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Abstract

Coastal upwelling is a phenomenon of ocean dynamics which the Oceanographers are

very interested in detect and delimitate. However, it is a tedious work to manually extract

the boundaries of the upwelling area, so automatic recognition is necessary. Recently it

has been proposed a new algorithm for automatic upwelling detection and delineation of

its fronts, the One Seed Expanding Clustering (SEC) (Nascimento et al. (2015)). The novel

features of this algorithm, compared to Seeded Region Growing (SRG) methods, include

a novel homogeneity criterion in the format of a product rather than the conventional

difference between a pixel value and the mean of the values over the region of interest and,

the automatic threshold of the homogeneity criterion which is mathematically derived

from the criterion, used in the self-tuning version of the method.

The main goal of this dissertation was to advance in the development of this algorithm

in the following aspects: to make a comparative study between distinct automatic thresh-

olding techniques and the self-tuning version of the SEC algorithm, and also one between

the SEC and several SRG algorithms selected from the literature. It was developed an

iterative version of the SEC algorithm which allowed to correctly and automatically rec-

ognize discontinuous upwelling areas. The experimental results were analyzed using

supervised evaluation measures, for images with ground-truth map, and unsupervised

measures for images without ground-truth.

For the images with ground-truth map the SEC-SelfTuning achieved good results (F-

measure ≥ 0.7) in 62.3% of the images, the SEC-Kittler was the most reliable of the SEC

versions with 78.7% positive evaluations and, the method of Adams and Bischof (1994)

was best of the SRG methods with 83.6% good scores, but with manual seed selection. For

images without ground-truth, the mean rate of positive classifications, using the selected

evaluation measures, was 69.7% for the SEC-SelfTuning, 72.4% for the best SEC version,

SEC-Ridler, and 89.5% for the Adams and Bischof (1994) method.

Keywords: Automatic detection of upwelling, seeded region growing, automatic thresh-

olding, evaluation methods for image segmentation.
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Resumo

Afloramento costeiro é um fenómeno relacionado com a dinâmica dos oceanos que

os oceanógrafos estão muito interessados em detectar e delimitar. No entanto, é um tra-

balho repetitivo e aborrecido de fazer, de modo que é necessário um sistema automático.

Recentemente, foi proposto um novo algoritmo para a detecção automática de aflora-

mento e delimitação das suas frentes, o One Seed Expanding Clustering (SEC) (Nascimento

et al. (2015)). As novas características deste algoritmo, em comparação com os métodos

Seeded Region Growing (SRG), incluem um novo critério de homogeneidade, no formato

de um produto, em vez da habitual diferença entre um valor de um pixel e a média dos va-

lores dentro da região de interesse e também, o threshold do critério de homogeneidade é

derivado matematicamente deste critério, e é utilizado na versão auto-afinada do método.

O objetivo principal desta dissertação foi avançar no desenvolvimento deste algoritmo

nos seguintes aspectos: fazer um estudo comparativo entre diversas técnicas de threshol-
ding automático e a versão auto-afinada do algoritmo SEC, e também desenvolver um

estudo entre o algoritmo SEC e vários algoritmos SRG selecionados da literatura. Foi de-

senvolvida uma versão iterativa do algoritmo SEC que permitiu reconhecer correctamente

e automaticamente áreas de afloramento descontínuas. Os resultados experimentais fo-

ram analisados utilizando medidas de avaliação supervisionadas, em imagens com mapa

de ground-truth, e medidas não supervisionadas para imagens sem ground-truth.

Para as imagens com ground-truth, o SEC-SelfTuning alcançou bons resultados (F-
measure ≥ 0,7) em 62,3% das imagens, o SEC-Kittler foi o mais fiável das versões do SEC

com 78,7% avaliações positivas, o método de Adams e Bischof (1994) foi o melhor método

SRG com 83,6% de boas pontuações, mas com a selecção manual de sementes. Para

imagens sem ground-truth, a taxa média de classificações positivas, utilizando as medidas

não supervisionadas seleccionadas, foi de 69,7% para o SEC-SelfTuning, 72,4% para a

melhor versão do SEC, o SEC-Ridler, e 89,5 % para o método de Adams e Bischof (1994).

Palavras-chave: Detecção automática de afloramento costeiro, seeded region growing, th-
resholding automático, métodos de avaliação de segmentação de imagem.
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Introduction

1.1 Motivation

Coastal upwelling is an oceanographic phenomenon characterized by the presence, at the

sea surface, of colder and nutrient rich waters which are driven by the wind force over

the continental shelf, and by filaments of upwelled waters extended for a large area. It is

expressed by alterations in the movement of surface water masses perpendicular to the

coast line, which come to replace warmer waters, usually surface water with low nutrient

levels. Diverse ecological effects derive from upwelling, but one impact is especially note-

worthy. When upwelling brings nutrient-rich waters to the surface, it supports blooms of

phytoplankton which are the energy base for large animal populations higher in the food

chain, making its detection indispensable to fisheries. Delimitation of this phenomenon is

also important to the development of climate models, detection of pollutants and general

coastal monitoring.

Remote sensing is a widely applied technique in the detection of the upwelling phe-

nomenon. Obtained with the thermal infrared channels of the Advanced Very High

Resolution Radiometer (AVHRR) sensor on board NOAA-n satellite series, images of sea

surface temperature (SST) are used by the oceanographers, as described by Nascimento

and Franco (2009) and Nascimento et al. (2012), to identify the transition zone between

the colder upwelled waters and warmer oceanic waters. SST images must be processed

by the Oceanographers and a high resolution color scale is applied to each one. It is a

very time-consuming process to manually tune the color scale in large volumes of im-

ages, which is a important step to get the best contrast definition for a good visualization

of the phenomenon. The identification and continuing monitoring of upwelling might

be an expensive process, so automatic detection tools are a demand, not only because

of the large quantity of data daily collected, which puts an enormous load of work on
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Oceanographers hands, but also because of the subjectivity inherent to visual inspection,

so an objective approach to extract the upwelling is necessary. Also, it is too difficult

to deal with upwelling regions with transition zones characterized by smooth thermal

boundaries, where it is hard to make the distinction between the objects of interest and

the background.

Figure 1.1: SST image of the portuguese coast (1 August 1998). The temperature values
are codified in a color scale, where blue represents colder waters and red warmer waters.
The white pixels represent land in the continental area, or noise derived from clouds or
transmission errors from the satellite in the ocean area.

Different approaches have been proposed in the past to do automatic upwelling de-

tection from remote sensing images, like the example image in Figure 1.1, where the

upwelling areas are represented by blue tones corresponding to colder waters and, the

lateral yellow bar represents contains the color that codifies the temperature at the bound-

ary.

In (Kriebel et al. (1998)) artificial neural networks were applied to wind data and

remotely sensed SST data, for the analysis and prediction of coastal upwelling; after that

in (Arriaza et al. (2003)) artificial neural networks were also used for basic pre-processing

tasks such as cloud masking, and an connectionist technique, using regional features,

identified ocean structures like upwelling areas; while in (Chaudhari et al. (2008)) detec-

tion and segmentation of upwelling regions was made using neural networks, which are

trained using K-means clustering results and a statistical coefficient used to determine

the presence of upwelling; in (Marcello et al. (2005)) it was proposed an automatic up-

welling extraction approach based on a coarse-segmentation methodology followed by a

fine-detail growing process; Plattner et al. (2006) developed a semi-automated method

to classify upwelling areas, which derives from wind measurements, and it is based on

statistical characterization; Nieto et al. (2012) proposed an improved automatic detection
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of mesoscale frontal activity based on the edge detection algorithm initially presented

by Cayula and Cornillon (1992); also in (Tamim et al. (2013)) for automatic detection

and extraction of upwelling areas an approach is presented, based on the evaluation and

comparison between two unsupervised classification methods, Otsu’s method and Fuzzy

C-means. However, these approaches require, to achieve an admissible segmentation,

a more or less complex pre-processing stage, with exception for the work of Tamim et

al. (2013).

In (Nascimento et al. (2005)) the segmentation of SST images was successfully achieved

using the fuzzy c-means algorithm, however it did not provide an automatic mechanism

to make the delimitation of the frontier of upwelling areas. This problem was solved,

as described in (Nascimento and Franco (2009)), by adding a step of frontier detection

after the segmentation phase. Nascimento et al. (2012) developed a fully automated

fuzzy clustering method to solve the problem of automatic recognition of upwelling ar-

eas in SST images. The system presented, FuzzyUPWELL, provides a framework for an

unsupervised segmentation and delimitation of upwelling areas. The FuzzyUPWELL

system integrates an unsupervised fuzzy clustering algorithm, the Anomalous Pattern

Fuzzy Clustering (AP-FCM), a threshold procedure to determine the upwelling fronts

that combines a variety of features extracted from the obtained clusters, a mechanism

to delimitate the upwelling areas by fuzzy boundaries defined from measures of classifi-

cation uncertainty, and a Graphical User Interface (GUI). Although the FuzzyUPWELL

had shown to be a reliable system, it only operates over the temperature data during

the segmentation process, not taking directly into account the geographic information

about the clusters it creates. Moreover, the delineation of the upwelling front is a stage

separated from the segmentation process.

Therefore, in (Nascimento et al. (2015)) it was proposed a new method, the Seed

Expanding Cluster algorithm (SEC) inspired on the popular Seeded Region Growing

(SRG) algorithm (Adams and Bischof (1994)), and that takes into account not only the

temperature value of the pixel, but also its spacial context, in order to model the process

of upwelling formation as a process of combining pixels, into a progressive bigger region,

according to the similarity of their temperatures to the temperature of a seed point at the

beginning, which is chosen as the pixel with lower temperature. The SEC algorithm has

shown promising results in its ability to automatically recognize upwelling area and its

frontline from SST images.

The SEC algorithm does not require posterior steps of delimitation of the frontier of

upwelling areas. In each iteration of the algorithm a new frontier to the cluster is being

defined, so the final frontier contains the pixels that delimit the upwelling area.

1.2 Description and Context

The Seed Expanding Cluster (SEC), presented in the context of solving the problem of

coastal upwelling detection considering spacial information, is inspired in the Seeded
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Region Growing method introduced by Adams and Bischof (1994), but is a considerably

modified version of it, and it belongs to the region growing family of algorithms. The SRG

algorithms are characterized by growing a region whenever its interior is homogeneous

according to a certain feature of interest, and the region growing begins from one initial

seed or multiple seeds if the objective is to segment into multiple areas, by adding similar

neighboring pixels according to a homogeneity criterion.

The SEC algorithm is conceptually similar to most of SRG methods, but it is impor-

tant to salient its specifications. The algorithm starts its growing process from one seed

only and adds pixels to the region using a novel homogeneity criteria, in the form of a

product rather than a difference as usual in most of the approaches of SRG algorithms.

Other important characteristic of this algorithm is that the threshold of the homogeneity

criterion is mathematically derived from this criterion, which is a unique feature as com-

pared to other adaptive thresholding SRG algorithms presented in the literature. This last

characteristic is used in the Self-tuning Seeded Expanding Clustering (SEC-SelfTuning,

for short) version. To control the expansion of the region, a threshold value for the ho-

mogeneity criterion must be set, however it is sometimes a difficult and tedious work to

the user to do, so to fully automate the SEC algorithm a self-tuning version was proposed.

It is important to compare this self-tuning version with other versions of the algorithm,

where automatic thresholding techniques can be used to find an adequate threshold value

without user intervention. This methods to tune the threshold value are already applied

in image segmentation, where the calculated threshold value is used to separate an object

from the background of the image. Different thresholding methods must be tested and

their effectiveness evaluated. The self-tuning version of the algorithm will be compared

with other version of the algorithm where the homogeneity threshold value is estab-

lished by the selected automatically thresholding methods (Ridler and Calvard (1978);

Otsu (1979); Kittler and Illingworth (1986)).

An iterative version of the algorithm is also to be produced. The SEC algorithm

only grows one region, however an extension of it will extract several regions of the

phenomenon under study, which sometimes does not cover a contiguous area of ocean.

The new SEC algorithm not only requires that methods to tune the threshold value are

tested, but it is also important to benchmark its segmentation results comparing them to

other results from SRG methods present in the literature. So, it will be possible to validate

the effectiveness of the algorithm and also learn about its behavior on different sets of

images, evaluating its segmentation results. So, an experimental study will be executed

to measure the effectiveness of the chosen automatic thresholding methods (Ridler and

Calvard (1978); Otsu (1979); Kittler and Illingworth (1986)) to tune the similarity thresh-

old of the SEC algorithm, as well as to validate the performance of the SEC algorithm to

segment upwelling images in contrast with a representative sample of SRG algorithms

(Adams and Bischof (1994); Gambotto (1993); Shih and Cheng (2005); Verma et al. (2011);

Zanaty and Asaad (2013)). There are different methods for evaluating segmentation algo-

rithms, even so there is no generally accepted methodology. Some images, of the database
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of images to be analyzed, have assigned to them a binary ground-truth map, delineated

by expert oceanographers, representing areas of upwelling and non-upwelling. For these

images, supervised techniques to evaluate image segmentation can be applied, which

compare the ground-truth to the segmentation result (Zhang (1996)). However, many

images can not have a reference image to evaluate the quality of the segmentation, and for

fully automate the process and avoid tedious pre-processing by the experts, it is necessary

to use unsupervised evaluation techniques (Zhang et al. (2008)).

Many methods are necessary to complete the proposed study, and for convenience

short names were attributed for each one, and can be seen in the Table 1.1. The abbre-

viated names are divided in the the categories of SEC versions, SRG methods used in

the comparative study and unsupervised evaluation measures that were used to test the

quality in images that did not had ground-truth map associated to them.

Table 1.1: Table that contains the abbreviations for the different methods that were used

in the studies, divided in separated categories and with the reference to the section of the

dissertation document where the correspondent method was presented.

Category Method Abbreviation Described In

SEC Versions

SEC-Otsu Section 3.1.1 and 2.3.2

SEC-Kittler Section 3.1.1 and 2.3.3

SEC-Ridler Section 3.1.1 and 2.3.1

SEC-SelfTuning Section 3.1.1 and 3.1.3

SEC-FineTuning Section 3.1.1 and 4.3

SRG Methods

AdamsSRG Section 2.2.3.1

OtsuVermaSRG Section 2.2.3.2

MeanVermaSRG Section 2.2.3.2

ShihSRG Section 2.2.3.3

GambottoSRG Section 2.2.3.4

ZanatySRG Section 2.2.3.5

Unsupervised

Evaluation Measures

Intra_LN Section 2.4.2, Measure (i)

Inter_Otsu Section 2.4.2, Measure (vi)

Inter_FRC Section 2.4.2, Measure (iv)

Intra_FRC Section 2.4.2, Measure (iii)

Intra_Liu Section 2.4.2, Measure (ix)

CalinskiHarabasz Section 2.4.2, Measure (vii)

DaviesBouldin Section 2.4.2, Measure (viii)
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1.3 Main Contributions

The main contributions of this dissertation are three-fold:

1. To make a comparative study among distinct automatic thresholding techniques

(Ridler and Calvard (1978); Otsu (1979); Kittler and Illingworth (1986)) and the self-

tuning version of the SEC algorithm in order to find the best thresholding method

to guide the growing of the cluster;

2. To realize an extensive comparative experimental study between several SRG algo-

rithms established in the literature (Adams and Bischof (1994); Gambotto (1993);

Shih and Cheng (2005); Verma et al. (2011); Zanaty and Asaad (2013)) and the

SEC algorithm, to study its effectiveness on the automatic upwelling detection for

several years of images;

3. To develop an iterative version of the SEC algorithm that allows to recognize dis-

continuous upwelling regions. This iterative version of SEC sequentially extracts

clusters one by one until a pre-specified number of clusters be recognized. The

iterative procedure will be used on the two previous comparative studies.

Transversal to the former contributions is the comparative evaluation of the exper-

imental results. For that, several supervised and unsupervised validation indices

will be applied.

1.4 Document Organization

The rest of the document is organized as follows. Chapter 2 essentially describes the state

of the art in themes related to this work. It starts with a general description of image seg-

mentation techniques and, after that has an overview on Seeded Region Growing methods,

which include an analysis on the reference SRG algorithm (Adams and Bischof (1994))

and other SRG methods, as well as their applications presented in the recent literature.

Several automatic thresholding techniques are also analyzed and evaluation measures

for image segmentation algorithms are also studied. In Chapter 3, the SEC algorithm

is characterized, the approach for the iterative version is presented and, the application

of the SRG methods to the detection of the upwelling phenomenon is described. The

experimental study is described in the Chapter 4 and, the different comparative studies

as well as the necessary complementary studies are exposed.
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2
Related Work

2.1 Introduction to Image Segmentation

The process of partitioning an image into multiple segments, with the objective of chang-

ing the representation of an image into something meaningful and easier to analyze is

called image segmentation. It is the low-level operation that targets to partitioning im-

ages by determining disjoint and homogeneous regions or, equivalently, by finding edges

or boundaries and, it is a first step before applying to images higher-level operations such

as recognition, semantic interpretation, and representation. This was explained in Luc-

cheseyz and Mitray (2001), which presented a survey on color image segmentation since

most of the methods till that time were focused on segmentation of gray-level images.

There are a lot of different segmentation techniques present in the literature (Haral-

ick (1983); Pal and Pal (1993); Szeliski (2010)). Some methods perform better on different

kinds of images, so there is no universal method accepted and it is still a challenging

problem to achieve good image segmentation.

Segmentation process is classified into different methods based on the user interac-

tion level needed. There are manual segmentation, semi-automatic segmentation and

automatic segmentation. For this work the most relevant method is the automatic image

segmentation which is divided in four techniques (Fan et al. (2001); Dass and Devi (2012);

Preetha et al. (2012); Dantulwar and Krishna (2014)):

• Thresholding techniques are based on the assumption that adjacent pixels whose

value (gray intensity, color, etc.) lies within a certain range belong to the same

class. This technique performs better with images that include only two opposite

components. These techniques ignore all the spatial relationship information of

the images, and so they do not deal well with noise, blur at object boundaries, or

multiple component image segmentation.
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• Boundary-based techniques use the assumption that pixel values change rapidly

at the boundary between two regions. The basic principle is to apply some of the

gradient operators convolving them with the image. The edges are rapid transitions

between two different regions and can be detected when high values of the gradient

magnitude are found. After finding edges, they have to be linked to form closed

boundaries of the regions. This might involve some post-procedures which can be

very time-consuming.

• Region-based techniques partition an image into regions that are similar according

to a criterion of homogeneity. Homogeneity criteria are based on some threshold

value which can be difficult to specify, because it depends on the image data. It is

in this category that the Seeded Region Growing (SRG) technique is inserted and it

will be largely discussed further on.

• Hybrid techniques which integrate the results of boundary detection and region

growing techniques expecting to obtain better overall results in segmentation. There

is a great variety of ways to mix different techniques, but they might be expensive

in computational power sometimes. More about this combination of methods can

be seen in the survey of Freixenet et al. (2002).

2.2 Seeded Region Growing (SRG)

The Seeded Region Growing (SRG), which is the reference method in the literature, is

presented by Adams and Bischof (1994) is a robust, rapid and free of tuning parameters

algorithm for segmentation of intensity images. The method requires the input of a

number of seeds that can be individual pixels or a set of them, which will control the

formation of regions where the image will be segmented. The algorithm grows these

seeded regions until all the image pixels have been allocated to a specific region. This

is made iteratively and all those pixels at the border of growing regions are examined at

each iteration. The pixel that is most similar to a region that it borders is assigned to that

region.

The algorithm works well for a great variety of images and it is also very attractive

for semantic image segmentation by involving the high-level knowledge of image com-

ponents in the seed selection procedure, it allows to separate regions that have the same

properties taking into account the spacial information of the pixels. Unfortunately the

SRG algorithm suffers from some problems, namely his inherent dependency on the order

of processing of the image pixels, as well from not having an automatic seed generation.

So the obvious way to improve the SRG technique is to provide a better pixel labeling

method and automate the process of seed selection (Mehnert and Jackway (1997) ; Fan

et al. (2001)).

A great variety of SRG algorithms had appeared in order to achieve better segmenta-

tion results and to adapt to many specific problems of some kinds of images. So, when

8



CHAPTER 2. RELATED WORK

analyzing a SRG growing algorithm there are some questions that are important to an-

swer:

1. How to select the seeds and how critical is the seed selection to get a good segmen-

tation result?

2. What is the homogeneity criterion for the region growing and how to specify the

corresponding threshold?

3. How to manage the pixel labeling procedure efficiently?

The SRG methods have several advantages, but also some disadvantages, as stated by

Kamdi and Krishna (2011):

Advantages

1. Can correctly separate regions with the same properties following an homogeneity

criterion.

2. Perform well in images that have clear edges.

3. To grow a region it is only necessary to place a seed inside of it.

4. The seed can be chosen by the user to extract some object.

5. It performs well when dealing with noise.

Disadvantages

1. The computation might be consuming.

2. Noise or variation of intensity in the image may result in holes or over-segmentation.

3. It may not distinguish the shading of the image.

2.2.1 Overview of SRG methods

After the reference Seeded Region Growing algorithm has been proposed by Adams and

Bischof (1994), a great variety of works related to this algorithm emerged. All of them

tried to improve the method in different ways, and from the main ideas, many adaptations

were done in order to better solve problems in specific applications, or to simply create a

better algorithm in general. Most of the research works do not solve all the problems at

once, rather they focus on improving some aspects of this kind of algorithms, like order

dependency in pixel processing, selection of the initial seed, establishment of threshold

of the homogeneity criterion, and definition of the homogeneity criterion itself.

Some variations of the algorithm, as well as the one from Adams and Bischof (1994),

are greedy algorithms, meaning that all pixels in the image are processed and assigned
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with a label while satisfying a connectivity constraint. What happens is that if only one

seed is provided, then the region corresponding to that single seed will grow until all pix-

els in the image are allocated to it. So, algorithms that use a threshold value to constraint

the growth of the region, appeared in order to solve this problem. Another problem is

the one of finding noise in the images which can lead an over-segmentation of the image.

2.2.1.1 Strategies for order dependency

The order dependency in pixel processing leads to different final segmentation results, so

it is a problem that was addressed in some earlier works (Mehnert and Jackway (1997);

Wan and Higgins (2003); Shih and Cheng (2005); Fan et al. (2005)) and, was also a

worry in most of the other works even so it was not the main focus of their research. In

the reference SRG paper from Adams and Bischof (1994) , one of the reasons the order

dependency was tolerated was because in their implementation, the speed was enhanced

greatly, besides knowing that order dependency leads to a negligible difference in the

results.

Mehnert and Jackway (1997) came with a solution for the two problems of order de-

pendency that are inherent in the SRG algorithm proposed by Adams and Bischof (1994).

The first problem of order dependency is called inherent order dependency and occurs

whenever several pixels have the same difference measure to their neighboring regions

and, the second is called implementation order dependency and occurs when one pixel

has the same difference measure to several regions. The solution to the first problem was

achieved by processing pixels with the same difference measure in parallel. This means

that pixels can only be labeled and region means updated, when all other pixels at that

priority have been examined. To solve the second order dependency, the pixels with same

difference measure to several regions are assigned with a special label and take no further

part in the region growing process, only in the end, after all the pixels have been labeled,

the problematic pixels are independently re-examined to see what region they belong to.

This fix was important because a different order of processing pixels leads to different

final segmentation results. In (Wan and Higgins (2003)) a generic Symmetric Region

Growing method that is insensitive to the initial input seeds was theoretically described.

