
David Magalhães Sousa
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Since this thesis is dedicated to nanostructured materials, in memory of Richard Feynman the text from this thesis’ introduction chapter will be presented in this page.As the world marches into drastic climate changes, due to emissions of greenhouse gases, and the oil output is falling while the price will rise beyond sustainability, it is our duty to develop cleaner and cheaper sources of energy, like renewable ones.

One of the steps to mitigate these changes, is to directly harvest one of the most abundant energy sources: the Sun. Enough usable solar energy reaches the earth: an astonishing 3.6 ∗ 104 TW, to serve our 17 TW needs. The major problems, associated to the solar energy harvesting, are the price and efficiency of the photovoltaic (PV) cells. Much technology has been developed, since the 20th century, mostly based on conventional crystalline silicon wafer devices.

On the turn of the century, new PV technologies are being developed with a common purpose: to make every photon count. I.e. to allow a better exploitation of the wide spectrum of sunlight and, thereby, boost the solar cells conversion efficiency. Nanotechnology has been a major driver of this development, since it allows structuring the PV materials at almost atomic scale and, in this way, form artificial media enabling a more optimized light-matter interaction. Two of the most investigated PV concepts employing nanostructured materials are: the intermediate band solar cell (IBSC) and the quantum dot solar cell (QDSC). These types of architectures enable the capturing of lower energy photons, due to quantum effect, leading to higher efficiencies. IBSC’s quantum dot (QD) layers are epitaxially grown from a crystalline substrate, with a lattice constant similar to the QD’s, and require expensive and complex production methods. QDSCs, although being solution processed, suffer from lack of efficiency on electron (e− ) transport. The electrons hop from dot-to-dot leading to lower carrier mobilities.The focus of this project will be the development of solution-processed colloidal quantum dot (CQD) photodetector devices, to test several combinations of different QD materials and oxide matrices. The first approach consists in testing different capping agent, their spectral response, and the CQDs’ behaviour in the sol-gel precursor solution.Solution-processed quantum dots can be sprayed onto many kinds of surfaces, via scalable and low cost processes. This enables roll-to-roll manufacturing, cutting the economic barrier of the production of solar cells. Instead of depositing the QDs on the photovoltaic device’s semiconductor (SC) surface, they can easily be embedded into the SC. An immediate consequence of having the QDs surrounded by a conductive matrix, is the efficiency improvement due to a better carrier transport (i.e. less electric resistivity), since the electrons won’t be transfered through tunneling effect, or hopping, but through the conduction band of the matrix medium. Proof of concept experiments could be performed using arrays of photodetectors built in the same platform. This would allow fast sequential testing of the photoresponse of several different combinations of CQDs and matrix materials, to rapidly determine the preferential physical properties for PV application.A polymer-nanocrystal composite photodetector was built in 1996, composed of photoconductive polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and a mixture of CdSe and CdS QDs. These devices exhibited limited spectral sensivity, due to the polymer and nanocrystals’ limited absorption, from the visible up to 650 nm.In 2005, Mcdonald’s group improved the latter device, by sensitizing the polymer towards longer wavelenghts into the infrared with PbS QDs.Another interesting development, in 2009, was the fabrication of a nanocomposite photodetector composed of a mesoporous titanium dioxide (TiO2 ) matrix, impregnated with CdSe quantum dots. It is possible to observe the CdSe QDs, involved by the titanium dioxide matrix. Both components were solution-processed. The matrix was prepared by sol-gel reaction and the QDs were embedded into it. As described by the group, the QDs capture the photons and excite the electrons to the conduction band of the titanium dioxide. Driven by the applied electric field, the excited carriers are conducted to the contacts, creating current. They also reported that the size of the pores of the titanium dioxide matrix, inflicted a blue-shift to the photoluminescence of the QDs, due to a higher confinement.In a similar fashion to the TiO2 /CdSe device, a photodetector, composed of a zinc oxide matrix embedded with CdSe or CdS QDs was developed. The ZnO/CdSe blend device showed a promising internal quantum efficiency (IQE) of 49%.In the following sections the basic principles of photovoltaic effect and quantum dots will be presented.The photovoltaic effect is the conversion of absorbed photons to direct current (DC) electrical power. Typical PV cells are composed of SC materials. These materials have a valence band (VB) and a conduction band (CB), both separated by a given energy, known as bandgap, as opposed to metals that have no gap. The bandgap is usually expressed in electronvolt (eV) or in wavelength. The photovoltaic effect occurs when a photon collides with a VB electron and, if the photon has energy above the bandgap, the electron jumps to an excited state in the CB. If the SC is connected to a positive contact, the electron begins it’s journey to the external load, for example a battery, and then back to the negative contact, that delivers the traveler to the SC’s VB. The hole , on the other hand, sails on the opposite direction. A schematic representation of a solar cell and an electron’s and hole’s closed circuits, for better understanding.A photodetector is, by definition, a device that is capable of detecting incident light (photons). There are several kinds of structures, like photodiodes, photogates, etc. The simplest structure was chosen: the photoconductor. The device is composed of a SC and two contacts. When light hits the surface of the SC, an electron-hole pair forms, known as exciton. If an external electric field is applied to the device, the electron will drift to the positive contact, while the hole will go to the negative one. This effect generates current.An intermediate band photovoltaic device (IBPVD) has the architecture of a conventional PVD, with an added feature: a band in between the SC’s VB and CB, originated from a second material. This band is denominated as intermediate band (IB) and confers the conjuncture three absorption coefficients (α), corresponding to the three electronic transitions: from VB to CB (αV C ), from VB to IB (αV I ) and from IB to CB (αIC ).The optimal IB solar cell has a bandgap of 1.95eV, subdivided into 0.71eV and 1.24eV sub-bandgaps. Having a 1.95eV bandgap means that the matrix material will only absorb photons with equal, or greater, energy, transition C. The intermediate band will enable the capturing of lower energy photons, transitions A and B, proportionating a predicted maximum of 63,2% of conversion efficiency. This is possible due to a better exploitation of the solar spectrum; as the solar cells are able to absorb a greater range of photon energies below the bandgap of the SC matrix. For comparison, the conventional Si single-junction wafer cell can only achieve a theoretical maximum of 40,7% of efficiency.The name ”quantum dot” was first given by Mark Reed’s group, after observing them, through scanning electron microscopy (SEM), in GaAs nanostructures.The QDs’ size range is up to tens of nanometers and they exhibit different proprieties from the bulk material. One effect derived from reducing a particle to the nanoscale, is the quantum confinement. This effect manifests itself when the diameter of a particle reaches the value of electrons’ de Broglie wavelength. As a result, a discrete energy level structure is obtained, as opposed to the band-like structure in bulk materials. Further reduction of the nanoparticle’s size leads to a stronger confinement and, consequently, to a raise in the bandgap’s energy. This permits the energy matching between donor and acceptor materials, to enhance the efficiency of photovoltaic devices (PVD). By adjusting the QD’s size, it is possible to tune the SC’s bandgap to match the photons’ energy across most of the solar spectrum. Conventional bulk semiconductors, whose bandgap is fixed, cannot grasp the same matching.Epitaxially grown QDs, like those usually employed in IBSCs, require expensive machinery to be deposited and their properties, like size, shape and composition, are hard to control. The synthesis of colloidal quantum dots (CQD), on the other hand, involves inexpensive wet lab material and is executed in simple steps. CQDs are QDs chemically fabricated through solution processes, involving salt precursors and capping agents. These agents, typically organic compounds or polymers, envelope the QDs to stabilize, solubilize and prevent further aggregation. This way, it is possible to control the QD’s size and obtain a variety of colors, due to the quantization effect. Smaller particles tend to emit purple/blue colors. This effect is known as blueshift. Bigger particles emit orange/red colors - redshift. The relation between CQD’s size and the emitted color of the corresponding suspension, under irradiation.If possible, the capping agent should be removed, after embedding the CQDs in the matrix, to reduce the resistance to the flow of electron from the QD to the matrix, or leave them on the QDs’ surface if they can transport charges efficiently.
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Abstract

To find sustainable solutions for the production of energy, it is necessary to create
photovoltaic technologies that make every photon count. To pursue this necessity, in
the present work photodetectors of zinc oxide embedded with nano-structured materials,
that significantly raise the conversion of solar energy to electric energy, were developed.

The novelty of this work is on the development of processing methodologies in which
all steps are in solution: quantum dots synthesis, passivation of their surface and sol-gel
deposition.

The quantum dot solutions with different capping agents were characterized by UV-
visible absorption spectroscopy, spectrofluorimetry, dynamic light scattering and trans-
mission electron microscopy. The obtained quantum dots have dimensions between 2
and 3nm. These particles were suspended in zinc acetate solutions and used to produce
doped zinc oxide films with embedded quantum dots, whose electric response was tested.

The produced nano-structured zinc oxide materials have a superior performance than
the bulk, in terms of the produced photo-current. This indicates that an intermediate
band material should have been produced that acts as a photovoltaic medium for so-
lar cells. The results are currently being compiled in a scientific article, that is being
prepared for possible submission to Energy and Environmental Science or Nanoscale
journals.
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Resumo

Encontrar soluções sustentáveis para a produção de energia leva à necessidade de
criar tecnologias fotovoltaicas onde todos os fotões contem. É neste âmbito que se insere
o presente trabalho, onde se desenvolveram foto-detetores de óxido de zinco usando
materiais nano-estruturados, que aumentam significativamente a conversão de energia
solar em corrente elétrica.

A novidade do trabalho está no desenvolvimento de metodologias de processamento
em que todos os passos são em solução: śıntese de pontos quânticos, passivação da
superf́ıcie e deposição sol-gel.

As soluções de pontos quânticos com diferentes agentes estabilizantes foram caracter-
izadas por espectroscopia de absorção UV-viśıvel, espectrofluorimetria, dispersão de luz
dinâmica e microscopia eletrónica de transmissão. Os pontos quânticos obtidos têm di-
mensões entre 2 e 3nm. Estas part́ıculas foram suspensas em soluções de acetato de zinco
e utilizadas para produzir filmes de óxido de zinco com pontos quânticos embebidos, que
foram testados relativamente à resposta elétrica.

Os materiais nano-estruturados de óxido de zinco produzidos têm um desempenho
superior à massa, relativamente à foto-corrente produzida. Tal indica que se produziu
um material de banda intermédia que deverá servir como meio fotovoltaico eficiente em
células solares. Os resultados estão a ser compilados para submissão na revista Energy
and Environmental Science ou Nanoscale.
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Abbreviations and Symbols

α - Absortion coefficient

λ - Wavelength

Ω - Ohm unit

3-MT - 3-Methylthiophene

AN - Acetonitrile

Bpy - 2,2’-Bipyridine

CB - Conduction band

CQD - Colloidal quantum dot

Cys - L-Cysteine

DC - Direct current

DLS - Dynamic light scattering

e− - Electron

eV - Electronvolt

IB - Intermediate band

IBSC - Intermediate band solar cell

IBPVD - Intermediate band photovoltaic device

IQE - Internal quantum efficiency

MEH-PPV - Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]

NaAce - Sodium acetate trihydrate

NIR - Near-infrared

PV - Photovoltaic

PI - Polydispersity index

Py - Pyridine

QD - Quantum dot

QDSC - Quantum dot solar cell

RI - Refractive index

SEM - Scanning electron microscopy

TEM - Transmission electron microscopy

TCO - Transparent conductive oxide

VB - Valence band

ZnAce - Zinc acetate dihydrate
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Objective

The objective of the present work is to develop novel nano-structured hybrid materials
based on semiconductor quantum dots for the construction of photodetectors, which can
be entirely processed in a series of chemical solution and can exhibit improved broadband
sensitivity.

