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Abstract  

 White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. 

Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In 

this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-

Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting 

Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-

pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ 

Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the 

changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color 

resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping 

a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior 

of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness 

and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) 

analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of 

the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this 

structure can be effectively applied for general lighting. 

Keywords: White OLED, Emission Color tuning, Blend EML, Host:Guest, Color Stability, Large Area  

  

https://en.wikipedia.org/wiki/Tris(8-hydroxyquinolinato)aluminium
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Resumo 

 Um dos maiores fatores de atratividade dos Díodos Orgânicos Emissores de Luz (OLEDs) é 

a capacidade de tonalizar a cor final a ser emitida. Até aqui, não foram apresentados estudos que 

misturassem essa capacidade com a estabilidade dos dispositivos. Neste trabalho, foram fabricados 

OLEDs Brancos (W-OLEDs) baseados numa camada emissora RGB composta por uma blenda de  

N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) dopado com um emissor verde, 

Coumarin-153 e um emissor vermelho, 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-

4H-pyran (DCM1). A estrutura final de cada dispositivo foi ITO/Blenda/ Bathocuproine (BCP)/Tris(8-

hydroxyquinolinato)aluminium (Alq3)/Al para uma emissão de 0.25 cm2. Ao variar a concentração de 

DCM1 (de 0.5 para 1% wt.), foi possível ajustar a cor branca resultando em dispositivos capazes de 

emitir uma grande gama de tons – do branco frio ao branco quente – a uma estrutura simples e uma 

estabilidade alta. Além disso, é feita uma explicação ao mecanismo responsável por este 

comportamento. Os melhores resultados de electroluminescência (EL) apontam para um brilho de 

160 cd/m2 e uma eficiência de 1.1 cd/A, ambos alvos de possíveis melhorias. Um estudo de 

Espectroscopia de Impedância (IS) foi também realizado para, não só avaliar a capacidade retentora 

de buracos do BCP, como também uma prova de envelhecimento a que os dispositivos são alvo. 

Finalmente, como prova de conceito, a emissão foi aumentada em 9 e 64 vezes mostrando, assim a 

aplicabilidade desta estrutura para iluminação. 

Palavras-chave: OLED branco, Ajuste de cor, Estabilidade de cor, Blenda RGB, Host:Guest, Larga 

Área  

  

https://en.wikipedia.org/wiki/Tris(8-hydroxyquinolinato)aluminium
https://en.wikipedia.org/wiki/Tris(8-hydroxyquinolinato)aluminium
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Vbi Built-in Potential V 
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𝜀𝑟 Dielectric constant F⋅m−1 
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Objective 

 Organic Light Emitting Diodes (OLEDs) promise to shape the entire reality of general lighting 

technologies. This thesis aims to produce Color tunable White OLEDs (W-OLEDs) based on a single 

doped RGB active layer. The color tunes are obtained by changing one of the dopant’s concentration, 

being the different tunes analyzed. Once the proper tunes are obtained, the scale up of the devices 

to large area was attempted.  

  

 

 

Work structure 

For a better analysis, this written document is organized as follows: The motivation gives 

some insights on the overall applications for the project itself, both in terms of artificial lighting and 

simulating the entire daylight behavior as a means to stimulate productivity and promote health. Then, 

chapter I describes some basic knowledge regarding the OLED operation followed by the formation 

of the energy diagrams (1.1.), charge transport (1.2.) and how light is emitted (1.3.). Given this, the 

structures applied for the W-OLEDs are reviewed on section 2, including the main mechanisms 

happening in a Host:Guest system. Chapter II reviews the basic structure, materials and 

considerations used for this project and Chapter III describes all the experimental details for the 

device production and characterization.  The devices produced are characterized in section IV divided 

in terms of blend definition (1), the physics behind the operation (2), the optoelectrical characterization 

(3), the a.c. analysis (4) and the application on Large Area substrates (5). Chapter V summarizes the 

main conclusions sharing also some threads on where to perceive next. This document also includes 

a set of appendixes to explain some notions needed during the entire document such as the review 

in terms of Solid State Lighting (1), The Color quality of W-OLEDs (2), the radiative and non-radiative 

transitions diagram (3), other optoelectrical characterization not focused on Chapter IV (4), the 

Impedance Spectroscopy (IS) studies (5) and what happens when the emission area is increased (6). 
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Motivation 

1. Towards OLED lighting 

The energy demand nowadays has brought an exhausting use of the natural resources. 

Considering that 19% of all the electricity consumed is for artificial lighting which corresponds to an 

emission of 1900 Mt of CO2 every year [1], improvements towards a more eco-friendly future is urgent. 

Looking for the “ideal” lighting system, the research for a power efficient, disposable, non-harmful 

and long-lasting technology is thought. And throughout history, many attempts have been made to 

effectively reach this ideal technology, each of them lacking one or more of the goals referred as it 

will be explained further ahead.  

The scientific community has been looking for more efficient ways to produce light. Appendix 1 

shows how this technology has been evolving resulting in the commercially available Light Emitting 

Diodes (LEDs) which are more economical and have longer lifetimes than the past bulb and 

fluorescent lamps. However, LEDs have several limitations since most of them use rare materials 

such as Ga, As, In, etc. and soon enough problems of scarcity can be faced. [2] 

Organic Light Emitting Diodes (OLEDs) come to help solving this problem since they use organic 

materials instead of inorganic and can be produced in a large set of substrates (which includes large 

area panels). [3] Therefore, it can shake the current lighting paradigm as a not so futuristic technology 

(not anymore at least) since it allows for a materials’ internal efficiency of, theoretically 100%, can be 

fabricated in rigid or flexible substrates, uses organic disposable materials with zero harm to the 

environment and allow for the possibility of obtaining high brightness devices. All of this not 

mentioning its market attractiveness. Putting together all these qualities, OLEDs have a huge market 

interest in the near future for the everyday life’s artificial lighting. The market of OLEDs is already ON 

and soon can replace the current LED technology. 

2. The circadian rhythm 

It is interesting to analyze the color tuning ability that OLED devices may achieve. Theoretically, 

by simply changing the materials (or their proportion) or the overall device structure, it is possible to 

obtain sources capable of emitting different shades of white specific environments and applications. 

But, forgetting the obvious academic and artistic interest what is the main market interest here? Why 

should we care if we are surrounded by a cool white (with blueish tone) or a warm white source (with 

a greenish/reddish tone)? 

Life on Earth is controlled by the 24h hours of the solar cycle that synchronizes the biological 

circadian cycle (or rhythm) with physiology and behavior patterns with light serving as a resettle of 

this rhythm. And we are surrounded by light, either environmental or artificial. This last one aims to 

reproduce the surrounding colors in the absence of environmental light. The problem is that these 

sources don’t follow the same light pattern of the solar cycle, having a direct effect in the biologic one.  
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After studies in animals had suggested a role for a non-rod, non-cone photoreceptor in circadian 

responses to light, melanopsin was identified as the photopigment present in those specialized 

photoreceptors. In this matter, critical to our sleep/wake cycle is melatonin, segregated by the 

hypothalamus, a hormone that promotes sleep, and can be stimulated by the kind of light we are 

surrounded to due to special non-visual photoreceptors at the retina stimulated with the blue color. It 

is also being used as a sleep aid and in the treatment of some sleep disorders. [4] So depending on 

the surrounding light, this hormone can be segregated or inhibited. Morning light, for example, is light 

that is received during the first hours of the day and is very effective at resetting the rhythm. Getting 

strong blue rich light early in the morning every day helps to stay in tune with the timing of daily 

obligations since bluish white light stops melatonin production. Evening light, on the other hand, as 

long as it is dim and low in blue (short wavelength) content, can help relaxing and prepare for sleep 

(yellowish white light allows for melatonin production). [5] Bright evening light, though, suppresses 

melatonin production and delays sleep. And this is where the target application comes in place.  

By producing sources capable of emitting different tones of white, it is possible to adapt the 

ambient artificial light to 1) behave similarly to the environmental one and regularize the circadian 

rhythm with the solar cycle or 2) promote productivity with the control of melatonin production. So, 

because OLEDs may offer efficient ways of emitting wavelengths with different temperatures that 

could range the entire daylight behavior, they could be adapted to artificial light, as they are passive 

for a low cost device production with high stability. 

  

https://en.wikipedia.org/wiki/Sleep_disorder
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Chapter I: Introduction 

1. Organic Light Emitting Diode’s operation 

Tang and VanSlyke (1987) and Burroughes et. al. (1990) were the first to report low voltage 

electroluminescence from thin organic films made of small-molecular-weight molecules and 

polymers, respectively. Ever since, the possibility of applying organic materials on lighting systems 

has emerged and research on this topic has brought a big increase on the number of reports regarding 

this subject. The possibility of light emission from organic materials  has, therefore emerged a wider 

range of possibilities, being the first step towards the recent developments of Organic LEDs (OLEDs) 

and Polymer LEDs (PLEDs).[6],[7] 

An OLED is a lighting device capable of emitting white light through the use of organic molecules. 

Generally, these devices are composed of different organic layers sandwiched between two 

electrodes. A diagram describing the main operation of OLEDs can be found in figure 1. Each layer 

has a different purpose in the overall working of the device, so each organic material (either small 

molecule or polymer) must be chosen according to their function in the final structure. The main 

mechanism, is similar to the Light Emitting Diode’s (LED) behavior. [8] 

 
Figure 1 – Schematic of a multi-layer Organic Light Emitting Diode (OLED) and device operation. Holes are 
injected through the anode while electrons are injected through the cathode. Each layer was left unnamed 
intentionally (adapted from [8]) 

Upon application of an external bias, electrons and holes are injected by the electrodes into the 

p and n organic layers, travelling across their molecular structure until they recombine in the emissive 

area. Here, excitons (coupled state between electrons and holes) are formed through Coulomb 

interaction between the injected carriers in a process called charge recombination. The rapid decay 

of the electron to a lower energy state, allows for the emission of light with a wavelength 

corresponding to the energy transition of the carrier where the emission takes place. [9], [10] 

1.1. Hybridization in Organic Semiconductors 

The carrier behavior in an organic semiconductor is a result of the nature of the carbon bonds 

and the molecular orbital structure of the organic semiconductors. Each carbon atom has two 

incomplete 2p orbitals (its configuration is 1s2 2s2 2p2), allowing the formation of hybridized orbitals 

sp, sp2 or sp3 between other atoms in order to form the lowest energy bonds possible. In this case, 
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the nature of the sp2 bonds gives rise to carrier conduction forming, for example, the benzene ring 

that will serve as an example further ahead. In this type of hybridization (figure 2a), there are three 

hybrid sp2 orbitals and one 2pz that allows for the formation of three high energy σ bonds (one per 

each hybrid orbital) and two low energy π (one bonding, denoted π and one antibonding, denoted 

π*). When the benzene ring is considered (figure 2b), with a configuration –C=C–C=C–C=C–, the 

double bonds are composed by one σ and one π and because this last one is of low energy, the 

electrons can, under an electrical field, move throughout the molecule in delocalized states (not 

associated with an atom but within an orbital of several adjacent atoms). 

  
Figure 2 – a) Bonding in a carbon-based molecule with sp2 hybridization. b) Benzene molecule and its 
delocalized states forming the LUMO and HOMO levels (adapted from [11]). 

Increasing the number of carbon atoms in the molecule, an energy cloud composed with these 

delocalized electrons and their ability to roam freely in the molecular orbital is formed. These occupied 

states, more specifically the highest energy counterpart, forms the so called Highest Occupied 

Molecular Orbital (HOMO). The antibonding unoccupied states π*, or its lowest energy counterpart 

forms the Lowest Unoccupied Molecular Orbital (LUMO). Between the HOMO and the LUMO of each 

material is the so called energy gap, Eg prohibited for the delocalized electrons.[11],[12] 

These energy levels are a characteristic of the organic semiconductor the same way the valence 

and the conduction band are a characteristic of an inorganic one. By using different layers composed 

of different materials, a structure capable of guiding carriers through the organic layers is built by 

either enhancing their injection or promoting their blockage always having in mind the differences in 

charge mobility (chapter I section 1.2.1.). It is then possible to denote different layers according to 1) 

the charge it relates to (hole or electron) and 2 its basic function (injection, transport or blockage) 

giving rise to the Hole and Electron Injection (HIL and EIL respectively), Transport (HTL and ETL 

respectively) and Blocking (HBL and EBL respectively) layers. Finally, the layer where recombination 

and emission takes place is called Electroluminescence Layer (EML).   