The objective, which they aimed to achieve, was to define the theoretical criteria necessary

for region growing algorithms, to be insensible to the initial seeds selection and to be still

efficient, in any dimensionality.

2.2.1.2 Strategies to select the initial seeds

An obvious way to extend the SRG algorithms is to make the selection of initial seeds

automatic, a process that can produce good seed sets without to have semantic knowledge

of the domain or having explicit criterion. However, the seed selection process can take
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into account that one advantage of SRG is the high-level knowledge of semantic image

components and this can be exploited to select the suitable seeds for obtaining meaningful

region growing. Melouah and Amirouche (2014) regarding automatic seed selection,

classified the different works in three axes: region extraction approach, features extraction

approach and edges extraction approach.

Fan et al. (2001) contributed to improve the seeded region growing algorithms by

proposing an automatic form of selecting the initial seeds. Doing this requires the ex-

traction of the major geometric structures of the image using color edges. The centroids

between the adjacent edge regions are taken as the initial seeds for seeded region growing.

Initial seeds are then replaced by the centroids of the generated homogeneous regions.

After, Fan et al. (2005) presented an automatic SRG algorithm with a boundary-oriented

efficient parallel pixel labeling technique and, three automatic seed selection methods:

one center-oriented seed generation method and two edge-oriented seed generation meth-

ods. They also present a seed tracking algorithm for automatic moving object extraction,

where the seeds located inside the temporal change mask are selected for generating the

regions of moving objects. In other work, of Shih and Cheng (2005), an automatic seeded

region growing for color image segmentation was created. They defined that for auto-

matic seed selection, three criteria must be fulfilled. The first one is that the seed pixel

must have high similarity to its neighbors, the second one says that at least one seed must

be generated in order to create a certain region and the last one obligates that seeds from

different regions must be disconnected. The candidate pixels must pass the test of two

conditions, one that checks whether the seed pixel has high similarity to its neighbors

and another that makes sure that the seed pixel is not on the boundary of two regions.

After this process, a proposed SRG algorithm is used to segment the color image using the

set of seeds automatically generated before. It is possible that several seeds are generated

to split a region into several small ones, causing over-segmentation, so a region merging

procedure is executed using some threshold value on similarity. Using other algorithms to

help selecting suitable seeds is also a possibility and, in (Tang (2010)) the selection of the

initial seeds was automatic, using watershed algorithm to segment the image and extract

the seeds from the regions created. This seeds automatically generated are then the input

for an SRG algorithm, that improves the original gray image segmentation method ac-

cording to color image segmentation needs. Preetha et al. (2012) proposed a new method

for color image segmentation based on region growing and region merging. Based on the

same three criteria described in (Shih and Cheng (2005)), the seeds were automatically

generated. The merging of regions is done by considering the size and the Euclidean

distance of regions. Tilton et al. (2012) improved the described HSeg algorithm, which

begins by initializing the segmentation and assigning each image pixel a region label. If

a pre-segmentation is provided, each pixel is labeled according to the pre-segmentation

results. This avoids the need to have the seeds as input. Then, it calculates a dissimi-

larity criterion value, based on minimizing the increase of mean squared error between

the region mean image and the original image data, or based on the spectral similarity
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between two spectral vectors. After this, pairs of spatially adjacent regions are merged

based on a threshold criterion equal to the smallest dissimilarity criterion value between

pairs of spatially adjacent regions. The process is repeated until a chosen convergence

criterion is achieved, usually this being a specified number of regions to be reached. Also,

Dantulwar and Krishna (2014) created an algorithm to overcome the problem of initial

seeds selection, which might be costly. So, a single seeded region growing technique is

presented, which always selected the initial seed as the central pixel of the image. After

that, it grows the region according to a grow formula with a intensity based similarity

index, calculated by Euclidean distance between labeled pixel and a non labeled pixel. It

selects the next seed from a connected pixel to the region. The stopping criterion for the

grow formula is determined using the Otsu’s thresholding method (Otsu (1979)).

2.2.1.3 Types of homogeneity criteria

The homogeneity criteria are a very important part of the SRG algorithms, because choos-

ing appropriate criteria is the key in extracting the desired regions. Pohle and Toen-

nies (2001) has categorized the selection of different homogeneity criteria into three meth-

ods: criteria selection based on intensity level properties of the current points; compari-

son of segmentation with different homogeneity criteria; criteria selection for a complete

segmentation of the scene with potentially varying criteria for different regions. Stop-

ping criteria should be efficient to discriminate neighbor elements in non-homogeneous

domains. Most of the SRG approaches involve a homogeneity criterion based on a dissim-

ilarity measure defined by the difference between the pixel to be labeled and the mean

of the region of interest, initially described in (Adams and Bischof (1994)). However,

there are other works that use alternative homogeneity criteria in order to obtain better

quality in segmentation, and trying to solve some problems of SRG methods like cases of

explosion in the segmented area provoked by weak boundaries of the regions. Regarding

homogeneity, the region growing formula should be capable of guarantee that pixels in-

side one region must be homogeneous with respect to some properties, and that pixels

from different regions must have distinct properties.

The method proposed by Gambotto (1993) controls which of the pixels should enter

the region by using a hybrid strategy that combines region growing with edge detection

algorithm. The adjacent pixels to the region are hierarchically clustered and the groups of

pixels that are closer to the region model are merged to the region. Gradient information

is used to find the optimum region boundary and the growth stops. Hojjatoleslami and

Kittler (1998) proposed a new region growing method by pixel aggregation that used

novel similarity measure has homogeneity criterion. A boundary pixel is joined to the

current region if it has the highest grey level among the neighbors of the region. Some-

thing that was new about this method is that at each step, at most one pixel exhibits the

required properties to join the region. Pohle and Toennies (2001) stated that homogeneity
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criterion specification depends on image formation properties that are not known to the

user, so they developed a region growing algorithm that learns its homogeneity criterion

from characteristics of the region to be segmented. Two runs of SRG are necessary, the

first with the objective of estimate the parameters of the homogeneity criterion that will

be applied to the second run. Learning the criterion requires to estimate mean and two

different standard deviations for grey values from a number of pixels of the region. The

algorithm produces results that are only little sensitive to the seed point location. Espin-

dola et al. (2006) stated that the region growing algorithms, which are usually used for

remote sensing image segmentation, need the user to supply control parameters, like the

similarity threshold and an area threshold (Bins et al. (1996)), so an objective function

is proposed for selecting suitable parameters for region-growing algorithms to ensure

best quality results. The new objective function must guarantee that each of the result-

ing segments should be internally homogeneous and should be distinguishable from its

neighborhood. The function combines a variance indicator that expresses the overall

homogeneity of the regions, with a spatial auto-correlation index that detects separability

between regions. Rai and Nair (2010) showed the impact in the quality of segmentation

made by the various aspects of homogeneity criterion. A gradient based homogeneity

criterion that is characterized by a cost function is used and, it exploits features of the sur-

roundings of the seed. The method is semi-automatic because the seed must be provided

as input. With weak boundaries problem in mind, Zanaty and Asaad (2013) presented

a new algorithm called Probabilistic Region Growing. This approach automatically sets

the similarity threshold value, based on estimating the probability of pixel intensities

of the whole image. The homogeneity criterion, similar to the reference one that has

the form of a difference between the pixel to be labeled and the mean of the region, is

extracted automatically from characteristics of the regions and it might be different for

every pixel, since the threshold value is adaptive. In this algorithm the pixels are pro-

cessed sequentially in a random path starting at the initial seed, and the homogeneity

criterion is updated continuously.

2.2.1.4 Thresholding strategies

A problem with some of the SRG algorithms is that the threshold value must be given

has input, either way by trial and error experiments, or its value is the output of another

algorithm. An improper threshold value can have a considerable impact on the quality

of the segmentation result. Sometimes in the same image, there are different levels of

threshold that must be taken in consideration in order to extract objects with different

characteristics.

Chang and Chen (2007) proposed a multi-scale region growing segmentation method,

based on the maximization of the change of edge density. The region growing algorithm is

applied successive times with different threshold values, from the smallest to the largest
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value, and a tree is create that in each node, a change in edge density is saved. The perfect

partition of an observed target is registered when the change of edge density is maximum,

meaning that the desired threshold value was captured. The goal of Wu et al. (2008)

approach was to achieve automatic texture based segmentation. They start by extract

texture features for each pixel in the region of interest. A cost function, based on three

sub-functions, is applied to every pixel in the region of interest and the one with min-

imum value is chosen as seed. The three sub-functions are: the spatial distance from

the pixel to the center point of the region of interest; the Euclidean distance on feature

space from the pixel to the centroid of the region of interest; the sum of the Euclidean

distance on feature space from the pixel to its neighbors. After this the region growing

starts using the Euclidian distance of texture features, as homogeneity criterion. If the

threshold value is higher than the optimal one, the region grows to a much larger area

than it should, this is called explosion. In order to avoid it, it is necessary to find the

highest threshold value just before explosion. To accomplish this, the SRG algorithm is

executed with a progressively larger threshold value and when the explosion is detected,

the optimum threshold value is retrieved from the last execution without explosion. In

(Al-Faris et al. (2012)) a modified automatic SRG algorithm was presented and it was

based on the Particle Swarm Optimization image clustering system. The modification

is made by introducing two automatic approaches for selecting the SRG variable factors.

The first one chooses the initial seed automatically from the results of the clustering algo-

rithm, and the seed is selected as the center of the cluster with the highest intensity. The

second automatic approach chooses the threshold value, based upon finding the optimum

estimated value from the intensities mean values of the clusters. Both approaches are

based on the intensities of the clusters which resulted from the Particle Swarm Optimiza-

tion Image Clustering. Verma et al. (2011) presented a Single Seeded Region Growing

Algorithm for Color Image segmentation, which grows from an initial seed in the center

of the image. The homogeneity criterion use an intensity based similarity index, calcu-

lated by Euclidean distance, between the seed and the 8-neighbor pixels. The stopping

criterion is determined from the Otsu’s adaptive thresholding method. After a region is

grown, the threshold value is calculated again in order to adjust better to the next region

to be grown. For color image segmentation, Jain and Susan (2013) came with an adaptive

single seed based region growing algorithm. The initial seed is the center pixel of the

image. This region growing algorithm uses three different homogeneity criteria, so a

pixel is allocated to a region if: it is similar enough to a connected pixel belonging to the

region; it is similar enough to the mean value of the region; it is more similar to the mean

value of the region than to its 8-neighbors. The third criterion is only analyzed if the first

two fail to hold. After one region is completely grown, a new seed is selected from the

boundary pixel stack. This algorithm solves the problem of initial seed selection, and also

does not need to select a threshold heuristically, however the homogeneity criteria need

some similarity values that the authors selected empirically.
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2.2.1.5 Dealing with noisy images

Dealing with noisy images can also be a major problem and a technique developed by Car-

valho et al. (2010) finds a way of doing it without pre-processing methods. For this they

create an algorithm that comprises a statistical region growing procedure combined with

hierarchical region merging. A coefficient of variation is the criterion to test homogeneity.

The strategy used was to aggregate statistically homogeneous regions until a dissimilarity

between the most similar pair of spatially adjacent regions reaches a specified threshold

or a certain number of regions is obtained.

2.2.2 Domains of Applications

A great variety of scientific work has been done, which do not necessarily change the SRG

algorithm, but used it to solve a complex problem, many times integrating it as a step in

a larger and more sophisticated process.

There are some types of applications, referenced in the literature, where Seeded Re-

gion Growing algorithms are very popular, like Remote Sensing, Medical Image Process-

ing or Industrial Inspection.

2.2.2.1 SRG in Remote Sensing

In Remote Sensing there are examples like Bins et al. (1996), which presented a region

growing method with the objective of assess land use changes in the Amazon region; Bagli

et al. (2004)presented an automatic delineation of shoreline and lake boundaries, and is

successful in integrating SRG algorithm in the process; Wang and Chen (2012) proposed

an algorithm composed in five steps including k-means clustering, segment initialization,

seed generation, region growing, and region merging. This algorithm is used to segment

remote sensing data, and can be used for a variety of applications, including urban and

regional planning; Gao et al. (2011) evaluated different segmentation methods in multi-

spectral Landsat imagery, because image segmentation is a critical step to achieve object-

based image classification, and one of the methods is the SRG method; Stroppiana et

al. (2012)proposed a method for extracting burned areas, using some techniques which

include a region growing algorithm that will, in the end of the process, generate the

burned area map; in (Zhang et al. (2013)), where extraction of coastline in aquaculture

zones is done, by a process that involves multiple steps to segment the ocean. After this

segmentation, objects near aquaculture zones are used as a seed to the SRG algorithm

that will segment until detect the desired coastline; Mishra and Susaki (2013) created

some methodologies focused on the analysis of multi-temporal Synthetic Aperture Radar

images. They use some thresholding techniques, but the threshold value alone cannot

give the best results, so they coupled it with a region growing algorithm, and obtained

better results.
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2.2.2.2 SRG in Medical Image Processing

In Medical Image Processing this kind of algorithms are used in works like segmentation

in brain MRI, studied in (Stokking et al. (2000)), which explained that region growing

methods, applied to brain MRI images, suffer from problems caused by weak boundaries,

because of the fact that the brain tissue under consideration is readily connected to an-

other tissue type, so another techniques must be conjugated with the SRG algorithm to

achieve better results; Wang and Chen (2012) established the method of vector seeded

region growing suitable for medical images, and after a vector seed selection, a region

growing algorithm is used. A new technique was proposed because traditional SRG meth-

ods do not work well in Brain MRI image segmentation. Breast MRI images are object of

study in works like Al-Faris et al. (2012), which proposed a modified automatic SRG algo-

rithm based on the Particle Swarm Optimization image clustering system. This method

resulted in a significant improved performance, but it also avoided the need for man-

ual selection of the suspected region window with the object of interest, seed pixel and

threshold value processes; Al-Faris et al. (2013) used a system with automated features

for MRI breast tumor segmentation, staged in three stages, being the last one based on a

modified version of the SRG method. The first modification is that the algorithm automat-

ically selects the initial seed and, the second is that SRG threshold value is determined

by measuring the difference between the initial pixel and its neighbors. This modified

method was presented before in (Al-Faris et al. (2012)). Wong and Zrimec (2006) auto-

matically detected lung disease and, used a seeded region growing algorithm to guide

the classifier to regions with potential disease patterns. The seeds utilized are selected

based in regions of interest in the periphery of the lung. Mat-Isa et al. (2005) improved

screening for cervical cancer, using SRG algorithm to extract features of cervical cells and

it was proved to be very suitable for resolving this problem. Or applying these techniques

to forensic-case analysis, as in (Urschler et al. (2012)), where blood pools are extracted

from the MRI scan using SRG because of the good contrast that the blood pool has with

the surrounding tissue. There are other works using this kind of algorithm, like Pohle

and Toennies (2001), which presented a new self-learning, fully automatic approach for

a region-oriented segmentation of medical images. The algorithm learns its homogene-

ity criterion automatically from characteristics of the region to be segmented; Chen et

al. (2006) created a sketch-based interface for seeded region growing volume segmenta-

tion. The region of interest is showed in real-time to the user when he places the seed

point in the 3D model.

2.2.2.3 SRG in Industrial Applications

Seeded Region Growing algorithms are also used in Industrial Inspection, and Lachance

et al. (2004) presented a region growing technique specifically adapted to wear flats seg-

mentation, this was necessary because segmentation of wear flat area from the image

background is a difficult task. The new method made possible to recognize wear flats
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by their pixels grayscale value as well as their connectivity to reference pixels; Pottmann

et al. (2005) used region growing as an aid in the segmentation process for reverse engi-

neering of geometric objects in Industrial Geometry applications; Hadwiger et al. (2008)

presented a novel method for interactive exploration of industrial CT volumes, such as

cast metal parts, which helps to bridge the gap between visualization and feature de-

tection. The standard approach for defect detection is based on region growing, which

requires manually tuning parameters, however a new approach is introduced that allows

interactive exploration of the parameter space, in a pre-processing stage separated from

the region growing stage; Zhengtao et al. (2011) proposed a region growing technique

based on linear scanning in order to do online capsule image segmentation.

2.2.3 Selected SRG Methods for Sea Surface Temperature (SST) Image
Analysis

Summary of the SRG methods used to tackled the problem of upwelling delimitation:

• SEC (Single seeded)

Novel homogeneity criterion in the format of a product. The growth is controlled

by a threshold and it stops when no more pixels meet the homogeneity criterion.

• AdamsSRG (At least two seeds (manual))

The frontier pixel that has the smaller difference of intensity to the mean of its

neighbor region is added to it. The growth of the regions stop when all the image

pixels were allocated to some region.

• VermaSRG (Single seeded)

Organizes the region pixels in one stack. The pixel in the top of the stack is removed

and, allocated to the region if the Euclidean distance of its intensity to the seed is

smaller than a pre-defined threshold. The growth stops when the stack is empty.

• ShihSRG (At least two seeds (auto))

Similar to the AdamsSRG, but offers an automatic seed selection mechanism and, a

merging procedure that in the end of the segmentation combines regions that are

similar to each other.

• GambottoSRG (Single seeded)

Combines the region growing with an edge detection algorithm, in order to detect

the optimal region boundary and stop the growth.

• ZanatySRG (Single seeded)

The homogeneity criterion consists in the difference between the pixel and the mean

of the region, but the threshold that controls the growth is based on the probability

of the pixels and changes dynamically. The growth stops when one of the pixels

does not pass the homogeneity criterion.
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2.2.3.1 The Adams and Bischof Seeded Region Growing

The first chosen SRG algorithm to be used in the comparison was the Seeded Region

Growing algorithm presented by Adams and Bischof (1994). It was chosen exactly because

it is the reference algorithm in terms of SRG, and consequently it has been widely studied

in many related studies on SRG methods. Even it being an algorithm with some problems,

namely order dependency issues, it is also very appropriate to use it in this study, because

it is a well referenced work in the literature.

It performs a segmentation of an image in K regions with respect to a set of seed

points. Each seed region is a connected set of points or a individual point represented by

Ck , where k = 1,2, . . . ,K . Each step involves adding one pixel to one of the regions. We

start reasoning about the algorithm by considering the current state of the sets Ck after

m steps. Let F be the set of all unallocated pixels that border at least one of the labeled

regions Ck :

F =

(i, j) <
K⋃
k=1

Ck |N (i, j)∩
K⋃
k=1

Ck , �

 (2.1)

where N (i, j) represents the immediate neighbors of the pixel (i, j).

For a pixel (i, j) ∈ F, if N (i, j) intersects only one labeled region then, to this pixel, a

label represented as l(i, j) = k (l(i, j) ∈ {k = 1,2, . . . ,K}). A measure, δ ((i, j) ,Ck), is defined

as the difference between (i, j) ∈ T and the intersected region Ck :

δ ((i, j) ,Ck) = |g (i, j)−mean {g (ik , jk)}| (2.2)

where g (i, j) is the intensity value of the testing pixel (i, j), and g (ik , jk) are the intensity

values for the region Ck .

If N (i, j) intersects more than one region Ck , then (i, j) will be labeled to the region k∗

for which δ ((i, j) ,Ck∗) is minimized with respect to the neighboring regions Ck , l (i, j) = k∗.

From all the points in F, one is chosen that satisfies:

(iz, jz) = argmin(i,j)∈F
{
δ
(
(i, j) ,Cl(i,j)

)}
(2.3)

and (iz, jz) is added to Cl(i,j).

After this, step m + 1 is completed. The algorithm continues executing more steps

until all the pixels have been allocated.

The definitions at 2.2 and 2.3 guarantee that the final segmentation is into regions

as homogeneous as possible given the connectivity constraint.

2.2.3.2 The Verma Seeded Region Growing

Other chosen SRG algorithm was the Single Seeded Region Growing Algorithm for Color

Image segmentation presented by Verma et al. (2011). The reason for its selection is that it

is a similar algorithm to the SEC algorithm in terms of its architecture, because it is single
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seeded and only grows one region at a time, and it also uses thresholding techniques to

tune the threshold value, in this case they used the Otsu’s adaptive thresholding method.

The method allocates pixels to the cluster C in a growing process that organizes the

region pixels in a stack. Starting with only the seed in the stack, N (i
′
, j
′
) represents the 8-

neighbors of the pixel in the top of the stack. If these pixels match the similarity criterion

and they are not yet in the cluster C, they are added to the top of the stack and to the

cluster C. The similarity criterion consists in:√
(g (i, j)− g (is, js))2 < π (2.4)

where g (i, j) is the intensity value of the testing pixel (i, j) ∈N (i
′
, j
′
), and g (is, js) is the

intensity value of the seed. The π value is the threshold that controls the growth of the

cluster C and it is defined using the Otsu’s method of automatic thresholding applied to

the image.

When a new pixel has its neighbors N (i
′
, j
′
) evaluated, this pixel of the cluster C is

removed from the top of the stack. The growth of the cluster C stops when there are no

pixels left in the stack.

2.2.3.3 The Shih and Cheng Seeded Region Growing

This method presented by Shih and Cheng (2005) is similar to the greedy method of

Adams and Bischof (1994) described in the Section 2.2.3.1, so it requires more than two

seeds to segment the image. One of the main focus of this method is to overcome the prob-

lem that the reference method has in the seed selection, so the growing phase between

both methods is very similar, however this method has a mechanism to automatically

select adequate seeds and a merging procedure that in the end of the segmentation com-

bines regions that are similar to each other. For this method the homogeneity condition

is defined by:

δ ((i, j) ,Ck) =
√

(g (i, j)−mean {g (ik , jk)})2 (2.5)

instead of what is defined at 2.2.

The automatic seed selection process consists in evaluating which of the the image

pixels pass in two conditions. The first condition checks if the pixel is similar to its

neighbors and the second condition check if the pixel is not on the boundary of two

regions. Each spatially connected set of pixels will be used as seed to the growth of the

different regions.

In the first condition starts defining the similarity of a pixel by calculating the stan-

dard deviation σ to its 8-neighbors. The standard deviation is normalized to [0,1] by:

σN =
σ
σmax

(2.6)
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where σmax is the maximum of the standard deviation in the image. The similarity of

a pixel to its neighbors is:

H = 1− σN (2.7)

A seed pixel candidate must have the similarityH higher than a pre-defined threshold

value.

For the second condition it is calculated the Euclidean distance of the candidate pixel

to its 8-neighbors. Then it is calculated the maximum distance to its neighbors:

dmax =max8
i=1(di) (2.8)

where di is the distance between the pixel and one of its neighbors. A seed pixel

candidate must have the maximum distance dmax below a pre-defined threshold.

The automatic seed selection process can generate too much regions and after the

growth phase the image can be over-segmented, so to overcome the problem it is applied

region-merging. Two criteria are used, the first is about merging similar regions, if the

mean intensity difference between two neighboring regions is less than a threshold value,

the regions are merged and the mean re-computed. The process is repeated until no

region has the distance less than the threshold. The other criterion merges regions until

there are no regions left with size smaller than a pre-defined threshold.

2.2.3.4 The Gambotto Seeded Region Growing

Another method was selected, proposed by Gambotto (1993), and it is single seeded,

however the reason to be chosen for this study is because it combines the region growing

with an edge detection algorithm, in order to detect the optimal region boundary and

stop the growth. This approach can be specially efficient for images with weak gradients

in the upwelling frontier, where it is difficult to avoid explosions.

Initially the cluster C is composed only by the seed, but more pixels are merged to the

cluster in a iterative growing until the maximum of a global contrast function is detected.

