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Abstract

Structural connectivity models based on Diffusion Tensor Imaging (DTI) are strongly

affected by the technique’s inability to resolve crossing fibres, either intra- or inter-hemis-

pherical connections. Several models have been proposed to address this issue, includ-

ing an algorithm aiming to resolve crossing fibres which is based on Diffusion Kurtosis

Imaging (DKI). This technique is clinically feasible, even when multi-band acquisitions

are not available, and compatible with multi-shell acquisition schemes. DKI is an exten-

sion of DTI enabling the estimation of diffusion tensor and diffusion kurtosis metrics. In

this study we compare the performance of DKI and DTI in performing structural brain

connectivity.

Six healthy subjects were recruited, aged between 25 and 35 (three females). The MRI

experiments were performed using a 3T Siemens Trio with a 32-channel head coil. The

scans included a T1-weighted sequence (1mm3), and a DWI with b-values 0, 1000 and

2000 s.mm−2. For each b-value, 64 equally spaced gradient directions were sampled. For

DTI fitting only images with b-value of 0 and 1000 s.mm−2 were considered, whereas for

the DKI fitting, the whole cohort of images were considered. To fit both DTI and DKI

tensors, extract the metrics and perform tract reconstructions, the toolbox DKIu was used,

and the structural connectivity analysis was accomplished using the MIBCA toolbox.

Tractography results revealed, as expected, that DKI-based tractography models can

resolve crossing fibres within the same voxel, which posed a limitation to the DTI-based

tractography models. Structural connectivity analysis showed DKI-based networks’ abil-

ity to establish both more inter-hemisphere and intra-hemisphere connections, when

compared to DTI-based networks. This may be a direct consequence of the inability to

resolve crossing fibres when using the DTI model. The DKI model ability to resolve

crossing fibres may provide increased sensitivity to both inter- and intra-hemispherical

connections.

DTI-based modularity connectograms show a distinct intra-hemispherical configura-

tion, whereas DKI-based connectograms show an increased number of inter-hemispherical

connections, with several clusters extending over both hemispheres. Global and local con-

nectivity metrics were also studied, but yielded no conclusive results. This may be due to

a lack of reproducibility of the metrics or of the small cohort of subjects considered.
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DKI seems to provide additional insights into structural brain connectivity by resolv-

ing crossing fibres, otherwise undetected by DTI.

Keywords: Diffusion Tensor Imaging, Diffusion Kurtosis Imaging, Tractography, Struc-

tural Connectivity
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Resumo

Modelos de conectividade estrutural baseados em Imagem por Tensor de Difusão (DTI)

são fortemente afetados pela limitação da técnica em resolver cruzamentos de fibras

intra-voxel, quer a um nível de ligações intra-hemisféricas ou inter-hemisféricas. Vários

modelos têm sido propostos para tentar colmatar este problema, incluindo um algoritmo

focado para a resolução destes cruzamentos de fibras baseado em Imagem por Curtose

de Difusão (DKI). Esta técnica é clinicamente exequível, mesmo quando esquemas de

aquisição multi-band não estão disponíveis. DKI funciona como uma extensão do DTI,

na medida em que permite estimar métricas do tensor de difusão assim como do tensor

de curtose. Neste estudo comparamos o desempenho do DKI e do DTI em conectividade

estrutural do cérebro.

Seis sujeitos saudáveis foram recrutados, com idades compreendidas entre os 25 e

35 anos (três de sexo feminino). As aquisições de Ressonância Magnética (IRM) foram

executadas utilizando um aparelho 3T Siemens Trio com uma bobina de receção de 32

canais. As aquisições incluíram uma sequência ponderada em T1 (1mm3), e DWI com

valores de b de 0, 1000 e 2000 s.mm−2. Para cada valor de b, 64 direções de gradiente

igualmente espaçadas foram adquiridas. Para estimar o tensor de DTI foram apenas

consideradas imagens com valor de b igual a 0 e 1000 s.mm−2, mas para estimar o tensor

DKI, foram utilizadas todas a imagens adquiridas. Para estimar os tensores de difusão

e curtose, extrair as métricas e realizar a reconstrução por tractografia, foi utilizado o

programa DKIu, e para a análise da conetividade estrutural foi utilizada a toolbox MIBCA.

Os resultados das tractografias revelaram, como esperado, que os tractos estimados

com base em algoritmos de DKI conseguem resolver cruzamento de fibras dentro do

mesmo voxel, que é uma limitação da abordagem por DTI. A análise da conectividade

estrutural revelou resultados interessantes no que toca à capacidade das redes computa-

das por DKI reonhecerem mais ligações quer inter-hemisféricas quer intra-hemisféricas,

quando comparadas com as redes computadas por DTI. Isto pode ser uma consequência

directa da incapacidade de resolução de cruzamento de fibras quando se utiliza o mo-

delo de DTI. A resolução de fibras cruzadas pelo modelo DKI pode providenciar uma

sensibilidade acrescida a ligações quer inter-hemisféricas quer intra-hemisféricas.

Conectogramas de modularidade baseados em DTI mostram uma clara configura-

ção intra-hemisférica de agrupamentos, ao passo que conectogramas baseados em DKI
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mostram agrupamentos que englobam ambos os hemisférios, com múltiplas ligações

inter-hemisféricas dentro do mesmo agrupamento.

As métricas de conectividade globais e locais também foram estudadas, mas parecem

sofrer de grande variabilidade, pelo que os resultados foram inconclusivos. Esta variabili-

dade pode dever-se a falta de reproducibilidade das métricas estudadas ou do número de

sujeitos considerados ter sido baixo.

DKI parece fornecer nova informação para a conectividade estrutural do cérebro ao

resolver cruzamento de fibras, mas a verdadeira extensão dessa melhoria ainda está em

estudo.

Palavras-chave: Imagem por Tensor de Difusão, Imagem por curtose de difusão, Tracto-

grafia, Conectividade Estrutural
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1
Introduction

1.1 Context and Motivation

Diffusion Weighted Imaging (DWI), a kind of Magnetic Resonance Imaging (MRI) sensi-

tive to diffusion, has been continuously evolving since its introduction, in the mid-1980’s,

proving its worth against the other techniques used to inspect the human body in a non-

invasive way. Based on the principle of diffusion observed in water molecules, DWI has

been particularly relevant in the study of regions where diffusion motion tends to be

anisotropic. This is the case of white matter fibres in the brain. Such behaviour helps to

understand the organization and connections of the structures in soft tissues at a macro-

scale. Hence, the study of the whole brain’s structural connectivity can be performed

using the information provided by DWI techniques.

In its early days, DWI were modelled describing water diffusion as a scalar, in order

to assess whether the diffusion was higher (brighter voxels) or lower (darker voxels) in

a particular region. But this description was found to be very limited and there was

the need to characterize and not only quantify diffusion but also its three-dimensional

orientation. Diffusion Tensor Imaging (DTI) was then introduced. In its foundation lies

the assumption that water diffusion can be approximated by a Gaussian model, and that

a full characterization of the water diffusion can be accomplished estimating a diffusion

tensor. This lead to a revolution in the imaging world, allowing the firstin vivo visualiza-

tion of brain fibres, through means of tractography, and numerous breakthroughs in the

perception of structural modifications due to pathological conditions.

However, this technique has a few shortcomings when trying to study connectivity.

DTI assumes that, for a single voxel, there is only one fibre population. This is generally

the case in the brain, but it has been estimated that more than 30% of the voxels in a

standard resolution brain image have, at least, two different fibre populations, travelling

1



CHAPTER 1. INTRODUCTION

in two distinct directions, crossing each other. Using the DTI model, voxels with multiple

fibres are assigned lower fractional anisotropy (anisotropy intrinsic to each voxel) than

the real one, due to the contributions of multiple fibres, lowering the overall anisotropy

for that voxel. In addition to that, the overall Main Diffusivity Direction (MDD) for

that voxel is also affected. This introduces both false positives and false negatives tract

connections in DTI-based tractography reconstruction. Furthermore, the Gaussian model

seems to be a poor fit to the biological diffusion scenario. The high complexity of the

structures at hand (myelin sheaths, cellular organelles, etc.) have been shown to result in

water molecular diffusion to look more like a sharper and thinner version of the Gaussian

distribution. Thus, using a Gaussian model to characterize diffusion in biological tissues

is often inaccurate.

To help mitigate these limitations, a new set of techniques have been developed, such

as Diffusion Spectrum Imaging (DSI) and High Angular Resolution Diffusion Imaging

(HARDI). These techniques offered improvements on the DTI flaws, particularly in solv-

ing the tractography-related limitations, acquiring images with multiple shells. These

multi-shell acquisition schemes enable the description of the full diffusion function us-

ing measurements such as displacement, zero-probability and kurtosis. But this extra

sensitivity comes with a hefty cost: lengthy acquisition times. This completely rules out

the implementation of these techniques in a clinical environment.

Diffusion Kurtosis Imaging (DKI) was also developed to deal with the limitations of

DTI. Working with a lower range of b-values than the previous techniques, DKI is both

clinically feasible and allows for multi-shell acquisition schemes. DKI also abandons the

Gaussian model, extending it to include a kurtosis dependent term, which is a statistical

measurement that determines the degree of deviation of a distribution from a Gaussian

distribution. In addition to estimating all DTI-derived metrics, DKI modelling also allows

estimating kurtosis derived metrics, which can better characterize the spatial architecture

of tissue microstructure. Therefore, the DKI model acts as an extension of the DTI model.

These improved methods lead to the growing interest in studying the brain’s connec-

tivity in vivo and non-invasively. Tractography reconstructions produce large datasets

of anatomical connections patterns, and to better analyse these patterns, they are often

represented as complex networks. Brain networks comprise nodes (vertices) and links

(edges), and the network’s inherent metrics can be very useful to understand the struc-

tural organization of the brain, both locally and as a whole.

Therefore, improvements in imaging techniques may reveal important pieces of in-

formation otherwise omitted. Information like this may lead to a more accurate recon-

struction of the brain fibres, making the end result a more robust tractography, and,

consequently, a better characterization of the brain’s structural connectivity.

1.2 Objectives and Dissertation Plan

This dissertation has two primary objectives:

2



1.3. STATE-OF-THE-ART

• Compare the performances of DTI and DKI-based tractographies, particularly in

resolving intra-voxel crossing fibres.

• Compare network metrics, both local and global, characterizing DTI and DKI net-

works.

To do so, the present dissertation has been structured so as to first cover the current

state-of-the-art concerning structural connectivity and DKI. Afterwards, the reader will

be given a comprehensive explanation of the relevant theoretic underpinnings of diffusion

MRI, such as acquisition schemes and formulations; tractography, what is it and how is it

performed; and connectivity, from networks to biological inferences. Secondly, the reader

will be introduced to the methods and materials used to perform this study, datasets used,

image processing steps and statistical analysis. Thirdly, the results will be presented to

the reader, according to each study, as well as their discussion. Finally, the conclusion

and future work chapter will summarize the dissertation’s findings and inform the reader

on potential paths to take in future endeavours.

1.3 State-of-the-Art

The brain has been a subject of study ever since there was a need to understand how it

worked. Primal research methods were performed ex-vivo, during autopsies, since there

was no other way to inspect the human brain without compromising its integrity. Later,

with the development of imaging technologies, research evolved into the in vivo methods

we have today, such as MRI [1]. White matter has been focus of study many times [2, 3, 4,

5], particularly because it plays a key role in the brain’s structure and function.

