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Abstract

Economics is a social science which, therefore, focuses on people and on

the decisions they make, be it in an individual context, or in group situations.

It studies human choices, in face of needs to be fulfilled, and a limited amount

of resources to fulfill them. For a long time, there was a convergence between

the normative and positive views of human behavior, in that the ideal and

predicted decisions of agents in economic models were entangled in one single

concept. That is, it was assumed that the best that could be done in each

situation was exactly the choice that would prevail. Or, at least, that the facts

that economics needed to explain could be understood in the light of models

in which individual agents act as if they are able to make ideal decisions.

However, in the last decades, the complexity of the environment in which

economic decisions are made and the limits on the ability of agents to deal

with it have been recognized, and incorporated into models of decision making

in what came to be known as the bounded rationality paradigm. This was

triggered by the incapacity of the unboundedly rationality paradigm to explain

observed phenomena and behavior. This thesis contributes to the literature

in three different ways.

Chapter 1 is a survey on bounded rationality, which gathers and organizes

the contributions to the field since Simon (1955) first recognized the necessity

to account for the limits on human rationality. The focus of the survey is

on theoretical work rather than the experimental literature which presents

evidence of actual behavior that differs from what classic rationality predicts.

The general framework is as follows. Given a set of exogenous variables, the

economic agent needs to choose an element from the choice set that is avail-

able to him, in order to optimize the expected value of an objective function

(assuming his preferences are representable by such a function). If this prob-

lem is too complex for the agent to deal with, one or more of its elements is

simplified. Each bounded rationality theory is categorized according to the

most relevant element it simplifies.

Chapter 2 proposes a novel theory of bounded rationality. Much in the

same fashion as Conlisk (1980) and Gabaix (2014), we assume that thinking

is costly in the sense that agents have to pay a cost for performing mental
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operations. In our model, if they choose not to think, such cost is avoided,

but they are left with a single alternative, labeled the default choice. We ex-

emplify the idea with a very simple model of consumer choice and identify the

concept of isofin curves, i.e., sets of default choices which generate the same

utility net of thinking cost. Then, we apply the idea to a linear symmetric

Cournot duopoly, in which the default choice can be interpreted as the most

natural quantity to be produced in the market. We find that, as the thinking

cost increases, the number of firms thinking in equilibrium decreases. More

interestingly, for intermediate levels of thinking cost, an equilibrium in which

one of the firms chooses the default quantity and the other best responds to

it exists, generating asymmetric choices in a symmetric model. Our model is

able to explain well-known regularities identified in the Cournot experimental

literature, such as the adoption of different strategies by players (Huck et al.

, 1999), the inter temporal rigidity of choices (Bosch-Domènech & Vriend,

2003) and the dispersion of quantities in the context of difficult decision mak-

ing (Bosch-Domènech & Vriend, 2003).

Chapter 3 applies a model of bounded rationality in a game-theoretic set-

ting to the well-known turnout paradox in large elections, pivotal probabilities

vanish very quickly and no one should vote, in sharp contrast with the ob-

served high levels of turnout. Inspired by the concept of rhizomatic thinking,

introduced by Bravo-Furtado & Côrte-Real (2009a), we assume that each per-

son is self-delusional in the sense that, when making a decision, she believes

that a fraction of the people who support the same party decides alike, even

if no communication is established between them. This kind of belief simpli-

fies the decision of the agent, as it reduces the number of players he believes

to be playing against – it is thus a bounded rationality approach. Studying

a two-party first-past-the-post election with a continuum of self-delusional

agents, we show that the turnout rate is positive in all the possible equilibria,

and that it can be as high as 100%. The game displays multiple equilibria,

at least one of which entails a victory of the bigger party. The smaller one

may also win, provided its relative size is not too small; more self-delusional

voters in the minority party decreases this threshold size. Our model is able

to explain some empirical facts, such as the possibility that a close election
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leads to low turnout (Geys, 2006), a lower margin of victory when turnout is

higher (Geys, 2006) and high turnout rates favoring the minority (Bernhagen

& Marsh, 1997).

Keywords: Bounded Rationality, Cournot Oligopoly, Voter Turnout
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Introduction

Economics can be thought of as the study of the decisions and actions of people

who have to use the available resources to fulfill their needs. It is exactly this focus

on people that makes Economics a social science. And its socialness has advantages

and disadvantages. On the plus side, it is not a closed science, centered on itself, but

can be used to observe, analyze and predict real phenomena, events and actions, and

therefore to better understand the world we live in. However, its human centering

prevents it from having hypotheses as testable and predictions as accurate as some

natural sciences. In fact, human activity is ruled by human decisions and these are

the result of each person’s brain functioning. And here, scientists face two major

problems. First, in spite of the advances in neurology and neuroeconomics, we

are still unable to analyze the exact way decisions are made and, therefore, cannot

predict with certainty what every individual will do in every situation. Second, even

if we could do that for a specific person, we would still be far from being able to

explain most social phenomena, as it seems that different people act differently in

similar contexts.

Facing these difficulties, Economics had to find a way to go on. And it did so,

by assuming a simple hypothesis: unbounded rationality. What does this mean? It

means that, an individual, when faced with a problem, for which some information

is available to him, chooses, from the different available options, the best for him.

In other words, the economic scientist calculates the optimal action the individual

should take and assumes he takes it. This technique is not always unrealistic. Some

problems are so simple that it is reasonable to assume that most people will make

the optimal choice. In other cases, although each person does not optimize, the
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gathering of everyone’s decisions cancels individuals mistakes and the aggregate

result is somewhat close to the optimum. In these cases, the assumption of individual

unbounded rationality does not harm the validity of the collective result. And

in other situations, although people do not optimize the problem they face, they

end up choosing the optimal action, either by randomizing, or by using another

decision process which coincidentally results in selecting the optimum. However, it

seems unreasonable to assume that unbounded rationality is used by all agents in

all situations. There are some situations in which the optimal decision is so hard to

find for the modeler (who can take the time and use the auxiliary resources needed

to formalize the problem, find how to solve it, and execute calculations), that it

seems implausible that an individual, when faced with the problem, having to make

a decision on a short period of time, and relying on nothing but himself, is able to

find the optimal solution by other than chance.

Even if one is happy with the results obtained from the use of unbounded ratio-

nality, the concern with this kind of issues seems important at least from a procedural

point of view. When you first contact with Economics, you learn that models are a

simplified version of reality, which allows you to study it in a tractable way and to

get predictions which otherwise would be impossible to get. Then, one of the most

important tasks faced by a modeler is to choose which aspects of reality should be

simplified or ignored, and which ones should be kept unchanged. It is understand-

able that, in Economics, rationality is normally chosen as one aspect to be simplified,

if nothing else, because we don’t understand entirely how it works. However, being

human decisions as important as they are in economic models, the level of sim-

plification that unbounded rationality implies makes some authors believe that it

should be replaced by some other concept closer to the way in which people actually

think. Even if this does not the improve the quality of the results obtained, the

movement in this direction is at least an honest attempt to make economic models

more realistic regarding one of its core features: decision processes.

It was in this spirit that bounded rationality came to existence. Its creation is

probably due to Herbert A. Simon, who, in Simon (1955), affirms that “Broadly
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stated, the task is to replace the global rationality of economic man with a kind of

rational behavior that is compatible with the access to information and the com-

putational capacities that are actually possessed by organisms, including man, in

the kinds of environments in which such organisms exist.” Since then, many au-

thors acknowledged the existence of this problem and have proposed some solutions.

However, bounded rationality is very difficult to model in an unified way, because

this would imply the knowledge of all determinants of human behavior, which we

are still far from getting. Indeed, the most difficult object of investigation for man

seems to be man himself. And this partly explains why bounded rationality has

spread in so many different directions.

This diversity motivated Chapter 1. It is a survey on bounded rationality, cov-

ering contributions to the field from Herbert Simon’s pioneering work in satisficing

(Simon, 1955) to recent developments, such as the notion of sparsity (Gabaix, 2014).

To select what literature we should analyze, we had to define a criterion. Especially

because bounded rationality is part of a wider field, Behavioral Economics. This

recent field in economic history gathers contributions from different sciences, such

as psychology, sociology and neuroscience, to construct a view of human behavior

that accounts for the factors that influence the human mind. However, Behav-

ioral Economics does not necessarily assume that rationality is bounded. In fact,

concepts like reciprocity, fairness or loss aversion do not imply that people find

it difficult to solve any specific problem. Instead, their human nature influences

their decisions, because they care about certain aspects that traditional Economics

failed to acknowledge, or decided to ignore. The perspective we take here is that

bounded rationality takes its place whenever the contrast between the complexity of

the decisional environment and people’s abilities to solve problems affect the way in

which such problems are viewed or dealt with. That is, we only focus on problems

which are simplified or transformed in such a way that they become easier to analyze

according to people’s views on them.

After restricting the literature, organization was an issue. But once again the

definition we consider for bounded rationality came to the rescue. If a problem is
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simplified, then we should be able to identify what is changed relatively to the classic

perspective. But, if we are to do this, we need to have in mind what constitutes any

economic problem. This led us to the recognition of six elements. If a choice has

to be made, one or more alternatives must be available. This means a choice set,

the first element, must be defined. Then, some kind of ranking of elements of the

choice set must exist, because otherwise no decision was needed. Thus, preferences

of the decision maker should be specified and, if possible, represented by an objective

function, the second element. If, indeed such function exists, and its optimization is

difficult, we need to specify how an agent tries to reach the best decision possible.

That is, the third element, an optimizer operator, defines the procedure used to

make a choice. And, technically, a decision maker needs to understand what, in the

problem at hand, requires a decision. This generates the set of decision variables, the

fifth element. Finally, the problem, specifically the objective function and the choice

set, may be influenced by factors out of control of the decision maker. These external

elements, parameters, are the fifth element we analyze. Finally, the decision maker

may not possess all the information that affects the problem, but still need to make

a decision. This is the basis for the sixth element, the uncertainty operator. Notice

that models of strategic interaction between different players, may, in general, be

accommodated in this framework, because each player is solving his own problem,

and does not control other players’ decisions. However, given the specificity of

such models and the importance they have in economic modeling, we cover them

separately. After the review of the literature in bounded rationality, we make two

contributions to the field, one affecting individual decision and the other specifically

designed for strategic interaction contexts. They are presented in Chapter 2 and

Chapter 3, respectively.

Our modeling proposal in Chapter 2 is extremely simple. Deciding is costly and,

if an agent wants to be able to find the optimal solution of his problem, he needs

to bear the cost of thinking. But that leaves that raises the question of what he

does if he decides not to think. Our assumption is that all agents are equipped

with what we call a default choice, that is, an option that the agent can choose

without any mental effort. It can be interpreted as intuition (Kahneman, 2003), a
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suggestion from other people (Choi et al. , 2003), the optimal choice associated with

a standard, although not necessarily true, view of the world (Gabaix, 2014) or in

other ways. What is important about it is that it provides the agent an alternative

to thinking. A costly thinker then has to decide, besides an option from the original

choice, whether to think on the problem, or to stick to his default choice. If he does

decide to think, the cost of doing so is subtracted to the payoff he gets, and this

frames thinking as any other scarce resource resource in economic problems. Its

benefit and cost must be compared, in order before a decision about its use is made.

Before moving to the main application of the concept, we apply it to a very

simple consumer problem, for illustrative reasons. Interpreting the default choice as

the result of intuition, we conclude that consumers with a good intuition decide not

to think, because the benefit in finding the optimal choices is outweighed by the cost

it implies. And to have a good intuition, in this context, means to have a default

bundle that the consumer highly values. On the other hand, consumers who find it

more difficult to think rely more on their intuition.

Then, we drive our attention to the main application of the chapter: Cournot

oligopoly. We study a duopoly model, with linear costs and demand, and a common

default quantity and thinking cost. And find that the higher the thinking cost, the

less firms are thinking in equilibrium. And all combinations of thinking decisions

are possible. This means that it is possible to have symmetric firms making different

thinking decisions which, in this model, implies that they also make different quan-

tity decisions. The fact that quantities are strategic substitutes helps to understand

why this happens. For example, if the default quantity is high, if one of the firms

does not think and produce it, in an aggressive move. The other firm, by best re-

sponding, chooses a low quantity. And this makes the default quantity feel better for

the non thinking firm, because it is closer to the best response of this firm than its

rival’s. Hence, there is room for a thinking cost, neither too high nor too low, that

makes thinking attractive only for the firm that is actually thinking. This model

can provide some intuition for some results in the Cournot experimental literature

(Huck et al. , 1999, Rassenti et al. , 2000, Huck et al. , 2002, Bosch-Domènech &
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Vriend, 2003). Strategy heterogeneity is obtained endogenously when the thinking

decision is different between firms. Inter temporal rigidity, that is, repetition of

choices across periods is a result from a dynamic extension of our model, which

predicts that, if the thinking cost decreases over time at all but one specific rate,

there are some periods in which quantities do not change and, moreover, the firms

eventually learn to play the Nash equilibrium and do it forever without thinking.

And an increase in quantity dispersion when decisions are harder to make is also

a consequence of our model, if we allow for different default quantities and it is

obtained in a more pronounced way if more than two firms are considered.

Chapter 3 was written in co-authorship with Susana Peralta. Contrary to the

model in Chapter 2, in which the concept we introduced has a direct impact on

individual decisions (although it also indirectly influences the outcome of game-

theoretical models with players that are boundedly rational in the way we define),

in this chapter, we directly approach strategic interaction between players. Based on

the notion of rhizomatic thinking (Bravo-Furtado & Côrte-Real, 2009a), we say that

a player is self-delusional if, when deciding, believes that a fraction of like-minded

players necessarily take the same action as he does. This means that self-deluded

players believe their decisions have a higher impact on the game outcome than

they really have, because the players they assume to act as they do, may, in fact

behave differently. This type of belief simplifies the game, because the number

of players whose strategies need to be forecast is reduced. A natural application

for this concept is the problem of voter turnout. Indeed, in large elections, the

small expected impact of each single vote combined with a positive cost of voting,

even if very low, results in the theoretical prediction of no voting, which is clearly

contradicted by reality. The empowerment that self-delusion provides to potential

voters may then explain why it is that they actually vote.

We model a first-past-the-post election, with two parties, and a level of self-

delusion, defined as the fraction of like-minded players that a player believes to

act like him, distributed uniformly in each set of partisans. Like-minded agents

are interpreted as the players that prefer the same party. We get that a positive
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and possibly high turnout. In fact, if both parties have the same support size, an

equilibrium in which all players vote is possible. The majority party may always

win the election, whereas a victory of the minority is possible, if the parties’ support

sizes are not too different. When parties get closer in support, we can have higher

or lower turnout rates. An increase in turnout rate is expected in these conditions,

because the minority supporters feel they have a real chance of seeing their party

win the election, whereas the majority supporters become less confident on a victory.

On the other hand, players vote when they believe they can induce at least a tie

with their vote, and perceive voting to be higher than it actually is. This means

that, if the deluded part of perceived voting is more important than actual voting,

the minimum level of self-delusion that is required for a majority supporter to vote

increases when there are more potential voters in the minority party. But this takes

players that are no longer self-deluded enough from the voting set, thus reducing

turnout. However, we do get that equilibria in which the minority win have the

highest turnout rates. We add an extension to our model that allows for different

distributions of self-delusion between parties. This shows that this type of belief

may actually benefit the people who have it. If the minority has no chance of

winning the election because of lack of support, but its supporters become more

self-deluded, winning can become a possibility. On the contrary, a minority win

may become impossible because of an increase in self-delusion in the majority party

supporters. This points out that parties, other than trying to gain new supporters,

may concentrate efforts in raising the feelings of group identity and connectedness

among the ones they already have.
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Chapter 1

The Simplified Economic Problem:

A Survey on Bounded Rationality

1.1 Introduction

Behavioral Economics is a relatively recent field. Its creation was a response to

concerns about the assumptions on human behavior in economic models, as were

made until then, and their impact on the quality of predictions. Contrary to the

predominant practice at the time, this field had a clear focus on the connection

between human reasoning and observed decisions. It proposed to reach to other

sciences, such as psychology, sociology and human science, in order to better un-

derstand the way in which people actually think, and construct more realistic and

successful models of human behavior. This movement made possible the appear-

ing of novel theories such as hyperbolic discounting (Laibson, 1997), prospect theory

(Kahneman & Tversky, 1979), fairness and reciprocity (Rabin, 1993) and altruism

Levine (1998). These examples show that one possible way of altering the clas-

sic rationality paradigm is to assume that the problem at which it looks may be

ill-specified. That is, differences between actual behavior and the predictions from

traditional economic models may stem from the fact that they have different goals

than is usually assumed. It is not that they are not able to solve a problem, but

that they want to solve a different one. However, some authors in this field focus on
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a different perspective. They consider that some problems are too hard to be solved

by agents with bounds on their reasoning abilities. It is not just a matter of how

limited an agent is, but, more generally, of what results from the contrast between

his difficulties in thinking and the complexity of the decision he faces. And this idea

is the core of bounded rationality.

The contributions to the literature on this theme have been the object of some

surveys. March (1978) centers his analysis on the problem of choice and discusses

how it is affected by bounded rationality and changes in the way preferences are

modeled. Camerer (1998) mainly focuses on experiments that either motivate the

creation of theoretical models, or test them. Conlisk (1996b) presents evidence of

bounded rationality, shows the success of some papers in this area, discusses the

objections against it and defends that it is a part of Economics on its own right, as

it deals with the use of a scarce resource, reasoning. Lipman (1995) reviews papers

which treat bounded rationality as an information processing problem.

We also review the literature on bounded rationality, but do it guided by a

specific view of the concept and how it impacts economic modeling. In Economics,

a problem arises when there is the need to allocate limited resources to achieve some

goal. That is, whenever there is the need to make a choice between different options.

Formally, we think of a general economic problem as:

OptxE pu pα, xqq s. t. x P S pαq (1.1)

There are six elements we identify in (1.1). They are the following:

1. Opt: The optimizer operator. Represents the procedure that is followed to

achieve the intended goal. May or may not result in the choice of the best

available option.

2. u: The objective function. Is derived (if possible) from the preferences the

agent has on the available options. Guides the choice process, by indicating

the goal to be attained.
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3. E: The uncertainty operator. An agent may not possess all the information he

needs to solve the problem, but still need to make a decision. In this case, he

must adopt a procedure to deal with the uncertainty he faces, represented by

this operator.

4. S: The choice set. Includes the options the agent considers. May be endoge-

nous, if the agent has the possibility to filter the options to choose from.

5. α. The parameter set. Consists of all factors that influence the problem, over

which the agent has no control. Includes other players’ decisions in traditional

game theory.

6. x: The set of decision variables. Expresses what the agent can control and

needs to decide upon.

A bounded rationality model should then simplify an economic problem, in at

least one of these elements. We classify what we consider to be the main papers

on this theme according to the simplified element that is more relevant in their

analysis. Game-theoretic models, given their specificity, are analyzed in their own

section, although it would be possible to fit them in one of the six categories, as

individual decisions need to be done even in contexts of strategic interaction. Our

focus is on theoretical contributions, not on experimental evidence that motivates

them. Of course, this is not an exhaustive analysis of the literature on this theme,

but a presentation of the papers we feel to be more representative of the advances

in this area.

The optimizer operator is the focus of Section 1.2. The analysis of the objective

function is divided into two parts. In Section 1.2.2, the original problem is replaced

by a new one, with which the agent can more easily cope. In Section 1.2.3, the

cost in making decisions is explicitly accounted for and directly affects the objective

function. The remaining elements of the problem are the object of Section 1.2.4 and

game-theoretical models are gathered in Section 1.2.4. Section 1.4 concludes.
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1.2 Individual Choice

In this section, we present the main theoretical papers which change the classic

problem of individual decision. In Section 1.2.1, we focus on the optimizer operator.

Changes to the objective function are studied in Section 1.2.2, if they are mere

simplifications, and in Section 1.2.3, if they consist on the adding of a thinking

cost. The other elements of the economic problem, uncertainty operator, choice set,

parameters and decision variables are analyzed in Section 1.2.4.

1.2.1 How to choose

We start with models that assume that people, when confronted with a choice

problem, do not try to select the best option available. In the papers we ana-

lyze, people search the choice set until finding a satisfactory option (Simon, 1955,

Gigerenzer & Goldstein, 1996), adjust their choices over time towards the ones that

are revealed to be more successful (Arthur, 1991, 1994) and allocate their mental

resources according to not necessarily optimal rules (Radner & Rothschild, 1975).

One possible method of making choices which are not necessarily optimal is

to define what a good payoff would be and try to achieve it. That is, instead of

taking the best option from a choice set, take the first one which implies a minimum

utility level. This is the basis for the concept of satisficing, labeled this way by the

formal launcher of the concept in Simon (1956). In a previous paper (Simon, 1955),

he developed a framework that allows to adapt a general optimization problem

to this concept. In a particular way, Gigerenzer & Goldstein (1996) also employs

the satisficing idea. He assumes that, when comparing choices, people look at the

characteristics of each of them. Sequentially, they try to rank these characteristics,

and stop when they believe to have found conclusive evidence of what is the best

option. This does not necessarily results in an optimal choice but, instead, search

is stopped when the agent deciding is comfortable with his option.

Simon (1955) is generally regarded as the launcher of the bounded rationality

concept. He recognizes that the environment in which decisions are made is hard
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and that the human mind is limited in the way it deals with it, implying that

optimization may not be possible in some situations and should be replaced with a

different choice mechanism. In this paper, the notion of satisficing, although still

not labeled this way, is presented for the first time. A satisficer first defines an

aspiration level, that is, a minimum utility level which he is willing to accept. Then,

a sequential search is performed in the choice set, and it stops when an alternative

that guarantees at least the aspiration level is found, and this is the alternative

selected.

More formally, the author proposes the following choice procedure. There is

a general choice set, A, and a subset of it, Ã, is known by the agent. S is the

set of consequences the selection of each element in A may have. The utility each

consequence in S brings to the agent is defined by V . The agent may have a more

limited information on the relationship between Ã and S and just know what are

the possible consequences of each action he can take (if this is the case, each a in A

is linked to a subset of S), or he may be more informed, and be able to specify the

probability that each possible consequence of a given action will indeed occur if the

action is selected. Within this framework, classic rationality would result in the use,

for example, of a maxmin rule or expected utility maximization. The behavioral

alternative suggested is the simplification of V , which would map elements in S

into a very simple set, such as t0, 1u, or t�1, 0, 1u. The elements of the former are

interpreted as unsatisfactory and satisfactory, whereas the elements of the latter

represent lose, draw and win. Focusing on the first set (the one which is more often

mentioned by the author), in the satisficing perspective, the objective of the agent

is to find an element in Ã that maps into a set of consequences that are considered

satisfactory. In order to attain this, the agent should try to find an action in Ã which

maps to a subset of S that contains only satisfactory alternatives. This idea is also

applied to the more complex problem in which V is a vector function, be it because

different features of the same object are being compared or because more than one

agent is involved, and an obvious generalization of the procedure is advanced: search

for an action which consequence is satisfactory in all aspects of the problem. More

formally, if there are n aspects to considered, ki is the aspiration level of aspect
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i P t1, ..., nu, and the agent’s objective is to find an a P Ã that maps into a subset

of S containing only consequences s such that @i P t1, ..., nu , Vi psq ¥ ki.

The model also allows for dynamic considerations. For instance, aspiration lev-

els may vary with time, decreasing if satisfactory solutions are hard to find and

increasing otherwise, and the choice in each period may be influenced by the results

of the choices taken in the past. A final note to mention that the author refers

the possibility of accounting for the cost of making complex decisions, which would

generate a new, more general problem which could then be optimally solved. This

route, however, is not followed, which is justified by the ignorance of the agent of

such costs and its inability to compare the utility of each action and the cost of

choosing it. Therefore, it is safe to assume that Simon, in his seminal contribution,

was hinting at costly thinking, which was developed years later by Conlisk (1980),

for example, as a promising research avenue.

Gigerenzer & Goldstein (1996), in a paper published in a psychology journal,

present three heuristics to be used when making inductive inferences. They focus

on the problem of making a comparative assessment of a set of alternatives, when

such comparison is not easy to make directly. Instead, the agent resorts to some

features of the alternative objects, labeled cues, which he thinks are good indicators

of which choice he should make. Trying to define fast and efficient heuristics, the

authors propose three different evaluation methods which make use of cues, but do

not require the knowledge of all of them.

Formally, a choice is to me made in a set of n objects, A � ta1, ..., anu. Object k

has a value t
�
ak
�
, and the agent’s goal is to select the highest value choice. There

is the possibility that the agent has never heard of one or more of the objects. The

recognition of object k by the agent is defined by the binary variable rk P t0, 1u,
where 0 stands for ignorance and 1 for recognition. There is a set of m binary

cues, which can take the value �1 or 1, where the former represents a negative and

the latter a positive signal. Cue i, for object k, assumes the value cki P t�1, 1u.
When investigating cki , the agent can either believe it to be 1 or �1 or do not

assume anything about it. The agent’s belief about cki is bki P t�,�, ?u, where �,
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� and ? represent, respectively, the ideas that cki is 1, �1 and unknown. If the

agent does not recognize one object, he assumes all its cues to be unknown, i.e.,

@ �k P t1, ..., nu : rk � 0
�
, @i P t1, ...,mu , bki �?. Cue i has an ecological validity,

represented by vi, which measures its ability in correctly comparing the values of

objects. Specifically, it is the fraction of times that an object has a higher value

than another, whenever the cue is positive for the best object and negative for the

other. That is:

vi � #
 pk, lq P t1, ..., nu2 : cki � 1^ cli � �1^ t

�
ak
� ¡ t

�
al
�(

#
 pk, lq P t1, ..., nu2 : cki � 1^ cli � �1

(
The first heuristic proposed by the authors is the Take the Best Algorithm. The

agent selects two objects, ak and al, to compare. If he recognizes only one of them,

that is the one he chooses. If he recognizes neither, he randomly selects one. If

both objects are recognized, the agent ranks the cues by their ecological validity.

He sequentially compares his beliefs about the cues, starting with the one with the

highest economic validity. If, for cue i, his beliefs are bki � � and bli � �, object k

is selected. Otherwise, the agent moves to the next cue. If this process leads to no

objection selection, a random choice is made. If there are no random choices made,

this heuristic is transitive, and, independently of the ordering of objects’ pairing, the

resulting choice is always the same. The Take the Last Algorithm differs from this

in that cues are ordered not by their ecological validity, but rather by their order

of use. That is, when comparing two objects, the first cue to be analyzed is the

one that settled the last comparison of objects the agent made. In the Minimalist

Algorithm, the use of cues is randomly ordered. Notice that, while the Take the

Best Algorithm demands the knowledge of ecological validities and the Take the

Last Algorithm the memory of discriminating cues, the Minimalist Algorithm needs

no information about cues. And they all have in common the use of a subset of

cues, which can be very small.

These algorithms are compared, in simulations, with a series of integration algo-

rithms, which make use of all the information available, making them closer to the

classic rationality paradigm. The objects are 83 German cities and their value was

15



their population. There were 9 cues used, such as the property of being a national

capital or the existence of a local university. The percentage of cities recognized,

as well as the percentage of cues known (they assumed that agents either knew the

true value of the cue or assumed it to be unknown) varied through simulations.

They conclude that, predictably, the heuristic algorithms are faster, in the sense

that the number of cues they use is smaller and, to some surprise, that the Take

the Best algorithm was the one that had a higher inference accuracy, on average.

One curious phenomenon resulted from simulations. For the heuristic algorithms,

accuracy was maximized when only some of the objects were recognized. The reason

is that the simulations were setup with the property that, with an 80% probability,

a recognized object had a higher value than an unrecognized one. Thus, an exces-

sive number of recognized objects led to a small number of contests decided by the

recognition variable, wasting a quite accurate criteria.

Another not necessarily optimal method of choice is sampling and adjustment,

that is, finding the merits of each available option by trying it out. A bounded

rational agent that is unable to instantly find an optimum may nonetheless be able

to observe the results of his choices, choosing more often the options which perform

better through time. This is the basis idea of two papers of the same author, Arthur

(1991) and Arthur (1994). An important distinction between them is the object

of the agents’ observations. In Arthur (1991), the agent is undecided about what

element from a choice set he should take, whereas in Arthur (1994) his indecision

is relative to selection rules, that is, criteria he can use to make a choice. Besides,

in Arthur (1991), there is a mechanism of self-reinforcement, as the selection of an

action in one period increases the probability of its selection in the future, but in

Arthur (1994), the probability that a selection rule is chosen is not influenced by

the fact that it was used in the past, as the agent always looks at all the rules at all

times, giving them all an equal opportunity.

Arthur (1991) constructs a very simple model of choice that reacts to the success

of the different alternatives chosen through time. He assumes each possible action

has an unknown payoff that is distributed according to a stationary distribution. An
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agent has a prior belief about the payoff quality of each action and selects an action

using a randomizing profile that takes this belief into account. After an action is

randomly selected in this fashion, its realized payoff is registered and the belief is

updated, leading to a new random choice.

Specifically, there are N actions, indexed by i. Action i’s payoff is positive and

distributed according to the stationary distribution Φi, with expected value φi. For

each period t P t0, 1, ...u, St � pSitqiPt1,...,Nu is a vector of strengths associated with

each action. The sum of actions’ strengths in period t is Ct and, in this period,

the probability that each action is chosen is its relative strength. That is, if pit is

the probability that action i is chosen in period t ¥ 1, pit � Sit
Ct

. After the action

selection, the vector of strengths is updated. First, the payoff realized by the chosen

action is added to its strength. Then, strengths are normalized so that their sum is

Ct�1 � C pt� 1qν . This implies that, if action j is chosen in period t, its realized

payoff at that time is πjt , and ej is the jth unit vector, St�1 � Cpt�1qν
Ctν�πjt

�
St � πjt e

j
�
.1

The stochastic evolution of the probability of choosing each action is shown to be

the following:

@t P t1, ...u , @i P t1, ..., Nu , pit�1 � pit

�
1� φi �°N

j�1

�
pjtφ

j
�

Ctν
� ξt
Cν
t

�
(1.2)

In (1.2), ξt is a zero mean disturbance. These dynamics are important in under-

standing and confronting the concepts of exploration and exploitation. The former

refers to the analysis of the search set, achieved by selecting different actions over

time and allowing to find good alternatives, while the latter means the repeated

selection of an alternative which has proven to be good enough. Suppose k is the

action with the highest expected payoff and l also has a high payoff, but not as high.