1.2. Charge Transport 

1.2.1. The Hopping process 

Once available for conduction, electrons and holes travel freely across the inorganic 

semiconductor’s matrix in the conduction and valence bands, respectively. Carrier transport in organic 

semiconductor based devices, on the other hand, is different from this behavior. It is based on a 

hopping process (figure 3) - interference between the delocalized orbitals π and π* with the applied 

electric field. As seen before, the main consideration is the typical structure of the benzene ring where 

a) b) 
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the electron cloud results from the overlapping of the orbitals. An electron in one of these LUMO 

orbitals, although still connected to its original carbon atom, is susceptible to hop into a neighbor 

orbital if an electric field is applied, vacating it and allowing for another electron to hop into it. This 

carrier transport gives rise to the electrical conduction. A similar behavior can be seen in the HOMO 

orbitals for the hole conduction. This process will have a big effect on the carrier mobility. Although 

delocalized, the carrier never loses the identity to its atom counterpart, so the mobility will be several 

orders of magnitude lower than a carrier travelling in an inorganic semiconductor. Also, the bonding 

delocalized orbital has a more consistent structure than the non-bonding resulting in a higher mobility 

for HOMO’s holes in the when compared to the LUMO’S electrons.[13]  

 

Figure 3 – Hopping process in an organic molecule as a result of the orbitals overlapping (dashed lines) allowing 
the carrier to hop between them when an electric field is applied. 

1.2.2. Space Charge Limited Current 

When carriers are injected into their layers, i.e. when a voltage is applied, the unorganized 

structure of the organic semiconductors compared to the organized for the inorganic, implies a 

completely different behavior for carrier conduction. The models describing the timeframe after the 

carriers are injected into the organic layers are shown in figure 4. 

At low applied voltages, even using electrodes with considerably different energy barrier in the 

metal semiconductor junction, both anode and cathode are able to equally inject the same amount of 

carriers being the current only dependent on the resistance of the material – Ohmic region where 

𝐼 ∝ 𝑉. Increasing the applied voltage until a certain value (Ohmic regime limit voltage, VΩ) leads to a 

difference in the injection performance of the electrodes if, in a finite time, one of them is considerably 

different from the other, meaning that one electrode is effectively injecting a carrier while the other is 

ineffectively pushing it which leads to an increase of current inside the device – Space Charge 

Limited Current (SCLC) region where 𝐼 ∝ 𝑉𝑛 and 𝑛>1.  

In the SCLC, the unorganized structure allows the appearance of traps that may fall within the 

energy gap of the semiconductor. To analyze the effects of these traps, considering first a trap-free 

model and comparing it with two trap-dependent models, each one categorized by their proximity to 

the Fermi level: shallow trap if it is energetically close or deep trap if far. In the trap-free model, n=2 

as a result of no trapping of carriers, meaning that the current flows accordingly to the mobility of 

these carriers and the physical and electrical properties of the layer. In the shallow-trap model, the 

Electron 

Hole 



 

 
8 

trapped carriers do not contribute to the current, leading to its decrease, but still dependent on V2. 

Increasing the applied voltage, all traps will eventually be filled. Near this limit voltage value (Trap Fill 

Limited Voltage VTFL), there’s a slight increase in the current (Vn with n>2) followed by the same 

behavior described before. Finally, for the deep-trap model, a discrete distribution of traps is 

considered and different models must be applied to better describe the transport mechanisms. By 

considering either a Gaussian or an Exponential distribution, the behavior is similar only characterized 

by different expressions, for VΩ<V<VTFL, the current is dependent of  𝐼 ∝ 𝑉𝑛 and 𝑛>2. Above VTFL the 

exhibited behavior is the same as described before.[14], [15], [16]  

 

Figure 4 – IV dependence with the applied voltage in an organic semiconductor considering a trap-free and a 
trap-dependent (either shallow or deep) model. The effects of the trapped carrier in the mobility is not described. 
The dynamics of the junction created between a metal and an organic semiconductor can be found in [17]. 

1.3. Light Generation: Fluorescence and Phosphorescence  

Light is emitted whenever there’s radiative decay (emission of a photon) of an electron from an 

excited energy level to the fundamental state, being the wavelength of the photon emitted equivalent 

to the energy decay of that electron. In organic semiconductors, this radiative decay is a result of the 

recombination between carriers to form an exciton. 

Understanding the difference between fluorescence and phosphorescence implies knowledge of 

electron spin and the differences between singlet and triplet states. When an excitation occurs from 

the fundamental state and depending on the spin of the level it achieves, there are two types of 

excited levels. In terms of terminology, a singlet (triplet) state occurs when the spin of an electron in 

the π* orbital and that of the remaining electron in the π-orbital are antiparallel (parallel) and so add 

up to a total spin of zero (one). Therefore, because a singlet exciton has a spin multiplicity of 0 (MS=0) 

and the triplet exciton 1 (MS = -1, 0 and 1), on average 75% of the excitons formed are triplet states, 

with the remaining 25% being singlets. In the fundamental state, electrons have non-paired spins, 

typical of a singlet level. The triplet state has a smaller energy than its singlet counterpart because of 

the repulsive origin of its electron spins. 

In OLEDs, both radiative and non-radiative transitions may occur. If this transition happens 

between singlet levels (S1 → S0) it is called fluorescence which is the most common between small 

molecules because of small permanence time (large transition probability) in the excited singlet. This 

limits the theoretical device efficiency to the probability of singlet-to-singlet transition, 25%. If the 
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transition involves a triplet-to-singlet state (T1 → S0) it is called phosphorescence, though this implies 

the use of intermediate materials (such as rare earth or transition metals) for radiative transition that 

reduce the permanence time (increasing the transition probability) of an electron in the excited triplet 

state. Otherwise, the energy loss would be made by thermally (i.e. non-radiatively). Phosphorescent 

devices have a theoretical efficiency up to 100% as it considers both singlet-to-singlet and triplet-to-

singlet transitions.[3],[18],[19] This results in devices with considerably higher external efficiency. [20] 

Recently, there have been reports on Thermally Activated Delayed Fluorescence (TADF) to 

achieve 100% efficiency on fluorescent materials via Reverse Intersystem Crossing (RISC) which is 

based on the use of temperature to allow for the transition of an electron from an excited triplet to an 

excited singlet. [21]  

2. W-OLEDs for Solid State Lighting 

When lighting is concerned, the main focus is to have emission from the entire visible spectrum 

– white light. When OLEDs are concerned, many structures have been attempted to effectively 

achieve this (figure 5). The first White OLED (W-OLED) dates back to 1995 created by Kido. [22] 

 
Figure 5 - State of the art on applied structures used for white light emission on bottom emitting W-OLEDs. a) vertically 
stacked b) pixelated monochrome, c) single-emitter-based, d) blue OLEDs with downconversion layers, e) single OLEDs 
with a sublayer EML design and f) single emitting layer OLEDs based on a selective doping process. 

Figure 5 a) and b) shows the emission of white light as a sum of independent Red, Green and 

Blue emitters either with individual electrodes or as a pixelated structure, commonly used on the 

current OLEDs flat panel displays. These two structures involve comparably complicated structuring 

processes which would increase the final production costs’. [23], [24] So, in order to decrease these, 

a single emitting layer must be considered. A single molecule, for example, may be synthesized to 

emit over the entire visible spectrum (figure 5c) although it is not easy to tune the color without 

affecting device performance. Also, these molecules are usually related to poor device efficiencies 

[20] [25] The use of an external (or internal) downconversion layer (figure 5d) is based on high energy 

emissions. Part of this light excites another molecule resulting in its main emission, the sum being 

white light. This implies a slightly more complicated structure (one or two downconversion layers) 

than the single emitting layer, while resulting also in poor color rendering because of poor overlapping 

between the high energy layer’s excitation and the downconversion layer’s absorption. [26], [27] To 

overcome this problem, a single layer capable of emitting RGB wavelengths from sublayers (figure 

5e) or based on a selective doping process - the Host:Guest system (figure 5f) - have also been 

attempted, this last one described more extensively in this thesis. The main conclusion taken from 
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here is that there must be a trade-off between the device complexity and efficiency when lighting is 

concerned. So far, there has not been a report of a blended RGB capable of efficiently emitting with 

a great level of stability. [28] To assure the highest quality for the lowest complexity, either the 

emissive layer or the whole device must be tailored. The purity of a white source can be characterized 

by the corresponding figures of merit, described more extensively on appendix 2: the Commission 

Internationale de L'éclairage (CIE), the Correlated Color Temperature (CCT) and the Color-Rendering 

Index (CRI). Also, devices with high color stability with the applied voltage/current prevent shifts in 

terms of CIE that will be perceived by the human eye. [29]  

2.1. Selective doping – the Host:Guest System 

The Host:Guest System is the most used technique to obtain white light since it allows for the 

production of simple devices with high efficiency. [30] This system consists of a single EML 

comprising one host matrix – donor – and one or more dopants – acceptor dyes – mixed inside the 

matrix allowing for light emission in these materials. It involves two predominant mechanisms: the 

energy transfer and the carrier trapping. Considering the energies’ corresponding vibrational levels 

of the fundamental state S0 and excited state S1 of both donor and acceptor molecules, one can easily 

draw the schematics of these main mechanisms (appendix 3).  

The energy transfer, more specifically, can be a result of radiative and non-radiative transitions. 

In the radiative transition, after an excitation of a donor electron to its excited level and subsequent 

energy loss by non-radiative transitions – phonons – to the lowest excited level, a photon with lower 

energy is emitted. This photon will then be absorbed by the acceptor resulting in the transition of one 

of its electrons from the fundamental state to the excited level of the guest. After energy relaxation, 

photons with wavelengths of the corresponding final radiative transitions are emitted (appendix 3, 

figure 29a). This process will only happen if there is an overlap between the emission of the dopant 

and the absorption of the acceptor. The non-radiative transition involves a dipole-dipole interaction 

with long-range separation (~30-100 Å) between an excited electron of the donor and an electron in 

the fundamental state of the acceptor (and their corresponding holes) allowing it to transfer energy 

electrostatically, also known as the Förster transition (appendix 3, figure 29b).[31] [32] This energy 

transfer can be explained as  

D*+A → X→D+A+ℎ𝑣, 

where D*, A, X, D and ℎ𝑣 stand for excited donor, ground state acceptor, intermediate excited 

state (ground state donor and excited acceptor), ground state donor and acceptor and energy of the 

emitted photon, respectively. [33] A short range interaction known as the Dexter transition, is not 

considered because the host and guest molecules will fall far from the Dexter range. [31] 

In the carrier trapping, the guest’s HOMO and/or LUMO levels must fall within those of the hosts’ 

to allow for an easy non-radiative trapping of the charge carriers under low voltage, resulting in the 

emission of light through the guest (appendix 3, figure 29c). Increasing the applied voltage promotes 

an increase of the carriers in the energy levels of the dopants gradually filling all their traps. Once this 

is obtained, the recombination in the dopants stops and saturation is achieved. [34] 



 

 
11 

All mechanisms may be equally present resulting in big color shifts with the applied voltage, which 

affects the color stability of the device. To prevent this, the dopant concentration is kept low while 

assuring that the average spacing between the dye molecules is less than the Förster distance 

leading to the saturation of traps and prevention of the non-radiative interaction between molecules, 

respectively. In order to understand which mechanism is taking place, one has to compare the 

Electroluminescence (EL) and Photoluminescence (PL) spectra of the device and corresponding 

materials. Other reports include the same system but employ a mixed-host structure to promote host-

guest stability. [35] 
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Chapter II: Materials and Structure 

The device’s physical characteristics must be tailored to optimize the structure and stabilize white 

light emission while also meeting the requirements of a Solid State Device – simple and efficient. This 

project’s device (figure 6) has three organic layers between the electrodes. The final device structure 

is: Anode/HTL/HBL/ETL/Cathode with the HTL serving also as EML based on the Host:Guest system 

(Chapter I, section 2.1.). Finally, because all of the organic materials used are small molecules, a 

thermal evaporation technique is used.[36] Figure 7 shows the chemical structure of the final organic 

molecules used to build each device while table 1 describes the basic parameters important for device 

production and characterization. 

 
Figure 6 – Final device structure composed with three organic layers sandwiched between two electrodes. 
Adding more would allow for a more efficient device at the expense of its simplicity. The HTL is used also as 
EML being based on the Host:Guest system. Holes are injected into the HTL while electrons in the ETL. Finally, 
because electrons have lower mobility, a HBL is introduced to assure the recombination in the HTL (Chapter I 
section 2.1.). 

 

 

 

NPB (Blue Host) DCM1 (Red Guest) 



 

 
14 

Figure 7 – Chemical structure of all organic small molecules used for the OLED deposition. The final device 
structure is ITO/NPB:x%DCM1:y%C-153/BCP/Alq3/Al as anode/HTL (and EML)/HBL/ETL/cathode respectively. 
x% and y% stands for small %wt of the dopants. All chemical structures were purchased from Sigma Aldrich. 

