
João Paulo da Conceição Soares

Mestre em Engenharia Informática

Scaling In-Memory databases on multicores

Dissertação para obtenção do Grau de Doutor em

Engenharia Informática

Orientador: Nuno Manuel Ribeiro Preguiça,
Professor Associado,
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Júri

Presidente: José Legatheaux Martins
Arguentes: Fernando Pedone

Alysson N. Bessani
Vogais: Rodrigo M. Rodrigues

João M. Lourenço
Nuno M. Preguiça

Outubro, 2015

Scaling In-Memory databases on multicores

Copyright © João Paulo da Conceição Soares, Faculty of Sciences and Technology, NOVA
University of Lisbon.
The Faculdade de Ciências e Tecnologia and the Universidade NOVA de Lisboa have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,
as long as credit is given to the author and editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

To my parents and my brother, and to my wife and son.

Acknowledgements

The work presented in this dissertation would not have been possible without the collab-
oration of a number of people to whom I would like to express my gratitude.

First and foremost I would like to deeply thank my thesis advisor Nuno Preguiça,
who, patiently, always helped me to overcome all the challenges that I had to face during
my PhD studies. I’ve learned a lot from him, and I truly hope to be able to advise my
students as well as he advised me.

To João Lourenço for always being available to discuss ideas and give excellent tips
and suggestions which allowed me to improve the quality of this work.

To all my colleagues with whom I shared the ASC open space, including: David
Navalho, Valter Balegas, Bernardo Ferreira, João Leitão, and Tiago Vale.

Finally, my very heartfelt thanks to my parents José and Elisa. To Isabel, for patiently
keeping up with me, and for giving me my beautiful son José.

I also would like to acknowledge the following institutions for their hosting and
financial support: Departamento de Informática and Faculdade de Ciências e Tecnolo-
gia of the Universidade Nova de Lisboa; Centro de Informática e Tecnologias da Infor-
mação of the FCT/UNL; Fundação para a Ciência e Tecnologia in the PhD research grant
SFRH/BD/62306/2009, and in the research projects RepComp (PTDC/ EIA-EIA/ 108963/
2008), PEst-OE/ E-EI/ UI0527/ 2011, SwiftComp (PTDC/ EEI-SCR/ 1837/ 2012), PEst-
OE/ EEI/ UI0527/ 2014 and EU FP7 project SyncFree (grant no 609551).

vii

Abstract

Current computer systems have evolved from featuring only a single processing unit and
limited RAM, in the order of kilobytes or few megabytes, to include several multicore
processors, o↵ering in the order of several tens of concurrent execution contexts, and
have main memory in the order of several tens to hundreds of gigabytes. This allows to
keep all data of many applications in the main memory, leading to the development of in-
memory databases. Compared to disk-backed databases, in-memory databases (IMDBs)
are expected to provide better performance by incurring in less I/O overhead.

In this dissertation, we present a scalability study of two general purpose IMDBs on
multicore systems. The results show that current general purpose IMDBs do not scale
on multicores, due to contention among threads running concurrent transactions. In
this work, we explore di↵erent direction to overcome the scalability issues of IMDBs in
multicores, while enforcing strong isolation semantics.

First, we present a solution that requires no modification to either database systems
or to the applications, called MacroDB. MacroDB replicates the database among several
engines, using a master-slave replication scheme, where update transactions execute on
the master, while read-only transactions execute on slaves. This reduces contention, al-
lowing MacroDB to o↵er scalable performance under read-only workloads, while update-
intensive workloads su↵er from performance loss, when compared to the standalone
engine.

Second, we delve into the database engine and identify the concurrency control mech-
anism used by the storage sub-component as a scalability bottleneck. We then propose
a new locking scheme that allows the removal of such mechanisms from the storage
sub-component. This modification o↵ers performance improvement under all workloads,
when compared to the standalone engine, while scalability is limited to read-only work-
loads. Next we addressed the scalability limitations for update-intensive workloads, and
propose the reduction of locking granularity from the table level to the attribute level.
This further improved performance for intensive and moderate update workloads, at a
slight cost for read-only workloads. Scalability is limited to intensive-read and read-only
workloads.

Finally, we investigate the impact applications have on the performance of database
systems, by studying how operation order inside transactions influences the database

ix

performance. We then propose a Read before Write (RbW) interaction pattern, under
which transaction perform all read operations before executing write operations. The
RbW pattern allowed TPC-C to achieve scalable performance on our modified engine for
all workloads. Additionally, the RbW pattern allowed ourmodified engine to achieve scal-
able performance on multicores, almost up to the total number of cores, while enforcing
strong isolation.

Keywords: In-Memory Databases, Performance Study, Scalability Study, Contention, Se-
rializability, Replication, Latch-Free, Attribute Level Locking, Read-before-Write Pattern

x

Resumo

Os sistemas de computadores atuais evoluíram a partir de sistemas com uma única uni-
dade de processamento e memória RAM limitada, na ordem de kilobytes ou alguns me-
gabytes, para incluir vários processadores com múltiplos núcleos, oferecendo na ordem
de várias dezenas de contextos de execução em simultâneo, e com memória principal
na ordem de várias dezenas a centenas de gigabytes. Isto permite a muitas aplicações
manter todos os seus dados na memória principal, conduzindo ao desenvolvimento de
bases de dados em memória. Comparativamente aos sistemas de gestão de bases de dados
suportadas por disco, espera-se que os sistemas de gestão de bases de dados em memória
(SGBDM) proporcionem um melhor desempenho por incorrer em menos I/O.

Nesta dissertação, apresentamos um estudo da escalabilidade de dois SGBDM em
sistemas de computadores com múltiplos núcleos. Os resultados mostram que as atuais
SGBDM não escala em multicores, devido contenção entre fluxos de execução quando
executam transações concurrentes. Neste trabalho, exploramos diferentes direções para
superar os problemas de escalabilidade de SGBDM em processadores com múltiplos
núcleos, preservando uma semântica de isolamento forte.

Primeiro, apresentamos uma solução que não requer quaisquer modificações para
ambos os sistemas de bases de dados ou para as aplicações, chamado MacroDB. MacroDB
replica a base de dados em vários SGBDM, usando um esquema de replicação mestre-
escravo, onde transações de escrita executam no mestre, enquanto transações de leitura
executam nos escravos. Este modelo de replicação reduz a contenção, permitindo ao
MacroDB oferecer um desempenho escalável sob cargas maioritariamente de leitura, en-
quanto cargas intensas de escritas sofrem de perda de desempenho, quando comparado
com o motor independente.

Seguidamente, focando-nos no motor de bases de dados, identificou-se o mecanismo
de controle de concorrência usado pelo sub-componente de armazenamento como um gar-
galo escalabilidade. Propôs-se então um novo esquema de controlo de concorrência que
permite a remoção de tais mecanismos no sub-componente de armazenamento. Esta alte-
ração oferece uma melhoria de desempenho em todas as cargas, quando comparado com
o motor original. No entanto, a mesma oferece a escalabilidade limitada somente a cargas
maioritariamente de leitura. Em seguida, focando-nos na escalabilidade para cargas de
escrita intensa, e propor-se uma redução da granularidade do controlo de concorrência

xi

do nível da tabela para o nível do atributo. Esta modificação melhora o desempenho para
cargas maioritariamente de escritas, no entanto impõe um pequeno custo para cargas
maioritariamente de leitura. A escalabilidade é limitada a cargas maioritariamente de
leitura.

Por fim, investigou-se o impacto que as aplicações têm no desempenho dos sistemas
de bases de dados, estudando como a ordem das operação dentro de transações influên-
cia o desempenho dos mesmos. Então, propôs-se um padrão de interação no qual uma
transação realiza todas as operações de leituras antes das operações de escrita, Ler antes
de Escrever (LaE). A modificação do TPC-C segundo o padrão LaE permite atingir um
desempenho escalável no nosso motor modificado para todas as cargas. Além disso, o
padrão LaE permite ao nosso motor modificado atingir um desempenho escalável em pro-
cessadores com múltiplos núcleos, quase até o número total de núcleos, mesmo quando
aplicando uma semântica de isolamento forte.

Palavras-chave: Sistema de gestão de bases de dados em memória, Estudo de desempe-
nho, Estudo de escalabilidade, Contenção, Serialização, Replicação, Controlo de concor-
rência ao nível dos atributos, Padrão Ler antes de Escrever

xii

Contents

List of Figures xvii

List of Tables xix

Listings xxi

1 Introduction 1
1.1 Database management systems . 2
1.2 Problem statement . 3
1.3 List of Publications . 4
1.4 Outline of the Dissertation . 5

2 Fundamental Concepts 7
2.1 Relational Databases . 7

2.1.1 ACID properties . 9
2.1.2 Storage Manager . 10
2.1.3 Log Manager . 11
2.1.4 Lock Manager . 12
2.1.5 Preserving Consistency . 16

2.2 Classic Isolation Implementation . 17
2.3 From disk to main memory . 19

2.3.1 Storage Management . 19
2.3.2 Log Management . 20
2.3.3 Lock Management . 21
2.3.4 H2 and HSQLDB behavior . 21

2.4 Summing up . 23

3 Research Problem 25
3.1 H2 & HSQLDB scalability study . 25

3.1.1 HSQLDB scalability results . 26
3.1.2 H2 scalability results . 30
3.1.3 Understanding Scalability Results 33

3.2 Identifying performance bottlenecks . 34

xiii

CONTENTS

3.2.1 Transaction Management . 34
3.2.2 Logging . 36
3.2.3 Storage subsystem . 37

3.3 Research Questions . 38
3.4 Related Work . 39

3.4.1 Database performance and scalability studies 39
3.4.2 Improving scalability by reducing contention 41
3.4.3 State of the art in-memory databases 44
3.4.4 Alternative database designs . 46

4 Modification-free Solution 49
4.1 Modification-free approach . 49
4.2 Macro-Components . 50

4.2.1 Macro-Component design and behavior 51
4.2.2 Implementation and Runtime . 52

4.3 MacroDB . 58
4.3.1 Architecture . 58
4.3.2 Implementation details . 60
4.3.3 Correctness . 68
4.3.4 Minimizing Contention for E�cient Execution 69
4.3.5 Evaluation . 69
4.3.6 Additional discussion . 74
4.3.7 Fault Handling . 75

4.4 Related Work . 77

5 Database Modifications 81
5.1 Concurrency implications . 81

5.1.1 Removing storage latches . 83
5.1.2 Additional Remarks . 84
5.1.3 Evaluation . 84
5.1.4 Additional discussion . 86

5.2 Scaling update-intensive workloads . 87
5.2.1 Increasing write concurrency . 87
5.2.2 Proposed algorithm . 88
5.2.3 Improving A2L . 89
5.2.4 Correctness . 90
5.2.5 Implementing A2L . 90
5.2.6 Evaluation . 92
5.2.7 Additional discussion . 94

5.3 Related Work . 95

6 Application impact on database performance 99

xiv

CONTENTS

6.1 Reordering Operations Inside Transactions 100
6.1.1 Non-Dependent operations . 100
6.1.2 Dependent operations . 101

6.2 TPC-C . 106
6.2.1 Transaction Analysis . 107
6.2.2 TPC-C reordering . 108

6.3 Performance with Modified Transactions 114
6.3.1 8-92 workload . 114
6.3.2 Other workloads . 115

6.4 Read before Writes with early lock release 116
6.4.1 Evaluation . 116

6.5 Combining RbW with A2L . 117
6.5.1 8-92 and 50-50 workloads . 118
6.5.2 80-20 and 100-0 Workloads . 119
6.5.3 Scalability . 119
6.5.4 Additional discussion . 120

6.6 Correctness . 120
6.7 Summing up . 121

7 Conclusions 123
7.1 Future Work . 125

Bibliography 127

xv

List of Figures

2.1 General DBMS architecture (Adapted from [JMHH07]). 8

3.1 HSQLDB performance under di↵erent TPC-C workloads and isolation levels. 27

3.2 HSQLDB TPC-C performance for di↵erent isolation levels (8-92 and 50-50
workloads). 28

3.3 HSQLDB TPC-C performance for di↵erent isolation levels (80-20 and 100-0
workloads). 29

3.4 H2 performance under di↵erent TPC-C workloads and isolation levels. . . . 30

3.5 H2 TPC-C performance under di↵erent Isolation levels. 31

3.6 H2 TPC-C performance under di↵erent Isolation levels. 32

3.7 H2 Isolation level impact on TPC-C performance. 33

3.8 Durability log overhead under serializable isolation level. 36

3.9 Durability log overhead under snapshot isolation level. 37

3.10 TPC-C read-only workload on the modified engines. 38

4.1 Macro-Component design and behavior . 50

4.2 Macro-Component Concurrent Execution Model 52

4.3 MacroDB architecture. 58

4.4 MacroDB overhead results (all TPC-C workload). 70

4.5 TPC-C 8-92 workload results (3 & 4 replicas). 71

4.6 TPC-C 50-50 workload results (3 & 4 replicas). 71

4.7 TPC-C 80-20 workload results (3 & 4 replicas). 72

4.8 TPC-C 100-0 workload results (3 & 4 replicas). 72

4.9 MacroHSQLDB with 6 replicas . 73

5.1 TPC-C performance under 8-92 and 50-50 workloads. 85

5.2 TPC-C performance under 80-20 workloads. 85

5.3 TPC-C performance under read-only workloads. 86

5.4 HSQLDB A2L modification under update-intensive workloads. 92

5.5 HSQLDB A2L modification under read-intensive workloads. 93

5.6 A2L throughput compared to table level locking (80-20 and 100-0 workloads). 94

6.1 RbW TPC-C performance (8-92 workload). 114

xvii

List of Figures

6.2 RbW TPC-C performance (50-50 and 80-20 workloads). 115
6.3 RbW speedup over Original TPC-C. 115
6.4 RbW early release of read lock (8-92 workload). 117
6.5 RbW early release of read lock (50-50 and 80-20 workloads). 117
6.6 Comparing performance of proposed modifications (8-92 and 50-50 Work-

loads). 118
6.7 Comparing speedups of proposed modifications (8-92 and 50-50 Workloads). 118
6.8 Comparing performance of proposed modifications (80-20 and 100-0 Work-

loads). 119
6.9 Comparing speedups of proposed modifications (80-20 and 100-0 Workloads). 119
6.10 A2L RbW TPC-C Speedup over Original TPC-C on HSQLDB. 120

xviii

List of Tables

2.1 Comparison concurrency control mechanisms 13
2.2 Isolation Levels and concurrency anomalies (i.e., phenomena) 15
2.3 Locks and Isolation Levels (adapted from [Ber+95]). 18

3.1 State of the art comparison. 46

4.1 Memory overhead . 73
4.2 TPC-W results . 74

5.1 Modified Locking behavior and Isolation Levels 83

6.1 TPC-C transactions. ’S’, ’U’, ’I’ and ’D’ refer to select, update, insert and delete
operations, respectively, and the accessed tables, with t1 on t2 representing a
join between tables t1 and t2. 107

6.2 Reordered TPC-C transactions. 108

xix

Listings

2.1 Lock Based Statement Execution. 21
4.1 Macro-Counter Implementation. 53
4.2 Replica Implementation. 53
4.3 Counter Macro-Component Implementation. 53
4.4 Task Implementation. 54
4.5 Macro-Component Manager Implementation. 55
4.6 Runtime Implementation. 57
4.7 Executor Implementation. 57
4.8 MacroDB Driver Implementation. 61
4.9 MacroDB Driver Implementation. 61
4.10 MacroDB Connection Implementation. 62
4.11 MacroDB Statement Implementation. 65
6.1 Single row UPDATE/SELECT, without dependencies. 101
6.2 Reordered single row UPDATE/SELECT, without dependencies. 101
6.3 Single row UPDATE/SELECT, with dependencies. 101
6.4 Reordered single row UPDATE/SELECT, with dependencies. 102
6.5 Single row INSERT/SELECT, with dependencies. 102
6.6 Reordered single row INSERT/SELECT, with dependencies. 102
6.7 Single row UPDATE and range SELECT, with dependencies. 103
6.8 Reordered single row UPDATE and range SELECT, with dependencies. . 103
6.9 Single row INSERT range SELECT, with dependencies. 103
6.10 Reordered single row INSERT range SELECT, with dependencies. 103
6.11 Single row DELETE range SELECT, with dependencies. 104
6.12 Reordered single row DELETE range SELECT, with dependencies. 104
6.13 Range UPDATE single SELECT, with dependencies. 104
6.14 Ordered range UPDATE single SELECT, with dependencies. 104
6.15 Range DELETE single SELECT, with dependencies. 105
6.16 Reordered range DELETE single SELECT, with dependencies. 105
6.17 Range UPDATE range SELECT, with dependencies. 105
6.18 Reordered range UPDATE range SELECT, with dependencies. 106
6.19 Range DELETE range SELECT, with dependencies. 106
6.20 Reordered range DELETE range SELECT, with dependencies. 106

xxi

LISTINGS

6.21 TPC-C new order transaction. 108
6.22 Reordered TPC-C new order transaction. 109
6.23 TPC-C payment transaction. 110
6.24 Reordered TPC-C payment transaction. 111
6.25 TPC-C delivery transaction. 112
6.26 Reordered TPC-C delivery transaction. 113

xxii

C
h
a
p
t
e
r

1
Introduction

Gordon Moore, back in 1965, observed that the number of transistors in an integrated cir-
cuit would double every 12 to 24 months [Moo98]. This has proven to be true, namely in
CPUs, and, for a long period of time, as the number of transistors grew so did the proces-
sor clock frequency. This increase in clock frequency resulted in a direct improvement in
CPU performance, which in turn led to a free performance improvement for applications
[Pan+08; Sut05].

However, in the late 1990s, the traditional pursuit for improving CPU performance
ended, leading to the stabilization of CPU clock frequencies. This results from the fact
that further increasing the clock frequency leads to an unmanageable increase in energy
consumption and heat emission [Ham+97; Olu+96; Vac+05].

Although the CPU clock frequency has stabilized, it was still possible to continue
increasing the number of transistors in a single chip. This has led to a new paradigm
for improving CPU performance was adopted, based on new CPU designs. This new
paradigm improves CPU performance by increasing the number of processing units in-
stead of increasing the performance of a single unit [Ham+97; Olu+96; Vac+05]. Current
modern CPU architectures feature multiple processor cores per chip, and are known as
multicores. Additionally, each core often provides hardware support for multiple execu-
tion contexts, also known as hyper-threading [Tul+95].

Other components, namely main memory, have also benefitted from the increase in
transistor count. In this case, the increase resulted in a proportional growth of the total
amount of main memory supported by computer systems. Like CPUs, memory clock
frequencies, has also increased.

In summary, computer systems have evolved from, typically, featuring only a single
processing unit and limited RAM, in the order of kilobytes or few megabytes, to include
several multicore processors, o↵ering in the order of several tens of concurrent execution

1

CHAPTER 1. INTRODUCTION

contexts, and have main memory in the order of several tens to hundreds of gigabytes.
This evolution, in particular the existence of multiple cores, pose important chal-

lenges to the design of application in order to e�ciently explore the power of current
systems [Bau+09; Har+07; Pan+08; Pap+08; Sal+11]. As a result, considerable research
e↵orts have been exploring new ways for developing applications for multicore systems
[AC09; Bau+09; Cle+13; HM93; Lea00; Meh+09; Pan+08; Son+11; Tiw+10; Wam+13;
Zha+07]. In this work we focus on some of the challenges that multicore systems impose
on Database Management Systems.

1.1 Database management systems

Database systems are the underlying building block of information systems. For over 50
years, databases became fundamental to the operations of most organizations, being a
central part of our day-to-day life [CB09; Sil+06; Zha+15].

Ever since the development and deployment of the first databases, back in the 1950s,
that database research has been an active and challenging field. In 1970, James Codd
proposed a new data model and nonprocedural ways of querying data [Cod70]. This
gave birth to the relational database, a key component of current information systems
architectures [BN97; Niu+13; Xu11].

The foundations of modern general purpose relational database management systems
(RDBMS) were laid back in the 1970’s, with the pioneerwork on early RDBMS, like System
R [Ast+76; Cha+81; Gra78] and Ingres [Sto+86]. Traditionally, RDBMSs feature a disk-
backed storage system, a log-based transaction manager, and a lock-based concurrency
control mechanism [Cha+81; Gra78; GR92].

Current database design is still highly influenced by these initial works, which were
developed when online transaction processing (OLTP) databases were many times larger
than main memory, and disk I/O was the predominant performance bottleneck [Sto81].
At the time, e�cient I/O subsystems were critical for the overall performance of DBMS.
Thus, most of the research in DBMS focused, primarily, on bu↵er pool management, fine-
grain concurrency control and sophisticated caching and logging schemes for e�ciently
multiplexing concurrent transactions, while hiding disk latency [Che+94; GR92].

As discussed before, resources available in current systems are considerably di↵erent.
When compared to single core processors, multicore architectures o↵er increased compu-
tational power provided by multiple processors running concurrently. Additionally, the
increasing amount of main-memory in current computer systems allows the working set
of many applications to fit entirely in main memory [Har+08; Joh+09b; Zha+15]. This
allows databases to move application data from disk to memory to a large extent or even
completely.

This evolution in hardware contributes to the improvement of performance in DBMS.
However, it also poses a number of challenges on how to fully explore the resources avail-
able in modern computing systems. In fact, for DBMSs to achieve scalable performance,

2

1.2. PROBLEM STATEMENT

these must e�ciently utilize the available hardware contexts o↵ered by current multicore
systems. However, general purpose database design have changed little, still relying on
optimizations for computer technologies of the late 1970’s [Har+08].

1.2 Problem statement

It has been shown that current general purpose databases can spend more than 30% of
time in synchronization-related operations (e.g. locking and latching), even when only a
single client thread is running [Har+08; Pan+10]. It has also been shown that running two
concurrent database operations in parallel can be slower than running them in sequence,
due to workload interference [Pan+10; Sal+11]. These are some of limiting factors for
databases to scale on current multicore systems [Joh+09a; Joh+09b; Unt+09; Zho+05].

Several di↵erent approaches have been proposed for improving database resource
usage of multicore machines. Some of this research aims at using multiple threads to
execute query plans in parallel; using new algorithms to parallelize single steps of a
plan; or e↵ectively parallelize multiple steps [Che+95; CR08; Cie+10; Ye+11; Zha+13;
Zho+05]. Other solutions try to reuse part of the work done during the execution of
multiple queries, or using additional threads for prefetching data that may be needed in
the future [Gia+12; Pap+08; Zho+05].

Additionally, some works propose the use of techniques from replicated and dis-
tributed systems, like data replication or partitioning, tomulticore environments[Mao+12;
Pan+11; Sal+11]. Others propose a complete redesign of the database engine for e�-
ciently running on multicore machines [Dia+13; Tu+13].

However, most of these approaches require extensive database redesign, which con-
tributes negatively to the acceptance of these proposals by the community. Thus general
purpose databases have been slower to adopt them. Nonetheless, some of these solutions
start to appear in niche markets.

The goal of this work is to study how general purpose In-Memory Databases (IMDBs)
can benefit from the resources available in modern computer systems, namely the mul-
tiple cores and abundant memory. Compared to disk-backed databases, IMDBs are ex-
pected to provide high performance by incurring in less disk I/O overhead. Additionally,
since I/O is the main bottleneck for disk-backed database systems, one could expect
IMDBs to scale better with the number of cores.

In this dissertation, we start by presenting an experimental study on the scalability
of two general purpose IMDBs, to understand the main bottlenecks that exist (Chapter
3.1). The results from this study show that current general purpose IMDBs do not scale
on multicores mainly due to contention among threads running concurrent transactions.
This contention occurs both due to concurrency control mechanisms for enforcing trans-
action serializability, and in the low-level concurrency control mechanisms used by the
internal data structures.

3

CHAPTER 1. INTRODUCTION

Our thesis is that it is possible to scale IMDBs on multicores while enforcing strong
isolation semantics. To address this goal, we present the following contributions.

First, we propose a design that requires no modification to either the database systems
or to the applications, called MacroDB (Chapter 4). MacroDB uses database replication
techniques, maintaining several replicas of the same database, in a single multicore sys-
tem and distributes the load among the replicas. This helps improving the scalability
of the system by reducing contention. However, this approach is still limited by the
scalability of a single database for update-heavy workloads.

Next, we delve into the database engine and identify the major performance bottle-
necks to the scalability problem of IMDBs (Chapter 5). We then propose a series of engine
modifications for addressing these bottlenecks, reducing internal contention points for
improving the system scalability.

Finally, we investigate the impact applications have on the performance of database
systems (Chapter 6). We start by studying how operation order, inside transactions, influ-
ence the database performance. We then propose combining modifications to the trans-
actions, defined in the applications, and to database engines for improving concurrency
among transactions, which leads to improved database scalability.

1.3 List of Publications

We present the list of publications that resulted from the work presented in this docu-
ment.

• [Mar+10] Paulo Mariano, João Soares, and Nuno Preguiça. Replicated Software
Components for Improved Performance. In proceedings of InForum 2010, Septem-
ber 2010.

• [Soa+13a] João Soares, João Lourenço, and Nuno Preguiça. MacroDB: Scaling Data-
base Engines on Multicores. In proceedings of the 19th International Conference
on Parallel Processing (EuroPar’13), August 2013.

These papers present Macro Components and Macro DB design for improving
performance on multicores based on replication (Chapter 4.1))

• [SP12] João Soares, and Nuno Preguiça. Improving Application Fault-Tolerance
with Diverse Component Replication. In Euro-TMWorkshop on Transactional Mem-
ory (WTM 2012), April 2012.

• [Soa+13b] João Soares, João Lourenço, and Nuno Preguiça. Software Component
Replication for Improved Fault-Tolerance: Can Multicore Processors Make It Work?.
In proceedings of 14th EuropeanWorkshop on Dependable Computing (EWDC’13),
May 2013.

4

1.4. OUTLINE OF THE DISSERTATION

These works discuss how to build on the previous design for improving fault-
tolerance.

• [Mar+13] Helder Martins, João Soares, João Lourenço, and Nuno Preguiça. Repli-
cação Multi-nível de Bases de Dados em Memória. In proceedings of InForum 2013,
September 2013.

This work presents a distributed version of MacroDB proposed in [Soa+13a].

• [SP15] João Soares, and Nuno Preguiça. Database Engines on Multicores Scale: A
Practical Approach. In proceedings of 30th ACM/SIGAPP Symposium On Applied
Computing (SAC 2015), April 2015.

Report on the performance and scalability evaluation of in-memory databases
on multicores (Section 3.1.1). Proposal for a new locking protocol that allows
the removal of locks from the underlying data structures, for improving in-
memory database scalability (Chapter 5).

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 This chapter introduces the fundamental concepts for understanding the re-
maining discussion.

Chapter 3 This chapter presents a performance study of two general purpose IMDB en-
gines on multicores, and discusses the implications that the di↵erent database com-
ponents have on the performance of these systems. It also presents the state-of-
the-art of in-memory database management systems and some related work on the
techniques and tools related to the matters addressed by this dissertation.

Chapter 4 This chapter presents a generic design for addressing the scalability problem
on IMDBs that requires no modifications to either databases or to the applications.
This solution builds on the knowledge from distributed and replicated systems,
applying them to multicore environments.

Chapter 5 In this chapter we delve into the database engine to fix the major contributors
to the scalability problem, i.e., the engine’s major performance bottlenecks. To this
end, we propose a series of modifications for addressing these problems.

Chapter 6 This chapter presents a study on the impact applications have on the perfor-
mance of the database, and propose a set of guidelines for modifying transactions
that combined with a modified database engine can o↵er increased concurrency.

5

CHAPTER 1. INTRODUCTION

Chapter 7 This chapter summarizes the main results and contributions of the research
work described in this dissertation, and lists some directions for future research
activities.

6

C
h
a
p
t
e
r

2
Fundamental Concepts

In this chapter we present the research context of this dissertation. We start by describ-
ing the main architectural aspects of database management systems. Next, we discuss
the major di↵erences between traditional, disk-backed, databases and their memory-
backed counterparts, and discuss the design of two general purpose in-memory databases,
HSQLDB and H2.

2.1 Relational Databases

Relational database management systems (RDBMS) are the most mature and widely used
database systems in production today [JMHH07]. These systems are a fundamental part
of the infrastructure that supports many applications including e-commerce, stock man-
agement, billing, health and medical records, human resources and payroll management,
to name a few.

The foundations of modern RDBMS were laid back in the 1970’s, with the pioneer
work like System R [Ast+76; Cha+81; Gra78] and Ingres [Sto+86]. Current RDBMS design
is still highly influenced by these initial works.

At its core, a RDBMS has fourmain components[Cha+81; Gra78; GR92; JMHH07]: the
communication manager; the process manager; the query processor and the transaction
manager, as well as series of additional subcomponents, as illustrated in Figure 2.1. To
better understand the function of each of the main components, as well as their interac-
tions, we briefly describe the life of a transaction during its execution. Transactions are a
sequence of query and/or update operations delimited by a commit or rollback operation,
performed by database clients. In this document, transactions with, at least, one update
operation (be it an insert, delete or update operation) are referred to as update transactions,
while transactions without update operations are referred to as read-only transactions.

7

CHAPTER 2. FUNDAMENTAL CONCEPTS

DBMS

Applica'ons	

Data	
Files	

Log	
Files	

Access	
Control	

Process/
Thread	

Management	

Process	
Manager	

Parser	 Op'mizer	 Executor	

Query	Processor	

Lock	
Manager	

Log	
Manager	

Storage	
Manager	

Transac'onal	Manager	

Catalog	
Manager	

Memory	
Manager	

Addi'onal	
Components	

Admin.,	
Monitoring	&	

U'li'es	

Replica'on	&	
Loading	
Services	

Batch	U'ls.	

Communica'on	Manager	/	Interface	

ODBC	/	
JDBC	

Other	Local/Remote	
Protocols	

Figure 2.1: General DBMS architecture (Adapted from [JMHH07]).

Consider a simple database interaction where a teacher requests the list of enrolled
student in one of its classes. This interaction results in a single-query transaction that
follows these, simplified, steps:

1. The client application calls the database API to establish a new connection. A
connection can be established directly, via the ODBC or JDBC protocol, or using
additional middleware, such as a web or an application server. Each connection is
used to send SQL commands from a client to the database and to receive responses
from the database (Communication Manager).

2. Upon receiving a connection request, the database server assigns a process, or
thread, to answer/serve that connection. A connection waits until the Process Man-
ager has enough resources available to answer it. When a database process/thread
is assigned to a connection, and before executing any SQL commands, it checks and
validates user credentials with the Access Control component. Connections from
non authorized users are dropped.

3. Client can use connections to send SQL operations to the database. These operations
are first parsed and checked for syntactic errors by the SQL Parser. If error free,
operations are compiled and sent to the Query Optimizer, which creates a query
execution plan. Query Executors implement a suite of operators, including joins,
selection, projection, aggregation, sorting and so on, for executing query plans.

4. Operators that require data from the database use the Transactional Manager to
access it. This component includes algorithms for managing access to data (Lock
Manager), and data structures for organizing data on disk (Storage Manager). The
Transactional Manager also ensures that the ACID properties [HR83] of transactions
are preserved.

8

2.1. RELATIONAL DATABASES

5. After retrieving data from the database, executors produce query results that are
sent back to the client. When a client finishes the database interaction it closes
the database connection, at which point the database communication manager and
transaction manager clean the connection and transaction state, respectively.

Most of the described components impact the overall performance of databases, name-
ly parsers and query optimizers. These components have been extensively studied by
the research community and several proposal exist to improve their performance on
multicore systems [Che+95; HL09; Kri+09]. Our work is orthogonal to these proposal,
focusing on mechanisms for managing concurrent accesses to data.

We now discuss how a database guarantees transactions execute respecting the ACID
properties, during (concurrent) execution.

2.1.1 ACID properties

The common database correcteness criteria is that databases must ensure transactions
execute according to the four ACID properties: Atomicity, Consistency, Isolation and Dura-
bility. We now describe these properties, and present how a database guarantees them.

• Atomicity defines transaction behavior. According to this property, transactions
performed on a database must execute in an “all or nothing” manner, i.e., either all
operations of a transaction succeed or non do.

• Consistency defines how data evolves from one state to another. Under this property,
a database must guarantee its data persist in a consistent state, where all success-
fully committing transactions must evolve the database from an initial consistent
state to a final consistent state.

• Isolation defines the allowed interference between concurrent transactions. When
taking this property strictly, all operations performed by a transaction must be
hidden from all other concurrent transactions, i.e., transactions can only observe
changes made by previously committed transactions, prior to its beginning.

• Durability defines how the data, and respective changes, must be preserved. Accord-
ing to this property, a database must guarantee that once a transaction completes
and successfully commits its results, these results will be visible to subsequent
transactions, and will survive the occurrence of any software errors or hardware
malfunctions.

Consistency is typically application-specific, with applications being able to capture
part of the consistency properties using SQL integrity constraints. Consistency is en-
forced by runtime checks, that allow transactions to commits only if the constraints are
preserved, aborting otherwise.

9

CHAPTER 2. FUNDAMENTAL CONCEPTS

For the remaining properties, databases guarantee them using a combination of sub-
components, namely: the Lock Manager; the Log Manager; and the Storage Manager.
These subcomponents tend to be managed and orchestrated by the Transactional Man-
ager. We now describe each of these subcomponents, and how these are used to ensure
the ACID properties.

2.1.2 Storage Manager

The Storage Manager is responsible for managing the database data. Traditional disk-
backed databases maintain data in hard disk drives. This includes not only the database
data but also the necessary data structures needed for e�ciently accessing this data.
Typically, a database contains a set of files, with each file containing a set of pages and
each page containing a set of records (or tuples). These files, pages and records are used
not only to preserve database data but also the necessary meta-data for managing it.

Since the cost of page I/O (Input from disk to memory and Output from memory
to disk) dominates the transaction cost for disk-backed database operations, indices are
commonly used for e�ciently locating data on disk. Whenever a query requires data
from the database, the Storage Manager searches the corresponding index to locate the
disk page that holds the data. Traditionally, an index structure is stored in disk, in several
blocks, and is loaded into memory as needed, i.e., when the respective blocks are required.

The Storage Manager is also responsible for maintaining the necessary data near the
processor, i.e., managing memory bu↵ers that cache the disk data for increased perfor-
mance. Bu↵ers are extremely important for disk-backed databases due to the di↵erence
in bandwidth and latency when accessing data on disk compared to memory. Bu↵ers are
arrays of memory stored disk pages called frames, and are used to maintain recently ac-
cessed disk pages in memory. For identifying if a given page is presently bu↵ered, a frame
table is typically used for checking if a frame has already been loaded. When an executor
requests for data, if the corresponding frames are present in the bu↵er, the corresponding
data is passed to the executor. If a requested page is not bu↵ered, the Storage Manager
issues na I/O request for reading the page from disk into the bu↵er, before passing the
data to the executor.

For preserving database integrity and consistency, bu↵ered frames need to be periodi-
cally flushed to disk. Thus, each frame maintains associated metadata for management
purposes. This metadata includes, among other information, an access counter (also
known as a pin counter), used to register the number of executors accessing the frame,
and a dirty bit, for identifying modified frames. The pin counter allows the Storage Man-
ager to know which frames are being used and which are not, preventing used ones from
being evicted from the bu↵er, while the dirty bit signals frames that need to be written
to disk before being removed from the bu↵er. Periodically, or before replacing a frame in
the bu↵er (for example, due to the bu↵er being full), modified frames, i.e., frames whose
dirty bit are set, are flushed back to disk.

10

2.1. RELATIONAL DATABASES

In terms of ACID properties, the Storage Manager is in part responsible for the dura-
bility of the database. We say in part since durability does not depend solely of the Storage
Manager. While in normal operation, i.e., when the database is properly shutdown, the
Storage Manager guarantees that the stored data is consistent, when faults occur this may
not be true. For instance, if some bu↵ered frames are dirty and have not been written
to disk, database state may become corrupted in the occurrence of a fail stop fault, since
some modifications were not propagated to disk. Also, even if dirty bu↵ered frames have
been flushed to disk, the corresponding indices stored on disk may not reflect these mod-
ifications, since the memory resident versions were not flushed to disk. Like before, a fail
stop fault would corrupt the state of the database since, when recovering from the fault
(i.e., rebooting), the indices would not be coherent with the stored data. For this reason,
additional mechanisms are needed to guarantee durability.

2.1.3 Log Manager

The Log Manager is responsible for recording the modifications performed on a database.
Like presented before, durability is not solely guaranteed by the StorageManager. Instead,
databases rely on the Log Manager to achieve this property. To this end, the Log Manager
maintains a journal, also know as log, of every modification made to the database and
writes this log on disk whenever the database is modified. This guarantees the durability
of committed transactions, and provides a recovery mechanisms for allowing the database
to overcome possible software of hardware faults. Additionally, it also allows aborted
transactions to rollback their actions, thus contributing to the atomicity property.

For providing these features, a LogManager typically maintains a log file on persistent
storage (e.g. a file on disk), and a set of related data structures in memory. These data
structures maintain the records associated with every update operation performed on
the database. For this, databases typically use a Write-Ahead Log (WAL) protocol that
operates as follows:

1. Each modification to a database page generates a log record, and the log record
must be flushed to the log file before the database page is flushed to disk.

2. Log records must be flushed in order, i.e., a log record cannot be flushed until all
log records preceding it have been successfully flushed to disk.

3. Upon a transaction commit request, a commit log record must be flushed to the log
file before the commit request returns successfully.

The first rule guarantees that the operations of a transaction can be undone, in the
event of a transaction abort. Undoing operations is crucial for achieving atomicity, since
without the possibility for recovering actions, a transactions could not undo its modifi-
cations in case of an abort. The combination of the other two rules ensure durability,
i.e., that the actions of a committed transaction can be recovered after a system crash,

11

CHAPTER 2. FUNDAMENTAL CONCEPTS

even if these actions are not reflected in the database. This is achieved by redoing every
logged operation, including commit requests, and then undoing all operations without a
corresponding commit request.

To reduce recovery overhead, by minimizing the work needed to recover from data-
base failures, databases typically rely on Checkpoints. A checkpoint reflects all changes
made to the database up to a certain point. This allows the corresponding WAL entries
to be dropped, since their resulting actions are already reflected in the checkpoint.

2.1.4 Lock Manager

The Lock Manager is responsible for controlling transaction concurrency. Its main func-
tion is to guarantee the isolation property. Also, together with the Log Manager provides
the atomicity property.

To achieve this, the Lock Manager enforces concurrency control policies on the op-
erations executed by each transaction. Current concurrency control techniques fall into
three categories: pessimistic, optimistic or multi-version [Ber+87; JMHH07; KR79]. All
concurrency control techniques have the same purpose, to allow non conflicting opera-
tions to execute concurrently and prevent conflicting ones from doing so. Conflicts are
defined by the type of the operation, and depend on the isolation level being enforced.
Generically, read operations do not conflicts with other concurrent read operations, since
these do not modify the state of the database, while write operations conflict with every
other concurrent operations, since these modify the state of the database. Each concur-
rency control mechanism prevents the occurrence of conflicts di↵erently, as described
next:

• Pessimistic concurrency control enforce concurrency control before operations ex-
ecute. Under this policy, an operation is only allowed to execute if, at the time the
operation will execute, only non conflicting operations are executing. Thus, read op-
erations are only allowed to execute concurrently with other read operations, while
a write operation is only allowed to execute in exclusion, i.e., if no other operation
is executing concurrently.

