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ABSTRACT

Combinatorial Optimization Problems occur in a wide variety of contexts and generally
are NP-hard problems. At a corporate level solving this problems is of great importance
since they contribute to the optimization of operational costs. In this thesis we propose to
solve the Public Transport Bus Assignment problem considering an heterogeneous fleet
and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which
additional constraints are enforced to model a real life scenario.

The number of constraints involved and the large number of variables makes imprac-
ticable solving to optimality using complete search techniques. Therefore, we explore
metaheuristics, that sacrifice optimality to produce solutions in feasible time. More con-
cretely, we focus on the development of algorithms based on a sophisticated metaheuristic,
Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism.

For complex problems with a considerable number of constraints, sophisticated meta-
heuristics may fail to produce quality solutions in a reasonable amount of time. Thus,
we developed parallel shared-memory (SM) synchronous ACO algorithms, however,
synchronism originates the straggler problem. Therefore, we proposed three SM asyn-
chronous algorithms that break the original algorithm semantics and differ on the degree
of concurrency allowed while manipulating the learned information.

Our results show that our sequential ACO algorithms produced better solutions than
a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were
achieved by increasing the amount of cooperation (number of search agents). Regarding
parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones
in terms of speedup and solution quality, achieving speedups of ≈ 17.6x. The cooperation
scheme imposed by asynchronism also achieved a better learning rate than the original
one.

Keywords: Metaheuristics, Parallelism, Vehicle Scheduling Problem, Ant-Colony Opti-
mization, Local Search, Asynchronism, Cooperative Search.
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RESUMO

Problemas de Optimização Combinatória estão presentes em diversos contextos e
são regra geral NP-hard. É importante resolver estes problemas a nível empresarial de
forma a optimizar os custos operacionais. Nesta dissertação iremos resolver o problema
de Alocação de Autocarros num Serviço de Transportes Públicos considerando uma
frota heterogénea e mudanças de linha, uma variante do problema de escalonamento de
veículos com múltiplos depósitos, com restrições adicionais para modelar um cenário real.

O grande número de restrições e de variáveis tornam impraticável a utilização de
técnicas que garantam a otimalidade das soluções. Como tal, exploram-se metaheurísti-
cas, métodos que sacrificam otimalidade, de forma a produzir soluções em tempo útil.
Focamo-nos no desenvolvimento de algoritmos baseados numa metaheurística sofisticada,
Ant-Colony Optimization (ACO), que tem por base um mecanismo de aprendizagem
estocástico.

Para problemas complexos com um elevado número de restrições, metaheurísticas
sofisticadas poderão não conseguir produzir boas soluções em tempo útil. Como tal,
desenvolveram-se algoritmos de ACO paralelos síncronos em memória partilhada (MP),
no entanto, o síncronismo causa straggler problem. Assim, propomos três algoritmos as-
síncronos em MP, que alteram a semântica do algoritmo original e diferem no grau de
concorrência permitido na manipulação da informação recolhida.

Os nossos resultados demonstram que os nossos algoritmos sequenciais de ACO pro-
duzem melhores soluções que a metaheurística de Restarts, que são capazes de aprender
obtendo-se melhores soluções aumentando o nível de cooperação (número de agentes).
Em relação aos algoritmos paralelos, os algoritmos assíncronos de ACO apresentaram
melhores resultados em termos de speedup e qualidade da solução do que os síncronos,
com speedups na ordem de ≈ 17.6x. Com o esquema de cooperação imposto pelo assín-
cronismo também se obteve uma melhor taxa de aprendizagem em relação ao original.

Palavras-chave: Meta-Heurísticas, Paralelismo, Problema de Alocação de Veículos, Ant-
Colony, Pesquisa Local, Assíncronismo, Pesquisa Cooperativa.
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1
INTRODUCTION

This chapter introduces the context and the motivation surrounding this work in section 1.1.
Then the objectives of our work will be presented in section 1.2 regarding the development
of an algorithm to solve the Public Transport Bus Assignment problem and the exploration
of parallelism.

After presenting the objectives, we present in section 1.3 the problem which this work
tackles. More concretely, we formulate and describe the vehicle scheduling problem and
enumerate the parallel metaheuristic hypothesis.

Lastly, the main contributions are specified and the document organization will be
described, in sections 1.4 and 1.5, respectively.

1.1 Context and Motivation

Combinatorial Optimization Problems (COPs) occur in a wide variety of contexts, in-
cluding science, business, industry, among others. These problems are very demanding
in terms of computational complexity (in general NP-Hard [31]), which makes human
solving highly impractical. Nevertheless, at a corporate level, solving these problems is of
great importance, since it allows corporations to optimize their operational resources/-
costs. Many efficient decision support tools which automate the solving process, emerged,
allowing companies to maximize their profits by applying an efficient resources/costs
management.

In general, COPs can be solved with two different methods: complete search methods
or incomplete/approximative methods. Even though complete search methods guarantee
an optimal solution, they do not scale. Approximative methods, in particular metaheuris-
tics [8, 72], do not guarantee an optimal solution but, by sacrificing completeness, are
able to obtain near-optimal solutions, in a reasonable amount of time, even for large
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instances. However, as the problem instances become very large, metaheuristic methods
performance tends to degrade.

Solving large instances of COPs in reasonable time is very important, not only at a
corporate level, but also in several fields of science like physics, biology and chemistry
(e.g. sequencing and assembling of DNA chains [11]), contributing for progress.

The performance of the methods for solving COPs depend not only on how suited the
method is to a specific problem (i.e. the method characteristics vs. the problem characteris-
tics), but also on the hardware being used and how it is exploited.

Nowadays, due to technological limits, the processing power of Central Processing
Units (CPUs) does not increase by increasing the clock speed, but instead, by increasing the
number of transistors and the number of cores on the CPU (multi-core CPUs). Multiproces-
sors systems follow the same trend by using two or more processors (single or multi-core
processors) in order to achieve superior processing power. Moore’s law [58], which states
that the number of transistors in a CPU would double approximately every two years, is
still valid and it is worth exploring parallelism to increase applications performance.

Methods for solving COPs can exploit this degree of parallelism (from multi-core and
multiprocessors systems) in order to increase their effectiveness in terms of computation
time, solution quality or both. By reducing computation time, larger instances can be
addressed. Since real life COPs tend to be very complex, involving a large number of
variables, it is important to use all the potential parallelism in order to design solving
methods capable of tackling these type of problems.

This thesis addresses a real life problem that Public Transport Services companies face,
the Public Transport Bus Assignment (PTBA) problem , a Vehicle Scheduling Problem
(VSP) variant with additional constraints, which comprises a large number of variables,
resulting in a very complex and CPU time-consuming problem. The problem is described
in detail in section 1.3.1.

Due to the promising features of Constraint-Based Local Search [76], which will be
highlighted in section 2.2, we developed a sequential Constraint-Based Local Search (CBLS)
solver: CaSPER LS [68]. CBLS solvers allow one to model complex COPs in a declarative
manner, therefore simplifying the process of developing effective metaheuristic algorithms
which not only attempt to maximize/minimize a given objective function but also attempt
to minimize the number of constraints violations.

1.2 Objectives

The main goal of this thesis is to develop an effective algorithm for solving the PTBA
problem, i.e., an algorithm capable of solving real life instances in a reasonable amount
of time, while producing quality solutions. The variant addressed in this thesis captures
several details that occur in a real life setting that are left out from the original VSP and
common variants addressed in the literature.
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Initially our purpose is to develop a Local Search (LS) algorithm which a search agent
can use to build complete solutions, satisfying all the constraints. This algorithm is an
essential component to develop more intelligent metaheuristic-based algorithms.

Based on this algorithm we intend to develop an intelligent algorithm capable of escap-
ing local optima and effectively explore the search space. The Ant-Colony Optimization
(ACO) metaheuristic [22] will be used to achieve this goal.

Current multi-core/multiprocessor systems offer a high degree of parallelism. In this
thesis, different parallel strategies targeting shared-memory (SM) architectures for different
local search metaheuristics will be analysed in order to develop improved, efficient and
intelligent search techniques that not only take full advantage of the available hardware,
but also of the problem characteristics. More concretely, it is our objective to perform the
following tasks:

Parallel strategies - Analyse and develop improved parallel strategies for the metaheuris-
tics used for the sequential implementations, namely the Ant-Colony Optimization
metaheuristic. We will analyse the possibility the asynchronous approach since it
mitigates the straggler problem, which will be presented on section 2.6. Concretely
we intend to design ant test asynchronous strategies for the ACO metaheuristic;

Cooperation between processes - Study how can different search processes cooperate in
order to reach higher quality solutions and assess if cooperation improves solutions
quality.

The effectiveness of resulting techniques will be experimentally evaluated and tested
against a real life instance with a considerable number of departures.

The best algorithm will be incorporated on a decision support tool that is being de-
veloped in the context of the research project "RtP - Restrict to Plan" under development
by the research centre NOVA LINCS at Faculdade de Ciências e Tecnologias da Univer-
sidade Nova de Lisboa. This project aims to develop a state-of-the-art decision support
tool for solving the three main problems of a public transport bus service: producing a
time-table of departures for all the bus lines, assigning vehicles to each departure and
finally assigning drivers to each 〈departure, vehicle〉 assignment.

1.3 Problem Description

Complete search techniques like Constraint Programming (CP) [64], Integer Program-
ming [59], tree search methods [65] (e.g. A*) and others, guarantee optimality. However,
they all require exponential computational time complexity, making it impossible to obtain
a solution in a reasonable amount of time.

By relaxing the optimality requirement, one can use approximative methods that are
able to achieve near-optimal solutions in a reasonable amount of time. Metaheuristics [32]
are approximative methods that have been extensively applied to COPs [1]. As discussed
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in section 2.1.1, the effectiveness of metaheuristics is in part directly related to its capability
of escaping local optima in order to effectively explore the search space. The most simple
metaheuristics (e.g. Restarts and Multi-Starts, discussed in section 2.1.2.1) may fail to
achieve this objective, therefore, more sophisticated metaheuristics should be considered.
Even with sophisticated metaheuristics bad results may be observed since they may not
be suited for a given problem. Therefore, it is important to analyse each metaheuristic
characteristics and compare with the problem characteristics in order choose adequately.

Nevertheless, sophisticated metaheuristics demand higher computation times. For
complex problems with large search spaces and with a considerable number of constraints,
as the one we address in this work, they may also fail to find quality solutions in a
reasonable amount of time.

Metaheuristics performance can be improved by exploring parallelism offered by
parallel architectures. Taking advantage of all the hardware resources is crucial in order
to design algorithms that are able to address complex problems and to scale (in terms of
instances size). Additionally, parallel computing may improve not only the performance
but also the solution quality. In some parallel strategies, search agents execute a given
algorithm in order to build a solution to the problem. Unlike the sequential scenario
case, parallel algorithms introduce an interesting natural behaviour: cooperation between
search agents. Search agents may exchange knowledge collected during the search in
order to achieve a better exploration of the search space by indirectly guiding subsequent
searches towards promising regions.

1.3.1 Public Transport Bus Assignment Problem

The Public Transport Bus Assignment (PTBA) problem is a combinatorial optimization
problem arising in transit services companies, which consists of producing a schedule
for each vehicle such that each trip is covered by one and only one vehicle and the
operational costs are minimized, whilst satisfying a set of constraints. The PTBA problem
is a variant of the more general Vehicle scheduling problem [30] in which several depots are
considered and line exchanges are allowed. Additionally, an heterogeneous fleet of vehicles
is considered (i.e. there are several types of vehicles each with different characteristics and
constraints).

The problem can be formulated as follows:

Let L be a set of lines to be covered, P be a set of terminals and T be a set of n
time-tabled departures T1, . . . , Tn, such that for each j ∈ [1, n], sj and ej denote
the starting and ending time, respectively, itj, f tj ∈ P denote the initial and final
terminal, respectively, and lj ∈ L the corresponding line of departure j. Let D be a
set of m depots D1, . . . , Dm where each depot Dk has a total capacity of rk (with
rk ≤ n) vehicles.

Let τi,j be the travel time for a vehicle to go from the arrival terminal of departure
Ti to the terminal of departure Tj, where i, j ∈ [1, n]. An ordered pair of trips
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(Ti, Tj) is said to be compatible iff the same vehicle can cover trips Ti and Tj in the
sequence, i.e, the following inequality is verified:

ei + εmin + γi,j ≤ sj (1.1)

where εmin is the minimum time between an arrival and a departure, in order to
allow preparation of the vehicle and/or perform a driver exchange.

Let termi be a terminal such that termi ∈ P. At every moment in time, only
maxNumVehiclesAtTerminali vehicles can be parked at termi and the duration in
which a vehicle can be parked at a termi cannot exceed maxDurAtTerminali. A
vehicle service is interrupted when a vehicle is idle at a terminal or at a depot (and
already performed some work) for more than maxIdleTimeInService minutes.

A vehicle scheduling Si, performed by a vehicle vi stationed at depot Dk, consists
of a sequence of tasks. Each task consists in a tuple 〈v_id, il, f l, smin, emin, type〉
where:

• v_id denotes the vehicle identifier;

• il and f l are the initial and final locations, respectively, where il, f l ∈ P ∪ D;

• smin and emin are the starting and the ending minute, respectively. For
departure tasks , smin = sj and emin = ej for a given departure Tj;

• type ∈ {InService, Wait, VoidIn, VoidOut, LineExchange, Maintenance,
ServiceInterrupt} and corresponds to the type of the task.

InService tasks correspond to trips with passengers, Wait tasks correspond
to a waiting state in which the vehicle is idle, VoidIn/VoidOut tasks corre-
spond to trips performed without passengers from/to a depot, LineExchange
corresponds to the situation where a vehicle performs a line exchange,
Maintenance corresponds to a maintenance task where a vehicle performs
maintenance and ServiceInterrupt correspond to a service interruption.

Vehicle schedules cannot have more than maxNumInterrupts service interrupts.

Each type of vehicle has the following constraints associated:

• Maximum daily working time;

• Maximum time between two maintenance tasks;

• Minimum time of a maintenance task;

• Set of lines in which the vehicle is allowed to perform departures.

Additionally, for each type of vehicle, the following parameters are considered

• Investment cost (e/day) of the vehicle, measured by its daily depreciation;
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• Working cost (e/day) of the vehicle (i.e. fuel and maintenance costs).

Given the specification above, the problem consists in finding an assignment of vehicles
to departures such that:

i) each departure is covered by exactly one vehicle;

ii) each vehicle is assigned to a sequence of pairwise compatible departures, starting
from and returning to its depot at the end of the schedule;

iii) the number of vehicles in a depot Dk and used in the solution does not exceed rk,
for k ∈ [1, . . . , m];

iv) each vehicle waits εmin minutes when arrives at a terminal before performing the
next departure;

v) the operational costs of the assignment are minimized.

We consider that each PTBA problem instance corresponds to a period of one day,
where the services are the routes specified in a fixed timetable for that day. Furthermore,
line exchanges are taken into account (vehicles are not bound to a single service line)
although each vehicle is still bound to only one depot.

In our formulation, a vehicle travels along service lines starting and ending in the
assigned depot. No interruptions occur during a trip between two terminals. Sporadically,
a vehicle can return to his corresponding depot either for maintenance or in case no more
services are allocated to that vehicle.

Vehicles can stay at a terminus termi waiting for a departure (idle time), to avoid
travelling to the depot, if a spot on termi is available and if the waiting time does not
exceed maxDurAtTerminali. When the waiting time exceeds maxIdleTimeInService the
service is interrupted which means that the vehicle is not wasting working time.

Objective Function. The objective function F to be minimized takes into account the
investment cost of each vehicle measured by its daily depreciation (e/day) (including the
cost of maintenance episodes) and the running cost of the total distance travelled by each
vehicle. Each of the costs referred change according to the vehicle type.

Let Nb be the total number of vehicles used (i.e. the total number of schedules Si in
the solution). The function F of a solution sol is defined as follows:

F(sol) =
Nb

∑
i=1

(distTravelled(vi) ∗ distTypeCost(vi) + dailyTypeCost(vi)) (1.2)

where distTravelled(vi) is the total distance travelled by the vehicle vi in the solution sol,
distTypeCost(vi) and dailyTypeCost(vi) is the running cost and the daily depreciation,
respectively, of vehicles from the type of vehicle vi. The unused vehicles slots in each
depot Dk do not contribute to the total cost.

6



1.3. PROBLEM DESCRIPTION

For m ≥ 2 this optimization problem is classified as an NP-Hard problem [5, 47],
therefore, unless P = NP, cannot be solved in polynomial time. The proof is omitted in
this document and can be seen in [5]. When m = 1 the original problem can be solved in
polynomial time [47].

Figure 1.1: Partial Assignment Example of the PTBA problem.

Partial Assignment example. Figure 1.1 illustrates a partial assignment example for
one service line l1 with n departures. The depots are omitted and all vehicles belong to
the depot d1. In this example we have:

• D = {d1} with r1 = ∞;

• T = {T0, T1, T2, T3, T4, . . . , Tn}, with starting times t0, t0, t1, t2, t3, . . . , tn and ending
times e0, e1, e2, e3, e4, e5, . . . , en;

• Let B = {b1, b2, b3, . . .} the set of vehicles used;

• Solution = {s1, s2, s3, . . .}, where:

– s1 = {〈b1, d1, t0,−, s0, VoidIn〉, 〈b1, t0, t1, s0, e0, InService〉, 〈b1, t1, t1, s0, s2, Wait〉,
〈b1, t1, t0, s2, e2, InService〉, 〈b1, t0, d1, e2,−, VoidOut〉, . . .}

– s2 = {〈b2, d1, t1,−, s1, VoidIn〉, 〈b1, t1, t0, s2, e2, InService〉,
〈b2, t0, t1, e2/s3, e3, InService〉, 〈b2, t1, d1, e3,−, VoidOut〉, . . .}

– s3 = {〈b3, d1, t1,−, s4, VoidIn〉, 〈b3, t1, t0, s4, e4, InService〉,
〈b3, t0, d1, e4,−, VoidOut〉, . . .}

are the schedules for vehicles b1, b2 and b3, respectively;

• F = ∑|B|i=1(distTravelled(bi) ∗ distTypeCost(bi) + dailyTypeCost(bi))
1.

1To keep the presentation simple the real F value and the real costs are omitted.
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1.3.2 Parallel Metaheuristics Hypothesis

Parallel computing is often used to decrease computation time. In search, parallel schemes
may be developed from sequential algorithms in order to improve performance. The
success of a parallelization schemes is closely related to the natural intrinsic parallelism of
each algorithm and not all algorithms are suited for being parallelized.

In humans, knowledge gathering and learning from observations occurs sequentially.
We observe the world with our senses (Sight, Hearing, Touch, etc.) and then we combine
the obtained information in some manner in order to learn. This learning process is
iterative. When learning a given concept, several iterations may be required. Just like
humans, intelligent metaheuristics, i.e., in general metaheuristic that are not greedy and
attempt to guide the search towards promising regions of the search space by gathering
data from previous searches or by exploring problems characteristics, are also iterative.

The degree of metaheuristics parallelization is restrained by this fact since a certain
degree of iterative processing, not parallelizable, must exist. Nevertheless, parallelism
can still be explored and many parallel schemes hypothesis exist. In particular and as
described in section 1.2, the following two major hypothesis exist:

Parallel strategies - Improved parallel strategies may be developed using parallel com-
puting. Several parallelization strategies for metaheuristics have already been pro-
posed and should be analysed to evaluate if they can possibly lead to performance
gains within our algorithms.

ACO is a sophisticated metaheuristic which uses knowledge from previous search
experiences in order to guide subsequent search processes. Furthermore, ACO can
be naturally paralellized. Proposed ACO parallel strategies should be analysed and
if possible new strategies may be derived for the purpose of developing a robust and
scalable search algorithm for the PTBA problem. A common characteristic of the ma-
jor parallel strategies for ACO is the fact that they are synchronous. As it will be dis-
cussed in section 3.4 synchronism causes the straggler problem [13]. Asynchronous
strategies mitigate this problem but usually increase algorithms complexity and/or
change the original algorithm semantics. Therefore, the asynchronism hypothesis
should be analysed taken into account this tradeoff. The developed strategies must
be tested in order to assess their effectiveness.

Cooperation between processes - Search agents executing in parallel can work together
and exchange knowledge gathered during the search process. Cooperation schemes
can help in guiding different search processes towards promising regions of the
search space, and help metaheuristics escaping local optima. It is therefore important
to analyse the issues in cooperative schemes: what information should be shared,
when and where (between which processes) should the information exchange occurs.
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1.4 Main Contributions

The PTBA problem variant was not yet addressed in the literature. This thesis will con-
tribute with a set of approximative algorithms for solving the PTBA problem using
Constraint-Based Local Search and Metaheuristics. Different metaheuristics, with different
characteristics and degrees of sophistication will be analysed and implemented.

A detailed study of parallel mechanisms and strategies applied to metaheuristics
suitable for solving the PTBA problem, as well as under what assumptions they prove to
be, or not effective will be performed. More concretely, we will contribute with an analysis
of:

i) How can sequential metaheuristics be extended by exploring the available resources
in SM architectures (multi-core and multiprocessors) in order to achieve better performance
in terms of computation time and solution quality. Regarding ACO, we will develop
asynchronous parallel strategies for ACO and analyse their respective performance;

ii) How can cooperation between processes be achieved and contribute towards an
effective and intelligent exploration of problem’s search space;

To support this analysis, we will implement a parallel optimization library for the
PTBA problem with implementations of the resulting algorithms from our analysis. This
library aims at being efficient, compositional and extensive, such that new algorithms
can be easily added by reusing existing ones. Additionally, even though we evaluate
our algorithms in a SM architecture, our library will be designed such that developed
algorithms can also target distributed architectures.

We will experimentally evaluate the resulting algorithms and strategies and assess
the results obtained, namely the solution quality and speedups achieved with parallel
strategies.

Our contribution on the analysis and design of parallel strategies for ACO, concretely
synchronous and asynchronous strategies, was published at INFORUM 2015 [67]: Asyn-
chronous Parallel Ant-Colony Optimization Strategies: Application to the Multi-Depot Vehicle
Scheduling Problem with Line Exchanges .

1.5 Document Organization

The remainder of this document is organized as follows:

Chapter 2 - This chapter details the background on the topics covered by this thesis
in particular Local Search Techniques and Metaheuristics, emphasizing the ACO
metaheuristic, and Parallel Computing and Concurrency. The chapter finishes with
a discussion of state of the art work in Parallel Metaheuristic Algorithms, also
emphasising ACO, and in solutions to the PTBA problem;

Chapter 3 - This chapter is the core of this work. First, the developed model, for the PTBA
problem will be presented, followed by a discussion of all the decisions made and
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also describing how the model incorporates the associated constraints. Based on
the developed model sequential and parallel versions of a first randomized algo-
rithm will be presented. The chapter finishes presenting ACO sequential model
and algorithm for the PTBA problem and discussing the derived model characteris-
tics. Additionally, parallel synchronous and asynchronous strategies for ACO are
proposed and analysed;

Chapter 4 - Aspects related with the implementation are covered in this chapter. The
chapter starts by presenting and discussing the tools and the software model of the
library as well as the associated algorithms, highlighting the properties obtained with
our model. Problem’s input data abstractions which allow one to obtain data from
different sources (e.g. text files, remote database, etc. . . ) are shown. An overview of
the CaSPER LS solver is given as well as which features of the solver are used on
our implementation. The remaining part of the chapter discusses implementation
details and decisions of both sequential and parallel algorithms.

Chapter 5 - In order to assess the effectiveness of the proposed algorithms, each algorithm
is experimentally evaluated. In the first part of the chapter our experimental setup
is presented as well as the instance of the problem which our experiments will use.
The solutions produced by our algorithms are analysed in terms of relevant charac-
teristics and quality of service aspects. The influence of different parametrizations and
aspects on the solutions obtained will also be evaluated. The last part of this chapter
focus on presenting and discussing results of the performance and solution quality
for both sequential and parallel algorithms.

Chapter 6 - This chapter finishes our work giving a summary of the proposed algorithms
and strategies, and also of the main results obtained. The overall conclusions of this
dissertation are drawn and perspectives of future work will be presented.
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BACKGROUND AND RELATED WORK

In this chapter we describe the background material necessary to the understanding of this
work and we also present a brief overview of the related work of our problem, described
in section 1.3.

We start by discussing in section 2.1, Combinatorial Optimization Problems, Local
Search and Metaheuristics techniques used to solve this type of problems and we de-
fine the underlying base concepts. Metaheuristics and Constraint-Based Local Search
approaches will be described in sections 2.1.2 and 2.2, respectively (emphasizing relevant
metaheuristics for this thesis). The Ant-Colony Optimization Metaheuristic and relevant
ACO versions will be described and discussed in section 2.3.

In section 2.4 we introduce Parallel Computing and Concurrency aspects. Multi-core
and NUMA architectures are described in sections 2.4.1 and 2.4.2, respectively. Concur-
rency control mechanisms are introduced in section 2.4.4. In section 2.5, an analysis of the
related work in Parallel Metaheuristics applied to combinatorial optimization problems,
will be presented and discussed. An overview of different approaches and architectures
for Parallel Local Search discussing each one advantages/disadvantages and complexity
issues will also be presented. Section 2.6 presents the state of the art in Parallel Ant-Colony
Optimization (considering techniques using CPUs ).

Lastly, the state of the art in algorithms and techniques to solve the VSP problem will
be discussed in section 2.7.

