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Abstract

Polysaccharides are gaining increasing attention as potential environmental friendly

and sustainable building blocks in many fields of the (bio)chemical industry. The

microbial production of polysaccharides is envisioned as a promising path, since

higher biomass growth rates are possible and therefore higher productivities may be

achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis

focuses on the modeling and optimization of a particular microbial polysaccharide,

namely the production of extracellular polysaccharides (EPS) by the bacterial strain

Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile

organism in terms of its adaptability to complex media, notably capable of achieving

high growth rates in media containing glycerol byproduct from the biodiesel industry.

However, the industrial implementation of this production process is still hampered

due to a largely unoptimized process. Kinetic rates from the bioreactor operation

are heavily dependent on operational parameters such as temperature, pH, stirring

and aeration rate. The increase of culture broth viscosity is a common feature of this

culture and has a major impact on the overall performance. This fact complicates the

mathematical modeling of the process, limiting the possibility to understand, control

and optimize productivity. In order to tackle this difficulty, data-driven mathematical

methodologies such as Artificial Neural Networks can be employed to incorporate

additional process data to complement the known mathematical description of

the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid
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modeling framework that enabled the incorporation of temperature, pH and viscosity

effects on the fermentation kinetics in order to improve the dynamical modeling and

optimization of the process. A model-based optimization method was implemented

that enabled to design bioreactor optimal control strategies in the sense of EPS

productivity maximization. It is also critical to understand EPS synthesis at the

level of the bacterial metabolism, since the production of EPS is a tightly regulated

process. Methods of pathway analysis provide a means to unravel the fundamental

pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel

methodology called Principal Elementary Mode Analysis (PEMA) was developed

and implemented that enabled to identify which cellular fluxes are activated under

different conditions of temperature and pH. It is shown that differences in these two

parameters affect the chemical composition of EPS, hence they are critical for the

regulation of the product synthesis. In future studies, the knowledge provided by

PEMA could foster the development of metabolically meaningful control strategies

that target the EPS sugar content and oder product quality parameters.

Keywords: Exopolysaccharides, Enterobacter A47, Hybrid semi-parametric model-

ing, Model-based optimization
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Resumo

Crescente atenção tem sido dada à utilização de polissacáridos como percursores

químicos sustentáveis e ecológicos em vários sectores da indústria bio(química). A

produção microbiana de polissacáridos é vista como uma tecnologia promissora,

possibilitando elevadas taxas de crescimento de biomassa e, desta forma, maiores

produtividades comparativamente a fontes de polissacáridos animal e vegetal. A

presente tese de doutoramento foca-se na modelação e optimização de um processo

de produção de polissacáridos microbianos extracelulares (exopolissacáridos), sin-

tetizados pela bactéria Enterobacter A47. Este organismo é dotado de uma grande

versatilidade metabólica em termos de adaptação a meios de crescimento complexos,

tendo em particular sido verificado uma elevada taxa de crescimento de biomassa

em subprodutos ricos em glicerol, provenientes da indústria do biodiesel. No entanto,

as condições de operação deste processo ainda se encontram por optimizar, razão

que limita a sua implementação industrial. As velocidades de reacção envolvidas na

operação em bioreactor são fortemente dependentes de parâmetros operacionais tais

como a temperatura, pH, taxas de agitação e arejamento. O aumento da viscosidade

do meio de cultura é característico neste tipo de culturas e representa um obstáculo

na performance global do processo. Este facto complica o tratamento matemático

de modelação, limitando o grau de conhecimento e controlo do processo, bem como

a optimização da produtividade. De forma a contornar esta dificuldade, algumas

metodologias matemáticas tais como Redes Neuronais Artificiais permitem o emprego
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de informação adicional acerca do processo nas leis cinéticas que descrevem a fermen-

tação. No presente trabalho, foi adoptada uma estratégia da modelação híbrida que

permitiu incorporar dados de temperatura, pH e viscosidade nas descrições cinéticas

de reacção, melhorando o desempenho de modelação dinâmica e optimização do

processo. O modelo híbrido desenvolvido foi usado para desenhar várias metodologias

de controlo óptimo destinadas à maximização da produtividade e rendimento de

EPS. Dado que os processos celulares ligados à produção de exopolssacáridos são

altamente regulados, torna-se crítico o estudo e conhecimento do processo ao nível

do metabolismo bacteriano. Desta forma, métodos de análise de vias metabólicas

constituem ferramentas importantes para descobrir vias metabólicas fundamentais e

a sua ligação com bioprocessos. Nesta tese de doutoramento foi desenvolvida uma

nova metodologia de análise de redes metabólicas denominada Análise de Modos

Elementares Principais, que permitiu identificar um subconjunto de vias metabólicas

activadas para um grupo de experiências de diferentes condições de temperatura e pH.

Variações nestes dois parâmetros afectam a composição química do exopolissacárido

produzido, sendo críticos para a regulação e especificação do produto final. Em

estudos futuros, o conhecimento preveniente desta metodologia pode fomentar o

desenvolvimento de estratégias de controlo metabólico direccionadas à composição

química de exopolissacáridos e outros parâmetros de qualidade do produto.

Palavras-chave: Polissacáridos extracelulares, Enterobacter A47, modelação hí-

brida semi-paramétrica, optimização de bioprocessos
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Natural polysaccharides have shown an increased interest in recent years as a viable

alternative to many petroleum-derived products. This interest stems from the im-

portant physical and chemical properties related to polysaccharides, but also from a

growing awareness of the negative impact of non-renewable resources, and an urge

to explore new and sustainable products.

Several properties are attributed to polysaccharides, which may suit them well to

many industrial applications. Therefore, polysaccharides can be used as thickeners,

bioadhesives, stabilizers, probiotics and gelling agents in food and cosmetic industries,

and also as emulsifiers, bioabsorbents and bioflocculants in the environmental sector

(Freitas et al. 2011a; Kumar et al. 2007). Polysaccharides also exhibit specific proper-

ties, related to their biological activity. Health promoting effects in the treatment of

inflammatory diseases and cancer can be attributed to some polysaccharides, due to

a proven immunomodular activity in them. This characteristic extends the range

of possible uses from polysaccharides to health and biotechnological applications

(Ramberg et al. 2010).

Most of the polysaccharides available in the market are obtained from plant
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sources (e.g. Guar gum, Arabic gum or pectins), algae (e.g. alginate, carrageenan

or agar) and crustacean (e.g. chitin), with polysaccharides from microbial sources

(e.g. xanthan gum, gellan, pullulan and bacterial alginate) representing only a

small fraction (Freitas et al. 2009). Industrial production of polysaccharides from

microbial sources is particularly interesting, since they are generally better suited for

large scale production than plant or algae, demonstrating higher growth rates and

being more amenable to manipulation of growing/production conditions. However,

some bottlenecks still limit the implementation and scaling of industrial processes

for polysaccharide production, such that despite the large numbers of bacterial

polysaccharides available, relatively few of them have been commercially developed.

A direct cause for increased production costs are related to the commonly used carbon

sources for microbial fermentations, which include sugars such as glucose, sucrose

and fructose. Moreover, some polysaccharide producing bacteria are pathogenic and

product quality may be difficult to maintain (Freitas et al. 2009; Kumar et al. 2007;

Sutherland 2001).In order to make many of the current microbial polysaccharides

available in the market, new and renewable resources should be implemented as

alternative carbon sources from, for example, agro-industrial byproducts. Also,

modeling studies represent an important aspect for the process design, scale-up,

optimization and control of the fermentation system.

1.1 Microbial Polysaccharides

Polysaccharides play a very important role in the cell biology. These macromolecules

can function as a storage polymer that is formed whenever the cell has a surplus

of carbohydrates available; be part of the cell’s structure, forming the cell wall,

and also responsible for immunogenic properties exhibited in prokaryotes (Madigan

et al. 2003). Chemically, polysaccharides can be divided in homopolysaccharides or

heteropolysaccharides (Lehninger et al. 2000). In the former case, a single type of
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monosaccharide makes up the chemical composition of the polymer (e.g. glycogen

and cellulose), whereas in the latter case, different repeating units occur in the

polymer (e.g. xanthan gum, dextran, etc.). The formation of polysaccharides with

such varied structures requires the involvement of different enzymes and proteins,

which is reflected in the varied organizations of the biosynthesis gene clusters (Rehm

2010).

Depending on the location of polysaccharide synthesis, three subdivisions are possi-

ble: exopolysaccharides (EPS), intracellular polysaccharides and capsular polysaccha-

rides. Generally, exopolysaccharides are assembled in small repetitive oligosaccharides

and exported to an outer membrane site, where polymerization to a larger molecule

occurs (Kumar et al. 2007). Capsular polysaccharides are also secreted to the extra-

cellular media, but remain attached to the cell, often functioning as major surface

antigens and virulence factors. Details of biosynthesis and assembly were extensively

studied for Escherichia coli (Whitfield and Paiment 2003).

Intracellular polysaccharides are produced in the cytoplasm and are mainly

associated with storage functions. The only intracellular polysaccharide found in

bacteria with this function is glycogen, which is synthesized as a response to starvation

conditions in the environment. This way the cell accumulates carbon and energy in

the form of glucose subunits, as part of a survival strategy (Wilson et al. 2010).

Exopolysaccharides represent the most relevant class of microbial polysaccha-

rides for commercial purposes, due to their ability to change physical and chemical

properties of aqueous solutions (e.g. thickening, emulsifying and stabilizing capac-

ity), allowing their application on several products and processes, such as food,

pharmaceutical, cosmetic, paint and oil drilling sectors. Also, the capacity of form-

ing biodegradable films enables their use in packaging, pharmaceuticals and other

industrial applications.
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1.1.1 Overview of Polysaccharide synthesis

With the exception of levans, alternans and dextrans, the majority of bacterial EPS

involves the synthesis of repetitive polymeric subunits, which are exported to the

extracellular medium, where the polysaccharide chain is assembled (Vanhooren and

Vandamme 1998). These repetitive subunits are composed of several sugar residues

linked together by glycosidic bonds, in a process occurring in the cytoplasm. One

of two possible mechanisms known to take place in Gram-negative bacteria for

EPS biosynthesis are the Wzx-Wzy-dependent pathway, in which the polymeric

repetitive subunit is assembled at the inner face of the cytoplasmic membrane and

polymerized at the periplasm. Another mechanism involves the ABC transporter-

dependent system, characterized by a polymerization at the cytoplasmic face of the

inner membrane (Cuthbertson et al. 2009; Sutherland 2001).

The enzymes involved in EPS biosynthesis can be divided in four main groups,

depending on the cell location (Kumar et al. 2007). A first group of intracellular

enzymes is transversal to many other metabolic pathways, and is composed by

hexokinase and phosphoglucomutase. These enzymes play an important role in the

central carbon metabolism, the former responsible to the phosphorylation of glucose

to glucose-6-phosphate, while the latter is involved in the displacing of the phosphoric

group from glucose-6-phosphate to glucose-1-phosphate. A second group of reactions,

also believed to be intracellular, catalyzes the conversion of glucose-1-phosphate to

uridine diphosphate glucose (UDP-Glc), a nucleoside diphosphate sugar which is key

to polysaccharide synthesis. This activated-sugar serves itself as a building block to

polysaccharide composition, as well as a precursor to the formation of other nucleoside

sugars, for example, the conversion of UDP-Glc to UDP-Gal (uridine diphosphate

galactose). These high-energy molecules, provide a source of monosaccharide residues

for exopolysaccharide synthesis (Kumar et al. 2007; Rehm 2010).

The third group of enzymes is composed of glycosyl transferases and is located at

the periplasmic membrane. This enzymes deal with the transfer of sugar nucleotides
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to a repeating unit, attached to an isoprenoid alcohol. The EPS synthesis mechanism

is completed by the existence of a fourth group of enzymes, located at the external

side of the cell wall, taking part in the polysaccharide polymerization, assembling

all the repetitive units transported by the isoprenoid alcohol. The EPS is therefore

extruded from the cell surface, forming a loose slime (Kumar et al. 2007; Rehm

2010).

Despite the sugar monomers, non-sugar molecules may also be incorporated in

EPS structure, typically acyl groups. Such groups have been identified in Enterobacter

A47, namely acetyl, pyruvyl and succinyl substituents (Freitas et al. 2011b). The

incorporation of these substituents involves a mechanism that requires activated

forms of acetate, pyruvate and succinate. Previous studies in other organisms revealed

that acetyl-CoA and phosphoenolpyruvate are two precursor molecules involved in

the inclusion of acetyl and pyruvyl groups respectively (Kumar et al. 2007; Sutherland

1993). As for the presence succinyl groups, no current study exists for the elucidation

of a mechanism for inclusion in EPS, but it is likely that succinyl-CoA is involved in

such process (Sutherland 1993).

1.2 Enterobacter A47: an EPS producing strain

The Enterobacter genus belongs to a group of enteric Gram-Negative bacteria,

representative of the Enterobacteriaceae family. This prokaryote branch is a relatively

homogeneous phylogenetic group, characterized by bacteria with rod morphology,

nonsporulating facultative aerobes with relatively simple nutritional requirements,

capable of fermenting sugars to a variety of end products. Even though enteric

bacteria have similar morphology and metabolic characteristics, two main groups

are found, setting apart bacteria by the type of products generated in the anaerobic

fermentation of glucose, designated by mixed-acid and 2,3-butanediol fermentation.

Species from the Enterobacter genus fall in the 2,3-butanediol group, which also
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show the ability to produce CO2, H2, ethanol and small amounts of organic acids

(Madigan et al. 2003).

The synthesis of EPS by Enterobacter species has also been reported in a number

of academic journals, as well as in some patents that describe processes for EPS

production by specific strains. Some examples include Enterobacter sp. CNCM 1-2744

(Philbe 2002), which was shown to produce EPS composed of fucose, galactose,

glucose and glucuronic acid monomers, present in a 2:2:1:1 ratio. Enterobacter sp.

SSYL (KCTC 0687BP) produces an exopolysaccharide with a composition of 8-10%

of the total sugar content, being glucuronic acid the main component (40-70%)

(Yang 2002). Some strains of Enterobacter sakazakii, namely ATCC 53017, ATCC

29004 and ATCC 12868 produce an EPS in which fucose represent 13-22% of the

total polysaccharide sugar weight. Enterobacter amnigenus produces a heteropolymer

containing glucose, galactose, fucose, mannose, glucuronic acid and pyruvil groups

(Cescutti et al. 2005).

More recently, the bacterial strain Enterobacter A47 has shown the capacity

to produce an exopolysaccharide composed of glucose, galactose and fucose, with

the occurrence of the acylated substituents acetyl, pyruvyl and succynil Figure 1.1

(Freitas et al. 2011b). It was also show that differences in environmental conditions

such as temperature and pH, trigger the synthesis of EPS with different compositions,

with the inclusion of additional sugar monomers like rhamnose, glucoronic acid and

glucosamine, while maintaining the same acylated substituents (Torres et al. 2012).

Exopolysaccharides produced by Enterobacter A47 share some interesting prop-

erties with other commercially successful microbial polysaccharides. Like xanthan

gum, this EPS has a high molecular weight and develops highly viscous aqueous

solutions with shear-thinning characteristics (i.e. pseudoplastic behavior). Despite

its rheological properties, it exhibits film-forming, emulsion forming and stabilizing

capacity, which is suitable for several applications, such as a hydrocolloid for food

industry, cosmetics, pharmaceuticals and also oil-industry (Freitas et al. 2011b).
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Figure 1.1: Composition of FucoPol produced by Enterobacter A47.

Moreover, the presence of fucose, a rare monosaccharide with important biological

activity, adds value to this EPS, making it an interesting, marketable product.

1.3 Production of microbial EPS

Despite the large number of bacterial EPS available, only a few have been commer-

cially developed, such as xanthan gum, dextran, gellan and curdlan. Typically, EPS

production occurs in stirred-tank bioreactors capable of monitoring and controlling

several process parameters. Although most of EPS chemical characteristics are deter-

mined by the genetics of the cell, they are largely influenced by media components

and cultivation conditions. Temperature, pH, dissolved oxygen and agitation are

some operational parameters critical to the control and optimization EPS production.

The synthesis is generally favored by the presence of carbon source in excess, with

limitation of other nutrients, generally nitrogen, halting biomass growth and shifting

the carbon source uptake to EPS synthesis (Freitas et al. 2011a). This strategy may

be accomplished by a batch followed by a feeding rate that replenishes the bioreactor

with fresh media for EPS conversion (Freitas et al. 2010). Aeration and stirring are

also important aspects to take into account since most EPS producing cultures are

aerobic. It has been observed that increased aeration rates have led to an optimal

8
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EPS production (Lee et al. 2001; Rosalam and England 2006), whereas some cases

have also demonstrated the opposite, with optimal production under microaerophilic

conditions, such as the case of bacterial alginate (Freitas et al. 2011a).

EPS production is also sensitive to pH and temperature. The optimal temperature

and pH conditions for biomass growth may differ, so that these fermentations are

characterized by a different set of parameters for biomass growth and EPS production.

It has been observed that in most cases, maximal EPS occurs at suboptimal growth

temperatures (Cerning et al. 1992; Gancel and Novel 1994). This difference may

be the result of increased enzyme activities of enzymes related to the synthesis of

exopolysaccharide productions. For example, in the case of alginate, GDP-mannuronic

acid is converted at an optimum rate below the optimum growth temperature,

enhancing the polymer production (Kumar et al. 2007). In the case of pH, it has

been found that most EPS are enhanced at neutral values, with some exceptions

for acidic pH found on some meat starters and Propionibacterium acidi-propionici

(Gorret et al. 2001; Kumar et al. 2007).

Improvement of EPS production can also be done at the level of metabolic

engineering, either by manipulation of genes encoding enzymes, or by modifying

regulatory pathways that affect gene expression. Biosynthetic pathways may either be

controlled at the level of sugar nucleotide synthesis, assembly of EPS repeating unit

and/or polymerization and export (Freitas et al. 2011a). The advantages reflect the

increase of EPS productivities and yield, but also in the manipulation of EPS chemical

composition, allowing the design of polymers of desired characteristics, paving the

way for tailor-made biopolymers. Some applications of metabolic engineering were

attempted with successful results. However, in many cases significant improvements

have not been observed due to lack of knowledge of metabolic regulation mechanisms

(Freitas et al. 2011a; Rehm 2010).
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1.3.1 Utilization of alternative carbon sources for

fermentation media

One of the main aspects impeding the economic viability of the industrial explo-

ration of microbial exopolysaccharides is the high prices of carbon sources and it is

estimated that culture media represent approximately 30% of the total fermentation

cost, due to the use of expensive materials (Öner 2013). Most substrates used for

exopolysaccharide production include sucrose, glucose, lactose, maltose, mannitol,

sorbitol, whey, starch, sugar concentrates, methanol and C9 to C12 alkanes (Kumar

et al. 2007). These materials of choice are selected for defined culture compositions

because of a greater control over the final product, with minimum batch-to-batch

variation and free of impurities that would interfere with their chemical and biological

categorization. Nevertheless, the search for alternative renewable and cheaper mate-

rials is a key aspect to industrial implementation success (Sutherland 2001). For this

reason, a wide range of agro-industrial by-products are being considered for industrial

applications such as syrups, molasses, sugar beet pulp, olive mill wastewater, cheese

whey, pomace and lignocellulosic biomass (Öner 2013). Glycerol by-product from

biodiesel industry is another alternative which have been used for exopolysaccharide

production (Freitas et al. 2009, 2011b).

The choice of the adequate carbon source is determined by the metabolic needs

of the microorganism for EPS production. If the culture is adapted to glucose and

sucrose, syrups and molasses may be adequate substitutes. In other cases, some

byproducts require a pretreatment in order to extract important precursors for

polysaccharide synthesis (Öner 2013). Despite the attractiveness of such resources,

some problems may arise from their utilization. The presence of contaminants

and different nutrient compositions may have an unpredictable effect in the cell’s

metabolic pathways (Freitas et al. 2011a). For this reason, different polymers and/or

unwanted products might be synthesized by bacteria, lowering the product yield or

be potential cell growth inhibitors. Therefore, to produce high quality polymers for
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specific applications, the utilization of renewable feedstock may not be adequate,

since there’s a high risk of impurity carryover to the final product (Freitas et al.

2011a).

1.4 Modeling and optimization strategies

employed in exopolysaccharide production

1.4.1 Basic modeling principles

The development of kinetic models is a crucial step to understand, control and

optimize fermentation processes. Many factors can have an impact on bioreaction

systems, such as the strain used for conversion of substrates to fermentation products,

the type of reactor used and mode of operation employed, medium composition,

and operation parameters. There are many possible modeling strategies that can

be applied to model cellular systems and bioreactors systems, eventually integrated

with each other. Here we overview the key modeling concepts employed in this thesis.

