the state. An additional optional
component, the Validator, is responsible for validating the results returned by the replicas.

Whenever a method is called on a Macro-Component, the Manager decides if the
corresponding method should be called on all or a sub-set of the Replicas. Normally,
write methods execute in all Replicas, since these modify their internal state, while read
methods can execute on a sub-set of Replicas, since no state modification results from
their execution. The Runtime is then responsible for executing the respective method on
the set of Replicas, with the gathered results being passed back to the Manager.

After results are gathered, the Manager may pass them to the Validator for detecting
possible inconsistencies, or return one result to the application without validation. When
using the Validator, only valid results, i.e., results in accordance to the majority, are
returned to applications. Whenever inconsistent results are detected, the corresponding

faulty replicas are marked for recovery, and temporarily removed from the set of active
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replicas. Also, if some replica is unable to produce a result within a certain time limit,
the replica is considered faulty and threads executing in the replica are aborted. The
time limit is defined by the time taken by the majority of the replicas to reply plus an
additional tolerance.

This allows Macro-Components to offer improved fault-tolerance, by executing meth-
ods on the majority of replicas and comparing results, or to offer improved performance,
by executing operations on the fastest replica, or by distributing method invocation
among different replicas, for minimizing contention.

Additionally, the Runtime decouples the execution of the callee from the method, i.e.,
the thread calling the method can be different from the thread that executes it. This allows

Macro-Components to offer two different execution models: synchronous or asynchronous.

Application Application
Thread Thread

Replica, | Replica; | Replica, Replica, | Replica; | Replica,

Macro-Component Macro-Component

INTERFACE
INTERFACE

(a) Synchronous Execution (b) Asynchronous Execution

Figure 4.2: Macro-Component Concurrent Execution Model

The synchronous execution model forces application threads, when performing method
invocations on a Macro-Component, to wait for it to return, i.e., waiting for methods to
execute before continuing, as presented in Figure 4.2(a). While, the asynchronous ex-
ecution model allows application threads, when performing method invocations on a
Macro-Component, to proceed execution concurrently with the method, i.e., without
waiting for the methods to return, as presented in Figure 4.2(b).

The latter can be used whenever a method returns non relevant results, or no re-
sult at all, to the application, while the former can be used in all other situations. The
asynchronous execution model also further contributes for Macro-Components to of-
fer improved performance over standard components, since applications and method
execution can execute concurrently. Next we detail the generic implementation of the

Macro-Component abstraction.

4.2.2 Implementation and Runtime

The following discussion focuses on a Macro-Component implementation using the Java

programming language. For simplicity, we use the example of a simple counter with
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three operations:

e incrementCounter, that increments the current value of the counter and returns no

result;
» getCounter, that returns the current value of the counter; and
e incrementCounterAndGet, that increments the current value of the counter and re-

turns the new value.

Listing 4.1: Macro-Counter Implementation.

class MacroCounter {
// each Replica is a Counter
Replica<Counter> [] replicas;
VersionVector version;
void incrementCounter () { ... }

int getCounter() { ... }

int incrementCounterAndGet () { ... }

Listing 4.2: Replica Implementation.

class Replica<T> {
T replica;
ReplicalID id;

VersionVector version;

In conformity with the presented design, a Macro-Component has a set of Repli-
cas that implement a common interface, and an associated version-tracking mechanism,
where each Replica is a wrapper of a standard component implementation, with an asso-
ciated unique identifier and a version-tracking mechanism, as presented in Listings 4.1

and 4.2 respectively.

Listing 4.3: Counter Macro-Component Implementation.

class MacroCounter {
// each Replica is a Counter

Replical[] replicas;

static final Action incAction = new WriteAction () {
public Object execute(Replica replica, Object ... args) {
replica.incrementCounter () ;
return null;

i
// Asynchronous write operation.
void incrementCounter () {

Task t = createTask(incAction, replicas);
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Manager.asyncExecuteAll (t);

static final Action getAction = new ReadAction() {
public Object execute(Replica replica, Object ... args) {

return replica.getCounter();

bi

// Synchronous read operation.

int getCounter () {
Task t = createTask (getAction);
// 0 -> replica index in which the
// task will execute synchronously

Manager.syncExecute (t, 0);

static final Action incAndGetAction = new WriteAction() {
public Object execute (Replica replica, Object ... args) {

return replica.incrementCounterAndGet () ;

bi

// Synchronous write operation.

int incrementCounterAndGet () {
Task t = createTask (incAndGetAction);
// 0 —=> replica index in which the
// task will execute synchronously

return Manager.syncExecuteAll (t, 0)

Listing 4.4: Task Implementation.

class Task {
Action action;
Replical] replicas;
VersionVector version;
Long callerID;
Object[] args;
Object[] results;

public void execute (int replica) {
// wait for previous tasks to finish execution;

while (!replicas|[replica] .isUpToDate (version));

results|[replica] = action.execute (replicasl[replical, args);
if (this instanceof WriteTask)

replicas|[replical.incrementVersion(callerID);

Whenever a method is called on a Macro-Component, a Task object is created, as pre-
sented in Listing 4.3 (line 13, 24 and 37). Tasks are abstract representations of the called
method, as well as the corresponding arguments and result set, as presented in Listing

4.4. Since Java programing language does not permit to pass methods as arguments,
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methods are encapsulated as Action objects, as presented in Listing 4.3 (lines 5-10, 17-21
and 30-34). Actions define a single method, called execute, that is responsible for calling
the corresponding method on a replica (with the corresponding arguments).