Let C+ be the set of pixels which are frontier to the cluster C and, C− be the set of

pixels which are adjacent to C+ and belong to the cluster. The pixels in the frontier C+

are joined into segments using an hierarchical clustering algorithm, and all the segments

Sk of the region boundary C+ are merged with the cluster C if they satisfy the following

criterion:

|d(Sk ,C)| < α · thg (2.9)

where d(Sk ,C) is the distance of intensities between the cluster and a segment, α

is a preset parameter and, thg is a threshold that is recomputed dynamically through

the growing process, and consists in calculating the mean of the values in an histogram

of Euclidean distances between pixels of the cluster C and the mean intensity of the
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cluster. If none of the segments Sk satisfy the condition, the closest to the cluster is

merged, meaning that the stopping criterion depends on the contour detection function

to avoid an infinite number of iterations. The growing termination function depends on

the average gradient of the boundary:

F(n) =
∑ G(k, l)

P (n)
(2.10)

where P (n) is the perimeter of region C, for the iteration n, and G(k, l) =
∣∣∣Yi,j −Yk,l ∣∣∣,

where Yi,j and Yk,l are two adjacent pixels such that Yi,j ∈ C+ and Yk,l ∈ C−.
The function F(n) is computed at each iteration and growing stops when two criteria

are satisfied, the first one being:

Fmax −F(n) = λ · thg (2.11)

where λ is a pre-defined parameter. The second criterion is computed whenever the

first one is satisfied:

Fmax −F+(n∗) = λ · thg (2.12)

where n∗ is the optimal iteration according to the first criterion and, F+(n∗) is the

average gradient computed over the boundary of the cluster on the optimal iteration.

After stopping the growth, the algorithm has an de-growing phase in which the final

cluster C contains the pixels that it had when the maximum of the function F(n) was

reached.

2.2.3.5 The Zanaty and Asaad Seeded Region Growing

The Probabilistic Region Growing algorithm presented by Zanaty and Asaad (2013) has

also been chosen, since the homogeneity criterion is based on a different approach, the

probability of pixels, also it presents a different approach to solve the problem of weak

boundaries on images, and yet its thresholding strategy is adaptive, by varying over the

image as a function of intensity probability.

The method normalizes each pixel intensity in the image to values between 0 and 1.

It starts the growth with a seed pixel and transfers to the cluster C, from the frontier F

of the cluster, one pixel at a time the until one of them does not pass in the homogeneity

criterion. The pixel Z that will be analyzed next is the one selected by the function:

δ(F,C) = |mean {g (iC , jC)} − g(i, j)| (2.13)

where (i, j) ∈ F and g (iC , jC) is the mean intensity of the pixels in the cluster C. The

selected pixel is:

Z = argmin(i,j)∈F {δ(F,C)} (2.14)
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The pixel Z is added to the cluster C if it passes the following homogeneity criterion:

|IZ −mean {g (iC , jC)}| ≤ T (IZ , P r(IZ )) (2.15)

where IZ is the intensity of the pixel Z and P r(IZ) is the probability of that intensity

value in the image. The threshold is dinamically calculated for each pixel and is defined

as:

T (IZ , P r(IZ )) = T 1(IZ ) · T 2(P r(IZ )) (2.16)

which is defined by two thresholds T 1 and T 2. T 1 is defined by:

T 1(IZ ) =

 I
2γ
Z IZ ≤ θ

(1− IZ )2α IZ > θ
(2.17)

where γ = γ1 · I1/2
Z and α = α1(1 − IZ)1/2. γ1, α1 and θ are pre-defined values. The

threshold T 2 is defined by:

T 2(P r(IZ )) = eβ (2.18)

where β = −β1 [log(P r(IZ ))]−1 with β1 being a pre-defined value.

2.3 Automatic Thresholding Techniques

Automatic thresholding techniques are very useful tool to separate objects from the back-

ground. These thechniques work especially well in images where the intensity values of

pixels belonging to the object are substantially different from the intensity values of the

pixels belonging to the background. The output of the thresholding operation is a binary

image, usually represented with black and white pixels which are allocated to one or other

color if their intensity is higher or lower to a threshold value. There is a range of factors

that can interfere with the result of the threshold operation, such as nonstationary and

correlated noise, ambient illumination, busyness of gray levels within the object and its

background, inadequate contrast and object size not commensurate with the scene. The

thresholding methods can be categorized into six groups according to the information

they are exploiting (Sezgin and Sankur (2004)):

1. Histogram shape-based methods, where the smoothed histogram is analyzed in

some features like the peaks, valleys and curvatures.

2. Clustering-based methods, which include algorithms where either gray-level sam-

ples are clustered in two parts as background and foreground or are modeled as a

mixture of two Gaussians that represent the background and foreground.
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3. Entropy-based methods, analyze some features of the image related to entropy,

such as the entropy of the background and foreground regions, the cross-entropy

between the original and the binary image, and others.

4. Object attribute-based methods, search a measure of similarity between the gray-

level and the binary image, using the fuzzy shape similarity, edge coincidence and

others.

5. The spatial methods, based on the analysis of higher-order probability distribution

and/or correlation between pixels.

6. Local methods, calculate a threshold for each pixel adapted to the local image

characteristics.

Threshold techniques are used for image segmentation, but they can also be used for

optimization of threshold values used by other segmentation methods. Since, besides

producing a binary image, they can also return the threshold value that leads to that seg-

mentation, this value can be used afterwards in other algorithms. In the Seed Expanding

Cluster algorithm the returned value of the thresholding techniques will be used in the

similarity condition test. If a good threshold value is provided to the algorithm, then the

segmentation achieved will be better.

Prieto et al. (2012) presented results for 12 fully automatic threshold methods. Their

work analyses 40 algorithms studied in Sezgin and Sankur (2004), and excluded 19 algo-

rithms with user-adjustable parameters. After this, they selected only 12 of them, the ones

that provided good results in the tests performed. Analyzing Sezgin and Sankur (2004)

and Prieto et al. (2012) studies, three threshold methods were selected, based on their

performance. Since no experimental study was done, using most of the thresholding

techniques studied on the surveys applied to the segmentation of coastal upwelling im-

ages, the results to be achieved might not be the best, but for an initiating the study the

threshold methods presented by Ridler and Calvard (1978), Otsu (1979) and Kittler and

Illingworth (1986), which belong to the category of clustering-based algorithms, look like

a good bet. If good segmentation results fail to exist, then other methods might have to

be considered.

There are a close relationship between the three popular methods of image thresh-

olding, which is explained in (Xue and Zhang (2012)). The authors derived that the

Ridler and Calvard’s iterative-selection method is an iterative version of Otsu’s method;

Otsu’s method can be viewed as a special case of Kittler and Illingworth’s minimum-error-

thresholding method.

The definitions necessary to understand this three thresholding algorithms are de-

scribed in the Table 2.1.
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Table 2.1: Definitions and notation necessary to describe thresholding algorithms (Prieto
et al. (2012)):

Segmented Image
Original Image Background Foreground

Fraction of pixels 1 ω1(T ) =
∑T
i=1p(i) ω2(T ) =

∑L
i=T+1p(i)

Probability of level i p(i) p1(i) = p(i)
ω1

p2(i) = p(i)
ω2

Average µ =
∑L
i=1 i · p(i) µ1(T ) =

∑T
i=1 i · p1(i) µ2(T ) =

∑L
i=T+1 i · p2(i)

Variance σ2 =
∑L
i=1 (i −µ, )2 · p(i) σ2

1 (T ) =
∑T
i=1 (i −µ1(T ))2 · p1(i) σ2

2 (T ) =
∑L
i=T+1 (i −µ2(T ))2 · p2(i)

2.3.1 Ridler and Calvard’s method

Ridler and Calvard (1978) presented an iterative process, based on two-class Gaussian

mixture models, to select the optimum threshold value automatically, as successive itera-

tions provide increasingly cleaner extractions of the object region. For the next iteration,

optimum threshold is defined as the average of the foreground and background class

means. Iterations stop when the difference between the current iteration threshold and

next iteration threshold is sufficiently small.

Tn+1 =
µ1 (Tn) +µ2 (Tn)

2

where µi (Tn) are the means of the background and foreground defined by the thresh-

old Tn of the previous iteration.

2.3.2 Otsu’s method

Otsu (1979) proposed a nonparametric and unsupervised method of automatic threshold

for image segmentation. This method is suitable for segmentation of classes, in the

histogram, with approximate or equal within-class variances. This technique consists in

minimizing the weighted sum of within-class variance of the foreground and background

to extract an optimum threshold. Minimizing the within-class variance is equivalent to

maximizing the between-class variance. This is a very popular method and it has been

applied to tune threshold values in works developed by Shih and Cheng (2005), Verma

et al. (2011) and Dantulwar and Krishna (2014).

T = argmax
{
ω1 (T ) (µ1 (T )−µ)2 +ω2 (T ) (µ2 (T )−µ)2

}
where weights ωi (T ) are the probabilities of the two classes separated by a threshold

T , µi (T ) are the class means and, µ is the mean value of the complete image.

2.3.3 Kittler and Illingworth’s method

Kittler and Illingworth (1986) presented a method that starting at an initial threshold

value, the two resulting pixel populations, in the histogram, are modeled by Normal
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distributions. One formed by the pixels which the brightness level is smaller than the

initial threshold and the other formed by the pixels which the brightness level is bigger

than the threshold. A criterion function is calculated for each brightness threshold and

the better the models fit the data, the smaller the criterion. So, the output will be the

threshold value that minimizes the criterion function.

T = argmin {1 + 2[ω1 (T ) log (σ1 (T )) +ω2 (T ) log (σ2 (T ))]

−2[ω1 (T ) log (ω1 (T )) +ω2 (T ) log (ω2 (T ))]}

where weights ωi (T ) are the probabilities of the two classes separated by a threshold

T and, foreground and background standard deviations are represented by σi (T ).

2.4 Evaluation Measures for Image Segmentation

Many different approaches and algorithms for image segmentation were proposed, but

it is still difficult to assess if an algorithm produces good segmentation results (Zhang

et al. (2008)). Subjective evaluation is a very common method for evaluating the effec-

tiveness of a segmentation method, in which a human visually analyze the results, but

it might be a tedious process and inherently limits the depth of evaluation to a limited

amount of images, other disadvantage is its inherent subjective nature. Another common

method is supervised evaluation, which operates by comparing the resulting segmented

image against a manually-segmented reference image, often referred to as gold standard

or ground-truth. The advantage of this method is that direct comparison between image

and reference image provides solid quality evaluation. However this method also has

disadvantages, namely the need to generate the reference image, which might be difficult,

subjective and time-consuming. Both this methods require user assistance, so sometimes

they are unfeasible in many applications, so unsupervised methods are necessary. This

methods are quantitative, objective and do not require a reference image, but instead

evaluate a segmented image based on how well it matches a broad set of characteristics

of segmented images as desired by humans. Unsupervised methods are uniquely suitable

for automatic systems, which do not include beforehand knowledge about the content of

the image and no ground truth is available.

2.4.1 Supervised Evaluation Measures

Zhang (1996) classified segmentation evaluation into three groups: the analytical, the

empirical goodness and the empirical discrepancy groups. For images with ground-truth

made by the experts, supervised evaluation approach, also known as empirical discrep-

ancy method, can be used taking into account the difference between the segmented and

reference image. This author stated that the discrepancy measures are based on: the
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number of mis-segmented pixels; the position of mis-segmented pixels; the number of

objects in the image; the feature values of segmented objects; miscellaneous quantities.

A commonly used measure that combines precision and recall, calculated from the

values in a confusion matrix that crosses the results with a ground-truth, is the harmonic

mean of precision and recall, the F-measure (Van Rijsbergen (1979)). Precision is the

proportion of predicted positive cases that are correctly real positives, while recall is

the proportion of real positive cases that are correctly predicted positive. This method

produces results between 0 and 1, being the highest score the best result.

Other supervised measure is the Adjusted Rand Index (ARI), presented by Hubert

and Arabie (1985) , which measures the similarity between two data clusterings, starting

by calculating a confusion matrix as in the F-measure measure. This method can score

from negative values until 1, and the highest the score better the result.

These two supervised measures, the F-measure and the ARI, were the selected ones for

evaluate the quality of the segmentation produced by the different segmentation methods

applied in these study.

2.4.2 Unsupervised Evaluation Measures

Zhang et al. (2008) examined unsupervised objective evaluation methods that have been

proposed in the literature and experiment the performance of nine evaluation metrics,

founded suited to general image segmentation. This metric can be largely divided into

three categories: those for measuring intra-region uniformity, those for measuring inter-

region disparity, and those for measuring semantic cues of objects, such as shape. These

metrics are then combined to give a composite effectiveness measure.

The selected unsupervised evaluation measures were the intra-region and inter-region

measures of Levine and Nazif, intra-region and inter-region measures of Rosenberger and

Chehdi, Otsu’s within-class and between-class variances, Calinski-Harabasz criterion,

Davies-Bouldin criterion and intra-region of Liu and Yang.

The following notation was used to describe the unsupervised evaluation measures.

Let I be the segmented image divided in N regions. The number of pixels in the image is

SI , and it is used Rj to denote the set of pixels in the region j, so Sj is the number of pixels

of the region. Let x be the temperature and p a pixel. Cx(p) is the temperature associated

to the pixel p.

The average temperature in the region j is:

C
′
x(Rj ) =

(∑
p∈Rj Cx(p)

)/
Sj

The squared color error of region j is denoted as:

e2
x(Rj ) =

∑
p∈Rj (Cx(p)−C ′x(Rj ))2

(i) Intra-region of Levine and Nazif (1985):

Eval =
∑N
j=1

e2
x (Rj )·Wj

Z
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Z = (maxRj −minRj ) · Sj
Wj = 1 (weighting factor)

(ii) Inter-region of Levine and Nazif (1985):

For an area α, the adjacency value pij is used for weighting the contrast between

regions, and the weight for the region Rj is vj .

Eval =
(∑

Rj∈α vj
∑
adjRi

pij

∣∣∣C′ (Ri )−C′ (Rj )∣∣∣
C′ (Ri )+C

′ (Rj )

)/∑
Rj∈α vj

(iii) Intra-region of Rosenberger and Chehdi (2000):

Eval = 1
N

∑N
j=1

Sj
SI
e2
x(Rj )

(iv) Inter-region of Rosenberger and Chehdi (2000):

Let Bj be the barycenter of region Rj and d(Bi ,Bj ) be the Euclidean distance between

two different regions.

Eval =
d(Bi ,Bj )
‖Bi‖+‖Bj‖

(v) Intra-region of Otsu (1979):

Eval = Si
SI
· e2
x(Ri) +

Sj
SI
· e2
x(Rj )

(vi) Inter-region of Otsu (1979):

Eval = Si
SI
· SjSI · (C

′
x(Rj )−C

′
x(Ri))

2

(vii) Intra-inter-region of Caliński and Harabasz (1974):

Let SSB be the overall between-cluster variance, SSW the overall within-cluster

variance, O the number of observations and m be the overall mean.

Eval = SSB
SSW
· (O−N )
N−1

SSB =
∑N
i=1ni

∥∥∥C ′x(Ri)−m∥∥∥2

SSW =
∑N
i=1

∑
x∈Ri

∥∥∥x −C ′x(Ri)∥∥∥2

(viii) Intra-inter-region of Davies and Bouldin (1979):

Let d
′

be the average distance between each pixel temperature in a region and the

centroid of that region. The Euclidean distance between the centroids of two regions

is denoted by dij .

Eval = 1
N

∑N
i=1maxj,i

{
Dij

}
Dij =

(d
′
i +d

′
j )

dij

(ix) Intra-region of Liu and Yang (1994):

Eval =
√
N

∑N
i=1

e2
x (Rj )
Si

27



C
h
a
p
t
e
r

3
Proposed Approach

3.1 The Seed Expanding Cluster (SEC)

3.1.1 The SEC method

In order to do automatic detection of coastal upwelling from Sea Surface Temperature

images, a clustering algorithm was proposed as a new version of Seeded Region Grow-

ing. One Seed Expanding Cluster (SEC), as it was named by Nascimento et al. (2015),

takes the concept of approximate clustering due to Mirkin (1996) and Mirkin (2013) to

derive a homogeneity criterion different from the conventional difference between a pixel

value and the mean of the values over the region of interest. The proposed homogeneity

criterion has the format of a product and it is mathematically equivalent.

Basically, the algorithm checks for the coldest pixel in the image and uses it as the

initial seed. Then, it involves a boundary-oriented pixel labeling, and expanding its

boundary iteratively so that the cluster can grow.

This method overcomes the problem of dependence of pixel sorting order, and the

boundary-oriented pixel labeling can be done in parallel to speed up the procedure.

3.1.2 The SEC Algorithm

As described in Nascimento et al. (2015), the algorithm receives as input a temperature

map T (R,L), where R is the set of rows and L the set of columns, and elements of R × L
are pixels. It also receives the size of the exploring window W , and two threshold values

π and α. The exploring window W (i, j) is centered at pixel (i, j) ∈ R × L. π represents

the temperature similarity threshold and α describes the cluster density threshold. The

Output is a cluster C ⊆ R×L in the format of a binary map Z(R,L) with elements zij where

zij = 1 if (i, j) ∈ C and zij = 0 if (i, j) < C.
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A Pre-Processing stage, which is the step one, is executed, and for each pixel in the

image, the average temperature t∗ = mean(T (R,L)) is subtracted. The values after the

subtraction are denoted as t(i, j).

The second step of the algorithm is the Cluster Initialization, which will initially be

a cluster containing only the pixel with minimum temperature value, the initial seed

o = (io, jo). If there is more than one pixel that has the same minimum temperature, then

o is chosen randomly among them. With the exploring window W centered at the seed

pixel o, for every pixel (i, j) inside the window W (io, jo), the pixel is added or not to the

cluster C, if the similarity condition holds:

c × t(i, j) ≥ π (3.1)

where c is the temperature in the seed pixel, t(i, j) the temperature in the tested pixel

and π is the temperature similarity threshold.

In the third step, Set Cluster Boundary, it is defined the cluster boundary set F con-

taining the unlabeled pixels (i
′
, j
′
) within the map R×L which are adjacent to the cluster

C. The boundary pixels do not belong to the cluster but have an 8-neighborhood set of

pixels intersecting the cluster. The boundary set F is defined as:

F =
{
(i
′
, j
′
) < C|N (i

′
, j
′
)∩C , �

}
(3.2)

where N (i
′
, j
′
) is the 8-neighborhood set of the pixel.

Then, in the fourth step, Expansion, the cluster C will be expanded step by step in an

iterative way, until the boundary F is empty or the boundary does not change between

consecutive iterations. So, for each boundary pixel (i
′
, j
′
) in F the boundary expand

region, for that pixel, is defined as the subset of pixels in the exploring window W (i
′
, j
′
)

that intersect the pixels (i, j) of the cluster, that is (i, j) ∈W (i
′
, j
′
)∩C. Let c∗ be defined as

the mean temperature of those pixels.

The homogeneity criterion is defined by two conditions, the temperature similarity

condition and the density condition. The first one guarantees that the expansion of the

cluster evolves smoothly according to the variation of temperatures, and the second one

guarantees the special continuity of the cluster.

First, the similarity condition which compares the product of c∗ by t(i
′
, j
′
) to the simi-

larity threshold:

c∗ × t(i
′
, j
′
) ≥ π (3.3)

with the temperature c∗ defined as c∗ =mean(T (W (i
′
, j
′
)∩C)) and t(i

′
, j
′
) representing

the current boundary pixel temperature.

Second, the density condition tests if the number of pixels of cluster C that intersect

the exploring window W (i
′
, j
′
) divided by the number of total pixels within W (i

′
, j
′
), is

higher than the given density threshold:
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|W (i
′
, j
′
)∩C|

|W (i ′ , j ′ )|
≥ α (3.4)

If both homogeneity tests hold true, then the boundary pixel (i
′
, j
′
) is inserted in an

auxiliary cluster C
′

and the corresponding boundary pixels N (i
′
, j
′
), that do not belong

already to the cluster C or to the current boundary F, are allocated to the auxiliary bound-

ary set F
′
. Both the auxiliary sets C

′
and F

′
are emptied in every iteration of this fourth

step. Until all boundary pixels of F have been tested, the process continues. After this, the

new labeled pixels in C
′

are merged with cluster C and the pixels in the auxiliary set F
′

are merged with the boundary set F, and the pixels which the result in both homogeneity

tests was positive, meaning the new members of the cluster saved in C
′
, are removed

from the new boundary set F.

Treating all frontier pixels before updating the cluster and the new boundary set,

guarantees that there will not be a dependency on the order of processing boundary

pixels. This also permits the parallel processing of similarity and density conditions, as

well of the different boundary pixels.

It is important to salient that in the self-tuning version of the SEC algorithm the den-

sity condition 3.4 was abolished and the similarity threshold π in conditions 3.1 and

3.3 does not need to be given as input and is specified as mean(T (W (i
′
, j
′
)∩F)).

The SEC algorithm can be formally described in the following scheme:

Input: T (R,L) - A temperature map, where R is the set of rows and L the set of

columns;

w - The size of the exploring window W ;

π - The temperature similarity threshold;

α - The cluster density threshold.

Output: The Output is a cluster C ⊆ R×L in the format of a binary map Z(R,L) with

elements zij where zij = 1 if (i, j) ∈ C and zij = 0 if (i, j) < C.

Step 1 Pre-processing: For each pixel in the image, the average temperature t∗ =

mean(T (R,L)) is subtracted. The values after the subtraction are denoted as t(i, j).

Step 2 Cluster Initialization: Initially, the cluster contains only the pixel with mini-

mum temperature value, the initial seed o = (io, jo). So, C = {(io, jo)}. The temperature in

the seed pixel (io, jo) is denoted as c. With the exploring window W centered at the seed

pixel o, for every pixel (i, j) inside the window W (io, jo), the pixel is added to the cluster

C, if the follow similarity criterion holds:
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c × t(i, j) ≥ π

Step 3 Set Cluster Boundary: The boundary set F is defined as the unlabeled pixels

(i
′
, j
′
) within the map R×L which are adjacent to the cluster C:

F =
{
(i
′
, j
′
) < C|N (i

′
, j
′
)∩C , �

}
,

where N (i
′
, j
′
) is the 8-neighborhood set of the pixel.

Step 4 Expansion: While boundary set F not empty and the boundary has changed

between consecutive iterations:

Step 4.1 Set C
′
= �; F

′
= �

Step 4.2 For each boundary pixel (i
′
, j
′
) ∈ F:

Step 4.2.1 The boundary expand region is defined as the subset of pixels in the

exploring window W (i
′
, j
′
) that intersect the pixels (i, j) of the cluster, that is

W (i
′
, j
′
)∩C. Let c∗ be defined as c∗ =mean(T (W (i

′
, j
′
)∩C)).

Step 4.2.2 If the similarity and density criteria hold:

c∗ × t(i ′ , j ′ ) ≥ π

|W (i
′
,j
′
)∩C|

|W (i′ ,j ′ )| ≥ α

then the boundary pixel (i
′
, j
′
) is inserted in an auxiliary cluster C

′
and

the corresponding boundary pixels N (i
′
, j
′
), that do not belong already to the

clusterC or to the current boundary F, are allocated to the auxiliary boundary

set F
′
:

C
′
= C

′ ∪
{
(i
′
, j
′
)
}
;

F
′
= F

′ ∪N (i
′
, j
′
)−C −F;

Step 4.3 The new labeled pixels in C
′

are merged with cluster C and the pixels

in the auxiliary set F
′

are merged with the boundary set F, and the pixels which

the result in both homogeneity tests was positive, meaning the new members of the

cluster saved in C
′
, are removed from the new boundary set F:

C = C ∪C ′ ; F = F ∪F ′ −C ′
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3.1.3 Self-tuning version of SEC

The similarity thresholdπ has a major impact in the quality of the segmentation produced

by the SEC algorithm. The parameter can be tuned using automatic thresholding tech-

niques, meaning that the threshold π is fixed before the growing stage. However, there

is an self-tuning version of the SEC algorithm that dinamically calculates the threshold

π. Its value changes depending on the state of the cluster C and its interception with the

window W (i
′
, j
′
).