Table 1 – Parameters considered upon the deposition of each material. Because the dyes’ concentration was 
small compared to the Host’s, its density values were not taken into consideration. 

 
Organic 

Material 
Function HOMO (eV) LUMO (eV) 

Density 

(g/cm3) 

Melting 

Point 
Ref. 

Small 

Molecules 

NPB 
Host/EML/HTL 

Blue Emitter 
5.5 2.4 1.664 279-283 °C [37],[38] 

BCP HBL 6.7 3.2 1.173 279-283 °C [39],[40] 

Alq3 ETL 6.0 2.7 1.443 >300 °C [39],[41] 

Dyes 

DCM1 
Red-Orange 

emitter 
5.6 3.5 NR 215-220 °C [42],[43] 

Coumarin-

153 
Green emitter 5.3 2.9 NR 164-168 °C [44] 

  

 

Coumarin-153 (Green Guest) 

 

 

BCP (HBL) Alq3 (ETL) 
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Chapter III: Experimental   

 

Figure 8 – Schematics showing all process to obtain a small area bottom-emitting OLED from a glass substrate 
containing a thin ITO film (a) leading to its patterning (b), cleaning process (c) and thermal evaporation of the 
blend EML (d), the HBL (e), the ETL (f) and the cathode (g) respectively. 4 different emissive areas of 25 mm2 

(h) were produced. 

The production (figure 8) and characterization of OLEDs follows a strict procedure which includes 

three main phases. 

1. Substrate and Sample Preparation  

In glass substrates with a thin ITO film deposited (a) (30-60 Ω/sq from Delta Technologies), 

adhesive tape was used to cover the desired patterns for the electrodes (either small or large area). 

With a mixture of Zinc Powder and Hydrochloric Acid, the uncovered ITO was removed, (b) followed 

by washing in water and removal of the tape. The substrates were then cleaned in detergent, then 

washed in Acetone for 20 min, Isopropyl alcohol for 15 min and distilled water for 10 min (c). The 

samples used as EML were weighed and then mixed under magnetic stirring for no less than 2 hours. 

2. Films Deposition 

Most of the work was conducted in the Physics department at the University of Aveiro and the 

large area devices were produced in CeNTI – Centre for Nanotechnology and Smart Materials.  

Each substrate was loaded into the thermal evaporator chamber. The evaporation was conducted 

using two different high vacuum thermal evaporation chambers with control over the thickness of the 

films of 1 Å and deposition rate of 0.1Å/s. For the small scale devices, a Criolab with a manual control 

was used with 4 crucibles (1 per each layer deposited) which is put under high vacuum through a 
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turbomolecular pump was used. The large scale devices were produced using a Kurt J. Lesker 

Spectros 150 automated system, containing 5 crucibles and a cryogenic pump for high vacuum to a 

closer-to-industry production.  

With a pressure of no higher than 10-5 Pa the evaporation process starts. To control each layer’s 

final thickness, a high sensitivity piezoelectric sensor is used and, by changing the applied power, the 

evaporation rate is controlled to a maximum value of 4 Å/s to allow for uniform films. All blend (d) 

tests (50 Å thick) were followed by the deposition of 100 and 300 Å of BCP (e) and Alq3 (f) 

respectively. Finally, aluminum (g) was deposited with a thickness of 1500+/-200 Å. To prevent 

aluminum oxidation and/or diffusion into the organic layers, the chamber was stored in vacuum for 

15 minutes to cool down after deposition.  

3. Device Characterization  

All the current density–voltage (JV), luminance–voltage (LV), electro-luminescence (EL), 

Impedance Spectroscopy (IS) and Capacitance-Voltage (CV) measurements were performed in air 

in non-encapsulated devices at room temperature right after each evaporation process. For the EL 

spectra measurement, an Ocean Optics USB4000 spectrometer was used. The JVL characteristics 

were measured with a Keithley source meter 2425 model and Minolta Colormeter LS-100. From the 

JVL data, the current efficiency (cd/A) was calculated, a typical parameter in the light emitting devices. 

In parallel, the dynamic range of the light emission (the applied voltage region where the emission is 

quite linear) was obtained from the photometric efficiency obtained with the LV graph. IS and CV 

measurements were performed with a Fluke PM6303 RLC Meter. The photophysical properties – 

Photoluminescence (PL) and Photoluminescence Excitation (PLE) – were obtained in a Fluorolog-3 

Horiba Scientific modular equipment with a double additive grating Gemini 180 scanning 

monochromator (2×180 mm, 1200 gr.mm-1) in the excitation and a triple grating iHR550 spectrometer 

in the emission (550 mm, 1200 gr.mm-1). 

 

  

http://gr.mm/
http://gr.mm/
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Chapter IV: Results and Discussion 

1. Blend Definition 

As previously discussed, the main objective was to produce color tunable W-OLEDs based on a 

single emitting RGB blend that, by changing the concentration of one of its components, would allow 

for a set of devices capable of emitting different types of white light (from cool to warm). To obtain 

a low complexity structure, the Host:Guest system with a blue emitting host doped with a green 

and a red guest dyes, was considered. Also, besides the color tuning ability, the devices should be 

flexible in terms of the applied potential, i.e. its color properties should remain the same for the 

human eye when different voltages were applied. To effectively achieve these properties, many 

blends were studied, and all their Current Density-Voltage-Luminance (JVL) and 

Electroluminescence (EL) characteristics studied in order to effectively choose the best blend 

possible for the desired characteristics. Table 2 shows the main blends studied using different 

Coumarin-related and DCM-related green and red wavelengths, respectively always having NPB as 

blue emitting host. Ir(ppy)3 was also considered for green dye but, because this is a phosphorescent 

material (see section 1.3.) and the results weren’t improved, it was later replaced. The best 

combination (bold) have its materials shown in figure 7 and the concentrations used in table 3. 

Table 2 – blend combinations studied for the production of the color tunable white OLEDs. 

 

Table 3 – Blend concentration for each sample produced. In order to decrease the number of degrees of 
freedom, one of the concentrations was kept constant, in this case the Coumarin-153. The experiments 
conducted that showed that the white color in our devices is more susceptible to changes with DCM1. 

 

Comparing this structure to other reports, this one is much simpler (only three organic layers) 

which goes accordingly to the application in mind. [45] Next sections show the main characterization 

for each sample considered on table 3. Each device was built at least twice to verify the reproducibility 

of the final structure. The best result of each test is, therefore shown though they didn’t present 

significant differences. 

 

 

HOST DYE1 DYE2 

NPB Coumarin-500 DCM1 

NPB Coumarin-6 DCMS 

NPB Coumarin-153 -------- 

NPB ---------- DCMS 

NPB Coumarin-153 DCM1 

NPB Ir(ppy)3 DCM1 

SAMPLE HOST DYE1 (x) DYE2 Terminology 

I1 NPB DCM1 (0.5% wt.) Coumarin-153 (1% wt.) Cool White 

I2 NPB DCM1 (0.7% wt.) Coumarin-153 (1% wt.) Barrier Limit White 

I3 NPB DCM1 (1% wt.) Coumarin-153 (1% wt.) Warm White 
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2. Device Dynamics 

2.1. Electroluminescence Spectra and Figures of Merit 

 

Figure 9 shows the EL spectra of devices I1, I2 and I3 overlapped with the visible spectrum. The 

main emission covers almost the entire visible region with a lower evidence between the 625 and 700 

nm. By increasing DCM1’s concentration, the middle peak at around 475 nm decreases indicating an 

interaction between different materials. Also, the third peak slightly redshifts from around 535 to 550 

nm and its relative intensity increases which indicates that this belongs to the emission of DCM1. 

With these interactions, the color tuning is achieved with DCM1 concentrations ranging from 0.5% 

(cool white) to 1% (warm white) with its barrier limit white at around 0.7%. This effect is therefore 

translated in terms of the correspondent figures of merit (appendix 2) shown in table 4 where the color 

coordinates (figure 10) change but always stay within the white region. The devices also show high 

values of CRI meaning a high capability of reproducing the colors of an object when illuminated with 

these sources, similar to other light sources (appendix 2.2.) proving the applicability of this device to 

general lighting. The CCT range goes even further than the typical known range for LEDs, 3000 to 

7000 K (appendix 2.1.), allowing for a wider range of color tunes.  

Table 4 – Figures of merit for devices I1, I2 and I3 at 32 V calculated from the relative intensity of all three 
devices (figure 9). 

SAMPLE CIEx CIEy CRI CCT (K) 

I1 0,238 0,317 91  2 10500 

I2 0,296 0,389 90  2 5100 

I3 0,375 0,484 89  2 3200 

Figure 9 – Normalized Electroluminescence spectra of devices I1, I2 and I3 at 32 V. The color tuning, is achieved 
by the increase of the peak intensity at around 550 nm changing the overall emitted color. The significantly high 
voltage is the result of a high resistivity ITO film. 
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The evaporation process didn’t offer a temperature controlled evaporation but, as the results were 

reproducible, it is safe to assume that the concentrations were correct. Still, this is just a supposition 

as a more detailed study must be conducted. 

2.2. Device Stability 

To assess on the stability of a lighting source, different voltages were applied across the device 

and the overall emission studied. Figure 9 already showed the main emission of the set of devices at 

32 V but nothing can be extrapolated only with these particular values. So, a stability test, with 

voltages between 26 and 32 V, was conducted as seen in figure 11.  

 

 

  

Figure 10 – CIE 1931 (x, y) Chromaticity diagram for 
devices I1, I2 and I3 at 32 V according to the results 
shown in table 4. All devices clearly emit in the white 
region. Though device I3 emits at the greenish-white, 
ideally it should be closer to the reddish-white for a good 
warm white emitter. To improve this, another red dye 
can be introduced which enhances the emission at this 
wavelength and redshifts the overall EL. This study was 
not conducted in this project.  
The red point represent the Equal Energy White (EEW) 
coordinates (0.33, 0.33).  

 

 

b) a) 
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Figure 11 - a), b), c) EL spectra for the tunable W-OLED i.e. for the devices composed with different 
concentration of DCM1 I1, I2 and I3 respectively. The inset on each graph shows a picture of the different device 
at 32 V for a naked eye interpretation. The applied voltages were 26, 28, 30 and 32 V for all samples. 

Table 5 shows the translated effects of the devices in terms of color coordinates. These values 

have a significantly high level of stability, given the low shift in color coordinates when different 

voltages are applied. The biggest shift is 0.010 which is undetectable by the human eye in the same 

color region. These results come after supposedly all traps (both natural NPB traps – Chapter I, 

section 1.2.2. – and energy levels of the dyes) quickly being filled, not contributing to big changes in 

the color coordinates hence increasing the stability. The quick saturation of traps can be attributed to 

the use of low level of dyes’ concentration.  

Table 5 – Color coordinates for devices I1, I2 and I3 at voltages between 26 and 32 V corresponding to the EL 
spectra shown in figure 3. 

 

2.3. Photophysical and energy level analysis: operation theory 

Taken into account the results in terms of color tuning and stability, the dynamics inside the blend 

must be understood in order to effectively allow for an improvement of the whole blend. In fact, the 

choice of DCM1 arose because this is a typical red emitting dye, used for enhanced luminance in red 

emitting devices [46] with emissions above 600 nm while C153 was chosen because it is a green 

Sample Voltage (V) CIEx diff CIEy diff 

I1 

26 0.225 ----------------- 0.325 ----------------- 

28 0.231 +0.006 0.315 -0.010 

30 0.238 +0.007 0.314 -0.001 

32 0.238 0 0.317 +0.003 

I2 

26 0.295 ----------------- 0.422 ----------------- 

28 0.291 -0.004 0.399 -0.003 

30 0.296 +0.005 0.393 -0.006 

32 0.297 +0.001 0.389 -0.004 

I3 

26 0.372 ----------------- 0.501 ----------------- 

28 0.377 +0.005 0.498 -0.004 

30 0.372 -0.005 0.490 -0.002 

32 0.375 +0.003 0.484 -0.006 

c) 
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emitting dye [47] with its main emission around 500 nm, according to the supplier. Upon studying the 

EL spectra from figure 9, the main emission of DCM1 peaks at around 550 nm, i.e. green-yellow 

emission and C153 appears to be absent or blue-shifted. 

To understand this behavior, a Photoluminescence (PL) analysis was conducted to each material, 

independently – figure 12. DCM1 shows a large emission at around 700 nm, C153 at around 510 nm, 

both different from what is seen in the EL, while NPB emits at around 450 nm this in accordance to 

what is seen in the EL. So either the main dyes’ emission is blue-shifted or there’s an interaction 

between the materials’ energy levels allowing for higher energy transitions. Prior to this work, a similar 

device but with an active layer of NPB:1%DCM1 was studied. [48] while a device with an active layer 

of NPB:1%C153 was built. Comparing these results to the EL spectra from figure 9, two things can 

be concluded: 

 When only NPB:C153 is considered, C153 peaks at around 490 nm, compared with the 500 

nm expected. Although this difference is low, it can be ascribed to material interaction between 

the materials for a higher energy emission. 