• Optimistic concurrency control (OCC) enforces concurrency control after opera-
tions execute. Under this policy, an operation in allowed to execute independently
of concurrent operations, under the assumption that no conflicts will occur. Addi-
tionally, operations do not apply changes directly to the database, tentative changes
are kept private to each transaction. Before committing any changes, i.e., before
transactions apply the corresponding changes to the database, OCC validates both
read and write sets. This validation guarantees that read and written values have
not been modified concurrently. A transaction is only allowed to commit if no
concurrent modifications are detected, otherwise it must abort.

12

2.1. RELATIONAL DATABASES

• Multi-version concurrency control (MVCC) enforces isolation by maintaining mul-
tiple versions of each data item, where write operations create new versions of
the corresponding item. From a conceptual point of view, transactions execute
in a consistent database view (i.e., version), typically defined at the beginning of
the transaction. This view remains untouched by any concurrent write operations
during the transaction lifespan, i.e., concurrent write operations do not a↵ect the
snapshot. Thus, read operations can execute without blocking and never conflict
with other operations (by reading in the past). Write operations, made by a trans-
action, are kept private to each transaction, either in an optimistic or pessimistic
way. In an optimistic approach, write operations only modify the corresponding
transaction’s view, and are maintained by the transaction’s write set. This requires
an additional validation phase for detecting conflicts. This detection is made before
committing changes by validating the transaction’s write set. A transaction is only
allowed to commit if no concurrent modifications are detected, i.e., if the current
version of each item is the same as the transaction’s view, otherwise these abort. In
a pessimistic approach, write operations execute in place, creating a new version
of the corresponding item, and in exclusion. This prevents other concurrent write
operations from executing on the same items (e.g., by acquiring locks). This allows
transactions to commit without requiring a validation phase.

Concurrency Concurrent Concurrent Validation
Control Reads Writes

Pessimistic Yes No -
Optimistic Yes Yes Read and Write Sets

MVCC Optimistic Yes Yes Write Sets
Pessimistic Yes No -

Table 2.1: Comparison concurrency control mechanisms

Comparing the di↵erent concurrency control mechanisms (Table 2.1), OCC provides
increased concurrency, since it does not prevent read and write operations from executing
concurrently. However, OCC require an additional validation phase before transaction
commit, which increases overhead. Additionally, OCC can result in higher penalties when
conflicting transactions are detected, leading to an higher abort rate [Agr+87; JMHH07].

MVCC mitigates some of the overhead imposed by OCC, since transactions execute in
a consistent database view defined at start time. This allows read operations to execute
concurrently with every other operations, without conflicts. Thus, under MVCC read-
only transactions can execute to completion without aborting. However, MVCC treats
write operations di↵erently, either using an optimistic or pessimistic approach.

Under an optimistic approach, MVCC behaves similarly to OCC in respect with writes.
Write operations are allowed to execute concurrently. This requires an additional valida-
tion phase before committing changes, for checking conflicts.

13

CHAPTER 2. FUNDAMENTAL CONCEPTS

Under a pessimistic approach, MVCC reduces concurrency for write operations, when
compared to OCC, since the pessimistic approach prevents other transactions from ac-
cessing written items. However, this allows MVCC to commit update transaction without
requiring a validation phase.

Compared to these, pessimistic concurrency control imposes additional restrictions
to concurrency, since only read operations are allowed to execute concurrently with each
other, while write operations execute in exclusion. However, under a pessimistic ap-
proach, transactions that try to commit will do so successfully, since this approach pre-
vents any conflicting transactions from executing. Thus, pessimistic concurrency control
reduces the waste of computational resources. Additionally, when compared to OCC,
it does not require an additional validation phase prior to commit, thus reducing over-
head. Still, pessimistic concurrency control requires a deadlock prevention mechanism
to guarantee progress.

To mitigate the probability of conflicts, and increase concurrency, databases o↵er
di↵erent granularities in which to apply concurrency control. These include:

• Database level, where only non conflicting operations can execute concurrently on
the entire database;

• Table level, where only non conflicting operations can execute concurrently on a
same database table;

• Row level, where only non conflicting operations can execute concurrently on the
same table row;

Besides these logical levels, traditional disk-backed databases also allow concurrency
control mechanisms to operate at the storage granularity, by using the Storage Manager
internal structures. These, include page level and record level.

The level of concurrency and the conflicts that may occur among concurrent transac-
tions depends on the isolation level enforced. Next, we discuss database isolation levels.

2.1.4.1 Isolation Levels

A common way to increase transaction concurrency is to reduce isolation semantics. The
ANSI SQL [ISDLS92] standard defines four isolation levels, which are: Read Uncommitted,
Read Committed, Repeatable Read and Serializable. From these, the serializable isolation
level is the highest isolation level possible, while the read uncommitted is the least intru-
sive, making no assumption on read data.

The defined isolation levels are the following:

• Read Uncommitted - under Read Uncommitted, a transaction can read any data,
independently of being committed or not by any concurrent transaction.

14

2.1. RELATIONAL DATABASES

• Read Committed - under Read Committed, a transaction can only read committed
data, i.e., data that has been committed by some transaction. Note that repeated
reads of the same item by the same transaction may result in di↵erent values, since
concurrent transactions may have successfully committed changes between these
reads.

• Repeatable Read - under Repeatable Read, a transaction can only read committed
data, and repeated reads of the same item, by a transaction, always return the same
(committed) value. Repeated reads of the same predicate may return additional
results.

• Serializable - under Serializable, a transaction can only read committed data, and
repeated read of the same item and the same predicate always return the same
(committed) values.

From the previous description it is possible to see that relaxing a transaction’s isolation
level may allow otherwise conflicting operations to execute. For instance, relaxing from
serializable to the read committed isolation level, allows writing an item that has been
read by another concurrent transaction, thus increasing concurrency [Ber+95].

However, this relaxation leads to the occurrence of some concurrency anomalies,
called phenomena. These anomalies include: Dirty Read; Non-Repeatable Read; and
Phantom Read. The di↵erent isolation levels are defined based on these three concurrency
anomalies, as presented in Table 2.2.

Isolation Dirty Non-Repeatable Phantom
level Read Read Read

Read Uncommitted Possible Possible Possible
Read Committed Not Possible Possible Possible
Repeatable Read Not Possible Not Possible Possible

Serializable Not Possible Not Possible Not Possible

Table 2.2: Isolation Levels and concurrency anomalies (i.e., phenomena)

The Dirty Read phenomena occurs when transactions are allowed to read non-com-
mitted values modified by concurrent transactions. The Non-Repeatable Read phenom-
ena occurs when transactions are allowed to modify and commit an item concurrently
read by other transactions, thus repeated reads of the same item may give a di↵erent
results, where initially read values are non-repeatable. Finally, the Phantom Read phe-
nomena is similar to the Non-Repeatable Read phenomena but applied to the set of rows
returned by a given predicate, where consecutive read operations of the same predicate
may return di↵erent rows.

The presented anomalies are independent of the concurrency control strategy used
being optimistic or pessimistic. MVCC supports additional isolations levels, namely
Snapshot Isolation (SI) [Ber+95]. In SI, a transaction conceptually executes in snapshot of

15

CHAPTER 2. FUNDAMENTAL CONCEPTS

the database obtained when the transactions starts. At commit time, a transaction must
abort if there is a write-write conflict with some other transaction that has committed
after the snapshot has been taken. SI is stronger than Repeatable Read, since it may
prevent the phantom read phenomena, but is weaker than the Serializable isolation level,
since it sometimes allows that phenomena. Also, SI allows an additional phenomena
called write skew, which is prevented under the Serializable isolation level [Ber+95].

Summing up, the Lock Manager provides isolation by using concurrency control
mechanisms, guaranteeing non conflicting operations execute concurrently and prevent-
ing conflicting operations for doing so. These conflicts result in the occurrence of well
defined anomalies (phenomena), and di↵erent isolation levels provide a tradeo↵ between
performance, due to an increase in concurrency, and the occurrence of these anoma-
lies. For example, the relaxation from Serializability to Read Committed should increase
throughput of update transactions since these transactions can update values concur-
rently read by other transactions. However, the relaxation of isolation levels forces appli-
cation developers to deal with possible concurrency anomalies.

Finally, it is important to note that, while the relaxation of isolation levels modifies
the behavior of the concurrency control protocol, increasing or decreasing concurrency of
database operations, it does not in any way guarantee the integrity of the data structures
used by the database to store data. Since the database concurrency control may allow
operations to access or modify database data concurrently, the internal data structures
used for maintaining this data must be able to handle concurrent accesses. To this end,
these tend to employ additional concurrency control mechanisms, for guaranteeing their
integrity when accessed concurrently, as described next.

2.1.5 Preserving Consistency

Besides transaction concurrency, databases must deal with threads concurrently accessing
the database’s internal data structures. Latches are commonly used for providing mutual
exclusion on shared data structures. Contrarily to locks, latches are similar to operating
system monitors or semaphores [Hoa74].

Latches di↵er from locks used for concurrency control at the transactional level in a
number of ways:

• Locks are kept in the lock table and located via hash functions; latches reside in
memory near the resources they protect, and are accessed directly.

• Lock acquisition is driven by data access, where the order and lifespan of lock
acquisitions is related to applications and the query optimizer. Latches are acquired
by specialized code inside the DBMS, for preventing state corruption of shared
database data structures.

16

2.2. CLASSIC ISOLATION IMPLEMENTATION

• Locks acquisition may produce deadlocks, which must be detected and resolved by
the Transactional Manager. Latch deadlock must be avoided, since its occurrence
represents a bug in the DBMS code.

• Latches are implemented using an atomic hardware instruction or, via mutual ex-
clusion in the OS kernel.

• Latch calls take at most a few dozen CPU cycles whereas lock requests take hun-
dreds of CPU cycles.

• The Lock Manager tracks all the locks held by living transactions, automatically
releasing locks when transactions commit or abort. Latches are not tracked and
cannot be automatically released if the task fails. The internal DBMS routines that
manipulate latches must track and manage them when an exception occurs.

Latches are used to provide mutual exclusion for concurrently accessed data struc-
tures. For instance, a page table, used for managing the bu↵er of traditional disk-backed
databases, maintains a latch associated with each frame, to guarantee that only one data-
base thread is replacing a given frame at any time. Latches are also used in other data
structures like the lock table, used by Lock Manager for providing transaction concur-
rency control. Indices also use latches for preventing the corruption of these data struc-
tures when concurrently accessed or modified.

2.2 Classic Isolation Implementation

Classic Lock Managers enforce isolation by using pessimistic concurrency control, obtain-
ing locks before accessing items. Typically, read operations obtain shared locks on the
accessed items, while write operations obtain exclusive locks.

By convention, database locks are names, used within the system, that represent
either physical (e.g., disk pages) or logical items (e.g., tuples, tables). Any name can have
an associated lock, and the locking mechanism provides a place to register and check
for names. Traditional lock manager typically associate locks with transactions, using a
transaction’s unique identifier, and have di↵erent “modes” [Gra+75].

For this, the Lock Manager maintains a global lock table that holds lock names and
their respective information. This information includes the mode flag, used to indicate
the lockmode, and a wait queue of lock requests consisting of pairs (transactionID, mode).
The lock table typically uses a dynamic hash table, where lock names are the keys.

The Lock Manager also maintains a transaction table that associates transactions with
their respective locks. Each transaction maintains a list of acquired locks as well as an
associated thread state. The thread state allows the DBMS to reschedule threads when
transactions have to wait before acquiring locks, while the former is used to facilitate the
release of all locks associated with a particular transaction (e.g., upon transaction commit
or abort).

17

CHAPTER 2. FUNDAMENTAL CONCEPTS

For achieving the di↵erent isolation levels, lock based concurrency control acquires
locks in di↵erent ways. Table 2.3 presents the di↵erent lock acquisition patterns, includ-
ing the duration of acquired locks. Long duration means that locks are acquired before
accessing an item and are preserved until the transaction commits, while short duration
means locks are acquired before accessing an item and released immediately after. Also,
item means locks are acquired on a single item, while predicate means lock are acquired
on a set of items that respect a given predicate, or condition.

Isolation Level
Read Lock Write Lock
Duration Duration

Item Predicate Item Predicate
Read Uncommitted - - Long Long
Read Committed Short Short Long Long
Repeatable Read Long Short Long Long
Serializable Long Long Long Long

Table 2.3: Locks and Isolation Levels (adapted from [Ber+95]).

It is important to note that the di↵erent isolation levels di↵er solely on the duration
of acquired locks for read operations, with all write operations acquiring long duration
write locks on both item and predicate.

This way, Read Uncommitted is achieved by not acquiring any locks for read oper-
ations, which eliminates any conflicts with concurrent write operations, thus allowing
read operations to read any value independently of being committed or not. Read Com-
mitted acquires short duration read locks on both item and predicate, which conflicts
with any concurrent write on the same items. Thus read operations are only allowed
to read unlocked items, i.e., committed values. By immediately releasing read locks, it
improves concurrency for write operations. Repeatable Read and Serializable locking
patterns are identical for single item locking, with both acquiring long duration read
locks, which guarantees only committed values are read and prevents any concurrent
write operation from executing on the same items during the duration of the transaction.
However, this di↵ers for predicate locking. Repeatable Read acquires short duration read
locks on predicate, which are immediately released after executing, thus not preventing
rows from being inserted or deleted by concurrent transactions during the duration of
a transaction. This results in the “phantom read” phenomena, where consecutive reads
may return di↵erent results. On the other hand, serializable acquires long duration read
locks on both item and predicate. This guarantees that write operations do not compro-
mise the results returned by consecutive predicate reads, thus the serializable isolation
level prevents the “phantom read” phenomena [Ber+95].

Conflicting concurrent lock requests may result in the occurrence of deadlocks, when-
ever concurrent transactions require locks held by each other. A deadlock detection
algorithm needs to examine the lock table to detect waits-for cycles (a cycle occurs when

18

2.3. FROM DISK TO MAIN MEMORY

two or more executors wait for one another for needed locks). When a deadlock is de-
tected, a transaction is chosen and aborted, thus breaking the cycle. The decision of
which transaction to abort is based on heuristics [GR92; Ros+78].

As a particular case of a locking scheme, two-phase locking (2PL) divides locking into
2 separate phases: lock acquiring and lock releasing, with the restriction that no new lock
is acquired after the release of a lock. It has been shown that using 2PL allows a database
system to provide serializable isolation level [Ber+95; Esw+76].

Lock Managers provide two basic methods: lock (lockname, transactionID,

mode), for a transaction transactionID locking item lockname in mode mode, and unlock
(transactionID), for unlocking all locks held by transactionID. Due to di↵erent iso-
lation levels, other than serializable (as discussed in Section 2.1.4.1), additional meth-
ods are provided: unlock (lockname, transactionID), for transaction transac-
tionID to unlock a given item lockname. There is also a lock_upgrade (lockname,

transactionID, newMode), for transaction transactionID to upgrade lock lockname
to a higher lock mode newMode (e.g., from shared to exclusive), without having to release
and acquire a new lock. This is important to avoid breaking 2PL semantics.

2.3 From disk to main memory

Most current general purpose IMDBs have evolved from this traditional design, replac-
ing the disk-backed storage systems with in-memory ones [Sto+07]. In this section we
discuss in detail the design di↵erences between disk-backed and in-memory databases,
and present the implementation of two general purpose IMDBs, HSQLDB [Gro12] and
H2 [H212].

2.3.1 Storage Management

Contrarily to in-memory databases, disk-backed databases store data on disk. To reduce
costly I/O, disk-backed databases maintain copies of most recently accessed pages in
memory bu↵ers. Thus, main memory is used as a cache mechanism for the accessed data.

Compared to disk-backed databases, in-memory databases store data directly on mem-
ory, without need for any bu↵ers. In fact, data is maintained directly on indices, with each
table having, at least, one associated index structures. Indices are, typically, tree based
implementation (e.g., AVL-Tree, B+-Tree, etc.), and maintain the table rows sorted by the
respective key attributes. Since no bu↵ering is used, there is no need for maintaining a
complex bu↵er pool management with executors accessing database data stored directly
on the indices.

For SQL SELECT statements, the storage manager locates the corresponding data
and returns it to the corresponding executor for returning it to the clients. Updates
are typically implemented as a remove operation followed by an insert operations, to

19

CHAPTER 2. FUNDAMENTAL CONCEPTS

maintain index integrity due to possible index restructuring. Insert and delete operations
modify the structure of the index by indexing new tuple(s) or removing existing ones.

2.3.2 Log Management

Database durability is achieved by logging operations. The database guarantees that
committed transactions are durable in the sense that the respective database modification
will endure (until overwritten by any later transaction) even in the event of database
faults. Hence, databases only commit transactions after logging the respective operations
(including the commit operation itself) durably.

In-memory database achieve durability in a similar fashion, by recording update op-
erations, and keeping this log in persistent storage. However, since in-memory databases
keep both data and index structures in memory, logging operates di↵erently from disk-
backed databases. While disk-backed databases need to log every successfully executed
update operation, since disk pages may reflect changes made by non committed opera-
tions, which need to be rolled back when recovering from faults, their in-memory siblings
do not. Since data is kept only in main memory, when a system crash occurs all data is
lost. Thus, there is no need to undo previously uncommitted changes since all data is lost
when restarting after a crash. Therefore, in-memory databases achieve durability by only
logging update operations that successfully commit. Recovery is achieved by redoing all
previously committed changes. Like in traditional disk-backed databases, checkpoints
may be used to speed-up the recovery process.

For guaranteeing atomicity, both studied databases maintain per session undo logs,
for undoing modifications when rolling back operations.

2.3.2.1 Trading durability for performance

Maintaining a REDO log on persistent storage (e.g., disk) can compromise IMDBs perfor-
mance, since, before committing every update transaction, the database must flush the
log to persistent storage to ensure durability.

To deal with this possible performance bottleneck, most in-memory databases trade
durability for performance. Instead of flushing the REDO log to disk in every commit
operation, this process is done periodically and asynchronously, by batching a series of
records before flushing them to disk. This means that, in the event of a failure, some
transactions may be lost, since their corresponding log entries have yet to be flushed.
This is a tradeo↵ that allows in-memory databases to o↵er increases performance, by not
incurring in disk I/O operations, while still o↵ering some level of durability. Similar
approaches are used in disk-based databases.

An alternative approach to provide durability is to rely on replication techniques,
where it is assumed that data replicated in f +1 nodes is durable [Cam+07].

20

2.3. FROM DISK TO MAIN MEMORY

2.3.3 Lock Management

In-memory database o↵er identical concurrency control mechanisms and isolation levels
when compared with disk-backed databases. However disk-backed databases can use
locking granularities not available to in-memory databases.

For instance, disk-backed databases can o↵er page level locking, besides table level or
row level locking, due to the bu↵ering of database pages from disk. In-memory databases
commonly o↵er table or row level locking, using either pessimistic, optimistic or multi-
version concurrency control.

Compared to table level locking, both page level locking and row level locking o↵er
increased concurrency, since conflicts are prevented at a finner grain. However, guaran-
teeing serializable semantics under these locking granularities requires a complex mix of
row level locking and predicate locking, for addressing SQL statements accessing data
based on conditions [RS77], and for avoiding phenomena such as Phantom Read. Ad-
ditionally, the problem of testing predicate locks has been shown to be NP-complete
[HR79] (and complex to implement). Table level locking prevents the occurrence of these
phenomena, since all modifications are executed in exclusion.

2.3.4 H2 and HSQLDB behavior

We now present the implementation details the two general purpose IMDBs, HSQLDB
[Gro12] and H2 [H212], used in our work. Both engines interact with client applications
through a JDBC interface. Whenever a client establishes a new connection to the database
a new Session is created. Sessions are used by the database for guaranteeing atomicity
and isolation to the statements performed by di↵erent clients, in the context of di↵erent
transactions. A simplified algorithm of statement execution is presented in Listing 2.1.
We omit error and conflict verification for simplicity of presentation.

Listing 2.1: Lock Based Statement Execution.
1 var global:
2 Transaction_Manager tx_mngr

3 Storage_Manager storage_mngr

4 Log_Manager log_mngr

5

6 var per client:
7 Session session

8 Result result

9 Command command

10

11 function executeCommon (statement)

12 if(NOT valid_connection (session))

13 throw DBError

14 if(NOT validate_syntax (statement))

15 throw SyntaxError

16 valid_statement = parse_and_compile (statement)

17 result = create_result_set (valid_statement)

18 command = optimize (valid_statement)

19 tx_manager.aquire_table_locks (session, command)

21

CHAPTER 2. FUNDAMENTAL CONCEPTS

20

21 function executeQuery (statement)

22 executeCommon (statement)

23 storage_mngr.read_data (command, result)

24 return result

25

26 function executeUpdate (statement)

27 executeCommon (statement)

28 log_previous_data (session, command)

29 storage_mngr.delete_row (session, command)

30 storage_mngr.insert_row (session, command)

31 storage_mngr.verify_integrity (session)

32 fire_table_triggers ()

33 return result;

34

35 function commitCommon ()

36 tx_manager.unlock_tables (session)

37 tx_manager.awake_awaiting_txs ()

38

39 function commitQuery ()

40 commitCommon ()

41

42 function commitUpdate ()

43 log_mngr.log_actions (session)

44 log_mngr.log_commit (session)

45 commitCommon ()

Whenever a statement is executed by a client, both databases start by validating the
connection state, and checking that the statement is syntactically correct. If no error
occurs, then a new result object for that statement is created. This object is used to
maintain the statement’s result set and its respective metadata (e.g. the information on
the tables and columns being read, the columns data types and the number of lines of
the result set). After this, an optimization stage selects an execution plan suitable for the
statement’s execution, as presented in lines 11-18.

Sessions proceed by interacting with the transaction manager for executing the state-
ment in isolation (line 19). Both databases support di↵erent isolation levels, based on
two kinds of concurrency control mechanisms: Multi-version concurrency control and
lock based concurrency control (pessimistic) [Ber+87; KR79]. In this discussion we focus
on lock based concurrency control.

Both databases implement lock-based concurrency control based on 2PL at the table
level, using shared and exclusive table level locks, for read and write operations respec-
tively. Sessions are only allowed to execute each statement after acquiring the necessary
table locks. If a session fails to acquire a table lock, due to a conflicting concurrent session,
then it will wait until the necessary locks are released.

While semantically identical, the locking implementation di↵ers on both engines. In
H2, each session maintains a set of table reference for which it has acquired locks (shared
or exclusive) during its execution. Also, each table object maintains the set of sessions
that have acquired shared locks on it, and a single reference to the session holding it
exclusively. On the other hand, HSQLDB follows a more traditional design, where a

22

2.4. SUMMING UP

single entity, the lock manager, maintains a multi-value map for keeping shared table
locks and their associated sessions, and a single-value map for exclusive table locks, and
their associated session.

After acquiring table locks, sessions proceed by interacting with the storage manager.
For query statements, the corresponding data is copied from the database to the session’s
result set and it is returned to the client (lines 23 and 24). For update statements, the cor-
responding data items are first read and logged, for recovery purposes (line 28). After this,
the storage manager updates the necessary table indices (lines 29-32) with the modified
values. A similar situation occurs for insert and delete statements. For insert statements,
a compensatory action (i.e., a delete of the inserted rows) is defined for undoing the insert,
while for delete statements, the deleted items are logged for recovery purposes, in case
the transaction aborts or the client issues a rollback. In both databases, sessions maintain
logged data until a commit or rollback operation ends. Also, both engines implement in-
dices using AVL-trees, and updates are executed as an index delete followed by an insert
operation.

All commit operations release acquired locks and notify existing waiting concurrent
sessions. For update transactions, sessions first interact with the log manager, logging all
performed actions (lines 43 and 44). It logs data updated during the transaction execution,
old and new values, followed by the commit operation itself. Rollback operations undo
the necessary changes before releasing locks.

2.4 Summing up

General purpose in-memory databases have evolved from their traditional disk-backed
siblings by trading disk for main memory storage. This allows IMDBs to abandon cache
mechanisms, used for reducing latency when accessing data and increase performance,
as well as complex bu↵er management algorithms. Additionally, IMDBs trade durability
for performance by eliminating disk I/O during transaction commit phase. Instead these
batch several update records before asynchronously writing to disk, for minimizing I/O
and e�ciently utilizing bandwidth. All these design diferences have the same purpose,
to reduce or even eliminate I/O overhead for increasing performance. Thus, one expects
these systems to scale on current multicore systems, since available hardware contexts
can access data without having to wait for expensive I/O operations. Next we present a
scalability study of the studied engines.

23

C
h
a
p
t
e
r

3
Research Problem

In this chapter we present a study on the scalability of two general purpose in-memory
databases, HSQLDB [Gro12] and H2[H212]. In this study, we analyze how di↵erent as-
pects influence the scalability of the databases. This study both demonstrates the research
problem being addressed in this dissertation and serves as guidance to the directions ex-
plored, which are detailed in Section 3.3. This chapter ends with a brief overview of
database research addressing the use of multicore machines, which is complemented in
the following sections with related work specific to the techniques being explored.

3.1 H2 & HSQLDB scalability study

To verify the scalability of IMDBs, we studied how two general purpose IMDBs, HSQLDB
[Gro12] and H2 [H212], perform on a multicore system. To this end, we measured the
throughput of successfully committed transactions, when running a well established
benchmark, TPC-C [Cou12]. For these experiments we analyzed the impact of di↵erent
parameters in the performance of these systems.

First, we have varied the mix of read-only and update transactions in the workload.
The goal is to study how the database behaves under di↵erent workloads. Second, we
varied the isolation level under which transactions execute. Isolation levels have a direct
impact on the contention and interference among transactions. Thus, weaker isolation
levels are expected to o↵er increased concurrency, compared to higher isolation levels, by
reducing interference between concurrent transactions. For example, the relaxation from
serializability to snapshot isolation should increase throughput of read-only transactions
since these can execute on a di↵erent database snapshot from update transactions, thus
are not aborted or delayed by concurrent updates.

This experiment ran on a 16 core Sun Fire x4600, with 32 GBytes of RAM. Workloads

25

CHAPTER 3. RESEARCH PROBLEM

varied from update intensive ones: 8-92 and 50-50 with 92% and 50% update transac-
tion, respectively; to read intensive ones: 80-20 and 100-0 with 80% read transactions
and 100% read transactions, respectively. The TPC-C specification defines five di↵erent
transactions: new order; payment; stock level; order status, and delivery. From these, two
are read only: stock level and order status. Also, the 8-92 workload is composed of 45%
new order transactions, 43% payment transactions, 4% delivery, and 4% for both stock
level and order status. The remaining workloads used for our experiments maintained a
similar ratio between the di↵erent transaction. For instance, in the 50-50 workload both
stock level and order status account each for 25% of all transactions, while new order and
payment account for 25% and 23% respectively, with the remaining 2% for delivery.

The studied isolation levels were: i) serializable, relying on two-phase locking; ii) read-
committed, relying on two-phase locking with early release of read locks; and iii) snapshot
isolation (SI), relying on a multi-version concurrency control algorithm. To test the scala-
bility of the systems, we have increased the number of clients from 1 to 18. The bench-
mark ran for 2 minutes, using an approximately 2 gigabyte database (4 warehouses). The
presented results are the average of 5 runs, performed on a fresh database, disregarding
the best and the worst results.

During the remainder of this document, several other experiments will be discussed,
including the evaluation of our proposed solutions. All have been performed on this same
configuration, unless stated otherwise.

3.1.1 HSQLDB scalability results

We start by presenting the results for HSQLDB. HSQLDB implements serializable and
read committed isolation levels using table level 2PL, acquiring shared table locks for
read operations and exclusive table locks for update operations (including SQL UPDATE,
INSERT and DELETE statements). Under the serializable isolation level, shared lock are
kept until the end of the transaction, i.e., until the transaction commits or rollbacks, while
for the read committed isolation level, shared locks are released immediately after the
corresponding read operation.

For snapshot isolation, HSQLDB allows read operations to execute without locking,
executing on a database snapshot defined at the start of each transaction. To this end,
table rows have an associated timestamp, that defines when these were last modified.
Timestamps are assigned during the commit phase of the corresponding update trans-
actions, by incrementing and reading the value of a monotonically increasing counter.
Also, before their first operation, transactions read the current value of this counter, thus
defining which items are allowed to read. Additionally, HSQLDB uses a pessimistic ap-
proach where update operations acquire exclusive table locks before executing, writing
tentative values directly in place. These locks are kept until the end of the corresponding
transaction, thus preventing other write operations from executing on the same table.
This allows transactions to commit without an additional validation phase.

26

3.1. H2 & HSQLDB SCALABILITY STUDY

Figure 3.1 shows the TPC-C results for the di↵erent isolation levels, serializable (Fig-
ure 3.1(a)), read committed (Figure 3.1(b)) and snapshot isolation (Figure 3.1(c)). Each
graph shows the measured throughput for the di↵erent workloads, varying the number
of clients.

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Workload

8-92
50-50

80-20
100-0

(a) Serializable

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 4 6 8 10 12 14 16 18
Th

ro
ug

hp
ut

 (T
ra

ns
 x

 1
03 /m

in
)

Clients
Workload

8-92
50-50

80-20
100-0

(b) Read Committed

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Workload

8-92
50-50

80-20
100-0

(c) SI

Figure 3.1: HSQLDB performance under di↵erent TPC-C workloads and isolation levels.

From these results, it is possible to observe that database performance varies with
the workload nature, achieving higher performance as the ratio of read-only transactions
increases in the workload. This behavior is observable for all isolation levels. This increase
in throughput with the ratio of read-only transactions in the workloads is expected. It
results from lock based isolation levels acquiring shared locks before executing read
operations, which allows them to run concurrently with other read-only transactions
on the same tables. Thus, increasing the read-only transaction ratio in the workload
reduces the probability of interference between concurrent transactions and increases
throughput.

SI achieved a similar throughput to the other isolation levels. We were expecting
this isolation level to achieve higher performance than the others, since under SI read
operations do not acquire locks, which allows them to execute concurrently with updates.
However this does not happen, with the performance of SI being similar to the other iso-
lation levels. For update intensive workloads, the pessimistic approach used by HSQDB,
seems to explain why these workloads do not scale. However, the same reason is not
valid when the increasing the ratio of read-only transactions in the workload. A possible
explanation for this can be that, while read operations do not acquire locks before exe-
cuting, their results need to be validated before being retuned to the applications. Since
this is done in mutual exclusion, this validation increases contention, thus compromising
performance.

Next we analyze in greater depth the performance di↵erences achieved by the di↵erent
isolation levels, for each workload.

3.1.1.1 8-92 and 50-50 workloads

Figures 3.2(a) and 3.2(b) present the TPC-C results for the 8-92 and 50-50 workloads
respectively.

When analyzing the results, it is possible to observe that, although the di↵erent iso-
lation levels o↵er di↵erent performances, these show an identical behavior. Throughput

27

CHAPTER 3. RESEARCH PROBLEM

 10
 11
 12
 13
 14
 15
 16

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(a) 8-92 workload

 10
 12
 14
 16
 18
 20
 22

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(b) 50-50 workload

Figure 3.2: HSQLDB TPC-C performance for di↵erent isolation levels (8-92 and 50-50
workloads).

tends to increase slightly up to 4 clients, maintains its value as the number of clients in-
creases up to approximately 10, and then decreases as the number of clients approaches
the number of available hardware threads.

This is especially true for the 50-50 workload (Figure 3.2(b)), where the di↵erences
between the best performing isolation level (read committed) and the worst performing
isolation level (SI) does not exceed 15%. While, for the 8-92 workload (Figure 3.2(a)),
the di↵erence between these read committed and SI is identical, serializable isolation
level decreases performance more quickly as the level of concurrency increases. This is
expected, since, under this workload, the conflicting nature of TPC-C has a considerable
impact on concurrency. This leads transactions to block or even abort due to conflicting
updates, which impact the performance. As expected, increasing the ratio of read-only
transaction balances this due to the reduction of conflicting transactions.

As discussed before, an interesting and unexpected result comes from the throughput
values obtained for the SI level. In both workloads, SI performed worst than the read
committed isolation level, while in the 50-50 workload it was the worst performing.

We believe this decrease in performance results from the pessimistic approach used
by HSQLDB, and from the increase in overhead due to result validation before returning
them to the application. This is not necessary for the other isolation levels since these
acquire shared locks before reading an item. This gives them the guarantee that the read
values remain the same during the execution of the transaction, since any concurrent
updates will block trying to acquire an exclusive lock on the same item.

For these workloads, the read committed isolation level o↵ers the best performance of
the three isolation levels. This is a direct result of the immediate release of shared locks
after read operations execute, which reduces the waiting time for concurrent updates to
acquire exclusive locks on the same tables.

3.1.1.2 80-20 and 100-0 workloads

The results obtained when increasing the ratio of read-only transactions show a similar
behavior. These results are presented in Figures 3.3(a) and 3.3(b), for the 80-20 and 100-0

28

3.1. H2 & HSQLDB SCALABILITY STUDY

workloads respectively.

 10

 15

 20

 25

 30

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(a) 80-20 workload

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(b) 100-0 workload

Figure 3.3: HSQLDB TPC-C performance for di↵erent isolation levels (80-20 and 100-0
workloads).

When analyzing these results, we can see that although the di↵erent isolation levels
o↵er di↵erent performances, their performance follows an identical behavior. Through-
put increases up to 4 or 6 clients, and then gradually decreases as the number of clients
reaches the maximum number of hardware threads. Again, the di↵erences between the
best and worst performing do not exceed 18% for both workloads.

Again, like in the previous results, SI is unable to o↵er the best performance. In fact
it o↵ers the worst performance of the three isolation levels in the 80-20 workloads, with
the read committed out performing the others or the same workload. For the read-only
workload, the serializable isolation level o↵ers the best performance of the three.

Although, the validation overhead of SI can explain its performance penalty for the
80-20 workload, for the read-only workload one would expect that the absence of locking
would make up for this overhead. Yet, it performs worst that the lock based serializable
isolation level.

An interesting result comes from the fact that the serializable isolation level o↵ers
the best performance for the read-only workload. While, for all other workloads, read-
committed isolation level provided higher concurrency, this does not occur for this work-
load. This results from the fact that releasing shared locks after read operations execute
does not increase concurrency for read-only transactions. In fact, this contributes to an
increase in overhead, since every operation forces lock management algorithms to exe-
cute in two di↵erent moments, when operations begin (for acquiring locks) and when
operations end (for releasing locks). Since lock management algorithms execute in mu-
tual exclusion, it prevents concurrent transactions from acquiring or releasing any lock,
increasing contention and reducing concurrency. By releasing all acquired locks during
its commit or rollback phase, the serializable isolation level reduces contention due to
lock management, which results in better performance.

Above all, these graphs show that, although di↵erent workloads o↵er di↵erent perfor-
mances, HSQL does not scale with the number of clients, independently of isolation level
and workload.

29

CHAPTER 3. RESEARCH PROBLEM

3.1.2 H2 scalability results

We now present the results for H2. Like HSQLDB, H2 also implements serializable and
read committed isolation levels using table level 2PL, acquiring shared table lock for
read operations and exclusive table locks for update operations (including SQL UPDATE,
INSERT and DELETE statements). Under the serializable isolation level, shared lock are
kept until the end of the transaction, i.e., until the transaction commits or rollback, while
for the read committed isolation level, shared locks are released immediately after the
corresponding read operation.

For snapshot isolation, H2 usesMVCC allowing concurrent read andwrite operations to
execute on the same table. Under SI, each table index is composed by two distinct indices,
a base index and a delta index. The base index only contains committed modifications,
while uncommitted modifications are reflected in the delta index. Update operations
only modify the delta index, while read operations use both indices before returning
values for reading values, since queries may return previously modified values made
by the same transaction. H2 detects conflicts during transaction execution at the row
level. Transactions abort whenever update or a read operations encounter uncommitted
changes made by concurrent transactions. Otherwise, operations execute successfully.
Although this is a pessimistic approach, it allows H2 to commit transaction without
further validation overhead. Thus, transactions that execute without conflicts commit
successfully.

Figure 3.4 shows the TPC-C results for the di↵erent isolation levels, serializable (Fig-
ure 3.4(a)), read committed (Figure 3.4(b)) and snapshot isolation (Figure 3.1(c)).

 0
 5

 10
 15
 20
 25
 30

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Workload

8-92
50-50

80-20
100-0

(a) Serializable

 0
 5

 10
 15
 20
 25
 30

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Workload

8-92
50-50

80-20
100-0

(b) Read Committed

 0
 5

 10
 15
 20
 25
 30

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Workload

8-92
50-50

80-20
100-0

(c) SI

Figure 3.4: H2 performance under di↵erent TPC-C workloads and isolation levels.

Like in the previous results, H2 performance varies with the workload nature, achiev-
ing higher performance as the read ratio increases in the workload. This is specially true
for the serializable and read committed isolation levels (Figures 3.4(a) and 3.4(b)), where
the 100-0 workload achieves the best performance. Again, this behavior is expected, since,
for lock based isolation levels, read operations are allowed to execute concurrently with
each other by acquiring shared locks on the accessed tables.

Again, the throughput achieved by SI in H2 does not correspond to what was expected.
The throughput is fairly constant with the increasing number of clients, independently
of the workloads. This is unexpected since read and write operations are allowed to

30

3.1. H2 & HSQLDB SCALABILITY STUDY

execute concurrently. However, we believe that the pessimistic approach used by H2 is
responsible for this behavior.

Next we analyze in greater depth the performance di↵erences o↵ered by the di↵erent
isolation levels, for each workload.

3.1.2.1 8-92 and 50-50 workloads

Figures 3.5(a) and 3.5(b) present the TPC-C throughput under the 8-92 and 50-50 work-
loads.

 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(a) H2 Scalability 8-92 Workload

 6
 8

 10
 12
 14
 16
 18

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(b) H2 Scalability 50-50 Workload

Figure 3.5: H2 TPC-C performance under di↵erent Isolation levels.

When analyzing the results for update intensive workloads, it is possible to observe
that the serializable isolation levels o↵ers the worst performance of the three for the 8-92
workload (Figure 3.5(a)). While the read committed o↵ers the best performance up to 8
clients, SI outperforms both when increasing load beyond 10 clients. A similar behavior
is observed for the 50-50 workload (Figure 3.5(b)), although, for this workloads, the read
committed isolation level is the worst performing of the three.

These results are somewhat expected for the lock based isolation level, since the con-
flicting nature of TPC-C greatly compromises concurrency. However, we were expecting
a better performance from SI. Although SI is able to o↵er better performance than the
other isolation levels, the throughput achieved by SI remains constant with the increase in
the number of clients, independently of the workloads. This is unexpected since read and
write operations are allowed to execute concurrently. However, we believe the pessimistic
approach used by H2, combined with the conflicting nature of TPC-C, prevents SI to
achieve better performance under these workloads. Also, since result validation requires
coordination between transactions it increases contentions, which reduces concurrency
and performance.

Another interesting result comes from the fact that serializable isolation level is able
to outperform the read committed when increasing the ratio of read only transactions in
the workload. Although this behavior is di↵erent from the one observed for HSQLDB,
it can be explained by the di↵erent implementations these databases use for managing
transactions and locks.