The self-tuning version is similar to the other versions in the structure of the algorithm,

except that it is calculated independently for each pixel that is being analyzed to enter

the cluster C, meaning that the similarity threshold π in the Condition 3.3 is defined as

(mean(T (W (i
′
, j
′
)∩C)))2/2.

3.2 Iterative Seed Expanding Cluster (I-SEC)

The upwelling area sometimes is fragmented by different coastal regions. The SEC algo-

rithm only grows one region, defining a cluster contiguous in space, however for tackling

the problem of extracting the upwelling areas composed by more than one single contigu-

ous zone, it is necessary to run the growing procedure more than once. This discontinuity

is seen in the Figure 3.1, where the upwelling phenomenon exists in separated areas of

water, with the lateral bar of the image containing the colors that codify the temperature

at the boundary, of one upwelling area in yellow, and another in green. An iterative

version of the SEC algorithm had to be developed to treat the problem of discontinuous

upwelling areas.

Figure 3.1: SST image of the portuguese coast (12 June 1998). At least two relatively large,
not contiguous, upwelling areas can be distinguished in this image, one in the north and
other in the south, which are separated by warmer waters in the middle of the image.
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In order to extract multiple discontinuous areas it is necessary to have the iterative

procedure, which runs the region growing algorithm, and that allocates new regions to

the final segmentation result if they meet certain conditions or the stopping criterion is

not yet active.

The iterative procedure grows one region at a time, starting in the coldest pixel near

the continental coast, where the upwelling occurs, and at each iteration uses the region

growing algorithm to extract one more cluster, until a stopping criterion is activated.

All the initial seeds must be inside the seed selection area, near the continental coast

where the upwelling occurs, meaning that it was taken advantage of the geographical

information and high-level knowledge of the upwelling phenomenon to define the area

where the seeds are selected from. After the first region of upwelling is extracted, the next

seed will be selected from the residual seed selection area. If there is no available space

left in this area, the iterative procedure must stop, because no other further extracted

cluster would corresponded to an upwelling region.

It was early defined was that the extracted cluster must have at least a pre-determined

size, because it is common that micro groups of pixels are extracted and they usually are

created by noise in the image, or alternatively these micro clusters can arise after all the

upwelling area is segmented, because the iterative procedure will select the next coldest

pixel near the coastal area of the residual image. The defined minimum size of a cluster

was defined to 15 × 15 pixels, because this was a threshold that was small enough to let

enter real upwelling areas, but a big enough size to let out of the final result the extracted

noise that was irrelevant.

These micro groups of pixels when originated by noise can delay the extraction of

the relevant upwelling areas and cause the second upwelling area to only be extracted

in the fourth or fifth iteration, for example, and sometimes, after being extracted all the

relevant upwelling regions, these micro clusters of noise continue to show up at least

until the stopping criteria is reached. It is even possible to the iterative version continue

to extract the next coldest pixel that does not grow a big enough cluster for a large number

of iterations. To avoid these problems, it was added to the stopping criteria a maximum

of iterations, starting at the moment that the first upwelling region is extracted. It was

possible to empirically set this maximum number of iterations to 5, which for the full

set of SST images in the study was enough to correctly extract the complete area of the

upwelling phenomenon.

To define what should be an adequate stopping criterion to the iterative procedure

which allows extracting multiple regions that represent upwelling area, it was registered

for each of the extracted regions their mean and minimum temperatures and, it was

possible do take advantage of the relationship between the mean temperature of the

first extracted region and the minimum temperature of the one that is currently being

extracted. Giving, as an example, one image with three discontinuous areas of cold waters

near the coast that correspond to upwelling, after extracting the first region, the next seed

will grow in the second area and the minimum temperature of that region is lower than
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the mean temperature of the first extracted cluster. The same thing happens to the third

region that still corresponds to an upwelling area, however when the next coldest pixel is

selected and the iterative procedure extracts a fourth cluster, because this one does not

belong to the coldest waters that represent the upwelling area, its minimum temperature

is usually higher than the mean temperature of the first region or at least it is close to

that mean temperature. So, knowing this, it is possible to define a stopping criterion that

consists in not adding the last extracted cluster to the final segmentation result and stop

the extraction of more clusters, if the difference between the mean temperature of the

first region and the minimum temperature of the current region is below a pre-defined

threshold ε.

An advantage of subtract to the mean of the first extracted cluster is that the difference

always decreases at each iteration, and this allows to fix the threshold ε, and knowing

for sure that the next extracted region will not enter the final segmentation, because the

difference to the the mean of the first extracted region will be even lower, so it makes

possible to end earlier the iterative process.

A correct value for the threshold ε is important to guarantee that non upwelling

regions will not be added to the final segmentation result and to end the iterative process

as soon as possible. In order to correctly define an adequate value for this threshold it

was necessary to observe when the mean temperature of the first region subtracted by

the minimum temperature of the region that is being analyzed is big enough to let what

are upwelling regions to enter the final segmentation and small enough to prevent non

upwelling regions to enter the final result.

If the difference between the mean temperature of the first region and the minimum

temperature of the cluster that is currently being extracted is higher than the threshold

ε, the size of the region that is being extracted is bigger than the minimum size for a

cluster to not be considered noise, and the maximum number of iterations was not yet

reached, then the extracted region is added to final segmentation. However, sometimes

a region can grow with an initial seed pixel which is inside the seed selection area near

the coast, but from that growth results an massive explosion that clearly is not part of the

upwelling region and, because its seed pixel has a low temperature, the condition that

measures the difference between mean of the first and minimum of the current region

allows the region to enter the final result. This problem happens mainly when running

the self-tuning version of the SEC algorithm in the images of the Canary or, by running

some other SRG method that have a tendency to over-segmentation. So, to avoid this

improper behavior, an extra condition was defined to reinforce the quality of the final

segmentation, by not allowing these explosions to enter the final segmentation result.

The condition is of spatial nature and consists in measuring the percentage of pixels of

the cluster that fall inside a pre-specified area of the image where the upwelling should

be at least partially limited to, and check if it is lower than a certain threshold. This area

was defined by observing the segmentation results of all the SST images and, for all types

of the images the area of the extracted cluster must have to intercept the pre-defined area
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in 20%. In the case of SST images of Portugal the pre-defined area was defined has a

rectangle with 1 ≤ x ≤ 400 and 175 ≤ y ≤ 300. For the SST images of the Canary, the

resolution of the SST image is different and the continental coast is not parallel with the

sides of the image, so before the pre-defined area where the upwelling should occur at

least partially, was defined to 45 ≤ x ≤ 420 and 230 ≤ y ≤ 310 after rotating the image

+40◦.

In short, the iterative procedure has four conditions that decide if a cluster should

or not enter the final segmentation result and when it should stop. First it is checked if

the extracted cluster is not noise and big enough to be considered an upwelling region,

this parameter was called minClusterSize and set to 15 × 15 pixels. It was also defined

the maximum number of iterations, because even after the correct upwelling regions

have been extracted, it can be space left in the residual area for seed selection and, seeds

that did not grow continue to naturally appear until maxIterations = 5 is reached, as set

by the experiments. In the case there is not left space in the seed selection area, then

the iterative procedure should end earlier. If the extracted region passes the condition,

defined by the difference between the mean of the first extracted cluster and the minimum

value of the current one being greater than a threshold ε, the cluster is added to the

final segmentation result, otherwise the iterative procedure stops. But if it passes this

condition, there is an extra condition of spatiality that puts the extracted region to the

final result if it is not a massive explosion that started in cold waters. At least 20% of

the area of the extracted cluster must intercept a pre-defined area, which it was called

upwellingLikeliwood. Besides the configuration of all this parameters and conditions,

the one parameter that is more crucial and hard to tune is the threshold ε, and for that

matter in Section 3.2.2 the complete study of the setting of this parameter as done.

The code to the iterative procedure is described in the following way:
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Data: Image (map with temperature values)

Result: finalJ (binary map with the final segmentation result)

finalJ = zeros(size(Image));

iterating = true;

it = 1;

firstExtracted = false;

while iterating do

[seedX, seedY] = selectSeed(Image);

J = SEC(Image, seedX, seedY);

minCluster = calcMinimum(J);

meanCluster = calcMean(J);

sizeCluster = calcSize(J);

Image (J == 1) = NaN;

if it ≥ maxIterations && firstExtracted then

iterating = false;

end

if sizeCluster > minClusterSize then

if ¬ firstExtracted then

if firstMean - min > epsilon && it ≤ maxIterations then

interception = calcInterceptionWithUpwellingZone(J);

if interception > upwellingLikeliwood then

finalJ(J==1) = 1;

end

else

iterating = false;

end

else

firstExtracted = true;

firstMean = meanCluster;

finalJ(J==1) = 1;

end

end

it = it + 1;

end
Algorithm 1: Iterative Procedure for the SEC algorithm
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In the Figures 3.2 and 3.4 the results of the iterative procedure can be seed. This

process allowed the SEC algorithm to successfully extract the correct number of discon-

tinuous upwelling regions.

Figure 3.2: 1998-08-05 SEC-SelfTuning Figure 3.3: 1998-08-05 ground-truth map

Figure 3.4: 1998-09-24 SEC-Kittler Figure 3.5: 1998-09-24 ground-truth map

3.2.1 Termination condition

The iterative procedure can end its execution by reaching the maximum number of it-

erations (Max Iterations T ermination), by not having having enough space in the seed

selection area to chose the next seed (No Seed T ermination) or, by extracting a region that

it is not considered to be upwelling and therefore failing in the condition which states

that the difference between the mean of the first extracted cluster and the minimum value

of the current one must be greater than a threshold ε (T hreshold T ermination), terminat-

ing the iterative procedure earlier because it is certain that further extracted clusters will

not pass this condition too, due to the difference is always decreasing at each iteration,

because the next seed will always be warmer and making the difference smaller.

In the Figure 3.6 it was registered how the iterative procedure terminates, for the re-

sults of the SEC-SelfTuning for all the SST images, and it is possible to see the percentage

that each termination possibility occurs. In this case, it is possible to see that most of
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the times the iterative procedure ends by the maximum number of iterations, which is

expected, because most of the images only grow one and only cluster that correspond

to a continuous area of upwelling and so, the next clusters that will be extracted are

micro groups of pixels that did not grow because they are in warmer waters, and this are

ignored because they do not pass in the condition that sets a minimum size for a cluster

to represent upwelling. Overall, for the results of the SEC-SelfTuning, there is a good

quota of terminations that represents lack of space left in a seed selection area to select

another initial seed. This can be perfectly normal when the upwelling area covers all

the continental coast and it is correctly extracted, however sometimes this can also be

caused by over-segmentation that covers the seed selection area. The remaining reason to

termination is not as high as the others and it is because the difference between the mean

of the first extracted cluster and the minimum value of the current one is not greater than

the threshold ε, so some non upwelling clusters were extracted and should not enter the

final segmentation result, and this was detected and the iterative procedure ended earlier,

knowing that further extractions would fail in this condition too. The quota from this

last cause allows to understand how often a method extracts clusters that should have

not been grown to a considerable size out of the upwelling zone.

Figure 3.6: The plot shows the percentage for each termination possibility of the iterative

procedure, organized by sets of images, in this case for the results of the SEC-SelfTuning.

The remaining graphics for the iterative procedure stopping cause are in the Ap-

pendix A.5, and for the other SEC versions, the most similar to the SEC-SelfTuning is
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the SEC-Kittler, because is the quota for the T hreshold T ermination cause is also high,

contrarily to the other two versions of the SEC algorithm, meaning that this methods

are the ones where this condition is more useful to extracting the correct number of up-

welling regions. Of the SRG methods, only the ZanatySRG requires frequently of this

condition to terminate the iterative procedure. For all the region growing algorithms,

Max Iterations T ermination condition is naturally the most frequent, mostly because

after the extraction of the upwelling areas, only micro groups of points that contain the

next initial seed are extracted and ignored because of its irrelevant size. For both the Otsu-

VermaSRG and MeanVermaSRG, the the quota for No Seed T ermination is high, because

these methods commonly have explosions that cover the entirety of the seed selection

area. On the opposite side, the GambottoSRG never stops because of this condition, de-

rived from its problem of under-segmentation, so there area always free space left in the

residual seed selection area.

3.2.2 Threshold definition

In this study several data was collected by running the iterative procedure. For each set

of SST images it was registered at each iteration the last upwelling region was captured;

which termination condition of the iterative procedure was responsible for stopping the

process that could be cause by not be any left space in the seed selection area (S), by the

maximum number of iterations be reached (M) or by difference between the mean tem-

perature of the first region and the minimum temperature of the cluster that is currently

being extracted not being higher than the pre-defined threshold ε (T); and for the SST

images of each set it was registered the values for the difference between the mean of the

first region and the minimum of one relevant cluster. Relevant cluster can have multiple

meanings, and in graphics like the ones of Figure 3.7 or 3.8, for the SEC-SelfTuning for

image sets of 1998 and 1999 , the difference value for this relevant cluster is divided

in five categories: Multicluster/OK , where in this case the SEC-SelfTuning extracted

more than one region correspondent to upwelling area correctly, for SST images with

discontinuity has listed in the Table A.1, and the relevant cluster which its minimum tem-

perature is subtracted to the mean temperature of the first extracted cluster, in this case

represents the last cluster that was extracted and corresponded indeed to an upwelling

area. Multicluster/UnderSegmentation is similar to Multicluster/OK , however it hap-

pens in images without discontinuous upwelling regions, what happen in these cases was

that besides multiple cluster had to be extracted and effectively correspond to upwelling

areas, the multiple regions that were extracted happen because the method produced

under-segmented results. For the SEC-SelfTuning this did not happen, however it was

common when the SEC-Kittler was applied. Multicluster/OverSegmentation represent

the cases when the an extracted cluster does not represent an upwelling zone and there-

fore it must be out of the final segmentation result, the difference in this case is to the first

cluster that did not enter to the final segmentation result. Then there are the category
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Onecluster/OverSegmentation, that happens in SST images that have discontinuity, but

because of over-segmentation all the separated upwelling regions were extracted with

only one cluster. Onecluster/OK represents the SST images that do not have discontinu-

ity and only one cluster was extracted, meaning that the result was correct. In this case

the difference is between the cluster and the residual image.

After the iterative procedure extracts the first region of upwelling, the next extracted

regions must be evaluated to see if they should enter or not the final segmentation, in

order to guarantee that the correct number of regions of upwelling is extracted. The

developed iterative procedure as a condition that focus on this decision and consists

in checking if the difference between the mean temperature of the first region and the

minimum temperature of the cluster that is currently being extracted is higher than the

threshold ε, if it is the region is added to the final result, if it is not then it does not appear

in the final segmentation result. The correct tuning of the threshold ε is very important

to assure that only upwelling regions enter the result. The threshold ε was calculated

with the objective of separating the difference values of the categories Multicluster/OK

and Multicluster/UnderSegmentation, from the values of the category that contains the

clusters that do not represent upwelling areas, Multicluster/OverSegmentation.

In order to establish the threshold ε to techniques were applied, one supervised and

one unsupervised, for each region growing algorithm applied. The Information Gain

technique (Han and Kamber (2001)) , which is a entropy-based method that can set a

threshold, which has the minimum entropy, to divide two sets . The method is super-

vised and takes advantage of a ground-truth to find the separation value, in this case

the binary ground-truth are the difference values of the categories Multicluster/OK

and Multicluster/UnderSegmentation represented as 1 in the ground-truth, and the

Multicluster/OverSegmentation represented as 0. Being this method supervised, the

ground-truth had to be carefully constructed, by doing the interception of the ground-

truth of the SST images with the segmentation results of each algorithm, and seeing what

cluster were or not representative of upwelling areas. However because there is no avail-

able ground-truth for the many of the images, unsupervised methods to calculate the

threshold ε were considered, meaning that a larger amount of difference values could

be considered using an unsupervised method, namely the ones from the sets of SST im-

ages without ground-truth. Automatic thresholding techniques were applied and, for the

SEC-Otsu the method used was the one of Otsu (1979), for the SEC-Kittler the one of

Kittler and Illingworth (1986), for the SEC-Ridler the method presented by Ridler and

Calvard (1978) and for the SEC-SelfTuning the thresholding method that was used was

also the Otsu’s method.

In the Appendix A.5 it can be seen all the graphics that describe the behavior of the

iterative procedure for the SEC algorithm, as well for the other SRG methods.
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Figure 3.7: Data related to the iterative procedure applied to the SEC-SelfTuning for the

SST images of 1998 with ground-truth. The graphic which includes the values for the

difference between the mean of the first region and the minimum of one relevant cluster,

the relevant cluster has different meanings depending of which category described in the

legend. It also includes, for each SST image, the number of the iteration that the last

region of upwelling was extracted and the reason why the iterative procedure ended.

For the SEC-SelfTuning segmentation of all images, including the ones without ground-

truth map, the Information Gain method defined a threshold that guaranteed that the

correct number of regions of upwelling was extracted. The unsupervised measure to

define the threshold ε, the Otsu’s method in this case, only failed to do it in the image

of 1998-09-09 in the set of images with no ground-truth of 1998. For the SEC-Otsu and

SEC-Ridler the Information Gain has a misclassification in the 1998-06-16 from the set

of images with no ground-truth of 1998, however this is a case where a last third re-

gion is extracted and not added to the final segmentation result, but because there is no

ground-truth for the image, it is really difficult to say if the region should or not be . For

the SEC-Kittler every separation results are fine, and therefore the correct number of

upwelling regions is extracted. However, less effective were the results when using the

unsupervised methods of thresholding, mainly the Otsu’s method for the SEC-Otsu, that

misclassified on 8 of the SST images, which is are very poor results. For the SEC-Kittler

and SEC-Ridler no misclassifications for the unsupervised thresholding techniques oc-

curred.
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Figure 3.8: Data related to the iterative procedure applied to the SEC-SelfTuning for the

SST images of 1999 with ground-truth.

After analyzing the results of the the SEC algorithm versions, it was used the super-

vised method, Information Gain, for the task of finding the threshold ε . So, after the

thresholds have been fixed for the SEC algorithm versions it was also necessary to tune

the parameter for the SRG methods that also used the iterative procedure to extract more

that one region of upwelling in images with discontinuities, and for this SRG methods

study the threshold was defined using the Information Gain only. It is important to point

out that for the segmentation results of some of this SRG methods, there was no extracted

clusters that did not belonged to the upwelling region, so there was no no groups of val-

ues to separate, so in this case the defined threshold was defined has the minimum of the

difference values from the Multicluster/OK and Multicluster/UnderSegmentation cat-

egories. For the SRG methods the Information Gain method always correctly delineated

thresholds that corresponded to correctly allocating cluster in upwelling zones to the

final segmentation result and letting out of it the clusters that should not have entered.

3.3 Applying the SRG Methods to SST Image Analysis

It is important to salient how the different SRG methods, described in the Section 2.2.3

were applied to the domain of upwelling detection, and which settings of their param-

eters were done. Through testing experiments, the parameters of these SRG methods
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were tuned in order to be possible to segment SST images and delimit the upwelling

phenomenon.

It was also necessary to allow this methods to correctly segment SST images with

discontinuities, and the developed iterative procedure described in the Section 3.2 that

allows the SEC algorithm to extract multiple upwelling areas, was also used for the SRG

methods that only grow one region starting in an initial seed. Instead of extracting regions

with the SEC algorithm, they are extracted by another region growing algorithm. The

iterative procedure was also applied for one of the two greedy region growing algorithms,

the method of Shih and Cheng (2005), because besides it does not grow a region at a time,

it also needs a way to decide which of the regions of the segmentation that it produces,

are or not uwpelling regions. This required a slightly modified version of the iterative

procedure which is explained in the Section 3.3.3.

3.3.1 Applying the Adams and Bischof Seeded Region Growing

One thing that is different from the SEC algorithm, is that the Adams and Bischof (1994)

algorithm is greedy, meaning that it requires at least two seeds, otherwise the image can

not be segmented.

One strategy that was tried was to select a seed in the coldest spot of the SST image,

which would represent the cluster that is upwelling, and another seed would be placed

in the hottest pixel of the image. The training results were not good, many times because

one of the seeds grew, but its cluster would be trapped between noisy areas of the image,

making the other cluster grow to occupy most of the image. Even if none of the seeds was

trapped, using only two seeds placed automatically was generally not enough to extract

correctly the upwelling area. Also, in case the image contained discontinuous upwelling

areas only two seeds would not be enough.

So, the seed selection strategy chosen consists in placing manually 5 seeds near the

continental coast where the upwelling occurs and another 5 seeds far from the continental

coast where the upwelling does not occur. The positions of the seeds were identical

in most of the images, except for images where the noise would not allow the seeds

to grow significantly. The upwelling area extracted is the combination of the regions

corresponding to the 5 seeds in the coldest waters.

3.3.2 Applying the Verma Seeded Region Growing

The algorithm of Verma et al. (2011) has to be adapted to the requirements of segmenting

SST images, this means that the selection of the initial seed must be the coldest pixel in

the image rather than the center pixel used in the original work.

In order to check if a pixel enters or not to the region that is being grown, this method

calculates the distance between the intensity of the analyzed pixel and the seed pixel. If

this distance is less that a threshold, the pixel is added to the region. The paper mentions

that the tuning of the threshold is done using the Otsu’s method, however simply applying
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this method did not produce results near acceptable, resulting in an explosion covering

all the pixels of the image. So two alternatives were tried, one that uses the Otsu’s method

but to the value it produces, it is subtracted the temperature of the seed pixel. The other

alternative consisted in set the threshold to the difference between the mean temperature

of the image and the temperature of the seed pixel.

Both the alternatives to tune the threshold proved to be effective, however none of

them was consistently better than the other one, so the collection of SST images was

segmented using these two versions of the tuning of the threshold.

3.3.3 Applying the Shih and Cheng Seeded Region Growing

This method (Shih and Cheng (2005)) is similar to the one preseted by Adams and

Bischof (1994), because it is also a greedy method, requiring more than two seeds to

segment the image. The main differences are the capability of this method to automati-

cally select suitable seeds and in the end of the growing phase, merge regions according

to how similar they are.

The method has some thresholds that must be tuned for automatically select seeds and

for the merging procedure of regions. The different thresholds were tuned empirically,

trying to maximize the quality of the results for the different images. In the process of

automatically select the initial seeds there were two conditions, in the first, the seed pixel

candidate must have the similarity to its neighbors higher than a threshold set to 0.98.

The second condition states that a seed pixel candidate must have the maximum relative

Euclidean distance to its eight neighbors less than 0.2. There is another threshold that is

used for stopping the merging procedure, which merges regions until no region has its

distance to its neighbors less that a threshold value of 0.10.

The result after the merging procedure is a segment image in different regions. It is left

to decide which ones correspond to upwelling areas and which do not. To define which

ones are the upwelling regions it is taken advantage of the iterative procedure developed

and used in the other methods. However, in this case, there is not a region that is being

extracted at each cycle, but there are a group of regions that will be individually processed

to see if they meet the conditions of the developed iterative procedure, and enter the final

segmentation image with only correct upwelling regions. The main difference from the

iterative version that was applied with the other region growing methods is that the

iterative procedure only stops when all the regions, produced by this greedy method,

are analyzed and chosen to enter or not the final segmentation result. The first region

of upwelling is the one that contains the coldest pixel near the continental coast, the

remaining regions are added if they meet the conditions of the iterative procedure, except

for the maximum number of iterations that in this case it is necessary to analyze all the

regions. If it fails in the condition consisting in the difference between the mean of the

first extracted cluster and the minimum value of the current one being greater than a

threshold ε, instead of stopping, it simply does not add the current region to the final
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segmentation result.