The factors that contribute to the exploitation of l, if it is chosen in early periods,

or to the exploration of the choice set and subsequent finding of k are understood by

observing (1.2). The expression φi �°N
j�1

�
pjtφ

j
�

stands for the difference between

1The agent is assumed to have an initial belief about the actions’ strengths, which is represented

by the strictly positive vector S0. As no choice is made in period 0, S1 �
C
C0
S0

17



the expected payoff of action i and the expected payoff the agent gets, given the

probabilities he defines in period t, and is positive for sure when i � k and also

positive when i � l, if l has a high enough expected payoff. If k is significantly bet-

ter than its alternatives, this expression attains a high positive value, and pkt tends

to increase, even if k is not selected often in early periods, preventing the agent’s

choice from being locked in a different action. On the other hand, if either C or ν

are low, the rate of growth of pl, if l is chosen with some regularity in early periods,

is high, and this action may always be chosen from a certain point in time, even

if it is not the optimal action. Restricting ν to be in r0, 1s, the author states that

only when ν � 1 the locking in of action k is guaranteed. The model is then used

to calibrate the values of C and ν against some experiments where subjects had

to choose between two actions for 100 periods, and the calibrated model replicated

quite well the results of the experiments.

Arthur (1994) argues that human reasoning is essentially inductive, in opposition

to the deductive thinking classic rationality assumes. Intuition is defined as a set of

beliefs, rules and selection methods, which depend on the context in which they are

formed, and evolve over time, with the most successful ones being reinforced and

the others discarded. Not knowing how to deal with a specific problem, an agent

constructs some models of choice which he can cope with, and compares the results

of their application to the problem at hand. Over time, the most successful ones

become the most often used.

He exemplifies this idea with a congestion problem. There is a bar to which 100

people consider to go once a week. Going is enjoyable if and only if less than 60

people are present, and there is no communication between people. The only infor-

mation available is the bar attendance in the last few weeks. With this information,

an agent acts intuitively by predicting the attendance in each week in one of several

different ways. He may say it is the same as it was in the previous week, a rounded

average of the four previous weeks’ attendance or the trend in the previous 8 weeks.

These rules for deciding which option is the best, without any calculation to support

their optimality, are usually referred to as rules of thumb. In each week, the agent
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uses the method that has proven more accurate at the date, in a process that is

constantly updated. The author performs a computer simulation to test this theory,

defining that each of the 100 agents knows a subset of the whole set of acting rules.

He concludes that, on average, 60% of the rules being used led to attendance, and

states that it seems natural that this game is attracted to a Nash equilibrium, where

each player goes to the bar with a probability of 60%.

Radner & Rothschild (1975) has in common with Arthur (1994) the fact that it

uses rules of thumb to solve a complex enough problem to have an optimal solution

that is hard to find. They deal with the problem of selecting how much effort to

dedicate to different tasks and consider that the higher the fraction of the available

effort that is dedicated to a task in a given period of time, the higher is the expected

value of the change in the quality of its results in the following period.

Formally, the agent has to choose ai ptq, the fraction of effort available to dedicate

to activity i P t1, ..., Iu in period t P t0, 1, ...u. Activity i in period t attains the

performance level Ui ptq. The evolution of this level from period t to the next is

Zi pt� 1q � Ui pt� 1q � Ui ptq and is assumed to follow a random walk. More

specifically, E pZi pt� 1qq � aiptqηi � p1� ai ptqq p�εiq, with ηi, εi ¡ 0.

Three rules of thumb are studied. The first one is time invariant and is named

constant proportions behavior. It is based on the distribution of effort by activities

in the same way in every period, that is @t P t0, 1, ...u , @i P t1, ..., Iu , ai ptq � ai.

The second rule focuses on controlling damages and is named putting out fires. It

prescribes that, in each period, all effort is devoted to the worse-performing activity

in the previous period. In case there is more than one, the first criteria of selection

has a stay-put logic: choose the one that was selected before. If none of them fits this

criteria, the one with the lowest index is chosen. Finally, the staying with the winner

rule favors the best performing activities. It states that, in each period, the activity

with the highest performance concentrates all effort, with the lowest index number

serving again as a tie break rule. These rules are evaluated with the aid of two

concepts: survival, which is verified when no activity performance is ever lower than

a certain threshold, and the average growth of activity performance over time. They
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find that, if activities do not require much effort to have improved performances, that

is, if η � pηiqiPt1,...,Iu and ε � pεiqiPt1,...,Iu have, respectively, high and low components,

there is at least one behavior that generates survival with positive probability, and

at least one of them is a constant proportions behavior. Given some conditions on

Z, they also find that the use of the putting out fires rule implies that all activities’

performances will almost surely have the same average growth rate. The repeated

choosing of the staying with the winner rule will eventually select one single activity

as the object of all effort, although the specific activity and period of time in which

this selection begins cannot be known in advance. This means that the chosen

activity will have a performance with a positive average growth, while this measure

is negative for all the remainder activities.

Notice still that the staying with the winner rule is close in spirit to the adap-

tation method employed in Arthur (1991) and Arthur (1994), because it predicts

that success attracts choice. On the contrary, the putting out fires rule goes in the

opposite way.

1.2.2 Optimize, but what?

In this section, maximization is restored as a way to solve problems. However,

the function to be maximized is not the same as in classic rationality. If people are

faced with a complex problem, they may be tempted to replace it with a different

one, where optimization is easier. This is the case of the models in de Palma

et al. (1994), Gabaix et al. (2006) and Kőszegi & Szeidl (2013). The first two

are intimately connected by the notion of myopia. They propose that an agent

splits the original problem in different smaller and easier to solve problems, but fail

to take into account the effects the decisions they make in each of them have in

what follows. However, their settings are very different: de Palma et al. (1994)

analyzes consumers who prefer to buy one good at a time, instead of buying an

entire bundle, and Gabaix et al. (2006) investigate the sequential costly analysis

of choices with uncertain payoffs. Kőszegi & Szeidl (2013) also has agents that

maximize an objective function with which they can easily cope, but, contrary to
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the previously cited papers, there is no partition of the original problem. Instead,

an objective function that puts more weight in the characteristics of an object that

distinguish it from the other objects is the center of analysis.

de Palma et al. (1994) model a consumer who differs from the classic rationality

paradigm in three ways. First, instead of deciding which consumption bundle to

acquire, he splits his income through different periods and, in each of them, decides

on which good to use it. Second, he cares not about the level of each good he has, but

about the average rate of consumption of the available stock of each good. Finally,

he is unable to see the true benefit from choosing any good, having a distorted

perception of it. The bounded rationality of the agent is manifested in the way he

simplifies the hard problem of choosing all goods’ quantities at once, making more

but easier decisions, and in the perception errors he makes as a result of his difficulty

in processing information.

There is a set of n goods from which to choose in a game of duration T . The

consumer has an income Y P N, of which he spends 1 unit in each period. The

average income spent per unit of time is then y � Y
T

and the length of each period

is l � 1
y
. There are Y periods, which correspond to the intervals rpk � 1q , ks l, with

k P t1, ..., Y u. The stock of goods the agent possesses in the beginning of period k is

Sk � �
Ski

�
iPt1,...,nu. The initial endowment of the agent is S1. In period k, the agent

consumes uniformly the stock of each good, but does not necessarily exhausts it.

The intensity of consumption of good i is given by ci P
�
0, 1

l

�
, and the consumption of

good i in period k after an amount τ P r0, ls of time has elapsed since the beginning

of the period is Ck
i pτq � τciS

k
i . The rate of consumption of good i in period k is

then:

qki �
Ck
i plq
l

� ciS
k
i

In the beginning of each period, the agent has to decide in which good to spend

1 unit of his income. Let xki P t0, 1u define if, in period k, the agent acquires good

i, where 1 stands for yes and 0 for no. The price of good i is pi, hence, if xki � 1,

the agent acquires 1
pi

units of good i, which he adds to his stock. This means that
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the available stock of each good in the beginning of each period has the following

dynamics: @k P t2, ..., Y u , Ski � p1� lciqSk�1
i � xki

pi
. The agent derives utility not

from the possession of each good, but from its rate of consumption. That is, the

objective function he seeks to maximize in each period, v, depends on
�
qki
�
kPt1,...,nu,

and is positively affected by each qki . To solve his problem, the agent engages in

a process of melioration. That is, instead of solving the harder global problem,

he myopically chooses, in each period, the good which seems more attractive to

him, ignoring the consequences of this choice in the subsequent periods. If he knew

perfectly the consequences of choosing good i in period k, his objective, in this

period, would be to maximize ∆k
i v, the increment in utility obtained from choosing

good i. However, the agent is unable to know this function and maximizes, instead,

∆k
i u. It is assumed that ∆k

i u � ∆k
i v � εki . The error made in assessing ∆k

i v is εki , a

random variable which variance represents the ability of the agent to choose. The

lower the variance, the higher the ability. The case in which @i P t1, ..., nu , @k P
t1, ..., Y u , εki � ε

µ
is studied, where the ability to choose is positively related to µ.

They get the very intuitive result that all good tend to be chosen with the same

probability in each period, when µ approaches 0, and that, when µ approaches �8,

the probability of choosing the good that maximizes ∆vki in period k tends to 1.

The stationary behavior of the model is then analyzed. The stationary value of

the true utility function is v and σ2 is defined as the variance of the ratio between

the true marginal utility of good i, δv
δqi

, and its marginal cost, pi. It is concluded

that δv
δµ
� yσ2, which has two implications. First, the true utility obtained increases

with the ability to choose, which means there is a kind of satisficing behavior, as in

Simon (1955), in the sense that the agent is happy with a below optimal utility level.

Second, the impact of the ability to choose in the stationary utility level depends on

the average expense per unit of time and on the dispersion of the ratio of marginal

utilities and costs. In fact, if either more money is available to spend, or the quality

of alternatives is more dispersed, the consequences of the choices made become more

important and an increase in the ability to choose is more valued.

The authors add some policy insights to the model. They claim that, if peo-
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ple have the possibility of increasing their ability to choose by investing in their

education, but fail to recognize the benefit of doing it, a coercive mechanism like

mandatory schooling can benefit society. Also, if imperfect ability to choose is in-

deed a reality, manipulative advertising should be monitored. Finally, the social

optimal level of product differentiation in the Hotelling model is increasing in the

agents’ ability to choose, and the encouragement of product diversity should take

this into account.

Gabaix et al. (2006) studies a model of sequential investigation of objects with

unknown payoffs. An agent is confronted with a choice, but does not know the value

of each of the available alternatives. To resolve this uncertainty, he can investigate

the objects’ payoffs, one at a time. However, investigation is costly, which means

the number and order of investigations is not irrelevant for the level of satisfaction

the agent gets when he finally selects one object. If the agent solved this problem in

an optimal way, this would be a costly thinking or an uncertainty handling model.2

However, the authors’ central idea is the maximization of an objective function

different from the one a classic rational agent would maximize. They propose what

they call the Directed Cognition Algorithm as a way to address this issue. It consists

of a myopic view of the problem, treating the decision taken in each period as if it

were the last one, and ignoring the impact that a decision made in one period has

on the following ones. On contrary, the classic rationality approach, which predicts

a global view of the problem, takes into account, in each period, the fact that the

investigation can continue or not, depending on the results obtained to date. The

Directed Cognition Algorithm is applied to two different problems.

The first problem is the simplest one. There are n objects, Xi being one of them.

The payoff of object i, Ui, is unknown, but can be uncovered upon investigation.

Object i can either be a loser, in which case Ui � 0, or a winner, and Ui � Vi ¡ 0.

The probability attached by the agent to the fact that object i is a winner is pi.

In each period, the agent may either select or investigate the payoff of one of the

objects, which then becomes known. When one object is finally chosen, the selection

2In this case, the model would be analyzed in Section 1.2.3 or Section 1.2.4.
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procedure stops. A classic rational agent associates each object with a sure value

that, if available, would make him indifferent between investigating the object or

accepting the value. The sure value for object i is Zi P r0, Vis. If Wi � 0, the agent,

confronted with this choice, would prefer to receive Zi. But if Wi � Vi, the agent’s

choice would rely on Xi. This means that the expected benefit of investigation of

object i, when the sure value Zi is available, is pi pVi � Ziq. The cost of investigating

an object whose payoff is unknown is ci. This means that the sure value of object i

is:

Zi �

$'''&
'''%

0 , pi � 0

Vi � ci
pi

, 0   pi   1

Vi , pi � 1

Optimality is achieved if the object with the highest sure value is investigated

in each period and selected in the next if it turns out to be a winner. Otherwise, a

new investigation over the object with the next higher sure value is performed. If all

objects are losers, the agent selects one of them randomly after investigating all of

them. The Directed Cognition Algorithm proposes a simpler procedure. In period

t, St is the payoff of the best known winner at the time. If no winner is known at

t, St � 0. The investigation of object i at period t brings a benefit of Vi � St, if

Vi ¡ St and i reveals to be a winner, and 0 otherwise. The agent pays a cost of ci

to know this, except if i’s payoff is known in advance. The expected net benefit of

investigating object i at period t is then:

Gt
i �

$'''&
'''%

0 , pi � 0

pi max t0, Vi � Stu � ci , 0   pi   1

max t0, Vi � Stu , pi � 1

In each period, the agent investigates the object with the highest expected net

benefit of investigation. Uncovered winners are chosen after being revealed, and the

finding of a loser implies a new investigation following the same rule. Again, if all

objects are losers, one is chosen at random after all the investigations are performed.

Notice that this algorithm, even though inducing the agent to act optimally if there

24



were no periods left for investigating, because the investigation with the highest

expected net benefit is conducted, ignores the fact that the disclosure of losers results

in another investigation cost. That is, it does not account for the fact that a myopic

investigation in each period may lead to an excessive number of investigations over

time. This algorithm was put against the classic rationality solution in a series of

experiments, and it showed a higher fit to the data than its contestant.

The same idea is applied to the more complicated problem of selection among

objects with different features, each with its value, where each object’s payoff is the

sum of all its features’ values. The value of one specific feature of all objects is

known in advance, while the remaining are not before being investigated, and are

distributed according to a zero mean distribution. In each period, the agent selects

one object and a subset of its unknown features to investigate. He is familiar with

the variance of the features’ values and is assumed to always choose the ones with

the highest variance, because they supply more information. When one action is

investigated, more of its features’ values are known, and the expected value of the

object payoff is updated. In period t, if the agent investigates Γt features of object

i, he adds the values uncovered to the expected payoff of object i, while the other

objects’ expected payoffs remain unchanged. The expected benefit of doing so, wti ,

is the increase in the highest expected payoff among all objects, and is assumed to

depend negatively on the distance between the expected payoffs of the best object

and object i before investigation, and positively on the total variance of the features’

values investigated. There is a cost of κ per feature investigated. As in the previous,

simpler example, an agent following the Directed Cognition model acts myopically

and selects, in each period, the object and features that maximize the ratio between

the expected benefit and cost implied. If time is limited, the agent does so until

time is exhausted, and selects the object with the highest expected payoff in the end.

If there is an amount of time to be endogenously split by different versions of this

game, the investigating operations in each version continue until the ratio benefit /

cost falls below the marginal value of time of the agent. Notice that, even though

Gigerenzer & Goldstein (1996) also deal with the problem of deciding which is the

best choice by observing their features, the features they refer are not something
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from which the agents extract utility, but simply indicators of which alternative is

better. The comparison between these two models also helps to contrast the logic

of the present section and the previous one. In both models, it is possible that

agents only observe some of the features of each choice. However, if in Gigerenzer &

Goldstein (1996) agents stop searching because they are happy with possibly sub-

optimal decision they will make, in this model they do it because the cost of further

search exceeds its benefits.

This model is confronted with experimental data and three satisficing models:

one has the same investigation structure of the Directed Cognition model and the

others fully explore one object or feature, before moving to another. They all have

in common the fact that, when the stopping time is endogenous, the process stops

when the object with the highest expected payoff is better than some aspiration

level. Finally, the model of Elimination by Aspects, developed in Tversky (1972),

in which objects are compared feature by feature, and are eliminated when their

features are below some aspiration level, until only one remains, is also put to the

test against the experimental data. In almost all criteria used, it is the standard

Directed Cognition Model that takes the lead.

Kőszegi & Szeidl (2013) assume bounded rationality on agents by stating that

they are incapable of correctly comparing the alternatives they have. Faced with

objects that have a number of features, from which they derive utility, they are

not able to calculate the true total benefit of the features of each choice. Instead,

they integrate these benefits in a way that puts more weight in the features which

have greater discrepancies in benefits between choices. In contrast to Gigerenzer

& Goldstein (1996) and de Palma et al. (1994), the problem is not knowing the

features of each object and the utility they create. Agents know all of these, but

cannot integrate the information they have without being influenced by the salience

of each feature.

An agent has to choose an object c in the choice set C � RK . Each of the k

coordinates of c represents one of its features. The way the agent values feature

k P t1, ..., Ku is represented by uk. Total utility is the sum of partial utilities
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of features, which means an unboundedly rational agent would choose the object

that maximizes U � °K
k�1 pukq. However, the agent focuses more on features in

which there are higher utility differences. The weight attributed to feature k is

wk � g pmaxcPC puk pckqq �mincPC puk pckqqq, where g is a strictly increasing function.

The function maximized by the agent is a weighted sum of the utility of each feature,

Ũ , defined by the following expression:

Ũ pcq �
Ķ

k�1

pgkuk pckqq

This model has four main implications. Bias toward concentration means that

if object c is much better than the others in some features, and, in the remaining

features, there are not very high discrepancies, chances are that c will be chosen.

Increasing concentration implies that gathering the advantages one object has over

the others in less features enhances the probability of its selection. Rationality

in balanced trade-offs and More rationality in more balanced choices refer to the

fact that agents tend to select the utility maximizing object when the number of

features in which it is best than its alternatives is close to the number of features

in which it is worse. All of these help us understand that agents with this type of

bounded rationality are attracted to choices which are not necessarily the best, but

that capture their attention for being particularly good in a few domains, although

this bias is less important when the number of advantages and disadvantages of

alternatives is close.

The model can help explain the importance of framing effects, which alter the

choices people make simply by restating the problem they are faced with in different

terms. In this context, the restating of the problem effectively changes it, as it

can change the focus of people’s attention. Also, it can be used to study inter

temporal choice, if we consider that each choice profile is an object and the choice

in each period is a feature. This interpretation sheds some light on why are people

time-inconsistent, in the sense that the actions that they plan to make are not made

when it comes the time, and present-biased if, in each period, they overvalue present

benefits or costs relative to the future, not taking the action that would be best for
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them in the long term. Contrary to hyperbolic discounting, which explains these

phenomena with the way time is discounted, this model says that the reason for

their existence lies on the fact that the salience of future costs or present benefits

can induce a present-oriented choice, and that the plannings of actions extended in

time and of the decision to be taken in each period imply different sets of alternatives,

with different focus attractions.

1.2.3 Costly thinking

Decisions are, most times, not instantaneous nor easy to take. Besides requiring

the gathering of information, they also imply the exertion of some mental effort

and possibly some time to be made. Thus, for a boundedly rational agent, decision-

making is not free but, instead, entails a cost. In this section, we study models which

incorporate this cost explicitly in the problem in which it arises, thus changing the

original objective function. The models we study either feature costly decisions

(Conlisk, 1980, Reis, 2006b,a), costly uncertainty handling (Evans & Ramey, 1992,

Conlisk, 1996a) or a solution to a conceptual problem arising from the introduction

of costly thinking (Lipman, 1991).

Conlisk (1980), Reis (2006b) and Reis (2006a) are three models in which agents

have to decide whether to optimize or not. They are able to find the optimal solution

for all problems they have to solve, but the existence of a thinking cost may lead

them to choose not to. However, the non-optimizing behavior of agents in the first

paper is very different from the one in the other two. While in Conlisk (1980), a

person has to decide, as a child, whether to always optimize or to always imitate

what she sees, in Reis (2006b) and Reis (2006a), an agent, when deciding, has to

design a plan of action for some periods in the future, during which he will not

pay attention to news relevant to his decisions. Also, he needs to specify when he

will decide again. Hence, imitation in the first paper is replaced by a fixed plan of

actions which, in general, will not be optimal, due to external shocks.

Conlisk (1980) models a society where some people take optimal actions, paying

a cost for doing so, while the rest do some kind of imitation, and are exempted of
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such cost. In the model’s dynamic setting, people’s roles as optimizers or imitators

is defined when they are children, and this decision is influenced by the success

and prevalence of optimizer behavior in the past. The fraction of optimizers in

the society evolves over time, and, intuitively, converges to 1 if optimizing is cheap

enough, and to a lower value, if optimizing is expensive enough.

Agents are indexed by i P t1, ...,Mu and time is indexed by t P t1, ...u. In

period t, agent i has to choose a consumption basket xti P Rn. His preferred choice

in this period is wti � Zt � uti, where Zt is common to all society in that period

and evolves over time with the adding of a zero mean random variable, and uti is

a zero mean random variable private to him. Utility is defined quadratically in

terms of losses. The perception imitators have of Zt does not necessarily correspond

to its true value, and is defined by T t. Its evolution through time is given by

T t � λX t�1 � p1� λqT t�1, where X t is the average choice of all agents in period

t � 1. Thus, T t depends on the previous period’s perception of Zt and average

choices, with higher values of λ making it more responsive to what society has been

choosing. The utility function to be maximized, v, has the following expression:

v px,wq � px� wqT Q px� wq

An optimizer agent i chooses the optimal action, wti , but pays a cost of C for

doing so. An imitator avoids such cost, but is unable to select wti . Instead, he chooses

T t � uti � υti . That is, he replaces Zt with the impression he has of it, possibly with

error, represented by υti , a zero mean random variable. Hence, the average choice

of optimizers and imitators is Zt and T t, respectively. The average society choice

in period t is X t � AtZt � p1� AtqT t. To close the model, one needs to define the

fraction of optimizers in each period. For that, a performance indicator of optimizer

relative to imitator behavior in period t, Dt, is introduced. It is assumed to evolve

according to the following rule:

Dt � µ

�
E
�
Imitator Losst

�
Optimizer Loss

� 1

�
� p1� µqDt�1 (1.3)
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The higher the value of µ in (1.3), the more the performance indicator reacts to

the present quality of optimizers’ decisions, relative to imitators. A person is a child

for one period, and an adult for the rest of her life, with is finite and has the same

duration for everyone. Population is stable, as the number of births and deaths is

the same in each period. A role of imitator or optimizer is attributed to each child

in each period, and she keeps her role for the rest of her life. The probability that

a child born in period t becomes an optimizer is at � f pAt�1, Dt�1q, with f being

increasing in both At�1 and Dt�1. That is, the higher the fraction and performance

level of imitators in the previous period, the higher the probability a child becomes

an optimizer. The evolution of At is then studied, and two main conclusions are

presented. First, if the average loss of imitators is always higher than C, the loss

of optimizers, At converges to 1. That is, if imitators, who are exempted from an

optimizing cost, can never outperform optimizers, they tend to disappear over time.

Second, if the optimization cost is low enough, At does not converge to 1. In this

case, an approximate value of the limit of At is obtained, which intuitively depends

positively on the variance of imitator’s optimal choices (as it increases their losses)

and negatively on C, the optimizing cost, and λ, the speed of adjustment of the

imitators’ perception of Zt. Although the model is not very micro-founded, in the

sense that individual behavior is assumed and not derived, it displays an ingenious

way to account for the fact that thinking is costly, and shows that optimizing and

non-optimizing behavior may co-exist.

Reis (2006b) and Reis (2006a) are two papers that apply the same concept, op-

timal inattention, to the producer and consumer problem, respectively. Optimal

inattention applies to dynamic models, affected by shocks, which induces classic ra-

tional agents to make a choice every period, according to the news that affect their

decisions. However, boundedly rational agents have a cost of making decisions, be-

cause it implies the collection of information and the execution of mental operations.

Hence, instead of making new decisions every period, inattentive agents, when de-

ciding, make plans for when to decide again and what to do in the meanwhile. In

this sense, this idea is close in spirit to Evans & Ramey (1992). That paper focus on

expectations about inflation, but the logic of reacting to what is happening in the
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economy only in some periods and the fact that it is costly to do so are also there.

The basic framework is the same for both models. Time is continuous and

indexed by t. Di is the time at which the ith plan is made, with i P N0. The agent

plans in the beginning, hence D0 � 0. There is a shock in each period, represented

by the stochastic vector xt. In the case of producers, the shock affects demand

and costs and, in the case of consumers, income. A plan made at time t implies

a cost F pxtq, which is an incentive for long periods of inattentiveness. Such plan

has two parts: the value of Di�1, that is, the time at which the next planning will

take place, and zi �
�
zDi , zDi�1

�
, the choices to be made until then. These choices

refer to one of two variables, in each model. In the producer case, the firm has to

decide between fixing prices or quantities and, in the consumer case, the decision is

between fixing consumption or savings levels. Importantly, whatever is decided in a

plan, has to depend only on what the agent knows at the time. All plan times and

choices profiles are defined to maximize time-discounted total utility net of planning

costs over time.

In the producer model, there is a monopolist, which faces a negatively sloped

demand Q px, P q and has a cost function C px, Y q. At each planning period, he

chooses whether to fix prices or quantities, according to the maximum profit he can

get in both cases. Importantly, if t P rDi, Di�1r, the maximum profit the monopolist

expects to get at time t can only depend on xDi , because that was the information he

obtained when he last updated. The sum of time-discounted expected profits net of

planning costs then determines the set of planning times. It is shown that the length

of inattentiveness depends positively on the planning cost, because firms avoid such

cost by planning less often. On the contrary, it is decreasing in the expected loss in

profits that results from following a predetermined plan, instead of optimizing. The

more impact inattentiveness has on profits, the more often the monopolist decides

to plan.

In the consumer model, income in period t is y pxtq. The agent has to decide

how much to consume, ct. What is left, st � y pxtq � ct, is savings. The stock

the agent possesses at time t, at, generates returns according to the interest rate r.
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Thus, from period t to the next, rat and st are added to the assets, and the planning

cost is subtracted, if planning occurs. Borrowing is allowed, but Ponzi schemes are

ruled out. The consumer derives utility u pctq from consumption ct. The set of plan-

ning dates and paths of consumption or savings while the consumer is inattentive is

then chosen to maximize time-discounted time utility. Note that, contrary to what

happens in the producer model, where the planning cost is part of the objective func-

tions, here its impact is felt in the assets’ dynamics. A higher planning cost means

there are less assets at planning times, which reduces consumption and, therefore,

utility. When several consumers are considered, some interesting conclusions arise.

As one would predict, consumption reacts slowly and with delay to news, as only

some consumers pay attention to them instantaneously. Under some assumptions

about functional forms, the length of inattentiveness is shown to depend on some

parameters. If shocks are more volatile, or consumers are more risk averse, planning

is more frequent, because consumers dislike the risk associated with not reacting in

each period. If planning costs are high, the same effect occurs. And, if the interest

rate increases, planning becomes more frequent. The reason is that the absence of

instantaneous optimization leads consumers to generate sub-optimal savings. The

higher the interest rate, the higher the impact of such sub-optimality.

Evans & Ramey (1992) and Conlisk (1996a) focus on costly uncertainty reduc-

tion. But, if in Evans & Ramey (1992), the uncertainty is about future events which

cannot be known in advance, in Conlisk (1996a) the uncertainty is a consequence of

the bounded rationality of agents, who are incapable of knowing what the optimal

decision is. In this way, the thinking cost is a consequence of the need to form ex-

pectations in the former model, and to find the contemporaneous optimal solution

in the latter.

Evans & Ramey (1992) present a model where the update of expectations is

costly. Inflation evolves over time depending on the expectations the agents have

about it. However, as changing previous expectations comes with a cost, there is the

possibility that, in some periods and for some firms, expectations are not rational

in the classic sense (although, given the cost of their formation, they are chosen in

32



an optimal way). Monetary authorities, being aware of such cost, can induce firms

to update expectations or not, depending on the objectives they have. A Phillips

curve relating output and inflation is obtained.

There is a continuum of firms in the interval r0, 1s. The logarithm of aggregate

output and its price, henceforward named output and price, in period t is, respec-

tively, yt and pt. The price firm ω expects in period t is pte pωq. This implies that the

inflation rate firm ω expects at period t is βt pwq � pte pωq� pt�1. The assumed rela-

tionship between output and price, aggregate demand and money supply generate

the following real inflation rate in period t: ∆pt � γ
1�γ

³1

0
pβt pωq dωq � 1

1�γ pg � vtq,
where g is a drift parameter controlled by the monetary authority and vt is white

noise. The loss generated by an error in expectations, h, is assumed to be quadratic,

and has the following expression: h p∆p, βq � k p∆p� βq2, with k ¡ 0. Notice that

this expression implies that firms are myopic, since they only care about how much

their expectations in each period are different from real inflation, neglecting the

impact of their expectations on the long-run. In this sense, this model has some

similarities with de Palma et al. (1994) and Gabaix et al. (2006). Firms pay a cost

of c if they want to update their expectations from one period to the next. If a firm ω

chooses not to in period t, it keeps its expectation unchanged, that is, βtn pωq � βt�1,

where n stands for not update. Otherwise, it forms rational expectations and calcu-

lates expected inflation in period t in the right way, but using the firms’ expectations

about inflation from period t�1: βtu pωq � γ
1�γ

³1

0
pβt�1 pωq dωq� 1

1�γg, where u stands

for update.

In the rational expectations equilibrium, in which expectation updating is cost-

less, ∆p � g � 1
1�γv

t, hence the closer inflation expectations are from g, the more

rational they are, and the lower the loss they imply. Intuitively, equilibria in one

period in which no firm updates its expectation are possible if the previous period’s

expectations were close enough to g. In the same logic, equilibria in which all firms

update are possible whenever the previous period’s expectations were far from g.

Assuming all firms begin with the same expectations, two equilibrium dynamics

are possible. Either g is such that, in the first period, no firm wants to update,
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which means expectations remain unchanged forever, or all firms want to update in

this period. As the update implies the choosing of a weighted average between the

period’s expectations and g, its application results in an approximation of expecta-

tions to g. This means that, in some period, expectations are close enough to g so

that all firms prefer not to update from then on. The monetary authority, knowing

this, chooses g to force one of these two dynamics. The different values of g result

in different long-run equilibria. It is possible to get a higher output if inflation is

higher, but there are boundaries for output and price, as a result of the need to

induce one specific type of equilibrium. The important message to take from this

model is that the explanation for the fact that monetary policies can have a real

effect in the economy may lie on the cost of expectation updating.

Conlisk (1996a) applies the notion of costly thinking to firms’ decisions. With

the goal of understanding what is the effect of costly thinking on the dispersion

of market variables, he states that firms, unable to costlessly choose the optimal

quantity in each period, are equipped with a deliberation technology that leads

them to choose a weighted average between an approximation to optimal output

and a default quantity. Bounded rationality is manifested in the fact that the

higher the effort put in finding a good approximation to the ideal output, the higher

the thinking cost. The influence of this cost in firms’ choices is natural: a higher

unit cost means less effort put on finding the ideal quantity and a chosen quantity

closer to the default one. On the other hand, it can increase or attenuate market

fluctuations, because its interaction with the rest of the model produces effects that

go in opposite ways.