Through the modification of MRI acquisition schemes, it is possible to sensitize MRI

to the random motion of water, or diffusion. Since water diffusion is bounded by cellular

structures, which in the brain’s case are myelin sheaths, it is possible to relate the water

diffusion to the microstructures that limit it. The development of diffusion sensitive MRI

techniques brought upon an increase in the brain structure studies, which are based on

fibre tract reconstruction, or tractography [6, 7, 8, 9, 10, 11]. Tractography reconstruction

is based on the grounds that water diffusion in the brain is conditioned by axons and

their myelin sheats, and thus the water molecules show a preferred direction of diffusion

(along the fibres rather than across). This is then used to assess inter-voxel connectivity

based on the preferred direction of diffusion. All of this makes diffusion weighted MRI

a prime tool to assess, in a non-invasive way, the direction of fibres in white matter and,

consequently, brain connectivity.

DTI was the first technique to be used to extract information on the characterization

of the white matter fibres for fibre tracking [6, 7]. A diffusion tensor was fitted to the

diffusion distribution assuming that the displacement function of the molecules in the ax-

ons is Gaussian. Information on the brain’s microstructures is then inferred and has been

used in a wide variety of neurosciences, from the basic neuroscience [12] to diagnostic
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neuroradiology [13]. But it showed several limitations, like diffusion not being Gaussian

in biological tissues and lack of sensitivity to crossing fibres inside the same voxel [14, 15].

To mitigate these limitations, two approaches were used: whether to use different imag-

ing models, from model free approaches like Q-Ball Imaging [16], Diffusion Spectrum

Imaging [17] or Hybrid Diffusion Imaging [18], to modelled approaches like DKI [19]; or

to use new and refined tractography algorithms, such as Spherical Deconvolution [20] or

High Angular Resolution Diffusion Imaging [8], and also expanding on the deterministic

(conventional) tractography to probabilistic [21] and global [22] algorithms.

Studies have been carried out comparing the performance of the tractography algo-

rithms, on synthetic cases [23] and on real data [24], and global tractography seems to

provide with better results, followed by probabilistic and then by deterministic. In the

deterministic algorithms, single compartmental models (like DTI) are out-performed by

any other of the above mentioned, due to the lack of sensitivity to the crossing fibres.

Despite their optimistic results, both global and probabilistic tractography algorithms

are computationally very time consuming [25], which rules them out for uses outside

research, at least until computational advances are reached to meet the clinical time de-

mands. Deterministic tractography computation times are shorter and therefore offer a

better trade off between results and computation time. As for the the model free diffusion

models, all of these techniques show better results with multiple and high b-values [16,

26], resulting in lengthy acquisition schemes. In turn, this also becomes a big limitation

to their use in the clinical scope.

The recent introduction of DKI has provided the medical and scientific community

with more tools to evaluate axonal and myelin integrity in white matter regions [19],

at clinically feasible times while maintaining the multi-shell acquisitions (multiple b-

values). In fact, recent studies reveal that DKI information can be of more value than that

of DTI, either from a microstructural point of view [27, 28, 29] or from a connectivity

stand point [30, 31]. It was further introduced by Rudrapatna et. al [32] the notion that

DKI could present both complementary and exclusive information, proposing that DKI

not only provides unique information but increased sensibility to the microsctructures

of white matter. DKI then proves itself to be an advantageous method for studying

the structural organization and connectivity of healthy white matter [33], and to assess

structural modifications linked to pathological cases [34]. Furthermore, DKI is able

to successfully address the crossing fibres problem, brought upon by the DTI model.

This increased sensitivity may yield additional insights when it comes to whole brain

connectivity.

Studies encompassing both DKI and connectivity are yet few in numbers, with only a

few studies assessing human brain asymmetric connectivity based on DKI [30], with stud-

ies of whole brain connectivity still non-existent. It is therefore important to fill in this

gap in the research, and determine whether or not DKI-based whole brain connectivity

yields any assets beyond those of DTI-based connectivity.
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1.4 Dissertation outputs

Throughout the development of this dissertation, several pieces of work were performed,

either part of the main project or as side-projects, that produced some type of output.

As part of the main project, the following works have resulted:

Publications

• Loução, R.; Nunes, R.G.; Neto-Henriques, R.; Correia, M. M.; Ferreira, H. A.,

"Human brain tractography: A DTI vs DKI comparison analysis", 2015 IEEE

4th Portuguese Meeting on Bioengineering (ENBENG) proceedings, pp.43-44,

26-28 Feb. 2015

Communications

• Loucao, R.; Nunes, R.G.; Neto-Henriques, R.; Correia, M.; Santos-Ribeiro, A.,

Ferreira, H.A., “Structural Connectivity Based on Diffusion Kurtosis Imaging”

accepted to ESMRMB, 1-3 October 2015, Edinburgh, Scotland

• R. Loução, R. G. Nunes, R. Neto-Henriques, M. M. Correia, H. A. Fer-

reira, “Human brain tractography: a DTI vs DKI comparison analysis”, 4th

Portuguese BioEngineering Meeting, 26-28 February 2015, Porto, Portugal.

• A. Santos-Ribeiro, L. M. Lacerda, R. Neto-henriques, R. Maximiano, R.

Loução, D. Nutt, J. McGonigle, H. A. Ferreira, "MIBCA, A toolbox for pro-

cessing and analysis of multimodal imaging and connectivity data", 2015 In-

ternational Conference on Brain Informatics & Health, 30 Aug - 2 Sept 2015,

London, UK

As a side-project, a 3D tractography visualizer was developed in Unity. The final

result will incorporate the Unity environment, the Leap Motion and Oculus Rift, to make

an immersive 3D visualizer of tractography, controlled solely by the Leap Motion sensor.

Another side-project was the study of the effect of downsampling the amount of b-vectors

towards the minimum amount required to estimate the kurtosis tensor (see 2.3.1), as

part of an ERASMUS internship project. From this project, it was determined that only

kurtosis tensor related metrics (see 2.3.1) are affected by the downsampling, whereas the

diffusion tensor based metrics (see 2.2.1) remained unchanged. These projects were not

includes in the present dissertation since they involved no connectivity studies, putting

them outside the scope of the dissertation.
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2
Theoretic Underpinnings

In this chapter, the reader will be introduced to all of the theoretic concepts needed to

understand the content of the remaining chapters of this dissertation. First, an overview

on MRI and how it can be sensitized to water diffusion in biological tissues. Then, more in

depth, the two methods of DWI used in this work will be explained, DTI and DKI, from

their formulation to advantages and pitfalls. Moving on, the tractography section will

inform the reader on how these reconstructions are performed, based on the diffusion

and kurtosis tensors. Finally, an overview on connectivity will be presented, describing

what it is and why it is used in this context, while also introducing connectivity metrics

and their biological interpretation.

2.1 Diffusion and MRI

2.1.1 Physics of MRI

MRI is a non-invasive diagnosis technique used to provide anatomical images of the

human body, usually with a high spatial resolution and soft tissue contrast. To do so, MRI

focuses on the atomic nuclei magnetic properties, in particular, those of the hydrogen

nucleus. A hydrogen nucleus is composed by a proton which precesses around itself,

described by the angular momentum of the nucleus, called spin. Other nuclei could be

considered, but the hydrogen nucleus is the preferred one due to its abundance in water

and fat, two main elements of the human body.

In the absence of an external magnetic field, the protons precess around random

directions, and the net value of the magnetization of the whole cohort is, therefore, null.

When exposed to a strong magnetic field, the protons are forced to align in the direc-

tion parallel or antiparallel to that of the field and precess around it. These two directions

of alignment are a consequence of the existence of two energy levels that the protons can
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CHAPTER 2. THEORETIC UNDERPINNINGS

occupy inside the magnetic field. Since one level has a slightly lower energy than the other,

the lower energy level will have more protons than the higher energy level; this difference

causes the net magnetization to be different from zero. To this magnetic component we

call longitudinal magnetization (M0).

The frequency at which protons precess when immersed in the magnetic field is given

by

ω0 = γB0 (2.1)

where ω0 is the Larmor frequency, γ is the gyromagnetic ratio of the atom and B0 is the

intensity of the magnetic field. In order to acquire signal, a disruption has to be made

in the system. So, Radio Frequency (RF) pulses are applied in a direction perpendicular

to that of B0, creating a new magnetic component called transverse magnetization (Mxy).

The RF pulse must be applied at the Larmor frequency so as to induce resonance. This

forces the spins to precess at a given angle from the original magnetic field on the xy

plane (provided we consider z as the axis longitudinal to B0), and this angle depends on

the pulse’s characteristics (duration and intensity). Finally, when the RF pulse is switched

off, the spins relax into the main direction again. Since these processes take time to occur,

and the time taken is intrinsic to each tissue, it is possible to establish a correspondence

between tissue type and the signal acquired. There are two different relaxation times

to be considered. T1, or spin-lattice relaxation time, is the time taken for 63% of M0 to

recover after a 90°RF pulse. T2, or spin-spin relaxation time, corresponds to the time it

takes for 37% of Mxy to be obtained due to relaxation of transverse magnetization, from

a given value, determined by the RF pulse duration and intensity (see Figure 2.1). T2 is

influenced also by interactions between spins, and if the inherent field inhomogeneities

Figure 2.1: T1 and T2 relaxation times [35]. Although they happen at the same time, T2
is much smaller than T1.
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are also considered, the relaxation will occur at a rate of T2* instead, which is shorter

than T2.

The variation of Mxy is then detected by a receiving coil, in which, by induction, an

electric current is generated. The decay of this current is exponential with the relaxation.

The signal obtained in the coil is called Free Induction Decay (FID).

2.1.2 Diffusion Weighted Imaging

Diffusion, or brownian motion, is the random displacement of particles in a fluid. This

displacent can be characterized by the diffusion constant. At a constant temperature, the

diffusion constant D is given by Einstein’s equation [36]

D =
R

2

6t
(2.2)

where R2 is the mean square displacement of the particles and t the time interval

during which the displacement occurred.

In an unbounded environment, the water diffusion is the same in all directions in a

given amount of time. This kind of diffusion is called isotropic diffusion. However, the

same does not apply in the human body. Due to the presence of cell membranes and other

cellular structures, water molecules are conditioned in their diffusion. This means that

water molecules are allowed to travel longer distances in some directions that in others,

for the same time interval. This phenomenon is called anisotropic diffusion.

In the brain’s White Matter (WM), the water in the axons is restricted by the myelin

sheath and cell membrane, constituting barriers to free diffusion. This, in turn, means

that the diffusion will be more prominent along the direction parallel to the axis of the

axons. This assumption is particularly important when studying the WM microstructure.

DWI is an imaging technique that is sensitive to water diffusion. When it first ap-

peared, diffusion was modelled using a simple scalar, coded by pixel brightness. Then,

with the appearance of DTI, a full three dimensional characterization became possible. In

either case, diffusion is measured through the Apparent Diffusion Coefficient (ADC). The

term apparent is used in in vivo acquisitions because it is impossible to differentiate dif-

fusion from other sources of water mobility. ADC values depend on the motion-probing

gradients and on their time interval. It takes any value from 0, if no motion is present,

to the diffusion coefficient D, if diffusion is the only water motion phenomenon present

[37].