Based on published strategies for the quantum dot synthesis, we decided to go a
step further in testing different conditions, capping agents, stabilizing agents and sol-
vents. Additionally, a new deposition method was introduced for a more homogeneous
deposition of the films, containing the nano-structured hybrid materials.

The final goal was to demonstrate that nanostructured hybrid materials could perform
better at longer wavelength, with respect to the host matrix (zinc oxide). In this sense,
the goal was fully reached.
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1. Introduction

1.1. Motivation

As the world marches into drastic climate changes, due to emissions of greenhouse
gases, and the oil output is falling while the price will rise beyond sustainability, it is
our duty to develop cleaner and cheaper sources of energy, like renewable ones.[1, 2, 3]

One of the steps to mitigate these changes, is to directly harvest one of the most
abundant energy sources: the Sun. Enough usable solar energy reaches the earth: an
astonishing 3.6 ∗ 104 TW, to serve our 17 TW needs.[4] The major problems, associated
to the solar energy harvesting, are the price and efficiency of the photovoltaic (PV)
cells. Much technology has been developed, since the 20th century, mostly based on
conventional crystalline silicon wafer devices.

On the turn of the century, new PV technologies are being developed with a com-
mon purpose: to make every photon count. I.e. to allow a better exploitation of the
wide spectrum of sunlight and, thereby, boost the solar cells conversion efficiency. Nan-
otechnology has been a major driver of this development, since it allows structuring the
PV materials at almost atomic scale and, in this way, form artificial media enabling
a more optimized light-matter interaction. Two of the most investigated PV concepts
employing nanostructured materials are: the intermediate band solar cell (IBSC) and
the quantum dot solar cell (QDSC). These types of architectures enable the capturing
of lower energy photons, due to quantum effect - explained on section 1.3.4, leading
to higher efficiencies.[5] IBSC’s quantum dot (QD) layers are epitaxially grown from a
crystalline substrate, with a lattice constant similar to the QD’s, and require expensive
and complex production methods. QDSCs, although being solution processed, suffer
from lack of efficiency on electron (e−) transport. The electrons hop from dot-to-dot, as
shown in Figure 1.1, adapted from [6], leading to lower carrier mobilities.[7]

Figure 1.1: Illustration of an electron hopping from a QD to another neighboring QD. Adapted from
Liu et al., 2010.

The focus of this project will be the development of solution-processed colloidal quan-
tum dot (CQD) photodetector devices, to test several combinations of different QD ma-
terials and oxide matrices. The first approach consists in testing different capping agent,
their spectral response, and the CQDs’ behaviour in the sol-gel precursor solution.

Solution-processed quantum dots can be sprayed onto many kinds of surfaces, via
scalable and low cost processes[8]. This enables roll-to-roll manufacturing, cutting the
economic barrier of the production of solar cells. Instead of depositing the QDs on
the photovoltaic device’s semiconductor surface, they can easily be embedded into the
semiconductor which acts as the host. An immediate consequence of having the QDs
surrounded by a conductive matrix, is the efficiency improvement due to a better carrier
transport (i.e. less electric resistivity), since the electrons will not be transfered through
tunneling effect or hopping, but through the conduction band of the matrix medium.[7]
Proof of concept experiments could be performed using arrays of photodetectors built
in the same platform (see Figure 1.2). This would allow fast sequential testing of the
photoresponse of several different combinations of CQDs and matrix materials, to rapidly
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determine the preferential physical properties for PV application.

Figure 1.2: Proposed model of an array of solution-processed quantum dot photodetector devices,
with a zoom on a single cell. The red plus and the blue minus indicate the corresponding polarity of
the deposited contacts and the red shinning dots correspond to the embedded CQDs in a transparent
conductive oxide (TCO) matrix. The array’s purpose is to quickly test several combinations of QD’s
(with different sizes and materials) and matrices (varying the material and doping).

1.2. State of Art

A polymer-nanocrystal composite photodetector was built in 1996, composed of pho-
toconductive polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-
PPV) and a mixture of CdSe and CdS QDs. These devices exhibited limited spectral
sensivity, due to the polymer and nanocrystals’ limited absorption, from the visible up
to 650 nm.[9]

In 2005, Mcdonald’s group improved the latter device, by sensitizing the polymer
towards longer wavelenghts into the infrared with PbS QDs.[10]

Another interesting development, in 2009, was the fabrication of a nanocomposite
photodetector composed of a mesoporous titanium dioxide (TiO2) matrix, impregnated
with CdSe quantum dots. It is possible to observe in Figure 1.3, adapted from [11], the
CdSe QDs, involved by the titanium dioxide matrix. Both components were solution-
processed. The matrix was prepared by sol-gel reaction and the QDs were embedded
into it. As described by the group, the QDs capture the photons and excite the electrons
to the conduction band of the titanium dioxide. Driven by the applied electric field, the
excited carriers are conducted to the contacts, creating current. They also reported
that the size of the pores of the titanium dioxide matrix, inflicted a blue-shift to the
photoluminescence of the QDs, due to a higher confinement.[11]

Figure 1.3: High resolution transmission electronic microscopy of the mesoporous titanium dioxide
matrix, embedded with CdSe QDs. (b) corresponds to the amplification of the section, represented as
a white square, in (a). The atomic planes of the CdSe QDs can be appreciated in the image, revealing
their crystalline structure.
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In a similar fashion to the TiO2/CdSe device, a photodetector, represented in Fig-
ure 1.4, adapted from [12], composed of a zinc oxide matrix embedded with CdSe or
CdS QDs was developed. The ZnO/CdSe blend device showed a promising internal
quantum efficiency (IQE), fraction of absorbed photons that are converted to electrons,
of 49%.[12]

Figure 1.4: Schematic representation of the photodetector device, fabricated by White et al., 2013.

In the following sections the basic principles of the photovoltaic effect and the quan-
tum dots will be presented.

1.3. Background Theory

1.3.1. Photovoltaic Effect

The photovoltaic effect is the conversion of absorbed photons to direct current (DC)
electrical power. Typical PV cells are composed of semiconductor materials that have
a valence band (VB) and a conduction band (CB), both separated by a given energy,
usually expressed in electronvolt (eV), known as bandgap. The photovoltaic effect occurs
when a photon collides with a VB electron and, if the photon has energy above the
bandgap, the electron jumps to an excited state in the CB. If the semiconductor is
connected to a positive contact, the electron begins it’s journey to the external load, for
example a battery, and then back to the negative contact, that delivers the traveler to
the semiconductor’s VB. The hole , on the other hand, sails on the opposite direction.
Figure 1.5 is a schematic representation of a solar cell and an electron’s and hole’s closed
circuits, for better understanding.[13]

Semiconductor

Valence bandh

External load
(Battery)

Contact 
(+)

Contact 
(-)

Conduction band

e⁻

e⁻

Bandgap

h

Photon

Figure 1.5: Schematic representation of a solar cell, its semiconductor’s energy levels and an electron’s
and hole’s closed circuit, excited by a photon.
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1.3.2. Photodetector

A photodetector is, by definition, a device that is capable of detecting incident light
(photons). There are several kinds of structures, like photodiodes, photogates, etc.
The simplest structure was chosen: the photoconductor. The device is composed of a
semiconductor and two contacts, as shown in Figure 1.4. When light hits the surface of
the semiconductor, an electron-hole pair forms, known as exciton. If an external electric
field is applied to the device, the electron will drift to the positive contact, while the
hole will go to the negative one. This effect generates current.[14]

1.3.3. Intermediate Band

An intermediate band photovoltaic device has the architecture of a conventional so-
lar cell, with an added feature: a band in between the semiconductor’s VB and CB,
originated from a second material. This band is denominated as intermediate band (IB)
and confers the conjuncture three absorption coefficients (α), corresponding to the three
electronic transitions: from VB to CB (αV C), from VB to IB (αV I) and from IB to CB
(αIC), as shown in Figure 1.6.[15]

Conduction band

Intermediate band

Valence band

E

e⁻

e⁻

e⁻ e⁻

e⁻

Photon

Photon
Photon

A

B

C

Figure 1.6: Diagram of semiconductor’s energy levels, coupled with a material that supplies the inter-
mediate band. A - electronic transition corresponding to αIC ; B - electronic transition corresponding to
αV I ; C - electronic transition corresponding to αV C .

The optimal IBSC has a bandgap of 1.95eV, subdivided into 0.71eV and 1.24eV sub-
bandgaps.[16] Having a 1.95eV bandgap means that the matrix material will only absorb
photons with equal, or greater, energy - Figure 1.6, transition C. The intermediate band
will enable the capturing of lower energy photons - Figure 1.6, transitions A and B,
proportionating a predicted maximum of 63,2% of conversion efficiency. This is possible
due to a better exploitation of the solar radiation spectrum; as the solar cells are able
to absorb a greater range of photon energies below the bandgap of the semiconductor
matrix. For comparison, the conventional Si single-junction wafer cell can only achieve
a theoretical maximum of 40,7% of efficiency.[16]

1.3.4. Quantum Dots

The name ”quantum dot” was first given by Mark Reed’s group, after observing them,
through scanning electron microscopy (SEM), in GaAs nanostructures.[17]

The QDs’ size range is up to tens of nanometers and they exhibit different properties
from the bulk material. One effect derived from reducing a particle to the nanoscale is
the quantum confinement. This effect manifests itself when the diameter of a particle
reaches the value of electrons’ de Broglie wavelength. As a result, a discrete energy level
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structure is obtained, as opposed to the band-like structure in bulk materials. Further
reduction of the nanoparticle’s size leads to a stronger confinement and, consequently,
to a raise in the bandgap’s energy.[18] This permits the energy matching between donor
and acceptor materials, to enhance the efficiency of photovoltaic devices. By adjusting
the QD’s size, it is possible to tune the semiconductor’s bandgap to match the photons’
energy across most of the solar spectrum. Conventional bulk semiconductors, whose
bandgap is fixed, cannot grasp the same matching.[19] Figure 1.7 illustrates the latter
explanation.

E Bulk 
material

QD 
particles

CB

VB

d

A B

Figure 1.7: Illustration of the relation between bandgap energy and particle diameter, from QD size
to bulk. As the particle size decreases, the bandgap increases from B to A.