There are nt firms producing a homogeneous good in period t P t1, ...u. In

this period, firm i has to decide the quantity to produce, qti . Demand is given by

Q pptq � S pa� bptq � ?
Szt, where S represents market size and zt is a random

variable, with zero mean and variance σ2
z . Firm i’s production cost in period t is

given by Ct
i pqiq � W � q2i

2wti
, where wti is a random variable with mean µ and variance

σ2
w. The quantity that maximizes profits in period t is wtip

t. As firms have to choose

quantities before price is known, the quantity a rational firm i would choose in period
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t is qti
r � wtiE pptq. The quantity a boundedly rational firm i chooses to produce is

qti
�
. This firm has a default quantity, corresponding to the long-run average quantity

produced by firms: qdi � Ep°nj�1pq�j qq
n

. The firm does not know qti
r
, but is able to

find f ti pqti rq � qti
r � uti?

hti
, where uti is a zero mean random variable with variance

σu, and hti ¥ 0 is the level of deliberation of firm i in period t. However, the firm

pays a cost of c for each unit of hti chosen. Bounded rationality is also expressed

in the fact that the quantity chosen by firms is not what they consider to be the

ideal quantity, but a weighted average of the perceived ideal and default quantities:

qti
� � αtif

t
i pqti rq� p1� αtiq qti d, where αti P r0, 1s is to be chosen. The problem of firm

i in period t is then:

max
hti,α

t
i

�
E
�
vti
�
hti, α

t
i

�� � E
�
ptqti

� �
hti, α

t
i

�� Ct
i

�
qti

� �
hti, α

t
i

��� htic
��

As firms are symmetric, so is the solution to his problem. Besides, the equilibrium

is time invariant, which means that
�
hti

�
, αti

�� � ph�, α�q. Free entry is assumed, so

nt � n is such that E pvti ph�, α�qq � 0.

Closed form solutions are obtained for the limit case of perfect competition, in

which S Ñ �8. The first intuitive result presented is that, given some conditions,

if c is large enough, no thinking occurs, and firms totally rely on their defaults,

that is, h� � α� � 0. If deliberation is too costly to be initiated, firms decide to

abandon it completely, which makes the approximation to the ideal output totally

uninformative, leading firms to simply choose their default quantity. When the

parameters are such that some deliberation occurs and a positive weight is given to

the approximation to the ideal output, the variation of deliberation cost provides

intuitive comparative statics. When c is approaching 0, h� is growing unboundedly

and α� is getting closer to 1: thinking is getting almost free, hence firms tend to

behave rationally in the classic sense. When c is increasing, both h� and α� are

near 0. In general, it is possible to say that price is increasing and the number of

firms and individual quantities are decreasing in c. Deliberation cost is something

firms want to avoid, just as production cost, so it makes sense that an increase

in c contracts the market. As to the main question of the paper, that is, what
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is the impact of the introduction of a deliberation cost in market fluctuations, no

general rule is obtained. In what refers to firms, an increase in c or σu (a higher σu

means a lower ability of firms to get a good approximation of qti
r
) implies a lower h�

and, therefore, a higher variability of firms’ decisions, but also a higher α�, which

means firms rely more on their default quantity, and the variance of firms’ choices is

reduced. The total effect is ambiguous. As to markets, an increase in c or σu raises

the expected price and lowers the number of firms per consumer. An increase in

the expected price generates a higher variance of the ideal quantity (remember that

yti
r � wtiE pptq), increasing market fluctuations, but this effect is counterbalanced

by the reduction in the number of firms per consumer. Once again, no general

conclusion can be presented.

All the models cited in this section suffer from a conceptual problem, labeled

infinite regress. This problem arises when we assume that thinking is costly, and

people are able to decide whether to think or not and by how much in an optimal

way. If they are not able to choose the optimal action without incurring in a mental

cost, why would they be able to costlessly solve the thinking problem? This could

be solved by the stating that people pay a cost for solving this problem, but then

how to solve the new problem created would also be an issue, and this reasoning

continues indefinitely. Conlisk (1996a) acknowledges the existence of such problem,

but, nonetheless, defends models which stop the reasoning process in the second

level. That is, models in which thinking is costly, but thinking in thinking is cost-

less. He provides two arguments that sustain this defense. The first states that,

although logically imperfect, costly thinking models are an upgrade relatively to the

unbounded rationality paradigm, as they account for the fact that some problems

are hard to solve, even if they do it in an imperfect way. The second distinguishes

the familiarity level of agents with any given problem and the problem on thinking

about the first one. He claims that people are not very often confronted with each

problem they have to solve in their daily lives, but are constantly solving thinking

problems. Thus, costless optimization in the former problems seems implausible,

but is natural in the latter. Lipman (1991), however, puts the infinite regress prob-

lem into a perspective that allows him to conclude that it is solvable. That is, given
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some conditions, there is a level of thinking beyond which people’s reasoning stop,

because there is no advantage in deepening it.

To better understand the model Lipman (1991) develops, let us illustrate it with

the example the author provides. There is a choice set A. At the simplest thinking

level, the agent has to choose an element in A, so his decision set at this level is

D0 � A. Suppose an agent, who values money linearly, is offered the alternative of

accepting x$, or f p1q $, where f is a non-trivial function. Then, D0 can be defined

as t0, 1u, where 0 stands for accepting x$. The optimal action would be to choose

the x$ if and only if f p1q ¤ x, but a boundedly rational agent is unable to find,

with certainty, the value of f p1q. This uncertainty about each action’s payoff is

represented by S0, which contains the payoffs the agent considers possible. In the

example, the agent, who knows the consequences of accepting x$, may believe that

f p1q P ty0
1, y

0
2u, with y0

1   x   y0
2.3 Hence, S0 � ts0

1, s
0
2u, and, in the agent’s mind,

f p1q � y0
1, if s0

1 occurs, and f p1q � y0
2 otherwise. If thinking is done in this setting,

than the agent works with the utility function u0 : D0 � S0 Ñ R. In the example,

u0 has the following expression:

u0
�
d0, s0

� �
$&
% x , d0 � 0

y0
k , pd0, s0q � p1, s0

kq

However, the agent may wish to refine his beliefs regarding S0, and choose be-

tween the several methods of investigation he knows for doing so. The set of possible

calculations to investigate S0 is C pS0q. Supposing the agent in the example only

considers using a computer for finding f p1q, we have that C pS0q � tcu, where c

represents the using of a computer. If thinking is at this level, the agent’s decision

set is D1 � D0YC pS0q. In the example, D1 � t0, 1, cu. However, the consequences

of investigation at this level may also carry some uncertainty, represented by S1.

The agent in the example may believe that using the computer allows him to find

f p1q, but may imply a cost of y1
1$ or y1

2$, in which case S1 � ts1
1, s

1
2u. At this level,

3It is possible to more generally assume that y01 , y
0
2 P R, but the specification we make makes

the problem non-trivial, avoiding that the agent is sure that f p1q   x or f p1q ¡ x, in which case

the decision would be easy and there would be no need to reduce uncertainty.
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the utility function considered is u1 : D1 � S0 � S1 Ñ R, which expression, in the

example, is:

u1
�
d1, s0, s1

� �
$'''&
'''%

x , d0 � 0

y0
k , d0 � 1^ s0 � s0

k

y0
k � y1

l , pd0, s0, s1q � pc, s0
k, s

1
l q

Once again, the agent can stop at this level and focus on u1, or investigate the

consequences of refining his beliefs about S1. In the example, in order to know

the cost of using a computer, the agent may, for example, read a book or conduct

an Internet search about the topic. And the process goes on until eventually the

decision set stabilizes at some level. That is, if there is a thinking level n P N such

that Dn�1 � Dn then Sn�1 � tsn�1u is a singleton, and thinking at levels above

n does not add anything to the problem, as the uncertainty about Dn, represented

by Sn, is solved by Dn itself. The author states that, if uncertainty at each level,

or the complexity of the investigations to solve it, are limited, or if we allow long

enough sequences of thinking levels, the process eventually stops. This is good news

for the costly thinking models we study here. If n � 1, there is no need in thinking

about thinking about thinking, and the problem of deciding whether and how to

think may be solved optimally.

1.2.4 An uncertain or different problem

In this section, we present models which focus not on how to solve a problem, nor

on the objective function to maximize, but rather on one of the remaining defining

elements of an economic problem. We first present two examples of methods for

calculating probabilities which may lead to erroneous conclusions, but are easy to

use, because they either are associated with a simplified view of the underlying

process that generates the probabilities (Rabin, 2002), or dispense the use of all

available information (Gennaioli & Shleifer, 2010). Then, we move to two papers

which assume that agents prefer to choose from smaller choice sets (Ortoleva, 2013,

Lu et al. , 2005). Three limits on the human mind that can affect the way parameters
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are viewed, namely limited memory (Rabin, 2002), costly attention (Gabaix, 2014)

and finite capacity to process information (Sims, 2003) are also presented. We end

the section with a quick reference to a model which assumes that people may have

a distorted view of the decision variables, as they are unable to understand what

their choice means (Lipman, 1999).

Rabin (2002) and Gennaioli & Shleifer (2010) are two examples of changes in-

troduced in the uncertainty operator, in order to make the resolution of uncertainty

easier, given the limits on the human mind. They do not necessarily reduce the

dimension of the information dealt with or the number of mental operations carried

on, but differ from the classic rationality paradigm in how probabilities are calcu-

lated. And this influences the way an uncertain objective function is maximized.

While Rabin (2002) assumes that people are unable to understand the independence

of draws from an i.i.d. process, Gennaioli & Shleifer (2010) model a Bayesian up-

dating that does not use all the information available, but just the more salient one,

given the hypothesis being evaluated. These models are useful in explaining some

biases documented in probability assessment experiments. While the former helps

understand the gambler’s fallacy and the hot-hand fallacy, the latter provides intu-

ition for the conjunction fallacy, disjunction fallacy and base-rate neglect. Common

to them is the existence of a parameter that sets the degree of bounded rationality,

which implies they are generalizations of the classic rationality case.

In Rabin (2002), time is represented by t P t1, ...u and, in each period, a signal st

is extracted from a distribution which takes the value a with probability θ P r0, 1s,
and b with probability 1�θ. The signals are i.i.d., which means the drawing from one

period does not affect the probabilities of drawings in the future. The probability

θ, labeled rate, is random, and distributed according to π. The set of rates that

occur with positive probability is Θ. Boundedly rational agents, which are said to

believe in the law of large numbers have the correct prior π and know how to do

Bayesian updating, but fail to recognize the independence of i.i.d. draws, assuming

that the fact that, in one period, one specific value is drawn reduces the probability

of it being drawn again in the following period. This is the reasoning of a roulette
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player who believes that, after black has been drawn several times, the probability

of drawing red is higher than its true value. To model this belief, a method of signal

extraction from an i.i.d. process that is conceptually simpler than the real one is

designed. The agent believes that the signals are extracted, without replacement,

from an urn with N P N signals, where the probability of extracting a in the first

draw is θ. This method, simples as it is, raises some technical issues, which demand

some extra assumptions. The number of a and b signals in the urn must be integer,

hence @θ P Θ, θN P Z. Whatever N is, an urn with N balls is unable to explain

the drawing of N � 1 signals. To solve this problem, it is assumed that the urn

is replaced every two periods by another with the same signal distribution. In this

way, if the perceived θ is not updated between extractions, probabilities are correctly

assessed in odd periods, but biased in even periods. Finally, to prevent the agent

from finding some specific signal extraction impossible, there must exist at least one

θ in Θ such that its corresponding urn has at least two a and two b signals. Note

that, as N increases, probabilities are less and less biased until, in the limit, the

agent is unboundedly rational. The gambler’s fallacy, the belief that long sequences

of the same signal reduce the probability of its extraction in the future, results

directly from this setting. For example, if θ   1, after a is extracted in the first

period, the agent believes that, in the second period, the probability of extracting

a is Nθ�1
N�1

  θ and the probability of extracting b is p1�θqN
N�1

¡ 1� θ.

The history of signal extraction at period t is ht. The agent, after each extraction,

updates his beliefs about θ using the Bayesian logic in a correct way, but with

biased probabilities. If PrtN

�
ht|θ � θ̂

	
is the (biased) probability that an agent

who believes in an urn with N signals attributes to observing history ht when the

true rate is θ̂, then the probability the agent attributes to θ being in fact θ̂ is:

PrtN

�
θ � θ̂|ht

	
�

π
�
θ̂
	
PrtN

�
ht|θ � θ̂

	
°
θ̃PΘ

�
π
�
θ̃
	
PrtN

�
ht|θ � θ̃

		
Some interesting conclusions are obtained. When observing extractions from

different sources, each with its possibly different rate, the agent exaggerates the

40



dispersion of rates, because, when he observes different sequences of the same signal,

he cannot conceive that they are originated by the same rate. If a long sequence of

rare signals is observed by the agent, he may update his belief about the true rate,

judging the rare signals to be more probable than they really are, which is what the

hot-hand fallacy predicts. Also, a firm searching for good employees and firing bad

ones underestimates the quality of the workforce, because it fires good employees

before finding that they are in fact good.

Gennaioli & Shleifer (2010) studies a way to assess some features of an object

through others, but in a biased way that looks only to what is more salient during

the reasoning process. It is then close to Kőszegi & Szeidl (2013), which state that a

higher focus is put on what distinguishes an option from the alternatives. To better

understand the way the reasoning is modeled, let us illustrate it with an example.

A firm wants to hire a manager. There are three informations the firm would like

to know about each candidate: whether he passes or fails a theory exam, whether

he is a good or bad manager, and whether the firm has losses or a positive result

if it hires him. A random variable X ��Nx
i�1 pXiq, with Nx features, is distributed

according to π. Feature i has Ni possible realizations, that is, Xi �
 
xli
(Ni
l�1

. In the

example, Nx � 3, with X1 � t0, 1u, X2 � tB,Gu and X3 � tL, P u where 0, 1, B, G,

L, P represent, respectively, Pass, Fail, Bad, Good, Loss and Positive Result. The

set of possible realizations of X after receiving some information is d � X. If the

firm is told that a candidate passed the exam, d � t1u �X2 �X3. The agent forms

a set of Nq hypothesis about one or more of the features. These hypothesis need to

be exhaustive, in the sense that they cover all that can happen, but not mutually

exclusive. The subset of X defined by hypothesis q is hq. In the example, hypothesis

1 may be ‘the candidate is good’. A hypothesis 2 stating ‘the candidate is bad’ is

enough to close the set of hypothesis. In this case, h1 � X1 � tGu � X3. When

hypothesis are constructed, it is possible that they, together with the information

received, do not restrict one or more of the features. The set of such features for

hypothesis q is Fq. In the example, F1 � tX2u, because the information received

is about the exam result and both hypothesis restrict only the candidate’s quality,

imposing no restrictions on the firm’s result. After a hypothesis is formed, the
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agent builds scenarios on the unrestricted features. The subset of X defined by

the scenario associated to hypothesis q in which the free features assume the values

tx̂iuiPFq is s
tx̂iuiPFq
q . In the example, the possible scenarios for hypothesis 1 may be

‘the firm has losses’ and ‘the firm has a positive result’. Thus, @Π P tL, P u , stΠu
1 �

X1�X2�tΠu. Each scenario, linked to a hypothesis, has a level of salience, labeled

representativeness. It is defined as r
�
s
tx̂iuiPFq
q

	
, the probability that the hypothesis

is verified, when the information received is true and the scenario is occurring. In

the example, we get that, for all Π P tL, P u,

r
�
s
tΠu
1

	
� Pr p1, G,Πq
Pr p1, G,Πq � Pr p1, B,Πq

The level of bounded rationality of the agent is defined by the number of most

representative scenarios he takes into account, b. If he takes all possible scenarios

into account, he is a classic Bayesian agent. Supposing b � 1 and that, when a

candidate passes the test, the probability that he is good is higher when the firm

makes a positive result instead of losses, which seems a natural supposition, the most

representative scenario for hypothesis 1 is ‘the firm makes a positive result’ and that

is the only scenario considered. If Sq is the set of possible scenarios associated with

hypothesis q, the set of scenarios considered by an agent who only focuses on the

b most representative scenarios is S̃bq . And this agent evaluates the probability of

hypothesis q occurring, when the information received is trues, as:

Prb phq|dq �
Pr

�
YsPS̃bq phq X dX sq

	
Pr

�
YNq
q�1

�
YsPS̃bq phq X dX sq

		
If we also assume that, when a candidate passes the test, the probability that

he is bad is higher when the firms makes losses instead of a positive result, we get

that:

Pr1 ph1|dq � Pr p1, G, P q
Pr p1, G, P q � Pr p1, B, Lq

Note that, if b � 2, the agent is Bayesian in the classic sense, and:
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Pr2 ph1|dq � Pr p1, G, P q � Pr p1, G, Lq
Pr p1, G, P q � Pr p1, G, Lq � Pr p1, B, Lq � Pr p1, B, P q

That is, a local thinker, as the authors call an agent who does not take all

scenarios into account, does not use all the pieces of information he has available,

but only the ones in which hypothesis and scenarios are linked. In the example,

this agent ignores the facts that a good manager can have the firm making losses

and a bad manager can have the firm making positive results. That is, he uses

what more easily comes to his mind and disregard the rest. And, if a representative

scenario is unlikely, the impact it has on the probability calculation is exaggerated,

resulting in highly biased estimates. This type of reasoning may help explain the

conjunction fallacy, that consists in attributing a higher probability to a set than to

another which contains it, the disjunction fallacy, which results in considering that

the union of two sets is less probable than each of the sets that contain it and the

base-rate neglect, which happens when people’s estimates focus on how a description

fits a certain class of subjects, but the number of subjects in that class is ignored.

Lu et al. (2005) and Ortoleva (2013) are two papers which study the implications

of the size of the choice set for a boundedly rational agent, who pays a thinking cost

increasing in the number of alternatives he has to choose from.4 While Ortoleva

(2013) proposes an axiomatic approach in which agents have preferences for lotteries

over subsets, depending on the utility they can derive from them, but also on the size

of the subsets they contain, Lu et al. (2005) assumes directly that there is a cost

proportional to the number of alternatives from a choice set that are considered.

Common to both is the idea that the choice set is definable by the agent, which

chooses it in an optimal way, given the cost they imply.

Ortoleva (2013) constructs an axiomatic framework, where two types of prefer-

ences between lotteries of menus are distinguished: the genuine ©� and the observed

©. While the former reflect what is called the genuine evaluation of a lottery, that

is, the utility the agent expects to extract from it, the latter reflects not only the

4In this sense, these papers could also be cited in Section 1.2.3, devoted to costly thinking, but

we choose to refer to them here, for their specific focus on the choice set.
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genuine evaluation, but also the cost of thinking in the options the lottery has.

Imposing axioms that relate ©� and © in intuitive ways that reflect the effect the

thinking cost should have on the decisions made, a representation of preferences

that allows to disentangle the two aspects is obtained.

Formally, X is the set that contains all possible objects. The power set of S,

that is, the set of subsets of X, is represented by 2X . Excluding the empty set

from 2X , we get the set of menus from which the agent can choose, labeled X. The

set of lotteries over X is ∆ pXq. Singletons, or menus with one single object, are

important in this context, as an agent who faces them has a costless choice to make,

because there is only one alternative to choose from. The subset of lotteries that

attribute positive probabilities only to singletons is ∆̃ pXq � ∆ pXq. The support of

lottery a P ∆ pXq is the set of menus in X to which it attributes positive probability.

Excluding from this set the singletons it possibly has, we define s� paq. The agent

has to choose among all lotteries in ∆ pXq. When he chooses a lottery, he knows the

probability of having to choose from each of the menus in the support of the lottery,

but not which menu will be drawn. Hence, the process of choosing lotteries implies

forming a contingent plan, that is, fixing which object will be chosen in case each

menu is drawn. The relation between ©� and © is defined in the following way, for

all a, b P ∆ pXq:

a ©� bô Dα, β P s0, 1r :

$&
% α ¡ β

αa� p1� αq b © βa� p1� βq b
(1.4)

The intuition for (1.4) is the following. If the agent genuinely prefers lottery a

to lottery b, and has the option between two lotteries c and d, both over a and b,

in which the weight attributed to a is higher in c, then that is the one he chooses.

In fact, c and d imply choosing from the same menus and, thus, create the same

thinking cost, but the probabilities in c are more favorable to a, the lottery which

provides a higher basic utility.

The paper proceeds by defining some axioms that relate ©� and © in ways

that make sense according to the idea of costly thinking. For example, Thinking
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Aversion means that, if a lottery containing only singletons is genuinely preferred to

a general lottery, mixing each of them with a third lottery produces the same ranking

in observed preferences, because such mix changes the thinking cost in the same

way. Weak independence is an adaptation of the independence axiom in rational

choice. It states that genuine preferences, and observed preferences restricted to

lotteries with the same support (and, thus, with the same thinking cost implied)

satisfy independence, and that unrestricted observed preferences satisfy a version

of independence that compensates for the fact that mixing two lotteries with a

degenerate singleton lottery can change the observed preference ranking, as the

thinking cost remains the same, but the advantage in genuine preferences one of

them has may be reduced. Content Monotonicity implies that a menu is genuinely

preferred to any of its subsets, because it has all the objects they have and possibly

more.

Gathering some of the axioms presented, it is possible to prove that the observed

preferences are representable by a function v : XÑ R, defined in the following way:

v paq �
¸
APX

�¸
sPS

�
µ psq

�
max
xPA

u px, sq
		�

� C ps� paqq (1.5)

In (1.5), S is a set, µ is a probability measure on S, u : X � S Ñ R is a real

function and C : 2X Ñ 0 is non-negative real function that is zero valued in H and is

not lower in a set than in any of its subsets. There is a very intuitive explanation for

this representation. If S is a state space that represents the uncertainty the agent

has about his own preferences, we can think of u as the function that gives the utility

derived from each object in each state. And C can be thought of as the function

that attributes to each lottery the cost of thinking in the menus of its support. It

it is monotonic, in the sense of generating a higher thinking cost when more menus

are added to the support of a lottery. In this perspective, the observed preferences

are representable by the difference between the expected utility and thinking cost

associated to a lottery. An extra axiom may be added, assuring that if two menus

are genuinely indifferent and the choice from one of them is not more difficult than

from the other, then the latter is observationally preferred to the latter. This makes
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possible an even more specific interpretation of C. Given that the agent is uncertain

about its own preferences before knowing what the true state is, he may construct

a partition on S that allows him to know in which states is each object an optimal

choice. However, there are several ways he can do it. For example, the partition

that separates all elements of S, the finest one, is always a possibility but probably

not the more efficient. Given the extra axiom and assuming that finer partitions

imply a higher cost, C can be thought of the cost of the least costly partition of S

that allows the agent to always make an optimal choice.

In Lu et al. (2005), there is a general choice set, X, composed of N P N objects,

and an utility function u : X Ñ R. An agent makes a two-stage choice. In the

first stage, he chooses the number of objects he will take into consideration, n, and

randomly selects n objects from X. The cost per objected considered is c. In the

second stage, he picks the best element among the ones preselected. He is aware of

this choice process, hence, in the first stage, he chooses n to maximize the expected

value of utility net of thinking cost. That is, he maximizes v : N Ñ R, whose

expression is v pnq � E pu px� pnqqq, where x� pnq is the best choice among the n

considered alternatives, an depends on the randomly chosen combination of objects.

The function v is shown to be increasing with n, which means the problem reduces

to a classic economic one: the agent has to ponder the benefits and costs of looking

to one more object, and select the number of objects which equals marginal benefit

and marginal cost. This number need not to be N , hence it is possible that an agent

optimally decides to reduce the original choice set. Studying the case in which u

depends only on the ranking of the objects in X and not on their intrinsic value, the

authors establish that v is lower when one extra object is added to X. Consequently,

that it is possible that the agent is better off without such addition. That is, the

fact that choosing from large sets is costly may make the agent prefer to lose one

option from the original choice set.

Mullainathan (2002) and Gabaix (2014) are two different approaches to how

parameters are viewed by boundedly rational agents, one based on memory and

the other on attention. On both of them, agents do not take into account the
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whole environment in which their decisions are made, but for different reasons. If,

in Mullainathan (2002), events in the past should influence their estimates in each

period, but their imperfect memory prevents them from remembering everything, in

Gabaix (2014), they choose not to pay full attention to some parameters, because

the cost of doing so is not compensated by the benefit of making better decisions.

In Mullainathan (2002), an agent does not know what his income is in each

period, and needs to estimate it. The income is cumulative, in the sense that it

depends from what has happened in the past. However, the agent’s memory is

imperfect and he can only remember some past events, forgetting others. More

specifically, he remembers more easily those events that he was recently reminded

of, or that are similar to the event he observes while trying to remember. This

means that positive news in one period make the agent remember more positive

than negative events in the past, thus overreacting and judging the income in that

period to be higher than it really is.

Time is indexed by t P t1, ...u. In period t, an event et � pxt, ntq happens with

probability p. This event is jointly normally distributed, with expected value p0, 0q,
and a variance matrix composed of σ2

x, σ
2
n and σx,n for x’s variance, n’s variance and

covariance between x and n, respectively. If there is no event in period t, et � p0, 0q.
In this period, there is a permanent shock in income, νt � xt � zt, with zt normally

distributed with a zero mean and a variance of σ2
z . Income in period t is given by

yt � °t
k�1

�
νk
� � εt, with εt with zt normally distributed with a zero mean and a

variance of σ2
ε . Income in period i is then composed by the sum of all permanent

shocks until t and a transitory shock εt. With this structure, we can see that all

current and past x values are informative about yt, as they influence it, whereas nt

is non-informative about income. However, it plays a role in the model, by helping

creating links between similar events.

The agent has imperfect memory and, at period t, may or not remember period

k’s event. This originates the binary value Rt
k, which assumes value 1 if event k is

remembered at period k, and 0 otherwise. The probability that Rt
k � 1 is rtk P r0, 1s

and is defined in a way that is line with psychological observations about memory.
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It is assumed to depend on three factors. First, there is a baseline recall probability,

m, that represents the agent’s general ability to remember events. Second, based on

the notion of rehearsal, which consists on the easy remembering of memories that

were brought to memory in a recent past, ρ enhances the probability of remembering

period k’s event at period t if it was remembered at period t�1. Finally, the concept

of associativeness, i.e., the easier remembering of memories close in some way to what

is observed in the present, motivates the creation of a similarity function atk, which

evaluates how similar events from period k and t are. This function is assumed to

be a non-weighted average of a negative transformation of the distances between

the informative and non-informative parts of the two events, and to be contained

in r0, 1s. This should make clear why the non-informative part of an event has any

impact: it influences which events are remembered at each period. How associative

an agent is is defined by χ. The remembering probability is then defined in the

following way:

rtk � m� ρRt�1
k � χatk (1.6)

To ensure that (1.6) is indeed a probability, it is assumed that m� ρ�χ   1. If

an event is not remembered, it is viewed as p0, 0q. The memory of period k’s event

in period t is ekt pRt
kq. The agent either remembers is perfectly, hence ekt p1q � ek,

or forgets it entirely, viewing it as a shockless event. Therefore, ekt p0q � p0, 0q.
Although the agent remembers events in an imperfect way, he is assumed to be able

to correctly remember all incomes. Then, while the true history of observables at

period t is ht � �
ek, yk

�
kPt1,...,t�1u, the remembered history at that period is htr ��

ekt pRt
kq , yk

�
kPt1,...,tu. For the case in which memory is perfect, an optimal estimation

rule of yt, f pet, htq, is obtained, and depends on the current event and true history.

The imperfect memory agent is assumed to be naive and not aware of his own

imperfect memory, thus making estimations as if the history he remembers is the

true one. That is, his estimate of income at period t is ŷtr � f pet, htrq. Rehearsal and

associativeness contribute to a persistent overestimation of income. In each period,

associativeness biases the memory selection towards the events closer to the current
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one, thus exaggerating its impact, while rehearsal helps the remembered events to

be remembered again in the subsequent periods. An application to consumer theory

allows to conclude that the adding of imperfect memory to a Permanent Income

setup allows consumption changes to be predicted using lagged information, mainly

because of associativeness. Also, if there are different sources of income, it is stated

that the sources whose prediction relies more heavily on memory are the ones which

display the highest marginal propensities to consume.

Gabaix (2014) deals with problems of choice that are affected by a set of pa-

rameters. It is assumed that, although it is useful to know the true value of the

parameters, it is also costly to do so, which may lead people to pay only partial

or no attention to them. They have a prior, labeled default, about each parame-

ter and the adjustment they make, starting from it and going in the direction of

the true value, depends on the attention they decide to pay. The attention level is

endogenous and is the result of the weighting of benefits (small utility loss relative

to the full attention case) and costs (keeping track of parameters’ values). In this

sense, this is a model of perfect imperfection, like the ones in Section 1.2.3, as the

problem of how to decide is optimally solved. However, there is no true optimality

at the second level of thinking (thinking on how to think), as the loss in utility from

not paying attention to parameters that is minimized is not the real one, but an

approximation to it.

The base problem is a very general one. There is an utility function u : RN�M Ñ
R, which depends on N decision variables and M parameters. The decision variables

are contained in x P RN and the parameters in α P RM . There are K constraints,

which possibly involve x and α. The constraint function is then g : RN�M Ñ RK

and the set of constraints is g px, αq ¤ 0. Parameters are jointly distributed with

a zero mean and a variance matrix, in which the variance of parameter i is σ2
i and

the covariance between parameters i and j is σi,j. The true value of parameter i

is αti. The boundedly rational agent reveals sparsity in his behavior, economizing

on the attention paid to parameters. He has a default value for parameter i, αdi ,

which is assumed to be 0 to simplify the analysis. The level of attention devoted to
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parameter i is ai P r0, 1s and the perceived value of this parameter is αpi paiq � aiα
t
i.

The cost of paying attention ai to parameter i is c paiq � κaθi , with κ and θ being two

non-negative parameters that calibrate the difficulty of the agent in paying attention

to parameters. The total cost of an attention level a is C paq � °M
i�1 pc paiqq. An

optimal imperfection model would use a backwards induction reasoning to determine

the optimal attention level. For each attention level, the optimal utility would be

calculated, which would allow to find the value of a that maximizes a function

that depends positively on the optimal utility and negatively on the attention cost.