The purpose of this chapter is to introduce the main concepts underlying our work and
to provide an initial analysis highlighting contributions to our algorithms of the current
state of the art on the topics we address.
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2.1 Local Search Techniques and Metaheuristics

Complete search methods guarantee optimality, in the sense that if several solutions exist
for the problem, the method finds the best one. However, to provide such guarantee it is
necessary to explore the whole search space or, by using an heuristic to guide the search,
to explore a subset of the search space, as long as the heuristic guarantees optimality[65].

In general COPs are NP-hard and cannot be solved to optimality within polynomial
bounded computation time [31].

Consequently, it turns out that for complex (in terms of instances size or problem
formulation) COPs, the search space is huge and complete methods cannot solve these
problems in reasonable computation time.

Approximative algorithms (e.g. Metaheuristics), despite not providing optimality, can
be used to find near-optimal solutions in reasonable computation time. This algorithms
can be classified as either constructive or reparative algorithms.

Constructive algorithms build solutions incrementally, by adding components to a
partial solution until a complete solution is obtained. Due to their incremental nature,
these type of algorithms tend to be very greedy, as in general at each iteration, the best
component is selected. Consequently, this methods potentially tend to provide inferior
quality solutions when compared to reparative algorithms.

Reparative or Perturbative algorithms start from an initial solution and attempt to
progressively improve the solution quality, by applying a move from the old solution to
the new one.

2.1.1 Combinatorial Optimization Problems and Local Search

In this section we will start by introducing a variety of concepts regarding COPs and Local
Search (LS), mentioned throughout this thesis.

In general, a Combinatorial Optimization Problem is specified by a set of problem
instances [1]. Each instance is a pair 〈S , F〉 where S is the set of feasible solutions and f
the cost function with the mapping F : S 7→ R. The COP can be either a minimization or
a maximization problem1. For a minimization problem, the objective is to find a globally
optimal solution, i.e., an i∗ ∈ S such that F(i∗) ≤ f (i) for all i ∈ S .

Local Search algorithms consist in performing "local changes" to a given solution s in
order to improve the solution quality, therefore moving from solution to solution in the
space of candidate solutions. This process terminates according to a given criteria (e.g.
time elapsed, lower/upper bound on solution quality, among others).

As will be detailed in section 2.2, with the constraint-based local search approach,
problems can be modelled as Constraint Satisfaction Problems (CSPs). CSPs[65, p. 202] are

1Every maximization/minimization problem can be turned into a minimization/maximization problem,
respectively, by reversing the sign of the objective function.
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defined as a triple 〈X, D, C〉 where:

i) X = {X1, . . . , Xn} is a set of variables;
ii) D = {D1, . . . , Dn} is a set of domains of the corresponding variables;
iii) C = {C1, . . . , Cm} is a set of constraints.

A CSP is solved by finding values xi ∈ Di for each variable Xi that satisfy all the
constraints in C.

COPs can be modelled as Constraint Satisfaction and Optimization Problems (CSOPs).
These last problems are defined as a CSP problem with an additional objective function
F defined over the variables, to be optimized. The solution space is defined by a set of
constraints. CSOPs have the following canonical form:

Minimize: F(~x)

Subject to: C1(~x),

C2(~x),

. . .

Cm(~x).

where:

• ~x is a vector of n discrete decision variables;

• F is an objective function F : Dn 7→ R;

• Ci(~x) are the m constraints that define the solution space of the problem.

A solution to a CSOP problem P is an assignment of values to the variables in ~x and a
feasible solution is a solution that satisfies all the constraints Ci. A partial solution is a
solution in which some variables in ~x do not have any value assigned.

Let L̂p be the set of all the feasible solutions. An Optimal Solution (or a global optimum)
is a feasible solution that minimizes the objective function F:

F∗ = arg min
{

F(s) | s ∈ L̂p

}
And the set of optimal solutions to P , denoted by L∗p, is defined as:

L∗p =
{

s ∈ L̂p | F(s) = F∗
}

The Search Space of a CSOP problem P , is the set of solutions that satisfy some subset
of the constraints Ci(~x) of the problem and is denoted by L′p.

Therefore, the Search Space is the set of acceptable solutions (assignments that satisfy a
subset of Ci(~x)) and L̂p ⊆ L

′
p ⊆ Dn.

The moves from a solution to another are defined by the Neighbourhood, the Transition
Graph and Local Optimality.
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A Neighbourhood of a CSOP problem P is a pair 〈L′p,N〉 where L′p is a search space

and N is a mapping N : L′p 7→ 2L
′
p that defines for each solution s, the set of adjacent

solutions N (s) ⊆ L′p. Furthermore, when the relation s ∈ N (j) ⇔ j ∈ N (s) holds, the
Neighbourhood is symmetric.

A Transition Graph G(L′p,N ) of a problem P , is the graph associated to the Neigh-
bourhood 〈L′p,N〉, where the nodes are solutions in L′p and an arc a→ b exists if b ∈ N (a).

A solution s+ is Locally Optimal (or a local optimum) if none of its neighbours have a
smaller cost (measured by F). Formally:

F(s+) ≤ min i∈N (s+) f (i).

LS algorithms must attempt to escape local optima. Therefore, they must select a
solution from N (s) by taking this into account.

A Selection Rule S(M, s) is a function S : 2L̂p × L̂p 7→ L̂p that picks an element s
′

fromM, whereM = N (s), according to some strategy and decides to accept it or to
select the current solution s instead.

LS reparative or perturbative algorithms [39] start from an initial solution and iteratively
attempt to improve the solution by examining the current solution neighbourhood and by
applying a given move operator (e.g. changing the value of a variable or swapping the
values of two variables), evolves the current solution to a new one.

Formally, a reparative local search algorithm is a path:

s0 → s1 → s2 → . . .→ sk

in the transition graph G(L′p,N ) for P such that:

si+1 = S(N (si), si)

The sequence s0 → s1 → s2 → . . . → sk will eventually lead to a local optimum (or
even a global optimum). Heuristics are used to guide the search towards local optima.
Metaheuristics are used to escape from local optima.

The neighbourhood definition N (s) ⊆ L′p is crucial in order to achieve high-quality
solutions and depending on how each COP is modelled, should be defined in a problem
specific way in order to take into account the problem search space structure.

The search space elements [65] of a COP are illustrated in figure 2.1, which represents
a one-dimensional state-space for a generic maximization COP2. The following additional
elements are defined:

plateau - a region of the search space where the evaluation function f is flat;

shoulder - A plateau from which progress is possible.

2A solution to a COP can be any state itself (or in particular, the goal state) or the path taken by the
algorithm from the initial state to the goal state.
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Figure 2.1: Search Space Structure. Adapted from [65, p. 121]

When in a given iteration, the move operator cannot evolve the old solution to a better
one, the LS algorithm is said to be stuck in a local optimum. This situation is also illustrated
in figure 2.1. The LS algorithm is progressing towards a local optimum and, when it
reaches the local optimum, the algorithm will be stuck since none of the neighbours
improve the solution quality.

In order to escape local optima, specially in problems with complex search spaces (e.g.
large number of local optima), additional mechanisms must be used. This mechanisms,
referred as Metaheuristics, will be discussed in section 2.1.2.

Constructive algorithms [39] build solutions incrementally by completing partial solu-
tions. This type of algorithms implement two criteria: the order of the assignments, i.e. to
which variable should a value be assigned next, and an heuristic to choose the value to
assign. Additionally, constructive algorithms can in general be interpreted as constructive
local search methods, however, it should be noted that solutions generated by this type of
algorithm are not guaranteed to be locally optimal with respect to a simple neighbourhood
〈L′p,N〉.

2.1.2 Metaheuristics

Metaheuristics [32] are defined as methods that orchestrate an interaction between local
improvement procedures (e.g. LS algorithms) and higher level strategies in order to
develop search strategies capable of escaping local optima and guiding the search towards
promising regions of the search space. This type of heuristics (heuristics that manipulate a
single solution) are categorized as single-solution based metaheuristics[72] (S-metaheuristics).
This type of metaheuristics manipulate and transform a single solution during the search.
On the other hand, in population based metaheuristics (P-metaheuristics) a population of
solutions are manipulated.

As NP-hard problems, like most COP, tend to have a very large number of local optima
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it is necessary to use mechanisms like metaheuristics in order to avoid the underlying
search process being stuck.

A large number of different metaheuristics have been developed [37]. For this thesis,
for reasons that will be explained shortly, the relevant metaheuristics are Multi-Starts and
Restarts, and Ant-Colony Optimization, which will be described in sections 2.1.2.1 and
2.3, respectively.

2.1.2.1 Multi-Starts and Restarts Metaheuristics

The Multi-start (MS) and Restarts methods are closely related. Multi-start methods in
general aim at helping search procedures exploring different regions of the search space,
by applying a search procedure (or multiple search procedures) to multiple random initial
solutions [54], for reparative LS algorithms, or by executing a randomized constructive
procedure, building multiple solutions. Randomization is needed such that constructive
search agents can construct different solutions.

Restarts are a simple and generic technique that consists in restarting a search process
using some stopping criteria (e.g. stop after a given number of iterations, stop after a given
number of iterations without solution improvements, among others ).

A MS metaheuristic is in some sense a restart metaheuristic in which the initial solu-
tions are not totally random.

Diversification in generating initial solutions or constructing distinct solutions, achieved
with randomization, is an essential aspect in order provide Multi-Start methods the ability
to overcome local optimality [54].

In [53] the authors show that Multi-start methods with memory, i.e., that use ele-
ments of previous solutions to generate each new solution, contribute to overcome local
optimality since they guide the diversification process.

A Multi-start method with memory approach is used in [25] to solve the Maximum
Diversity Problem. The algorithm has two phases: solution construction and solution
improvement. In the first phase an initial solution is constructed using the Tabu Search
Metaheuristic, proposed by Fred Glover [34, 35], and in the second phase a local search
algorithm is used to post-process that solution, attempting to improve the solution quality.
At each iteration the first phase algorithm penalizes elements that appeared in previous
solutions and rewards elements which previously appeared in high quality solutions.
Additionally, the authors compared a MS algorithm without memory with a MS algorithm
with memory and concluded that the version with memory is more effective (in terms of
solution quality).

Brønmo et al. [9] presented a MS local search method for a short-term ship scheduling
problem. This method is also composed by an initial constructive algorithm that generates
different initial solutions and a local search algorithm that attempts to improve those
solutions. The authors state that the first phase is the most important part of the method
and the initial solutions generated should reveal a combination of high-quality and
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diversity, in order to the local search algorithm perform the search close to the optimum.
They compare the MS method with a complete search method that uses mixed integer
programming and, the MS method proved to be robust providing optimal or near-optimal
solutions for real-life instances within a reasonable response time.

In both works the post-processing phase that aims to improve initial generated/con-
structed solutions consists in a simple and fast scheme. This is due to the fact that the
objective here is to maximize the portion of the search space explored, in order to increase
the possibility of reaching a global optimum. This maximization is accomplished by gen-
erating/constructing as much as possible (high-quality) solutions. Subsequently, a local
search over those solutions may be applied if possible.

The MS method can be naturally parallelized due to the fact that the method consists
in starting a search algorithm several times.

2.2 Constraint-Based Local Search

General purpose languages lack expressivity and do not provide good abstractions to
the development of local search algorithms, leading to very complex implementations,
lacking modularity and compositionality.

CBLS [76] consists in a paradigm that incorporates Constraint Programming in local
search methods.

With this paradigm it is possible to model complex COPs using constraints, inher-
iting all the expressivity offered by the different types of constraints (e.g. Numerical,
Combinatorial, Logical, amongst others), originating a CSOP (introduced in section 2.1.1).

In CBLS constraints are used to describe and control local search algorithms and the
number of constraints violations is included in the objective function to be posteriorly
minimized. Additionally, CBLS provides a clean separation of concerns between the model
and the search procedure. With this separation of concerns, implementation of generic and
reusable search algorithms is straightforward. This also allows the programmer to design
local search algorithms by specifying the model, in a declarative way, and the search, that
will use the specified model structure to effectively explore the neighbourhoods.

Michel and Hentenryck [57] proposed a CBLS architecture that follows the principles
described above and which was materialized in the COMET [76] programming language.
The COMET3 language is an object-oriented programming language that offers a wide
variety of modelling and search abstractions and high-level control structures.

We developed CaSPER LS [68] a CBLS library, implemented in the C++ language,
which captures the principles of compositionality, reuse and extensibility at the core of
CBLS and offers high-level abstractions, providing a suitable environment to address
COPs with local search, modelled as CSPs. CaSPER LS will be described in section 4.1.2.

Listing 2.1 shows an example of a model and a search component for the well-known
N-queens problem using CaSPER LS. It can be seen that the features of CaSPER LS and
CBLS allow one to easily specify the problem model in a declarative manner and develop
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a local search component based on the model specification, which is abstracted by the
constraints, since the search component only focus on minimizing the number of constraint
violations.

Listing 2.1: N-Queens model and search using CaSPER LS.
1 #include <casper/ls/ls.h>

2 #include <iostream>

3

4 using namespace Casper::LS;

5 using namespace std;

6

7 int main(int argc, char* argv[]){

8 Solver s;

9 ConstraintSystem<int> cs(s);

10 int N = 10;

11 Range<int> Size(0,N-1);

12 IntVarArray queens(s,RandomPermutation(Size));

13

14 //Model definition

15 IntVar i(s,Size);

16 cs.post(alldifferent(

17 aggregate<int>({inRange(i,Size)}, queens[i] + (i+1) )));

18 cs.post(alldifferent(

19 aggregate<int>({inRange(i,Size)}, queens[i] - (i+1) )));

20

21 //Search

22 int it = 0;

23 IntVar p(s, Size);

24 IntVar v(s, Size);

25 while( cs.getViolations() > 0 && it < maxIt){

26 selectMaxExpr<int>({inRange(p, Size)}, cs.violations(queens[p]));

27 selectMinExpr<int>({inRange(v, Size)}, cs.swapDelta(queens[p],queens[v]));

28 swap(queens[p],queens[v]);

29 it++;

30 }

31

32 cout << "Solution: " << queens << endl;

33 return 0;

34 }

As will be discussed in sections 3 and 4, our proposed PTBA model will be designed
using CBLS ideas and will be implemented using CaSPER LS features.

2.3 Ant-Colony Optimization Metaheuristic

The Ant-Colony Optimization (ACO) metaheuristic [22, 23] is a P-metaheuristic which
was originally proposed by Dorigo [22] and is inspired on the behaviour of real ants

3The COMET programming language was discontinued.
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which use pheromones as a communication medium. In particular, ants initially leave
their nest (or colony) and travel along a random path in order to find food. When a given
ant finds food, it returns to his colony leaving a pheromone trail over the path taken.
As time goes by, subsequent ants will start following the pheromone trails instead of
wandering randomly. Additionally, over time the deposited pheromone trails evaporate
and become less appealing. As ants travel along a certain path, the pheromone trails on
that path will be reinforced, therefore, longer paths will have more time to evaporate the
pheromone trails. Since shorter paths will be used more frequently, the pheromone density
will increase over time, making the path more appealing.

F

N

a

b

1

F

N

2

F

N

3

Figure 2.2: ACO ants convergence. [24]

This process is illustrated in figure 2.2. In step 1 an ant finds a food source (F) using
a path a and returns by a path b depositing pheromone trail. At step 2 ants leave the
nest and follow one of the 4 possible paths, however, due to pheromone evaporation and
reinforcement, the shortest path becomes more appealing over time. Finally at step 3,
approximately all ants converge to the same path, the shortest one.

Artificial ants are modelled as agents that communicate indirectly within the colony.
Each agent performs a stochastic solution construction that probabilistically builds a
solution by complementing a partial solution at each iteration. Concretely, to complement
partial solutions, at each iteration heuristic information and pheromone trails are taken
into account. Pheromone trails are updated at run-time reflecting the agents acquired
search experience [32].

The purpose of the stochastic component is to allow the agents to build a wide va-
riety of solutions, leading to a better (in depth) exploration of the search space, than
greedy procedures. Agents search experience influences future iterations which makes
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the ACO similar to a reinforcement learning procedure, i.e., a learning by interaction
procedures [70].

Algorithm 1 Ant-Colony Optimization.[32]

1: procedure ANT-COLONY OPTIMIZATION(problem) return best solution found
2: Initialization
3: while termination condition not met do
4: ConstructAntSolutions
5: ApplyLocalSearch % Optional
6: UpdatePheromoneTrails

return best solution

Algorithm 1 describes the main steps of ACO metaheuristic. In Initialization step
pheromone variables are initialized. In the ConstructAntSolutions a set of N agents perform
a constructive search procedure guided by heuristic information and by the pheromone
trails, constructing the solutions. At the end of this step, a local search procedure may
be applied (e.g. Steepest Ascent Hill-Climbing [65]) in order to improve the obtained
solutions. Lastly, in the UpdatePheromoneTrails step the pheromone trails are updated such
that good solutions will be more desirable. In order to avoid a fast convergence of all the
agents towards sub-optimal solutions, pheromone evaporation is applied.

In this thesis we explore the ACO metaheuristic since it not only is robust, but is also
a constructive procedure, which as will be discussed in section 3.1, is more suitable to
solve the PTBA problem. Additionally, we intend to explore parallel synchronous and
asynchronous versions of ACO, in particular, how parallel cooperative schemes can build
pheromone trails in an effective manner.

In the next sections we describe three ACO algorithms: Ant System [21] (AS), the first
ACO algorithm proposed, theMAX−MIN Ant System [69] (MMAS) and Ant Colony
System [20] (ACS), two more sophisticated and robust ACO algorithms [69] which both
consist in extensions to the AS algorithm.

Several other algorithms have been proposed like Rank-Based Ant System [10], Hyper-
Cube Framework for ACO [6], among others. In this thesis we focus only on AS,MMAS
and ACS due to the following reasons:

AS - as it will be discussed in section 3.4, despite of being inferior in terms of robustness,
the AS algorithm allows for a better exploitation of parallel resources;

MMAS and ACS - both algorithms are superior extensions of the AS algorithm. As
will also be described in section 3.4 these algorithms introduce several additional
mechanisms that affect negatively the exploitation of parallel resources. Despite of
this fact, this algorithms achieve in general better results than AS in a sequential
setup and should be analysed.
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2.3.1 Ant System

The Ant System algorithm [21] was the first ACO algorithm proposed and was applied to
the Travelling Salesman Problem (TSP).

The pheromone trails model holds information of the desirability of each solution
component cij. The definition of a component depends on the problem being solved and
on how one models the problem. As an example, in the TSP problem, a component cij

refers to visiting a city j after visiting a city i. The AS algorithm assigns a desirability τij

(the pheromone value) to each possible component cij of the model of the problem.
We will now describe how each step of the algorithm 1 is implemented in the AS

algorithm.

2.3.1.1 Initialization

In the initialization phase pheromone trails are initialized. The value τ0 to which each
pheromone trail variable should be initialized depends on the problem being solved.
However the following aspects must be taken into account.

The pheromone trails should be initialized with a value slightly higher than the
expected amount of pheromone deposited by the ants in one iterations [23]. This is due to
the fact that if the value τ0 is too low, the search will be quickly biased by the first solutions
constructed, which will lead to a poor exploration of the search space. On the other hand,
if the value τ0 is too high, many iterations will be lost until pheromone evaporation
decreases pheromone trails values such that added pheromone from constructed ants
starts to bias the search.

2.3.1.2 Ant Solutions Construction

As in the generic algorithm, at each iteration N ants construct a solution using a con-
structive search procedure. At each construction step t each agent k uses a probability
distribution to select the solution component cij to be added to a partial solution sp.

The probability distribution used in the AS is defined as follows:

pk(cij|sk
p) =


[
τij
]α ·

[
η(cij)

]β

∑l∈N (sk
p)

[
τl j
]α ·

[
η(cl j)

]β
, j ∈ N (sk

p)

0 , otherwise

(2.1)

where N (sk
p) ⊆ L

′
p denotes the feasible neighbourhood of the partial solution sp of

ant k, η(·) is a function that assigns to each cij in which j ∈ N (sk
p) an heuristic value that

evaluates the quality of this assignment in the context of the problem. The α and β pa-
rameters are used to control the influence of pheromone values and heuristic information,
respectively, on the algorithm behaviour.

The neighbourhood N (sk
p) of a partial solution also depends on the problem being

solved and must be defined according to the problem model.
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2.3.1.3 Pheromone Trails Evaporation and Update

In the end of an iteration pheromone trails are evaporated and updated. Pheromone
evaporation is implemented as follows:

τij ← (1− ρ) ∗ τij (2.2)

where 0 < ρ ≤ 1 is a parameter that denotes the rate of evaporation. If a solution
component is not used by an agent, its corresponding pheromone value τij decreases
exponentially in the number of iterations, allowing the algorithm to avoid bad solution
components, since its desirability is reduced.

After performing the pheromone evaporation step, the pheromone values are updated
with learned information from each agent. The update is defined as follows:

τij ← τij + ∑ ∆τk
ij (2.3)

where ∆τk
ij denotes the amount of pheromone deposited by agent k on the solution com-

ponents that belong the solution sk obtained:

∆τk
ij =


λ

F(sk)
, cij ∈ sk

0 , otherwise
(2.4)

where λ is a parameter used to control the amount of pheromone deposited. With this
expression, and assuming a minimization problem, the amount of pheromone deposited
by each agent depends on the quality of the solutions obtained. Therefore, agents that
obtain better solutions will deposit a larger amount of pheromone, favouring good solution
components.

2.3.2 MAX−MIN Ant System

TheMAX−MIN Ant System [69] extends the AS algorithm by introducing additional
mechanisms which by assuming that concentrating the search around the best solutions
found during the search is beneficial and leads to better results, attempt to perform a
stronger exploration of the search history.

Based on this assumption, the following main modifications are performed:

• stronger exploitation of the best solutions found by allowing only the iteration-best
(the agent which produced the best solution of the current iteration) or the best-so-far
agent are allowed to deposit pheromone;

• allowing only the iteration-best or the best-so-far agent to deposit pheromone may
lead to a stagnation situation due to an excessive growth of pheromone values from
components on those solutions. Besides, is likely that this solutions are suboptimal. In
order to overcome this problem, lower and upper bounds, τmin and τmax, respectively,
are imposed to the domain of pheromone values;
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• pheromone trail values are initialized to the current upper bound τmax. This increases
diversification in the initial search iterations;

• each time the algorithm approaches stagnation or when improvements do not occur,
pheromone trails are reinitialized (e.g. after a given number of iterations without
improvements).

The ant solution construction phase remains exactly the same. The modifications
described just above will now be presented in more detail.

2.3.2.1 New Pheromone Trails Update Mechanism

In the AS algorithm all the agents deposit pheromone. The update is performed according
to equation 2.3. InMMAS, only the iteration-best or the best-so-far agent perform the
update. The update then is performed as follows:

τij ← τij + ∆τbest
ij (2.5)

where ∆τbest
ij is defined as in equation 2.4 but without depending on the agent k and

being based on the best solution of an iteration sib or on the global best solution sgb, i.e.,
the denominator is F(sbest) instead of F(sk).

2.3.2.2 Pheromone Trail Limits

The domain of pheromone trails values is restricted to the interval [τmin, τmax], i.e., the
following restriction is imposed:

0 ≤ τmin ≤ τij ≤ τmax ≤ 1 (2.6)

It is shown by the authors that the maximum possible pheromone trail value is
asymptotically bounded by 1/(ρ f (sopt)) where f (sopt) is the objective function value
of the optimal solution. Therefore, τmax must be defined using an estimative of this value:
1/(ρ f (sbest)). Therefore, each time the best solution is improved, τmax should be updated.

The lower bound of pheromone values is defined as τmin = τmax ∗ a where a is a
parameter.

2.3.2.3 Pheromone Trails Initialization and Reinitialization

Initially pheromone trails are initialized to an estimate of τmax. Additionally, the rate of
evaporation ρ is set to a small value in order to achieve a slow increase across all the
pheromone trail values, such that diversification is achieved.

As already described, when the algorithm detects stagnation pheromone trails are
reinitialized. Stagnation may be measured by some statistics or if after a given number of
iterations no improvements occur.
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2.3.3 Ant Colony System

The Ant Colony System [20] (ACS) also extends the AS algorithm by introducing three
additional mechanisms. Like theMMAS, ACS attempts to perform a stronger exploration
of the search history.

ACS employs a different selection rule and introduces local updates. The main modifi-
cations introduced by ACS will be described in the next sections.

2.3.3.1 New Ant Solutions Construction

At each iteration step, each agent k uses the following selecting rule, called pseudorandom
proportional rule, to select the next component cij of a partial solution sk

p:

cij =

argmaxl∈N (sk
p)

[
τij · [η(clj)]β

]
, q ≤ q0

J , otherwise
(2.7)

where q is a random variable distributed in [0, 1], q0 is a parameter with domain [0, 1]
and J is a random variable selected according to the probability distribution defined by
equation 2.1 with α = 0.

The parameter q0 allows one to achieve intensification around the best-so-far solution
(increasing q0) or to achieve diversification (decreasing q0).

2.3.3.2 Global and Local Pheromone Trail Update

ACS applies a global update mechanism (likeMMAS) and a local update mechanism in
which agents are allowed to perform updates during solutions construction.

The global update mechanism is the same as in MMAS, defined by equation 2.5.
The update is performed using the best-so-far agent solution. Unlike AS andMMAS,
evaporation is only performed on the solution components of the best-so-far solution.