Tasks also include additional information, such as the version in which the method
should execute, to allow the Runtime to preserve state consistency. Since some operations
change the component state while others do not, we represent these differences using
ReadTasks and WriteTasks. These differ from one another by incrementing the replica’s

version.

Listing 4.5: Macro-Component Manager Implementation.

class MacroManager {
Version macroVersion;
Version[] replicaVersions;

int replicas;

Task createTask (Action action, Replicas replicas, Object ... args) {
Long callerID = Thread.currentThread() .getId();
// timestamp used to guarantee ordering of operations

Version versionstamp;
if (action instanceof WriteAction)

versionstamp = macroVersion.incrementAndGet (callerID);
else

versionstamp = macroVersion.get (callerID);

return new Task (action, replicas, callerID, versionstamp, args);

// Asynchronous concurrent execution of Task t
void asyncExecuteAll (Task t) {
// sending Task to Runtime for execution

Runtime.submitTask (t) ;

// Synchronous concurrent execution of Task t
Object syncExecuteAll (Task t) {
// sending Task to Runtime for execution
Runtime.submitTask (t);
while (!t.hasResult ());
return t.getResult ();

// Synchronous in line execution of Task t in Replica rep
Object syncExecute (Task t, int rep) {
// rep —-> replica index in which the task will execute
t.execute (rep);

return t.getResult (rep);

// Synchronous inline execution of Task t in Replica rep
// Asynchronous concurrent execution in other replicas
Object syncExecuteAll (Task t, int rep) {
// rep —> replica index in which the task will execute
t.execute (rep);

// sending Task to Runtime for execution on additional Replicas
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Runtime.submitTask (t);

return t.getResult (rep);

WriteAction are used for methods that modify the state of the replicas, thus advance
the Macro-Component version, and the version of the replicas, after executing. On the
other hand, ReadActions are used for methods that do not modify the state of the replicas,
thus do not advance the Macro-Component version or replica versions, as presented in
Listings 4.5 (lines 6-17) and 4.4 (lines 9-16).

It is the Manager responsibility to create and execute Tasks. Although these function
could be directly implemented in the Macro-Counter, used in the example, we implement
the Manager separately for allowing developing Macro-Components automatically. Thus,
the Manager, in conjunction with the Runtime, allows Tasks to be executed: i) in-line
by the calling thread on a specific Replica. This synchronous in-line execution model
minimizes overhead, as the application thread does not need to synchronize or wait
for other threads; ii) concurrently by the runtime on all Replicas either synchronous,
i.e., waiting for it to return, or asynchronously, i.e., without waiting for it to return.
Additionally, the Manager offers a combination of both models, executing methods in-
line on a specific Replica, i.e., by the application thread, while executing the method
concurrently in the remaining Replicas, using the Runtime, as presented in Listing 4.5
(lines 20-23, 26-31, 34-37 and 42-49).

In the Macro-Counter example, presented in Listing 4.3, the incrementCounter() method
(lines 12-15) illustrates the asynchronous concurrent execution model, where the created
Task is executed by the Runtime and the calling thread continues execution without wait-
ing for any result. The getCounter() method (lines 23-28) illustrates the synchronous
in-line execution model, where the Task is executed by the calling thread on a specific
Replica, returning that result to the application. While, the incrementCounterAndGet()
method (lines 36-41) illustrates the combination of the two models, where the Task is ex-
ecuted in line on a given Replica and sent to the Runtime for executing on the additional
Replicas. The first result is then returned to the application.

The synchronous in-line execution approach contributes to a reduction on the num-
ber of asynchronous Tasks that need to execute, thus reducing synchronization overhead
and resources used by Macro-Components. Also, since only write operations need to be
executed in all Replicas, for preserving state consistency, these are normally executed
by the Runtime. As presented in the example, this execution can be synchronous, if the
result is relevant to the application, for example, using the inline approach presented in
the incrementCounterAndGet() method; or asynchronously, if the returning is non relevant
or no result is returned, for example, using the Runtime as presented in the increment-
Counter() method. The asynchronous execution approach contributes to an important

performance improvement for applications, since these can proceed without “waiting”
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for the operation to return.