 The main emission spectrum (figure 9) shows similar shape to the NPB:1%DCM1 based device 

indicating that C153 is not playing a role in the overall emission for the warm white I3. Also, 

one of the major drawbacks of this device was the relative instable emission with the applied 

potential, contrary to the ones obtained, meaning that C153 plays an important role of 

stabilizing the entire matrix. 

 The peak at around 490 nm is the result of a blue-shift of the emission of NPB’s shoulder at 

around 510 nm enhanced by the blue-shift emission of C153 (figure 13) since a spectral overlap 

between C153’s PL peak and NPB’s shoulder can be seen. An increase of the emission at 490 

nm is observed when DCM1’s concentration is decreased (I1’s cool white and I2’s barrier limit 

white). 

 

Figure 12 – Normalized PL spectra of NPB, C153 and 
DCM1 independently.  
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This proves that, for higher DCM1 concentrations, C153 channels carriers from NPB to DCM1 

resulting in the stability of the color coordinates. Also, increasing DCM1 allows for more carriers to 

be channeled resulting in a redshift of the emission peak as shown in figure 9. 

Having all this information, a theory regarding the whole device operation can be proposed. 

Figure 14 shows the energy levels of all materials for a more efficient analysis about the device 

operation. The LUMO levels of both dyes are below NPB’s, which allows for an easy trapping of 

electrons, first from NPB to C153 and after to DCM1, all three HOMO levels are in similar energy 

levels meaning that holes can easily hop between them. 

 

Figure 14 – Energy levels of all layers constituent of the devices (table 1).  

Figure 15 shows all the steps that result in the main emission seen in figure 9 for the proposed 

theory following a carrier trapping behavior as described in chapter I, section 2.1. If the probability of 

electrons falling directly from the electrodes into the LUMO levels of both DCM1 and C153 is low, an 

indirect transition to the dyes through non-radiative transitions is expected. Considering first the 

interaction NPB-DCM1 (figure 15a), electrons fall from NPB’s LUMO into the excited levels of DCM1. 

Here, the probability of radiative transition is higher than the non-radiative to lower excited levels 

Figure 13 – EL spectra for a device with an active 
layer of NPB:1%C153 showing a slight blue-shift of 
C153’s main emission. 
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resulting in the emission through them – at higher energies – and not through its LUMO. Raising its 

concentration, there’s an increase of electrons hopping to DCM1, promoting radiative transitions of 

its lower excited levels, hence the redshift in the emission. Considering C153 (figure 15b), it serves 

as a facilitator of electron transition, allowing electrons to hop easier to DCM1, stabilizing the emission 

i.e. allowing for the energy levels of DCM1 to saturate more rapidly (the use of low concentrations 

allows to do so) and so, the device stability is achieved. C153’s non-radiative transition has higher 

probability over the radiative one at this blend configuration. At low DCM1 concentrations (figure 15c), 

C153’s emission is promoted similarly to DCM1’s (emission of the excited levels instead of its LUMO) 

as a result of the decrease of the amount of electrons that transit in a non-radiative way to DCM1.  

 

Figure 15 – Active layer operation. When electrons are injected, they channel to DCM1 in a non-radiative way 
without C153 (a) or when C153 is added (b) resulting in the emission of light through DCM1. When its 
concentration is decreased, the emission of C153 (c) is promoted resulted in the increase of the correspondent 
peak. 

This electrostatic nature of the electrons, or the result of the electric field application for the 

saturation of dopants, appears to have a more significant importance in the device operation opposite 

to the energy transfer mechanisms. Either there’s no spectral overlap between the absorption of the 

dyes and the emission of NPB, or if there is, it is somewhat irrelevant to the emission. Finally, the 

Förster transition cannot be excluded though given the low dopant concentration which results in a 

distance between molecules far above the Förster distance, it is possible to assume that is negligible. 

A Photoluminescent Excitation (PLE) spectrum would allow for a bigger understanding on this entire 

behavior and, though it was conducted, the results were inconclusive. The same analysis could also 

be done in solution but the bathochromic shift would mislead the final result. [49] 

3. Optoelectronic Characterization  

The optoelectronic characterization offers details regarding the viability of an OLED for its general 

application. It shows how the device operates over its entire regime, its values of brightness and gives 

great insight on device efficiency, providing information on how to proceed in improving such devices. 

In this matter, the JVL curves were taken from the set of devices – figure 16. 

Though similar in structure, devices I1, I2 and I3 show relative differences in terms of electro-

optical behavior. Device I3 (warm white) shows the best results in terms of current density and 

brightness maximum with 250 A/m2 and 160 Cd/m2 respectively. This can be a result of the increase 

of DCM1 with its emission promoted, increasing its brightness value. Although the maximum 

brightness was relatively lower, it is still in the same order of magnitude when compared to the work 

a) b) c) 
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done prior to this project. [48] Similarly, I1 (cool white) appears next (J~325 A/m2 and L~120 Cd/m2) 

where the less efficient emission increase of C153 and general decrease of the emission of DCM1 

may be the main responsible for these values. I2 (barrier limit white) has the worst values of the three. 

The main explanation falls exactly between the other two. This is a barrier limit, both the emissions 

of C153 and DCM1 are not being promoted in order to produce the color required. Here, the non-

radiative transitions appears to be more competitive for such concentrations. These devices could 

not be compared to other reports in the literature due to the non-use of an integrating sphere (which 

would show how much light is being emitted from all angles) though a measurement was conducted 

using the same equipment on an LED monitor. The luminance value obtained was 180 Cd/m2 which 

is close to the 160 obtained for I3. Also, for all kind of devices, it is not possible to confirm if the 

molecules all evaporated in the same way, even though the conditions were similar which means 

that, structurally they can be somewhat different (resulting in a different electrical interaction in the 

EML having, therefore a direct effect on the device operation).  

 

Figure 16 – JVL curves for devices I1, I2 and I3. The Luminance was taken without background light to reduce 
ambient effects. 

In terms of applied voltages, though devices I1 and I3 start emitting1 at around 20 V, I2 starts at 

around 17 V, which may confirm the theory that the structural deposition and/or electrical carrier 

dynamics throughout Host:Guest may have had an important role here. All devices were put to a limit 

voltage to understand their behavior. For I2 this resulted in a saturation regime at around 27 V for 

around 100 cd/m2 while I1 and I3 didn’t show saturation, giving the relative high threshold voltages.  

All devices start operating at a significantly high voltage. Of course, when general lighting is 

concerned, these values must be reduced, but care must be taken because this is not an optimized 

structure (it was not the objective of this work) so a further study must be conducted to improve carrier 

injection and decrease the operating voltage. Also, the resistivity of the ITO film is extremely important 

                                                      
1 Although it is commonly accepted that EL starts when the device falls in the SCLC region, there 
must a suitable electron-hole density in order to detect a measurable EL. 
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for the injection of holes and, in this case, the ITO films had relatively high resistivity values (30-60 

Ω/sq) having a direct effect in the threshold voltage. 

 

Figure 17 – a) log(IV) curves for the device I3 displaying the ohmic and SCLC regions. The curve’s slope is an 
evidence of a deep trap behavior (m>2). b) Efficiency dependence with voltage of device I3 for an OLED with 
emission area of 25 mm2. 

From the JVL curves, it is possible to gather information regarding the trapping dynamics (section 

1.2.2.) – figure 17a. Here, only device I3 was considered giving the previously presented results. 

Right below the operating voltage, current increases linearly, typical of an ohmic behavior where a 

small contribution of injected carriers is visible (m~2). Upon entering SCLC, i.e. VΩ ~12 V, the slope 

of 14 (>2) is clear evidence of a deep-trap behavior which follows the proposed theory. Given that 

the device requires such high applied voltages, the value of VTFL could not be determined since it 

disrupts before hitting it. 

Finally, the JVL curves can also give a better understanding on the viability of the operating 

mechanisms, i.e. the device efficiency 𝜂𝐿𝑉 (equation 4.1) – figure 17b.  

𝜂𝐿𝑉 =
𝐿

𝐽
=

𝐿𝐴

𝐼
 (4.1) 

where A is the area. From this data, assuming an emissive area, A=25 mm2 (figure 8-h), the 

biggest efficiency obtained was 1.1 cd/A for 25V (J=11.17 A/m2), a low value when compared to other 

devices (Chapter I section 1.3.). The main difference comes from: 1 - the theoretical 25% efficiency 

in harvesting the singlet excitons, 2 – only the emission at normal angle was considered (no 

integration was performed) and 3 - the non-optimized structure of the device. This optimization can 

include: 

 Thickness studies meaning how well a layer’s thickness can improve the 

injection/blockage/transport of carriers. [50] 

 Plasma treatment of the ITO substrate for work function control. [51] 

a) b) 
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 Cathode replacement. Studies showed that the use of Calcium2 passivated with a thin layer of 

Al can improve the electrode’s ability to inject electrons to the organic layers given its 

reasonably low work function. [3] 

 Addition of injection layers such as PEDOT:PSS and/or Lithium Fluoride for holes and 

electrons, respectively that would increase the charge injection. [52] 

 A stepwise structure for the carriers to provide a pathway with low energy barriers between the 

electrodes and the organic layers. [53] 

Still, this value is closer to other reports at a lower complexity and without integration  [28], [45], 

[54] and actually higher than the ones obtained for the same structure without C153. [48] Though this 

was not the focus of this project, one thing to have in mind when improving it is the need to find a 

trade-off between the thickness of the device, the correspondent electric field (which will have a direct 

effect on the charge mobility) and the device’s complexit accordingly to its main application. To see 

the I1 and I2’s trapping dynamics and efficiency values, please consult appendix 4. 

4. a.c. analysis 

4.1. Impedance Spectroscopy (IS) 

With the aid of IS (appendix 5) one, in principle, can construct the equivalent circuits and thereby 

obtain more insights about the operation of the materials, interfaces and devices. At 0 V dc, the device 

is typically in its ohmic regime so figure 18a shows the Capacitance and the Dielectric loss 

dependence with frequency. 

 

Figure 18 - a) Capacitance and dielectric loss curves for the device at 0 V dc typical for the ohmic regime. b) 
Cole-Cole plot, i.e. the dielectric loss as a function of the capacitance for the same device. Following a model 
described in the inset with a parallel RC for R1=110 Ω and C1=8.75 nF, a simulated curve was drawn showing 
a good fitting can be obtained for this model.  

                                                      
2 Calcium is extremely sensitive to environment so it needs to be encapsulated prior to the 
characterization. 

a) b) 
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From this data, the Cole-Cole plot, which depicts the imaginary part of the impedance (i.e. Im(Z)) 

or the dielectric loss versus the real part of the impedance (i.e. Re(Z)) or the capacitance when 

continuously sweeping the small signal frequency (under a particular dc bias) plot, can be 

extrapolated. The single semicircle shown in figure 18b is typical of an EL single-layer system which, 

at 0 V dc, is expected given that charge is being accumulated between the electrodes (appendix 5, 

figure 33a). Joining this with only one relaxation, this kind of behavior is typical of a parallel RC where 

the resistance describes the conductance of the layer while the capacitor is related to both the layer’s 

thickness and displacement current. This model usually includes a series resistance attached to the 

parallel RC, typically related to the resistance of the ITO film but, given the tendency of the G/w to 0 

at low frequencies, this is negligible. With the equations described for this model - 5.11 and 5.12 from 

appendix 5 – for low frequencies, the Capacitance value tends to its geometrical value (equation 

5.26), in this case 8.75 nF. Fitting the results with these expressions, the values R1 and C1 of 110 Ω 

and 8.75 nF respectively, are obtained and the simulated curve clearly shows the overlapping with 

the obtained values, meaning that this model can be correctly applied for this device. The relaxation 

frequency, given by the simplification shown in equation 5.21 from appendix 5, is around 165 kHz.    

The devices produced here followed a simple principle – that by using a HBL to block carriers in 

the EML, the emission (or the radiative transitions) would happen solely in this specific layer. IS can 

aid on the effectiveness of BCP as a whole blocking layer when emission is taking place. So, when 

entering in the SCLC, this behavior is expected to change. Holes are being accumulated in the 

HTL/HBL interface (appendix 5, figure 33b) and recombined with the electrons coming from the 

cathode. The whole dynamic of the device changes with this interfacial behavior and for that, the 

model must be modified. Figure 19a shows the Capacitance and the Dielectric loss dependence with 

frequency for the device at 20 V dc, the SCLC regime (figures 16 and 17).  