There are two prevalent approaches to develop a bioprocess dynamical model

based on mechanistic and/or phenomenological knowledge:

• Empirical stoichiometric models. Cells are treated as black-boxes.

• Models based on a detailed metabolic network of the cells. The list of metabolites

and metabolic reactions are considered in the model.

Empirical stoichiometric models are mostly useful when the purpose of the study

is to check overall balances of metabolites in and out of the cell, reducing all the

chemical reactions to a single lumped reaction (Nielsen et al. 2003). This approach

assumes a constant stoichiometry for the conversion of substrates to the several

11



CHAPTER 1. STATE OF THE ART

products of the cell, including biomass (Duboc and Stockar 1998):

X +
m∑
i=1

YxpiPi −
n∑
i=1

YxsiSi = 0 (1.1)

Equation 1.1 represents the general biomass mass balance formulation for a black box

stoichiometry, where X represents the biomass concentration, Pi the cell products

concentration and Si the substrates concentration consumed by the cell. The values

of Y represent the yield coefficients of each of Si substrates and Pi products per

biomass produced.

When a detailed metabolic network is used for model development, the complexity

of the problem increases but, because of the constant balancing of formation and

consumption of intracellular metabolites, the degrees of freedom do not necessarily

increase. This is an important property of metabolic networks, and is defined by a

stoichiometric constraint, based on the mass balance of intracellular metabolites,

establishing the basic structure for the network (Nielsen et al. 2003; Price et al.

2004).

The mass balance can be defined mathematically as a system of linear equations

(Reder 1988). For a metabolic network consisting of m metabolites and r reactions,

the system can be described by:

dCi
dt

=
r∑
j=1

nijvj for i = 1, ...,m (1.2)

This equation describes the change rate for each metabolite concentration (Ci)

involved in the network, with the quantities nij representing the stoichiometric

coefficients of the ith metabolite in the jth reaction. The system of linear equations

thus represented can be conveniently rewritten in matrix notation, which is a compact

form better suited for several types of analysis:

dC
dt

= N v (1.3)
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where dC
dt represents the vector of time derivatives of the metabolite concentra-

tion vector C = [C1, C2, . . . , Cm]T , v the vector of intracellular reaction fluxes

[v1, v2, . . . , vr]T , and N a matrix of m rows and r columns holding the stoichiometric

coefficients, defining the stoichiometric matrix (Reder 1988).

The structure of the metabolic network is a representation of the information

contained in the stoichiometric matrix. With this information, it is possible to

compute several important network properties, such as the determination of all

admissible fluxes in steady-state, finding out conservation relations for included

reactants as well as figuring out dead ends and unbranched reaction pathways. If a

mass balance is assumed to be in steady-state, there is no net accumulation of each

metabolite inside the cell, and consequently the concentration time derivatives are

zero (Price et al. 2004). Thus in steady-state, we can write:

Nv = 0 (1.4)

In most cases, intracellular reactions outnumber the total sum of metabolites and

therefore, stoichiometric matrices are overdetermined, that is, its rank is inferior

to the number of columns (intracellular fluxes). In such cases, Equation (1.4) has

nontrivial solutions, implying that there are at least r− rank(N) vectors belonging

to and spanning the nullspace of N. This way, a kernel matrix K fulfilling:

NK = 0 (1.5)

shows the respective linear dependencies (Heinrich and Schuster 1996). The column

space of the kernel matrix has a very important meaning in the analysis of metabolic

networks, mainly because any linear combination between these vectors can generate

a steady state flux vector v that is a solution to Equation (1.4).

While all previous equations apply to intracellular metabolites, some metabolites

and large molecules are transported across the cellular membrane and accumulate
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in the extracellular phase. The material balancing of such compounds builds the

backbone of a bioreactor dynamic model. When the bioreactor is well-mixed with

a single inlet and single outlet streams, such material balances take the following

general form:
dC
dt

= N vX +DCin −DC + QC (1.6)

with C = [C1, C2, · · · , Cm, X]T a vector of extracellular compounds, one of them

being biomass (X), D the dilution rate (D = F/V with F the volumetric flow rate

of the bioreactor outlet stream and V the liquid volume inside the reactor), Cin

the vector of concentration in the bioreactor inlet stream and QC the vector of

volumetric mass transfer rates.

The above models are only fully established when the reaction kinetics term,

v, is defined with appropriate kinetic laws in the sense of describing faithfully

microbial kinetics, which is probably the most demanding task when developing a

bioprocess model. Microbial kinetic models are typically divided between structured

and unstructured models. The latter regards the cell as an undifferentiated mass,

where all the conversion processes of substrates into products are lumped into a

single reaction (Nielsen et al. 2003). In structured models, several levels of structure

can be differentiated over the unstructured model, such as metabolic network of

intracellular reactions, the consideration of cellular compartments where specific

reactions occur, or even structure at the gene level (García-Ochoa et al. 2004). The

application of unstructured models is much easier to apply, since it simplifies the

cellular processes into fewer parameters than the structured models. Nonetheless, this

simplification suffers from the fact that certain tendencies may not be successfully

described by experimental data, particularly when some operational variables are

modified (García-Ochoa et al. 1996). Unstructured models can be classified in two

groups: those which take into account dependencies of growth and production on

nutrients, and those where the growth and production is a function of biomass only

and its function with time (García-Ochoa et al. 1995). Monod-type models are an
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example of the first class of unstructured models, while the latter class is normally

exemplified by the logistic equation for biomass growth prediction.

Due to the difficulties in developing accurate kinetic models based on mech-

anistic principles, hybrid semi-parametric modeling has been proposed as a cost-

effective alternative to purely mechanistic or phenomenological modeling. Hybrid

semi-parametric models bundle nonparametric models such as Artificial Neural

Networks (ANN) with mechanistic descriptions of kinetic expressions in the same

mathematical structure (Chen et al. 2000; Thompson and Kramer 1994). There are

several successful case studies of the application of this technique in bioprocesses,

such as in the production of inulinase (Menküc et al. 2008), recombinant proteins

from BHK-21 cultures (Teixeira et al. 2005), and also in the production of xanthan

gum from Xanthomonas campestris (Zabot et al. 2011).

1.4.2 Overview of EPS modeling and optimization studies

Currently, most industrial optimization problems are addressed empirically using

statistical models. Within this class of methods, the Response Surface Methodology

(RSM) takes a prominent position in the bioprocess industry panorama. It has aslo

been previously reported for microbial EPS production. In short, this method consists

on a statistic approach that is employed to identify relationships between response

and independent variables. The data, generally obtained from a design of experiments

(Lundstedt et al. 1998), is typically fit to a second-order polynomial equation in order

to capture the effects of the operational factors under test (independent variables).

Since second-order polynomial equations have one extreme point, it is possible, in

theory, to identify optimum response values for a given set of independent variables.

The popularity of this technique arises from its ease of use to perform optimization

studies, and for being less labor intensive compared to the classical experimentation

and optimization procedures, in which a one variable at a time technique is used.

Hence the RSM provides a large amount of information from a smaller set of
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experiments. Moreover, the individual effects of independent variables as well as their

interactions can also be assessed with this approach (Baş and Boyacı 2007). Due

to these properties, many studies are found in the literature for the optimization

of culture media compositions and other critical variables in the production of

exopolysaccharides, such as production of EPS from Enterobacter A47 (Torres et al.

2012), xanthan gum (Ben Salah et al. 2010; Psomas et al. 2007), curdlan gum (Cui

and Qiu 2012), gellan gum (Bajaj et al. 2007; Banik et al. 2007), dextran (Naessens

et al. 2004), wellan gum (Li et al. 2012), cellulose (Panesar et al. 2012; Zeng et al.

2011), hyaluronic acid (Chen et al. 2012) and levan (Silbir et al. 2014).

Despite the advantages in the application of RSM models, there are several

limitations that must be taken into account. Fitting the data to a second-order

polynomial may not be the best practice for all systems. For instance, temperature

effects in biochemical processes are typically described by symmetrical or nonsym-

metrical bell-shaped curves, which may be difficult to explain when the data is fit to

a quadratic equation, especially in the case of nonsymmetrical temperature profiles.

This fact restricts the usability of RSM models to changes which are described by

quadratic functions (Baş and Boyacı 2007).

A more comprehensive approach for modeling the production of EPS is the

development of dynamic models based on material balances and kinetic laws. Unlike

the RSM, kinetic models take into account the temporal dimension and are more

realistic in terms of the description of the mechanisms underlying the process. The

EPS production is often modeled by means of the Luedeking-Piret equation, and

the consumption of carbon and/or nitrogen sources expressed by stoichiometric

coefficients (García-Ochoa et al. 1995). Xanthan gum is the polysaccharide with the

highest industrial production and, since the early sixties, numerous publications have

been available for xanthan batch and continuous production (García-Ochoa et al.

1995; García-Ochoa et al. 2004; Rosalam and England 2006). Most of the published

works deal with the development of unstructured models, with some variations on
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the nature of the kinetic laws applied. Structured models have also been described for

xanthan gum, incorporating information about biochemical reactions and also process

parameters such as temperature (García-Ochoa et al. 1996, 1998; García-Ochoa et al.

2004).

1.5 Thesis motivation and objectives

The present Ph.D. thesis focuses on the production of an EPS composed mainly by

galactose, glucose and fucose, by Enterobacter A47 using glycerol as the main carbon

source. Bench-scale bioreactor experiments have shown that EPS is produced in

concentrations as high as 8 g/L, but also that the production rate and composition

may vary along cultivation time due to changes in environmental conditions, such as

pH, temperature, nutrients depletion, carbon and nitrogen feeding strategy, dissolved

oxygen concentration and viscosity increase. The Enterobacter A47 genome has been

sequenced during the course of the present thesis thus the mechanisms that control

EPS synthesis are only scarcely known.

The main objective of this Ph.D. thesis is to develop an in silico Enterobacter A47

cellular model integrated with a bioreactor process model and to use these models to

optimize EPS productivity with consistent quality. The model should comprise the

following main blocks:

• Central carbon metabolic reactions

• Lumped biomass synthesis reaction

• Pathways for EPS synthesis

• Effect of environmental factors including pH and temperature, which have been

identified as key factors in previous studies.

• Dynamical description of the key state variables
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The model will be developed step wise, with incremental improvements by the

inclusion of additional mechanisms as experimental data becomes available to validate

such mechanisms. Once model validation with experimental data is concluded, if

model validation and prediction power criteria are satisfied, optimal control scenarios

will be investigated with the objective to further optimize EPS productivity under

certain quality constrains. In particular the following control degrees of freedom will

be investigated:

• Temperature

• pH

• Glycerol dynamic feeding

• Nitrogen to carbon ratio

Last but not the least it is expected with this thesis to generate new knowledge

and tools that will help to engineer Enterobacter A47 either at and process level

eventually leading to a robust, consistent and highly productive EPS production

process.

1.6 Thesis outline

This Ph.D. dissertation comprises the following chapters:

- Chapter 1 introduces the key scientific topics pertinent to the work developed,

followed by the motivation, objectives and thesis outline.

- Chapter 2 covers the construction of a metabolic network for Enterobacter

A47. The theoretical background for the construction of structured metabolic

models will be discussed, highlighting the contrast with black-box metabolic

models. The metabolism of the Enterobacteriaceae group is revised, providing
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the necessary information for the main catabolic and anabolic reactions related

to biomass growth and exopolysaccharide synthesis.

- Chapter 3 describes two methodologies that allow the interpretation of sto-

ichiometric models based on cellular flux data. The first method is termed

Principal Elementary Mode Analysis (PEMA) and is based on Principal Com-

ponent Analysis (PCA) to capture the maximum variance of a fluxome data

set, using Elementary Modes (EM) as Principal Components (PC). This way a

given set of EMs was used to reconstruct the experimental data while provid-

ing a clearer picture of the metabolic pathways involved in the fluxome. The

second strategy involves the methodology of Yield Analysis (YA) to determine

a minimal set of EMs to describe each flux distribution on a data set. Both

methodologies were applied to a data set of extracellular metabolite measure-

ments in an Enterobacter A47 culture experiments. The chapter compares the

results and discusses the pros and cons of PEMA and YA methodologies.

- Chapter 4 covers the dynamic modeling of EPS production. In this section, a

new modeling approach was applied to the fed-batch production of EPS from

Enterobacter A47. The strategy applied here was based on the combination

of a parametric model containing mechanistic expressions about the process,

with a nonparametric model composed of an Artificial Neural Network that

incorporates additional data from the process (temperature, pH and broth

viscosity), to compensate for the parametric model inaccuracies.

- in Chapter 5 a model-based optimization is described supported by the

modeling studies developed in chapter 4. Several scenarios were designed for

the process improvement following an optimal-control methodology. In each

case, a different objective function was defined: maximization of EPS final mass,

minimization of residual glycerol quantity, maximization of EPS productivity

and maximization of the yield production of EPS per glycerol consumed. A
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clustering method based on the kmeans algorithm was applied to assess the

nonparametric model reliability.

- Chapter 6 presents the final remarks and main conclusions of this thesis.

Questions about future work are also addressed in this section.
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Metabolic Network for Enterobacter A47

Living cells are organized in a highly complex network of chemical reactions that

permeate all their functions. The study of these networks is fundamental from the

viewpoint of bioprocess engineering, since it contains all the information about the

processes that are responsible for cell reproduction and viability, to the synthesis

of products with commercial value. In this chapter we construct a metabolic model

of Enterobacter A47 based on data provided by its genome reconstruction, online

databases and literature surveys. This information allowed the identification of central

carbon metabolism for Enterobacter A47, as well as the biosynthetic pathways leading

to the key sugars involved in the synthesis of EPS. As such, it was possible to construct

a core metabolic network for this organism, containing the glycolysis/gluconeogenesis

pathways, glycerol dissimilation reactions, the pentose-phosphate pathway, TCA,

respiratory chain and oxidative phosphorylation and also fermentative pathways.

Biosynthetic pathways for the generation of EPS building blocks were also added to

this model. This work represents the first step towards a systems biology approach

to the study of the metabolism of Enterobacter A47.
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2.1 Introduction

The field of systems biology has been detrimental to shape the way biotechnological

research is performed. This systems level approach to the study of microbial cells

has allowed the construction of predictive models for genetic and/or environmental

perturbations, providing the means for the rational engineering of microbial strains

with improved capabilities (Lee et al. 2005). Although a great variety of metabolic

modeling approaches exists, all of them require a stoichiometric matrix based on

a reconstructed metabolic network (Terzer et al. 2009). This matrix translates the

network’s information into a mathematical format, with the metabolites organized

row-wise and the biochemical reactions displayed column-wise. Each matrix value

corresponds to the respective stoichiometric coefficient for a given metabolite in a

given reactions. This mathematical representation codifies the network’s topological

properties, providing the structural basis to determine all the observable cellular

functions.

The success in the reconstruction of metabolic models is indebted to the ad-

vances in high-throughput and computational technologies, resulting in the genome

sequencing of a growing number of organisms across all three domains of life (Janssen

et al. 2005). Despite applications in metabolic engineering, genome-scale models

have also been used in the contextualization of high-throughput data, to direct

hypothesis-driven discovery, interrogation of multi-species relationships and network

property discovery (Oberhardt et al. 2009).

Reconstructed metabolic networks attempt to represent the cellular metabolism

occurring in biological systems. As such, metabolic reactions fall into two types of

chemical transformations: catabolic and anabolic pathways. The former consist on a

subset of reactions that break down molecules with a high reduction potential, such

as sugar hexoses (i.e. glucose and fructose), ensuring a supply of Gibbs free energy

(generally in the form of high energy phosphate bonds) and precursor metabolites.

Conversely, anabolic reactions use the energy and metabolite pools generated by

22



2.1. INTRODUCTION

catabolism to the synthesis of biomolecules with higher complexity (Lehninger et al.

2000; Nielsen et al. 2003).

There are several levels of hierarchical detail in the conceptualization of recon-

structed networks (Palsson 2006). In a broader sense, the metabolism involves the

uptake of substrates as inputs to the network and the synthesis of biomass and

by-products as outputs. For many industrial fermentation processes, this simplified

view of cells suffices. These descriptions comprise a simple set of coupled mass and

energy balances, with various empirically determined yield coefficients, describing

the partitioning of consumed substrate, with many biological processes lumped into

single reactions (e.g. biomass synthesis equation) (Nielsen et al. 2003; Palsson 2006).

Models of this type are only useful for a limited set of specific conditions.

Higher level of detail can be obtained by dividing the intermediary metabolism

into two basic sectors: synthesis of biosynthetic precursors and synthesis of building

blocks. The former are generated by the catabolism to integrate the various anabolic

pathways, which originate the building blocks for macromolecular biosynthesis. It may

be useful to describe the metabolism at this level to engineer bacteria in bioprocessing

(Palsson 2006).

A third level of resolution involves detail about the metabolic pathways in

networks. At this level of description, the kinetic regulation of biochemical reactions

in the pathway and also key metabolic pools such as the energy charge dominate this

characterization (Palsson 2006). Finally a fourth level of detail is focused in individual

reactions as the simplest unit of chemical conversion in metabolic networks.

Various sources of information can be used to assist the reconstruction of metabolic

networks, including biochemical information regarding metabolic reactions, genomics

information containing functional assignments to open reading frames (ORF), based

on DNA sequence homology, physiology and indirect information, such as empirical

evidence of a strain’s ability to produce certain by-products. A final source of

information comes from in silico modeling data which often aid to infer metabolic
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reactions that close the gaps in reconstructed networks (Palsson 2006; Reed et al.

2006). Most of the referred sources of information are contained in online databases

such as MetaCyc (Caspi et al. 2006), EcoCyc (Keseler et al. 2005) and KEGG

(Kanehisa and Goto 2000).

2.2 Construction of a core metabolic model for

Enterobacter A47

2.2.1 Genome reconstruction of Enterobacter A47

The genome sequence of Enterobacter A47 was recently obtained by the Federal

University of Pará, Brazil, representing the first step to generate a genome-scale

reconstruction of the metabolism. The sequenced data was annotated and recon-

structed using the RAST algorithm (Aziz et al. 2008), available as an on-line service

(www.rast.nmpdr.org). This reconstructed genome is the main resource for the con-

struction of a core metabolic network for Enterobacter A47. The whole genome has a

size of 4,992,161 bp and the resulting reconstruction identified 4705 coding sequences,

with 25 possibly missing genes. Figure 2.1 sumarizes the gene groups identified in

the reconstructed genome.

2.2.2 Overview of Enterobacter A47 metabolism

The genome reconstruction represents the first step to uncover the details of Enterobac-

ter A47’s metabolism. Although a complete genome-scale metabolic reconstruction is

still unavailable, the main features relative to the carbon metabolism and synthesis

of EPS building blocks can be elucidated, based on the current knowledge obtained

from the genome reconstruction. Moreover, the reliance on online databases and

literature surveys contributed to the development of a small-scale metabolic network

for Enterobacter A47.
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Figure 2.1: Summary of the genome reconstruction of Enterobacter A47

The group referred to as carbohydrates represented by the genome reconstruction

(Figure 2.1) contains most of the catabolic reactions in Enterobacter A47. Two major

pathways for sugar degradation are found in this strain’s metabolism: the Embden-

Meyerhof-Parnas and Entner-Doudoroff pathways. These pathways are responsible

responsible for the generation of ATP and NADH pools, as well as the synthesis of

precursor metabolites for biosynthesis such as pyruvate, phosphoenolpyrutvate and

glyceraldehyde-3-phosphate. A third possibility for the sugar catabolism was found

to be the methylglyoxal pathway, which is activated in conditions of overflow in the

uptake of certain substrates such as glucose, glycerol or lactate (Weber et al. 2005).

The experimental evidence for the uptake of glycerol by Enterobacter A47 is

also backed-up by the presence of coding regions in the genome for the glycerol

transport system (glpT) and the glycerol uptake facilitator protein (glpF). The
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transport system takes part in the phosphorylation of glycerol which is converted to

dihydroxiacetate-phosphate, entering the glycolytic or gluconeogenic pathways.

The pyruvate is the final metabolite in both Embden-Meyerhof-Parnas and

Entner-Doudoroff pathways. The tricarboxylic acid (TCA) cycle is one of the possible

routes that can be taken by pyruvate. Following a decarboxylation reaction, pyruvate

is converted to acetyl-CoA, which can enter TCA by reaction with oxaloacetate.