3.3.4 Applying the Gambotto Seeded Region Growing

The merging criterion of the method proposed by Gambotto (1993) selects the boundary

regions of one region, if their distance to the region model (mean temperature of the

region) is not greater than a threshold multiplied by an α value the regions are merged.

The method dynamically calculates the threshold value, but the parameter α must be

tuned in order to control the growing pace of the region. A high value might compromise

the quality of the segmentation, because it allows pixels to enter the region when it

should not. An α that is too small might in the limit not allow any boundary segment

to be added to the region, making the growing process too slow because it activates the

other mechanism of the method that states that if no merging occurs in the previous

verification, only the segment which is closest to the region model is added. This means

that at least one boundary segment is merged with the region at each iteration. The most

reliable value for this parameter to produce good segmentation results was α = 6.

The growth termination consists in check if the difference between the Fmax and

the current F(n) is greater that a preset parameter λ multiplied by the threshold that is

calculated dynamically. If this condition is true then a second criterion, consisting in the

difference between the Fmax and the average gradient computed over the dilated region,

is verified to also be greater than the λ value multiplied by the threshold. The parameter

λ was empirically defined as λ = 2.

3.3.5 Applying the Zanaty and Asaad Seeded Region Growing

The method presented by Zanaty and Asaad (2013) makes the assumption that the pixel

values along the boundaries usually have lower temperature probability than the pixel

temperatures inside the region to be extracted. The method uses the probability of pixel,

defined as the number of pixels with the same temperature divided by the size of the

image, and uses it to stop the growing of the region by tuning a similarity threshold.

The threshold function is composed by two other threshold functions that have pre-

scribed parameters, T 1 e T 2. The first threshold T 1, takes different values for low tem-

perature pixels and high temperature pixels. In the paper, the separation between high

and low intensity pixel values is preset to θ = 0.5, but this value does not work effectively

outside the context of segmenting MRI images, like brain tissues, so to tune this parame-

ter adequately to segment upwelling areas, the Otsu’s method was used. The threshold

T 1 uses one preset parameter γ for low intensity pixels and an α value to high intensity

values, they were set to γ = 1 and α = 5. The threshold T 2 forces the final threshold to be

small at the boundaries using the probabilities of the pixels intensities and it also needs

a preset parameter that was defined as β1 = −2.
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4
Experimental Study

4.1 Goals of the Study

The objectives of the experimental study are aligned with the main contributions of the

work as described in Section 1.3, plus some complementary studies. In such context the

following will be considered:

(i) Comparing the different versions of the SEC algorithm, which differ in how the

similarity threshold is calculated. The threshold is calculated using automatic

thresholding methods (Ridler and Calvard (1978); Otsu (1979); Kittler and Illing-

worth (1986)), or can be dynamically calculated in the growing process in the case

of the Self-Tuning version. There is also the Fine-Tuning version, in which it is

taken advantage of the ground-truth map to maximize the F-measure, by running

the SEC algorithm in a range of multiple similarity thresholds, this version purpose

is to find out what potential results can be achieved with an optimum tuning of the

similarity threshold of the SEC algorithm.

(ii) Comparative study between the SEC method and other SRG methods (Adams and

Bischof (1994); Gambotto (1993); Shih and Cheng (2005); Verma et al. (2011);

Zanaty and Asaad (2013)), in their ability to correctly segment SST images. The

methods were chosen in an attempt to have a representative sample of approaches

to tackle the problem of extracting upwelling areas, given the diversity of SRG

methods.

(iii) In order to extract the full upwelling region in SST images with discontinuous

areas of cold waters, it was developed an iterative method, which region by region

evaluates if it should enter or not the final segmentation result. The iterative method

was used in all the SRG methods, including the SEC method, with exception for
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the algorithm from Adams and Bischof (1994) which the regions corresponding to

upwelling were manually selected.

(iv) Some SST images have associated a ground-truth image manually segmented by

the Oceanographers, this allows to use supervised evaluation techniques instead

of unsupervised methods, because it is believed that direct comparison between a

segmented image and a reference image provides a finer resolution of evaluation

(Zhang et al. (2008)). However, many SST images do not have a ground-truth

associated to them, because this is a time-consuming task for the experts, and the

segmentation of those images must be evaluated too. So, in this case, unsupervised

evaluation techniques will be applied.

For the images with ground-truth, the evaluation was done using supervised eval-

uation measures like the F-measure and the Adjusted Rand Index, which provide

accurate evaluations, however, for images with no ground-truth, unsupervised eval-

uation methods were used and their effectiveness had to be studied, including the

intra-region and inter-region measures of Levine and Nazif, intra-region and inter-

region measures of Rosenberger and Chehdi, Otsu’s within-class and between-class

variances, Calinski-Harabasz criterion, Davies-Bouldin criterion and intra-region

of Liu and Yang.

4.2 Imagery Data

Each SST image is represented by a 500 × 500 pixels map, for the images of the Portuguese

Coast, with a spatial resolution of 1.1 km × 1.1 km. Most of the images are from Portugal,

but the phenomenon of upwelling occurs in other parts of the globe, so there is also a set of

images from the African Coast near the Canary islands, which can test the efficiency of the

segmentation algorithms for different images with other type of upwelling morphologies.

The SST images from the Canary are represented by 350 × 570 pixels maps.

Each pixel value is a temperature in degrees Celsius, as represented in Figures 1.1 and

3.1, if there are no clouds in the sky and there are no missing data because of errors during

satellite transmission. In case some of this two conditions exist or the pixels correspond

to a land area, then the pixels where it occurred are represented by NaN’s, corresponding

to white in the image.

Different types of upwelling situations are presented in different images. Some SST

images are characterized by very sharp and well defined upwelling boundaries between

cold and warm surface waters along the coast, which will be called images with strong

gradients. Some have a much smoother thermal transition zone between what is consid-

ered to be upwelling areas and non-upwelling areas, which will be named images with

weak gradients. Other images simply have a large amount of noise, from clouds or errors

during satellite transmission, which makes it more difficult to extract information about
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the full length of the upwelling area. Further explanation for the causes of noise can be

seen in the Appendix A.1.

The upwelling is an annual phenomenon and different seasons of have different char-

acteristics, so the images were divided in separated sets. Images from the year of 1998

(30 SST images), 1999 (31 SST images) and from the Canary (10 SST images) are images

with ground-truth, and their segmentation results were evaluated using with supervised

measures. The SST images of 1998 with ground-truth were divided in three subsets

corresponding, has in the paper where the SEC algorithm was presented (Nascimento

et al. (2015)) , to images with strong gradients on the upwelling frontier (15 SST images),

weak gradients (11 SST images) and noisy images (4 SST images). Complementary to

these sets of images with ground-truth, there are more SST images without ground-truth

for other years of upwelling. The segmentation results for these images must be evalu-

ated using unsupervised measures that do not require ground-truth, and are divided in

different sets, also arranged by year. Without ground-truth there are sets of SST images

from 1998 (52 SST images), 2000 (32 SST images), 2001 (30 SST images) and 2002 (22 SST

images). There are 71 SST images which the segmentation results can be evaluated using

supervised measures, and 136 SST images which the segmentation results can only be

evaluated using unsupervised measures, in a total of 207 SST image divided in different

sets.

In Figure 4.1 can be seen the SST images of 2 August 1998 and 28 July 1998, and

in Figure 4.2 can be seen the correspondent ground-truth images. In the Figure 4.3 it

can be seen an example of one of the images from the Canary and its correspondent

ground-truth.

Figure 4.1: Two SST images of Portugal, the one in the left was captured in 2 August 1998

and the one in the right in 28 July 1998.

48



CHAPTER 4. EXPERIMENTAL STUDY

Figure 4.2: The ground-truth images correspondent to the SST images of 2 August 1998

in the left and of 28 July 1998 in the right. The white area represents noise, land or clouds,

the light blue area contains the waters that are not part of the upwelling zone, and the

dark blue area is the upwelling area.

Figure 4.3: SST Image from the Canary, named img_58, in the left, and the correspondent

ground-truth in the right.

4.3 Setting of the Experiments

The comparative study between the SEC versions as well as the the comparison between

the SEC and the other SRG methods, is separated for images of Portugal and Canary

because there are very distinct morphological features in the upwelling regions. For the

images of Portugal the analysis of the images with ground-truth map allow to have a
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very accurate evaluation of the segmentation results, but for the images without ground-

truth map, the unsupervised evaluation measures were applied after a complementary

comparison study which indicates the measures that can be more reliable in correctly

evaluate the segmentation of SST images.

All the the segmentation methods, with the exception of the AdamsSRG, take advan-

tage of the newly developed iterative procedure that allows to extract multiple upwelling

regions in the same SST image.

The automatic thresholding methods used to tune the similarity threshold π of the

SEC algorithm, Ridler and Calvard (1978); Otsu (1979); Kittler and Illingworth (1986) ,

were subjected to a small adaptation that forces the output value to be greater than the

mean intensity value of the image, which after normalization means that the output must

be greater than zero.

This is done because in order to grow the cluster that extracts the coldest waters in the

SST image, the similarity threshold value of the SEC algorithm should be positive, this is

because the similarity condition of its homogeneity criterion is in a form of a product that

has to be bigger than a threshold value to allocate a pixel to the cluster, in an image that

is normalized. The initial cluster mean of the seed, in the coldest waters, has a negative

value, so a frontier pixel is allocated to the cluster if its temperature value (in the begin-

ning of the growth phase is generally negative) times the mean of the cluster, also with a

negative value, is bigger than a threshold. So, it is assumed that the upwelling region is

composed by the pixels which their temperature values are below the mean temperature

of the image, this means that a similarity threshold set to bigger than zero will prevent

that bigger than mean pixels are added to the cluster, which otherwise would result in an

massive explosion in the segmentation.

There is the SEC-FineTuning version that allows to put in perspective how good can

be the SEC algorithm results when the best similarity threshold is used.

When running the fine-tuning version of the algorithm, it is taken advantage of the

ground-truth to maximize the F-measure as it was done in Nascimento et al. (2015).

In the fine-tuning version the similarity threshold was the best of the threshold values

between 0 and 1.5, using a step of 0.01.

After the first iteration, the F-measure is maximized taking only into account the

residual ground-truth, this is, the ground-truth without the pixels that were allocated to

the previous cluster. In the end, the binary image that contains the total upwelling area,

composed by more than one region, is compared to the original ground-truth and the

final evaluation values are calculated.

On running the SEC algorithm it is necessary to tune the threshold of similarity but

also the density threshold. By default the density threshold is fixed at 1
windowsSize×windowsSize ,

with windowsSize = 7 defined empirically for these images by Nascimento et al. (2015),
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making the pixel that is being evaluated to be connected to the region, property that

already is intrinsic to region growing methods. This means that the density threshold is

deactivated and the focus is to study the impact of the similarity threshold on the seg-

mentation result, except in the study that compares the SEC algorithm results with and

without fine-tuning of the density parameter of the algorithm.

For the study of the density condition of the SEC algorithm, the focus is in studying

the impact that the density threshold has in the segmentation results. In order to do

this, it was taken advantage of the ground-truth map to maximize the F-measure by fine-

tuning the density threshold, in this case, the SEC algorithm was run using values for the

density threshold ranging between 1
windowsSize×windowsSize and windowsSize×windowsSize

windowsSize×windowsSize . The

results are compared with the ones achieved without the fine-tuning of the density, in all

the versions of the SEC algorithm. And an empirical study was done to also understand

if there is a threshold value that can be fixed and that improves the evaluation scores of

the segmentation results.

To understand the segmentation results, it is necessary to compare the similarity

thresholds produced by the different automatic thresholding techniques. All versions of

the SEC algorithm calculate a similarity threshold value, except for the self-tuning that

dynamically derives the similarity threshold from the homogeneity criterion, so in order

to be able to compare all the similarity threshold values, including for the self-tuning

version, a strategy was outlined:

The similarity threshold is different for every frontier pixel that is being analyzed, so

first it is calculated the mean of the similarity thresholds from all the frontier pixels, and

after that it is calculated the mean of all the mean similarity threshold values of each

frontier.

4.4 Supervised Analysis of SEC versions

4.4.1 SEC Automatic thresholding vs Self-tuning

The multiple versions of the SEC algorithm were tested, differing in the way the similarity

threshold π is tuned. It was made a comparison study between the segmentation results

of the different versions in order to evaluate their performances. The presented results

are of the F-measure only, because the ARI measure gave similar evaluation values even

if with more variation, even so the results for the ARI can be seen in the Appendix A.2.2.

In the Table 4.1, it was captured the percentage of times that some version had the

best segmentation results and that its F-measure scores was 0.7 or higher, a empirically

defined threshold that distinguish good for bad segmentation results by Nascimento et

al. (2015). For the images with strong gradients, the version that was more times the best

was the SEC-Otsu, and all the methods obtained a good extraction of the upwelling area

51



CHAPTER 4. EXPERIMENTAL STUDY

always or almost always. When seeing the results for the SST images with weak gradients,

a method was clearly the best, the SEC-Kittler, because the similarity thresholds that it

produced were higher and avoided explosions. For the noisy SST images all methods were

good except in one image and the SEC-SelfTuning was more times the best method, as it

also was in the SST images from 1999, even if the number of times that it had correctly

segmented the upwelling area was lower that the SEC-Kittler. This is because the SEC-

Kittler did not failed as much as the other methods when dealing with images with weak

gradients at the frontier of upwelling. Overall, none of the methods was the best for

all types of images, the SEC-Kittler is well behaved when applied to images with weak

gradients, but not as much for the images with strong gradients, contrarily to the other

other SEC algorithm versions, which had good results for these images.

Table 4.1: Table that accounts for how frequent each version of the SEC algorithm, ex-

cluding the fine-tuning version, had the best score when segmenting an SST image of

the portuguese coast. It is also accounted the frequency that each version had F-measure

scores superior or equal to 0.7, which was empirically identified has a threshold for sepa-

rating good from bad segmentation results. The best versions scores are bold in the table,

for each of the sets of images and information that is being analyzed.

Image Set Information SEC-Otsu SEC-Kittler SEC-Ridler SEC-SelfTuning
Strong Gradients

(1998) #15
% Best Method 0,467 0,200 0,133 0,400

% F-measure ≥ 0.7 0,933 0,933 1 1
Weak Gradients

(1998) #11
% Best Method 0,273 0,455 0,091 0,182

% F-measure ≥ 0.7 0,636 0,909 0,636 0,273
Noisy

(1998) #4
% Best Method 0 0,250 0 0,750

% F-measure ≥ 0.7 0,750 0,750 0,750 0,750

1999

#31

% Best Method 0,097 0,355 0,065 0,581

% F-measure ≥ 0.7 0,548 0,677 0,581 0,548

Overall

#61

% Best Method 0,213 0,328 0,082 0,475

% F-measure ≥ 0.7 0,672 0,787 0,705 0,623
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Figure 4.4: F-measure results for the comparative study between the SEC algorithm

versions. The segmentation results are from the SST images of the portuguese coast from

the year 1998, which was divided into subsets of images with strong gradients in the

frontier of the upwelling area, weak gradients and images with noise, from left to right

in the graphic correspondingly.

In the Figure 4.4 are presented the results for the segmentation results divided into

subsets of images with strong gradients in the frontier of the upwelling area, weak gradi-

ents and images with noise.

The SST images with strong gradients in the boundaries of the upwelling area are seen

ordered by date in the the subset in the left of the graphic. In the SST image of 1998-07-

28 and 1998-08-05 the SEC-Kittler method had worst results then the other versions the

cause was under-segmentation, the SEC-SelfTuning achieved lower scores than SEC-Otsu

and SEC-Ridler for the those images because of the opposite problem, over-segmentation.

The SEC-Otsu and SEC-Ridler versions usually produce similar results. For the other

images, the SEC-SelfTuning version follows the good results of the other versions.

The SST images with weak gradients are seen in the the subset in the middle of the

graphic and, some bad results bellow the 0.7 score happen for the SEC-Otsu, SEC-Ridler

and SEC-SelfTuning because of over-segmentation. For the images of 1998-06-25 and

1998-07-11, the SEC-Otsu and SEC-Ridler have very good scores, almost matching the

fine-tuning version, however the SEC-Kittler method and the SEC-SelfTuning version had

worst results because, in the case of SEC-Kittler, there is under-segmentation, and by the
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contrary, the SEC-SelfTuning produces results with over-segmentation. Compared with

images with strong gradients, the difficulties encountered in the images with weak gradi-

ents are evident in the results, which in many cases are lower, because of the explosion in

the segmented area.

The SST images that are noisy are seen in the the subset in the right of the graphic

and, in these SST images the results, all versions stay relatively close to each other, noting

that the score of the SEC-SelfTuning is slightly lower in the image of 1998-08-10, but

slightly higher in the remaining images than the other versions.

Figure 4.5: Similarity thresholds that were calculated for each of the SEC algorithm

versions. Higher thresholds will contain more the growth of the clusters than smaller

ones. The segmentation results are from the SST images of the portuguese coast from the

year 1998, which was divided into subsets of images with strong gradients in the frontier

of the upwelling area, weak gradients and images with noise, from left to right in the

graphic correspondingly.

The Figure 4.5 shows the similarity thresholds that originated the results seen in the

Figure 4.4.

Dealing with the subset of images with strong gradients, the SEC-Kittler method

produced a value to the similarity threshold higher than the other versions, and when the

boundaries have strong gradients, an higher threshold will contain the grow and under-

segment the SST image, however if the image has weak gradients, an higher threshold is

actually preferable to contain explosion, but it is not the case for this set of images.
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In most of the SST images with weak gradients in the frontier, the SEC-Kittler tended

to produce higher similarity threshold values than the other versions and the fine-tuning

version. Higher thresholds can cause under-segmentation, since a bigger threshold value

contracts more the size of the cluster. Even so, the SEC-Kittler was the best because when

dealing with weak gradients higher thresholds are necessary to contain explosions.

All three automatic thresholding techniques produce similar results for the noisy SST

images, close to zero, relatively, but the scores were close to the fine-tuning version.

Figure 4.6: F-measure results for the comparative study between the SEC algorithm

versions. The segmentation results are from the SST images of the portuguese coast from

the year 1999.

There are some SST images from 1999 which the results, can be seen in the Figure 4.6

and, are far from good, because of smooth boundaries that difficult the correct extraction

of the upwelling area, resulting in explosions, namely in where lower scores ere achieved.

However, for some of these SST images, there is an automatic thresholding method that

provides better results, the SEC-Kittler which avoids the explosions. For most of the other

SST images from 1999 that have stronger gradients at the boundaries, the SEC-Kittler

version behaves similarly to the other versions.
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Figure 4.7: Similarity thresholds that were calculated for each of the SEC algorithm

versions. Higher thresholds will contain more the growth of the clusters than smaller

ones. The segmentation results are from the SST images of the portuguese coast from the

year 1999.

The Figure 4.7 contains the calculated similarity thresholds for the different SEC al-

gorithm versions applied to the images from 1999. The explanation for the explosions on

many of the SST images is the low similarity threshold produced by the methods. Because

the images with worst results have boundaries with smooth gradients, it is necessary to

the similarity threshold to be high, in order to contain the growth of the region. For those

images, the SEC-Kittler method avoids explosions, because it produces a higher threshold

that the other methods.

4.4.1.1 SEC vs SEC-density

The SEC algorithm has two parameters that control the growth of the region, the simi-

larity threshold, which largely influences the segmentation result, as seen in the Section

4.4.1, and the density threshold, which its influence in the final segmentation result is

being analyzed here. It order to study its impact it was done the fine-tuning of this pa-

rameter taking advantage of the ground-truth to maximize the F-measure score, to see

how distinct would be from the versions without this fine-tuning process.

The F-measure scores achieved by using the fine-tuning of the density threshold are

always higher or at least equal to the ones using the parameterization of the density
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threshold fixed in 1
windowsSize×windowsSize . Generally across all sets of images the tuning of

this parameter allows to score higher results, sometimes significantly higher, as seen in

the Figures 4.8 and 4.9.

Figure 4.8: The graphic shows the improvements that the fine-tuning of the density

threshold can have in the F-measure score. It is compared the SEC-Otsu and SEC-

SelfTuning versions with their own versions, but with the fine-tuning of the density

threshold. The segmentation results are from the SST images of the portuguese coast

from the year 1998, which was divided into subsets of images with strong gradients in

the frontier of the upwelling area, weak gradients and images with noise, from left to

right in the graphic correspondingly.
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Figure 4.9: The graphic shows the improvements that the fine-tuning of the density

threshold can have in the F-measure score. It is compared the SEC-Otsu and SEC-

SelfTuning versions with their own versions, but with the fine-tuning of the density

threshold. The segmentation results are from the SST images of the portuguese coast

from the year 1999.

Using the SEC-SelfTuning and SEC-Otsu versions, in those images where the score

is significantly improved, the higher density threshold avoided explosions that would

happen with a low density threshold.

For the other SST images, even if this is not enough to control explosions or there

are not explosion at all, the correct tuning of this threshold allows to grow the cluster

with smooth and better defined boundaries. So, just for allowing the boundaries to be

smoother, the F-measure is higher because it matches better the ground-truth map that

has smooth and well defined region boundaries.

The smoothness of the boundaries of the region that was extracted using the fine-

tuning of the density parameter can be seen and compared with the result for the same

image, but without fine-tuning in the Figure 4.11, for the exemplar SST image from 1998-

06-18 using the SEC-SelfTuning. The corresponded ground-truth map is displayed in the

Figure 4.10. In this case, not only the frontier became smoother, but also an explosion

was contained, improving significantly the F-measure score, for this image with weak

gradients.
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Figure 4.10: SST Image from 18 of June 1998, in the left, and the correspondent ground-

truth map in the right.

Figure 4.11: SST Image from 18 of June 1998, in the left without the fine-tuning of the

density threshold, and in the right the fine-tuning version, with the density threshold set

to 0.3878. It is an example of how the quality of the segmentation result can be improved.

The extracted upwelling region is the pink area and the initial seed is at the black marker.

4.4.2 SEC versions vs other SRG Methods

The SEC algorithm was developed to delimit the upwelling area in SST images, and its

versions were compared in the Section 4.4.1 for images of the portuguese coast. In order

to validate its effectiveness to tackle this problem, a comparative study against other SRG

methods is here presented. Distinct SRG methods, representative of some of the diversity

of SRG methods from the literature, are applied and their performance compared with
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the results of the SEC algorithm versions using supervised evaluation measures.

In the Table 4.2 it was captured the percentage of times that some SRG method had the

best segmentation results, compared to the others, and that its F-measure scores was 0.7 or

higher, a empirically defined threshold that distinguish good for bad segmentation results.