31

CHAPTER 3. RESEARCH PROBLEM

3.1.2.2 80-20 and 100-0 workloads

Figures 3.6(a) and 3.6(b) present the TPC-C throughput for the di↵erent isolation levels,
under the 80-20 and 100-0 workloads.

 4
 6
 8

 10
 12
 14
 16
 18

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(a) H2 Scalability 80-20 Workload

 10
 12
 14
 16
 18
 20
 22
 24

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

Serializable
Read Committed

SI

(b) HSQLDB Scalability 100-0 Workload

Figure 3.6: H2 TPC-C performance under di↵erent Isolation levels.

When analyzing the results for the 80-20 and 100-0 workloads, we can see that, as
before, the serializable isolation level achieves better performance as the ratio of read-
only transactions increases. In fact, for these workloads, serializable achieves the best
performance of the three, with read committed achieving the worst for the 80-20 work-
load (Figure 3.6(a)) while SI is the worst performing for the read-only workloads (Figure
3.6(b)).

Again, this is somewhat expected since increasing the ratio of read-only transactions
reduces the probability of conflicts, thus allowing higher levels of concurrency. However,
the behavior of read committed isolation level is di�cult to explain, since it evolves from
the worst performing of the three, for the 80-20 workload, to achieving a performance
similar to the serializable isolation level, for the 100-0 workload. This is unexpected since
the immediate release of shared locks should reduce the wait time for update transactions
to acquire exclusive locks on the same tables, which should increase throughput. Also, the
contention imposed by the immediate release of shared locks, compared to serializable,
should compromise its performance for read-only workloads (a behavior presented by
HSQLDB). Again, this could be explained by the di↵erence in the implementations of
transaction and lock management between the two databases.

Again, like in the previous results, SI o↵ers a fairly constant throughput as the level of
concurrency increases. This seems to confirm that the increased overhead for validation
purposes considerably compromises performance. This compromises any performance
improvement that SI should o↵er, since read operations are allowed to execute without
using locks.

Also, like HSQLDB, although H2 o↵ers performance di↵erences between the di↵erent
isolation levels, no single isolation level is able to o↵er scalable performance for any
workload.

32

3.1. H2 & HSQLDB SCALABILITY STUDY

3.1.3 Understanding Scalability Results

To better understand if the lack of scalability of the two databases are due to the lack of
computational resources, we conducted an experiment that ran an increasing number of
pairs client/database concurrently on the same machine, i.e., one database per client. We
used two di↵erent workloads for this experiment, 8-92 and 100-0, and the database used
the serializable isolation level (although not relevant in this experiment).

Figures 3.7(a) and 3.7(b), show the aggregate throughput for each of these experi-
ments, represented as HSQLDB (aggr) and H2 (aggr), for the 8-92 and 100-0 workloads
respectively. These results show that the aggregate throughput increases with the number
of clients, under both workloads.

 0

 50

 100

 150

 200

 250

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

HSQLDB
HSQLDB(aggr)

H2
H2(aggr)

(a) Scalability under 8-92 workloads

 0

 50

 100

 150

 200

 250

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Isolation Level

HSQLDB
HSQLDB(aggr)

H2
H2(aggr)

(b) Scalability under read-only workloads

Figure 3.7: H2 Isolation level impact on TPC-C performance.

In fact, the aggregate throughput achieves near linear scalability up to 12 clients for
both engines and both workloads. Above 12 clients the increase in performance in not as
accentuated, due to operating system overhead for managing the concurrent execution of
all processes. Above 16 client there is a considerable drop in performance. This results
from lack of computational resources, namely main memory, since the aggregate space
needed for 18 databases exceeded the total amount of main memory of the machine,
and hardware threads, since the number of concurrent processes exceeds the number of
available hardware threads requiring expensive (cache wise) context switching between
them, something that is disguised when running fewer processes.

Above all, these results put into evidence that the general lack of scalability for general
purpose IMDBs is not due to lack of system resources, but it is a direct result of their
design.

Additionally, this experiment allows us to define the highest expected achievable through-
put for update intensive and read-only workloads, thus establishing the upper bound for
the achievable throughput for these databases. Although for read-only transactions it is
realistic to expect a database to o↵er a throughput identical to the one obtained here, this
is less realistic for update transaction due to interference. Nonetheless, if the conflict rate
of updates is low enough we believe this lower bound can be representative of the highest
possible achievable throughput for update intensive workloads.

33

CHAPTER 3. RESEARCH PROBLEM

3.2 Identifying performance bottlenecks

The previous study exposed the general lack of scalability of both database engines. In this
section, we will try to identify possible bottlenecks responsible for this lack of scalability.

3.2.1 Transaction Management

We begin by discussing the possible implications transaction management may have
in the performance of the databases. As discussed in Section 2.1.4, databases employ
concurrency control mechanisms to preserve ACID properties, namely isolation.

Unlike traditional disk-backed databases, both databases implement transaction con-
currency control using table-level locking. This is a pragmatic approach that avoids the
complexity and overhead of semantic locks. While locking has an impact on database
performance, specially for update workloads, such as 8-92, 50-50 and 80-20, locking is
not the solely responsible for the lack of scalability, specially for read-only workloads.

3.2.1.1 Update workloads

Focusing on update workloads (8-92, 50-50 and 80-20) and the serializable isolation level,
the previous results show that increasing the ratio of read-only transactions influences
performance positively, especially for HSQLDB (Figures 3.1(a) and 3.4(a)). This puts into
evidence that table level locking has a considerable impact on database performance,
since decreasing the ratio of update transactions in the workload increases concurrency.
This results from the fact that all update operations have to acquire an exclusive lock
before executing, which prevents every other operation from concurrently accessing the
same tables.

However, if table level locking were the solely responsible for the lack of scalability, SI
should scale much better, especially for moderate update transaction (50-50 and 80-20).
In both engines, SI allows read operations to execute without acquiring any locks. This
allows read-only transaction to execute concurrently with every other transaction. Thus,
under SI, one would expects database throughput to increase with the ratio of read-only
transactions in the workload, since the total number of read-only transactions increases.
However, this does not occur, with the performance of SI being the worst of the three
isolation levels for most of the workloads (except to the 8-92 workload).

Although one may argue that, under SI, both engines still use table level locks for
update operations, this does not influence read operations, since these execute without
locking. Thus, increasing the ratio of read-only transactions should compensate, by far,
the possible conflicts of update transactions. This should be especially true for the 80-20
workload since the total amount of read-only transactions is more than double the total
amount of update transactions.

Yet, this is not the case, as confirmed by the previous results. In fact, independently
of the workload, SI tends to o↵er worst performance than the serializable isolation level,

34

3.2. IDENTIFYING PERFORMANCE BOTTLENECKS

with the only exception being the 8-92 workload in both databases. Although one may
argue that conflicting nature of TPC-C may increase the abort rate for transactions ex-
ecuted under SI, this does not apply to read-only transactions since these do not need
validation before committing. Even so, if this was true read only workloads would scale
much better under this isolation level yet they do not, as discussed next.

3.2.1.2 Read-only workloads

When focusing on read-only workloads, one expects these workloads to scale with the
number of clients. This is based on the fact that read-only transactions do not interfere
with each other, thus can successfully execute concurrently. However, read-only work-
loads does not scale in either database, independently of the isolation level. This is put
into evidence by the results presented in Figures 3.3(b) and 3.6(b).

It is true that, for lock based isolation levels, read-only transactions still need to
acquire shared locks before executing. Also, while shared locks do not prevent concur-
rent read-transactions from executing, their acquisition, i.e., transaction management,
increases overhead that could be responsible for restricting performance. However, if
transaction management where the solely responsible for this behavior, performance for
read-only workloads would have to scale much better under SI, since, under SI, read-only
transaction are allowed to execute without acquiring any locks. However, like in the re-
maining workloads, SI provides worst performance than lock based serializable isolation
level, for read-only workloads.

SI further puts into evidence that the additional factors, other than transaction man-
agement, are responsible for the lack of scalable performance of both databases. This is
supported by the fact that SI performance does not scale in either database, for read-only
workloads. While, under update workloads, one may argue that a significative number of
transactions abort due to conflicts detected during their validation phase, under read-only
workloads no such conflicts exist. Thus, if transactions are allowed to execute without
acquiring locks, and no conflicting transactions exist in the workloads, then there is no
reason why read-only workloads should not scale. This put into evidence that additional
factors, other than transaction management, restraint the performance of both databases.

Summing up, while we do believe that table level locking has an impact in database
performance, we do believe that the lack of scalability of these databases is not solely
due to lock based concurrency control. Additionally, while we do believe that transaction
management, be it lock based or not, has a negative impact in the database performance,
we also believe additional factors are responsible for this as well.

This impact can be observed by the decrease in performance when increasing the level
of concurrency, specially for H2.

35

CHAPTER 3. RESEARCH PROBLEM

3.2.2 Logging

Now we discuss the possible implications logging may have in the performance of the
databases. As discussed in Section 2.1.3, databases rely on logging for providing dura-
bility. Update transactions are added to the log, and the log is written to disk before
transactions commit and return to clients. This allows databases to recover from possible
failures, by replaying missed logged operations or rolling back incomplete transactions
Thus, logging allows databases to guarantee that transactions, when successfully commit-
ted, are durable, while also guaranteeing database consistency.

Both studied databases provide durability by writing their log to disk. However, for
minimizing overhead, and contrarily to traditional disk-backed databases, this process
is done asynchronously and periodically, instead of being performed in every commit
operation. While this means that, is case of failure, some transactions may be loss dur-
ing the process, it also minimizes overhead for successfully committing transactions.
As discussed in Section 2.3.1, this is the tradeo↵ IMDBs make between durability and
performance.

However, logging does not seem to be the main performance bottleneck for these
databases. If this was the case, read-only workloads would scale much better since these
transactions do not log any information during execution. As presented in the previous
results, read-only workloads also do not scale.

Nonetheless, we studied the impact logging has on the performance by configuring
both databases to bypass logging and compared the TPC-C results withand without log-
ging. For this experiment, read-only workloads were not used since these do not modify
the database, thus do not interact with the durability log.

Figures 3.8 and 3.9 present the performance di↵erences resulting from disabling the
durability log for serializable and snapshot isolation levels respectively. Each Figure
shows the speedup for the di↵erent workloads, for both HSQL (Figures 3.8(a) and 3.9(a))
and H2 (Figures 3.8(b) and 3.9(b)).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92 50-50 80-20

(a) HSQLDB speedup

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92 50-50 80-20

(b) H2 speedup

Figure 3.8: Durability log overhead under serializable isolation level.

When analyzing the results, we can see that the performance di↵erences between

36

3.2. IDENTIFYING PERFORMANCE BOTTLENECKS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92 50-50 80-20

(a) HSQLDB speedup

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92 50-50 80-20

(b) H2 speedup

Figure 3.9: Durability log overhead under snapshot isolation level.

both configurations are negligible, with no single configuration o↵ering consistently bet-
ter performance than the other. This puts into evidence that logging has no significative
performance impact on the performance of both databases, independently of isolation
level and workload. Like discussed before, this is expected since durability of both data-
bases is guaranteed by asynchronously and periodically writing the log to disk, instead
of doing so at every commit operation.

3.2.3 Storage subsystem

From the results presented so far, we can see that the relaxation of isolation levels does not
help scalability. In fact, and contrarily to what one may expect, in both engines snapshot
isolation level o↵ers worst performance than serializable isolation level. Additionally,
the performance for read-only workloads does not scale independently of the isolation
level. This is true even for SI, under which read operations execute without acquiring any
locks. In fact, the obtained results show that the performance for read-only workloads
exhibits a behavior identical to all other isolation levels, with a decreasing throughput as
the concurrency degree increases (Figure 3.1(a) and 3.4(a)).

Since, for read-only workloads, we can rule out the transactional management and the
durability logging from being responsible for this lack of performance, we investigated
if this lack of performance was a direct result of the underlying storage component. As
discussed in Section 2.1.5, databases rely on latching for guaranteeing the underlying data
structures, used to manage and store data, remain consistent when accessed concurrently.
The increase in concurrency attained from relaxing isolation levels increases contention
on the storage subsystem, due to the use of latching mechanisms, thus producing no
benefit on performance.

To test this theory we modified both databases by removing all latches used in the
storage sub-component, i.e., we removed all concurrency control mechanisms (e.g., locks)
from the index data structures, and ran the TPC-C benchmark under a read-only work-
load. For this experiment, both databases used the serializable isolation level.

Figure 3.10(a) compares the TPC-C results from the original HSQLDB and H2 engines

37

CHAPTER 3. RESEARCH PROBLEM

with the ones obtained by the latch free modified engines, presented asHSQLDB (LF) and
H2 (LF), respectively. These results show the significative performance restraint imposed
by latches used in the storage sub-component of these systems. Their removal allowed an
almost 11 and 7 fold performance increase for the modified H2 and HSQLDB compared
to the unmodified engines, as presented in Figure 3.10(b).

 0

 50

 100

 150

 200

 250

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
HSQLDB

H2
HSQLDB (LF)

H2 (LF)

(a) Throughput

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
HSQLDB (LF) H2 (LF)

(b) Speedup

Figure 3.10: TPC-C read-only workload on the modified engines.

Moreover, both modified engines scale up almost to the number of cores in the sys-
tems. Thus, one can conclude that the scalability of DBMS is greatly restricted by the
concurrency control mechanisms of the storage subsystem.

3.3 Research Questions

As presented in this chapter, general purpose IMDBs are unable to o↵er scalable per-
formance on multicore machines. Our study has shown that this lack of scalability is
independent of the type of the workloads and also isolation level. Contrarily to what
one could expect, relaxing the isolation level, although theoretically reduces contention
among transactions, seems to be ine�cient in improving scalability (and in some cases
even performance). The presented results put into evidence that this lack of scalability is
true even on a system with a reduced number of processor cores (16 cores in total).

Although this is an active research topic among the database research community,
many works improve database scalability on multicores by proposing a complete redesign
of the database engine. Thus, general purpose databases have been shy on adapting them
since these require considerable architectural modifications.

In our work we explored the approach of scaling IMDBs on multicore without a com-
plete redesign of the database engine. Our study suggests that not all components have
the same influence in the lack of scalability of databases. For instance, our results show
that the traditional implementation of underlying data structures, used by the storage
subcomponent, imposes a considerable bottleneck in the scalability of these systems.
Our work focused on designing techniques for improving the scalability of IMDBs while
enforcing strong isolation semantics (i.e., Serializability).

38

3.4. RELATED WORK

To this end, we followed di↵erent paths for addressing the scalability problem on gen-
eral purpose IMDBs. We started by trying to answer the question of whether it is possible
to improve scalability without modifying the database and the applications (Chapter 4).
To address this question, we designed and implemented a system, MacroDB, that explores
database replication in a single multicore machine. This work treats multicore machines
as extremely low latency clusters extended with some shared memory, and builds on the
knowledge of distributed and replicated databases, addressing the scalability problem by
distributing and balancing the load among di↵erent replicas.

Next, we tried to answer the question of how to scale IMDBs by modifying the data-
base engine, without fully rethinking its architecture. In this approach, we delved into
the database engine and tried to fix the major performance bottlenecks (Chapter 5). We
propose a series of modifications to the database for addressing these bottlenecks. We
start by addressing the scalability problem under read-intensive workloads, and then
proceed by addressing the problem for update-intensive workloads.

Finally, we tried to address the question of what is the impact of the application code
in the performance of the database, and whether it is possible to change the applica-
tion code to improve scalability while retaining the same semantics (Chapter 6). We
start by analyzing how operation order inside transactions influences the database per-
formance. We then study how transactions can be modified in a database friendly way,
i.e., for reducing interference, and improving database performance. Finally, we study
how the database can take advantage of these modifications to further improve database
performance, which again required modifying the database engine.

3.4 Related Work

Research in database system is an active research topic, with researchers focusing on all
aspects related to the design, deployment, and use of these system [SZ97; Sil+91]. With
the introduction of the multicore architecture, databases have been presented with the
challenge of e�ciently utilizing the increased concurrency o↵ered by these systems.

In this section, we discuss previous studies on the influence of multicore processors on
database management systems, namely on scalability, and compare them with our own.
Additionally, we overview some of the proposals to address these problems, namely those
that focus on the contention imposed by multicore processors. We present the state of the
art for in-memory databases on multicore systems. However, we defer comparing these
works with our proposed solutions to the corresponding chapters. Finally, we present
some additional works that have influenced our research.

3.4.1 Database performance and scalability studies

Previous works have study the implications of multicore processors on databases per-
formance, by focusing on disk-based database systems. Hardavellas et al. [Har+07],

39

CHAPTER 3. RESEARCH PROBLEM

presented a study on the impact processor cache stalls (due to cache misses) have on data-
base performance. The study shows that stalls, due to cache misses, have a considerable
impact on database performance, with databases spending up to 60% of computational
time waiting on these stalls.

In a complementary study, Harizopoulos et al. [Har+08], dissected the kernel of
Shore [Car+94] database management system, and identify performance bottlenecks.
The study shows that traditional database engines can spend more than 30% of the time
in synchronization related operations (locking and latching) during transaction execu-
tion. Additionally, the authors study the impact of modifying the database engine by
consecutively removing di↵erent features of the database. These features include: bu↵er
management, lock management and latching and logging. The end result was a single-
threaded, lock-free, in-memory database kernel without recovery that achieved consider-
able performance improvement over the original engine. Although, the authors do not
propose specific changes to any of the di↵erent components, they give some insight on
possible DBMS modifications for reducing their overhead.

Johnson et al. [Joh+09b] focus on the scalability of several disk-backed database
engines. Their study shows the general lack of scalable performance of the studied en-
gines on multicore processors. Additionally, the authors focus on the performance of
Shore’s storage engine, and propose a series of modifications to address its performance
limitations. While focusing primarily on the storage engine, the authors considerably
modify other parts of the engine for improving its scalability, namely, log management
and transaction management. Although the authors do not propose fundamental design
modifications, with their primary focus being the reengineering of the original design,
the attained performance improvements are considerable, showing that databases can
scale on multicores without a complete system redesign.

Jung et al. [Jun+13], present a study on the scalability of disk-backed databases on
multicores. In this study the authors show that contention on lock management algo-
rithms greatly reduce concurrency on multicores, thus restricting database performance
even under non-conflicting workloads (such as read-only). Additionally, the authors pro-
pose a series of modifications to the transactional manager, by reengineering it using
a read-after-write (RAW) coding style [Att+11; HS08]. Two common synchronization
patterns are frequently used in the design of concurrent algorithms: read after write
(RAW) and atomic write after read (AWAR). RAW patterns consist on a thread writing
to some shared variable A, followed by the same thread reading a di↵erent shared vari-
able B, without writing to B in between. The AWAR pattern consists of a thread reading
some shared variable followed by the same thread writing to a shared variable (the write
could be to the same shared variable as the read), where the entire read-write sequence is
atomic. Examples of the AWAR pattern include read-modify-write operations such as a
Compare-and-Swap (CAS).

Our study is complementary to these works in several aspects. While these works
study the bottleneck of disk-based database, we focus on general purpose in-memory

40

3.4. RELATED WORK

databases. Additionally, we compare two di↵erent database implementations for a better
understanding of how di↵erent development techniques a↵ect the performance of the
database. Furthermore, we try to understand how database engines behave when sub-
jected, not only to di↵erent workloads, but also under di↵erent isolation levels. Finally,
we will later show how applications can influence the performance of the database, by
modifying the TPC-C bechmark in a database friendly way. Like some of these works
[Joh+09b; Jun+13], for addressing the scalability problems identified, we follow a sim-
ilar research path by reengineering some components for improving their e�ciency in
multicore systems, rather than radically changing the database design.

3.4.2 Improving scalability by reducing contention

Several works have focused on contention related problems that reduce database ef-
ficiency on multicores. This problem influences database performance by reducing
throughput, since it greatly decreases concurrency. Proposed solutions for this problem
tend to mitigate synchronization overhead, by focusing on transactional management
(locks), and/or on low level concurrency control mechanisms used by the engine’s inter-
nal data structures and algorithms (latches). As further discussed in Chapter 5, in our
work, we also follow a similar direction but we take a more radical approach by com-
pletely avoiding any latches/locks in the data structures used to maintain data. Next we
describe some of these works.

Cha et al. [Cha+01] address the scalability problem by focusing on the concurrency
control mechanisms and algorithms used by main-memory index data structures. In
this context, the authors proposes OLFIT, a latch-free index transversal algorithm for
index trees (B+-Tree [Com79] and CSB+Tree [RR00]). OLFIT allows tree transversals
without acquiring latches, while preventing updates from interfering. This is achieved
by each node in the tree maintaining a latch and an associated version. This way, update
operations acquire the corresponding node’s latch (or latches if the update modifies a
set of nodes) before executing, incrementing the node’s version after updating it and
before releasing the latch. Read operations execute without latching, starting by reading
a node’s version, followed by reading the corresponding values. It then tests if the node
is latched and again reads its version. If the versions di↵er or if the node is latched, the
operation aborts and repeats, completing successfully otherwise. While this is not a pure
latch-free approach, it is one of the first proposals that address the problem of latching
in multi-processor environments.

Sewall et al. [Sew+11] propose an adaptation of the Bulk Synchronous Parallel (BSP)
concurrent execution model [Val90] for multicore environments, for allowing multiple
read/write queries to execute atomically on B+-Trees without the use of latches. Instead
of the traditional approach, where queries execute independently of each other, PALM
groups multiple queries (including write operations) into batches, executing batches

41

CHAPTER 3. RESEARCH PROBLEM

sequentially. In each batch, the corresponding index operations are divided among con-
current threads. PALM executes read operations before write operations. This allows
all tree transversals to execute concurrently without synchronization overhead, since no
modification results from tree transversals. After executing read operations, PALM coor-
dinates the remaining threads (i.e., threads executing write operations) for performing
the corresponding tree modifications. These are allowed to execute concurrently on leaf
nodes, when modifying distinct nodes. Otherwise, the corresponding threads coordinate,
where one of them is elected for sequentially executing all the corresponding (batched)
modifications. Likewise, modifications to the internal nodes of the tree are also batched
and applied by a single thread. All necessary modifications are propagated up the tree in
a similar fashion, where the corresponding tree modifications are batched and executed
by a single thread. Thus, when reaching the root node, only a single thread executes
all the necessary modifications. This allows the removal of latches since all tree modifi-
cations are executed sequentially by a single thread at the node level. This also allows
PALM to eliminate possible deadlock occurrences that can occur when using conventional
latching mechanisms.

Pandis et al. [Pan+11] follow a di↵erent path for reducing contention at the data-
base storage level. The authors propose physiological partitioning (PLP), that combines
techniques taken from shared-nothing and shared-everything designs. Contrarily to the
traditional approach, where indices are implemented using a single data-structure, typi-
cally a B+-Tree, in this work the authors propose partitioning of data among several data
structures, similar to the work of Graefe et al. [Gra03]. Thus, PLP uses a multi-rooted
B+-Tree (called MRBTree), that partitions data among several B+-Trees. For identifying
which partition to access, PLP uses an additional structure, called a partitioning table,
which acts as the root of the index. Each tree maintains a subset of the entire key-space.
This partitioning scheme allows PLP to reduce contention, since di↵erent partition may
be transversed concurrently without coordination. Additionally, PLP further reduces
synchronization overhead by restricting access to each partition to a single thread. This
way, no concurrency control mechanisms (i.e., latches) are used at the index level. While
additional latches may still be necessary, like page level latches, the authors argue these
impose less contention then index latches.

Mao et al. [Mao+12] address database storage contention building on some of the
features of the previously described systems [Cha+01; Gra03; Pan+11]. In Masstree
[Mao+12] the authors present a key value store that partitions data among several B+-
Trees, concatenated into a trie-like structure [Fre60], where each partition coveres a subset
of the key-space. Like OLFIT, tree transversals do not acquire latches, while update
operations acquire fine grain latches (only on the involved tree nodes). Additionally,
for preventing inconsistent states from being exposed, Masstree employs an optimistic
concurrency control, where: update operations, before updating a node, mark updated
nodes as dirty and modify their version afterwards; and read operations, before reading
a node, check the version of the node. If the version of all read nodes remain consistent,

42

3.4. RELATED WORK

and no node has been marked dirty, read operations execute successfully, otherwise these
retry on a fresh snapshot.

Bw-Tree [Lev+13b; Lom+13] is an adaptation of a classic B+-Tree index for secondary
storage (i.e., disk), designed for scaling onmulticores. Bw-Tree addresses index contention
on multicores by using a latch free approach. Thus, Bw-Tree eliminates traditional latches
in favor of compare-and-swap (CAS) operations, for atomically modifying its state. Ad-
ditionally, Bw-Tree improves cache consistency by using out-of-place modifications, i.e.,
deltas. Contrarily to the traditional approach, update operations (such as inserts, deletes
or updates) do not directly modify tree nodes, instead these atomically append modifica-
tion deltas to the corresponding nodes. Deltas represent the corresponding state changes
and are transversed prior to the actual node, behaving as a stack of node modifications.
Bw-Tree follows a Blink-tree approach [LY81], where each node maintains a pointer to
the next node of the same level, allowing transversals on Bw-Tree to execute without
latching (since link pointers prevent transaversals from observing inconsistent states due
to concurrent state changes, i.e., node splits or merges [LY81]). Additionally, Bw-Tree
also allows state modifications, due to update operations, to execute without latching (al-
though assuming conflicting updates are prevented by external mechanisms, such as lock
management). For preserving state consistency, Bw-Tree treats state modification opera-
tions (node splits or merges) as a kind of “transaction”, where a termination delta is used
to identify if the corresponding modifications have ended. Additionally, any state mod-
ifying operations is only allowed to execute after all previously initiated modifications
have ended. To this end, whenever an operation identifies an incomplete modification,
for example when a state modifying operation detects an unfinished concurrent node
split (by reaching a new node through a link) that has yet to be propagated to the father
node, it will complete the previous operation before executing its own. This guarantees
that concurrent state modification operations execute in the same serialized order in all
nodes.

Jung et al. [Jun+13] address the contention problems of lock management algorithms.
In their study, the authors show that MySQL database performance in greatly compro-
mised due to contention created by concurrency control mechanisms (latches) used by the
lock management and deadlock detection algorithms. In this study, the authors discuss
that some data races are benign, and that memory barriers combined with read-after-write
(RAW) coding style [Att+11; HS08] have advantages over atomic write-after-read oper-
ations (CAS operations), due to increased cache e�ciency. Thus, the authors propose
a solution for reducing latches used by the lock manager, that combines the RAW cod-
ing style with a new lock acquisition and release pattern, that separates allocation and
de-allocation of lock data structures from lock acquisition and release. Additionally, the
authors pre-allocate and de-allocate locks asynchronously. Contrarily to the original ap-
proach where locks are allocated when needed and de-allocated when released, under
the proposed modification locks are allocated before being needed (being maintained

43

CHAPTER 3. RESEARCH PROBLEM

in a pool), and are de-allocated after transactions have release them. This further re-
duces contention by reducing the number of operations executed in exclusion (since lock
de-allocation is done asynchronously of locks releases).

3.4.3 State of the art in-memory databases

The mechanisms described in the previous section reduce contention in specific database
components. In this section we describe some state-of-the-art database systems designed
for multicore systems.

VoltDB [SW13], the commercial follow up of H-Store [Kal+08], follows the same de-
sign principles as H-Store. H-Store [Kal+08; Sto+07] is an OLTP system designed for
distributed clusters of shared-nothing machines. H-Store orchestrates the nodes of a clus-
ter, by partitioning the database among several single-threaded engines, called sites, each
running on a single processor core of a node. H-Store further replicates each partitions
to improve both performance and availability. Applications interact with H-Store by pre-
defined stored procedures, each identified by a unique name, consisting of structured
control code mixed with parameterized SQL commands. Data partitioning is done based
on the predefined stored procedures, in order to maximize e�ciency. Transactions may
execute on a single site, or on multiple sites. When data is accessible on a single site, trans-
actions execute to completion on the corresponding site, without additional coordination
or logging overhead, since each site is single threaded. Serializability is achieved by run-
ning each transaction in sequence. When transactions require data from di↵erent sites,
additional coordination is required to provide isolation. In this case a global controller
is used for deciding a serial order for operations to execute in the corresponding sites.
Durability is maintained using asynchronous transaction-consistent checkpoints of the
state on each site’s main memory. Additionally, a transaction log records each transaction
with the corresponding identifiers.

In Oracle TimesTen [Lah+13] in-memory database, concurrency control mechanisms
are designed to scale on multicores by trading locks for latches, whenever possible, and
using fine-grain locking. Additionally, contrarily to the traditional approach, where
accessing items requires translating logical addresses (kept by indices) for physical ad-
dresses (associated to memory cache bu↵ers), TimesTen maintains physical addresses
directly in the indices, i.e., indices maintain pointers to tuples. Durability in achieved
combining checkpointing and write-ahead logging. For minimizing overhead, logging
is divided into multiple partitions, that are written in parallel. Sequential order is re-
stored when reading the log from disk. Like most in-memory databases, TimesTen trades
durability for performance, by allowing transactions to commit without waiting for log
records to be flushed to disk. SolidDB uses a pessimistic concurrency control allowing
row or table level locking, o↵ering the highest isolation level, serializable.

SolidDB [Lin+13] is a relational database that combines in-memory and disk-backed
tables. Pure memory configurations maintains data directly on indices, using custom

44

3.4. RELATED WORK

built trie like structures [Fre60]. These data structures use a variation of path- and
level-compression and are built on top on leaf nodes similar to B+-trees. For addressing
contention, indice transversals do not use locks or latches, while write operations use two-
level locking for protecting agains conflicting concurrent writes. Indices uses optimistic
concurrency control, associating data with versions. These are used for detecting conflicts
during read operations, similar to OLFIT [Cha+01]. SolidDB uses a pessimistic concur-
rency control using row level locking (optimistic concurrency control is only available
for disk-backed tables), o↵ering repeatable read as the highest isolation level (serializable
isolation level is available only for disk-backed tables).

Tu et al. [Tu+13] have proposed Silo, an in-memory transactional database for mul-
ticore systems. Silo addresses scalability limitations of traditional databases by building
on a Masstree-inspired [Mao+12] storage engine, and relying on an optimistic concur-
rency control (OCC) that o↵ers serializable isolation semantics. Silo assumes a one-shot
request model, where all parameters for each request are available at the start. Thus,
requests complete without further client interaction. For providing serializable isola-
tion semantics, the authors define time periods called epochs. Committing transactions
start by acquiring locks on all modified records. After this point, the epoch number is
registered (a memory fence/barrier is used to prevent code reordering due to processor
optimizations). This defines the serialization order for the transactions. On a second
phase, read records are examined to guarantee these have not been modified during the
duration of the transaction (using the records transaction identifier (TID)). If some record
has been modified, or is locked by a concurrent transaction, the committing transaction
aborts releasing all locks. Otherwise the transaction is allowed to commit. Finally, all
modified records and respective TIDs are updated accordingly.

Hekaton [Dia+13] is an in-memory extension for SQLServer, built on top of Bw-Tree
[Lev+13b; Lom+13] and LLAMA [Lev+13a]. Transaction isolation is supported by a
multi-version concurrency control that requires no locks or lock tables. Read only trans-
actions are serialized in the past, thus do not require additional validation. For update
transaction, serialization is achieved by each transaction maintaining both its read and
write set, for validation during commit. This is done by revisiting all previously read
locations and verify their validity (if their versions remain unchanged) [Lar+11]. Hekaton
builds on the Bw-Tree, used as index data-structure, and LLAMA [Lev+13a] a cache/stor-
age subsystem designed for modern hardware. LLAMA’s design is based on traditional
cache/storage subsystems, where pages are read from secondary storage to main mem-
ory on demand. However, LLAMA supports latch-free page modification operations,
using compare-and-swap atomic operations, replacing traditional latches used to guard
pages from concurrent accesses. Additionally, page modifications are accomplished using
deltas, appended to pages using compare-and-swap operations, thus avoiding in-place
modifications. Deltas are applied to physical pages based on heuristics (when the number
of deltas per page exceeds 10). This allows LLAMA to deal with the overhead on write
operations in modern SSDs, since modifying a disk page results in writing a new page,

45

CHAPTER 3. RESEARCH PROBLEM

i.e. requires reading the original page and writing it with the respective modification to
a di↵erent locations. Deltas prevent original pages from being modified, thus only delta
pages are written to disk. Additionally, LLAMA organizes data on secondary storage in
a log structured manner [RO92], where all updates are written sequentially in a log-like
structure. Like before, this approach helps in reducing the overhead when writing pages
to disk. Durability relies on both logging and checkpointing to external storage, with no
logging being done during transaction execution. Only transactions that pass their valida-
tion phase write to log their corresponding modifications. Similar to TimesTen [Lah+13],
Hekaton allows log to be partitioned over multiple devices, since commit ordering is
determined by each transaction’s end timestamp.

System Architecture Concurrency Isolation Index Client
Control Level (highest) Conc. Control Interactions

VoltDB/ Distributed Single threaded Serializable Non (Single Single
H-Store (Partition + Replication) (1 per CPU core) threaded storage) shot
Oracle Centralized + Pessimistic Serializable Latches + ODBC/

TimesTen Replicated Fine-grained locking JDBC

SolidDB Centralized + Pessimistic Repeatable Non + Locks ODBC/
Replicated Read (w/ writing) JDBC

Silo Centralized OCC Serializable Non + Single
latches (w/ writing) shot

Hekaton Centralized + MVCC Serializable Non + CAS ODBC/
Replicated ops. (w/ writing) JDBC

Table 3.1: State of the art comparison.

Table 3.1 compares some of the features of the previously described systems. From this
comparison it is possible to see that no consensus exists in terms of concurrency control
mechanisms, with each system using a di↵erent approach. It is also possible to see that
most systems try to o↵er the highest isolation level, serializable. This is of considerable
importance since it relinquishes application developers from reasoning about isolation
phenomena. Finally, all systems take into consideration the implication that latching has
on index, and consequently, database performance, with most systems using latch free
index transversal solutions. In our work, we also follow a similar direction, to reduce the
overhead of latching in data structures. However, we take a more radical approach by
completely eliminating latches/locks in the data structures used to maintain data.

3.4.4 Alternative database designs

Column based Databases Besides previously described works, which rely on tradi-
tional row-based storage, recent works have proposed the use of column-based storage.
These approaches are often focused on business intelligence and analytical processing
(OLAP) workloads, we briefly describe some of these proposals here and discuss the major
di↵erences of column-based storage.

MonetDB [Bon+08; Man+09], C-Store [Sto+05], and SAP HANA [F+̈12; Sik+12] are
examples of database management systems that trade traditional row-oriented storage
systems for column-oriented ones. Row-stores typically store the database tables as arrays

46

3.4. RELATED WORK

of records (i.e., tuples), where each entry of the array holds a record. Also, each record
holds the corresponding values of its respective attributes. On the other hand, column-
store vertically partition each database table into a collection of individual columns, each
stored separately. Thus, in column-stores, database tables are decomposed in a collection
of arrays (one for each attribute), where the corresponding attribute values of each record
are stored.

Row-stores have been the norm for relational databases, since these o↵er improved
data access e�ciency for disk based storage by allowing records to be written to, and
read from, disk in a single operation[Aba+12]. This is especially important to reduce I/O
overhead due to disk search, since reading or writing to the same disk position reduces
latency. On the other hand, column-stores tend to require additional disk accesses when-
ever reading or writing more than one attribute [CK85]. This is particularly prominent
for insert and remove operations, since all table attributes need to be accessed. The same
may not hold true for main memory, since memory access time is identical independently
of being sequential or random.

Row-stores o↵er some advantages, over column-based stores, on memory resident
databases. Especially when reading only a subset of attributes on a set of records. This is
a result of CPUs caching entire memory rows. Since row-stores store records contiguously
in main memory, cache space is wasted by values of attributes that are not required. On
the other hand, column-stores use the CPU cache more e�ciently by eliminating waist,
since the set of values of each attribute are contiguously stored in main memory, thus
occupy cache lines without waste [Aba+12; Man+09]. For this reason column-stores have
been used for some specific read-intensive workloads, like OLAP. Update operations,
such as inserts and deletes, still require additional memory accesses when using column-
stores. Under these conditions cache utilization is not as e�cient as in read operations,
further compromising performance.

Thus, the major weakness of column-stores, compared to traditional row-stores, is
their performance under update workloads. For dealing with this, some systems resort
to a slipt architecture by using a “read-store” and a “write-store” [Man+09; Sto+05].
The read-store maintains stale information using a column-store, while the write-store
maintains the more recent updates. MonetDB uses two additional columns for each
column base in the scheme, for marking pending inserts and deletes (updates are mapped
as a delete followed by an insert). C-Store follows a di↵erent approach, maintaining stale
data in a column-store and updates on a row-store. Both systems merge read- and write-
store information during query execution. For minimizing the size of the write-store,
updates are propagated periodically to the read-store. SAP HANA uses a hybrid approach
for dealing with these scenarios, replicating data among row and column storage, and
dividing operations accordingly. OLTP transactions execute primarily on a row-store
being propagated asynchronously to the column-store, while OLAP transactions execute
on a column-store [F+̈12].

These approaches result from the traditional practice for data warehouses, where

47

CHAPTER 3. RESEARCH PROBLEM

large data set are queried ad-hoc and updated in bulk. This is compatible with OLAP
workloads, since business intelligence and analytical processing may use stale data with-
out compromising results [Pla09; Sto+05]. Column-stores are also favorable to OLAP
workloads, since these workloads tend to analyse data from specific subsets of attributes.

Focusing on concurrency control mechanisms, these systems tend to use multiversion
concurrency control, providing snapshot isolation [F+̈12; Man+09; Sik+12].

48

C
h
a
p
t
e
r

4
Modification-free Solution

As put in evidence in the previous chapter, current general purpose IMDBs do not scale
on multicore systems, independently of the isolation semantics and workload nature.
Additionally, we have identified contention on the storage sub-component as a major
performance bottleneck of these systems under read-only workloads.

In this chapter we present a generic solution, that requires no modifications to ei-
ther databases or to the applications, for reducing the contention among transactions.
By treating multicore machines as extremely low latency clusters, extended with some
shared memory, we propose a middleware system, called MacroDB, that coordinates a
set of database replicas. MacroDB, an example of a Macro-Component [Mar+10], builds
from the knowledge of distributed and replicated databases and improves scalability by
distributing and balancing load among di↵erent replicas.

4.1 Modification-free approach

In our quest to improve the scalability of in-memory databases, our initial approach is
to use databases as black-boxes. This approach uses database replication techniques and
builds on the knowledge from distributed and replicated database systems. By treating
a multicore machine as an extremely low latency cluster, extended with shared memory,
we design a middleware system, called MacroDB, as a collection of coordinated database
replicas.