The successive sequence of reactions results in the generation of four molecules of

NADH, one molecule of FADH2 and two CO2 molecules. The glyoxylate pathway is

also evidenced in the genome reconstruction of Enterobacter A47. This pathway is

relevant in biosynthetic pathways, particularly in the biosynthesis of polysaccharides.

The reconstructed genome shows evidence for the group of respiratory complex

reactions, which include the NADH (and NADPH) ubiquinone oxidoreductase chain,

as well as a series of NADH dehydrogenases which intervene in the so-called respiratory

chain. These reactions are the major sink for all the redox potential generated in

the cellular metabolism, transferring electrons from NADH to O2 in a series of

redox reactions. The coupled activity of the ATP synthase takes advantage of the

proton gradient generated in the respiratory chain to promote the generation of

ATP molecules in the process of oxidative phosphorylation (Lehninger et al. 2000;

Madigan et al. 2003).

The strain of Enterobacter A47 also possesses some fermentative pathways that

convert pyruvate into organic acids whenever oxygen is unavailable. The genome

reconstruction has shown evidence mixed-acid fermentation pathways, which include

the conversion of pyruvate into ethanol, acetate and lactate. Moreover, the butanediol

fermentation is also evidenced in the genome data, which is also a typical by-product

among the group of enteric bacteria (Madigan et al. 2003).

As described in Section 1.2, Enterobacter A47 is able to synthesize heteropolysac-

charides incorporating neutral sugars such as glucose, galactose, fucose, rhamnose,

glucuronic acid and glucosamine (Torres et al. 2012). Acyl group substituents such
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Figure 2.2: Biosynthetic reactions leading to the sugar building blocks for EPS
synthesis (metabolites in red). Legend: UTP, uridine triphosphate; TTP, thymidine
triphosphate; GTP, Guanosine triphosphate; AcCoA, acetyl coenzyme A; NADPH,
nicotinamide adenine dinucleotide phosphate; Glc6P, glucose-6-phosphate; G1P,
glucose-1-phosphate; Fru6P, fructose-6-phosphate; Man6P, mannose-6-phosphate;
Man1P, mannose-1-phosphate; GlcN1P, glucosamine-1-phosphate; Ac-GlcN, acetyl
glucosamine; UDP-Glc, UDP glucose; UDP-Gal, UDP galactose; UDP-GlcA, UDP
glucuronic acid; TDP-Rha, TDP rhamnose; UDP-Ac-GlcN, UDP acetyl glucosamine;
GDP-Fuc, GDP fucose; GDP-Man, GDP mannose.

as acetyl, pyruvyl and succinyl have also been shown to be incorporated into EPS

composition (Torres et al. 2012). The synthesis of all major building blocks for EPS

synthesis has been confirmed by the genome reconstruction of Enterobacter A47. The

lack of details about these reactions was complemented with knowledge contained

in online data bases and literature sources from closely related organisms such as

Escherichia coli.

For Enterobacter A47, the synthesis of EPS building blocks was assumed to derive

mainly from the conversion of Glucose-6-phosphate to uridine diphosphate glucose
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(UDP-Glc). This sugar nucleoside is than converted into other sugar species such

as UDP-Gal and uridine diphosphate glucuronic acid (UDP-GlcA) (Kumar et al.

2007; Madigan et al. 2003). For the synthesis of fucose, fructose-6-phosphate (Fru6P)

is the starting point, involving the formation of mannose and the inclusion of a

guanosine residue in this sugar (GDP-Man), which is therefore converted to guanosine

diphosphate fucose (GDP-Fuc). For glucosamine, Fru6P is converted to glucosamine-

6-phosphate by reaction with glutamine. The biosynthetic pathway for rhamnose

starts with the conversion of Glc6P to Glc1P, followed by the addition of thymidine

diphosphate, forming thymidine diphosphate glucose. This sugar nucleoside will than

be the precursor of thymidine diphosphate rhamnose. The pathways for the synthesis

of fucose, rhamnose and glucosamine were adopted from EcoCyc (Keseler et al. 2005).

The diagram in Figure 2.2 ilustrates the biosynthesis reactions for EPS synthesis.

2.2.3 Representation of the metabolic network model

A core metabolic network model for Enterobacter A47 was constructed, based on its

reconstructed genome. This model attempts to represent the metabolism of glycerol

uptake and synthesis of EPS (Figure 2.3). The model contains 18 extracellular

reactions, reflecting all the fluxes that exchange material with the environment:

glycerol, ammonia, oxygen, carbon dioxide, acetate, formate, lactate, ethanol, EPS

components (glucose, galactose, fucose, rhamnose, glucuronic acid, glucosamine,

acetyl, pyruvyl and succinyl), and a general ATP maintenance term. All the external

fluxes were defined as irreversible, with the uptake substrates entering the network

and organic acids and EPS components exiting the system. The production of organic

acids is linked to the fermentative pathways, which may take place whenever oxygen

becomes scarce in the culture media.

The model also includes 37 intracellular metabolites and 58 intracellular reactions,

forming the glycolysis/gluconeogenesis, penthose-phospates, tricarboxylic acid cycle

and fermentative pathways. Since glycerol is the only carbon source used by the
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cell, dissimilation reactions were considered, linking to the glycolysis pathway. A

comprehensive list of the metabolic reactions and metabolites included in the model

is available in Appendices A.1 and A.2.

The respiratory chain and phosphorilative oxidation reactions were lumped into a

single overall reaction, based in the value of the P/O ratio, that is, the ratio between

the number of ATP moles produced per oxygen consumed. This value is a variable

quantity, depending on the relative formation of NADH and FADH2. If only NADH

molecules were used in the respiratory chain, the P/O ratio would have a value of 3

but, since FADH2 is also formed in the TCA cycle, this value would likely be less

than this value. Some microorganisms also lack one or more proton pumping sites,

resulting in a substantially lower value of P/O ratio. The overall stoichiometry for

the oxidative phosphorylation can be summarized in the following equation:

(2.1)NAD+ + (1 + P/O)H2O

+ (P/O)ATP −NADH − 0.5O2 − (P/O)ADP −H+ − (P/O)Pi = 0

Exopolysacccharide biosynthesis was represented by the reactions that lead to the

required sugar and nonsugar building-blocks. Each reaction was lumped on a single

flux, linking a precursor metabolite from the central carbon metabolism, to a single

building-block, that is, for each nucleoside sugar or activated acyl group that integrates

the polysaccharide chain. The energetic and redox potential requirements were all

taken into account, based on the literature and database information (Byun et al.

2007; Jarman and Pace 1984; Keseler et al. 2005; Troy et al. 1971).

2.3 Conclusions

In the present chapter we describe the construction of a metabolic model of Enter-

obacter A47, based on the genome sequence obtained from this organism, online

databases and literature sources. The genome annotation and reconstruction was

performed by the RAST algorithm, which is provided as an on-line service. The
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Figure 2.3: Metabolic network for the central carbon metabolism based on recon-
structed genome of Enterobacter A47. Detail about reactions involved in the conver-
sion to the EPS building blocks are lumped into single reactions. The metabolites in
blue represent intracellular species, while the metabolites in red are exchanged with
the extracellular medium.

genome has a dimension of 4,992,161 base pairs and 4705 coding sequences identified,

with 25 possible missing genes. With this information it was possible to identify the

core metabolic pathways present in the metabolism of Enterobacter A47, as well

biosynthetic pathways leading to the formation of key sugars present in EPS.

The proposed metabolic network has 37 intracellular metabolites, 58 intracellular

reactions and 18 exchange fluxes, establishing the material transfer between the

cellular metabolism and the environment. These include the uptake of ammonia,

glycerol and oxygen, as well as the excretion of metabolic products including EPS.

Due to the current lack of information regarding the mechanisms of EPS assembly, the

model was built to account only to the level of the synthesis of its building blocks. The

intracellular reactions represent the reactions of glycolysis/gluconeogenesis pathway,

glycerol dissimilation, the pentose-phosphate pathway, TCA cycle, respiratory chain
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and oxidative phosphorylation and also fermentative pathways.

The construction of this metabolic model is a first step in the direction of a

systems biology approach to the study of the metabolism of Enterobacter A47.

This can potentially lead to the possibility of metabolic engineering for improving

bioprocesses destined to the production of EPS.
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Identification of Elementary Flux Modes

by experimental yield data: the case of

EPS production by Enterobacter A47

An elementary flux mode may be defined as a minimal set of enzymes able to operate

at steady state, encoding a particular metabolic state of the cell. The universe of

elementary flux modes defines the full set of non-decomposable steady-state flux

distributions that the underlying metabolic network can support. However, the vast

majority of metabolic states encoded by elementary flux modes are not physiological

or thermodynamically feasible under a given set of environmental conditions. For

this reason, data reconciliation methods are needed to identify a subset of “active”

elementary flux modes of the real system. In this work, two methodologies were

studied to identify a subset of elementary flux modes constrained by experimental

yield data: principle elementary modes analysis (PEMA) and yield analysis (YA).

The EPS synthesis by Enterobacter A47 was used

We use as example EPS synthesis by Enterobacter A47 represented by a network

of 58 metabolic reactions and 1066 elementary flux modes using a data set of 11× 9
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independent observations of yield values. Both PEMA and YA methods seek for

the minimal set of active elementary modes compatible with the idea that a highly

evolved organisms uses the most efficient pathways adapted to a given environmental

condition. We have observed that PEMA identifies 5 active EMs explaining 98.5% of

measured data variance while YA requires 9 active EMs to explain roughly the same

amount of variance (99%). Moreover, the degree of orthogonality of EMs identified

by YA is higher than those selected by PEMA. All in all we conclude that the PEMA

is more efficient in identifying a minimal set of EMs then YA.
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3.1 Introduction

Metabolic networks can be mathematically described by a system of linear equations

(i.e. stoichiometric matrix), which represents an interconnected network of material

relationships between metabolites assuming that the cells are in steady state. Such

stoichiometric linear modes are generally undetermined, which means there are more

variables (metabolic reaction rates) than system equations (metabolite balances).

From these considerations, the stoichiometric matrix null space can be defined with

a finite number of basis vectors, whose linear combination generate all the possible

fluxes operating in steady-state. However, not all steady-state fluxes are biologically

feasible and for that reason some constraints must be imposed in the null space

(e.g. reversibility of biochemical reactions). Thus, the concept of elementary modes

(EM) can be formulated as the minimal set of cellular reactions able to operate in

steady-state (Schuster et al. 2000).

The set of elementary modes is obtained from convex analysis (Schuster et al. 2002)

and is unique for a given metabolic network. Three basic conditions are fundamental

to define the EM space: a pseudo-steady state condition, a feasibility condition

and a non-decomposability condition (Klamt and Stelling 2003). As already stated,

the first condition ensures the conservation of the metabolite levels in the network.

The feasibility condition demands that only thermodynamically realizable fluxes are

contained in a given elementary mode. The latter condition implies that there is

no elementary mode (excluding the zero vector) that can be further decomposed in

some linear combination of other elementary modes.

Moreover, because the set of elementary modes can function as a convex basis,

any particular steady-state flux distribution can be obtained as a non-negative linear

combination of elementary modes. Motivated by these properties, elementary mode

analysis has become a widespread technique to assess robustness of cellular functions

(Klamt 2006; Stelling et al. 2002; Wilhelm et al. 2004), interpreting metabolic

functions (Carlson and Srienc 2004; Gayen and Venkatesh 2006), assessing aspects
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Figure 3.1: Illustration of the concept of Elementary Modes: (A) Representation of
the flux cone as a subspace of the stoichiometric matrix null space. Each elementary
mode consist on a convex basis for the set of feasible fluxes operating in steady-state.
(B) schematic representation of Elementary Modes in a metabolic network.

of functionality and regulation in the network structure (Stelling et al. 2002) and

improving strain performance (Trinh et al. 2006).

Current algorithms for the computation of elementary modes face a common

problem when dealing with highly interconnected metabolic networks (Klamt and

Stelling 2002). In such cases, the combinatorial calculation of the elementary modes

number becomes increasingly complex, rendering the analysis of large networks

difficult. However, there constantly appear new methods for computing EMs of large

networks in an efficient and fast way, e.g. Badsha et al. (2014) and Quek and Nielsen

(2014).

Most of the pathways described by elementary modes are not physiological or

thermodynamically feasible under a given set of environmental conditions. For this

reason, some methods have been proposed to select a set of most representative

or active elementary modes. Among the many possible methods (for a review see

Trinh et al. (2009)) the identification of a subset of elementary modes, constrained

by measured yield data, is particularly interesting. This kind of data is frequently

available in cell culture experiments. This problem has been studied before by Song

et al. (2009), who have proposed the yield analysis (YA) method to discriminate a

subset of elementary modes that best represent the measured extracellular yield data.
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Figure 3.2: Transformation of the flux space into yield space, defined by a bounded
convex hull.

In this method, the space defined by external fluxes is regarded as an important

aspect of EM selection, since the internal fluxes of a metabolic network are strictly

constrained by the status of external fluxes (Song et al. 2009). This way, yield analysis

posits as a rational way for selecting a set of EMs with meaningful solution space.

Thus the first step in YA consists in transforming the entire flux space defined by

the EM set into yield space. This is done by dividing each of the fluxes contained in

the elementary modes by a flux of reference, generally the carbon source (glycerol

flux in the present work).

Figure 3.2 represents the mapping of a flux cone defined by three fluxes, into the

yield space. By taking flux v1 as the flux of reference, the yields of the remainder

fluxes are calculated. Thus, the space defined by the edges of the flux cone (i.e.

elementary modes) is recreated in yield space as vertices of the bounded convex hull.

Every feasible metabolic pathway can thus be represented as a convex combination

of the EMs at the vertices:

y = Zy ·λ, λ≥0, ‖λ‖1=1 (3.1)

The vector y represents the yield vector, Zy the matrix of elementary modes converted
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to yield values and λ the weights vector. In order to identify a subset of EMs that

best represent the data some additional methods are needed to identify columns of

Zy and to estimate the respective weights λ. Here we compare two approaches. In

the original yield analysis method active EMs are chosen as the minimal number

to enclose the measured yield point with the weighting coefficients determined by

quadratic programming. As alternative we apply the recently published Principal

Elementary Modes Analysis (PEMA) (“Principal Elementary Mode Analysis”), which

consists of a principle components like decomposition methodology where principle

components are substituted by elementary modes. Both methods are illustrated with

a yield data set for EPS production from glycerol by Enterobacter A47.

3.2 Methods

3.2.1 Experimental data set

The experimental dataset used in this work was provided by Torres et al. (2012).

The data was produced in eleven fed-batch experiments with EPS production under

different values of temperature and pH. Measurements of the final EPS concentration

and respective chemical composition in terms of its sugar monomers and acyl groups,

were converted to yields by dividing by total amount of glycerol spent in the fed-

batch experiment. The EPS components considered were fucose, glucose, galactose,

glucuronic acid, rhamnose, glucosamine, pyruvate, succinate and acetate. The rows

in the data matrix reflect the eleven fed-batch runs, viewed as the number of variable

observations. Details of the experimental method are provided elsewhere (Torres

et al. 2012).

3.2.2 Elementary Flux Modes

The metabolic network used in this study comprehends a subset of 58 reactions

describing the synthesis of the EPS building blocks (Fuc, Gal, Glc, GlcA, Rha, GlcN,
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Table 3.1: Central composite design with two independent variables: temperature,
pH. The rates were converted to yields.

Temp pH Yields of EPS monomers per glycerol consumed (mmol mol−1)

(oC) Fuc Gal Glc GlcA Rha GlcN Pyr Succ Acet

20 6.0 1.400 2.545 6.109 1.145 1.145 0.255 0.538 0.000 0.793
40 6.0 1.957 3.478 12.83 1.304 1.739 0.435 0.938 0.349 1.383
20 8.0 9.734 7.138 11.68 3.569 0.324 0.000 5.428 1.730 5.718
40 8.0 0.000 12.80 28.80 4.267 5.333 2.133 0.000 0.000 1.640
15.9 7.0 6.839 5.524 9.469 3.156 0.526 0.526 1.731 0.858 2.552
44.1 7.0 0.000 3.393 9.856 1.616 0.323 0.808 0.000 0.774 0.512
30 5.6 14.42 14.42 64.33 8.873 6.654 2.218 7.329 0.000 14.41
30 8.4 0.000 0.995 3.067 0.912 2.404 0.912 0.176 0.000 0.777
30 7.0 47.08 34.01 36.62 13.08 0.000 0.000 29.01 4.793 33.27
30 7.0 52.54 36.50 40.87 16.06 0.000 0.000 35.56 5.289 26.22
30 7.0 70.74 49.71 51.62 19.12 0.000 0.000 66.02 11.33 59.92

Pyr, Succ and Acet) from glycerol. Biomass synthesis was disregarded form this

analysis. The stoichiometric matrix and elementary modes were computed using

the software METATOOL, version 5.1 (Pfeiffer et al. 1999). A total of 1066 EMs

were computed and organized in matricial form with rows representing metabolic

reactions and elementary modes in columns. The rate values were converted to yield

values by dividing each value for the consumption rate of glycerol. The metabolic

network and respective elementary modes are provided in Appendix A.1.

3.2.3 Data normalization

Both measured yield data and EMs have been normalized dividing by the measure-

ment standard deviation of each yield value. More specifically, the data matrix is

scaled by dividing by yields standard deviation (column-wise), the EM matrix is

normalized by dividing row-wise by the same standard deviation values. To note that

mean centering should not be applied, since changing the sign of the fluxes alters

their direction, violating thermodynamic constraints. For details see Folch-Fortuny
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et al. (“Principal Elementary Mode Analysis”).

3.2.4 Principal Elementary Mode Analysis (PEMA)

method

The PEMA model can be formulated as follows:

Y = Λ ·ZT
pem + G (3.2)

where Zpem is the matrix of Principal Elementary Modes, which corresponds to a

subset of the entire EMs set; Λ is the weights matrix, containing the coefficients

to fit the original yield data contained in matrix Y using the PEMs. The term G

represents the residuals matrix. It is worth noting that Λ values are forced to be

positive, since only non-negative scaling factors are admitted in the subspace defined

by EMs (Schuster and Hilgetag 1994).

The first step of the method consists on calculating a λ (i.e. weight vector) for

each EM, solving the equation:

λk = Y ·Zk · (ZT
k ·Zk)−1 (3.3)

where k denotes the k-th EM and, unlike the loadings in principal component

analysis, the EMs are not orthonormal, so Equation 3.3 requires the pseudo-inverse

computation of ZT
k ·Zk. This way the matrix Λ is constructed with each column

represented by λk. For each iteration running through all the elementary modes, the

predicted data matrix can be computed with the following equation:

Ypred
k = λk ·Zk (3.4)

with λk the vector of weigths and Zk the k-th elementary mode under evaluation.

This information is used to calculate the explained variance attributed to each
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elementary mode.

V ar(%) = 100 ·
1−

∑
i
∑
j(yij − ypredij )2∑
i
∑
j(yij)2

 (3.5)

This equation measures the amount of variance explained by the k-th EM relative to

the total amount of variance contained in the experimental data, with yij representing

the element i row and j column of the data matrix Y, and ypredij the i,j element of

the matrix of predicted data Ypred. The EM explaining more variance in the data

is classified as the first EM, with this procedure repeated for the subsequent EMs,

calculating for each new EM also the λ values of the previous EMs. This strategy is

a greedy solution that maximizes the amount of variance explained by the current

set of EMs.

3.2.5 Yield Analysis (YA) method

Yield analysis (YA) is a concept introduced by Song et al. (2009) as a method of

extracting a subset of elementary modes essential for describing metabolic behaviors.

This method deals with yield space, taking advantage of an important feature, that is,

all feasible yield distributions are contained within a bounded convex hull, opposed

to the unbounded flux cone that characterizes the flux space. This implies that a

solution in yield space is bounded and therefore does not require the imposition of

additional constraints (Song et al. 2009).

The first step in YA is the reduction of the whole set of EMs to a set of generating

modes, defined as the minimal set of EMs that span the entire yield space (Wagner

and Urbanczik 2005). This procedure was identified by convex hull analysis (con-

vhull function in MATLAB). A further reduction can be performed by eliminating

generating modes which have a negligible contribution to the overall volume (or

area) delimited by the bounded convex hull (i.e. yield space). In the case data is

not available for some species in the metabolic network, partial coordinates can be

41



CHAPTER 3. IDENTIFICATION OF ELEMENTARY FLUX MODES

considered for YA (Song et al. 2009). In the present work, only yield data for EPS

monomers is available and thus, the yield space has a dimension of 9.

