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Abstract 

 

The microorganims from the Geobacter genus are very interesting because of their 
potential use for biotechnological applications. They can transfer electrons towards extracellular 
terminal acceptors, which include toxic or radioactive metals. In addition, they also have the 
capability to convert renewable biomass into electricity. The most studied members of the 
Geobacter genus are the Geobacter metallireducens and Geobacter sulfurreducens bacteria. G. 
metallireducens displays some particular physiological aspects that are even more interesting 
compared to G. sulfurreducens, which include (i) their ability to reduce aromatic compounds, (ii) 
more efficient Fe(III) reduction rates, and (iii) the ability to use nitrate as terminal electron 
acceptor. Similarly, to G. sulfurreducens, a family of five homologous periplasmic triheme c-type 
cytochromes, designated PpcA, PpcB, PpcC, PpcE and PpcF, was identified in G. 
metallireducens. In G. sulfurreducens the triheme cytochromes were shown to be crucial for 
extracellular electron transfer and therefore it is conceivable that these proteins play a similar 
role in G. metallireducens. Therefore, the main goal of this work was to optimize the production 
of G. metallireducens triheme cytochromes as a foundation to future optimization of G. 
metallirudecens-based biotechnological applications. To achieve this goal, the proteins were 
cloned (except PpcB), heterologously expressed in Escherichia coli and purified. The 
preliminary characterization of PpcA and PpcF was also undertaken in the present work. The 
data obtained showed that both are low-spin hexacoordinated c-type cytochromes in the 
reduced and oxidized forms. 

In parallel, it was also undertaken an evolutionary study on PccH, a monoheme c-type 
cytochrome from G. sulfurreducens that is crucial for microbial electrosynthesis pathways in this 
bacterium. The results obtained suggested that PccH is a member of a new subclass within the 
class I cytochromes. 

 
Keywords: Geobacter metallireducens; c -type cytochrome; electron transfer; protein cloning, 
heterologous expression, protein purification 
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Resumo 

 

Os microorganismos do género Geobacter são muito interessantes devido ao seu 
potencial uso em aplicações biotecnológicas. A sua relevância deve-se à capacidade de 
transferir electrões para aceitadores extracelulares que incluem metais tóxicos ou radioactivos. 
Para além disso, conseguem ainda converter biomassa renovável em electricidade. As 
bactérias mais estudadas do género Geobacter são as das espécies Geobacter 
metallireducens e Geobacter sulfurreducens. Quando comparadas com G. sulfurreducens, as 
bactérias G. metallireducens apresentam alguns aspectos fisiológicos ainda mais interessantes 
e que incluem: (i) a capacidade de reduzir compostos aromáticos, (ii) uma maior eficiência na 
redução de Fe (III) e (iii) a capacidade de utilizar o nitrato como aceitador de electrões. 

À semelhança de G. sulfurreducens foi possível identificar uma família composta por 
cinco citocromos tri-hémicos periplasmáticos do tipo c (designados por PpcA, PpcB, PpcC, 
PpcE e PpcF) em G. metallireducens. Em G. sulfurreducens os citocromos trihémicos 
periplasmáticos demonstraram ser cruciais para a transferência extracelular de electrões sendo 
por isso concebível estas proteínas desempenhem o mesmo papel em G. metallireducens. 

O objetivo principal deste trabalho consistiu em optimizar a produção dos citocromos 
trihémicos de G. metallireducens tendo em vista uma futura optimização das aplicações 
biotecnológicas. Para atingir este objectivo estas proteínas foram clonadas (excepto o PpcB) e 
posteriormente expressas heterologamente em Escherichia coli e purificadas por técnicas 
cromatográficas. Foi ainda possível efectuar uma caracterização preliminar das propriedades 
dos citocromos PpcA e PpcF. Os resultados obtidos por espectroscopia de ressonância 
magnética nuclear e espectroscopia UV-visível indicam que ambas as proteínas se encontram 
no estado de spin baixo na forma oxidada e reduzida. 

Paralelamente, também foi também efectuado um estudo evolutivo sobre o citocromo c 
mono-hémico PccH de G. sulfurreducens, o qual se revelou crucial nas vias de electrossíntese 
desta bactéria. Os resultados obtidos mostram que este citocromo é um membro de uma nova 
sub-classe da classe I dos citocromos. 

 
 

Termos chave: Geobacter metallireducens, citocromos do tipo c, transferência de electrões, 

Clonagem de proteínas, Expressão heteróloga, purificação de proteínas 
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1.1.1. Geobacteraceae 

 

The Geobacter genus represents one of the most usually studied groups of 

microorganisms capable of extracellular electron exchange. It is characterized by Gram-

negative and anaerobic bacteria from the δ-Proteobacteria family. However, recently, studies 

suggested that Geobacter sulfurreducens can tolerate small amounts of oxygen are therefore is 

not strictly anaerobic
1
. The members of Geobacter genus are commonly found in several 

environments due to their important role in degradation of organic compounds and 

bioremediation of toxic metals, especially in aquifers polluted by or rich in organic matter 
2–5

. 

These bacteria are particularly abundant in Fe(III) rich environments in which they promote the 

metal reduction process. Therefore, it is fundamental to understand the environmental factors 

that modulate their growth and metabolic activity
6
.  

The Geobacter members are very interesting due to their roles in the carbon and metal 

cycles in the aquatic sediments. They are relevant from the point of view of bioremediation in 

underground aquifers contaminated by organic and metal compounds as mentioned above. The 

Geobacter group can be also used in microbial fuel cells (MFCs) for producing electricity from 

organic matter in which microorganisms are the catalyst for oxidizing the organic matter (Figure 

1). The anaerobic anode chamber contains organic fuel and a graphite electrode. The cathode 

chamber has a similar electrode and is aerobic. Geobacter transfers electrons released from the 

oxidation of organic matter onto the anode. The electrons flow from the anode to the cathode. 

The two chambers are separated by a cation-selective membrane that permits the protons that 

are released from oxidized organic matter to migrate to the cathode side, where they combine 

with electrons and oxygen to form water
6
. However, difficulties in scaling up MFCs for extracting 

energy on an industrial scale have significantly limited their short-term practical use 
7
.  

In 1987, Geobacter metallireducens was the first microorganism to be isolated from 

sediments in the Potomac River from Washington D.C. This bacteria obtains its metabolic 

energy by using iron oxide in the same way that humans use oxygen. G. metallireducens and 

other species that have subsequently been isolated from a wide diversity of environments 

represent a very important model of iron transformations on modern earth and may explain 

geological phenomena, such as the massive accumulation of magnetite in ancient iron 

formations
8
.  

The most studied members of the Geobacteraceae family are the G. sulfurreducens and 

G. metallireducens. The first studies on the mechanisms for Fe (III) oxide reduction were carried 

out on G. sulfurreducens because it was the first species of this family for which a genetic 

system was developed
9
. G. metallireducens is a more effective Fe (III) oxide reducer than G. 

sulfurreducens it shows other particular physiological features
10

. In fact, in contrast with G. 

sulfurreducens, G. metallireducens do not use fumarate as a final electron acceptor. To date, 

nitrate is the only non-metallic electron acceptor that can be used by these bacteria, besides 

anthraquinone-2,6-disulfonic acid (AQDS) and humics
6
. 
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Nowadays, G. metallireducens is more appealing than G. sulfurreducens in some 

physiological aspects, which include for example aromatic compounds metabolization
11

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Scheme of a Geobacter-powered microbial fuel cell
12

. The anaerobic anode chamber 
contains the organic fuel, whereas the cathode chamber is aerobic. Geobacter cells transfer electrons 
released from the oxidation of the organic fuel onto the anode, which can be used to power electric 
devices. The two chambers are separated by a cation-selective membrane that permits the protons that 
are released to migrate to the cathode side, where they combine with electrons and oxygen to form water.  