 

Figure 19 – a) Capacitance and dielectric loss curves for the device at 20 V dc to assure the SCLC showing 
interfacial changes in the capacitance dielectric loss values b) Cole-Cole plot, i.e. the dielectric loss as a function 
of the capacitance for the same device. Following a model described in the inset with a two sets of parallel RC 
in series for R1=17500 Ω, R2=105 Ω, C1=9 nF and C2=0.02 nF a simulated curve was drawn showing a good 
fitting can be obtained for this model. The equipment interference at low frequency results in a deviation of the 
obtained values. 

a) b) 



 

 
28 

The results show that there is an interfacial behavior when entering SCLC which is typical with 

the charge accumulation in the HTL. Two relaxations can be seen at low and high frequencies, 

respectively. The observed IS data is the result of more than one RC circuit which depend on each 

other. The model to be applied here should resemble the one shown in the inset of the Cole-Cole plot 

from figure 19b where it is seen both the interfacial and the bulk dependences.  Assuming that, if the 

frequency tends to 0 Hz (given by the simplification of equation 5.13 from the appendix 5), the 

Capacitance value tends again to its geometrical value. The values of R1=17.5 kΩ, R2= 105 Ω, C1=9 

nF and C2=20 pF allow for a good fitting to the obtained results. The discrepancy observed in the 

Cole-Cole plot at very low frequencies can be ascribed, in a first hypothesis, to typical equipment 

fluctuations measurements although another physical process cannot excluded meaning that another 

model could be applied. Clearly, the carrier trapping inside the HTL governs the OLED behavior and 

changes in this layer thickness must allow further color modulation. 

4.2. Capacitance-Voltage 

Given the differences shown between figure 18 and 19 for different applied voltages, the device 

showed different behaviors in terms of capacitance. To further understand this behavior, the 

capacitance values from -1.4 to 22 V were measured – figure 20.  

 

So, from equation 5.26 and assuming a thickness  

𝑑1 = 𝑑𝐵𝑙𝑒𝑛𝑑 + 𝑑𝐴𝑙𝑞3
+ 𝑑𝐵𝐶𝑃 = 90 nm, 𝜀𝑟 of 3.3 (a typical value for organic materials and similar 

between them [55]) and the emissive area of 0.25 cm2, the geometrical value  of 𝐶𝑔𝑒𝑜1 =
𝜀𝑟𝜀0𝐴

𝑑1 
= 8.11 

nF is obtained, which is similar to the 8.71 nF the device shows at low voltages (i.e. ohmic region). 

When increasing the applied voltage, the capacitance value should increase to the geometric value 

considering only Alq3 and BCP as the bulk,  𝐶𝑔𝑒𝑜2 =
𝜀𝑟𝜀0𝐴

𝑑2 
 with a thickness 𝑑2 = 𝑑𝐴𝑙𝑞3

+ 𝑑𝐵𝐶𝑃 = 40 nm, 

of 18.3 nF as holes are accumulated in the HBL/HTL interface. The reason why this isn’t happening 

may well be the same reason to why the high voltages are required for the device to operate – the 

non-optimized electrodes interfaces. It seems that the voltage required to inject holes into the blend 

Figure 20 – Capacitance-voltage measurements of 
the device shown in figures 9 and 10 at a fixed 
frequency of 1000 Hz. 
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is closer to the one necessary for electrons to cross the p-type layers, hence the capacitance values. 

Still, the threshold voltage Vt, of 3.1 V, seen by the slight increase of the capacitance shows that, 

though in a small number, some holes are effectively being injected. Finally, the built-in potential, Vbi 

of 11.6 V given by the small peak of 8.74 nF indicates the transition from ohmic to SCLC and the 

recombination starts happening, decreasing the capacitance values. This value goes according to 

what is seen on figure 17a where there’s some carrier density injected during operation. Also, by 

optimizing the structure as described in section 3 of this chapter, the curve may present a behavior 

similar to the one expected (appendix 5.2 has a complete analysis of a typical CV curve). 

4.3. Aging Studies  

The understanding of the aging mechanism of the organic layers is an important step towards the 

fundamental dynamics happening inside each device. It usually results in the loss of device 

performance which includes its luminance and subsequently, efficiency. After evaporation, all devices 

were left non-encapsulated and exposed to the air (stress conditions), facilitating reactions with 

ambient gases such as oxygen, which leads to oxygenation of the organic layers and rupture of the 

entire device. IS can help understand these chemical aging mechanisms as its effects on the 

capacitance values and relaxation frequencies, fr, can be studied.  

In this matter, the capacitance and dielectric curves were taken right after its evaporation and 

with a 24 hour step for three days, with the device being kept on ambient air to promote this aging. 

Figure 21a shows these curves at 0 V dc 

 

Figure 21 – a) Capacitance and dielectric loss for the same device at 0 V dc after 0, 24, 48 and 72h at room 
temperature and ambient air. b) Correspondent Cole-Cole plots overlapped with its simulated curves using the 
R1 and C1 values of table 6 always assuming a parallel RC model. 

There is a capacitance drop between measurements that can be attributed to degradation of the 

Alq3/Al interface allowing electrons to move closer to the recombination zone. This confirms a 

deficiency in charge accumulation resulting in the decrease of the capacitance. Also, a shift in the f r 

to lower frequencies as a result of the increase in the HTL resistance was expected [56] and, though 

this is generally true (if we assume that the relaxation frequency for 0 and 24h is more or less the 

same), the data from 72h show reversible changes as fr appears to increase from the value for 48h. 

a) b) 
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From the Cole-Cole plot from figure 21b, assuming the model remains unchanged, the values for R1 

and C1 are extrapolated (table 6 confirming the capacitance drop and the overall resistance increase). 

Table 6 – Simulated C1 and R1 with calculated relaxation frequency for the device characterized on figure 21 
after 0, 24, 48 and 72h. 

  For the SCLC regime results are shown in figure 22.  

 

Figure 22 – a) Capacitance and dielectric loss for the same device at 20 V dc after 0, 24, 48 and 72h on room 
temperature and ambient air. b) Correspondent Cole-Cole plots overlapped with its simulated curves using the 
R1, R2, C1 and C2 values of table 7 always assuming a model with a series of two parallel RC. 

In a similar way found in the ohmic model, changes after 48 h are observed. As this behavior is 

similar in both situations, a consideration must be done to ascribe it to an intrinsic physical 

phenomena. One possible explanation is a different reorganization at a molecular level that appears 

at this aging level. After that, the expected aging behavior proceeds similarly with the 0 V dc.   

Table 7 – Simulated C1, R1, C2 and R2 with calculated relaxation frequency, fr1 and fr2, for the device 
characterized on figure 19 after 0, 24, 48 and 72h. 

5. Large Area 

A SSL device must efficiently emit light on a broad number of substrates which includes emission 

through flat large area panels. One of the most interesting characteristics of OLEDs is that they offer 

the same luminous flux of lower luminous intensity by simply expanding the emission area. Some of 

Time (h) C1 (nF) R1 (Ω) fr (kHz) 

0 8.75 110 165 

24 8.17 93 209 

48 7.33 425 51 

72 6.63 140 171 

Time (h) C1 (nF) R1 (Ω) C2 (nF) R2 (kΩ) fr1 (kHz) fr2 (MHz) 

0 9.0 105 0.02 17.50 6.35 476 

24 8.1 100 0.06 15.95 7.74 167 

48 7.5 485 0.09 15.50 8.60 229 

72 6.9 125 0.06 16.50 8.78 133 

b) a) 
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these main issues related with increasing the emission area are discussed in appendix 6 which 

basically include non-uniform light emission, hot spot, power loss, and heat generation. Some of these 

issues may be overcome with an optimized thermal evaporation system that provides uniform organic 

films. [57] 

As a proof of concept, the emission through larger areas was attempted using a thermal 

evaporator capable of depositing organic films for emissions larger than the 0.25 cm2 used so far. 

Until here (with the Criolab evaporation system), there was no control on the evaporation temperature 

but on the applied power instead. The evaporation rate was controlled by changing the voltage 

applied in the crucible so the temperature was high enough to evaporate all materials (considering 

only the blend). For the large area system (Kurt J. Lesker), when only the blend is concerned and to 

secure a trade-off between the materials used for deposition and the thickness needed, the 

evaporation temperature was controlled. All materials have different melting points (table 1) 

implicating that the temperature needed to be set in order to achieve the desired thickness and 

concentrations. Having this point optimized, the structure was kept unchanged, the devices were built 

on a low resistivity ITO film (4-8 Ω/sq from Delta Technologies) and the first concentration attempted 

was similar to the ones used for I3 (table 3) for a warm white source. The results are described in 

figure 23. 

 

Figure 23 – a) barrier limit OLED with an active layer of 2.25 cm2. b) JV curve for the device in figure 23a. The 
use of a low resistivity ITO film decreased the threshold voltage to around 11 V. Inset shows the EL spectra for 
a typical barrier limit white emission. This barrier white emission was obtained for concentrations of 98.3%:1%:1 
of NPB:C153:DCM1 respectively. 

 An increase in the active area of 9 times to 2.25 cm2 – figure 23a was achieved. This device 

showed a broad, stable emission even with increased area. The current density and the threshold 

voltage both decreased as a result of the increase in the emission area and the use of a low resistivity 

ITO film. The inset in figure 23b suggests a behavior typical of a barrier limit white emission (I2 – 

figure 9) which implies that, when increasing the emission area and changing the ITO resistivity, the 

temperature control implies a tuning in the concentrations for each equipment, as a result of the 

different melting points of the blended materials.  

a) b) 
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The broad emission of this device proved it was possible to increase the emission area even 

further and so, figure 24 shows the typical cool white light (for an attempted barrier limit white – table 

2) on a 16 cm2 emission area, i.e. an increase of 64 times of the first area attempted. The level of 

defects – specially non-emissive areas – start  to become visible as seen in figure 24a, which may 

appear during the cleaning or the evaporation processes as these become even more relevant for a 

stable emission. One of the advantages of the use of OLEDs is the broad emission through all 

directions and can be clearly seen in the lateral side of figure 24a.  

 

 

Even though this adjustment was necessary, the final result is still quite satisfying because 1) this 

limit still remains low and 2) the physical models proposed for low emission area (chapter IV, section 

2.2.) are being confirmed. The increase of the emission area was effectively achieved. It showed that 

this is still a work in progress as the main emission shows some level of defects. As the main objective 

was the scale-up, this serves as a proof of concept of the applicability for a SSL device. The next step 

includes the optimization of the films’ production to secure a uniformity between layers which, for 

example, includes the optimization of the patterning of the ITO film. The final device produced had a 

different patterning technique where the anode area did not contact the tape used. This resulted in 

the emission shown in figure 25 where the number of non-emissive areas decreased. So the main 

proof of concept is achieved as these devices can be applied for general lighting sources. As a 

curiosity, the maximum luminance (75 cd/m2) and the efficiency (0.7 cd/A) were also taken showing 

a decrease in these values which are a result of the increased area (increased area results in the 

decrease of the luminance - [58]). The final considerations in terms of optimization includes an 

encapsulation process to avoid ambient problems as seen before. Finally, once this is secured, the 

device optimization explained in section 3, part IV can be included for operation voltage reduction. 

a) b) 

Figure 24 – a) cool white OLED with an active layer of 16cm2 and highlighted defects. b) JV curve for the device 
in figure 24a with threshold voltage of around 11 V. Inset shows the EL spectra for a cool white emission with a 
low emission from DCM1 which may be the result of a low material evaporation. Increasing this should increase 
the amount of DCM1 in the final evaporated blend. This cool white emission was obtained for concentrations of 
98.3%:1%:0.7 of NPB:C153:DCM1 respectively. 



 

 
33 

 

Figure 25 – a) cool white OLED with an active layer of 16cm2 produced with an optimized ITO patterning. b) JVL 
characteristic for this device showing a voltage drop for the threshold voltage as a result of a decrease in the 
ITO’s resistivity.    

 

  

a) b) 



 

 
34 

  



 

 
35 

Chapter V: Conclusion and future trends 

Color tunable White Organic Light Emitting Diodes (W-OLEDs) based on a single emitting layer 

composed with NPB (blue host), Coumarin-153 (green guest) and DCM1 (red guest) for a host:guest 

RGB emission, were successfully produced. By changing DCM1’s concentration from 0.5% to 1% 

and keeping C153’s at 1%, the final color, shown in the Electroluminescence (EL) spectra and 

translated in changes in the figures of merit of the corresponding devices, could be tuned from cool 

to warm white. This EL behavior of the blend was attributed to the interaction between NPB and the 

dopant dyes. While DCM1 was extremely important in the color tuning process, C153 behaved as a 

carrier channel and as a stabilizer of the overall emission. The final device configuration was 

ITO/Blend/BCP/Alq3/Al where BCP was chosen as Hole Blocking Layer and Alq3 as an Electron 

Transport Layer and, given the emission through the blend, this proves that they are both behaving 

efficiently. As a proof of concept, this same structure was applied in large area panels which allowed 

for an increase of 9 and 64 times the first initial area attempted. This specific part showed that an 

optimization study is critical for the broad emission of the device. 