After the first reduction step, selection of active EMs falls within two possible

classes of problems. If the measured yield point is inside the convex hull, the active

set of EMs is chosen as the minimal number to enclose the experimental point, which

is at most n+ 1 EMs in n-dimensional yield space (Song et al. 2009). The solution

can be obtained by solving the following quadratic programming problem:

max
λ

1
2‖λ‖

2 (3.6)

such that

Zy ·λ− ym = 0, λ≥0,
m∑
i=1

λi = 1 (3.7)

where Zy is the matrix of normalized EMs, ym is the vector of measured yield

data and λ the vector of weights. When the squared norm of λ is maximized, n+ 1

nonzero weights are obtained, corresponding to the minimal amount of EMs able

generate a datum point inside the convex hull.

When the experimental yield data is located outside the convex hull, it cannot be

exactly represented by a convex combination of any set of EMs. The best available

option is to select the subset of modes best fitting the data. For this purpose, a

least-squares problem can be solved:

min
λ

1
2‖Zy − ym‖2 (3.8)

such that

λ≥0,
m∑
i=1

λi = 1 (3.9)

After the EMs identification, they were ranked from high-to-low explaining variance.

To accomplish this, an algorithm similar to the greedy search described in the

Section 3.2.4 was constructed, by applying Equation 3.4 to generate the data predicted
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by the k-th EM, followed by the calculation of explained variance (Equation 3.5).

3.3 Results and discussion

3.3.1 PEMA results

The application of PEMA requires the prior computation of EMs, which was per-

formed by METATOOL. Following this procedure, 1066 EMs were calculated for the

metabolic network considered in this study.

The performance of PEMA can be judged by the total amount of PEMs that are

able to reconstruct the data set. The scree plot is graphical display which is used to

assess the appropriate amount of Principal Components to extract from PCA (Bro

and Smilde 2014). A similar analysis was performed for the EMs which is showed

in 3.3A. This plot shows that 5 PEMs are able to explain 96.7% of the scaled data

variance and 98.1% of the real variance. The selected PEMs are EM414, EM241,

EM329, EM227 and EM559. It was opted not to consider EMs that explain less than

1% of variance since these modes would likely be describing noise.

3.3.2 YA results

The method of YA was applied to the set of 1066 EMs to reduce it to a smaller set

of active elementary modes. Firstly, a pre-selection of EM candidates by convex hull

analysis was performed, where the subset of 58 generating EMs was identified. The

experimental data was then used to determine 18 active EMs that best characterize

the metabolic model. These EMs were then ranked from higher to lower explained

variance. The scree plot analysis (Figure 3.3B) shows that 9 active EMs explain 97%

of the scaled data variance and 99% of the real variance. The consideration of more

than ten active EM would extract less than 1% of variance and, therefore no more

than 9 EMs were considered in the model. Hence, the selected EMs are: EM1021,

EM103, EM1019, EM1020, EM589, EM524, EM811, EM792 and EM219.
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Figure 3.3: Scree plots for PEMA method (A) and YA method (B).

3.3.3 Orthogonality

In orthogonal principle component analysis (PCA), principal components are orthog-

onal, ensuring that the sum of variances determined by each component equal the

totality of variance in the data. This does not occur with neither the PEMA nor the

YA methods. As we can see in Figure 3.4 A and B, the sum of explained variances by

the EMs with PEMA is 112%, while YA explains a totality of 104% of variance. This

stems from the fact that EMs are not orthogonal to each other and, as a consequence

they explain common sources of variability. Nevertheless, the EMs explaining more

variance can be considered more significant in the model.

The EMs degree of orthogonality can also be assessed by dividing the explained

variance explained by the selected EM set, with the sum of the variances explained

by each individual EM. If all the EMs under this calculation were orthogonal, a 100%

value would be obtained, such as the case with principal components in PCA. The

degrees of orthogonality differ in both methods, namely 88% for PEMA and 96% for

YA. This result shows that the EMs chosen from the YA exhibit a higher degree of

orthogonality (close to 100%) and, due to that fact, each EM would be more efficient

in describing unique sources of variation. However, EMs derived from the convex hull
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Figure 3.4: Bar plots representing the explained variance for the PEMs in PEMA
(plot A) and the active EMs in YA (plot B).

do not extract much variance independently, requiring 9 EMs to reconstruct 98% of

the data variance. This is not the case with PEMA, where the five EMs capture 97%

of the data variance.

3.3.4 Metabolic interpretability

Despite having a different nomenclature, PEMs and active EMs have an analogous

meaning regarding its metabolic significance, representing the most relevant pathways

to reconstruct a given data set. Figure 3.5 shows a map of the selected EMs in both

PEMA and YA. Both maps are a binary representation with the blue squares showing

forward reactions, red squares reverse reactions and the white squares reactions with

null value. The yield values for the selected EMs are provided in Appendices A.4

and A.5. Noting that the experimental data used correspond only to the yield values

of EPS monomers, it is clear that by analyzing the respective region in the selected

EMs (between yield 44 and 52), the YA method requires more EMs to reconstruct

the data. Conversely, PEMA needed only 5 PEMs to reconstruct 98% of the data. It

is interesting to note that most active EMs in YA predict only the formation of single

EPS residues, with the exception of EM103 and EM589 which predict the formation
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of two EPS residues. This result is not surprising if we take into account that active

EMs are generating vectors for the yield space, that is, they cannot be obtained

from any convex combination of other yield vectors. This suggests that the EMs

defining the convex hull are closer to the original coordinate system representing the

variables, which may explain the higher orthogonality of EMs selected by YA. Since

PEMA is not restricted to generating vectors only, it has more freedom to search

for PEM candidates to better represent the data. As consequence, PEMA selected

PEMs predicting two and three EPS residues.

The EM representation in Figure 3.5 is useful to interpret the metabolic reactions

involved in a given cellular state. Similar patterns can be observed in both methods

applied. Since the data reflect the conversion of glycerol into EPS, it is expected

that most pathways lead to the synthesis of glucose-6P, which is the principal sugar

precursor in the metabolism. In fact, the PEMs and active EMs that explain most

variance represent routes to the formation of fucose, glucose and galactose residues

(EM227, EM241 and EM559 in PEMA and EM1021, EM524 and EM1020 in YA).

The pentose-phosphate pathway (PPP) seems to have a low impact in the EPS

metabolism, judging by the result obtained by both methodologies. While no PPP

reactions are active in YA solution, two PEMs show positive fluxes through this

pathway (EM414 and EM329). However these PEMs explain a very low amount of

data variance (EM414 with 11.9% and EM329 with 0.23%) and therefore have a low

contribution.

Most of the energetic metabolism is derived from an activation of the respi-

ratory reactions, which are quite pronounced in the network. This occurrence is

paralleled with the high energetic demands in other EPS producing strains such as

Xanthomonas campestris, also favoring the aerobic metabolism (Jarman and Pace

1984). No fermentative pathways were detected in all the PEMs, with the exception

of EM227, EM792 and EM219 producing formate. One of the co-products of formate

synthesis is acetyl-CoA which in these pathways is incorporated into EPS as an
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Figure 3.5: Binary plots for the PEMs in PEMA method and active EMs in YA.
The blue rectangles represent a yield in the forward direction while the red color
represents a yield in the reverse direction. The metabolic pathways are grouped
within the dashed lines.

acetyl group.

Some EMs also show TCA activity, in particular EM414 in PEMA and EM524

and 589 in YA. In the case of EM414 and EM589, TCA is only partially activated

to generate succCoA, which is the succinyl donor for EPS. EM524 has all the TCA

reactions activated, indicating a catabolic activity to supply ATP for EPS synthesis.
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3.4 Conclusions

In this work, the identification of a minimal set of active EMs from measured yield

data was studied. Yield data requires only extracellular measurements, which are

easily available in a standard experimental setting. One can argue if EMs can be

discriminated on the basis of extracellular data only, but since the internal fluxes of

a metabolic network are strictly constrained by the status of external fluxes (Song

et al. 2009) the strategy is meaningful.

The first step in consists in transforming the entire flux space defined by the

full set of EMs into the yield space. This space transformation is done by dividing

each of the fluxes contained in the elementary modes by a flux of reference, generally

the carbon source (glycerol flux in the present work) or alternatively the biomass

production flux. The resulting yield space forms a convex hull that should enclose all

measured yield values.

Two different methods have been compared to discriminate the minimal set of

active EMs. PEMA is a principle component like method that maximizes explained

variance. In YA, the EMs are chosen as the minimal number to enclose a given

measured yield point, which is at most n+ 1 EMs in n-dimensional yield space. This

subset of EMs is determined by quadratic programing.

The overall results show that PEMA was able to explain 98.1% of measured yield

variance with a minimal set of 5 EMs, while YA required 9 EMs to explain 99% of

variance. The degree of orthogonality of EMs identified by YA is considerably higher

than those identified by PEMA. This is reflected in the structure of EMs selected

with the YA method promoting simpler single-substrate single-product EMs while

PEMA selects more complex multi-substrate and multi-product EMs.
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Dynamic Modeling of EPS fed-batch

production

The process dynamics of exopolysaccharide (EPS) production by the microbial species

Enterobacter A47 is very complex. Previous studies have shown that the choices

of temperature and pH are critical for both biomass growth and EPS synthesis.

However, the complex kinetics and transport phenomena make the construction

of first-principles models for bioprocess optimization difficult and laborious. An

alternative, more cost-effective methodology was explored here for the modeling

of fed-batch experiments with varying temperature and pH levels. Empirical and

first-principles knowledge (parametric) were combined with artificial neural networks

(nonparametric) into hybrid semi-parametric models, in various configurations. The

performances of the hybrid models were assessed relative to their effectiveness in

fitting a calibration data set of fed-batch experiments, while also being capable

to describe data of an independent set. The results show that the hybrid-model

configuration has a high impact in the model performance. It was found that the

hybrid-models composed by the most detailed mechanistic descriptions coupled

to an artificial neural network receiving inputs of temperature, pH, biomass and
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substrate concentrations, achieved the best results. Although the incorporation of

viscosity into this model improved the calibration error by 9%, the identification

predictive capabilities of an independent data set were worse. It was concluded that

this approach presented a significant improvement over previous modeling studies

based on unstructured kinetics, fostering model-based EPS productivity optimization.
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4.1 Introduction

The production of natural polysaccharides have registered an increased demand

over recent years due to novel industrial applications, motivated by their unique

physicochemical properties, and their potential for substituting petroleum-derived

materials (Rehm 2010). Among the various sources of polysaccharides found in

nature, exopolysaccharides (EPS) produced by microbial organisms are preferred for

industrial exploitation due to several advantages inherent to microbial cultures, such

as high growth rates, high yield, productivity, and the possibility to control polymer

properties. These properties, which include water retention capacity, emulsifying

properties, thickening, gelling and film-forming capacity open up several interesting

applications in food, cosmetic and pharmaceutical industries (Freitas et al. 2011a;

Kumar et al. 2007). However, a major limiting factor for the exploitation of industrial

microbial production is the high cost of commonly used carbon sources (e.g. glucose,

fructose, sucrose) (Freitas et al. 2010; Kumar et al. 2007; Moreno et al. 1998).

In this work, we focus on EPS production by Enterobacter A47, which is a

Gram-negative microorganism with high affinity for glycerol. It achieves high growth

rates in media containing glycerol byproduct from the biodiesel industry, a low

cost carbon source (Freitas et al. 2011b). Typically, EPS production is performed

in fed-batch mode, with Enterobacter A47 growing in a solution media containing

glycerol and ammonia as carbon and nitrogen sources respectively fed along time.

This organism was shown to be metabolically versatile, producing EPS composed

of fucose, galactose and glucose sugar residues, with acetyl, succinyl and pyruvil

substituents (Freitas et al. 2011b). The presence of fucose, a rare sugar, difficult

to obtain in nature, confers the polysaccharide a high market value. Despite of the

promising characteristics and value of this product, the process still remains largely

unoptimized, owing to the success of modeling and optimization studies to design an

efficient process.

In a previous study by Torres et al. (2012) a central composite rotatable design
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(CCRD) of experiments was employed in combination with a response-surface method

(RSM) to optimize the process. The quadratic RSM described the temperature and

pH dependency of several response variables (specific growth rate, specific EPS

productivity, maximum EPS concentration and relative fractions of EPS monomers).

Although the results are compelling, there are some limitations in this modeling

approach regarding the process optimization. The temporal dimension is not taken

into account, thus excluding any attempt for dynamic optimization of nutrients

feeding, pH or temperature dynamic control. Moreover, in some cases the quadratic

model may not be adequate to explain the impact of some parameters such as

temperature, especially when their curve displays a nonsymmetrical curvature (Baş

and Boyacı 2007).

Dynamic modeling with unstructured kinetics is probably the most widely adopted

method for bioprocess optimization. In a previous study (Torres et al. 2011), we have

used simple Monod-type kinetics to describe biomass growth and the Luedeking-Piret

equation to describe EPS synthesis. A similar approach has been used for modeling

of the production of xanthan gum, an EPS with similar physico-chemical properties

as Enterobacter A47’s EPS (Faria et al. 2010; García-Ochoa et al. 1995). In the

present study, we further pursued the goal of developing a simple unstructured

kinetic model, but we failed to obtain a model with acceptable global performance.

For this reason, we attempted to improve the unstructured model further using

hybrid modeling techniques. In hybrid modeling, prior available process knowledge

(e.g. knowledge from first-principles) is combined with data-driven approaches that

account for process phenomena, which are difficult to model mechanistically (Chen

et al. 2000; Psichogios and Ungar 1992). Hybrid modeling approaches have already

been applied to model the production of exopolysaccharides, xanthan gum in specific

(Zabot et al. 2011), of pharmaceutical important products like the human fusion

glycoprotein IgG1-IL2, produced by Baby Hamster Kidney cell lines (Teixeira et al.

2005), or the production of the enzyme inolinase by Kluyveromyces marxianus NRRL
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Y-7571, which has applications in the food industry (Menküc et al. 2008).

4.2 Methods

4.2.1 Exopolysaccharide production and experimental data

The data set used in this work was obtained from a design of experiments preformed by

Torres et al. (2012) to assess the impact of temperature and pH on several performance

measurements such as the biomass specific growth rate and EPS productivity. Hence,

thirteen fed-batch experiments were performed with temperature values ranging from

15.9 oC to 44.0oC, and pH values ranging from 5.6 to 8.4. Each experiment contains

off-line measurements for the whole bioreactor run. Table 4.1 contains the record of

the temperature and pH values used on each experiment. The experimental setup

for exopolysaccharide production by Enterobacter A47 consisted on 2L bioreactors

containing a modified medium E* supplemented with glycerol (Freitas et al. 2009).

The bioreactor was operated in batch mode until the exhaustion of the nitrogen

source, followed by a fed-batch operation with fresh medium being fed at a constant

volumetric rate (4.5 mL h-1). Further details about bioreactor operation and the

design of experiments can be found elsewhere Torres et al. (2012).

4.2.2 Unstructured dynamic model

The dynamics of biomass (X), glycerol (S), ammonium (N) and EPS concentrations

(P ) are described by the following material balance equations assuming a perfectly

mixed stirred tank reactor operated in fed-batch mode:

dX

dt
= (µ−Kd −D) X (4.1)

dS

dt
= −vS X +D (Sf − S) (4.2)
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dN

dt
= −vN X +D (Nf −N) (4.3)

dP

dt
= vP X −DP (4.4)

dV

dt
= F (4.5)

The dilution rate (D) is represented by the quotient of the volumetric feed (F )

given by Equation 4.5 with the reactor volume. The value of F is zero during the

batch phase, changing to a fixed rate of 4.5 mL h-1 in the fed-batch phase. The

glycerol and ammonia feeding concentrations are, respectively Sf = 200g L−1 and

Nf = 0.90g L−1. The specific rates µ, Kd, vS , vN and vP refer to biomass growth,

biomass death, glycerol consumption, ammonium consumption and EPS synthesis,

respectively. The specific cell growth rate is given by a Monod model with glycerol

(S) and ammonia (N) limitation:

µ = µmax
S

S +KS

N

N +KN
(4.6)

with µmax, KS and KN the maximum specific growth rate and half saturation con-

stants for glycerol and ammonium, respectively. In this work, the product formation

is partly uncoupled from biomass growth and, for this reason the overall glycerol

consumption, comprehends a term for the glycerol taken up for biomass synthesis,

EPS synthesis and maintenance (mS):

vS = µ

Yxs
+ vP
Yps

+mS (4.7)

where vS is the specific consumption rate of glycerol, vP is the specific EPS production

rate, YX/S is the true yield of biomass formation from substrate, YP/S the true yield
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of product formation from substrate and mS the maintenance coefficient. The yield

constants are described in mass units.

The ammonium uptake was assumed to be associated with biomass synthesis only,

given that nitrogen is found in EPS chemical composition only in residual amounts:

vS = µ

Yxn
(4.8)

where vN represents the specific ammonia consumption rate and YX/N is the yield

of biomass formation from ammonia consumption (mass units).

To describe the EPS specific synthesis rate, vP , a Monod-type equation was

derived, such that EPS production is enabled after the ammonia concentration

decreases to values close to zero, which is a common behavior in this culture:

vP = vP,max
KP

N +KP
(4.9)

A maximum specific productivity is defined by vP,max, with KP representing the

concentration of ammonia when vP is half the value of vP,max.

As generally assumed and shown in Torres et al. (2012), biomass growth rate

and EPS productivity are dependent on temperature and pH. Most of the models

in the literature that relate µmax with temperature and pH, lack obvious biological

significance of the models’ parameters and have significant structural correlations

between parameters, which incur in estimation problems (Rosso et al. 1995). For this

reason the cardinal temperature and pH (CTP) model proposed by Rosso et al. (1995)

was adopted in this work, whose formulation avoids the aforementioned problems.

The model was successfully applied to describe changes of specific growth rate related

to changes in temperature and pH, in exopolysaccharide production by Pseudomonas

oleovorans (Freitas et al. 2010). The CTP model is based upon the assumption that
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both temperature and pH have independent effects in µmax, following the equation:

µmax(T, pH) = µopt τµ(T ) ρµ(pH) (4.10)

where τµ(T ) is a function of temperature and ρµ(pH) a function of pH with µopt the

optimum specific growth rate. The application of the CTP model was also extended

to the prediction of vP,max with temperature and pH, due to the mathematical

similarity between the EPS specific productivity rate and Equation (4.6). This way,

an expression similar to Equation (4.10) can be derived:

vP,max(T, pH) = vP,opt τvP (T ) ρvP (pH) (4.11)

The functions τvP (T ) and ρvP (pH) are analogous and have a similar meaning to the

terms specified in Equation (4.10), but with specific parameter values for either the

specific growth rate and specific EPS production. The temperature and pH terms of

the CTP model are defined in the following equations:

τ(T ) = (T − Tmax)(T − Tmin)2

(Topt − Tmin)[(Topt − Tmin)(T − Tmin)− (Topt − Tmax)(Topt − Tmin − 2T )]
(4.12)

ρ(pH) = (pH − pHmin)(pH − pHmax)
(pH − pHmin)(pH − pHmax)− (pH − pHopt)2 (4.13)

The parameters Tmin and Tmax are, respectively, the minimum and maximum tem-

perature values within which microbial growth and EPS production can exist, that

is, µmax and vP,max are positive and different from zero. The same applies for the

interpretation of pHmin and pHmax which accordingly delimit the pH range where

the calculated kinetic rates have values greater than zero. The parameters Topt and

pHopt correspond to the optimum values of temperature and pH, respectively. When

T = Topt and pH = pHopt, it is verified that µmax = µopt (or vP,max = vP,opt). For
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the pH function (Equation (4.13)), the symmetry hypothesis was assumed, that is:

pHmin = α pHopt − pHmax (4.14)

with α = 2 for symmetric curves. According to Rosso et al. (1995), in cases were no

structural correlation occurs between the parameters for the temperature profiles in

the CTP model (Equation (4.12)), the symmetry assumption can be adopted for the

pH profile, since it is known to avoid structural correlations between the parameters

in Equation (4.13).

The empirical parameters contained in Equations 4.12 and 4.13 (µopt, vP,opt,

Tmin, Tmax, Topt, pHmin, pHmax, pHopt) were estimated by non-linear regression,

independently from the whole system of mass balances specified by Equations 4.1-

4.4. The data used in this identification problem was obtained from the design of

experiments implemented by Torres et al. (2012), where values for specific growth

rate and EPS productivity was available for different values of temperature and

pH. A MATLAB program was written in order to minimize the sum of squared

errors (SSE), employing the Levenberg-Marquardt algorithm (lsqnonlin MATLAB

function). The Jacobian matrix obtained at the optimal solution was used to calculate

an approximation to the Hessian matrix, which enabled the determination of the

covariance matrix and 95% confidence intervals.