2.1.3 Imaging Sequences

In order to acquire a DWI signal, a number of imaging sequences are available. Of those,

only the ones relevant to the understanding of this dissertation will be presented.
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Figure 2.2: PGSE sequence scheme. Adapted from [39].

2.1.3.1 Pulsed Gradient Spin Echo

One of the most used acquisition schemes is called Pulsed Gradient Spin Echo (PGSE).

Created by Stejskal and Tanner, it consists of two RF pulses, one of 90º and the second of

180º, and two magnetic gradients, with intensity G and time spanδ, before and after the

180º RF pulse[38], as seen in 2.2.

The first gradient offsets the phase of the water protons’ spins by a certain angle, and

the second one resets the phase by the same angle. However, between the application

of these gradients, spins randomly lose coherence due to diffusion. This means that the

final phase of the spin will not be the same, resulting in an attenuation of the signal. This

difference is the result of water diffusion, measured as the ADC.

Since diffusion in MRI acquisitions is represented as a signal decay, quantifying diffu-

sion can be achieved using a scalar D and the signal obtained can be described by:

S(b) = S−bD0 (2.3)

where D is the diffusion coefficient, S0 is the signal intensity with no diffusion weighting

and the b-value, defined by:

b = γ2.G2.δ2.(∆− δ
3

) (2.4)

characterizes the parameters of the diffusion gradients in the acquisition sequence,

such as duration (δ), time elapsed between the onset (∆) and intensity of the gradients (G).

Manipulating these will allow different weightings of diffusion in the acquired image. A

standard value of b, for the brain, is 1000 s.mm−2.

2.1.3.2 Single Shot Echo Planar Imaging

The Single Shot Echo Planar Imaging (SS-EPI) sequence is the most used sequence in

diffusion weighted acquisition. This is due to its imperviousness to motion related arte-

facts and substantially low acquisition times, when compared to other sequences. During

acquisition, subjects are prone to move, and this movement, during the diffusion weight-

ing gradients application, adds a phase component to the MRI signal. This component,
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Figure 2.3: SS-EPI sequence scheme [35].

whether from head motion or from blood flow, introduces artefacts in the image that can

corrupt the consistency of the acquisition if not dealt with before hand[35]. This sequence

only has one RF pulse, of 180º, as seen in Fig. 2.3. Before and after the RF pulse, like

PGSE, two diffusion weighting gradients are applied, but after that, a series of gradients

are also applied in order to generate several gradient echos. These extra gradients are of

interchangeable polarity and are responsible for the k space line coding. By manipulating

these gradients’ intensity it is possible to reduce the TE and obtain the desired diffusion

weighting [35].

2.2 Diffusion Tensor Imaging

2.2.1 DTI Formulation and Metrics

In the previous sections, diffusion has been described only as a scalar. Although, for the

sake of characterizing diffusion in three dimensions and its respective anisotropy, a tensor

is needed. DTI was introduced to deal with this limitation [40]. The di ffusion-weighted

signal S and the non-weighted signal S0 are related according to:

ln
S
S0

= −
3∑
i=1

3∑
j=1

bijDij (2.5)

where bij is the b-matrix and Dij the Diffusion Tensor (DT). The b-matrix effectively

replaces the b-value in the previous formulation, and is calculated based on the diffusion

gradients in the acquisition sequence [41], orb-vectors. The diffusion tensor comes in the

following form:

d =


Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

 (2.6)
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In DTI, non-collinear gradient directions are applied and each gradient direction accounts

for water diffusion along that direction. The estimation of the DT is increasingly precise

with the increasing of the amount of gradient directions, but the acquisition time also

increases with the increase of gradient directions. The minimum amount of directions

required to estimate Dij , is, at least, 6 different non-collinear gradient directions, along

with the non-weighted acquisition.

For the purpose of this dissertation, two fitting methods were used to estimate the

DT, a linear regression method and a non-linear regression method. Both methods aim

at minimizing the sum of squared differences error, but the first method uses a linear

regression whereas the second one uses a non-linear approach, which may provide with

more favourable results [42].

To better understand the DT, it is often helpful to think about its shape, i.e. , that

of an ellipsoid. In an isotropic scenario, the tensor assumes a spherical shape, for

Dxx=Dyy=Dzz=D. On the contrary, if diffusion is anisotropic, the tensor is an elongated

ellipsoid along the direction of greater diffusion, as seen in Figure 2.4. The main axis

represents the MDD, the eccentricity relates to the degree of anisotropy and its symmetry

and the length shows the distance travelled as a result of diffusion.

Once the diffusion tensor is calculated, it is possible to estimate rotationally invariant

Figure 2.4: Diffusion tensor in different constriction media [43]. For unrestricted isotropic
diffusion, the water molecules move freely, and the diffusion tensor has only one compo-
nent in each axis. For restricted isotropic diffusion, the lack of fixed barriers only limits
the distance travelled and not its direction, which makes the diffusion tensor have only
one component in each axis, although smaller than that of unrestricted diffusion. For
anisotropic restricted diffusion, the molecules are restricted to a determined direction,
resulting in a diffusion tensor that has three components on each axis.
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parameters, i.e. independent of the reference frame, like Mean Diffusivity (MD), Frac-

tional Anisotropy (FA), Axial Diffusivity (AD) and Radial Diffusivity (RD). This indepen-

dence is derived from the fact that these indices are calculated based on the eigenvalues

of the diffusion tensor. The eigenvalues provide a framework that is specific to each

voxel, which means it is independent of other reference frames, like the reference frame

of the scanner. The invariant measurements yield important information used to infer on

the microstructures present in each voxel, and also in fibre tracking. MD represents the

mean of the diffusion among all three directions, so it is determined using the following

equation:

MD =
T r(D)

3
=
Dxx +Dyy +Dzz

3
(2.7)

where Tr(D) is the trace for the diffusion tensor. FA is a measurement of the anisotropy

inherent to each voxel [44]. It can range between 0, which means the diffusion is isotropic,

and 1, which means that the diffusion happens in one direction only. Consequently,

tissues with microstructures which force diffusion to have anisotropic properties will

be associated with FA values closer to 1, such as the white matter in the brain, while

tissues such as grey matter, tend to display near isotropic di ffusion, e.g. associated with

low values of FA. To calculate the FA, the eigenvalues λ for each axis of the diffusion

tensor must be calculated first. By convention, the first eigenvalue λ1 gives the AD,

which reflects the magnitude of diffusion along the principal component of the diffusion

ellipsoid. The eigenvaluesλ2 and λ3 are used to calculate the RD, i.e. the diffusion along

the other two components of the diffusion ellipsoid, with

λ⊥ =
λ2 +λ3

2
(2.8)

The FA then comes as

FA =

√
3[(λ1 − (λ))2 + (λ2 − (λ))2 + (λ3 −λ))2]√

2(λ2
1 +λ2

2 +λ2
3)

(2.9)

where λ is the mean value of the eigenvalues

λ =
1
3

3∑
i=1

λi (2.10)

2.2.2 DTI Advantages and Pitfalls

By characterizing the direction of diffusion, DTI has an unique advantage in clinical

applications, when compared to other diffusion MRI techniques. Analysis of white matter

pathology, like ischemia, axonal damage and myelination, tumor characterization and

surgical planning are a few of its clinical applications.

However, the DTI model shows a few drawbacks. The major drawback, and the only

one addressed in this dissertation, is the diffusion is modelled by a Gaussian distribution.
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The fitting to the data acquired is accomplished assuming that the random displace-

ment of the water molecules follows a Gaussian model [45]. This means that the water

molecules displacement distribution function can be described by a Gaussian curve. But

in the human brain context this cannot be applicable. Such fitting proves to be poor, due

to the high degree of complexity of the microstructures present, which makes diffusion

often behave differently from the Gaussian model[46]. Furthermore, in crossing fibres

sections, the simple Gaussian model is also not applicable, as it assumes that only one

fibre population exists per voxel. In these regions, the fractional anisotropy seems to be

lower, due to the contribution of two or more fibres in different directions and the MDD

cannot be attributed correctly. In further applications like Tractography (see 2.4), a poor

characterization of MDD can result in a reconstruction of false positive or false negative

tracts, which in turn introduces anatomical inaccuracies in the tractography.

2.3 Diffusion Kurtosis Imaging

As stated before, DTI is based on Gaussian model fitting, yet this fitting yields non-

optimal results for biological tissues with highly complex microstructures. DKI is a

method that replaces the Gaussian model by a kurtosis based model. Kurtosis is a statisti-

cal measurement that determines the deviation of a distribution in relation to a Gaussian

distribution, measured by a parameter K. If K>0, the distribution is more concentrated

around the mean value; if K=0 the distribution is Gaussian; if K<0 the tails of the distri-

bution are wider and its peak lower, compared to those of a Gaussian. Although K can be

positive or negative, in biological tissues, K has been shown to have only positive values

[47].

DKI is compatible with multi-shell acquisitions, i.e. multiple b-values. This means

that the acquisition times are increased when compared to those of DTI. A DTI sequence

may take 3-6 mins [48] and a DKI sequence takes about 10 mins [49]. This makes DKI a

feasible technique in the clinical scope, which can ease the transition from DTI to DKI

from a clinical stand point, and ultimately replace DTI as the main DWI technique in the

clinical context.

2.3.1 DKI Formulation and Metrics

The Kurtosis Tensor (KT), unlike DT, is a 3x3x3x3 matrix. This allows for an improved

characterization of the non-Gaussian diffusion in space. To estimate such a tensor, at

least 15 non-collinear diffusion gradients must be applied, beyond the 6 required for the

DT, with no less than three b-values. Just like for the DT, two fitting methods were used

to estimate the KT. The first one was Ordinary Least Square (OLS) and the second one

was Constrained Least Square (CLS). The OLS method is a standard method which finds

the optimal solution that minimizes the sum of squared differences error. But OLS can

provide implausible estimates for the KT in biological tissues. So, to account for this
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limitation of OLS, CLS uses constrains in the estimates to ensure that the tensor assumes

plausible biological values.

The signal acquired by the receive coils is quantified using

ln
S
S0

= −bDapp +
1
6
b2D2

appKapp (2.11)

where Dapp and Kapp are the apparent diffusion and kurtosis. These relate to the diffusion

and kurtosis tensors, Dij and Wijkl respectively, in the following way:

Dapp =
3∑
i=1

3∑
j=1

ninjDij (2.12)

Kapp =
MD2

D2
app

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

ninjnknlWijkl (2.13)

were n is the unit vector that describes the direction of the diffusion gradient.

Analogously to DT, KT also has some important rotationally invariant measurements

associated to them: Mean Kurtosis (MK), Axial Kurtosis (AK), Radial Kurtosis (RK) and

Kurtosis Fractional Anisotropy (FAK )[47]. MK, as MD, provides a measure of the overall

kurtosis, estimated as the average of directional kurtosis, defined by:

MK =
1
N

3∑
i=1

(Kapp)i (2.14)

To calculate the FAK , first it is necessary to rotate the kurtosis tensor W from the Cartesian

coordinate system to the coordinate system defined by the eigenvectors of D ([50])

Ŵijkl =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

ei′iej ′iek′iel′iWi′j ′k′ l′ (2.15)

where eij are the elements of the 3D rotation matrix defined by the eigenvectors and

Ŵijkl the elements of the rotated kurtosis tensor. Once Ŵijkl is computed, the values

of the kurtosis tensor on the diffusion ellipsoid three main axes, with i=1, 2 and 3, are

determined by

κi =
MD2

λ2
i

.Ŵiiii (2.16)

resulting in AK being

κ‖ = κ1 (2.17)

and RK

κ⊥ =
κ2 +κ3

2
(2.18)

similarly to the DTI analogous measurements. Finally, FAK comes as

FAk =

√
3[(κ1 − (κ))2 + (κ2 − (κ))2 + (κ3 − (κ))2]√

2(κ2
1 +κ2

2 +κ2
3)

(2.19)
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where κ is the mean value of the kurtosis over the diffusion ellipsoid

κ =
1
3

3∑
i=1

κi (2.20)

FAK is close to one when there is a value of κi substantially larger than the other two, and

close to zero when all three values of κ are similar to each other.