 

1.1.2. Geobacter metallireducens 

 

G. metallireducens has a high importance since it was the first discovered 

microorganism with the ability to: (i) storage energy for their own growth from the oxidation of 

compounds coupled to reduction of Fe(III), Mn(IV) or U(VI); (ii) oxidize aromatic hydrocarbons 

under anaerobic conditions
13

; (iii) utilize humic substances as electron acceptors; (iv) couple the 

oxidation of organic compounds to carbon dioxide using an electrode as the sole electron 

acceptor and (v) use of a poised electrode as a direct electron donor 
10

  

As mentioned above, G. metallireducens is a dissimilatory iron reducing bacterium that 

also has the ability to respire nitrate to ammonia. In this process, the biochemical 

characterization of its components revealed that c-type cytochromes appear to be over-

expressed when the cells utilize nitrate as terminal electron acceptor. In previous studies, a 

cytochrome c-containing enzyme complex that exhibits both nitrate and nitrite reductase 

activities has been described
14

 . 
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Tremblay and co-workers 
15

 identify a very important role for pilli in the Fe(III) reduction 

and in the transfer of electrons to electrodes in G. metallireducens. The motility is one of the 

reasons why these bacteria are more efficient in the reduction of Fe (III) oxides compared to G. 

sulfurreducens. However the c-type cytochromes are important to this process as well
15

. To 

date, the components and mechanisms underlying the extracellular electron transfer in G. 

metallireducens are not yet fully elucidated 
16

. This is a crucial step to contribute to develop 

future applications in biofuel production and bioremediation. 

 

1.1.3. C-type cytochromes 

 

Despite the lack of information regarding the precise extracellular electron transfer 

mechanisms, it is consensual that c-type cytochromes play a crucial role in this process. 

Cytochromes are electron transfer proteins containing one or more heme groups. The heme 

group is formed by a tetrapyrrole porphyrin ring coordinated to an iron atom. The cytochromes 

have characteristic absorption bands in the visible wavelength range that change with redox, 

spin and coordination state. Cytochromes can be classified as type a, b, c or d according to the 

type of substituents at the periphery of the porphyrin ring
17

. 

The small size, high solubility and high helical content and the presence of the heme 

cofactor have permitted the study of cytochromes c through a variety of spectroscopic 

techniques
18

. In c-type cytochromes the heme(s) group(s) is covalently bound through thioether 

bonds to cysteine residues of the polypeptide chain arranged in a typical CXXCH motif
17

. The 

heme group (Figure 2) is composed by proton-containing groups (four methyl groups, four 

meso protons, two thioether protons, two thioether methyl and two propionate groups)
19

.  

 

 

Figure 2: The structure of c-type heme group labelled accordingly to the IUPAC nomenclature
19

. 
The two tioether bonds (not shown) are established between atoms 3

1
H and 8

1
H with the sulfur atom of 

the cysteine residues in the heme binding motif. 

 

 

 



Chapter I - Fishing the key biological components of the bacterium Geobacter metallireducens for optimal biotechnological applications 

7 
 

 

1.1.4. Periplasmic cytochromes c7 in Geobacter 

 

 Some extracellular electron transport components are well conserved between G. 

sulfurreducens and G. metallireducens. This is the case of the genes coding the MacA 

(Gmet_3091 and GSU_0445) and PpcA (Gmet_2902 and GSU_0612), which are involved in Fe 

(III) and U(VI) reduction. However many of the genes that code for extracellular electron transfer 

by G. sulfurreducens, like some essential c-type cytochromes, don’t have homologs in G. 

metallireducens.  

Five triheme periplasmic cytochromes, designated PpcA, PpcB, PpcC, PpcD and PpcE, 

were identified in G. sulfurreducens 
22, 23

. These five cytochromes are small soluble proteins, 

each with approximately 10 kDa
20

, and have been extensively studied. These cytochromes have 

bis-His axial coordination, different and negative redox potentials and their structures have been 

determined 
22

 (Figure 3). The hemes are numbered I, III and IV, a designation that derives from 

the superimposition of the hemes with those of the structurally homologous tetraheme 

cytochromes c3. 
22–24

. 

 

 

Figure 3: Structures of triheme periplasmic cytochromes from Geobacter sulfurreducens: PpcA 
(2LDO, orange), PpcB (3BXU, green), PpcC (3H33, blue), PpcD (3H4N, grey) and PpcE (3H34, pink). 
PDB accession code in parenthesis with the corresponded color in the figure. 

 

Similarly, it was also possible to identify a family of five triheme periplasmic 

cytochromes in G. metallireducens, PpcA, PpcB, PpcC, PpcE and PpcF. The designation for 
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cytochrome PpcF derives from the the relative little homology of this protein with PpcD. As 

mentioned above, it is suggested that these triheme cytochromes are involved in extracellular 

electron exchange. In particular, PpcA (coded by gene gmet2902) was shown to be important 

for direct interspecies electron transfer (DIET). DIET consists in microbial syntrophy in which 

microorganisms establish electrical connections for the transfer of electrons from one syntrophic 

partner to another
7
. PpcA doesn’t directly help to make extracellular electrical contact between 

the microorganisms, though it is involved in the process of extracellular electron transfer 
25

.  

On the other hand PpcF (coded by gene Gmet0335) allows the transfer of electrons to 

the nitrate reductase from extracellular electron donors such as humic substances or graphite 

electrodes
10

. As mentioned above, G. metallireducens has the ability to reduce nitrate, in 

contrast with G. sulfurreducens. The nitrate reductase activity of G. metallireducens is attributed 

to the narGYJI genes (Figure 4). The gene ppcF of nar operon encodes a periplasmic triheme 

c-type cytochrome involved in this reduction processes.  

 

 

 

 

Using the PpcF amino acid sequence, the non-redundant amino acid database of NCBI 

was searched using the Basic Local Alignment Search Tool (Blast)
26

, and in addition to the five 

cytochromes c7 mentioned above, other cytochromes c7 were found: Geobacter 

metallireducens; Geobacter sulfurreducens KN400; Geobacter sulfurreducens PCA; Geobacter 

sp. M18; Geobacter bemidjiensis; Geobacter lovleyi; Pelobacter propionicus. (Figure 5). 

 

This work constitutes the first step to understand the role of periplasmic triheme 

cytochromes in G. metallireducens and simultaneously build foundations to optimize future 

biotechnological applications driven by these bacteria. In order to achieve this goal it is first 

necessary to clone, express and purify each protein (PpcA, PpcB, PpcC, PpcE and PpcF).  

 

Figure 4: The nar operon encodes the nitrate and nitrite transporters (narK-1, narK-2), two c-type cytochromes 
including PpcF, and two genes of molybdenium cofactor biosynthesis (moeA-2, moaA-2) 

10
. 
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Figure 5: Alignment of cytochromes c7 amino acid sequences. PpcA-F, Geobacter metallireducens; Gsk, Geobacter sulfurreducens KN400; Gsu, Geobacter 
sulfurreducens PCA; Geb, Geobacter sp. M18; Gbm, Geobacter bemidjiensis; Glo, Geobacter lovleyi; Ppd, Pelobacter propionicus. The numbers refer to the gene that encodes 
for each cytochrome in the Keeg data base. The conserved residues in the proteins are boxed: heme attached (gray) and non-heme attached residues (black). The sequence 
identity (%) for each cytochrome in relation to PpcF is also indicated. 
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1.2. Methods 
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In order to understand the mechanisms underlying the extracellular electron transfer it is 

necessary to study their components. In the present work the focus was the triheme 

cytochromes from G. metallireducens. The detailed biochemical study of these proteins requires 

considerable amounts of material. Thus, it is not practical to isolate the proteins directly from G. 

metallireducens, because of the slow growth rates and required anaerobic conditions. In 

addition, due to the large amount of c-type cytochromes produced by G. metallireducens the 

purification of a target one is also more complex. Consequently, the first step of this work 

encompassed the cloning and expression of each protein in E. coli. The use of E.coli in 

heterologous expression holds up to the fact that there are a lot of expression vectors, absence 

of endogenous cytochromes expression during the fast aerobic growth, easy culture 

maintenance, and low cost. The second step of the protocol involved the purification of each 

cytochrome using cation exchange and molecular exclusion chromatography. For last, the 

proteins were preliminary characterized by mass spectrometry, UV-visible and NMR 

spectroscopy. An overview of the methodology used is described in Figure 6. 

 

 

 

Figure 6: Overview of the methodology used to clone, produce, purify and characterize triheme cytochromes 

from G. metallireducens. 
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1.2.1.  Cloning of cytochromes c7  from G. metallirecducens 

 

Gene sequences for each triheme cytochrome from G. metallireducens studied in this 

work were obtained from Kyoto Encyclopedia of Genes and Genomes Web site 

(http://www.genome.jp/kegg-bin/show_organism?org=gme). The accession numbers are listed 

in Table 1. Each triheme cytochrome was predicted to be located on the bacteria’s periplasm. 

The prediction of the signal peptide cleavage site of each protein was calculated by 

bioinformatics tools, the Signal IP 4.1 server
27

 and PSORT Prediction 

(http://psort.hgc.jp/form.html). This step allowed us to identify the soluble part of each protein for 

the cloning step (Supplementary 4.1.A). 