Each time an agent visits a solution component cij a local update on the pheromone
value τij is performed as follows:

τij ← (1− ξ)τij + ξτ0 (2.8)

where ξ (domain [0, 1]) and τ0 are parameters. The purpose of local updates is to
decrease the pheromone trail of visited solution components such that they become less
desirable to other agents.

2.4 Parallel Computing and Concurrency

Parallel computing consists in solving a computational problem using multiple compute
resources. Nowadays every ordinary personal computer has a multi-core CPU and a
Graphical Processing Unit(GPU). In order to take full advantage of these resources parallel
computing must be used.
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Multi-processor computer architectures are classified according to the Flynn’s taxon-
omy [26] as follows:

• Single Instruction Stream Single Data Stream (SISD) - A serial computer (e.g. single
core computer). Illustrated in figure 2.3;

• Single Instruction Stream Multiple Data Stream (SIMD) - Multiple processors execute
the same instruction on different data streams (e.g. GPUs). Illustrated in figure 2.4;

• Multiple Instruction Stream Single Data Stream (MISD) - Multiple instruction
streams are executed on a single data stream. Illustrated in figure 2.5;

• Multiple Instruction Stream Multiple Data Stream (MIMD) - Multiple processors
execute different instructions on different data streams (e.g. multi-core computers,
multiprocessors, computer clusters, among others). Illustrated in figure 2.6.

This thesis focus on MIMD, which is the multi-core and multiprocessor computers
architecture.
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The effectiveness of a parallel implementation in terms of computation time is measured by
the speedup and efficiency achieved [44]. The speedup S(N) of a parallel implementation
in relation to a sequential implementation is defined as:

S(N) =
T(1)
T(N)

(2.9)

where T(N) is the time it takes to execute the program using N processors. The speedup
metric denotes the gain of parallelizing a given program.

Efficiency E(N) of a parallel program denotes the usage ratio of all the available
processors and is defined as follows:

E(N) =
S(N)

N
(2.10)

In theory, the speedup cannot exceed N [44]. However in practice, the speedup can be
greater than N. This phenomenon is called superlinear speedup.
One situation where superlinear speedup can be achieved is when the amount of data re-
quired to solve a problem does not fit into the processor cache, degrading the performance
of the parallel implementation. However, when using N processors and assuming each
processor has an assigned cache, the data is partitioned across the N processors fitting in
the processors caches.

The Amdahl’s law [4] states that the speedup achieved by paralellizing a single pro-
gram with N processors where a fraction f of the code can be parallelized is:

S(N) =
1

(1− f ) + f
N

(2.11)

As discussed by Hill and Marty in [38] the Amdahl’s law assumes that the fraction f
of a program’s execution time is infinitely parallelizable without overhead, which as they
stated is a very simplistic assumption.

Parallel computing essentially targets shared-memory (SM) and distributed architectures.
In SM architectures processors share the address space and concurrent accesses to this
memory must be synchronized. In distributed architectures, each processor has its own
memory and all the processors are interconnected through a network. Due to the reasons
presented in section 2.5, in this thesis we target SM architectures. Within SM architectures,
the following memory architectures exist [28]:

• Uniform Memory Access (UMA) - all processors access physical memory equally,
sharing the same data bus;

• Non-Uniform Memory Access (NUMA) - despite the fact that all processors can
access the whole physical memory using real addresses, each processor have a part
of physical memory attached. Accessing attached memory is faster than accessing
foreign memory zones;
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• Cache-only memory architecture (COMA) - similar to NUMA. However, the local
memory (memory attached to a processor) is used as a cache. Therefore, when a
processor accesses foreign (non local) memory, data is migrated to its local memory.

Our experiments target the NUMA architecture.

2.4.1 Multi-Core Architectures

One core refers to a piece of hardware that executes a stream of machine instructions. In
Multi-core architectures a computer CPU has more than one core where each core can
be hyperthreaded, i.e., is able to execute more than one stream of machine instructions in
parallel [41].

In single-core architectures (only one core) the core reads machine instructions from
memory, decodes and executes them. Only one stream of instructions can be processed
at once. Consequently, to execute more than one thread the operating system needs to
perform a context switch and exchange the thread that is being executed. The program
instructions and data are stored in main memory, which is much more slower than the
processors. To reduce the latency of memory accesses a level 2 (L2) cache is placed between
the core and main memory. The L2 cache is faster than main memory but is also much
smaller (only has capacity for a few megabytes). Since the L2 cache is still not as fast as
the core circuitry an additional level 1 (L1) is placed between the core and the L2 cache.
Typically the L1 cache is almost as fast as the processors core but is even smaller than the
L2 cache.

Figure 2.7: Multi-Core computer architecture. [41]

In multi-core architectures, as illustrated in figure 2.7, processors have more than one
core (typically 2 or more). Each core has an L1 cache and all cores in a CPU share the L2
cache. Having processors with more than one core allows the operating system to execute
applications truly in parallel.

Hyperthreading can be achieved by replicating instruction units, allowing the execu-
tion of multiple threads without context switches. However, the multiple threads will only
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run at full speed if each one uses different registers or any other functional units. When
multiple threads use the same registers or functional units the access to those devices is
interleaved.

2.4.2 NUMA Architectures

UMA architectures have limited scalability in the number of processors due to contention
in accessing physical memory (the data bus is shared among all the processors).

In the Non-Uniform Memory Architecture (NUMA), processes access physical memory
in a non uniform way. A chunk of memory is assigned to each processor (local memory),
referred as a node. Nodes are connected through a high bandwidth low latency intercon-
nection network. Figure 2.8 illustrates this architecture.

Figure 2.8: NUMA Architecture.

Accesses to local memory are faster than accesses to non-local memory. This scheme is
achieved using distributed shared-memory implemented as a distributed virtual memory
scheme. Since physical memory is distributed across processors, accesses to local memory
do not interfere with each other.

All modern computer architectures have caches, causing the cache coherence prob-
lem. This occurs when two or more processors have data from the same real memory
address and one of the processors modifies its local copy of the data. The Cache-Coherent
NUMA [45] architecture implements a mechanism that ensures cache coherence, using
the global shared bus.

2.4.2.1 NUMA-Aware Applications

Applications must be aware of the NUMA architecture since it has a great influence in
memory access performance.

The following aspects must be taken into account:
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• Processes/Threads must be placed on processors close to the memory location of
the data that will be accessed;

• Memory allocations within a process must occur on the corresponding NUMA node;

• the OS scheduler should be NUMA-aware;

• child processes should be dispatched on the same processor as the parent process.

The Linux operating system (OS) offers NUMA support since kernel 2.5, implementing
a NUMA-aware scheduler.

In order to develop NUMA-Aware applications, the Linux OS offers a NUMA Ap-
plication Programming Interface [50] (API) consisting of a set of system calls, allowing
programmers to control threads binding and memory allocation policies.

Additionally, the GCC4 compiler implements the NUMA policy library [49] (libnuma)
which abstracts OS NUMA API’s, providing the same level of control.

2.4.3 Communication within processes

In SM architectures processes/threads communicate implicitly through shared memory.
A thread is referred as a lightweight process which exist within a process. The memory
address space of a thread is the same as the process from which the thread was created,
therefore, when a process spawns several threads, these threads share the address space.

Communication within threads can be achieved through writes and reads to specific
addresses (meaningful for the application) on the shared address space with minimal
overhead. The only overhead imposed is the duration of a read/write operation on
secondary memory (RAM). However, when multiple processes communicate with each
other via the same memory regions, accesses must be synchronized using concurrency
control mechanisms. These mechanisms will be presented in the next section.

2.4.4 Concurrency Control Mechanisms

Several concurrency control mechanisms have been proposed [66]. From the mechanisms
available we use locks to enforce mutual exclusion. Mutual exclusion is a concurrency
control requirement which consists of assuring that only one process executes a critical
section, a portion of the code that cannot be executed concurrently, at each moment.

In our algorithms we use three different types of locks: mutex, Spin locks and Read-Writer
locks.

Mutex locks (mutual exclusion locks) can be implemented with busy-waiting mecha-
nisms [66], and can be used to achieve mutual exclusion.

A Spin lock consists of a lock in which threads wait in a loop ("spin") until the lock is free
and can be acquired. Since threads are active (in a loop) they are not preempted, i.e, their
execution is not stopped therefore they remain on the processor. This technique avoids

4https://gcc.gnu.org/
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the overhead of performing a context-switch (the process of storing or restoring a pro-
cess/thread execution state). However, this type of locks only improves the performance
if the threads are blocked for short periods.

Reader-Writer [15, 66] locks relax the constraints of mutual exclusion by allowing
concurrent accesses for read-only operations. Write operations require exclusive access
to the critical section. This allows one to maximize the throughput in terms of read-only
operations. An appropriate situation in which this type of locks are suitable is when the
number of writes is less than the number of reads.

However, despite of this advantages, this type of lock can lead to write operations
starvation if contention is high. If at every moment of the execution at least one single
read-only operation is executing, new arriving threads performing read-only operations
will be allowed to enter the critical section and write operations will starve. To overcome
this problem, write-preferred operations were introduced [15, 66]. Write-preferred locks do
not grant access to new read-only operations if atleast one writer operation is queued and
waiting for the lock. This scheme reduces concurrency in the presence of write operations,
however, as already described, if write operations are sporadic, this type of lock is still
advantageous.

An additional mechanism can be used to complement locks, condition-variables. A
condition-variable is a mechanisms that allow threads to suspend execution while waiting
for a given condition to be verified (e.g. a given data structure is not empty). The execution
is then resumed by signaling on the condition, by other threads. As will be discussed in
section 4.4.2, conditional variables are used to implement thread-safe data structures like
pools.

2.5 Parallel Metaheuristics Algorithms

Although metaheuristics improve the effectiveness of search algorithms for solving COPs
by guiding the search process towards promising regions of the search space and also
by reducing the overall time of the search process, for many COPs, the search process
remains time-consuming. This is mainly due to the following characteristics of COPs:

• Complex objective functions whose computation is time-consuming;

• Complex models involving a large number of constraints;

• Large search spaces.

In general COPs, especially real life COP instances, have a combination of the charac-
teristics highlighted above.

Parallel computing can be used to address this problems and several parallel meta-
heuristics and algorithms have been proposed to solve COPs, including CBLS strategies [2,
3, 19, 63]. More concretely, parallel computing can be advantageous due to the following
aspects [52]:
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Computation time - Parallelization can reduce the search time;

Solution quality - Parallel cooperation mechanisms between processes can lead to a more
effective search since information exchanges influence the behaviour of each search
algorithm process;

Robustness - A parallel scheme may be more robust in the sense that it can handle a
wider spectrum of COP instances in an effective manner;

Scaling - Parallelization should help solving large-scale problems since the aggregate
computational power is superior.

Verhoeven and Aarts in [78] proposed two distinct approaches for LS parallel algo-
rithms: single-walk (SW) and multiple-walk (MW).

In SW algorithms only a single walk in the search space is carried out. This approach
involves partitioning a solution or elements of a solution over different processors. Within
SW algorithms, the authors distinguish between single-step and multi-step parallelism.
Either algorithms evaluate the neighbourhood in parallel, however single-step algorithms
perform a single LS step whereas multi-step algorithms perform multiple LS steps. Fig-
ure 2.9 illustrates the difference between the two versions.

Figure 2.9: Single-step parallelism (left) and multi-step parallelism (right). Dotted edges
denote connected neighbours, vertices denote solutions and the solid arc denotes a LS step.
In single-step parallelism only one move is performed whereas in multi-step parallelism
multiple moves are performed (distant neighbours are reached).

In MW algorithms, several walks through the search space are performed simultane-
ously. Within MW algorithms the authors distinguish between algorithms that perform
multiple independent walks or interacting walks (i.e. processes exchange information
during the search).

Finally the authors classify both SW and MW as synchronous or asynchronous. In syn-
chronous algorithms one or more algorithm steps are performed simultaneously by all
processors whereas in asynchronous algorithms no synchronization occurs at each algo-
rithm step.

Parallel metaheuristics can be implemented in a SM architecture or in a distributed
architecture. Metaheuristics implemented in distributed architectures, as discussed in [51],
are limited by communication latencies hence, the multiple interacting walks approach is
not suitable.
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Figure 2.10: Parallel metaheuristic models. Adapted from [51]

Regarding parallel models, the following three major parallel models in the design of
metaheuristics [72], illustrated in figure 2.10, have been proposed:

Solution-level Parallel Model - Parallel evaluation of a single solution (SW parallelism).
Suitable when the evaluative function is CPU time-consuming and can be decom-
posed in several partial functions;

Iteration-level Parallel Model - Each iteration of the metaheuristic is parallelized (SW
parallelism). This model does not change the original metaheuristic. This model is
suitable when the problem being solved has large neighbourhoods ;

Algorithmic-level Parallel Model - Multiple metaheuristic executions (the same meta-
heuristic or different metaheuristics in each execution) with the same or different
parameters, starting from the same or different initial solutions (MW paralellism).

Multi-Starts (discussed in section 2.1.2.1) can be trivially mapped as a multiple inde-
pendent walk parallel algorithm by executing a search algorithm in several processors.

As it will be discussed in section 2.6, the common ACO metaheuristic parallelization
strategy consists of a dependent multiple-walk approach and explores algorithmic-level
parallelism in which agents cooperate. In section 3.4 we propose additional strategies
wherein one of the characteristics of this strategies consists of introducing a different
cooperation scheme between search agents.

2.5.1 Cooperative Parallel Search

Cooperation between parallel processes makes it possible to achieve intelligent behaviour
on search algorithms, in the sense that several processes cooperate in order to solve a
given problem.
In general, each step of a given metaheuristic depends on the previous steps, making it
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difficult to achieve a large degree of parallelism. One simple approach consists in designing
a multiple independent walk algorithm, where in each processor a given metaheuristic (or
the same) is executed, in order to achieve a large degree of parallelism. This approach can
be extended to a cooperative search and possibly lead to a more effective search algorithm.

Toulouse et al. [74] described the systemic behaviour (i.e. interactions triggered by the
occurrence of other interactions) of cooperation between processes and analysed how
cooperation impacts the search. The authors show that correlated effective interactions
(interactions that change the search path) lead to different search patterns, comparing with
the pattern which would have been observed by using the original metaheuristic. This
means that solutions that would not be explored, will possibly be explored, and different
solutions can be achieved. However, this does not imply that the search will converge
to promising regions. Based on this observation we can conclude that cooperation can
be used to explore different areas of the search space. Therefore, by extending existing
metaheuristics with a cooperative scheme, or by using metaheuristics that already imple-
ment one, and adding a mechanism to control when should shared knowledge be used, it
should give to the used metaheuristic the ability to overcome local optima.

In order to design effective cooperative search algorithms certain issues must be
addressed. Toulouse et al. [73] identified and analysed the main issues of cooperative
algorithms.

One main issue is the convergence to similar search paths. The dissemination of informa-
tion must be controlled in order to avoid the situation where all parallel search processes
converge to the same region of the search space. To avoid convergence to similar search
space regions, access by a given parallel process to shared knowledge, i.e. specific search
information which all processes gather, must be constrained.

It is possible to achieve collective intensification (increase exploitation of a search space
area), by relaxing access to shared knowledge, or diversification by tightening the access.

The authors established the feedback loop phenomenon which describes an interaction
of shared (global) and non-shared information. This is based on the fact that shared
information at iteration itj depends on the information accumulated by all processes in
their non-shared information, from iteration itj−1. On the other hand, the non-shared
information of each process between iterations itj and itj+1 is partially determined by
the shared information, therefore, both sources of information (shared and non-shared)
influence one another.

Furthermore, the authors highlighted the fact that the feedback loop has a great im-
pact in the search algorithm and analysed this impact in synchronous and asynchronous
cooperative algorithms. They observed that asynchronous information exchanges yields
better results than synchronous due to the fact that synchronous algorithms develop
self-organized search strategies that concentrate on the synchronization events. On the
other hand, in asynchronous algorithms the events that trigger the interactions amongst
processes are the improvements on the objective function value or end of a solution con-
struction phase. Based on this observation we can conclude that asynchronous algorithms
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should perform better than synchronous due to its superior capacity in adapting the
exploration of the search space according to each problem structure and to the fact that
communication is performed based on events of the space structure rather than in the
synchronization logic.

Caniou and Codognet [12] developed a multi-start multiple-independent walk CBLS
algorithm where different processes cooperate in order to achieve better solutions. The
algorithm is asynchronous and terminates as soon as one process finds a solution. A
master-worker architecture is used where the master coordinates the gathered knowledge.
In order to compare the effectiveness of the cooperation, the developed algorithm is
compared with an equivalent algorithm but without cooperation.

In a first attempt the authors developed one version of the algorithm where the shared
information consists in the current cost of each process. At each iteration c, each processor
checks if the other processes have a lower cost and chooses to restart according to a given
probability p. The experimental results shown that this algorithm could not outperform
the version without cooperation, which can be explained by the fact that the cost of a
solution is not a reliable information since it is just an heuristic value.

In a second attempt the authors developed another version of the algorithm in which
the shared information also contains the number of iterations at which the cost was
computed. With this information, a process may decide to restart if the shared cost value
is better for a better number of iterations, also depending on the probability p. The
experimental results also shown that this algorithm does not outperform the version
without cooperation.

From this observations and based on the fact that the algorithm that does not make
restarts is always superior, we can conclude that simply restarting a process is not effective.
One observation that also supports this conclusion is the fact that processes decide or not
to restart at each c iterations but, different processes spend different amount of time in
each c iterations and follow different search paths. Therefore, if a restart is made, the new
initial solution must be built based on gathered information such that the process will
search in a region closer to the region where the best information was obtained.

Additionally, we conclude that sharing the cost of obtained solutions, the iteration
in which the correspondent solution was obtained, or both, does not give sufficient
information such that search agents can direct the search towards promising region of the
search space. It turns out that this type of knowledge is related to the metaheuristic used
and not to the problem characteristics. Therefore, shared knowledge must be much richer
and should give more insight about the problem search space.

As will be detailed in section 2.6, we use the ACO metaheuristic to implement coopera-
tive parallel search, in which the shared knowledge is directly related to the problem being
solved. The mechanism used to achieve intensification and diversification, by restricting
access to shared knowledge, will also be explained.
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2.6 Parallel Ant-Colony Optimization

Pedemonte et al.[60] recently proposed a taxonomy to classify parallel ACO algorithms
which is illustrated in table 2.1.

The master-slave model is based on a master process that manages global information
and controls a group of slave processes that perform tasks related to the ACO search
space exploration. Regarding the granularity (i.e. the amount of work delegated to each
slave) the model includes three distinguished categories: Coarse-grain, Medium grain and
Fine-grain.

In Coarse-grain, tasks delegated to slaves may correspond to one or more ants where
each builds full solutions and report the results to the master. In Medium-grain slave
processes solve subproblems independently and report partial solutions to the master,
which is in charge of building the complete solution. Finally, in Fine-grain, slave processes
execute small tasks and communicate frequently with the master.

#Colonies
one many

Cooperation
yes cellular multicolony
no master-slave (coarse/medium/fine) parallel independent runs

Table 2.1: Parallel ACO taxonomy categories.

The cellular model is based on a single colony that is structured in small neighbours,
each with one pheromone matrix and uses techniques from cellular evolutionary algo-
rithms. This model will not be explored in this thesis. Parallel independent runs models
consist in simply executing one independent sequential ACO algorithm in each process,
without any communication. Finally, in the multicolony model several colonies, each run-
ning in one processor, explore the search space using different pheromone matrices. This
model takes into consideration cooperation within processes that exchange informations
periodically.

The authors in [60], based on the overview of related works, concluded that the coarse-
grain master-slave and multicolony models are the most promising models for achieving
high computational efficiency. The developed algorithms in this thesis use the coarse-grain
master-slave model. Either way, the library developed will allow one to easily extend
our implementations in order to use the multicolony model using the algorithms already
implemented.

In [71] a parallel ACO algorithm which uses a LS phase using Tabu Search is proposed
in order to solve the Quadratic Assignment Problem (QAP). To represent the solution, a
permutation of integers is used. An interesting initialization scheme is described which
consists of assigning an initial random solution to each ant, a LS procedure is applied over
all solutions and the best solution is selected. Posteriorly, the pheromones are initialized
based on the objective function value of the best solution.

This algorithm has a master-slave coarse grained model with communication in which
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the master implements a central memory that stores the global knowledge acquired during
the search and each slave implement the search (one ant). At each iteration the master
broadcasts the pheromone matrix to all slaves. A diversification phase is also applied
by the master when after n/2 iterations (n is the number of locations in QAP) the best
solution is not improved. In the next iteration slaves start from the solutions generated
in this phase. The authors show that the cooperation scheme implemented (centralized
pheromone matrix) and parallelization complementarily lead to an improvement of the
effectiveness of the algorithm in achieving high quality solutions.

In [17] the authors propose an SM ACO algorithm that uses the coarse grain master-slave
model and compare SM architectures with distributed architectures. The SM version of
the proposed algorithm outperformed the distributed version. The main reason is the
communication overhead imposed by the network.

Delisle et al. [16] presented an SM parallel implementation using OpenMP of ACO
in order to solve an industrial scheduling problem. As the authors stated, the ACO
algorithm follows exactly a fork-join scheme. Additionally, despite the fact that with SM
no explicit communications are needed, therefore omitting communications overheads, a
synchronization barrier that occurs when each ant finishes the search and the pheromone
matrix needs to be updated, causes the straggler problem, which is defined above, and
prevents the algorithm from achieving better performance.

Cipar et al. [13] defined the straggler problem as the situation in which a small number
of threads (the stragglers) take longer than the others to execute a given iteration. Since
all the threads will eventually be synchronized, all threads will proceed at the speed of
the slowest one. As stated in [13] one of the solutions for the straggler problem is to make
the algorithm asynchronous. Despite of potentially making the algorithm more complex
in order to maintain its semantics and properties, it eliminates completely the straggler
problem, and allows the algorithms to use all the available parallelism.

In the context of ACO and in a distributed architecture, Kotsis et al.[43] proposed a
partially asynchronous parallelization scheme on the AS algorithm to reduce the straggler
problem caused by the ACO sychronization barrier. The scheme consists in creating
temporary sub-colonies in computer nodes which live for a certain number of iterations.
Despite reducing the amount of communication performed the straggler problem still
occurs within each sub-colony. After it iterations the results are reported to the master
node. With this scheme, not only the amount of communication performed is reduced but
also the total execution time of a thread in a sub-colony is bounded by the slower thread
of the sub-colony instead of bounded by the slower thread of the whole colony. Therefore,
if one thread in a colony takes considerable more time than the others from his sub-colony,
there will be no interference with other threads belonging to other sub-colonies. However,
the straggler problem still exists within the belonging sub-colony.

In [75] the authors propose two ACO asynchronous models based on the cunning
Ant System (cAS) algorithm. The difference in the two models consists in modelling the
pheromone matrix as a critical section (AP-cAS) or not (RAP-cAS). The RAP-cAS model
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achieved the most promising results (in terms of speedup) comparing with (AP-cAS) and
a synchronous model. In order to use the cAS algorithm, the problem model must target a
reparative search scheme, which as will be discussed in section 2.7, is not suited for our
problem. Additionally, asynchronism breaks the semantics of the original ACO algorithm
and the learning capabilities of the proposed algorithms was not verified.

In this work we propose three asynchronous ACO algorithms based on the AS algo-
rithm, that break the semantics of the original metaheuristic in order to achieve better
performance, and differ on the degree of concurrency allowed while manipulating the
learned information. Different cooperation schemes are achieved with each model. The
proposed algorithms will be presented in section 3.4 and analysed in section 5.3.

2.7 Public Transport Bus Assignment problem

According to the terminology in the literature the most similar problem to the PTBA
problem is the multi-depot vehicle assignment problem with heterogeneous fleet and line
exchanges. However, as our variant models a real life scenario, as stated in section 1.3.1,
additional constraints are considered related to vehicle maintenances, waiting times on
terminals to load passengers or exchange drivers, among others.

To the best of our knowledge, our variant of the the MD-VSP was not yet addressed.
Real life instances of the PTBA problem, either in urban and inter-urban contexts, tend

to be large. Complete search is not able to solve these instances in reasonable time due to
the combinatorial involved. In the literature several heuristic methods based on variable
fixing, i.e., reducing the problem size by fixing some variables were proposed [27, 33].
These methods still have a complete search phase that is applied over a reduced problem
(in the number of variables) which restricts the ability for this algorithms to scale, in terms
of solving larger instances.

A different approach based on Iterated LS is used by Laurent and Hao[46]. The
MD-VSP problem is considered with an homogeneous fleet and no line exchanges. The
algorithm starts by generating an initial solution and then iterates over that solution
applying a perturbation mechanism followed by a LS phase. In each iteration, after
each LS phase an acceptance criterion is applied that verifies if the obtained solution is
admissible (i.e. does not violate any constraint).

Two simple neighbourhoods are considered:

• Shift Neighbourhood - transfer the trip of a vehicle to another vehicle;

• Swap Neighbourhood - Swapping the two vehicles of two trips (vehicles must be
different.

These neighbourhoods are very naive since they lack any consideration for constraints
like maximum travelling time, void trips, among others. Due to this fact the authors
consider an additional neighbourhood which is named block-moves neighbourhood. This
neighbourhood is based on ejection chains (originally introduced in [36]) which are based
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in selecting a set of elements to undergo a change of state, leading to an identification of a
collection of other sets with the property that atleast one of the elements must be ejected
from the current state. The block-move applied by the authors consists in shifting a given
number of consecutive trips of a given vehicle v to another vehicle v′.