1.3.5. Colloidal QDs

Expensive machinery is required to grow epitaxial QDs, like those usually employed
in IBSCs [20, 21, 22], and their properties, like size, shape and composition, are hard
to control. The synthesis of colloidal quantum dots (CQD), on the other hand, in-
volves inexpensive wet lab material and is executed in simple steps. CQDs are QDs
chemically fabricated through solution processes, involving salt precursors and capping
agents. These agents, typically organic compounds or polymers, envelope the QDs to
stabilize, solubilize and prevent further aggregation. This way, it is possible to control
the QD’s size and obtain a variety of colors, due to the quantization effect described in
section 1.3.4. Smaller particles tend to emit purple/blue colors. This effect is known as
blueshift. Bigger particles emit orange/red colors - redshift.[23, 24] Figure 1.8, adapted
from Wikipedia [25], shows the relation between CQD’s size and the emitted color of
the corresponding suspension, under irradiation.

Figure 1.8: Relation between the size of the CQDs, with capping agents involving them, and the
emitted color of the corresponding suspension, under irradiation.

If possible, the capping agent should be removed, after embedding the CQDs in the
matrix, to reduce the resistance to the flow of electron from the QD to the matrix, or
leave them on the QDs’ surface if they can transport charges efficiently.
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2. Materials and Methods

In this study, CdSe quantum dots were synthesized and capped with 2,2’-bipyridine,
or simply bipyridine (Bpy), Pyridine (Py), 3-methylthiophene (3-MT), sodium acetate
trihydrate (NaAce), L-cysteine (Cys) or zinc acetate dihydrate (ZnAce). zinc oxide
precursor solutions were prepared and deposited, with or without embedded CQD, by
means of spray pyrolysis and spin-coating. All reagents were used as received, without
further purification. Unless otherwise stated, any mentioned compound or solvent has
an equivalent degree of purity to puriss p.a.. and were bought from Sigma-Aldrich.

2.1. Synthesis

2.1.1. Zinc Oxide Sol-gel Precursors

The precursor was prepared as described by White et al. [12]. In a capped vial, 1g of
zinc acetate dihydrate, reagent grade, 278mg of 2-ethanolamine, ≥98%, (about 7 drops)
and 10mL of 2-methoxyethanol, ReagentPlus ≥99,0% with 50ppm BHT, further refereed
as methoxyethanol, were mixed in the described order. The dissolution was carried at
80oC with vigorous stirring, for 1h. This solution was used on the experiment described
in section 2.1.2.2. Three more batches were prepared for the experiment with the six
different capping agents, for the dynamic light scattering (DLS) spectra acquisition and
the spin-coat sol-gel depositions. These solutions will be further referred as ZnORG.
As for methoxyethanol it will be referred as simply ORG. An aqueous zinc oxide sol-gel
precursor solution was also prepared, for the spray pyrolysis deposition, consisting of
100mL of Milli-Q water, referred simply as water from here on, 4,390g of glacial acetic
acid and 4,392g of zinc acetate dihydrate[26].

2.1.2. Cadmium Selenide Colloidal Quantum Dots

Figure 2.1: Exper-
imental apparatus of
CdSe CQD reaction
vessel (A) and a
syringe with freshly
synthesized CdSe
CQD (B).

A Lumidot R© CdSe kit was purchased from Sigma-Aldrich. 0,2mL
of each Lumidot sample was dissolved in either 0,3mL of ORG or
ZnORG. All flasks were protected from light with aluminium foil and
capped with rubber septas, excluding the QDs’ capping procedure
and the following steps.

2.1.2.1. Testing Different Capping Agents

Following a typical low temperature synthesis of CdSe [12],
37,30mg of selenium, ∼100 mesh ≥99,5% trace metals basis, and
244,51mg of sodium sulfite, ≥98%, were mixed in 20mL of water.
The mixture was heated to 100oC and refluxed for 1h. This solution
was named sodium selenosulfate. To obtain the cadmium source,
532,90mg of cadmium acetate dihydrate, purum p.a. ≥98,0% (KT),
was dissolved in 50mL of water and heated to 35oC for 15min. The
sodium selenosulfate’s temperature was lowered to 80oC and the sy-
ringe was heated for 5min in an oven, at 100oC. After injecting the
sodium selenosulfate into the cadmium solution, the mixture was
kept at 35oC and stirring for 2h.

To cap the CdSe QDs, a series of six falcon tubes with bipyridine,
Alfa Aesar ACS ≥98%, pyridine, Merck p.a., 3-methylthiophene,
≥98%, sodium acetate trihydrate, Panreac PA-ACS-ISO, L-cysteine,
non-animal source cell culture tested, and zinc acetate dihydrate were
prepared, each with the equivalent to 192,1mmol of bipyridine dis-
solved in 3mL of acetone, PA. The exact weights of each capping
agent is described in Table I in Appendix A. The tubes were named
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according to the capping agent. To each tube, 8mL of CdSe CQD were introduced with
the help of a syringe (Figure 2.1). A seventh tube was also prepared, named X, con-
taining only 3mL of acetone, as a reference. Immediately after adding 8mL of the CdSe
CQDs’ suspension to each tube, they were subjected to shaking on a vortex, JANKE &
KUNKEL IKA-Labortechnik VF2, for 10min. The washing cycle was done three times
and consisted in centrifuging the tubes at 3000RPM, for 3min, in a Tehthica CENTRIC
150 centrifuge, decanting, refilling with 10mL of water and using the vortex to resuspend
the pellet. After decanting, acetonitrile (AN), p.a., was added to all tubes, except the
reference one, and suspended using an ultrasounds bath, Elmasonic 100H, for 30min,
and then characterized, without diluting. All tubes were decanted again and put under
vacuum, to remove the remaining AN. After drying, 1mg of each capped CdSe QD was
weighted to eppendorfs and suspended, with the aid of an ultrasounds bath for 30min,
in ORG solution. The latter process was repeated but this time they were suspended
in ZnORG. Both ORG and ZnORG solution had a final concentration of 1mg/mL of
capped CdSe CQDs. The prepared suspensions were then characterized. A table with
the exact weights of CdSe CQDs can be found in Table II in Appendix A.

2.1.2.2. Evolution of 2,2’Bypridine Capped CdSe CQDs with Time

Another synthesis was done varying the reaction time and using bipyridine, dissolved
in acetone, as the capping agent. The procedure was the same as before, varying slightly
on the reactant weights: selenium - 37,3mg, sodium sulfide - 243,8mg, cadmium acetate
dihydrate - 536,9mg. After 2h of reaction, 8mL of the CdSe CQDs’ suspension was
added to a falcon tube with 31,5mg of bipyridine in 3mL of acetone. After 5h and
40min, 8mL of the CdSe CQDs’ suspension was added to a falcon tube with 31,0mg of
bipyridine in 3mL of acetone. After 28h and 30min, 8mL of the CdSe CQDs’ suspension
was added to a falcon tube with 30,4mg of bipyridine in 3mL of acetone. The same
washing, drying and suspension procedures were applied. In a similar fashion to the
previous representation, the weights of bipyridine capped CdSe QDs used for optical
characterization are displayed in Table III in Appendix A. Both ORG and ZnORG
solution had a final concentration of 2mg/mL of capped CdSe CQDs.

2.1.2.3. CdSe CQDs capped with Molten 2,2’Bipyridine

A different experiment was attempted with bipyridine. 100mg were weighted to a
15mL falcon tube. The lower part of the tube was submerged into Baysilone R© oil, as
seen in Figure 2.2, with the cap closed. The oil’s temperature was raised to 100oC, while
slowly agitating the bipyridine with a magnet stirrer.

Figure 2.2: Apparatus for the CdSe CQD phase transfer to bipyridine. A - falcon tube with a stirrer.
B - thermocouple. C - molten bipyridine. D - cup with Baysilone R© oil and a stirrer.

After the bipyridine melted, 1mL of CdSe CQDs’ suspension, after 2h of reaction,
was slowly added at 35oC, without letting the bipyridine solidify. The stirring was
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put on maximum speed for 1h at 100oC. The tube was then cooled down to room
temperature and manually shaken, just enough to release three or four drops from the
molten bipyridine to the upper aqueous phase. After the bipyridine instantaneously
froze, the supernatant water was decanted. 1mL of water was added to the tube and
then decanted. The tube was put under vacuum, to remove the remaining water.

2.2. Film Deposition

2.2.1. Spin-coat

The parameters tested were similar to the ones used by White et al.[12] The go-
rilla glass 2,5cm*2,5cm substrates were rinsed with acetone, dried with a air jet and
cleaned with lint-free paper. 0,3mL of ZnORG solution was dispensed to the substrate
in each deposition, before the spinning started. The rotation speed used were 1500RPM,
2500RPM, 3500RPM and 4500RPM, and for each rotation speed the following dwelling
times were tested: 15s, 20s, 25s and 30s. The used acceleration ramp was of 10s. The
deposited films were baked in a simple tube furnace at 180oC for 5min, with a heating
ramp of 30min.

2.2.2. Spray Pyrolysis

An airbrush, Dexter, was used in pair with an airbrush compressor, HS08-5 from
ROHS PAHS, that has three levels of pressure, ranging from 1,5bar (level 1) to 3,1bar
(level 3). The substrates were cleaned with lint-free paper embedded in isopropanol and
sprayed with an air jet, to remove the excess liquid. Schematics of the airbrush and heat
plate positioning are represented in Figure 2.3.

5cm

21cm

10cm

17cm

9cm 11cm

17cm
25cm

A B C D E

Figure 2.3: Schematics of the airbrush and heat plate positioning used for the spray pyrolysis deposition.
The airbrush is represented in blue, the heat plate in red, the spray trajectory by a full black arrow and
the fume hood air intake by a dashed black arrow. The letters identify the corresponding scheme.

In all schemes, a series of parameters, adapted from [26], were tested, like the volume
of solution used or deposition time, the opening of the flux regulator of the airbrush and
the pump’s level. On scheme E, a total of 0,8mL of the aqueous zinc acetate dihydrate
solution was used. The solution was dispensed with quick poofs, intercalated by no less
than 10s of no spray, with a pressure of 1,5bar, the airbrush’s flux regulator with one and
a half turns and the heat plate stabilized at 180oC. Using the latter parameters, 4mg
of L-cysteine capped CdSe CQDs where added to 0,7mL of the aqueous solution of zinc
acetate dihydrate, the mixture was put on a ultrasounds bath for 10min and then sprayed
onto a substrate. The deposition of the solution without the CQDs was replicated.
Aluminium contacts, 1cm apart, were evaporated onto the surface of the surface of both
films, with and without the L-cysteine capped CdSe CQDs, by evaporation.

2.3. Characterization

2.3.1. Cadmium Selenide Colloidal Quantum Dots

All absorption spectra were taken in a quartz cell with a 2mm optical path and a
capacity of 0,7mL. For the absorption spectra, double-beam spectrometers were used
and the baseline was done with both sample and reference compartments empty. The
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emission spectra were taken in a cell with the same dimensions but with clear sides. The
absorption spectra of the CdSe CQD, from the experiment described in section 2.1.2.2,
dispersed in methoxyethanol, with and without zinc acetate dihydrate, ranging from
200nm to 2000nm, was recorded in a spectrophotometer Cary 5000. The absorption
spectra of the CdSe CQD from the experiment described in section 2.1.2.1, in ORG and
ZnORG, ranging from 200nm to 800nm, was measured in a spectrophotometer, Cary
100 Bio. The emission spectra of the CdSe CQD in AN, with a slit of 2nm, ORG and
ZnORG, with a slit of 4nm, was measured in a HORIBA spectrofluorometer, model
iHR 320. All spectra recording was done at room temperature. The characterizations
were also performed on the Lumidot described in Section 2.1.2, in order to compare the
results with standard commercial CQDs. For the full list of parameters reported by the
devices, refer to Table V for the absorption spectra in AN, Table VI and Table VII for the
absorption spectra in ORG and ZnORG, for the experiments described in section 2.1.2.1
and the experiments described in section 2.1.2.2 respectively.