 

Table 1: Access number in Kyoto Encyclopedia of Genes and Genomes Web site and signal peptide 

cleavage site calculated by two bioinformatics tools for the five periplasmic triheme cytochromes from G. 

metallireducens. 

Protein Access number Signal peptide Cleavage 

Signal IP 4.1 PSORT  

PpcA Gmet_2902 20-21 20 

PpcB Gmet_3166 20-21 20 

PpcC Gmet_3165 23-24 23 

PpcE Gmet_1846 20-21 20 

PpcF Gmet_0335 22-23 22 

 

The primers for each gene sequence of the five triheme cytochromes and the 

expression vector that encodes for the PpcF protein were already available in the laboratory. 

Primers were purchased from Invitrogen, restriction enzymes and T4 DNA ligase from 

Fermentas.  

The genes coding for PpcA, PpcB, PpcC and PpcE were amplified with primers 

containing restriction sites for the enzymes HindIII and NotI (Table 2) using Phusion High-

Fidelity DNA polymerase (Finnzymes) (Program in Supplementary 4.1.B, Table B-1). 

Amplification products were purified using Wizard_PCR Preps DNA Purification System 

(Promega). A 0.8% agarose gel electrophoresis was used to confirm the fragment size of each 

amplified PCR fragment. The digestion of the fragments was performed with the restriction 

enzymes HindIII (VWR) and NotI (Promega) at 37ºC during ≈6 hours, and then 20 min at 65ºC 

to inactivate the restriction enzymes. 

The vector used for cloning was previously digested with the same restriction enzymes. 

This vector contains the lac promoter, the OmpA leader sequence and a resistance marker for 

ampicillin. Ligation of the fragment to the vector was carried out using a fragment:vector molar 

ratio of 5:1 and 3:1, during 1 hour at 22 °C, followed by a period of 20 minutes at 65°C. The 
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ligation product was transformed into E. coli DH5α competent cells prepared by the calcium 

chloride method and plated for selection in LB medium supplemented with ampicillin (100 

µg/mL). The colonies were screened by colony PCR (Program in Supplementary 4.1.B, Table 

B-2) with pCK32 primers (pCK32_fw: 5’-GGCTCGTATGTTGTGTGGAA-3’ and pCK32_rv: 5’-

AAGGGAAGAAAGCGAAAGGA-3’). The amplification was performed using Taq DNA 

polymerase (VWR). After the confirmation of the fragment size by 0.8% agarose gel 

electrophoresis of the PCR product, the cells were grown in liquid LB medium supplemented 

with ampicillin for plasmid extraction and sequencing. All DNA quantifications were done in 

Nanodrop 1000 (Thermo Scientific).  

 

Table 2: Primers used to amplify the sequence of each protein. 

Protein Primer 

Forward Reverse 

PpcA CGGCCTTGCGGCCGCCGCTGA

CGAGCTTACCTTCAAG 

CGCCGGAAAGCTTCACCATTACTTCT

TGTGGCAATCGCCG 

PpcB GCGGCGGCCGCGGCCGACACC

CTCAC 

CCGGCTGATTCGGCCGAAGCTTTTAC

TTCTTGTGGC 

PpcC GAGCGGCGGCCGCCSTCGAGA

CCATTACCTTTC 

CGTCATAGACAAAGCTTCAACGAGTT

AGCCACCTCCGTGAC 

PpcE CGTACCCGTCGCGGCCGCTGC

GGATACCATGATATTC 

CCGGCTAAGCTTGACATCAAGGGTG

CTACTTCCTGTGGTC 

PpcF CACATGCGGCCGCCGCCGACG

TATTTGAATTC 

GCCCCTACCGCAGGTTCAAGCTTTTA

CTTCTTGTGGCAG 

 

 

The gene that encodes for the PpcB protein was not successfully cloned into the 

expression vector, using the previously described protocol. A different ligation protocol was 

tried: 25-50 ng of expression vector and three times more quantity of insert were mixed to a 100 

µl final volume. 1 µl of glycogen, 1/10 of sodium acetate 3 M and three times the volume of 

absolute ethanol (300 µl) were added to the previous mixture and were incubated during 1 h, at 

-70ºC to precipitate the DNA. After that the mixture was centrifuged at 13,000 rpm, during 30 

min, 4ºC. The supernatant was rejected. Then we add 500µl of 70% ice ethanol to remove the 

salts. The tube was gently inverted to wash the pellet. After that the tube was centrifuged at 

13,000 rpm during 15 min at 4ºC. The supernatant was rejected. 10 µl of DNA T4 ligase buffer, 

9 µl of milli-Q water autoclaved and 1 µl of DNA T4 ligase were added to the pellet and placed 

overnight at 4ºC.  

 

 

 

 



Chapter I - Fishing the key biological components of the bacterium Geobacter metallireducens for optimal biotechnological applications 

15 
 

 

1.2.2. Preparation of competent cell by the calcium chloride method 

 

Escherichia coli cells, strain BL21, were streaked into Luria Bertani (LB) medium plate 

supplemented with 34 µg/mL chloramphenicol (CLO) from NZYtech and incubated at 37ºC, 

overnight. A single colony was selected from the plate and inoculated in 5 mL of LB medium 

supplemented with 34 µg/mL of CLO. The inoculums were grown at 37ºC overnight (200 rpm) 

and then 500 µL of that culture was transferred into 50 mL LB medium supplemented with the 

same antibiotic. Cultures were grown at 37 °C, 200 rpm, until reached an OD600 between 0.4 

and 0.6 (approximately during 3 hours). 

Cells were harvested by centrifugation at 2,500 xg during 15 min at 4°C. The pellet was 

gently resuspended in 10 mL of ice cold 0.1M CaCl2 and incubated on ice during 1 hour. The 

cells were then centrifuged at 2,500 xg, 10 min, 4°C. The supernatant was removed and the cell 

pellet was resuspended in 2 mL of pre-cooled 0.1 M CaCl2 solution and 0.5 mL of pre-cooled 

80% glycerol. 

 

1.2.3. Bacterial growth  

 
Escherichia coli is the most common expression host in the heterologous expression of 

multiheme proteins. The gene cluster, ccmABCDEFGH is responsible for maturation of c-type 

cytochromes under anaerobic conditions in E. coli. To preserve this characteristic in aerobic 

conditions the gene cluster was cloned to vector pACYC184 
28

, renamed pEC86 
29

. The co-

expression of pEC86 with a second plasmid pCK32, a pUC derivate, which harbors the gene 

sequence that encodes for each triheme cytochrome, OmpA leader sequence (drive the new 

polypeptide to periplasm), a resistance marker for chloramphenicol and lac promoter allows the 

heterologous expression of c-type cytochromes in E.coli under aerobic conditions 
30

. 

In this system, the lac promoter on pCK32 plasmid is induced by addition of isopropyl- β 

-D- 1- thiogalactopyranoside (IPTG) from NZYtech. This inductor is a non- metabolizable 

substrate analog of lactose, which induces the expression of lac operon in E. coli. The 

mechanism of action involves the IPTG ligation to the lac repressor, causing the alteration of its 

conformation. The inactivation prevents the repression, thus allowing the transcription of genes 

contained in this operon, it means that after the IPTG induction, the gene harboring the c-type 

cytochrome is expressed 
30

. 

E. coli strain BL21 containing the plasmid pEC86 
29

 (prepared in Section 1.2.2) was co-

transformed with the plasmid pCK32, the expression vector harboring the gene sequence 

encoding for each triheme cytochrome. Transformed E. coli cells were grown in 2x yeast 

extract-tryptone (2xYT) supplemented with 34 µg/ml chloramphenicol (CLO) and 100 µg/ml 

ampicillin (AMP), both from NZYtech. Colonies were selected and aerobically grown until an 

OD600 between 1.8 and 2 at 30
o
C, 200 rpm and overnight. 0.1% of this culture was transferred 

to 1L of 2xYT medium, also supplemented with 34µg/mL CLO and 100µg/mL AMP and grown 

for approximately 10 hours at 30
o
C and 180 rpm. When the cultures reached an OD600 > 1.5, 
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the protein expression was induced with 10 µM of IPTG 
24

. After overnight incubation at 30
o
C 

and 160 rpm, cells were harvested by centrifugation at 4000 xg, 20 min and 4 
o
C. The cell pellet 

was gently resuspended in 30 mL of lysis buffer (20% sucrose (Panreac), 100 mM Tris-HCl 

(NZYtech) pH 8.0 and 0.5 mM EDTA (Sigma) containing 0.5 mg/mL of lysozyme (Merck)), per 

liter of initial cell culture. Then the suspension was incubated at room temperature during 15 

min and after 15 min on ice with gently shaking. Finally, the cells were centrifuged at 14,700xg, 

20 min at 4 
o
C. The supernatant constituted the periplasmic fraction, which was ultracentrifuged 

at 44,000xg during 1h and 30 min at 4 
o
C.  