However, arguing that this implies that the agent must know the optimal utility

for each attention level, which is a more difficult task than the one faced by an

unboundedly rational agent, the author proposes that the agent only knows an

approximation of the loss in utility caused by less than full attention, L paq. The

agent then solves the problem in two steps. First, he chooses the attention level

that minimizes the sum of L with C, a�. Then, he chooses an object x�, using

the parameter values that result from the previously defined attention level. If the

base problem has no constraints, this method presents no problems. Otherwise, it

is possible that, by perceiving the parameters to be different from what they really

are, the agent focus on a choice set that is not the real one, and ends up wanting to

choose a non-available option. This is solved by assuming that the agent chooses,

among the objects x in the true choice set in which u1x px, αp pa�qq is a multiple of

g1x px, αp pa�qq, the one which maximizes u. This procedure assures that, for any two

features q and r from the chosen object x�,
u1xq px�,αppa�qq
u1xr px�,αppa�qq

� g1xq px�,αppa�qq
g1xr px�,αppa�qq

, a condition

verified in constrained maximization problems, but that is here applied to perceived

and not true parameters.

A very intuitive result is the one that states that, if the parameters are un-

correlated (or at least, if the agent sees them like that), i.e., if, for all i, j P
t1, ...,Mu , σi,j � 0, then the optimal attention for parameter i is increasing in

its volatility (if the parameter varies much, keeping track of it requires a high atten-

tion level), in its influence in the object choice (more important parameters deserve

higher attention) and in the utility loss in making sub-optimal choices (more im-

portant decisions deserve higher attention levels), and decreasing in κ (if attention
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is costly, it is avoided). The application of the sparsity concept to microeconomic

theory provides some interesting insights. There is money illusion, as the raise of

prices and wealth by the same proportion may change the consumer’s choice, be-

cause, by not paying the same attention to all parameters, he may believe that his

choice set has changed. The Slutsky matrix, which contains the derivatives of the

Hicksian demand function, is not symmetric, as different attention paid to the prices

of two goods makes the agent have different compensated reactions to a price change

of one of them. In a general equilibrium model, a competitive equilibrium is not

necessarily Pareto efficient, because the perceived relative prices may differ across

agents. In the Edgeworth box, the offer curve is not one-dimensional, because the

possibly different attention levels in prices make all prices relevant and not just their

ratios, and the equilibrium allocation depends on the price level, because of money

illusion.

Sims (2003) may also fit in the class of models that study how boundedly rational

agents view parameters, as it deals with the problem of observing data through

a communication channel with finite capacity. Based on information theory, the

author studies the problem of making decisions when the observation of exogenous

data can be done only imperfectly. Agents have some uncertainty about the optimal

action they should take, as it depends on a random exogenous variable. They can

reduce this uncertainty by observing realizations of the exogenous variable, but

the uncertainty reduction that this can generate is limited. The uncertainty of a

random variables is measured by its entropy, the level of informativeness of each

of its draws. The application of the concept to a dynamic macroeconomic model

generates reactions to market data that are smoothed and specific to each agent, as

their way to process information differs.

Finally, let us mention Lipman (1999) as a paper that deals with the decision

variables of an problem. Its premise is that agents may be unable to know all the

logical consequences of what they know, implying that, when they take an action,

they may not be aware of what it means. An axiomatic structure is constructed

with the objective of accounting for the possibility that an agent does not realize
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that two pieces of information are logically equivalent. In order to represent the

information-dependent preferences of such agent with an expected utility function,

a set of impossible possible worlds, states which are logically impossible but con-

sidered possible by the agent, are added to the true state space. The model helps

us understand why people make incorrect choices, even though they have all the

information they need to behave otherwise. Their bounded rationality makes them

believe that the consequences of taking an action are different from the real ones.

1.3 Strategic Interaction

In this section, we give a quick overview of the papers in which the bounds on

rationality are not on the way each player decides, but on how he understands the

strategic interaction with other players. We first present some examples of models

in which players choose machines instead of strategies, and the preprogrammed

machines play against each other, but more complex or sophisticated machines are

more costly (Rubinstein, 1986, Eliaz, 2003). Then, we move to models where best

responding is hard or costly and is replaced by simpler strategies (Rosenthal, 1993,

Osborne & Rubinstein, 1998). We also analyze models in which the view of a player

about other players or the way they form strategies are simplified (Jehiel, 2005,

Eyster & Rabin, 2005, Nagel, 1995, Camerer et al. , 2004). Finally, we refer one

model in which players are unable to know the consequences of the strategies they

choose (McKelvey & Palfrey, 1995).

In both Rubinstein (1986) and Eliaz (2003), the preference of players by simple

strategies are modeled by finite-state machines. The players entering in a game, in-

stead of choosing strategies, pick one of the available machines and the combination

of machines selected determines the entire set of actions that occur over time. But,

while Rubinstein (1986) chooses this modeling specification in order to account for

the fact that using sophisticated strategies should be costly, Eliaz (2003) focus on

each player’s forecasts of the actions of the other players, stating that an equilibrium

should only occur if each player decision would not be the same in response to a
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simpler forecast than the one that actually originates the equilibrium decision.

A finite-state machine is an instrument that decides all the moves of a player

in a game that extends for several periods. It states what is the action in the

first period, and how to choose an action in the subsequent periods, depending on

what has happened until then. For this, it uses the notion of specific period states,

an artificial concept that indicates what should be done in that period given the

opponent’s action and the state in the previous period. Both papers study 2 � 2

games in infinitely repeated games, hence the set of players, which are indexed by

i, is t1, 2u, and time is represented by t P t1, ...u. The set of possible actions for

player i is Ai and his payoff is represented by ui : A1 � A2 Ñ R. The set of

states is S. The set or reaction functions for player i, which indicate the action

to choose for each different state, is Ri. And the set of transition functions for

player i, which gives the change in states after a choice of a specific action by player

j � i, is Hi. A machine available for player i is then mk
i �

A
Ski , s

0
i
k
, ri, hi

E
, where

Ski � S, s0
i
k P Ski ,

�
rki : Ski Ñ Ai

� P Ri and
�
hki : Ski � Aj Ñ Ski

� P Hi. The set

of Ki machines available to player i is Mi. For example, in the infinitely repeated

prisoner’s dilemma, in which the available actions in each period are C and D,

the tit-for-tat strategy is followed by player i if he chooses a machine k in which

Ski � tB,Gu, where B and G represent bad and good mood, respectively, s0
i
k � G,

rki pBq � D, rki pGq � C, and, for all ski P Ski , hki
�
ski , C

� � G and hki
�
ski , D

� � B.

Intuitively, the player initially cooperates and, from then on, cooperation induces a

good mood which, in turn, induces cooperation, while defection induces a bad mood

which, in turn, induces defection.

The idea in Rubinstein (1986) is to associate strategy complexity with the num-

ber of states of a machine. That is, the complexity of machine mk
i is c

�
mk
i

� � #Ski .

Knowing that each machine has a finite number of states, it can be proved that,

after some initial periods, the states will cycle in intervals of T periods. The utility

player i derives from the combination of machines mi and mj, chosen by himself

and by player j, respectively, is represented by πi pm1,m2q, and assumed to be the

average utility such combination generates for him during each cycle. Player i orders

53



the possible combination of machines by lexicographically comparing the utility he

gets from them and the complexity of the machine chosen by himself, with priority

given to utility. That is, if ¡L represents a lexicographic ordering which prioritizes

the first argument and ¡i represents player i’s preferences over combinations of

machines, then:

pm1,m2q ¡i pm1
1,m

1
2q ô pπi pmi,mjq ,�c pmiqq ¡L

�
πi
�
m1
i,m

1
j

�
,�c pm1

iq
�

A Nash equilibrium is then defined in the usual way: a pair of machines is a

Nash equilibrium if no player has an incentive to change to another machine, given

the machine chosen by its opponent. A stronger concept is also defined. It is labeled

semi-perfect equilibrium, and it requires that the the incentives for machine replacing

are non-existent not just at the beginning of the game, when machines are chosen,

but also in each period, if it were possible to replace machines during the game.

In Eliaz (2003), the action set of each player is restricted to tC,Du and it is

machine simplicity and not complexity that is defined. There are two indicators

that define the level of simplicity of a machine mk
i . The first, x

�
mk
i

�
, is the number

of pairs of different states which are connected by the transition function. The

second, y
�
mk
i

�
, is the number of states which imply a transition to a new state

that depends on the other player’s action. Intuitively, if either x
�
mk
j

�
or y

�
mk
j

�
are large, then player i, knowing player j chooses machine mk

j , has a hard time in

forecasting player j’s strategy, either because it involves a high number of states or

because it depends strongly on player i’s actions. Machine m is defined to be simpler

than machine m1 whenever its x and y values are not higher than the corresponding

values of m1 and at least one of them is lower.

As for the utility implied by each combination of machines, it is defined as

the time-discounted sum of payoffs generated by the actions that result from the

matching of machines. The equilibrium concept introduced is stronger than the Nash

equilibrium. A Nash equilibrium with stable forecasts is a combination of machines

pm�
1 ,m

�
2q such that for all i P t1, 2u, m�

i is a best response to m�
j (the Nash part) and
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there is no mj simpler than m�
j , which can be best responded with m�

i (the stable

forecasts part). This last requirement simply means that the machine chosen by

player i in equilibrium cannot be a best response to a simpler j machine than m�
j ,

because, if this was the case, player i could make the same machine choice, imagining

a much simpler strategy for its opponent than the one he is actually employing. The

fact that players dislike complex forecasts provides the motivation this equilibrium

concept.

Rosenthal (1993) and Osborne & Rubinstein (1998) are two examples of papers

in which players choose actions in an easier way than what is assumed by the concept

of Nash equilibrium. In fact, instead of forming a belief about the strategy of their

opponents, which necessarily corresponds to the strategy they actually follow, and

best respond to it, the players in these models choose actions in a much less strategic

way. In Rosenthal (1993), they use one fixed strategy, labeled rule of thumb and use

it, independently of what their opponents are doing and, in Osborne & Rubinstein

(1998), they choose actions based on what they observe when they sample them.

Rosenthal (1993) studies a set of K games, G � tGkukPt1,...,Ku. Game k is played

with probability pk. They all are 2 � 2 games, with the same action spaces for the

row and column players. The action space for the l player is Al �  
ali
(
iPt1,...,N lu,

where l P tr, cu, and r and c stand for row and column, respectively. The utility

function of player l in game k is ulk : Ar � Ac ô R. There are two populations of

players, one with r and the other with c players. When one game is drawn, one r

and one c player are randomly matched. Each player has to choose a rule which

dictates a fixed action for each of the games he may play. This means that an

l player has N lK possible rules. A rule il P
!

1, ..., N lK
)

for the l player is then

sl
il
� �

alil pkq
�
kPt1,...,Ku, where alil pkq P Al. Rules are costly, and the cost of using

rule sl
il

is cil . Although no restriction is imposed on this cost in the general version

of the model, in the examples presented it is assumed to be increasing in the number

of subsets of games to which the same action is attached. With this specification,

rules which preclude the same action for all games and a different action for each

game5 are, respectively, the least and most costly ones. The expected net utility of

5For an l player, this is only possible if N l ¥ K. Otherwise, we mean a rule in which all actions
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rule sl
il
, given that the h � l player is using rule sh

ih
is then:

vl
�
slil , s

h
ih

� � Ķ

k�1

�
pku

l
k

�
alil pkq , ahih pkq

��� cil

When players select their rules, two distributions of rules, σr and σc are gen-

erated, with σl � �
σl
il

�
ilPt1,...,N lKu, and σl

il
representing the share of l players that

choose rule il. Hence, the expected net utility of rule sl
il
, given that the rule distri-

bution among h � l players is σh, is:

πl
�
slil , σ

h
� � NhK¸

ih�1

�
σhihv

l
�
slil , s

h
ih

��

A set of distribution rules, σ� � pσr�, σc�q is a population equilibrium if all

players are happy with the rule they choose. That is, if, given the distribution of

rules among the opposing population, no player gets a higher expected net utility

by changing its rule. And this is only true if all l rules that are selected by a positive

share of the l population generate the same expected net utility, not lower than the

one generated by the unused rules.

Osborne & Rubinstein (1998) study 2 � 2 symmetric games. In their model,

agents, instead of playing according to their forecasts of their opponents’ strategy,

try each possible action once and register the payoff generated. An equilibrium exists

if the probability of choosing each action (which is the same for both players) is equal

to the probability that that action produces the highest payoff in the sampling.

The set of actions for both players is A � ta1, ..., aNu. Their utility function

is u : A � A Ñ R. Players choose each action according to the distribution σ �
pσiqiPt1,...,Nu. When a player samples action i, the utility he gets depends on the

action chosen by its opponent. Hence, V σ
i , the utility that results from a sampling

of action i when actions are chosen according to σ is a random variable, and @j P
t1, ..., Nu , P r pV σ

i � u pai, ajqq � σj. After the player samples all his actions once,

he registers the one which generates the highest payoff, labeled the winner, with ties

are assigned to at least one game.
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solved arbitrarily. The probability that, after this sampling, and with the opponent

following distribution σ, action i is the winner is wσi . A distribution σ� is an S p1q
equilibrium if the probability it implies for each action matches the probability that

this action is the winner after the sampling. That is, if @i P t1, ..., Nu , wσ�i � σ�i .

The idea is generalized for any number k of samplings of each action, making the

way for the concept of an S pkq equilibrium. Interestingly, K may be viewed as a

measure of unbounded rationality, because a higher number of samplings implies a

more accurate evaluation of each alternative. In fact, it is proved that, if a game has

a unique Nash equilibrium, it is the limit, when k Ñ �8, of its S pkq equilibrium.

In Jehiel (2005) and Eyster & Rabin (2005), the forecasts a player makes about

his opponents’ moves are simplified, although in different contexts. Jehiel (2005)

assumes that players, when making forecasts about what their opponents’ actions

are, do it in a simplified way that reduces the set of possible opponents’ move-

ments a player can face. This is achieved by gathering different possible scenarios

of opponents’ moves into a set, labeled analogy class, and reacting only to what the

player expects to be the average behavior in these scenarios. Eyster & Rabin (2005)

proposes a similar concept, but in the context of incomplete information. In the

game he proposes, players, instead of best responding taking into account the pos-

sibility that different types of opponents take different actions, simply assume that

all types of opponents take the same action. However, a consistency requirement

imposes that this unique action is indeed the average action played by all types of

opponents, given the choice profile of each type and their weight in the population.

Both papers assume that players are unable (or find it costly) to consider all the

possibilities that may arise from their opponents’ behavior, and opt to react to a

condensed version of it.

In Jehiel (2005), a game, represented in its extensive form, has a set of N players.

The preferences of player i on the different possible outcomes of the game are repre-

sented by ui. The expected value of ui when actions are chosen stochastically, is vi.

The set of nodes in the game is H and the set of Mi nodes in which player i moves is

Hi. The action space for player i when he is in node hmii is Ai phmii q. The actual deci-
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sions of all players are contained in σ � pσiqiPt1,...,Nu, where σi � pσi phmii qqmiPt1,...,Miu

and σi phmii q is a distribution over the possible actions player i can take in node hmii .

The set of nodes in which i’s opponents move is Si. Player i is assumed to make a

partition on Si, labeled an analogy partition, in such a way that two nodes can only

be a part of the same subset if their action space is the same. An analogy partition

for player i is Ani �
 
ski
(
kPt1,...,Ku, where K is the number of subsets it comprises and

each subset is an analogy class. Instead of forming an expectation about the moves

in all the nodes in ski , player i looks to ski as if it were a single node. The beliefs he

forms in this way about his opponents’ moves are represented by his analogy-based

expectation θi. Specifically, his beliefs about the probability that each action in ski is

taken are represented by θi
�
ski
�
. This means that his beliefs concerning the move of

player j � i in a node h
mj
j that belongs to ski are represented by φ

ski
j

�
h
mj
j

� � θi
�
ski
�
.

The beliefs of all players are θ � pθiqiPt1,...,Nu.

The actual decision of player i, σi, is a sequential best response to θi if, at any

node in which player i moves, no other decision guarantees a higher utility to player

i, given that his beliefs about his opponents’ moves from that node on are contained

in θi. An analogy-based expectation θi is weakly consistent with σ if the probability

it assigns to each action in an analogy class ski that contains at least one node

reached with positive probability matches the average frequency of actual play of

that action in the nodes that belong to ski . That is, although the player simplifies

the set of opponents’ moves when forming beliefs, he has to be right, on average,

given what is actually being played. A profile pσ�, θ�q is a self-confirming analogy

based equilibrium if, for each player i, his decision θ�i is a sequential best response

to his belief θ�i , and this is weakly consistent with decision σ�. The equilibrium is

then strengthened with a notion of consistency that focuses on all analogy classes,

even the ones which consist on nodes that are actually never played.

In Eyster & Rabin (2005), there are N players, each of which is of a type un-

known to other players. The set of possible types of player i is Ti and T0 denotes

the set of possible nature types. is indexed by 0. The set of actions for player

i is Ai. When players form their decisions, they have to choose the probability
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of playing each possible action for all their possible types. In this sense, σi|ti is

the probability distribution over Ai defined by player i if he is of type ti P Ti. A

strategy of player i is then σi � pσi|tiqtiPTi . More generally, a strategy profile is

σ � pσiqiPt1,...,Nu. The subscript �i refers to all i’s opponents. Hence, the set of type

profiles for i’s opponents is T�i ��
jPt1,...,Nuzi pTiq and the set of action profiles for

i’s opponents is A�i � �
jPt1,...,Nuzi pAiq. The utility obtained by player i when his

type is ti, he chooses action ai, and his opponents have types t�i and play actions

a�i is ui pai, a�i, t�i|tiq. The distribution of types (including nature’s), θ, is common

knowledge. The probability that player i is of type ti and his opponents are of types

t�i is θ pti, t�iq. Once they know their type, players update their beliefs about their

opponents’ types. If, for player i, the updated probability that his opponents are of

type t̂�i, given that his type is ti is pi
�
t̂i|ti

�
, then, according to Bayes’ rule:

pi
�
t̂i|ti

� � θ
�
ti, t̂�i

�°
tiPT�i pθ pti, t�iqq

When a player i of type ti chooses action ai, he has two sources of uncertainty

regarding the utility this choice confers. He does not know which actions his oppo-

nents are choosing, because of their possible use of mixed strategies, and what are

the types of his opponents. However, for each set of beliefs about his opponents’

choices, bti , using pi, he can find the expected utility of choosing ai. It is defined as

vi pai, bti |tiq and has the following expression:

vi
�
ai, b

ti |ti
� � ¸

t�iPT�i

�
pi pt�i|tiq

¸
a�iPA�i

�
bti pa�i|t�iqui pai, a�i, t�i|tiq

��

A classic Bayesian equilibrium predicts that the beliefs of each player coincide

with the exact choices of their opponents, that is, bti � σ�i. However, in this model,

the beliefs are simplified. Given the actual choices of player i’s opponents and the

fact that player i is of type ti, the average probability, across types, that a�i is

chosen by player i’s opponents, as seen by player i, is:
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σti�i pa�iq �
¸

t�iPT�i
ppi pt�i|tiqσ�i pa�i|t�iqq

If the game is fully cursed, player i believes that, whatever the types his oppo-

nents have, they always play a�i with this probability. However, the level of bounded

rationality is made flexible with the introduction of a parameter α P r0, 1s. With this

parameter, player i of type ti believes that the probability of his opponents playing

a�i when their types are t�i is an average of σti�i pa�iq and their true probability,

weighted by α. These beliefs, represented by φti , then have the characteristic that:

φti pa�i|t�iq � ασti�i pa�iq � p1� αqσ�i pa�i|t�iq

A strategy profile is an α-cursed equilibrium when, given this type of beliefs,

all actions played with positive probability by all types of all players result in the

same expected utility, not lower than the expected utility an action never chosen

can provide. That is, σ� is an α-cursed equilibrium if, for all i P t1, ..., Nu, all ti P Ti,
all ai P Ai such that σ�i pai|tiq ¡ 0, and all a1i P Ai, vi pai, φti |tiq ¥ vi pa1i, φti |tiq.

Still on the theme of beliefs about other players’ choices, it is worthwhile to

mention the concept of cognitive hierarchy, present, for instance, in Stahl & Wilson

(1995), Nagel (1995) and Camerer et al. (2004). It assumes that players have

different depths of reasoning, represented by a level k P N0. Level 0 players choose

randomly one of the available strategies, without any strategic reasoning. Level 1

players assume all others are level 0 and best respond to them. In general, level

k players assume all other players are at most level k � 1 (and they form a belief

about the distribution of these levels) and best respond to it. This type of reasoning

relaxes the assumption of common knowledge of rationality traditionally present in

game theory, thus simplifying the way players think about strategic interaction.

A different proposal for modeling bounded rationality in games is the one in

McKelvey & Palfrey (1995), which assumes that players observe the payoffs resulting

from their choices in an imperfect way. In this sense, its main idea is similar to

Kőszegi & Szeidl (2013) which, in an individual decision context, proposes that an
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agent’s comparisons between choices are biased by the differences they present. For

an equilibrium to exist, it is required that the choices made are consistent with

the observation errors. That is, for each player, the probability that each action is

chosen must match the probability that it is viewed as the best action to take, given

his observational error and the choices of other players.

There are N players. The action set of player i is Ai, which contains Mi actions.

The action set of all players is A � �
iPt1,...,Nu pAiq. The utility function of player

i depends on all players’ actions: ui : A Ñ R. A strategy for player i is σi �
pσi paiqqaiPAi , where σi paiq is the probability that he chooses ai. A strategy profile

is σ � pσiqiPt1,...,Nu. The subscript �i stands for all players expect i. If a P A is an

action profile and a pjq is player j’s action in this profile, the expected utility of player

i, when the strategy profile is σ, is vi pσi, σ�iq � °
aPA

�±
jPt1,...,Nu pσj pa pjqqui paqq

	
.

Let us denote a player i’s strategy that consists on choosing ai with probability 1 as

saii . This player’s expected utility when he plays saii and his opponents choose σ�i

is waii pσ�iq � vi psaii , σ�iq.

Player i’s bounded rationality is manifested in the fact that he is unable to

correctly observe waii pσ�iq. His perception of it is:

ŵaii pσ�iq � waii pσ�iq � εaii (1.7)

In (1.7), εaii represents player i’s error when observing action ai’s payoff. The

errors for all the actions in player i’s set, εi � pεaii qaiPAi are jointly distributed

with a zero mean according to a probability density function fi. Given the choices

of his opponents and the errors he make, player i finds that action ai is the best

one when his perception of the payoff resulting from this action is not lower than

that of all other options. Hence, the set of values for the errors of player i that

makes him belief action ai is the best one, when his opponents choose σ�i, is

Rai
i pσ�iq �

!
εi P RMi : @a1i P Ai, ŵaii pσ�iq ¥ ŵ

a1i
i pσ�iq

)
. This implies that ai is

player i’s perceived best response to σ�i with the following probability:
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paii pσ�iq �
»
εiPRaii pσ�iq

pf pεiq dεiq (1.8)

A quantal response equilibrium is attained if (1.8) is the probability that player

i indeed chooses action i. That is, σ� is a quantal response equilibrium if, for all

i P t1, ..., Nu and all ai P Ai, paii
�
σ��i

� � σ�i paiq.

1.4 Conclusion

Since Herbert Simon launched the concept of satisficing in 1955, many researchers

took interest in the subject and proposals for modeling the behavior of people who

find it difficult to solve an economic problem started to arise. The success of some

of the theories in explaining actual phenomena that classic rationality could not

predict reinforced the interest of investigators in this area. On the other hand,

the documentation of several biases in human behavior was an important motiva-

tion and a guidance for new theories of bounded rationality. With the growing of

neuroeconomics, a better understanding of the functioning of the human brain in

contexts of economic decisions can also provide some cues on which directions to

follow. Whatever happens in the future, it seems certain that there will be no turn-

ing back in the attempt to know what rationality actually means. If Economics is

the science of choices, and choices are made by people, improving the understanding

of human behavior seems only natural. But we should not expect this to be an

error-free process. After all, we are just boundedly rational.



Chapter 2

Costly Thinking or Default

Choosing: An Application to

Cournot Duopoly

2.1 Introduction

Economics is a social science, which studies the way people make decisions, when

they have limited resources to fulfill their needs. Not having an exact idea of how

the human brain works, it has traditionally assumed unbounded rationality. That

is, it assumes that people, in any situation, given the information they possess, are

able to find and take the optimal decision. However, numerous evidence that people

fail to decide optimally have accumulated through time (see Conlisk (1996b) for

a review of some of the studies pointing these failures). In response to this issue,

bounded rationality came to existence.

Over the years, bounded rationality spread in many different directions. For ex-

ample, Simon (1955) introduces the concept of satisficing, a way to solve a problem,

not by optimizing an objective function, but by selecting an alternative that guar-

antees a minimum level of satisfaction, called the aspiration level. Tversky (1972)

proposes a way of comparing alternatives, by looking to their characteristics, elim-
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inating them in the way until only one is left. Arthur (1991) studies a method of

choosing alternatives randomly according to the quality attached to them, which is

adjusted through time according to the success they have when chosen. Kőszegi &

Szeidl (2013) claim that people are unable to correctly compare the utility of dif-

ferent alternatives, overfocusing on what distinguishes them and not paying enough

attention to their similar characteristics.

These examples show ways to model human decisions that may fail to achieve

an optimum. But, even though they implicitly assume that optimization is too

hard to be accomplished, they do not quantify how difficult it is. And this is a

matter of importance, as the fact that thinking is costly can significantly influence

the decisions made. On the contrary, a strand of literature on bounded rationality,

which we may label costly thinking, focus on this issue. It states that people have

the possibility to analyze and solve problems, even difficult ones, but the fact that

they have to perform hard mental operations to do so forces them to pay a cost,

which is reflected on their final utility. Conlisk (1980) defines a society where people

are either optimizers or imitators, in which the former group is able to optimize, but

at a cost, while the latter avoids this cost by imitating average behavior. Rubinstein

(1986) analyzes game theory in the perspective of finite-state machines chosen by

players, and assumes that the complexity of these machines, reflected in the number

of states they have, is costly. Evans & Ramey (1992) presents a macroeconomic

model, in which agents are able to form rational expectations, but only if they pay

a cost for doing so. In the context of a Cournot oligopoly, firms in Conlisk (1996a)

select a convex combination between a rule of thumb and an approximation to the

optimal quantity, and pay a cost for reducing the uncertainty as to what is the

optimal quantity. Gabaix (2014) studies the consumer problem, introducing a two-

stage decision process, which consists of first choosing how much costly attention to

devote to each parameter, and then optimize the objective function resulting of this

selection.

Our model fits in this strand of literature. And it introduces costly thinking in

a very simple way. It assumes that people have to choose between thinking or not.
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If they do, they pay a fixed thinking cost and behave just like in the classical un-

bounded rationality models. Otherwise, they do not pay any thinking cost, but can

only choose what we call their default choice. It is a choice they can pick without

mental effort, either because they are familiar with it, because it is a focal point, or

simply because it comes to mind. Kahneman (2003) provides some support to the

notion of default choice. They propose a framework for human decisions, based in

three operations: perception, intuition and reasoning. The first one is a response

to stimuli and cannot be materialized, whereas the other two can be assessed and

verbalized. However, while intuition is based on simple and fast processes, which

can be affected by emotions and are guided by patterns and associations, reasoning

is slower, and treats information in a controlled and structured way. More impor-

tantly, the former is labeled effortless and the latter effortful. Our notion of choosing

between costless default choosing and costly thinking represents this difference in

effort between intuition and reasoning. Choi et al. (2003) studies the 401(k) enroll-

ment decision of firms’ employees, assuming that, when they are hired, their 401(k)

plan has a default saving rate. If they want to change it, they have to incur in a cost

and, in that case, select their optimal saving rate. This goes in line with our concept

of costly thinking to avoid sticking with the default decision. Gabaix (2014) main

focus is on parameters, and the way agents perceive them. However, they make use

of the concept of default action, the optimal action when the parameters perceived

by agents are the default ones.

Our model is close in spirit to the work of John Conlisk, especially in Conlisk

(1980) and Conlisk (1996a), but there are some important differences. In Conlisk

(1980), people who do not optimize, the imitators, choose an option that depends

on the average choice society makes, whereas our non-optimizers simply choose a

default option, which spares them from the effort of observing other people’s choices,

a mechanism more in line with the framework suggested by Kahneman (2003). Also,

in Conlisk (1980), people become optimizers or imitators in their childhood and

they act as such as adults, but in our model, they select endogenously whether to

optimize or not.1 In this way, the flexibility people have to decide for themselves

1Notice however that, in Conlisk (1996a), the decision of a child to become an imitator or
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is accounted for in our model. In Conlisk (1996a), firms are assumed to choose a

convex combination of the rule of thumb (equivalent to our default choice) and an

approximation to the optimal quantity. However, this way of choosing quantities is

exogenously imposed and not derived from the model’s fundamentals. In contrast,

our model, applied to the Cournot duopoly, predicts that firms choose the default or

optimal quantity, without imposing anything other than optimality in the decision

to think.

In models such as the ones just mentioned, and also in ours, an important con-

ceptual problem arises: the infinite regress. If, in a given problem, agents have to

pay a cost for being able to find the optimal choice, why would they be able to

costlessly solve the thinking problem in an optimal way? But, if we assume that

this second problem is also costly solved, we need to define how to solve the way to

solve the original problem. And this reasoning continues, level after level, creating

a spiral problem, which seems to have no solution. We acknowledge the existence

of such problem but, nonetheless, assume optimality at the second level. Though

it may seem an unjustified solution, it has, as Conlisk (1996a) affirms, the merit

of allowing us to modify the classic choice problem in a way that does not ignore

the fact that not all problems are easily solved by everyone, and, with that, to get

a problem complexity explanation of observed phenomena. On the other hand, as

Conlisk (1996a) also argues, people are not familiar with every problem they are

faced with, but are familiar with problem solving with general, and the difficulties

they have with optimization. This implies that, although optimizing a specific prob-

lem is costly, the comparison of the benefits and costs of thinking about it may be

costless.

After formally introducing our concept in an individual decision context, we ap-

ply it to a Cournot duopoly. Our motivation for doing so is a series of experimental

papers (Huck et al. , 1999, Rassenti et al. , 2000, Huck et al. , 2002, Bosch-Domènech

& Vriend, 2003), which have different objectives, but report some evidence that we

think may be explained with a costly thinking model. They all consist on experi-

optimizer is not arbitrary, as it depends on the share of optimizers in the population and their

relative performance at the date of choice.
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ments in which subjects acted as firms on a Cournot oligopoly with a linear demand,

having to select, in each period, the quantity to sell. One main result of all these

papers is that there is not a unique strategy followed by all subjects. Some of the pa-

pers test different strategies, such as best responding and imitating, but all of them

fail to select one single strategy as a good representative of subjects’ behavior. In

our model, strategy heterogeneity is obtained even with ex-ante identical firms. In

fact, we conclude that, even if firms have the same default quantity, an equilibrium

in which some decide not to think and others best respond to them is possible. For

this to be true, the thinking cost has to be neither too high nor too low. Also, the

individual behavior these papers report seems to reveal some degree of stickiness,

in the sense that the number of players not adjusting their choices from one period

to the other or, at least, not reacting to their opponents’ choices is considerable.