The DLS spectra was done in a Horiba SZ-100, using a a quartz cell with clear sides,
2mm wide and with a 1cm optical path length, and to acquire the zeta potential a
AGILE Carbon Zeta Potential Cell. All tests were done at 25oC.

Solutions of 0,01mg.mL−1 to 0,03mg.mL−1 of the synthesized QCDs in ethanol were
prepared and the transmission electron microscopy (TEM) images were acquired from
an Hitachi H-8100, using a grid of copper as support.

2.3.2. Film Deposition and Photo-response Measurement

The films deposited by spin-coating were characterized in a Shimadzu UV-3101PC
spectrophotometer, using a integrating sphere. The films deposited by spray pyrolysis
were characterized in a PG Instruments Ltd spectrophotometer, model T90+ UV/Vis.
To test the photo-response, the electric conductance of the films was measured in the
range of voltage between -10V and 10V, with a 500mV step, in ambient light. The
test was repeated by illuminating the films with a white LED flashlight, held at around
5cm from the film’s surface, and 254nm and 366nm wavelength light, from common
laboratory UV lamps, held at around 15cm from the films’ surface.
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3. Results and Discussion

3.1. General Considerations

Pyridine and some thiol compounds[27, 28] are usually chosen as capping agents, but
due to their volatility, toxicity and strongly unpleasant smell, a series of other capping
agents were tested.

All the CdSe CQDs’ suspensions formed a deposit, after 24h, when suspended in
methoxyethanol without zinc acetate dihydrate. Although the solutions did not form
stable colloids, every capping agent, except zinc acetate dihydrate, performed well at
chemically stabilizing the CdSe QDs. In the next sections, the individual character-
istics of uncapped and bipyridine, L-cysteine and zinc acetate dihydrate capped CdSe
CQDs will be discussed. Subsequently, dedicated DLS and TEM sections are presented.
The remaining capping agents are included in the comparison section since their propri-
eties are similar to the bipyridine capped CdSe CQDs. Finally, the results of the film
depositions are shown in the last section.

All spectra were normalized, unless otherwise stated.

3.2. No Capping Agent

In the absence of a capping agent, the CdSe CQDs allowed to grow for 2h sustain
their typical yellow color as can be seen in Figure 3.1-A.

Figure 3.1: Photographies of uncapped CdSe CQDs: dried and inside a vial under normal light (A),
dried and under the irradiation of an UV lamp with excitation at wavelength of 366nm (B), inside
eppendorfs with the CQDs suspended in methoxyethanol (C), in methoxyethanol with zinc acetate
dihydrate (D) and inside a falcon tube, suspended in water, in an oil bath at 100oC (E).

The dried CQDs retain their fluorescence under the UV lamp (B) and it is also
possible to temporarily suspend them in methoxyethanol, with observable precipitates,
(C) and for longer periods in methoxyethanol with zinc acetate dihydrate (D), which
remains transparent.

For an application that requires heating the CQDs, like a spray-deposition or spin-
coating; which requires the film to be sintered by prolonged baking, the uncapped ones
will fail to retain their sizes and quickly aggregate. The growth is visibly noticeable
because the CQDs undergo a color change from yellow to red, in a matter of seconds. A
photography of the latter outcome is depicted in Figure 3.1-E. It is therefore a nonviable
solution for depositions that requires higher temperatures. Note that bipyridine capped
CdSe CQDs were heated at the same temperature for 1h and they did not grow; their
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yellow color remained stable. This proves that the capping agents are fundamental for
chemical stabilization of the CdSe CQDs.

The absorption and emission spectra of the uncapped CdSe CQDs can be found in
Figure 3.2. The absorption spectrum of uncapped CdSe CQDs suspended in methoxy-
ethanol was corrected using the algorithm proposed by Castanho et al.[29], to correct
the scattered light.
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Figure 3.2: Absorption spectrum of diluted 1:10 uncapped CdSe CQDs, dispersed in methoxyethanol,
on the left and on the right, diluted 1:2 and dispersed in methoxyethanol with zinc acetate dihydrate.
The emission spectra were performed with a slit of 4nm, in right angle mode and the suspension was
not diluted. The emission spectra were not normalized. * - First absorption peak corresponding to
the confined ground-state (bandgap) of the CQDs. Emission using 350nm (E350) or 460nm (E460)
wavelength excitation.

3.3. 2,2’Bipyridine as Capping Agent

Bipyridine is a toxic compound but, since it is a solid at room temperature and
odorless, it does not pose the same risks as pyridine. To our knowledge, bipyridine has
never been used as a capping agent, which constitutes a novel achievement in this thesis.

3.3.1. Testing Different Capping Agents

The UV-Vis absorption spectra of the bipyridine capped CdSe CQDs from the ex-
periment described in section 2.1.2.1, dispersed in methoxyethanol, after 2h of reaction,
is displayed in Figure 3.3.
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Figure 3.3: Absorption spectrum of diluted 1:10 bipyridine capped CdSe CQDs, from the experiment
described in section 2.1.2.1, dispersed in methoxyethanol. The emission spectra were performed with
a slit of 4nm, in right angle mode and the suspension was not diluted. * - First absorption peak
corresponding to the confined ground-state (bandgap) of the CQDs.
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To determine the first absorption peak, the absorption spectrum data of the bipyridine
capped CdSe CQDs dispersed in methoxyethanol was subjected to a spectral derivative
of the Abs with respect to the wavelength. The result is show in Figure 3.4, comprising
the corresponding absorption spectrum and the smoothed spectral derivative. The ab-
sorption peaks from the remaining tested capping agents were also determined with the
spectral derivative and can be found in Appendix B.
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Figure 3.4: Absorption spectrum of diluted 1:10 bipyridine capped CdSe CQDs, dispersed in methoxy-
ethanol, and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay
with a polynomial order of 9 and with 25 points to the right and to the left. The black arrows indicate
both maximum and minimum of the plot’s derivate, and the red arrow indicates the inflection point,
considered to be equidistant to the maximum and minimum, which occurs at the absorption peak of the
first confined state.

The first absorption peak, of the CQDs suspended in methoxyethanol, is estimated
to be λ=463nm; while the peak of the suspended CQDs in methoxyethanol with zinc
acetate dihydrate is estimated to be λ=465nm, as shown in Figure VII in Appendix B.
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Figure 3.5: Absorption spectrum of diluted 1:2 bipyridine capped CdSe CQDs, from the experiment
described in section 2.1.2.1, dispersed in methoxyethanol with zinc acetate dihydrate. The emission
spectra were performed with a slit of 4nm, in right angle mode and the suspension was not diluted.

The suspension in methoxyethanol, when irradiated by a UV lamp, presents a more
greenish yellow. The CQDs suspended in methoxyethanol with zinc acetate dihydrate,
emit a yellow color (580nm) with a whitish tenuity; similar to dolly color. The emission
at 580nm is not predominant, as can be seen in Figure 3.5. This means that the color the
observed is merely the perception of the sum of two colors: the more energetic emission
with a spring green color, at 500nm, and a lesser energetic emission with a solid red
color, at 700nm.

15



Solution Processed Quantum Dot Photodetectors

3.3.2. Evolution of Bypridine Capped CdSe CQDs with Time

From the experiment described in section 2.1.2.2, the absorption spectra of bipyridine
capped CdSe CQDs is displayed in Figure 3.6. The NIR portion of the spectra were
omitted since it only showed the absorption peaks of the solvent.
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Figure 3.6: Absorption spectra of bipyridine capped CdSe CQDs, from the experiment described in
section 2.1.2.2, dispersed in either methoxyethanol or methoxyethanol with zinc acetate dihydrate. The
dashed black arrow indicates the peak’s progression based on the reaction time. A - flat absorption area.

The CQDs dispersed in methoxyethanol with zinc acetate dihydrate appeared to be
limpid and translucent, allowing to distinctly observe the first absorption band from
the CdSe CQDs. Although the absorption first peaks from the samples with 2h and 5h
46min reaction times are very close to each other, 458nm and 459nm, respectively, the
peak from the sample with 28h 30min reaction time is at 548nm. This indicates that the
reaction time frame needed, to control the absorption peak of the CdSe CQDs, is 24h.
A second observation is that the bigger particles tend to be less stable in the dispersion,
forming aggregates and contributing to more light scattering.

The flat absorption area, indicated by A, is the typical absorption behavior of semi-
conductors, after the first absorption peak; its band-gap.

The emission spectra are represented in Figure 3.7.

Figure 3.7: Emission spectra of bipyridine capped CdSe CQDs, from the experiment described in
section 2.1.2.2, dispersed in methoxyethanol, on the left, and in methoxyethanol with zinc acetate dihy-
drate, on the right. The excitation wavelength is 350nm. The dashed black arrow indicates the peak’s
progression based on the reaction time.

The sample with 28h 30min reaction time dispersed in methoxyethanol emits at
568nm, which is higher than its 2h and 5h 40min counterparts, that respectively emit
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at 500nm, considering the first emission band, and 530nm. This is in accordance with
the quantum confinement effect.

The dual emission present in the 2h sample seems to fade, as the CQDs grow big-
ger, giving rise to a single emission band. Smaller particles’ emission can be easily
overwhelmed by their surface defects, as opposed to the bigger particles, whose ratio
between the roughness’ high and particle’s size tend to be lower, diminishing the effect
of the surface defects on the emission.

3.3.3. CdSe CQDs capped with Molten 2,2’Bipyridine

The third experiment was a typical extraction from an aqueous to an organic phase.
The organic phase corresponds to molten bipyridine (Figure 3.8-A) and the aqueous
phase is the orange suspension of uncapped CdSe CQDs (Figure 3.8-B). A change of
color on the organic phase is observed in Figure 3.8-C, indicating that the QDs were
being extracted from the aqueous phase to the bipyridine. After 10min, the QDs were
fully transfered to the bipyridine and the aqueous phase became visibly limpid. It was
possible to observe some red precipitate on the interface between the phases, although
the molten bipyridine remained yellow, indicating that aggregated QDs tend to remain
on the interface. Even after 1h in the oil bath, at 100oC and under stirring, the molten
bipyridine remained vivid yellow, suggesting that even at high temperatures the CdSe
QDs capped with bipyridine are stable and, therefore, do not grow.

A B C D

Figure 3.8: Time-lapse pictures of the solventless capping of CdSe QDs experiment. A - 100mg of
molten bipyridine. B - molten bipyridine with 1mL of uncapped CdSe CQD. C - CQD phase transfer
after 2min. D - total phase transfer after 10min. The falcon tube was immersed in Baysilone R© oil at
100oC.