Analyzing the set of images with strong gradients, all the methods correctly delimited the

upwelling area, with exception to the ShihSRG, GambottoSRG and ZanatySRG, and for

the strong gradient images, the SEC versions and the AdamsSRG were the methods that

more often had F-measure scores of 0.7 or higher. The SEC-Otsu was more times the best

method, even if in only one third of the times. For the SST images with weak gradients the

SEC-Kittler was the most reliable method, followed by the AdamsSRG method. The SEC-

SelfTuning had difficulties when dealing with this type of images and had the poorest

results of the SEC algorithm versions. The remaining SRG methods also performed poorly

in most of the images. For the noisy images the AdamsSRG was the best method in half

the cases and only the GambottoSRG and ZanatySRG did not scored higher than 0.7 in

more than one of the SST images. For the set images from 1999, the good segmentation

results were not very frequent, the AdamsSRG was the best method, but even so it did

not correctly extracted the upwelling area in nearly one third of the images. Overall the

AdamsSRG was the best method followed by the SEC algorithm versions and after that

the VermaSRG.
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Table 4.2: Table that accounts for how frequent SRG method had the best score when segmenting an SST image of the portuguese coast.

Image

Set
Information

SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG

Strong

Gradients

(1998) #15

% Best

Method 0,333 0,133 0,133 0,133 0,133 0,200 0 0 0 0,067

% F-measure

≥ 0.7
0,933 0,933 1 1 1 0,733 0,867 0,533 0,267 0,667

Weak

Gradients

(1998) #11

% Best

Method 0,182 0,364 0,091 0 0,273 0 0 0 0,091 0

% F-measure

≥ 0.7
0,636 0,909 0,636 0,273 0,909 0,273 0,182 0,182 0,364 0,364

Noisy

(1998) #4

% Best

Method 0 0,250 0 0,000 0,500 0,250 0 0 0 0

% F-measure

≥ 0.7
0,750 0,750 0,750 0,750 0,750 0,750 0,750 0,500 0,750 0,250

1999

#31

% Best

Method 0,065 0,129 0 0,065 0,290 0,387 0 0,032 0,097 0

% F-measure

≥ 0.7
0,548 0,677 0,581 0,548 0,742 0,613 0,484 0,387 0,419 0,323

Overall

#61

% Best

Method 0,148 0,180 0,049 0,066 0,262 0,262 0 0,016 0,066 0,016

% F-measure

≥ 0.7
0,672 0,787 0,705 0,623 0,836 0,590 0,541 0,393 0,393 0,410
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To all the tested SRG methods, in set of SST images with strong gradients from 1998

which the results are showed in the Table A.2, the SEC versions and AdamsSRG delivered

good segmentation results constantly. Between these methods, the SEC-Otsu and SEC-

SelfTuning were most of the time very close to each other. The SEC-Ridler had identical

results of the ones of SEC-Otsu and, the SEC-Kittler only was lower than the other ver-

sions of the SEC in a couple of images. AdamsSRG was relatively close to the other SEC

algorithm, in a few images even better, but in half of the images, it was worse than the

SEC-SelfTuning and SEC-Otsu, but none the less with good results. Between the two ver-

sions OtsuVermaSRG and MeanVermaSRG, for the images in this set, the MeanVermaSRG

is clearly the best, achieving almost always good results. Even if the MeanVermaSRG is

not the best of all methods, it is still capable of providing quality segmentation results,

and in many images it matches the best results. The ShihSRG method and the Gambot-

toSRG also have bad results in half the images, but each in two images achieve results that

are very good. The bad results of these methods are all explained by under-segmentation,

in the case of the GambottoSRG, stronger under-segmentation. ZanatySRG has good

performances in most of the images, matching generally the best results of other methods,

however in four images the results are bad, because of big explosions.

For the set of SST images with weak gradients from 1998 which the results are pre-

sented in the Table A.3, the main differences to the previous set of images is that the

SEC-Kittler was considerably better than the other SEC versions and, that the Gambot-

toSRG is better when dealing with images with weak gradients that with strong gradients.

Overall only the SEC-Kittler and the AdamsSRG were robust in segmenting this set of

images, but all the other methods had difficulties in achieving good results.

And for these images with a big presence of noise from 1998, as seen in the Table A.4,

none of the methods is without a doubt the best across all images, but it is possible to see

that all methods, with exception of ShihSRG and ZanatySRG, achieve good results in 3

of the 4 images of the set.

In this set, from the year 1999 with results presented in the Table A.6, there are some

images there is one method that does achieve good results in most of the images, even

those which the weak gradients make the segmentation difficult, and it is the AdamsSRG

method. Even if some segmentation results are bad, it generally is the more reliable

method for this set.

Another method that had good results, even many times better than the best of the

AdamsSRG method was OtsuVermaSRG. The problem with this method was that contrar-

ily to AdamsSRG it did not perform well on the most difficult images with weak gradients,

failing to segment one third of the images. The MeanVermaSRG version had the same

problems, but performed well in the same images where OtsuVermaSRG version did,

however the scores were lower than the other version.

In between the results of the OtsuVermaSRG and MeanVermaSRG methods, appear

very close to each other the SEC-SelfTuning and SEC-Otsu methods, with the first being
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a little better in most of the images relatively to SEC-Otsu. For these last four cited

methods, the reasons to the bad results are the explosions that over-segment the image.

The SEC-Ridler had, as usual, no significant differences in the score relatively to the SEC-

Otsu. The SEC-Kittler was better than VermaSRG versions and the other SEC versions in

five images because it has tendency to perform better than these methods in images with

weak gradients.

The ShihSRG gets bad results in two thirds of the images, even if it in some images

behaves very well, in most it fails to have a good performance. The merging procedure

ends up merging regions that are very similar to each other and that provokes a decrease

in the quality of segmentation. The same to the ZanatySRG method, it performs good in

some images, but fails in most of them, in this case because of over-segmentation.

A method that does not have very good results, but has some acceptable ones is the

GambottoSRG. The special thing about this method is that achieved good results in

images where most of the methods failed. Images of June of 1999 have weak gradients

and are very difficult to correctly segment, but in this case this method had acceptable

results, because it produced small size regions avoiding explosions.

Figure 4.12: F-measure results for each of the SRG methods visualized in a box plot,

making it possible to understand the variation of the results in the set of SST images from

1998. The box represents 50% of the data and its lower and upper lines are at the 25%

and 75% quantile of the data. The remaining results are inside the vertical lines, with

exception for the outliers that are represented by the plus symbols.
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Figure 4.13: F-measure results for each of the SRG methods visualized in a box plot,

making it possible to understand the variation of the results in the set of SST images from

1999.

Statistics related to which of the SRG methods was capable of correctly delimit the

upwelling region can be seen in the box plots of the Figures 4.12 and 4.13.

The SEC versions do not have very different distributions in the results, however the

SEC-Kittler is the method with less variance, because even if it is not the best for images

with strong gradients in the frontiers, it is the method that performs better for images

with weak gradients. The SEC algorithm versions, the AdamsSRG and the VermaSRG

versions had good performances and correctly delimited the upwelling area most of the

times. However it is possible to see, mainly for the year of 1999, the variation for these

methods was higher, with exception of the SEC-Kittler and AdamsSRG, because a good

part of the images had weak gradients and these methods have a tendency to over-segment

in these cases. The other SRG methods did not proved to be as robust as the best ones

and failed frequently to achieve good segmentation results.

4.4.3 Study for SST Images of Canary

4.4.3.1 Image Normalization for the Canary

The normalization used in the SST images of the Portuguese coast, consisted in subtract-

ing the mean value of the image to all the pixels of the image. However, when using this
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normalization in the SST images of Canary, the results were not satisfactory, because of

the weak gradients present in those images and very thin upwelling regions. A solution to

control the over-segmentation was to change the normalization and instead of subtracting

the mean, it was subtracted a value lower than the mean.

Subtracting less than the mean of the temperatures causes the normalized image to

have more positive pixels and only the coldest waters to have negative values. Since

different images have different temperature histograms, a formula was created to control

how much less would be subtracted to each pixel. The value that is subtracted to each

pixel is equal to: meanImage − meanImage−minImagenormalizationFactor

The normalization factor can be adjusted to maximize the quality of the segmentation.

Additionally to the modified normalization, the SST images of the Canary were cut

to a size of 350 × 396, where a chunk of hotter waters in the opposite direction of the

continental shelf were removed, meaning that the mean temperature of the SST image

decreases and less pixels contain negative temperatures after normalization, which is

beneficial to the SST images of the Canary that have upwelling areas very thin and and

close to the continental shelf. The SEC algorithm extracts the pixels with negative values

and because they are less the explosions are avoided.

4.4.3.2 SEC Automatic thresholding vs Self-tuning

The same comparative study that was done for the the SST images of Portugal in the

Section 4.4.1 is done here for the SST images of the Canary. All these SST images have a

correspondent ground-truth map associated, so to evaluate the quality of the segmenta-

tion results it is only required supervised evaluation measures.

The SEC algorithm with the same normalization done for the SST images of Portugal

did not performed well and the result was always over-segmentation in all the images.

After coming up with a new normalization formula where the normalization factor was

empirically defined to 5, these good results were achieved.

The Table 4.3 summarizes the results and it can be seen that the SEC-SelfTuning

correctly extracted the upwelling region for all the SST images of the Canary and, the

SEC-Otsu and SEC-Ridler were also very effective. The SEC-Kittler failed to more times,

because it under-segmented some images.
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Table 4.3: Table that accounts for how frequent each version of the SEC algorithm, ex-

cluding the fine-tuning version, had the best score when segmenting an SST image of

the Canary. It is also accounted the frequency that each version had F-measure scores

superior or equal to 0.7, which was empirically identified has a threshold for separating

good from bad segmentation results. The best versions scores are bold in the table, for

each of the sets of images and information that is being analyzed.

Image Set Information SEC-Otsu SEC-Kittler SEC-Ridler SEC-SelfTuning

Canary

#10

% Best Method 0,400 0,100 0,200 0,300

% F-measure ≥ 0.7 0,900 0,700 0,900 1,000

Figure 4.14: F-measure results for the comparative study between the SEC algorithm

versions. The segmentation results are from the SST images of the Canary.

For these images the SEC-SelfTuning version had excellent results in all the images

and its results were always very close to the SEC-FineTuning version, as it can be seen

in the Figure 4.14. For the img334 and img336, it were not excellent because there were

some minor explosions in the north, even if the results were still good.

As good or better than the SEC-SelfTuning was the SEC-Otsu and SEC-Ridler versions,

however in one of the images, which the SEC-SelfTuning also had over-segmentation but

not big enough to compromise the correct extraction of the upwelling region, the result

was not good, because of an explosion in waters of the north degraded the segmentation
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result.

The SEC-Kittler version for most of the images adequately segments the upwelling

regions as the other versions of the SEC algorithm, however in the img177 and img214 the

results are very poor. This is caused by the come on problem of the SEC-Kittler method,

produce threshold values that are too high and constraint the growth of the region to

under-segmentation.

Figure 4.15: Similarity thresholds that were calculated for each of the SEC algorithm

versions. Higher thresholds will contain more the growth of the clusters than smaller

ones. The segmentation results are from the SST images of the Canary.

The Figure 4.15 reveals that as usual the SEC-Kittler produces the higher similarity

thresholds values, and in the case of the img177 and img214 the results are very poor,

because these high thresholds caused under-segmentation. However, in an image like

img336, a threshold also higher than the ideal set by the SEC-FineTuning was calculated,

even so it gave better results than the ones of the SEC-Otsu and SEC-Ridler, because for

this image the higher threshold helped to contain an explosion.

SEC vs SEC-density It is also necessary to study the impact that the fine-tuning of the

density threshold has in the quality of the segmentation for the SST images of the Canary,

and contrast the results with and without the fine-tuning process, as it was done in the

Section 4.4.1.1. Only supervised evaluation measures are necessary to this images because

they have a ground-truth map that allows it.
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Figure 4.16: The graphic shows the improvements that the fine-tuning of the density

threshold can have in the F-measure score. It is compared the SEC-Otsu and SEC-

SelfTuning versions with their own versions, but with the fine-tuning of the density

threshold. The segmentation results are from the SST images of the Canary.

The gains in the quality of segmentation by doing fine-tuning of the density threshold

were very low to most of the images of the Canary, as the Figure 4.16 demonstrate. The

only impact that the tuning of this threshold had to the final segmentation results was

visible smoother boundaries in some of the images, instead of the usual disperse bound-

aries that sometimes are delimited by the SEC algorithm without the correct tuning of the

density threshold, mainly in images with weak gradients in the frontier of the upwelling

area.

4.4.3.3 SEC versions vs other SRG Methods

For the SST images of the Canary, a similar comparative study to the one of the Section

4.4.2 is presented, and the different SRG methods and their segmentation results are

evaluated and compared, in order to see which of them are more adequate to delimit

correctly the upwelling region.

The Table 4.4 confirms that the SEC algorithm versions and the AdamsSRG method

obtained very often a good segmentation result and the SEC-Otsu was, to half of the

images, the method that made a better segmentation.
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Table 4.4: Table that accounts for how frequent each version of the SEC algorithm, excluding the fine-tuning version, and each SRG method

had the best score when segmenting an SST image of the Canary. It is also accounted the frequency that each version had F-measure scores

superior or equal to 0.7, which was empirically identified has a threshold for separating good from bad segmentation results. The best

versions scores are bold in the table, for each of the sets of images and information that is being analyzed.

Image

Set
Information

SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG

Canary

#10

% Best

Method 0,500 0,200 0 0,200 0,200 0 0 0 0 0

% F-measure

≥ 0.7
0,900 0,700 0,900 1 0,900 0,200 0 0,500 0,300 0,100
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For these SST images of Canary, with scores showed in the Table A.7, the better meth-

ods were the versions of the SEC algorithm using the adequate normalization. The SEC-

SelfTuning, SEC-Otsu and SEC-Ridler made adequate segmentations in almost every

image, the SEC-Kittler did not perform well in 3 of the 10 images. Along as these two

methods the AdamsSRG achieved good results for all the images, even being better in the

images img334 and img336 where the other two methods had over-segmentation and this

one not, however for images like img177, img214 and img237 the results from the other

SRG methods were clearly inferior to the SEC-SelfTuning, SEC-Otsu and SEC-Ridler,

even if they were not bad at all.

Both the OtsuVermaSRG and MeanVermaSRG suffer from the problem that the SEC

method suffered before a new normalization method had been experimented, this is very

large over-segmented regions. The upwelling area occurs in the coldest of the coldest

waters in a thin area near the coast, so these methods extract even the waters that are not

as cold as these ones because of the weak gradients in most of the images.

The ShihSRG fails in half the images to obtain good or acceptable segmentation results.

Usually these images have at least to separate regions, and the merging procedure of this

method sometimes makes one of those regions to be merged with the warmer waters,

making the overall result not acceptable. But aside from these cases, it actually can

correctly segment some of the images and have good results.

The GambottoSRG also fails to achieve good results in half the images, and in this

method the explanation is related to over-segmentation, which in some images it is pretty

visible, especially in these last two, where enormous explosions occur in the waters of the

north.

By far the worst method for this set of images is the ZanatySRG that does not achieve

any good results at all. Bad results that are combination of massive explosions in the

segmentation of the region with failing to extract, in some images, a second area of

upwelling.
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Figure 4.17: F-measure results for each of the SRG methods visualized in a box plot,

making it possible to understand the variation of the results in the set of SST images of

the Canary.

It were extracted some statistics to see which of the SRG methods were capable of

correctly delimit the upwelling region can be seen in the Figure 4.17, and it shows that

on pair with the SEC algorithm versions, only the AdamsSRG method created good seg-

mentation results. All the other methods failed to achieve good results.

4.5 Unsupervised Analysis of SEC versions

4.5.1 Comparing the Unsupervised Evaluation Measures

Several unsupervised methods to evaluate the quality of image segmentation or to do

clustering evaluation are proposed in the literature. These methods have limitations in

correctly distinguish the quality of the segmentation result Zhang et al. (2008) when

compared with supervised evaluation methods. Some methods were selected from the

literature as being some of the ones with better results, and were applied to evaluate

the segmentation of SST images to detect upwelling areas. The selected methods are

categorized in intra-region, inter-region and intra-inter-region, and for the purpose of

evaluating the SST images with no correspondent ground-truth map, the selected ones

were including the intra-region and inter-region measures of Levine and Nazif, intra-

region and inter-region measures of Rosenberger and Chehdi, Otsu’s within-class and
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between-class variances, Calinski-Harabasz criterion, Davies-Bouldin criterion and intra-

region of Liu and Yang. To understand which of the unsupervised evaluation methods can

have more success in correctly evaluating the segmentation results, a correlation study

was done as in (Rosenberger et al. (2006)), which consists in analyzing the correlation

factor between the results of the unsupervised measures and a supervised measure. The

measurements were done for all the images of 1998 and 1999 that had associated to them

a ground-truth map, and run with all the versions of the SEC algorithm, except for the

fine-tuning version, and with all the SRG methods that were used in the comparative

study. Using the images with ground-truth map has a learning platform, the robustness

to correctly evaluate the segmentation results, by these unsupervised measures, can be

registered and it can be seen how reliable they can be to evaluate the segmentation results

for the SST images that have no ground-truth map.

In order to understand which of the unsupervised methods might be suited to eval-

uate more precisely the segmentation quality, the results of the F-measure, a reliable

supervised evaluation measure, were compared with the results of these unsupervised

methods, using a correlation measure.

It is important to note that for some of the unsupervised measures the correlation

should be positive and for others it should be negative, because for the F-measure a higher

score means a better score, which is also the same for some unsupervised measurers, but

for others the lower the score is, the better is the segmentation result, according to their

concept of quality of segmentation. Higher scores represent better segmentation results

in the Inter_LN, Inter_FRC, Inter_Otsu and CalinskiHarabasz measures. Lower scores are

better in measures like Intra_LN, Intra_Otsu, Intra_FRC, DaviesBouldin and Intra_Liu.

The results achieved with the inter-region measure of Levine and Nazif are equal to

the ones achieved with the inter-region measure of Rosenberger and Chehdi, and the

Otsu’s within-class variance results are proportional to the ones of intra-region measure

of Rosenberger and Chehdi.

Using the correlation coefficient to compare unsupervised evaluation methods with

the F-measure, some of them were better than others for some sets of images, as seen in

the Figure 4.18.

It was also necessary to do the same correlation study, but when applied to the SRG

methods used in the comparative study. The best unsupervised methods were not always

the same to all the sets of images. In the Figure 4.19 it is possible to see that none of

the unsupervised measures has a good correlation factor to all the SRG methods, which

makes it hard to trust any of these methods to, by itself, adequately evaluate the images

with no ground-truth.
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Figure 4.18: Correlation factors between the F-measure and the unsupervised evaluation

measures, for each of the versions of the SEC algorithm. It is important to have into

consideration which methods should have positive and negative correlation values.

Figure 4.19: Correlation factors between the F-measure and the unsupervised evaluation

measures, for each of the SRG methods. It is important to have into consideration which

methods should have positive and negative correlation values.
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In order to distinguish the good from the bad segmentation results of SST images

with ground-truth map, a threshold value was defined and a F-measure higher than 0.7

represents a good segmentation, which was considered an accurate value after analyzing

the results obtained. To tell the difference between the good and bad segmentation results

for the SST images that have no ground-truth map, it was also necessary to define some

threshold for each unsupervised evaluation measure, even if it is not expected to achieve

the F-measure precision.

The thresholds for each measure and applied to each of the region growing methods

was defined using the Information Gain as a supervised method, and the Otsu’s method

because it is an unsupervised automatic thresholding technique.

The Information Gain was used to find the best separation threshold that was equiva-

lent to the 0.7 value of the F-measure. The input of the method consists in the values of

the unsupervised evaluation measure that is attributed for each image and a ground-truth.

So, the ground-truth that the Information Gain technique needs to find the threshold con-

sists in mark as 1 the values for the images where the F-measure scored higher than 0.7,

and 0 to the contrary, based on this the threshold value that better separates good from

bad segmentation was calculated. The calculated thresholds for the Information Gain are

displayed in the Table A.10.

The Otsu’s method did not require the ground-truth, and it was also applied to test

its effectiveness and as an alternative threshold. The thresholds generated by this method

can be seen in the Table A.11.

After applying the thresholds, each unsupervised evaluation measure defined which

segmentation results were good and which were not. However, because the unsuper-

vised measures have their limitations, in order to measure how accurate they correctly

distinguished the good from the bad segmentation results for the SST images without

ground-truth map, the classifications made by each evaluation measure was compared

with the classification made by visual inspection. It was created a ground-truth, which for

all images segmented by all the SRG method, it was decided, visually, which cases there

were clearly over-segmentation or under-segmentation. This made possible to compare

the classification made by each unsupervised evaluation measure to the classification

made by visual inspection. The percentage of times the classification made by the eval-

uation measures was coincident with the ground-truth is listed in the Table 4.5, for the

Information Gain thresholds.
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Table 4.5: Accuracy that each unsupervised evaluation measure had when applied to each

SRG method. Underlined are the three most accurate evaluation measures for each of

the SRG methods. In the bottom line it can be seen the percentage of times that each

unsupervised evaluation measure was in the three most accurate for each SRG method

(Success Rate). The values in bold are the ones where the correlation to the F-measure was

better, meaning higher or lower than 0.2 or -0.2, depending if for the given unsupervised

evaluation measure the ideal correlation should be positive or negative correspondingly.

Intra_LNInter_OtsuInter_FRCIntra_FRCIntra_LiuCalinskiHarabaszDaviesBouldin

SEC-Otsu 0,54 0,56 0,61 0,60 0,56 0,32 0,46

SEC-Kittler 0,59 0,50 0,60 0,70 0,60 0,51 0,68

SEC-Ridler 0,30 0,66 0,67 0,63 0,58 0,38 0,38

SEC-SelfTuning 0,55 0,54 0,62 0,54 0,54 0,57 0,46

AdamsSRG 0,86 0,89 0,79 0,94 0,93 0,89 0,87

OtsuVermaSRG 0,37 0,57 0,62 0,46 0,60 0,59 0,50

MeanVermaSRG 0,42 0,58 0,60 0,46 0,47 0,50 0,57

ShihSRG 0,46 0,74 0,71 0,54 0,51 0,76 0,39

GambottoSRG 0,58 0,45 0,40 0,73 0,50 0,57 0,46

ZanatySRG 0,46 0,57 0,50 0,54 0,52 0,52 0,46

Success Rate 20% 60% 70% 60% 50% 60% 20%

Looking at the Table 4.5, four unsupervised measures were selected as the most suited

to evaluate the segmentation results. The best methods are the Inter_Otsu, Inter_FRC,

Intra_FRC and CalinskiHarabasz, by majority vote. The Intra_FRC is a method with low

correlation to the F-measure for almost every SRG method, even so it was accurate. The

other selected methods all have good correlation for most of the SRG methods.

4.5.2 SEC Automatic thresholding vs Self-tuning

The SST images from 1998, 2000, 2001 and 2002 without ground-truth map were eval-

uated using unsupervised measures. The limitations and accuracy of the unsupervised

evaluation measures were studied in the Section 4.5.1. Complementary to the unsuper-

vised evaluation, the segmentation results were visually inspected and compared to the

unsupervised measurements, and as seen in the Table 4.5, the percentage of times that

the measures were able to detect clear cases of over and under segmentation was not

very high, and it was observed that the Inter_Otsu, Inter_FRC, Intra_FRC and Calinski-

Harabasz measures would be the most adequate to use.

In the Table 4.6, it was registered the percentage of images that each unsupervised

evaluation measure gave positive evaluations for each region growing method. The cho-

sen evaluation measures classify the SEC-Ridler has a method with good results and has

the best version of the SEC algorithm, with exception of the CalinskiHarabasz measure,
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which is the only measure to give it a poor score. The problem is that through visual in-

spection it can be seen that the SEC-Otsu and SEC-Kittler versions of the SEC algorithm

were in fact close to the segmentation results of the SEC-Ridler, and their segmentation

results were also good, but the unsupervised evaluation measures do not agree between

them in good scores or bad scores. The SEC-SelfTuning also achieved good scores and it

follows the SEC-Ridler as the best SEC version.