MacroDB is designed to o↵er improved database scalability and performance by dis-
tributing load among the several internal replicas, reducing contention. To this end,
it uses a master/slave replication approach, where update transactions execute on the
master replica, which holds the primary copy of the database. The slaves maintain inde-
pendent secondary copies of the database, receiving read-only transactions from clients,

49

CHAPTER 4. MODIFICATION-FREE SOLUTION

while updates are asynchronously propagated to them, upon committing on the primary
replica. This approach reduces contention since: i) Update transactions do not block, nor
are they blocked, by concurrent read-only transactions, since di↵erent types of transac-
tions execute in di↵erent replicas; ii) Read-only transactions are fully executed on slave
replicas, reducing the number of transactions each replica processes, thus distributing
load among the available replicas, and iii) Update transactions executed in slave replicas
as sequential batches of updates, thus leading to no contention among them.

MacroDB provides a scalable data management solution that does not require any
modifications to neither the database engines or to the applications. Our experiments
show that MacroDB is able to provide performance benefits up to 4⇥ over the standalone
database engines under read-dominate workloads, while for write-dominant workloads
MacroDB su↵ers from a 25% overhead over the non-replicated database.

4.2 Macro-Components

Macro-Component

Applica'ons+

IN
TE
RF
AC

E+

Manager+ Run'me+

+
+ +
+ +
+Replica+

Validator+

Replicas

Figure 4.1: Macro-Component design and behavior

MacroDB follows the design principles of Macro-Components. Macro-Components
are software components designed to o↵er improved performance and/or reliability com-
pared to their standard siblings. Taking advantage of the available computational re-
sources o↵ered by multicore machines, Macro-Components maintain a set of, possibly
diverse, component implementations of the same interface (called replicas), as presented
in Figure 4.1. Applications can benefit from the use of Macro-Components, simply by
replacing standard components by their Macro-Components siblings.

By treating multicore machines as extremely low latency clusters, extended with
shared memory, Macro-Components adopt identical principles as traditional replicated
systems, applying them on a single multicore machine. Thus, instead of distributing
replicas on to distinct machines, Macro-Component maintain replicas on the same ma-
chine.

This allows Macro-Components to o↵er improved performance, over standard com-
ponents, in a similar manner as traditional replicated systems, i.e., by distributing and

50

4.2. MACRO-COMPONENTS

balancing concurrent method calls among the available replicas. Additionally, Macro-
Components o↵er an asynchronous execution model that allows methods to execute
concurrently with the calling application thread. This, prevents application threads from
being held by methods that return no results, or by methods returning values that are
non-relevant for the application.

Following the same principles as N-version programming [Avi85; AK84], when us-
ing replicas with diverse implementations, Macro-Components o↵er improved reliability,
compared to standard components. Implementation diversity allows Macro-Components
to detect buggy behavior of replicas, preventing these bugs from being exposed and af-
fecting the reliability of applications. Since di↵erent implementations o↵er the same
functionality and maintain the same abstract state, buggy behavior is detected by identi-
fying state or result divergences amongst replicas.

Combining diversity and method call distribution allows Macro-Components to ex-
ploit the performance di↵erences of the diverse replicas. Since di↵erent implementations
tend to o↵er di↵erent performances, and no single implementation is the fastest for all
operations, Macro-Components can be implemented to exploit these di↵erences by exe-
cuting each operation in the corresponding fastest replica, allowing the fastest result to
be returned to the calling application. This way, Macro-Components can o↵er the best
performing result to the application. Next we detail the generic design and behavior of
the Macro-Component abstraction.

4.2.1 Macro-Component design and behavior

As previously presented, Macro-Components are software components that encapsulate
several, possibly diverse, implementations of the same specification, called Replicas. The
generic design of a Macro-Component, as depicted in Figure 4.1, is composed by three
main sub-components: the Manager, responsible for coordinating method execution on
the replicas, the Runtime, responsible for executing operations on the replicas, and the
Replicas, the components responsible for maintaining the state. An additional optional
component, the Validator, is responsible for validating the results returned by the replicas.

Whenever a method is called on a Macro-Component, the Manager decides if the
corresponding method should be called on all or a sub-set of the Replicas. Normally,
write methods execute in all Replicas, since these modify their internal state, while read
methods can execute on a sub-set of Replicas, since no state modification results from
their execution. The Runtime is then responsible for executing the respective method on
the set of Replicas, with the gathered results being passed back to the Manager.

After results are gathered, the Manager may pass them to the Validator for detecting
possible inconsistencies, or return one result to the application without validation. When
using the Validator, only valid results, i.e., results in accordance to the majority, are
returned to applications. Whenever inconsistent results are detected, the corresponding
faulty replicas are marked for recovery, and temporarily removed from the set of active

51

CHAPTER 4. MODIFICATION-FREE SOLUTION

replicas. Also, if some replica is unable to produce a result within a certain time limit,
the replica is considered faulty and threads executing in the replica are aborted. The
time limit is defined by the time taken by the majority of the replicas to reply plus an
additional tolerance.

This allows Macro-Components to o↵er improved fault-tolerance, by executing meth-
ods on the majority of replicas and comparing results, or to o↵er improved performance,
by executing operations on the fastest replica, or by distributing method invocation
among di↵erent replicas, for minimizing contention.

Additionally, the Runtime decouples the execution of the callee from the method, i.e.,
the thread calling themethod can be di↵erent from the thread that executes it. This allows
Macro-Components to o↵er two di↵erent execution models: synchronous or asynchronous.

Replica1)Replica0) Replican)

Application
Thread

Macro-Component

IN
TE
RF
AC

E)

(a) Synchronous Execution

Replica1)Replica0) Replican)

Application
Thread

Macro-Component

IN
TE
RF
AC

E)

(b) Asynchronous Execution

Figure 4.2: Macro-Component Concurrent Execution Model

The synchronous executionmodel forces application threads, when performingmethod
invocations on a Macro-Component, to wait for it to return, i.e., waiting for methods to
execute before continuing, as presented in Figure 4.2(a). While, the asynchronous ex-
ecution model allows application threads, when performing method invocations on a
Macro-Component, to proceed execution concurrently with the method, i.e., without
waiting for the methods to return, as presented in Figure 4.2(b).

The latter can be used whenever a method returns non relevant results, or no re-
sult at all, to the application, while the former can be used in all other situations. The
asynchronous execution model also further contributes for Macro-Components to of-
fer improved performance over standard components, since applications and method
execution can execute concurrently. Next we detail the generic implementation of the
Macro-Component abstraction.

4.2.2 Implementation and Runtime

The following discussion focuses on a Macro-Component implementation using the Java
programming language. For simplicity, we use the example of a simple counter with

52

4.2. MACRO-COMPONENTS

three operations:

• incrementCounter, that increments the current value of the counter and returns no
result;

• getCounter, that returns the current value of the counter; and

• incrementCounterAndGet, that increments the current value of the counter and re-
turns the new value.

Listing 4.1: Macro-Counter Implementation.
1 class MacroCounter {

2 // each Replica is a Counter

3 Replica<Counter> [] replicas;

4 VersionVector version;

5

6 void incrementCounter() { ... }

7

8 int getCounter() { ... }

9

10 int incrementCounterAndGet() { ... }

11 }

Listing 4.2: Replica Implementation.
1 class Replica<T> {

2 T replica;

3 ReplicaID id;

4 VersionVector version;

5 ...

6 }

In conformity with the presented design, a Macro-Component has a set of Repli-
cas that implement a common interface, and an associated version-tracking mechanism,
where each Replica is a wrapper of a standard component implementation, with an asso-
ciated unique identifier and a version-tracking mechanism, as presented in Listings 4.1
and 4.2 respectively.

Listing 4.3: Counter Macro-Component Implementation.
1 class MacroCounter {

2 // each Replica is a Counter

3 Replica[] replicas;

4

5 static final Action incAction = new WriteAction() {

6 public Object execute(Replica replica, Object ... args) {

7 replica.incrementCounter();

8 return null;
9 }

10 };

11 // Asynchronous write operation.

12 void incrementCounter() {

13 Task t = createTask(incAction, replicas);

53

CHAPTER 4. MODIFICATION-FREE SOLUTION

14 Manager.asyncExecuteAll(t);

15 }

16

17 static final Action getAction = new ReadAction() {

18 public Object execute(Replica replica, Object ... args) {

19 return replica.getCounter();

20 }

21 };

22 // Synchronous read operation.

23 int getCounter() {

24 Task t = createTask(getAction);

25 // 0 -> replica index in which the

26 // task will execute synchronously

27 Manager.syncExecute(t, 0);

28 }

29

30 static final Action incAndGetAction = new WriteAction() {

31 public Object execute(Replica replica, Object ... args) {

32 return replica.incrementCounterAndGet();

33 }

34 };

35 // Synchronous write operation.

36 int incrementCounterAndGet() {

37 Task t = createTask(incAndGetAction);

38 // 0 -> replica index in which the

39 // task will execute synchronously

40 return Manager.syncExecuteAll(t, 0)

41 }

42

43 ...

44 }

Listing 4.4: Task Implementation.
1 class Task {

2 Action action;

3 Replica[] replicas;

4 VersionVector version;

5 Long callerID;

6 Object[] args;

7 Object[] results;

8

9 public void execute(int replica) {

10 // wait for previous tasks to finish execution;

11 while(!replicas[replica].isUpToDate(version));
12

13 results[replica] = action.execute(replicas[replica], args);

14 if(this instanceof WriteTask)

15 replicas[replica].incrementVersion(callerID);

16 }

17 ...

18 }

Whenever a method is called on a Macro-Component, a Task object is created, as pre-
sented in Listing 4.3 (line 13, 24 and 37). Tasks are abstract representations of the called
method, as well as the corresponding arguments and result set, as presented in Listing
4.4. Since Java programing language does not permit to pass methods as arguments,

54

4.2. MACRO-COMPONENTS

methods are encapsulated as Action objects, as presented in Listing 4.3 (lines 5-10, 17-21
and 30-34). Actions define a single method, called execute, that is responsible for calling
the corresponding method on a replica (with the corresponding arguments).

Tasks also include additional information, such as the version in which the method
should execute, to allow the Runtime to preserve state consistency. Since some operations
change the component state while others do not, we represent these di↵erences using
ReadTasks and WriteTasks. These di↵er from one another by incrementing the replica’s
version.

Listing 4.5: Macro-Component Manager Implementation.
1 class MacroManager {

2 Version macroVersion;

3 Version[] replicaVersions;

4 int replicas;

5

6 Task createTask(Action action, Replicas replicas, Object ... args) {

7 Long callerID = Thread.currentThread().getId();

8 // timestamp used to guarantee ordering of operations

9

10 Version versionstamp;

11 if (action instanceof WriteAction)

12 versionstamp = macroVersion.incrementAndGet(callerID);

13 else
14 versionstamp = macroVersion.get(callerID);

15

16 return new Task(action, replicas, callerID, versionstamp, args);

17 }

18

19 // Asynchronous concurrent execution of Task t

20 void asyncExecuteAll(Task t) {

21 // sending Task to Runtime for execution

22 Runtime.submitTask(t);

23 }

24

25 // Synchronous concurrent execution of Task t

26 Object syncExecuteAll(Task t) {

27 // sending Task to Runtime for execution

28 Runtime.submitTask(t);

29 while(!t.hasResult());
30 return t.getResult();

31 }

32

33 // Synchronous in line execution of Task t in Replica rep

34 Object syncExecute(Task t, int rep) {

35 // rep -> replica index in which the task will execute

36 t.execute(rep);

37 return t.getResult(rep);

38 }

39

40 // Synchronous inline execution of Task t in Replica rep

41 // Asynchronous concurrent execution in other replicas

42 Object syncExecuteAll(Task t, int rep) {

43 // rep -> replica index in which the task will execute

44 t.execute(rep);

45 // sending Task to Runtime for execution on additional Replicas

55

CHAPTER 4. MODIFICATION-FREE SOLUTION

46 Runtime.submitTask(t);

47

48 return t.getResult(rep);

49 }

50 }

WriteAction are used for methods that modify the state of the replicas, thus advance
the Macro-Component version, and the version of the replicas, after executing. On the
other hand, ReadActions are used for methods that do not modify the state of the replicas,
thus do not advance the Macro-Component version or replica versions, as presented in
Listings 4.5 (lines 6-17) and 4.4 (lines 9-16).

It is the Manager responsibility to create and execute Tasks. Although these function
could be directly implemented in the Macro-Counter, used in the example, we implement
the Manager separately for allowing developing Macro-Components automatically. Thus,
the Manager, in conjunction with the Runtime, allows Tasks to be executed: i) in-line
by the calling thread on a specific Replica. This synchronous in-line execution model
minimizes overhead, as the application thread does not need to synchronize or wait
for other threads; ii) concurrently by the runtime on all Replicas either synchronous,
i.e., waiting for it to return, or asynchronously, i.e., without waiting for it to return.
Additionally, the Manager o↵ers a combination of both models, executing methods in-
line on a specific Replica, i.e., by the application thread, while executing the method
concurrently in the remaining Replicas, using the Runtime, as presented in Listing 4.5
(lines 20-23, 26-31, 34-37 and 42-49).

In theMacro-Counter example, presented in Listing 4.3, the incrementCounter()method
(lines 12-15) illustrates the asynchronous concurrent execution model, where the created
Task is executed by the Runtime and the calling thread continues execution without wait-
ing for any result. The getCounter() method (lines 23-28) illustrates the synchronous
in-line execution model, where the Task is executed by the calling thread on a specific
Replica, returning that result to the application. While, the incrementCounterAndGet()
method (lines 36-41) illustrates the combination of the two models, where the Task is ex-
ecuted in line on a given Replica and sent to the Runtime for executing on the additional
Replicas. The first result is then returned to the application.

The synchronous in-line execution approach contributes to a reduction on the num-
ber of asynchronous Tasks that need to execute, thus reducing synchronization overhead
and resources used by Macro-Components. Also, since only write operations need to be
executed in all Replicas, for preserving state consistency, these are normally executed
by the Runtime. As presented in the example, this execution can be synchronous, if the
result is relevant to the application, for example, using the inline approach presented in
the incrementCounterAndGet()method; or asynchronously, if the returning is non relevant
or no result is returned, for example, using the Runtime as presented in the increment-
Counter() method. The asynchronous execution approach contributes to an important
performance improvement for applications, since these can proceed without “waiting”

56

4.2. MACRO-COMPONENTS

for the operation to return.

Listing 4.6: Runtime Implementation.
1 class Runtime {

2 OrderedQueue<Task>[] tasks;

3 Executor[] pool;

4 ...

5

6 // adds a task to the queue

7 void submit(Task t) {

8 for(int i = 0; i < tasks.length; i++)

9 tasks[i].add(t);

10 }

11

12 // retrieves the next task from the queue

13 Task getNext(int executorID) {

14 return tasks[executorID].pool();

15 }

16 ...

17 }

4.2.2.1 Preserving Replica State Consistency

For managing the execution of Tasks, the Runtime uses a producer/consumer scheme,
where submitted Tasks are scheduled for execution according to their version, as pre-
sented in Listing 4.6. Ordered queues, one for each replica, are used to maintain Tasks
ordered by their respective version. This allows the Runtime to execute Tasks in all
Replicas according to their total order [Lam78], thus guaranteeing the semantics of the
component and maintaining replica state consistency.

Listing 4.7: Executor Implementation.
1 class Executor implements Runnable {

2 int executorID;

3 int replica;

4 ...

5

6 void run() {

7 while(Runtime.isRunning()) {

8 Task t = Runtime.getNext(executorID);

9 if(!f.alreadyExecuted(t.replicas[replica]))
10 t.execute(t.replicas[replica]);

11 }

12 }

13 ...

14 }

A fixed size pool of Executor threads, one for each Replica, retrieves Tasks from the
queue and executes them on the corresponding Replica, as presented in Listing 4.7. Tasks
guarantee that the corresponding method executes in a Replica accordingly to its version,
Listing 4.4 (line 11), thus Macro-Components o↵er a consistent single copy view of the
underlying replicas. Additionally, the Executors guarantees that each Task does not
execute more than once in the same Replica, Listing 4.7 (line 9).

57

CHAPTER 4. MODIFICATION-FREE SOLUTION

By using a fixed number of Executors, we guarantee that, at most, only N+M threads
will be executing at any time, where N is the total number of Executors and M is the
number of threads of the application.

4.3 MacroDB

We now present MacroDB, an example of a Macro-Component for scaling IMDBs on
multicore machines. MacroDB replicates the database on several database engines, all
running on the same machine, while o↵ering a single-copy serializable view of the database
to clients [Ber+87].

MacroDB works independently of the underlying database engine, acting as a trans-
parent layer between applications and the database. SQL statements, received from the
application, are passed, without modifications, to the underlying engines, thus making
MacroDB easy to deploy, since it does not require any modification to existing applica-
tions or database engines. This section details the architecture and algorithms used in
MacroDB.

4.3.1 Architecture

MacroDB

Manager' Run*me'

'
' '
'Secondary'

Replicas'

Primary'
Replica'

Client' Client' Client' Client'

Figure 4.3: MacroDB architecture.

MacroDB uses a master-slave replication scheme [Hel+96; Wie+00], where the master
maintains the primary copy of the database, while the slaves maintain secondary repli-
cas. The MacroDB architecture, depicted in Figure 4.3, is composed by the three main
components of a Macro-Component:

• the manager, responsible for coordinating transaction execution in the replicas;

58

4.3. MACRODB

• the runtime, responsible for propagating operations from the primary to the sec-
ondary replicas, i.e., executing operations in the secondary replicas; and

• the replicas, i.e., the database engines responsible for maintaining copies of the
database.

Clients remain oblivious of the replicated nature of MacroDB since it o↵ers them a
standard JDBC interface, and provides them with a single-copy serializable view of the
database [Ber+87]. To this end, clients do not communicate directly with the database
engines, instead they communicate with the MacroDB JDBC compliant front-end.

This front-end, in conjunction with the manager, coordinate client queries and their re-
spective execution in the underlying replicas. MacroDB receives statements from clients
and executes them, without modification, in the appropriate replica, replying to clients
the respective results. All update transactions are executed on the primary replica, while
read-only transactions execute on a single secondary replica.

The manager also propagates update transactions, that successfully commit in the
primary, to the runtime for maintaining consistency of the secondary replicas. Thus,
its main functions are: i) to route client requests and execute them on the appropriate
replicas, replying the results back to the clients; ii) to manage operation execution to
guarantee that the system provides a single consistent serializable view of the replicated
database to the applications, and iii) to detect and recover possible replica failures.

Update transactions, received from clients, execute concurrently on the primary copy,
while read-only transaction execute concurrently on secondary replicas. For preserving
consistency each replica maintains an associated version that registers the number of
update transactions committed in the respective replica. This value is incremented every
time a commit is successfully executed. Contrarily to the general approach used byMacro-
Components, the version of the primary replica also defines the MacroDB version. This
is possible since all update transactions are executed synchronously by the primary.

Upon successfully committing on the primary, and advancing the replica’s version,
update transactions are sent to the runtime for execution on the secondary replicas. These
are propagated in statement batches, stamped with the version value of the primary at
commit time. The runtime guarantees these batches execute on the secondary replicas in
the same order as committed on the primary, i.e., according to their respective version
values, similarly to CBS [Van+07]. By sequentially executing each commit in the master
replica, and advancing the version counter, we define a correct serialization order for
update transactions, without forcing an a priori commit order.

This means that secondary replicas might not be completely up to date at a given
moment. To guarantee linearizability[HW90], read-only transactions only execute on a
secondary replica which has, at least, the same version as the master. To achieve this,
before the first operation of each new transaction, the MacroDB manager registers the
current version value of the master replica. This defines the expected replica version,
i.e., the state of the database, in which the transaction must execute. Since all update

59

CHAPTER 4. MODIFICATION-FREE SOLUTION

transactions execute directly on the master replica, this is only used by read-only trans-
actions, since read-only transaction can only execute on up-to-date replicas. This means
read-only transactions may be held up waiting for a secondary replicas to be updated,
before executing.

For maintaining the secondary replicas updated, the runtime maintains a queue of
pending update batches and a set of executor threads, one for each secondary replica.
These threads execute the update batches on their respective secondary replica in the
same order these commit in the primary replica. Respecting this order guarantees that
all replicas evolve to the same consistent state.

To achieve this, the runtime maintains the queue of update batches ordered by their
respective version. Additionally, each executor only applies an update if its replica is up
to date. Since the runtime maintains only one executor per replica, and the updates are
kept ordered, the runtime guarantees state consistency. We will now describe, in greater
detail, the implementation of MacroDB.

4.3.2 Implementation details

MacroDB o↵ers applications a JDBC compliant front-end. During this discussion we
present some implementation details of this front-end and try to show how this is inte-
grated with the remaining MacroDB components. Above all, we try to present a clear
view of how MacroDB abstracts applications from its replicated nature, and o↵ers clients
a single copy serializable view of the database.

4.3.2.1 Requirements

Since MacroDB has been designed to use database engines as blackboxes, i.e., without
modifications, we require the underlying engine to use lock bases concurrency control,
thus guaranteeing commit operations do not block. Additionally, for providing single
copy serializable view of the database, we require the underling engines to use serializable
isolation level. These requirements are supported by, possibly, every major database
implementation, including the ones used for the MacroDB evaluation.

4.3.2.2 Connecting to MacroDB

As presented before, MacroDB o↵ers a JDBC compliant front-end, thus applications es-
tablish connections to MacroDB using the JDBC getConnection operation.

Whenever a client tries to establish a new connection to MacroDB, the manager tries
to connect to all MacroDB replicas, as presented in Listing 4.8. If this is the first connec-
tion to MacroDB, the manager will instantiate each replicas and create the appropriate
metadata, as presented in Listing 4.9 (lines 7-11 and 14-17).

As an example of a Macro-Component, each replica of MacroDB has an associated
unique identifier and a version tracking mechanism. These are unique in the systems,

60

4.3. MACRODB

i.e., each replica maintains the same identifier and version counter independently of the
number of client connections.

Subsequent client connections to MacroDB, result in the creation of a new connection
to each replica, sharing the previously created metadata. Thus, each MacroDB connection
has an exclusive associated context in each replica, i.e., has an exclusive connection to
each database replica.

Listing 4.8: MacroDB Driver Implementation.
1 class MacroDBDriver implements java.sql.Driver {

2 ...

3 // return a JDBC Connection object that maintains

4 // a connection to each database replica

5 Connection connect(String url, Properties p) {

6 Replica[] connectionsToReplicas = MacroDBManager.connectTo(url, p);

7

8 return new MacroDBConnection(connectionsToReplicas);

9 }

10 ...

11 }

Listing 4.9: MacroDB Driver Implementation.
1 class MacroDBManager{

2 int replicaCount;

3 Version[] replicaVersions;

4 ...

5 // returns the version of a given replica,

6 // creating a new one if it does not exist

7 Version getReplicaVersion(int replica) {

8 if replicaVersions[i] == null)
9 replicaVersions[i] = new Version();

10 return replicaVersions[i];

11 }

12

13 // establishes a connection to a database replica

14 Connection createConnection(String url, Properties p, int replica) {

15 String replicaURL = url + i;

16 return DriverManager.getConnection(replicaURL, args));

17 }

18

19 // establishes a connection to the database replicas

20 Replicas[] connectTo(String url, Properties p) {

21 Replica[] connections = new Replica[replicaCount];

22 for(int i = 0;i < replicaCount; i++) {

23 Connection con = createConnection(url, p, i);

24 Version v = getReplicaVersion(i);

25 connections[i] = new Replica<Connection>(con, v);

26 }

27 return connections;

28 }

29

30 Task createTask(Action action, Replicas reps, Object ... args){

31 if (action instanceof ReadAction)

32 return new Task(action, reps, replicaVersions[0].get(), args);

33 else

61

CHAPTER 4. MODIFICATION-FREE SOLUTION

34 return new Task(action, reps, replicaVersions[0].incrementAndGet(), args);

35 }

36

37 Task createTask(Action action, Replicas reps, Version version, Object ... args){

38 return new Task(action, reps, version, args);

39 }

40 ...

41 }

After establishing a connection, clients interact with MacroDB using the standard
JDBC Connection interface. When the clients calls methods that directly access the
database, such setAutoCommit() or setTransactionIsolation(), the respective method are
called on the master replica, forwarding the call to the runtime after successful execution,
for executing on the remaining replicas to guarantee consistency, as presented in Listing
4.10 (lines 14-18).

Since these methods are context related, i.e., since these methods only modify the state
of the corresponding connection (session) and not of the entire database, these do not
modify the version of the replica. On the other hand methods that modify the state of the
database, such as the commit() method, advance the version counter when successfully
executed, as described later.

When a client wants to initiate a new transaction, by calling, for instances, the createS-
tatement() or preparedStatement() methods, the manager calls the corresponding methods
on all replicas, and creates a new MacroDBStatement/MacroDBPreparedStatement ob-
ject. These maintain the corresponding Statement/PreparedStatement that resulted from
executing these calls on the replicas, as presented in Listing 4.10 (lines 22-33).

Again, since these methods do not change the state of the database, these do not
modify the version value of the replicas. Next we detail how MacroDB manages the
execution of transactions, i.e., how MacroDB manages Statement method calls. Although
this discussion focused on the Statement JDBC interface, a similar approach is used for
the PreparedStatement JDBC interface.

Listing 4.10: MacroDB Connection Implementation.
1 class MacroDBConnection implements java.sql.Connection {

2 // database engine connections

3 Replica<Connection>[] connections;

4 boolean autoCommit;

5 boolean readOnly;

6 int currReplica;

7 Version txInitVersion;

8 Queue batch;

9 ...

10

11 static final Action setAutoCommit = new ReadAction {

12 Object execute(Replica replica, Object ... args) throws SQLException{

13 ((Connection)replica.getReplica()).setAutoCommit((Boolean)args[0])

14 }

15 }

16 // JDBC setAutoCommit method;

17 // Defines if the database auto-commits every statement

62

4.3. MACRODB

18 void setAutoCommit(boolean auto) throws SQLException {

19 Task t = Manager.createTask(setAutoCommit, auto);

20 Manager.syncExecuteAll(t, 0);

21 this.autoCommit = val;

22 }

23

24 // JDBC createStatement method;

25 // Creates a new Statement for this connection

26 Statement createStatement() throws SQLException {

27 int count = Manager.replicaCount;

28 Replica<Statement>[] statReplicas = new Replica[count];

29 for(int i = 0;i < count; i++) {

30 Statement stat = ((Connection)connections).createStatement();

31 statReplicas[i] = new Replica(stat, Manager.getReplicaVersion(i));

32 }

33 return new MacroDBStatement(stats);

34 }

35

36 static final Action setReadOnly = new ReadAction {

37 Object execute(Replica replica, Object ... args) throws SQLException{

38 ((Connection)replica.getReplica()).setReadOnly(args[0]);

39 }

40 }

41 }

42 void setReadOnly(boolean read) throws SQLException {

43 readOnly = read;

44 if(read) {

45 currReplica = nextSlave();

46 }

47 else {

48 currReplica = 0;

49 batch = new Queue();

50 }

51 Task t = Manager.createTask(setReadOnly, read);

52 Manager.syncExecute(t, currReplica);

53 if(!read)
54 batch.add(t);

55 }

56

57 static final Action readCommit = new ReadAction {

58 Object execute(Replica replica, Object ... args) throws SQLException{

59 ((Connection)replica.getReplica()).commit();

60 }

61 }

62 static final Action writeCommit = new WriteAction {

63 Object execute(Replica replica, Object ... args) throws SQLException{

64 synchronized (replica) {

65 ((Connection)replica.getReplica()).commit();

66 replica..getAndIncrementVersion();

67 }

68 }

69 }

70 // JDBC commit method;

71 void commit() throws SQLException {

72 if(readOnly) {

73 Task t = Manager.createTask(readCommit, txInitVersion);

74 Manager.syncExecute(t, currReplica);

75 txInitVersion = null;

63

CHAPTER 4. MODIFICATION-FREE SOLUTION

76 }

77 else {

78 Task t = Manager.createTask(writeCommit);

79 Manager.syncExecute(t, currReplica);

80

81 batch.add(t);

82 Runtime.submitBatch(batch);

83 batch = null;
84 }

85 }

86

87 static final Action rollback = new ReadAction {

88 Object execute(Replica replica, Object ... args) throws SQLException{

89 ((Connection)replica.getReplica()).rollback();

90 }

91 }

92 // JDBC rollback method;

93 void rollback() throws SQLException {

94 if(readOnly) {

95 Task t = Manager.createTask(rollback, txInitVersion);

96 Manager.syncExecute(t, currReplica);

97 txInitVersion = null;
98 }

99 else {

100 Task t = Manager.createTask(rollback);

101 Manager.syncExecute(t, currReplica);

102 batch = null;
103 }

104 }

105

106 ...

107 }

4.3.2.3 Transaction Execution

In this discussion we assume that, prior to the start of a transaction, a client calls the
setReadOnly method from the JDBC interface. All subsequent queries and/or updates ex-
ecuted after this method and prior to a commit or rollback operation define a transaction.
Additionally, we define as read-only transactions that do not execute update operations.
All transactions that execute, at least one update operations, be it an UPDATE, INSERT
or REMOVE operation, are defined as update transactions. We also assume that the
argument value passed to the setReadOnly method is coherent with the transaction type.

Read-only transactions When a read-only transaction starts, MacroDB selects a slave
replica in which the transaction will execute, as presented in Listing 4.10 (line 45). After
starting the transaction, clients submit queries using the executeQuery of the JDBC inter-
face. All queries are executes on the selected replica, as presented in Listing 4.11 (lines
14-23), using the context of the calling thread, returning the result to the client.

The first query of each new transaction additionally records the current version of the
primary replica. This version defines the state of the database for this transaction. This is

64

4.3. MACRODB

necessary to preserve single copy serializable semantics, since, due to runtime overhead,
a client may start a read-only transactions on a secondary replicas that has yet to commit
a previous update transaction from that same client, thus violating serializable semantics.
To this end, the selected secondary replica needs to have, at least, the same version as the
one recorded. This is guaranteed by our runtime, since, when executing a Task, it will
wait until the selected replica has the same version as the one defined, i.e., is in a correct
state.

Note that, at the time of the calling, the replica may have a superior version to the one
expected, i. e., the recorded version of the primary was inferior to the one the replica is in
(this can occur due to OS scheduling policies). This is not problematic, still guaranteeing
single copy serializability, since any modifications that occurred were due to concurrently
executed transactions. Note also that subsequent queries do not need to wait for the
replica to be on the same state as the primary, since these are concurrent to any update
transactions executing on the primary. Only the first query needs to wait for the replica
to be up-to-date.

When a client commits a read-only, by calling the commit JDBC method, the method
is called on the secondary replica using the context of the calling thread. Since no modifi-
cation occurred to the database, a ReadAction is used to commit the transaction on the
secondary replica. This commits the transaction without advancing the replica’s version.

Similarly, if the client decides to rollback the transaction, by calling the rollback JDBC
method, the corresponding method is called on the secondary replica using the context
of the calling thread. Again, since rolling back a transaction does not change the state
of the database, a ReadAction is used to rollback the transaction without advancing the
replica’s version.

Listing 4.11: MacroDB Statement Implementation.
1 class MacroDBStatement implements java.sql.Statement {

2 // father MacroDB Connection

3 MacroDBConnection father;

4 // database statements

5 Replica<Statement>[] stats;

6 ...

7

8 static final Action executeQuery = new ReadAction {

9 Object execute(Replica replica, Object ... args) throws SQLException{

10 return ((Statement)replica.getReplica()).executeQuery((String)args[0])

11 }

12 }

13 // JDBC executeQuery method;

14 ResultSet executeQuery(String sql) throws SQLException {

15 if(father.txInitVersion == null)
16 father.txInitVersion = Manager.getReplicaVersion(0);

17 Task t;

18 if(father.readOnly)
19 t = Manager.createTask(executeQuery, father.txInitVersion, sql);

20 else
21 t = Manager.createTask(executeQuery, sql);

22 return Manager.syncExecute(t, father.currReplica);

65

CHAPTER 4. MODIFICATION-FREE SOLUTION

23 }

24

25 static final Action executeUpdate = new ReadAction {

26 Object execute(Replica replica, Object ... args) throws SQLException{

27 return ((Statement)replica.getReplica()).executeUpdate((String)args[0])

28 }

29 }

30 // JDBC executeUpdate method;

31 int executeUpdate(String sql) throws SQLException {

32 Task t = Manager.createTask(executeUpdate, sql);

33 int res = Manager.syncExecute(t, father.currReplica);

34 father.addToBatch(t);

35 return res;

36 }

37

38 ...

39 }

Update transactions Update transaction are treated in a similar manner, only these
execute directly on the primary replica. When an update transaction starts, by calling
the setReadOnly JDBC method, the primary replica is selected for executing the transac-
tion, and a new batch object is created. This batch is used for maintaining any update
operation, i.e., any SQL update, insert or remove operations, performed in the context of
the transaction, for maintaining consistency of the secondary replicas. Additionally, the
setReadOnly method is called on the primary replicas, using the context of the calling
thread and its associated task is added to the current transaction batch, before returning
to the client.

All queries, submitted by a client using the executeQuery JDBC method, are executed
on the primary replica, using the context of the calling thread, as presented in Listing 4.11
(lines 14-23), and the respective results are returned to the client. Note that, contrarily
to read-only transactions, these queries execute directly on the primary replica without
waiting for the replica to be in a specific state, since update transactions all execute
directly on the primary replica.

Similarly, update operations, submitted by a client using the executeUpdate JDBC
method, execute on the primary replica, using the context of the calling thread, as pre-
sented in Listing 4.11 (lines 31-36). However, and contrarily to queries, before their
respective results are returned to the client, its associated task is added to the transac-
tion’s batch.

When a client decides to commit an update-transaction, by calling the commit JDBC
method, the corresponding method is called on the primary replica using the context
of the calling thread. Since committing an update transaction modifies the state of the
database, a WriteAction is used to commit the transaction on the primary. This commits
the transaction and advances the replica’s version atomically. Additionally, the corre-
sponding task is added to the transaction batch, and the batch is sent for the runtime to
execute in the remaining replicas, i.e., in the secondary replicas.

66

4.3. MACRODB

If, prior to committing it, a client decides to rollback an update-transaction, by calling
the rollback JDBC method, the corresponding method is called on the primary replicas
using the context of the calling thread. Since any modifications, performed in the context
of this transaction, have only a↵ected the primary replica, there is no need to rollback
the transaction in the secondary replicas, since only successfully committed transactions
propagate their actions to the secondaries. Thus, and before returning to the client, the
rollback simply discards the batch. Again, since rollback operations do not modify the
state of the database, a ReadAction is used to execute the rollback without advancing the
replica’s version.

4.3.2.4 Concurrent Transactions

MacroDB does not explicitly restrict concurrency in any way, i.e., several clients can inter-
act concurrently with MacroDB. MacroDB delegates the concurrency control mechanism
to the underlying database. This is possible since, each client connection maintains asso-
ciated connections to all replicas, thus all statements execute in their respective contexts.

Also, these connections are shared with the runtime, thus all operations execute under
their respective contexts, thus leaving concurrency control to the underlying databases.
Additionally, since the manager and runtime force the first operations of a new read-
only transaction to wait for any prior transactions to commit on the selected replica, it
guarantees that all statements of the new client transaction execute after all previous
transactions from that same client have committed on the replicas. Thus, never two
operations from di↵erent transaction will ever execute concurrently on the same context,
i.e., as if they were part of the same transaction.

4.3.2.5 Closing connections

When a client closes a Connection or a Statement, by calling the close JDBC method, the
corresponding method is called synchronously on the primary replica, using the caller
thread, and asynchronously on the secondary replicas, using the runtime.

4.3.2.6 Replica State Consistency

For propagating updates to the secondary replicas, MacroDB uses the, previously de-
scribed, Macro-Component runtime. The runtime maintains a queue of pending update
batches and a set of executor threads, one for each secondary replica. Each thread waits
for the next update batch to be inserted into its queue, and executes it on the respective
replica.

To preserve consistency, the runtime maintains the queue of update batches ordered
by their respective version. Additionally, each executor only applies an update if the
replica is up to date, i.e., if the version of the update batch is the immediate successor to
the current value of the replica. In the case where the update batch is not the immediate
successor, the executor returns the update to the runtime and retrieves a new one, possibly

67

CHAPTER 4. MODIFICATION-FREE SOLUTION

the immediate successor. This situation can happen since only the commit and increment
of the version counter are atomic, not the insertion of the batch in the queue. However,
since the runtime maintains only one executor per replica, and the updates are executed
accordingly to their version, the runtime guarantees eventual state consistency.

After successfully executing an update batch, the executor atomically commits the
transaction and advances the version associated with the replica. Since these updates
are performed sequentially, we guarantee that no deadlock will occur on the secondaries
when performing updates. This guarantees that all update batches will commit success-
fully.

MacroDB guarantees single-copy serializable view in di↵erent ways:

1. By running all replicas run under the serializable isolation level, we guarantee that
update transactions execute in isolation from each other on the master replicas, and
that read-only transactions execute in isolation from concurrent updates on the
slave replicas;

2. By retrying updates on the slave replicas in case of these abort due to conflicting
read-only transactions.

Since the propagation of update on the secondaries can conflict with concurrently
executing read-only transactions, leading to possible aborts, the runtime guarantees con-
sistency and isolation by retrying updates whenever these abort. This guarantees both
consistency and isolations, since relaunching updates guarantees these will eventually
succeed.

Also, possible conflicting read-only transactions that abort in the same way, i.e., due
to a conflict with an update, will rollback their actions, and have a di↵erent version when
they relaunch. Thus, these will read a new version value from the master, and will have
to wait for previous updates to be executed before continuing.

In extremis an update batch can execute in exclusion, on a given secondary replica,
due to all concurrent read transactions, scheduled for that replica, having started when
the version of the master already reflected that update.

4.3.3 Correctness

For the correctness of the system, it is necessary to guarantee that all replicas evolve to
the same state after executing the same set of transactions. Also, for guaranteeing that
MacroDB provides a single consistent view of the replicated database, it is necessary to
guarantee that a transaction is always executed after all update transactions that may
precede its commit. This is achieved because the system enforce the following properties.

Proposition 1. All replicas commit all update transactions in the same, serializable, order.

Proof. At the primary, as commits execute atomically in isolation, the serializable order is
defined by the order of each commit. Since secondary replicas execute update transactions

68

4.3. MACRODB

in a single thread, i.e., sequentially, by the same order, all replicas commit all update
transactions in the same order.

Proposition 2. A transaction is serialized after all update transactions that precede its commit.

Proof. For update transactions, this is guaranteed by the database engine at the primary.
For read-only transactions, MacroDB enforces this property by delaying the beginning of
a transaction until the secondary replica has executed all transactions committed at the
moment the begin transaction was called.

4.3.4 Minimizing Contention for E�cient Execution

As presented earlier, the master-slave replication approach used in MacroDB executes
update and read-only transactions in di↵erent replicas. Thus, read-only transactions
never block update transactions and vice-versa, since these execute in distinct replicas.

Also, the execution of update transactions in secondary replicas may interfere with
read-only transactions, depending on the concurrency control scheme used in the under-
lying database. Both H2 and HSQLDB support multi-version concurrency control that
allows read-only transaction to not interfere with update transactions. Since only a single
update transaction executes at a time, in secondary replicas, this approach guarantees
serializable semantics.

Read-only transactions still need to wait until the secondary replica is up-to-date be-
fore starting. Our approach, of executing update transactions as a single batch of updates,
minimizes the execution time for these transactions, thus also minimizing waiting time.