After leaving the tube at room temperature, the molten bipyridine with the CdSe
QDs remained liquid, well below its melting point, not due to freezing-point depression
but due to supercooling. By slightly shaking the two phases, some bipyridine bubbles
were released to the upper phase. As soon as they fell back to the lower phase and
joined it, the bipyridine instantly solidified, trapping the CdSe QDs. After removing
the upper aqueous phase, a suspension of white bipyridine crystallites slowly started to
form, leading to the removal of excess capping agent.

The formed solid kept the typical yellow fluorescence under the UV lamp and a yellow
to whitish color.

This experiment was conducted in an attempt to suppress the washing cycles, required
to remove the secondary product sodium selenosulfate, after adding the capping agents,
to avoid the loss of CdSe QDs. Summarizing, this procedure proportionates a one-step
CQD capping and washing.
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3.4. L-Cysteine as Capping Agent

L-Cysteine has been previously used in other works as a successful capping agent
[27, 30]. It is a non-toxic, almost odorless compound and, therefore, easier to handle.
The absorption and emission spectra are presented in Figure 3.9, for the L-cysteine
capped CdSe CQDs dispersed in methoxyethanol and methoxyethanol with zinc acetate
dihydrate, respectively on the left and right. These absorption spectra were corrected
using the algorithm proposed by Castanho et al.[29], to correct the absorbed light due
to scattering.
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Figure 3.9: Absorption spectrum of diluted 1:10 L-cysteine capped CdSe CQDs, dispersed in meth-
oxyethanol on the left and, on the right, diluted 1:2 and dispersed in methoxyethanol with zinc acetate
dihydrate. The emission spectra were performed with a slit of 4nm, in right angle mode and the solution
was not diluted. * - First absorption peak corresponding to the confined ground-state (bandgap) of the
CQDs.

The first absorption peak is estimated to be at 482nm, as shown in Figure XV in
Appendix B, for the CQDs dispersed in methoxyethanol and at 478nm dispersed in
methoxyethanol with zinc acetate dihydrate, as shown in Figure XIV in Appendix B.
These are rough estimations because the absorption spectra are showing the effect of
scattered light.

There is no significant difference between the CQDs dispersions absorption spectra,
in methoxyethanol or methoxyethanol with zinc acetate dihydrate. Unlike the other
capping agents, the introduction of zinc cation does not influence the CQDs colloidal
stability. The suspension remains with visible aggregates. The zinc cation is known to
form zinc fingers[33], which are complexes of protein-zinc cation with the purpose of
stabilizing the fold. An example of a Cys2His2-zinc complex and zinc complexed with
the L-cysteine capped CdSe CQD analogously to the zinc finger system, is shown in
Figure 3.10.

Figure 3.10: Representation of a Cys2His2 zinc finger motif, on the left, and zinc (green sphere)
complexed with the L-cysteine of the CQDs (yellow spheres), on the right. The zinc finger motif is a
courtesy of Thomas Splettstoesser, Wikimedia Commons, downloaded in August of 2015.
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Considering the affinity of zinc cations to L-cysteine residues, an analogous com-
plexing system occurs with the L-cysteine capping the CdSe QDs. By forming the
complex, the CQDs start to link themselves and form aggregates, precipitating out of
the solution.[34, 35]

3.5. Zinc Acetate Dihydrate as Capping Agent

Figure 3.11: Photography of the zinc ac-
etate dihydrate capped CdSe CQDs dis-
persed in methoxyethanol (A), in meth-
oxyethanol with zinc acetate dihydrate
(B), the dried form under normal light (C)
and under UV lamp at excitation wave-
length of 366nm (D).

An interesting behavior occurred when the zinc
acetate dihydrate was mixed with the uncapped
CdSe QDs. The suspension started to turn vivid
red, indicating that the QDs were fused together;
forming bigger nanoparticles, because a size in-
creases red-shifts the first absorption state, i.e. it
lowers the QD’s bandgap. After drying and sus-
pending the red dust in methoxyethanol, the sus-
pension became milky, like other capped CQDs,
but kept red and did not grow any further. The
zinc acetate dihydrate capped CQDs suspended in
methoxyethanol with zinc acetate dihydrate, on the
contrary, formed a dark brown pellet, overnight. A
picture of the zinc acetate dihydrate capped CdSe
CQDs suspended in methoxyethanol (A) and meth-
oxyethanol with zinc acetate dihydrate (B) is show
in Figure 3.11, to illustrate the difference in stabil-
ity.

The absorption spectra and corresponding emissions of the zinc acetate dihydrate
capped CdSe CQDs, dispersed in methoxyethanol and methoxyethanol with zinc acetate
dihydrate respectively, are represented in Figure 3.12. The algorithm, used previously
and described in reference [29], was applied to correct the scattering. The selected fitting
range had to be between 650nm and 800nm, since these particles absorb at around
550nm. Although the dried form of the zinc acetate dihydrate capped CdSe CQDS
kept some reddish fluorescence (Figure 3.11-D), the emission spectra, of the zinc acetate
dihydrate capped CdSe CQDs dispersed in methoxyethanol reveal almost no emission,
comparatively to those dispersed in methoxyethanol with zinc acetate dihydrate which
have a very high emission in the 650nm range.
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Figure 3.12: Absorption spectrum of diluted 1:10 zinc acetate dihydrate capped CdSe CQDs, dispersed
in methoxyethanol, on the left and on the right, diluted 1:2 and dispersed in methoxyethanol with zinc
acetate dihydrate. The emission spectra were performed with a slit of 4nm, in right angle mode and the
suspension was not diluted. A - First emission peaks. B - No visible emission peaks. * - First absorption
peak corresponding to the confined ground-state (bandgap) of the CQDs.
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The first absorption peak is estimated to be at λ=563nm, for the CQDs dispersed
in methoxyethanol and at λ=542nm dispersed in methoxyethanol with zinc acetate di-
hydrate, as shown in Figure XVII and Figure XVI, respectively, in Appendix B. This
red-shift of the first absorption peak, relatively to the other capping agents, indicates
that the CdSe QDs are not chemically stable with zinc acetate dihydrate as a capping
agent.

3.6. Lumidot R©

Commercial solutions of CdSe CQDs (named Lumidot) samples were purchased with
the purpose of comparing them to the synthesized CQDs. Their high quality can be
confirmed by the well defined emission peaks, observed in Figure 3.13 and Figure 3.14,
which is in agreement with the data supplied by Sigma-Aldrich.[38]

Figure 3.13: Emission spectra of Lumidot samples dispersed in methoxyethanol. The emission spectra
were performed with a slit of 4nm, in right angle mode and the solution was not diluted.

The samples are referred as L###, given that the λ of the emission peak of the sample
is described by the three consecutive #. The L480 sample has a higher red emission
than the other samples. This emission peak red-shifts and gradually fades as the CQDs
become bigger. On Figure 3.14, in the presence of the zinc salt the samples’ red emission
is greatly enhanced. In the L480 sample case, it overwhelms the first emission peak. The
L590 sample’s emission spectra are not altered by the presence of the cation.

Figure 3.14: Emission spectra of Lumidot samples dispersed in methoxyethanol with zinc acetate
dihydrate. The emission spectra were performed with a slit of 4nm, in right angle mode and the solution
was not diluted.
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The absorption spectra of the Lumidot samples, dispersed in methoxyethanol and
methoxyethanol with zinc acetate dihydrate, are represented in Figure 3.15 and Fig-
ure 3.16, respectively. The samples L560 and L590 started to form a precipitate and it
was not possible to obtain the spectra. The same flat absorption area is observed as in
the bipyridine capped CdSe CQDs.

Figure 3.15: Absorption spectra of Lumidot samples dispersed in methoxyethanol. * - First absorption
peak corresponding to the confined ground-state (bandgap) of the CQDs.

Figure 3.16: Absorption spectra of Lumidot samples dispersed in methoxyethanol with zinc acetate
dihydrate. * - First absorption peak corresponding to the confined ground-state (bandgap) of the CQDs.

Below, in Table 3.1, is represented the measured emission and absorption peaks of the
Lumidot samples suspended in methoxyethanol and methoxyethanol with zinc acetate
dihydrate. To determine the QDs’ size, the empirical Equation 3.6 can be used, given
that the first absorptions peaks are within the advised by Yu et al[39]. D corresponds
to the size of a quantum dot and λ is the first absorption peak.

D = (1.6122×10−9)λ4− (2.6575×10−6)λ3+(1.6242×10−3)λ2−0.4277λ+41.57 (3.1)

The emission and absorption peaks were determined graphically.
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Table 3.1: Table with the first absorption peaks (Abs1), calculated CdSe CQD’s size (Calc. size) and
measured emission peak with excitation at 350nm (E350nm) of the Lumidot samples dispersed in
methoxyethanol with zinc acetate dihydrate (ZnORG) and in methoxyethanol (ORG). Ind -
indeterminable.

ZnORG
L480 L520 L560 L590

Abs1/nm 478 516 Ind Ind

Calc. size/nm 2.16 2.51 Ind Ind

E350nm/nm 482 520 567 593

ORG
L480 L520 L560 L590

Abs1/nm 479 516 Ind Ind

Calc. size/nm 2.17 2.51 Ind Ind

E350nm/nm 485 518 560 588

The most interesting propriety of the Lumidot samples is that the Stokes shift is
practically absent. This can be do to the existence of zero-phonon transitions; transitions
that do not generate phonons and do not lose energy[40]. Comparing both emission
spectra, 3.13 and Figure 3.14, a loss of emission on the first emission peak is observable,
specially on the samples L480 and L520. The Lumidot CQDs’ surface is stabilized with
hexadecylamine ligands which might have some affinity to the Zn2+, leading to the
destabilization of the CQDs, consequently aggregating and loosing emission. Although
there is a loss of emission on the first peak, the second peak’s emission is enhanced by
the Zn2+, as happens on the synthesized CQDs.

3.7. Dynamic Light Scattering (DLS) Measurements

For a brief explanation of the terms associated to the DLS analysis, please refer to
the white paper, published by Malvern Instruments Worldwide.[41]

To ascertain if the solutions without CQDs had any particles in them, a DLS analysis
was done and the results are shown in Figure 3.17. 
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Figure 3.17: DLS spectra of methoxyethanol (ORG) and methoxyethanol with zinc acetate dihydrate
(ZnORG) solutions in a quartz cell with all transparent sides, 2mm wide and with a 1cm optical path
length. The solution was previously filtered with a 0,22µm filter. The signal accumulation times are 30s
for the ZnORG solution and 15s for both solutions, at 25oC.

The methoxyethanol solution reveals no particles, as expected. The methoxyethanol
with zinc acetate dihydrate solution spectra indicate that there are particles with sizes
ranging from 2,4nm to 3,7nm. Curiously, the size of the zinc acetate dihydrate crystallites
are the same as the calculated size of the CdSe CQDs. These zinc acetate dihydrate
particles can be confounded with the signal from the CdSe CQDs particles.