Overall the mean rate of positive classifications, using the selected unsupervised

evaluation measures, for each of the SEC versions was 72.4% (SEC-Riddler), 69.7% (SEC-

SelfTuning), 61.4% (SEC-Kittler) and 47.2% (SEC-Otsu).

4.5.3 SEC versions vs other SRG Methods

Analyzing the box plots in the Appendix A.2.3, where the evaluation results for the

Inter_Otsu, Inter_FRC, Intra_FRC and CalinskiHarabasz measures allow to compare the

SEC algorithm versions with the other SRG methods, in the distribution of scores, and

it can be seen that none of the measures classifies the SEC algorithm or the AdamsSRG

the best methods, as it occurs on the SST images with ground-truth using the F-measure.

However, using the threshold calculated by the Information Gain technique, in the study

of the unsupervised evaluation measures, that are displayed in the Table A.10, it was

possible to calculate the percentage of times that each unsupervised measure classified

as good the segmentation done by the individual region growing methods.

In the Table 4.6, it can be seen that all the unsupervised evaluation measures agree

that one SRG method performed very well in all the years, it was the AdamsSRG (with

89.5% of positive mean classifications overall), and this corresponds to what happened

to the SST images with ground-truth and to what was visually inspected. The Inter_Otsu,

Inter_FRC and CalinskiHarabasz gave the OtsuVermaSRG very good scores (with 84.2%

of positive classifications), but the Intra_FRC measure does not give this SRG method

great results. Crossing these results with visual inspection, it is possible to see that the

results were generally good, but not has good as the Inter_Otsu, Inter_FRC and Calin-

skiHarabasz suggest. Looking at the MeanVermaSRG the results were good (with 80.9%

of positive rate) using any of the measures, but bellow the OtsuVermaSRG, even so it is

approximated to the reality. The SEC-Ridler was the best of the SEC versions (72.4% posi-

tive classifications), followed by the SEC-SelfTuning. Through visual inspection it can be

seen that other two versions of the SEC got similar good segmentation results, even if they

had lower scores with these measures. The ZanatySRG was also classified as a method

with good scores (79% positive classifications). The evaluation measures mostly agree in

a good evaluation for this method, but visually inspecting the segmentation results it can

be seen that the method might have been overrated. For the ShihSRG and GambottoSRG

the different evaluation measures do not reach a consensus for different years, but visually

it can be seen that the results tended to have big over or under segmentation results, even

if not in the majority of the images. However, the ShihSRG was better evaluated (74.6%
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positive classifications) than the GambottoSRG (35.8% positive classifications).

The segmentation results are significant different depending on the year as seen in

the Tables A.8 and A.9, meaning that for example the results from 2002 were generally

better than the ones from 2000, because the year of 2002 has SST images with well defined

upwelling boundaries, meaning that the SRG methods deal better with images with strong

gradients than with weak gradients.
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Table 4.6: Table that accounts for how frequent each version of the SEC algorithm and each SRG method had positive scores given by each

unsupervised evaluation measures, when segmenting SST image without ground-truth. The best SRG methods scores are bold in the table.

In the bottom lines it can be seen the mean rate of positive classifications given by the select four best unsupervised evaluation measures,

and the correspondent standard deviation.

Image

Set
Information

SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG

All

Images

(No GT)

#136

% Intra_LN 0,801 0,735 0,103 0,831 0,875 0,081 0,103 0,434 0,243 0,662

% Inter_Otsu 0,375 0,382 0,846 0,324 0,904 0,919 0,735 0,691 0,096 0,610

% Inter_FRC 0,426 0,515 0,882 0,838 0,831 0,875 0,779 0,831 0,728 0,868

% Intra_FRC 0,919 0,919 0,926 0,735 0,985 0,581 0,728 0,772 0,463 0,868

% Intra_Liu 0,801 0,794 0,824 0,750 0,971 1,000 0,757 0,243 0,088 0,801

% Calinski

Harabasz
0,169 0,640 0,243 0,890 0,860 0,993 0,993 0,691 0,147 0,816

% Davies

Bouldin
0,324 0,721 0,184 0,228 0,912 0,169 0,787 0,103 0,471 0,176

Mean Rate

Positive

Classifications

0,472 0,614 0,724 0,697 0,895 0,842 0,809 0,746 0,358 0,790

Standard

Deviation
0,318 0,229 0,323 0,257 0,067 0,181 0,125 0,068 0,295 0,123
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4.6 Tuning the Density Threshold of the SEC Algorithm

The density threshold of the SEC algorithm, by default was set to 1
windowsSize×windowsSize ,

but by doing fine-tuning of this parameter, the threshold that maximized the F-measure

was usually higher than 1
windowsSize×windowsSize . So, analyzing the results some other values

θ were considered, where θ
windowsSize×windowsSize is the threshold.

For the Self-Tuning version of the algorithm, the best θ value was 16 (not the best for

all, but the best overall). It can give good gains in the F-measure, but in three images

it lowered significantly the quality and in another three this value as simply too high to

allow the cluster to even grow.

Another value let the F-measure being improved compared to θ = 1, and it was θ = 13,

but this one provided smaller gains, however no significant losses. Besides being a good

value, like the 16 it was too high to two images and did not let the cluster grow beyond

the neighbors of the initial seed.

So, a much more modest value, in terms of gains, but that works for all the tested

images was θ = 10. It has insignificant losses in some quality scores, but overall it can

improve a little bit the majority of them, even if not much. The only disadvantage to

θ = 10 is that this value is not certain to not obstruct the growth of the clusters in some

images outside the sets used in this study.

The differences in scores that these empirical threshold methods have in the can be

seen in the Figure A.22, in which it can be seen differences between the best density

threshold of the fine-tuning and the empirically selected thresholds. The smaller the

differences better the thresholds were. But more important might be the Figure A.23,

which has the differences between the empirically selected thresholds and the standard
1

windowsSize×windowsSize , with windowsSize = 7. It can be seen that sometimes an incorrect

tuning of the threshold can lower the scores significantly.

The data shows that is difficult to establish a pre-defined density threshold that con-

sistently improves the quality of the segmentation results of some images without deteri-

orating the segmentation quality of other images.

4.7 Outlook of the Results

The results of the experimental study for this dissertation were obtained using the soft-

ware MATLAB R2014a and Java 7, in a computer with an Intel Core i5 CPU M460 @

2.53GHz processor, 4GB of RAM memory and with the Windows 7 operating system.

The mean time to extract the upwelling regions of an SST image was: SEC-Otsu

30.99s, SEC-Kittler 28.08s, SEC-Ridler 43.39s, SEC-SelfTuning 53.89s, AdamsSRG 0.33s,

OtsuVermaSRG 2.18s, MeanVermaSRG 1.62s, ShihSRG 0.45s, GambottoSRG 1690.30s,

ZanatySRG 149.12s.
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Overall the SEC algorithm proved to be effective in tackling the problem of delimiting

the upwelling area, even if there are considerable differences in the results achieved by

the many versions of the SEC algorithm. The SEC-Otsu and SEC-Ridler versions scored

very close in all SST images with a few exceptions. However, comparing the SEC-Kittler

version with SEC-Otsu and SEC-Ridler, it is obvious that the SEC-Kittler has a tendency

to produce higher thresholds and in consequence constraining more the growth of the

region. This can be good and can be bad, the SEC-Kittler achieves better segmentation

results in images with weak gradients, because a high threshold is necessary to prevent

the explosions that usually occur and cause over-segmentation. However, in images with

strong gradients the SEC-Kittler usually has good segmentation results, but they are

below the other SEC versions.

The SEC-SelfTuning version, which dynamically calculates a similarity threshold for

each evaluated pixel, also achieved good results, many times similar to the SEC-Otsu

and SEC-Ridler versions. Sometimes the segmentation results were even better than in

the other versions, however in images with weak gradients, the SEC-SelfTuning version

performance is affected.

Some of the SRG methods revealed to be reliable in delimiting the upwelling area,

mainly the SEC algorithm versions, the AdamsSRG and the both VermaSRG versions

for most of the times. Each of the methods has advantages and disadvantages. The

AdamsSRG was overall the best, but its seeds had to be manually selected. The methods

like the SEC and VermaSRG often provide well delimited upwelling regions and they are

fully automated. The remaining SRG methods had difficulties to be accurate in delimit

upwelling regions.

The SEC-SelfTuning, SEC-Otsu and SEC-Ridler generally performed well in most of

the SST images, however in some of the images with weak gradients the performance was

affected, because these methods tend to over-segment the image. In images with really

weak gradients, the SEC-Kittler performed better.

The AdamsSRG method scored results of consistent high quality for all sets of images,

even sometimes having success in images that other methods had poor results, like images

with weak gradients. This method had the distinct advantage of manual seed selection,

which benefited of human perception to provide adequate seeds that were meaningful

placed and avoided noise.

The OtsuVermaSRG and MeanVermaSRG can be directly compared to the SEC-Otsu,

SEC-Ridler and SEC-SelfTuning when it comes to its behavior, namely in its difficulties

to correctly segment images with weak gradients and in its capabilities in achieving

high quality segmentation results in images with stronger gradients. Overall it looks

like there is equilibrium between the results of both versions of the VermaSRG, but the

OtsuVermaSRG version tends to be the best of both, having better results than the SEC-

SelfTuning and SEC-Otsu, except for the images of the Canary.

The ShihSRG is similar to the AdamsSRG, except it has an automatic seed selection
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and merging procedure that try to segment the image in a meaningful way. The results of

this method were generally not good, with some exceptions mainly in images with strong

gradients. It is clear that the extra automation, relatively to the AdamsSRG method, has

negative effects, however contrarily to AdamsSRG, this one processed images without

human intervention in selecting good initial seeds.

The results of the GambottoSRG method were not good in most of the SST images,

making poor segmentations, however the method revealed to be capable of achieving

good scores in a few images with weak gradients. This is the only of the SRG methods

that combines region growing with edge detection to control the growth. What happen

in most of the images, was that even inside the cold waters there are areas that contain

even colder waters, so when growing a region staring the coldest waters, rapidly an edge

is found and the growth is constrained before the full upwelling area is extracted.

ZanatySRG performs relatively well in the images with strong gradients and not so

much in images with weaker gradients. This happens because the results indicate that

the method had a strong tendency to over-segmentation and creating large regions.
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Conclusion and Future Work

An iterative procedure that allows to extract more than one region of upwelling in the

same SST image was developed. The process is composed by a set of criteria that were

defined and tuned from experiments with a vast set of SST images and, it proved to be

effective in correctly extract the exact number of regions of upwelling.

The segmentation results were evaluated using supervised measures, for images with

ground-truth map, which provide very accurate information about the quality of the

segmentation. In the comparative study that compared the different versions of the SEC

algorithm for images of Portugal, the SEC-Kittler performed better in images with weak

gradients in the upwelling boundaries than the other versions. However, the SEC-Otsu,

SEC-Ridler and SEC-SelfTuning performed very well in images with stronger gradients.

Overall, all the versions of the SEC algorithm were successful in correctly delimit the

upwelling region. The rates of good segmentation results (F-measure score ≥ 0.7) were

67.2% (SEC-Otsu), 78.7% (SEC-Kittler), 70.5% (SEC-Ridler), 62.3% (SEC-SelfTuning).

Moreover, the SEC-SelfTuning scored higher than the other versions in 47.5% of the

images, followed by the SEC-Kittler that was the best in 32.8%.

Besides studying the behavior of the different versions of the SEC algorithm, it was

also necessary to compare them to other SRG methods present in the literature. In this

comparison it was possible to see that only the AdamsSRG method had good results

(83.6% correct upwelling delimitations) more often then the SEC versions, which were

also very good, just there was not a single version that was good in both SST images with

strong and weak gradients. However, the AdamsSRG needed manual seed selection, so

the SEC algorithm was the best of the fully automatic methods, being followed by the

OtsuVermaSRG and MeanVermaSRG versions (59% and 54.1% success), which had some

serious problems with explosions some times. The remaining SRG methods performed

worst, because severe over or under segmentation results were common, meaning that
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the good segmentation results never reached the 50% success rate.

For the SST images of the Canary, the SEC algorithm proved to be effective too, in

this very distinct upwelling morphology. The SEC-SelfTuning achieved good results in

all the images of this set, the SEC-Otsu and SEC-Ridler had good results in 90% of the

images and the SEC-Kittler in 70%. The AdamsSRG was also very good and had a 90%

success rate. The ShihSRG had good results in half the images and the remaining SRG

methods had good segmentation rates of 20% (OtsuVermaSRG), 0% (MeanVermaSRG),

30% (GambottoSRG), and 10% (ZanatySRG).

To evaluate segmentation results of images without ground-truth map, unsupervised

measures were used. It was necessary to make a study about the effectiveness of these

measures, because it is described in the literature their limitations. The best measures for

this context were selected and thresholds defined, in order to distinguish good from bad

segmentation results, and it was possible to compare the performances of the SRG meth-

ods. Overall the mean rate of positive classifications, using the selected unsupervised

evaluation measures, for each of the SRG methods was 89.5% (AdamsSRG), 84.2% (Otsu-

VermaSRG), 80.9% (MeanVermaSRG), 79% (ZanatySRG), 74.6% (ShihSRG), 72.4% (SEC-

Riddler), 69.7% (SEC-SelfTuning), 61.4% (SEC-Kittler) and 47.2% (SEC-Otsu), 35.8%

(GambottoSRG). It is important to state that through visual inspection it can be seen

that the SEC-Otsu and SEC-Kittler were clearly underrated, and that the ZanatySRG and

ShihSRG overrated.

It was also made a study that demonstrated that the correct tuning of the density

threshold of the SEC algorithm can also allow a major improvement in the segmentation

quality in some images or, at least delimit smoother boundaries to the upwelling region.

The future work following this dissertation can be made around finding a way to

improve the segmentation results of the SEC algorithm. From what was determined

in the study of the influence of the density condition of the SEC, it is hard to define,

empirically, a density threshold that improves the results to all the images, so it would

be a good improvement to find an automatic method to tune this parameter. Other way

to improve the segmentation results of the SEC algorithm would be to find a strategy to

control the explosion problem, which over-segments the images, and it is transversal to

many other SRG methods too.
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A
Analysis of Experimental Results

A.1 Discontinuity in the Upwelling Region

For each image set it was verified which of the SST images have discontinuities that

require an iterative version of the region growing algorithms that only grows one cluster at

a time. The reason for the each discontinuity is described in the Table A.1. There are three

possible reasons that make the upwelling area be in more than one continuous region of

space, for these SST image. The first cause is Natural Upwelling Discontinuity which is

an example of how the upwelling phenomenon can occur in more than one region near

the continental coast, has seen in the image of 3.1. However there are another cause of

spacial discontinuity of the region of upwelling, and that can be cause by noise, described

simply has Noise, which is generally clouds above the ocean that did not allow to capture

the sea surface temperature bellow, has seen in A.1, or described byNoise Related Cut for

a type of noise common in some images that does not allow the region growing algorithm

to fully extract the complete upwelling area, has seen in the image A.2.
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Figure A.1: SST Image from 29 of July 1999, in the left, and the correspondent ground-

truth in the right. It is an example of how noise, in this case clouds, can interfere and

make necessary to the region growing algorithms to extract more than one cluster for just

one continuous upwelling area. In this case, there are only one upwelling region, but the

algorithm must extract two continuous regions.

Figure A.2: SST Image from 21 of July 1999, in the left, and the correspondent ground-

truth in the right. This image has a type of noise that is not caused by clouds, which

cuts the upwelling area in two and make it necessary to the region growing algorithms

to extract more than one cluster. There are only one upwelling region, but the algorithm

must extract two continuous regions.
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APPENDIX A. ANALYSIS OF EXPERIMENTAL RESULTS

Table A.1: Images with discontinuity that need more than one iteration to extract the full

upwelling area and the correspondent cause of the discontinuity.

Image Set Image Name Discontinuity Factor

Strong Gradients (1998)
1998-08-05 Natural Upwelling Discontinuity

1998-08-19 Noise Related Cut

Weak Gradients (1998)
1998-06-12 Natural Upwelling Discontinuity

1998-09-24 Natural Upwelling Discontinuity

Noisy (1998) 1998-07-07 Noise

1999

1999-06-30 Natural Upwelling Discontinuity

1999-07-21 Noise Related Cut

1999-07-29 Noise

1999-08-01 Noise

1999-08-26 Natural Upwelling Discontinuity

1999-09-28 Natural Upwelling Discontinuity

1999-09-30 Noise

1998 (No Ground-Truth)

1998-06-10 Noise

1998-06-11 Natural Upwelling Discontinuity

1998-06-16 Noise

1998-07-02 Noise Related Cut

1998-07-16 Noise Related Cut

1998-08-03 Noise Related Cut

1998-08-18 Noise

1998-08-19 Noise Related Cut

1998-08-21 Noise Related Cut

1998-08-24 Noise

2000 (No Ground-Truth)

2000-07-11 Noise Related Cut

2000-08-17 Noise Related Cut

2000-09-06 Noise Related Cut

2001 (No Ground-Truth)

2001-07-01 Noise

2001-07-26 Noise

2001-07-15 Noise Related Cut

A.2 Validation of SRG methods

A.2.1 Validation of SRG methods with the F-measure
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Table A.2: Table with the F-measure results for the comparative study between the SEC algorithm and the SRG methods applied to the

extraction of upwelling context. The segmentation results are from the SST images of the portuguese coast from the year 1998, with strong

gradients in the frontier of the upwelling area. The best scores for each SST image are highlighted in bold.

Image Name
SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG
1998-06-28 0,948 0,805 0,926 0,792 0,747 0,579 0,729 0,577 0,616 0,579

1998-07-03 0,939 0,897 0,938 0,791 0,904 0,613 0,736 0,589 0,872 0,587

1998-07-18 0,948 0,948 0,949 0,955 0,931 0,933 0,919 0,623 0,475 0,921

1998-07-21 0,873 0,873 0,875 0,885 0,892 0,894 0,872 0,693 0,668 0,874

1998-07-24 0,872 0,872 0,872 0,893 0,925 0,971 0,837 0,813 0,675 0,841

1998-07-28 0,934 0,823 0,930 0,896 0,980 0,662 0,871 0,627 0,451 0,662

1998-08-01 0,978 0,978 0,980 0,974 0,865 0,917 0,978 0,761 0,361 0,978

1998-08-02 0,979 0,979 0,977 0,956 0,865 0,869 0,979 0,927 0,434 0,979

1998-08-05 0,894 0,768 0,882 0,884 0,708 0,783 0,849 0,668 0,486 0,805

1998-08-12 0,973 0,973 0,973 0,942 0,870 0,867 0,971 0,709 0,768 0,973

1998-08-19 0,863 0,843 0,861 0,898 0,834 0,780 0,887 0,744 0,666 0,780

1998-08-21 0,942 0,942 0,929 0,717 0,909 0,574 0,654 0,574 0,599 0,573

1998-08-30 0,919 0,919 0,919 0,935 0,941 0,928 0,907 0,909 0,917 0,908

1998-09-05 0,694 0,694 0,703 0,714 0,879 0,880 0,665 0,837 0,771 0,681

1998-09-15 0,832 0,851 0,903 0,891 0,770 0,873 0,812 0,763 0,597 0,822
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Table A.3: Table with the F-measure results for the comparative study between the SEC algorithm and the SRG methods applied to the

extraction of upwelling context. The segmentation results are from the SST images of the portuguese coast from the year 1998, with weak

gradients in the frontier of the upwelling area. The best scores for each SST image are highlighted in bold.

Image Name
SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG
1998-06-09 0,706 0,770 0,693 0,628 0,706 0,528 0,584 0,390 0,767 0,563

1998-06-12 0,331 0,370 0,319 0,256 0,598 0,204 0,232 0,150 0,627 0,204

1998-06-14 0,898 0,874 0,916 0,647 0,812 0,412 0,522 0,373 0,761 0,719

1998-06-18 0,567 0,932 0,619 0,590 0,752 0,509 0,509 0,603 0,688 0,511

1998-06-23 0,743 0,743 0,743 0,787 0,944 0,814 0,741 0,773 0,904 0,743

1998-06-25 0,962 0,822 0,951 0,682 0,874 0,515 0,631 0,516 0,632 0,516

1998-07-11 0,955 0,885 0,948 0,627 0,884 0,426 0,568 0,430 0,551 0,426

1998-07-15 0,757 0,757 0,758 0,781 0,783 0,782 0,757 0,474 0,641 0,757

1998-08-23 0,840 0,793 0,826 0,729 0,873 0,496 0,690 0,682 0,149 0,497

1998-09-08 0,652 0,976 0,704 0,695 0,950 0,869 0,609 0,934 0,812 0,838

1998-09-24 0,592 0,797 0,603 0,624 0,780 0,626 0,591 0,372 0,684 0,600
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Table A.4: Table with the F-measure results for the comparative study between the SEC algorithm and the SRG methods applied to the

extraction of upwelling context. The segmentation results are from the SST images of the portuguese coast from the year 1998, with noise

interfering with the segmentation process. The best scores for each SST image are highlighted in bold.

Image Name
SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG
1998-07-07 0,803 0,818 0,803 0,827 0,866 0,822 0,797 0,816 0,761 0,798

1998-08-10 0,665 0,669 0,667 0,584 0,495 0,667 0,665 0,549 0,391 0,665

1998-09-11 0,809 0,809 0,816 0,838 0,836 0,896 0,807 0,450 0,796 0,567

1998-09-30 0,787 0,787 0,797 0,824 0,876 0,712 0,787 0,835 0,766 0,079
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Table A.5: Table with the F-measure results for the comparative study between the SEC algorithm and the SRG methods applied to the

extraction of upwelling context. The segmentation results are from the SST images of the portuguese coast from the year 1999. The best

scores for each SST image are highlighted in bold. (Part 1/2)

Image Name
SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG
1999-06-02 0,717 0,717 0,711 0,694 0,644 0,698 0,656 0,284 0,700 0,664

1999-06-08 0,493 0,808 0,494 0,512 0,860 0,493 0,493 0,474 0,655 0,493

1999-06-10 0,348 0,572 0,335 0,342 0,400 0,359 0,361 0,280 0,339 0,359

1999-06-14 0,806 0,806 0,804 0,402 0,807 0,316 0,383 0,322 0,790 0,376

1999-06-19 0,384 0,404 0,388 0,329 0,669 0,272 0,323 0,262 0,764 0,273

1999-06-20 0,418 0,397 0,434 0,283 0,784 0,242 0,263 0,242 0,873 0,242

1999-06-27 0,377 0,718 0,387 0,299 0,749 0,239 0,260 0,147 0,384 0,337

1999-06-30 0,389 0,389 0,390 0,422 0,672 0,682 0,302 0,115 0,356 0,375

1999-07-06 0,685 0,697 0,882 0,852 0,657 0,904 0,665 0,571 0,627 0,670

1999-07-08 0,869 0,869 0,879 0,905 0,785 0,944 0,839 0,591 0,540 0,623

1999-07-14 0,605 0,609 0,607 0,600 0,698 0,527 0,567 0,524 0,623 0,527

1999-07-15 0,602 0,620 0,608 0,629 0,750 0,602 0,602 0,765 0,619 0,604

1999-07-19 0,833 0,833 0,832 0,834 0,935 0,902 0,809 0,787 0,734 0,810

1999-07-21 0,759 0,750 0,760 0,791 0,924 0,947 0,751 0,863 0,665 0,675

1999-07-29 0,670 0,670 0,671 0,696 0,925 0,810 0,670 0,843 0,452 0,671

1999-07-31 0,842 0,719 0,840 0,856 0,847 0,917 0,785 0,520 0,620 0,786
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Table A.6: Table with the F-measure results for the comparative study between the SEC algorithm and the SRG methods applied to the

extraction of upwelling context. The segmentation results are from the SST images of the portuguese coast from the year 1999. The best

scores for each SST image are highlighted in bold. (Part 2/2)

Image Name
SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG
1999-08-01 0,759 0,782 0,765 0,818 0,836 0,934 0,759 0,565 0,697 0,647

1999-08-10 0,679 0,679 0,694 0,706 0,845 0,781 0,660 0,374 0,761 0,681

1999-08-14 0,532 0,532 0,534 0,546 0,856 0,558 0,527 0,520 0,728 0,708

1999-08-17 0,795 0,795 0,796 0,821 0,915 0,954 0,781 0,730 0,800 0,782

1999-08-21 0,882 0,882 0,882 0,874 0,763 0,817 0,874 0,806 0,558 0,875

1999-08-23 0,814 0,814 0,811 0,837 0,897 0,983 0,811 0,805 0,237 0,252

1999-08-26 0,750 0,750 0,743 0,780 0,916 0,938 0,734 0,910 0,730 0,735

1999-08-30 0,815 0,815 0,816 0,820 0,851 0,917 0,833 0,455 0,868 0,836

1999-09-01 0,921 0,921 0,922 0,941 0,916 0,960 0,918 0,236 0,733 0,770

1999-09-08 0,737 0,737 0,749 0,770 0,792 0,842 0,735 0,736 0,758 0,656

1999-09-10 0,910 0,910 0,910 0,931 0,798 0,881 0,890 0,887 0,695 0,013

1999-09-14 0,950 0,950 0,950 0,960 0,959 0,944 0,950 0,941 0,642 0,950

1999-09-28 0,448 0,721 0,446 0,428 0,604 0,445 0,453 0,491 0,357 0,453

1999-09-30 0,634 0,727 0,634 0,618 0,663 0,707 0,567 0,758 0,764 0,579

1999-10-03 0,786 0,838 0,804 0,802 0,867 0,792 0,779 0,504 0,807 0,780
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Table A.7: Table with the F-measure results for the comparative study between the SEC algorithm and the SRG methods applied to the

extraction of upwelling context. The segmentation results are from the SST images of the Canary. The best scores for each SST image are

highlighted in bold.