Our hypothesis that players, when not best responding, are sticking to their default,

seems to be in line with this fact. We develop a simple dynamic extension to our

model that gets inter temporal stickiness and eventual stabilization of quantities,

except in very special circumstances. Bosch-Domènech & Vriend (2003), who focus

their analysis on an imitation behavior, are intrigued by the fact that, when decisions

are harder to make, the imitation of successful behavior is not more prevalent and,

at the same time, declare that the stay-put rule, which consists of a player imitating

himself from one period to the other, is the most successful among the ones they

suggest. Our default choice logic can explain both these facts, and suggest a change

of perspective for the study they make: the alternative to best responding may not

be imitation, as they intend and Conlisk (1980) proposes, but instead the selection

of the default choice. Within the four papers analyzed, Bosch-Domènech & Vriend

(2003) is the one which captures most of our attention, because it deals with the

difficulty in making decisions, represented by the time limit to make a choice and

the complexity in the way information is made available to subjects.2 Associating

2Huck et al. (1999) and Rassenti et al. (2000) do not address the issue of decision complexity,

because they provide different information sets to their treatment groups, whereas, in Bosch-

Domènech & Vriend (2003), all subjects receive the same information, but the way it is presented

differs across treatment groups.
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the decision complexity with the thinking cost present in our model, we are able to

explain why decisions are more dispersed when thinking is harder. The intuition

for this is that, if we allow default quantities to vary between firms, the number

of firms best responding in equilibrium is decreasing in the thinking cost, making

the equilibrium evolve from total symmetry (all firms choosing the symmetric Nash

quantity), to partial symmetry (the best responding firms making the same decision)

to maximum dispersion (all firms choosing their default quantities).

The rest of the paper is organized in the following way. In Section 2.2, we

formally present the idea of costly thinking in individual decision, and apply it to a

simple problem of consumer choice. Section 2.3 analyzes a Cournot oligopoly with

costly thinking firms, comparing the resulting equilibria with the Nash equilibrium,

and studying the impact of an increase in the thinking cost. The results obtained

are compared to some conclusions of the experimental Cournot literature in Section

2.4. Section 2.5 concludes. All the proofs are relegated to the Appendix.

2.2 Individual Choice

Our model applies to any problem in which at least one individual has to make a

choice to maximize some objective function. Let us say that the choice set available

to an individual is A, with a representing its general element. One of the elements of

this set is the default choice of the individual, ad. It may be something he is familiar

with, something he sees being chosen by other people, a focal point, or simply

something that is intuitive to him. What defines this element is that the individual

knows it, as well as the consequences of its choice, without the bearing of any cost.

The objective function the individual wants to maximize is u : A Ñ R and we call

it the basic utility function. The novelty relative to the classic rationality model

is that the individual cannot simply maximize u, choosing one of its maximizers in

A. If he is to do so, he incurs in a fixed thinking cost, F ¥ 0. That means that

the individual decision has an extra dimension in this model, as, besides needing

to select one element from the choice set, the individual also has to choose t from
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t0, 1u, with 0 representing not thinking, and 1 thinking. If he chooses t � 0, he does

not expand his knowledge of A and selects ad, the only mentally available option to

him. If, on the contrary, t � 1, he is able to analyze A and select the best available

option. To make things clear, we define the strategy space of the individual as S:

S � �t0u �  
ad
(�Y pt1u � Aq (2.1)

The new function to be maximized, when the thinking decision is accounted for

is v : S Ñ R, and we call it the final utility function. Its expression is the following:

v pa, tq �
$&
% vd � u

�
ad
�

, t � 0

vt paq � u paq � F , t � 1
(2.2)

Let us use an example to illustrate the way the model works. The individual is a

consumer who wants to choose the quantity to buy of goods x1 and x2. His wealth

is M and the price of good xl, with l P t1, 2u, is pl. Both prices are assumed to be

positive. That means his choice set is:

A �  px1, x2q P R2 : x1 ¥ 0^ x2 ¥ 0^ p1x1 � p2x2 ¤M
(

His default choice is xd � �
xd1, x

d
2

� P A. The individual has an utility function

that depends on the quantity consumed of both goods, u : R2 Ñ R, which general

expression is u px1, x2q � x1
αx2

1�α, with 0   α   1. This function is the consumer’s

basic utility function.

In the classic rationality model, the individual chooses, among the alternatives

in A, the one that maximizes u. We index all variables relative to this situation,

in which no thinking costs exists, with c. The solution of the classic consumer’s

problem is xc �
�
α
p1
, 1�α
p2

	
M , which implies uc �

�
α
p1

	α �
1�α
p2

	1�α
M .

Now, suppose the individual has to pay a fixed mental cost of F ¥ 0 to think

the problem through and be able to choose xc. If F ¥ uc, he trivially decides not

to think, regardless of what xd is. This is because the cost of thinking is higher

than the maximum utility he could possibly get by analyzing A, meaning that the
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benefit from thinking can not possibly outweigh the cost it implies. So, let us focus

on the case in which F P r0, ucr. Given his default choice, the individual has to

decide whether to think or not. If he does, he maximizes u in A, but pays a mental

cost of F , thus getting a final utility of uc � F . Otherwise, he consumes his default

choice, pays no mental cost, and gets a final utility of ud � u
�
xd
�
. Let us index the

situation in which the thinking cost is possibly present with �. The optimal choice

of the individual is then, in this case (assuming that the individual does not think

when he is indifferent between doing it or not):

x� �
$&
% xc , F   uc � ud

xd , F ¥ uc � ud

A consumer whose default choice does not guarantee him an acceptable utility

level has an incentive to search for a better alternative and does it, finding xc, at the

expense of a mental cost of F . On the contrary, a consumer whose default choice

is good enough does not find it interesting to analyze the choice set and remains

idle, choosing xd. This means that a consumer in the former situation gets the same

basic utility as a classic rational consumer, whereas if he is in the latter situation,

his basic utility is lower than uc or equal to it, if he is fortunate enough to have

xc as his default choice. In what regards final utility, a consumer is almost always

worse than in the classic situation, as he either gets a basic utility which is lower

than uc, or he has to deduct a mental cost of F to the basic utility of uc he gets

by choosing xc. The exceptions are the cases in which F � 0, which corresponds

to classic rationality, or xd � xc, in which a consumer can choose effortlessly the

optimal choice, basic utility-wise.

If we fix F , it is xd which determines in which situation a consumer is. With

this in mind, we define the concept of isofin curves. For a given F , an isofin curve of

level v is a set of default points in the choice set that generate the same final utility

for a consumer. Formally:

IF v
F �

 
xd P A : v�

�
F, xd

� � v
(

(2.3)
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Figure 2.1: Isofin curves, when α � 1
2

and p1 � p2 �M � 1

We represent some isofin curves in Figure 2.1. The numbers next to the lines or

inside the grey areas represent the final utility of a consumer whose default choice

belongs to that line or region. It is important to distinguish these curves from

indifference curves, which consist of sets of consumption baskets which generate the

same basic utility to a consumer. In fact, indifference curves are useful in generating

isofin curves, as the knowledge of an isofin curve implies the ability to solve the classic

utility maximization problem. An obvious difference between isofin and indifference

curves in this case is the possibility that an isofin curve is not an actual curve,

but a region. This happens because all consumers whose default choices guarantee

them a basic utility lower than a certain threshold take the same action and get

the same final utility. Observing Figure 2.1(a), we can see that all consumers get

a final utility lower than the classic basic utility, which is 0.5, with the exception

of a consumer whose default choice is
�

1
2
, 1

2

�
, the classic optimal choice. On the

other hand, no consumer ever gets a final utility lower than 0.375. This happens

because F � 0.125 and uc � 0.5 and all consumers whose default choice guarantees a

basic utility lower than uc�F � 0.375 decide to analyze A and choose xc. In Figure

2.1(b), everything is the same, with the exception of F , which increases from 0.125 to

0.25. The consequence of this increase is a contraction of the gray area, as a higher

thinking cost induces more consumers to stick to their default choices. Thinking
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is now less valuable and some consumers who analyzed A in search for a better

alternative before now consider their default choice acceptable. As a consequence,

some consumers get the same basic utility as before, specifically the ones which

were already sticking to their default, and others are worse off, either because they

give up on thinking and accept a lower final utility, or because they maintain their

decision to think, but pay a higher mental cost for doing it.

2.3 Cournot symmetric duopoly

In this section, we apply our model to the problem of a Cournot duopoly, with

symmetric fixed thinking costs, default quantities and linear costs and a linear de-

mand. We present the classic game in Section 2.3.1 and introduce the behavioral

version of the game in Section 2.3.2. We then analyze its thinking, default and

mixed equilibria, respectively, in Section 2.3.3, Section 2.3.4 and Section 2.3.5, and

gather them in Section 2.3.6, devoted to comparative statics relative to the thinking

cost.

2.3.1 The classic game

There are two firms, indexed by i P N � t1, 2u. For a fixed i P N , j is the index

of the firm different from firm i. Firms simultaneously choose the quantity they

produce of a homogeneous product in a single period. The quantity produced by firm

i is qi. The cost function is linear and the same for both firms: @i P N,Ci pqiq � cqi,

with c ¥ 0. Inverse demand is linear and depends negatively on the total quantity

produced, Q � °2
i�1 pqiq: P pQq � max t0, a� bQu, with a ¡ c ¥ 0 and b ¡ 0. To

facilitate reading, we define φ � a�c
b

. Firms can choose to produce any non-negative

quantity, however, any market quantity larger than a
b

generates a zero price, which

means there is never an incentive to produce it. Hence, we define that, for all i P N ,

Ai �
�
0, a

b

�
. Each firm wants to maximize its profit, the basic utility in this context.

Then, for all i P N :
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ui pqi, qjq � πi pqi, qjq � bqi pφ� pqi � qjqq (2.4)

The best response function of firm i has the following expression: ri pqjq �
max

 
0, 1

2
pφ� qjq

(
. As firms are symmetric, their best response functions are equiv-

alent, and we can lose the subscript, and use r pqq � max
 
0, 1

2
pφ� qq(. The only

equilibrium is
�

1
3
, 1

3

�
φ, which we call c. We then have qc1 � qc2 � qc � 1

3
φ and

πc1 � πc2 � πc � 1
9
bφ2.

Variable Expression

qc 1
3
φ

Qc 2
3
φ

P c 2c�a
3

πc 1
9
bφ2

Πc 2
9
bφ2

Sc 2
9
bφ2

W c 4
9
bφ2

Table 2.1: Classic equilibrium variables

We define Πe � °2
i�1 pπei q, Se �

³Qe
0
ppP pQq �Qeq dQq and W e � Πe � Se as,

respectively, total profits, consumer surplus and social welfare. Throughout the

paper, we remove the subscripts from individual variables, when they have the same

value for both firms. The values of all equilibrium variables are in Table 2.1. They

are not important per se, but as a reference for comparison with the situation in

which the thinking cost is present. Even so, it is worthwhile noticing that both firms

make exactly the same choice and get the same profit, which is not surprising, as

they are symmetric.
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2.3.2 Duopoly with thinking cost

If thinking is costly, firms need to choose, besides the quantity to produce,

whether to think or not, that is, firm i has to select ti from t0, 1u. If it chooses

to think, it has to pay a fixed cost of F ¥ 0.3 Otherwise, its only possible quantity

choice is the default quantity, qd, which we assume to be the same for both firms.

We say the default quantity is small whenever qd   qc and large if qd ¡ qc, and

define ∆ � ��qd � qc
��. Although any quantity in firm i’s choice set is, in theory,

a possible default quantity, we restrict qd to be in r0, qms, where qm � 1
2
φ is the

monopoly quantity in this market.4 With this assumption, the relevant expression

for the demand function is P pQq � a� bQ and the expression of the best response

function can be simplified in the following way:5

r pqq � 1

2
pφ� qq (2.5)

The default market quantity, Qd � °2
i�1

�
qd
� � 2qd, is the total quantity pro-

duced by the firms when both are sticking to the default quantity. Firm i’s pure

strategy space is S � �t0u �  
qd
(� Y pt1u � r0, qmsq. This firm has to choose an

element from this set to maximize its final utility, vi, defined in the following way:

vi pqi, ti, qjq �
$&
% bqd

�
φ� �

qd � qj
��

, ti � 0

bqi pφ� pqi � qjqq � F , ti � 1
(2.6)

There is an equilibrium whenever both firms are maximizing their final utilities.

We have four possible equilibria: both firms thinking and choosing the classic game

quantities, both firms not thinking and sticking to their defaults, and each of the

firms sticking to its default and the other best responding to it. We study each of

them in the following subsections.

3If F � 0, we are back to the classic situation.
4This is justified by the fact that no quantity larger than qm is ever a best response. Also,

notice that the monopoly quantity is the largest quantity a firm operating in this market with any

number of competitors produces.
5Moreover, this means that market quantity is never larger than φ, and individual profits are

never negative, as the equilibrium price is never higher than c.

74



2.3.3 Cournot thinking equilibrium

In a thinking equilibrium, both firms are best responding. As the classic model

has only one equilibrium, there is at most one thinking equilibrium. This is because,

if this equilibrium exists, it involves both firms choosing the same quantity they do

in the classic equilibrium c � 1
3
φ. Given that firm j is producing 1

3
φ, firm i has

to be comfortable with its decision of best responding to this quantity. If it best

responds, it gets the same profits as in the classic equilibrium: 1
9
bφ2. If it sticks

to the default quantity, its profits are bqd
�

2
3
φ� qd

�
. Firm i is only happy with its

decision to best respond, if F is lower than the difference between these two profits.

For the equilibrium to exist, both players must be optimally thinking, which means

there is a thinking equilibrium if and only if:

F   F
T � b∆2 (2.7)

The cutoff value for F which separates the cases in which there is and there is

not a thinking equilibrium, F
t
, is the square of the distance between the default

and the classic equilibrium quantities. If these quantities are close, then only low

values of F make this equilibrium possible, because the default quantity is very

attractive and hardly justifies looking for a better alternative. If, on the contrary,

these quantities are significantly apart, then this equilibrium can be sustained with

a high F , because best responding is, profit-wise, a very attractive strategy, when

compared with sticking to the default. Note that the F T is never negative, but

is 0 when ∆ � 0. This means that, if the default quantity is exactly the classic

equilibrium one, the thinking equilibrium is not possible, since, by sticking to the

default quantity, firms can obtain the classic equilibrium profit.

The equilibrium variables are presented in Table 2.2. In comparison with Table

2.1, the new variables are vi, final utility of firm i, V � °2
i�1 pviq, total final utility

of firms, and Z � W � V , net (of thinking costs) social welfare. As the quantities

are the same as the classic equilibrium ones, so are price, profits, consumer surplus

and social welfare. However, as both firms think, we get that individual profits
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Variable Expression Infimum Supremum

q� qc qc qc

Q� Qc Qc Qc

P � P c P c P c

π� πc πc πc

Π� Πc Πc Πc

v� πc � F 0 πc

V � Πc � 2F 0 Πc

S� Sc Sc Sc

W � W c W c W c

Z� W c � 2F Sc W c

Table 2.2: Thinking equilibrium variables

are cut by F to obtain final utilities, whereas total profits and social welfare are

reduced in 2F to obtain total final utility and net social welfare. If this equilibrium

exists and is indeed the one attained, then there are bad news relative to the classic

equilibrium: it predicts the right quantities, but it is less rewarding for firms than

normally assumed.

2.3.4 Cournot default equilibrium

In a default equilibrium, both firms decide not to think and produce their default

quantities, leaving best responding totally abandoned. When they do this, they

simply accept the profit that the combination of these quantities produce. Firm i,

by doing this, gets a profit of bqd
�
φ�Qd

�
, where Qd, whereas, if it best responded,

its profit would be 1
4
b
�
φ� qd

�2
. For this to be an equilibrium, F has to be higher

than the difference between the latter and the former. And this is true for both

firms, hence the default equilibria exists if and only if:
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F ¥ FD � 9

4
b∆2 (2.8)

As happens in the thinking equilibrium, the cutoff value for F depends positively

on ∆. If qd and qc are close, not thinking is attractive, because the profits obtained

in doing so are similar to the classic equilibrium one, so only a very small thinking

cost can lead firms to abandon their defaults. Otherwise, only high levels of thinking

cost can induce the firms not to best respond, as sticking to the default quantity

guarantees a low profit. Contrary to what happens in the thinking equilibrium,

there is always a value for F that assures the existence of the default equilibrium.

As F has no upper bound, even in the case of a low quality (profit-wise) default

quantity, both firms accepting the profits implied by the simultaneous choice of the

default quantity is possible, if F is high enough.

Variable Expression Infimum Supremum

q� qd 0 3
2
qc

Q� Qd 0 3Qc

P � a� bQd c a

π� bqd
�
φ�Qd

�
0 9

8
πc

Π� bQd
�
φ�Qd

�
0 9

4
Πc

v� bqd
�
φ�Qd

�
0 9

8
πc

V � bQd
�
φ�Qd

�
0 9

4
Πc

S� 1
2
bQd2

0 9
4
Sc

W � bQd
�
φ� qd

�
0 9

8
W c

Z� bQd
�
φ� qd

�
0 9

8
W c

Table 2.3: Default equilibrium variables

As for the implications of this equilibrium on the market, there is a wide range

of possible scenarios, as individual quantities are the same as the default one, and it

can be anything in r0, qms (or, at least, anything that, together with F , makes this
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equilibrium possible). If qd is large, we have large individual and total quantities

and a low price, and vice-versa. As the production cost is the same for both firms,

individual profits are half the profit a monopolist would have, if he produced Qd.

This means that, when Qd is the monopoly quantity, qm, or, equivalently, when

qd � 1
2
qmφ, individual profits are maximized, and each firm earns half the monopoly

profit, which is higher than the classic individual profit. If qd P t0, qmu, either market

quantity or price is 0, hence the possibility of null individual profits. Total profit

is simply the double of individual profit, so the same reasoning applies. Consumer

surplus, which is increasing in the quantity produced, benefits from a large default

quantity, and is higher than the classic one if and only if Qd is larger than Qc. It

attains its maximum when qd is at its largest value, qm. Social welfare is increasing in

the quantity produced, until the market price equals marginal cost. The restriction

we put on the possible range of values for the default quantity means that the

market price is never below marginal cost, which implies that this variable is again

maximized when qd � qm and is higher than the classic social welfare when qd ¡ qc.

Finally, individual and total final utilities and net social welfare are exactly the same

as their profit and social welfare counterparts, as no firm bears any thinking cost in

this equilibrium.

2.3.5 Cournot mixed equilibria

In a mixed equilibrium, one of the firms sticks to its default and the other best

responds to it. An i-mixed equilibrium is one in which firm i best responds to firm j.

This is an interesting equilibrium, as it predicts that ex-ante identical firms choose

different quantities.

In an i-mixed equilibrium, q�j � qd and q�i � r
�
qd
� � 1

2

�
φ� qd

�
, implying π�i �

1
4
b
�
φ� qd

�2
and π�j � 1

2
bqd

�
φ� qd

�
. If firm i and j were to change their thinking

decisions, the former would just choose the default quantity, while the latter would

best respond to the quantity actually chosen by firm i, which is the best response

to qd. This means that firm j would choose to produce r
�
r
�
qd
�� � 1

4

�
φ� qd

�
.

Their profits would then be bqd
�
φ�Qd

�
and 1

16
b
�
φ� qd

�2
, respectively. For this
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to actually be an equilibrium, F has to be such that no firm wants to change its

decision. Hence, it has to be greater or equal to the difference between the profit

firm j would have if it best responded and the one it actually has, and, at the same

time, lower than the difference between the profit made by firm i and the one it

would have if it abandoned thinking. We then have that an i-mixed equilibrium

exists if and only if:

FM � 9

16
b∆2 ¤ F   9

4
b∆2 � F

M
(2.9)

As firms are symmetric, whenever an 1-mixed equilibrium exists, so does a 2-

mixed equilibrium. These two equilibria are possible for some values of F if and

only if . If F is neither too high nor too low,6 the two mixed equilibria are possible

and they involve symmetric firms making different thinking decisions and producing

different quantities. In fact, note that the best response function is strictly decreas-

ing in the quantity chosen by the opponent and has a fixed point in qc, which means

that, if one of the firms is sticking to a small (respectively large) default quantity, the

other one is best responding to it, choosing a larger (respectively smaller) quantity

than qc.

To understand why this asymmetric equilibria are possible when firms are sym-

metric, let us focus on Figure 2.2, which represents the profit functions of both

firms when their opponents are playing the equilibrium quantities in an i-mixed

equilibrium. The dashed line is the graph of firm i’s profit function, facing qd as

the quantity chosen by its opponent. As firm i is best responding to this quantity,

it chooses r
�
qd
�
, the quantity that guarantees it the maximum profit in these con-

ditions. The dotted line then represents the graph of firm j’s profit function, when

the quantity chosen by firm i is r
�
qd
�
. The quantity that maximizes this function

is r
�
r
�
qd
��

, but it is not chosen by firm 2, which, in this equilibrium, prefers not

to think and just chooses qd. For this to be an equilibrium, the thinking cost must

be higher or equal to the potential gain in becoming a best responder for firm j and

6Notice that these two equilibria are only possible if, in this type of equilibrium, if ∆ ¡ 0,

because otherwise the best responding firm produces qc, which it can do without thinking.
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Figure 2.2: Profit functions of firms i and j in an i-mixed equilibrium

lower than the potential loss in abandoning best responding for firm i. And this is

only possible if the latter is higher than the former. And, as we next explain, this

is always true in this model.

Firm j would increase its profit by Λj, the vertical distance drawn next to the

dotted line, if it changed its thinking decision. Firm i, in turn, would have a loss

of Λi, the vertical distance drawn next to the dashed line, in its profit, if it did the

same. And it is clear from the figure that, if qd is either small or large, Λi ¡ Λj.

Before discussing further why this is the case, let us state a technical result that

allows us to focus on quantities instead of profits, when comparing potential profit

gains and losses:

Proposition 1. Regardless of the quantity chosen by its opponent, the difference

in the profit a firm makes when choosing the best response to it and any other

quantity is increasing in the distance between these two quantities. More specifically,

@i P N, @ pqi, qjq P r0, qms2 , πi pr pqjq , qjq � πi pqi, qjq � b pr pqjq � qiq2.

Proof. See Appendix.

Proposition 1 states that we can order differences in the profit functions between

the maximum profit and any other one, by simply looking to the distance between
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the maximizer quantity and the other one being compared. That is, the loss in one

firm’s profit resulting from changing production from the optimal level to another

quantity is larger than the correspondent loss of the other firm if and only if the

distance between quantities is larger in the first case. Why does this happen? In-

dependently of the quantity faced by each firm, its profit function has a constant

second derivative, 2b. As we are supposed to confront the value of each profit func-

tion at its maximum, where the first derivative is 0, and at one other quantity, it

does not matter which profit function we are looking at, just how much this other

point is distant from the maximizer. Figure 2.2 shows this: the dashed and the

dotted graphs behave in the same way when q departs from their maximizers, even

if at different heights.

To understand why Λi ¡ Λj, note that quantities in the Cournot model are

strategic substitutes.7 This explains the relative position of the three graphs in each

subfigure of Figure 2.2. The solid line represents the graph of the profit function of a

firm facing qc as the quantity chosen by its opponent. Focusing on Figure 2.2(a), the

fact that qd is smaller than qc makes firm i’s profit function (which is affected by the

choice of firm j) to have a graph which is above the solid line and to be maximized

with a quantity larger than qc. This, in turn, implies that the graph of firm j’s

profit function (which is affected by the choice of firm i) is below the solid line and

to be maximized with a quantity smaller than qc. All this implies that qd is closer

to the quantity that maximizes firm j’s profit function than the one that maximizes

firm i’s profit function. And as, when comparing Λi and Λj, we can simply focus on

the relative position of quantities, we can conclude that firm i has more to lose in

giving up thinking than firm j has to gain in starting doing so, and the equilibrium

is possible, if F allows it. In Figure 2.2(b), where qd ¡ qc, there is an analogous

reasoning that leads to the same conclusion: firm i’s profit function is lower than

πci and so is its choice, which makes firm j’s profit function to be maximized with a

quantity larger than qc, but smaller than qd,8 and so, qd is closer to r
�
qd
�

than to

7In fact, an increase in the quantity produced by one firm decreases the marginal revenue of its

opponent, making it respond with a reduction of its own quantity.
8This quantity is smaller than qd because it is r

�
r
�
qd

��
, and the more times you apply the best
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r
��
qd
��

.

Intuitively, if a firm expects its rival to stick to the default quantity, and F is

not too high, it decides to best respond to it. By doing so, it makes thinking less

valuable for its rival than for itself, as the strategic substitutability of quantities

makes the best response of the rival closer to the default quantity than its own. If F

is not too low, the rival indeed prefers not to think and an equilibrium is achieved.

Variable Expression Infimum Supremum

q�i
1
2

�
φ� qd

�
3
4
qc 3

2
qc

q�j qd 0 3
2
qc

Q� 1
2

�
φ� qd

�
3
4
Qd 9

8
Qd

P � c�a�bqd
2

3c�a
4

c�a
2

π�i
1
4
b
�
φ� qd

�2 9
16
πc 9

4
πc

π�j
1
2
bqd

�
φ� qd

�
0 9

8
πc

Π� 1
4
b
�
φ2 � qd

2
	

27
32

Πc 9
8
Πc

v�i
1
4
b
�
φ� qd

�2 � F 0 27
16
πc

v�j
1
2
bqd

�
φ� qd

�
0 9

8
πc

V � 1
4
b
�
φ2 � qd

2
	
� F 0 27

26
Πc

S� 1
8
b
�
φ� qd

�2 9
16
Sc 81

64
Sc

W � 1
8
b
�
3φ� qd

� �
φ� qd

�
27
32
W c 135

128
W c

Z� 1
8
b
�
3φ� qd

� �
φ� qd

�� F 9
32
W c 45

44
W c

Table 2.4: i-mixed equilibrium variables, with i P N

The values of all the model variables are presented in Table 2.4. The non-

thinking firm, choosing its default, can produce anything from 0 to qm, whereas

the other firm, best responding to it, can act as a monopolist (if firm j chooses a

0 quantity), but never decides not to produce (as even the choice of the monopoly

response function to a quantity, the closer it gets to qc.
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quantity by one of the firms leaves room for profit for the other one). Total quantity

depends positively on qd, even though q�i is decreasing on it. This happens because

the linearity of cost and demand imply a smooth best response, which reacts to an

increase in the opponent’s quantity with a smaller quantity decrease. Hence, the

total effect of an increase in qd is positive. And, if total quantity is increasing in qd,

price is decreasing.

Firm i’s profit is also decreasing in qd, as the quantity produced by firm j de-

creases the price obtained by each unit sold. As qdj ¤ qm, firm j’s profit, on the other

hand, is increasing in qd. In fact, if qd � 0, total quantity is relatively small and

market price relatively high, which means that an increase in the quantity produced

by firm j allows it to increase its profit. There is a point in which the increase in

quantity does not compensate the reduction in price, and it is precisely qm. Final

utility of firm j behaves in the same way, because there is no thinking for this firm

in this equilibrium. As for the comparison of the two firms’ profits, it depends on

the fact that qd is large or small. If qd is small, we know, as quantities are strategic

substitutes in this model, that firm i decides to produce a quantity larger than qc

and is better off, profit-wise, than in the classic equilibrium, whereas firm j, pro-

ducing too little, is taken advantage of, and gets a lower profit than in the classic

equilibrium. Otherwise, the opposite happens. Total profit, which is the same a

monopolist operating in this market would have if if produced Q�, is decreasing in

qd, because Q� is the monopoly quantity when qd � 0 and gets further away from it

as qd increases.

If qd P t0, qmu, firm i’s final utility can be arbitrarily close to 0, when F ap-

proaches F
M

. The fact that this happens at qd � 1
2

is not surprising, because this

is the default quantity which generates the lowest profit for firm i. When qd � 0,

although firm i’s profits are high, so can be F , because the default quantity is as

distant as can be from qc, implying that firm i is willing to support a great thinking

cost to be able to best respond. More intuitively, the highest value of v�i is attained

when qd � 0 and F � FM . As for the comparison between v�i and πc, it is the

subject of Proposition 2.
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Proposition 2. In an i-mixed equilibrium, firm i attains a higher final utility than

its profit in the classic equilibrium if the default quantity is small and the thinking

cost is low. More specifically, v�i ¡ πc ô qd   qc ^ F   1
4
b∆

�
5qc � qd

�
.

Proof. See Appendix.

Proposition 2 gives conditions which guarantee that the thinking firm has an

increase in profit relative to the classic situation which more than compensates the

thinking effort needed to obtain it.

Total final utility has its infimum at 0 as, when qd � 0 and F is very close to

F
M

, the final utility of firm i and j is, respectively, very close to 0 and exactly 0. On

the other hand, its supremum (and maximum) is higher than Πc, but, incidentally,

it is not achieved when total profit is maximized. This is because, when qd � 0,

total profit is indeed maximized, but, as ∆ is relatively high, firm j has a high

incentive to think, which means that FM is high, and firm i cannot escape from a

large thinking cost. When qd increases from 0, ∆ decreases and so does FM , but

the same happens to total profit. There is then a trade-off between reducing the

thinking cost and reducing profit. The first effect dominates when qd is close to 0,

because total quantity is close to qm, where the total profit function is relatively

flat, but eventually this relation is reversed.9

Consumer surplus and social welfare are increasing in total quantity,10 which

means that both consumers and a utilitarian social planner who ignores thinking

costs would endorse, if possible, the largest possible default quantity. As the total

quantity may be larger than Qc, both these variables can attain higher values than

in the classic equilibrium. Finally, net social welfare is never 0, as, even when

firms get no final utility whatsoever, consumer surplus is positive. Its maximum

must be attained when qd is large because, when qd   qc, a small increase in qd

9Notice that the reverse point must be lower than qc because, if qd increases from qc, total profit

decreases, but ∆ increases and so does FM . In fact, some algebra shows that total final utility is

maximized when qd � 9
13q

c and F � 9
169π

c, resulting in V � � 27
26Πc.

10Social welfare is increasing in total quantity as the maximum total quantity ever produced is

φ, which means that price is never below marginal cost.