 

 

1.2.4. Expression tests: PpcC and PpcE 

 

The yield of PpcC and PpcE obtained was too low, so it was necessary to test different 

conditions. The protocol used for bacterial growth was the same described in 1.2.3. Section 

with the exception that four different IPTG (NZYtech) concentrations: 50 µM, 100 µM, 200 µM 

and 300 µM were used. 

 

1.2.5. Protein purification 

 

The purification of the proteins was performed using two chromatographic methods: 

cation exchange and molecular exclusion. The isoelectric point for each protein was estimated 

using Expasy Mw PI tools
31

. 

Periplasmic fraction was first dialysed against 10 mM Tris-HCl pH 8 (MWCO 3500). 

After that, was injected in a cation exchange column 2x5 ml HiTrap SP HP (GE Healthcare) 

equilibrated with 10 mM Tris-HCl pH 8. The proteins were eluted with a gradient from 0 to 300 

mM NaCl. For molecular exclusion chromatography, the red colored fractions obtained from 

cation exchange step were pooled together and concentrated to 1 mL and then injected in a 

Superdex 75 molecular exclusion column (GE Healthcare) equilibrated with 100 mM sodium 

phosphate buffer, pH 8. Protein was eluted at flow rate 1mL/min. Both chromatography steps 

were performed in an ÄKTA Prime Plus FPLC System (GE, Amersham). The presence of the 

cytochrome was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) stained with Comassie Blue or by TMBZ/H2O2 to detect hemes (see Supplementary, 

Table L-1 and Table L-2). The protein concentration was determined by UV-visible 

spectroscopy using the specific absorption coefficient calculated for the α-band of the PpcA 

from G. sulfurreducens
33

.The spectra were acquired using the spectrophotometer (Ultrospec 

2100pro Amersham Biosciences). 
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1.2.6 NMR experiments  

 

All of the NMR experiments were acquired in a Bruker Avance III 600 MHz spectrometer 

equipped with a triple-resonance cryoprobe (TCI) available at Faculdade de Ciências e 

Tecnologia, Universidade Nova de Lisboa. 
1
H chemical shifts were calibrated using the water 

signal as internal reference: 

𝛿𝐻2𝑂 = 5.11 − 0.012𝑇 (℃) 34
             Equation 1 

 

Spectra were processed using TopSpin (Bruker BioSpin, Karlsruhe, Germany). 1D-
1
H 

NMR spectra were recorded before and after protein lyophilization to check proteins’ integrity. 

The pH sample was measured with a glass micro electrode (Crison). Oxidized samples of PpcA 

and PpcF of G. metallireducens (70 µM) were prepared in 80 mM sodium phosphate buffer with 

NaCl (final ionic strength of 250 mM) in 92% H2O/8% 
2
H2O.  
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1.3. Results and discussion 
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1.3.1. Cloning of c7 cytochromes from G. metallireducens c7  

 

The gene encoding for each triheme cytochrome from G. metallireducens was firstly 

cloned in the expression vector pCK32 and the resulting vectors were called pCSGMET2902, 

pCSGMET3165, pCSGMET1846 and pCSGMET0335 that encode for PpcA, PpcC, PpcE and 

PpcF, respectively. Only the results obtained for PpcA are presented in this section, since the 

cloning protocol was similar for each protein. The results obtained for the remaining proteins are 

given in the supplementary section.  

The correct size of the PCR fragments was evaluated by gel electrophoresis, as 

described in Figure 7 for PpcA. 

 

Figure 7: Gel electrophoresis 0.8% to evaluate the quality of PCR fragments. From left to the right, 
Gene ruler 100 bp DNA ladder (M), negative control (without DNA) and two PCR fragment amplified. PpcA 
(336 bp).  

The analysis of Figure 7 shows that there is no amplification in the negative control. On 

the other hand, the size of PpcA amplified fragment corresponds to the expected size (336 bp). 

A similar result was obtained for PpcC (Supplementary Figure C-1). In contrast, for PpcB and 

PpcE the negative controls appear to have a contamination (Supplementary Figures C-1). 

However, the amplified fragments appeared the correct size (336 bp) and therefore the cloning 

protocol was also carried out for PpcB and PpcE. 

After ligation, a screening by colony PCR was performed and the fragments obtained 

were analyzed by gel electrophoresis (Figure 8). 

The expected size for PpcA colonies fragment obtained from the amplification of the 

plasmid with the pCK32 primers is 571 bp. Therefore, the colonies numbered #1, #2, #8 and 

#12 were selected for sequencing. The sequencing results indicated that only colony #2 

presented the correct sequence (Supplementary Figure D-1). 

The gel electrophoresis obtained with the fragments resulting from the PCR of colonies 

transformed with plasmid containing the genes coding for the other triheme cytochromes are 

indicated in the Supplementary Figure C-2 and Figure C-3. In the case of PpcC and PpcE the 

colonies that appeared to have the correct size (579, 580 respectively) were selected for 

sequencing. The results obtained showed that all the selected colonies had the correct 

sequence (Supplementary Figure D-1). In contrast, no bands were observed in the gel 

electrophoresis obtained from PCR of colonies of PpcB (Supplementary Figure C-2,). In this 
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case, a different protocol was performed but unfortunately it was also not possible to obtain the 

plasmid coding for PpcB. The results obtained for PpcB using this alternative protocol are 

described in Supplementary Figure C-4. 

Figure 9: A - Plasmid pCSGmet2902-PpcA resulting from the cloning of PpcA sequence. B - 
Plasmid pCSGmet3165-PpcC resulting from the cloning of PpcC sequence. C - Plasmid 
pCSGmet3166-PpcE resulting from the cloning of PpcC sequence. D - Plasmid pCSGmet0335-PpcF 
resulting from the cloning of PpcC sequence.  

 

 

Figure 8: Gel electrophoresis 0.8% resulting from PCR of colonies of PpcA. From left to the right, 
Gene ruler 1 Kb DNA ladder, bank space, PCR fragment amplified corresponding to PpcA (1,2,3,…,12), 
negative and positive controls. 



Chapter I - Fishing the key biological components of the bacterium Geobacter metallireducens for optimal biotechnological applications 

22 
 

To sum up, it was possible to clone the genes coding for PpcA, PpcC, PpcE and PpcF 

cytochromes in the pCK32 plasmid. The obtained plasmids were designated pCSGmet2902-

PpcA, pCSGmet3165-PpcC, pCSGmet1846-PpcE and pCSGmet0335-PpcF. (Figure 9). The 

gene coding for PpcF was already cloned in the laboratory (pCSGmet3166-PpcF). 

 

1.3.2 Heterologous expression of c7 cytochromes from G. metallireducens 

 

Escherichia coli was used as host, because it presents an efficient expression system to 

produce multiheme c-type cytochromes. This system has already been described and 

successfully applied to the expression of multiheme cytochromes containing up to 12 heme 

groups 
19,30

. During the bacterial growth, and particularly after cell harvesting, the reddish pellets 

are indicative of a successfully expression of the target cytochrome. This was observed for cells 

expressing PpcA and PpcF but not for PpcC and PpcE (Figure 10). 

In the case of the two latter cytochromes the lower yields (Table 3) 

can be attributed to the amount of IPTG used. As mentioned in the 

Methods section, 10 µM IPTG was used by analogy to that used to 

express triheme cytochromes from G. sulfurreducens. In order to 

confirm this hypothesis expression tests were carried out for PpcC 

and PpcE cytochromes. Analysis of the protein content of the 

periplasmic fractions by SDS-PAGE indicates that 100 µM IPTG 

concentration is the more promising concentration to express PpcE 

(Figure 11) and explain the low yields obtained with 10 µM IPTG. In 

the SDS-PAGE stained by TMBZ/H2O2 a band that might 

correspond to PpcE is observed for all IPTG concentrations used. 

 

Figure 10: Pellets from 
periplasmic fraction of PpcF 
(red) and PpcE (brown-reddish). 