2.3.2 DKI Advantages and Pitfalls

The DKI model has similar applications in the clinical scope to those of DTI. Additionally,

it can provide with more detailed information about tissue microstructure, and even

perform biological modelling of diffusion [51]. As opposed to DTI, DKI can account for

multiple fibre populations in the same voxel, which may result in more anatomically

accurate tractography.

This model also has its own pitfalls. For being a fairly recent technique it is still

not very established. For that reason, it isn’t often used in the clinical scope, it is still

considered only as a research tool. Furthermore, the longer acquisition times and more

stringent hardware requirements, due to high gradient strength for example, can be a

deterrent from using this technique.

2.4 Tractography

One of the primary applications of the information on the direction of diffusion is fibre

tract reconstruction, or tractography. The main purpose of tractography is to determine

intervoxel connectivity based on the anisotropic diffusion of water [6]. In this section we

will cover the tractography algorithms performed, for both DTI and DKI-based tractogra-

phies.

2.4.1 DTI-based Tractography

DTI Fibre tracking is based on the assumption that a tract can be represented as a curve

in space[7], using the Frenet equation:

dr(s)
ds

= t(s) (2.21)

were r(s) is a vector, parameterized by the arc-length, s, of the trajectory, and t(s) is the

unit tangent vector to r(s) at location s.

Since there is no way of calculating the tangent vector through analytical processes,

numerical methods, like Euler integration and Runger-Kutta methods, were first used [7].

DTI-based tractography algorithms have since evolved and can now be divided into 3

classes:
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Figure 2.5: Fibre reconstruction from the main diffusion direction map. The blue line
indicates the path that a tract follows during reconstruction, and the lines represent the
main diffusivity direction for each voxel.

1. Deterministic , characterized by the assumption that the principal eigenvector is

parallel to the dominant direction of the fibre, with integration of neighbouring

pixels to define smooth trajectories [40]. The tangent vector is then determined by

the eigenvector ε1 associated with the largest eigenvalue,λ1 of the diffusion tensor,

using the following relationship:

t(s) = ε1(r(s)) (2.22)

Combining the equations 2.21 and 2.22, we obtain

dr(s)
ds

= ε1(r(s)) (2.23)

which can be solved forcing the initial condition for each tract to be

r(0) = r0 (2.24)

where r0 is the starting point for a given tract. This translates into an iterative

method of fibre tracking, starting in one point and recursively following the di ffu-

sion "path" through the main diffusivity direction for each voxel, given by the DT

greater eigenvalue. Figure 2.5 shows the the reconstruction based on the principal

eigenvector.

2. Probabilistic , in which the most favourable path between predetermined regions

is evaluated. To do this, probabilistic maps of fibre connectivity for the whole

brain are computed. This approach is different from the deterministic because the

tracking is computed along a continuous line, instead of a discrete vector [9];

3. Global, which estimates the local fibre orientations and then propagates them

throughout the voxels to obtain estimates of connections between several brain

locations, using a Bayesian propagation model [52].

However, they all share common grounds as to how to generate a tract [53]:

• reconstruction is terminated if the streamline enters a region where the FA is be-

low a predetermined threshold. This condition is imposed so that the fibre recon-

struction does not occur in regions where diffusion is not anisotropic, such as grey

matter;
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• reconstruction is terminated if the maximum angle that is taken between voxels

is above a predetermined threshold. This condition avoids the reconstruction of

spurious tracts as a result of sudden changes in direction from one voxel to another.

Only deterministic algorithms were performed throughout this study, but the other

algorithm categories were presented to give the reader the full scope.

DTI-based tractography, as seen before, has a significant pitfall, which is the fact

that it cannot reliably predict fibre population directions for voxels with two or more

intersecting populations. So there is a need to introduce models that can deal with this

problem, often called "fibre crossing problem" [15, 55, 56].

2.4.2 DKI-based Tractography

DKI-based tractography is yet to be fully optimized, with only two methods created

thus far. Both methods were incorporated in this dissertation and later on compared for

performance.

2.4.2.1 Orientation Distribution Function based Tractrography

The first method to reconstruct fibres from DKI was based on the diffusion Orientation

Distribution Function (dODF), proposed by Lazar et al. in 2008 [54], and later on opti-

mized [57]. dODF is a function that characterizes the spacial orientation of a distribution,

in this case water diffusion, and is defined by:

Figure 2.6: 3D geometry of DKI-ODF (left) and DTI-ODF (right). The DKI-ODF is able
to account for the fibre crossings, for two fibres (top left) and three (bottom left), whereas
DTI-ODF shows a geometry similar to that of isotropic diffusion. Adapted from [54].
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Ψα(n̂) =
1
Z

∫ ∞
0
sαdsP(sn̂, t) (2.25)

where Ψα(n̂) is the dODF in a direction given by a unit vetor n̂, P(s, t) is the water diffusion

displacement Probability Density Function (dPDF) for a molecular displacement s over

time t. If the dPDF is approximated by a Gaussian model, the results are the same as

those obtained by the DTI, and therefore, the shortcomings are also the same. Therefore,

the dPDF is aproximated using non-Gaussian models, in particular the kurtosis model,

extracted from the kurtosis tensor (DKI-ODF) [54]. From that, it is possible to obtain

the directions of multiple fibre bundles in each voxel, as shown in figure 2.6, up to three

directions.

2.4.2.2 Maxima Kurtosis based Tractography

The KT, for being a forth order tensor, yields a better spacial characterization of the

spacial arrangement of tissue microstructure. In a preliminary DKI study, KT geometry

showed maxima perpendicular to the direction of well-aligned fibres [49], therefore, there

is a correlation between the geometry of the tensor and the spacial arrangement of the

fibres. This was then used by Neto Henriques et. al [51], for proposing an algorithm to

reconstruct fibre tracts based on the KT maxima perpendicular directions(see Figure 2.7).

By estimating the KT’s maxima, it is possible to detect multiple fibre populations within

a voxel, up to three, like the DKI-ODF method.

This method deals not only with the limitations of DTI, but also has been shown to

have smaller angular errors for fibre crossing than DKI-ODF [51], which may result in

better fibre tracking. However, it also has its own pitfalls. DKI-KT was shown to be more

sensitive to multi-compartmental model parameters than DKI-ODF. When applied to

Figure 2.7: 3D geometry of DT (Panels A-E), KT (Panels F-J) and ODF (Panels K-O), for
crossing fibres of 0º, 30º, 45º, 60º and 90º [51]. The DT is unable to deal with crossing
fibres, whereas KT shows maxima perpendicular to the directions of the fibres and ODF
shows maxima in the direction of the fibres.
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Figure 2.8: Noncommutative properties of tractography algorithms [53].

real brain data, this could lead to a less stable performance of fibre tracking across the

different regions [51].

2.4.3 Tractography Overall Shortcomings

Despite providing a unique perspective of white matter tracts, tractography reconstruc-

tion also has its own shortcomings. Due to the symmetry of the diffusion phenomena,

there is no way of distinguishing between afferent and efferent connections. Adding to

that, tractography is not commutative. This means that, starting from one point we end

up going to another, but the reconstructed tracts might be different if the reconstruction

was to be done in reverse, as seen in figure 2.8.

2.5 Brain Connectivity

The brain is regarded as a highly complex network, comprised of numerous intercon-

nected processing regions. Gathering the information provided by the tractography re-

construction, it is possible to characterize the brain’s complex system through a small

number of neurobiologically relevant and easily computable measures, by means of com-

plex network analysis[58]. Complex network analysis comes from a mathematics branch

called graph theory, used in the study of graphs. These structures are used to model

pairwise relations between objects. Unlike graph theory, which often deals with small

and "well-behaved" networks, complex network analysis deals with real-life networks

both large and complex [58].

Brain networks fall into three categories:

Structural The brain regions are considered connected when there are physical connec-

tions between them, i.e. white matter tracts.

Functional Establishes a correlation between time and activity between brain regions,

regardless of anatomical connection.
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Effective Relates two brain regions regarding their intrinsic causality, i.e. how the be-

haviour of the first region influences the second one.

In this work, only the structural connectivity of the brain will be addressed.

2.5.1 Networks: Principles and Definitions

A network is defined by a set of nodes which are connected to each other via edges, and can

be represented via graphs (Figure 2.11). The properties of the networks are determined

by their links. Depending on the links characteristics, the network can be classified in

four different ways:

Binary undirected network This type of network is defined by having bidirectional

links, and all have the same weight. What this means is that all links have the

same importance to a node they connect to, and that the link can either go from

node A to node B, or the other way around;

Weighted undirected network Differs from the previous one by associating a weight to

each link. A link with a higher weight will be privileged over another with a lower

weight. The links are still bidirectional;

Binary directed network This network is similar to the first one but the links are uni-

directional, representing the flow from A to B, but not necessarily the other way

around.

Weighted directed network The latter type of network is defined by having weighted

and unidirectional links.

Relationships between these networks are better seen in Fig. 2.11.

To better understand these networks, connectivity matrices are computed, which

correlate each node’s connectivity to all the other nodes in the network. These matrices

are the input for the complex network analysis.

2.5.2 Complex Network Analysis Metrics

Complex network analysis metrics hold the advantage of quantifying the parameters that

allow for a complete examination of the networks topology and efficiency. This examina-

tion can happen from two standpoints: a segregation standpoint, which yields informa-

tion about the clusters of nodes, inferring on characteristics regarding these clusters, as

opposed to a single node; and the integration standpoint, determining the characteristics

inherent to each node and how they relate to the surrounding nodes. Among the many

metrics, the ones deemed most important are described below. For further reading, see

[58].

Degree of a node The number of links that are associated to that node. This is a core

measurement, as many other measurements are intertwined with this one;
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Strength Sum of all of the link’s weights;

Clustering coefficient Defined locally as the fraction of triangles around an individual

node. It is equivalent to the fraction of that node’s neighbours that are also each

other’s neighbours;

Modularity Statistical measurement that determines the number of non-overlapping

modules (Community Modules);

Motif Small sub-network of nodes and links. Motifs are regarded as the network’s "build-

ing blocks" [59];

Characteristic path length (λ) Shortest path from node A to node B;

Radius Minimum distance between two nodes;

Diameter Maximum distance between two nodes;

Global efficiency Inverse of the characteristic path length;

Eccentricity Length of the maximum short path between two nodes;

Betweenness centrality Fraction of the paths that contain a specific node;

Edge betweenness Fraction of the paths that contain a specific link;

Hub Node that has a high degree, acting as a central piece of the network.