The optoelectronic characterization showed that, although high operating voltages were seen, 

luminance as high as 160 cd/m2 was achieved together with device efficiencies up to 1.1 cd/A. These 

values are comparable with the ones obtained for similar experimental conditions. The high operating 

voltages can be, in first approximation, addressed to the high resistivity ITO films (which have a 

significant effect on the hole injection) and/or the non-optimized electrodes-organic layer interfaces. 

In terms of operating behaviors, the device showed a typical Space Charge Limited Current (SCLC) 

beginning at around 12 V, while it started emitting at around 20 V with a deep trap kind of behavior. 

This was expected given that the energy levels of the dopants, especially the Least Unoccupied 

Molecular Orbital (LUMO), fall deep compared to NPB’s.  

Though the devices were reproducible, the non-control of the evaporation temperature, which 

could have an influence in the concentration of the final blended films deposited, could present some 

difficulties when applying this structure to other evaporation systems. Still, as it was shown by the 

large area devices, this was only translated in slight adjustments in the blend’s fine tuning for each 

evaporation equipment. A co-evaporation could also be considered but, given the low concentrations 

used for DCM1 and C153, it can’t be applied. 

The Impedance Spectroscopy (IS) analysis conducted showed that the device can be modelled 

with simple sets of parallel RC circuits, not only in the ohmic but also in the SCLC regions. The Cole-

Cole plot of this last one suggests the appearance of a second relaxation for lower frequencies that 

must be proved by conducting the same analysis for frequencies below 100 Hz. IS was also used as 

an aging probe study which was translated in both the reduction of capacitance (in fact related to the 

loss of charge retaining ability in the Alq3/Al interface) and general increase in resistance (which 

lowers the relaxation frequency) for both regimes. 
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It is the first time this color tuning ability, allied with high stability, low level of complexity and large 

area emission is reported. This, of course with the main application for general lighting in mind. Also, 

it used 100% commercially available materials for the device structure. None of them were lab 

synthesized specifically for this project which increases, even more, the device’s simplicity. 

Comparing this set of results with other light sources available (appendix 2.2.), this may offer a wider 

range of color tunes with the same, if not higher, values of Color Rendering Index (CRI). In this matter, 

OLEDs for general lighting may be a sustainable solution to the ever increasing scarcity problem. 

Also, considering the effects that artificial lighting can have in the human body, these different tunes 

can help simulate the natural daylight while also improving productivity, discussed more extensively 

in the motivation where the effects of lighting in the biologic cycle is considered. 

In terms of future perspectives, there is a lot that needs to be done to effectively produce a 

commercially interesting Solid State Lighting (SSL) device. First, the introduction of another red dye 

could red-shift the color coordinates resulting in, for example, more faithful warm white devices. Red 

Nile can be a good candidate giving its emission on late-red, infrared wavelengths and suitable 

HOMO-LUMO levels [59]. Because the operating voltage was high and the efficiency quite low, an 

optimization study must be conducted. This optimization can come from lowering the ITO’s resistivity 

or even replacement, changing the overall device thickness, or improve the injection of carriers by 

introducing injection layers which would decrease the amount of carriers accumulated between the 

electrodes. In this matter, keeping the complexity level low is extremely important, so there must be 

a trade-off between the device efficiency and its complexity to decrease the production costs. All of 

this implies, of course, optimized evaporating systems to decrease the levels of defects shown in the 

large area panels. The increase of the area proved a great advantage but work must still be done to 

increase it even further. This can include an adaptation of the cleaning process and the evaporation 

system itself. Finally, two important aspects must be taken into account for future work. First, 

considering that all the materials used are soluble, the device can be built in wet-deposition systems 

such as Roll-to-roll (R2R), decreasing, even more, the device production costs if a mass production 

is expected. Second, given the applicability of this structure, a flexible Polyethylene substrate can be 

used as an application for flexible organic electronics. 

 

  



 

 
37 

References 

 

[1] A. Jägerbrand, “New Framework of Sustainable Indicators for Outdoor LED (Light Emitting 
Diodes) Lighting and SSL (Solid State Lighting),” Sustainability, vol. 7, no. 1, pp. 1028–1063, 
2015. 

 

[2] V. K. Khanna, Fundamentals of Solid-State Lighting, 1st ed., no. 518. Press, CRC, 2014. 

 

[3] N. Thejokalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting 
technology - A review,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2696–2723, Jun. 
2012. 

 

[4] J. F. Duffy and C. a. Czeisler, “Effect of Light on Human Circadian Physiology,” Sleep Med. 
Clin., vol. 4, no. 2, pp. 165–177, 2009. 

 

[5] L. Schlangen, “Circle of light The effect of light on our sleep/wake cycle principal scientist at 
Philips Executive summary,” Philips, 2014. 

 

[6] C. W. Tang and S. a. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 
51, no. 1987, pp. 913–915, 1987. 

 

[7] J. H. Burroughes, D. D. C. Bradley,  a. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. 
Burns, and  a. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 
347, p. 539, 1990. 

 

[8] S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: 
Status and perspective,” Rev. Mod. Phys., vol. 85, no. 3, pp. 1245–1293, Jul. 2013. 

 

[9] R. H. Friend, R. H. Friend, R. W. Gymer, R. W. Gymer,  a. B. Holmes, J. H. Burroughes,  a. 
B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, R. N. Marks, D. D. C. Bradley, C. Taliani, 
D. D. C. Bradley, D. a. Dos Santos, M. Lo, J. L. Bredas, M. Logdlund, W. R. Salaneck, W. R. 
Salaneck, D. a. Dos Santos, J. L. Bre, and V. Slyke, “Electroluminescence in conjugated 
polymers,” Nature, vol. 397, pp. 121–128, 1999. 

 

[10] Y. Zhang and S. R. Forrest, “Triplets contribute to both an increase and loss in fluorescent 
yield in organic light emitting diodes,” Phys. Rev. Lett., vol. 108, no. June, pp. 1–5, 2012. 

 

[11] L. Pereira, “The Organic-LED Basics,” in Organic Light Emitting Diodes: The Use of Rare 
Earth and Transition Metals, 1st ed., Singapure: Pan Stanford Publishing, 2011, pp. 11–22. 

 

[12] S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices - Targeting 
High Current Densities and Control of the Triplet Concentration, 1st ed. Springer, 2011. 

 

[13] L. Pereira, “Bulk Carrier Transport: Hopping,” in Organic Light Emitting Diodes: The Use of 



 

 
38 

Rare Earth and Transition Metals, 1st ed., Singapure: Pan Stanford Publishing, 2011, pp. 64–
66. 

 

[14] V. M. Silva and L. Pereira, “The nature of the electrical conduction and light emitting efficiency 
in organic semiconductors layers: The case of [m-MTDATA] - [NPB] - Alq3 OLED,” J. Non. 
Cryst. Solids, vol. 352, pp. 5429–5436, 2006. 

 

[15] Dongge Ma and I. A. H ummelgen, “Charge Carrier Mobility and Electroluminescence in a 
Green-Emitting Alternating Block Copolymer with a Methoxy Bi-Substituted Chromophore,” 
Brazilian J. Phys., vol. 30, no. 2, pp. 392–397, 2000. 

 

[16] M. Mart, “Charge Transport in Organic Semiconductors With Application To,” 2010. 
 

[17] L. Pereira, “Injection Limit: The Schottky Barrier at Electrode– Semiconductor Interface,” in 
Organic Light Emitting Diodes: The Use of Rare Earth and Transition Metals, 1st ed., 
Singapure: Pan Stanford Publishing, 2011, pp. 46–53. 

 

[18] V. K. Khanna, “Understanding Lighting Processes from Luminescence Theory,” in 
Fundamentals of Solid-StateLighting, 1st ed., Press, CRC, 2004, pp. 65–67. 

 

[19] A. Köhler and H. Bässler, “From Orbitals to States,” in Electronic Processes in Organic 
Semiconductors, 1st ed., Wiley-VCH, Ed. Singapure, 2015, pp. 25–31. 

 

[20] B. C. Krummacher, V.-E. Choong, M. K. Mathai, S. a. Choulis, F. So, F. Jermann, T. Fiedler, 
and M. Zachau, “Highly efficient white organic light-emitting diode,” Appl. Phys. Lett., vol. 88, 
no. 11, p. 113506, 2006. 

 

[21] J.-H. Jou, S. Kumar, A. Agrawal, T.-H. Li, and S. Sahoo, “Approaches for fabricating high 
efficiency organic light emitting diodes,” J. Mater. Chem. C, 2015. 

 

[22] J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent 
device.,” Science, vol. 267, no. March, pp. 1332–1334, 1995. 

 

[23] P. E. Burrows, S. R. Forrest, S. P. Sibley, and M. E. Thompson, “Color-tunable organic light-
emitting devices,” Appl. Phys. Lett., vol. 69, no. 20, p. 2959, 1996. 

 

[24] C. L. Lin, T. Y. Cho, C. H. Chang, and C. C. Wu, “Enhancing light outcoupling of organic light-
emitting devices by locating emitters around the second antinode of the reflective metal 
electrode,” Appl. Phys. Lett., vol. 88, no. 2006, pp. 111–114, 2006. 

 

[25] J. Liu, “Pure white OLED based on an organic small molecule: 2,6-Di(1H-benzo[d]imidazol-2-
yl)pyridine,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 149, pp. 48–53, 2015. 

 

[26] V. Gohri, S. Hofmann, S. Reineke, T. Rosenow, M. Thomschke, M. Levichkova, B. Lüssem, 
and K. Leo, “White top-emitting organic light-emitting diodes employing a heterostructure of 
down-conversion layers,” Org. Electron. physics, Mater. Appl., vol. 12, no. 12, pp. 2126–2130, 



 

 
39 

2011. 
 

[27] T. Schwab, M. Thomschke, S. Hofmann, M. Furno, K. Leo, and B. Lüssem, “Efficiency 
enhancement of top-emitting organic light-emitting diodes using conversion dyes,” J. Appl. 
Phys., vol. 110, no. 8, p. 083118, 2011. 

 

[28]  a. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 
in Alq3 films,” J. Lumin., vol. 131, no. 5, pp. 1037–1041, 2011. 

 

[29] B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state 
lighting,” Adv. Mater., vol. 16, no. 18, pp. 1585–1595, 2004. 

 

[30] W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, and J. H. Kwon, “Ideal host and guest 
system in phosphorescent OLEDs,” Org. Electron. physics, Mater. Appl., vol. 10, no. 2, pp. 
240–246, 2009. 

 

[31] A. Köhler and H. Bässler, “Förster and Dexter Type Energy Transfer,” in Electronic Processes 
in Organic Semiconductors, 1st ed., Singapure: Wiley-VCH, 2015, pp. 119–123. 

 

[32] T. Forster, “10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation,” 
Discuss. Faraday Soc., vol. 27, no. 10, p. 7, 1959. 

 

[33] A. Misra, P. Kumar, M. N. Kamalasanan, and S. Chandra, “White organic LEDs and their 
recent advancements,” Semicond. Sci. Technol., vol. 21, no. 7, pp. R35–R47, 2006. 

 

[34] S. Chen, Q. Wu, M. Kong, X. Zhao, Z. Yu, P. Jia, and W. Huang, “On the origin of the shift in 
color in white organic light-emitting diodes,” J. Mater. Chem. C, vol. 1, p. 3508, 2013. 

 

[35] X. Zhang, Z. Wu, B. Jiao, D. Wang, D. Wang, X. Hou, and W. Huang, “Solution-processed 
white organic light-emitting diodes with mixed-host structures,” J. Lumin., vol. 132, no. 3, pp. 
697–701, 2012. 

 

[36] L. Pereira, “Methods for Processing Organic Semiconductors,” in Organic Light Emitting 
Diodes: The Use of Rare Earth and Transition Metals, 1st ed., Singapure: Pan Stanford 
Publishing, 2011, pp. 33–36. 

 

[37] S. H. Kim, J. Jang, and J. Y. Lee, “High efficiency phosphorescent organic light-emitting diodes 
using carbazole-type triplet exciton blocking layer,” Appl. Phys. Lett., vol. 90, no. 2007, pp. 1–
4, 2007. 

 

[38] Sigma-Aldrich, “NPB (N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine).” 
ref:556696. 

 

[39] M. a. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-
efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. 
Phys. Lett., vol. 75, no. 1, pp. 4–6, 1999. 



 

 
40 

 

[40] Sigma-Aldrich, “BCP (Bathocuproine).” ref:699152. 
 