The identified CTP model was integrated with the mechanistic equations for

biomass growth and EPS synthesis rate to complete the mechanistic model. This

model was then integrated in the material mass balances to represent the bioreactor

dynamics.

The model of differential equations was integrated using a 4th/5th order Runge-

Kutta solver (ode45 MATLAB function) and the concentrations predicted by the

model were compared to the off-line measurements. The kinetic parameters’ estima-

tion and computation of confidence intervals was performed using the methodology
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Figure 4.1: Correlation between EPS concentration and a viscosity dependent variable.
Each symbol corresponds to a given shear rate value, representing the values 0.3,
0.6, 1.5, 3, 6, 30 and 60 rpm. The viscosity dependent variable represented in the y
axis has a fixed n value of 0.81.

described above for the CTP model identification.

4.2.3 Correlation between viscosity and EPS concentration

Culture broth viscosity measurements were collected at discrete time instants during

each bioreactor run. The measurements were performed at room temperature and

shear rates ranging from 0.3 rpm to 60 rpm as described in (Freitas et al. 2010). The

culture broth has a characteristic shear-thinning behavior which can be described by

the power-law (Doran 1995):

ηa = K γn−1 (4.15)

where ηa represents the apparent broth viscosity, K the consistency index, γthe

shear rate and n the fluid behavior index. The parameters K and n characterize the

power-law fluids and in the case of non-Newtonian fluids n < 1.

Since the direct application of the power-law does not provide a time-dependent

description of viscosity, a mathematical relationship was developed in order to
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describe the dependence of viscosity on the EPS concentration. The assumption of

this relationship is reinforced by empirical verification and also supported by other

studies (Alves et al. 2010b), where EPS from Enterobacter A47 has been found to

be one of the main contributors to viscosity increase in the culture broth. For this

study, a dataset for all bioreactor experiments containing viscosity measurements for

each shear rate was assembled. Since the fluid-flow behavior changes with time (e.g.

from Newtonian profiles to non-Newtonian characteristics), each time sample can

be described by the power-law in terms of its parameters K and n. It was verified

that, in the case of fixed n values, a fairly linear relationship between EPS and the

viscosity was observed, which can be described by the following equation:

ln ηa
γn−1 = aP + b (4.16)

with a being a correlation variable between the EPS concentration (P ) and the

left-hand term of the equation, and b the point where the line crosses the y axis

(Figure 4.1). The fixed value of n was chosen such that the standard deviations for

all K determined for each time instant are minimized using MATLAB (fmincon

function), at the minimum n = 0.81.

4.2.4 Hybrid model formulation

Hybrid modeling structures can generally be classified as parallel or serial (Oliveira

2004; Stosch et al. 2014). In the former case, a nonparametric model is used to

compensate eventual inaccuracies of a complete mechanistic model. This strategy

is typically employed when the mechanistic model is not sufficiently accurate for

model-based applications. In serial structures, mechanistic parts are complemented

with information from a nonparametric model. The hybrid model adopted in this

work has an overall serial structure, but follows a flexible modular structure as

depicted in Figure 4.2. The backbone of the model corresponds to the material
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Figure 4.2: Hybrid model structure

balances Equations 4.1-4.4. The specific kinetic rates are represented by Equations

4.6-4.11 are modeled in parallel with a nonparametric part. These upper modules are

an inherent part of the material balance equations, which represent known kinetic

expressions. Each of the known mechanistic kinetic rates is multiplied by an unknown

nonparametric function, which has the job to “correct” inaccuracies of the known

kinetic term. This operation takes the following general form:

r(c) = rknown(c) rcorrection(c,w) (4.17)

with rknown(c) corresponding to the known kinetic expressions and rcorrection(w)

some unknown corrective function that needs to be identified from data, w repre-

senting a set of unknown parameters and c the vector of concentrations and/or other

input variables (Oliveira 2004). The corrective function is a nonparametric model,

which represents a class of models with loose structure and arbitrary number of

parameters such as neural networks, wavelets, regression models, etc (Stosch et al.

2014). In this work, we have adopted a neural network with three layers, an input,

hidden and output layer. The systematic investigation of network structures was

pursued in order to define the optimal number of hidden nodes. The best struc-

ture was determined through cross validation, with the best performing topology

corresponding to the lower modeling error.

For regression problems the activation functions of the input and output layer
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Table 4.1: Segregation of experimental data among the training, validation and test sets.

Training set Validation set Test set

T = 30.0oC, pH = 7.0 T = 23.0oC, pH = 7.5 T = 44.0oC, pH = 7.0
T = 23.0oC, pH = 6.5 T = 20.0oC, pH = 6.0 T = 30.0oC, pH = 5.6
T = 15.9oC, pH = 7.0 T = 30.0oC, pH = 7.0 T = 30.0oC, pH = 8.4
T = 40.0oC, pH = 8.0 T = 30.0oC, pH = 7.0
T = 40.0oC, pH = 6.0
T = 20.0oC, pH = 8.0

are linear while that of the hidden layer is usually the tangent hyperbolic function

(Bishop 1995), i.e.:

rcorrection(c,w) = w2 tanh(w1 c + b1) + b2 (4.18)

In Equation (4.18), c is the vector of concentrations and/or other input variables,

w1 represents the weight matrix that describes the connection of the input layer to

the hidden layers, w2 the weight matrix with respect to the connection between the

hidden layer and output layer. The vectors b1 and b2 represent the vectors of bias

parameters.

Several variants of the hybrid structure depicted in Figure 4.2 were constructed

with varying detail in the parametric model description. For the design of the

nonparametric part, it was taken into consideration which factors impact most in

the determination of the process kinetic rates. It was assumed, based on general

knowledge of the mechanistic relationships that kinetic rates must depend on substrate

concentrations and, for the case of specific growth rate and specific EPS production,

temperature and pH were also chosen as inputs to the artificial neural network model.

The process data was split into three parts: a training, validation and test set

(Table 4.1). The training data was used for parameter identification, while the

validation data set was used for cross-validation. The test set is used to assess

the generalization capabilities of the models. The hybrid models in this work were
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developed with the intent to support model-based product titer optimization. With

that in mind, we chose high performance batches (in terms of product synthesis)

for the training and validation sets, such that the models can be used for process

regions in which high product titers are observed.

The ANN parameter identification was performed by minimizing a weighted least

squared residual function, coupled with the application of the sensitivities approach,

whose details can be found elsewhere (Oliveira 2004). The training was at least 20

times initialized from random parameter values. The set of parameters that yielded

the minimum weighted least squared error (MSE) for the validation set were chosen

for each model structure. Different model structures, i.e. network topologies, were

systematically investigated in order discriminate the optimal number of nodes in

the hidden layer of the ANN of each hybrid model. The most simple but adequately

performing network structure was chosen for each hybrid model, balancing the model

performance against model complexity.

Parameter identification was performed by minimizing a weighted least squared

residual function:

minw

 1
N

M∑
i=1

N∑
j=1

(
Cexpi,j −Ci,j

si

)2 (4.19)

with N representing the total number of observations for all variables, M the number

of variables, Cexpi the experimental concentration of variable i, Ci the model predicted

concentration of i and si the standard deviation for the variable i. The sensitivities

approach was employed for the minimization (Oliveira 2004). To avoid over-fitting,

the training was stopped at the minimum weighted mean least squared error (MSE)

value calculated for the validation set. The equation of the MSE reads:

MSE = 1
N

M∑
i=1

N∑
j=1

[
Cexpi −Ci

si

]2 (4.20)
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4.2.5 Hybrid model with CTP model kinetics

The mechanistic descriptions for biomass growth and EPS production can be coupled

to the CTP model to account for the effects of temperature and pH in the bioreactor.

This way a complete mechanistic model can be formulated and placed in parallel

with an ANN in order to correct inaccurate descriptions. For the design of the

nonparametric part, it was taken into consideration which factors impact the most

on the determination of the process kinetic rates.

Two different mechanistic configurations were tested and named Hybrid Model 1

(HM1) and Hybrid Model 2 (HM2), which differ on the way the ANN interacts with

the mechanistic part. In HM1 the ANN structures tested had two outputs for the

description of the glycerol and ammonia consumption kinetics, while the biomass

growth rate and EPS synthesis rate were estimated by the CTP model entirely.

Regarding the inputs to the ANN, two different configurations were tested, namely

with S and N in one case, and S, N , T and pH in another case.

The configuration of the mechanistic part in HM2 assumed the CTP model to

estimate the biomass growth rate and EPS production rate, and Equations 4.7 and

4.8 to estimate the kinetics of glycerol and ammonia consumption. In this case, all

the ANN configurations tested had 5 output rates: two ANN outputs to multiply

to each CTP model expression (µmax and vP,max), and the remainder three ANN

outputs as additive correction factors to each yield parameter in the mechanistic

formulation (YX/S , YP/S and YX/N ). The ANN structure used in the HM2 had 5

input nodes corresponding to X, S, N , T and pH.

In all cases, the estimated states values of S, N (and X where applicable), were

used as inputs to the networks since they are readily obtained when integrating

the material balances. In case of T and pH, the measured inputs were provided at

a sampling rate of 0.02 h, which is identical to the time differences used for the

numerical integration.
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Figure 4.3: Representation of the HM3 modeling scheme, where the parametric
module containing the correlation between viscosity and EPS concentration is added
to the previously trained HM2 scheme. This added parametric equation is identified
with the aid of a second ANN placed in parallel with temperature, biomass and EPS
concentrations added as inputs.

4.2.6 Hybrid model with CTP model kinetics and viscosity

knowledge

Knowledge from the culture broth viscosity was introduced into an upgraded form of

the HM2 model by combining a second mechanistic module containing the parametric

equation defined in Section 4.2.3 (Equation (4.16)). This module was connected to a

second ANN destined to correct the inaccuracies of the parametric viscosity equation.

Since temperature, biomass and EPS concentration are factors known to impact on

the culture broth’s viscosity, they are included in the input space of the second ANN.

One output node was defined in this network arrangement. This model structure is

termed HM3 and is illustrated in Figure 4.3.

The weights of the first ANN were pre-identified using the well-known back-

propagation method (Oliveira 2004) and thereupon the parameters of the complete

model were re-identified.
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4.2.7 Hybrid model without CTP model

Several hybrid model configurations were constructed without the CTP model. Here,

three hybrid model configurations termed HM4, HM5 and HM6 were proposed. The

model HM4 lacks a mechanistic kinetic description and therefore, all the specific rates

in the material balances are estimated by the ANN. This network was built with an

input space represented by the state variables S, N and the off-line measurements of

T and pH, and an output space of four kinetic rates for each state variable (X, S, N

and P ). Various hidden nodes were tested to assess the optimal network structure.

The models HM5 and HM6 were built with the same ANN composition but differed

by the knowledge present in the mechanistic part. The kinetic rate expressions for

biomass growth and EPS synthesis in HM5 were estimated with the multiplication of

glycerol concentration by the respective ANN outputs, while glycerol and ammonia

consumption rates were solely determined by the ANN. The model HM6 is an

extension of the HM5 mechanistic part, with biomass concentration multiplied in all

kinetic expressions, glycerol and ammonia concentrations multiplied in the biomass

kinetic rate, and glycerol concentration multiplied by the product synthesis rate.

4.3 Results and discussion

4.3.1 CTP model identification

The parameters contained in the specific biomass growth rate and EPS productivities

of the CTP model were identified by nonlinear regression as described in the methods

section. The identified parameter values and their respective confidence intervals

are organized in Table 4.2. The CTP model describes a characteristic bell-shaped

curvature (Figure 4.4), with a maximum point which is defined by the parameter

µopt (or vP,opt). The remaining parameters define the model’s extreme values, above

which the specific rates have zero value. The CTP model was able to describe the
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Table 4.2: CTP model kinetic parameters and respective 95% confidence intervals. Pareme-
ter Tmin manually tuned in both CTP functions

Parameters relative to the µmax function

Tmin = 10oC Tmax = 44.1± 0.55oC Topt = 37.2± oC1.92
pHmin = 4.50 pHmax = 9.03± 0.66 pHopt = 6.77± 0.37
µopt = 0.45± 0.09 h−1

Parameters relative to the vP,max function

Tmin = 10oC Tmax = 47.5± 10.6oC Topt = 32.2± 7.63oC
pHmin = 4.99 pHmax = 10.40± 5.70 pHopt = 7.70± 2.31
vP,opt = 0.55± 0.26 h−1

specific growth rate fairly well, exhibiting low confidence intervals. The identification

for the EPS model yielded greater confidence intervals, which is likely attributed to

the nature of experimental data for EPS specific productivities. In both cases Tmin

was found to be highly sensitive to the modeling error and therefore, this parameter

was tuned manually.

4.3.2 Hybrid model with CTP model kinetics

Several hybrid model structures with varying degrees of mechanistic knowledge

were investigated. Details on the performance and model structures are shown

in Table 4.3. The structures HM1 and HM2 use the CTP model to describe the

effects of temperature and pH in µmax and vP,max. The structures HM1 and HM2

use the CTP model to describe the effects of temperature and pH in µ and vP ,

and two ANN outputs to estimate the volumetric rates of glycerol and ammonia

concentration. Two scenarios were tested for this model: two ANN inputs (glycerol

and ammonia concentration) and four ANN inputs (temperature, pH, glycerol and

ammonia concentrations). The performance in terms of MSE seems distinct. A better

fit and predictive performance were achieved when temperature and pH were included

as inputs to the ANN, which suggests that the glycerol and ammonia consumption
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Figure 4.4: Hybrid model incorporating viscosity knowledge. A. Plot of µmax dependency
with T and pH. B. Plot of vP,max dependency with T and pH

rates are also pH and temperature dependent. This outcome makes sense, since these

rates depend on biomass concentration, whose growth is determined by temperature

and pH.

In the HM2, parametric detail, in the form of yield values and Monod constants

from a previous study (Torres et al. 2011), was added to the glycerol and ammonia

consumption rates. In this study, the kinetics were discriminated from data of a fed-

batch experiment, in which EPS was produced under constant temperature and pH

(30oC and 7.0 respectively). The hybrid model was trained with the inclusion of yields

for the quantities of glycerol and ammonia consumed per biomass produced (YSX

and YNX), and of glycerol consumed per EPS produced (YSP ). These values reflect

the kinetic relationships for the consumption of glycerol and ammonia, assuming

that only ammonia is consumed for biomass formation. In order to account for

temperature and pH changes in the experiments, ANN estimates were added to the

yield values. Also the estimated biomass concentration was included as an input

to the nonparametric part of the model. Although the results show only a slight

improvement in the calibration and validation error when compared to the model
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HM1 with the four ANN inputs, a significant improvement was observed in the

test set. The change in the structure of the hybrid model seems to be important to

improve the predictive capability of the model. The latter seems to explain some

variation that cannot be well described by the Monod kinetics, which essentially

depend on glycerol and ammonia concentration.

4.3.3 Hybrid model with CTP model kinetics and viscosity

dependency

Viscosity correlates positively with EPS concentration, as discussed above. Along

with this factor, temperature and biomass concentration are known to impact on

media broth viscosity (Al-Asheh et al. 2002; Alves et al. 2010a,b). The methodology

exposed in Section 4.2.3 was integrated with the hybrid model HM2 in order to enable

the prediction of viscosity during the fermentation time. Hence HM3 represents the

model re-identification after the inclusion of Equation (4.16) to describe viscosity.

The model training results is displayed graphically in Figure 4.5 and the validation

and test results in Figure 4.6. When comparing to the HM2 case, the incorporation

of viscosity seems to improve the model calibration, due to a lower training error,

while also improving the validation MSE. The model did nonetheless perform worse

in the description of the test set.

The central point in the experimental setup, characterized by T = 30oC and

pH = 7.0 is well described in every modeling partition, with the exception of EPS

profile in the validation partition, where the points located between the 40 and

60 hours deviate from the predicted data. Except for the second training batch

(T = 23oC and pH = 6.5), it can be observed that the increase in viscosity is

concomitant with EPS production, thus mimicking the process behavior effectively.

Nevertheless, a particular case is observed for the experiment performed at T = 40oC

and pH = 6.0, where the model fails to accurately estimate the viscosity determined

experimentally.
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Figure 4.5: Hybrid modeling results for the training partition, validation and test sets for
the hybrid model structure HM6. The rows correspond to the results of each state variable
of the process as described in the picture. The circles represent experimental data while
the solid line the model predictions.

The effects of temperature and pH are generally well described by the model. The

maximum specific productivities for biomass and EPS, which are estimated by the

CTP model, decrease when temperature and pH deviate from the optimum values.

The latter are also the closest to the central point in the design of experiments. A

special case is the training experiment represented by T = 15.9oC, where the model

underestimated the stationary biomass growth. Under these conditions, the CTP

model estimates a specific growth rate for biomass of 0.034 h-1, a fact that must be

connected to the low growth rate of biomass predicted by the model.

It has to be noted that the generalization properties of the model should be

assessed with respect to the limits of the input values of the calibration set. For this

reason, it is not surprising that the model failed to describe the experiment with

69



CHAPTER 4. DYNAMIC MODELING OF EPS

T = 44oC, displayed in the test partition.
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Figure 4.6: Hybrid modeling results for the training partition, validation and test sets for
the hybrid model structure HM6. The rows correspond to the results of each state variable
of the process as described in the picture. The circles represent experimental data while
the solid line the model predictions.

Figure 4.7 shows the viscosity profiles of two experiments from the test set. The

plot A represents an experiment with high EPS production (T = 30oC, pH = 7.0)

and an experiment with low EPS production (T = 30oC, pH = 5.6). As expected, a

higher viscosity was achieved in the experiment with higher EPS productivity. It can

also be seen in both viscosity profiles that the model predictions become worse at

later stages of the fermentation, in particular after 70h in Figure 4.7-A. This pattern

can also be seen in most batches that achieved high EPS concentrations, as can be

seen by Figures 4.5 and 4.6. This fact may be explained by the higher difficulty in

the collection of viscous samples from the bioreactor. Moreover, it is known that at

later stages of EPS production, cells form intricate chemical associations with EPS

(Alves et al. 2010b), which have a negative impact on the efficacy of biomass and
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Figure 4.7: Viscosity profiles for two experiments for several shear rate values.
The continuous lines represent the model predictions while the markers refer to
experimental values. Plot A: Fed-batch experiment with T=30oC and pH=7.0 in
the test partition. Plot B: Fed-batch experiment with T=30oC and pH=5.6 in the
test partition.

EPS separation processes.

4.3.4 Hybrid model without CTP model kinetics

Three hybrid model structures were built without parametric kinetics, referred to as

HM4, HM5 and HM6 (Table 4.3). In all cases, pH and temperature were included

as inputs to the ANN, as well as estimated glycerol and ammonia concentrations,

which are known to influence the kinetics. The models were trained with different

numbers of hidden nodes and it was observed that generally the structures with four
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nodes performed better.

The model HM4 has the simplest structure, with each kinetic rate being estimated

solely by the nonparametric model. In HM5 the biomass rate comprises multiplications

of glycerol and ammonia concentration, the EPS synthesis rate multiplications with

glycerol, such that these rates are bound when no glycerol or ammonia is present. In

the third case (HM6), it is in addition assumed that biomass is a catalyst for the

reactions.

The lower calibration error (MSE = 0.1823) was obtained with model HM4

and 3 hidden nodes. However, in this case, the test set had a greater error value

(MSE = 2.5163). Increasing the number of nodes in the hidden layer did however

improve the fit of the test set while decreasing the training set accuracy. The models

HM5 and HM6 performed worse than HM4, leading to the conclusion that increasing

the detail in the kinetic rates significantly decreases the model performance.

4.3.5 Unstructured dynamic model

A dynamic unstructured model was built based on mass balance equations and

Monod-type kinetic expressions including the coupled CTP model. Although single

fed-batch experiments could be successfully described, it was verified that the addition

of more experiments to the calibration set significantly degraded the results. The

results of MSE values for the training and validation sets (according to Table 4.1)

were 604 and 374 respectively. Thus, it might be hypothesized that the major source

of error in the model description is a large amount of batch-to-batch variation that

is not captured by the unstructured model.

4.3.6 Prediction power

The overall predictive power of the models can be assessed based on the modeling

error obtained for the validation and test sets. This criterion is important since these

data partitions reflect independent data sets relative to the calibration data. Models
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Table 4.3: Synthesis of results obtained for each hybrid model structure trained. The
number of parameters in HM3 model reflects only the parameters that were used to train
the viscosity component of the model. NH and NP represent ANN number of hidden layers
and parameters respectively.