Figure 2.9: Graph metrics[58]. These metrics are based on basic connectivity properties
(gray). Integration metrics involve shortest path (green) while segregation are often based
on the clustering coefficient (blue). Centrality metrics should involve degree (red). Hubs
(black) have a high degree since they partake in a high number of paths, consequently
having higher betweenness centrality. Local patterns are quantified by motifs (yellow).
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Figure 2.10: Three types of network configuration[60]. The parameter p is the degree of
randomness. Ranging from 0 to 1, it expresses how random the network is, being 0 the
lack of long range connections while having dense small clusters, and 1 the lack of local
small clusters while having long range random connections.

Participation Coefficient Measure of diversity of intermodular connections of individual

nodes.

A network can be characterized by its λ, global efficiency, eccentricity, radius and

diameter [60]. A depiction of these metrics can be found in Figure 2.9.

2.5.3 Brain Network

As seen before, the brain can be viewed as a group of neurons sharing information be-

tween them and between nervous centres. This way, it is acceptable to consider the brain

as a very complex network, and thus viable to study its connectivity through the methods

discussed above. Studies have shown that the brain is in fact made of clusters grouped in

cortical regions which are connected [58, 61].

A network can have an intrinsic configuration, which can be categorized using its

degree of randomness (Fig. 2.10). This randomness can range from 0 to 1, with 0 being

completely regular and 1 completely random. Brain network configuration has been

found to have an intermediate configuration, similar to that of a small-world network,

in which there are dense short distance clusters and some long distance connections.

Small-world networks have, consequently, high clustering coefficients, short characteristic

paths and repeating motifs along the network. This small-worldness (ω) can be measured

by comparing the network’s path length, λ, and clustering coefficient, C, and compar-

ing those to the path length of an equivalent random network λrand and the clustering

coefficient of an equivalent lattice network, Clatt, using the equation:

ω =
λrand
λ
− C
Clatt

(2.26)
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Figure 2.11: Diagram showing the relationships between all types of networks [58].
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3
Materials and Methods

The main focus of this dissertation is to evaluate the performance of the DKI-based

tractography over DTI-based tractography, and how it affects brain connectivity estimates.

This difference is expected to be blatant in crossing fibre regions, where, as stated in the

previous chapter, DKI can account for multiple fibre populations intra-voxel, whereas

DTI cannot.

In this chapter, the reader is presented with the materials and methods used through-

out this study in order to accomplish the dissertation’s objective. Firstly, there will be a

brief description of the dataset used, the equipment and acquisition schemes. Afterwards,

the image processing methodology will be described, step-by-step. Finally, the methods

of statistical treatment of the data will be presented.

3.1 Dataset and Acquisitions

The dataset used in this study is made up of acquisitions in six healthy subjects, three

females, with mean age ± standard deviation of 30 ± 5 years.

Two MRI data types were acquired for each subject: T1-weighted anatomical MRI

(aMRI) and DWI. Both modalities were acquired using a 3 Tesla Siemens Trio scanner

with a 32-channel head coil, from the MRC Cognition and Brain Unit, in Cambridge, UK,

as part of a data partnership established between the MRC-CBU and IBEB.

The acquisition specifications for the T1-weighted MRI were as follows: Magnetiza-

tion Prepared Rapid Gradient Echo (MPRAGE) sequence, with Repetition Time (TR)=2250

ms, Echo Time (TE)=2.98 ms, Inversion Time (TI)=900 ms, Field of View (FOV)=256x256mm2,

voxel size 1x1x1 mm3 and 192 slices.

The DWI acquisition specifications were: Twice Refocused Spin Echo (TRSE) echo-

plannar imaging sequence, with TR=9400 ms, TE=104 ms, acquisition matrix = 94x94,
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voxel size of 2x2x2mm3, non-zero b-values of 1000 s.mm−2 and 2000 s.mm−2, each b-value

with 64 equally spaced gradient directions. Also 6 b-value = 0 s.mm−2 were acquired,

with 3 in the beginning of the acquisition and the remaining 3 in between the non-zero

b-values acquisition. The whole DWI acquisition composed the DKI dataset, whereas the

DTI dataset was extracted from the whole set using the first 3 b-0 images and images

with non-zero b-value of 1000 s.mm−2.

3.2 Image Processing Tools and Steps

The main tools used to process the dataset were in-house built Matlab toolboxes enti-

tled Multimodal Imaging Brain Complexity Analysis (MIBCA) [62] and United Diffusion

Kurtosis Imaging (uDKI) [63].

MIBCA was used for its ability to process multi-modal imaging and connectivity data

while also bringing the advantage of working in pre-established standardized processing

pipelines, reducing the time wasted between steps. This toolbox uses third party software,

such as Freesurfer, FMRIB Software Library (FSL), and Statistical Parametric Mapping (SPM),
to perform the data processing. These software compile the most robust methods of image

processing used in the literature.

uDKI was used for being the only tool currently available that can estimate the kurto-

sis tensor’s related metrics and also reconstruct the fibre tracts based on the said tensor

[51].

For faster use and better convenience, both toolboxes were later on merged so that

MIBCA would also be able to work with DKI data, using the uDKI functions.

The dataset, due to its multi-modality nature, underwent two different processing

pipelines. Nevertheless, all the images were first converted from DICOM to NIFTI, using

MRIcron’s function dcm2nii.
The aMRI processing steps were accomplished using the MIBCA aMRI pipeline, using

the Freesurfer function recon-all. The general traits of the function are:

• Spatial alignment of the subject’s brain according to a standard space (MN1_152_1mm).

This will generate transformation matrices, which will then be used to transpose

each Region of Interest (ROI) into the DWI space;

• Brain segmentation and parcellation using the Desikan-Killiany brain atlas [64].

This segmentation provided a list of ROI to be analysed in future steps.

As for the DWI processing steps, both DTI and DKI were first corrected for eddy

current distortions, using FSL’s function eddy_correct [65], and then a brain mask was

created using FSL’s Brain Extraction Tool (BET) [65]. Afterwards, the DTI dataset was

processed, using uDKI, as follows:

• Diffusion tensor estimation. The diffusion tensor was estimated using a linear model

and also a non-linear model, described in 2.2.1. In this same step a computation of
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a b0 image (non-weighted) was performed, from the mean of all of the b0 images

acquired. This image will be used to register the ROI’s in the DWI space;

• Diffusion tensor related metrics estimation, like FA, AD, RD, MD and MDD;

• DTI-based tractography reconstruction, based on the MDD and FA maps. The

algorithm used for this reconstruction was a streamline brute force first order Euler

algorithm [66].

The DKI dataset underwent similar steps.

• Gaussian filter (FWHM=1.5 pixels) to smooth images and increases signal-to-noise

ratio of the image. Since DKI is much more sensitive to noise than DTI, this is a

critical step for DKI.

• Kurtosis tensor estimation. The kurtosis tensor was estimated using the OLS and the

CLS algorithms, described in 2.3.1. The computation of a b0 image (non-weighted)

was performed, similarly to the DTI processing pipeline, also used in ROI registra-

tion;

• Diffusion and kurtosis tensor related metrics estimation, like FA, AD, RD, MD and

MDD for diffusion tensor, and AK, RK, and MK for the kurtosis tensor;

• Kurtosis tractography related map estimation, such as fibre directions and number

of fibres per voxel maps. These maps were used in the tractography step.

• DKI-based tractography reconstruction. This reconstruction was made using two

different algorithms: the first was DKI-ODF [57] and the second one was performed

using DKI-KT [51].

In order to visually inspect and validate the tractography results, TrackVis was used,

a 3D tractography visualization software. With it, we were able to isolate tracts emerging

from and to predetermined ROI. These ROI were related to Cortico-Spinal Tracts (CST)

and Corpus Callosum (CC). The reason being that the CST tracts cross the CC tracts,

and thus there are voxels in which there are more than one fibre population. TrackVis

offers the option of displaying the tracts intersected by any number of ROI, thus isolating

tracts of interest. Both CST and CC tracts were isolated using hand-drawn ROI, based

on [67]. For the CST tracts isolation, ROI’s were placed in the Internal Capsule (IC), of

both hemispheres, and in the cortical regions of Superior Frontal, Paracentral Lobule and

Pre-Cuneus. For the CC tracts isolation, a single ROI was used, extending through the

length of the body of the Corpus Callosum. The placement of the ROI is shown in Figure

3.1.

Once the tracts were computed and validated, the connectivity processing took place.

To begin, the labeled ROI and their respective transformation matrices, generated from T1

images, were gathered to perform segmentation of the DWI images. This is accomplished
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Figure 3.1: Generic placement of the ROI’s for tract isolation based on [67]. The IC ROI
(purple) and the cortical regions ROI (yellow) served to isolate the CST, and the CC is
isolated by considering the tracts that go through the green ROI.

by, based on the subject’s b0 image, considering the affine transformations between a DWI

volume to T1. Then, non-linear transformations perform the final alignment of the ROI

and finally the B0 image is parcellated accordingly. This step is performed automatically

by MIBCA, resorting to FSL’s flirt and fnirt functions.

After the parcellation of the brain is completed, an adjacency matrix can be calculated,

gathering the information on the number of streamlines connecting each pair of ROI. And

finally, from the adjacency matrix it is possible to extract the connectivity metrics for each

subject, using the Brain Connectivity Toolbox (BCT) [58].

The global connectivity metrics computed were: Transitivity, Characteristic Path

Length, Global Efficiency, Modularity and Small Worldness. The local connectivity met-

rics computed were: Betweenness Centrality, Clustering Coefficient, Node Degree, Eccen-

tricity, Local Efficiency, Community Modules and Participation Coefficient.

Apart from the connectivity metrics, MIBCA also extracts the values of the diffusion

metrics for every ROI.

Figure 3.2 summarizes the processing steps taken and their respective outputs.

3.3 Statistical Analysis

As a final result of the processing stage, 4 different tensors were computed: Linearly fitted

Diffusion Tensor (L-DT), Non-Linearly fitted Diffusion Tensor (nL-DT), Ordinary Least

Squares fitted Kurtosis Tensor (OLS-KT) and Constrained Least Squares fitted Kurtosis

Tensor (CLS-KT), and their respective diffusion metrics; and 6 whole-brain tractography

datasets: 1 per DTI tensor (L-DTI and nL-DTI), plus 2 per each DKI tensor (OLS-DKI and

CLS-DKI), corresponding to DKI-ODF and DKI-KT tract reconstructions, as well as their

respective connectivity metrics.

The data to be treated are of two kinds: 1) maps of metric values per brain region,

both for diffusion and connectivity metrics; 2) global connectivity metrics intrinsic to
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Figure 3.2: Diagram of the processing steps followed in this work.

each tractography. Global connectivity metrics are unique for each tractography, whereas

local connectivity metrics and diffusion metrics were computed for each ROI in the brain.

The ROI encompass 76 brain regions, 8 sub-cortical and 30 cortical, for each hemisphere

(refer to A).

The global connectivity metrics were compared using the Wilcoxon’s signed rank test

on the mean values for all subjects, to compare between DTI and DKI based tractography

sets. This statistical test checks for the null hypothesis that the difference of the pair

(e.g. difference between the mean characteristic path length calculated from L-DTI and

OLS-DKI based tractographies) comes from a distribution with zero median, i.e. if both
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samples are statistically equal, at a 5% significance level. From that, we can tell if DKI

provides with statistically different information from that provided by DTI. Later on,

through the analysis of this information, we tried to determine if DKI has a better char-

acterization of the network than that of DTI, taking into account the information from

2.5.3.