[41] Sigma-Aldrich, “Alq3 (Tris-(8-hydroxyquinoline)aluminum).” ref:444561. 
 

[42] G. Zhong, K. Kim, D. W. Lee, and J. Il Jin, “Photoluminescent and electroluminescent 
properties of DCM-1 dispersed poly(p-phenylene vinylene) derivatives,” Synth. Met., vol. 156, 
no. 9–10, pp. 731–735, 2006. 

 

[43] Sigma-Aldrich, “DCM1(4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-
pyran).” ref:410497. 

 

[44] Sigma-Aldrich, “Coumarin-153.” ref:546186. 
 

[45] V. K. Rai, R. Srivastava, and M. N. Kamalasanan, “White organic light-emitting diodes based 
on blue fluorescent bis(2-(2-hydroxyphenyl)benzoxazolate)zinc [Zn(hpb)2] doped with DCM 
dye,” Synth. Met., vol. 159, pp. 234–237, 2009. 

 

[46] C.-T. Chen, “Evolution of Red Organic Light-Emitting Diodes: Materials and Devices,” Chem. 
Mater., vol. 16, no. 23, pp. 4389–4400, 2004. 

 

[47] M. L. G. Horng  Ja Papazyan, a Maroncelli, M, “Subpicosecond Measurements of Polar 
Solvation Dynamics - Coumarin-153 Revisited,” J. Phys. Chem., vol. 99, no. 48, p. 17337, 
1995. 

 

[48] J. Costa, “Fabrico e caracterização de W-OLEDs em substrato rígido e flexível João Miguel 
Marreiro Costa Fabrico e caracterização de W-OLEDs em substrato rígido e flexível,” 2013. 

 

[49] V. Bulović, R. Deshpande, M. . Thompson, and S. . Forrest, “Tuning the color emission of thin 
film molecular organic light emitting devices by the solid state solvation effect,” Chem. Phys. 
Lett., vol. 308, no. 3–4, pp. 317–322, 1999. 

 

[50] S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, “Interference effects in bilayer organic light-
emitting diodes,” Appl. Phys. Lett., vol. 74, no. 14, p. 1939, 1999. 

 

[51] H. Park, H. Kim, S. K. Dhungel, J. Yi, S. Y. Sohn, and D. G. Jung, “Impedance Spectroscopy 
Analysis of Organic Light-Emitting Diodes Fabricated on Plasma-Treated Indium-Tin-Oxide 
surfaces,” J. Korean Phys. Soc., vol. 51, no. 3, p. 1011, 2007. 

 

[52] L. Ying, C.-L. Ho, H. Wu, Y. Cao, and W.-Y. Wong, “White polymer light-emitting devices for 
solid-state lighting: materials, devices, and recent progress.,” Adv. Mater., vol. 26, p. 2459, 
2014. 

 

[53] J.-H. Jou, Y.-S. Wang, C.-H. Lin, S.-M. Shen, P.-C. Chen, M.-C. Tang, Y. Wei, F.-Y. Tsai, and 
C.-T. Chen, “Nearly non-roll-off high efficiency fluorescent yellow organic light-emitting 



 

 
41 

diodes,” J. Mater. Chem., vol. 21, no. 34, p. 12613, 2011. 

 

[54] W. Chen, L. Lu, and J. Cheng, “Characterization of two-emitter WOLED with no additional 
blocking layer,” Optik (Stuttg)., vol. 121, no. 1, pp. 107–112, 2010. 

 

[55] W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based 
on molecular materials,” Org. Electron., vol. 2, no. 1, pp. 1–36, 2001. 

 

[56] S. Nowy, W. Ren,  a Elschner, W. Lovenich, and W. Brutting, “Impedance spectroscopy as a 
probe for the degradation of organic light-emitting diodes,” J. Appl. Phys., vol. 107, pp. 54501–
54509, 2010. 

 

[57] J. W. Park, “Large-area OLED lighting panels and their applications,” in Organic light-emitting 
diodes (OLEDs): Materials, devices and applications, Woodhead Publishing Limited, 2013, 
pp. 572–608. 

 

[58] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White 
organic light-emitting diodes with fluorescent tube efficiency,” Nature, vol. 459, no. 7244, pp. 
234–238, 2009. 

 

[59] P. Greenspan, E. P. Mayer, and S. D. Fowler, “Nile red: a selective fluorescent stain for 
intracellular lipid droplets, J. Cell Biol. 100 (1985) 965–973.,” J. Cell Biol., vol. 100, no. 10, pp. 
965–973, 1985. 

 

[60] N. Thejokalyani and S. J. Dhoble, “Novel approaches for energy efficient solid state lighting 
by RGB organic light emitting diodes – A review,” Renew. Sustain. Energy Rev., vol. 32, pp. 
448–467, 2014. 

 

[61] N. Zheludev, “Commentary. The life and times of the LED - a 100-year history,” Nat. Photonics, 
vol. 1, pp. 189–192, 2007. 

 

[62] H. Johnston, “Isamu Akasaki, Hiroshi Amano and Shuji Nakamura win 2014 Nobel Prize for 
Physics,” Physics World, 2014. [Online]. Available: 
http://physicsworld.com/cws/article/news/2014/oct/07/isamu-akasaki-hiroshi-amano-and-
shuji-nakamura-win-2014-nobel-prize-for-physics. [Accessed: 09-Mar-2015]. 

 

[63] G. C. M.N. Kamalasanan, Ritu Srivastava and P. T. and A. K. Arunandan Kumar, “Organic 
Light Emitting Diode,” in Knowledge Creation Diffusion Utilization, 1st ed., M. Mazzeo, Ed. 
India: Sciyo, 2010, pp. 183–185. 

 

[64] S. Nowy, “Understanding losses in OLEDs: optical device simulation and electrical 
characterization using impedance spectroscopy,” 2010. 

 

[65] D. L. Chinaglia and G. Gozzi, “Espectroscopia de impedancia no laboratorio de ensino,” Rev. 
Bras. Ensino Fis., vol. 30, no. 4, p. 4505, 2008. 

 



 

 
42 

[66] J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” 
Semicond. Sci. Technol., vol. 26, no. 3, p. 034002, 2011. 

 

[67] Brooke Jensen, “Dealership LED Lighting: The Brightest Way to Add Value to Your Lot,” 
Dealers United, 2015. [Online]. Available: http://blog.dealersunited.com/sales/dealership-led-
lighting-the-brightest-way-to-add-value-to-your-lot. [Accessed: 09-Sep-2015]. 

 

  



 

 
43 

Appendices 

1. Solid State Lighting 

Artificial lighting is used by mankind since the fire era. From fire to candles, bulb lamps to the 

current technology, a big evolution has happened. 200 years ago came the first artificial lighting 

source – the incandescent lamp, where a voltage is typically applied in a tungsten filament allowing 

it to emit light. Still, though they are the least expensive, they have the lowest efficiency (most of the 

energy is emitted in the form of heat) and lifetime (1000–2000h of use). Then came the fluorescent 

lamp, a low-pressure mercury-vapor gas discharge lamp covered with phosphor. When an electric 

current is applied, it excites the mercury in the tube allowing it to emit Ultraviolet Light (UV) that will 

further be absorbed by the phosphor resulting in the emission of visible light (around 50 % of the UV 

emitted is used to promote the emission of the Vis light). They can be 3 to 5 times more efficient than 

the standard incandescent lamps and last 10 to 20 times longer. Still, they use highly pollutant 

materials, such as mercury. Compact fluorescent lamps (CFLs) came later with some improvements 

but still based on a similar principal. [8],[60]  

None of these technologies offer an efficient way of producing white light so, later came the need 

to improve these devices in order to reduce the heat generation and the use of pollutant materials. 

Solid State Lighting (SSL) came to supplant some of the drawbacks referred before. The working 

principle of these devices is based on solid state electroluminescence. Light is emitted upon the 

injection of charge carriers (electrons and holes) into semiconductor materials where they recombine 

and, from the energy decay of this recombination, comes the emission of light with a wavelength 

corresponding to the energy of its transition. The first Light Emitting Diode (LED) was reported in 

1928. Since then, several advances have been made leading to the current high efficiencies and 

lifetimes (40000 to 10000h) but some drawbacks remain. Firstly, they require the use of direct-gap 

semiconductors to allow for the radiative transition. Secondly, they are point light sources having a 

limited viewing range and lastly, in order to produce white light, they use either a red–blue–green 

array or a phosphor-coated blue LED which lowers the efficiency. [61] Thus, the development of this 

field garnered an impressive reputation leading to the Nobel Prize in physics in 2014. [62] 

2. Color quality of white light sources 

For illuminating purposes, a white source must possess a high illumination quality to be applied 

to general lighting which is translated accordingly to the figures of merit correspondent to each source: 

the Commission Internationale d’Eclairage (CIE) chromaticity coordinates (x,y), the Color Correlated 

Temperature (CCT) and the Color Rendering Index (CRI).[2] This allows for qualitatively define the 

color quality of such devices. With this considered, it is possible to address on different color sources 

and see how efficient they are when lighting is concerned. 

2.1. Figures of merit 

a) CIE 1931 (x,y) 
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The human eye perceives light intensity and color as a result of a cerebral interpretation from the 

behavior of two different types of cells in the human eye’s retina: the rod and the cone cells, 

respectively. The rod cells are more sensitive than cones, easily saturating under high ambient 

illumination. The cone cells, on the other hand, function well under brighter conditions giving rise to 

color sensitivity and being composed of three independent stimuli sensitive3 to three main groups of 

wavelengths – Red, Green and Blue (RGB). 

This means that all colors can be expressed as a combination of the three primary colors. From 

this interpretation, it was possible to define every color in the visible range as a three coordinate’s 

space – X, Y and Z respectively– and so the CIE 1931 (X, Y, Z) was created. Following some linear 

transformations with the tristimulis RGB, the CIE 1931 (x, y) was created, a horseshoe-shaped 

diagram where each boundary represents a monochromatic light (figure 26). The arc near the center 

represents the Planckian locus, the coordinates of black body radiation at temperatures ranging 1500 

to 10000 K. For general illumination, light source should have chromaticity coordinates close to the 

EEW (0.33, 0.33).  

 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
 (1) 𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
 (2) 𝑧 =

𝑍

𝑋 + 𝑌 + 𝑍
 (3) 

𝑥 + 𝑦 + 𝑧 = 1 ↔ 𝑧 = 1 − (𝑥 + 𝑦)   (4) 

 
b) CRI 

The Color Rendering index (CRI) defines how well a light source can reproduce the colors of the 

environment it is focused on. It attempts to quantify how different a set of test colors appears when 

illuminated by the source compared to when the same test colors are illuminated by the standard 

illuminant with the same correlated color temperature. The CRI is obtained from the CIE 1931 (x,y) 

                                                      
3 The three types of cone cells are called S (short), M (medium) and L (long), each of them sensitive 
to different wavelengths. 

Figure 26 – CIE 1931 (x,y) including different 
color regions, planckian locus and color 
temperatures [2] 
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and it is measured in 0-100 scales, with 100 representing true color perfection. A monochromatic light 

will have a low CRI - an orange lamp, for instance, will only ever render orange colors, whereas a 

polychromatic light with balanced RGB counterparts will have a high CRI being able to reproduce all 

different colors from different objects. It is thus important that light sources possess good color 

rendering so as to ensure that objects appear natural. Illumination-quality white light usually implies 

a CRI equal or above 80. Figure 27 shows the effects of light sources with different values of CRI 

clearly showing the main interest in building high CRI devices. 

c) CCT 

True color temperature is the color of radiation emitted from a perfect blackbody radiator4 held 

at a particular temperature, being defined in units of Kelvin.  The light of an incandescent bulb comes 

from thermal radiation, being the color temperature associated with the temperature of the filament. 

Light sources other than incandescent lamps are described in terms of the Color Correlated 

Temperature, CCT. The CCT is the temperature of a blackbody radiator that has a color that most 

closely matches the emission from a non-blackbody radiator which can also be obtained with the EL 

spectrum. For comparison purposes, figure 28 shows typical CCT values for different sources which 

also includes the range that this project’s OLEDs got.[60]  

 

Figure 28 – CCT values for different sources including range for the produced OLEDs. 

                                                      
4 A blackbody radiator is a source that is able to emit light with all wavelengths. 

Figure 27 – The effects of light sources with high (90) and 
low (60) Color Rendering Indexes. A high CRI means that 
a color source effectively covers the entire visible 
spectrum being able to reproduce all the surrounding 
colors. Low CRI, on the other hand, may lack Red, Green 
or Blue counterparts resulting in inefficient reproducibility 
of the surrounding environment. (adapted from [67]) 
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2.2. Light Sources  

Table 8 – Basic EL spectra of different light sources and corresponding CCT and CRI values for comparison 
purposes with the result obtained with this project.[63] 
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3. Radiative and Non-Radiative Transitions 

 
Figure 29 – Energy transitions in a Host:Guest system (section 2.1.) namely the energy transfer (either through 
radiative a) and non-radiative i.e. the Förster transition b)) and the carrier trapping c). 
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4. I1 and I2 Optoelectronical Characterization 

 
Figure 30 – a) JV curves and b) current efficiency values for devices I1 and I2. 