Figure 11: SDS-PAGE electrophoresis gel stained with Comassie blue (A) and TMBZ/H2O2 (B) for 
the periplasmic fractions of PpcE obtained from cell cultures induced with different 
concentrations of IPTG. From the left to the right: marker Precision plus protein

tm
 Dual Xtra Standards 

(M), periplasmic fraction obtained from cell cultures induced with 50 µM, 100 µM, 200 µM, 300 µM 
IPTG. The best concentration is indicated with a black arrow. 
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On the other hand, the expression tests for cytochrome PpcC were not very conclusive 

(Figure 12). In the heme staining SDS-PAGE it is visible one band that corresponds to the 

PpcC at ~10 kDa in all IPTG concentrations used. Regardless, the expression yields were very 

low to allow for characterization of PpcC (see below). Therefore, for this cytochrome other 

expression vectors and conditions (such as temperature) need to be tested in order to optimize 

the protein expression.  

 

Figure 12: SDS-PAGE electrophoresis gel stained with Comassie blue (A) and TMBZ/H2O2 (B) for 
the periplasmic fractions of PpcC obtained from cell cultures induced with different concentrations 
of IPTG. From the left to the right: marker Precision plus protein

tm
 Dual Xtra Standards (M), periplasmic 

fraction obtained from cell cultures induced with 50 µM, 100 µM, 200 µM, 300 µM IPTG. The best 
concentration is indicated with a black arrow. 

 

 

1.3.3. Protein purification and expression yields 

 

As described in the Methods section, the purification of the four triheme cytochromes 

(PpcA, PpcC, PpcE and PpcF) followed an identical methodology. After the expression, the 

proteins were purified by cation exchange followed by molecular exclusion chromatography. 

The progress of the purification was monitored by SDS-PAGE electrophoresis.  

Due to the high isoelectric point of these cytochromes (Supplementary Table H-1) the 

proteins strongly bind to the cation exchange column at pH 8. The bound proteins were then 

eluted with a NaCl gradient ranging from 0 to 300 mM. Each protein of interest was eluted at 

different percentage as is represented in (Supplementary Table H-1). 

The elution profile of the cationic exchange column showed two intense peaks that are 

eluted at 65 % and 74 % of NaCl gradient (Figure 13). 
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The fractions correspondent to these two peaks were combined separately and 

analyzed by SDS-PAGE electrophoresis (Figure 14).  

The fraction corresponded to peak 2 in the cation exchange chromatography was 

further purified by molecular exclusion chromatography (Figure 15) and the protein of interest 

was eluted at different volumes with 100 mM sodium phosphate buffer, pH 8 (Supplementary 

Table H-2). After this purification step, only one band was observed in the SDS-PAGE 

electrophoresis (Figure 14) and corresponds to a MW of approximately 10 kDa. 

Figure 14: SDS-PAGE electrophoresis gel stained with Comassie blue for the main peaks obtained in the 
chromatographic purification steps of PpcA. From the left to the right: 1- periplasmic fraction; 2- cation 
exchange column chromatography band #2; 3- cation exchange column chromatography band #1, 4- molecular 
exclusion column chromatography band and marker precision plus protein

tm
 Dual Xtra Standards (M). 

Figure 13: Elution profile for the cation exchange column chromatography equilibrated with 10 
mM Tris-HCl, pH 8 (flow rate of 1 ml/min) for PpcA. Primary and second y-axis, represent the 
variation of absorbance at 280 nm (dark solid line) and the NaCl gradient profile (grey dashed line), 
respectively. PpcA correspond to the second peak (black arrow). 
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Although PpcF was already cloned in the laboratory, no attempts had been made to 

express and purify it. The expression was successfully achieved in the present work but there 

were some problems during the purification of this protein. In the cationic exchange 

Figure 15: Elution profile for the molecular exclusion column chromatography equilibrated with 100 
mM sodium phosphate buffer, pH 8 for PpcA. PpcA eluted at 85 ml. 

Figure 16: A- Elution profile for the cation exchange column chromatography equilibrated with 10 mM Tris-
HCl, pH 8 for PpcF (flow rate of 1 ml/min). Primary and second y-axis , represent the variation of absorbance at 
280 nm (dark solid line) and the NaCl gradient profile (grey dashed line), respectively. PpcF eluted 55%, 65%, 70% 
and 75%. B- SDS-PAGE electrophoresis gel stained with Comassie blue from the collected fractions during 
the cation exchange column chromatography. Each number in the SDS-PAGE corresponds to a band in the 
chromatogram. Lane M corresponds to the marker Precision plus protein

tm
 Dual Xtra Standards. 
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chromatography, four bands were obtained (Supplementary Figure 18A). The analysis of the 

SDS-PAGE gel indicates that the target protein is present in each fraction.  

Each fraction obtained in the cation exchange chromatography was purified in separate 

by molecular exclusion chromatography. The elution profiles obtained are indicated in (Figure 

17). 

The fractions correspondent to the more intense bands obtained in the molecular 

exclusion chromatography were analyzed by SDS-PAGE (Figure 18). The results showed a 

single band at the expected molecular weight for PpcF. 

 

 
 

Figure 17: Elution profile obtained in molecular exclusion column chromatography for each band (1-4) 
obtained in the cationic exchange chromatography step for PpcF. (A) band 1; (B) band 2; (C) band 3, (D) 
band 4. 
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Figure 18: SDS-PAGE electrophoresis gel stained with Comassie Blue correspondent to the 
fractions of the more intense band obtained in the molecular exclusion chromatography of PpcF 
purification procedure. A-D correspond to panels indicated in Figure 17. 

Although the purification of PpcF was successfully achieved at pH 8, slightly 

modifications to the purification protocol were investigated in order to optimize the ionic 

exchange chromatography step. In fact, purification of PpcF was also carried out at pH 7.5 and 

8.5 (see Supplementary Figures E-1 and E-2). However no major improvements were 

obtained from these alterations. 

The elution profiles obtained for the purification of cytochromes PpcC and PpcE are 

indicated in supplementary material (Supplementary Figures F-1 and F-2 for PpcC and 

Figures G-1 and G-2 for PpcE). The SDS-PAGE electrophoresis gels stained with Comassie 

blue and TMBZ/H2O2 (Supplementary Figures F-3 and G-3 for PpcC and PpcE, respectively) 

indicates that after the molecular exclusion chromatography step both proteins are not entirely 

pure. This indicates that the purification protocol for PpcC and PpcE requires further 

optimization. 

Protein yields were quantified by visible spectroscopy using the PpcA from G. 

sulfurreducens extinction absorption coefficient of the α band characteristic of the protein 

reduced form (552 = 97.5 mM
-1

cm
-1 

)
33

. The yields obtained are indicated in Table 3. 

 

Table 3: Expression yields for triheme cytochromes from G. metallireducens. 

Protein Expression yield (mg/L cell culture)* 

PpcA 1.95 

PpcB - 

PpcC 0.14 

PpcE 0.02 

PpcF 1.16 
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1.3.4. Protein characterization 

 

 

Due to the low expression yields of PpcC and PpcE only PpcA and PpcF molecular 

mass was confirmed by MALDI-TOF-MS. In the case of PpcA, the more intense peak in the 

mass spectrum corresponds to a molecular mass of 9691.48 Da ± 0.05% (Supplementary 

Figure I-1). The value obtained is slightly above the error compared with the expected value for 

the mature PpcA (9682.58 Da; see Supplementary Table H-1). In the case of PpcF, the value 

obtained from the mass spectrum corresponds to a molecular mass of 9739.80 Da ± 0.05% 

(Supplementary Figure I-2), which is in agreement with the predicted value for mature PpcF 

(9735.71 Da; see Supplementary Table H-1). For both measurements the equipment was 

externally calibrated with a horse cytochrome sample, which might explain the deviations 

observed. 

The optical absorption spectrum of PpcA has an intense peak (Soret) at 412 nm. Upon 

reduction the protein shows the Soret, β and α bands at 419 nm, 523 nm and 552 nm, 

respectively (Figure 19). 

 

 

Figure 19: Visible absorption spectra of PpcA in the oxidized (solid line) and reduced (dashed line) 
forms. 

 

Similarly, for the other three proteins (PpcC, PpcE and PpcF) the optical absorption 

spectra in the oxidized and reduced form are typical of low-spin hexacoordinated c-type 

cytochrome (see Supplementary J). The optical absorption maxima values for each 

cytochrome in oxidized and reduced forms are summarized in the Table 4. 

 

 



Chapter I - Fishing the key biological components of the bacterium Geobacter metallireducens for optimal biotechnological applications 

29 
 

Table 4: Summary of the optical absorption maxima in oxidized and reduced spectra for each 
triheme cytochrome from G. metallireducens. 