Finally, we minimize contention on the database engine by reducing the number of
transactions that execute in the same replica at the same time - by executing only a
fraction of the read-only transactions in each secondary replica and by executing update
transactions quickly in a single database operation.

4.3.5 Evaluation

In this section we evaluate MacroDB performance, by measuring the throughput of the
system. Additionally we compare the results from the standalone uncoordinated versions
of HSQLDB and H2 with the ones from MacroDB using HSQLDB and H2, referred to
as MacroHSQL and MacroH2 respectively. For this comparison we evaluated the perfor-
mance impact of varying the number of secondary replicas of MacroDB.

4.3.5.1 Prototype Considerations

Our MacroDB prototype is built in Java, and includes the necessary runtime system, as
well as a custom JDBC driver. By using this simple approach, developers are able to
integrate MacroDB into their applications by simply adding its library and modifying the
URL used to connect to the database engine, without additional changes to the application

69

CHAPTER 4. MODIFICATION-FREE SOLUTION

code. The number of replicas and underlying database engines used are defined in the
connecting URL. When the first client connects to the database, replicas are instantiated
and the runtime system is started.

Our prototype takes advantage of the embedded functionalities o↵ered by both data-
bases. Thus, contrarily to traditional middleware solutions that execute the database
engine on a separate process from the middleware, in our approach the middleware
shares the same process space as the database engines. This simplifies communication,
reducing its overhead, and allows for MacroDB to be practical, even when increasing the
number of replicas, as presented in Section 4.3.5.2.

4.3.5.2 TPC-C

Overhead First we wanted to measure the overhead imposed by MacroDB. To this end
we compared the throughput of the standalone uncoordinated database engines with
MacroDB configured with a single replica, i.e., only the primary replica. Under this
configuration MacroDB behaves similarly as the standalone versions, i.e., without dis-
tributing load among several replicas, thus allowing us to measure the overhead imposed
by our system.

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92
50-50

80-20
100-0

(a) MacroHSQLDB (1 replica)

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92
50-50

80-20
100-0

(b) MacroH2 (1 replica)

Figure 4.4: MacroDB overhead results (all TPC-C workload).

The results, presented in Figures 4.4(a) and 4.4(b) for MacroHSQLDB and MacroH2
respectively, show the MacroDB speedup compared to their standalone siblings, for all
TPC-C workloads. These results show that MacroDB imposes a, fairly constant, overhead
of approximately 10%. Moreover, this overhead remains constant independently of the
number of clients and type of workload.

MacroDB speedup Next we measured the speedup of MacroDB, compared to the stan-
dalone database engines. To this test we varied the number of replicas, using 3 and 4
replica, i.e., a primary plus 2 and 3 secondary replicas. Again, we used the TPC-C bench-
mark to measure the speedup of MacroDB, varying the number of clients and type of
workload.

70

4.3. MACRODB

8-92 workload Figures 4.5(a) and 4.5(b) present the results obtained running TPC-C
with a 8% read and 92% write workload. As expected, under update intensive workloads,
our system is unable to o↵er any performance improvements. This occurs since the
majority of transactions (92%) execute on a single replica, the primary, thus MacroDB is
unable to benefit from the additional replicas for load balancing.

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(a) MacroHSQLDB

 0.76
 0.78

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(b) MacroH2

Figure 4.5: TPC-C 8-92 workload results (3 & 4 replicas).

Nonetheless, the results allow us to measure the overhead imposed by the runtime
system, since, and contrarily to the previous experiment where all transactions execute
on a single replica, some transactions (8%) execute on a secondary, thus need to wait
for previous updates to be executed on the selected replica. This overhead increases
with the number of clients and the number of replicas, ranging up to approximately
25%. This is expected since the increasing number of clients increases contention due
to coordination among concurrent threads accessing MacroDB. Also, increasing number
of replicas increases increases the number of queues used by the runtime system for
propagating updates, which increases overhead.

50-50 workload Figures 4.6(a) and 4.6(b) present the results obtained running TPC-
C with a 50% read and 50% write workload. Under these workloads, MacroDB is able to
achieve higher throughput than the standalone versions, o↵ering up to 1.6⇥ and 2.2⇥ the
performance of HSQLDB and H2 respectively.

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(a) MacroHSQLDB

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(b) MacroH2

Figure 4.6: TPC-C 50-50 workload results (3 & 4 replicas).

71

CHAPTER 4. MODIFICATION-FREE SOLUTION

Although MacroDB is able to o↵er better performance than the standalone engines,
its scalability is still limited by the nature of the workload. While secondary replicas
are able to balance read-only transactions, the moderate update nature of this workload
still imposes great stress at the primary replica, thus limiting scalability. This is put in
evidence by the, almost negligible, performance di↵erence when MacroDB is configured
with 3 or 4 replicas, i.e., 2 or 3 secondary replicas. Nonetheless, these results show that,
even with considerable update rates, MacroDB is able to o↵er improved performance
compared to the standalone engines.

80-20 and 100-0workloads The nature of read intensive workloads allowsMacroDB
to take full advantage of its replicated architecture. Figures 4.7(a) and 4.7(b) present the
results obtained running TPC-C with a 80% read and 20% write workload. Under these
workloads, MacroDB is able to improve throughput of the standalone versions, o↵ering
up to 2.2⇥ and 2.6⇥ the performance of the original HSQLDB and H2 engine, respectively,
when MacroDB is configured with 4 replicas.

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(a) MacroHSQLDB

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(b) MacroH2

Figure 4.7: TPC-C 80-20 workload results (3 & 4 replicas).

Figures 4.8(a) and 4.8(b) present the results for the read-only workload. Again,
MacroDB is able to o↵er considerable performance increases, outperforming the orig-
inal engines in up to 2.9⇥ and 3.1⇥ for HSQLDB and H2, respectively.

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(a) MacroHSQLDB

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

3 Replicas 4 Replicas

(b) MacroH2

Figure 4.8: TPC-C 100-0 workload results (3 & 4 replicas).

Additionally, under these workloads, the increase in the number of replicas directly

72

4.3. MACRODB

increases performance. This is expected, since the read intensive nature of these work-
loads allows MacroDB to e�ciently distribute load among the additional replicas. Also,
and contrarily to the update intensive workloads, these workloads reduce contention on
the primary replicas, thus contributing to the scalability of MacroDB.

Additional Replicas To study the performance impact of the number of replicas, we
repeated the previous experiment increasing the number of replicas of MacroDB. This
experiment was conducted using the HSQLDB engine.

Figures 4.9(a) and 4.9(b) present the results obtained running TPC-C under the 80%
read workload and the read-only workload, respectively, using a MacroDB configuration
of 6 replicas (1 primary and 5 secondary replicas).

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

4 Replicas 6 Replicas

(a) TPC-C 80-20 Workload

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Replicas

4 Replicas 6 Replicas

(b) TPC-C 100-0 Workload

Figure 4.9: MacroHSQLDB with 6 replicas

The results show that MacroDB is able to further improve its performance with the
increase in the number of secondary replicas. It improves performance from 2.2⇥ to
2.8⇥, for the 80% read workloads, while, for read-only workloads, the additional replicas
allow MacroDB to achieve a 4⇥ performance improvement, almost 1⇥more than with 3
secondary replicas.

Again, these results put into evidence how current multicore CPUs are underutilized
by current IMDB engines, since MacroDB was able to successfully improve performance,
over standalone engines, even when running 6 engines on a single machine.

Replicas
MacroDB 2 3 4

H2 1.37⇥ 1.74⇥ 2.13⇥
HSQL 1.39⇥ 1.79⇥ 2.18⇥
Table 4.1: Memory overhead

Memory Usage To measure the practicality of our proposal, we measured the memory
overhead imposed by MacroDB, over the standalone database engines (Figure 4.1), vary-
ing the number of replicas. This was measured using the Java Virtual Machine methods
for consulting memory usage.

73

CHAPTER 4. MODIFICATION-FREE SOLUTION

Contrarily to what may be expected, the memory used by MacroDB is not directly pro-
portional to the number of replicas. This results from MacroDB exploiting the embedded
configuration option o↵ered by both HSQLDB and H2. Under such configuration, the
di↵erent replicas run in the same Java Virtual Machine, thus sharing the same address
space. This way, di↵erent replicas share immutable objects Java, such as Strings, instead
of fully replicating data. Thus, increasing the number of replicas does increase memory
usage proportionally.

The obtained results show thatMacroDB, when configured with either H2 or HSQLDB
replicas, uses at most 1.4⇥ more memory than the standalone engine, when configured
with 2 replica, and 2.2⇥ when using 4 replicas. This makes deploying MacroDB practical
on a single multicore machine, even with large numbers of replicas.

4.3.5.3 TPC-W

Workload Throughput(WIPS)
H2 MacroDB (3 H2 replicas)

Browsing Mix 261.6 458.4
Shopping Mix 202 428.6

Table 4.2: TPC-W results

As an additional experiment, we compared the results obtained running TPC-W
benchmark on a single, uncoordinated, H2 engine and a MacroDB using three H2 repli-
cas (Rep3). The results obtained, presented in Figure 4.2, show the throughput, in web
interactions per second (WIPS), obtained running TPC-W browsing mix (95% read trans-
actions) and shopping mix (80% read transactions), on the machine previously described
with a database of 2 gigabytes, for 20 minutes and using 128 emulated browsers, with no
thinking time. The performance improvements of MacroDB over the standalone version
of H2 ranges from 1.75⇥ to 2.12⇥ the performance of the original engine, thus showing
the benefits of our system.

4.3.6 Additional discussion

From the presented results, we can conclude that, while MacroDB is able to reduce
contention and improve performance over standalone systems, scalability is restricted
to read-intensive workloads. This is expected, since update intensive workloads impose
high contention on master-slave replication schemes, with all update transactions being
directed to the same primary replica.

Additionally, even under read-intensive workloads, MacroDB performance improve-
ments, over standalone versions, is limited by the number of replicas in the system. Again
this is expected, since the underlying replicas maintain the original performance limita-
tions, although the replicated nature of the system only exposes these limitations under
a higher level of concurrency.

74

4.3. MACRODB

Above all, MacroDB performance is limited by the performance of its replicas, since
throughput is a function of the load on a bottleneck entity [Por+15]. In our design
the bottleneck is the master in update-heavy workloads or the slaves in read-intensive
workloads. Thus, the major performance restriction for MacroDB is the performance of
each replica. So, for e�ciently addressing the performance and scalability problem of
IMDBs on multicores, we should modify the database engine. In the next chapters, we
focus on this problem.

4.3.7 Fault Handling

While the previous discussion focused on improved performance, the Macro-Component
abstraction can also be used to o↵er improved fault-tolerance over standard components.
When focusing on this goal, we can follow principles similar to diverse component replica-
tion [Avi85; AK84; CA78; Gar+11; Gas+07] and byzantine fault-tolerant systems [CL02a;
CL02b; Gar+11; Pre+08; Rod+01; Van+07], and apply them at the component level.

Fault-tolerant macro-components can provide fault tolerance by replacing original
components by their Macro-Component siblings, where each Macro-Component coordi-
nates a number of diverse replicas with the same interface, running on a single machine
multicore system. Operations can perform arbitrary deterministic computations using
the component state and operation arguments. Also, applications interact with the origi-
nal components by invoking operations and blocking for a reply.

Following a state machine replication scheme [Lam78; Sch90], we assume a Byzantine
failure model, where a component may fail arbitrarily by crashing or failing to respond,
as well as returning erroneous results due to bugs. Also, we assume di↵erent imple-
mentations of the same specification are available (i.e., component diversity), and that
faults can be detected by comparing the results from the di↵erent implementations. Fi-
nally, we assume component faults do not compromise the computer system integrity
and functionality, i.e., do not cause the computer system to fail.

By applying a state machine replication scheme on a single machine multicore sys-
tems, we assume replica coordination is not compromised by the applications, since these
remain oblivious to the replicated nature of a Macro-Component. Thus, contrarily to
the traditional approach that requires additional replicas to guarantee liveness of the
replicated system [CL02a], Macro-components o↵er Byzantine fault-tolerance assuming
no more than (n � 1)/2 replicas fail. Therefore, Macro-Components provide improved
fault-tolerance over non-replicated components, by requiring 2f +1 replicas, where f is
the number of faults the system is able to tolerate.

4.3.7.1 Behavior

Contrarily to non-fault-tolerant Macro-components, where all operations execute on a sin-
gle replica, either on the primary or on a secondary replica (with writes being propagated

75

CHAPTER 4. MODIFICATION-FREE SOLUTION

asynchronously from the primary replica to the secondary replicas), fault-tolerant Macro-
Components execute operations in more replicas. A fault-tolerant Macro-Component
detects faults by: i) invoking a method in a set of replicas; ii) each replica executes the
corresponding method concurrently; iii) the coordinator waits for, at least, f + 1 equal
results; iv) the result from the majority of replicas is returned to the application.

For reducing overhead, read operations initially execute in only f + 1 replicas, exe-
cuting in additional replicas only if the results diverge. To promote fault manifestation
and distribute load, read operations execute in a randomly selected set of replicas. This
guarantees that every replica is used for executing read operations.

Whenever inconsistent results are detected, the corresponding replicas are marked as
faulty and selected for recovery, being temporarily removed from the set of active replicas.
Also, if some replica is unable to produce a result within a certain time limit, the replica is
considered faulty. The time limit is defined by the time taken by the majority of replicas
to reply, plus an additional tolerance.

4.3.7.2 Fault-Tolerant MacroDB

We have built a fault-tolerant Macro-Component for in-memory databases, called FT-
MacroDB. FT-MacroDB shares most of the design of MacroDB, adding an additional
validation subcomponent, and requiring the number of replicas to be 2f +1, where f is
the maximun number of replicas that can be faulty.

Like its sibling, it is based on a master-slave replication scheme, with the master
maintaining the primary copy of the database and slaves maintaining secondary copies.
However, and contrarily to its sibling, in FT-MacroDB each operation executes on a set
of replicas with the same state. Thus, all operations are initially executed by the master
replica for defining the order in which these must execute in the remaining slaves. The
first result, from each statement is returned to the applications, while the remaining re-
sults are gathered and compared asynchronously. Query statements are initially executed
on f +1 replicas, while update statements execute in all replicas. Queries only execute in
additional replicas if results di↵er.

When a client wants to commit a transaction, if all statements have produced coherent
results, the transaction commits successfully, failing otherwise. This approach combines
a speculative and asynchronous verification model in a way that is transparent to the
application. If the asynchronous verification detects that incorrect results were returned
to the application, the transaction aborts.

4.3.7.3 Additional remarks

Our preliminary results have shown that FT-MacroDB is even more dependent on the
scalability of each replica.

Contrarily to the performance approach, where only update operations need to exe-
cute in all replicas, in a fault-tolerant approach all operations need to execute in, at least,

76

4.4. RELATED WORK

f + 1 replicas. This increases the concurrency in each replica, stressing the scalability
problem of a single database. Additionally, the obtained results from these operations
need to be gathered, for comparison, before committing each transaction. Both these
prerequisites require considerable coordination between replicas, since operations need
to execute in the same order in all replicas. This coordination, in turn, results in consid-
erable overhead and runtime contention, which greatly compromises performance and
practicality.

Thus, although this was an interesting research path, we ended up not exploring it too
much on this work. We have decided to follow the path of addressing the performance
limitations of In-Memory Databases on multicore machines.

4.4 Related Work

Database replication techniques have been used to improve database performance and/or
availability in many systems [Cec+08; CB09; KA10; Kem+10; Sil+06; WS05; Wie+00].
Availability is achieved by minimizing the system’s downtime, whether due to scheduled
system maintenance or due to unpredictable faults. Replication improves availability by
maintaining additional database replicas that guarantee that the service remains available
in the presence of a fault.

Focusing on performance, replication o↵ers improved performance, over non-repli-
cated databases, by distributing load among the available replicas. This increases through-
put by minimizing contention between concurrent transactions, as well as resource usage.
The former is accomplished by routing transactions to distinct replicas, which allows
them to execute concurrently without interference. The latter is achieved since workloads
are split among the available replicas, which consequently reduces the total number of
transactions executed in each replica. This has the potential to increase throughput, since
fewer transaction share the same resources, allowing additional transactions to exploit
the remaining resources.

Traditional database replication falls into two categories: eager and lazy [Gra+96]. Ea-
ger replication schemes keep replicas up to date, i.e., synchronized, within the boundaries
of each transaction. These typically provide 1-copy serializability [Ber+87], where result-
ing schedules are equivalent to a serial execution order on a single database. However,
this approach imposes considerable overhead, restricting the scalability of these solutions
[Gra+96]. On the other hand, lazy replication schemes trade consistency for performance
by synchronizing replicas outside the scope of the transaction. Thus, this scheme o↵ers
better scalability at the expense of some replicas presenting stale data, since these have
yet to apply the latest updates [Gra+96].

Additionally, di↵erent replication schemes have been adopted, including single or
multi-master replication schemes, as well as di↵erent replication architectures, relying
solely on internal database feactures or on additional middleware [Kem+10]. We now
detail some middleware-based replication solutions that inspired MacroDB.

77

CHAPTER 4. MODIFICATION-FREE SOLUTION

Sprint In Sprint [Cam+07], the authors propose a middleware solution that orches-
trates commodity IMDBs running on a cluster of shared nothing servers. For managing
the database, Sprint ensemble is composed of three di↵erent components: edge servers
responsible for managing data partitions and living transactions; data servers responsible
for maintaining data; and durability servers responsible for providing durability (Sprint
separates durability property from the database to a specialized component for reducing
I/O).

Sprint does not replicate the entire database, instead it partitions the database, repli-
cating the di↵erent partitions among several data servers. Each data server may hold
replicas of several partitions of the database. Clients interact with edge servers, which
modify and forward submitted statements to the corresponding data servers. Sprint needs
to process statements since a single statement may need to access di↵erent partitions to
be executed. All statements from the same transaction are managed by the same edge
server.

Sprint o↵ers a single copy serializable view of the database by serializing transactions
in the past. Each new transaction is assigned a sequence number, that defines the order
in which the transaction should execute. When all statements of the same transaction can
be satisfied on a single data server, these execute locally in that data server, and conflict
detection is left to the database executing the transaction. However, when statements
need to access data from di↵erent data servers, it is necessary coordination among the
di↵erent data servers. Thus, requests are multicast to all data servers, thus defining the
transaction’s respective execution order. Conflicts are detected by the edge server.

For committing read-only transactions, edge servers send commit messages to the
respective data servers and wait for an acknowledgement before committing to the client.
For update transactions, Sprint relies on total order multicast relying on the Paxos pro-
tocol [Lam98]. The edge server multicasts a prepare commit request to all data servers
involved in the transactions. Each data server multicasts its vote to the edge server, all
participating data servers and the durability servers. Each data servers wiling to commit
the transaction multicasts, together with its vote, the update statements executed by the
transaction. If no data server opposes the transaction commits, aborting otherwise. Total
order multicast allows durability servers to guarantee both isolation and durability of
committed transaction.

Like Sprint, MacroDB also uses a master-slave replication scheme that requires no
modifications to the underlying database engines. However, contrarily to Sprint, MacroDB
does not partition data. Instead, it replicates the entire database on all replicas. This al-
lows MacroDB to avoid some of the complexity of Sprint, allowing transactions to commit
at the primary without coordinating with additional replicas. Also, by batching update
statements before executing them on the secondary replicas, MacroDB allows secondary
replicas to acquire exclusive locks for shorter periods of time. This is essential for reduc-
ing contention, which greatly reduces concurrency in multicore systems.

78

4.4. RELATED WORK

Pangea Pangea [MN09] is an eager database replication middleware that provides snap-
shot isolation semantics without requiring modifications to the database servers. It uses a
similar approach to the master slave replication scheme, which the authors entitle leaders
and followers. Update operations execute initially on the leader (primary replica), be-
ing sent to the followers (secondaries replicas) if executed successfully. Read operations
execute on a follower.

Pangea defines its isolation semantics as global snapshot isolation. Under this isolation
semantics, before the first statement of each new transaction, Pangea elects a secondary
replica (follower) and defines the snapshot for the transaction. Snapshot definition is done
in mutual exclusion, for guaranteeing that no transaction commits during this process.
Likewise, commit operations are also executed in mutual exclusion, guaranteeing no
snapshot is being defined during its execution.

Although complementary to our work, MacroDB builds on some of the techniques
from this system, applying them tomulticore systems. Like Pangea, MacroDB also follows
a master-slave replication scheme, although using a stronger isolation level, serialziability.
Also, MacroDB follows an identical consistency protocol used by Pangea, adapting it to a
stronger isolation level. Thus, while Pangea requires coordination at both the start and
commit of transactions, MacroDB only requires coordination for the commit for guaran-
teeing transactions execute in the same order in all replicas. This is only possible due to
locking protocol used by its replicas, which guarantees that a transaction that success-
fully reaches its commit phase it will commit successfully, since it holds all the necessary
locks to complete the operation. Also, by executing updates sequentially in the secondary
replicas, MacroDB guarantees replica state is consistent without additional coordination,
since an update is only performed after all previous updates have successfully committed.
Reducing coordination among replicas is crucial for scalable performance on multicores,
since contention imposed by such procedures reduces concurrency, greatly penalizing
performance.

Ganymed andMultimed Ganymed [PA04], the ancestor ofMultimed [Sal+11], is a data-
base replication middleware for scaling databases on clusters of shared nothing machines.
It replicates the database using a master-slave replication schemes, where the master
replica holds the primary copy of the database, while slave hold secondary replicas. Up-
date transaction execute on the primary replicas, while all read-only transaction execute
on the secondaries. Ganymed passes SQL statements to the replicas without modification.
It uses a lazy replication scheme, where updates are asynchronously propagated to the
secondary replicas. To this end, Ganymed extracts write sets from successfully committed
transactions in the primary replicas, for propagation to the secondary replicas. For guar-
anteeing replica consistency, commits are serialized in the master replica, and write sets
are propagated using a FIFO queue. Write sets are extracted using row-level insert, delete
and update triggers in the master database. Additionally, Ganymed provides SI semantics
by using a scheduling algorithm that delays the execution of read-only transactions when

79

CHAPTER 4. MODIFICATION-FREE SOLUTION

needed, to prevent them from executing on a stale secondary replica.
Similar to its predecessor, Multimed [Sal+11] is a database replication middleware,

intended for scaling databases on single machine multicore environments. It uses an iden-
tical master-slave model, lazy replication scheme, and update propagation mechanism as
Ganymed. Also, it provides a single consistent view of the database o↵ering SI semantics.

MacroDB follows a similar path as Multimed, proposing multicores should be seen
as extremely low latency distributed systems (clusters) extended with shared memory
[Bau+09; Cec+08; Son+11]. However, MacroDB aims at in-memory databases, which
presents di↵erent challenges for providing scalability, by incurring in less I/O overhead.
Contrarily to these systems, MacroDB o↵ers clients single-copy serializable view of the
database, while both o↵er weaker snapshot isolation semantics. Additionally, while Mul-
timed requires special server side functions and triggers, implemented by the database
replicas, for extracting and applying write sets, our approach is completely transparent
to both applications and databases. MacroDB guarantees consistency without requiring
any modifications to either applications or databases, by simply propagating SQL update
statements, from successfully committed transactions, from the master to slave replicas.
This allows MacroDB to coordinate any database engine, independently of the manufac-
turer, as long as these o↵er a standard JDBC interface. Finally, by considering a multicore
system as a distributed system extended with shared memory, we explore the shared mem-
ory for e�cient coordination and data sharing among replicas. As it has been shown in
our evaluation, by reusing the same constant data objects in di↵erent replicas, data does
not grow linearly with the number of replicas in MacroDB.

80

C
h
a
p
t
e
r

5
Database Modifications

The approach presented in the previous chapter allowed to address some of the scalability
problems of database. However, for update-heavy workloads, our solution still does not
scale, as all update transactions need to execute in every database replica. In this chapter,
we delve into the database engine for improving its scalability by addressing some of the
major performance bottlenecks.

As put in evidence by the results presented in Section 3.1, all the isolation levels sup-
ported by the studied systems are unable to o↵er scalable performance. Although some
performance variations are observable among the di↵erent isolation levels, throughput
does not scale with the number of clients.

As discussed earlier (Section 3.1.3), the increase in concurrency, attained from relaxing
isolation levels, seems to increase contention on the data structures used by the Storage
Manager, which leads to the general lack of scalability showed by both systems. This
has been confirmed by the removal of latches used by the index data structures, which
allowed the throughput of both modified engines to scale with the number of clients,
under TPC-C read-only workloads.

We now discuss how to eliminate latches in database without compromising database
consistency, even when accessed concurrently. We then propose a series of modifications
to the database for addressing other performance bottlenecks. We start by addressing the
scalability problem under read-intensive workloads, and then proceed by addressing the
problem for update-intensive workloads.

5.1 Concurrency implications

As presented before (Section 2.1.4.1), databases o↵er a tradeo↵ between strict ACID prop-
erties and performance. One way in which this is achieved is through the relaxation

81

CHAPTER 5. DATABASE MODIFICATIONS

of transaction isolation levels, which allows otherwise conflicting transactions to exe-
cute concurrently. However, this increase in concurrency may expose applications to,
otherwise prevented, concurrency anomalies due to transaction interference.

For lock based concurrency control, all isolation levels acquire exclusive locks, on both
items and predicates, before updating them. This prevents write operations from con-
currently executing with other operations. However, some isolation levels (independent
of being supported by lock based concurrency control) allow read operations to execute
concurrently with write operations [Ber+95]. For example, the READ UNCOMMITTED
isolation level, which allows transactions to read uncommitted data, when supported
by lock based concurrency control, allows read operations to execute without acquiring
any read locks (as discussed in Section 2.2), thus allowing read operations to execute
concurrently with write operations.

Therefore, read and write operations may concurrently access the Storage Manager.
To prevent these operations from compromising the system’s health, databases employ
additional concurrency control mechanisms for protecting vital data structures against
conflicting concurrent accesses.

These additional concurrency control mechanisms are normally referred to as latches,
as presented in Section 2.1.5. Like most concurrency control mechanisms, latches allow
non conflicting operation to execute concurrently, while preventing conflicting ones from
doing so. To this end, storage data structures, namely index data structures, use latches
for coordinating concurrent accesses, preventing both state corruption and the exposure
of inconsistent states, thus guaranteeing data structure integrity under concurrent ac-
cess. Removing latches may result in state corruption due to concurrent write/write
operations, or may expose data inconsistencies under concurrent read/write operations.
While the latter can occur when transactions execute under the READ UNCOMMITTED
isolation level, write/write conflicts may occur under some granularities of transactional
concurrency control, for example, when applied to row level.

Most isolation levels, when supported by table level locking, prevent conflicting oper-
ations from concurrently accessing the Storage Manager. Under these conditions, trans-
actions acquire shared or exclusive table locks before reading or updating a table respec-
tively. This prevents read operations from concurrently executing with write operations
when accessing the same table, only allowing read operations to execute concurrently
with other read operations.

Also, by preventing conflicting operations from executing concurrently, these isola-
tion levels prevent concurrent execution of both write/write and read/write operations at
the storage level. This prevents both scenarios that may cause data structure corruption
(assuming that data structures are not modified on reads). This way, all isolation levels
that acquire both shared or exclusive table locks before each operation, guarantee that
only non conflicting operations concurrently access storage data structure, thus guarantee
their integrity even if these employ no internal concurrency control mechanism.

As a particular case of a locking scheme, two-phase locking (2PL) divides locking into

82

5.1. CONCURRENCY IMPLICATIONS

2 separate phases: lock acquiring and lock releasing, with the restriction that no new
lock is acquired after the release of a lock. It has been shown that using 2PL allows a
database system to provide serializability [Ber+95]. Thus, 2PL at the table level prevents
concurrent read/write and write/write conflicts from executing at the storage level, while
o↵ering serializable transactions.

Summing up, assuming that the databases implement table level locking, which most
implementations do, and read locks are acquired before accessing a data item (which is
the case for most isolation levels), then there is no need for concurrency control at the
storage level. Thus, if all isolation levels are redefined to require acquiring table level
locks before any read or update operation, this would guarantee that only read operations
execute concurrently with each other in the same table, while update operations execute
in mutual exclusion.

Using table level locks instead of lower-granularity ones has the advantage of simpli-
fying the management of locks, with no need to manage predicate locks.

5.1.1 Removing storage latches

As a consequence of the previous observations, we propose a modification to both the
Storage Manager and Lock Manager of general purpose IMDBs. Specifically, we propose
Lock Managers to provide concurrency control using table level locking, and provide the
ANSI SQL [ISDLS92] isolation levels by acquiring locks as described in Table 5.1.

Isolation Level
Read Lock Write Lock
Duration Duration

Item Predicate Item Predicate
Read Uncommitted Short Short Long Long
Read Committed Short Short Long Long
Repeatable Read Long Short Long Long
Serializable Long Long Long Long

Table 5.1: Modified Locking behavior and Isolation Levels

These di↵ers from the traditional implementation (presented in Section 2.1.4.1) by
requiring the READ UNCOMMITTED isolation level to acquired short duration shared
locks and short duration exclusive locks.

Additionally, we propose modifying the Storage Manager by removing all latches used
by the storage data structures. Since the Lock Manager guarantees only non conflicting
operations access the Storage Manager concurrently, data structures are never concur-
rently accessed by conflicting operations, thus their integrity and state consistency is
preserved even when removing latches.

Although this are simple modifications, the achieved performance improvements are
considerable, allowing IMDBs to scale on multicores, as put into evidence by the obtained
evaluation results (Section 5.1.3).

83

CHAPTER 5. DATABASE MODIFICATIONS

5.1.2 Additional Remarks

It is important to note that the traditional implementation of the ANSI SQL isolation
levels, presented in Section 2.1.4.1, guarantees isolation semantics even if di↵erent isola-
tion levels coexist concurrently, i.e., even if concurrent transactions run under di↵erent
isolation levels.

This is possible since all isolation levels acquire long duration exclusive locks before
write operations, even READ UNCOMMITTED.

This guarantees that transactions running under other isolation levels can only read
values written by a READ UNCOMMITTED transaction after it commits. If all transac-
tions were running under READ UNCOMMITTED mode, it would not be necessary to
have long duration locks for writes, as a written value could immediately be read by a
concurrent READ UNCOMMITTED transaction.

To allow the use of short duration exclusive locks, we propose the following approach.
The database keeps track of the maximum isolation level for running transactions. If this
maximum isolation level is READ UNCOMMITTED, a transaction acquires only short
duration write locks. Otherwise, it acquires long duration write locks. Additionally,
when a transaction with isolation level stronger that READ UNCOMMITTED starts, the
database automatically acquires long duration locks for the tables modified by on-going
transactions running under READ UNCOMMITTED.

5.1.3 Evaluation

In this section we evaluate the proposed modifications on both HSQLDB and H2, named
HSQLDB (LF) and H2 (LF) respectively, and compare them to their unmodified siblings,
by measuring throughput gains (speedup) and scalability.

5.1.3.1 8-92 Workload

Under the standard workload, our proposed modified engines o↵ers limited performance
benefits over their unmodified siblings, as presented in Figures 5.1(a) and 5.1(b) for
HSQLDB and H2 respectively. This speedup is about 1.14⇥ and 2⇥ when compared to
the unmodified HSQLDB and H2 engines respectively. Also, its performance is unable to
scale.

This is an expected situation, since all TPC-C transactions interfere, thus restricting
concurrency. Under this workload, two out of the five transaction defined by TPC-C
account for 80% of the workload. Also, since these transactions access mostly the same
tables this creates a considerable bottleneck for the system, which is reflected by the
presented results. Also, as discussed previously (Section 3.2.1), table level locking greatly
restricts concurrency under highly conflicting workloads.

84

5.1. CONCURRENCY IMPLICATIONS

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92 50-50

(a) Latch Free HSQLDB speedup over HSQLDB

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Workload

8-92 50-50

(b) Latch Free H2 speedup over H2

Figure 5.1: TPC-C performance under 8-92 and 50-50 workloads.

5.1.3.2 50-50 Workload

In the 50-50 workload, where the number of read-only and update transactions is the
same, our modified versions of both HSQLDB and H2 are able to achieve better through-
put, with 1.3⇥ and 2.5⇥ speedup over the unmodified HSQLDB and H2 database engines
respectively. Like before, the conflicting nature of TPC-C and the concurrency restric-
tions imposed by table level locking, have a considerable impact on scalability on both
modified engines.

5.1.3.3 80-20 and 100-0 Workloads

The nature of read intensive workloads is favorable to the proposed modifications, with
both modified versions achieving higher throughput than their unmodified siblings. The
modifications o↵er an increase in performance of approximately 1.8⇥ and 3⇥, over the
unmodified HSQLDB and H2 engines respectively, for the 80-20 workload (Figures 5.2(a)
and 5.2(b)).

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

HSQLDB (LF)

(a) Latch Free HSQLDB speedup over HSQLDB

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

H2 (LF)

(b) Latch Free H2 speedup over H2

Figure 5.2: TPC-C performance under 80-20 workloads.

Under read-only workloads, our modified engines achieve an approximately 7⇥ and
10⇥ throughput increase over the unmodified HSQLDB and H2 engines respectively, as
presented in Figures 5.3(a) and 5.3(b).

85

CHAPTER 5. DATABASE MODIFICATIONS

 1
 2
 3
 4
 5
 6
 7
 8

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

HSQLDB (LF) HSQLDB (Aggr)

(a) Latch Free HSQLDB speedup over HSQLDB

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

H2 (LF) H2 (Aggr)

(b) Latch Free H2 speedup over H2

Figure 5.3: TPC-C performance under read-only workloads.

The results show that under read intensive workloads both modified engines scale on
multicore machines. Above all, for read-only workloads, we can see that the obtained
results, for both modified engines, are fairly close to the expected maximum achievable
under these workloads (as defined in Section 3.2.3), presented as HSQLDB (Aggr) and H2
(Aggr) in Figures 5.3(a) and 5.3(b), respectively.

In fact, the performance of the modified versions surpasses the corresponding aggre-
gated value when the number of clients exceeds the number of cores. This results from
the lack of resources, mainly main memory, in the aggregate experiment, which requires
flushing caches when a new process is scheduled, and from the use of virtual memory.

Additionally, these workloads allow the modified engines to scale near linearly with
the number of cores, thus taking advantage of the computational resources o↵ered by
current multicore systems.

5.1.4 Additional discussion

The presented results allow us to conclude that the impact from storage contention, on
database performance, is considerable for read-dominant workloads, since under these
conditions our proposed modification achieved its largest speedup compared to the origi-
nal engines.

Under update intensive workloads, the proposed modification, while o↵ering some
performance improvements over the original engines, still presents scalability problems.
This is specially true under write predominant workloads, such as STD and 50-50. This
lack of scalability results from reduced concurrency due to high transaction interference.
Thus, one can conclude that, under write dominant workloads, the transaction manager
becomes a considerable performance bottleneck, by locking entire tables.

Next we discuss how to address the limitation imposed by the transactional manager,
for improving throughput under update predominant workloads, while still avoiding
index structures from using concurrency control mechanisms.

86

5.2. SCALING UPDATE-INTENSIVE WORKLOADS

5.2 Scaling update-intensive workloads

The previous results show that removing storage latches allows our modified engines to
scale on read-intensive workloads, such as 80-20 and 100-0. On the other hand, update-
intensive workloads do not benefit in the same way, since contention created by the Lock
Manager has a considerable impact on performance.

Thus, the limiting factor for scalability under update-intensive workloads is the en-
forcement of transactional semantics. More specifically, the contention created due to
table level locking, which, for update operations, prevents concurrent transactions from
operating on the same tables, even when no real conflicts exist.

5.2.1 Increasing write concurrency

Serializable isolation semantics states that: concurrent execution of two or more transac-
tions is serializable if the outcome result is equivalent to the one obtained from executing
the same transactions in some sequentially order [Ady+00; Ber+95; Pap79].

While 2PL at the table level achieves this, it is considerable restrictive in terms of con-
currency, since whenever a transaction updates a table, it does so in exclusion, preventing
every other operation from concurrently accessing the same table.

Although one may argue that table level locking restricts concurrency too much, the
alternatives requires a complexmix of row level locking and predicate locking for address-
ing SQL statements accessing data based on conditions [Ber+95]. Not only the problem of
testing predicate locks has been shown to be NP-complete [HR79] (and complex to imple-
ment), but also, enforcing concurrency control at lower granularities, such as row-level,
allows read and write operations to execute concurrently at the storage level. Thus, this
requires index data structures to use latches for preventing state corruption under these
scenarios, since rows can be inserted (or deleted) into a table while concurrent transac-
tions read from the same table. As already presented, storage latches have a considerable
impact on database performance [SP15; Sto+07].

In this section, we show how to increase transaction concurrency, while enforcing
strong isolation semantics, i.e., serializability, and without having to use latches at the
storage level.

5.2.1.1 Concurrency without latches

As discussed before, storage latches may be removed as long as the Lock Manager pre-
vents write operations from executing concurrently with read operations at the storage
level. Table level locking guarantees this since write operations (including SQL UPDATE,
INSERT and DELETE) execute in exclusion. Thus, table level locks prevent the occur-
rence of concurrent structural changes to the index structure, which may result from
write operations.

87

CHAPTER 5. DATABASE MODIFICATIONS

On the other hand, reducing locking granularity from table to row level, may allow
write operations to execute concurrently with every other operation (i.e., both reads and
writes). Thus, index structures are required to use latches for preventing the execution of
concurrent operations with any structural changes that may result due to a write opera-
tion.

However, one may allow some write operations to execute concurrently with every
other operation (i.e., both reads and writes), without requiring index structures to use
latches, as long as their execution does not compromise the integrity of the index struc-
ture, i.e., as long as structural changes execute in isolation.

For preserving serializability, read and write operations may execute concurrently as
long as these do not modify values previously read or written by any concurrent trans-
action. Although, table and row level locking guarantee this, one may further reduce
locking granularity, and allow concurrent read and write operations to execute on the
same table row, as long as they access distinct attributes.

To exemplify, consider table A, with attributes (a,b,c). Consider transaction T1 that
modifies attribute b, referred as A.b, using attribute a for selecting the row (e.g. SQL
statement UPDATE A SET b = b + 1 WHERE a = 10;) and transaction T2 that modifies
attribute A.c, also using attribute a for selecting the row (e.g. SQL statement UPDATE A
SET c = c - 1 WHERE a = 10;). These transactions do not interfere if T1 does not access
A.c and T2 does not access A.b. Additionally, both operations may execute concurrently
at the storage level, as long as their execution does not perform any structural changes to
the data structures used to store table A and associated indices. Thus, both transactions
can execute concurrently and be serialized in any order.

5.2.2 Proposed algorithm

To increase concurrency among update transactions, we propose a concurrency control
protocol based on attribute level locking (A2L). Under A2L, operations lock table attributes,
i.e., (table, column) pairs, instead of locking the complete table.

A2L di↵ers from table level locking due to the granularity of the locks, i.e., by locking
attributes instead of the entire table. Operations lock di↵erent attributes in di↵erent
ways, with the following locks being obtained for each SQL operation:

• SELECT operations acquire shared locks on the read attributes. These include any
attributes used by WHERE clauses;

• UPDATE operations acquire exclusive locks on the modified attributes and shared
locks on the read attributes (including attributes used in WHERE clauses); and

• INSERT and DELETE operations acquire exclusive locks for all attributes of the ta-
ble, as these operations lead to structural changes in the underlying data structures,
and cannot proceed concurrently with any other operation.