Naturally this move often leads to constraint violations and consequently, a repair
mechanism is applied. This last neighbourhood is more sophisticated and captures the
notion of a sequence of services, however, the notion of line exchanges is not captured.
Therefore, this move is not suitable for our case.

Another LS approach is used in [77], where the Multi-Depot VSP with line exchanges
is considered. The problem is formulated using a CBLS approach. Hard constraints,
that enforce the consistency of each solution, are always satisfied. On the other hand,
soft constraints (used for line changes, vehicle transfer operations, amongst others) are
incorporated in the objective function. The neighbourhood used is the same as the previous
work, the shift neighbourhood. The authors show that by considering line exchanges it is
possible to achieve solutions with smaller operational costs (around 9.91% reduction).

In both works analysed above, we verify a great effort in assuring that hard constraints
are not violated. A study in how much LS iterations are performed and whose resultant
solutions are discarded is not present in either works, however, we can infer that a
significant number of iterations are discarded due to the used neighbourhoods. This
justifies why solution repair schemes are used. Based on this observation we believe that
constructive approaches should be more adequate and yield better results, therefore, our
developed algorithms will follow the constructive approach.
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PTBA PROBLEM ALGORITHMS

In this chapter we start by discussing our problem model based on the formulation
presented on section 1.3.1. First, in section 3.1.1 the base sequential constructive algorithm
will be presented, followed by a discussion of how hard constraints are enforced, such
that an admissible solution is produced. Our sequential algorithm is designed so that
different heuristics may be used to decide which vehicles should be assigned to a given
departure. In order to achieve different behaviours, in particular randomization, we use
different heuristics. Our developed heuristics will be discussed in section 3.1.2. Based on
this sequential algorithm, we developed a parallel probabilistic Multi-Start Metaheuristic.
This parallel metaheuristic and its associated details will be presented in section 3.2.

Then, in section 3.3 we discuss how the PTBA problem can be modelled with the ACO
metaheuristic and we present the developed algorithms based on the AS andMMAS algo-
rithms. Lastly, section 3.4 presents and discusses parallel synchronous and asynchronous
strategies and the underlying cooperation scheme for the developed ACO algorithms.

3.1 Problem Model and Base Algorithm

In the PTBA problem the objective is to produce a schedule for a set of vehicles such that
each time-tabled departure Ti ∈ T is covered, whilst minimizing the operational costs and
satisfying a set of constraints.

Our variant of the problem takes into account a significant number of constraints.
As already discussed in section 2.7, even on more general variants of the problem, it is
difficult to define a move operator that perturbs a given solution into a new solution, while
satisfying all the hard constraints. This is even worse with our variant of the problem since
we take into account additional constraints.

One approach would be to apply a simple and fast operator by sacrificing solution
feasibility. This would allow one to design reparative LS algorithms, however, as also
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was discussed, this would require the definition of repair schemes such that infeasible
solutions become feasible. Depending on the type of move operator used, repair schemes
may be too complex, what would lead to a strategy that spends a significant part of the
time (based on the fact that the procedure for generating new solutions is faster than the
repair scheme) repairing solutions instead of exploring the search space.

The constraint which enforces that vehicle schedules in which InService tasks are
compatible trips, is the one which has greater chances of becoming violated, when a given
LS move operator is applied. This is due to the fact that this constraint implicitly implies
a sequence of compatible trips within a schedule for each vehicle. When performing
modifications on a vehicle sequence of compatible trips, one must ensure that in the end,
all trips of all vehicles are still compatible within the respective service.

Figure 3.1: Trips dependency example.

Figure 3.1 exemplifies this problem. Two schedules S1 and S2 are considered, with n
and m associated tasks, respectively. A move operator, which consists of swapping vehicles
assigned to trips from the two schedules, is applied. Despite of the operator simplicity,
there are no guarantees that task Tj and Ti+1 are compatible (the same happens to Ti and
Tj+1).

To overcome this problem, we follow a constructive approach in which a partial
solution is extended at each iteration, until a final solution is obtained. The constructive
approach allow us to incrementally build solutions without violating hard constraints by
allowing only admissible components to be added to the current partial solution.

We apply this approach by assigning only vehicles to departures in which the assign-
ment does not lead to constraint violations. To model this behaviour, a set of admissible
vehicles is built for each departure and then one vehicle is chosen according to some
heuristic. This approach assumes that departures are processed in a given order. Our
model is therefore departure oriented, in the sense that local decisions are made when
processing a given departure.

In the following section we introduce our algorithm which materializes the described
approach.

3.1.1 Sequential Algorithm

The approach described above is materialized as follows.
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Let G = (S, A) be a directed graph where each vertex s ∈ S corresponds to a state of
the problem and each arc a ∈ A corresponds to an admissible assignment of a vehicle to a
departure in a given state. A state is composed by:

i) Next departure to assign a vehicle (Tj);
ii) For each depot Dk, the set VDk of vehicles in the depot k and their arrival times;
iii) For each terminal Pk, the set VPk of vehicles in the terminal k and their arrival time;
iv) Distance travelled by each vehicle;
v) Total waiting time of each vehicle;
vi) Total working time of each vehicle;
vii) Time (working time) of last maintenance task of each vehicle;
viii) The total number of service interruptions of each vehicle;
ix) Attended departures.

Our algorithm constructs a solution by performing a walk in G, using a given strategy
to select which vehicle to assign to a departure in each state. Figure 3.2 illustrates the
problem graph. A solution is found when a vehicle is assigned to all the m departures.

Figure 3.2: Example of a possible problem graph.

Let VD =
⋃

VDk and VP =
⋃

VPk. At each state Si, when processing departure Tj,
a set of admissible vehicles AdmVi is computed based on the sets VDk for each depot
Dk and on the sets VPk for each terminal Pk. The set AdmVi, which corresponds to the
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neighbourhood N (sp) of a partial solution sp, is equal to AdmVDi ∪ AdmVPi, where
AdmVDi ⊆ VD and AdmVPi ⊆ VP are the sets of admissible vehicles from depots and
terminals, respectively. Each element vhi of AdmVi denotes a vehicle that when assigned
to departure Tj satisfies all the hard constraints described in section 1.3.1. The successors
of each vertex are the assignments of elements of AdmVi to the current departure. Based
on a given strategy, as it will be discussed in section 3.1.2, one element of this set is chosen
and assigned to Ti.

The algorithm pseudo-code is outlined in Algorithm 2. Initially all the departures
Tj ∈ T are sorted in increasing order by their departure minute sj. Then, for each Tj, the
set AdmVi of admissible vehicles, departing either from a depot (AdmVDi set) or from
a terminal (AdmVPi set), is computed. Subsequently, a vehicle from AdmVi is chosen
according to a given heuristic function hF and assigned to departure Tj. The different
heuristic functions will be described in section 3.1.2. When assigning tasks, we assume
that a regular service day starts at 5:00 AM and our unit of time is minutes. To simplify
calculations, we also assume that 5:00 AM corresponds to minute 0.

It is also worth noting that initially, all vehicles are on their respective depot. When
vehicles terminate their scheduling, they are sent to the depot.

Algorithm 2 PTBA Algorithm

1: procedure PTBA_ALGORITHM return set of schedules for each bus
2: sorted_deps← set of departures T sorted by departure time
3: for all departure t in sorted_deps do
4: AdmVDi ← select admissible buses from each depot
5: AdmVPi ← select admissible buses from each terminal
6: AdmVi ← AdmVDi ∪ AdmVPi
7:
8: % Select a bus using a given strategy
9: choosen_bus← SelectBus(hF, AdmVi)

10: t.assign(choosen_bus)

3.1.1.1 Admissible Vehicles set construction

Let duration(l1, l2) denote the duration of a trip from location l1 to location l2.

When computing the set AdmVDi the following decisions are made:

• vehicles that are not allowed on the bus line of departure Tj are excluded;

• vehicles that already performed maxNumInterrupts services are excluded;

• vehicles in a depot that were already used are preferred. This contributes to the
maximization of vehicles reuse;
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• by default, even if |AdmVDi| > 1, only one vehicle is selected. This reduces the
cardinality of AdmVDi and improves performance, however, good candidates may
be ignored. Therefore additionally, a number of candidates NumVDCandidates
can be specified in order to take into consideration NumVDCandidates instead of
only one. When NumVDCandidates is specified, the vehicles to be added to the set
AdmVDi will be selected based on the arrival time, in increasing order.

When computing the set AdmVPi the following decisions are made:

• vehicles that are not allowed on the bus line of departure Tj are excluded;

• if no line exchanges are allowed, vehicles in a different bus line are excluded. Addi-
tionally, in this situation, we also exclude vehicles that are on the opposite terminal
of the same bus line;

• vehicles arriving at their current terminal termj ∈ P at minute ma, awaiting for
more than maxDurAtTerminalj minutes, are sent to the corresponding depot dk with
arrival:

ma + duration(termj, dk) (3.1)

This originates a VoidOut task in which smin corresponds to ma and emin cor-
responds to smin + duration(termj, dk). Since the departures are sorted by depar-
ture time in increasing order, when a vehicle that exceeds the maxDurAtTerminalj

is sent to the depot while processing a departure Tj, we know that the vehicle
was not selected for previous departures Tl where l < j and, if it exceeds the
maxDurAtTerminalj at Tj it will also exceed it for all Tl such that l > j. This reason-
ing is valid also for vehicles that are sent to maintenance.

From both origins (depots and terminals) only vehicles whose last trip is compatible
with departure Tj are considered, i.e., vehicles are considered if the following condition is
verified:

arrival_minute + duration(locj, itj) ≤ si (3.2)

were arrival_minute is the minute of arrival of the vehicle to the current location locj and
duration(locj, itj) is the travelling time from location locj to location itj.

As already described, each type of vehicle has a corresponding maximum working
time. Our algorithm attempts to exhaust as much working time as possible, without
violating the limit imposed. In order to ensure that no violations occur, when a vehicle is
chosen as admissible, it needs to have not only sufficient working time to perform the trip
Tj but also to travel to the depot.

This criteria is defined as follows. Vehicles in terminals can wait such that a trip to
the depot is avoided (we describe all the possible wait situations in section 3.1.1.2). Let
waitingTime be the total waiting time of a vehicle stationed at terminal termi or in a
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different terminal, of departure Tj. Assuming that the vehicle was chosen, waitingTime is
defined as:

waitingTime = sj − (arrival_minute + duration(locj, itj)) (3.3)

Then waitingTime is normalized as:

waitingTime =

waitingTime , waiting_time ≤ MaxWaitingTimeOnService

0 , otherwise
(3.4)

where MaxWaitingTimeOnService is the maximum waiting time in which a vehicle is
considered to be in service (working). This normalization models the situation in which a
service interrupt occurs and the vehicle does not spend any working time while waiting
(e.g. the driver turned off the vehicle).

Based on the definition of waitingTime, the vehicle working time after performing
departure Tj and travelling to its corresponding depot workTimeA f ter is defined as:

workTimeA f ter = CurrentWorkingTime(v) + duration(locj, itj) + waitingTime

+ (ej − sj) + εmin + duration( f tj, depot_loc)
(3.5)

where CurrentWorkingTime(v) denotes the current working time value of vehicle v.
Vehicles are considered if the following condition, with respect to vehicles working

time, is verified:
workTimeA f ter ≤ MaxDailyWorkingTime(v) (3.6)

where MaxDailyWorkingTime(v) denotes the maximum daily working time of vehicles
whose type corresponds to the type of vehicle v.

Lastly, vehicles from both origins are sent to maintenance while building the admissible
sets. The difference between a vehicle being in a depot or in a terminal is that in a terminal
vehicles must travel first to the corresponding depot and only then perform maintenance.

As with the working time criteria, the algorithm decides to send a vehicle v to mainte-
nance if after performing the trip Tj, travelling to the vehicle depot exceeds the maximum
time between maintenance tasks, i.e:

workTimeA f ter− LastMaintenance(v) > MaintenanceLimit(v) (3.7)

where LastMaintenance(v) corresponds to the time of last maintenance task of vehi-
cle v and MaintenanceLimit(v) the maximum time between maintenance tasks of ve-
hicles whose type corresponds to the type of vehicle v. This originates a task of type
Maintenance with smin = arrival_time and emin = smin + MaintenanceDuration(v),
where MaintenanceDuration(v) denotes the duration of a maintenance episode of vehi-
cles whose type correspond to the type of vehicle v.
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When the vehicle is not at its depot it must travel first to the depot and only then
maintenance can be performed. In this situation a VoidOut task is originated with smin =

arrival_time and emin = duration(locj, dv), where dv denotes the depot of a vehicle v.

3.1.1.2 Vehicle Assignment to departure

After choosing a vehicle v for trip Tj based on a given heuristic, the vehicle is assigned.

When assigning a vehicle, the following situations regarding the current location locj

of v may occur:

Vehicle on Depot - when locj corresponds to a depot, v must travel to the departure
terminal itj. A task of type VoidIn is created with smin = ej − duration(locj, itj) and
emin = ej. Since we assume that 5:00 AM corresponds to minute 0, a special case
may occur when ej − duration(locj, itj) < 0, meaning that the task must start at a
given point in time before 5:00 AM. In this situation, the sminj is irrelevant1;

Line Exchange - When locj 6= itj then v must travel to itj and only then can perform the
trip Tj. In this situation the following two tasks are generated:

• A LineExchange task in which a vehicle travels in void without passengers
from its current terminal locj to the departure Tj terminal itj, with smin =

arrival_minute and emin = duration(locj, itj);

• A Wait task is created if eminLineExchange < sj where eminLineExchange is the end-
ing minute of the line exchange task. This means that if the vehicle arrives the
departure terminal task sooner, it must wait the remaining time to reach sj.
The starting minute smin of wait task is set to smin = eminLineExchange and the
ending minute is set to emin = sj;

Vehicle already on terminal itj - If the vehicle is already at the departure terminal, i.e.
locj = itj, then the vehicle must wait until minute sj. A Wait task is originated with
smin = arrival_minute and emin = sj.

Once the vehicle is at the current departure terminal a InService task is originated
with smin = sj and emin = ej − sj. After performing the trip Tj the vehicle arrival time is
updated as follows:

arrival_time = ej + εmin (3.8)

The minimum time between an arrival and a departure constraint is enforced by making
the vehicle available only after arriving the terminal and waiting the respective minimum
time εmin.

In order to enforce the maximum number of vehicles in a terminal constraint, after
the vehicle v performing the departure, the algorithm must decide to send it or not to its

1When interpreting the solution one must take this case into consideration.

45



CHAPTER 3. PTBA PROBLEM ALGORITHMS

depot. This decision is based on the following rule:

sendToDepot =

true , numVehiclesAtTermj < maxNumVehiclesAtTerminalj

f alse , otherwise
(3.9)

where sendToDepot is a boolean variable which indicates if the vehicle must be sent to de-
pot (true) or not ( f alse), and numVehiclesAtTermj denotes the number of vehicles stationed
at terminal itj. When the decision is to send the vehicle to the depot, a VoidOut task is orig-
inated with smin = arrival_time (the updated arrival time) and emin = duration( f tj, dv),
where dv denotes the depot of vehicle v.

As discussed in section 1.3.1, when a vehicle is idle for more than maxIdleTimeInService,
on a depot (if already departed) or in a terminal, a service interrupt occurs. In this case,
a ServiceInterrupt task is created with smin = arrival_time (before the update) and the
number of service interruptions of vehicle v is incremented by 1. The ending minute emin
of this task is irrelevant.

3.1.2 Vehicle Selection Heuristics

In this section we will describe a set of heuristics used to select a vehicle, in the context of
assigning a vehicle to a departure Tj, from the set of vehicles AdmVi.

We propose three heuristics:

• Random

• Probabilistic based on vehicle utility

• Vehicle Utility selection - Greedy

In the next sections we introduce each of the heuristics mentioned above.

3.1.2.1 Random

The random heuristic is also a simple and straightforward heuristic which consists in
selecting a integer number r ∈ [1, |AdmVi|] using a uniform distribution of discrete integer
values in the same range as r.

The random heuristic is defined as follows:

hFrandom = selectFromUni f ormDistribution( [1, |AdmVi|] ) (3.10)

where selectFromUni f ormDistribution(interval) is a function that produces random inte-
ger values based on a pseudo random number generator function over the range interval.
Produced values are distributed according to the following discrete probability function:

P(val|lb, ub) =
1

ub− lb + 1
(3.11)

where val ∈ [lb, ub] denotes a given value, lb and ub denote the lower and upper bound
of the desired range of values (in this case lb = 1 and ub = |AdmVi|).

46



3.1. PROBLEM MODEL AND BASE ALGORITHM

Since with this heuristic vehicles are chosen randomly, no attempt to minimize the
objective function is made. Consequently, this heuristic will produce bad quality solutions.
However, it introduces randomization in the algorithm, which is essential to implement
multi-start based metaheuristics. This heuristic can be used as comparison criteria for
more sophisticated methods (either heuristics and/or metaheuristics) since bad solutions
are expected.

3.1.2.2 Probabilistic based on vehicle utility

Both heuristics previously described are very naive and are not able to produce high
quality solutions. The greedy heuristic blindly selects always the best option at each
departure assignment which consists in optimizing each local choice but not the complete
solution produced. The random heuristic does not even attempts to minimize the objective
function but introduces randomization.

We developed an additional probabilistic heuristic which introduces randomization
and attempts to minimize the objective function of the problem.

An utility value is assigned to each vehicle. The utility value depends on the current
state Si of the algorithm and on the trip Tj being processed.

The objective is to select a vehicle with a given probability, which is computed based
on its utility value. The rationale is that vehicles with greater utility values are more likely
to be selected. Additionally, it should minimize both terms of the objective function.

In order to take into account several factors, where some are more important than
others, we model our expression using a linear combination of these factors. The utility
η(v) of a vehicle v on a location locv performing a departure Tj starting in terminal itj, is a
function η : R≥0 7→ ]0, 1] defined as follows:

η(v) = e

−
[
dist(locv, itj) ∗ distTypeCost(v) ∗ k1 + dTerm(locv, itj) ∗ k2 + newVehicle(v) ∗ k3

]
k4

(3.12)
where dist(t1, t2) is the distance from t1 to t2, dTerm(t1, t2) is a boolean function that

returns 1 if t1 is a terminal and t1 = t2 or 0 otherwise, newVehicle(v) is a boolean function
that returns 1 if v is a new vehicle (is its first trip) or 0 otherwise, and kw, where w ∈
[1, 2, 3, 4], are weights that can be parametrized.

Each of these terms are described as follows:

• dist(locv, itj) ∗ distTypeCost(v) - Denotes the incremental cost (in terms of distance
travelled) in e of performing the current departure with vehicle v. This term is
aligned with the objective function distance travelled factor and can be used to
minimize it;

• dTerm(locv, itj) - Captures the occurrence of a line exchanges. When dTerm(locj, itj) =

1 a line exchange occurs, therefore, this term can be used to control the influence of
line exchanges in the vehicle utility;

47



CHAPTER 3. PTBA PROBLEM ALGORITHMS

• newVehicle(v) - Captures the situation in which a new vehicle (a vehicle that has not
performed any departure yet) is needed to cover the departure. This term is also
aligned with the objective function total number of vehicles factor and can be used
to minimize it.

The utility expression is dimensionless due to the introduction of weights. The weights
are also used to control the influence of each of the terms described above in the definition
of a vehicle utility.

In order to ensure correctness, terms must be normalized to the [0, 1] range. Terms are
normalized as follows:

• Let Pi = dTerm(locv, itj) ∗ k2 + newVehicle(v) ∗ k3. Given that weights k2 and k3

are defined on the range [0, 1] and that dTerm and newVehicle have domain {0, 1},
normalization is implemented as:

Pinorm =
Pi

k2 + k3
(3.13)

• Unlike the previous case, the normalization of the increment in cost the term cannot
be static, since the domain of values of the term changes for each departure assign-
ment. Despite the fact that the lower bound of the term can be set to 0, there may be
situations in which the lower bound is not 0 (i.e. there are no vehicle in the departure
terminal). Additionally the more costly assignment, which corresponds to the upper
bound, also changes for each departure assignment. Therefore, in an assignment of a
departure Tj, the set AdmVi is iterated in order to find the lower and upper bounds,
∆min and ∆max, respectively. Let ∆vnorm = dist(locv, itj) ∗ distTypeCost(v). This term
is normalized as follows:

∆v =
∆v − ∆min

∆max − ∆min
(3.14)

Weights are used to control the influence of each term in the definition of a vehicle
utility. Different parametrizations can be used not only to minimize the objective function
but to achieve good real solutions to the problem. Despite the fact that real solutions are
hard to define, some general guidelines may be straightforward like keeping the number
of line exchanges small. Either way, these parameters should be choose according to
transport services companies needs.

The negative exponential is used such that utility of a vehicle decreases exponentially.
The rationale is that bad choices will get a very bad utility value. Figure 3.3 shows a plot
of the function y = e−x with domain ]0, 1]. By interpreting y as the utility of a vehicle and
x as the value of the linear combination of the terms explained above, it can be seen that
as the x value increases, the utility of a vehicle decreases exponentially.

One trivial decision is when a vehicle v is located on a terminal itj of a departure Tj. It
is expected that in this situation the vehicle utility is maximal. Our utility expression η(v)
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Figure 3.3: Plot of the function y = e−x in which the behaviour of the function can be
observed

evaluates to 1 in this case (the upper bound value) since the value of the linear combination
is 0 and e0 = 1. Additionally, by using the exponential, values are implicitly normalized
between 0 and 1.

Since e−x converges quickly to 0 as x increases, the weight k4 can be used to reduce the
value of the linear combination such that utility values can get spread across the range
[0, 1] instead of laying close to 0.

The probabilistic heuristic works as follows:

1. a set AdmVi_utilities is created where each element uv ∈ AdmVi_utilities corre-
sponds the utility value η(v) of a vehicle v;

2. the set AdmVi_utilities is truncated, originating the set NAdmVi_utilities, such that
only the N best elements are considered;

3. the probability of each element uv ∈ NAdmVi_utilities, is computed based on a
probability distribution over the utility values defined as follows:

P(v) =
uv

|NAdmVi_utilities|
∑

l=1
ul

(3.15)

4. a vehicle v is selected with probability P(v) by obtaining a pseudo-random number r
from a uniform distribution over the range [0, 1] and selecting, using the cumulative
probability of all vehicles until r is reached.

The truncation step is introduced to avoid losing good decisions due to the probability
distribution used. Figure 3.4 illustrates this problem. As we can see, a very good choice (v1)
with utility 1 has a probability of 0.25 of being selected while the remaining 100 decisions,
each with utility 0.04 and probability 0.008, have a total probability of 0.75. Therefore it is
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likely that a bad decision will be selected instead of the good one. By reducing the number
of elements to 11, the very good choice gets a probability of ≈ 0.71 and the remaining 10
decisions get a probability of ≈ 0.029 each, and a total of ≈ 0.29. Now, it is more likely
that the selected vehicle will be the best one.

Figure 3.4: Illustration of the probabilities issue by considering a different number of
vehicles while selecting a vehicle to assign to the current departure. In a) a vehicle v1
with utility 1 has 0.25 probability of being selected. The remaining vehicles from v2 to
v101 have a total probability of 0.75, each with probability 0.04. In b) only 11 vehicles are
considered. A vehicle v1 with utility 1 has an associated probability of ≈ 0.71 and the
remaining vehicles have a probability of ≈ 0.29.

The number of elements N to consider must be chosen such that good decisions are
not lost (assigned a low probability value) and such that a considerable degree of diversity
is achieved, by allowing the algorithm to also explore bad decisions sporadically.

3.1.2.3 Vehicle Utility selection - Greedy

The probabilistic heuristic classifies for each departure assignment, the vehicles on the
set AdmVi of the current state with a utility value. Then, using a probability distribution
over the utilities, one vehicle is chosen. A straightforward heuristic can be achieved by
enforcing a deterministic behaviour on the probabilistic vehicle utility presented on the
previous section.

The greedy heuristic is defined as follows:

hFgreedy = arg max
va

η(va), ∀ va ∈ AdmVi (3.16)

This heuristic selects the vehicle with greater value of utility. When draws occur, the first
vehicle (based on the order of iteration of the set) is chosen.

This heuristic is deterministic, therefore, no randomization is achieved. However,
this heuristic is useful to provide an upper bound on the solutions quality, and establish
meaningful comparisons.
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3.2 Sequential and Parallel Probabilistic Restarts Metaheuristic

With the introduction of randomization in the algorithm described in section 3.1.1 by using
the Random or the Probabilistic heuristics, a restarts metaheuristic can be developed.

The restarts metaheuristic consists in performing N distinct starts of our proposed
algorithm, yielding N solutions. The best solution found so far is stored. The algorithm
pseudo-code is outlined in algorithm 3.

Algorithm 3 Restarts Metaheuristic

1: procedure RESTARTS-METAHEURISTIC return the best schedule found
2: bestSolutionFound← empty solution
3: bestSolutionFoundValue← +∞
4: i = 0
5: while i < m do
6: currentSolution← PTBA_ALGORITHM()
7: tempSolutionValue← currentSolution.objectiveFunctionValue()
8: if tempSolutionValue < bestSolutionFoundValue then
9: bestSolutionFound← currentSolution

10: bestSolutionFoundValue← tempSolutionValue
11:
12: i← i + 1

Despite of its simplicity, by performing several restarts and by exploring the randomiza-
tion offered by the heuristics (specially from the probabilistic heuristic) this metaheuristic
is able to achieve a good degree of diversity. Additionally, as discussed in section 2.1.2.1, in
order to maximize the portion of the search space explored, as much as possible solutions
must be produced. Therefore, the value m must be as large as possible.