Optical 

absorption(nm) 

PpcA PpcC PpcE PpcF 

Oxidized Soret 412 410 406 410 

Reduced Soret 419 418 419 421 

 β-band 523 521 519 523 

 α-band 552 553 550 552 

 

 In addition to the optical spectroscopy and mass spectrometry characterization, were 

also probed the features of PpcA and PpcF in 1D 
1
H NMR spectra. For both proteins spectra 

were acquired before and after lyophilization to evaluate their integrity. The comparison of the 

spectra showed that the spectra are similar (Figure 20, Supplementary Figure K-1).  

 

 

Figure 20: 1D-
1
H NMR spectra of PpcA (70 µM) obtained at 25 ºC before (A) and after (B) 

lyophilization. 

 

The 1D 
1
H NMR spectra of the reduced and oxidized state for PpcA and PpcF are 

indicated in Figure 21 and Supplementary Figure K-2, respectively. The NMR spectra 

corroborate the data obtained in the visible spectra. In fact, the spectra are typical of low-spin c-



Chapter I - Fishing the key biological components of the bacterium Geobacter metallireducens for optimal biotechnological applications 

30 
 

type cytochromes showing signals in the reduced and oxidized states below 12 and 20 ppm, 

respectively. 

 

 

 

Figure 21: 1D-
1
H NMR spectra of the reduced (A) and oxidized (B) triheme cytochrome PpcA (70 µM) 

obtained at 25 ºC, pH 8. The typical regions of the heme substituents in the oxidized spectrum  are indicated. 

Meso protons 

Heme axial histidines Thioether methyls, Thiother protons 

Heme methyls, Heme propionate group 

B 

A 
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1.4. Future Work 

 

This work constitutes the first step towards the elucidation of the role of periplasmic 

triheme cytochroms in G. metallireducens and the concomitant optimization of the 

biotechnological applications driven by these bacteria. In order to achieve this goal it is first 

necessary to clone, express and purify each protein. With exception of PpcB all the proteins 

were successfully cloned and expressed. However the expression yields of cytochromes PpcC 

and PpcE requires further optimization. Therefore, efforts to further optimize the expression of 

these cytochromes should be one of the goals to pursuit in the near future. The present work 

also sets the stage for a detailed characterization of cytochromes PpcA and PpcF. This should 

include the determination of the detailed thermodynamic and kinetics properties of these 

cytochromes, as well as their structures. In addition to this, the identification of the NH signals of 

each protein is crucial to identify their putative redox partners. 
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2. Chapter II 
 

PccH, a new class of monohemic cytochrome 
 

 

 

 

 

 

 

 

 

The results shown in this chapter have been published in the paper Dantas JM, Campelo LM, 
Duke NEC, Salgueiro CA, Pokkuluri PR (2015) "The structure of PccH from Geobacter 
sulfurreducens – a novel low reduction potential monoheme cytochrome essential for accepting 
electrons from an electrode", FEBS Journal, 282, 2215-2231 
My contribution to this work was the production and analysis of the dendograms presented in 
the section “PccH, a new class of monohemic cytochrome”. 
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2.1. Introduction 
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Geobacter spp. demonstrated an amazing respiratory versatility that confers these 

bacteria a highly relevant role in the biogeochemistry of several anaerobic environments. These 

capabilities show a huge potential for Geobacter based applications in bioenergy production 

and bioremediation
35

. Since these bacteria can use insoluble electron donors and acceptors 

besides the common soluble compounds. The use of compounds that cannot freely diffuse into 

and from cells requires that microorganisms be capable of extracellular electron exchange. This 

principle represented the Geobacter-based bioenergy strategies, like microbial fuel cells and 

microbial electrosynthesis. 

Microbe-electrode exchange is also required for microbial electrosynthesis in which 

microorganisms use electrons supplied by electrodes for the reduction of carbon dioxide to 

multicarbon fuels or other organic commodity chemicals. The establishment of an efficient 

microbe–electrode exchange by Geobacter spp. and other electrogenic bacteria, such as 

Shewanella spp., requires the participation of electron transfer proteins to link intracellular 

oxidative reactions to extracellular reductions beyond the outer membrane and vice-versa. Ross 

et al. 
36

 showed that the Mtr respiratory pathway, which catalyzes electron flow from cytoplasmic 

oxidative reactions to electrodes in Shewanella oneidensis strain MR-1, is also used for the 

electrode-dependent fumarate reduction 

Studies analyzing the gene transcript abundance in current-consuming versus current-

producing of G. sulfurreducens biofilms reveal that electrode-dependent fumarate reduction was 

independent of major outer membrane cytochromes required for extracellular electron 

exchange. The fumarate reduction was dependent from the monoheme c-type cytochrome 

designated PccH 
37

. Deletion of gene pccH completely inhibited electron transfer from 

electrodes but had no influence on electron transfer to electrodes, which suggest different 

routes for electron transfer into and out of the cell in G. sulfurreducens.  

PccH is characterized a basic protein with a polypeptide chain length of 129 amino 

acids that contains a typical heme-binding CXXCH sequence close to the N-terminus. The 

structure of PccH, taken together with the sequence comparisons, suggests that this 

cytochrome forms the first characterized representative of a new subclass of monoheme 

cytochromes. To the best of our knowledge, PccH is the first c-type monoheme cytochrome 

showing a negative reduction potential value within the physiological pH range of growth for G. 

sulfurreducens. This feature permits the protein to be redox active at the typically negative 

working potential ranges encountered by this bacterium. 

The main purpose of the manuscript that includes the bioinformatics contribution 

described in this chapter was the report of the cytochrome PccH X-ray crystal structure. 

Structural information for this cytochrome is important in interpreting the physicochemical data, 

such as thermodynamic and kinetic properties, which in turn is essential for determining the 

electron transport events and molecular mechanisms involved in G. sulfurreducens current-

consuming biofilms. 
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2.2. Methods 
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Amino acid sequence comparisons were performed using BLAST at the NCBI 
38

. 

Multiple sequence alignments and dendograms were produced using CLUSTAL X2 
39

 and then 

plotted using DRAWTREE from the PHYLIP package 
40

. The structural comparisons are 

performed in Secondary-Structure Match SSM 
41

. 
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2.3. Results and Discussion 
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2.3.1. Comparison with other monoheme cytochromes 

 

There are a total of 14 small monoheme cytochromes (10–15 kDa) in G. sulfurreducens. 

However, a BLAST search with the sequence of PccH does not show any significant sequence 

homology with the other monoheme cytochromes from G. sulfurreducens. As reported 

previously 
35

, the BLAST search revealed a relatively high homology (70% identity) with a 

monoheme c-type cytochrome from Pelobacter propionicus but modest homology with 

cytochromes from other organisms (Figure 22).  

 

Ambler’s class I cytochromes include the subclasses of monoheme cytochromes c2, c5, 

c6, c551/552, c553 and c554 
18,42

. More recently, Stelter et al. 
43

 proposed a new subclass of class I 

cytochromes for c-type cytochromes from the bacteria of the Bacteroidetes phylum. 

Representative sequences from all the above mentioned cytochromes were used together with 

the top six hits returned for the BLAST search with PccH sequence to produce the dendogram 

presented in Figure 23. From this analysis, it is clear that a separate group is formed by PccH 

and its most homologous sequences (Figures 22 and Figure 23), suggesting that they are 

representatives of a new subclass within the class I cytochromes. Further structural evidence 

discussed below reinforces this proposal. 