The local connectivity statistical analysis followed a different, more complex path.

The general chain of thought was that the different tensors would have let to significantly

different values of diffusion metrics (AD, RD, and MD) in some ROI, due to their sensi-

tivity (or not) to multiple fibre populations. This would "flag" critical ROI, presumably

with multiple voxels with multi-fibre populations, such that it would alter the diffusion

metrics values and, consequently, the connectivity metrics for that particular ROI. ROI

with no significant differences in diffusion metrics are considered to be those with no

relevant changes in their respective tractography, and thus, with no relevant changes in

connectivity.

First of all, a normality test was needed, to check whether or not all of the diffusion

parameters came from a Gaussian distribution, and so the statistical treatment of the

data would be parametric. The normality test chosen was a One-sample Kolmogorov-

Smirnov test, which tests the null hypothesis that the data comes from a standard normal

distribution, against the alternative that it does not, at a 5% significance level. The test

results rejected the null hypothesis for every diffusion metric considered, which meant

that the data did not come from a normal distribution. Hence, the statistical analysis

approach used was a non-parametric approach, in which no assumptions are made a
priori regarding the data’s distribution.

The next step in the local analysis was to make sure that the diffusion metrics esti-

mated by each tensor (and each fit) were, in fact, different from each other. To do this, a

two-sided Signed-Rank Wilcoxon test was performed on the following pairs of fittings:

L-DTI vs OLS-DKI, L-DTI vs CLS-DKI, nL-DTI vs OLS-DKI and nL-DTI vs CLS-DKI,

for each of the 3 diffusion metrics, AD, RD and MD. The comparisons were aimed at

assessing the differences between DTI and DKI tensor fits, to better meet the objectives

of this dissertation, and tests like L-DTI vs nL-DTI were ruled out. The results of the

Signed-Rank Wilcoxon test, across the board, showed that the diffusion metrics were

statistically distinct for each type of fitting.

To determine the ROI that displayed significantly different diffusion metrics, the pairs

of the Wilcoxon test were subtracted for all 3 diffusion metrics, so that the difference

was of the type DKI-DTI. What this means is that for each diffusion metric, L-DTI was

subtracted to OLS-DKI, L-DTI was subtracted to CLS-DKI, and so forth, for all of the

4 comparisons. This created 12 difference arrays of data, for each subject. To better

understand this data, they were plotted in Bland-Altman plots [68]. The criteria used to

select significantly different ROI based on the diffusion metrics was a deviation from the

mean difference above twice the standard deviation of the distribution (mean+2std).

After the ROI had been identified for each subject, consistently "flagged" ROI were
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determined. A consistently "flagged" ROI is a ROI that has been "flagged" for the majority

of the subjects. This step would remove the ROI that were identified in the previous step

by mere subject variability.

Then, these final lists of ROI were inspected with regards to their corresponding local

connectivity data. The cohort of local connectivity metrics were compared three-by-three

because, due to fact that the ROI were identified out of a pair of diffusion metric compari-

son, each pair of diffusion metric comparison has 3 possible tractography reconstructions

(1 for DTI and 2 for DKI), and, therefore, 3 distinct connectivity metrics. The comparison

of these metrics was then used to relate changes in the local connectivity metrics and the

micro-structure (higher or lower degree of complexity of the structures at hand) for each

ROI.
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4
Results and Discussion

In this chapter, the results will be presented, according to each study of this dissertation,

first tractography related results, then connectivity related results.

4.1 Tractography

Figure 4.1 is the coronal view of the isolated tracts defined in 3.2, for a representative

subject for all 6 tractography reconstructions. In red are represented the CC tracts, and

in cyan the CST. For the full array of tractography datasets, please refer to Appendix B.

In panels A and B, the L-DT and nL-DT reconstructions, respectively, show the CC

tracts "encapsulated" by the CST, with no evidence of crossing fibres between both struc-

tures. Panels B and C show the results for the DKI based tractography methods, algo-

rithms KT and ODF respectively, when the tensor is estimated using OLS method. In

these it is possible to distinguish a few sections in which there are crossing fibres, partic-

ularly, in the region of the body of the CC. Finally, Panels D and E show the tractography

results for DKI-KT and DKI-ODF reconstructions, respectively, in which the tensor was

estimated via CLS method. This method shows the most amount of tracts crossing be-

tween the two structures at hand.

Number of tracts, number of occupied voxels and volume statistics were also obtained

for all subjects and tractographies. These results are shown in Table ??. DKI-ODF meth-

ods seem to show increased numbers across the board, with the CLS-ODF method being

the highest. DKI-KT methods show the lowest numbers, but only for the CST tracts. This

limitation may be due to fact that, these ascending CST tracts, towards the pre-central

gyrus, follow a more concave and convex pathway. This, in turn, reflects on small fan-

ning angles, which are better resolved using the DKI-ODF method [51]. DTI methods

yield better tract numbers for the CST, when compared to DKI-KT. Although, they fail to
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Figure 4.1: Tractography reconstructions for Subject 1. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively, panels
B and C show the results for the OLS-KT and OLS-ODF, and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction.

improve over any of the DKI based tractographies in the CC structure. Such difference

is caused by the inability to resolve the crossing fibres between CC and CST, which dras-

tically reduces the number of isolated tracts, and consequently the number of occupied

voxels and volume.

Furthermore, an additional inspection was performed to understand to what extent

the eigenvectors information was misinterpreted in the crossing fibre regions. To do

so, misinterpreted tracts were identified and isolated to better illustrate this pitfall’s

consequences, shown in Figure 4.3. This misinterpretation has two causes: misaligned

MDD (Figure 4.3-A) or corrupted FA (Figure 4.3-B). In the first case, the reconstruction

leads to an erroneous reconstruction, where CST tracts become CC tracts in the crossing

fibres region. The latter displays voxels in which FA was deemed lower than the threshold

defined for the reconstruction algorithm. This is due to the contribution of all of the

crossing populations, each contributing in their own direction. Since FA reaches values
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below the defined threshold, the reconstruction is terminated, leaving unfinished tracts.

Figure 4.2: Bar plots of the streamline statistics for the mean values of all 6 subjects. The
top right plot is the number of tracts per tractography computation, in each region. On
the top right it’s the number of occupied voxels by the computed tracts in each structure,
for all of the tractography methods. On the bottom, the volume occupied by the computed
tracts in each structure, for all of the tractography methods. The vertical lines represent
the standard deviation of the computed tracts for all 6 subjects.

Figure 4.3: Misinterpreted DTI tracts. In cyan the CC tracts, red the CST tracts and
in green the misinterpreted tracts. In panel A, in the crossing fibre region, the MDD
misleads both lower CST tracts to become CC tracts (right-hand side green tracts) and
upper CST tracts to become CC tracts (left-hand side green tracts). In panel B, the
contribution of multiple fibre populations forces these voxels to have a FA value bellow
the threshold for the algorithm, which then terminates the reconstruction.
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4.2 Connectivity

4.2.1 Global Connectivity

Global connectivity analysis was performed on the mean of all 6 subjects, using complex

network analysis and the visualization capabilities of MIBCA. Global adjacency matrices

were acquired and, with them, connectograms were computed. In Figure 4.4 we can see a

side-by-side comparison of two connectograms, the first for CLS-KT and the second one

for NL-DTI. Both connectograms are limited by a minimum threshold of 0.8, i.e. 80%

of the less relevant connections (considered spurious) were removed, and only the 20%

most relevant connections remained. There is a clear distinction in the connectograms,

particularly when looking at the central area of the connectogram. Connections that

invade this area are inter-hemispherical. NL-DTI connectogram shows low numbers

of inter-hemispherical connections when compared to the CLS-KT connectogram. This

could be due to the fact that DKI has the ability to account for multiple fibres per voxel.

In turn, commissural fibres tend to be better detected when crossing other fibres, and

therefore, more inter-hemispherical connections are established. The counterpart is seen

in Fig. 4.3, where commissural fibres are misinterpreted and detoured, leading to not

establishing an inter-hemispherical connection.

Using the MIBCA environment it was also possible to perform operations between

adjacency matrices. To understand the global differences in connections between the

several tractographies, the adjacency matrices were subtracted in pairs of the form DKI-
DTI. These connectograms showcase the exclusive connections between the two matrices.

Figure 4.4: DKI and DTI based structural connectivity connectograms. Light grey areas
correspond to right hemispherical cortical regions, dark grey areas to left hemispherical
cortical regions and black areas to subcortical regions, both left and right. Panel A shows
the CLS-KT based connectogram and panel B shows the NL-DTI based connectogram.
The NL-DTI connectogram shows sparser connections in the middle of the connectogram,
an indication of lower numbers of inter-hemispherical connections.
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4.2. CONNECTIVITY

Figure 4.5: Difference connectograms, displaying connections exclusive to each method.
The left connectogram displays exclusive connections to CLS-KT (red) and NL-DTI
(blue). The middle connectogram shows exclusive connections to CLS-ODF (red) and
NL-DTI (blue). The right connectogram exhibits the exclusive connections to CLS-
ODF (red) and CLS-KT (blue). CLS-KT based connectograms seem to be less sensi-
tive to intra-hemipherical connections, when compared to NL-DTI, but resolve many
more inter-hemispherical connections. CLS-ODF outperforms NL-DTI in both intra and
inter-hemispherical connections. When comparing CLS-ODF and CLS-KT, the first one
seems to perform better with respect to intra-hemispherical connections whereas in inter-
hemispherical connections both seem to resolve a great amount of connections. All con-
nectograms were thresholded at 0.8 before the operation.

Examples of connectograms obtained from these difference matrices are shown in Figure

4.5.

From the difference of the connectograms in 4.4 (CLS-KT and NL-DTI), we can verify

that CLS-KT based connectograms resolve more inter-hemispherical connections when

compared to NL-DTI. This is seen by the predominance of red connections in the central

area of the connectogram in Figure 4.5. Despite that, NL-DTI seems to show a greater

amount of resolved intra-hemispherical connections, shown by the hemispherical con-

centration of blue connections. These results are not the same when comparing CLS-ODF

and NL-DTI. CLS-ODF based connectograms appear to resolve not only more inter-

hemispherical connections, but also, more intra-hemispherical connections, as seen in

Fig. 4.5, by the overall predominance of red connections. When comparing the two DKI

methods fitted with CLS, CLS-KT connectograms lack resolution in intra-hemispherical

connections, but seem to resolve more inter-hemispherical connections. Overall, DKI-

ODF methods not only reproduce but also expand on the NL-DTI connections, in both

intra- and inter-hemispherical connections. The DKI-KT method only displays improve-

ments in inter-hemispherical connections, but lacks resolution in intra-hemispherical

connections, even when compared to NL-DTI.

The results are analogous when comparing DKI-OLS with NL-DTI and DKI-CLS with

L-DTI.

The global connectivity metrics obtained for each tractography are shown in Table
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4.1. Wilcoxon signed rank tests were also performed on the mean global connectivity

metrics for each method (mean over subjects). The test was aimed at testing the hypothe-

sis that the differences seen are statistically relevant, at 95% confidence level. The results

show p-values greater than 0.05, which ruled out this hypothesis. This could mean that

despite the greater number of connections resolved by DKI, the global network arrange-

ment remains unchanged, when compared to DTI. Which may mean that in spite of

the better resolution from DKI, DTI results are just as good and shouldn’t be discarded.