The value m is restricted by the computation time needed to produce m solutions.
Generally speaking, in a sequential setting, the computation time needed to execute the
algorithm is m ∗ solt, where solt denotes the time needed to produce a single solution. As m
increases, the computation time is expected to increase linearly. By exploring parallelism,
larger values of m may become feasible.

Since each algorithm execution (restart) is independent, a straightforward paralleliza-
tion strategy consists of performing p executions in parallel. This strategy follows the
multiple-walk approach with multiple independent walks, i.e., executions are completely
independent and no interaction occurs.

Theoretically, by performing p executions in parallel, p solutions can be produced in
solt units of time. Therefore, in the same period of time, the parallel algorithm is able to
produce p times more solutions than the sequential algorithm.

3.3 Ant-Colony algorithms

The sequential algorithm presented in section 3.1.1 is characterized by a somewhat greedy
behaviour. The developed parallel restarts metaheuristic, presented in section 3.2 inherits
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this behaviour since it is based on the sequential algorithm. This is due to the fact that, even
with the probabilistic heuristic, decisions are made locally (for each departure assignment)
and each start executes independently, disregarding any valuable information obtained
during previous executions. Consequently, the metaheuristic performs a poor exploration
of the search space. The search is not guided properly towards promising regions, harming
not only the degree of diversity achieved but also intensification on promising regions.

As discussed in section 2.3, the ACO metaheuristic performs a more sophisticated
exploration of the search space through a stochastic learning mechanism. We develop a
model of the PTBA problem for the ACO metaheuristic and two algorithms, one based
on the AS and one based on theMAX−MIN algorithm. The model and the developed
algorithms will be presented in the following sections.

3.3.1 PTBA Ant-Colony Model and Ant-System algorithm

In order to develop an algorithm for the PTBA problem based on the ACO metaheuristic
the following components must be defined:

Agent Algorithm - Each agent (an ant) must execute an algorithm that follows the con-
structive approach, in order to construct an admissible solution.

Pheromone matrix model - the pheromone matrix holds information about the desirabil-
ity τij of each solution component cij. A solution component must be defined in the
context of the problem.

Each agent will use our sequential algorithm to construct solutions since it meets all
the requirements.

In our model each component cij added to a solution corresponds to an assignment of
a vehicle i to a departure Tj. Let L = P ∪ D be the set of possible locations from where a
vehicle can be picked when assigning a vehicle to a given departure (depots and terminals).
Our model corresponds to a |L| × |T| matrix, i.e., we assign a pheromone value τij to each
pair 〈li, Tj〉 that denotes the desirability of assigning vehicles that are in a location li ∈ L to
a departure Tj ∈ T. The pheromone model is represented by the following matrix:



T1 T2 . . . T|T|
l1 τ11 τ12 . . . τ1|T|
l2 τ21 τ22 . . . τ2|T|
...

...
...

. . .
...

l|L| τ|L|1 τ|L|2 . . . τ|L||T|

 (3.17)

where l1, . . . , l|L| correspond to the possible locations L.
Our pheromone model is actually based on a relaxation. Each cij is based on a given

vehicle i, however, in our model we do not take into account the desirability of assigning
a specific vehicle i to a given departure. Instead, we model the desirability of assigning a
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vehicle from a specific location l to a departure. This is due to the fact that the number of
vehicles may be very large. Since at each assignment, from the probability distribution
expression 2.1, it follows that for each departure, the probability of each vehicle must be
computed. Consequently, this impacts negatively the performance of the metaheuristic.

Another observation is that by taken into account specific vehicles instead of locations,
the pheromone matrix would not only become very sparse but also with misleading
desirability values. Considering a situation in which for the first departure T0 the optimal
decision is to assign a vehicle of type 1 from location l. If we have 100 vehicles of type 1 in
a location l and agents perform this assignment, when the pheromone values are updated
the amount of pheromone deposited will be spread across the vehicles pheromone values.
With our model all the agents would update the same matrix entry, emphasizing the
assignment.

3.3.2 MAX−MIN Algorithm

By extending our AS algorithm, we developed a ACO metaheuristic based on the
MAX−MIN algorithm. As discussed in section 2.3.2, theMMAS algorithm is more
sophisticated and more capable of avoiding premature convergence to a local optimal
solutions and perform a stronger exploration of the search history.

The following extensions were added to our AS algorithm:

• in [69] the authors show that better results may be obtained by using sib, therefore,
the pheromone update is now performed based only on the agent that produced the
best solution sib of the current iteration;

• the lower bound τmin is initialized with τmax/a where a is a parameter and the upper
bound τmax is initialized with an arbitrary constant;

• a pheromone reinitialization mechanism is implemented using a fixed number IT of
iterations to infer stagnation.

3.4 Parallel Synchronous and Asynchronous ACO Algorithms

The Ant-Colony based algorithms presented in section 3.3.1 and 3.3.2 can be naturally
parallelized by using the multiple-walk approach. Additionally, cooperation may be
achieved by using the stochastic learning component of the ACO metaheuristic, originating
a multiple interacting walks search algorithm. We developed both synchronous and
asynchronous algorithms based on the AS targeting a shared-memory architecture. For
theMMAS algorithm only a synchronous parallel algorithm is developed since as it will
be explained, this algorithm is not suited for an asynchronous scheme. These algorithms
will be presented and discussed in the following sections.
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3.4.1 Synchronous ACO Algorithms

A parallel synchronous scheme keeps the original semantics of the ACO metaheuristic.
More concretely, at each iteration, N agents construct solutions which are then used to
update the pheromone matrix. In the AS algorithm the update is performed by using all
the solutions constructed and in theMMAS algorithm only the best solution constructed
is used.

Given that at each iteration, N agents build a solution independently, i.e., despite
the fact they all access the pheromone matrix to perform decisions, their progress is
completely independent from others agents. This observation is valid for the AS and
MMAS algorithms, however, for the ACS algorithm this is not true since each agent
performs local updates to the pheromone matrix while building solutions. Nevertheless,
in our work we will not develop a parallel algorithm based on ACS.

3.4.1.1 Ant System Parallel Synchronous Algorithm

The Ant System Parallel Synchronous ACO algorithm is based on the general ACO
algorithm 1, which for the sake of clarity is reproduced in this section in algorithm 4, in
which a parallel region is introduced on line 4 (ConstructAntSolutions).

Algorithm 4 Parallel Ant-Colony Optimization.

1: procedure PARALLEL ANT-COLONY OPTIMIZATION(problem) return best solution
found

2: Initialization
3: while termination condition not met do
4: ConstructAntSolutions % Performed in parallel
5: UpdatePheromoneTrails

return best solution

This parallel region achieves the behaviour illustrated in figure 3.5. Agents are given a
task which consists of executing a given algorithm in order to construct a solution. Each
agent will perform its own task in parallel, reporting the solution constructed (or failure,
if no solution could be constructed). The algorithm is synchronous since an iteration ends
only when all the agents finish their task.

The AS mechanisms of update and pheromone evaporation are performed outside the
parallel region at the end of an iteration.

Theoretically, with this algorithm, almost linear speedup may be achieved. Even
theoretically, and based on the Amdahl’s Law defined on equation 2.11 of section 2.4, the
speedup would never be linear since the update and evaporation mechanisms are still
performed sequentially.

Despite of its simplicity, one interesting aspect of this parallelization strategy is that it
introduces cooperation within agents. This cooperation, despite of being performed indi-
rectly, contributes to a better search exploration and exploitation of the search space in a
reduced amount of time. The pheromone trails, are defined over the problem search space,
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Figure 3.5: Illustration of the parallel synchronous algorithm behaviour on each iteration.

therefore, parallel search agents cooperate in completing and evolving the pheromone
trails matrix which gathers knowledge obtained during the search, by constructing solu-
tions in parallel and reporting the components of those solutions. This approach differs
from the works analysed in section 2.5.1 since the shared knowledge of ACO gives much
more insight about the problem characteristics.

This implicit cooperation mechanism when following a synchronous scheme, has a
predictable behaviour, i.e., the influence of the cooperation mechanism on the search
algorithm is the same as in a sequential setting. As it will be discussed in section 3.4.2,
when following an asynchronous approach different interesting search behaviours are
achieved since now agents influence each other during the solution construction phase.

However, the synchronization barrier, at the end of each iteration, causes the straggler
problem. This problem can be mitigated by following an asynchronous scheme, as it will
also be discussed in section 3.4.2.

3.4.1.2 MAX−MIN Parallel Synchronous Algorithm

Since theMMAS is an extension of the AS algorithm, it can be parallelized by following
the same approach: adding a parallel region on line 4 of ACO algorithm 1.

Parallel schemes for theMMAS must be synchronous. This is due to the fact that at
the end of an iteration, only the best solution is used to perform the update.

If we applied the exactly same approach as in the AS algorithm the computation of
the best solution would be performed sequentially and would have a complexity of O(N)

in the worst case. This approach clearly would have a negative impact on the maximum
possible speedup achieved. However, if at any moment agents know the objective function
value of the best solution found on the current iteration, they can compare this value with
the objective function value of the solution just constructed and update the iteration best
solution, if that is the case.
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In order to support this mechanism the following set of operations must be atomic:

• read the current iteration best solution value (read);

• compare this value with the value of the solution produced (comparison);

• update the iteration best solution value if a better solution is found (write).

With this mechanism, the task of finding the best solution value of an iteration has a
time complexity of O(1) since the search is distributed by each agent. A small overhead is
imposed from performing the set of operations described above as an atomic operation.
This overhead should not be very significant since all the operations are simple and can
be executed very quickly on the hardware.

3.4.2 Asynchronous ACO Algorithms

The first step in order to develop an asynchronous parallel scheme consists in choosing a
base ACO algorithm.

TheMMAS and the ACS algorithms include mechanisms to avoid premature con-
vergence and consequently may achieve better results than AS, in a sequential setup.
However, these mechanisms affect negatively the exploitation of parallel resources. The
most prohibitive aspect is that either inMMAS and ACS algorithm instead of updating
the learned information with all the N agents solutions, only the best solution is used to
perform the update. This property naturally implies that the algorithm has to wait for all
the agents to finish the current iteration in order to proceed.

The issue with the ACS algorithm is that agents perform local updates while building
solutions, i.e., each time a solution component cij is added to a partial solution sp, the
pheromone matrix cell τij is updated. In a parallel setup, this would cause a high degree of
concurrency due to the high number of accesses to the pheromone matrix. In a synchronous
algorithm, at each iteration, N agents would be concurrently accessing the matrix, however,
in a asynchronous algorithm this number can potentially be larger.

Therefore, we conclude that AS is more suitable to design an asynchronous parallel
strategy.

3.4.3 Base Algorithm

Our algorithm follows the coarse-grain master-slave model in which a master executes the
update and pheromone evaporation mechanisms and controls the tasks assigned to the
slaves.

The main modification of our asynchronous model with respect to the synchronous
parallel ACO algorithm, also illustrated in figure 3.6 , is the following:

The master generates a set of P×N tasks, where P is the total number of iterations.
Each task belongs to a given iteration p ∈ P and a given search agent n ∈ N.
These tasks are executed asynchronously and the results are sent to the master.
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Figure 3.6: ACO behaviour after introducing asynchronism.

It is worth nothing that the concept of an iteration, with the semantics of an iteration
of the original ACO algorithm, is now merely virtual. This is due to the fact that as soon
as an agent finishes, it starts a new task immediately, instead of waiting for the remaining
agents.

Additionally, as illustrated in figure 3.7, it may now occur that a search agent that is
constructing a solution views an update to the matrix. This is the situation that breaks the
original semantics of the ACO algorithm and can potentially affect negatively the learning
capabilities of the algorithm. In order to approximate the behaviour of the algorithm,
namely the learning capabilities of ACO, the stochastic learning component must be
reviewed.

The following modifications were made:

Pheromone Update - When an agent k finishes the search, the master is notified and
performs a partial update, using equation 2.3, based on the only generated solution;

Pheromone Evaporation - It is not possible to maintain the evaporation mechanism se-
mantics of the original algorithm, i.e., at each iteration, all the N agents use values of
the pheromone matrix that have been evaporated in the previous iteration. We can
attempt to approximate this behaviour by noticing that in the original AS algorithm
the total number of evaporations performed is equal to P.

Since now the agents execute asynchronously agents from an iteration p1 with
p1 > p2 may finish first than agents from an iteration p2 and we do not know in
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Figure 3.7: Illustration of the parallel asynchronous algorithm behaviour. We can see that
an agent from a virtual iteration 2 finishes first (t units of time) than an agent from an
iteration 1.

each iteration how many agents will finish first, since it depends on the real-time
decisions made by the operating system scheduler.

In order to achieve an approximate behaviour, an evaporation step is performed
after N/2 search agents from an iteration p, finish their execution. This assumes a
pessimist scenario where half of the search agents of each virtual iteration may be
late. However, this is not a problem since the total number of evaporations steps is
the same as in the original algorithm.

With this strategy, it is expected that evaporation steps may be performed sooner
than they would be on the original algorithm, which is also not a problem since
there is an attempt to perform evaporation steps after an average of x agents have
finished, although this is not guaranteed.

Additionally, even if some agents take a huge amount of time compared with the
remaining ones, they will not affect our algorithm as long as N/2 agents of each
virtual iteration execute adequately. If this is verified, evaporation steps will be well
distributed across the search process duration.

Ideally an evaporation step would be performed every time x search agents finish.
We believe that our proposed scheme is a good approximation of this behaviour and
its contribution to the algorithm learning capabilities is evaluated in section 5.3.1.

Despite of the new algorithm conceptual simplicity, it introduces concurrency on the
pheromone matrix. The master will be regularly performing updates while agents will
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be reading the matrix contents. To handle this behaviour we developed three different
concurrency control mechanisms which will be described in the next section.

3.4.4 Concurrency Models.

We propose three different concurrency control models, that differ on the degree of
concurrency allowed while manipulating the pheromone matrix. Each model affects the
original algorithm semantics in a different manner, therefore, the ACO learning capabilities
for each model must be assessed. Additionally, different cooperation behaviours are
achieved with each model.

Blocking Matrix (AsyncBM) - In this model when a master is performing updates the
whole matrix is blocked and none of the agents can proceed until the update is
performed. The same happens when an agent wants to access the matrix. With this
model if an update is performed, all the agents will receive the complete update of
all the solutions components;

Blocking Column (AsyncBC)- When an agent is choosing a component cij to a partial
solution, it will read an entire column of the pheromone matrix, i.e., selecting from
which location i should a vehicle be picked to perform the departure j. In this model,
instead of blocking the entire matrix, only the column that is being updated/read is
blocked. This ensures that if updates/reads are going to be concurrently performed,
each agent will decide on each assignment based either on the new or the old
information, but not on a mix of both;

Locking-Free (AsyncLF)- In the limit, we can allow all the concurrent updates and a
search agent can possibly use both information before an update and information
after an update, on the same decision. Conceptually this achieves better diversifi-
cation and in practice maximizes concurrency. This model assumes that reads and
writes operations are atomic.

From the three models proposed, as the degree of concurrency allowed increases, the
more the original semantics of the original algorithm are lost. Now, agents may see updates
sooner since as soon as an agent finishes, the solution components from its solution will
have their correspondent pheromone values augmented.

This can be beneficial in some situations and bad in others. By seeing updates sooner,
each agent search starts being influenced sooner from previous searches. If the first agents
to finish contributes only with bad solutions, it means that bad solution components may
have higher desirability values than good ones. This situation can be solved by using the
heuristic. From the AS probability distribution (equation 2.1) we know that two aspects
are taken into account: the pheromone value of each component and the heuristic value.
In order to overcome the situation just described, the parameter β should have a value
that allows the heuristic aspect to have some real significance in the final probability value.
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Together with the evaporation mechanism, it is expected that bad solution components
will have their pheromone values decreased over time.

Hereupon, this is beneficial since the algorithm should perform a slow start, i.e. none of
the solution components will have high pheromone values, what means that even (locally)
bad solution components will be considered. This increases the algorithm capability to
increase diversity, which as stated in section 2.1.2.1, is crucial in order to achieve high-
quality solutions.
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4
IMPLEMENTATION - PARALLEL PTBA PROBLEM

OPTIMIZATION LIBRARY

This chapter covers all the implementation related aspects and tools used and the materi-
alization of each algorithm will be presented in detail.

First, we will present in section 4.1, the tools and technologies used to implement
the Parallel PTBA Problem Optimization Library (ParallelPTBAP-OptLib) and the solver
application for the PTBA problem. Since the library aims to be efficient, we will discuss
how the tools chosen contribute to this objective. Furthermore, as already stated, in our
implementations, namely in the base algorithm implementation of each agent, we use
the features offered by CaSPER LS solver. This solver has been previously developed
by us and a short description of its main components and features will be presented in
section 4.1.2.

The ParallelPTBAP-OptLib software model and architecture will be presented in
section 4.2. The software model was designed in order to be extensible and favouring
reuse, such that new algorithms may be developed using our library with small effort.
We will discuss in this last section how this is achieved. The base implementation of the
library (base components) will be discussed in section 4.3.

In section 4.4 we will present and discuss the implementation of all the algorithms
described in chapter 3.

4.1 Tools and Technologies

The ParallelPTBAP-OptLib library was implemented using the C++ language and the
standard C++14. The C++ language is a general-purpose multi-paradigm programming
language that is efficient and flexible, and supports several paradigms such as object-
oriented programming, generic programming, functional programming1, among others.
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C++ is a compiled, strongly-typed unsafe language with a rich library that offers efficient
data structures and algorithms.

Our choice of the C++ language is based on the fact that it is efficient, rich in function-
ality and as will be described below, most parallel frameworks and standards are based
on it. Additionally, the CaSPER LS solver is also deployed as a C++ library.

As it will be discussed in section 4.2, our implementations relies on the mechanisms
provided by the object-oriented paradigm and on generic programming, for which C++
provides great support.

Our library provides a set of configuration options in a XML file. We use the pugixml [42]
XML processing C++ library for processing this file. This library consists of a DOM-like
interface with rich traversal/modification capabilities.

To develop the entire library we use the Qt Framework [62] (version 5.4). This frame-
work provides a rich environment for developing C++ applications and offers a wide
variety of features:

Qt Creator - consists in a Integrated Development Environment which improves produc-
tivity by offering several features that eases software development;

Cross-Platform - the Qt framework provides cross-platform support. This requirement is
essential such that solvers developed with our library can be deployed on different
platforms;

Command Line Arguments Parsing - provides a mean for handling the command line
options in a clean way;

Database Drivers Plugins - plugins which provide APIs to communicate with different
databases are provided. These plugins provide an additional level of abstraction
since databases can be changed without being necessary to change the solver code.

We used the open-source GCC 5.0 compiler [61]. Since we will use features from C++14
standard, which is recent, only GCC 5.0 or later versions support this standard.

Due to the amount of data to be processed when producing the results, after execut-
ing the algorithms, we used Python to automate the process. Concretely, we used the
matplotlib [40] and the Pandas [56] libraries which provide great support for processing
and analysing data. The matplotlib library provides 2D plotting features while the Pandas
library provides data structures for analysing data. With Pandas data can be treated as
a spreadsheet table in which operations like the ones available on the Structured Query
Language (SQL) can be applied.

4.1.1 Shared-Memory Multi-Threading Tools

The C++14 standard offers built-in support for multi-threading applications with a wide
variety of features like:

1The functional paradigm is supported since the introduction of the C++11 stantard.
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Threading - cross-platform thread support;

Locks - Different lock implementations: mutexes, shared mutexes (Reader-Writer lock),
among others;

Atomics - support for atomic operations on primitive data types or complex objects.

OpenMP [7] is an API that supports multi-platform shared-memory parallel program-
ming in C/C++. The OpenMP API defines a portable, scalable model with a simple and
flexible interface for developing parallel applications. With OpenMP, low-level details
are abstracted to the programmer, thus easing the development of parallel applications
while assuring scalability and portability within different platforms. OpenMP programs
follow a Fork–join [55] model, in which a master thread launches N slaves who execute
some task in parallel and join back into the master thread, which continues its execu-
tion. Programmers annotate source code with OpenMP directives to develop parallel
applications.

4.1.2 CaSPER LS

The CaSPER LS [68] is a declarative, efficient and extensible Constraint-Based Local Search
solver, developed in C++. The solver is integrated in CaSPER [14] (Constraint Solving Pro-
gramming Environment for Research), a programming environment for the development
and integration of Constraint Solvers, developed at CENTRIA2 which includes solvers for
Finite Domains, Finite Sets and others.

The CaSPER LS implements and provides the following concepts:

Variable - Represents a decision variable with a given finite domain and an assigned
value belonging to the domain. The domain is an interval of the form [a, b] where a
and b denote the lower and upper bound, respectively, of the domain. Each variable
has a type associated that corresponds to the type of the values of the domain;

Expression - Models a set of relations (an empty set for constants or variables) between
constants, variables or other expressions. Expressions can be formed compositionally
by applying arithmetic, functional or logical operators. A value of an expression is
obtained by recursively computing the value of each relation in the expression;

Constraint - Specifies a relation between one or more expressions. Each constraint has a
total number of violations that is an expression. The following types of constraints
are supported: arithmetic, logical and the global constraint All-Different. Like ex-
pressions, new constraints can be formed compositionally by applying arithmetic,
functional or logical operators;

2CENTRIA (Centre for Artificial Intelligence) is a research centre from the Faculty of Science and Technol-
ogy of the New University of Lisbon, which was recently merged with another research unit, originating the
NOVA-LINCS centre.
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Constraint System - Describes a conjunction of constraints. The total number of violations
of a Constraint System is the sum of all the violations of each individual constraint
in the Constraint System;

Objective Function - An objective function can be defined as an expression or the user
can provide a custom implementation;

Solver - Represents an abstract entity where information of all the variables can be
obtained (ex. statistics).

In our implementations we use these concepts to implement a Constraint Manager
and the problem objective function, as will be described in more detail in section 4.3.

4.2 Software Model

A complete application for solving the PTBA problem was implemented. This application
is based on the ParallelPTBAP-OptLib library. The library architecture, as depicted in
figure 4.1, is composed by two layers:

Data Layer - contains all the components that store, provide and obtain data about the
problem. More concretely this layer contains a component which is responsible for
abstracting the origin of the input data and a component for storing the data of each
PTBA problem instance;

Core Layer - contains the components that are used to solve the problem. This layer
comprises all the algorithms and tools developed and all the PTBA problem specific
components. In particular, this layer contains the following metaheuristic related
components:

• Metaheuristic Algorithms

• Metrics

• Utilities (thread pool, solutions pool, among others)

This layer also contains the following problem related components:

• Agent Algorithm

• Problem Representation

• Constraint Manager

• Heuristics

• Objective Functions

Both layers will now be described in more detail in the next sections.
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Figure 4.1: Application Architecture.

4.2.1 Data Layer

In order to allow users to obtain input data from different sources without needing to
perform changes to existent developed solutions using our library, the data input source
is abstracted, for the algorithms implementation.

To achieve this, we implemented an intermediate class ProblemData which different
data input loaders classes can fill. This intermediate class specification is known by
the internal classes. Therefore, driver classes, which are responsible for creating and
populating an object of class ProblemData, can be implemented such that different data
sources can be accessed.

The ProblemData class abstracts all the data loading details (and sources) to the rest
of the library classes.

Listing 4.1: ProblemData Class
1 /**
2 * ProblemData Class - This class contains data about a given instance

3 * of the problem and is used to abstract different data sources

4 *
5 */

6 class ProblemData {

7

8 RouteData getRoute(routeIdentifier);

9 VehicleTypeData getVehicleType(vehicleTypeIdentifier);

10 int getNumberNodes();

11 int getNbVehicles(vehicleTypeIdentifier, nodeIdentifier);

12 bool isAllowedVehicle(vehicleTypeIdentifier, routeIdentifier);

13 int getDistance(nodeIdentifierA,nodeIdentifierB);

14 int getDuration(nodeIdentifierA, nodeIdentifierB);

15 int getMaxIdleTimeInService();

16 int getMaxDurAtNode(nodeIdentifier);

65



CHAPTER 4. IMPLEMENTATION - PARALLEL PTBA PROBLEM OPTIMIZATION
LIBRARY

17 int getMaxNumberVehiclesInNode(nodeIdentifier);

18 int getMinTimeBeforeDeparture();

19 }

Listing 4.1 shows the ProblemData class. This class provides access to the problem
routes, to the different vehicle types and its associated parameters, to information from
different nodes (terminals and depots), to the maxNumVehiclesAtTerminali values and to
maxDurAtTerminali of each terminal termi ∈ P.
The values maxIdleTimeInService and εmin are also provided.

Listing 4.2: RouteData and VehicleTypeData Class
1 /**
2 * RouteData Class -This class stores information of a given Route.