84



increases social welfare and reduces ∆ and, therefore, Fm. It is natural that it is a

large default quantity that maximizes it, because social welfare benefits from high

production levels. However, the maximum is not attained when qd � qm, the largest

possible quantity, because this would imply a default quantity too distant from qc,

forcing the thinking firm to exert a high thinking effort. Its maximum is higher than

W c, which means that, even when thinking costs are accounted for, society may be

better than what the classic model predicts.11

2.3.6 The impact of thinking cost

Having studied all possible equilibria, we can analyze what happens in the model

as F increases. The thinking cost represents the difficulty firms have to understand

the problem they are faced with, and it would be interesting to know the impact

of an increase in the problem difficulty or, equivalently, a decrease in the ability of

firms to deal with the problem at hand. Let us label the thinking, mixed and default

equilibria by T , M and D, respectively. We already know that, if ∆ � 0, the only

possible equilibrium is D, regardless of F , so we focus on the case in which ∆ ¡ 0.

Observing (2.7), (2.8) and (2.9), we can tell that FM   F
T   F

M � FD.

Hence, when F ¥ FD, the only possible equilibrium is D. On the other hand, if

F P
�
FM , F

T
�
, three equilibria are simultaneously possible: thinking, 1-mixed and

2-mixed. However, assuming that one of the existing equilibria is selected in each

situation, we can be sure of one thing: when F increases from 0, the equilibrium in

play goes from T to M to D. The transition from thinking to mixed can be made

either when F is FM or F
T

, but the equilibrium ordering is this for sure. In this

transition, one of the firms best respond and the other sticks to its default in the M

equilibrium. Let us index the former by a and the latter by p, where a and p stand

for active and passive, respectively.

The decision variable, quantity, defines all the other variables, so let us focus

on how it changes when F increases. Table 2.5 shows, in a graphical manner,

this evolution, for the quantities chosen by the active and passive firm and market

11Net social welfare is maximized when qd � 15
11q

c and F � 9
121π

c, resulting in Z� � 45
44W

c.
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Variable
Low qd High qd

T M D T M D

q�a

q�p

Q�

Table 2.5: Equilibrium quantity sizes in each type of equilibrium

quantity. The greater the circle area, the larger the quantity it represents. What

happens to the passive firm is obvious: if qd is small, it is smaller than what it

selects in the thinking equilibrium, and so the quantity it chooses in equilibrium is

reduced when the equilibrium goes from thinking to mixed and remains the same

in the default equilibrium. If qd is large, the first change is an increase instead of a

reduction. The quantity chosen by the active firm does not change monotonically

with F , in opposition to qp. If qd is small, the quantity this firm chooses in the mixed

equilibrium is larger than qd, because of the strategic substitutability of quantities

and the fact that r pqcq � qc. On the other hand, the quantity it chooses in the

default equilibrium, qd, is, by definition, larger than qc. If qd is large, the reverse

happens. This generates Proposition 3:

Proposition 3. If the default quantity is not the classic equilibrium one, total

quantity is decreasing (respectively, increasing) with F , if qd is small (respectively,

large).

Proof. See Appendix.

To see why Proposition 3 holds, suppose qd is small. When F is low enough, the

thinking equilibrium occurs and total quantity is Qc � 2qc. When F increases and

the equilibrium turns into a mixed one, the passive firm reduces its quantity to qd

and the active firm best responds to it, as it also does in the thinking equilibrium.
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We already know that this best response is smooth, in the sense that a decrease of

one unit in the quantity it is applied to generates an increase smaller than one unit

in the quantity it produces. Hence, the increase in qa less than compensates the

reduction in qp and the market quantity goes down. If F continues to increase and

the equilibrium changes to D, the active firm reduces its quantity to qd, resulting

in a further diminishing of the market quantity. The same logic applied to a large

qd shows that total quantity increases with F . Of course, as price is decreasing in

total quantity, F influences P � in the opposite way it influences Q�.

Variable Low qd High qd

π�a M T

π�p T Ñ Da M

v�a M T

v�p T Ñ D M

Π� M Ñ D T

V � T ÑM Ñ D / T Ñ Db T

S� T D

W � T D

Z� T D

aThe Ñ sign indicates a change as qd increases from 0 to qc.
bThe / sign separates the situations in which the transition from T to M happens when F � FM

and F � F
T

.

Table 2.6: Equilibria which maximize the utility and profit variables

The remaining model variables are the ones that represent the success obtained

by firms, consumers or society as a whole, either the thinking cost is accounted for

or not. The equilibria in which they attain their maximum values are presented in

Table 2.6.

The values different from T in the rows which do not depend on the thinking

cost (π�a , π�p , Π�, S� and W �) show us that some of the agents in this model can
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at least appear to be better when the thinking cost exists and is enough to drive

away the equilibrium from T . In fact, while in the T equilibrium, all these variables

equal their classic equilibrium counterparts, the same does not happen with the M

and D equilibria. Hence, if either the M or the D equilibrium maximize one of

these variables, then we can state that the actor (firm, firms, consumers or society)

to which it refers is better off (excluding the cost of thinking) than in the classic

equilibrium, provided the thinking cost is high enough. For example, if qd is small

and F is such that the M equilibrium is in play, the active firm gets a higher profit

than the classic one, because its opponent is being less aggressive than it would be

without the presence of the thinking cost. If qd is large, both consumers and society

as a whole (if we do not account for thinking cost) benefit from a high enough

thinking cost to sustain the default equilibrium, because that is the one with the

largest total quantity.

As for the remaining variables (v�a , v�p , V � and Z�), the analysis is not so straight-

forward. The reason is that the the thinking equilibrium is the one that implies the

highest thinking cost, possibly in equality with some other. And this means that

equilibria different from T may be preferred just to avoid the cost of thinking. How-

ever, these variables are important in understanding which values of F are preferred

by a social planner who takes the cost of thinking into account. This leads us to

state the following:

Proposition 4. If the default quantity is not the classic equilibrium one, society

as a whole benefits from a low (respectively, high) thinking cost, if qd is small

(respectively, large), either social welfare is net of thinking cost or not.

Proof. See Appendix.

Proposition 4 implies that a market in which small quantities are intuitive ben-

efits from an environment in which decisions are easy to take, so that firms can

best respond to one another and go in the direction of the classic Nash equilib-

rium. However, if intuition favors large quantities, society is better off with a hard

decisional environment. In this case, the fact that decisions are hard to take does
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not mean that society has to bear the cost of deciding, but either that firms decide

endogenously not to react to their competitors and just choose the quantity their

intuition suggests.

2.4 Experimental Cournot literature

Even though our model makes a very simple addition to classic rationality, it

may help shed some light on some results of the experimental Cournot literature.

We analyze four papers in this strand of literature, Huck et al. (1999), Rassenti

et al. (2000), Huck et al. (2002) and Bosch-Domènech & Vriend (2003), which we

think may be better understood at the light of our model.

The main objective of Huck et al. (1999) is to investigate how well do some

individual strategies perform in a Cournot oligopoly. They focus on five individual

strategies: best response dynamics, which assumes that a firm best responds to the

quantity chosen by its opponents in the previous period, imitate the best, which

states that a firm chooses the quantity produced by the firm with the highest profit

in the previous period, imitate the average, which leads a firm to produce the average

quantity chosen by its opponents in the previous period, and two others, directional

learning and error learning. The experimental setup includes five treatment groups,

which differ in the amount and type of information provided to subjects. Their main

finding is that no single strategy is able to explain the subjects’ behavior and that

the most successful strategy depends on the information environment.

Rassenti et al. (2000) investigate if the repeated play of the Cournot oligopoly

converges to the Nash equilibrium. They also consider some individual strategies,

one of which is important in the analysis we make here. It is partial adjustment to

best responses and consists of a weighted average of the best response to the oppo-

nents’ quantity and the own quantity in the previous period. They have two treat-

ment groups, which again differ in the information received, and conclude that the

facts that individual strategies seem to be heterogeneous and that some subjects do

not seem to react to their opponents’ moves may play a role in the non-convergence

89



to the Nash equilibrium.

The main research question of Huck et al. (2002) is whether the theoretical

prediction that a linear oligopoly evolves in a very different way when there is

inertia (in the sense that firms are not always able to adjust their choices) and

not, converging to the Nash equilibrium in the former case and diverging in the

latter. Once again, individual strategies are analyzed and, besides the best response

dynamic, the imitate the average rule and a mix of these two, they also focus on

fictitious play. Their two treatment groups differ in the fact that inertia is only

present in one of them. They point out that the following of a mixed strategy

between best responding and imitate the average, a process which may generate

convergence with inertia and without it, helps to explain why convergence is roughly

verified in both treatment groups.

Bosch-Domènech & Vriend (2003) checks if an increase in the difficulty of making

decisions by firms leads to a higher prevalence of imitation of successful behavior. For

this, they define three treatment groups that have access to the same information,

although the complexity in its presentation and the time limit to make decisions

is different among groups. They focus on seventeen individual strategies, which

are basically divided in three groups, according to their logic: best responding,

imitation or reinforcement learning. They conclude that, contrary to what they

expected, imitation is not more prevalent when decisions are harder to make.

We now present some facts from these papers, which we think can be understood

in the light of our model.

Fact 1. In each period, subjects adopt different individual strategies.

This fact is obvious in Huck et al. (1999), which precisely have as a main goal

to analyze which individual strategies are used. They perform a regression, trying

to explain how the change in quantity from one period to the other is influenced by

the best response to the opponents’ quantity, the average quantity produced by the

opponents and the quantity chosen by the most successful firm. By doing this, they

test the explanatory power of the best response dynamics, imitate the average and
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imitate the best, and conclude that all three strategies are important in explaining

the results, and their relative success depends on the treatment group analyzed.

When confronted with the fact that the coefficients for the imitation terms were

significant, they state the following (Huck et al. , 1999, p. 12): “Either all subjects

are to some extent imitators or some subjects primarily imitate and others follow

different leaning rules”. On their summary, they conclude that (Huck et al. , 1999,

p. 14) “Focusing on myopic best reply dynamics and imitation dynamics we find,

however, that both adjustment rules play a role for subjects’ decisions provided that

they possess the necessary information to apply these rules”. The same authors, in

Huck et al. (2002), perform again a regression trying to evaluate the explanatory

power of individual strategies in quantity differences in consecutive periods and

conclude that (Huck et al. , 2002, p. 10)“Given the size of the coefficients it seems

that subjects played a mixture of best reply and ’imitate the average’ ”. Rassenti

et al. (2000), in turn, regress the quantity chosen by each subject in each period on

his own quantity in the previous period and on his opponents’ total quantity in the

previous period and the one before, trying to estimate the merits of each individual

strategy. They conclude that (Rassenti et al. , 2000, p. 17) “Estimation of individual

decision rules reveals a great deal of heterogeneity in subjects’ decision-making”.

This idea is reinforced when the authors perform a pooled estimation, gathering

all the subjects, and comment on it, stating that (Rassenti et al. , 2000, p. 16)

“The pooled estimation results mask a large amount of heterogeneity in individual

decision rules”.

We present a reason for firms to endogenously choose different individual strate-

gies. In our mixed equilibrium, some firms best respond to their opponents, while

others stick to their default quantity, and this behavior heterogeneity is justified

by the existence of a thinking cost, even though this cost is the same for all firms.

Best responding always guarantees a higher profit than just choosing the default

quantity, but it comes at a cost, the thinking cost. The cited papers focus on reac-

tions (or absence of) to quantities from the previous period, because that is what

subjects observe, while, in our model, firms best respond (or not) to contemporary

quantities. However, the fact in analysis, strategy heterogeneity in each period, is
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obtained endogenously in our model: some firms decide to best respond and other

stick to their default quantities.

Fact 2. One of the most employed strategies by firms in each period is choosing

their previous period quantity.

One of the individual strategies studied by Bosch-Domènech & Vriend (2003) is

the stay put rule, which states that a subject selects the same quantity he did in the

previous period, and this rule seems to be rather successful. In fact, we can read

that (Bosch-Domènech & Vriend, 2003, p. 19) “the most successful rule throughout

is the stay-put rule, with the only exception being the ’easy’ triopoly, where it is

closely beaten by one other rule”.

Although our model is static and does not predict firms reacting to occurrences

in periods different from the one in which they are deciding, we can think of a

very simple dynamic extension, that provides some intuition for this inter temporal

rigidity. Suppose time is indexed by t P N and the default and chosen quantities of

player i in period t are, respectively, qdi ptq and q�i ptq. In the first period, the default

quantity is the same for both firms: @i P N, qdi p1q � q. In subsequent periods,

the default quantity of player i is the quantity he chose in the last period, that is,

@i P N, @t ¥ 2, qdi ptq � q�i pt� 1q. As the game is repeated, it is natural that firms

find less difficult to think about it. So, let us assume that the thinking cost in period

t is F ptq � δt�1F , where F ¡ 0 is the initial thinking cost and δ P s0, 1r. Also,

bounded rational firms as the ones we model are myopic, and they do not take into

account the effect of their decisions for future periods. In this setting, the following

result holds:

Proposition 5. If the thinking cost decreases at rate δ, and firms are myopic, have

the same default quantity in the first period, and update the default quantities

according to choices they make, repetition of quantities in consecutive periods is

assured and may be large and eventually firms learn to play the classic equilibrium

and stick to it, expect if δ � 1
4
.

Proof. See Appendix.
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The exception in Proposition 5 exists because of the possibility that firms always

(with the possible exception of the first period) play a mixed equilibrium. However,

for that to happen, the thinking cost may not decrease too quickly, because that

implies that firm eventually learn the classic equilibrium, nor too slowly, because

similar thinking costs in consecutive periods lead firms to abandon thinking after a

period of best responding, because the adjustment they make in default quantities

between periods puts them in a comfortable default situation. Moreover, if firms

are to always play a mixed equilibrium, they alternately best respond to each other,

which brings their default quantities increasingly closer. Hence, for this sequence

of equilibria to be sustained, the thinking cost has to be in increasingly narrower

intervals, which is only true if F decreases at the same rate as these intervals’ limits,

which is found to be 1
4
.

Our perspective that firms either best respond or stick to their default can per-

haps help to understand why Bosch-Domènech & Vriend (2003), contrary to what

had expected, do not find that imitation is more prevalent when decisions are harder

to make. They suggest that subjects may use, when facing a difficult decision, an

imitation strategy. Our perspective, on the other hand, is that, if thinking is too

hard, subjects simply abandon it, not even paying attention to their rivals’ choices.

A similar experiment to the one in Bosch-Domènech & Vriend (2003), but focused

on the prevalence of absence of reaction, instead of imitation, when the decisional

environment is complex, seems a promising research avenue.

Fact 3. When decisions are harder to make, quantities are more dispersed.

In (Bosch-Domènech & Vriend, 2003, p. 13), the following fact is presented:

“As the learning-about-the-environment task becomes more complex, output choices

become more spread out”.

The impact of the thinking cost in the equilibrium played in our model can,

in some way, explain this fact. We can associate the complexity of the learning-

about-the-environment task with our thinking cost. And, as F increases from 0,

the model equilibrium goes from thinking to mixed to default. In a symmetric

model, as the one we construct and the one the authors experiment, the thinking
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equilibrium is symmetric, having both firms choosing the same quantity. In the

mixed equilibrium, one firm best responds and the others sticks to its default, and,

in the default equilibrium, both firms choose the default quantity. However, if we

introduced more firms in the market and allowed for different default quantities, the

equilibrium logic would be the same. If F is small enough so that all firms want to

think, a thinking equilibrium occurs and all firms choose the classic equilibrium. If

F is at an intermediate level, some firms stick to their defaults and the remaining

best respond to them. In this case, all the best responders choose the same quantity.

Finally, if F is high enough, no firm wants to think and they all produce their default

quantities. Thus, even though the default equilibrium, played at high levels of F ,

seems to contradict the fact that quantity dispersion is increasing in the thinking

cost, with different default quantities this is generally obtained.

2.5 Conclusion

In the line of the bounded rationality models in which the difficulty in decision

making is accounted for, we propose a very simple way to model costly thinking. Its

application to a consumer choice problem shows immediately the impact the idea

can have in traditional Economics. Within the choice set, defined by the budget

constraint, the chosen option may not be the one that maximizes utility, provided

the thinking cost is high enough. This makes the way to the notion of isofin curves,

sets of default choices which guarantee the same utility net of thinking cost. If an

agent has a good enough default choice, in the sense that the utility level it implies

is close to the optimal utility, he may decide that it is not worthwhile to solve the

utility maximization problem and simply select his default choice. On the contrary,

all default choices which guarantee an utility level below a certain threshold induce

agents to make the effort to think and find the optimal action, utility-wise.

Although costly thinking affects individual decisions, it also has an impact on

models of strategic interaction, which gather and confront the decisions of each

agent. We put the idea to test in a symmetric Cournot duopoly setting, and analyze
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the impact of costly thinking in equilibrium strategies. We find three types of

equilibria: thinking, mixed and default where two, one and zero firms best respond,

respectively. The mixed equilibria, which occur when the thinking cost is neither too

high nor too low, is the more interesting one, as it precludes asymmetric strategies

in a symmetric model. The existence of this equilibria is connected to the notion

of strategic substitutes. The facts that best responses are negatively sloped imply

that a thinking firm has more to lose in giving up thinking than a non-thinking firm

would gain if it became a thinker, because the distance between the default quantity

and the best response to the opponent’s equilibrium choice is larger for the former

firm.

Although multiple equilibria are sometimes possible, an increase in the thinking

cost reduces the number of firms thinking in equilibrium, as would be expected.

The impact of this evolution in the model variables depend on the size of the de-

fault quantity. More specifically, if it is smaller or larger than the Nash quantity.

A small default quantity means non-thinking firms choose to produce a small quan-

tity. Hence, an increase in the thinking cost reduces market quantity and social

welfare. However, if the default quantity is large, we get the reverse effect and so-

cial welfare is maximized when a default equilibrium is reached, even if thinking

costs are accounted. This means that, if intuition points toward large quantities, an

environment in which firms’ decisions are hard to make is socially optimal.

The thinking cost concept seems fit to explain some regularities present in the

Cournot experimental literature. Within the papers we analyze, the most common

result is the adoption of different strategies by subjects, even when markets are

totally symmetric. Our model, in which the decision to think is endogenous, shows

that it is possible that only some players are responsive to their opponents’ choices.

The rigid inter temporal behavior registered in one of the papers analyzed is obtained

by a dynamic extension of our model, which predicts that, unless in very specific

situations, quantities are repeated in some periods and eventually stabilize in the

classic Cournot values. Finally, the impact that the thinking cost has in the type of

equilibrium played can help explain the fact that quantities become more dispersed
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when decisions are harder to make.

Some extensions to the present model can be considered. The dynamic version

we presented in Section 2.4 is still at an early stage and it would be interesting to

further develop it. The most obvious is the generalization of the number of firms

in the market. The symmetry of default quantities and the thinking cost can be

relaxed, at the cost of parsimony, but with the benefit of a higher flexibility and

new insights resulting from the interaction between people with different abilities

to think (different thinking costs) and intuition qualities (different default choices).

It is also possible to make the thinking cost more sophisticated and add to it a

variable component, positively depending on the number of alternatives considered.

More specifically, the agent, besides deciding whether to think or not, would have

to define the portion of the choice set to be analyzed, and then compare the options

closer to his default choice. The variable thinking cost would be increasing in the

size of the constrained choice set generated. The agent’s global problem would

become more complicated, but the possible quality of his choices would cease to be

binary and become (possibly) continuous. Another possibility would be to move the

responsibility of choosing quantities from the firm as an institution, to its manager,

and assume that he has the incentive to maximize profits by receiving a fixed share

of them. A high fixed share would make the manager highly concerned with finding

the optimal quantity, counterweighting the thinking cost, which pushes his quantity

decision towards the default.

The costly thinking concept we present here seems general enough to have

the possibility of being applied to different settings. In Industrial Economics, the

Bertrand, Stackelberg and Monopoly models should also change with the introduc-

tion of costly thinking and it would be interesting to compare these changes with

the ones we get in the Cournot model. We already tried a very simple application to

consumer theory, but further, more general, analysis is possible. Agency theory and

games like the Prisoner’s Dilemma or the Beauty Contest could also benefit from

the introduction of costly thinkers.

96



Appendix

Proof of Proposition 1

To facilitate reading, let us define r � r pqjq. Using (2.4), we get that πi pr, qjq �
πi pqi, qjq � b pr � qiq pφ� qj � r � qiq. As (2.5) implies that φ�qj � 2r, we get that

πi pr, qjq � πi pqi, qjq � b pr � qiq p2r � r � qiq � b pr � qiq2.

Proof of Proposition 2

Taking the values of πc and v�i from, respectively, Table 2.1 and Table 2.4, and

rearranging, we know that v�i ¡ πc if and only if:

F   1

4
b
�
qc � qd

� �
5qc � qd

�
(2.10)

On the other hand, for an i-mixed equilibrium to be possible, (2.9) needs to be

verified, which implies:

F ¥ 9

16
b
�
qd � qc

�2
(2.11)

For (2.10) to be true when (2.11) is, we need the right-hand-side of (2.10) to be

greater than the right-hand-side of (2.11). And this happens if and only if qc   qc.

Proof of Proposition 3

Let us call total quantity in equilibrium e, with e P tT,M,Du, Qe. By definition

of each type of equilibrium, we know that QT � Qd, QM � qd�r �qd� and QD � Qd.

From Table 2.1 and (2.5), we know that qc � 1
3
φ and r pqq � 1

2
pφ� qq. Hence, we

get that QD � QM � 3
�
QM �QT

� � 3
2

�
qd � qc

�
. This means that QM � QT and

QD�QM have the same sign as qd� qc. If qd is small, this sign is negative and total

quantity decreases with F . If qd is large, the opposite happens.

Proof of Proposition 4
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Let us call social welfare in equilibrium e P tT,M,Du, W e. Table 2.2, Ta-

ble 2.3 and Table 2.4 show that W T � 4
9
bφ2, WM � 1

8
b
�
3φ� qd

� �
φ� qd

�
and

WD � bQd
�
φ� qd

�
. Manipulating these expressions, we get that WM � W T �

1
8
b
�

5
3
φ� qd

� �
qd � qc

�
and WD �WM � 15

8
b
�

3
5
φ� qd

� �
qd � qc

�
. As qd ¤ 1

2
φ, the

sign of both WM � W T and WD � WM is the same sign of qd � qc. Hence, the

highest social welfare occurs in the thinking equilibrium, when qc is small, and in

the default equilibrium, when qc is large.

Net social welfare is negatively influenced by F in the thinking and mixed equi-

libria, which means that the highest value of this variable in these equilibria is

attained when F is the lowest possible value that makes each equilibrium possible.

This value is 0 in the thinking equilibrium. However, it can either be FM or F
T

in the mixed equilibrium, depending on which value of F the transition between

thinking and mixed equilibria occurs. Let us call the highest net social welfare in

equilibrium e P tT,Du, Ze. The highest net social welfare in equilibrium M is ZM
x ,

with x P tL,Hu, where L and H represent the situations in which the transition is

made at FM and F
T

, respectively.

Again observing Table 2.2, Table 2.3 and Table 2.4, we get ZT � 4
9
bφ2, ZM

L �
1
8
b
�

5
2
φ2 � 5qdφ� 11

2
qd

2
	

, ZM
H � 1

4
b
�

19
18
φ2 � 11

3
qdφ� 9

2
qd

2
	

and ZD � WD � bQd
�
φ� qd

�
.

Focusing on situation L, we get ZM
L � ZT � 11

16
b
�

19
33
φ� qd

� �
qd � qc

�
and ZD �

ZM
L � 21

16
b
�

5
7
φ� qd

� �
qd � qc

�
. Hence, both ZM

L � ZT and ZD � ZM
L have the same

sign as qd�qc. In this case, net social welfare is maximized when F � 0 and F ¥ FD,

if qd is small and large, respectively.

Focusing on situation H, we get ZM
H � ZT � 9

8
b
�

13
27
φ� qd

� �
qd � qc

�
and ZD �

ZM
H � 7

8
b
�

19
21
φ� qd

� �
qd � qc

�
. If qd is small, both ZM

H � ZT and ZD � ZM
H are

negative, which means net social welfare is maximized when F � 0. If qd is high

and not larger than 13
27
φ, both ZM

H �ZT and ZD�ZM
H are positive, which means net

social welfare is maximized when F ¥ FD. If qd ¡ 13
27
φ, ZD � ZM

H is positive, but

ZM
H �ZT is negative. However, the fact that ZD �ZT � 2b

�
2
3
φ� qd

� �
qd � qc

� ¡ 0

means that net social welfare is also maximized when F ¥ FD.
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Proof of Proposition 5

Let us first state some useful results. Given Proposition 1, π pr pqjq , qjq �
π pqi, qjq � b pr pqjq � qiq2. Hence, F ptq ¼ π pr pqjq , qjq � π pqi, qjq if and only ifb

F ptq
b
¼ |r pqjq � qi|. We define

F̃ ptq �
c
F ptq
b

(2.12)

As F ptq is decreasing and converges to 0, the same is true for F̃ ptq. Let us define

rl pqq as the quantity that that results from l P N0 applications of the response

function to q. This means that @l P N, rl pqq � qm � 1
2
rl�1, a non-homogeneous

recursive relation. Solving it, we get that:

rl pqq � qc �
�
�1

2


l

pqc � qq (2.13)

From (2.13), we can get the three following expressions, which are useful below:

|r1 pqq � r0 pqq| � 3

2
∆ (2.14)

|rl pqq � qc| �
�

1

2


l

∆ (2.15)

|rl�2 pqq � rl pqq| �
�

1

2


l
3

4
∆ (2.16)

Let � ptq P tT,M1,M2, Du denote the equilibrium played in period t, where Mi,

with i P N represents an i-mixed equilibrium. If, at any period, T is played, then it

is followed by D equilibria in all the subsequent periods, with both firms producing

the classic equilibrium quantity. This is true because, after a T equilibrium, both

default quantities are set to qc and are never altered again, because firms, from then

on, always produce qc without thinking. If, at any period, D is played, the default

quantities remain the same in the next period, with the possible exception of the

thinking cost.

Using (2.7) , (2.8), (2.9) and (2.12), we know that, in period 1, T is possible if

F̃   ∆, D is possible if F̃ ¥ 3
2
∆ and M1 and M2 are possible if 3

4
∆ ¤ F̃   3

2
∆. If
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T is played in this period, the quantity each player produces from then on is qc. If

it is D which is played, the default quantities in period 2 do not change, hence the

conditions that make each equilibrium possible are the same.

If an Mi equilibrium is played in period 1, it must be true that 3
4
∆ ¤ F̃   3

2
∆,

and qdi p2q � r pqq and qdj p2q � q. In this period, a thinking equilibrium is possible

if the firm whose default quantity is closer to qc wants to think. And this firm is

firm i, because, as (2.13) shows, consecutive applications of the response function to

q make it increasingly closer to qc. Thus, the thinking equilibrium in this period is

only possible if F̃ p2q   |r pq � qc|. From (2.15), this is equivalent to F̃ p2q   1
2
∆. A

default equilibrium is possible in this period only if the firm whose default quantity

is further away from its best response to its opponent default quantity does not want

to think. As qdi p2q � r
�
qdi p2q

�
and qdj p2q � r2 pqq � r

�
qdi p2q

�
, this firm is firm j.

Hence, this equilibrium is only possible if F̃ p2q ¥ |r2 pqq � q|, which becomes, using

(2.16), F̃ p2q ¥ 3
4
∆. Equilibrium Mi is impossible in period 1 as qdi p2q � r

�
qdi p2q

�
,

which means that, regardless of F̃ p2q, firm 1 does not want to think when firm 2 is

producing its default quantity. Equilibrium Mj is possible if, when firm i produces

qdi p2q � r pqq and firm j best responds to it, producing r2 pqq, firm j wants to think

and firm i does not. This is true if |r3 pqq � r pqq| ¤ F̃   |r2 pqq � q|. Using (2.16),

this is equivalent to 3
8
∆ ¤ F̃   3

4
∆.

Thus, following equilibrium Mi in period 1, T , D and Mj are possible equi-

libria in period 2. If, in this period, T is played, quantities remain the same in

all subsequent periods, and, if D is played, there are no changes in the quantities

produced, as both firms stick to their defaults, which correspond to their previous

period choice. Besides, if D is played in period 2 and the thinking cost does not

decrease too much in period 3, the same equilibrium is played again.

In general, before a thinking equilibrium is played, quantities only change when

a mixed equilibrium is played. And, after a Mi equilibrium, the following mixed

equilibrium has to be of type Mj, because a Mi equilibrium produces such default

quantities that make it impossible to be played again, until the default quantities

change. And that only happens with a T or a Mj equilibrium. Hence, the pos-
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sible history of equilibria include alternate mixed equilibria, possibly separated by

any number of default equilibria and, eventually, a thinking equilibrium, which de-

termines the rest of the game. The only situation in which quantities are never

repeated is when, in each period, a mixed equilibrium is played, with a possible

default equilibrium in period 1. However, this only happens if F decreases at a very

specific rate.

To see this, focus on the case in which mixed equilibria are played every period.

In period 1, a Mi equilibrium is played. Relative to period t P t1, ...u, let us define

the following two time-dependent functions:

α ptq �
$&
% i , t odd

j , t even

β ptq �
$&
% j , t odd

i , t even

In period t, we have aMα ptq equilibrium. Also, by induction, we get qdαptq � rt pqq
and qdβptq � rt�1 pqq. Hence, for the mixed equilibrium to be possible in period t,

we need that |rt�2 pqq � rt|   F̃ ptq   |rt�1 pqq � rt�1|. Using (2.12) and (2.16), we

conclude that, for this sequence of equilibria to be possible, the following must hold:

@t ¥ 1,

�
1

4


t�1
9

16
b∆2 ¤ F ptq  

�
1

4


t�1
9

4
b∆2 (2.17)

Applying a similar logic to a sequence of equilibria starting with a default equi-

librium and alternating mixed equilibria from period 2 on, with the first being a Mi

equilibrium, we conclude that, for it to be possible, the following must hold:

F ¥ 9

4
b∆2 ^ @t ¥ 2,

�
1

4


t�2
9

16
b∆2 ¤ F ptq  

�
1

4


t�2
9

4
b∆2 (2.18)

Since F ptq � δt�1F , (2.17) and (2.18) are only true if δ � 1
4
, because that is

the rate at which their lower and upper bounds decrease. And they are never true

simultaneously, as (2.17) implies 9
16
b∆2 ¤ F   9

4
b∆2 and (2.18) requires F ¥ 9

4
b∆2.
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Chapter 3

A Self-Delusive Theory of Voter

Turnout0

3.1 Introduction

One of the long-lasting puzzles of rational choice theory is the so-called turnout

paradox. Given that the probability that one’s vote changes the election outcome

in large electorates is negligible, even a very minority cost of voting should induce

people to abstain.1 However, in modern democracies, people vote, and do so in large

numbers.