Image Name
SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG
img58 0,810 0,721 0,809 0,781 0,781 0,657 0,552 0,712 0,770 0,596

img117 0,852 0,852 0,851 0,810 0,837 0,808 0,650 0,356 0,558 0,658

img152 0,762 0,692 0,762 0,780 0,750 0,704 0,618 0,575 0,728 0,588

img177 0,827 0,496 0,826 0,810 0,712 0,689 0,509 0,592 0,608 0,511

img214 0,864 0,628 0,864 0,847 0,800 0,434 0,433 0,786 0,650 0,643

img237 0,820 0,820 0,829 0,830 0,733 0,578 0,516 0,700 0,727 0,594

img262 0,845 0,848 0,844 0,814 0,791 0,539 0,438 0,790 0,539 0,703

img310 0,825 0,790 0,825 0,809 0,811 0,440 0,393 0,762 0,651 0,651

img334 0,756 0,724 0,761 0,724 0,799 0,301 0,311 0,778 0,476 0,334

img336 0,643 0,718 0,649 0,724 0,844 0,449 0,398 0,640 0,422 0,433
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A.2.2 Validation of SRG methods with ARI index

Figure A.3: ARI results for the comparative study between the SEC algorithm versions.

The segmentation results are from the SST images of the portuguese coast from the year

1998, which was divided into subsets of images with strong gradients in the frontier of the

upwelling area, weak gradients and images with noise, from left to right in the graphic

correspondingly.
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Figure A.4: ARI results for the comparative study between the SEC algorithm versions. The segmentation

results are from the SST images of the portuguese coast from the year 1999.

Figure A.5: ARI results for the comparative study between the SEC algorithm versions. The segmentation

results are from the SST images of the Canary.
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A.2.3 Validation of SRG methods with unsupervised evaluation measures

Figure A.6: Inter-Otsu results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 1998 with no ground-truth map.

Figure A.7: Inter-Otsu results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2000 with no ground-truth map.
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Figure A.8: Inter-Otsu results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2001 with no ground-truth map.

Figure A.9: Inter-Otsu results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2002 with no ground-truth map.
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Figure A.10: Inter-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 1998 with no ground-truth map.

Figure A.11: Inter-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2000 with no ground-truth map.
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Figure A.12: Inter-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2001 with no ground-truth map.

Figure A.13: Inter-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2002 with no ground-truth map.
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Figure A.14: Intra-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 1998 with no ground-truth map.

Figure A.15: Intra-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2000 with no ground-truth map.
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Figure A.16: Intra-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2001 with no ground-truth map.

Figure A.17: Intra-FRC results for each of the SRG methods visualized in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2002 with no ground-truth map.
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Figure A.18: CalinskiHarabasz results for each of the SRG methods in a box plot, making it possible to

understand the variation of the results in the set of SST images from 1998 with no ground-truth map.

Figure A.19: CalinskiHarabasz results for each of the SRG methods in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2000 with no ground-truth map.
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Figure A.20: CalinskiHarabasz results for each of the SRG methods in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2001 with no ground-truth map.

Figure A.21: CalinskiHarabasz results for each of the SRG methods in a box plot, making it possible to

understand the variation of the results in the set of SST images from 2002 with no ground-truth map.
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Table A.8: Table that accounts for how frequent each version of the SEC algorithm, excluding the fine-tuning version, and each SRG method

had good score, relatively to the correspondent threshold, when segmenting SST image without ground-truth. The best SRG methods scores

are bold in the table, for each of the sets of images and information that is being analyzed. (Part 1/2)

Image

Set
Information

SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG

1998

#52

% Intra_LN 0,750 0,673 0,115 0,788 0,846 0,135 0,154 0,365 0,192 0,538

% Inter_Otsu 0,442 0,423 0,808 0,404 0,885 0,904 0,654 0,673 0,135 0,538

% Inter_FRC 0,481 0,577 0,865 0,788 0,827 0,827 0,712 0,808 0,654 0,827

% Intra_FRC 0,923 0,904 0,923 0,673 0,981 0,538 0,654 0,788 0,500 0,865

% Intra_Liu 0,750 0,731 0,808 0,673 0,962 1,000 0,692 0,288 0,096 0,788

% Calinski

Harabasz
0,058 0,481 0,115 0,846 0,846 0,981 0,981 0,596 0,038 0,692

% Davies

Bouldin
0,250 0,750 0,115 0,154 0,923 0,115 0,788 0,096 0,365 0,135

2000

#32

% Intra_LN 0,813 0,750 0,219 0,875 0,906 0,094 0,156 0,375 0,281 0,750

% Inter_Otsu 0,281 0,344 0,781 0,250 0,781 0,906 0,750 0,594 0,031 0,500

% Inter_FRC 0,344 0,406 0,844 0,781 0,688 0,813 0,750 0,719 0,625 0,844

% Intra_FRC 0,938 0,969 0,969 0,781 0,969 0,594 0,781 0,688 0,500 0,844

% Intra_Liu 0,813 0,813 0,813 0,781 0,969 1 0,781 0,156 0,156 0,750

% Calinski

Harabasz
0,156 0,719 0,219 0,938 0,719 1 1 0,594 0,188 0,844

% Davies

Bouldin
0,219 0,531 0,094 0,125 0,781 0,125 0,875 0,156 0,500 0,281
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Table A.9: Table that accounts for how frequent each version of the SEC algorithm, excluding the fine-tuning version, and each SRG method

had good score, relatively to the correspondent threshold, when segmenting SST image without ground-truth. The best SRG methods scores

are bold in the table, for each of the sets of images and information that is being analyzed. (Part 2/2)

Image

Set
Information

SEC-

Otsu

SEC-

Kittler

SEC-

Ridler

SEC-

SelfTuning
Adams

SRG

OtsuVerma

SRG

MeanVerma

SRG
Shih

SRG

Gambotto

SRG

Zanaty

SRG

2001

#30

% Intra_LN 0,967 0,900 0,033 0,967 1 0,033 0,033 0,633 0,367 0,867

% Inter_Otsu 0,233 0,233 0,867 0,133 1 0,900 0,733 0,667 0 0,633

% Inter_FRC 0,233 0,333 0,867 0,867 0,867 0,933 0,767 0,900 0,800 0,867

% Intra_FRC 1 0,967 1 0,967 1 0,800 0,967 0,867 0,533 0,900

% Intra_Liu 0,967 0,967 0,967 0,967 1 1 0,967 0,300 0,033 0,933

% Calinski

Harabasz
0,400 0,833 0,500 0,900 0,967 1 1 0,800 0,300 0,867

% Davies

Bouldin
0,533 0,800 0,367 0,467 1 0,333 0,700 0,100 0,500 0,133

2002

#22

% Intra_LN 0,682 0,636 0 0,682 0,727 0 0 0,409 0,136 0,545

% Inter_Otsu 0,545 0,545 1 0,500 1 1 0,909 0,909 0,227 0,909

% Inter_FRC 0,682 0,773 1 1 1 1 1 0,955 0,955 1

% Intra_FRC 0,773 0,818 0,773 0,500 1 0,364 0,500 0,727 0,227 0,864

% Intra_Liu 0,682 0,682 0,682 0,591 0,955 1 0,591 0,182 0,045 0,727

% Calinski

Harabasz
0,136 0,636 0,227 0,909 0,955 1 1 0,909 0,136 1

% Davies

Bouldin
0,364 0,818 0,227 0,227 0,955 0,136 0,773 0,045 0,636 0,182
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A.3 Thresholds of the Unsupervised Evaluation Measures

Table A.10: Table with the produced thresholds using the Information Gain method. For

each region growing algorithm, different thresholds were calculated for the many unsu-

pervised evaluation measures. The values in bold text are the ones where the correlation

to the F-measure was better, meaning higher or lower than 0.2 or -0.2, depending if for

the given unsupervised evaluation measure the ideal correlation should be positive or

negative correspondingly.

Intra_LNInter_OtsuInter_FRCIntra_FRCIntra_LiuCalinskiHarabaszDaviesBouldin

SEC-Otsu 0,3180 1,3319 0,0599 62510,63 891,06 233071,27 0,6176

SEC-Kittler 0,2804 1,3319 0,0602 77168,53 893,63 116957,63 0,6455

SEC-Ridler 0,1407 0,5763 0,0410 63231,26 921,46 212350,91 0,5752

SEC-SelfTuning 0,3376 1,4877 0,0430 37464,63 842,34 101504,56 0,5777

AdamsSRG 0,3136 0,3022 0,0499 140588,461309,11 64152,01 0,7799

OtsuVermaSRG 0,1291 0,4578 0,0436 29822,34 1475,17 46472,76 0,5029

MeanVermaSRG0,1391 0,8421 0,0453 34898,00 834,21 44435,02 0,7456

ShihSRG 0,2073 0,7050 0,0489 66255,94 472,38 84478,47 0,4534

GambottoSRG 0,1732 1,4528 0,0581 56296,24 326,93 129025,82 0,5197

ZanatySRG 0,2872 0,8478 0,0410 64226,22 964,94 77181,12 0,5420

Table A.11: Table with the produced thresholds using the Otsu’s method. For each re-

gion growing algorithm, different thresholds were calculated for the many unsupervised

evaluation measures. The values in bold text are the ones where the correlation to the F-

measure was better, meaning higher or lower than 0.2 or -0.2, depending if for the given

unsupervised evaluation measure the ideal correlation should be positive or negative

correspondingly.

Intra_LNInter_OtsuInter_FRCIntra_FRCIntra_LiuCalinskiHarabaszDaviesBouldin

SEC-Otsu 0,2550 1,2763 0,0578 42937,29 767,86 157976,37 0,7174

SEC-Kittler 0,2536 1,2756 0,0603 56116,16 781,36 161731,19 0,7279

SEC-Ridler 0,2545 1,2781 0,0578 45284,29 766,93 158331,01 0,7374

SEC-SelfTuning 0,2729 1,3210 0,0584 32758,12 723,51 181830,74 0,6773

AdamsSRG 0,2365 1,2421 0,0656 63570,62 791,97 168246,04 0,7131

OtsuVermaSRG 0,2576 1,4276 0,0652 34327,27 699,06 210257,37 0,6784

MeanVermaSRG0,2812 1,2754 0,0544 32778,61 765,34 169041,64 0,7147

ShihSRG 0,2588 1,1733 0,0585 56152,45 775,19 159882,62 2,7433

GambottoSRG 0,2295 1,0012 0,0725 86009,24 923,46 104595,87 0,6621

ZanatySRG 0,2798 1,1741 0,0663 104939,10635,19 165309,76 0,6667
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A.4 Empirical Study of Density Threshold

Figure A.22: Differences between the best density threshold and the empirically selected

thresholds for the SEC-SelfTuning in 1998 images. Lower differences are best.

Figure A.23: Differences between the empirically selected thresholds and 0.0204 for the

SEC-SelfTuning in 1998 images. Higher differences are best.
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A.5 Iterative Procedure Segmentation Study

The graphics include the values for the difference between the mean of the first region

and the minimum of one relevant cluster, the relevant cluster has different meanings

depending of which category described in the legend. It also includes, for each SST

image, the number of the iteration that the last region of upwelling was extracted and the

reason why the iterative procedure ended.

A.5.1 Iterative Procedure for the SEC-Otsu

Figure A.24: Data related to the iterative procedure applied to the SEC-Otsu for the SST

images from 1998 with ground-truth.
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Figure A.25: Data related to the iterative procedure applied to the SEC-Otsu for the SST

images from 1999 with ground-truth.

Figure A.26: Data related to the iterative procedure applied to the SEC-Otsu for the SST

images of the Canary with ground-truth.
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Figure A.27: The plot shows the percentage for each termination possibility of the itera-

tive procedure, organized by sets of images, in this case for the results of the SEC-Otsu.
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A.5.2 Iterative Procedure for the SEC-Kittler

Figure A.28: Data related to the iterative procedure applied to the SEC-Kittler for the

SST images from 1998 with ground-truth.

Figure A.29: Data related to the iterative procedure applied to the SEC-Kittler for the

SST images from 1999 with ground-truth.
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Figure A.30: Data related to the iterative procedure applied to the SEC-Kittler for the

SST images of the Canary with ground-truth.

Figure A.31: The plot shows the percentage for each termination possibility of the itera-

tive procedure, organized by sets of images, in this case for the results of the SEC-Kittler.
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A.5.3 Iterative Procedure for the SEC-Ridler

Figure A.32: Data related to the iterative procedure applied to the SEC-Ridler for the SST

images from 1998 with ground-truth.

Figure A.33: Data related to the iterative procedure applied to the SEC-Ridler for the SST

images from 1999 with ground-truth.
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Figure A.34: Data related to the iterative procedure applied to the SEC-Ridler for the SST

images of the Canary with ground-truth.

Figure A.35: The plot shows the percentage for each termination possibility of the itera-

tive procedure, organized by sets of images, in this case for the results of the SEC-Ridler.
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A.5.4 Iterative Procedure for the SEC-SelfTuning

Figure A.36: Data related to the iterative procedure applied to the SEC-SelfTuning for

the SST images from 1998 with ground-truth.

Figure A.37: Data related to the iterative procedure applied to the SEC-SelfTuning for

the SST images from 1999 with ground-truth.
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Figure A.38: Data related to the iterative procedure applied to the SEC-SelfTuning for

the SST images of the Canary with ground-truth.
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Figure A.39: The plot shows the percentage for each termination possibility of the it-

erative procedure, organized by sets of images, in this case for the results of the SEC-

SelfTuning.
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A.5.5 Iterative Procedure for the OtsuVermaSRG

Figure A.40: Data related to the iterative procedure applied to the OtsuVermaSRG for

the SST images from 1998 with ground-truth.

Figure A.41: Data related to the iterative procedure applied to the OtsuVermaSRG for

the SST images from 1999 with ground-truth.
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Figure A.42: Data related to the iterative procedure applied to the OtsuVermaSRG for

the SST images of the Canary with ground-truth.
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Figure A.43: The plot shows the percentage for each termination possibility of the iter-

ative procedure, organized by sets of images, in this case for the results of the OtsuVer-

maSRG.
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A.5.6 Iterative Procedure for the MeanVermaSRG

Figure A.44: Data related to the iterative procedure applied to the MeanVermaSRG for

the SST images from 1998 with ground-truth.

Figure A.45: Data related to the iterative procedure applied to the MeanVermaSRG for

the SST images from 1999 with ground-truth.
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Figure A.46: Data related to the iterative procedure applied to the MeanVermaSRG for

the SST images of the Canary with ground-truth.
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Figure A.47: The plot shows the percentage for each termination possibility of the iter-

ative procedure, organized by sets of images, in this case for the results of the MeanVer-

maSRG.
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A.5.7 Iterative Procedure for the ShihSRG

Figure A.48: Data related to the iterative procedure applied to the ShihSRG for the SST

images from 1998 with ground-truth.

Figure A.49: Data related to the iterative procedure applied to the ShihSRG for the SST

images from 1999 with ground-truth.
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Figure A.50: Data related to the iterative procedure applied to the ShihSRG for the SST

images of the Canary with ground-truth.

A.5.8 Iterative Procedure for the GambottoSRG

Figure A.51: Data related to the iterative procedure applied to the GambottoSRG for the

SST images from 1998 with ground-truth.
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Figure A.52: Data related to the iterative procedure applied to the GambottoSRG for the

SST images from 1999 with ground-truth.

Figure A.53: Data related to the iterative procedure applied to the GambottoSRG for the

SST images of the Canary with ground-truth.
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Figure A.54: The plot shows the percentage for each termination possibility of the iter-

ative procedure, organized by sets of images, in this case for the results of the Gambot-

toSRG.

132



APPENDIX A. ANALYSIS OF EXPERIMENTAL RESULTS

A.5.9 Iterative Procedure for the ZanatySRG

Figure A.55: Data related to the iterative procedure applied to the ZanatySRG for the SST

images from 1998 with ground-truth.

Figure A.56: Data related to the iterative procedure applied to the ZanatySRG for the SST

images from 1999 with ground-truth.
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Figure A.57: Data related to the iterative procedure applied to the ZanatySRG for the SST

images of the Canary with ground-truth.

Figure A.58: The plot shows the percentage for each termination possibility of the itera-

tive procedure, organized by sets of images, in this case for the results of the ZanatySRG.
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Segmentation Results

B.1 SST Images with GT / Strong Gradients from 1998

Figure B.1: 1998-08-02 Figure B.2: 1998-08-02 ground-truth map

Figure B.3: 1998-08-02 SEC-Otsu Figure B.4: 1998-08-02 SEC-Kittler
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Figure B.5: 1998-08-02 SEC-Ridler Figure B.6: 1998-08-02 SEC-SelfTuning

Figure B.7: 1998-08-02 AdamsSRG Figure B.8: 1998-08-02 OtsuVermaSRG

Figure B.9: 1998-08-02 MeanVermaSRG Figure B.10: 1998-08-02 ShihSRG
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Figure B.11: 1998-08-02 GambottoSRG Figure B.12: 1998-08-02 ZanatySRG

Figure B.13: 1998-08-05 Figure B.14: 1998-08-05 ground-truth map

Figure B.15: 1998-08-05 SEC-Otsu Figure B.16: 1998-08-05 SEC-Kittler

137



APPENDIX B. SEGMENTATION RESULTS

Figure B.17: 1998-08-05 SEC-Ridler Figure B.18: 1998-08-05 SEC-SelfTuning

Figure B.19: 1998-08-05 AdamsSRG Figure B.20: 1998-08-05 OtsuVermaSRG

Figure B.21: 1998-08-05 MeanVermaSRG Figure B.22: 1998-08-05 ShihSRG
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Figure B.23: 1998-08-05 GambottoSRG Figure B.24: 1998-08-05 ZanatySRG

Figure B.25: 1998-09-15 Figure B.26: 1998-09-15 ground-truth map

Figure B.27: 1998-09-15 SEC-Otsu Figure B.28: 1998-09-15 SEC-Kittler
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Figure B.29: 1998-09-15 SEC-Ridler Figure B.30: 1998-09-15 SEC-SelfTuning

Figure B.31: 1998-09-15 AdamsSRG Figure B.32: 1998-09-15 OtsuVermaSRG

Figure B.33: 1998-09-15 MeanVermaSRG Figure B.34: 1998-09-15 ShihSRG
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Figure B.35: 1998-09-15 GambottoSRG Figure B.36: 1998-09-15 ZanatySRG

B.2 SST Images with GT / Weak Gradients from 1998

Figure B.37: 1998-06-14 Figure B.38: 1998-06-14 ground-truth map

Figure B.39: 1998-06-14 SEC-Otsu Figure B.40: 1998-06-14 SEC-Kittler
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Figure B.41: 1998-06-14 SEC-Ridler Figure B.42: 1998-06-14 SEC-SelfTuning

Figure B.43: 1998-06-14 AdamsSRG Figure B.44: 1998-06-14 OtsuVermaSRG

Figure B.45: 1998-06-14 MeanVermaSRG Figure B.46: 1998-06-14 ShihSRG
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Figure B.47: 1998-06-14 GambottoSRG Figure B.48: 1998-06-14 ZanatySRG

Figure B.49: 1998-07-11 Figure B.50: 1998-07-11 ground-truth map

Figure B.51: 1998-07-11 SEC-Otsu Figure B.52: 1998-07-11 SEC-Kittler
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Figure B.53: 1998-07-11 SEC-Ridler Figure B.54: 1998-07-11 SEC-SelfTuning

Figure B.55: 1998-07-11 AdamsSRG Figure B.56: 1998-07-11 OtsuVermaSRG

Figure B.57: 1998-07-11 MeanVermaSRG Figure B.58: 1998-07-11 ShihSRG
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Figure B.59: 1998-07-11 GambottoSRG Figure B.60: 1998-07-11 ZanatySRG

Figure B.61: 1998-07-15 Figure B.62: 1998-07-15 ground-truth map

Figure B.63: 1998-07-15 SEC-Otsu Figure B.64: 1998-07-15 SEC-Kittler
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Figure B.65: 1998-07-15 SEC-Ridler Figure B.66: 1998-07-15 SEC-SelfTuning
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Figure B.73: 1998-08-23 Figure B.74: 1998-08-23 ground-truth map
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B.3 SST Images with GT / Noisy from 1998

Figure B.97: 1998-07-07 Figure B.98: 1998-07-07 ground-truth map

Figure B.99: 1998-07-07 SEC-Otsu Figure B.100: 1998-07-07 SEC-Kittler
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Figure B.109: 1998-09-30 Figure B.110: 1998-09-30 ground-truth map

Figure B.111: 1998-09-30 SEC-Otsu Figure B.112: 1998-09-30 SEC-Kittler
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B.4 SST Images with GT from 1999
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Figure B.133: 1999-09-10 Figure B.134: 1999-09-10 ground-truth map
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B.5 SST Images without ground-truth (NGT) from 1998

Figure B.145: 1998-08-04
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B.6 SST Images NGT from 2000

Figure B.156: 2000-08-08
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B.7 SST Images NGT from 2001

Figure B.167: 2001-08-04
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B.8 SST Images NGT from 2002
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B.9 SST Images from the Canary

Figure B.189: img_262 Figure B.190: img_262 ground-truth map

Figure B.191: img_262 SEC-Otsu Figure B.192: img_262 SEC-Kittler
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