The DLS spectra of uncapped CdSe CQDs (X) and capped with bipyridine, L-cysteine
and zinc acetate dihydrate, dispersed in methoxyethanol and methoxyethanol with zinc
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acetate dihydrate media, are represented in Figure 3.18.
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Figure 3.18: DLS spectra of uncapped and capped with bipyridine, L-cysteine and zinc acetate dihy-
drate CdSe CQDs, dispersed in methoxyethanol with zinc acetate dihydrate and methoxyethanol. The
solution was previously filtered with a 0,22µm filter. The black barrier represents the filter’s pore size
upper limit and the blue barrier is software imposed upper limit of 300nm. A quartz cell with all trans-
parent sides, 2mm wide and with a 1cm optical path length was used. The signal accumulation time is
30s, at 25oC.

Table 3.2 contemplates the hydrodynamic size and polydispersity index (PI), pro-
cessed from the DLS analysis, for uncapped and capped with bipyridine, L-cysteine and
zinc acetate dihydrate CdSe CQDs, in methoxyethanol with zinc acetate dihydrate and
methoxyethanol media.

Table 3.2: Table with the data processed from the DLS analysis for uncapped and capped with
bipyridine, L-cysteine and zinc acetate dihydrate CdSe CQDs, dispersed in methoxyethanol with zinc
acetate dihydrate and methoxyethanol with zinc acetate dihydrate media. The samples were previously
filtered with a 0,22µm filter and all measurements were done at 25oC, in a quartz cell with all
transparent sides, 2mm wide and with a 1cm optical path length and with a signal accumulation time
is 30s. *The peak size data is the weighted mean between two peaks: 115,2nm and 473,7nm.

ZnORG
X Bpy Cys ZnAce Py 3-MT NaAce

Peak size/nm 243,8 250,0 226,5 145,2 181,1 187,6 197,0

PI 0,589 0,611 0,454 1,238 0,507 0,634 0,429

ORG
X Bpy Cys ZnAce Py 3-MT NaAce

Peak size/nm 259,3 118,1 121,8 178,8 132,3 130,0* 98,9

PI 0,607 0,343 0,418 1,493 0,444 0,586 0,443

The remaining DLS spectra of the pyridine, 3-methylthiophene and sodium acetate
trihydrate capped CdSe CQDs are similar to the bipyridine and L-cysteine capped CdSe
CQDs’ and can be found in Appendix B in the DLS spectra section. The latter section
also contains the correlation graphics and the residuals corresponding to the samples
studied in this section, with the data shown with the same sequence as Table 3.2.

The fact that solutions of CdSe CQDs dispersed in methoxyethanol with zinc acetate
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dihydrate media are translucent, compared to the dispersed in methoxyethanol, lead
to a first impression that the colloids are smaller and more stable in methoxyethanol
with zinc acetate dihydrate. The data supplied by the table above negates that fact,
since the capped CdSe CQDs, except the zinc acetate dihydrate capped, show higher
polydispersity and bigger colloids. The zinc cation can interact with the capping agents
by forming complexes and leaving them unprotected, as happens with the uncapped
CdSe CQDs.

The zeta potential was determined for methoxyethanol with zinc acetate dihydrate
solution, sodium acetate trihydrate capped CdSe CQDs in methoxyethanol and meth-
oxyethanol with zinc acetate dihydrate, to determine if the CQDs exhibit a surface
charge. The result are presented in Figure XXXIV and the full data can be found in
Table VIII, in Appendix B. All samples exhibit no mensurable charge, indicating that
the zinc acetate dihydrate crystallites and CQDs have a neutral surface.

Given that the DLS analysis gives an hydrodynamic size of particles, this value is
naturally higher than the individual CQDs’ diameter because DLS mainly detects the
nanoparticles aggregates. So, the peaks observed in Figure 3.18 correspond to the ag-
gregate sizes rather than the real CQD sizes. Another problem, associated with this
technique, is the fact that if a big particle, i.e. an aggregate, passes in front of the sen-
sor, the signal is saturated and it becomes harder to detect smaller particles, especially
quantum dots, whose sizes range from 1nm to around 20nm. The TEM images, on the
next section, will help revealing the size of the unaggregated CQDs.

3.8. Transmission Electron Microscopy (TEM)

The images from the TEM analysis are in accordance with the DLS data. Indepen-
dently of the capping agent used, the particles form aggregates with diameters ranging
from 100nm to 200nm, as the ones seen in Figure 3.19-A.

A B

Figure 3.19: TEM image of uncapped CdSe CQDs. A - the red circles depict the aggregates with
diameters ranging from 100nm to 200nm. B - zoomed image of the area represented by a red square
in A. The blue arrows point to particles with diameters ranging from 2nm to 3nm. The CQDs were
suspended in absolute ethanol, with the aid of ultrasounds, and deposited on a copper grid.

The presence of particles with diameters ranging from 2nm to 3nm is visually con-
firmed by TEM images, depicted by the blue arrows in Figure 3.19-B. It is also confirmed
by the absorption and emission spectral peaks, that were previously presented, as pre-
dicted by the quantum confinement theory.
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A B

Py NaAce

Figure 3.20: A - TEM image of pyridine capped CdSe CQDs. B - TEM image of sodium acetate
trihydrate capped CdSe CQDs. The red arrows point to the structures that envelop the aggregates. The
CQDs were suspended in absolute ethanol, with the aid of ultrasounds, and deposited on a copper grid.

The TEM images pertaining to both pyridine and sodium acetate trihydrate capped
CdSe CQDs are represented in Figure 3.20-A and Figure 3.20-B, respectively. Odd
structures delimiting the aggregates are observed in both images, shown by the red
arrows, particularly noticeable pyridine capped CdSe CQDs’ image.

The route used to synthesize these CdSe CQDs can take up to 48 hours to achieve the
size of up 3nm, similarly to the ones found in Figure XXXV, giving the red colour. The
use of the zinc acetate dihydrate salt as a capping agent accelerated the CQDs’ growth
to a matter of minutes.

The absorption bely present in the absorption spectra of the bipyridine capped CdSe
CQDs, from the experiment described in section 2.1.2.2, reacted for 28h and 30min
(Figure 3.6), and in the absorption spectra of the zinc acetate dihydrate capped CdSe
CQDs (Figure 3.12-ZnORG), are similar. It is safe to assume that the distribution of
the CQDs size is similar. The use of zinc acetate dihydrate as a capping agent poses
as an alternative to hasten the growth of the CdSe CQDs, granting the possibility of
obtaining 3nm CdSe CQDs in around 2h, instead of 48h.

3.9. Global Comparison and Discussion of Results

In Figure 3.21 resides a photography of all the CdSe CQDs from the experiment de-
scribed in section 2.1.2.1 under visible light and, on the bottom, under an UV lamp with
an excitation wavelength of 366nm. The photographies were subject to color removal
to facilitate the visualization of CQDs dusts’ colors. A comparison between the original
photographies can be found in Appendix B; Figure XXXVI corresponding to the vials
under visible light and Figure XXXVII to the vials under UV light.

Figure 3.21: Photography of the synthesized CQDs from the experiment described in section 2.1.2.1,
under visible light (top) and under UV light (bottom). The excitation wavelength is 366nm.
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Using the data provided from the experiment described in section 2.1.2.2, it is possible
to determine which capping agent performed better at prohibiting the CdSe CQDs from
growing further. The difference between the two peaks from the absorption spectra of
the 2h and 5h and 40min samples, reveal that in a 3h and 40min time frame of reaction,
the absorption peak shift is 1nm. This corresponds to an estimated growth of around
9 picometers, which is a very low growth. On this basis, the time span between the
capping agents additions can be approximated to zero and the absorption peak shifts
can be attributed to the initial performance of the capping agents. A comprehensive
list of the relation between the CdSe CQDs’ absorption peaks, peaks’ shift relatively to
Bpy, and the estimated CQD’s sizes, for each capping agent, is found in Table 3.3. The
first absorption peak data for pyridine, 3-methylthiophene, sodium acetate trihydrate
capped CQDs and uncapped ones, dispersed in methoxyethanol and in methoxyethanol
with zinc acetate dihydrate, were determined with the help of the derivates of the ab-
sorption spectra, found in Appendix B. The emission peaks were determined graphically
or through the maximum value in the plot’s data. It is tempting to evaluate quantita-
tively the relation between the reaction time and the CQDs’ size but more data would
be needed between the 2h-28h reaction time frame.

Table 3.3: Table with the first absorption peaks (Abs1), the peaks’ shift relatively to Bpy (ΔAbs1),
calculated CdSe CQD’s size (Calc. size), first (E1), second (E2) and third (E3) emission peaks, with
350nm (En;350nm) and 460nm excitation light (En;460nm), for each capping agent, dispersed in
methoxyethanol with zinc acetate dihydrate (ZnORG) and methoxyethanol (ORG) solution. Ind -
indeterminable. Red - red emission

ZnORG
Bpy Py 3-MT NaAce Cys ZnAce X

Abs1/nm 463 463 463 465 478 542 465

ΔAbs1/nm 0 0 0 +2 +15 +88 +2

Calc. size/nm 2,05 2,05 2,05 2,06 2,16 2,90 2,06

E1;350nm/nm 501 502 488 497 Ind Red Ind

E1;460nm/nm 501 496 496 497 Ind Ind Ind

E2;350nm/nm 526 535 538 538 Ind Ind Ind

E2;460nm/nm 532 533 537 536 Ind Ind Ind

E3;460nm/nm 688 693 700 703 624 Ind Red

ORG
Bpy Py 3-MT NaAce Cys ZnAce X

Abs1/nm 467 465 466 465 484 563 468

ΔAbs1/nm 0 -2 -1 -2 +17 +99 +1

Calc. size/nm 2,08 2,06 2,07 2,06 2,21 3,33 2,08

E1;350nm/nm 512 512 497 505 Ind 576 Ind

E1;460nm/nm 506 505 503 504 Ind 574 Ind

E2;350nm/nm 534 535 539 540 Ind Red Ind

E2;460nm/nm 534 538 540 540 Ind Red Red

All capping agents appear to stabilize the CdSe QDs, since their absorption peaks
appear to be similar. However, as predicted by the CQDs colors, the most unstable
capping agent is zinc acetate dihydrate. To determine if the acetate had any role as
a stabilizer, NaAce was used as a capping agent. Since the absorption peak of the
NaAce capped CdSe CQDs is similar to the other capped CQDs, the responsible for the
quantum dot fusion is the zinc cation.

The calculated CdSe CQDs’ sizes are in agreement with the sizes obtained from the
TEM images.

Chen et al. reported that CQDs synthesized in aqueous medium have a full width
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at half-maximum, on the emission spectrum, of 100nm and that the ones synthesized
in TOPO, at higher temperatures, is between 25nm and 30nm. This difference is due
to a larger number of surface defects on the CQDs synthesized in aqueous medium.[36]
The full width at half-maximum of the synthesized CQDs is around 100nm, higher than
the Lumidot samples’, indicating that this synthesis method produces QDs with surface
defects.

3.10. Film Deposition and Photo-response Measurements

3.10.1. Spin-coat

The deposited films revealed to be visibly grainy and very heterogeneous, indepen-
dently of the parameters used. The transmittance spectra for the various depositions
are represented in Figure 3.22.
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Figure 3.22: Transmittance spectra of the films deposited by spin-coat method, with different rotation
speed and dwelling times. The spectra were taken using an integration sphere. The algorithm applied
for smoothing was Savitzky-Golay with a polynomial order of 9 and with 25 points to the right and to
the left.