One of the reasons that may explain high participation rates is the overestimation

of pivotal probabilities. In his seminal book about turnout, Blais (2000, p. 65) writes

“some respondents clearly overestimate P [the pivotal probability]. (...) It could be

0This chapter was written in co-authorship with Susana Peralta.
1An extensive literature has evolved from the seminal insight by Downs (1957). Later papers

propose a game theoretical approach (Palfrey & Rosenthal, 1983, 1985) to endogenize the pivotal

probability of the initial decision theoretical models (RIker & Ordeshook, 1968). This literature

concludes in general that turnout in large elections should be fairly low. Another strand of the

literature, starting with Feddersen & Pesendorfer (1996, 1999), assumes away voting costs; the

question is then why do people abstain, and the authors provide a theory of rational abstention

based on the information of the voters. For surveys, please refer to Blais et al. (2000), Dhillon &

Peralta (2002), Feddersen (2004), Dowding (2005) and Geys (2006).
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that some people vote because they overestimate P .” Similarly, Duffy & Tavits

(2008) claim that “the overestimation of pivotality may, thus, provide a solution to

the paradox of voter turnout – voting happens because people systematically think

that their vote counts more than it actually does (...)” This suggestion is confirmed

by experimental evidence: both Duffy & Tavits (2008) and Blais et al. (2000) show

that higher estimates of individual decisiveness increases the probability of turnout.

Moreover, there is considerable experimental and survey evidence about the over-

estimation of the probability of decisiveness in voting contexts (Blais et al. , 2000,

Acevedo & Krueger, 2004 and Duffy & Tavits, 2008). This finding is common to

survey and experimental data and robust to different experimental designs. Blais

et al. (2000) ask people to report how many of the remaining subjects vote for

each party, while Duffy & Tavits (2008) ask subjects to report pivotal probabilities

directly. Also, in the former experiment the subjects are informed that they are

participating in an election, while in the latter the participation payoffs are induced

in a neutral fashion, where the subject decision is whether or not to buy a token

(representing “voting”). Finally, it is noteworthy that there is considerable hetero-

geneity across individuals in the reported pivotal probabilities. Table 3.1 shows the

relative frequency of each pivotal probability in a survey conducted before the 1993

federal elections in Canada, reported in Blais (2000) (Canada had a population of

about 28.682.000 in 1993).

The literature has little to suggest as regards the way in which individuals com-

pute pivotal probabilities and in particular the reason for their overestimation. In

the same survey reported above, Blais (2000, p. 74) has asked the respondents their

agreement with a number of statements, including “My own vote may not count for

much, but if all people who think like me vote, it could make a majority difference.”

As much as 94% of the respondents agreed with this sentence. A dummy variable

that turns one when the respondent agrees with the sentence comes out significant

in a logistic regression of the decision to vote in the Canadian federal election. This

leads Blais (2000, p. 74) to conclude for “the possibility that some people vote because

they believe that somehow their own vote counts.”
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Table 3.1: Self-reported pivotal probabilities in survey data (Blais, 2000)

Probability Absolute Frequency Relative Frequency

1/10 19 2,25%

1/100 8 0,95%

1/1.000 17 2,02%

1/10.000 16 1,90%

1/100.000 34 4,03%

1/1.000.000 87 10,32%

1/10.000.000 190 22,54%

1/100.000.000 261 30,96%

Doesn’t know 201 23,84%

Refuses to answer 10 1,19%

Total 843 100%

As put by the author, this perception about the behavior of like minded others

may reflect self-delusion. Acevedo & Krueger (2004) report an experiment similar to

Quattrone & Tversky (1984), where subjects are exposed to an election environment

and each must report the likelihood of his party outvoting the opponent in case

he votes or abstains, respectively. They report that 46% of the subjects “have a

tendency to project their own decisions to similar others.”. This projection measure,

when correlated with voting intentions, yields the so-called voter’s illusion.2 This

setup has the advantage of modeling the specific bias suggested in the survey data

reported by Blais et al. (2000).

In this paper, we propose a model that features this sort of reasoning on behalf

2The political science literature has come up with other hypothesis based on some sort of

misperception on behalf of the voters about their actual influence in an election. It is worth to

mention quasi-magical thinking (Masel, 2007) and belief in personal relevance (Acevedo & Krueger,

2004). Quasi-magical thinking corresponds to acting as if one believes that his action influence

the outcome, even though he does not hold that belief, while belief in personal relevance is the

classification of one’s action as important to the final outcome, whether it is a good diagnostic of

others’ actions or not.
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of potential voters. More specifically, each individual is endowed with an exogenous

belief that a given proportion of like-minded others (same party supporters) choose

the same action as he does. A closely related paper is Grafstein (1991), who also

uses a theoretical model where voters overestimate their pivotalness. We depart

from Grafstein (1991) in several ways. Firstly, we allow for heterogeneity across

individuals in subjective pivotalness, as suggested by Table 3.1. Secondly, while

Grafstein (1991) assumes agents project their decisions not only on the supporters

of their preferred party, but also on others, we shall assume away the latter. Finally,

we assume a continuum of voters, while in Grafstein (1991) the set of voters is

discrete, although one of his results is that positive turnout prevails with an infinite

population.3

Similarly to Grafstein (1991), we show that the voting game has an equilibrium

with positive turnout. However, we provide a more thorough characterization of

the set of possibly multiple equilibria. This has the interesting empirical prediction

that the same fundamentals may lead to different turnout levels and winners of the

election, providing a theoretical underpinning for the importance of abstention in

election outcomes, which has been documented empirically (Bernhagen & Marsh,

1997).

Our model of self-delusion is inspired by Bravo-Furtado & Côrte-Real (2009a),

who apply it to a majority election among three parties, where non-Duvergerian

outcomes arise in equilibrium since voters need not vote strategically. Individuals

with such beliefs are said to be rhizomatic (Bravo-Furtado & Côrte-Real, 2009a).4

The literature has long acknowledged the limitations of the rational voter para-

dox and offers several explanations of voter turnout which depart from the rationality

3Grafstein (1991) calls this type of reasoning “evidential” as opposed to the causal rationality

usually assumed in economics. Causal rationality imposes that, when deciding, one ignores the

potential link between his and other’s decisions, even if one believes in its existence. Evidential

reasoning, in turn, assumes that people do not ignore this link when they believe it exists.
4Conitzer (2012) applies a similar idea to a setup in which of the alternatives is the best one

but some voters may make mistakes and vote for the opponent. The probabilistic voting behavior

of individuals incorporates the idea that they “are likely to vote similarly to their neighbors”.
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hypothesis, besides the self-delusion based ones as the above mentioned Grafstein

(1991). Sieg & Schulz (1995) and Conley et al. (2001) use evolutionary game theory

tools to explain the emergence of positive turnout. In Conley et al. (2001), vot-

ers use mixed strategies and increase their voting probability if this increases their

expected utility. More recently, Coate & Conlin (2004) and Feddersen & Sandroni

(2006) put forward group-based theories of voter turnout, where the individual de-

cisions depend on the collective payoff. Li & Majumdar (2010), in turn, suppose

that voters experience regret when they fail to vote, more so if their preferred can-

didate loses the election. A recent paper by Aaron et al. (Edlin et al. , 2007) shows

that voters with altruistic preferences may have considerable turnout rates. This

approach is complementary to ours, in the sense that the amplifying effect of the

group is embedded in the expected benefit part of the calculus of voting, rather than

the pivotal probability.

In this paper, we model a two-party, first-past-the-post election with a contin-

uum of voters. Parties have asymmetric sizes. The continuum assumption ensures

that each individual has zero mass and therefore would not vote, if he were rational

in the classical sense, and hence any positive turnout must stem from self-delusion.

We model the idea of “ people who think like me behave like me” as follows. A

self-delusional voter believes that an idiosyncratic exogenous fraction of his party

supporters behave like him. The self-delusion parameter is an exogenous type, a be-

lief, and is drawn from a given continuous distribution function on the r0, 1s support.

Our main results are as follows. Firstly, there always exist at least one equilibrium

with positive turnout. Secondly, for a range of minority party sizes, the game dis-

plays multiple equilibria, at least one with the majority party, and at least two with

the minority party winning the election. The minority party may win the election,

provided party sizes are not too different. We study the impact of ex-ante and

ex-post closeness of the election, as measured by the party sizes and (endogenous)

margin of victory, respectively, on turnout. We show that turnout increases with

closeness except in some equilibria with a minority-win, including the lowest-turnout

one. We interpret this result as a natural consequence of the fact that in this lowest-

turnout equilibrium the set of voters displays very high degrees of self-delusion. Our
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analysis of closeness provides the first theoretical rationale for the utilization of the

margin of victory in empirical studies, which is not grounded on the usual rational

expectations hypothesis put forward in the empirical literature. It also explains why

some empirical studies obtain non-conclusive results about the impact of closeness,

sometimes with a negative sign, which is contrary to the usual intuition Finally, we

provide a rationale for the intentional inducement of perceived social and personal

links amongst party supporters performed by political activists and political parties

via, e.g., social networks. These may actually increase the degree of self-delusion

amongst the party supporters. We show that, given a minority size and a distri-

bution of self-delusion under which the only equilibria entail the a majority-win,

changing the distribution of self-delusion of the minority supporters to make them

more self-delusion than the majority ones (in the first-order stochastic dominance

sense), creates room for the existence of minority-win equilibria. Our model also

sheds light on the stylized fact that turnout has an impact on the electoral outcome.

Indeed, in the space of parameters for which multiple equilibria exist, any of the

two parties may win the election, with different turnout levels arising in each type

of equilibrium.

The remainder of the paper is organized as follows. Section 3.2 presents the

model and a few useful preliminary results. We show how the minority size deter-

mines the possibility of multiple equilibria with both parties winning the election

in Section 3.3 and relate turnout, closeness and election results in Section 3.4. We

illustrate the advantage for each party of inducing self-delusion among its support-

ers in Section 3.5 and conclude in Section 3.6. All the proofs are relegated to the

Appendix.

3.2 The Model

We begin by formalizing the model, and we do it in three steps. In Section 3.2.1,

we introduce the model variables and parameters and explain its basic functioning.

Then, in Section 3.2.2, we focus on the decision of each individual agent and find
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his best reply to the other players’ moves. Finally, in Section 3.2.3, we gather all

agents’ decisions and close the model by defining the equilibrium.

3.2.1 Setup

A first-past-the-post election between 2 parties, i P tA,Bu takes place. The most

voted party wins the election. In case of a tie, a coin toss decides the winner.

There is a mass of size 1 � m, with m P s0, 1s, of voters.5 Each agent x may

decide to vote for his preferred party or to abstain and is assumed to strictly prefer

one of the parties. The mass of party A supporters is equal to 1, while that of B

supporters is m. With a slight abuse of language, we are going to call B the minority

party, and A the majority party, even when m � 1. Moreover, a and b represent a

general A and B supporter, respectively.

Voting entails a cost of c ¡ 0.6 Without loss of generality, the payoff that the

voter gets when his preferred party wins the election is normalized to 1, and 0

otherwise. Notice that the voter gains 1
2
� c when he turns a defeat into a tie or

a tie into a win with his vote. In order to ensure that the voter wants to cast his

vote in these situations, we follow the usual assumption in the literature (Dhillon &

Peralta, 2002), i.e. c   1
2
.

As explained in the Introduction, we allow the voters to be self-delusive in the

following sense. When individual x decides whether to vote he believes that a

fraction qx P r0, 1s of like-minded others – i.e., his party supporters – behave like

him.7 Equivalently, qx may represent the probability that x attaches to the event

that each supporter of his own party chooses the same strategy as he does. For party

i P tA,Bu, the beliefs qi P r0, 1s are distributed according to the twice continuously

5For a recent paper that studies turnout with a continuum of voters, please refer to Li &

Majumdar (2010).
6We assume away heterogeneity in voting costs, in order to focus solely on the impact of

heterogeneous self-delusion in voter turnout.
7We depart from Grafstein (1991) in supposing that individuals do not assume anything as

regards the behavior of the opposing party’s supporters. For a similar self-delusional assumption

applied to strategic voting in a three-candidate election, see Bravo-Furtado & Côrte-Real (2009b).
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differentiable cumulative function Fi. For technical reasons, we impose that @i P
tA,Bu, Fi p0q � 0 and F 1

i p0q ¡ 0. Whenever appropriate, we shall illustrate our

results with the uniform distribution in both parties. We focus on pure strategy

equilibria, and use vx P t0, 1u, where 0 represents abstention and 1 voting, to denote

agent x’s decision. These individual decisions induce two party-specific sets, the

mass of i � A,B supporters that vote and that abstain, respectively, which we

denote Vi and Ni.

3.2.2 The decision to vote

We now study the individual decision on whether to vote for one’s preferred

party or to abstain. Let us look at agent a. He gets a payoff of 1 if A wins, 1
2

in case

of a tie, and 0 if B wins. Additionally, he incurs a cost of c if he votes. Suppose

that, by voting, a does not change the election outcome. Then, it is obvious that

he is better off by abstaining because this avoids him the voting cost c and does

not change the payoff he gets from the winner of the election. If, however, a turns

a defeat into a tie or win, or a tie into a win, then it pays for him to vote given our

assumption on c. This behavior, namely, that a votes if and only if he thinks he is

pivotal, is standard in instrumental voting games.

To begin with, we state the obvious result that an agent of type qx � 0 (rational

in the usual sense) never votes given our assumption of a continuum of players,

for he knows he cannot possibly alter the election outcome. This implies that the

positive turnout that may obtain in the model is due solely to the self-delusional

beliefs of the voters.

Now take an agent a with qa ¡ 0. Let us emphasize a few important facts

regarding a’s decision. Firstly, a’s like-minded agents are the party A supporters,

hence he perceives the actual VB and NB, as his self-delusional belief only concerns

his party’s supporters. Secondly, as regards the masses of voters and abstainers

in party A, a considers that a fraction qa of A supporters choose the same action

as he does, independently of what their strategy prescribes. Hence, among the

mass of people supporting party A whose equilibrium strategies prescribe voting, he
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believes that a proportion qa mimic his behavior, and the same is true for the set of

abstainers. As for the remaining agents, a believes they stick to their equilibrium

actions. In algebraic terms, given VA and NA, a believes that a mass of p1� qaq VA
agents definitely vote and a mass of p1� qaq NA agents definitely abstain. The

others do the same as him. If he decides to abstain, the perceived mass of votes for

A is p1� qaq VA. If, on the contrary, he votes, he believes that the voting mass in

A is VA � qaNA.

Armed with these preliminary insights, it is straightforward that there are two

different situations in which a believes he is pivotal:

(i) Party A loses if he abstains and does not if he votes, i.e. p1� qaq VA   VB ¤
VA � qaNA

(ii) There is a tie if he abstains and party A wins if he votes, i.e. p1� qaq VA �
VB   VA � qaNA

Given that qa ¡ 0, it is always true that p1� qaq VA   VA�qaNA, which implies

that (i) and (ii) reduce to p1� qaq VA ¤ VB ¤ VA � qaNA. Naturally, analogous

conditions exist for party B supporters. This allows us to establish the following

Lemma.

Lemma 1. Take a given agent x who prefers party i to party j (i, j P tA,Bu, i � j).

His optimal decision, denoted v�x pqx, VA, VBq, is to vote if and only if qx ¡ 0 and

p1� qxq Vi ¤ Vj ¤ Vi � qxNi

3.2.3 Voting equilibrium

A direct implication of Lemma 1 is that the equilibrium is characterized by a pair

of cut-off levels, pq�A, q�Bq, such that x votes if and only if he has a type above or equal

to q�i . To see why, notice that agent x believes that, if he abstains, the actual voting

mass in his preferred party, Vi, is reduced by qx Vi, and, if he votes, it increases by
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qxNi. These differences are both increasing in qx, implying that whenever type qx

votes, so do higher types, who consider themselves more influential in the election

outcome. On the other hand, if an agent with type qx has abstaining as an optimal

decision, then every supporter of party i with a lower type also abstains. The

following Lemma formalizes this idea.

Lemma 2. An equilibrium of the voting game is characterized by the vector pq�A, q�Bq P
r0, 1s2 such that, @i P tA,Bu and @x supporting party i,

qx ¥ q�i ^ qx ¡ 0 ñ vx � 1, and qx   q�i _ qx � 0 ñ vx � 0

Obviously, an equilibrium of the game entails either a win of one of the parties

or a tie between the two. This latter situation is simple to characterize and is the

object of Lemma 3.

Lemma 3. One of the (possibly, multiple) equilibria is a tie if and only if the parties’

sizes are the same, i.e., m � 1.

It is easy to understand why this is the case. On one hand, if both parties have

the same size, then everyone (except for the non self-delusional agents, who have

0 mass) voting has to be an equilibrium because, when this happens, the actual

voting masses are the same, which leads all self-delusional agents to believe they

will turn their party’s defeat into a victory by voting. On the other hand, if a tie is

an equilibrium, then the voting masses in both parties are the same, which means

the optimal decision for everyone (again, except for the non self-delusional agents)

is to vote. If all agents from both parties are voting and there is a tie, then it must

be true that both parties have the same size, i.e., m � 1.

We now undertake a preliminary analysis of the equilibria of the game in which

one of the party wins. We begin by showing that one of the two conditions in Lemma

1 is redundant for each party. Let us suppose that the model is in equilibrium, i.e.,

VA � V �
A and VB � V �

B and, without loss of generality, that A is the winner, that is,

V �
A ¡ V �

B . As regards party A supporters, notice that the condition V �
B ¤ V �

A�qaN�
A

in Lemma 1 is verified for all the agents. Actually, even those for whom qa � 0
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acknowledge that the mass of voters in the opponent party is larger than that of

their own party if they vote. For the winning party supporters we are, thus, left

with the condition p1� qaq V �
A ¤ V �

B . The self-delusional cut-off level in this party

is defined by:

p1� q�Aq V �
A � V �

B (3.1)

What is the rationale for this condition? Take an agent with qa � 1: this

individual believes that all his fellow partisans act like him, hence there are no votes

in A if he abstains, leading party A to, at most, tie. Now, take an agent with qa

sufficiently close to zero: for him, A is the winner even if he abstains, as he believes

that the voting mass in his party is very close to the actual one. The marginal

A supporter is the one who believes that he turns party A’s win into a tie if he

abstains. It is instructive to rewrite (3.1) as q�A V
�
A � V �

A �V �
B which shows that the

marginal voter is the one who believes he eliminates party A’s margin of victory if he

abstains. All party A supporters with a higher qa believe that their action influences

the election outcome and vote to guarantee that A wins. Conversely, those with a

lower qa believe A’s win is assured independently of the action they choose.

Let us now look at the decision of a party B supporter. Since B actually loses

the election, each B supporter acknowledges that B loses should he abstain, that is,

the condition p1� q�Bq V �
B ¤ V �

A in Lemma 1 is trivially verified. For the losing party

supporters, we are thus left with the condition V �
A ¤ V �

B � qbN
�
B. The agents who

vote in equilibrium believe that B wins (or ties), should they decide to vote. Again,

it is straightforward to define a cut-off type q�B below which individuals abstain:

V �
B � q�B N

�
B � V �

A . (3.2)

In this case, the marginal voter believes that B ties if he votes. Rewriting (3.2)

as V �
A � V �

B � q�B N
�
B highlights the fact that this voter believes that he catches up

with the winning party by recovering the margin of victory with his vote.

Recalling the result in Lemma 2, i.e., that only the individuals with levels of q
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higher or equal to the marginal ones, the equilibrium voting masses in A and in B

are, respectively:

V �
A � 1� FA pq�Aq (3.3)

V �
B � p1� FB pq�Bqq m (3.4)

An equilibrium occurs when (3.1), (3.2), (3.3) and (3.4) are verified simultane-

ously. An analogous system of equations holds in an equilibrium in which B wins

the election. The next Section characterizes the set of equilibria thus obtained.

3.3 Who wins the election?

In this Section, we discuss the election result. We relate it to the size of the

minority party, m, and show that when it is sufficiently large, it may actually win

the election to the majority party.

The next Proposition shows how the set of possible equilibria of the game change

by varying the size of the minority.

Proposition 1. Suppose that voters are self-delusional. Then,

(i) If the parties have different sizes, there is at least one equilibrium in which the

majority party wins the election;

(ii) If the parties have different sizes, there are at least two equilibria in which the

minority party wins the election, provided the difference between the party

sizes is not too large;

(iii) If the parties have the same size, there is at least one equilibrium with each

of the parties winning, and one equilibrium in which there is a tie.

Proof. See Appendix.
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Therefore, there exists a minimum size of the minority, denoted m, above which

some equilibria of the game entail a minority-win. Interestingly, when m   m   1,

there are at least two equilibria in which the minority wins the election. Conversely,

there always exists at least one equilibrium in which the majority wins the election.

As we often use the uniform case to illustrate results and provide intuition, we

present a version of Proposition 1 specific to the case in which the level of self-

delusion is uniformly distributed in both parties in Corollary 1.

Corollary 1. Suppose that voters are self-delusional and the level of self-delusion

is uniformly distributed in both parties. Then,

(i) If the parties have different sizes, there is one equilibrium in which the majority

party wins the election;

(ii) If the parties have different sizes, there are two equilibria in which the minority

party wins the election, provided its size is larger than 87, 9% of the size of

the majority party;

(iii) If the parties have the same size, there is one equilibrium with each of the

parties winning, and one equilibrium in which there is a tie.

Proof. See Appendix.

To understand this result, notice that, if q is uniformly distributed in both par-

ties, i.e., @i P tA,Bu, Fi pqiq � qi, the system (3.1) – (3.4) boils down to:

$&
% qA � 1�ap1� qBq m

qA � 1� p1� p1� qBq qBq m
(3.5)

What about the case in which the minority B wins? Then, the analogous system

of equations reads:

$'&
'%

qB � 1� 1� qA p1� qAq
m

qB � 1�
c

1� qA
m

(3.6)
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Figure 3.1: Majority-win equilibria with self-delusion distributed uniformly

The solutions to (3.5) and (3.6), the equilibria of the model, are represented in

Figure 3.1 and Figure 3.2.

Let us provide an interpretation of these figures. The systems (3.5) and (3.6)

define the functions rA and rB, for the cases in which A and B wins the election,

respectively. Take the cases in which A, the majority party, wins, represented in

Figure 3.1. The curve rA gives, for each possible marginal individual in party B, the

qA level of the party A supporter who believes that there is a tie should he abstain.

Conversely, rB gives, for each possible marginal individual in party A, the qB level

of the party B supporter who believes that there is a tie should he vote. Obviously,

an equilibrium exists when the two intersect. The two curves always intersect once

(except for the case in which m � 1, in which the p0, 0q intersection represents a tie).

In the cases in which B, the minority party, wins, presented in Figure 3.2, the curves

rA and rB are analogous to the previous ones, and intersect only if m ¥ m, once if

m � m and twice otherwise (again, when m � 1, the p0, 0q intersection represents a

tie). Another way to state the result in Proposition 1 is, then, as follows.

Corollary 2. Suppose that voters are self-delusional. There is one critical value of

m, m   1 such that

(i) When m   m, there is at least one equilibrium in which party A wins the
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Figure 3.2: Minority-win equilibria with self-delusion distributed uniformly

election;

(ii) When m   m   1, there is at least one equilibrium in which party A wins the

election and at least two equilibria in which party B wins the election;

(iii) When m � 1, there are at least three equilibria: a tie, and one in which each

of the parties wins the election.

For the uniform case, the corollary goes through, by replacing “at least” with

“exactly”. This corollary highlights the fact that this game has multiple equilibria,

inducing potentially different election results, provided the party sizes are not too
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different. The reason for the multiplicity of equilibria is easily grasped by concen-

trating on the uniform distribution, and letting m � 1 (Figure 3.1(b) and Figure

3.2(d)). Using (3.5) and (3.6) with m � 1, one gets as a solution q�A � 0, 245 and

q�B � 0, 430. In such an equilibrium, V �
A � 0, 755, V �

B � 0, 570 and, conversely,

N�
A � 0, 245, N�

B � 0, 430. Now, let us check what happens to the marginal individ-

ual in party A: if he decides not to vote, he believes that the voting mass in party A

decreases by 0, 245� 0, 755, i.e., it goes down to p1� 0, 245q� 0, 755 � 0, 570 � V �
B .

In contrast, the marginal individual in party B believes that if he decides to vote,

V �
B increases by 0, 4302, i.e., it goes up to 0, 755, which is precisely V �

A . What about

the less self-delusional individuals, that is, the abstainers? Those in party A believe

that A wins anyway, even without their vote, hence there is no reason to bear the

cost of voting; conversely, those in party B think that B loses anyway, and the same

reasoning applies. As for the more self-delusional individuals, that is, the ones who

vote, those of the winning party A believe that A loses should they abstain (even

if A actually wins) and wins if they vote, while those of the losing party B believe

that B loses if they abstain and it wins if they vote (despite the fact that B actually

loses). By symmetry, there is another equilibrium where party B wins the election,

with q�A � 0, 430 and q�B � 0, 245.

The reasoning of a self-delusional voter actually lies at the heart of the multiplic-

ity result. A voter x believes that, should he abstain, he subtracts a share qx from

the actual mass of voters of his party. That is, self-delusion is like a magnifying lens

trough which the self-delusional individual observes the mass of voters of his party.

Now, in the case in which both parties have the same size and the same distribution,

the party which wins the election must include in its voting mass less self-delusional

individuals than the defeated party (otherwise it loses the election). We then have

the sort of self-fulfilling prophecy which is common in games with multiple equilib-

ria. The very existence of a larger voting mass ensures that individuals with a low q

still believe themselves to be pivotal. In the defeated party, instead, the low q types

apply their magnifying lens to a small actual voting mass, and this is not enough

to make them vote. The voters in this party must have a powerful magnifying lens,

for otherwise they could not be voting given the relatively small size of the actual
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voting mass.

Let us now move to the case where the party asymmetry is not too high, i.e.,

m   m   1, represented by Figure 3.1(a) and Figure 3.2(c). Here, there are three

different equilibria: one in which the majority wins the election, and two with the

minority winning. Let us index these equilibria by e P tM,L,Hu, where M is

the majority-win, L is the low-turnout minority win and H is the high-turnout

minority-win one. The same reason that explains the multiplicity of equilibria in

the case of symmetric parties applies here for the two minority-win equilibria. Let

the marginal self-delusion level in party i in equilibrium e be denoted qei . Then, we

have qLi ¡ qHi , @i P tA,Bu.8 Clearly, the L equilibrium displays a relatively smaller

mass of votes which excludes the less self-delusional ones, while the H one entails

a larger mass of voters which, as such, must include the less self-delusional ones.

Again, it is the very fact that the mass of voters is large that allows the voters with

a less powerful magnifying lens to vote. This same mechanism also explains why the

rA curve is actually a correspondence, in the case where the minority party B wins

the election. Indeed, for each marginal individual in party B, which determines

a voting mass in this party, there are two possible marginal individuals in party

A who believe that there is a tie, should they vote. These two possible levels of

self-delusion are such that (i) the voting mass is relatively large and the marginal

individual is not too self-delusional and projects his decision to vote on a small mass

of abstainers, or (ii) the voting mass is relatively small and the marginal individual

is very self-delusional and projects his decision to vote on a large mass of abstainers.

Coming back to the definition of the rA locus VA � qANA � VB, it encompasses the

actual voting mass VA and the projected one (should the marginal individual vote)

qANA. Clearly, in the high-turnout equilibrium it is the former that dominates,

while in the low-turnout equilibrium it is the latter. This distinction shows that in

the L equilibrium the set of voters displays high degrees of self-delusion.

Having extensively characterized the equilibria of the model, we can go further

and use their properties to explain some known facts about elections. That is the

8Notice that an equilibrium with a higher turnout corresponds to a lower marginal q.
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purpose of the next Section.

3.4 Empirical implications of self-delusion

There are some empirical regularities relating turnout and other variables in

elections that have become evident over time. We focus on two of them: closeness

in the voting share and the winner of the election. First, in Section 3.4.1, we search

for a relation between turnout and closeness, using both an ex-ante measure (the

relative size of the parties) and an ex-post (the margin of victory of the winning

party) one. We find that turnout can either increase or decrease with closeness and

that the self-delusional reasoning of voters plays an important role in the decreasing

of turnout, when it occurs. Then, in Section 3.4.2, we compare the turnout level

of the minority-win and majority-win equilibria and get the intuitive result that

turnout is higher when the minority wins the election.

3.4.1 Election closeness

It seems relevant to address the relationship between turnout and closeness of

the election. As put by Geys (2006) in his meta-analysis, “Closeness is by far the

most analyzed element in the turnout literature.” We shall define closeness using

two distinct perspectives. One is the ex-ante size of the parties, and the other is

the ex-post realized margin of victory, using the terminology in Geys (2006). The

latter is widely used in empirical studies (Geys, 2006), but has been criticized on

the grounds of its endogeneity. Geys (2006) lists a number of ex-ante measures of

closeness which have been used in the literature, including previous election results,

opinion polls, and newspaper reports. For a recent example, refer to Fauvelle-Aymar

& François (2006). In our model, the natural ex-ante measure to use is the party

size, which is given.

Firstly, we look at the impact of the relative party sizes on turnout, an ex-ante

measure of closeness. To simplify matters, we are going to present the results when
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the degree of self-delusion is uniformly distributed within each party, since this

allows us to specify the exact number of equilibria. Moreover, in order to avoid

the uninteresting case of no equilibrium and the non-generic cases of m � 1 or

m � m, we shall concentrate on the interval sm, 1r, in which there are exactly three

equilibria, M , L and H. Proposition 2 summarizes the effects of an approximation

of the relative parties’ sizes in this case.

Proposition 2. Suppose that voters are self-delusional, the level of self-delusion is

uniformly distributed in both parties and m   m   1. If the relative size of the

minority, m, increases, then,

(i) Turnout increases in both parties in the M equilibrium;

(ii) In the two equilibria in which the minority wins the election, turnout levels

diverge, that is, turnout decreases in the L equilibrium and increases in the H

equilibrium, in both parties.

Proof. See Appendix.

Closeness increases turnout in the M and in the H equilibrium. Indeed, the H

equilibrium converges to the tie equilibrium when m � 1, that is, everyone votes

in both parties. However, in the L equilibrium, decreasing the disadvantage of the

minority leads to a lower turnout. What is the intuition for this result? Observe

Figure 3.3 and recall that the reasoning of the marginal individual in the defeated

party A is “if I vote, I turn the defeat into a tie”, which implies that the voting

mass in party A, as perceived by him when he votes, VA � qANA, is equal to VB.

In the H equilibrium it is the actual voting mass VA that dominates, while in the L

equilibrium it is the projected one, qANA. The former is decreasing, while the latter

is increasing, in qA. If the size of the minority party, m, increases, then, for a given

marginal individual in party B, the mass of voters in this party increases. Now, the

defeated party A is facing a larger voting mass from the opponent party. Given that

in the L equilibrium it is the projected voting mass qANA, which is increasing in qA,

that dominates, the marginal individual must increase, further decreasing turnout.
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Figure 3.3: Effect of an increase in m in the minority-win equilibria

Conversely, in the H equilibrium, it is the actual voting mass VA, which is decreasing

in qA, that dominates, hence the marginal individual must decrease, thus increasing

turnout. This explains why the turnout levels diverge.