88

5.2. SCALING UPDATE-INTENSIVE WORKLOADS

Whenever update operations update an index key, these are treated as delete followed
by an insert operations. Lock acquisition, under A2L, is performed using the usual
two-phase locking approach, with a first phase where new locks are acquired followed
by a second phase where locks are released. Additionally, A2L is also compatible with
standard ANSI SQL isolation levels. Like in traditional implementations, the di↵erent
isolation levels are enforced by acquiring read and write locks using the rules defined
previously, with the di↵erence that locks are obtained at the attribute level instead of the
full table level.

To illustrate how A2L works, in the context of the previous example, transaction T1
obtains a exclusive locks on pair (A,b) and a shared lock on pair (A,a). Transaction T2
obtains a exclusive locks on pair (A,c) and a shared lock on pair (A,a). Since no write
dependency exists between the two transactions, as they write di↵erent table attributes,
both transactions can acquire the needed locks and proceed concurrently. This can occur
even if both transactions access the same row.

5.2.3 Improving A2L

While the base algorithm achieves its purpose, it imposes a considerable overhead for
INSERT and DELETE operations, since these operations have to acquire locks on all table
attributes. Thus, for reducing this overhead, we have improved the base algorithm, so
that these operations require only a single lock.

Under the modified A2L algorithm, operations lock a combination of tables and at-
tributes in di↵erent ways, with the following locks being obtained for each SQL operation:

• SELECT operations acquire shared locks on the respective tables as well as on
the corresponding read attributes. These include any attributes used by WHERE
clauses;

• UPDATE operations acquire shared locks on the respective table and on the corre-
sponding read attributes (including attributes used in WHERE clauses), and exclu-
sive locks on the modified attributes; and

• INSERT and DELETE operations acquire exclusive locks on the target tables.

These modifications reduce the number of locks acquired by INSERT and DELETE op-
erations, while still guaranteeing their execution in exclusion, since these operations lead
to structural changes in the underlying data structures, and cannot proceed concurrently
with any other operation. Although, this reduction comes at the cost of an additional lock
for other operations (SELECT and UPDATE), it reduces the complexity for computing
dependencies among operations used for deadlock detection algorithm. Contrarily to the
base approach, INSERT and DELETE operations only depend on a table locks, and not
on every attribute.

89

CHAPTER 5. DATABASE MODIFICATIONS

5.2.4 Correctness

For the correctness of A2L it is necessary to guarantee that transactions executed un-
der A2L respect serializability semantics, i.e., that the result of concurrently executing
two or more transactions under A2L is identical to some sequential order of those same
transactions.

Proposition 3. A2L algorithm enforces serializability of concurrent transactions.

Proof. It is known that two-phase locking (including predicate locks) guarantees serializ-
ability [Ady+00; Ber+95]. Thus, as our approach uses two-phase locking, we only need
to show that our locking scheme does not allow read/write or write/write conflicts on
any data item, including read/write conflicts between rows defined by a condition. In
A2L, read and write operations need to obtain shared locks on attributes used to select
rows. As write operations must obtain an exclusive lock before modifying the value of
an attribute in any row, it follows that two transactions cannot have a read/write conflict
for any attribute. Also, as transactions obtain exclusive locks in the attributes modified,
which for insert and delete include all attributes, there is also no write/write conflict.
Thus, A2L algorithm enforces serializability.

For proving the correctness of our implementation, we further need to prove that
A2L can run with a modified engine that includes no concurrency control on the data
structures used for maintaining data.

Proposition 4. A2L preserves consistency with data structures that include no concurrency
control.

Proof. A2L locking scheme acquires shared or exclusive lock on an item before accessing
it, thus preventing any concurrent operation from acquiring an exclusive lock on the
same attribute. This prevents concurrent read/write and write/write operations from
execution on the same data attribute. Additionally, A2L exclusive locks all attributes of
a table before executing inserting or deleting an item. This prevents a concurrent read
operation from acquiring shared locks on any attribute, thus preventing transversing the
data structures while structural changes occur.

In the next section we discuss how we address the cases where update operations
involve structural changes to the storage data structures.

5.2.5 Implementing A2L

In this section we discuss the requirements for supporting A2L, and describe a prototype
based on a modified version of HSQLDB [Gro12].

90

5.2. SCALING UPDATE-INTENSIVE WORKLOADS

5.2.5.1 Transactional Component

Most general purpose database transaction managers guarantee transaction isolation by
acquiring shared table locks before executing read operations, and exclusive locks before
performing write operations. The latter include SQL INSERT, DELETE and UPDATE
operations.

HSQLDB implements shared locks using a multi-value map, that associates tables
with the sessions accessing it, while exclusive locks are implemented as a single-value
map, associating tables with a single session. Read operations are only allowed to execute
if the corresponding table is not exclusively locked, i.e., contained in the exclusive lock
map, while write operations can only execute if the corresponding tables are not locked
exclusively or shared, i.e., are not contained in either the shared or exclusive lock maps.

A2L di↵ers from table level locking by the granularity of the locks. Thus, we have
extended the HSQLDB transactional manager to map both table and (table, attribute)
pairs with sessions, instead of the traditional approach thatmaps only tables with sessions.
All transaction coordination and deadlock detection mechanisms have been extended to
consider this modification.

Additionally, operations lock attributes in di↵erent ways, as explained before (Sec-
tion 5.2.2). To this end, we extract attribute information from all data manipulation
language (DML) and data query language (DQL) statements, where attributes used in
’WHERE’ clauses are mapped as read attributes. INSERT and DELETE operations lock
the corresponding tables, for preserving isolation semantics.

Beside the modifications to the transaction component, A2L also requires modifica-
tions to both storage and index components, as described next.

5.2.5.2 Storage Component

Both studied general purpose memory database engines implement, at the storage level,
row update operations as a remove followed by an insert row operation, where the newly
inserted row embodies the update modifications. This is due to the fact that tables have,
at least one, index data structure to improve e�ciency for search operations. Since these
indices use the values of an attribute, or set of attributes, as search keys, any modification
to an index key, without the corresponding structural modification, may corrupt the index
state.

For supporting A2L, we require database storage engines to only implement update
operations as remove/insert pairs when modifying index key attributes. This way, up-
dates on attributes not associated with an index key, should update the row directly,
while updates that modify an index key, should be treated in the traditional way, i.e., as a
remove followed by an insert operation.

To this end, we have modified HSQLDB storage component by adding support for
directly updating attribute values on an index node, i.e., a row object, when executing

91

CHAPTER 5. DATABASE MODIFICATIONS

an update. This method is used whenever the attribute being modified is not a key of an
index.

Additionally, for providing atomicity, all HSQLDB DML statements perform direct
in-place updates, while registering action objects that revert the performed operations for
recovering state in case of aborts or rollbacks. In case of a commit, all registered actions
are simply discarded and acquired locks are released, with no further action needed. In
case of a rollback, all registered actions are executed before releasing locks, thus reverting
previously made changes.

Insert and delete actions were left unchanged, while a new update action was added
for reverting update operations. Session objects were further modified for supporting
this modification. At commit, these values are discarded, while aborts restore previous
values to the corresponding row. Since only the modified attribute values are restored,
any concurrently operations are not a↵ected by these changes.

5.2.6 Evaluation

In this section we present the evaluation of A2Lwhen combinedwith ourmodified storage
engine, by comparing its throughput and scalability against the original HSQLDB, as well
as the modified version of HSQLDB with no latches in the data structures, as described
in Section 5.1 (HSQLDB-LF) and a version including A2L, as described in Section 5.2
(HSQLDB-A2L)

Although we previously described a way to reduce the number of locks acquired
by A2L (Section 5.2.3), the evaluation results did not reflect significative performance
di↵erences between the two.

5.2.6.1 Update-intensive Workloads (8-92 and 50-50)

Under update-intensive workloads, A2L is able to o↵er performance improvements over
the original HSQLDB. Figures 5.4(a) and 5.4(b) show the speedup achieved by the A2L
modification, over the original HSQLDB engine, for update intensive workloads (8-92
and 50-50 respectively).

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

HSQLDB (LF) HSQLDB (A2L)

(a) 8-92 workload

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

HSQLDB (LF) HSQLDB (A2L)

(b) 50-50 workload

Figure 5.4: HSQLDB A2L modification under update-intensive workloads.

92

5.2. SCALING UPDATE-INTENSIVE WORKLOADS

Under these workloads, A2L is able to o↵ers a 1.8⇥ performance improvement over the
unmodified database engine. This shows that A2L is able to e�ciently reduce transaction
conflicts, thus increasing performance.

However, while it improves performance, A2L is still unable to o↵er scalable perfor-
mance under these workloads. This comes from the fact that, while A2L reduces conflicts
between di↵erent transactions, since these transactions access di↵erent attributes in dif-
ferent ways (even when accessing the same tables), update transactions end up conflicting
with themselfs. Since TPC-C defines only five di↵erent transactions, of which two are
read-only, due to the update intensive nature of these workloads the probability of two
di↵erent clients executing the same update transaction increases quickly with the number
of clients. Thus, performance scalability under these workloads is considerably penalized,
as put into evidence by these results.

Furthermore, SQL INSERT and DELETE operations considerably restrict concurrency
since, under A2L, these operations require locking the entire table. Thus, when a transac-
tion includes such operations, A2L su↵ers from the same problems as table level locking.
As future work, we intend to study a way to allow these operations to execute concur-
rently at the storage level, while o↵ering serializable semantics and without requiring the
use of latches.

5.2.6.2 Read-Intensive Workloads (80-20 and 100-0)

Like most concurrency control mechanisms, read-intensive workloads allow A2L to o↵er
increased performance improvements over the original HSQLDB engine. Figures 5.5(a)
and 5.5(b) show the speedup achieved by the A2Lmodification, over the original HSQLDB
engine, for the 80-20 and 100-0 workloads, respectively.

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

HSQLDB (LF) HSQLDB (A2L)

(a) 80-20 workload

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
Engine

HSQLDB (LF) HSQLDB (A2L)

(b) 100-0 workload

Figure 5.5: HSQLDB A2L modification under read-intensive workloads.

Under these workloads, A2L is able to o↵er, at most, 2⇥ and 4⇥ performance im-
provements over the unmodified database engine, for the 80-20 and 100-0 workloads
respectively. Again, this shows that A2L is able to e�ciently reduce transaction conflicts,
which results in a performance improvement over traditional locking schemes.

93

CHAPTER 5. DATABASE MODIFICATIONS

However, A2L increases locking overhead compared to table level locking, since some
operations acquire a higher number of locks (equal to the number of accessed attributes).
This increase in locking overhead limits the scalability of A2L under read-intensive and
read-only workloads, as put into evidence by the results from the 80-20 and 100-0 work-
loads presented in Figures 5.6(a) and 5.6(b), respectively. These results show a consider-
able drop in performance when concurrency surpasses 10 clients.

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Engine

HSQLDB
HSQLDB (LF)

HSQLDB (A2L)

(a) 80-20 workload

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
Engine

HSQLDB
HSQLDB (LF)

HSQLDB (A2L)

(b) 100-0 workload

Figure 5.6: A2L throughput compared to table level locking (80-20 and 100-0 workloads).

Also, while A2L is able to o↵ers a 4⇥ performance improvement over HSQLDB (Figure
5.5(b)), it su↵ers a performance loss when compared to the traditional 2PL scheme under
read-only workloads, as put into evidence by the result in Figures 5.5(b) and 5.6(b).
The reason for this loss of performance is due to the transactional locking and deadlock
detection mechanisms of A2L being more complex, since A2L typically acquires a higher
number of locks. Since both these tasks need to be coordinated among concurrent threads,
i.e., execute in mutual exclusion, the increase in the number of operations increases
contention, thus reducing concurrency. However, we believe these limitations could be
addressed by further modifying the database engine, using some of the ideas presented in
recent works for increasing concurrency for locking algorithms [Jun+13; Ren+12; Tu+13].

Nevertheless, A2L o↵ers significative performance and scalability improvements over
the original HSQLDB under di↵erent workloads natures, showing database engines can
o↵er scalable performance under strong isolation semantics.

5.2.7 Additional discussion

From the presented results we can conclude that A2L contributes positively for improv-
ing database performance and scalability, especially under update intensive workloads.
However, this improvements comes at a cost for read intensive workloads, with the re-
sults showing some reduction in throughput, when compared to the traditional 2PL at
the table level.

The limiting factor for improvements, under A2L, results from interference between
transactions of the same type. TPC-C is composed of five di↵erent transactions, with only
3 di↵erent update transactions. This results in high contention between transaction of the

94

5.3. RELATED WORK

same types in update heavy workloads. Nonetheless, A2L is still able to o↵er performance
improvements under these conditions.

Also, while A2L is able to e�ciently increase concurrency for SQL UPDATE oper-
ations, INSERT and DELETE behave similarly to table level locking, preventing every
other operation from executing. This is an important point that we intend to address in
the future.

Finally, these results put into evidence the performance tradeo↵s one must take into
consideration when modifying a database engine. In the next chapter, we present a study
on the impact the order of operation issued by applications have on database perfor-
mance.

5.3 Related Work

With the introduction of multicore processors and the evolution of in-memory databases,
several works have focused on the storage component of these systems, namely index
data structures. Early works focused on the reduction of memory footprint of traditional
data structures, making them cache-conscious. Among these works is the proposal of T-
Trees [LC86], that reduces the number of pointers used by traditional AVL-Trees [VDG74].
CSB+-Tree [RR99; RR00] applies the same principals to the B+-Tree, reducing the number
of used pointers. These works are complementary to ours, and the techniques proposed
could be used in our work for further improving performance.

Additional works, like Masstree [Mao+12], Foster B-Trees [Gra+12], CTrie [Pro+13]
or Kiss-Tree [Kis+12] propose multicore-conscious data structures, that reduce synchro-
nization costs. While Masstree and Foster B-Trees reduce synchronization costs using fine
grain latches, allowing concurrent updates in distinct parts of the data structures, CTrie
and Kiss-Tree follow a latch-free approach, where latches are removed in favor of atomic
compare-and-swap instructions.

These works focus on designing and implementing e�cient data structures for multi-
cores. While we do not propose new data structures for in-memory databases, we follow
a similar path, by proposing the removal of latches from the data structures. In contrast
to these works, our work proposes a transactional-conscious storage management strat-
egy, where the storage system and transaction concurrency control are designed jointly.
For instance, as put into evidence in our approach, the use of pessimistic concurrency
control, allows the removal of latches in the index structures, without requiring them to
be replaced by compare-and-swap operations.

Our solution uses a new locking scheme that increases concurrency without requiring
index structures to use concurrency control mechanisms. Although attribute level locking
(A2L) model was proposed in the past [MAH08], to our knowledge there was no practical
application of it. Also, and to the best of our knowledge, this is the first application of A2L
in the context of in-memory databases. We show that A2L increases concurrency com-
pared to table level locking, and that it can be combined with latch-free index structures.

95

CHAPTER 5. DATABASE MODIFICATIONS

We now detail additional systems that inspired our modifications.

Hekaton Hekaton [Dia+13], a main-memory storage engine for SQL Server [Mic15],
also uses latch-free implementations of B-Trees as indexes, called Bw-Tree [Lom+13]. Bw-
Trees trade latches for compare-and-swap instructions, allowing the data structure to
be transversed while being concurrently modified. Like traditional B-Trees, these are
used to index disk pages, instead of maintaining the data directly on the index [Lev+14].
Thus, in Hekaton, an additional cache layer is used, similar to the traditional bu↵er
management, that caches database data. To avoid waiting for disk pages, Hekaton caches
the entire database when possible, i.e., caches all pages. Mapping between logical and
physical pages is managed by the cache layer using a mapping table. To prevent the use
of latches for managing cache, write operations do not modify pages directly. Instead,
write operations append modification deltas to the corresponding page. These deltas
represent required page modifications due to updates, inserts, removes, page split or join
operations.

Unlike our work, Hekaton trades latches for compare-and-swap operations, thus deal-
ing with concurrent operations. Although compare-and-swap operations are more ef-
ficient than latches, studies shows that, like their counterparts, their still performance
degrades with increasing levels of concurrency [Dic+13]. We follow a more extreme ap-
proach of completely removing any synchronization from the data structures and keeping
all control of concurrency in the Lock Manager. This approach allows simpler implemen-
tations while providing scalable performance.

Doppel Doppel [Nar+14] is a shared-everything in-memory database based on Silo
[Tu+13]. Applications interact with the database in the form of stored procedure, where
single-shot transactions execute to completion without client interaction. The authors
propose a concurrency control mechanisms called phased reconciliation, that reduces con-
tention by “creating” on-demand replicas, that allow specific write operations to execute
concurrently. Dopple achieves this by cycling the database between tree di↵erent states:
joined; split, and reconciliation. Under the joined phase, the database uses traditional op-
timistic concurrency control. When conflicts are detected, i.e., when concurrently trying
to modify the same value, the database changes to a split phase, where each core aplies
modifications to a “private copy” of the database. All modifications performed under this
phase result in logical changes, i.e., the database guarantees the corresponding operation
will execute without conflict. When a result from these changes needs to be read, the
database changes to the reconciliation phase in which the final (physical) values are cal-
culated. Dopple provides this functionality for a small number of operations, including
calculating the maximun and minimum between two values, additions, ordered insert,
etc.

Although Doppel can scale very well for some workloads, where transactions can
update the database without having to read its value or using commutative operations, it

96

5.3. RELATED WORK

is not a solution for general transactions. We could leverage a similar idea to allow updates
of the same attributes to proceed concurrently. This could be achieved by postponing
update operations until a transaction’s commit phase. If updated values are not read
by the respective transaction, these can be delayed until the transaction tries to commit.
This reduces the duration for exclusive locks, thus reducing contention and increasing
concurrency.

97

C
h
a
p
t
e
r

6
Application impact on database performance

As presented so far, the type of workload a↵ects the performance of databases. This is a
direct result from the inherent degree of interference, since update-intensive workloads
interfere more than read-intensive ones, since read operations are allowed to execute
concurrently with other read operations, while update operations need to execute in
exclusion. Additionally, our experiments have shown that addressing performance for a
specific workload may not benefit di↵erent workloads the same way.

Besides this, most applications tend to access databases using well defined database
access patterns, where transactions are pre-defined in the application code, and opera-
tions inside each transaction are known a priori. Thus, there is some freedom to rewrite
operations inside a transaction in di↵erent orders, without compromising the application
behavior, as long as transaction semantics is preserved.

Although irrelevant to the application, the order of operations inside a transaction
can have impact on performance, as the order of operations dictates how long locks
will be held by a transaction. If a transaction starts with an update operation, it will
hold an exclusive lock, which will prevent any concurrent operations from executing,
during the duration of this transaction. On the other hand, acquiring a shared lock in
the beginning of a transaction still allows other read operations to execute concurrently
during the duration of a transaction. Thus, if update operations (including SQL UPDATE,
DELETE and INSERT) are postponed until the end of the transaction, exclusive lock
will be acquired for smaller periods of time, which reduces contention and increases
concurrency, thus potentially improving database performance.

In this chapter we discuss how to rewrite transactions using a Read before Write (RbW)
pattern, where all read operations of a transaction are executed prior to all write operations,
whenever possible. Also, we present a study on the impact applications have on database
performance. This study analyzes the transactions defined in the TPC-C benchmark,

99

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

identifying their access pattern, and studies how the RbW pattern influences the database
performance. We study how to take advantage of the knowledge of database transactions,
and their respective operations, for reducing database contention and further improving
system performance.

6.1 Reordering Operations Inside Transactions

The process of reordering operations inside a transaction needs to guarantee that the
original transaction semantics is preserved. In this discussion, we will describe a process
for reordering read and write operations inside a transaction that guarantees the trans-
action semantics. In this discussion, we assume that two transactions are semantically
equivalent if they modify the same set of attributes with the same values.

Although this discussion tries to be as exhaustive as possible, covering as many read-
/write combinations as possible, some situations may not be covered due to their appli-
cation related semantics. Also, while the following examples could be applied in most
applications, some queries may not be reordered without compromising the transaction
semantics, due to specific application related semantics.

As an additional note, in this discussion we focus exclusively in the reordering be-
tween read and write operations pairs, as the goal is to move read operation to the begin-
ning of transactions. We also assume that the relative order between write operations is
preserved during the transformation process, since this may influence the semantics of
the transaction. Finally, we make no assumptions on the automation of this process, since
operation reordering is largely related to the application semantics.

To this end, we will focus on the reordering of following operation pairs: UPDATE/S-
ELECT; INSERT/SELECT, and DELETE/SELECT. For each pair, we will discuss how to
reorder them if they operate over a single row or a range of rows, contemplating if de-
pendencies exist or not between the operations, i.e., if write operations modify (or not)
values later read. We will consider UPDATE, INSERT and DELETE operations as WRITE
operations whenever the same solution can be applied to all, and address each separately
otherwise.

6.1.1 Non-Dependent operations

We start with the case of reordering operations without dependencies, i.e., modified
attributes (due to UPDATE, INSERT or REMOVE operations) are not read by any subse-
quent SELECT operation inside the same transaction.

When no dependencies exist between a WRITE and a SELECT operations, then the
read set of the SELECT operations will be the same independently of executing before or
after any WRITE operation. Thus, these operations are commutative and their order can
be changed without compromising transaction semantics.

100

6.1. REORDERING OPERATIONS INSIDE TRANSACTIONS

To illustrate this scenario, consider the example presented in Listing 6.1, where an
UPDATE increments the value of attribute x for a given table row (row whose id is equal
to zero) and a SELECT operation read the value of attribute x of a di↵erent row of the same
table. Since the UPDATE does not modify the row returned by the SELECT operation,
their relative order is irrelevant to the semantics of the transaction.

Listing 6.1: Single row UPDATE/SELECT, without dependencies.
1 UPDATE table_a SET x = x + 1 WHERE id = 0;

2 SELECT x FROM table_a WHERE id = 2;

3 ...

Thus, the two operation can be reordered without consequences, as presented in
Listing 6.2 This can be applied to other WRITE operations (INSERT and DELETE) in
the same way, as long as no dependencies exist between them and subsequent SELECT
operation.

Listing 6.2: Reordered single row UPDATE/SELECT, without dependencies.
1 SELECT x FROM table_a WHERE id = 2;

2 UPDATE table_a SET x = x + 1 WHERE id = 0;

3 ...

6.1.2 Dependent operations

When operations have dependencies between them, i.e., when a WRITE operation modi-
fies values read by a SELECT operation, the reordering process can be more complex, and
no single generic solution can be applied to them. This results from the fact that WRITE
operation can a↵ect the results returned by the SELECT operation, thus influencing its
results when executed prior or after the WRITE operation.

Nonetheless, we describe how to deal with these scenarios. Additionally, and con-
trarily to the previous scenario, when considering dependent operations, the reordering
process has to be adapted accordingly to the number of rows a↵ected by the operations,
i.e., if these operate on a single row or multiple rows (referred to as range operations).

6.1.2.1 WRITE single/SELECT single

We start by addressing the reordering of dependent operations, executing over the same
row. Specifically, we consider a single row UPDATE that modifies the data item accessed
by a single row SELECT, exemplified in Listing 6.3.

Listing 6.3: Single row UPDATE/SELECT, with dependencies.
1 UPDATE table_a SET x = x + 1 WHERE id = 0;

2 SELECT x FROM table_a WHERE id = 0;

3 ...

In the example, attribute x, of row 0, is modified by the UPDATE operation and is
latter read by the SELECT operation (this example assumes attribute id is unique). These

101

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

operations are not commutative since the value returned by the SELECT will be di↵erent
if executed before or after the UPDATE. However, if the updated value can be computed
outside the scope of the database, i.e., by the application, this can be reordered by first
reading x’s initial value and incrementing it by the corresponding amount, in this case
1. Thus, the reordered transaction could be rewritten in a semantically identical way, as
presented in Listing 6.4.

Listing 6.4: Reordered single row UPDATE/SELECT, with dependencies.
1 SELECT x + 1 FROM table_a WHERE id = 0;

2 UPDATE table_a SET x = x + 1 WHERE id = 0;

3 ...

The same can be applied even if the update value is a direct result of a given sub-query.
In this case the sub-query, i.e., the SELECT operation responsible for defining the new
value, can be executed prior to the execution of the UPDATE, and its result used by the
subsequent query, or stored in the application for later use. Since databases tend to be
accessed by application code, and transactions are known a priori, this reordering should
be fairly straightforward to achieve.

When considering single row INSERT operations, the newly inserted values tend to
be the result of previous computations made by the application. Thus, any subsequent
SELECT operation on the inserted row should return results that are already present in
the application.

However, some applications may resort to the database for automatically defining
some attribute value when inserting a new table row. For instances, by using auto-
increment columns or sequences for defining values of row identifiers, as presented in
Listing 6.5.

Listing 6.5: Single row INSERT/SELECT, with dependencies.
1 // id_sequence is a database sequence

2 INSERT INTO table_a(row_id,user_id) values (id_sequence, 10);

3 SELECT row_id FROM table_a WHERE user_id = 10;

4 ...

Most databases allow the SQL SELECT operation to be used to consult and return
these values to the applications, thus allowing to circumvent the initial problem, as
presented in Listing 6.6.

Listing 6.6: Reordered single row INSERT/SELECT, with dependencies.
1 nextID = SELECT NEXT VALUE FOR id_sequence FROM table_a;

2 INSERT INTO table_a(id,user_id,x) values (nextID, 10, 100);

3 ...

We will not consider the reordering of DELETE/SELECT operations on a single row,
since executing a SELECT operation on a row that has been deleted makes no apparent
sense.

102

6.1. REORDERING OPERATIONS INSIDE TRANSACTIONS

6.1.2.2 WRITE single/SELECT range

We now consider a single row WRITE operation followed by a range SELECT. Consider
the example, presented in Listing 6.7, for a dependent single row UPDATE and a range
SELECT. In this example, the transaction updates the value of x, to x +1, for row 0 and
selects all rows (id) that have a value of x larger than 10.

Listing 6.7: Single row UPDATE and range SELECT, with dependencies.
1 UPDATE table_a SET x = x + 1 WHERE id = 0;

2 SELECT id FROM table_a WHERE x > 10;

3 ...

In this case, row 0 can be included in the result returned by the SELECT operation, if
its initial value for attribute x is 10. Thus, executing the SELECT after the UPDATE could
return additional rows that would not be returned if executed prior to the UPDATE.

However, selecting the value of x for row 0 before the UPDATE allows the application
to know if the increment will include that row in the result for the SELECT operations.
Thus, the reordered example presented in Listing 6.8 is equivalent to the original one. In
the reordered transaction, the SELECT operation includes the id of row 0 if its value of
attribute x is equal to 10 by using the UNION SQL operator.

Listing 6.8: Reordered single row UPDATE and range SELECT, with dependencies.
1 SELECT id FROM table_a WHERE id = 0 and x = 10

2 UNION
3 SELECT id FROM table_a WHERE x > 10;

4 UPDATE table_a SET x = x + 1 WHERE id = 0;

5 ...

When dealing with INSERT operations, an approach similar to the one described for
single INSERT-single SELECT (Section 6.1.2.1) can be used. In the example shown in
Listing 6.9, an INSERT operation adds a new row to a table before executing a range
SELECT operation on the same table. A simple reorder of operations could compromise
the semantics of the transaction, since the SELECT operation can include the newly
inserted row if the query condition is satisfied.

Listing 6.9: Single row INSERT range SELECT, with dependencies.
1 INSERT INTO table_a(id,x) VALUES(10,100);
2 SELECT id FROM table_a WHERE x > 10;

3 ...

However, before inserting a row the application tends to know, a priori, the values it
will insert. Thus this information could be added to the result set of the SELECT opera-
tions, as presented in Listing 6.10. When database mechanisms are used for automatically
defining the value of attributes, when inserting rows in a table, the solution presented for
single INSERT-single SELECT (Section 6.1.2.1) can be applied.

Listing 6.10: Reordered single row INSERT range SELECT, with dependencies.

103

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

1 if(x > 10)

2 SELECT 10 as id UNION SELECT id FROM table_a WHERE x > 10;

3 else
4 SELECT id FROM table_a WHERE x > 10;

5 INSERT INTO table_a(id,x) VALUES(10,100);
6 ...

When dealing with dependent DELETE and SELECT operations, again, the simple re-
order of operations could compromise the transaction semantics. Consider the following
single row DELETE followed by a range SELECT example presented in Listing 6.11. In
this case, if the deleted row satisfies the query condition, reordering the two operations
would return a di↵erent result.

Listing 6.11: Single row DELETE range SELECT, with dependencies.
1 DELETE FROM table_a WHERE id = 0;

2 SELECT id FROM table_a WHERE x > 10;

3 ...

Again, the a priori knowledge of the removed row can be used to reorder operations,
as presented in Listing 6.12. In this case, by knowing the condition for the DELETE
operation, it is possible to add it to the query condition for excluding the deleted rows.

Listing 6.12: Reordered single row DELETE range SELECT, with dependencies.
1 SELECT id FROM table_a WHERE x > 10 AND NOT id = 0;

2 DELETE FROM table_a WHERE id = 0;

3 ...

6.1.2.3 WRITE range/SELECT single

We now consider a range WRITE operation followed by a single row SELECT.
Consider the example presented in Listing 6.13, for dependent range UPDATE fol-

lowed by a single row SELECT operation. In this example, the transaction updates the
value of x for all rows in which the initial value of x is grater than 10 and then selects the
value of x for row 0.

Listing 6.13: Range UPDATE single SELECT, with dependencies.
1 UPDATE table_a SET x = x + 1 WHERE x > 10;

2 SELECT x FROM table_a WHERE id = 0;

3 ...

By having an a priori knowledge of the increment value and the range condition,
we can rewrite the transaction accordingly. In the example presented in Listing 6.14,
the initial SELECT operation returns the current value of attribute x of row 0 and the
application then increments the value by one if the value satisfies the update condition.
In this case, part of the adaptation is done in the application code.

Listing 6.14: Ordered range UPDATE single SELECT, with dependencies.

104

6.1. REORDERING OPERATIONS INSIDE TRANSACTIONS

1 app_x = SELECT x FROM table_a WHERE id = 0;

2 if (app_x == 10)

3 app_x = app_x + 1;

4 UPDATE table_a SET x = x + 1 WHERE x > 10;

5 ...

For a range DELETE operation followed by a single row SELECT operation, consider
the example presented in Listing 6.15.

Listing 6.15: Range DELETE single SELECT, with dependencies.
1 DELETE FROM table_a WHERE x > 10;

2 SELECT x FROM table_a WHERE id = 0;

3 ...

With the knowledge on the DELETE condition allows the reordering of operations.
As presented in Listing 6.16, if row 0 satisfies the remove condition, then it is excluded
from the result of the SELECT operation, thus preserving the transaction semantics.

Listing 6.16: Reordered range DELETE single SELECT, with dependencies.
1 SELECT x FROM table_a WHERE id = 0 AND NOT x > 10;

2 DELETE FROM table_a WHERE x > 10;

3 ...

6.1.2.4 WRITE range/SELECT range

we now consider a range WRITE operation followed by a range SELECT.
Consider the example presented in Listing 6.17, for dependent range UPDATE fol-

lowed by a range SELECT operation. In this example, the transaction updates the value of
x for all rows in which the initial value of x is greater than 10, and then selects the values
of attribute x for rows that have a value of attribute id greater than 10. In this example,
the UPDATE operation may increment the value of attribute x in rows that have a value
of attribute id grater than 10, if the UPDATE condition is satisfied. Thus the SELECT
operation may return a di↵erent value if executed before of after the UPDATE.

Listing 6.17: Range UPDATE range SELECT, with dependencies.
1 UPDATE table_a SET x = x + 1 WHERE x > 10;

2 SELECT x FROM table_a WHERE id > 10;

3 ...

Again, by having an a priori knowledge of the increment value as well as the UPDATE
condition, it is possible to rewrite and reorder the operations as presented in Listing 6.18.
In the reordered version, the SELECT operation is transformed into the UNION of two
SELECT operations. One selects the values of attribute x for all rows that satisfy the
original condition and do not have an x value greater than 10, while the other the values
of attribute x with the respective increment for all rows that satisfy the original condition
and have an x value greater than 10 (the update condition).

105

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

Listing 6.18: Reordered range UPDATE range SELECT, with dependencies.
1 SELECT x FROM table_a WHERE id > 10 AND x <= 10

2 UNION
3 SELECT x+1 FROM table_a WHERE id > 10 AND X > 10;

4 UPDATE table_a SET x = x + 1 WHERE x > 10;

5 ...

We now consider the case of a range DELETE followed by a range SELECT, as exem-
plified in Listing 6.19.

Listing 6.19: Range DELETE range SELECT, with dependencies.
1 DELETE FROM table_a WHERE x > 10;

2 SELECT x FROM table_a WHERE id > 0;

3 ...

The a priori knowledge on the DELETE condition allows the reordering of operations.
As presented in Listing 6.20, if a row satisfies the remove condition (in the example the
value of attribute x is greater than 10), then it is excluded from the result of the SELECT.
In the reordered version, this is achieved with an additional condition for the SELECT
operation.

Listing 6.20: Reordered range DELETE range SELECT, with dependencies.
1 SELECT x FROM table_a WHERE id > 0 AND NOT x > 10;

2 DELETE FROM table_a WHERE x > 10;

3 ...

Note that, the majority of the presented examples are application related, thus there
is no generic solution that can be applied to every application. However, we believe that
most transactions can be rewritten to satisfy the read-before-write behavior, be it by using
additional SQL queries or in conjunction with additional application code.

Next we employ the previously described techniques for reordering the transaction
of the TPC-C benchmark, and study how these modification influence the performance
of the database.

6.2 TPC-C

TPC-C has been adopted as an industry standard benchmark for online transaction pro-
cessing (OLTP). Thus it presents itself as a good example for studying how the order of
operations, inside a transaction, influences database performance. TPC-C defines five
di↵erent transactions: i) New Order; ii) Payment; iii) Stock Level; iv) Order Status, and
v) Delivery. These transactions are composed by the operations presented in Table 6.1,
ordered according to the TPC-C specification. From this set of transactions, Stock Level
and Order Status only perform read operations, while all others perform both read and
update operations.

106

6.2. TPC-C

New Order Payment Stock Level Order Status Delivery
S(customer on warehouse) U(warehouse) S(district) S(costumer) S(new_order)

S(district) S (warehouse) S(order_line on stock) S(orderr) D(new_order)
U(new_order) U(district) S(order_line) S(orderr)
U(district) S(district) U(orderr)
I(orderr) S(customer) U(order_line)
S(item) U(customer) S(order_line)
S(stock) I(history) U(customer)
U(stock)

I(order_line)

Table 6.1: TPC-C transactions. ’S’, ’U’, ’I’ and ’D’ refer to select, update, insert and delete
operations, respectively, and the accessed tables, with t1on t2 representing a join between
tables t1 and t2.

6.2.1 Transaction Analysis

From a first analysis one can see that read and write operations, inside each transaction,
occur without any specific relative order. For instance, the Payment transaction starts by
updating table warehouse before doing any other operations, while a New Order transac-
tion starts by reading the join between tables warehouse and customer before anything
else.

As previously described, from the application perspective, the order of operations
inside each transaction is not relevant as long as the transaction semantics is preserved.
Under this condition, operations inside a transaction can be reorderwithout consequences
to the application, since both the original transaction and its reordered version evolve
the database from the same initial state to the same final state, thus producing the same
result.

On the other hand, operation order can have a considerable performance impact in
the performance of the database. For instance, starting a transaction with a table update
operation will prevent any concurrent operations on that same table from executing,
since the database locks the table exclusively for the duration of the transaction, thus
restricting concurrency for all other concurrent operation on the same table. However,
when transactions start by performing read operations, since these acquire shared locks
on the respective tables, other concurrent read operations, on the same tables, are still
allowed to execute.

Therefore, if write operations (including INSERT, DELETE and UPDATE operations)
are delayed until the end of each transaction, i.e., after all read operations have been exe-
cuted, there is a chance of improving concurrency at the database level. This modification
is expected to improve performance in twoways: i) due to increased concurrency between
update transactions, since these transactions can execute their read phase concurrently,
allowing transactions to make progress concurrently; and ii) by allowing read-only trans-
actions, such as Stock Level and Order Status, to execute to conclusion concurrently with
update transactions, since read-only transactions can successfully execute concurrently
with other update transactions that are in their read phase.

107

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

6.2.2 TPC-C reordering

To assess the performance influence the order of operations has inside transactions, we
applied some of the previously described mechanisms and modified the TPC-C bench-
mark. This modification focuses on the reordering of operations inside each transaction,
making them compliant with the Read before Write pattern, as presented in Figure 6.2.

New Order Payment Stock Level Order Status Delivery
S(customer on warehouse) S (warehouse) S(district) S(costumer) S(new_order)

S(district) S(district) S(order_line on stock) S(orderr) S(orderr)
S(item) S(customer) S(order_line) S(order_line)
S(stock) U(warehouse) D(new_order)
I(orderr) U(district) U(orderr)

U(new_order) U(customer) U(order_line)
U(district) I(history) U(customer)
U(stock)

I(order_line)

Table 6.2: Reordered TPC-C transactions.

We will now detail the modifications made to each TPC-C transaction, focusing only
on the database interactions and dependencies in the operations. This discussion will
present the original database interaction of TPC-C and, for each one, describes the neces-
sary changes for reordering them to be RbW compliant.

6.2.2.1 New Order

Listing 6.21 presents the database interactions made by the new order transaction. The
reordering process for this transaction is fairly straightforward since no dependencies
exist between WRITE and SELECT operations. As expected, WRITE operations modify
the database based on values previously read by SELECT operations.

Listing 6.21: TPC-C new order transaction.
1 SELECT c_discount, c_last, c_credit, w_tax

2 FROM customer x warehouse

3 WHERE w_id = ? AND c_w_id = ? AND c_d_id = ? AND c_id = ?;

4 SELECT d_next_o_id, d_tax

5 FROM district

6 WHERE d_id = ? AND d_w_id = ?;

7 INSERT
8 INTO new_order (n_o_id, n_d_id, no_w_id)

9 VALUES (?, ?, ?)

10 UPDATE d_next_o_id

11 FROM DISTRICT district

12 WHERE d_id = ? AND d_w_id = ?;

13 INSERT
14 INTO orderr (o_id, o_d_id, o_w_id, o_c_id, o_entry_d, o_ol_cnt, o_all_local)

15 VALUES (?,?,?,?)

16

17 for 1 to order_lines

18 SELECT i_price, i_name, i_data

19 FROM item

108

6.2. TPC-C

20 WHERE i_id = ?;

21 SELECT s_quantity, s_data, s_dist01...10

22 FROM stock

23 WHERE s_i_id = ? AND s_w_id = ?;

24 UPDATE s_quantity, ol_quantity, s_remote_cnt_increment

25 FROM stock

26 WHERE s_i_id = ? AND s_w_id = ?;

27 INSERT
28 INTO order_line(ol_o_id, ol_d_id, ol_w_id, ol_number,

29 ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_dist_info)

30 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);

31 end for

The original Transaction does not respect the RbW pattern only due to a for loop used
to define the order lines for the new order. Thus, for the reordering process, only the two
SELECT operations inside the loop (lines 18 and 21) needed to be reordered. Again, since
these SELECT operations only read values used by the two WRITE operations (lines 24
and 27) that follow them, the reordering process is straightforward.