3 */

4 class RouteData {

5 typedef tuple<int,int,int> Duration;

6

7 int getTi();

8 int getTf();

9 int getBusLine();

10 string getDirection();

11 unsigned int getNumberDurations();

12 Duration getDuration(unsigned int i);

13 }

14

15 /**
16 * VehicleTypeData Class -This class stores information of a given Vehicle Type

17 */

18 class VehicleTypeData {

19 int getMaxWorkingTime();

20 int getMinMaintenanceTime();

21 int getMaxTimeBetweenTwoMaintenanceTasks();

22 double getCostPerDay();

23 double getCostPerKm();

24 }

Each route information is stored on objects of class RouteData and information from
each vehicle type on objects of class VehicleTypeData. The RouteData class holds in-
formation of the terminal endpoints, the bus line l ∈ L, the direction (ascendant or descen-
dant) and the durations. The durations are defined as a tuple 〈lb, ub, dur〉 where lb and ub
are the lower and upper bound, respectively, of the period of time in which a vehicle takes
dur minutes to perform a service on this route. Objects from class VehicleTypeData
store information of each vehicle type like the maximum daily working time, the duration
of a maintenance tasks, the maximum time between two maintenance tasks, the daily cost
and the cost per kilometre.
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4.2.2 Core Layer

As stated previously, the core layer comprises all the algorithms and tools to develop
PTBA solving applications.

This layer was designed in order to provide good extensibility and reuse. More con-
cretely, metaheuristics and algorithms were designed and implemented such that our
library can be used to develop solutions deployed on different architectures. In this thesis
our implementations target a shared-memory architecture, however, through composi-
tionality, the library allows programmers to easily adapt the existing algorithms and/or
metaheuristics to develop applications on different architectures (e.g. distributed architec-
tures).

In figure 4.2 a partial class diagram of the core components of this layer is illustrated.

Figure 4.2: Partial Class Diagram of Metaheuristics and Algorithms

The agents Base Algorithm described in section 3.1.1 is implemented by the
SearchAgentAlgorithm and the Restarts metaheuristic described in section 2.1.2.1 is
implemented by the RestartsSearch class. The ACO metaheuristics mapping to classes
are:

ACO Ant System - class AntColonySearch;

MMAS - MaxMinACO;

Asynchronous Blocking Matrix - BlockingMatrixACOAsyncUpdate;
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Asynchronous Blocking Column - BlockingColumnACOAsyncUpdate;

Asynchrinous Lock-Free - LockFreeACOAsyncUpdate.

For all classes, a parameter p is passed which corresponds to the number of agents
that execute in parallel. The sequential algorithm is obtained with p = 1.

It can be seen that all algorithms and metaheuristics implement the SearchAlgorithm
interface and extend the AbstractSearchAlgorithm class. Both RestartsSearch

and AntColonySearch class use agents (classes that implement the IAgent interface)
to perform the search. In our library, an agent executes a given search algorithm (an
object whose class implements the SearchAlgorithm interface). This is the key aspect
that contributes to a compositional model. For the ACO algorithms and for the Restarts
metaheuristic, agents use an object of the class SearchAgentAlgorithm to perform
the search and build solutions. However, different algorithms may be implemented by
exploring this feature.

For example, despite the fact that we do not implement a Multicolony ACO meta-
heuristic, it can be easily implemented by defining the search algorithm of an agent to
one of the ACO algorithms. Combining this procedure with a restarts metaheuristic, i.e.,
by using the restarts metaheuristics implementation in which the corresponding agents
execute an ACO algorithm, we obtain a multicolony implementation without cooperation
between colonies.

The interface BusSolution defines a set of operations related with a problem solu-
tion. Classes that implement this interface, like the class NoAllocsBusSolution, are
responsible for defining the problem solution representation. Different problem representa-
tions can be provided since the interface BusSolution abstracts the real implementation.
Each algorithm that implements the interface SearchAlgorithm use objects of type
BusSolution. Namely, the class SearchAgentAlgorithm, uses the operations pro-
vided while performing the search and building a solution.

The pheromone model of our problem is implemented by the ACOPheromone class.
Figure 4.3 presents the partial class diagram of the pheromone model classes. This class
implements the interface IACOPheromone which defines a set of operations to manip-
ulate the pheromone matrix. The synchronous parallel and sequential ACO, AS and
MMAS algorithms, use the implementation provided by class ACOPheromone. Our
developed concurrency models for parallel asynchronous ACO optimization are imple-
mented by extending the class ACOPheromone and class LockFreeACOAsyncUpdate,
for the Asynchronous Blocking Matrix and Asynchronous Blocking column algorithms,
and by overriding the implemented operations.

4.3 Base Library Problem Components Implementation Details

Apart from the algorithms and metaheuristics, we developed a set of components that are
specific to the PTBA problem. This components belong to the core layer of the library and
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Figure 4.3: Partial Class Diagram of Pheromone models classes.

are used by the agent search algorithm, which is responsible for constructing solutions.

4.3.1 Objective Functions

The objective function, defined by equation 1.2 on section 1.3.1 is implemented using
CaSPER LS features, namely Expressions and Objective Functions.

In CaSPER, it is possible to define a custom objective function by implementing a class
that extends the class Function. The implementation of the objective function of our
problem can be seen in listing 4.3.

The first part of the objective function of equation 1.2 is implemented by a CaSPER
LS Function on the HeterogeneousFleetBusSystemObjectiveFunction. This
class has a method (updateSumFormula) to update the current value which receives
a CaSPER LS expression (class Expr) and a weight. This method is called each time a
vehicle travels, with the expression consisting of the total kilometres travelled and weight
consisting of the cost per kilometre of the type of vehicle that travelled.

Class GlobalBusSystemObjectiveFunction implements the second part of the
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equation and uses the implementation of the first part described just above. A method for
updating the function (updateNumVehicles) is available. This method receives a list of
pairs 〈nV, dCostV〉 where nV denotes the number of vehicles of a given type and dCostV
the daily depreciation of vehicles from that type.

Listing 4.3: Objectives Function Definition.
1 class HeterogeneousFleetBusSystemObjectiveFunction : Function<double>{

2 void updateSumFormula(Expr<double> e, double weight){...}

3 double getValue() {...}

4 };

5

6 class GlobalBusSystemObjectiveFunction : Function<double> {

7 GlobalBusSystemObjectiveFunction( Function<double>& fleetObjFn){...}

8

9 void updateNumVehicles(list<pair< int,int>>& ws){...}

10 double getValue() {

11 double sum = 0;

12 sum += busFleet.getValue();

13 for(auto & w: weights){

14 sum += w.first*w.second;

15 }

16 return sum;

17 }

18 vector<Expr<double>> exprs;

19 Function<double>& busFleet;

20 list<pair< int,int>> weights;

21 };

By implementing the total distance travelled by all vehicles and the vehicles used cost
factors with two different classes we allow programmers to implement different objective
functions while reusing one of our implementations.

4.3.2 Heuristic Functions

We implemented all the heuristic functions presented on section 3.1.2. It is desirable that
despite of the fact that different heuristics may be used, they all consist in a strategy to
select a vehicle from a set of vehicles with different properties. Therefore, we provide
an abstraction for algorithms such that they can use transparently a given heuristic. All
the heuristic implementations must implement the interface BusSelectingHeuristic
which can be seen in listing 4.4. The method selectBus receives the following informa-
tion:

• Information about the current problem instance. Argument bs;

• set of tuples 〈onDepot, indexOnAdmissibleSet,
arrivalObject〉 where onDepot is a boolean variable used to indicate if the current
vehicle is currently on a depot (true) or on a terminal (false), indexOnAdmissibleSet
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denotes the index on the set AdmVDi or AdmVPi if the vehicle is on a depot or on a
terminal, respectively, and arrivalObject is an object from class BusArrival which
stores information about the arrival like the minute of arrival, the location, among
others. Argument hypothesis which corresponds to the set AdmVDi.;

• the identifier of the terminal of the departure being processed.
Argument terminal_index;

• information about the departure being processed like starting minute, terminal
endpoints, bus line identifier, among others. This information is stored on objects of
class Departure. Argument d;

• the current partial solution. Argument solution.

Listing 4.4: BusSelectingHeuristic interface. Used to abstract different heuristics
from the algorithms.

1 class BusSelectingHeuristic {

2 virtual tuple<bool,int, BusArrival>

3 selectBus(BusSystem* bs, vector<tuple<bool,int, BusArrival>>& hypothesis,

4 int terminal_index, Departure& d,BusSolution * solution) = 0;

5 };

It is also worth noting that for the probabilistic heuristic based on vehicle utility (sec-
tion 3.1.2.2), we implemented the utility function on the class SelectProbabilistic
which in turn implements the BusSelectingHeuristic interface. The ACO probability
distribution, which is based on the pheromone model and on an heuristic function (the
vehicle utility), extends this class, and the vehicle utility function implementation is reused.
However, new heuristics may be developed with a different vehicle utility specification by
overriding the method where it is implemented.

4.3.3 Constraint Manager

The constraint manager is implemented using the CaSPER LS features. We use the Con-
straint System concept, provided by the CaSPER LS library, to achieve a modular imple-
mentation of the problem constraints. It is possible to build constraint systems which
are defined by other sub constraint systems. Using this feature, we developed a global
constraint system which is defined by two additional constraint systems: one for vehicle
associated constraints and one for route associated constraints.

This scheme is illustrated in figure 4.4. For each route, a constraint system is defined.
Despite the fact that we define a constraint system for routes, our search agent algorithm
does not enforce any constraint on it. This is due to the fact that route constraints must
never be violated (hard-constraints) and, assignments that violate hard constraints are not
taken into account. However, in order to allow programmers that use our library to define
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Figure 4.4: Constraint Systems definition. A global constraint system is defined based on
sub constraint systems.

constraints over the routes, or in a situation where hard constraints may be violated, we
introduced this constraint system.

An example of constraint system creation, that creates the constraint system illustrated
on figure 4.4 using CaSPER LS, is shown on listing 4.5.

Listing 4.5: Example of Constraint Systems definition.
1 Solver solver;

2 ConstraintSystem<int> globalCS(solver);

3 ConstraintSystem<int> busesConstraintSystem(solver);

4

5 for(unsigned int i = 0 ; i < numberRoutes; i++){

6 ConstraintSystem<int> routeCS(solver);

7 globalCS.post(routeCS); //Add route i Constraint System

8 }

9

10 //Add vehicles Constraint System

11 globalCS.post(busesConstraintSystem);

The vehicles constraint system will contain all the maintenance and maximum daily
working time constraints for all the vehicles used. This constraints are enforced as is shown
in listing 4.6 for each vehicle. The function postMaintenanceConstraint receives as
parameter the vehicle identifier (bus_id), a CaSPER LS variable which stores the working
time minute of the last maintenance (v), and the maximum time between maintenance
tasks value (limit). The function getBusWorkingTimeExpression(id) returns an
object of type Expr which denotes an expression whose value is the total working time of
vehicle with identifier id.

Listing 4.6: Vehicle Maintenance and Maximum daily working time creation.
1 void ConstraintManager::postMaintenanceConstraint(int bus_id, Var<int> v,

2 int limit){

3 Expr<int> busExpr = this->getBusWorkingTimeExpression(bus_id);

4 Constraint<int> maintenanceConstraint = busExpr - v <= limit;

5 busesConstraintSystem.post(c);

6 }

7
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8 void ConstraintManager::makeBusExpressions(int busid, int maxWorkingTime, ...){

9 ...

10 Constraint<int> maxWorkingTimeConstraint = busExpr <= maxWorkingTime;

11 busesConstraintSystem.post(c);

12 ...

13 }

The maximum daily working time constraint is enforced in the function
makeBusExpressions. This function also receives as parameter the vehicle identifier
(bus_id) and the maximum daily working time of the vehicle (maxWorkingTime).

Through the operator overloading mechanism of the C++ language, CaSPER LS creates
a tree of expressions from the operators used in the expression busExpr - v <= limit,
for the maintenance constraints case. Since the operator with less priority is a relational
operator, an object of type Constraint, which denotes a constraint, is created. The same
procedure is applied for the maximum daily working time constraints.

4.4 Parallel Algorithms Implementation

Parallel strategies [18, 60] can target either shared-memory (SM) or distributed architectures,
either using CPUs, GPUs or both. Distributed architectures offer better scalability than
SM ones, however, communication within nodes is more expensive due to the necessity
of transferring data between disjoint address spaces. ACO agents rely on a high-level of
communication in order to report their findings and improve the learned information
about the search space. More concretely, the following steps imply communication:

ACO parameters and problem data - parameters like α, β, ρ, among others, and data
about the problem instance, must be sent to the agent so that a solution can be
constructed;

Reporting a constructed solution - Each solution constructed must be entirely sent back
to the colony such that it may be used to perform updates. Additionally, in order to
maximize the parallel agents usage, the objective function of the constructed solution
may be computed on by the agent, therefore, the objective function value must also
be sent;

Accessing the pheromone matrix - At each departure assignment, each agent in the
worst case needs to read an entire column of the pheromone matrix. On the other
hand, the master will be concurrently modifying entries of the matrix and the mod-
ifications must be sent to the agents in order to ensure that all the agents and the
master have the same version of the matrix.

Hence, in a distributed architecture, the overhead introduced on the algorithms due to
communications will be significant. Based on this observation, we target a SM architecture
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in which communications can be performed by sharing data structures among threads,
and the only overhead introduced is the one imposed by concurrency control mechanisms.

As previously stated, we use generic programming features on our algorithms which
is a programming paradigm for developing efficient and reusable software libraries. The
base idea of this paradigm is to find commonality among similar implementations of
an algorithm and abstract possible differences across concrete implementations. This
approach provides reusability, since written algorithms can be used with different concrete
types, and is efficient because type instantiation is performed (in the case of C++ language)
at compile time. Thus, concrete algorithm implementations will be as efficient as they
would be if code was duplicated and the generic programming paradigm was not used.
In C++, generic programming is performed using templates. Classes are implemented
based on templates instead of concrete types and, when an object of the class is created, the
programmer specifies a concrete type for each template of the class. Consequently, the class
is instantiated with the specified concrete types, at compile time. In the context of the C++
language this approach is called meta-programming.

In the following sections we will discuss how we use generic programming features
and we will describe the implementation of our proposed parallel algorithms.

4.4.1 Parallel Restarts

The parallel restarts metaheuristic, described in section 3.2, is implemented by the class
RestartsSearch. This class, extends the class AbstractSearchAlgorithm which in
turn implements the SearchAlgorithm interface.

To maximize reusability, the RestartsSearch is parametrized by four templates.
Listing 4.7 shows the class templates definition and an example of object creation. The first
template AgentConcreteType is instantiated with a concrete agent type, the template
Heuristic is instantiated with the heuristic that should be used by the agent when choos-
ing a vehicle to assign to a given departure, the template ConcreteBusSolutionType
is instantiated with a concrete solution representation type and finally the template
AgentManagerType is instantiated with a concrete ant manager type. An agent manager
is a class which is used to keep track of a set of agents and store relevant information like
the best solution achieved. In section 4.4.4 we will discuss in more detail the purpose of
this class.

Listing 4.7: Template parametrization of Restarts Metaheuristic and object creation.
1 //Class definition

2 template<class AgentConcreteType,class Heuristic,class ConcreteBusSolutionType,

3 template<class, class> class AgentManagerType >

4 class RestartsSearch: public AbstractSearchAlgorithm {

5

6 static_assert(std::is_base_of<IAntAgent, AgentConcreteType>::value,

7 "AgentConcreteType must derive from IAntColonyOptimization");

8 static_assert(std::is_base_of<BusSelectingHeuristic, Heuristic>::value,
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9 "Heuristic must derive from BusSelectingHeuristic");

10 static_assert(std::is_base_of<BusSolution, ConcreteBusSolutionType>::value,

11 "ConcreteBusSolutionType must derive from BusSolution");

12 ...

13 }

14

15 //Object creation example

16 RestartsSearch<VehicleRestartsAgentAllocAware,BusSelectingHeuristic,

17 NoAllocsBusSolution,PTBAAntManager> * restarts =

18 new RestartsSearch<VehicleRestartsAgentAllocAware,BusSelectingHeuristic,

19 NoAllocsBusSolution,PTBAAgentManager>(...);

In the object creation example, we instantiate the four templates with classes that we
already developed and that belong to the library, however, programmers may instantiate
the templates with other classes that also make part of our library or even with custom
classes, as long as the implementation obeys a set of rules. For example, if a programmer
wants to develop a custom heuristic class and instantiate an algorithm with that class,
the custom class must implement the BusSelectingHeuristic interface. We added a
static assertion (checked at compile time) on the type of each custom class that is used to
instantiate a template using the C++ static_assert and the is_base_of functions. For example,
for the heuristic template, we verify that the concrete type provided is a base of the
BusSelectingHeuristic type.

This metaheuristic consists in performing N executions in parallel yielding N solutions.
We implemented this metaheuristic by using OpenMP and adding a pragma on the loop in
which the N executions are performed. This implementation is shown on listing 4.8.

Given that N iterations will be performed (each iteration corresponds to one agent
execution), we added a parallel for pragma available on OpenMP which automatically
paralellizes the loop. Since we do not specify any type of task scheduling policy, OpenMP
uses the static scheduling by default which consists in dividing the loop into equal-sized
chunks. When N is not divisible by the number of threads multiplied by the chunk size,
OpenMP attempts to produce almost equal chunks.

Listing 4.8: Parallelization of the Restarts Metaheuristic
1 double tmpVal;

2 #pragma omp parallel for num_threads(numThreads) if (parallelism)

3 for(int its = 0 ; its < N ; ++its){

4 ...

5 BusSolution* newSol = agent->search();

6 tmpVal = newSol->getGlobalObjectiveFunction();

7 ...

8 #pragma omp critical

9 {

10 if(tmpVal < globalBestSolVal){

11 ...

12 globalBestSolution = newSol;

13 globalBestSolutionValue = tmpVal;
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14 ...

15 }

16 ...

17 }

18 }

The option num_threads is used to dynamically specify the number of threads to be
launched in each execution of the metaheuristic and the if statement is used to enable or
disable parallelism, i.e., the variable parallelism is a boolean flag which is true when the
user wants to use parallelism or false otherwise.

During executions, we keep track of the best solution found so far (global best). Each
agent computes the objective function of the solution produced and executes a given
critical section. A critical section is implemented with OpenMP by creating a block of code
(which defines a new scope) and by adding a critical pragma. Since concurrency occurs
when checking if the a new solution is better than the currently global best, and also when
performing the update of the global best solution when it is the case, it is necessary to
define this block of code as a critical section.

4.4.2 Parallel Synchronous ACO Algorithms

The parallel synchronous AS andMMAS algorithms implementations also use OpenMP.
The AS algorithm is implemented on class AntColonySearch and theMMAS on class
MaxMinACO. Both classes have the same templates as the restart metaheuristics class.

Since theMMAS is an extension of the AS algorithm, both implementations are very
similar. Therefore, class MaxMinACO extends the AntColonySearch and overrides only
some methods to incorporate theMMAS additional mechanisms.

In both algorithms, at each iteration a set of N agents are executed in parallel. Therefore,
we added a parallel for pragma on a loop in which at each iteration an agent execute and
constructs a solution. The added pragma is the same as in the parallel restarts metaheuristic.
The parallel synchronous region code is shown on listing 4.9, where the total number of
iterations is assumed to be numIterations.

Listing 4.9: Parallelization of the AS andMMAS algorithms
1 for(int its = 0 ; its < numIterations ; ++its){

2 #pragma omp parallel for num_threads(numThreads) if (parallelism)

3 for(int ant_idx = 0 ; ant_idx < numAnts ; ++ant_idx){

4 //Perform search and build a solution

5 //Compute the objective function of the constructed solution

6 //Update the global best solution found so far (critical section)

7 }

8 ...

In both algorithms we also keep track of the best solution found so far. The procedure
of updating the global best solution when a better solution is found is the same as in the
parallel restarts metaheuristic, implementing it as a critical section.
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In section 3.4.1.2 we described a mechanism to find the best solution of an iteration
for theMMAS algorithm with O(1) time complexity, based on the fact that each agent
computes the objective function value of its constructed solution, and compares the
obtained value with the current iteration best value, performing an update when it is
the case. Therefore, for theMMAS algorithm, we implemented the three operations of
the mechanism just described (read, comparison, update) as a critical section. In fact, we
did not created an additional critical section but we replaced the critical section in which
the global best solution was updated. At the end of a parallel region, we know the best
solution found on the current iteration and it only takes one comparison and one write to
update the global best solution, instead of N as in the AS algorithm.

4.4.3 Parallel Asynchronous ACO algorithm

The base parallel asynchronous ACO algorithm introduced in section 3.4.3 is implemented
on class LockFreeACOAsyncUpdate. This class is also parametrized by the same tem-
plates as in parallel restart metaheuristic and parallel synchronous ACO algorithm classes.

We modified the AS algorithm and we incorporated additional mechanisms and
data structures to achieve an asynchronous behaviour. The base asynchronous algorithm
design is based on the thread pool, avoiding consecutive thread creation and destruction
overhead, in which the results are placed on a pool of solutions, implemented using
condition variables and one mutex. The overall scheme corresponds to a 1-producer/N-
consumers pattern and is illustrated on figure 4.5.

Figure 4.5: Parallel Asynchronous ACO algorithm architecture.

Tasks are placed on a pool of tasks implemented with a lock-free queue, from which
threads in the thread pool will consume. When a thread finishes processing a task, i.e.,
builds a solution, the solution is placed on a solutions pool and the master consumes it by
performing the pheromone update and evaporation steps when it is the case. The solution
pool is implemented using one mutex and C++ conditions variables.
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Each task is implemented through a lambda expression (an anonymous function). When
a thread receives a task, the expression is executed. The solutions pool has objects of type
AntSolutionInfo which store the solution produced, the objective function value of
the correspondent solution, the identifier of the agent and the virtual iteration in which it
was produced.

The proposed concurrency models are implemented as follows:

Blocking Matrix - Each time the master or one of the threads wants to access the pheromone
matrix they have to acquire a lock. This lock is implemented as a Spin lock. With
this type of lock threads wait in a loop, performing a check at each iteration that
verifies if the lock is available and, since threads remain active in a loop, the chances
of a thread being re-scheduled and performing a context-switch which is time-
consuming, are reduced. The Spin lock implementation is shown on listing 4.10. This
model is implemented on class BlockingMatrixACOPheromone;

Blocking Column - In this model we have an array of reader-writer locks with |T| ele-
ments, where each element is the lock of a column of the pheromone matrix. The
reader-writer locks are implemented on C++, on the type std::shared_lock. This model
is implemented on class BlockingColumnACOAsyncPheromone;

Lock-Free - The lock-free model is implemented by using C++ atomics, ensuring that read
and write operations are atomic. This model is implemented on class
AtomicACOPheromone.

Listing 4.10: Spin lock Implementation
1 class SpinLock {

2 std::atomic_flag locked = ATOMIC_FLAG_INIT ;

3 public:

4 void lock() {

5 while (locked.test_and_set(std::memory_order_acquire)) { ; }

6 }

7 void unlock() {

8 locked.clear(std::memory_order_release);

9 }

10 };

The classes BlockingColumnACOAsyncUpdate and
BlockingMatrixACOAsyncUpdate extend the class LockFreeACOAsyncUpdate. Hence,
the base algorithm implementation is exactly the same. The only difference is that the
respective model, i.e., BlockingColumnACOAsyncPheromone for class
BlockingColumnACOAsyncUpdate and BlockingMatrixACOPheromone for class
BlockingMatrixACOAsyncUpdate, is passed by argument to the constructor of class
LockFreeACOAsyncUpdate. The constructor receives a pointer to an object of the inter-
face IACOPheromone and the concrete implementation is abstracted.
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Listing 4.11: Asynchronous Parallel ACO Master Implementation.
1 for(int processed = 0; processed < totalExecutions;++processed){

2 //block until the solution pool is not empty.

3 //Get the produced solution (object from class AntSolutionInfo) from the pool

4 //Perform partial update

5 //Perform evaporation if the condition is verified

6 //Update global best solution

7 ...

8 }

Listing 4.11 shows the procedure executed by the master, assuming that the number of
tasks created is totalExecutions. At each step, the master attempts to get an object from
the solutions pool and blocks while the pool is empty. When an agent puts a solution
object on the solutions pool the master processes it by performing a partial update, by
performing evaporation if half the threads of the iteration of the solution being processed
already finished, and by updating the global best solution if a better solution is found.
This procedure is repeated until totalExecutions tasks are processed.

Listing 4.12: Asynchronous Parallel ACO Slave lambda expression mplementation.
1 [this,ant_id,virtual_iteration] {

2 //Create dynamically a new solution object (BusSolution)

3 //Perform search and build a solution

4 //Compute the objective function of the constructed solution

5 //Create an AntSolutionInfo object and push it into the solution pool

6 }

Each agent executes a given lambda expression which consists in the operations shown
on listing 4.12. The values inside the square brackets are the variables that can be accessed
on the scope of the lambda expression. The first operation consists in dynamically creating
a new object of type BusSolution which is the object that the agent will complete
during search. Then, the search is performed and a solution is built. The task of the agent
terminates by computing the objective function value of the produced solution and by
adding a new solution object (AntSolutionInfo) to the solutions pool.

4.4.4 Parallel Implementations NUMA Details

Our parallel algorithms attempt to be NUMA-Aware as possible, therefore, we followed
the guidelines presented on section 2.4.2.1. When memory is allocated, it will be placed on
the NUMA node in which the allocation was performed.

This is the reason why each agent creates and allocates memory for each solution object.
Additionally, as the solution is constructed, memory allocations from created objects are
performed by the agent. This ensures that the created objects data will be close to the
NUMA node of the agent (probably on the same node), thus reducing the overhead of
accessing those memory areas.
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We do not control in which NUMA node each thread will be executed and all the agents,
will execute in arbitrary threads and will access the pheromone matrix. The pheromone
matrix will be created by the master thread and its data will reside on memory from
the master NUMA node. Consequently, some threads which execute in different NUMA
nodes will get a slight performance hit.