Hybrid model structure ANN NH NP MSE MSE MSE
inputs train valid test

Hybrid structures with CTP model kinetics

HM1: S, N , T ,
pH

4 40 0.2893 0.3231 0.8368
r(c) = [µmax r

ANN
1 , rANN

2 , rANN
3 ,

vP,max r
ANN
4 ]T S,N 4 32 0.5285 0.5659 4.8281

HM2:

X, S, N ,
T , pH 5 60 0.2786 0.2961 0.4184

r(c) = [µmax r
ANN
1 ,

−(Ysx + rANN
2 )µ− (Ysp + rANN

3 ) vP ,

−(YNX + rANN
4 )µ,

vP,max r
ANN
5 ]

T

Hybrid structure with CTP model kinetics and viscosity correlation

HM3:

X, S, N ,
T , pH 4 21 0.2530 0.2616 0.5258

r(c) = [µmax r
ANN
1 ,

−(Ysx + rANN
2 )µ− (Ysx + rANN

3 ) vP ,

−(YNX + rANN
4 )µ,

vP,max r
ANN
5 ,

P rANN
6 ]

T

Hybrid structures without CTP model kinetics

HM4:
S, N , T ,
pH

3 31 0.1823 0.6465 2.5163
r(c) = [rANN

1 , rANN
2 , rANN

3 , rANN
4 ]

T 4 40 0.2796 0.6041 0.9659
5 49 0.5029 0.7623 1.2620

HM5: S, N , T ,
pH

4 40 1.1818 0.8710 1.1868
r(c) = [S N rANN

1 , rANN
2 , rANN

3 , S rANN
4 ]

T

HM6:
S, N , T ,
pHr(c) = [S N X rANN

1 , X rANN
2 , 4 40 2.7248 2.3309 2.9076

X rANN
3 , S X , rANN

4 ]
T

Parametric model with unstructured MSE MSE
kinetics train valid

r(c) = [µX, vS X, vN X, vP X ]
T 604 374
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with low validation and test error are thus suitable for application in optimization

problems.

It can be observed that the hybrid structure choice greatly affects the predictive

properties of the model. In hybrid serial structures (HM4, HM5 and HM6), it was

observed that when increasing the knowledge detail of the parametric part, the

predictive capabilities diminish. It is well known that parametric knowledge imposes

an inductive bias on the model performance and the functional mismatch cannot

always be accounted for by the nonparametric model (Psichogios and Ungar 1992;

Stosch et al. 2014). Thus, the observation seems to indicate that the incorporated

knowledge is not correct, i.e. the underlying assumptions do not hold.

Better generalization properties were attained with the serial/parallel hybrid

structures (HM1, HM2 and HM3). It was verified that the parametric CTP model

describes well the effects of temperature and pH on biomass and EPS synthesis rates.

Nonetheless, the CTP model alone is not able to explain all the effects of temperature

and pH on the process, and therefore the inclusion of these factors in the ANN

input space is a requisite to improve the predictive capabilities of the hybrid-model.

Although the inclusion of knowledge regarding the culture broth viscosity lead to an

improvement of MSE values in the training and validation sets (HM3), the model

error for the test partition was higher, decreasing the model’s predictive power. For

this reason, HM2 would be more suited for model-based predictions.

4.4 Conclusions

Several hybrid semi-parametric models were developed to describe the kinetics

for EPS production, as an alternative to unstructured phenomenological modeling

strategies. The process dynamics are very complex and non-linear involving e.g. the

effects of temperature, pH and culture broth viscosity.

Serial and a combination of serial/parallel hybrid models were proposed to study
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which setup is better to fit the process data and also has a good predictive capability

to be applied in a model-based optimization.

The results show that the hybrid models that incorporated complete mechanistic

kinetics resulted in better identification and generalization capabilities than model

structures that incorporated only partial mechanistic knowledge. Thus, it can be

concluded that the adoption of the CTP model for the description of biomass

growth rate and EPS synthesis rate was successful to improve the process description.

Regarding the structure of the ANN, temperature and pH were found to be important

to the process description, since the results seem to reveal that the parametric CTP

model alone cannot describe all the temperature and pH effects in the process.

Medium viscosity was also taken into account in the hybrid model to improve the

process characterization. This was achieved by a correlation between viscosity and

EPS concentration. The integration of this knowledge in the hybrid methodology

resulted in an improvement of the model calibration and validation errors. However

in this case, this model structure did not achieve the best generalization properties.

Given the complexity of the process under study, hybrid semi-parametric modeling

was proven to be a useful, cost-effective technique to model the fed-batch produc-

tion of EPS, opening perspectives for model-based optimizations and industrial

implementation.
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Model-based optimization of EPS

production by Enterobacter A47

Bioprocess economics is strongly dependent on the control of operational parameters.

In this chapter we investigate optimal control scenarios of EPS production by

Enterobacter A47. For this purpose, we have implemented a dynamic optimization

optimal control method to optimize the time profiles of control variables that satisfy

certain performance criteria. The best predictive hybrid model developed in Chapter 4

was adopted as dynamic equality constraints in the dynamic optimization problem.

We have addressed several optimal control scenarios, namely maximization of endpoint

EPS mass production, minimization of residual glycerol mass, maximization of EPS

volumetric productivity and maximization of overall EPS/glycerol yield. In order to

minimize risk of process-model mismatch, a prediction risk inequality constraint was

implemented. In all cases studied, improvements of process operation in comparison

to the best experimental batch were forecasted. The best result was obtained for the

endpoint EPS maximization problem, where 22% improvement of EPS production

over the experimental observation is forecasted. Improvements of 18% and 13% are

also forecasted for the scenarios of residual glycerol minimization and EPS/glycerol
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yield maximization. It was found that the optimal values of temperature and pH

did not vary much across the various scenarios tested. The control of the feeding

strategies for ammonia and glycerol have the highest impact in the EPS production

performance.
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5.1 Introduction

In many biotechnological processes, fed-batch operation is a preferred strategy because

it provides better control and ultimately improved bioprocess economics. Fed-batch

operation involves the feeding of a nutrients solution into the reactor along time,

in the quantities that are needed at each time instant, thereby overcoming certain

undesired effects such as substrate inhibition and catabolite repression (Lee et al.

1999). The opportunity to better control the process is however also a big challenge,

as the design of optimal control schemes for fed-batch operation is a complex dynamic

optimization problem, owing to mathematical modeling and analysis as important

tools to design optimal fed-batch operation (Balsa-canto et al. 2000).

Dynamic optimization as received major attention in the process control commu-

nity, as reviewed by Banga et al. (2003) and Rani and Rao (1999). Such problems

involve the specification of a set of control variables such as the feeding rate, tempera-

ture and pH, which ensure the maximization of a pre-defined performance index (e.g.

productivity, or another economical index derived from the operation time profiles

and final concentrations). The definition of dynamic optimization comes from the fact

that the optimization problem is constrained by a set of equality dynamic constraints,

which are normally time dependent ordinary differential equations (ODEs) or partial

differential equations (PDEs). In the case of bioreactor control problems, dynamic

optimization is very challenging due to the complex nonlinear dynamical constraints,

the presence of constraints on both the state and control variables, and the existence

of time-varying parameters (Banga et al. 2003; Rani and Rao 1999).

In order to ensure a robust optimal control in bioprocesses, several methods are

available to address the dynamical optimization problem. They can be classified

in terms of optimization algorithms to solve the non-linear programming (NLP)

problem as deterministic or stochastic. Due to the fact that NLP problems are

often characterized by having multiple optima, deterministic methods (also known

as gradient-based methods) may usually converge to local optima, especially when
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the optimization problem starts far from the global solution. Conversely, stochastic

methods are based on random search, consisting in global optimizers less prone to

fall within local optima at the cost of higher computational power. For a review on

optimal control problems based on stochastic methods see Banga et al. (1997, 2005).

The design of optimal control for the production of exopolysaccharides, more

specifically xanthan gum has been previously addressed by Cacik et al. (2001). This

study describes an application of a gradient-based open-loop optimal control problem

applied to a batch production of xanthan gum. The method enabled to maximize

the xanthan gum produced in a shorter time, using temperature as a time dependent

decision variable. Another approach involved the application of an optimal control

problem to a fed-batch reactor to produce xanthan gum by a multiple substrate

feeding optimization (Chaitali et al. 2003), using as decision variables the feeding

rates for the carbon, nitrogen and oxygen sources, resulting in a 148.7% increase in

xanthan gum production. In the present work, a dynamic optimization study was

made (optimal control problem) of EPS production in a fed-batch reactor using a

dynamic hybrid model a hybrid as equality constraints. A stochastic optimization

solver was adopted, namely the differential evolution (DE) algorithm, to find global

optimal control scenarios (Storn and Price 1997). Several control objectives were

covered, namely maximization of final EPS mass, product yield, productivity and

minimization of residual substrate quantity.

5.2 Methodology

5.2.1 Dynamic optimization - optimal control problem

A dynamic optimization, optimal control problem, can be stated as to find the control

inputs u(t) over the process t ∈ [t0, tf ] that maximize a given process performance

index, J , subject to a set of constraints, some of which are expressed in the form of

a dynamical model (Banga et al. 1998; Bryson and Ho 1975). In the present study,
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the dynamic optimization problem takes the form:

minu J = process performance index

Subject
to

Hybrid model equality constraints
Prediction risk inequality constraint
Physical boundaries inequality constraint

Several optimal control scenarios were studied summarized in Table 5.1. The

control inputs are the temperature and pH for the fermentation batch phase (Tb and

pHb), the switch time from batch to fed-batch mode (tswitch), the glycerol feeding

rate in feeding stream (FS), the ammonia/glycerol mass ratio in the feeding stream

(RNS), and the temperature and pH in the fed-batch phase (Tfb and pHfb). No

time parametrization of control inputs within the batch and fed-batch phases was

adopted.

In the first optimization scenario, the total mass of the EPS is maximized. In

the second scenario, the residual glycerol mass is minimized with inclusion of an

additional constraint to ensure a final EPS mass above the highest quantity achieved

experimentally. The third scenario maximizes the average EPS production per unit

time, i.e. productivity. In this case the total fermentation time was treated as control

variable, since a higher productivity may be associated with a shorter fermentation.

Table 5.1: Summary of optimal control problems studied. Performance criteria are maxi-
mization of EPS mass production, minimization of residual glycerol mass, maximization
of EPS productivity and maximization of EPS/glycerol yield. The control variables are:
temperature of batch phase (Tb), batch phase pH (pHb), fed-batch phase temperature (Tfb),
fed-batch phase pH (pHfb), glycerol mass feed (FS), the ammonia/glycerol mass ratio in
the feeding stream (RNS), the batch to fed-batch switch instant (tswitch), final run time
(tf ), initial volume (Vinit).

Performance index (J) Control inputs (u)

maxu J = P (tf )V (tf ) Tb, pHb, FS , RNS , tswitch, Tfb, pHfb

minu J = S(tf )V (tf ) Tb, pHb, FS , RNS , tswitch, Tfb, pHfb, Vinit

maxu J = P (tf ) V (tf )
tf

Tb, pHb, FS , RNS , tswitch, Tfb, pHfb, tf

maxu J = YP/S Tb, pHb, FS , RNS , tswitch, Tfb, pHfb
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The fourth scenario corresponds to the maximization of the overall product/glycerol

yield calculated as:

YP/S = P (tf )V (tf )
S0 V0 − S(tf )V (tf ) + F acS

(5.1)

with S0 and V0 the initial glycerol concentration and initial volume respectively and,

P (tf ) the final EPS concentration, V (tf ) the final volume, S(tf ) the final glycerol

concentration and F acS the total glycerol mass fed to the reactor.

To solve the optimization problem we adopted the direct method with control

vector parameterization (see details of control vector parameterization in Table 5.1.

This approach transforms the original dynamic optimization problem into a nonlinear

programming (NLP) problem in which the dynamical equations constraints are

numerically integrated for each objective function evaluation (i.e. inner initial value

problem). To solve the NLP we have adopted the differential evolution (DE) algorithm

(Storn and Price 1997). DE belongs to the class of stochastic optimization algorithms

suitable to find global optima in complex constrained problems with discontinuities

and complex nonlinear constraints (Chaitali et al. 2003). The DE algorithm works

by parameterizing each decision variable into a set of discrete values limited by

the upper and lower bounds. This in turn creates a quantization grid that defines

the size of the population of candidates to the objective optimum. The higher the

number of discretization, the bigger the population of candidates and therefore, the

higher the computational demand. After a solution is reached by the DE algorithm, a

gradient-based optimization routine based on the fmincon MATLAB function, using

an interior-point method, was applied to fine tune the solution the optimum solution.

5.2.2 Dynamical equality constraints

A dynamic hybrid model sets the dynamical equality constraints to the optimization

problem. All the details of the hybrid model structure are provided in Chapter 4.

Briefly, the material balance equations take the form of time dependent ordinary
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differential equations as follows:

dX

dt
= (µ−Kd −D) X (5.2)

dS

dt
= −vS X +D (Sf − S) (5.3)

dN

dt
= −vN X +D (Nf −N) (5.4)

dP

dt
= vP X −DP (5.5)

dV

dt
= F (5.6)

With X biomass concentration, S glycerol concentration, N ammonia concentration,

P is EPS concentration, V the culture volume, F is the inlet volumetric feed rate,

D = F/V is the dilution rate, vi are the specific reaction rates defined as follows:

µ = µmax r
ANN
1 (5.7)

vS = −(YS/X + rANN2 )µ− (YS/P + rANN3 ) vP (5.8)

vN = −(YN/X + rANN4 )µ (5.9)

vP = vP,max r5 (5.10)

The group of constraints defined by Equations 5.2 to 5.5 corresponds to the

dynamic equality constraints. For further details see Chapter 4. As stated above, in

the dynamic optimization direct method with control inputs parameterization, these

equations must be numerically integrated within each objective function evaluation.

The initial values for the state variables were set to be the same as in the experimental

setup, that is with biomass, glycerol and ammonia concentrations of 0.34 g/L, 49.0
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g/L and 1.26 g/L respectively and with initial reactor volume of 1.369 L. Moreover,

in order to be able to compare the optimal control scenarios with the experimental

data, we have implemented a sampling procedure along 13 discrete time instants

where 23 mL samples are collected at each sampling time plus 50 mL at end of the

fermentation. The integration time was fixed to 105 h except when cultivation time

is also a decision variable.

5.2.3 Prediction risk inequality constraint

A prediction risk inequality constraint was included in order to constrain the NLP

search space to those regions where the hybrid model has low prediction uncertainty.

To this purpose we have adopted the method described in (Simutis et al. 1995),

wherein the neural network input subspace covered by the training dataset is clustered

by a set of NC Gaussian clusters of the general form:

r(c,mi,Σi) = e−1/2(c−mi)T Σi (c−mi) (5.11)

with mi the cluster center and Σi the (diagonal) variance matrices Σi = diag(σii)2.

The neural network input space comprehends the state variables biomass, glycerol,

ammonia and EPS concentrations, temperature and pH. We adopted the k-means

algorithm to calculate de centers, mi, of the NC clusters using the minimal distance

method (e.g. Leonard et al. (1992)). The number of clusters was set to NC = P/3,

with P the number of data points (Leonard et al. 1992). The data points were auto-

scaled prior to the clustering to ensure a uniform coverage over the hyperspace. Once

the clusters centers mi are established, the standard deviations in Σi = diag(σii)2

were estimated based on the distance of each cluster center j to the nearest PDISP

cluster centers, with PDISP an heuristic parameter set by the user. Σi = diag(σii)2

is then determined as the norm of the distance of the PDISP closest clusters to

cluster j. The model experience measure for a given neural network input, c, is
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a scalar variable between [0, 1] calculated as the maximum value possible over all

clusters.

em(c) = max r(c,mi,Σi) (5.12)

Finally the risk of model unreliability is taken as the complement of the model

experience measure:

RISK(c) = 1− em(c) (5.13)

When RISK(c) → 0 it means that the neural network input is close to a cluster

center thus the input c belongs to the training subspace where the model is likely to

be reliable. When RISK(c)→ 1 the datum point is far away from the training data

set and thus the model is likely to be unreliable. The average risk over the process

time domain is constrained by a maximum risk value set by the user.

∫ tf
t0 RISK[c(dt)] dt

tf − t0
≤ RISKmax (5.14)

Equation (5.14) served as additional constraint to the optimization problem.

5.2.4 Physical bounds inequality constraints

Finally, the following set of physical boundaries inequality constraints were imposed

to the NLP program:

V ≤ 2.0 (5.15)

15.9 ≤ T ≤ 44.0 (5.16)

6.00 ≤ pH ≤ 8.00 (5.17)

0.95 ≤ Fs ≤ 2.00 (5.18)

0.003 ≤ RNS ≤ 0.005 (5.19)

20 ≤ tswitch ≤ 30 (5.20)
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5.3 Results and Discussion

5.3.1 Model prediction and prediction risk

The neural network input space was subject to clustering with NC = 745 Gaussian

clusters as described previously. The calculation of the cluster centers was performed

iteratively (k-means algorithm) in order to minimize the distance between the data

points and the cluster centers. The clustering error can thus be assessed by the sum

of the squared distances between the data and the cluster centers, divided by the

number of data points. The final error of the clustering procedure was 0.0020. The

cluster dispersion was determined based on the PDISP = 50 nearest points. The

results of the clustering are shown in Figure 5.1 where the contour lines delimit

regions of the input space with the same experience measure Equation (5.12).

5.3.2 Maximization of total EPS mass

The final EPS mass was maximized under the constraint of increasing levels of

maximum risk of model unreliability (Table 5.2). As expected, the predicted final

EPS mass increases as higher risk levels are undertaken. With 70% risk level the

optimal EPS achieved was 16.6 g, which is already above the highest value obtained

experimentally, which was 15.0 g of EPS. The maximum EPS mass increases up to

19.5 g for a maximum risk of 100%, i.e. giving complete freedom to the algorithm to

explore the design space.

Table 5.2: Variation of the objective function result in terms of the maximum risk assumed.

Maximum risk (%) Objective function value

70 16.6 g
80 18.4 g
90 19.3 g
100 19.5 g
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Figure 5.1: Trust level contours for the hybrid model. The line in blue corresponds
to the training data that was used to determine the cluster centers.

A maximum risk of 80% was assumed for the rest of the optimization scenarios.

The optimal fed-batch operation for risk of 80% is shown in Figure 5.3 compared to

the best and worse experimental runs in the training partition. The optimal control

variables are summarized in Table 5.3.

The results show an initial biomass growth coupled with the consumption of

glycerol and ammonia until the end of the batch phase, at 20 h. After the start of the

fed-batch phase, a slight increase on ammonia consumption is forecasted, reaching

a peak at approximately 30 h, followed by its decrease to zero, where it remained

constant until the end of the fermentation.

The ammonia mass balance (Equation (5.4)) can be rewritten to describe the
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Table 5.3: Optimal control variables values for the EPS mass maximization scenario.
Legend: Tb, temperature of the batch phase; pHb, pH of the batch phase; FS„ mass feeding
rate of glycerol; RNS , ammonia/glycerol concentration ratio in the feeding stream, tswitch,
instant of time for batch to fed-batch switch; Tfb, temperature of the fed-batch phase;
pHfb, pH of the fed-batch phase; Jopt, value of the objective function.

Objective function Tb pHb FS RNS tswitch Tfb pHfb Jopt

maxu J = P (tf )V (tf ) 29oC 7.00 1.55 g/h 0.005 20 h 26.8oC 7.32 18.4 g

ammonia mass dynamics in the fed-batch phase:

d(NV )
dt

= −vN X V + FN (5.21)

where FN represents the ammonia mass flow (g/h) in the feeding stream, which is

related to the glycerol mass flow in the feeding solution by the expression FN =

RNS FS . According to Equation (5.21), we can observe that the accumulation of

ammonia mass is positive whenever the feeding rate outweighs the consumption rate.

The optimization resulted in an increase of RNS from 0.0041 (standard conditions)

to 0.0050, which is equivalent to increase ammonia feeding FN , from the standard

4.0 mg/h to 7.8 mg/h. This in turn seems to favor higher EPS production, since

ammonia induces higher biomass growth, which in turn increases the volumetric EPS

production.