Thus, the application was modified to first read the needed values, for each of the
lines of the new order, before executing the write phase, as presented in Listing 6.22.
Note that the relative order of WRITE operations is preserved.

Listing 6.22: Reordered TPC-C new order transaction.
1 # READ PHASE

2 SELECT c_discount, c_last, c_credit, w_tax

3 FROM customer x warehouse

4 WHERE w_id = ? AND c_w_id = ? AND c_d_id = ? AND c_id = ?;

5 SELECT d_next_o_id, d_tax

6 FROM district

7 WHERE d_id = ? AND d_w_id = ?;

8 for 1 to order_lines

9 SELECT i_price, i_name, i_data

10 FROM item

11 WHERE i_id = ?;

12 SELECT s_quantity, s_data, s_dist01...10

13 FROM stock

14 WHERE s_i_id = ? AND s_w_id = ?;

15 end for

16

17 # WRITE PHASE

18 INSERT
19 INTO new_order (n_o_id, n_d_id, no_w_id)

20 VALUES (?, ?, ?)

21 UPDATE d_next_o_id

22 FROM DISTRICT district

23 WHERE d_id = ? AND d_w_id = ?;

24 INSERT
25 INTO orderr (o_id, o_d_id, o_w_id, o_c_id, o_entry_d, o_ol_cnt, o_all_local)

26 VALUES (?,?,?,?)

27 for 1 to order_lines

28 UPDATE s_quantity, ol_quantity, s_remote_cnt_increment

29 FROM stock

30 WHERE s_i_id = ? AND s_w_id = ?;

31 INSERT

109

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

32 INTO order_line(ol_o_id, ol_d_id, ol_w_id, ol_number,

33 ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_dist_info)

34 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);

35 end for

6.2.2.2 Payment

Listing 6.23 presents the database interactions made by the payment transaction. The
reordering process for this transaction is also fairly straightforward since no dependencies
exist between WRITE and SELECT operations. Like in the previous transaction, WRITE
operations modify the database based on values previously read by SELECT operations
or previously defined by the application.

Listing 6.23: TPC-C payment transaction.
1 UPDATE w_ytd

2 FROM warehouse

3 WHERE w_id = ?

4 SELECT w_street_1...2, w_city, w_state, w_zip, w_name

5 FROM warehouse

6 WHERE w_id = ?;

7 UPDATE d_ytd

8 FROM district

9 WHERE d_w_id = ? AND d_id = ?;

10 SELECT d_street_1...2, d_city, d_state, d_zip_d_name

11 FROM district

12 WHERE d_w_id = ? AND d_id = ?;

13 if

14 SELECT count(c_id)
15 FROM customer

16 WHERE c_last = ? AND c_d_id = ? AND c_w_id;

17 SELECT c_first, c_middle, c_id, c_street_1...2, c_city,

18 c_state, c_zip, c_phone, c_credit, c_credit_lim,

19 c_discount, c_balance, c_since

20 FROM customer

21 WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?;

22 else
23 SELECT c_first, c_middle, c_id, c_street_1...2, c_city,

24 c_state, c_zip, c_phone, c_credit, c_credit_lim,

25 c_discount, c_balance, c_since

26 FROM customer

27 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

28 endif

29 if

30 SELECT c_data

31 FROM customer

32 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

33 UPDATE c_balance, c_data

34 FROM customer

35 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

36 else
37 UPDATE c_balance

38 FROM customer

39 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

40 endif

110

6.2. TPC-C

41 INSERT
42 INTO history (h_c_d_id, h_c_w_id, h_c_id, h_d_id,

43 h_w_id, h_date, h_amount, h_data)

44 VALUES (?, ?, ?, ?, ?, ?, ?, ?);

The original payment transaction does not respect the RbW pattern, since it starts by
updating a single row of table warehouse (line 1) before any other operations, and also up-
dating an additional row of table district (line 7) between two SELECT operations. Again,
since no dependencies exist between these WRITE operations and the following SELECT
operations, reordering is straightforward, by simply moving the WRITE operations after
SELECT operations. However, an additional SELECT operation is used inside a condition
branch (line 30). Once again, since it does not depend on any precedingWRITE operation
it can be reordered before all WRITE operations.

Thus, the application was modified to allow the reordering of operations, as presented
in Listing 6.24. Again, note that the relative order of WRITE operations is preserved.

Listing 6.24: Reordered TPC-C payment transaction.
1 # READ PHASE

2 SELECT w_street_1...2, w_city, w_state, w_zip, w_name

3 FROM warehouse

4 WHERE w_id = ?;

5 SELECT d_street_1...2, d_city, d_state, d_zip_d_name

6 FROM district

7 WHERE d_w_id = ? AND d_id = ?;

8 if

9 SELECT count(c_id)
10 FROM customer

11 WHERE c_last = ? AND c_d_id = ? AND c_w_id;

12 SELECT c_first, c_middle, c_id, c_street_1...2, c_city,

13 c_state, c_zip, c_phone, c_credit, c_credit_lim,

14 c_discount, c_balance, c_since

15 FROM customer

16 WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?;

17 else
18 SELECT c_first, c_middle, c_id, c_street_1...2, c_city,

19 c_state, c_zip, c_phone, c_credit, c_credit_lim,

20 c_discount, c_balance, c_since

21 FROM customer

22 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

23 endif

24 if

25 SELECT c_data

26 FROM customer

27 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

28 endif

29

30 # WRITE PHASE

31 UPDATE w_ytd

32 FROM warehouse

33 WHERE w_id = ?

34 UPDATE d_ytd

35 FROM district

36 WHERE d_w_id = ? AND d_id = ?;

37 if

111

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

38 UPDATE c_balance, c_data

39 FROM customer

40 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

41 else
42 UPDATE c_balance

43 FROM customer

44 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?;

45 endif

46 INSERT
47 INTO history (h_c_d_id, h_c_w_id, h_c_id, h_d_id,

48 h_w_id, h_date, h_amount, h_data)

49 VALUES (?, ?, ?, ?, ?, ?, ?, ?);

6.2.2.3 Delivery

Listing 6.25 presents the database interactions made by the delivery transaction. The
reordering process for this transaction required additional application modifications,
due to the iterative nature of the transaction, but, from the view point of the database
interaction it is also fairly straightforward since no dependencies exist between WRITE
and SELECT operations. Like in the previous transactions, WRITE operations modify the
database based on values previously read by SELECT operations or previously defined
by the application.

Listing 6.25: TPC-C delivery transaction.
1 for 1 ... 10

2 SELECT no_o_id

3 FROM new_order

4 WHERE no_d_id = ? AND no_w_id = ?;

5 for each no_o_id

6 DELETE
7 FROM new_order

8 WHERE no_i_id = ? AND no_w_id = ? AND no_o_id = ?;

9 endfor

10 if

11 SELECT o_c_id

12 FROM orderr

13 WHERE o_id = ? AND o_d_id = ? AND o_w_id = ?;

14 UPDATE o_carrier_id

15 FROM orderr

16 WHERE o_id = ? AND o_d_id = ? AND o_w_id = ?;

17 UPDATE ol_delivery_d

18 FROM order_line

19 WHERE ol_o_id = ? AND ol_d_id= ? AND ol_w_id = ?;

20 SELECT sum(ol_amount)
21 FROM order_line

22 WHERE ol_o_id = ? AND ol_d_id = ? AND ol_w_id = ?;

23 UPDATE c_balance, c_delivey_cnt

24 FROM customer

25 WHERE c_id = ? AND c_d_id = ? AND c_w_id = ?;

26 endif

27 endfor

112

6.2. TPC-C

The original delivery transaction does not respect the RbW pattern, since two SELECT
operations (line 11 and 20) may execute after the execution of WRITE operations. Again,
since no dependencies exist between these SELECT operations and preceding WRITE
operations, reordering is straightforward, by simply moving the WRITE operations after
SELECT operations.

Due to the iterative nature of the transaction, it required careful modifications to the
application for guaranteeing transaction semantics, especially since the conditional part
of the transaction depends on previously read values within the same iteration. Thus, for
reordering the transaction a loop was needed for the read phase, storing for each iteration
the read values, and an additional loop was used for the write phase, using the previously
read values, as presented in Listing 6.26. Again, note that the relative order of WRITE
operations is preserved.

Listing 6.26: Reordered TPC-C delivery transaction.

1 # READ PHASE

2 for 1 ... 10

3 SELECT no_o_id

4 FROM new_order

5 WHERE no_d_id = ? AND no_w_id = ?;

6 SELECT o_c_id

7 FROM orderr

8 WHERE o_id = ? AND o_d_id = ? AND o_w_id = ?;

9 SELECT sum(ol_amount)
10 FROM order_line

11 WHERE ol_o_id = ? AND ol_d_id = ? AND ol_w_id = ?;

12 endfor

13

14 # WRITE PHASE

15 for 1 ... 10

16 foreach no_o_id

17 DELETE
18 FROM new_order

19 WHERE no_i_id = ? AND no_w_id = ? AND no_o_id = ?;

20 endfor

21 if

22 UPDATE o_carrier_id

23 FROM orderr

24 WHERE o_id = ? AND o_d_id = ? AND o_w_id = ?;

25 UPDATE ol_delivery_d

26 FROM order_line

27 WHERE ol_o_id = ? AND ol_d_id= ? AND ol_w_id = ?;

28 UPDATE c_balance, c_delivey_cnt

29 FROM customer

30 WHERE c_id = ? AND c_d_id = ? AND c_w_id = ?;

31 end if

32 endfor

113

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

6.3 Performance with Modified Transactions

We evaluated our hypothesis that modifying the order of operations inside transactions,
by moving reads to the begin and writes to the end, can help improve application per-
formance. To this end, we run the TPC-C benchmark using the original version and the
modified one.

For this experiment we used our modified HSQLDB storage engine, without latches,
and the serializable isolation level, and ran TPC-C benchmark with original transactions,
denoted as Original, and the RbW reordered version, denoted as RbW.

6.3.1 8-92 workload

Figure 6.1 compare the throughput for the 8-92 workload. Under this update-intensive
workload, the RbW version presents very bad scalability, with a rapid drop in perfor-
mance as the number of clients increase.

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
TPC-C

Original RbW

Figure 6.1: RbW TPC-C performance (8-92 workload).

This drop in performance results from the RbWmodification allowing all transactions
to execute their read phase concurrently even if they, later on, have to abort due to con-
flicting updates. This harms throughput since it uses CPU time for executing transactions
that end up aborting, thus preventing non-conflicting transactions from using the same
CPU time. Additionally, RbW increases dependencies and possible deadlock situations,
due to concurrent transactions sharing read locks on data item before trying to acquire a
write lock on a previously locked table.

As an example consider transactions Payment and New Order, which, combined make
approximately 88% of all transactions executed in this workload. The original Payment
transaction starts by updating table warehouse, while the original New Order transaction
reads from the same table. If New Order succeeds locking table warehouse, then Payment
will block waiting for an exclusive lock on the same table. Since Payment transaction does
not hold any locks, it allows other concurrent New Order transactions to complete.

However, under RbW both transactions are allowed to acquire the shared lock for
table warehouse. Thus, when initiating their write phase, Payment will bock trying to
acquire the exclusive lock for table warehouse, since New Order has a shared lock for that
table, while New Order will block trying to acquire the exclusive lock for table district,

114

6.3. PERFORMANCE WITH MODIFIED TRANSACTIONS

since Payment has a shared lock for that table. This leads to a deadlock situation that
needs to be dealt by the transaction manager, and will force one of the transactions to
abort.

This has a considerable performance impact on the overall performance. Additionally,
since the deadlock resolution process is performed in mutual exclusion, it also contributes
to the observed reduction in concurrency, since possible non conflicting transactions also
block during this process.

6.3.2 Other workloads

As expected, the throughput for the RbW modification increases with the the ratio of
read-only transactions. This is shown in Figures 6.2(a) and 6.2(b), for the 50-50 and
80-20 workloads respectively.

 10
 15
 20
 25
 30
 35
 40

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
TPC-C

Original RbW

(a) 50-50 workload

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
TPC-C

Original RbW

(b) 80-20 workload

Figure 6.2: RbW TPC-C performance (50-50 and 80-20 workloads).

Under these workloads, the RbW modification allows an increase in performance of
up to 2⇥ of the original version, for both 50-50 and 80-20 workloads, as presented in
Figure 6.3. These are expected results since RbW pattern allows read-only transactions
to execute to completion concurrently with update transactions, during their read phase.
Also, the increasing ratio of read-only transactions reduces contention created by update
transactions, also reducing interference between them.

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 1 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

(x
 fa

st
er

)

Clients
TPC-C

8-92 50-50 80-20

Figure 6.3: RbW speedup over Original TPC-C.

115

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

6.4 Read before Writes with early lock release

Contrarily to the original TPC-C version, lock acquisition under RbW always follows the
same pattern, where all read operations have been executed before executing any update
operation. Thus, under the RbW pattern, no new read (shared) lock is acquired after
acquiring the first write (exclusive) lock.

As implied by 2PL, serializability is enforced if no lock is obtained after the first lock
is released. Thus, it is possible to release all shared locks after acquiring all exclusive
locks.

To study the implications of this approach, we have modified our latch-free version
of HSQLDB, so that an application can specify the locks it needs before each transaction
begins. This allows the database to have an a priori knowledge of each transaction lock
set. Since, OLTP applications have pre-defined transactions, it is reasonable to assume
that lock information at table and attribute levels can be extracted by a simple analysis
of transaction operations.

Additionally, the database lock manager has also been modified, so that, when ob-
taining the first exclusive lock, it will try to obtain all the necessary exclusive locks for
completing the transaction, followed by the release of all previously acquired shared
locks that have not been upgraded. This modification is expected to increase concurrency
for update intensive workloads, since the early release of shared locks allows otherwise
blocked write operations to execute.

Unlike some systems that use information about read and write sets to improve con-
currency during transaction execution [Ren+12; Tho+12], our approach only requires
coarse grain information - the name of the table and attributes accessed. This infor-
mation can be easily obtained by a simple transaction analysis of the programs. This
contrasts to schemes using low granularity information, which is very hard or impossible
to obtain statically - e.g. when a read/write depends upon a value read during the same
transaction.

6.4.1 Evaluation

To evaluate this modification we compared the RbW results with the throughput obtained
when combining the RbW pattern with the early release of read locks, referred to as RbW-
RL.

6.4.1.1 8-92 Workload

The results for the 8-92 workload, presented in Figure 6.4, show some improvements
for update-intensive workloads. As expected the early release of shared locks allows
otherwise blocked update transaction to execute, thus increasing the concurrency for
update transactions.

116

6.5. COMBINING RBW WITH A2L

 6
 8

 10
 12
 14
 16
 18

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
TPC-C

Original RbW RbW-RL

Figure 6.4: RbW early release of read lock (8-92 workload).

6.4.1.2 50-50 and 80-20 Workloads

Moderate read and moderate update workloads, such as 50-50 and 80-20, su↵er a signi-
ficative performance penalty, compared to the RbW modification, as presented in Figure
6.5(a) and 6.5(b). This can be explained by the fact that, to preserve isolation semantics,
the early release of shared locks can only occur after the early acquisition of all exclusive
locks. However, this early acquisition of exclusive locks, increases the period locks are
held, thus reducing concurrency of read-only transactions.

 10
 15
 20
 25
 30
 35
 40

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
TPC-C

Original RbW RbW-RL

(a) 50-50 workload

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

)

Clients
TPC-C

Original RbW RbW-RL

(b) 80-20 workload

Figure 6.5: RbW early release of read lock (50-50 and 80-20 workloads).

Next we compare the RbW TPC-C modification when combined with A2L and our
modified storage engine.

6.5 Combining RbWwith A2L

In Section 5.2, we have shown that A2L enforces serializability when using 2PL mecha-
nisms. Thus, since the reordering of operation inside transactions according to a RbW
pattern does not compromises 2PL, it can be safely combined with A2L, providing seri-
alizable semantics. We now show the evaluation results obtained when combining these
techniques, and compare them to both the original HSQLDB engine, and the original
TPC-C implementation.

For this evaluation we compared the performance of the original TPC-C version, run-
ning on both the original HSQLDB and our A2L version of HSQLDB, referred as Original

117

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

TPC-C and Original TPC-C - A2, with the RbW modified version of TPC-C, running on
our A2L version of HSQLDB, referred as A2L - RbW TPC-C.

6.5.1 8-92 and 50-50 workloads

We start by presenting the results for the 8-92 and 50-50 workloads, in Figures 6.6(a) and
6.6(b) respectively. These results show that the RbW modification, when combined with
our A2L engine, o↵ers increased performance improvements over the other configura-
tions, under both workloads.

 5
 10
 15
 20
 25
 30
 35

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

Clients
TPC-C

Original TPC-C
Original TPC-C - A2L

RbW TPC-C
RbW TPC-C - A2L

(a) 8-92 workload

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 4 6 8 10 12 14 16 18
Th

ro
ug

hp
ut

 (T
ra

ns
 x

 1
03 /m

in

Clients
TPC-C

Original TPC-C
Original TPC-C - A2L

RbW TPC-C
RbW TPC-C - A2L

(b) 50-50 workload

Figure 6.6: Comparing performance of proposed modifications (8-92 and 50-50 Work-
loads).

This is put into evidence when comparing the speedup of the di↵erente configurations
over the original HSQLDB engine for the 8-92 and 50-50 workloads, presented in Figures
6.7(a) and 6.7(b) respectively.

The RbW/A2L combination achieves up to 2.8⇥ and 2.5⇥, when compared to the
original HSQLDB engine running the original TPC-C version, for the 8-92 and 50-50
workloads respectively. This combination also o↵er a 1.4⇥ and 1.2⇥ performance im-
provement, when compared to the original TPC-C version running on our A2L engine,
for the same workloads.

 0.5
 1

 1.5
 2

 2.5
 3

 1 2 4 6 8 10 12 14 16 18Sp
ee

du
p

(x
 fa

st
er

)

Clients
TPC-C/Engine

Original TPC-C - HSQLDB (LF) A2L
RbW TPC-C - HSQLDB (LF)

RbW TPC-C - HSQLDB (LF) A2L

(a) 8-92 workload

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 1 2 4 6 8 10 12 14 16 18Sp
ee

du
p

(x
 fa

st
er

)

Clients
TPC-C/Engine

Original TPC-C - HSQLDB (LF) A2L
RbW TPC-C - HSQLDB (LF)

RbW TPC-C - HSQLDB (LF) A2L

(b) 50-50 workload

Figure 6.7: Comparing speedups of proposed modifications (8-92 and 50-50 Workloads).

118

6.5. COMBINING RBW WITH A2L

6.5.2 80-20 and 100-0 Workloads

The performance obtained for the 80-20 workloads, presented in Figures 6.8(a) and 6.8(b),
present identical improvements. These results show that the RbW modification, when
combined with our A2L engine, o↵ers increased performance improvements over the
other configurations, under both workloads.

 10
 20
 30
 40
 50
 60
 70
 80

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

Clients
TPC-C

Original TPC-C
Original TPC-C - A2L

RbW TPC-C
RbW TPC-C - A2L

(a) 80-20 workload

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (T

ra
ns

 x
 1

03 /m
in

Clients
TPC-C

Original TPC-C
Original TPC-C - A2L

RbW TPC-C
RbW TPC-C - A2L

(b) 100-0 workload

Figure 6.8: Comparing performance of proposed modifications (80-20 and 100-0 Work-
loads).

Like before, this is put into evidence when comparing the speedup of the di↵erente
configurations over the original HSQLDB engine for the 80-20 and 100-0 workloads,
presented in Figures 6.9(a) and 6.9(b) respectively.

The RbW/A2L combination achieves up to 3.5⇥ and 4⇥, for the 80-20 and 100-0 work-
load respectively, when compared to the original HSQLDB engine running the original
TPC-C version. Also, it o↵ers a 1.5⇥ performance improvement, for the 80-20 workload
respectively, when compared to the original TPC-C version running on the same engine.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 1 2 4 6 8 10 12 14 16 18Sp
ee

du
p

(x
 fa

st
er

)

Clients
TPC-C/Engine

Original TPC-C - HSQLDB (LF) A2L
RbW TPC-C - HSQLDB (LF)

RbW TPC-C - HSQLDB (LF) A2L

(a) 80-20 workload

 0
 1
 2
 3
 4
 5
 6
 7

 1 2 4 6 8 10 12 14 16 18Sp
ee

du
p

(x
 fa

st
er

)

Clients
TPC-C/Engine

Original TPC-C - HSQLDB (LF) A2L
RbW TPC-C - HSQLDB (LF)

RbW TPC-C - HSQLDB (LF) A2L

(b) 100-0 workload

Figure 6.9: Comparing speedups of proposed modifications (80-20 and 100-0 Workloads).

6.5.3 Scalability

The combination of the RbW TPC-C version and the A2L engine o↵ers scalable perfor-
mance, with the number of clients, up to approximately 12 to 14 clients, compared to
the original TPC-C running on the original HSQLDB engine. This is put in evidence

119

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

in Figure 6.10, where we show the RbW TPC-C - A2L speedup over the original TPC-C
version running on the original HSQLDB engine, for the di↵erent workloads.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 1 2 4 6 8 10 12 14 16 18
Sp

ee
du

p
(x

 fa
st

er
)

Clients

Workload
8-92

50-50
80-20
100-0

Figure 6.10: A2L RbW TPC-C Speedup over Original TPC-C on HSQLDB.

6.5.4 Additional discussion

Contrarily to RbW, the early release of read locks (RbW-RL) when combined with the A2L
scheme does not translate into an increase in performance. This occurs for two reasons:
First, under A2L most TPC-C transactions end up conflicting only with themselves, due
to attribute dependencies. This is a situation that the early release of read lock does
not improve. Second, the early release of read locks increases locking overhead, as put
into evidence by the decrease in performance under the 50-50 and 80-20 workload, as
presented in Figures 6.5(a) and 6.5(b).

Since transaction locking algorithm is itself a contention point, the early release of
read locks further increases its overhead, resulting in a decrease in performance. This is
also put into evidence with the decrease in performance of A2L under read-only work-
loads, as presented in Figure 5.5(b). Again, we believe these limitations could be ad-
dressed by increasing concurrency of lock management algorithms with some of the
ideas presented in recent works [Jun+13; Ren+12; Tu+13].

6.6 Correctness

For the correctness of the RbW and RbW-RL modifications, it is necessary to guarantee
that transactions executed under these access patterns respect serializability semantics,
i.e., that the result of concurrently executing two or more transactions, under RbW and
RbW-RL, is identical to some sequential order of those same transactions. This proof is
identical to the ones for A2L.

Proposition 5. RbW and RbW-RL guarantees serializability of concurrent transactions.

Proof. Two-phase locking (including predicate locks) guarantees serializability [Ady+00;
Ber+95], regardless of access pattern. As the RbW approach uses two-phase locking it
guarantees serializability. Thus, we only need to show that the early release of locks, i.e.,
RbW-RL, is serializable. Since, under RbW-RL, read locks are only releases after all write

120

6.7. SUMMING UP

locks have been acquired, and no new locks are acquired after this, RbW-RL preserves
the 2PL locking scheme, thus guaranteeing its correctness. This is also true under A2L,
since locking patterns under A2L are identical to 2PL, even when early releasing read
locks. Additionally, since both approaches lock entire tables, this prevents concurrent
transaction from updating any row, including adding new rows, thus achieving the same
e↵ect of predicate locking.

For proving the correctness of RbW and RbW-RL, we further need to prove that it can
run with a modified IMDB that includes no concurrency control on the data structures
used for maintaining data.

Proposition 6. RbW and RbW-RL preserves consistency with data structures that include no
concurrency control.

Proof. 2PL and A2L locking schemes acquire shared and exclusive locks on an item before
accessing it, thus prevent any concurrent operation from acquiring an exclusive lock on
the same item for modifying it. This prevents concurrent read/write and write/write
operations on the same data items. Additionally, A2L exclusive locks all attributes of
a table before executing inserting or deleting an item. This prevents concurrent read
operation from acquiring shared locks on any attribute, thus preventing transversals
while structural changes occur in the data structures. Since both RbW and RbW-RL
preserve A2L locking behavior, and A2L can be combined with a lock free storage engine,
then RbW and RbW-RL can be combined with a lock free storage engine.

6.7 Summing up

From the presented results we can conclude that applications can have a considerable in-
fluence in database performance. This impact, as expected, is most noticeable at moderate
read and update workloads (50-50 and 80-20 workloads), since operation reordering, fol-
lowing the RbW pattern, allows for increased concurrency between read-only and update
transactions.

Additionally, combining RbW scheme with the early release of read locks, i.e., RbW-
RL, allows for some performance improvement for update-intensive workloads (8-92
workload), although at the cost of a performance decrease under moderate read and
write workloads (50-50 and 80-20 workloads). This is expected since RbW-RL, not only
increases the locking overhead, but also limits concurrency for read operations. This
results from write locks being acquired all at the same time, for guaranteeing isolation
semantics, and from being held for longer periods of time. This increase in lock duration
has a negative impact on concurrency, thus decreasing the overall performance.

121

CHAPTER 6. APPLICATION IMPACT ON DATABASE PERFORMANCE

Finally, combining the RbW modifications with A2L o↵ers significative performance
improvements, not only due to the less interfering nature of RbW, but also, when com-
bined with A2L transaction tend to conflict only with themselves. This allows our system
to scale under every workload, as presented by the results in Figure 6.10.

122

C
h
a
p
t
e
r

7
Conclusions

Multicore systems o↵er increased computational power by providing multiple processing
cores. Exploring this computational power is challenging, as it requires using multiple
processors concurrently. This dissertation focus on improving performance and scala-
bility of general purpose in-memory databases on multicore systems. More specifically,
we proposed techniques for improving the scalability of IMDBs while enforcing strong
isolation semantics (i.e., Serializability).

As the first contribution of our work, we have presented a performance study of
two general purpose IMDBs running on a multicore system. This study showed that
both databases are unable to scale with the number of clients, independently of the
type of workload or isolation level used. Additionally, we have identified the Storage
subcomponent as a major scalability bottleneck of the database. More specifically, the
lack of scalability of these systems is a direct result of the contention created by the
concurrency control mechanisms (latches) used by the index data structures to maintain
data.

We have explored di↵erent approaches for addressing this problem. First, we started
by trying to answer the question of whether it is possible to improve scalability with-
out modifying the database engines and the applications. To address this question, we
designed and implemented a system, MacroDB, that explores database replication in a
single multicore machine. MacroDB treats multicore machines as extremely low latency
clusters extended with some shared memory, and builds on the knowledge of distributed
and replicated databases, for creating a system that combines multiple database replicas
that can run concurrently at di↵erent cores. This allows to partially address the scalability
problem by distributing and balancing load among di↵erent replicas.

Our experiments show that this approach is able to o↵er performance benefits raging
from 40% to 180% over standalone database engines under read-intensive workloads. For

123

CHAPTER 7. CONCLUSIONS

update-intensive ones, it su↵ers from 5% to 14% overhead. We have also shown that the
memory used by the system is not directly proportional to the number of replicas, thus
making this approach practical. The result of update-intensive workloads show that the
performance of a single replica is a key limitation factor to the scalability of the overall
system.

Second, we tried to answer the question of how to scale IMDBs by modifying the
database engine, while minimizing changes to the architecture of these systems. In this
approach, we delved into the database engine and tried to fix the major performance
bottlenecks. We started by proposing the removal of concurrency control mechanisms
(latches) in low level data structures, and a new locking scheme for supporting di↵erent
isolation levels, while preventing concurrent read/write and write/write access in the
storage data structures.

Our experiments show that this approach is able to outperform the original database
performance by a factor of up to 7⇥ for the TPC-C benchmark under read-intensive
workloads, o↵ering scalable performance. Also, and contrarily to the previous approach,
moderate update workloads benefit from 1.5⇥ to 4⇥ performance improvement, although
with limited scalability.

Next, we tried to address the problem for update-intensive workloads. For allowing
increased concurrency, we proposed the use of attribute level locking (A2L). In A2L,
operations lock table attributes, i.e., pairs (table,column), instead on locking the com-
plete table. This reduces contention by allowing transactions to execute concurrently on
di↵erent attributes, i.e., as long as no concurrent read/write or write/write operations
execute on the same table attribute.

E�cient support of A2L required modifying the storage component, since database
update operations are commonly implemented as remove/insert operation pairs at the in-
dex level. Thus, we modified the database to perform direct in-place updates for non key
attribute updates, while maintaining the original behavior when updating key attributes.

Running the TPC-C benchmark on our modified engine shows this approach im-
proves performance under all types of workloads, scaling up to 2⇥ the performance of
the original engine in standard TPC-C workload (92% updates). Performance under
read-intensive workloads also improved over the original engine, scaling up to 3.5⇥.

Finally, we tried to address the question of what is the impact of the application code
in the performance of the database, and whether it is possible to change the application
code to improve scalability while retaining the same semantics. We started by analyzing
how operation order inside transactions influence the database performance, and then
studied how transactions can be modified in a database friendly way, i.e., for reducing
interference. Finally, we have shown how to modify database to take advantage of these
modifications to further improve database performance.

This study showed that modifying transactions using a read before write (RbW) pattern,
where all read operations execute prior to all write operations, is able to increase perfor-
mance up to 2.5⇥, when compared to the original unmodified transactions, for update

124

7.1. FUTURE WORK

intensive workloads.

Additionally, lock acquisition under RbW allows for early releasing of read lock. We
further modified the HSQLDB database for early releasing read locks. The results with
the modified version of the database showed some performance improvements for update
intensive workloads, at the expense of performance decrease for read intensive workloads.

Finally, we combined the RbW modification with the A2L locking scheme. Running
the modified TPC-C benchmark on our modified engine showed performance improve-
ments under all workloads, scaling up to 3⇥ the performance of the original engine in
standard TPC-C workload (92% updates). Performance benefits, under read-intensive
workloads also improved, scaling up to 3.5⇥ the performance of the original engine. Ad-
ditionally, the proposed modifications allowed the modified engine to scale on multicore
systems, under all workloads.

7.1 Future Work

While the proposed database modifications have improved database performance, update-
intensive workloads have not achieved the same improvement as read-intensives. Addi-
tionally, the modification for improving these workloads, compromised the improvement
for read-intensive ones. Thus, a possible research direction, would be to further address
the scalability of update-intensive workloads, by allowing SQL INSERT and DELETE
operations to execute concurrently with other operations.

We believe this could be achieved by further modifying the index data-structures, so
that SQL INSERT and DELETE operations would not result in complex state changes. A
straightforward modification to the HSQLDB engine would be to prevent the immediate
rotation of the AVL index tree, when inserting or removing nodes, performing these state
changes periodically. This modification would require additional modifications to the
Lock Manager, for preserving transaction isolation.

An additional direction would be to study the benefits of delaying the e↵ects of write
operations until the end of a transaction. The purpose would be to reduce the periods
that transactions hold exclusive locks, thus increasing concurrency. Under such scenario,
rather than acquiring locks when executing write operations, these would only be applied
at commit time. Isolation is still preserved since locking pattern would be preserved. Also,
whenever update operations depend on previously read values, the database can be mod-
ified so that the value is only calculated internally, and not returned to the applications.
This ideia follows self increment values, that automatically increment the value for a
given attribute when inserting a new table row. Contrarily to these, this idea is to allows
developers to define operations and corresponding arguments, so that the final values
are calculated internally by the database. This should reduce conflicts, for instance when
inserting new rows based on previously read values, where concurrent inserts would try
to insert the same value.

125

CHAPTER 7. CONCLUSIONS

Finally, current conflict detection mechanisms used by optimistic or multi-version
concurrency control tend to operate at the row level. This allows concurrent operations
on the same table, as long as these access di↵erent rows. However, the granularity for
conflict detection can be reduced to the attribute level, which would allow conflicting
operations on the same table and on the same row, as long as these access di↵erent
attributes. An additional research path would be to study the implications of reducing
concurrency control granularity to the attribute level.

Other directions include, integrate the database modifications into MacroDB to pro-
vide improved performance, also to further modify the MacroDB to provide improved
fault-tolerance.

126

Bibliography

[Aba+12] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. “The Design
and Implementation of Modern Column-Oriented Database Systems”. In:
Foundations and Trends® in Databases 5.3 (2012), pp. 197–280. issn: 1931-
7883. doi: 10.1561/1900000024. url: http://dx.doi.org/10.
1561/1900000024.

[Ady+00] A. Adya, B. Liskov, and P. O’Neil. “Generalized isolation level definitions”.
In: Data Engineering, 2000. Proceedings. 16th International Conference on.
2000, pp. 67–78. doi: 10.1109/ICDE.2000.839388.

[Agr+87] R. Agrawal, M. J. Carey, and M. Livny. “Concurrency Control Performance
Modeling: Alternatives and Implications”. In: ACM Trans. Database Syst.
12.4 (Nov. 1987), pp. 609–654. issn: 0362-5915. doi: 10.1145/32204.
32220. url: http://doi.acm.org/10.1145/32204.32220.

[AC09] I. Anjo and J. Cachopo. “Jaspex: Speculative parallel execution of java appli-
cations”. In: Proceedings of the Simpósio de Informática (INFORUM). Lisboa,
Portugal, 2009.

[Ast+76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray,
P. P. Gri�ths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu,
I. L. Traiger, B. W. Wade, and V. Watson. “System R: Relational Approach
to Database Management”. In: ACM Trans. Database Syst. 1.2 (June 1976),
pp. 97–137. issn: 0362-5915. doi: 10.1145/320455.320457. url:
http://doi.acm.org/10.1145/320455.320457.

[Att+11] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M.
Vechev. “Laws of Order: Expensive Synchronization in Concurrent Algo-
rithms Cannot Be Eliminated”. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’11. Austin, Texas, USA: ACM, 2011, pp. 487–498. isbn: 978-1-4503-0490-0.
doi: 10.1145/1926385.1926442. url: http://doi.acm.org/10.
1145/1926385.1926442.

[Avi85] A. Avizienis. “The N-Version Approach to Fault-Tolerant Software”. In: IEEE
Trans. Softw. Eng. 11.12 (Dec. 1985), pp. 1491–1501. issn: 0098-5589. doi:

127

BIBLIOGRAPHY

10.1109/TSE.1985.231893. url: http://dx.doi.org/10.1109/
TSE.1985.231893.

[AK84] A. Avizienis and J. P. J. Kelly. “Fault Tolerance by Design Diversity: Concepts
and Experiments”. In: Computer 17.8 (Aug. 1984), pp. 67–80. issn: 0018-
9162. doi: 10.1109/MC.1984.1659219. url: http://dx.doi.org/
10.1109/MC.1984.1659219.

[Bau+09] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. “The Multikernel: A New OS Architecture
for Scalable Multicore Systems”. In: Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana,
USA: ACM, 2009, pp. 29–44. isbn: 978-1-60558-752-3. doi: 10.1145/
1629575.1629579. url: http://doi.acm.org/10.1145/1629575.
1629579.

[Ber+95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. “A
Critique of ANSI SQL Isolation Levels”. In: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’95. San
Jose, California, USA: ACM, 1995, pp. 1–10. isbn: 0-89791-731-6. doi:
10.1145/223784.223785. url: http://doi.acm.org/10.1145/
223784.223785.

[BN97] P. Bernstein and E. Newcomer. Principles of Transaction Processing: For the
Systems Professional. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997. isbn: 1-55860-415-4.

[Ber+87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1987. isbn: 0-201-10715-5.

[Bon+08] P. A. Boncz, M. L. Kersten, and S. Manegold. “Breaking the Memory Wall in
MonetDB”. In: Commun. ACM 51.12 (Dec. 2008), pp. 77–85. issn: 0001-
0782. doi: 10.1145/1409360.1409380. url: http://doi.acm.org/
10.1145/1409360.1409380.

[Cam+07] L. Camargos, F. Pedone, and M. Wieloch. “Sprint: A Middleware for High-
performance Transaction Processing”. In: Proceedings of the 2NdACMSIGOP-
S/EuroSys European Conference on Computer Systems 2007. EuroSys ’07. Lis-
bon, Portugal: ACM, 2007, pp. 385–398. isbn: 978-1-59593-636-3. doi:
10.1145/1272996.1273036. url: http://doi.acm.org/10.1145/
1272996.1273036.

[Car+94] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuli↵e, J. F.
Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White,
and M. J. Zwilling. “Shoring Up Persistent Applications”. In: Proceedings
of the 1994 ACM SIGMOD International Conference on Management of Data.

128

BIBLIOGRAPHY

SIGMOD ’94. Minneapolis, Minnesota, USA: ACM, 1994, pp. 383–394. isbn:
0-89791-639-5. doi: 10.1145/191839.191915. url: http://doi.acm.
org/10.1145/191839.191915.

[CL02a] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance and Proactive
Recovery”. In: vol. 20. 4. New York, NY, USA: ACM, Nov. 2002, pp. 398–
461. doi: 10.1145/571637.571640. url: http://doi.acm.org/10.
1145/571637.571640.

[CL02b] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance and Proactive
Recovery”. In: ACM Trans. Comput. Syst. 20.4 (Nov. 2002), pp. 398–461.
issn: 0734-2071. doi: 10.1145/571637.571640. url: http://doi.
acm.org/10.1145/571637.571640.

[Cec+08] E. Cecchet, G. Candea, and A. Ailamaki. “Middleware-based Database Repli-
cation: The Gaps Between Theory and Practice”. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data. SIGMOD
’08. Vancouver, Canada: ACM, 2008, pp. 739–752. isbn: 978-1-60558-102-
6. doi: 10.1145/1376616.1376691. url: http://doi.acm.org/10.
1145/1376616.1376691.

[Cha+01] S. K. Cha, S. Hwang, K. Kim, and K. Kwon. “Cache-Conscious Concurrency
Control of Main-Memory Indexes on Shared-Memory Multiprocessor Sys-
tems”. In: Proceedings of the 27th International Conference on Very Large Data
Bases. VLDB ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 181–190. isbn: 1-55860-804-4. url: http://dl.acm.
org/citation.cfm?id=645927.672375.

[Cha+81] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King,
B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger,
M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost. “A
History and Evaluation of System R”. In: Commun. ACM 24.10 (Oct. 1981),
pp. 632–646. issn: 0001-0782. doi: 10.1145/358769.358784. url:
http://doi.acm.org/10.1145/358769.358784.

[Che+95] C. Chekuri, W. Hasan, and R. Motwani. “Scheduling Problems in Paral-
lel Query Optimization”. In: Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. PODS ’95.
San Jose, California, USA: ACM, 1995, pp. 255–265. isbn: 0-89791-730-8.
doi: 10.1145/212433.212471. url: http://doi.acm.org/10.
1145/212433.212471.

[CA78] L. Chen and A. Avizienis. “N-version programming: A Fault-tolerance
approach to reliability of software operation”. In: Proceedings of FTCS-8.
Toulouse, France: IEEE Computer Society, 1978, pp. 3–9.