Gs PccH G E V T Y R K D I K P I F D V R C A G C H G A D A A P E Y H A F K A E K E K W L A K G Q G M R M D T Y S H L I F Y T A W P D T G A L M R R

Pp YP_900515.1 (70%) Q E T T W R K D V K P L F D A R C A A C H S D V S A P E H D A F K E K K Q R W L A N G Q G M R M N S Y S H L I Y Y T A W P G T G A L M R R

Tn YP_007216771.1 (54%) E E V T Y I E H V Q P L F E A Q C A G C H G V N A - P Y V G D F D Q D E D H Y V E M G I G P R M D S Y A D L I M F V V Y P D T G A L M R R

Ts YP_002512332.1 (51%) N E V T Y R E H I R P L W E N N C A Q C H G A T A - P Y R G E F R E D R A R Y E R E N K G P R M D T Y A D L V Y F I A W P S T G A L M R R

Lc YP_001792017.1 (51%) A D V T Y R N D I R P L I K A Q C D E C H G D T A - P T L A E F K L A E E R Y K K E K L G P R T D T Y A D L V Q L I S W P D T G A L M R R

Rf YP_521339.1 (49%) A D V T Y R A D V Q P I L K A Q C D D C H G A E A - P T L K E F D L A K E K Y T K E K S G P R L S T Y E T L L Q L I A Y P D S G A F M R R

P YP_546929.1 (47%) Q E V T Y R T D I A P L W K S R C V A C H G A Q S - P E R A D F L L D E K G Y A E K S Q G P R M D S Y E R L I A F I S W P D T G A F M R R

Gs PccH L D D G K N S - K D A K P G N M Y R H L G A T E E E R Q R N L A V F K A W V G - - - V W N L K K W - - - - - - P D I T K E E L N A I T V T Y

Pp YP_900515.1 L D D G R N L - K G G K A G N M Y Q F L G A T E A E R Q K N L A V F K A W V G - - - T W V V K R W - - - - - - P D V T K D E L N G I R V K Y

Tn YP_007216771.1 L D D G S S H - P E G K P G N M Y E H L G A D G D E R Q R N L A V F K A W V G - D D A W N L E R W - - - - - - G D I T K Q Q L D R L E L A Y

Ts YP_002512332.1 L D D G G N T - A N G K P G N M Y Q Y L G G S E E E R Q K N L A L F R A W V G G D E A W T M K R S - - - - - - G E I S K E E L E R F K L A Y

Lc YP_001792017.1 L D D G S N T - A D K K P G N M Y K H L G E T E A E R A K N L E I I K T W V G G P G A W N L N R W E K R G E V P A I T K E Q L D M L K V K Y

Rf YP_521339.1 L D D G S G S - A D K K P G N M Y K H L G E T D G Q R A A N L K V I K A W V G - E G G W N P N R W T A R G D V P A I T K E Q L D K L Q L K Y

P YP_546929.1 L D D G S S Q Y A G G K S G N M Y Q Y L G S T D A E R A A N L K L L K G W V G - D G A W N L N R W N K R G D V P M V S K E Q L D K I Q L K Y

1 20 40 60

80 100 120

10 30 50

70 90 110

Figure 22: Sequence alignment of the top six hits returned for the amino acid sequence of the mature PccH using 
the basic local alignment search tool (BLAST). Pp, P. propionicus; Tn, Thioalkalivibrio nitratireducens; Ts, 
Thioalkalivibrio sulfidophilus; Lc, Leptothrix cholodnii; Rf, Rhodoferax ferrireducens; P, Polaromonas sp. The sequence 
accession codes and the percentage identity with PccH are indicated. The conserved residues in the proteins are boxed: 
heme binding residues (gray) and other residues (black). Adapted from 

35
. 
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Figure 23: Amino acid sequence comparison of Gs PccH cytochrome c with prokaryotic c-type 
monoheme cytochromes (accession number in parenthesis):Agrobacterium tumefaciens (P00081); 
Aphanizomenon flos-aquae (P00116); Arthrospira maxima (P00118); Azotobacter vinelandii (AAC45922); 
Bordetella pertussis (Q7VVZ0); Bradyrhizobium japonicum (Q89SL2); Burkholderia dolosa 
(ZP_00982883); Campylobacter jejuni (NP_282300); Colwellia psychrerythraea (YP_270114); 
Dechloromonas aromatica (AAZ45778); Desulfovibrio vulgaris (YP_012252); Flavobacteroides bacterium 
1 (ZP_01105921); Flavobacteroides bacterium 2 (ZP_01105294); Gs PccH (GSU3274); Gs OmcF 
(NP_953478); Halothiobacillus neapolitanus (P25938); Helicobacter pylori (WP_000756023.1); Idiomarina 
baltica (ZP_01041945); Legionella pneumophila (YP_096733); Leptolyngbya boryana (P00117); Leptothrix 
cholodnii (YP_001792017.1); Microcystis aeruginosa (P00112); Paracoccus denitrificans (P00096); 
Pasteurella multocida (NC_002663); P. propionicus (YP_900515); Photobacterium sp. (ZP_01162384); 
Polaromonas sp. (YP_546929.1); Polaromonas naphthalenivorans (ZP_01020507); Pseudomonas 
fluorescens (YP_351250); Rhodothermus marinus (ACA83734.1); Rhodopseudomonas viridis (1CO6); 
Robiginitalea biformata 1 (ZP_01120248); Robiginitalea biformata (ZP_01119795); Rhodoferax 
ferrireducens (YP_521339.1); Rubrivivax gelatinosus (ZP_00243317); Synechococcus sp. (P00115); 
Thermus thermophilus (1C52); T. nitratireducens (YP_007216771.1); T. sulfidiphilus (YP_002512332.1); 
Vibrio cholerae 1 (NP_229825); Vibrio cholerae 2 (NP_231872); Wolinella succinogenes (NP_906926); 
Yersinia pestis (CAC89905). The Ambler’s class I monoheme cytochromes subclasses c2, c5, c6, c551/552, 
c553 and c554 are labeled.The two unlabeled groups correspond to the c-type cytochromes from the 
bacteria of the Bacteroidetes phylum and Gs PccH cytochrome (highlighted in red) and the top six hits 
returned for the BLAST search with PccH (Figure 24). 
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The proteins of the PccH family contain the largest monoheme cytochromes observed 

to date, with ~ 129 amino acids. For comparison, the mitochondrial cytochromes have ~ 104 

amino acids, whereas the other subclasses of class I cytochromes are even smaller (~ 80 

amino acids). PccH is structurally quite different from any of the other class I cytochromes. 

Structural alignment with secondary structure matching 
41

 also did not reveal any 

significant structural homologs; cytochrome c554 from Cholorobaculum tepidum (PDB code: 

4J20) is the top hit in this search, with a Z-score of 2.7 (rmsd = 3.8 Â for 69 residues aligned) 

and 50% of sequence identity. 

The structure of PccH is unique among all the monoheme cytochromes of class I known 

to date 
18,42

. For comparison, a gallery of structures of bacterial monoheme c-type cytochrome 

representatives from each of the subclasses is shown in Figure 24. There are a significant 

number of amino acids strictly conserved in the PccH family of cytochromes (Figure 22). Thirty-

four of 129 residues (29%), including the two cysteines and the axial ligands histidine and 

methionine residues, are conserved. Therefore, it is likely that the structural fold of this family of 

cytochromes will be conserved. 

We propose that PccH together with the cytochromes with similar sequences from other 

species (Figure 22) forms a new subclass within the class I cytochromes. 
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Figure 24: A gallery of representative bacterial class I monoheme cytochromes including PccH shown as 

cartoons. The heme orientation is approximately the same in each case with the respective N- and C-termini labeled; the 

helical regions are shown in green, β-strands in orange and loops in light brown. 
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4.1. Cloning  
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A. Primers design  

 

Figure A- 1: Sequence of ppcA and the primers forward (FW) and reverse (RV) used for the gene 
amplification. The restriction sites for the enzymes NotI and HindIII are indicated in orange and purple, 
respectively. 

 

 

 
 
 
 

 
 

1 1 0 2 0 3 0 4 0 5 0 6 0

| | | | | | |

ppcA C A A A C G C T T C A A G C A A A A G G G G G T A C A C C A A T G A A A A G A A T C A T C G C A T C T C T T G C C C T G

Fw - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcA T C C G T C T T C T G C G C C G G C C T T G C C T T C G C C G C T G A C G A G C T T A C C T T C A A G G C A A A G A A C

FW - - - - - - - - - - - - - - C G G C C T T G C G G C C G C C G C T G A C G A G C T T A C C T T C A A G - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcA G G G G A C G T C A A G T T C C C G C A C A A A A A G C A C C A G C A A G T G G T G G G C A A C T G C A A G A A G T G C

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcA C A C G A G A A G G G C C C G G G C A A G A T C G A G G G C T T T G G C A A G G A T T G G G C T C A C A A G A C T T G C

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcA A A G G G C T G C C A C G A A G A A A T G A A G A A G G G G C C G A C C A A G T G C G G C G A T T G C C A C A A G A A G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C G G C G A T T G C C A C A A G A A G

ppcA T A A T G G T G T A G C A A T C C G G C G T T A C C A G C G G T A

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV T A A T G G T G A A G C T T T C C G G C G - - - - - - - - - - - -