It is also possible that the amount of subjects scanned may not be enough to deal with

inter-subject variability. Six subjects may not be a sufficiently large cohort to accentuate

common features and mitigate the inter-subject variability, making it hard to draw strong

conclusions. The metrics themselves may also lack reproducibility, i.e. the same subject,

for different scans, may yield different metric values, using the same processing method.

This introduces extra variability in the study of these metrics, thus making it hard or

impossible to withdraw definitive conclusions from them. Methods to deal with these

limitations are discussed in the next chapter.

4.2.2 Local Connectivity

The MIBCA environment also allows for a visualization of the modularity of the networks

at hand, also under the form of connectograms. Although modularity is a global connec-

tivity metric, the modular community of the network may yield additional insight on the

local arrangement of the network. In Figure 4.6, the modularity of the networks from

CLS-KT and NL-DTI is shown, for the whole network (no threshold). DTI-based connec-

tograms show clusters with a distinct intra-hemispherical configuration, with clusters

mostly within each hemisphere and very few connections spanning across both hemi-

spheres inside the same cluster. DKI-based connectograms show an increased number of

inter-hemispherical connections, with several clusters extending over both hemispheres,

where left hemisphere nodes are linked to right hemisphere nodes from the same clus-

ter. Moreover, to better indicate the degree of inter-, intra-, and inter-/intra-hemisphere

connections per ROI, metric rings were added to the connectogram. These rings display

the metric’s value for each ROI. DKI-based connectograms showed less regions with only

intra-hemisphere connections (labelled with white square in the inner rings), and whole

cohort of ROI’s exhibited higher ratios of inter-hemisphere connections, intra-hemisphere

connections and also inter-to-intra connections, when comparing to DTI-based connec-

tograms.

From each pair of fitting methods, 6 Bland-Altman plots were created, one for each

subject. In Figure 4.7 are presented the Bland-Altman plots obtained when comparing

AD from CLS-KT and NL-DT. The full cohort of the plots are available in Appendix C.

A tendency is clearly observed between all subjects: the difference of the metric be-

tween the two fit-methods grows with the growth of the mean. This tendency is a con-

sequence of the fitting model used to estimate the DT. When using DTI to estimate the
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Figure 4.6: Modularity connectograms with metrics rings. The top connectogram displays
the modularity for the NL-DTI full network (no threshold) and the bottom connectogram
shows the modularity for the CLS-KT full network. NL-DTI modularity shows 3 clusters,
with a clear intra-hemispheric configuration. On the other hand, CLS-KT network has
4 clusters, with multiple clusters spanning across both hemispheres. The inner rings
represent the metrics on the right. The ROI’s with white labelling in the ring correspond
to regions with no inter-hemispheric connections. These are more frequent in the NL-DTI
connectogram rather than in the CLS-KT one.
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Subject
Tractography

Radius Diameter λ
Global

Modularity
Small

Method Efficiency Wordlness

1

clsKT 5 10 3.41 0.34 0.22 5.77
clsODF 4 6 3.07 0.36 0.25 4.56
olsKT 6 12 3.48 0.34 0.22 5.57

olsODF 8 14 3.27 0.36 0.25 4.43
lDTI 5 10 3.12 0.37 0.26 5.12

nlDTI 11 17 3.35 0.36 0.31 4.76

2

clsKT 4 8 3.23 0.35 0.22 5.97
clsODF 4 6 3.07 0.37 0.20 4.87
olsKT 5 9 3.03 0.37 0.19 5.26

olsODF 4 7 2.98 0.38 0.21 4.63
lDTI 5 9 2.98 3.38 0.20 4.98

nlDTI 5 10 3.07 0.37 0.21 5.33

3

clsKT 40 56 4.76 0.31 0.23 5.49
clsODF 9 17 3.80 0.32 0.26 5.09
olsKT 4 11 3.33 0.35 0.21 6.20

olsODF 5 10 3.28 0.36 0.24 5.56
lDTI 5 9 3.30 0.35 0.22 6.79

nlDTI 27 36 3.65 0.36 0.23 5.79

4

clsKT 5 9 3.39 0.34 0.20 6.42
clsODF 6 11 3.22 0.36 0.24 4.36
olsKT 5 8 3.26 0.35 0.23 6.75

olsODF 4 7 3.10 0.36 0.23 4.36
lDTI 5 8 3.26 0.35 0.24 6.88

nlDTI 6 12 3.49 0.34 0.26 6.99

5

clsKT 7 14 3.69 0.33 0.27 5.23
clsODF 5 9 3.34 0.34 0.29 4.63
olsKT 5 10 3.32 0.35 0.25 5.89

olsODF 10 16 3.34 0.36 0.27 4.33
lDTI 4 7 2.92 0.38 0.23 5.63

nlDTI 5 9 3.14 0.36 0.24 6.29

6

clsKT 5 7 3.35 0.34 0.28 5.18
clsODF 10 16 3.57 0.34 0.24 4.50
olsKT 5 9 3.47 0.33 0.24 6.14

olsODF 7 13 3.39 0.34 0.25 4.86
lDTI 5 10 3.40 0.34 0.22 5.65

nlDTI 5 9 3.23 0.35 0.23 5.30

Table 4.1: Global connectivity metrics results for all tractography datasets performed for
each subject.

DT, the non-Gaussian properties of diffusion are neglected, which leads to the estimation

of an "apparent diffusion tensor", highly dependent of the b-value(s) used in the acquisi-

tion. Particularly, the higher the b-value used, the more underestimated this "apparent

diffusion tensor" is. If one uses DKI to estimate the DT, the non-Gaussian properties

are accounted into the DT, and the b-value dependencies are lifted [33]. Therefore, it is
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expected that DKI estimated DT values are higher than that estimated by DTI. These dif-

ferences are accentuated when the mean metrics values increase (x-axis in Bland-Altman

plots), and thus, this tendency is created.

From these plots, significantly different ROI’s were identified using the criteria a

difference between the different fittings’ metric above the mean+2std threshold (upper

red line in Fig. 4.7). From these ROI’s, systematically "flagged" ROI were identified

("flagged" for 50% or more of the subjects) and individually treated with regards to their

connectivity metrics and their respective variation between tractography methods. The

list of systematically "flagged" ROI is presented in Tables 4.2 and 4.3, as well as their

respective metrics for each tractography. The regions in these tables are the regions

"flagged" for all of the paired comparisons.

For CLS-DKI vs L-DTI, the "flagged" regions were ctx-rh-transversetemporal (when

comparing AD and MD)and ctx-rh-entorhinal (for all 3 metrics). Taken into consideration

these fittings CLS-DKI and L-DTI, CLS-KT, CLS-ODF and L-DTI are the tractography sets

to compare.

In ctx-rh-entorhinal, CLS-KT-based tractography showed the lowest values for node

degree, clustering coefficient, betweenness centrality, participation coefficient and local

efficiency, and in eccentricity showed the highest values. CLS-ODF, on the other hand,

showed the highest values for all of the first metrics, except for the participation coeffi-

cient, where L-DTI proved to have the highest of all three. In ctx-rh-transversetemporal,

Figure 4.7: Bland-Altman plots of AD from CLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ± 2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric.
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ROI
Tractography Node Clustering

Eccentricity
Method Degree Coefficient

ctx-lh-entorhinal

clsKT 25.3 6.8 12.2
clsODF 29.5 8.8 8.0
olsKT 25.3 7.3 6.3

olsODF 33.3 8.6 8.5
lDTI 31.3 5.8 6.2

nlDTI 32.3 5.4 11.2

ctx-rh-entorhinal

clsKT 7.3 4.0 13.0
clsODF 15.7 4.9 8.2
olsKT 10.7 4.7 6.7

olsODF 11.7 4.9 9.2
lDTI 16.2 4.5 6.0

nlDTI 15 3.6 12.0

ctx-rh-postcentral

clsKT 15.0 11.8 13.0
clsODF 22.2 9.2 8.0
olsKT 14.2 14.2 7.2

olsODF 24.3 9.5 8.8
lDTI 14.7 6.8 6.5

nlDTI 16 7.5 12.5

ctx-rh-transversetemporal

clsKT 1.8 6.6 14.7
clsODF 2.7 2.8 8.7
olsKT 1.7 5.4 5.8

olsODF 2.8 4.1 7.7
lDTI 2.8 6.0 6.7

nlDTI 1.2 1.3 8

Table 4.2: Systematically "flagged" ROI’s from the Bland-Altman plots, with their respec-
tive connectivity metrics for each tractography.

CLS-KT-based tractography was shown to have the lowest node degree, betweenness

centrality and participation coefficient. It has the highest local efficiency, clustering coef-

ficient and eccentricity. CLS-ODF tractography showed the complete opposite of CLS-KT,

except for betweenness centrality, while L-DTI showed the highest value in betweenness

centrality and in between values for all o the other metrics.

When comparing CLS-DKI vs NL-DTI, ctx-rh-transversetemporal was "flagged" for

all 3 metrics, and ctx-rh-postcentral was flagged for RD and MD. In this comparison, the

tractography sets considered were CLS-KT, CLS-ODF and NL-DTI.

In the ctx-rh-transversetemporal, the connectivity metrics for NL-DTI yield values

quite opposite to those presented before for the same region. NL-DTI tractography

showed the lowest values for local efficiency, node degree and clustering coefficient. For

betweenness centrality and participation coefficient, NL-DTI and CLS-KT were matched.

CLS-KT had higher local efficiency, eccentricity and clustering coefficient, while CLS-ODF

showed higher node degree, betweenness centrality and participation coe fficient. In the

ctx-rh-postcentral region, the results were similar to the above for the transversetemporal
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ROI
Tractography Betweenness Participation Local

Method Centrality Coefficient Efficiency

ctx-lh-entorhinal

clsKT 433.2 0.6 14.8
clsODF 213.9 0.6 20.4
olsKT 394.9 0.5 15.6

olsODF 418.5 0.7 19.1
lDTI 509.6 0.6 13.0

nlDTI 445.0 0.5 12.5

ctx-rh-entorhinal

clsKT 104.7 0.3 6.3
clsODF 221.6 0.5 9.6
olsKT 310.6 0.3 7.8

olsODF 106.5 0.5 8.4
lDTI 177.0 0.6 8.6

nlDTI 236.1 0.5 7.0

ctx-rh-postcentral

clsKT 132.7 0.6 20.5
clsODF 190.5 0.6 19.8
olsKT 156.5 0.5 22.2

olsODF 114.2 0.6 20.9
lDTI 217.7 0.4 12.8

nlDTI 117.8 0.5 14.7

ctx-rh-transversetemporal

clsKT 0 0 7.9
clsODF 7.6 0.2 3.7
olsKT 1.33 0 6.3

olsODF 12.1 0.2 5.0
lDTI 16.1 0.1 6.6

nlDTI 6.3 0 1.3

Table 4.3: Systematically "flagged" ROI’s from the Bland-Altman plots, with their repec-
tive connectivity metrics for each tractography.

region, with the exception that betweenness centrality was higher for NL-DTI.

Moving on to OLS-DKI vs L-DTI, ctx-rh-entorhinal and ctx-lh-entorhinal were flagged,

both for all 3 metrics. In this case, the tractographies considered were OLS-ODF, OLS-

KT and L-DTI. Although homologous, the two regions displayed di fferences in both the

metrics’ range and tractography variation.