There is no difference in transmittance between rotation speeds or dwelling times vari-
ation, suggesting that the film thickness is independent of these parameters. Nonethe-
less, given that the films produced by spin-coating were highly heterogeneous, the spray
pyrolysis coating method was used.

3.10.2. Spray Pyrolysis

The transmittance spectra of the films deposited using scheme E, described in Fig-
ure 2.3. is represented in Figure 3.23. The replica was tested to ensure the reproducibility
of the deposition using scheme E.
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Figure 3.23: Transmittance spectra of the films deposited by spray pyrolysis method, using the scheme
E. The algorithm applied for smoothing was Savitzky-Golay with a polynomial order of 9 and with 25
points to the right and to the left. The black circle to the left indicates the first absorption peak of the
zinc oxide, corresponding to its bandgap, and the black circle to the right indicates the variation in film
thickness.

The films obtained by spray pyrolysis were visibly homogeneous but, depending on the
airbrush’s positioning, the films surface consistently had some spots with slightly more
material than others. After testing all the positioning schemes, the one that resulted in a
less heterogeneous film, was the scheme were the airbrush is pointing upwards to the heat
plate and the nozzle is 25cm away from the heat plate’s surface, which corresponds to the
scheme E in Figure 2.3. The film with the most interesting proprieties, apparent surface
homogeneity and no light scattering, was the one obtained before the airbrush’s nozzle
was completely obstructed. This indicates that the best films can be obtained with a
smaller nozzle than the one used. However, it is hard to keep the nozzle unobstructed
until the deposition is complete.

The spectra of the films show that the method used is reproducible, with a trans-
mittance variation of up to 15%. The difference between the films without the CQDs
and the one with might be due the variation in composition of the dispensed solution.
An loss of transmittance was expected in the 500nm region, since the Cys capped CdSe
CQDs absorb light in that wavelength. After the deposition, the airbrush’s container
had a navy blue dust deposit, suggesting that the acidic aqueous media is not the ideal
for dispersing the CdSe CQDs.

3.10.3. Current-Voltage Characteristic Curve Measurement

The current-voltage characteristic curves of the films deposited by spray, without
and with L-cysteine capped CdSe CQDs, are represented in Figure 3.24, for each type
of irradiation used.
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Figure 3.24: Plot of the current-voltage from the zinc oxide films, with and without L-cysteine capped
CdSe CQDs, irradiated with ambient light, a white LED, UV light at 254nm and at 366nm. The
black arrows point out the difference in photo-response between the zinc oxide films, with and without
L-cysteine capped CdSe CQDs.

The temperature of the substrates, upon deposition, were around 17oC below the
advised in [26]. It is unknown if there was still unreacted zinc acetate on the films,
mixed with the zinc oxide (ZnO).

The films were irradiated by the four types of light sources indicated in Table 3.4.
To simulate the sun, the measurements were performed in ambient light. A white LED
typically has a white light with wavelengths ranging from 400 to 700nm, with no UV
light, corresponding to energies lower than the zinc oxide’s bandgap. This way, the
difference in signal is solely due to sub-bandgap absorption from the CdSe CQDs. Since
both the zinc oxide and the CdSe CQDs absorb in the UV region, the films were also
irradiated with UV light to test their response.

Table 3.4 includes fitting data and the corresponding resistance. G is the electric
conductance which corresponds to the slope of the current-voltage characteristic curve’s
linear regression, taken from -3V to 3V.
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Table 3.4: Table with the fitting data from the current-voltage plots. G - electric conductance. r2 -
coefficient of determination. pΩ - pico ohm. * The signal was very low and full of noise.

ZnO
Ambient light White LED UV (254nm) UV (366nm)

G/pΩ−1 3 2* 5150 2603

r2 0,3018 0,9928 0,9969 0,9999

ZnO + Cys capped CdSe CQDs
Ambient light White LED UV (254nm) UV (366nm)

G/pΩ−1 124 3 14300 8322

r2 0,9539 0,9975 0.9994 0,9993

The results indicate that the presence of the CdSe CQDs in the films raises their
electric conductance by up to two orders of magnitude in the case of ambient light
exposure and triplicates in the case of both UV light exposures. Although the white
LED flashlight had a dim light, given that its emission is above 400nm, the slightly
higher photo-response from the films with CQDs can be attributed to the fact that
the CQDs absorb in the visible range. Therefore, this demonstrates that the presence
of CQDs in the ZnO host enables the composite material to widen its photo-response
below the bandgap of the host. Sub-bandgap absorption is a possible explanation for
the enhanced electric conductance, observed when the film is irradiated with the white
LED. To confirm the existence of an intermediate band, described in section 1.3.3, a
two-photon absorption measurement would have to be done. This technique consists in
irradiating the material with two lasers. The lasers should have well defined sub-bandgap
wavelengths, one that promotes the electrons from the VB to the IB and another that
promotes from the IB to the CB (see Figure 1.6). If the emission corresponds to the
band-gap of the matrix material, in this case the zinc oxide’s, it is safe to affirm that
the material has an intermediate band.[43, 44, 45]
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4. Conclusions

Several different capping agents were tested to passivate the cadmium selenide nanopar-
ticles. Some of the capping agents were never tried before, to the best of our knowledge.
All capping agents were successful in chemically stabilizing the CdSe CQDs, with the
exception of zinc acetate dihydrate. The stabilized nanoparticles were characterized by
TEM and absorption spectroscopy. The TEM images show the existence of 2nm to 3nm
quantum dots and the yellow color of the material itself which corresponds to an absorp-
tion in the range of 400 to 450nm is another evidence that the nanoparticles have 2nm
to 3nm, due to the quantum confinement theory. The capping with molten bipyridine
proved to be successful at temperatures up to 100oC. The uncapped CdSe CQDs cannot
undergo temperatures in the same range without displaying color changes due to the
fusing of the quantum dots.

Although the capped quantum dots do not show a good colloidal stability in meth-
oxyethanol and a pellet can be observed after 24h, the addition of zinc acetate to the
methoxyethanol solution significantly increases the colloidal stability and the suspension
is clear, with no visible pellet, even after one day. From the DLS analysis, we were
able to determine the size of colloid aggregates in methoxyethanol, with and without
zinc acetate dihydrate present, and no significant differences in sizes were observed that
could justify the differences in colloidal stability. The zinc acetate’s function as a colloid
stabilizer was not yet understood. It was hypothesized that the zinc acetate, present in
the methoxyethanol solution, could have exchanged with the capping agents, leading to
the observed colloidal stability. However, a test using zinc acetate as a capping agent
itself, led to an immediate change in color, from yellow to red, indicative of CQD fusion.
This growth induction could be exploited to shorten the time needed to grow the CdSe
CQDs from 2nm to 3nm, from two days of reaction to two hours. The well defined
emission peaks of these zinc acetate dihydrate capped CdSe CQDs, indicate that the
growth hastening does not lead to an increase in dispersion of CQDs’ sizes.

Two deposition methods were compared and the transmittance spectra from the
spin-coated films were used in an attempt to characterize the film thicknesses. The
spin-coating produced films did not show the desired homogeneity under the present
formulation. The spray-pyrolysis method proved to be more versatile, controllable and
the films were deposited more homogeneously.

To test the photo-response of the deposited films by spray-pyrolysis, the electric
conductance of the films was measured and the films with embedded CdSe CQDs had
a higher photo-response, under ambient and UV lights, than the films with only zinc
oxide. Therefore, since the quantum dots absorb at lower energies than the zinc oxide,
the enhanced photo-response could be attributed to the predicted intermediate band
effect.
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5. Future Perspectives

5.0.4. Colloidal Quantum Dots

5.0.4.1. Colloidal Stability

The complete and homogeneous dispersion of CQDs throughout the films is funda-
mental to achieve higher efficiencies. Efforts to improve the CQDs’ colloidal stability,
i.e., to avoid the aggregation of the 2nm CQDs in bigger structures, is desirable and a
strategy to achieve that goal must be designed.

5.0.4.2. Chemical Stability VS Deposition Temperature

The film deposition typically requires the sol-gel precursor solution to react and de-
compose into the oxide form, at temperatures higher than the ones required to grow the
uncapped CQDs. Testing the resistance to high temperature of capped CQDs should be
added as a step to the methodology used.

5.0.4.3. Capping with Molten 2,2’Bipyridine

The one-step procedure described in section 3.3, could be explored to its full potential.
The process can be optimized to achieve an improved extraction efficiency. Testing the
solubility of the solid mixture of bipyridine and CdSe QDs in several kinds of solvents
should be done to grant versatility in the deposition process.

Absorption and fluorescence spectra and TEM images should be obtained to deter-
mine the size distribution of the QDs and their bandgap and to compare with the typical
capping procedures.

5.0.4.4. Testing Other Materials

The results with cadmium selenate quantum dots are very promising and should be
pursued. However, it is also important to test quantum dots made of different materials,
with adequate bandgaps in the desired region, to prove the generality of the approach
and, with luck, to find comparable performances with cheaper and/or safer materials.

5.0.5. Film Characterization

5.0.5.1. Distribution of CQDs Embedded in the Films

The distribution of the CQDs embedded in the films has to be characterized, by con-
focal fluorescence microscopy, to guarantee a good dispersion of the fluorescent quantum
dots throughout the films. The dispersion of the quantum dots can be correlated with
the photo-electric properties of the films and used to improve the performance of the
nano-structured hybrid materials.

5.0.5.2. 2-Photon Absorption Measurement

Despite the intermediate-band is a plausible explanation for the observed improve-
ment of the photo-response, direct proof of the existence of an intermediate band is
necessary. For that two-step photon absorption measurements must be employed.
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Appendix A

Weights - Synthesis and Characterization

Table I: Weights of capping agents added to falcon tubes.

Bpy Py 3-MT NaAce Cys ZnAce

Weight/mg 30,28 17 20,36 26,32 23,57 42,60

Table II: Weights of capped CdSe CQDs used in optical characterization, corresponding to the
synthesis involving six different capping agents, in either 1mL of ORG or ZnORG.

CdSeBpy CdSePy CdSe3-MT CdSeNaAce CdSeCys CdSeZnAce CdSeX

ORG 1,19mg 1,03mg 1,04mg 1,07mg 1,04mg 1,09mg 1,05mg

ZnORG 1,03mg 1,14mg 1,17mg 1,00mg 1,03mg 0,91mg 0,96mg

Table III: Weights of capped CdSe CQDs used in optical characterization, corresponding to the
experiment described in section 2.1.2.2, in either 0,5mL of ORG or ZnORG.

Reaction time
2h 5h 40min 28h 30min

ORG 1,99mg 1,99mg 1,07mg

ZnORG 2,07mg 2,07mg 1,34mg

Table IV: Weights of capped CdSe CQDs used in DLS analysis, both size and zeta potential
determination, corresponding to the synthesis involving six different capping agents, in either 1mL of
ORG or ZnORG. The CdSeNaAce sample was diluted 1:2.