One possible solution would be to replicate the pheromone matrix in each thread.
Even despising the memory waste due to redundancy, what would severely degrade the
performance would be the necessity of assuring that all the threads have the same matrix
with the same values, which rules out this approach.

Another possibility is to use the interleaved memory policy supported by NUMA
architectures. With this approach, when allocating a chunk of memory, the chunk will
be interleaved across all the NUMA nodes. With this technique all accesses should be
spread out evenly over all nodes. We believe that interleaving memory of the pheromone
matrix will not lead to significant performance gains since there will be always accesses to
memory of non-local nodes.
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5
EVALUATION

In this chapter we analyse and evaluate experimentally our model of the problem and
the proposed algorithms, in order to assess their effectiveness. The performance of our
proposed parallel algorithms, namely the ACO parallel algorithms, will also be evaluated.

The chapter starts by describing our experimental setup in section 5.1 where the
machines used to perform the tests are described as the instance of the problem taken into
account.

In section 5.2 we analyse, assuming a sequential setup, the algorithms and the problem
model proposed. More concretely, we start by analysing the solutions produced by our
algorithms and then we evaluate the restarts algorithm. Experiments performed in order to
evaluate how each parameter of the model affects the solutions produced will be presented.
Our ACO AS andMMAS algorithms will also be analysed in this section.

Section 5.3 evaluates the Parallel Synchronous and Asynchronous ACO algorithms in
terms of performance and solution quality.

Finally, in section 5.4 we provide a summary of the conclusions drawn from the
experiments performed.

5.1 Experimental Setup

Our experiments were performed on two different machines with different architectures:

Personal-Computer (PC) - Intel(R) Quad-Core (4 cores) i7-4700MQ CPU @ 2.40GHz sup-
porting Hyperthreading(R) and 32GB RAM;

MultiProcessor (MP) - 4-node NUMA machine with 4 AMD(R) Opteron 6272 processors
@ 2.1 GHz, each with 16 cores, and with 64 GB RAM (16 GB for each NUMA node).
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For experiments that do not require high computational power we use the PC machine.
However, for experiments in which we evaluate the scalability of our solutions as the
search depth increases and as the number of threads increases we use the MP machine.
This last experiments require a higher number of cores.

For the sake of clarity, we introduce the following abbreviations of the algorithms that
will be analysed:

• Parallel Synchronous AS ACO algorithm (ASSync)

• Parallel Asynchronous Blocking Matrix ACO algorithm (AsyncBM)

• Parallel Asynchronous Blocking Column ACO algorithm (AsyncBC)

• Parallel Asynchronous Lock-Free ACO algorithm (AsyncLF)

5.1.1 Problem Instance

The instance of the public transport bus assignment problem addressed corresponds
to a subset of 6 CARRIS1 bus lines with ascending and descending directions, with a
total of 732 departures and 12 terminal locations. Additionally, 3 vehicle categories and 2
depots are considered. We decided to use CARRIS routes since the schedule of each route
corresponds to a real life schedule.

Table 5.1 lists the capacities of both depots considered for each of the three types of
vehicles taken into account.

Table 5.1: Capacities rk of each depot Dk for each type of vehicle.

Type 1 Type 2 Type 3

D1
20 10 20

D2

Each vehicle type has different characteristics, therefore, different values for each
constraint exist. Additionally, each type has different costs. These parameters can be seen
in table 5.2.

The global and terminal specific parameters values used in our experiments can be seen
in table 5.3. It is worth noting that both terminal specific parameters (maxDurAtTerminali
and maxNumVehiclesAtTerminali) have the same value for all the 12 terminals.

Table 5.4 lists all the 6 routes with ascending and descending directions and its associ-
ated number of departures and duration.

Since we have 2 depots and 12 terminals, we have a total of 14 locations. We built two
14× 14 matrices: one for distances (distance(loci, locj)) and one for the travelling times

1A portuguese bus service transports company.
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Table 5.2: Characteristics of each vehicle type. Max time between maintenance tasks is
denote by MaxTimeBMaint and maintenance durarion is denoted by MaintDur.

Cost km Daily Cost MaxWorkingTime MaxTimeBMaint MaintDur

(e) (e) (minutes) (minutes) (minutes)

Type 1 3 30 960

720 30Type 2 5 40
1080

Type 3 10 50

Table 5.3: List of all the global parameters and its associated values.

Parameter Value

maxIdleTimeInService 50

maxNumInterrupts 4

εmin 3

maxDurAtTerminali 120

maxNumVehiclesAtTerminali 100

NumVDCandidates 1

(duration(loci, locj)), between locations. Based on the GPS coordinates of each location, we
obtained the distance (km) between each pair of locations of the shortest valid path (e.g.
respecting traffic signs). The durations were obtained using the maximum allowed speed
at each section of the path. It is worth noting that we set the maxNumVehiclesAtTerminali
to 100, which given the fact that the total number of vehicles is 100, it means that the
maximum number of vehicles at a terminal is not constrained. Therefore, we assume a
situation in which all the vehicles, based on the idle situations in a solution produced, can
be idle at a terminal.

Unless stated otherwise, when an agent is selecting a vehicle using the probabilistic
heuristic, the 10 best options are considered. Additionally, the weights of the probabilistic
heuristic, defined on equation 3.12 in section 3.1.2.2, are defined as is shown on table 5.5.

Due to the stochastic nature of our algorithms and in order to achieve more robust
results, 5 runs are performed for each configuration at each experiment.
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Table 5.4: List of all the 12 routes taken into account and its associated characteristics. The
descendant direction is denoted by DESC and the ascendant direction by ASC.

Name Direction #Departures Duration (minutes)

702 DESC 72 22

702 ASC 71 22

732 DESC 44 48

732 ASC 45 48

748 DESC 70 48

748 ASC 69 48

746 DESC 66 36

746 ASC 65 36

746 (711) DESC 55 48

746 (711) ASC 56 44

744 DESC 59 58

744 ASC 60 57

Table 5.5: Default weight values for the probabilistic heuristic based on vehicle utility.

Weight Value

k1 10

k2 0.5

k3 0.5

k4 1

5.2 Problem Model and Algorithms Analysis

This section focus on evaluating the effectiveness of our model, implemented by the agents
algorithm described in section 3.1, as well as the solutions produced. We perform exper-
iments using the restarts and ACO AS andMMAS algorithms assuming a sequential
setting.

Since this section does not focus on evaluating the parallel performance in terms of
speedups and scalability of our proposed parallel algorithms, we perform the experiments
on the PC machine.
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5.2.1 Analysis of Solutions

A solution of the PTBA problem consists of a set of assignments of vehicles to departures.
Our solver application essentially outputs the solution in two different formats: vehicle
oriented and route oriented.

In the vehicle oriented solution the application outputs each sheduling Si performed by
a vehicle vi where Si contains all the tasks performed by the vehicle. On the other hand,
the route oriented format outputs for each route, a set of pairs 〈Tj, vi〉, where Tj denotes a
departure and vi the vehicle assigned to that departure.

Listing 5.1: Example of a schedule produced by our application for a given vehicle.
1 Bus id: 28

2 Category: 1

3 Assigned Depot -> Index: 0 Location: 12

4 Total time in service: 444 minutes

5 Total distance travelled: 74 km

6 Total Time Waiting in a terminal: 59 minutes

7 Schedule:

8 <28,12,2,-,152,VoidIn>

9 <28,2,3,152,200,InService>

10 <28,3,3,203,207,Wait>

11 <28,3,2,207,255,InService>

12 <28,2,2,258,265,Wait>

13 <28,2,3,265,313,InService>

14 <28,3,12,316,326,VoidOut>

15 <28,12,12,326,326,ServiceInterrupt>

16 <28,12,0,755,766,VoidIn>

17 <28,0,1,766,788,InService>

18 <28,1,1,791,793,Wait>

19 <28,1,0,793,815,InService>

20 <28,0,0,818,826,Wait>

21 <28,0,1,826,848,InService>

22 <28,1,11,851,852,LineExchange>

23 <28,11,11,852,858,Wait>

24 <28,11,10,858,915,InService>

25 <28,10,10,918,950,Wait>

26 <28,10,11,950,1008,InService>

27 <28,11,12,1011,1020,VoidOut>

An example of a produced schedule for a given vehicle can be seen in listing 5.1. We
can check that vehicle with identifier 28 of type 1 worked 444 minutes, travelled a total of
74 km and the total amount of idle time was 59 minutes.

Regarding the tasks of the vehicle, each line consists in a tuple, as defined in sec-
tion 1.3.1. We can see that the first task is a VoidIn task (trip performed without pas-
sengers from the depot to a terminal), then a set of tasks of type InService and Wait are
performed. It should be noted that the Wait tasks does not start immediately after the
previous task but only after εmin minutes (3 minutes in this case), which denotes the
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minute at which the vehicle is available to perform other services. The vehicle has a service
interruption (task of type ServiceInterrupt) since it was idle on the depot for more than 50
minutes. We can also see that a line exchange (task of type LineExchange) was performed.
At the end of the schedule (which is the last task of the day) the vehicle returns to the
depot, which corresponds to a VoidOut task.

The instance of the problem in which we perform our tests has a total of 732 departures
which is a reasonably large instance. Each produced solution consists in several schedules
each with several tasks which in turn are presented as text. For this particular instance,
each solution is presented on a file with 2500 lines of text. Hence, the task of analysing a
complete solution in terms of quality of service is not easy.

We attempt to reduce this problem by generating a plot using python which shows
what services each vehicle does over time. This plot is shown on figure 5.1. The X-axis
denotes the time (minutes) and the Y-axis denotes, for each value, a given vehicle. It is
noteworthy that the Y-axis scale has no meaning, we simply plot each vehicle services on
a vertical line. As discussed in section 3.1.1 the minute 0 corresponds to 5:00 AM. This plot
is subject to interpretation which may be subjective in some cases. For a more precise and
formal analysis of a solution, one must look at the generated solution instead.

For each vertical line, we draw a rectangle for each departure Tj. Each rectangle starts
at minute sj and ends at minute ej (the length of the rectangle is ej − sj). The places on
a vertical line in which no rectangle exists correspond to tasks that are not services. To
distinguish vehicles, we painted each vehicle line with a random color, from a set of colors.

0 200 400 600 800 1000 1200

Departure time (minutes)

Departures Assigned

Figure 5.1: Vehicles service tasks over time. Each vertical line denotes a given vehicle. In
the plot two clusters of vehicles, where each cluster corresponds to vehicles from one of
the two depots, can be identified.

Two clusters of vehicles are identifiable where each cluster corresponds to vehicles
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from a given depot: vehicles on the upper cluster belong to depot 2 and vehicles on the
lower cluster belong to depot 1.

By interpreting the plot one first observation, based on the fact that the problem
instance is from a city scene where on rush hours the number of departures is higher,
specially in the morning, a great number of vehicles are picked. Outside rush hours (lunch
time and mid afternoon) the number of vehicles needed is less and it happens that a
considerable number of vehicles become idle, performing only some sporadic services.
There are even some cases in which a vehicle performs services only in the morning and
this is clearly a situation in which a vehicle work capability (in terms of hours of service)
is not maximized.

We can also see that around minute 800 (≈ 06:20 PM) the algorithm started picking
new vehicles from depot 2. This can be seen in the top right corner of the plot, on the
upper cluster. This situation occurs due to the fact that vehicles that started working early
(e.g. in the morning) exceed their working time without performing maintenance (720
minutes) and need to return to the depot, thus forcing the algorithm to pick new vehicles.
Furthermore, we can see that our algorithm performs reasonably well when distributing
the services across the available vehicles. The majority of the vehicles picked, perform
services across all the day.

It is also clear that the algorithm attempts to reuse vehicles already picked since on the
solution that we are analysing only 56 vehicles of a total of 100 were used.

5.2.2 Restarts Algorithm

In section 3.2 we presented our proposed parallel probabilistic restarts metaheuristic. In
this section we will use this metaheuristic in a sequential setting (only one execution at a
time). The restarts algorithm consists of using the restarts metaheuristic so that at each
execution an agent builds a solution using the agents algorithm described in section 3.1.1.

More concretely, we are interested in evaluating the effectiveness of each of the three
heuristics proposed in section 3.1.2: Vehicle Utility selection - greedy (h1), Random (h2)
and Probabilistic based on vehicle utility (h3).

It is worth noting that the heuristic h1 (greedy) is deterministic, therefore we do not use
the Restarts algorithm for this heuristic. Instead, we only perform one execution. However,
as a baseline, we show for each configuration the results achieved with heuristic h1.

We executed the algorithm with different configurations, more concretely, with 100,
250, 500 and 1000 iterations, using each heuristic for each number of iterations. The results
are shown on table 5.6.

We can see that the greedy algorithm (h1) produces a solution which costs 26509 e.
The random heuristic (h2) presented the worse results by producing solutions with an
average cost of 43380 ewith 1000 iterations, which was its best configuration. From all
the configurations, the best solution produced by h2 had a cost of 42839 e. The mean of
the costs of the solutions produced by h2 is almost the same for all the configurations,
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Table 5.6: Results in terms of solution quality and execution time of the sequential Restarts
algorithm for the three heuristics proposed, while varying the search depth in the number
of restarts (#RS). The values of the mean µ, standard deviation σ, minimum min and
maximum max values are shown. We duplicate the results of the greedy algorithm to
facilitate comparisons.

#RS Heuristic
Objective Function (e) Execution Time (s)

µ σ min max µ σ min max

100

h1 26509.00 0 26509.00 26509.00 0.5556 0.0114 0.5360 0.5650

h2 45398.60 883.31 44471.00 46764.00 4.3064 0.0358 4.2680 4.3600

h3 26269.00 347.41 26048.00 26876.00 4.3188 0.04989 4.2660 4.3850

250

h1 26509.00 0 26509.00 26509.00 0.5556 0.0114 0.5360 0.5650

h2 43622.60 438.19 43183.00 44298.00 7.8806 0.0540 7.7850 7.9110

h3 25935.00 114.67 25738.00 26032.00 7.6924 0.08777 7.5380 7.7570

500

h1 26509.00 0 26509.00 26509.00 0.5556 0.0114 0.5360 0.5650

h2 43596.8 501.84 42839.00 44022.00 13.5282 0.1790 13.3090 13.7280

h3 25827 206.29 25511.00 25980.00 13.3556 0.1289 13.2400 13.5470

1000

h1 26509.00 0 26509.00 26509.00 0.5556 0.0114 0.5360 0.5650

h2 43380.40 299.66 42952.00 43791.00 25.0150 0.2887 24.5910 25.3550

h3 25685.60 181.20 25444.00 25871.00 24.5382 0.3198 24.9840 24.1650

except with 100 restarts in which the mean was slightly higher. Standard deviations were
considerable high for h2 in all the configurations. These mean and standard deviations
value are somewhat expected since at each decision, agents select one vehicle of the set
AdmVi randomly, i.e., the selection is not based on any type of information of the problem.
This heuristic is very poor and it is expected that bad solutions will be constructed,
however, this heuristic gives us an upper bound of the solutions quality which can be
used to compare our proposed heuristics and algorithms.

A more interesting heuristic is the probabilistic heuristic h3. We can see that the
best solution values, for each configuration, were obtained with h3. One observation
that we can make is that the average quality of the solutions produced decreases as the
number of restarts increases. Additionally, the cost of the best solutions obtained for each
configuration also decreases as the number of restarts increases. This is based on the fact
that to all the possible decisions, a probability value different than 0 is assigned, hence, if
we performed infinite executions, it is certain that all the possible solution components
would be used. By increasing the number of restarts we also increase the chances of
selecting different solution components at each decision, which directly translates in a
better exploration of the search space. The standard deviations obtained with h3 for all the
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configurations are also lower than the ones obtained with the h2 which is an indication
that h3 is more consistent in terms of the quality of the solutions produced.

The heuristic h3 is superior to h1 since despite the fact that both use information about
the problem, it is not as greedy as h1. In the heuristic h1, what the heuristic is doing is
minimizing locally the cost of the objective function, at each decision. However, due to its
deterministic behaviour, in which the vehicle selected for each departure is always the
same, it gets stuck at a sub-optimal solution with objective function value 26509 e.

Both h1 and h3 provide, to domain experts, a mean of controlling the type of solutions
produced in terms of quality of service. Namely, preferences like using more vehicles or less
vehicles (even if that implies some extra cost) and allow or disallow line exchanges can
be specified through the weights in the definition of a vehicle utility. However, since h3

produces better results we conclude that it is superior, when comparing to h1 and also h2.

In terms of execution time, we can see that h1 takes ≈ 0.556 s to produce a solution. It
should be noted that h1 executes faster than the other heuristics due to the fact that only
one solution is constructed. On the other hand the number of solutions constructed in
heuristics h2 and h3 is equal to the number of restarts.

As the number of restarts increases, the execution times increase. This is expected
since the number of solutions constructed is equal to the number of restarts performed,
which means that more computations are performed. Both heuristics h2 and h3 execution
times are similar in all the configurations. This is an indication that the normalization and
truncation steps performed on heuristic h3 do not introduce a significant overhead on the
overall execution time of the algorithm.

In general, since the amount of work (computations) performed for each configuration
is practically the same, the execution times do not oscillate much. This is confirmed by the
fact that the standard deviations of the execution time for all the configurations are very
close to 0.

5.2.3 Model Parameters Influence Analysis

On our variant of the vehicle scheduling problem we take into account line exchanges.
Theoretically this would allow us to spare vehicles and maximize the use of the already
picked ones. Additionally our proposed definition of a vehicle utility takes into account
parameters which in principle allow one to define how important are line exchanges and
how important is the minimization of the number of vehicles (even if it implies additional
costs).

In the following two sections we evaluate both aspects in order to confirm if the desired
behaviour is indeed verified on the solutions produced.

5.2.3.1 Line Exchanges

In order to analyse the influence of line exchanges in the solutions produced we performed
an experiment in which the restarts algorithm is used with the probabilistic heuristic. The
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number of total restarts was set to 1000.

We perform the experiment with two configurations: one in which line exchanges are
allowed and one in which line exchanges are forbidden. The results of these experiments
can be seen in table 5.7. In this table we can see the average quality, the average number of
vehicles and the average distance performed in void by all the vehicles on the solutions
produced in both configurations.

Table 5.7: Analysis of the influence of line exchanges in the solutions produced. The results
of the average objective function value of the solutions produced, the average number of
vehicles used in each of those solutions and the average total distance in void are shown.

Line Exchanges
Objective Function #Vehicles Distance in Void

(e) (km)

With 25606.60 58.40 3921.00

Without 26087.80 63.00 3480.60

A first observation is that by allowing line exchanges, better solutions are achieved. As
we expected the average number of vehicles when line exchanges are allowed is smaller
(58.4) than when no line exchanges are considered (63). However, with line exchanges, the
average distance performed in void is greater (3921) than without line exchanges (3480.6).

This results confirm our intuition about the advantages of considering line exchanges.
It is expected that with line exchanges vehicles perform greater distances in void due to
the fact that they must travel from terminal to terminal, while when no line exchanges
exist this does not happen. However, since the number of vehicles used is smaller with
line exchanges, the final cost is also smaller. The decrease on the final cost is not only due
to the daily cost of a vehicle but also due to the fact that when more vehicles are used, the
chances of using more expensive vehicles (in terms of cost/km) increase.

On this experiment the solutions used less vehicles with line exchanges since when
building the set AdmVi for a given departure, the algorithm does not only take into account
vehicles from depots but also from terminals. By selecting vehicles from terminals it is
likely that their use will be maximized since the vehicle will perform a service instead of
being idle.

5.2.3.2 Vehicle Utility Parametrization

As stated before, the definition of a vehicle utility takes into account weights that can be
used to control the influence of each term. Since the objective when solving this problem is
to minimize the objective function (the operational costs) we believe that the term which
denotes the incremental cost to the objective function is essential and must be set such
that it is more important than the remaining terms. Therefore, we fix the weight of this
term k1 to 10, as presented in section 5.1.1. The experiments that we will perform on this
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section will be based on experimenting different values for the weights k2 and k3 in order
to evaluate how each of them influences the solutions produced.

These weights can be used in principle to penalize line exchanges (k2) and to obtain
solutions in which less vehicles are used (k3). These are two aspects which transport
service companies may want to control.

Table 5.8: Influence of the parameters k2 and k3 on the solutions produced. We fixed
the number of restarts to 1000. The values of the mean µ, the standard deviation σ and
minimum min of the average values of the objective function of the solutions produced
are shown. The average number of vehicles (column #Vehicles) and the number of line
exchanges (column #LineExchanges) of the solutions produced are also shown.

k2 k3
Objective Function (e) #Vehicles #LineExchanges

µ σ min

0

0 25671.20 97.34 25563.00 57.60 316.00

0.5 — — — — —

1 25127.60 106.59 25007.00 55.20 311.80

0.5

0 — — — — —

0.5 25611.60 203.79 25415.00 57.20 308.80

1 25260.40 117.17 25082.00 58.40 316.80

1

0 25344.80 151.08 25101.00 58.40 222.60

0.5 25525.60 144.90 25334.00 58.20 232.60

1 — — — — —

As in the experiment described in the previous section, we executed the restarts
algorithm using 1000 restarts. From equation 3.12 we know that in the configurations
in which one of the weights is 0, we only need to test one value. The part of the utility
expression of the line exchanges and new vehicles terms can be simplified as follows:

t2 × k2 + t3 × k3

k2 + k3
(5.1)

where t2 denotes the line exchanges term and t3 denotes the new vehicles term. When one
weight is 0, the correspondent term is cancelled. For instance, if k2 = 0 we have that:

t3 × k3

k3
= t3 (5.2)

Hence, we only need to test one value in this situations.

Additionally, when k2 = k3 = val and val ∈ ]0, 1] the influence on the expression is
the same with any of the values and we only need to take into account one. Following the
previous example, we have that if k2 = k3 then we can substitute both weights by k. The
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expression now simplifies as follows:

t2 × k + t3 × k
k + k

=
k× (t2 + t3)

2k
=

t2 + t3

2
(5.3)

which again, is independent of the weight values.
For each needed combination, we computed the average value of the objective function

values of the solutions produced and we counted the number of vehicles and the number
of line exchanges performed. Table 5.8 shows the result of this experiment.

When k2 = k3 = 0 the correspondent terms of the vehicle utility are cancelled and
the utility is defined only by the travel cost. Hence, with this configuration, the objective
function is directly minimized since the utility of a vehicle is aligned with it. The average
value of the objective function was 25671.2 e with a small standard deviation of 97.34.
The best solution produced was the worse from the best solutions achieved on all the
configurations.

When k2 = 0 the line exchanges term is cancelled and the utility expression has only a
term that attempts to control the number of vehicles on the solution and the travel cost
term. When k2 = 0 and k3 = 1 the produced solutions used 55.2 vehicles on average which
is the lower average number of vehicles used on all the configurations. This confirms
that the term has in fact influenced the algorithm towards solutions with less vehicles.
The average number of line exchanges was 311.8 which is a value somewhat high when
compared with the remaining configurations. This is expected since the desire of reducing
line exchanges is not reflected on the utility expression. It is worth noting that the average
quality of the solutions produced improved significantly (25127.6 e). In fact, it was the
best average objective function value of all the configurations.

When k3 = 0 the new vehicles term is cancelled and the utility expression has only a
term that attempts to control the number of line exchanges and a term for the travel cost.
Hence, with k2 = 1 the average number of line exchanges has in fact been reduced. This
configuration yielded the lowest average number of line exchanges, which also confirms
that the term has influenced the algorithm towards the minimization of the number of
line exchanges. Regarding the number of vehicles, we observed that it increased, which is
expected since k3 = 0.

In the configuration in which both weights have the same value (e.g. k2 = k3 = 0.5)
both terms are considered in the vehicle utility and attempt to influence the algorithm. We
can see that the average number of line exchanges suffers a slight decrease (302.6), with
respect to the configurations with k2 = 0 and k3 = 0 or k3 = 1, and the average number
of vehicles was not affected. The best solution achieved is also 360 e more expensive,
compared to the best solution achieved on the experiment.

The configuration in which k2 = 0.5 and k3 = 1 is interesting since despite the fact
that it has the highest values for the average number of vehicles and line exchanges, it
achieved a solution whose objective function value is very close to the value of the best
solution of this experiment. However with these values the parameters seem to overlap
and are not able to influence the algorithm. When we swap these weights (k2 = 1 and
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k3 = 0.5) we observe a significant decrease on the average number of line exchanges but
the average quality of the solutions was worse.

It is noteworthy to say that the lower average number of line exchanges was 222.6
which is a high value. This high value is due to the fact that even with k2 = 1 and k3 = 0,
the weight k1 is equal to 10. Therefore, the algorithm always prefers to perform more line
exchanges instead of performing services with more expensive vehicles (in terms of travel
cost).

5.2.4 Ant System andMMAS ACO algorithms

We developed a model for the ACO metaheuristic for our problem which was presented
in section 3.3.1. Based on this model, we proposed an AS and aMMAS ACO algorithm.
On this section we will evaluate the model and the algorithms developed in terms of
effectiveness and performance on a sequential setting.

In this thesis our main algorithm uses the AS ACO algorithm. As discussed in sec-
tion 2.3, in the literature theMMAS is pointed as a superior algorithm comparing to
the AS algorithm for the TSP problem in terms of solution quality. Therefore, we imple-
mented theMMAS in order to compare the results achieved in terms of solution quality
with our main algorithm based on the AS ACO algorithm. Hence, the experiments will
focus on evaluating the ACO model with the AS. However, experiments which evalu-
ate the learning capabilities of the stochastic learning component will be based on both
algorithms.