Listing 4.6: Runtime Implementation.

class Runtime {
OrderedQueue<Task>[] tasks;

Executor[] pool;

// adds a task to the queue
void submit (Task t) {
for(int 1 = 0; i < tasks.length; i++)
tasks[i] .add(t);

// retrieves the next task from the queue
Task getNext (int executorID) {

return tasks[executorID].pool();

4.2.2.1 Preserving Replica State Consistency

For managing the execution of Tasks, the Runtime uses a producer/consumer scheme,
where submitted Tasks are scheduled for execution according to their version, as pre-
sented in Listing 4.6. Ordered queues, one for each replica, are used to maintain Tasks
ordered by their respective version. This allows the Runtime to execute Tasks in all
Replicas according to their total order [Lam78], thus guaranteeing the semantics of the

component and maintaining replica state consistency.

Listing 4.7: Executor Implementation.

class Executor implements Runnable {
int executorID;

int replica;

void run () {
while (Runtime.isRunning()) {
Task t = Runtime.getNext (executorID);
if(!f.alreadyExecuted (t.replicas[replical))

t.execute (t.replicas[replical);

A fixed size pool of Executor threads, one for each Replica, retrieves Tasks from the
queue and executes them on the corresponding Replica, as presented in Listing 4.7. Tasks
guarantee that the corresponding method executes in a Replica accordingly to its version,
Listing 4.4 (line 11), thus Macro-Components offer a consistent single copy view of the
underlying replicas. Additionally, the Executors guarantees that each Task does not

execute more than once in the same Replica, Listing 4.7 (line 9).
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By using a fixed number of Executors, we guarantee that, at most, only N+M threads
will be executing at any time, where N is the total number of Executors and M is the

number of threads of the application.

4.3 MacroDB

We now present MacroDB, an example of a Macro-Component for scaling IMDBs on
multicore machines. MacroDB replicates the database on several database engines, all
running on the same machine, while offering a single-copy serializable view of the database
to clients [Ber+87].

MacroDB works independently of the underlying database engine, acting as a trans-
parent layer between applications and the database. SQL statements, received from the
application, are passed, without modifications, to the underlying engines, thus making
MacroDB easy to deploy, since it does not require any modification to existing applica-
tions or database engines. This section details the architecture and algorithms used in
MacroDB.

4.3.1 Architecture

Client Client Client Client
MacroDB
Manager Runtime
]
]
Primary
Replica Secon.dary
Replicas

Figure 4.3: MacroDB architecture.

MacroDB uses a master-slave replication scheme [Hel+96; Wie+00], where the master
maintains the primary copy of the database, while the slaves maintain secondary repli-
cas. The MacroDB architecture, depicted in Figure 4.3, is composed by the three main

components of a Macro-Component:
* the manager, responsible for coordinating transaction execution in the replicas;
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* the runtime, responsible for propagating operations from the primary to the sec-

ondary replicas, i.e., executing operations in the secondary replicas; and

* the replicas, i.e., the database engines responsible for maintaining copies of the

database.

Clients remain oblivious of the replicated nature of MacroDB since it offers them a
standard JDBC interface, and provides them with a single-copy serializable view of the
database [Ber+87]. To this end, clients do not communicate directly with the database
engines, instead they communicate with the MacroDB JDBC compliant front-end.

This front-end, in conjunction with the manager, coordinate client queries and their re-
spective execution in the underlying replicas. MacroDB receives statements from clients
and executes them, without modification, in the appropriate replica, replying to clients
the respective results. All update transactions are executed on the primary replica, while
read-only transactions execute on a single secondary replica.

The manager also propagates update transactions, that successfully commit in the
primary, to the runtime for maintaining consistency of the secondary replicas. Thus,
its main functions are: i) to route client requests and execute them on the appropriate
replicas, replying the results back to the clients; ii) to manage operation execution to
guarantee that the system provides a single consistent serializable view of the replicated
database to the applications, and ii7) to detect and recover possible replica failures.

Update transactions, received from clients, execute concurrently on the primary copy,
while read-only transaction execute concurrently on secondary replicas. For preserving
consistency each replica maintains an associated version that registers the number of
update transactions committed in the respective replica. This value is incremented every
time a commit is successfully executed. Contrarily to the general approach used by Macro-
Components, the version of the primary replica also defines the MacroDB version. This
is possible since all update transactions are executed synchronously by the primary.

Upon successfully committing on the primary, and advancing the replica’s version,
update transactions are sent to the runtime for execution on the secondary replicas. These
are propagated in statement batches, stamped with the version value of the primary at
commit time. The runtime guarantees these batches execute on the secondary replicas in
the same order as committed on the primary, i.e., according to their respective version
values, similarly to CBS [Van+07]. By sequentially executing each commit in the master
replica, and advancing the version counter, we define a correct serialization order for
update transactions, without forcing an a priori commit order.

This means that secondary replicas might not be completely up to date at a given
moment. To guarantee linearizability[HW90], read-only transactions only execute on a
secondary replica which has, at least, the same version as the master. To achieve this,
before the first operation of each new transaction, the MacroDB manager registers the
current version value of the master repli