In ctx-lh-entorhinal, OLS-ODF displayed the highest values for node degree, clus-

tering coefficient, eccentricity, participation coefficient and local efficiency. L-DTI trac-

tography had the highest betweenness centrality. OLS-KT showed the lowest values for

node degree, betweenness centrality and participation coefficient. In its counterpart area,

clustering coefficients and eccentricity seen the same kind of variation for the 3 tractogra-

phies. L-DTI had the highest node degree, participation coefficient and local efficiency.

OLS-KT tractography had the highest betweenness centrality.

Finally, OLS-DKI vs NL-DTI "flagged" ctx-rh-transversetemporal and ctx-rh-entorhinal

for all 3 metrics and ctx-lh-entorhinal for AD and MD. The tractographies considered

were then OLS-KT, OLS-ODF and NL-DTI.
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In the ctx-lh-entorhinal region, NL-DTI showed the highest eccentricity and between-

ness centrality and the lowest clustering coefficient. In terms of participation coefficient,

CLS-KT and NL-DTI are up to par, but OLS-ODF displays the highest value. OLS-ODF

also displays the highest value of local efficiency, node degree and clustering coefficient.

In the ctx-rh-entorhinal region, OLS-ODF shows similar comparative results as in the pre-

vious region, except for node degree, where NL-DTI displays the highest value. NL-DTI

also shows higher eccentricity, but in terms of betweenness centrality OLS-KT tractog-

raphy exhibits a higher value. As for the ctx-rh-transversetemporal region, OLS-ODF

displays higher values of node degree, betweenness centrality and participation coeffi-

cient. OLS-KT has the highest local efficiency and clustering coefficient. NL-DTI shows

the highest value of eccentricity of the three.

The overall local connectivity metrics scenario seems to point out to a better characteri-

zation of the brain network using DKI-based tractography, with an overall highest local ef-

ficiency and participation coefficient. This may be a consequence of the crossing fibres ex-

tra sensitivity, not only for inter-hemispherical connections but also for intra-hemisphere

connections, in the sense that regions with these crossing fibres bundles would have a

higher participation coefficient (more paths in which they partake) and therefore a higher

local efficiency. To note that one of the flagged regions, ctx-rh-transversetemporal, does

not display inter-hemispherical connections. This further supports the notion that the

DKI-based networks improve on the intra-hemispherical connections computed, when

compared to those of DTI-based networks.

Despite that, local connectivity metrics are subject of great variation. Just like global

metrics, local connectivity metrics variation can be subject of lack of reproducibility,

linked to intra-subject variability, and to the effect size of the cohort, and could also be

accountable for erroneous conclusions.
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5
Conclusions and Future Work

In this chapter, the conclusions of this dissertation will be presented, along with final

considerations on the overall dissertation and possible future endeavours.

In this work we proposed a novel approach to study brain structural connectivity,

based on DKI. The novelty factor in this work resulted in an increased degree of difficulty

in both determining the path to perform the analysis and the validation of the results.

The dissertation turned around the comparison of the results obtained from DTI and

DKI, in an effort to assess which technique stands out as the better one for brain network

characterization. To accomplish this, two paths of analyses were followed, a tractography

analysis and complex network analysis.

As expected, DTI-based tractography sets failed to resolve crossing fibres between the

CST and the CC. This resulted in a lower amount of CC tracts isolated for either of the

DTI tractography sets.

DKI-based tractography showed increased sensibility to fibre crossing regions be-

tween CST and CC and consequently an increased amount of computed CC tracts, occu-

pied voxels and volume per structure. Although, DKI-KT method systematically showed

a lower amount of computed CST tracts. This may be a consequence of the KT method

of fibre tracking to the multi-compartmental parameters. This translates into a lower

capability of tracking along long several regions of the brain. Since CST tracts run across

the whole brain, it is expected that fibre tracking is undermined. DKI-ODF method didn’t

show this limitation.

For future studies, encompassing into the tractography study more fibre tracts, rather

than just CST and CC, should help provide a more comprehensive analysis of the perfor-

mance of DKI-based reconstruction throughout the whole brain.

The connectivity study was branched into two. The first was aimed at determining

differences between DTI- and DKI-based connectograms at a global level, while also
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looking at the global connectivity metrics obtained from the several networks.

Difference connectograms between DKI and DTI networks were computed to directly

compare pairs of networks. These showed an increased amount of inter-hemispherical

connections resolved by the DKI-based networks when compared to those of DTI. This

can be a direct consequence of the crossing fibres detection possible with DKI, since

it is more sensitive to commissural fibres, which tend to cross several other structures.

DTI-based connectograms were shown to better identify intra-hemispherical connections

when compared to the KT model, whereas the DKI-ODF model out performed the DTI

model for intra-hemispherical connections. This lead to the notion that DKI-ODF not

only detects the same connections as DTI, but also improves on them, resolving additional

connections.

Modularity connectograms were also computed. In these the community structure of

the network was assessed. DTI-based connectograms show a clear intra-hemispherical

configuration of modules, with 3 clusters, where 2 are mainly responsible for establishing

intra-hemispherical connections, and the third one is mostly responsible for some inter-

hemispherical connections. DKI-based connectograms show an increased number of

clusters and inter-hemispherical connections inside each cluster.

Inter-hemisphere, intra-hemisphere and inter-to-intra-hemisphere ratios were also

computed. DTI-based networks showed more nodes with only intra-hemispherical con-

nections, compared to DKI ones. Moreover, DKI-based networks show higher values for

each of the three ratios.

Global and local connectivity metrics were obtained through complex network analy-

sis.

Global connectivity metrics show some variation between tractography methods for

each subject. Looking for statistical validity, the means of the metrics for each tractog-

raphy were calculated, across the 6 subjects, and then two-sided Wilcoxon tests were

performed in pairs of networks in the form DKIvsDTI. These tests revealed that the DKI

and DTI metrics are not statistically distinct. This leads to the notion that intra-subject

variability may affect the outputs of complex network analysis, and therefore no assump-

tions can be made on the matter of which method characterizes connectivity better.

Local connectivity metrics were used on ROI identified by significant changes in the

diffusion metrics, in an effort to establish a bridge between diffusion metrics variation

and local connectivity metrics variation, for both tensors, and all 4 tensor fittings (L-DT,

NL-DT, OLS-KT, CLS-KT). Systematically "flagged" ROI’s were analysed for connectivity

metrics variations, based on the threshold of mean+2*std. Overall, DKI-based networks

seem to have higher local efficiency and participation coefficient, a consequence of the

heightened sensitivity to crossing fibres, which in turn resolves better This translates into

what could be a better characterization of the human brain network, thought to have

highly efficient nodes, participating in a high number of inter-cluster connections. This

characterization could also be closer to the ground-truth. However, local connectivity

metrics are also subject to quite some variability. The origin of this variability could be
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and the conclusions withdrawn from them can be erroneous.

Overall, the objectives of this dissertation were partially met. In the sense that trac-

tography and structural connectivity study goals were met, but establishing a clear con-

nection between diffusion metrics and connectivity metrics was not possible.

As a final conclusion, DKI-based networks seem to have additional insight in the

characterization of the human brain networks, but the full extent of these insights is yet

to be determined.

To try and mitigate the shortcomings of this dissertation, an improvement to this

work would be to consider a larger cohort of subjects, since a dataset of 6 subjects may

not have the statistical power necessary to draw strong conclusions. Also, consider a

test/re-test procedure for data acquisition. This way, it would possible to test for metric

reproducibility intra-subject and understand if the differences seen in the connectivity

metrics are or not a result of this variability. Furthermore, to expand the diffusion metrics

relationship to the connectivity metrics, a study using confidence ellipsoids instead of a

simple mean+2*std threshold could be performed, studying all of the ROI that are placed

outside the confidence ellipsoid
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APPENDIX A. APPENDIX 1 - ROI LIST

ROI

Sub-cortical

Cerebellum-Cortex
Thalamus-Proper

Caudate
Putamen
Pallidum

Hippocampus
Amygdala

Accumbens-area

Cortical

Cuneus
Entorhinal
Fusiform

Inferior-parietal
Inferior-temporal
Isthmus-cingulate
Lateral-occipital

Lateral-orbito-frontal
Lingual

Medial-orbito-frontal
Middle-temporal

Para-hippocampal
Para-central

Parsopercularis
Parsorbitalis

Parstriangularis
Pericalcarine
Post-central

Posterior-cingulate
Pre-central
Pre-cuneus

Rostral-anterior-cingulate
Rostral-middle-frontal

Superior-frontal
Superior-parietal

Superior-temporal
Supra-marginal

Frontal pole
Temporal pole

Transversetemporal
Insula

Table A.1: Considered ROI List. This list encompasses 76 brain regions, of which, 8 are
sub-cortical and 30 are cortical regions
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APPENDIX B. APPENDIX 2 - TRACTOGRAPHY RESULTS

Figure B.1: Tractography reconstructions for subject 1. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively; panels
B and C show the results for the OLS-KT and OLS-ODF; and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction
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Figure B.2: Tractography reconstructions for subject 2. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively; panels
B and C show the results for the OLS-KT and OLS-ODF; and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction
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APPENDIX B. APPENDIX 2 - TRACTOGRAPHY RESULTS

Figure B.3: Tractography reconstructions for subject 3. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively; panels
B and C show the results for the OLS-KT and OLS-ODF; and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction
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Figure B.4: Tractography reconstructions for subject 4. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively; panels
B and C show the results for the OLS-KT and OLS-ODF; and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction
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APPENDIX B. APPENDIX 2 - TRACTOGRAPHY RESULTS

Figure B.5: Tractography reconstructions for subject 5. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively; panels
B and C show the results for the OLS-KT and OLS-ODF; and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction

62



Figure B.6: Tractography reconstructions for subject 6. In cyan the CST tracts, red the
CC tracts. In panels A and B, the L-DT and nL-DT reconstructions, respectively; panels
B and C show the results for the OLS-KT and OLS-ODF; and panels D and E show the
tractography results for CLS-KT and CLS-ODF reconstruction

63





A
p
p
e
n
d
i
x

C
Appendix 3 - Bland Altman Plots

65



APPENDIX C. APPENDIX 3 - BLAND ALTMAN PLOTS

Figure C.1: Bland-Altman plots of AD from CLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric

Figure C.2: Bland-Altman plots of RD from CLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric
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Figure C.3: Bland-Altman plots for MD from CLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric

Figure C.4: Bland-Altman plots for AD from CLS-KT and L-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric
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APPENDIX C. APPENDIX 3 - BLAND ALTMAN PLOTS

Figure C.5: Bland-Altman plots for RD from CLS-KT and L-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric

Figure C.6: Bland-Altman plots for MD from CLS-KT and L-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric
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Figure C.7: Bland-Altman plots for AD from OLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric

Figure C.8: Bland-Altman plots for RD from OLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric
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APPENDIX C. APPENDIX 3 - BLAND ALTMAN PLOTS

Figure C.9: Bland-Altman plots for MD from OLS-KT and NL-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric

Figure C.10: Bland-Altman plots for AD from OLS-KT and L-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric
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Figure C.11: Bland-Altman plots for RD from OLS-KT and L-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric

Figure C.12: Bland-Altman plots for MD from OLS-KT and L-DT. The blue line is the
mean of the differences, and the red lines are ±2std. All of the subjects display the same
tendency: the difference of the metric increases with the increase of the mean of the
metric
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