To simplify the analysis, unless stated otherwise, the values of the ACO parameters
are defined as shown in table 5.9.

Table 5.9: Default values for each ACO parameter.

Parameter Value

α 1

β 2

ρ 0.25

Our first experiment aims at evaluating the quality of the solutions produced while
varying the number of iterations of the algorithm and the number of agents N launched at
each iteration. We executed the AS algorithm with 10, 50, 100 and 250 iterations and, for
each number of iterations we set the number of agents to 8, 16, 32 and 64. The results are
shown on the plots from figure 5.2.

On the left (figure 5.2a) we can see an average of the objective function values obtained
when executing the AS algorithm with different numbers of iterations. On the right
(figure 5.2b) we can see a similar plot but with the execution time shown on the Y-axis.

93



CHAPTER 5. EVALUATION

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
2 4 2 0 0

2 4 4 0 0

2 4 6 0 0

2 4 8 0 0

2 5 0 0 0

2 5 2 0 0

2 5 4 0 0

�
�


�
�

	
�

�
��

�
�

�
	

�
�

��
�

�

# I t e r a t i o n s

 8  A g e n t s
 1 6  A g e n t s
 3 2  A g e n t s
 6 4  A g e n t s

(a) Solution quality for the different configurations

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

Ex
ec

uti
on

 tim
e (

s)

# I t e r a t i o n s

 8  A g e n t s
 1 6  A g e n t s
 3 2  A g e n t s
 6 4  A g e n t s

(b) Execution times for the different configurations.

Figure 5.2: Analysis of the solution quality (on the left) and execution times (on the right)
by varying the number of iterations and the number of agents on each execution.

A first observation is that the quality of the solutions increases as the number of
iterations increases. On the other hand, as expected, performing more iterations also takes
more time. The execution time also increases when more agents are used.

Regarding the effect of using a different number of agents, it is noticeable that better
solutions are obtained when more agents are used. This result is also expected since the
number of agents corresponds to the number of solutions constructed at each iteration,
therefore, by constructing more solutions the algorithm is allowed to explore more deeper
the search space (in terms of the number of solution components explored). Additionally,
for example with 64 agents in an execution with 250 iterations, at iteration 240 there are 64
agents that build their solutions using the information gathered from previous executions.
More concretely, the pheromone matrix will be in a state in which 240× 64 solutions were
used to update it. In short, the amount of cooperation is higher which contributes to the
construction of better solutions, hence, increasing the number of agents and the number
of iterations leads to a better exploration of the search space by the algorithm which in
turn leads to better solutions.

Our second experiment intends to evaluate the influence of the parameters α and β on
the quality of the solutions produced. By the equation 2.1 from section 2.1, we know that
these parameters allow one to control the influence of the information gathered by the
agents in previous iterations (α) and the influence of the vehicle utility (β) when selecting
a given vehicle from the set AdmVi, by a given agent. Thereby, we fix the number of
iterations to 250 and the number of agents at each iteration to 8. Then we execute the
algorithm while varying the parameters α and β within values of the set {0, 1, 2} and
testing all the combinations.

The results of this experiment are shown on table 5.10. In the table we show the average,
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the standard deviation and the minimum objective function values of all the combinations
of α and β.

Table 5.10: Solution quality of the solutions achieved in function of the parameters α and
β. We fixed the number of iterations to 250 and the number of agents to 8. The values of
the mean µ, the standard deviation σ and minimum min are shown.

α β
Objective Function (e)

µ σ min

0

0 46571.60 584.69 45644.00

1 25966.20 57.80 25870.00

2 25100.00 112.75 24928.00

1

0 33521.60 394.09 32939.00

1 24618.40 73.81 24531.00

2 24648.00 148.96 24396.00

2

0 38437.80 747.05 37706.00

1 24923.00 100.91 24836.00

2 24740.80 334.88 24405.00

With α = β = 0 the AS algorithm behaves as the restarts metaheuristic using the
random heuristic since all the decisions will always get the same probability (1/|AdmVi|)
and, as expected, the results are very bad. When α = 0 and β = 1 the AS algorithm behaves
as the restarts algorithm using the probabilistic heuristic based on the vehicle utility. We
somehow confirm this based on the fact that the average of the objective function values
of the solutions produced was 25966.2 e while the restarts algorithm had an average
of 25685 e, which are both very close. With α = 0 and β = 2 the probabilities of each
element of the set AdmVi are computed based on the square of the utility values. Since the
utility values are defined over the set ]0, 1], taking the square means that the values will
be reduced. This last configuration yielded better results in terms of average quality of the
solutions (25100 e) than with β = 1.

By setting the β value to 0 the AS does not take into account the utility of vehicles
and makes decisions based only on learned information. As it was expected, the average
quality of the solutions produced, with α = 1 and α = 2, is very poor compared with the
restarts algorithm. This is observed since if agents select solution components without any
measure of their quality (e.g. utility), the entries that will be updated are not necessarily
good ones.

From the configurations which neither α or β are 0, the configuration which achieved
the best average objective function values was with α = β = 1. However, the best solution
was obtained with α = 1 and β = 2 (24396 e).
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The ACO metaheuristic uses an additional parameter ρ, as defined in equation 2.2, to
control the rate of evaporation. In order to understand the influence of this parameter
on the quality of the solutions produced we performed an experiment in which we try
different values for ρ. Namely, the values 0, 0.25, 0.5, 0.75 and 1 were tested. The number
of iterations was set to 250 and the number of agents executed at each iteration was set to
8. The α and β parameters were set to the default values of this section, shown in table 5.9.
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Figure 5.3: Influence of the evaporation rate ρ parameter on the solution quality of the AS
algorithm.

Figure 5.3 shows the results of this experiment in which the Y-axis corresponds to the
average quality of the solutions obtained with each ρ value. As we can see, this parameter
has some influence on the quality of the solutions achieved. With ρ = 0 no evaporation
occurs and with ρ = 1 the values on the pheromone matrix are completely evaporated
(set to 0). For ρ = 1 it is clear from the results that always forgetting everything after an
iteration is a bad decision since in this way, the information gathered by the agents in
previous iterations is discarded. In other words, learned information only subsists for one
iteration.

The configuration that yielded the best solutions, in average, was the configuration
with ρ = 0.25. In general the average quality of the solutions decreases as the value ρ

increases (increase in the level of forgetfulness) which is an indication that the rate of
evaporation must be small (0 < ρ < 0.5).

Agents cooperate in gathering knowledge about the search space by constructing
solutions using a randomized strategy and those solutions are then used to quantify the
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quality of each component of the search space. The experiments presented so far were
based on the AS algorithm in which the final solutions quality was analysed but, we
did not analyse the behaviour of the stochastic learning mechanism and its influence on
the quality of the solutions produced. Our next experiment attempts to evaluate if the
stochastic learning mechanism does in fact learn.

We executed the AS and theMMAS algorithms using 250 iterations and 8 agents. For
MMAS the parameter a was set to a = 1. For each iteration we computed the mean of
the objective function value of the 8× 5 solutions produced (8 agents and 5 runs) and the
obtained values were plotted. Then, we applied a linear regression to the data. The result
is shown on figure 5.4.
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Figure 5.4: Analysis of the learning capabilities of the AS andMMAS algorithms. A linear
regression line was computed based on the average values of the objective function of the
solutions produced at each iteration, where the slopes indicate that the average quality of
the solutions improved as the iterations increased. The number of iterations was set to 250
and the number of agents to 8.

The left plot shows the results with the AS algorithm and the right plot the results
with theMMAS algorithm. The cyan dots are the mean values of the objective function
values of the solutions produced at each iteration, and the blue line corresponds to the
linear regression line. The red line denotes the objective function value of the best solution
obtained at each iteration. The slopes of the linear regression lines are also shown.

For both algorithms the slopes of the linear regression lines are negative which in-
dicates the the average quality of the solutions produced improved as the number of
iterations increased, i.e., in fact there is some learning.

The AS algorithm was more consistent in the sense that the average quality of the
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solutions produced at each iteration is similar (small standard deviation). On the other
hand, this not the case with the MMAS algorithm. The MMAS has a pheromone
reinitialization mechanism which resets all the pheromone values after a given number
of iterations without improvement (in our test we reset pheromones after 100 iterations
without improvements). This justifies that, for example around iteration 150, the algorithm
stagnates and pheromones are reinitialized. This reinitialization scheme also affects the
slope of the linear regression, however, we believe this is a fair comparison because we
want to analyse the behaviour of the algorithms on 250 iterations and not only on some
subset of the iterations in which no pheromone reinitialization occurred.

We can also observe that the AS algorithm produced better solutions comparing to the
MMAS. The best solution of the AS algorithm costs 24558 ewhile the best solution of
theMMAS algorithm costs 25013 e. The AS algorithm also converges faster (in about 20
iterations) but then stagnates. On the other hand theMMAS mechanism of pheromone
reinitialization avoids this stagnation. The reason whyMMAS performs worse than the
AS algorithm may be due to a bad parametrization. This algorithm is more complex and
its parametrization is also harder. Further experiments should be performed with different
parameters to determine if in fact the extra mechanisms of theMMAS algorithm are
effective or not for solving our problem.

As we observed, the AS algorithm stagnates after a few iterations. This is not bad
since it keeps searching around areas of the search space which lead to solutions with
similar objective functions values. This may be a clue that a local optima exists near these
zones of the search space. This stagnation could be suppressed with the introduction of
the reinitialization mechanism of theMMAS on the AS algorithm, but without any other
changes.

Based on the experiments performed we can conclude that the stochastic learning
component in fact improves the effectiveness of the search algorithm and allows ACO
to achieve better solutions. Additionally, both AS andMMAS achieved better solutions
when comparing with the restarts algorithm, which is an indication that they are in fact
superior algorithms.

5.3 Parallel Synchronous and Asynchronous ACO

In this section we evaluate and compare our proposed parallel synchronous and asyn-
chronous ACO algorithms in terms of performance and solution quality.

Unlike the experiments described on the last sections, experiments described on the
following sections are performed on the MP machine described in section 5.1.

In the previous section we concluded that the ACO algorithms, namely the AS and
theMMAS algorithms, are superior than the restarts algorithm. Therefore from now on,
and until the end of this chapter, we do not perform any comparisons between the restarts
algorithm and our ACO algorithms (both on a sequential or on a parallel setting).
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It is worth noting that in order to preserve coherence between the results reported
on our paper [67] published at INFORUM 2015 in which we proposed our parallel asyn-
chronous parallel strategies for ACO, the experiments in this section are based on a slightly
different definition of a vehicle utility and no limit to the number of service interruptions
is considered.

The vehicle utility η(v) of a vehicle v located on a location locv, performing a departure
Tj starting on terminal itj, which was used to produce the results of this section, is a
function η : R≥0 7→ ]0, 1] defined as follows:

η(v) = e

−
[
dist(locv, itj) ∗ distTypeCost(v) ∗ k1 + dTerm(locv, itj) ∗ k2

]
k4 (5.4)

Each term of this definition of utility has exactly the same meaning as the ones defined
in the vehicle utility definition from section 3.1.2.2. The difference between the two
definitions is that the definition proposed in this thesis takes into account an additional
term newVehicle(v).

5.3.1 Learning Capability Analysis

In order to assess our algorithms learning capability we performed an experiment in which
the number of iterations P is 250 and the number of search agents N is 16. The number
of threads used is irrelevant since we are not analysing the speedup. The procedure of
this experiment is the same as the procedure described in section 5.2.4 for assessing the
influence of the stochastic component on the quality of the solutions produced.

For each iteration p ∈ [1, 250] of the search, we computed the mean of the objective
function of all the 16× 5 generated solutions from the 16 agents and 5 runs. We plotted
the mean values for each p iteration and we applied a linear regression on the data. The
results can be seen in Figure 5.5. In this figure four plots are shown, one for the ASSync
and one for each of our concurrency models. The slopes of the linear regression lines (blue
lines) are shown and can be interpreted as a measure of the learning rate. The red line
shows the best solution obtained during each iteration p. The best solution objective value
achieved is shown in the plot title.

We observe that our proposed asynchronous strategies are able to learn as the number
of iterations increases, i.e., the quality of the solutions produced improved along the
iterations. It is worth noting that both the AsyncLF and AsyncBC algorithms outperformed
ASSync in terms of learning intensity and solution quality. The AsyncBM algorithm was
not superior in terms of solution quality but was very close to ASSync. The AsyncLF
algorithm not only presents the highest learning intensity (slope of ∼ −0.22) but also
achieved the best solution in the first 100 iterations. However, it takes longer to start
achieving solutions with objective function value below 23800 e than the other algorithms.
Only after iteration 50 AsyncLF achieves solutions with objective function values clearly
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Figure 5.5: Learning Capability Analysis of our parallel synchronous AS and asynchronous
AsyncBM, AsyncBC and AsyncLF algorithms, with 250 iterations and 16 agents.

below 23800 e. The AsyncBC and AsyncBM algorithms start achieving quality solutions
in less iterations and should be preferred if one wants a good solution quickly.

The ability of achieving good diversity while generating solutions is crucial since it
corresponds directly to a better exploration of the search space. In an asynchronous setting
the cooperation mechanism achieved is different, hence it has different characteristics.
A first modification is that as the degree of concurrency increases, search agents that
are executing receive updates sooner from agents that have already finished (agents
cooperation is performed early and more often). This allows the executing agents to
perform better decisions sooner, i.e., agents start exploring promising regions sooner which
increases the chances of achieving quality solutions.

An additional aspect is that in a synchronous setting, at the end of each iteration N
agents contribute with N solutions, each with |T| departures, which are then used to
update the pheromone matrix. This batch update, which consists in only one cooperation
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phase, may guide the search towards a sub-optimal (e.g. local optimal) solution since some
of the desirability components may not be reinforced so frequently. In an asynchronous
setting, where the batch update does not occur, agents from posterior iterations will use
information from partial updates (all the components of one solution or even only one
component from a solution) and therefore have a greater change to explore unvisited
search space areas. This means that the algorithm will achieve better diversity which
directly translates in a more effective search strategy.

5.3.2 Performance Analysis

In our performance experiments we target the following algorithms: sequential AS, ASSync
and our three proposed parallel asynchronous algorithms.

The first experiment was performed using 64 threads. With this experiment we intend
to analyse how the speedups are affected when the search goes deeper (in number of
iterations). We run each algorithm using p ∈ [10, 50, 100, 250, 500] iterations. This experi-
ment was performed with 8, 16, 32 and 64 search agents. Figure 5.6 shows the result of the
experiment. We observe that in all cases both AsyncLF and ASyncBC algorithms achieves
better speedups than ASSync. The AsyncBM algorithm proved to be unstable yielding
better speedups than ASSync with 8 and 16 agents but not with 32 and 64.

With 8, 16 and 32 search agents there are threads that were launched but are not
working since the number of threads is greater than the number of tasks to be executed.
With 64 agents this situation does not occur and each thread gets atleast one agent from
each iteration. This explains why speedups are slightly better in general with 64 agents
(except for AsyncBM). We observe that AsyncLF achieves almost always better speedups
than the other asynchronous strategies. As we expected, and due to the fact that the
whole matrix is blocked, the AsyncBM algorithm is the worse asynchronous algorithm. In
general and as we expected, we verify that as more concurrency is allowed, the better are
the speedups achieved.

For the second experiment the number of iterations was fixed to 1000. This experiment
aims to evaluate the scalability of our algorithms as the number of threads increases. We
run each algorithm using th ∈ [2, 4, 8, 16, 32, 64] threads and, for each number of threads
th we measured the speedup achieved. Like in the previous experiment, we tested with
4, 8, 16 and 32 search agents. Figure 5.7 shows the result of the experiment in which the
Y-axis corresponds to the speedup achieved and the X-axis to the number of iterations of
each execution (logarithmic scale).

We observe a speedup increase as the number of threads increases. In all configurations,
the overhead of concurrency mechanisms is only observed when more than 8 threads are
used. Like in the previous experiment, the best results were achieved with 64 search agents
per iteration. Both results indicate that as we increase the amount of work in each iteration,
better speedups are achieved, i.e., parallel resources exploitation is more effective.

Despite of the overhead introduced by read/write locks, the AsyncBC performance is
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Figure 5.6: Speedup Results with 64 threads.

similar to the AsyncLF algorithm, with the last being slightly better. We observe that both
AsyncBC and AsyncLF algorithms are able to scale in terms of workload and number of
threads. Furthermore, both algorithms scale almost logarithmically with 32 and 64 agents
as the number of threads increases, suggesting that better results would be achieved on a
machine with more cores and using more threads.

The AsyncBM algorithm is always worse than the other asynchronous models and
sometimes even worse than ASSync, revealing that blocking the entire matrix has a
significant negative impact on the performance. The maximum speedup achieved was
≈ 17.6x with 64 threads and 64 agents on a 64 core machine, what gives an efficiency of
≈ 28%. Even for the best configuration (64 agents) efficiency decreases as the number of
threads increases. A strict comparison with other proposed algorithms is not possible to
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Figure 5.7: Speedup Results with 1000 iterations.

stablish since no ACO parallel algorithm was developed and applied to the variant of
vehicle scheduling problem that we address in this thesis.

5.3.3 Parallel Issues

It is worth noting that in our first implementation of both parallel synchronous and
asynchronous ACO algorithms we were only able to achieve speedups smaller than
5.5x with CPU cores usage being very low. We performed some experiments and we
found out that concurrent memory allocations have a great impact on the performance
(malloc(3) contention [29, 48]). Therefore, we attempted to minimize the number of memory
allocations on parallel regions in our parallel implementations, however, the remaining
allocations still affect the performance.
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To reduce the number of allocations (calls to the malloc(3) system call) we redesigned
our parallel algorithms such that needed allocations are performed in the beginning of the
execution and outside a parallel region.

We know that if the number of agents is N then for each iteration we need to allocate
memory for N solutions. Additionally, we know that each solution will have atleast
|T| (number of departures) tasks. In fact this is a very naive approximation since before
performing a departure a vehicle usually has additional tasks (Wait, LineExchange, VoidIn
and ServiceInterrupt) and the same happens after performing a departure (VoidOut or
Maintenance tasks). Therefore, we allocate memory for N + 1 solutions in which for each
solution we allocate memory for 3× |T| tasks.

It may happen that 3× |T| is not enough. When this situation occurs, we allocate
memory (now on a parallel region) for one more task. This will introduce a small overhead
on a execution of an agent but this overhead will be amortized in the following agents
executions.

We allocate memory for N + 1 tasks which to correspond to N solutions, one for each
agent, and one more for storing the global best solution.

It is worth noting that this scheme introduces some overhead due to the allocations
performed. When the search depth is small (small number of iterations) the parallel
algorithm is expected to perform worse than the sequential algorithm. Naturally, the
overhead also increases as the number of agents N increases.

We also apply the mechanism just described on the parallel restarts algorithm described
in section 4.4.1, however, instead of allocating N solutions (one for each agent) we allocate
a solution for each thread.

5.4 Summary

To sum up, we will present in this section the results of our experiments.
First, it should be noted that it is not possible to compare our results in terms of solution

quality or speedup achieved since, to the best of our knowledge, neither an algorithm for
our variant of the VSP neither a parallel ACO algorithm applied to our variant as been
addressed or proposed.

We concluded that our restarts algorithm developed produces better solutions as the
number of restarts performed increases. From the heuristics proposed, we concluded that
the probabilistic heuristic based on the vehicle utility is superior.

Regarding the experiments performed related with our problem model parameters
influence and effectiveness we concluded that:

• By allowing line exchanges the algorithm is able to produce solutions that use a less
number of vehicles and which are also cheaper;

• The weights which are part of the definition of a vehicle utility are able to effectively
influence the solutions produced;
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We verified that it is worth using more agents on the AS algorithm since it leads
to solutions with better quality. In other words, increasing the amount of cooperation
(more agents) leads to better solutions. However, as the number of agents increases the
execution time also increases. The α and β parameters play an important role on the ACO
metaheuristic. We concluded that a good combination of values for this parameters is with
α = 1 and β = 2. With this combination the agents of the AS algorithm base their decisions
more on the learned information than on heuristic information about the problem. Our
experiments also indicate the evaporation rate value ρ must be low (0 < ρ < 0.5).

The ACO metaheuristic is based on a stochastic learning mechanism which aims at
gathering information about the search and using that information to influence agents de-
cisions and guide the search towards promising regions. Our experiments which intended
to evaluate the learning capability of the AS andMMAS algorithms confirmed that in
fact the algorithms are able to learn and the quality of the solutions improves over the
iterations. Another conclusion of this experiment is that our implementation of the AS
performed better than theMMAS one, in terms of solution quality.

We confirmed that both our ACO algorithms produce better solutions than the restarts
algorithm, therefore, to achieve good solutions one should prefer the ACO algorithms.

Regarding parallel synchronous and asynchronous ACO algorithms, our experiments
show that our proposed asynchronous algorithms not only are able to learn but also
achieved better solutions than ASSync. The AsyncBC and AsyncLF algorithms outper-
form ASSync in terms of speedups achieved and scalability, with the AsyncLF algorithm
yielding the best results.
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6
CONCLUSIONS AND FUTURE WORK

In this final chapter an overall summary of this work will be outlined and the main
conclusions are drawn in section 6.1. The most relevant results and contributions will also
be discussed in this section.

To conclude, section 6.2 discusses future work ideas to extend and complement this
work and enhance its contributions.

6.1 Conclusions and Contributions

The purpose of this work was to develop an algorithm to solve the Public Transport Bus
Assignment optimization problem formulated in the introductory chapter, which is a
variant of the general VSP problem not addressed yet in the literature, capable of tackling
real life instances and producing quality solutions in a reasonable amount of time by
exploring parallelism.

Due to the complexity of the problem, we use approximative algorithms which sacrifice
optimality in order to produce solutions in a reasonable amount of time. Combining an
heuristic algorithm with a sophisticated metaheuristic (Ant-Colony Optimization) allowed
us to develop an intelligent approximative algorithm capable of effectively exploring the
search space, through cooperation.

It happens that for complex problems, metaheuristics, namely ACO, may also fail
to produce quality solutions in a reasonable amount of time. Therefore, we explored
and proposed new parallel strategies for this metaheuristic, targeting shared-memory
architectures, to take advantage of the available computational resources on current
multi-core and multiprocessor machines.

First we developed a model of the problem and implemented a probabilistic heuristic
algorithm which is based on a proposed definition of a vehicle utility, and constructively
builds a solution while assuring that no constraints are violated. Based on this algorithm,
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we developed a restarts metaheuristic and two ACO algorithms: one based on the Ant
System algorithm and one based on theMAX−MIN algorithm.

Parallel versions of the restarts and ACO algorithms were developed. Regarding
ACO, in order to mitigate the straggler problem, we proposed three different parallel
asynchronous strategies which differ in the degree of concurrency allowed while accessing
the learned information of the search history.

Our results shown that both ACO algorithms produced better solutions than the
restarts algorithm, with the Ant System algorithm yielding the best results. The implicit
cooperation mechanism of ACO, in which agents cooperate in the task of classifying
components of the search space, yields in fact better solutions. Results have shown that
our ACO model allowed the metaheuristic to learn from the collected knowledge and
improve the quality of the solutions over the iterations. Furthermore, we concluded
that increasing the amount of cooperation (agents per iteration) allows the algorithm to
produce better results.

Regarding our parallel algorithms, namely the parallel synchronous and asynchronous
ACO algorithms, we concluded that our asynchronous strategies, namely the ASyncBC
and AsyncLF algorithms, outperformed in terms of performance and solution quality the
synchronous ones, achieving speedups of ≈ 17.6x with our best asynchronous algorithm
(AsyncLF). It is worth noting that asynchronism changes the original cooperation scheme
of ACO and, based on our results, we concluded that with asynchronism cooperation is
more effective (in terms of learning rate) and better solutions are achieved.

We contributed with approximative algorithms for solving the PTBA problem, based
on the restarts and on the ACO metaheuristic.

Regarding parallel metaheuristics, we contributed with a parallel version of the restarts
and parallel synchronous versions of the AS andMMAS algorithms. We also contributed
with three parallel asynchronous algorithms, in which two proved to be superior than
the synchronous ones. Our proposal of asynchronous strategies for the AS algorithm was
submitted and accepted on the INFORUM 2015 conference [67].

An extensible Parallel Optimization Library for the PTBA problem (ParallelPTBAP-
OptLib) was developed. This library provides all the algorithms implemented in this work
and offers abstractions that allow programmers to easily develop applications to solve
this problem or similar variants.

6.2 Future Work

In future work we intend to develop a linear relaxation of our problem and solve it using
a complete search method (where optimality is guaranteed) in order to obtain a lower
bound of the solution quality for a given instance. This will allow us to measure the error
of our approximative algorithms. Additional experiments, taking into account all the
parameters, must be performed in order to determine a good global parametrization for
the algorithms.
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In order to improve the performance of our parallel synchronous and asynchronous
ACO algorithms different malloc implementations (e.g. TCMalloc or jemalloc) should be
experimented, instead of the glib implementation, since we observed that heap contention
is not allowing the algorithm to fully utilize the CPU.

The ACO algorithms can be improved by extending the pheromone trails model. In-
stead of having a row for each location, the set of all possible vehicles can be considered.
This model significantly increases the pheromone matrix dimensions and, the computa-
tions performed by each search agent become more expensive. Introducing a second level
of parallelism, through GPUs, to compute the ACO probability distribution values for
each vehicle at each decision point would be advantageous. This pheromone trails model
allows for a more complete classification of the search space components.
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