The optimization results also suggest an increase in the mass flow rate of glycerol

into the reactor (from 1 g/h in the standard conditions to 1.55 g/h), thus leading to

a glycerol accumulation in the reactor. This can be further confirmed in Figure 5.2,

where several model simulations with the fixed optimal parameters (Table 5.3) were

performed except the glycerol feeding that was varied from 0.95 to 2 g/h. It may be

observed that the total EPS produced has an optimum for FS = 1, 55g/h, which is

coincident with the optimization result. This could be however an indirect effect ruled

by the need of increasing ammonia concentration in the reactor. Since the ratio of

ammonia to glycerol in the feed RNS is fixed and because the optimal RNS coincided
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Figure 5.2: Local maximum found for the glycerol mass flow.

with the upper optimization bound, increasing FS is the only way to increase FN .

In this optimization scenario, due to the higher mass flows of ammonia and glycerol

into the reactor, biomass growth occurs during the fed-batch phase, contributing to

an increased EPS productivity. Previous studies for EPS production by Enterbacter

A47 have also confirmed that an increased ammonia flow in a fed-batch operation

induced a higher EPS productivity (Torres et al. 2014).

Regarding the control of temperature and pH, it was found that during the batch

phase, these parameters were close to the standard conditions (T = 30oC, pH =

7.00), while the optimum temperature for the fed-batch phase was slightly lower

(26.8 oC) and the pH higher (7.32). These values are in agreement with previous

temperature and pH optimization studies for EPS production in Enterobacter A47

cultures (Torres et al. 2012).

5.3.3 Minimization of residual substrate mass

As seen in the previous section, maximization of EPS mass requires high mass flow

rates of glycerol and ammonia. This might result in the accumulation of nutrients
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Figure 5.3: Simulation results for the maximization of EPS mass for a maximum risk
value of 80%. The green crosses correspond to the best experimental batch and the
red squares to the worst performed experiment.

that are wasted at the end of the fermentation. We have explored the optimal control

scenario that minimizes residual glycerol mass while at the same time ensures a

final production of EPS equal or higher than 15.0 g EPS, which was the highest

value obtained experimentally. Moreover, the initial volume was set as a control

variable, since it was found to be a critical parameter to find a feasible solution.

The obtained optimum control variables are shown in Table 5.4. The simulation of

the optimal control strategy is shown in Figure 5.4. This optimal control scenario

predicts a significant drop of the residual glycerol mass from 66.5 g to 19.3 g, and

a final EPS of 17.7 g. This was mainly achieved by a decrease in the glycerol mass

flow to 0.95 g/h in the fed-batch phase. The optimal ammonia/glycerol feeding ratio

was found to be 0.005 and therefore, the ammonia mass flow in the feeding was 4.7

mg/h. As discussed previously, maximizing EPS production requires an increase of

feeding rate that induces high biomass growth in the fed-batch phase and also EPS

production. In the case of residual glycerol minimization, the decrease in the feeding

was compensated by a higher initial liquid volume in the reactor, implying an initial
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Table 5.4: Optimal values for the control variables for the scenario of residual glycerol
mass minimization. Legend: Tb, temperature of the batch phase; pHb, pH of the batch
phase; FS„ mass feeding rate of glycerol; RNS , ammonia/glycerol concentration ratio in
the feeding stream, tswitch, instant of time for batch to fed-batch switch; Tfb, temperature
of the fed-batch phase; pHfb, pH of the fed-batch phase; Vinit, initial reactor volume; Jopt,
value of the objective function.

Objective function Tb pHb FS RNS tswitch Tfb pHfb Vinit Jopt

minu J = S(tf )V (tf ) 30.2oC 7.00 0.95
g/L 0.005 24 h 25.4oC 7.12 1.678 L 19.3 g

82.6 g of glycerol, contrasting with the 67.4 g of glycerol with standard conditions.

This higher glycerol concentration allowed a higher biomass growth in the batch

phase, reaching 11 g of biomass at the instant 24 h (tswitch), comparing with the

previous optimization scenario which achieved a maximum of 8.3 g of biomass. The

time instant when batch is switched to fed-batch mode seems to be linked to the

exhaustion of ammonia, since it coincides in time.

The predicted values of temperature and pH didn’t show practically any deviation

from the previous optimization problem in the batch phase, meaning that biomass

growth is favored by these values. Regarding the fed-batch phase, a similar pattern

was also observed, with temperature achieving a lower value (25.4oC) and pH a

slightly higher value (7.14). These results suggest EPS production is favored at lower

temperatures and higher pH values.

5.3.4 Maximization of EPS productivity

We have investigated an optimal control scenario that maximizes EPS productivity

taking the fermentation time as a control parameter. The results are shown in

Table 5.5 and Figure 5.5. Although the EPS concentration profile seems to be

growing at a constant rate, the highest productivity (0.18g/h) is obtained when the

fermentation time is slightly decreased to 96 h. This optimal scenario is similar to

the maximization of total EPS, but with the advantage of saving time, thus inversing

the overall productivity.
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Figure 5.4: Simulation results for the minimization of residual glycerol mass for a
maximum risk value of 80%. The green crosses correspond to the best experimental
batch and the red squares to the worst performed experiment.

Table 5.5: Optimal values for the control variables for the scenario of EPS productivity
maximization. Legend: Tb, temperature of the batch phase; pHb, pH of the batch phase; FS„
mass feeding rate of glycerol; RNS , ammonia/glycerol concentration ratio in the feeding
stream, tswitch, instant of time for batch to fed-batch switch; Tfb, temperature of the
fed-batch phase; pHfb, pH of the fed-batch phase; tfinal, final reactor age; Jopt, value of
the objective function.

Objective function Tb pHb FS RNS tswitch Tfb pHfb tfinal Jopt

minu J = S(tf )V (tf ) 29.0oC 7.06 1.55
g/L 0.005 22 h 26.5oC 7.60 96 h 0.18

g/h

5.3.5 Maximization of EPS/glycerol yield

Because glycerol is used for the formation of both EPS and biomass, this strategy

attempts to balance the demands of substrate for these two fermentation products

in favor of EPS synthesis. The optimal control results are shown in Table 5.6 and

Figure 5.6. Ammonia feeding plays here an important role since it is a limiting

substrate for biomass growth. The simulation of results show that ammonia is not

entirely exhausted at the end of the batch phase and, when the fed-batch starts, the

ammonia quantity registers a slight increase followed by its exhaustion until the end
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Figure 5.5: Simulation results for the minimization of residual glycerol mass for a
maximum risk value of 80%. The green crosses correspond to the best experimental
batch and the red squares to the worst performed experiment.

Table 5.6: Optimal control variables values for the EPS/glycerol yield maximization.
Legend: Tb, temperature of the batch phase; pHb, pH of the batch phase; FS„ mass feeding
rate of glycerol; RNS , ammonia/glycerol concentration ratio in the feeding stream, tswitch,
instant of time for batch to fed-batch switch; Tfb, temperature of the fed-batch phase;
pHfb, pH of the fed-batch phase; Jopt, value of the objective function.

Objective function Tb pHb FS RNS tswitch Tfb pHfb Jopt

maxu J = P (tf )V (tf ) 28.9oC 7.01 0.95 g/h 0.005 24 h 25.8oC 7.50 0.16 g/g

of the fermentation. The feeding mass rates determined in this case were similar to

the scenario of residual glycerol minimization, that is, a lower glycerol feeding rate

(0.95 g/h), while the ammonia feeding was the maximum allowed by the RNS , which

was 4.7 mg/h. The analysis of the objective function (Equation (5.1)) helps to see

that a lower glycerol feed (contrasting with the standard conditions) increases the

value of YP/S , while the ammonia mass flow increase is important to sustain the

biomass growth observed during the fed-batch phase, which in turn increases EPS

productivity. A maximum of 17.0 g of EPS was produced in this scenario.

The three scenarios investigated have all registered a yield of 0.14 g/g, which

is lower by a margin of 2 g of EPS per glycerol consumed. These previous cases
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Figure 5.6: Simulation results for the maximization of EPS/glycerol yield for a
maximum risk value of 80%. The green crosses correspond to the best experimental
batch and the red squares to the worst performed experiment.

registered lower yields by different reasons. In the scenario of EPS maximization, the

product quantity was improved by allowing higher nutrient feeding rates into the

reactor, which consequently led to an accumulation of glycerol, thus lowering the

yield value. Conversely, in the scenario where the residual glycerol was minimized,

the initial quantity of glycerol was higher by virtue of a higher initial volume, which

was used to produce biomass in higher quantity in the batch phase. For this reason

a lower yield was achieved.

5.4 Conclusions

In this chapter, several model-based optimization strategies were investigated to

improve the production of EPS in a fed-batch bioreactor. Different optimal control

criteria were investigated, namely the maximization of total EPS produced, minimiza-

tion of residual glycerol mass, maximization of EPS productivity and maximization

of EPS/glycerol yield.

Since the hybrid model developed in the previous chapter was used to design the
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optimal strategies, a clustering analysis was employed to assess the nonparametric

model reliability to explore novel process trajectories. This method was effective to

classify the input data in the model according to membership relationships defined

by the cluster centers. A maximum risk parameter was defined to restrict the data

into acceptable limits of extrapolation.

It was verified that the values of temperature and pH are consistent across all

the performed studies, with values close to 30oC and pH = 7.0 in the batch phase,

slightly lower temperature values and higher pH values for the fed-batch phase. These

values reflect the optimum conditions for biomass growth in the batch phase and

EPS synthesis in the fed-batch phase, respectively.

It was also verified that the feeding rates are important effectors of the overall

process performance. To maximize EPS production, the optimal control consistently

suggests an increase in the feeding rates of glycerol and ammonia. More specifically, an

EPS increase from 15.0 to 18.4 g EPS is predicted, representing a 22% improvement

over the best experimental data-set. Although a higher EPS quantity is desirable, this

control policy led to an accumulation of residual glycerol in the reactor. Conversely, by

lowering the glycerol feeding rate and increasing the initial volume for the same initial

concentrations, the residual glycerol was lowered significantly while still achieving an

18% improvement over the best experimental run.

The results also show that the maximization of the overall EPS/glycerol yield could

represent a more balanced approach between EPS productivity and accumulation

of substrate in the reactor. With this strategy, it was observed an increased EPS

production of 13% over the experimental batch, while avoiding accumulation residual

glycerol.
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Conclusions and future work

The present Ph. D. thesis is focused on the model-based optimization of exopolysac-

charide production by a novel microbial strain, Enterobacter A47, using glycerol

as carbon source. The main objectives of the Ph. D. thesis are i) development of

an in silico cellular model of Enterobacter A47 describing cellular growth and ex-

opolysaccharide production from glycerol as major carbon source, ii) integrate the

cellular model with a macroscopic bioreactor dynamical model that relates bioreactor

operational parameters (effectors) with process performance criteria such as EPS

productivity (consequence), and ii) perform optimal control studies using dynamic

programing algorithms to maximize the process performance criteria by manipulating

process control degrees of freedom.

The first task towards the development of an in silico model for Enterobacter

A47 involved the genome sequencing and genome reconstruction, as well as the

compilation of information available in the literature and public databases. Although

the reconstruction of a genome-scale metabolic network is still an ongoing effort,

a smaller core metabolic network was developed, describing the central carbon

metabolism and biosynthetic pathways leading to all the intermediary sugars and
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chemical substituents identified in the structure of EPS. The developed metabolic

network comprised 58 intracellular reactions and 18 exchange fluxes. These include

the uptake of ammonia, glycerol and oxygen, as well as the excretion of metabolic

products including EPS. The intracellular reactions represent the glycolysis/gluco-

neogenesis pathway, glycerol dissimilation, the pentose-phosphate pathway, TCA

cycle, anaplerotic reactions, respiratory chain and oxidative phosphorylation and

also fermentative reactions. The exchange fluxes include the uptake of ammonia,

glycerol and oxygen, as well as the excretion of metabolic products including EPS.

An elementary flux mode (EM) of a given metabolic network represents a minimal

feasible set of metabolic reactions operating in steady-state. It may be viewed as a

possible metabolic pathway for the cells to survive. A metabolic network has normally

a very large number of EMs and not all of them are used simultaneously by the

cells. The knowledge of which EMs are active among the whole set of EMs may be

important to reduce models, thereby facilitating model-based optimization. In this

thesis we have developed a methodology to identify a minimal set of active EMs from

measured yield data. The advantage of yield data is that it requires only extracellular

measurements and, since internal metabolic fluxes are strictly constrained by the

status of external fluxes, the methodology is meaningful. After the transformation of

the full EM set into yield space, two different methods were applied to discriminate

the active set of EMs: PEMA and YA. The former is a principal component like

method that maximizes the explained variance in the dataset, whereas in YA the

EMs are chosen as the minimal number to enclose a given measured yield vector,

using a quadratic programming algorithm. The results have shown that PEMA

was able to explain 98.1% of the measured yield variance with a minimal set of 5

EMs, while YA required 9 EMs to explain 99% of variance. Both methods could be

confronted in terms of the degree of orthogonality exhibited by their respective EM

set. It was observed that EMs obtained from the YA method had a higher degree of

orthogonality than the EMs obtained with PEMA, approximating the former to a
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PCA solution. Moreover, it could be concluded that the YA a single-substrate single-

product solution is obtained for most EMs, while PEMA favors a multi-substrate

and multi-product solutions.

Regarding the formulation of a bioreactor model, several hybrid semi-parametric

strategies were developed to describe the kinetics of EPS production as an alternative

to unstructured phenomenological models. This proved to be a favorable strategy

to cope with the complex and non-linear character of process dynamics involving

temperature, pH and culture broth viscosity. The results have shown that, depending

on the type of knowledge and size of the nonparametric part, the combination of

parallel/serial structures seem to perform better, judging by the capacity of the model

to fit a training data set, while describing an independent data set. Regarding the

structure of the ANN, temperature and pH were important to the process description,

since the results reveal that the parametric model cannot described the effects of

temperature and pH alone. The medium viscosity was also incorporated into a hybrid

model by means of an empirical correlation between EPS concentration and the

apparent viscosity. Although not having the best test set description among all

models compared, the incorporation of viscosity improved the model accuracy of the

training and validation sets.

Following the hybrid-model results, the model with the best predictive power

was chosen to design optimization strategies for process improvement. Different

criteria were defined to quantify the performance index (i.e. objective function),

namely the maximization of total EPS produced, minimization of residual glycerol

mass, maximization of EPS productivity and maximization of EPS/glycerol yield. In

order to avoid the hybrid-model to extrapolate into unreliable regions, a clustering

technique was devised to classify the input data according to a membership function

defined by the cluster centers.

The optimal-control results have shown temperature and pH to be consistent

across all the studied scenarios. It was also verified that feeding rates have an
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important impact in the overall process performance. To achieve higher quantities

of EPS, an increase in the mass rates of glycerol and ammonia are suggested. A

maximum EPS quantity of 18.4 g EPS was predicted with this feeding strategy,

representing a 22% improvement over the best performing experimental data-set.

Although a higher EPS quantity is desirable, this control policy led to an accumulation

of residual glycerol in the reactor. Conversely, by lowering the glycerol feeding rate

and increasing the initial volume for the same initial concentrations, the residual

glycerol was lowered significantly while still achieving an 18% improvement over

the best experimental run. The results have also shown that the maximization

of the overall EPS/glycerol yield could result in a more balanced operation, with

a compromise between maximal EPS productivity and minimal accumulation of

substrate in the reactor. With this strategy, it is forecasted an increase of EPS

production by 13% over the best experimental batch, while avoiding high amounts

of residual glycerol.

The results achieved in this work may be improved and extended in diverse ways.

First of all, the metabolic reconstruction of Enterobacter A47 is still an ongoing

effort, which has the potential of unlocking interesting possibilities for genetic

engineering and bioprocess design. Only recently the first studies for the genome

reconstruction of this organism have emerged, shedding light into the biochemical

details of this organism. This study would support the creation of a genome-wide

metabolic reconstruction for Enterobacter A47, as well as helping to identify genetic

traits that could have dramatic effects in the biotechnological applications of this

organism, such as the existence of prophage genetic sequences or virulence factors

encoded in the genome.

The inherent properties of a reconstructed metabolic network would provide an

important insight into relevant features of the cell system regarding the biochemical

details of polysaccharide synthesis. The possibility for strain improvement through

metabolic engineering could impact the productivity or even allow the tailoring of
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polysaccharide composition.

Although the application of hybrid semi-parametric models to the bioreactor

process developed in this work represented a big improvement over previous modeling

approaches, the underlying connections between bioreactor model and the cellular

metabolism are still regarded as a black-box. The studies based on the identification

of an active set of EMs could be accommodated into an updated hybrid model,

where the structure of the metabolism is taken into account, detailing the parametric

part of the model. This would improve the generalization capabilities of the model,

potentially leading to better optimization scenarios.
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A.1 List of metabolic reactions

The following list contains all the metabolic reactions in the metabolic network for

Enterobacter A47. The reversibility of the reactions are defined by the symbol “=>”

for irreversible reactions and “=” for reversible reactions.
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Glycerol Dissimilation Glyoxylate shunt

R11: Glyc + ATP => Glyc3P R61: IsoCit => Succ + Glyox

R12: Glyc3P => DHAP + NADH R62: AcCoA + Glyox => Mal

Glycolysis/gluconeogenesis Anaplerotic reactions

R21: Glu6P = Fru6P R71: PEP + CO2 => OxA

R22: Fru6P + ATP => Fru16P R72: Mal => Pyr + NADH + CO2

R23: Fru16P => Fru6P R73: OxA + ATP => PEP + CO2

R24: Fru16P = DHAP + GA3P

R25: GA3P = DHAP Oxidative phosphorilation

R26: GA3P = PG + ATP + NADH R81: NADH + 0.5 O2 => 2 ATP

R27: PG = PEP R82: FADH + 0.5 O2 => ATP

R28: PEP => Pyr + ATP R83: NADH => FADH

R29: Pyr + 2 ATP => PEP R84: NADH = NADPH

Pentose/phosphate pathway EPS building block synthesis

R31: Glu6P => Ribu5P + 2 NADPH + CO2 R91: Glu6P + ATP => Glu_residue

R32: Ribu5P = Xyl5P R92: Glu6P + ATP => Gal_residue

R33: Ribu5P = Rib5P R93: Fru6P + NADPH + ATP => Fuc_residue

R34: Rib5P + Xyl5P = Sed7P + GA3P R94: Glu6P + NADPH + ATP=>Rha_residue

R35: GA3P + Sed7P = Ery4P + Fru6P R95: Glu6P + ATP => GlcA_residue +

R36: Ery4P + Xyl5P = GA3P + Fru6P + 2 NADH

R96: Glu6P + 2 ATP + AcCoA + NH3 =>

Pyruvate metabolism => GlcN_residue

R41: Pyr => AcCoA + CO2 + NADH R97: AcCoA => Acetyl_residue

R42: Pyr + NADH = Lac R98: PEP => Pyruvyl_residue

R43: AcCoA + 2 NADH = EtOH R99: SuccCoA => Succinyl_residue

R44: AcCoA => Ac + ATP

R45: Pyr => AcCoA + For Transport reactions

R46: Pyr => But12OH TR1: Glyc_extracellular => Glyc

TR2: NH3_extracellular => NH3

Tricarboxylic acid cycle TR3: O2_extracellular => O2

R51: OxA + AcCoA => Cit TR4: CO2 => CO2_extracellular

R52: Cit = IsoCit TR5: Ac => Ac_extracellular

R53: IsoCit => aKG + NADH + CO2 TR6: For => For_extracellular

R54: aKG => NADH + SuccCoA + CO2 TR7: Lac => Lac_extracellular

R55: SuccCoA = Succ + ATP TR8: EtOH => EtOH_extracellular

R56: Succ = Fum + FADH TR9: But23OH => But23OH_extracellular

R57: Fum = Mal

R58: Mal = OxA + NADH
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A.2 List of metabolites
ATP Adenosine triphosphate

Ac Acetate

AcCoA Acetyl-coenzyme-A

But23dOH 2,3-Butanediol

CO2 Carbon Dioxide

Cit Citrate

DHAP Dihidroxyacetone phosphate

Ery4P Erythrose-4-phosphate

EtOH Ethanol

FADH Flavin adenine dinucleotide

For Formate

Fru6P Fructose-6-phosphate

Fru16P Fructose-1,6-biphosphate

Fum Fumarate

GA3P Glyceraldehyde-3-phosphate

Glc6P Glucose-6-phosphate

Glyc Glycerol

Glyc3P Glycerol-3-Phosphate

Glyox Glyoxylate

IsoCit Isocitrate

Lac Lactate

Mal Malate

NADH Nicotinamide adenine dinucleotide

NADPH Nicotinamide adenine dinucleotide phosphate

NH3 Ammonia

O2 Oxygen

OxA Oxaloacetate

PEP Phosphoenolpyruvate

PG Phosphoglycerate

Pyr Pyruvate

Rib5P Ribose-5-phosphate

Ribu5P Ribulose-5-phosphate

Sed7P Sedoheptulose-7-phosphate

Succ Succinate

SuccCoA Succinyl-coenzyme-A

Xyl5P Xylulose-5-phosphate

aKG Alpha-ketoglutarate
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A.3 Stoichiometric matrix
R11 R12 R21 R22 R23 R24 R25 R26 R27 R28 R29 R31 R32