We thus obtain the unexpected result that closeness of the election may actually

decrease turnout. Interestingly, the meta-analysis by Geys (2006) identifies several

studies which conclude that closeness either decreases turnout or does not have any

conclusive effect. Our approach suggests that this apparent anomaly may actually

stem from self-delusion.

The result above is obtained under the hypothesis of a uniform distribution.

With alternative distributions, more equilibria may exist, but, in the majority-win

situation, the same comparative statics apply to the lowest equilibrium; for the

minority-win equilibria, the lowest and highest turnout equilibria behave like the L

and H equilibrium, respectively. As for the other (possibly, many) equilibria, the

impact of m alternates between increasing and decreasing turnout levels.

We now analyze the relationship between the margin of victory, which is an

ex-post measure of closeness, and turnout. In the uniform case, when the three

equilibria exist, it is possible to link in a very intuitive way these two concepts. The

next Proposition establishes that the higher the turnout, the lower the margin of
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victory (and the closer the electoral race).

Proposition 3. Suppose that voters are self-delusional, the level of self-delusion is

uniformly distributed in both parties and m ¥ m. Then, the level of turnout in each

party and the margin of victory move in opposite directions.

Proof. See Appendix.

We therefore provide a theoretical underpinning for the utilization of this ex-

post endogenous measure of closeness which is unrelated to rational expectations on

behalf of the voters, the traditional justification put forward in the literature (Geys,

2006). The intuition is different depending on the winner of the election. When

party B wins, the reasoning of the marginal individual in party A is such that he

believes to cancel the actual margin of victory by voting: in fact, he believes he is

adding his projected voting mass, q�AN
�
A, to the actual voting mass in A, leading to

a tie. It is then clear that, when the margin of victory increases, q�A also increases,

both because self-delusion and the mass of abstainers increase. In other words,

one has to be more self-delusional to believe that he can cancel a higher margin of

victory by dragging a part of the population of abstainers with him in his decision

to vote. When party A wins, the intuition is not so clear. In this case, the marginal

individual in party A believes that, if he didn’t vote, the margin of victory would

disappear and there would be a tie. More precisely, he believes that q�A V
�
A would be

removed from the actual voting in mass in A if he were to abstain. Here, it is not

so clear that a higher margin of victory occurs when q�A is higher, as this implies a

lower V �
A . However, when the three equilibria exist, m ¥ m and high levels of m,

in the M equilibrium, result in high voting masses and low self-delusion marginal

levels. Therefore, in order for q�A V
�
A to increase, q�A should also increase, so that the

marginal individual in party A believes to be able to remove a higher percentage of

the large actual voting mass by abstaining.
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3.4.2 Election result

Let us now shed some light on the well-established empirical fact that turnout

levels seem to have an impact on election results. Earlier contributions (Pacek &

Radcliff, 1995) use turnout rates as explanatory variables and show that the impact

on election results can be considerable. This has the obvious flaw that turnout rates

are endogenous to the voting behavior that also generates the election outcome. A

more recent body of literature analyzes the impact of turnout on election outcomes

by simulating a counter-factual where non-voters in a given election would actually

vote and obtain more modest, although significant, impacts of turnout on election

outcomes (Citrin et al. , 2003, Bernhagen & Marsh, 1997, Saglie et al. , 2012). Fowler

(2013) uses the adoption of compulsory voting in Australia as a natural experiment

and obtains considerable impact of turnout on the vote share of the labor party and

on policy outcomes at the national level.

It is straightforward that in the minority-win equilibria, turnout of minority

supporters is higher that that of majority supporters. However, nothing is said

about the total turnout level, that is, across the two parties’ supporters. It turns

out that, in the uniform case, when m   m   1, we may rank the turnout levels

between the three possible equilibria. This is established in the next Proposition.

Proposition 4. Suppose that voters are self-delusional, the level of self-delusion is

uniformly distributed in both parties and m   m   1. Then, turnout is the highest

in the H equilibrium, followed by the L and then by the M one.

Proof. See Appendix.

This proposition provides a theoretical explanation for the fact that variation

in turnout levels is associated with different election results. In particular, higher

turnout levels occur in minority-win equilibria. This is, to the best of our knowledge,

the first paper to derive this endogenous relationship, which is often times used in

the empirical literature. Importantly, this is not a causal relation.

The intuition is easy to grasp by focusing on Proposition 2. When m � 1, the

parties have the same size and the M and L equilibria have exactly the same total
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turnout, as one is the symmetric of the the other. When m decreases from 1, turnout

in each party increases in the M equilibrium and decreases in the L equilibrium.

Hence, it is clear that, when the parties have different sizes, total turnout is higher in

the M than in the L equilibrium. Besides, it is obvious that total turnout is higher

in the H than in the L equilibrium, as turnout in both parties is always higher in

the former.

The analysis undertaken so far does not say anything regarding the impact of

self-delusion in a given party’s chances of winning the election. In order to do so,

one must have an operational way to compare the self-delusion levels of different

distributions. We do so in the following Section 3.5, assuming specific distributions

of the degree of self-delusion for each party and stating that the one with more self-

delusion voters is the one with the distribution of self-delusional level that first-order

stochastically dominates that of the other party.

3.5 The advantage of self-delusion

The concept of self-delusion we introduced needs not to be equally present in

all parties participating in an election. This difference in self-delusion amongst

the voters of each party may result from connectedness in social networks such as

Facebook and Twitter. There is a growing body of literature (see, e.g., Cameron

et al. (2013), Cogburn & Espinoza-Vasquez (2011) and Dimitrova et al. (2011))

testing the impact of the parties’ presence in social networks on election results,

which suggests a statistically significant impact (albeit small in some references).

The link between horizontal community linkages and political participation has been

studied by political scientists. For instance, Fennema & Tillie (1999) show that

political participation of migrant communities in the city politics in Amsterdam is

related to the degree of civic community, as measured by the frequency of reading

ethnic newspapers, the frequency of watching the Amsterdam special television for

migrants, and, more importantly, the number of community organizations existing in

the city, as well as their connectedness as reflected in the fact that the same person(s)
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may sit simultaneously in the governing board of two or more organizations.

Let us formalize this difference in the level of self-delusion by introducing two

new variables, αA and αB, and defining that, for all i P tA,Bu, Fi pαi, qiq � qαii ,

with αi ¡ 0. This implies that @i P tA,Bu and @q P s0, 1r , Fi1αi pαi, qiq   0. In other

words, Fi first-order stochastically dominates Fj if and only if αi ¡ αj. Hence, αi

may be thought as a measure of the level of self-delusion of party i and a higher

αi corresponds to a more self-delusional party. Proposition 1 remains true, so the

majority may always win and, provided the parties’ sizes are not too different, so

does the minority. But now we can enrich Proposition 2, as we have two new

parameters which may influence turnout: αA and αB. Proposition 5 establishes the

effect of an increase in the self-delusion level of each party in the range of party B

sizes which allow both parties to win the election.

Proposition 5. If Fi pαi, qiq � qαii , with αi ¡ 0, which means αi measures the level

of self-delusion in party i, then m is increasing in αA and decreasing in αB.

Proof. See Appendix.

This result is quite intuitive. In fact, suppose αA increases, but m does not

change. This means that although party A has the same support mass, its supporters

are now more self-delusional. In other words, they feel that a higher proportion of

their fellow partisans decide in the same way they do, and so, believe themselves

to be pivotal more often than before. This represents a kind of empowerment of

party A. In this case, m goes up, implying that there is a range of minority sizes

which allowed B to be a possible winner of the election, but do not allow it anymore.

Facing a more self-deluded opponent in the elections, party B needs to get a higher

relative support than before in order to win the election. Something very similar

occurs when αB goes up. Now, it is party B which becomes more self-deluded and

m decreases. In this case, it is in party B we observe an increased propensity to

vote, and so this party can win the election with less support than before.

With this result, we can see that a party’s support is not the only factor which

helps it win an election. The degree to which its supporters believe to be able to be
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connected to their fellow partisans may also help to explain why some parties win

elections and others do not. With this in mind, it would be worthwhile to study

elections where the winning party was not the most supported one and investigate

if, for any reason, there was, amongst the supporters of this party, a higher link or

feeling of group identity which could induce a kind of self-delusional reasoning as

the one we present here.

3.6 Conclusion

This paper proposes a theory of voter turnout based on the rhizomatic Nash equi-

librium concept proposed by Bravo-Furtado & Côrte-Real (2009a). In our setup with

a continuum of agents, no one would vote if they were rational in the classical sense,

for each voter has zero mass and cannot influence the election outcome. Rhizomatic

thinking allows one to obtain positive turnout under very general conditions. In ad-

dition, the game has multiple equilibria, at least one of them with the majority party

winning the election, and at least two with the minority party winning. Closeness

of the election, as measured by the inverse of the party size difference, may decrease

voter turnout in the equilibrium where the minority party wins the election. We

also show that there is a trade-off between size and rhizomatic thinking, in the sense

that the minority party can afford to become minorityer, while still securing itself a

victory, provided its supporters become more rhizomatic, in a precise sense defined

in the paper.

The existence of multiple equilibria stems from the very nature of rhizomatic

thinking. Rhizomatic thinking is like a magnifying lens, and what the rhizomatic

individual is doing is observing the mass of voters with this lens. Now the party

which wins the election must include in its voting mass less rhizomatic individuals

than the defeated party (otherwise it loses the election). We then have the sort

of self-fulfilling prophecy which is common in games with multiple equilibria. The

very existence of a majority voting mass ensures that individuals with low rhizomacy

levels still believe themselves to be pivotal. In the defeated party, instead, the low
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rhizomatic types apply their magnifying lens to a minority actual voting mass, and

this is not enough to make them vote. The voters in this party must have a powerful

magnifying lens, for otherwise they could not be voting given the relatively minority

size of the actual voting mass.

This paper is a first step into the application of a new concept to the voter

turnout paradox. There are a number of ways in which one may envisage extending

this analysis. The most natural one is allowing for mixed strategies; abandoning

the continuum hypothesis is another interesting avenue for future research. Parties

are quite passive in our setup: letting them choose platforms or, perhaps more

interestingly, invest in the invisible links that make their supporters rhizomatic

using, e.g., the so-called social networks such as Facebook seems a promising step

for future research.

Appendix

Proof of Proposition 1

First of all, we define, for i P tA,Bu, party i’s mass of supporters, voting rate

and abstention rate, defined, respectively, by:

si �

$'&
'%

1 i � A

m i � B

(3.7)

vi pqiq � 1� Fi pqiq (3.8)

ni pqiq � Fi pqiq (3.9)

Generalizing (3.1), (3.2), (3.3) and (3.4) and using (3.7), (3.8) and (3.9), one can

see that an equilibrium where party i is the winner and party j is the loser solves

the following system of equations:

$&
% pp1� qiq vi pqiqq si � vj pqjq sj
pvj pqjq � qj nj pqjqq sj � vi pqiq si
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Rearranging, you get:

$'&
'%

qi � qj nj pqjq
vj pqjq � qj nj pqjq

pvj pqjq � qj nj pqjqq sj � vi pqiq si � 0

So, if we introduce the functions defined by:

hi pqjq � qj nj pqjq
vj pqjq � qj nj pqjq (3.10)

gi pqjq � pvj pqjq � qj nj pqjqq sj � vi phi pqjqq si (3.11)

the problem reduces to finding, for each m P s0, 1r, the zeros in r0, 1s of gi, as defined

in (3.11). For all i P tA,Bu, Fi is twice continuously differentiable, which means hi

and gi also are. Note that gi p0q � sj � si and gi p1q � sj ¡ 0.

To prove (i), just notice that gA is continuous, gA p0q � m� 1   0 and gA p1q �
m ¡ 0. Hence, by the intermediate value theorem, there is at least one zero of gA

in s0, 1r.

The proof of (ii) is not so straightforward, as gB p0q � 1 �m ¡ 0 and gB p1q �
1 ¡ 0. To move on, let us invoke the Weierstrass theorem, which helps us prove that

there is a solution to the problem min
qAPr0,1s

gB pqAq, as gB is a continuous function and

r0, 1s is a compact set. Let us define, for each pi, jq P tA,Bu2 : i � j and m P r0, 1s,
the following functions:

qmi pmq � arg min
qiPr0,1s

gj pqiq (3.12)

pi pmq � min
qjPr0,1s

gi pqjq � gi
�
qmj pmq

�
(3.13)

Before we proceed, we establish the following result:

Result 1. @i P tA,Bu, @m P r0, 1s , gi is strictly decreasing in 0 and strictly in-

creasing in 1.
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Proof. We know that, for each i P tA,Bu and m P r0, 1s, gi is differentiable in r0, 1s,
as FA and FB also are. Therefore, @ pi, jq P tA,Bu2 : i � j, g1i exists and is defined

by:

g1i pqjq �
�p1� qjq v1j pqjq � nj pqjq

�
sj � v1i phi pqjqq h1i pqjq si (3.14)

A simple calculation shows that @ pi, jq P tA,Bu2 : i � j:

h1i pqjq �
nj pqjq vj pqjq � qj v

1
j pqjq

pvj pqjq � qj nj pqjqq2
(3.15)

We thus get that g1i p0q � v1j p0q sj � �F 1
j p0q sj   0 and g1i p1q � sj�v1i p1q v1j p1q si �

sj � F 1
i p1q F 1

j p1q si ¡ 0, which means that gi is strictly decreasing in 0 and strictly

increasing in 1.

Since, for each pi, jq P tA,Bu2 : i � j, and m P r0, 1s, gi is strictly decreasing in

0, and gi p1q � sj ¡ sj � si � gi p0q, qmj P s0, 1r. As gi is continuous and r0, 1s is

constant, and therefore continuous, in m, pi is continuous, by the maximum theorem.

Also, as gi is differentiable, by the envelope theorem, we get that:

p1A pmq � gA
1
m pm, qmB q � vB pqmB q � qmB nB pqmB q

p1B pmq � gB
1
m pm, qmA q � �vB phB pqmA qq (3.16)

As qmA   1, (3.16) is negative or, equivalently, pB is strictly decreasing. Now,

on one hand, when m � 0, gB pqAq � vA pqAq � qA nA pqAq ¡ 0, @qA P r0, 1s, which

means pB p0q ¡ 0. On the other hand, when m � 1, gB p0q � 0 and gB is decreasing

in 0, and so pB p1q   0. Summing all up and using again the intermediate value

theorem, we conclude that pB has exactly one zero in s0, 1r, which we denote m. We

are then faced with three possibilities:

(i) If 0   m   m, pB pmq ¡ 0, which means gB ¡ 0, @qA P r0, 1s, and there are

no equilibria in which B wins the election.
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(ii) If m � m, pB pmq � 0, which means gB pqmA q � 0, and there is at least one

equilibrium in which B wins the election (there may be more than one, as qmA

may be a correspondence).

(iii) If m ¡ m, pB pmq   0, which means gB has at least one zero in s0, qmA r and at

least one other in sqmA , 1r, by the intermediate value theorem, and there are at

least two equilibria in which B wins the election.

To show (iii) is now easy. To prove the existence of an equilibrium in which

party i � tA,Bu wins the election, we need to show that, when m � 1, gi has at

least one zero in r0, 1s. In this case, we get gi p0q � 0 and gi p1q � 1 ¡ 0. As gi is

decreasing in 0, pi p1q   0. Therefore, by the intermediate value theorem, gi has at

least one zero in s0, 1r. Finally, Lemma 3 tells us that, when m � 1, a tie with all

self-delusional agents voting is an equilibrium.

Proof of Corollary 1

Let us begin by proving an useful intermediate Result.

Result 2. If @i P tA,Bu, Fi pqiq � qi, then, @ pi, jq P tA,Bu2 : i � j, @m P r0, 1s,
qmi pmq is unique and gi is strictly decreasing in

�
0, qmj pmq

�
and strictly increasing

in
�
qmj pmq , 1

�
.

Proof. Let us fix pi, jq P tpA,Bq , pB,Aqu and m P r0, 1s. If we derivate (3.14) and

(3.15), we get the following (omitting the argument qj from every function for an

easier reading):

g2i pqjq �
�p1� qjq v2j � 2v1j

�
sj �

�
v2i phiq h12i � v1i phiq h2i

	
si (3.17)

h2i pqjq � �
�
2vj v

1
j � qj v

2
j

� pvj � qj njq � 2
�
nj vj � qj v

1
j

� �p1� qjq v1j � nj
�

pvj � qj njq3
(3.18)

Now, as gi is differentiable, it must be the case that g1i
�
qmj

� � 0. Using (3.14),

(3.15) and the fact that @i P tA,Bu, Fi pqiq � qi, we find that:
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�
1� 2qmj

�
m � qmj

�
2� qmj

�
1� �

1� qmj
�
qmj

The right-hand side of this equation is positive, which means the left-hand side

must also be, hence, qmj   1
2
. Then, using (3.17) and (3.18), we get the following

expression for g2i evaluated at qmj :

g2i
�
qmj

� � 2

�
sj �

qmj
�
1� �

1� qmj
�
qmj

�� qmj
�
2� qmj

� �
1� 2qmj

�
�
1� �

1� qmj
�
qmj

�3

�

Since qmj   1
2
, this expression is positive. And this means that qmj is unique and

gi is strictly decreasing in
�
0, qmj pmq

�
and strictly increasing in

�
qmj pmq , 1

�
. To see

why, imagine that there is more than one qj P r0, 1s such that g1i pqjq � 0. Call the

smallest q1 and the second smallest q2. As g1i is 0 and g2i is positive in both of them,

we know that g1i must be positive in some interval to the right of q1 and negative in

some interval to the left of q2. Therefore, as g1i is continuous, by the intermediate

value theorem, there must be a qj P sq1, q2r, such that g1i pqq � 0. But then q2 is not

the second smallest, which is a contradiction. Hence, there is only one qj P r0, 1s
such that g1i pqjq � 0 and it has to be qmj . As gi is continuous and, by Result 1,

g1i p0q   0 and g1i p1q ¡ 0, by the intermediate value theorem, g1i must be negative in�
0, qmj

�
and positive in

�
qmj , 1

�
, which completes the proof.

Knowing Result 2, the proof of (i) becomes easy. As, for all m P r0, 1s, gA p0q   0,

gA p1q ¡ 0 and gA is strictly decreasing in r0, qmB pmqs and strictly increasing in

rqmB pmq , 1s, gA has exactly one zero in r0, 1s.

To prove (ii), let us first find m for the case in which @i P tA,Bu, Fi pqiq � qi. We

know, from the Proof of Proposition 1, that m is the the only zero of pB, as defined

in (3.13), with i � B and j � A. If this is the case, when m � m, gB pqmA q � 0 and,

as happens with every m, g1B pqmA q � 0. Gathering these informations, we get the

following system of equations:
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$&
%

1� p1� qAq qA �
�

1� q2A
1�p1�qAq qA

	
� 0

2qA � 1� qA p2�qAq
p1�p1�qAq qAq2 q � 0

The solution of this system of equations is pqA,mq �
�

5�?13
6

, 26
?

13�70
27

	
, which

means that m � 26
?

13�70
27

� 87, 9%.

Now, if m ¡ m, pB pmq is negative. This, together with the facts that gB p0q ¡ 0,

gA p1q ¡ 0 and gA is strictly decreasing in r0, qmA pmqs and strictly increasing in

rqmA pmq , 1s proves that gB has exactly two zeros in r0, 1s.

At last, (iii) is already proved. The proofs of (i) and (ii) cover the case in which

m � 1, which means that, when the parties have the same size, there is a single

equilibrium with party A winning and one other with party B winning the election.

As for the tie, number (iii) of Proposition 1 remains true in the uniform case.

Proof of Proposition 2

Let us consider here that, @ti, ju P tA,Bu : i � j, the function gi, as defined in

(3.11), depends on m and qj. gi is a C1 function, as it is twice continuously differ-

entiable. Fixing m � m� ¡ m, both A and B may win the election in equilibrium,

and so @i P tA,Bu, Dq�j P s0, 1r : gi
�
m�, q�j

� � 0. From the Proof of Corollary 1, we

know that gi
�
m�, qmj

�   0 and, in qj, gi is strictly decreasing in
�
0, qmj

�
and strictly

increasing in
�
qmj , 1

�
, which means that gi

1
qj

�
m�, q�j

� � 0. The conditions for the

application of the implicit function theorem are thus met and we can say that there

is, in a neighborhood of m�, a function fq�j which gives, for each m, the qj that

equals gi to 0, that is, the equilibrium self-delusion level in party j. From the same

theorem, we also know that fq�j is a C1 function and that, for all m in the domain

of fq�j :

f 1q�j pmq � �
gi

1
m

�
m, fq�j pmq

	
gi1qj

�
m, fq�j pmq

	 (3.19)

Before going to each specific equilibrium, let us just note that hi, as defined in

133



(3.10), gives, for each qj, the equilibrium level of qi. As q�j P s0, 1r, (3.15) is positive

in q�j , which means that q�A and q�B move in the same direction.

Now, the proof of (i) is easy. An easy derivation shows that gA
1
m pm, qBq �

vB pqBq � qB nB pqBq. As q�B P s0, 1r, we know that gA
1
m pm�, q�Bq ¡ 0. From the

Proof of Corollary 1, gA
1
qB
pm�, q�Bq ¡ 0. And so, (3.19) is negative in m�, and, in

the M equilibrium, q�A and q�B decrease when m increases, which means that turnout

increases in both parties.

As for (ii), the proof is similar. After finding that gB
1
m pm, qAq � �vB phA pqAqq

and remembering that q�A P s0, 1r, we conclude that gB
1
m pm�, q�Aq   0. The Proof of

Corollary 1 tells us that gB
1
qA

�
m�, qHA

�   0 and gB
1
qA

�
m�, qLA

� ¡ 0. Hence, for the

H equilibrium, (3.19) is negative in m�, and for the L equilibrium, (3.19) is positive

in m�. Therefore, in both parties, turnout levels diverge when m increases.

Proof of Proposition 3

First, let us look at an equilibrium in which A is the winner. According to (3.1),

it is true that V �
A � V �

B � q�A V
�
A � q�A p1� q�Aq, which is strictly increasing in

�
0, 1

2

�
and strictly decreasing in

�
1
2
, 1
�
. In the Proof of Proposition 2, we find that, in the

M equilibrium, f 1
q�B
pmq   0 and hA pqBq ¡ 0. This means that both q�A and q�B

decrease with m. Solving the model with m � m, we get that q�A � 0, 340, which

implies that, if m ¥ m, q�A   1
2
. Hence, in this range of m, a higher margin of

victory occurs when q�A and q�B are higher or, in other words, when turnout is lower.

Now, an adaptation of (3.2) to the case in which B is the winner shows that

V �
B � V �

A � q�AN
�
A � q�

2

A , which is strictly increasing in r0, 1s. This implies, in the

same way as in the M equilibrium, that higher margins of victory are associated

with lower turnout levels.

Proof of Proposition 4

Let us start by defining the general turnout rate in equilibrium e, for each m P
sm, 1s (remember that f e

q�i
is the function that gives, for each m, the marginal qi in
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equilibrium e):

T e pmq � V e
A pmq � V e

B pmq
1�m

�
°
iPtA,Bu vi

�
f e
q�j
pmq

	
si pmq

1�m
(3.20)

Our goal is to prove that @m P sm, 1s , TM pmq   TL pmq   TH pmq.

Now, in an equilibrium in which party i wins and party j loses the election (i, j P
tA,Bu, i � j), we know that (3.11) is 0, which means that vi

�
f e
q�i
pmq

	
si pmq ��

vj

�
f e
q�j
pmq

	
� f e

q�j
pmq nj

�
f e
q�j
pmq

		
sj pmq. Introducing this and the fact that

@i P tA,Bu, Fi pqiq � qi into (3.20) and deriving it, we get (omitting the argument

from every function for an easier reading):

T e
1 pmq �

�
�2f e

1

q�j
vj sj �

�
2vj � n2

j

�
s1j
	
p1�mq � �

2vj � n2
j

�
sj

p1�mq2 (3.21)

In the M equilibrium, j � B and so (3.21) becomes:

TM
1 pmq �

�2fM
1

q�B
vBm p1�mq � 2vB � n2

B

p1�mq2

As stated in the Proof of Proposition 2, fM
1

q�B
  0, which means that TM

1 ¡ 0

and TM is strictly increasing. In the L equilibrium, j � A and so (3.21) becomes:

TL
1 pmq � �

2vA

�
p1�mq fL1

q�A
� 1

	
� n2

A

p1�mq2

The Proof of Proposition 2 tells us that fL
1

q�A
¡ 0, hence TL

1   0 and TL is strictly

decreasing. Solving the model, we find out that TM pmq � 0, 582   0, 846 � TM pmq
and that TM p1q � TL p1q � 0, 662. Since for all e P tM,L,Hu, T e is continuous

(because for all e P tM,L,Hu and i P tA,Bu, f e
q�i

is continuous), we conclude that

@m P sm, 1r , TM pmq   TL pmq.

Finally, just note that @m P sm, 1r , @i P tA,Bu, fL
q�i
pmq ¡ fH

q�i
pmq, which is

enough to prove that, in this interval, TL pmq   TH pmq.
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Proof of Proposition 5

In this setting, the problem of finding an equilibrium where B wins the election

still consists on finding the zeros of gB, as defined in (3.11). The functions qmi and pi,

defined in (3.12) and (3.13), respectively, depend on m, αA and αB, in this context.

But pB remains strictly decreasing in m, pB p0, αA, αBq ¡ 0 and pB p1, αA, αBq   0,

by an analogous reasoning to the one applied in the Proof of Proposition 1, hence

m still exists.

By the envelope theorem, for all δ P tm,αA, αBu, we know that pB
1
δ pm,αA, αBq �

gB
1
δ pm,αA, αB, qmA pm,αA, αBqq. Removing the arguments for an easier reading, we

get:

pB
1
m pm,αA, αBq � �vB phBq   0 (3.22)

pB
1
αA
pm,αA, αBq � p1� qmA q vA1αA � vB

1
qB
phBqhB 1

αA
(3.23)

pB
1
αB
pm,αA, αBq � ln phBqhbαAm   0 (3.24)

Excluding the casem � 1, in which qmB � 0, and noticing that gB
1
qA
pm,αA, αB, 1q �

1 � αAαBm ¡ 0, we can conclude that gB
1
qA
pm,αA, αB, qma q � 0. Using (3.14), this

implies that:

vB
1
qB
phBq �

p1� qmA q vA1qA � nA

hB
1
qA

(3.25)

Plugging (3.25) into (3.23), and doing some manipulations, we get that:

pB
1
αA
pm,αA, αBq � � ln pqmA q pqmA qαA

1� pqmA qαA � pqmA qαA�1

1� pqmA qαA � qmA
¡ 0 (3.26)

Now, fixing pαA, αBq, m is such that pB pm,αA, αBq � 0. Applying the implicit

function theorem to this equation, we can say it defines a function f pαA, αBq which

gives the value of m for each for each pαA, αBq. The same theorem tells us that, for

all δ P tαA, αBu:
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f 1δ pαA, αBq � � pB
1
δ pf pαA, αBq , αA, αBq

pB 1
m pf pαA, αBq , αA, αBq

(3.27)

Using (3.22), (3.24), (3.26) and (3.27), we get f 1αA pαA, αBq ¡ 0 and f 1αB pαA, αBq  
0, thus proving the result.
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Bravo-Furtado, João, & Côrte-Real, Paulo P. 2009b. Rhizomatic Thinking and

Voting Equilibria in Large Multi-Candidate Elections under Plurality Rule.

139



C. Mueller, Dennis, & Stratmann, Thomas. 2003. The economic effects of democratic

participation. Journal of Public Economics, 87(9-10), 2129–2155.

Camerer, Colin. 1998. Bounded Rationality in Individual Decision Making. Exper-

imental Economics, 1(2), 163–183.

Camerer, Colin F., Ho, Teck-Hua, & Chong, Juin-Kuan. 2004. A Cognitive Hierarchy

Model of Games. The Quarterly Journal of Economics, 119(3), 861–898.

Cameron, Michael P., Barrett, Patrick, & Stewardson, Bob. 2013. Can Social Media

Predict Election Results? Evidence from New Zealand.

Choi, James J., Laibson, David, Madrian, Brigitte C., & Metrick, Andrew. 2003.

Optimal Defaults. The American Economic Review, 93(2), 180–185.

Citrin, Jack, Schickler, Eric, & Sides, John. 2003. What if Everyone Voted? Simu-

lating the Impact of Increased Turnout in Senate Elections. American Journal of

Political Science, 47(1), 75–90.

Coate, Stephen, & Conlin, Michael. 2004. A Group-Rule Utilitarian Approach to

Voter Turnout: Theory and Evidence. The American Economic Review, 94(5),

1476–1504.

Cogburn, Derrick L., & Espinoza-Vasquez, Fatima K. 2011. From Networked Nom-

inee to Networked Nation: Examining the Impact of Web 2.0 and Social Media

on Political Participation and Civic Engagement in the 2008 Obama Campaign.

Journal of Political Marketing, 10(1-2), 189–213.

Conitzer, Vincent. 2012. Should Social Network Structure Be Taken into Account

in Elections? Mathematical Social Sciences, 64(1), 100–102.

Conley, John P., Toossi, Ali, & Wooders, Myrna. 2001. Evolution and voting: how

Nature makes us public spirited. Warwick Economic Research Papers.

Conlisk, John. 1980. Costly Optimizers versus Cheap Imitators. Journal of Eco-

nomic Behavior & Organization, 1(3), 275–293.

140



Conlisk, John. 1996a. Bounded Rationality and Market Fluctuations. Journal of

Economic Behavior & Organization, 29(2), 223–250.

Conlisk, John. 1996b. Why Bounded Rationality? Journal of Economic Literature,

34(2), 669–700.

Cox, James C., & Walker, Mark. 1998. Learning to Play Cournot Duopoly Strategies.

Journal of Economic Behavior & Organization, 36(2), 141–161.

de Palma, Andre, Myers, Gordon M., & Papageorgiou, Yorgos Y. 1994. Rational

Choice under an Imperfect Ability to Choose. The American Economic Review,

84(3), 419–440.

DeMichelis, Stefano, & Dhillon, Amrita. 2001. Learning in elections and voter

turnout equilibria. Warwick Economic Research Papers.

Dhillon, Amrita, & Peralta, Susana. 2002. Economic Theories of Voter Turnout.

The Economic Journal, 112, 332–352.

Dimitrova, Daniela V., Shehata, Adam, Strömbäck, Jesper, & Nord, Lars W. 2011.
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