129

BIBLIOGRAPHY

[Che+94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. “RAID:
High-performance, Reliable Secondary Storage”. In: ACM Comput. Surv.
26.2 (June 1994), pp. 145–185. issn: 0360-0300. doi: 10.1145/176979.
176981. url: http://doi.acm.org/10.1145/176979.176981.

[CR08] J. Cieslewicz and K. A. Ross. “Data Partitioning on Chip Multiprocessors”.
In: Proceedings of the 4th International Workshop on Data Management on
New Hardware. DaMoN ’08. Vancouver, Canada: ACM, 2008, pp. 25–34.
isbn: 978-1-60558-184-2. doi: 10.1145/1457150.1457156. url: http:
//doi.acm.org/10.1145/1457150.1457156.

[Cie+10] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye. “Automatic Contention
Detection and Amelioration for Data-intensive Operations”. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 483–494. isbn:
978-1-4503-0032-2. doi: 10.1145/1807167.1807221. url: http://
doi.acm.org/10.1145/1807167.1807221.

[Cle+13] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler.
“The Scalable Commutativity Rule: Designing Scalable Software for Multi-
core Processors”. In: Proceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles. SOSP ’13. Farminton, Pennsylvania: ACM, 2013,
pp. 1–17. isbn: 978-1-4503-2388-8. doi: 10.1145/2517349.2522712.
url: http://doi.acm.org/10.1145/2517349.2522712.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (June 1970), pp. 377–387. issn: 0001-0782. doi:
10.1145/362384.362685. url: http://doi.acm.org/10.1145/
362384.362685.

[Com79] D. Comer. “Ubiquitous B-Tree”. In: ACM Comput. Surv. 11.2 (June 1979),
pp. 121–137. issn: 0360-0300. doi: 10.1145/356770.356776. url:
http://doi.acm.org/10.1145/356770.356776.

[CB09] T. M. Connolly and C. E. Begg. Database Systems: A Practical Approach to De-
sign, Implementation andManagement. 5th. USA: Addison-Wesley Publishing
Company, 2009. isbn: 0321523067.

[CK85] G. P. Copeland and S. N. Khoshafian. “A Decomposition Storage Model”.
In: SIGMOD Rec. 14.4 (May 1985), pp. 268–279. issn: 0163-5808. doi:
10.1145/971699.318923. url: http://doi.acm.org/10.1145/
971699.318923.

[Cou12] T. P. P. Council. TPC-C on-line transaction processing benchmark. 2012. url:
http://www.tpc.org/tpcc/.

130

BIBLIOGRAPHY

[Dia+13] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N.
Verma, and M. Zwilling. “Hekaton: SQL Server’s Memory-optimized OLTP
Engine”. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’13. New York, New York, USA: ACM,
2013, pp. 1243–1254. isbn: 978-1-4503-2037-5. doi: 10.1145/2463676.
2463710. url: http://doi.acm.org/10.1145/2463676.2463710.

[Dic+13] D. Dice, D. Hendler, and I. Mirsky. “Lightweight Contention Management
for E�cient Compare-and-swap Operations”. In: Proceedings of the 19th
International Conference on Parallel Processing. Euro-Par’13. Aachen, Ger-
many: Springer-Verlag, 2013, pp. 595–606. isbn: 978-3-642-40046-9. doi:
10.1007/978-3-642-40047-6_60. url: http://dx.doi.org/10.
1007/978-3-642-40047-6_60.

[Esw+76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. “The Notions of
Consistency and Predicate Locks in a Database System”. In: Commun. ACM
19.11 (Nov. 1976), pp. 624–633. issn: 0001-0782. doi: 10.1145/360363.
360369. url: http://doi.acm.org/10.1145/360363.360369.

[F+̈12] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. “SAP
HANA Database: Data Management for Modern Business Applications”. In:
SIGMOD Rec. 40.4 (Jan. 2012), pp. 45–51. issn: 0163-5808. doi: 10.1145/
2094114.2094126. url: http://doi.acm.org/10.1145/2094114.
2094126.

[Fre60] E. Fredkin. “Trie Memory”. In: Commun. ACM 3.9 (Sept. 1960), pp. 490–
499. issn: 0001-0782. doi: 10.1145/367390.367400. url: http:
//doi.acm.org/10.1145/367390.367400.

[Gar+11] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. “OS Diversity
for Intrusion Tolerance: Myth or Reality?” In: Proceedings of the 2011 IEEE/I-
FIP 41st International Conference on Dependable Systems&Networks. DSN ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 383–394. isbn:
978-1-4244-9232-9. doi: 10.1109/DSN.2011.5958251. url: http:
//dx.doi.org/10.1109/DSN.2011.5958251.

[Gas+07] I. Gashi, P. Popov, and L. Strigini. “Fault Tolerance via Diversity for O↵-
the-Shelf Products: A Study with SQL Database Servers”. In: IEEE Trans.
Dependable Secur. Comput. 4.4 (Oct. 2007), pp. 280–294. issn: 1545-5971.
doi: 10.1109/TDSC.2007.70208. url: http://dx.doi.org/10.
1109/TDSC.2007.70208.

[Gia+12] G. Giannikis, G. Alonso, and D. Kossmann. “SharedDB: Killing One Thou-
sand Queries with One Stone”. In: Proc. VLDB Endow. 5.6 (Feb. 2012),
pp. 526–537. issn: 2150-8097. doi: 10.14778/2168651.2168654. url:
http://dx.doi.org/10.14778/2168651.2168654.

131

BIBLIOGRAPHY

[Gra03] G. Graefe. “Sorting And IndexingWith Partitioned B-Trees”. In: CIDR. 2003.
url: http://www-db.cs.wisc.edu/cidr/cidr2003/program/p1.
pdf.

[Gra+12] G. Graefe, H. Kimura, and H. Kuno. “Foster B-trees”. In: ACM Trans. Data-
base Syst. 37.3 (Sept. 2012), 17:1–17:29. issn: 0362-5915. doi: 10.1145/
2338626.2338630. url: http://doi.acm.org/10.1145/2338626.
2338630.

[Gra+75] J. N. Gray, R. A. Lorie, and G. R. Putzolu. “Granularity of Locks in a Shared
Data Base”. In: Proceedings of the 1st International Conference on Very Large
Data Bases. VLDB ’75. Framingham, Massachusetts: ACM, 1975, pp. 428–
451. isbn: 978-1-4503-3920-9. doi: 10.1145/1282480.1282513. url:
http://doi.acm.org/10.1145/1282480.1282513.

[Gra78] J. Gray. “Notes on Data Base Operating Systems”. In: Operating Systems,
An Advanced Course. London, UK, UK: Springer-Verlag, 1978, pp. 393–481.
isbn: 3-540-08755-9. url: http://dl.acm.org/citation.cfm?id=
647433.723863.

[GR92] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 1st.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. isbn:
1558601902.

[Gra+96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. “The Dangers of Replication
and a Solution”. In: SIGMOD Rec. 25.2 (June 1996), pp. 173–182. issn:
0163-5808. doi: 10.1145/235968.233330. url: http://doi.acm.
org/10.1145/235968.233330.

[Gro12] T. H. D. Group. HyperSQL. 2012. url: http://hsqldb.org/.

[H212] H2. H2 Database Engine. 2012. url: http://www.h2database.com/
html/main.html.

[HR83] T. Haerder and A. Reuter. “Principles of Transaction-oriented Database Re-
covery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), pp. 287–317. issn:
0360-0300. doi: 10.1145/289.291. url: http://doi.acm.org/10.
1145/289.291.

[Ham+97] L. Hammond, B. A. Nayfeh, and K. Olukotun. “A Single-Chip Multiproces-
sor”. In: Computer 30.9 (1997), pp. 79–85. issn: 0018-9162. doi: http:
//doi.ieeecomputersociety.org/10.1109/2.612253.

[HL09] W.-S. Han and J. Lee. “Dependency-aware Reordering for Parallelizing
Query Optimization in Multi-core CPUs”. In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’09.

132

BIBLIOGRAPHY

Providence, Rhode Island, USA: ACM, 2009, pp. 45–58. isbn: 978-1-60558-
551-2. doi: 10.1145/1559845.1559853. url: http://doi.acm.org/
10.1145/1559845.1559853.

[Har+07] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B.
Falsafi. “Database Servers on Chip Multiprocessors: Limitations and Oppor-
tunities.” In: CIDR. www.cidrdb.org, 2007, pp. 79–87. url: http://dblp.
uni-trier.de/db/conf/cidr/cidr2007.html#HardavellasPJMAF07.

[Har+08] S. Harizopoulos, D. J. Abadi, S. Madden, andM. Stonebraker. “OLTP Through
the Looking Glass, and What We Found There”. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data. SIGMOD
’08. Vancouver, Canada: ACM, 2008, pp. 981–992. isbn: 978-1-60558-102-
6. doi: 10.1145/1376616.1376713. url: http://doi.acm.org/10.
1145/1376616.1376713.

[Hel+96] A. A. Helal, B. K. Bhargava, and A. A. Heddaya. Replication Techniques in
Distributed Systems. Norwell, MA, USA: Kluwer Academic Publishers, 1996.
isbn: 0792398009.

[HM93] M. Herlihy and J. E. B. Moss. “Transactional Memory: Architectural Sup-
port for Lock-free Data Structures”. In: SIGARCH Comput. Archit. News
21.2 (May 1993), pp. 289–300. issn: 0163-5964. doi: 10.1145/173682.
165164. url: http://doi.acm.org/10.1145/173682.165164.

[HS08] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008. isbn: 0123705916,
9780123705914.

[HW90] M. P. Herlihy and J. M. Wing. “Linearizability: A Correctness Condition
for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (July
1990), pp. 463–492. issn: 0164-0925. doi: 10.1145/78969.78972. url:
http://doi.acm.org/10.1145/78969.78972.

[Hoa74] C. A. R. Hoare. “Monitors: An Operating System Structuring Concept”.
In: Commun. ACM 17.10 (Oct. 1974), pp. 549–557. issn: 0001-0782. doi:
10.1145/355620.361161. url: http://doi.acm.org/10.1145/
355620.361161.

[HR79] H. B. Hunt and D. J. Rosenkrantz. “The Complexity of Testing Predicate
Locks”. In: Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’79. Boston, Massachusetts: ACM, 1979,
pp. 127–133. isbn: 0-89791-001-X. doi: 10.1145/582095.582115. url:
http://doi.acm.org/10.1145/582095.582115.

[ISDLS92] A. N. S. for Information Systems Database Language SQL. ANSI X3.135-
1992. 1992.

133

BIBLIOGRAPHY

[Joh+09a] R. Johnson, M. Athanassoulis, R. Stoica, and A. Ailamaki. “A New Look at
the Roles of Spinning and Blocking”. In: Proceedings of the Fifth International
Workshop on Data Management on New Hardware. DaMoN ’09. Providence,
Rhode Island: ACM, 2009, pp. 21–26. isbn: 978-1-60558-701-1. doi: 10.
1145/1565694.1565700. url: http://doi.acm.org/10.1145/
1565694.1565700.

[Joh+09b] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. “Shore-
MT: A Scalable Storage Manager for the Multicore Era”. In: Proceedings of
the 12th International Conference on Extending Database Technology: Advances
in Database Technology. EDBT ’09. Saint Petersburg, Russia: ACM, 2009,
pp. 24–35. isbn: 978-1-60558-422-5. doi: 10.1145/1516360.1516365.
url: http://doi.acm.org/10.1145/1516360.1516365.

[JMHH07] M. S. Joseph M. Hellerstein and J. Hamilton. “Architecture of a Database
System”. In: Foundations and Trends® in Databases 1.2 (2007), pp. 141–259.
issn: 1931-7883. doi: 10.1561/1900000002. url: http://dx.doi.
org/10.1561/1900000002.

[Jun+13] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. “A Scalable
Lock Manager for Multicores”. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’13. New York,
New York, USA: ACM, 2013, pp. 73–84. isbn: 978-1-4503-2037-5. doi:
10.1145/2463676.2465271. url: http://doi.acm.org/10.1145/
2463676.2465271.

[Kal+08] R. Kallman, H. Kimura, J. Natkins, A. Pedro, A. Rasin, S. Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. “H-
store: A High-performance, Distributed Main Memory Transaction Process-
ing System”. In: Proc. VLDB Endow. 1.2 (Aug. 2008), pp. 1496–1499. issn:
2150-8097. doi: 10.14778/1454159.1454211. url: http://dx.doi.
org/10.14778/1454159.1454211.

[KA10] B. Kemme and G. Alonso. “Database Replication: A Tale of Research Across
Communities”. In: Proc. VLDB Endow. 3.1-2 (Sept. 2010), pp. 5–12. issn:
2150-8097. doi: 10.14778/1920841.1920847. url: http://dx.doi.
org/10.14778/1920841.1920847.

[Kem+10] B. Kemme, R. Jimenez-Peris, and M. Patino-Martinez. Database Replication.
Vol. 2. 1. 2010, pp. 1–153. doi: 10.2200/S00296ED1V01Y201008DTM007.
eprint: http://dx.doi.org/10.2200/S00296ED1V01Y201008DTM007.
url: http://dx.doi.org/10.2200/S00296ED1V01Y201008DTM007.

[Kis+12] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. “KISS-Tree: Smart
Latch-free In-memory Indexing on Modern Architectures”. In: Proceedings
of the Eighth International Workshop on Data Management on New Hardware.

134

BIBLIOGRAPHY

DaMoN ’12. Scottsdale, Arizona: ACM, 2012, pp. 16–23. isbn: 978-1-4503-
1445-9. doi: 10.1145/2236584.2236587. url: http://doi.acm.
org/10.1145/2236584.2236587.

[Kri+09] K. Krikellas, M. Cintra, and S. Viglas. Multithreaded query execution on multi-
core processors. Tech. rep. The University of Edinburgh School of Informatics,
2009.

[KR79] H. T. Kung and J. T. Robinson. “On Optimistic Methods for Concurrency
Control”. In: Proceedings of the Fifth International Conference on Very Large
Data Bases - Volume 5. VLDB ’79. Rio de Janeiro, Brazil: VLDB Endowment,
1979, pp. 351–351. url: http://dl.acm.org/citation.cfm?id=
1286711.1286749.

[Lah+13] T. Lahiri, M.-A. Neimat, and S. Folkman. “Oracle TimesTen: An In-Memory
Database for Enterprise Applications.” In: IEEE Data Eng. Bull. 36.2 (2013),
pp. 6–13.

[Lam78] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782.
doi: 10.1145/359545.359563. url: http://doi.acm.org/10.
1145/359545.359563.

[Lam98] L. Lamport. “The Part-time Parliament”. In: ACM Trans. Comput. Syst.
16.2 (May 1998), pp. 133–169. issn: 0734-2071. doi: 10.1145/279227.
279229. url: http://doi.acm.org/10.1145/279227.279229.

[Lar+11] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, andM. Zwilling.
“High-performance Concurrency ControlMechanisms forMain-memoryData-
bases”. In: Proc. VLDB Endow. 5.4 (Dec. 2011), pp. 298–309. issn: 2150-
8097. doi: 10.14778/2095686.2095689. url: http://dx.doi.org/
10.14778/2095686.2095689.

[Lea00] D. Lea. “A Java Fork/Join Framework”. In: Proceedings of the ACM 2000
Conference on Java Grande. JAVA ’00. San Francisco, California, USA: ACM,
2000, pp. 36–43. isbn: 1-58113-288-3. doi: 10.1145/337449.337465.
url: http://doi.acm.org/10.1145/337449.337465.

[LY81] P. L. Lehman and s. B. Yao. “E�cient Locking for Concurrent Operations on
B-trees”. In: ACM Trans. Database Syst. 6.4 (Dec. 1981), pp. 650–670. issn:
0362-5915. doi: 10.1145/319628.319663. url: http://doi.acm.
org/10.1145/319628.319663.

[LC86] T. J. Lehman andM. J. Carey. “A Study of Index Structures for Main Memory
Database Management Systems”. In: Proceedings of the 12th International
Conference on Very Large Data Bases. VLDB ’86. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1986, pp. 294–303. isbn: 0-934613-18-
4. url: http://dl.acm.org/citation.cfm?id=645913.671312.

135

BIBLIOGRAPHY

[Lev+13a] J. Levandoski, D. Lomet, and S. Sengupta. “LLAMA: A Cache/Storage Sub-
system for Modern Hardware”. In: Proc. VLDB Endow. 6.10 (Aug. 2013),
pp. 877–888. issn: 2150-8097. doi: 10.14778/2536206.2536215. url:
http://dx.doi.org/10.14778/2536206.2536215.

[Lev+14] J. Levandoski, D. Lomet, S. Sengupta, A. Birka, and C. Diaconu. “Indexing
on Modern Hardware: Hekaton and Beyond”. In: Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data. SIGMOD ’14.
Snowbird, Utah, USA: ACM, 2014, pp. 717–720. isbn: 978-1-4503-2376-5.
doi: 10.1145/2588555.2594536. url: http://doi.acm.org/10.
1145/2588555.2594536.

[Lev+13b] J. J. Levandoski, S. Sengupta, and W. Redmond. “The BW-Tree: A Latch-
Free B-Tree for Log-Structured Flash Storage.” In: IEEE Data Eng. Bull. 36.2
(2013), pp. 56–62.

[Lin+13] J. Lindström, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila. “IBM solidDB:
In-Memory Database Optimized for Extreme Speed and Availability.” In:
IEEE Data Eng. Bull. 36.2 (2013), pp. 14–20.

[Lom+13] D. B. Lomet, S. Sengupta, and J. J. Levandoski. “The Bw-Tree: A B-tree for
New Hardware Platforms”. In: Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013). ICDE ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 302–313. isbn: 978-1-4673-4909-3.
doi: 10.1109/ICDE.2013.6544834. url: http://dx.doi.org/10.
1109/ICDE.2013.6544834.

[MAH08] K. Maabreh and A. Al-Hamami. “Increasing database concurrency control
based on attribute level locking”. In: Electronic Design, 2008. ICED 2008.
International Conference on. 2008, pp. 1–4. doi: 10.1109/ICED.2008.
4786747.

[Man+09] S. Manegold, M. L. Kersten, and P. Boncz. “Database Architecture Evolution:
Mammals Flourished Long Before Dinosaurs Became Extinct”. In: Proc.
VLDB Endow. 2.2 (Aug. 2009), pp. 1648–1653. issn: 2150-8097. doi: 10.
14778/1687553.1687618. url: http://dx.doi.org/10.14778/
1687553.1687618.

[Mao+12] Y. Mao, E. Kohler, and R. T. Morris. “Cache Craftiness for Fast Multicore
Key-value Storage”. In: Proceedings of the 7th ACM European Conference on
Computer Systems. EuroSys ’12. Bern, Switzerland: ACM, 2012, pp. 183–
196. isbn: 978-1-4503-1223-3. doi: 10.1145/2168836.2168855. url:
http://doi.acm.org/10.1145/2168836.2168855.

[Mar+10] P. Mariano, J. Soares, and N. Preguiça. “Replicated Software Components
for Improved Performance”. In: InForum2010: Proceedings of InForum 2010.
Universidade do Minho, Sept. 2010.

136

BIBLIOGRAPHY

[Mar+13] H. R. L. Martins, J. Soares, J. M. Lourenço, and N. Preguiça. “Replicação
Multi-nível de Bases de Dados em Memória”. In: INForum 2013 — Proceed-
ings of INForum Simpósio de Informática. INForum. Universidade de Évora,
Sept. 2013, pp. 190–201.

[Meh+09] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. “Parallelizing Sequential
Applications on Commodity Hardware Using a Low-cost Software Transac-
tional Memory”. In: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’09. Dublin, Ire-
land: ACM, 2009, pp. 166–176. isbn: 978-1-60558-392-1. doi: 10.1145/
1542476.1542495. url: http://doi.acm.org/10.1145/1542476.
1542495.

[Mic15] Microsoft. SQL Server. 2015. url: http://www.microsoft.com/en-
us/server-cloud/products/sql-server/.

[MN09] T. Mishima and H. Nakamura. “Pangea: An Eager Database Replication Mid-
dleware Guaranteeing Snapshot Isolation Without Modification of Database
Servers”. In: Proc. VLDB Endow. 2.1 (Aug. 2009), pp. 1066–1077. issn:
2150-8097. doi: 10.14778/1687627.1687747. url: http://dx.doi.
org/10.14778/1687627.1687747.

[Moo98] G. Moore. “Cramming More Components Onto Integrated Circuits”. In:
Proceedings of the IEEE 86.1 (1998), pp. 82–85. issn: 0018-9219. doi: 10.
1109/JPROC.1998.658762.

[Nar+14] N. Narula, C. Cutler, E. Kohler, and R. Morris. “Phase Reconciliation for Con-
tended In-memory Transactions”. In: Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation. OSDI’14. Broomfield,
CO: USENIX Association, 2014, pp. 511–524. isbn: 978-1-931971-16-4.
url: http://dl.acm.org/citation.cfm?id=2685048.2685088.

[Niu+13] N. Niu, L. D. Xu, and Z. Bi. “Enterprise Information Systems Architecture-
Analysis and Evaluation”. In: Industrial Informatics, IEEE Transactions on
9.4 (2013), pp. 2147–2154. issn: 1551-3203. doi: 10.1109/TII.2013.
2238948.

[Olu+96] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. “The
Case for a Single-chip Multiprocessor”. In: SIGOPS Oper. Syst. Rev. 30.5
(Sept. 1996), pp. 2–11. issn: 0163-5980. doi: 10.1145/248208.237140.
url: http://doi.acm.org/10.1145/248208.237140.

[Pan+10] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. “Data-oriented
Transaction Execution”. In: Proc. VLDB Endow. 3.1-2 (Sept. 2010), pp. 928–
939. issn: 2150-8097. doi: 10.14778/1920841.1920959. url: http:
//dx.doi.org/10.14778/1920841.1920959.

137

BIBLIOGRAPHY

[Pan+11] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. “PLP: Page Latch-free
Shared-everything OLTP”. In: Proc. VLDB Endow. 4.10 (July 2011), pp. 610–
621. issn: 2150-8097. doi: 10.14778/2021017.2021019. url: http:
//dx.doi.org/10.14778/2021017.2021019.

[Pan+08] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy. “Software Engi-
neering for Multicore Systems: An Experience Report”. In: Proceedings of
the 1st International Workshop on Multicore Software Engineering. IWMSE ’08.
Leipzig, Germany: ACM, 2008, pp. 53–60. isbn: 978-1-60558-031-9. doi:
10.1145/1370082.1370096. url: http://doi.acm.org/10.1145/
1370082.1370096.

[Pap79] C. H. Papadimitriou. “The Serializability of Concurrent Database Updates”.
In: J. ACM 26.4 (Oct. 1979), pp. 631–653. issn: 0004-5411. doi: 10.1145/
322154.322158. url: http://doi.acm.org/10.1145/322154.
322158.

[Pap+08] K. Papadopoulos, K. Stavrou, and P. Trancoso. “HelperCoreDB: Exploiting
multicore technology to improve database performance”. In: Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on.
2008, pp. 1–11. doi: 10.1109/IPDPS.2008.4536288.

[PA04] C. Plattner and G. Alonso. “Ganymed: Scalable Replication for Transac-
tional Web Applications”. In: Proceedings of the 5th ACM/IFIP/USENIX In-
ternational Conference on Middleware. Middleware ’04. Toronto, Canada:
Springer-Verlag New York, Inc., 2004, pp. 155–174. isbn: 3-540-23428-4.
url: http://dl.acm.org/citation.cfm?id=1045658.1045671.

[Pla09] H. Plattner. “A Common Database Approach for OLTP and OLAP Using an
In-memory Column Database”. In: Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’09. Providence,
Rhode Island, USA: ACM, 2009, pp. 1–2. isbn: 978-1-60558-551-2. doi:
10.1145/1559845.1559846. url: http://doi.acm.org/10.1145/
1559845.1559846.

[Por+15] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy. “Design-
ing Distributed Systems Using Approximate Synchrony in Data Center Net-
works”. In: Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation. NSDI’15. Oakland, CA: USENIX Association,
2015, pp. 43–57. isbn: 978-1-931971-218. url: http://dl.acm.org/
citation.cfm?id=2789770.2789774.

[Pre+08] N. Preguiça, R. Rodrigues, C. a. Honorato, and J. a. Lourenço. “Byzantium:
Byzantine-fault-tolerant database replication providing snapshot isolation”.
In: Proceedings of the Fourth conference on Hot topics in system dependability.
HotDep’08. San Diego, California: USENIX Association, 2008, pp. 9–9.

138

BIBLIOGRAPHY

[Pro+13] A. Prokopec, P. Bagwell, and M. Odersky. “Lock-Free Resizeable Concurrent
Tries”. English. In: Languages and Compilers for Parallel Computing. Ed. by
S. Rajopadhye and M. Mills Strout. Vol. 7146. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 156–170. isbn: 978-3-642-
36035-0. doi: 10.1007/978-3-642-36036-7_11. url: http://dx.
doi.org/10.1007/978-3-642-36036-7_11.

[RR99] J. Rao and K. A. Ross. “Cache Conscious Indexing for Decision-Support in
Main Memory”. In: Proceedings of the 25th International Conference on Very
Large Data Bases. VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 78–89. isbn: 1-55860-615-7. url: http://dl.
acm.org/citation.cfm?id=645925.671362.

[RR00] J. Rao and K. A. Ross. “Making B+- Trees Cache Conscious in Main Memory”.
In: SIGMOD Rec. 29.2 (May 2000), pp. 475–486. issn: 0163-5808. doi:
10.1145/335191.335449. url: http://doi.acm.org/10.1145/
335191.335449.

[Ren+12] K. Ren, A. Thomson, and D. J. Abadi. “Lightweight Locking for Main Mem-
ory Database Systems”. In: Proc. VLDB Endow. 6.2 (Dec. 2012), pp. 145–
156. issn: 2150-8097. doi: 10.14778/2535568.2448947. url: http:
//dx.doi.org/10.14778/2535568.2448947.

[RS77] D. R. Ries and M. Stonebraker. “E↵ects of Locking Granularity in a Database
Management System”. In: ACM Trans. Database Syst. 2.3 (Sept. 1977),
pp. 233–246. issn: 0362-5915. doi: 10.1145/320557.320566. url:
http://doi.acm.org/10.1145/320557.320566.

[Rod+01] R. Rodrigues, M. Castro, and B. Liskov. “BASE: Using Abstraction to Im-
prove Fault Tolerance”. In: Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles. SOSP ’01. Ban↵, Alberta, Canada: ACM, 2001,
pp. 15–28. isbn: 1-58113-389-8. doi: 10.1145/502034.502037. url:
http://doi.acm.org/10.1145/502034.502037.

[RO92] M. Rosenblum and J. K. Ousterhout. “The Design and Implementation of
a Log-structured File System”. In: ACM Trans. Comput. Syst. 10.1 (Feb.
1992), pp. 26–52. issn: 0734-2071. doi: 10.1145/146941.146943. url:
http://doi.acm.org/10.1145/146941.146943.

[Ros+78] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. “System Level Con-
currency Control for Distributed Database Systems”. In: ACM Trans. Data-
base Syst. 3.2 (June 1978), pp. 178–198. issn: 0362-5915. doi: 10.1145/
320251.320260. url: http://doi.acm.org/10.1145/320251.
320260.

139

BIBLIOGRAPHY

[Sal+11] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso. “Database Engines on
Multicores, Why Parallelize when You Can Distribute?” In: Proceedings of
the Sixth Conference on Computer Systems. EuroSys ’11. Salzburg, Austria:
ACM, 2011, pp. 17–30. isbn: 978-1-4503-0634-8. doi: 10.1145/1966445.
1966448. url: http://doi.acm.org/10.1145/1966445.1966448.

[Sch90] F. B. Schneider. “Implementing Fault-tolerant Services Using the State Ma-
chine Approach: A Tutorial”. In: ACM Comput. Surv. 22.4 (Dec. 1990),
pp. 299–319. issn: 0360-0300. doi: 10.1145/98163.98167. url: http:
//doi.acm.org/10.1145/98163.98167.

[Sew+11] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. “PALM: Parallel
Architecture-Friendly Latch-Free Modifications to B+ Trees on Many-Core
Processors”. In: Proc. VLDB Endow. 4.11 (Aug. 2011), pp. 795–806. issn:
2150-8097.

[Sik+12] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd. “E�cient
Transaction Processing in SAP HANA Database: The End of a Column Store
Myth”. In: Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’12. Scottsdale, Arizona, USA: ACM,
2012, pp. 731–742. isbn: 978-1-4503-1247-9. doi: 10.1145/2213836.
2213946. url: http://doi.acm.org/10.1145/2213836.2213946.

[Sil+06] A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Concepts.
5th ed. New York, NY, USA: McGraw-Hill, Inc., 2006. isbn: 0072958863,
9780072958867.

[SZ97] A. Silberschatz and S. Zdonik. “Database Systems-Breaking out of the Box”.
In: SIGMOD Rec. 26.3 (Sept. 1997), pp. 36–50. issn: 0163-5808. doi:
10.1145/262762.262768. url: http://doi.acm.org/10.1145/
262762.262768.

[Sil+91] “Database Systems: Achievements and Opportunities”. In: Commun. ACM
34.10 (Oct. 1991). Ed. by A. Silberschatz, M. Stonebraker, and J. Ullman,
pp. 110–120. issn: 0001-0782. doi: 10.1145/125223.125272. url:
http://doi.acm.org/10.1145/125223.125272.

[SP15] J. a. Soares and N. Preguiça. “Database Engines on Multicores Scale: A
Practical Approach”. In: Proceedings of the 30th ACM/SIGAPP Symposium
On Applied Computing (SAC 2015). Salamanca, Spain: ACM, 2015.

[Soa+13a] J. a. Soares, J. a. Lourenço, and N. Preguiça. “MacroDB: Scaling Database
Engines on Multicores”. In: Proceedings of the 19th International Conference
on Parallel Processing. Euro-Par’13. Aachen, Germany: Springer-Verlag, 2013,
pp. 607–619. isbn: 978-3-642-40046-9. doi: 10.1007/978- 3- 642-
40047-6_61. url: http://dx.doi.org/10.1007/978-3-642-
40047-6_61.

140

BIBLIOGRAPHY

[SP12] J. Soares and N. Preguiça. “Improving Application Fault-Tolerance with
Diverse Component Replication”. In: 1st Euro-TMWorkshop on Transactional
Memory (WTM 2012). 2012.

[Soa+13b] J. Soares, J. Lourenço, and N. Preguiça. “Software Component Replication
for Improved Fault-Tolerance: Can Multicore Processors Make It Work?” En-
glish. In: Dependable Computing. Ed. by M. Vieira and J. Cunha. Vol. 7869.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 173–
180. isbn: 978-3-642-38788-3. doi: 10.1007/978-3-642-38789-0_15.
url: http://dx.doi.org/10.1007/978-3-642-38789-0_15.

[Son+11] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. “A Case for Scaling
Applications to Many-core with OS Clustering”. In: Proceedings of the Sixth
Conference on Computer Systems. EuroSys ’11. Salzburg, Austria: ACM, 2011,
pp. 61–76. isbn: 978-1-4503-0634-8. doi: 10.1145/1966445.1966452.
url: http://doi.acm.org/10.1145/1966445.1966452.

[Sto81] M. Stonebraker. “Operating System Support for Database Management”.
In: Commun. ACM 24.7 (July 1981), pp. 412–418. issn: 0001-0782. doi:
10.1145/358699.358703. url: http://doi.acm.org/10.1145/
358699.358703.

[SW13] M. Stonebraker and A. Weisberg. “The VoltDB Main Memory DBMS”. In:
Bulletin of the Technical Committee on Data Engineering 36.2 (June 2013).

[Sto+86] M. Stonebraker, P. Kreps, E. Wong, and G. Held. “The INGRES Papers:
Anatomy of a Relational Database System”. In: ed. by M. Stonebraker.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986.
Chap. The Design and Implementation of INGRES, pp. 5–45. isbn: 0-201-
07185-1. url: http://dl.acm.org/citation.cfm?id=4161.4162.

[Sto+07] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. “The End of an Architectural Era: (It’s Time for a Complete
Rewrite)”. In: Proceedings of the 33rd International Conference on Very Large
Data Bases. VLDB ’07. Vienna, Austria: VLDB Endowment, 2007, pp. 1150–
1160. isbn: 978-1-59593-649-3. url: http://dl.acm.org/citation.
cfm?id=1325851.1325981.

[Sto+05] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S.
Zdonik. “C-store: A Column-oriented DBMS”. In: Proceedings of the 31st
International Conference on Very Large Data Bases. VLDB ’05. Trondheim,
Norway: VLDB Endowment, 2005, pp. 553–564. isbn: 1-59593-154-6. url:
http://dl.acm.org/citation.cfm?id=1083592.1083658.

[Sut05] H. Sutter. “The Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software”. In: Dr. Dobb’s Journal 30.3 (2005).

141

BIBLIOGRAPHY

[Tho+12] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.
“Calvin: Fast Distributed Transactions for Partitioned Database Systems”. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’12. Scottsdale, Arizona, USA: ACM, 2012, pp. 1–
12. isbn: 978-1-4503-1247-9. doi: 10.1145/2213836.2213838. url:
http://doi.acm.org/10.1145/2213836.2213838.

[Tiw+10] D. Tiwari, S. Lee, J. Tuck, and Y. Solihin. “MMT: Exploiting fine-grained
parallelism in dynamic memory management”. In: 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta, Geor-
gia, USA, 19-23 April 2010 - Conference Proceedings. 2010, pp. 1–12. doi:
10.1109/IPDPS.2010.5470428. url: http://dx.doi.org/10.
1109/IPDPS.2010.5470428.

[Tu+13] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. “Speedy Transactions
in Multicore In-memory Databases”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. SOSP ’13. Farminton,
Pennsylvania: ACM, 2013, pp. 18–32. isbn: 978-1-4503-2388-8. doi: 10.
1145/2517349.2522713. url: http://doi.acm.org/10.1145/
2517349.2522713.

[Tul+95] D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous Multithreading:
Maximizing On-chip Parallelism”. In: SIGARCH Comput. Archit. News
23.2 (May 1995), pp. 392–403. issn: 0163-5964. doi: 10.1145/225830.
224449. url: http://doi.acm.org/10.1145/225830.224449.

[Unt+09] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann. “Pre-
dictable Performance for Unpredictable Workloads”. In: Proc. VLDB Endow.
2.1 (Aug. 2009), pp. 706–717. issn: 2150-8097. doi: 10.14778/1687627.
1687707. url: http://dx.doi.org/10.14778/1687627.1687707.

[Vac+05] N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August, and D.
Connors. “Chip Multi-processor Scalability for Single-threaded Applica-
tions”. In: SIGARCH Comput. Archit. News 33.4 (Nov. 2005), pp. 44–
53. issn: 0163-5964. doi: 10.1145/1105734.1105741. url: http:
//doi.acm.org/10.1145/1105734.1105741.

[Val90] L. G. Valiant. “A Bridging Model for Parallel Computation”. In: Commun.
ACM 33.8 (Aug. 1990), pp. 103–111. issn: 0001-0782. doi: 10.1145/
79173.79181. url: http://doi.acm.org/10.1145/79173.79181.

[VDG74] J. Van Doren and J. Gray. “An Algorithm for Maintaining Dynamic AVL
Trees”. English. In: Information Systems. Ed. by J. Tou. Springer US, 1974,
pp. 161–180. isbn: 978-1-4684-2696-0. doi: 10.1007/978-1-4684-
2694-6_8. url: http://dx.doi.org/10.1007/978-1-4684-2694-
6_8.

142

BIBLIOGRAPHY

[Van+07] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. “Tolerating Byzan-
tine Faults in Transaction Processing Systems Using Commit Barrier Schedul-
ing”. In: Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles. SOSP ’07. Stevenson, Washington, USA: ACM, 2007,
pp. 59–72. isbn: 978-1-59593-591-5. doi: 10.1145/1294261.1294268.
url: http://doi.acm.org/10.1145/1294261.1294268.

[Wam+13] J.-T. Wamho↵, C. Fetzer, P. Felber, E. Rivière, and G. Muller. “FastLane:
Improving Performance of Software Transactional Memory for Low Thread
Counts”. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP ’13. Shenzhen, China: ACM,
2013, pp. 113–122. isbn: 978-1-4503-1922-5. doi: 10.1145/2442516.
2442528. url: http://doi.acm.org/10.1145/2442516.2442528.

[WS05] M. Wiesmann and A. Schiper. “Comparison of database replication tech-
niques based on total order broadcast”. In: Knowledge and Data Engineer-
ing, IEEE Transactions on 17.4 (2005), pp. 551–566. issn: 1041-4347. doi:
10.1109/TKDE.2005.54.

[Wie+00] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. “Database
Replication Techniques: A Three Parameter Classification”. In: Proceedings of
the 19th IEEE Symposium on Reliable Distributed Systems. SRDS ’00. Washing-
ton, DC, USA: IEEE Computer Society, 2000, pp. 206–. isbn: 0-7695-0543-0.
url: http://dl.acm.org/citation.cfm?id=829525.831077.

[Xu11] L. D. Xu. “Enterprise Systems: State-of-the-Art and Future Trends”. In:
Industrial Informatics, IEEE Transactions on 7.4 (2011), pp. 630–640. issn:
1551-3203. doi: 10.1109/TII.2011.2167156.

[Ye+11] Y. Ye, K. A. Ross, and N. Vesdapunt. “Scalable Aggregation on Multicore
Processors”. In: Proceedings of the Seventh International Workshop on Data
Management on New Hardware. DaMoN ’11. Athens, Greece: ACM, 2011,
pp. 1–9. isbn: 978-1-4503-0658-4. doi: 10.1145/1995441.1995442.
url: http://doi.acm.org/10.1145/1995441.1995442.

[Zha+15] H. Zhang, G. Chen, B. Ooi, K. Tan, and M. Zhang. “In-Memory Big Data
Management and Processing: A Survey”. In: Knowledge andData Engineering,
IEEE Transactions on 27.7 (2015), pp. 1920–1948. issn: 1041-4347. doi:
10.1109/TKDE.2015.2427795.

[Zha+07] L. Zhang, C. Krintz, and P. Nagpurkar. “Language and Virtual Machine
Support for E�cient Fine-Grained Futures in Java”. In: Proceedings of the
16th International Conference on Parallel Architecture and Compilation Tech-
niques. PACT ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 130–139. isbn: 0-7695-2944-5. doi: 10.1109/PACT.2007.45. url:
http://dx.doi.org/10.1109/PACT.2007.45.

143

BIBLIOGRAPHY

[Zha+13] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li. “Transac-
tion Chains: Achieving Serializability with Low Latency in Geo-distributed
Storage Systems”. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania: ACM,
2013, pp. 276–291. isbn: 978-1-4503-2388-8. doi: 10.1145/2517349.
2522729. url: http://doi.acm.org/10.1145/2517349.2522729.

[Zho+05] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah. “Improving Database Perfor-
mance on Simultaneous Multithreading Processors”. In: Proceedings of the
31st International Conference on Very Large Data Bases. VLDB ’05. Trondheim,
Norway: VLDB Endowment, 2005, pp. 49–60. isbn: 1-59593-154-6. url:
http://dl.acm.org/citation.cfm?id=1083592.1083602.

144