ATP -1 0 0 -1 0 0 0 1 0 1 -2 0 0

Ac 0 0 0 0 0 0 0 0 0 0 0 0 0

AcCoA 0 0 0 0 0 0 0 0 0 0 0 0 0

But23dOH 0 0 0 0 0 0 0 0 0 0 0 0 0

CO2 0 0 0 0 0 0 0 0 0 0 0 1 0

Cit 0 0 0 0 0 0 0 0 0 0 0 0 0

DHAP 0 1 0 0 0 1 1 0 0 0 0 0 0

Ery4P 0 0 0 0 0 0 0 0 0 0 0 0 0

EtOH 0 0 0 0 0 0 0 0 0 0 0 0 0

FADH 0 0 0 0 0 0 0 0 0 0 0 0 0

For 0 0 0 0 0 0 0 0 0 0 0 0 0

Fru6P 0 0 1 -1 1 0 0 0 0 0 0 0 0

Fru16P 0 0 0 1 -1 -1 0 0 0 0 0 0 0

Fum 0 0 0 0 0 0 0 0 0 0 0 0 0

GA3P 0 0 0 0 0 1 -1 -1 0 0 0 0 0

Glu6P 0 0 -1 0 0 0 0 0 0 0 0 -1 0

Glyc -1 0 0 0 0 0 0 0 0 0 0 0 0

Glyc3P 1 -1 0 0 0 0 0 0 0 0 0 0 0

Glyox 0 0 0 0 0 0 0 0 0 0 0 0 0

IsoCit 0 0 0 0 0 0 0 0 0 0 0 0 0

Lac 0 0 0 0 0 0 0 0 0 0 0 0 0

Mal 0 0 0 0 0 0 0 0 0 0 0 0 0

NADH 0 1 0 0 0 0 0 1 0 0 0 0 0

NADPH 0 0 0 0 0 0 0 0 0 0 0 2 0

NH3 0 0 0 0 0 0 0 0 0 0 0 0 0

O2 0 0 0 0 0 0 0 0 0 0 0 0 0

OxA 0 0 0 0 0 0 0 0 0 0 0 0 0

PEP 0 0 0 0 0 0 0 0 1 -1 1 0 0

PG 0 0 0 0 0 0 0 1 -1 0 0 0 0

Pyr 0 0 0 0 0 0 0 0 0 1 -1 0 0

Rib5P 0 0 0 0 0 0 0 0 0 0 0 0 0

Ribu5P 0 0 0 0 0 0 0 0 0 0 0 1 -1

Sed7P 0 0 0 0 0 0 0 0 0 0 0 0 0

Succ 0 0 0 0 0 0 0 0 0 0 0 0 0

SuccCoA 0 0 0 0 0 0 0 0 0 0 0 0 0

Xyl5P 0 0 0 0 0 0 0 0 0 0 0 0 1

aKG 0 0 0 0 0 0 0 0 0 0 0 0 0
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A.3. STOICHIOMETRIC MATRIX

...continued
R33 R34 R35 R36 R41 R42 R43 R44 R45 R46 R51 R52

ATP 0 0 0 0 0 0 0 1 0 0 0 0

Ac 0 0 0 0 0 0 0 1 0 0 0 0

AcCoA 0 0 0 0 1 0 -1 -1 1 0 -1 0

But23dOH 0 0 0 0 0 0 0 0 0 1 0 0

CO2 0 0 0 0 1 0 0 0 0 0 0 0

Cit 0 0 0 0 0 0 0 0 0 0 1 -1

DHAP 0 0 0 0 0 0 0 0 0 0 0 0

Ery4P 0 0 1 -1 0 0 0 0 0 0 0 0

EtOH 0 0 0 0 0 0 1 0 0 0 0 0

FADH 0 0 0 0 0 0 0 0 0 0 0 0

For 0 0 0 0 0 0 0 0 1 0 0 0

Fru6P 0 0 1 1 0 0 0 0 0 0 0 0

Fru16P 0 0 0 0 0 0 0 0 0 0 0 0

Fum 0 0 0 0 0 0 0 0 0 0 0 0

GA3P 0 1 -1 1 0 0 0 0 0 0 0 0

Glu6P 0 0 0 0 0 0 0 0 0 0 0 0

Glyc 0 0 0 0 0 0 0 0 0 0 0 0

Glyc3P 0 0 0 0 0 0 0 0 0 0 0 0

Glyox 0 0 0 0 0 0 0 0 0 0 0 0

IsoCit 0 0 0 0 0 0 0 0 0 0 0 1

Lac 0 0 0 0 0 1 0 0 0 0 0 0

Mal 0 0 0 0 0 0 0 0 0 0 0 0

NADH 0 0 0 0 1 -1 -2 0 0 0 0 0

NADPH 0 0 0 0 0 0 0 0 0 0 0 0

NH3 0 0 0 0 0 0 0 0 0 0 0 0

O2 0 0 0 0 0 0 0 0 0 0 0 0

OxA 0 0 0 0 0 0 0 0 0 0 -1 0

PEP 0 0 0 0 0 0 0 0 0 0 0 0

PG 0 0 0 0 0 0 0 0 0 0 0 0

Pyr 0 0 0 0 -1 -1 0 0 -1 -1 0 0

Rib5P 1 -1 0 0 0 0 0 0 0 0 0 0

Ribu5P -1 0 0 0 0 0 0 0 0 0 0 0

Sed7P 0 1 -1 0 0 0 0 0 0 0 0 0

Succ 0 0 0 0 0 0 0 0 0 0 0 0

SuccCoA 0 0 0 0 0 0 0 0 0 0 0 0

Xyl5P 0 -1 0 -1 0 0 0 0 0 0 0 0

aKG 0 0 0 0 0 0 0 0 0 0 0 0
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...continued
R53 R54 R55 R56 R57 R58 R61 R62 R71 R72 R73 R81

ATP 0 0 1 0 0 0 0 0 0 0 -1 2

Ac 0 0 0 0 0 0 0 0 0 0 0 0

AcCoA 0 0 0 0 0 0 0 -1 0 0 0 0

But23dOH 0 0 0 0 0 0 0 0 0 0 0 0

CO2 1 1 0 0 0 0 0 0 -1 1 1 0

Cit 0 0 0 0 0 0 0 0 0 0 0 0

DHAP 0 0 0 0 0 0 0 0 0 0 0 0

Ery4P 0 0 0 0 0 0 0 0 0 0 0 0

EtOH 0 0 0 0 0 0 0 0 0 0 0 0

FADH 0 0 0 1 0 0 0 0 0 0 0 0

For 0 0 0 0 0 0 0 0 0 0 0 0

Fru6P 0 0 0 0 0 0 0 0 0 0 0 0

Fru16P 0 0 0 0 0 0 0 0 0 0 0 0

Fum 0 0 0 1 -1 0 0 0 0 0 0 0

GA3P 0 0 0 0 0 0 0 0 0 0 0 0

Glu6P 0 0 0 0 0 0 0 0 0 0 0 0

Glyc 0 0 0 0 0 0 0 0 0 0 0 0

Glyc3P 0 0 0 0 0 0 0 0 0 0 0 0

Glyox 0 0 0 0 0 0 1 -1 0 0 0 0

IsoCit -1 0 0 0 0 0 -1 0 0 0 0 0

Lac 0 0 0 0 0 0 0 0 0 0 0 0

Mal 0 0 0 0 1 -1 0 1 0 -1 0 0

NADH 1 1 0 0 0 1 0 0 0 1 0 -1

NADPH 0 0 0 0 0 0 0 0 0 0 0 0

NH3 0 0 0 0 0 0 0 0 0 0 0 0

O2 0 0 0 0 0 0 0 0 0 0 0 -0.5

OxA 0 0 0 0 0 1 0 0 1 0 -1 0

PEP 0 0 0 0 0 0 0 0 -1 0 1 0

PG 0 0 0 0 0 0 0 0 0 0 0 0

Pyr 0 0 0 0 0 0 0 0 0 1 0 0

Rib5P 0 0 0 0 0 0 0 0 0 0 0 0

Ribu5P 0 0 0 0 0 0 0 0 0 0 0 0

Sed7P 0 0 0 0 0 0 0 0 0 0 0 0

Succ 0 0 1 -1 0 0 1 0 0 0 0 0

SuccCoA 0 1 -1 0 0 0 0 0 0 0 0 0

Xyl5P 0 0 0 0 0 0 0 0 0 0 0 0

aKG 1 -1 0 0 0 0 0 0 0 0 0 0
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...continued
R82 R83 R84 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8

ATP 1 0 0 0 0 0 0 0 0 0 0

Ac 0 0 0 0 0 0 0 -1 0 0 0

AcCoA 0 0 0 0 0 0 0 0 0 0 0

But23dOH 0 0 0 0 0 0 0 0 0 0 0

CO2 0 0 0 0 0 0 -1 0 0 0 0

Cit 0 0 0 0 0 0 0 0 0 0 0

DHAP 0 0 0 0 0 0 0 0 0 0 0

Ery4P 0 0 0 0 0 0 0 0 0 0 0

EtOH 0 0 0 0 0 0 0 0 0 0 -1

FADH -1 1 0 0 0 0 0 0 0 0 0

For 0 0 0 0 0 0 0 0 -1 0 0

Fru6P 0 0 0 0 0 0 0 0 0 0 0

Fru16P 0 0 0 0 0 0 0 0 0 0 0

Fum 0 0 0 0 0 0 0 0 0 0 0

GA3P 0 0 0 0 0 0 0 0 0 0 0

Glu6P 0 0 0 0 0 0 0 0 0 0 0

Glyc 0 0 0 1 0 0 0 0 0 0 0

Glyc3P 0 0 0 0 0 0 0 0 0 0 0

Glyox 0 0 0 0 0 0 0 0 0 0 0

IsoCit 0 0 0 0 0 0 0 0 0 0 0

Lac 0 0 0 0 0 0 0 0 0 -1 0

Mal 0 0 0 0 0 0 0 0 0 0 0

NADH 0 -1 -1 0 0 0 0 0 0 0 0

NADPH 0 0 1 0 0 0 0 0 0 0 0

NH3 0 0 0 0 1 0 0 0 0 0 0

O2 -0.5 0 0 0 0 1 0 0 0 0 0

OxA 0 0 0 0 0 0 0 0 0 0 0

PEP 0 0 0 0 0 0 0 0 0 0 0

PG 0 0 0 0 0 0 0 0 0 0 0

Pyr 0 0 0 0 0 0 0 0 0 0 0

Rib5P 0 0 0 0 0 0 0 0 0 0 0

Ribu5P 0 0 0 0 0 0 0 0 0 0 0

Sed7P 0 0 0 0 0 0 0 0 0 0 0

Succ 0 0 0 0 0 0 0 0 0 0 0

SuccCoA 0 0 0 0 0 0 0 0 0 0 0

Xyl5P 0 0 0 0 0 0 0 0 0 0 0

aKG 0 0 0 0 0 0 0 0 0 0 0
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...continued
TR9 R91 R92 R93 R94 R95 R96 R97 R98 R99 ATP maint.

ATP 0 -1 -1 -1 -1 -1 -2 0 0 0 -1

Ac 0 0 0 0 0 0 0 0 0 0 0

AcCoA 0 0 0 0 0 0 -1 0 0 -1 0

But23dOH -1 0 0 0 0 0 0 0 0 0 0

CO2 0 0 0 0 0 0 0 0 0 0 0

Cit 0 0 0 0 0 0 0 0 0 0 0

DHAP 0 0 0 0 0 0 0 0 0 0 0

Ery4P 0 0 0 0 0 0 0 0 0 0 0

EtOH 0 0 0 0 0 0 0 0 0 0 0

FADH 0 0 0 0 0 0 0 0 0 0 0

For 0 0 0 0 0 0 0 0 0 0 0

Fru6P 0 -1 0 0 0 0 0 0 0 0 0

Fru16P 0 0 0 0 0 0 0 0 0 0 0

Fum 0 0 0 0 0 0 0 0 0 0 0

GA3P 0 0 0 0 0 0 0 0 0 0 0

Glu6P 0 0 -1 -1 -1 -1 -1 0 0 0 0

Glyc 0 0 0 0 0 0 0 0 0 0 0

Glyc3P 0 0 0 0 0 0 0 0 0 0 0

Glyox 0 0 0 0 0 0 0 0 0 0 0

IsoCit 0 0 0 0 0 0 0 0 0 0 0

Lac 0 0 0 0 0 0 0 0 0 0 0

Mal 0 0 0 0 0 0 0 0 0 0 0

NADH 0 0 0 0 2 0 0 0 0 0 0

NADPH 0 -1 0 0 0 -1 0 0 0 0 0

NH3 0 0 0 0 0 0 -1 0 0 0 0

O2 0 0 0 0 0 0 0 0 0 0 0

OxA 0 0 0 0 0 0 0 0 0 0 0

PEP 0 0 0 0 0 0 0 -1 0 0 0

PG 0 0 0 0 0 0 0 0 0 0 0

Pyr 0 0 0 0 0 0 0 0 0 0 0

Rib5P 0 0 0 0 0 0 0 0 0 0 0

Ribu5P 0 0 0 0 0 0 0 0 0 0 0

Sed7P 0 0 0 0 0 0 0 0 0 0 0

Succ 0 0 0 0 0 0 0 0 0 0 0

SuccCoA 0 0 0 0 0 0 0 0 -1 0 0

Xyl5P 0 0 0 0 0 0 0 0 0 0 0

aKG 0 0 0 0 0 0 0 0 0 0 0
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A.4 List of selected EMs in the PEMA solution
EM227 EM241 EM329 EM414 EM559

R11 1.000 1.000 1.000 1.000 1.000

R12 1.000 1.000 1.000 1.000 1.000

R21 -0.400 -0.429 -0.545 -0.353 0.000

R22 0.000 0.000 0.000 0.000 0.000

R23 0.400 0.429 0.455 0.471 0.333

R24 -0.400 -0.429 -0.455 -0.471 -0.333

R25 -0.600 -0.571 -0.545 -0.529 -0.667

R26 0.200 0.143 0.136 0.088 0.333

R27 0.200 0.143 0.136 0.088 0.333

R28 0.000 0.000 0.136 0.000 0.000

R29 0.000 0.000 0.000 0.000 0.000

R31 0.000 0.000 0.136 0.088 0.000

R32 0.000 0.000 0.091 0.059 0.000

R33 0.000 0.000 0.045 0.029 0.000

R34 0.000 0.000 0.045 0.029 0.000

R35 0.000 0.000 0.045 0.029 0.000

R36 0.000 0.000 0.045 0.029 0.000

R41 0.000 0.143 0.136 0.000 0.000

R42 0.000 0.000 0.000 0.000 0.000

R43 0.000 0.000 0.000 0.000 0.000

R44 0.000 0.000 0.000 0.000 0.000

R45 0.200 0.000 0.000 0.000 0.000

R46 0.000 0.000 0.000 0.000 0.000

R51 0.000 0.000 0.000 0.000 0.000

R52 0.000 0.000 0.000 0.000 0.000

R53 0.000 0.000 0.000 0.000 0.000

R54 0.000 0.000 0.000 0.000 0.000

R55 0.000 0.000 0.000 -0.088 0.000

R56 0.000 0.000 0.000 -0.088 0.000

R57 0.000 0.000 0.000 -0.088 0.000

R58 -0.200 -0.143 0.000 -0.088 0.000

R61 0.000 0.000 0.000 0.000 0.000

R62 0.000 0.000 0.000 0.000 0.000

R71 0.200 0.143 0.000 0.088 0.000

R72 0.200 0.143 0.000 0.000 0.000

R73 0.000 0.000 0.000 0.000 0.000
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...continued
EM227 EM241 EM329 EM414 EM559

R81 0.000 0.000 0.000 0.000 0.000

R82 1.200 1.286 1.273 1.441 1.000

R83 1.200 1.286 1.273 1.529 1.000

R84 0.000 0.000 0.000 0.000 0.333

TR1 1.000 1.000 1.000 1.000 1.000

TR2 0.000 0.000 0.136 0.000 0.000

TR3 0.600 0.643 0.636 0.721 0.500

TR4 0.000 0.143 0.273 0.000 0.000

TR5 0.000 0.000 0.000 0.000 0.000

TR6 0.200 0.000 0.000 0.000 0.000

TR7 0.000 0.000 0.000 0.000 0.000

TR8 0.000 0.000 0.000 0.000 0.000

TR9 0.000 0.000 0.000 0.000 0.000

R91 0.000 0.000 0.000 0.176 0.333

R92 0.400 0.000 0.000 0.000 0.000

R93 0.000 0.429 0.000 0.000 0.000

R94 0.000 0.000 0.000 0.265 0.000

R95 0.000 0.000 0.273 0.000 0.000

R96 0.000 0.000 0.136 0.000 0.000

R97 0.000 0.000 0.000 0.000 0.333

R98 0.000 0.000 0.000 0.088 0.000

R99 0.200 0.143 0.000 0.000 0.000
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A.5 List of selected EMs in the YA solution
EM103 EM219 EM524 EM589 EM792 EM811 EM1019 EM1020 EM1021

R11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R21 -0.467 -0.333 0.000 0.000 0.000 0.000 -0.500 -0.500 -0.500

R22 0.000 1.333 0.000 1.500 2.000 0.000 0.000 0.000 0.000

R23 0.467 1.667 0.484 1.500 2.000 0.000 0.500 0.500 0.500

R24 -0.467 -0.333 -0.484 0.000 0.000 0.000 -0.500 -0.500 -0.500

R25 -0.533 -0.667 -0.516 -1.000 -1.000 -1.000 -0.500 -0.500 -0.500

R26 0.067 0.333 0.032 1.000 1.000 1.000 0.000 0.000 0.000

R27 0.067 0.333 0.032 1.000 1.000 1.000 0.000 0.000 0.000

R28 0.000 0.000 0.032 0.500 0.000 0.000 0.000 0.000 0.000

R29 0.000 0.000 0.000 0.000 0.000 1.000 0.250 0.250 0.250

R31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R41 0.067 0.000 0.032 0.500 0.000 0.000 0.000 0.000 0.000

R42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R43 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R44 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R45 0.000 0.333 0.000 0.000 1.000 0.000 0.000 0.000 0.000

R46 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R51 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000

R52 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000

R53 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000

R54 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000

R55 0.000 0.000 0.032 -0.500 0.000 0.000 0.000 0.000 0.000

R56 0.000 0.000 0.032 -0.500 0.000 0.000 0.000 0.000 0.000

R57 0.000 0.000 0.032 -0.500 0.000 0.000 0.000 0.000 0.000

R58 -0.067 -0.333 0.032 -0.500 -1.000 -1.000 -0.250 -0.250 -0.250

R61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R62 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R71 0.067 0.333 0.000 0.500 1.000 1.000 0.250 0.250 0.250

R72 0.067 0.333 0.000 0.000 1.000 1.000 0.250 0.250 0.250

R73 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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...continued
EM103 EM219 EM524 EM589 EM792 EM811 EM1019 EM1020 EM1021

R81 0.733 1.333 0.677 0.000 0.000 0.000 0.000 1.000 1.000

R82 0.000 0.000 0.032 1.500 2.000 2.000 2.000 0.000 0.000

R83 0.000 0.000 0.000 2.000 2.000 2.000 2.000 0.000 0.000

R84 0.400 0.000 0.484 0.000 0.000 0.000 0.000 0.000 0.000

TR1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TR2 0.067 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TR3 0.367 0.667 0.355 0.750 1.000 1.000 1.000 0.500 0.500

TR4 0.067 0.000 0.097 0.000 0.000 0.000 0.000 0.000 0.000

TR5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TR6 0.000 0.333 0.000 0.000 1.000 0.000 0.000 0.000 0.000

TR7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TR8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TR9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R91 0.000 0.000 0.484 0.000 0.000 0.000 0.000 0.000 0.000

R92 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000

R93 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500

R94 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000

R95 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R96 0.067 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R97 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

R98 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000

R99 0.000 0.000 0.000 0.500 1.000 0.000 0.000 0.000 0.000
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