CdSeBpy CdSePy CdSe3-MT CdSeNaAce CdSeCys CdSeZnAce CdSeX

ORG 1,01mg 1,06mg 1,17mg 1,85mg 0,93mg 1,03mg 1,09mg

ZnORG 1,11mg 0,99mg 1,10mg 1,86mg 0,96mg 1,07mg 1,13mg
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Device Parameters - Characterization

Table V: Device parameters used on the optical characterization of CdSe CQDs, from the experiment
described in section 2.1.2.1, suspended in AN.

Scan Software Version 3.00(339)

Instrument Cary 5000

Instrument Version 1.12

Start (nm) 2000,000

Stop (nm) 200,00

X Mode

Y Mode

UV-Vis Scan Rate (nm/min) 600,000

UV-Vis Data Interval (nm) 1,000

UV-Vis Ave. Time (sec) 0,100

UV-Vis SBW (nm) 2,000

Slit Height Full

Beam Mode Double

Signal-to-noise Mode Off

UV Source On

Vis Source On

Third Source Off

Source Changeover (nm) 350,00

Detector Changeover (nm) 800,00

Grating Changeover (nm) 800,00

Baseline Correction On

Baseline Type Baseline correction

Cycle Mode Off

<SBW (nm)> 2,00

<Energy> 52,48

<Slit height> Full

<Current Wavelength> 200,00
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Table VI: Device parameters used on the optical characterization of CdSe CQDs, from the
experiment described in section 2.1.2.1, suspended in either ORG or ZnORG.

Collection Time 7/28/2015 2:26:39 PM

Scan Software Version 4.20(468)

Instrument Cary 100

Instrument Version 09.00

Start (nm) 800,00

Stop (nm) 200,00

UV-Vis Scan Rate (nm/min) 600,000

UV-Vis Data Interval (nm) 1,000

UV-Vis Ave. Time (sec) 0,100

UV-Vis SBW (nm) 2,0

Beam Mode Double

Signal-to-noise Mode Off

UV Source On

Vis Source On

Source Changeover (nm) 350,00

Baseline Correction On

Baseline Type Baseline correction

Cycle Mode Off

<SBW (nm)> 2,00

<Energy> 155,00

<Current Wavelength> 200,00
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Table VII: Device parameters used on the optical characterization of CdSe CQDs, from the
experiment described in section 2.1.2.2, suspended in either ORG or ZnORG.

Scan Software Version 3.00(339)

Instrument Cary 5000

Instrument Version 1.12

Start (nm) 2000,00

Stop (nm) 200,00

X Mode Nanometers

Y Mode Abs

UV-Vis Scan Rate (nm/min) 600,000

UV-Vis Data Interval (nm) 1,000

UV-Vis Ave. Time (sec) 0,100

UV-Vis SBW (nm) 2,000

Slit Height Full

Beam Mode Double

Signal-to-noise Mode Off

UV Source On

Vis Source On

Third Source Off

Source Changeover (nm) 350,00

Detector Changeover (nm) 800,00

Grating Changeover (nm) 800,00

Baseline Correction On

Baseline Type Baseline correction

Cycle Mode Off
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Appendix B

Absorption and Emission Spectra
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Figure I: Corrected absorption spectrum of diluted 1:10 Py capped CdSe CQDs, dispersed in ORG.
The emission spectra were performed with a slit of 4nm, in right angle mode and the solution was not
diluted. * - First absorption peak.
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Figure II: Absorption spectrum of diluted 1:2 Py capped CdSe CQDs, dispersed in ZnORG. The
emission spectra were performed with a slit of 4nm, in right angle mode and the solution was not
diluted. * - First absorption peak.

V



Solution Processed Quantum Dot Photodetectors

 

Ab
so
rb
an

ce
 o

r E
m

is
si

on

0,0

0,5

1,0

λ/nm
400 500 600 700

Abs
E350
E460

* Red emission

Figure III: Absorption spectrum of diluted 1:10 3-MT capped CdSe CQDs, dispersed in ORG. The
emission spectra were performed with a slit of 4nm, in right angle mode and the solution was not diluted.
* - First absorption peak.
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Figure IV: Absorption spectrum of diluted 1:2 3-MT capped CdSe CQDs, dispersed in ZnORG. The
emission spectra were performed with a slit of 4nm, in right angle mode and the solution was not diluted.
* - First absorption peak.
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Figure V: Absorption spectrum of diluted 1:10 NaAce capped CdSe CQDs, dispersed in ORG. The
emission spectra were performed with a slit of 4nm, in right angle mode and the solution was not diluted.
* - First absorption peak.
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Figure VI: Absorption spectrum of diluted 1:2 NaAce capped CdSe CQDs, dispersed in ZnORG. The
emission spectra were performed with a slit of 4nm, in right angle mode and the solution was not diluted.
* - First absorption peak.
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Absorption Spectra Differentiation
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Figure VII: Absorption spectrum of diluted 1:2 bipyridine capped CdSe CQDs, dispersed in ZnORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left.
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Figure VIII: Absorption spectrum of diluted 1:2 Py capped CdSe CQDs, dispersed in ZnORG, and
the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left.
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Figure IX: Corrected absorption spectrum of diluted 1:10 Py capped CdSe CQDs, dispersed in ORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure X: Absorption spectrum of diluted 1:2 3-MT capped CdSe CQDs, dispersed in ZnORG, and
the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left.

IX



Solution Processed Quantum Dot Photodetectors

 

Ab
so
rb
an

ce

0,0

0,5

1,0

dA
bs
or
ba

nc
e/
dλ

−1×10−2

0

1×10−2

λ/nm
400 450 500 550

Abs
dAbs/dλ448nm

484nm

466nm

Figure XI: Absorption spectrum of diluted 1:10 3-MT capped CdSe CQDs, dispersed in ORG, and
the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XII: Absorption spectrum of diluted 1:2 NaAce capped CdSe CQDs, dispersed in ZnORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left.
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Figure XIII: Absorption spectrum of diluted 1:10 NaAce capped CdSe CQDs, dispersed in ORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XIV: Corrected absorption spectrum of diluted 1:2 Cys capped CdSe CQDs, dispersed in ORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XV: Absorption spectrum of diluted 1:10 Cys capped CdSe CQDs, dispersed in ORG, and
the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XVI: Corrected absorption spectrum of diluted 1:2 ZnAce capped CdSe CQDs, dispersed in
ORG, and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay
with a polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XVII: Corrected absorption spectrum of diluted 1:10 ZnAce capped CdSe CQDs, dispersed in
ORG, and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay
with a polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XVIII: Corrected absorption spectrum of diluted 1:2 uncapped CdSe CQDs, dispersed in ORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.
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Figure XIX: Corrected absorption spectrum of diluted 1:10 uncapped CdSe CQDs, dispersed in ORG,
and the smoothed spectral derivative. The algorithm applied for smoothing was Savitzky-Golay with a
polynomial order of 9 and with 25 points to the right and to the left and to the left.

DLS Spectra

Re
sid

ua
l

−1×10−2

0

1×10−2

Delay time/µs
1 10 100 1000 10000 100000

Residual

Co
rre

la
tio

n

0,2

0,4

0,6

0,8

1
Fitting function
Correlation

Figure XX: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.
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Figure XXI: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
uncapped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm wide
and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The signal
accumulation time is 30s.
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Figure XXII: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
Bpy uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides,
2mm wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter.
The signal accumulation time is 30s.
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Figure XXIII: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
Bpy capped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.
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Figure XXIV: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
Cys uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides,
2mm wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter.
The signal accumulation time is 30s.
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Figure XXV: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
Cys capped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.

Co
rre

la
tio

n

0,2

0,4

0,6

0,8

1
Fitting function
Correlation

Re
sid

ua
l

−2×10−2

0

2×10−2

Delay time/µs
1 10 100 1000 10000 100000

Residual

Figure XXVI: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
ZnAce uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides,
2mm wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter.
The signal accumulation time is 30s.
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Figure XXVII: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
ZnAce capped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.

Re
sid

ua
l

−1×10−2

0

1×10−2

Delay time/µs
1 10 100 1000 10000 100000

Residual

Co
rre

la
tio

n

0,2

0,4

0,6

0,8

1
Fitting function
Correlation

Figure XXVIII: Graphic of the correlation data with corresponding fitting, from the DLS analysis,
of Py uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides,
2mm wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter.
The signal accumulation time is 30s.
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Figure XXIX: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
Py capped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.
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Figure XXX: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
3-MT uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides,
2mm wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter.
The signal accumulation time is 30s.
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Figure XXXI: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
3-MT capped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.
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Figure XXXII: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
NaAce uncapped CdSe CQDs, dispersed in ZnORG solution, in a quartz cell with all transparent sides,
2mm wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter.
The signal accumulation time is 30s.
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Figure XXXIII: Graphic of the correlation data with corresponding fitting, from the DLS analysis, of
NaAce capped CdSe CQDs, dispersed in ORG solution, in a quartz cell with all transparent sides, 2mm
wide and with a 1cm optical path length. The solution was previously filtered with a 0,22µm filter. The
signal accumulation time is 30s.
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Figure XXXIV: Zeta potential graphics of ZnORG solution, NaAce capped CdSe CQDs in ORG and
ZnORG. An AGILE Carbon Zeta Potential Cell was used. The solution was previously filtered with a
0,22µm filter.
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Table VIII: Table with the data processed from the zeta potential analysis of ZnORG solution,
NaAce capped CdSe CQDs in ORG and ZnORG. An AGILE Carbon Zeta Potential Cell was used.
The solution was previously filtered with a 0,22µm filter. E. mobility is the electrophoretic mobility.

ZnORG

ZnORG
(Auto)

NaAce/ZnORG
(Auto)

NaAce/ZnORG
(12V)

Zeta potential/mV +2,1 -4,3 -0,3

Electrode voltage/V 3,3 3,3 11,5

E. mobility/cm2/Vs 0,000001 -0,000002 2.05

Conductivity/mS/cm 0,466 0,502 497

ORG

NaAce/ORG
(Auto)

NaAce/ORG
(12V)

NaAce/ORG
(16V)

Zeta potential/mV +5,2 -50,3 -6,0

Electrode voltage/V 3,9 11,7 15,6

E. mobility/cm2/Vs 0,000002 -0,000023 -0,000003

Conductivity/mS/cm 0,074 0,073 0,076

TEM Images

  

Figure XXXV: TEM image of zinc acetate dihydrate CdSe CQDs. A - the red circle points to an
aggregate with a diameter ranging from 100nm to 200nm. B - zoomed image of the area represented by
a red square in A. The blue circle depicts a round aggregate with a diameter of 13nm and the blue arrow
points to a particle with a diameter of 2,8nm. The CQDs were suspended in absolute ethanol, with the
aid of ultrasounds, and deposited on a copper grid.
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Photography Color Correction

Figure XXXVI: Photography of the capped CQDs from the experiment described in section 2.1.2.1
under visible light, on the top, and the same after color removal, on the bottom.

Figure XXXVII: Photography of the capped CQDs from the experiment described in section 2.1.2.1
under UV light, on the top, and the same after color removal, on the bottom.
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