5. Impedance spectroscopy of OLED 

To assess about the electrical behavior of materials or devices, Impedance Spectroscopy 

(IS) is a great tool since it allows for the understanding of inherent processes inside of them, which 

includes interfacial (electrode organic or organic-organic) information, such as charge injection, 

blockage, accumulation and diffusion coefficients.  It is based on the appliance of an alternate signal 

(ac) between two electrodes and measure the real and imaginary parts of the impedance with 

frequency. With the results obtained, one must compare with a RC model that can correctly describe 

the device’s behavior. 

 
Figure 31 – IV curve of an ideal diode. For IS measurements, a bias voltage VDC is chosen followed by the 
appliance of an alternating signal VAC(t) and the corresponding IAC(t) is obtained. [64] 
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Considering a small alternating signal V(t) – figure 31 – with and ac counterpart 𝑉𝐴𝐶(𝑡) =

𝑉𝐴𝐶 . cos (2𝜋𝑓 ∗ 𝑡) and its response I(t): 

 

𝑉(𝑡) = 𝑉𝐷𝐶 + 𝑉𝐴𝐶(𝑡) (5.1) 

𝑉(𝑡) = 𝑉𝐷𝐶 + 𝑉𝐴𝐶 . cos (2𝜋𝑓. 𝑡) (5.2) 

𝐼(𝑡) = 𝐼𝐷𝐶 + 𝐼𝐴𝐶 (5.3) 

𝐼𝐴𝐶(𝑡) = 𝐼𝐷𝐶 + 𝐼𝐴𝐶 . cos (2𝜋𝑓. 𝑡 + 𝜑) (5.4) 

 

where 𝜑 is a phase shift  between voltage and current. Defining 𝑍̂(𝑓) as the complex 

impedance i.e. the ratio of the applied alternating voltage and the current response in complex 

notation 𝑉̂ = 𝑉𝐴𝐶 . exp (𝑖. 2𝜋𝑓. 𝑡) and 𝐼 = 𝐼𝐴𝐶 . exp (i .(2𝜋𝑓. 𝑡 + 𝜑)) comes: 

𝑍̂(𝑓) =
𝑉̂

𝐼
=

𝑉𝐴𝐶

𝐼𝐴𝐶
. 𝑒𝑥𝑝(−𝑖𝜑) = 𝑅𝑒(𝑍̂) + 𝑖. 𝐼𝑚(𝑍̂) (5.5) 

|𝑍̂| = √𝑅𝑒2(𝑍̂) + 𝐼𝑚2(𝑍̂) (5.6) 

𝜑 = arctan
𝐼𝑚(𝑍̂)

𝑅𝑒(𝑍̂)
 (5.7) 

Depending on the measurement equipment used, different equivalent may be used to 

correctly represent the complex impedance. For semiconductor devices, the capacitance 𝐶 and the 

dielectric loss5 (the conductance 𝐺 divided by the angular frequency𝑤 = 2𝜋𝑓) are the most commonly 

used 

 

𝐶(𝑤) =
1

𝑤
.

−𝐼𝑚(𝑍̂)

𝑅𝑒2(𝑍̂) + 𝐼𝑚2(𝑍̂)
 (5.8) 

𝐺(𝑤)

𝑤
=

1

𝑤
.

𝑅𝑒(𝑍̂)

𝑅𝑒2(𝑍̂) + 𝐼𝑚2(𝑍̂)
 (5.9) 

 

5.1. Equivalent circuits 

As explained before, the results obtained can be fitted into a model that correctly describes the 

device. Because every layer of an organic material has its own conductivity and dielectric constant, 

the device can be represented by a set of a parallel RC circuit depending on its behavior with the 

applied signal. The impedance of a parallel RC is described by equation 5.10 and, for the work in 

question, two circuits are considered (figure 32), both based on this equation. [64], [65] 

𝑍̂𝑅𝐶 =
1

1
𝑅 + 𝑖𝑤𝐶

 (5.10) 

 

                                                      
5 Dielectric loss is also defined as the loss of energy (such as heat) when varying the electric field. 
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                  Figure 32 – Models considered for an IS analysis based on a) single and b) double parallel RC circuits 

 

For circuit 1: 

𝑍̂ = 𝑍̂𝑅1𝐶1
 (5.11) 

𝐶(𝑓) =
𝐶1

𝑤2𝑅1
2𝐶1

2 + 1
 (5.11) 

𝐺(𝑤)

𝑤
=

𝑤𝑅1

𝑤𝐶1
2𝑅1 + 1

 (5.12) 

For circuit 2: 

𝑍̂ = 𝑍̂𝑅1𝐶1
+ 𝑍̂𝑅2𝐶2

 (5.14) 

𝐶(𝑤) =
𝑅1

2𝐶1 + 𝑅2
2𝐶2 + 𝑤2𝑅1

2𝑅2
2. 𝐶1𝐶2. (𝐶1 + 𝐶2)

((𝑅1 + 𝑅2)2 + 𝑤2𝑅1
2𝑅2

2. 𝐶1𝐶2. (𝐶1 + 𝐶2)2
 (5.13) 

𝐺(𝑤)

𝑤
=

1

𝑤
[
𝑅1 + 𝑅2 + 𝑤2𝑅1𝑅2(𝑅1𝐶1

2 + 𝑅2𝐶2
2)

((𝑅1 + 𝑅2)2 + 𝑤2𝑅1
2𝑅2

2(𝐶1 + 𝐶2)2
] (5.14) 

 

The relaxation frequency, given by the middle in the general decrease in the capacitance at a 

specific frequency can be generally described by equations 5.15-5.17.This is the frequency where 

carriers stop following the applied signal.   

𝐶(𝑓𝑟) = 𝐶𝑓 +
𝐶𝑖 − 𝐶𝑓

2
 (5.15) 

𝐶𝑖 = lim
𝑓→0

𝐶(𝑓) (5.16) 

𝐶𝑓 = lim
𝑓→∞

𝐶(𝑓) (5.17) 

 

From equation 5.15 the relaxation frequency,  𝑓𝑟 can be determined as a simplification of equation 

5.15-5.17 for the corresponding model.  

For circuit 1: 

𝐶𝑖 = 𝐶1 (5.18) 

𝐶𝑓 = 0 (5.19) 

𝐶(𝑓𝑟) =
𝐶1

2
 (5.20) 

𝑓𝑟 =
1

2𝜋𝐶1𝑅1
 (5.21) 

a) b) 
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For circuit 2: 

𝐶𝑖 =
(𝑅1

2𝐶1 + 𝑅2
2𝐶2)

(𝑅1 + 𝑅2)2
 (5.22) 

𝐶𝑓 =
(𝐶1𝐶2)

𝐶1 + 𝐶2
 (5.23) 

𝐶(𝑓𝑟) =
1 

2

(𝑅1𝐶1+𝑅2𝐶2)

((𝑅1+𝑅2)2(𝐶1+𝐶2)2)
  (5.24) 

𝑓𝑟 =
1

2𝜋

(𝑅1 + 𝑅2)

𝑅1𝑅2(𝐶1 + 𝐶2)
 (5.25) 

5.2. Capacitance-Voltage Measurements 

 
Figure 33 – CV measurement of an OLED device. The values were left out purposely being of particular interest 
the behavior and not the constitution of the device (adapted from [64])  

Figure 33 shows an example of a Capacitance-Voltage (CV) measurement in an OLED device. 

Its purpose is to give an insight of some of the inherent characteristics and what to expect when 

conducting this type of measurement. To ensure this analysis is correctly done, three assumptions 

must be taken into account: 

1. The device is generically structured as Cathode/HTL/ETL/anode with the emission taking 

place at the HTL; 

2. The HTL is less resistive than the ETL meaning charge will be injected easily; 

3. The relative permittivity,𝜖𝑟, of the of ETL and HTL is assumed to be the same. 

Finally, expression 5.15 gives the geometric capacitance which is important whenever charge is 

being accumulated in an interface: 

𝐶𝑔𝑒𝑜 =
𝜖𝑟𝜖0𝐴

𝑑
 (5.26) 
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where 𝜖0 is the electric constant, A the area considered and 𝑑 the thickness. By analyzing figure 

33 it is possible to describe all phases occurring: 

(a) 𝑉 < 𝑉𝑡 charge is not injected into the device and the value measured corresponds to the 

geometric capacitance of all the device (figure 34a); 

(b) 𝑉 = 𝑉𝑡 injection of holes into the anode/HTL interface begins; 

(c) 𝑉𝑡 < 𝑉 < 𝑉𝑏𝑖 holes accumulate at the HTL/ETL interface meaning that capacitance will rise to 

the value of the geometric capacitance of ETL (figure 34b). This comes as a result of the 

resistivity differences between layers; 

(d) 𝑉 = 𝑉𝑏𝑖 limit applied bias for charge accumulation. Electrons will surpass the value of 

resistivity and will be able to be injected into the ETL. Once charge reaches the HTL/ETL 

interface, annihilation of charge will begin, photons will be emitted and charge will decrease;  

(e) 𝑉 > 𝑉𝑏𝑖 charge decreases being able to get negative values, which is common for a bipolar 

injection; 

 

Figure 34 – geometric capacitance of the device analyzed for a) 𝑉 < 𝑉𝑡 and b) 𝑉𝑡 ≤ 𝑉 < 𝑉𝑏𝑖  based on eq. 5.26, 

C2>C1. 

6. Increasing the emission area 

One of the major objectives in this project was to increase the emission area while keeping the 

structure unchanged. This constituted the greatest challenge and the basic proof of concept on 

whether or not this materials could effectively be applied for SSL devices. The effects of increasing 

area are briefly discussed in section 5, chapter IV though a more detailed analysis must be done to 

understand the key issues related to the fabrication of large-area OLEDs. [57], [66] 

a) Short-Circuit: unwanted particles on the glass substrate or formed during evaporation may 

result in a short pathway for current flow and thus the short circuits. These particles can be 

accumulated as a result of an insufficient cleaning process, misalignment of evaporation 

masks, vacuum problems (that can result in shadow effects), migration of the cathode 

through the organic layers, among others.  Also, it can arise when an initial bias voltage is 

applied, or as the bias voltage is varied. More seriously, however, it occurs even during a 

very stable operation and, though it can be suppressed, it is still a reliability issue. The main 

solution for this problem comes from the changing on the different layer’s thickness which 
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can include the use of a tandem device structure (with individualized OLEDs on top of each 

other) without any compromise on the device performance. 

b) Non-uniform light distribution: this problem is directly related to differences in terms of 

device thickness in the emissive layer. It has different thicknesses across its layer, the 

resulting current will also be different by which the light emission distribution becomes non-

uniform. Also, non-uniformity can arise from the limiting conductivity of the transparent anode, 

where the injected current from the edge of a panel hardly reaches its central region. The 

problem becomes more serious with increasing luminous intensity. It is also induced by a 

variation of organic films during large-area thermal evaporation. To tackle this problem, one 

may need to consider the ratio between the effective horizontal resistance of the anode and 

the vertical resistance of the OLED device to promote an effective carrier path between 

layers. Again, the tandem structure can be of use though employing a highly conductive metal 

(Ag) sandwiched between two conductive oxides, or the use of low-resistance auxiliary metal 

lines to the central region can improve significantly the emission uniformity. The luminance 

uniformity can also be enhanced by reducing a contact resistance between OLED electrodes 

and driving boards. The contact area between them is preferred to be large to promote 

injection from every direction. 

c) Hot Spot: this is the main cause for the device lifetime as spikes and a rough surface of the 

transparent anode together with particles result in an increase in current and thus local heat 

generation.  

d) Efficiency reduction: the power loss as the resistance of the anode is raised directly affects 

the power efficiency. This entails various forms of device optimization as discussed 

throughout this project and include functional layers in the device configuration such as 

electron and hole blocking layers, interlayers for exciton blocking, etc. 

e) Heat Generation: as seen in other light sources (see motivation), thermal-related issues are 

a big problem. With increased area, the device must be prepared to promote efficient heat 

dissipation – heat sink – to block device degradation. Here, the encapsulation plays an 

important role here as heat transfers to a heat sink through its encapsulation layers. The 

typical glass encapsulation has low thermal conductivity resulting in nitrogen accumulation 

inside the device, separating the organic layers from the heat sink. Thin-film encapsulations, 

on the other hand, has the best heat dissipation as a result of a short heat transfer pathway. 
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