1 1 0 2 0 3 0 4 0 5 0 6 0

| | | | | | |

ppcC T G G G C A A A G C C T T C C T A A G G A G C T G A C G C G A T G G A A C G T A A A A T T C A T G C C G C A G C T G T G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcC G T G G C C A T A C T G A T C C T C G G T G C C G G A G C - C G C C A G C G C C A T C G A G A C C A T T A C C T T T C C

FW - - - - - - - - - - - - - - - - - - - - - - - - - G A G C G C G G C C G C - C C A T C G A G A C C A T T A C C T T T C -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcC G A A C C G G A T C G G C C A G G T G A G C T T C C C C C A C A A G A A G C A C C A G G A T G C C C T G G G C C A G T G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcC C C G G G G A T G T C A C G A A A A G G G A C C G G G A G A G A T C G A C G G C T T C G A C A A G G T G C T G G C C C A

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcC C G G C A A A G G G T G C A A A G G G T G C C A C G A A G C C A T G A A G A G G G G A C C G G T C C T C T G C A A G G G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcC A T G T C A C G G A G G T G G C T A A C T C G T T G A T T T T T T G T C T A T G A C G A C C C G A

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - G T C A C G G A G G T G G C T A A C T C G T T G A A G C T T T G T C T A T G A C G - - - - - -

Figure A- 2: Sequence of ppcC and the primers forward (FW) and reverse (RV) used for the gene 
amplification. The restriction sites for the enzymes NotI and HindIII are indicated in orange and purple, 
respectively. 
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Figure A- 3: Sequence of ppcE and the primers forward (FW) and reverse (RV) used for the gene 
amplification. The restriction sites for the enzymes NotI and HindIII are indicated in orange and purple, 
respectively. 

 

 
  

1 1 0 2 0 3 0 4 0 5 0 6 0

| | | | | | |

ppcE A A T T C A T G A T A C A G C C A A A G G A C T C T C G T C A T G A A A A G G A C C G T A C C C C T G C T G A T T G T T

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcE T T G A T G G T T A A C G T A C C C G T C G T C A A G G C T G C G G A T A C C A T G A T A T T C C C G G C A A A A A A C

FW - - - - - - - - - - - C G T A C C C G T C G C G G C C G C T G C G G A T A C C A T G A T A T T C - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcE G G A A A T A T T A C C T T T A A T C A C A A A C A C C A C A C G G A T C T C C T C A A G G A A T G C A A G A A C T G T

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcE C A C G A C A A A A C C C C T G G A A G A A T T G C C A A T T T C G G C A A A G A C T A C G C T C A T A A G A C C T G C

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcE A A G G G A T G C C A C G A G G T G A G G G G A A C T G G G C C A A C G C G C T G C G G C C T C T G C C A C A G G A A G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G C C A C A G G A A G

ppcE T A G C A C C C T T G A T G T C A T A A A A A G C C G G T T T C C

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV T A G C A C C C T T G A T G T C A A G C T T A G C C G G - - - - -

Figure A- 4: Sequence of ppcF and the primers forward (FW) and reverse (RV) used for the gene 
amplification. The restriction sites for the enzymes NotI and HindIII are indicated in orange and purple, 
respectively. 

 

1 1 0 2 0 3 0 4 0 5 0 6 0

| | | | | | |

ppcF C A G G C A T C T A A C C A A C A A A A G G A G A A C A A T G T G A A A A A A A C A G C T A T C A C C A T C G C C T T C

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcF G T C G C C A C T T C T G C C T T T G C C G C A C A T G T T T T C G C C G C C G A C G T A T T T G A A T T C C C C G C A

FW - - - - - - - - - - - - - - - - - - - - - - C A C A T G C G G C C G C C G C C G A C G T A T T T G A A T T C - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcF T C A A T G G G T A A A G T G A C A T T C C C C C A T A A A A T G C A C C A G G A G A T G C T G A A G G A C T G C A A G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcF A A G T G C C A C G A A A A C G G A C C G G G C A A G A T C A A G G A C T T C G G C A A G G A C T G G G C C C A C A A G

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ppcF A C C T G C A A G G G G T G C C A T A C C G A G C T G A A G A A A G G C C C G G T C G G C T G C A C G G A C T G C C A C

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C T G C C A C

ppcF A A G A A G T A A A T A T G G G A A C C T G C G G T A G G G G C G C T G C T T

FW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RV A A G A A G T A A A A G C T T G A A C C T G C G G T A G G G G C - - - - - - -
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B. PCR programs  
 

 

Table B- 1: PHUSION program  

Cycle Temperature Time 

1 98ºC 30s 

2 98ºC 7s 

3 72ºC 40s  34(cycles) 

4 72ºC 10 min 

 

Table B- 2 : PCR colonies program 

Cycle Temperature Time 

1 95ºC 5 min 

2 95ºC 30 s 

3 55ºC 30s 

4 72ºC 60s 34(cycles) 

5 72ºC 10 min 
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C. Gel electrophoresis 

 

Figure C- 1: Agarose gel electrophoresis (0.8%) with the result of PCR fragment amplification for 
ppcC (351 bp), ppcE (336 bp), ppcB (336 bp). Gene ruler 100 bp DNA ladder (M). For each protein one 
negative control (wihout DNA) and two PCR fragment amplified. 

 

Figure C- 2: Agarose gel electrophoresis (0.8%) with the result of colonies PCR amplification with 
pCK32 primers for PpcB and PpcC. From the left to the right: PCR fragment amplified corresponding to 
PpcB (1,2…8); gene ruler 100 bp DNA ladder (M), positive control; PCR fragment amplified corresponding 
to PpcC using a ligation ratio 5:1 (vector:fragment) (1,2,…5).  

 

Figure C- 3: Agarose gel electrophoresis (0.8%) with the result of colonies PCR amplification with 
pCK32 primers for PpcC and PpcE. From the left to the right: PCR fragment amplified corresponding to 
PpcC using a ligation ratio 3:1 (vector:fragment) (1,2,3), gene ruler 100 bp DNA ladder (M); positive 
control; negative control; PCR fragment amplified corresponding to PpcE (1,2…8). 
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Figure C- 4:Agarose gel electrophoresis (0.8%) with the result of PCR fragment amplification for 
ppcB (336 bp) with a different cloning protocol described in section 1.3.1.. From the left to the right: 
gene ruler 100 bp DNA ladder (M), one negative control (without DNA) and two PCR fragment amplified. 
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D. DNA Sequencing Results  

 
Figure D- 1: DNA sequencing results for each c-type cytochrome from G. metallireducens. 1) 
Alignment of the sequencing product with the gene sequence. 2) Sequencing product. 3) OmpA sequence 
with gene sequence. 4) OmpA sequence (grey bar) with gene sequence (white bar). 
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4.2. Purification 
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E. PpcF purification steps 
 

 
Figure E- 1: Elution profile for the cation exchange column chromatography equilibrated with 10 
mM Tris-HCl, pH 7.5 for PpcF (flow rate of 1 ml/min). Primary and second y-axis, represent the variation 
of the absorbance at 280 nm (dark solid line) and the NaCl gradient profile (grey dashed line), respectively. 

Figure E- 2: Elution profile for the cation exchange column chromatography equilibrated with 10 
mM Tris-HCl, pH 8.5 for PpcF (flow rate of 1 ml/min). Primary and second y-axis, represent the 
variation of absorbance at 280 nm (dark solid line) and the stepwise elution with 30%, 40% and 100% of 
the NaCl gradient (grey dashed line), respectively. 
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F. Purification of PpcC  

 
 

 
Figure F- 1: Elution profile for the cation exchange column chromatography equilibrated with 10 
mM Tris-HCl, pH 8 for PpcC (flow rate of 1 ml/min). Primary and second y-axis, represent the variation 
of absorbance at 280 nm (dark solid line) and the NaCl gradient profile (grey dashed line), respectively. 
The  

 

 
Figure F- 2: Elution profile for the molecular exclusion column chromotography equilibrated with 
100 mM sodium phosphate buffer, pH 8 for PpcC. The red fractions correspondent to PpcC eluted at 85 
ml. 
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Figure F- 3: SDS-PAGE electrophoresis gel stained with Comassie blue (A) and the TMBZ/H2O2 (B) 
correspondent to the collected fractions of PpcC cytochrome purification steps. From the left to the 
right: 1- molecular exclusion column chromatography, 2- cation exchange column chromatography, 3- 
periplasmic fraction and marker Precision plus protein

tm
 Dual Xtra Standards (M). 
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G. Purification of PpcE  
 

 
Figure G- 1: Elution profile for the cation exchange column chromatography equilibrated with 10 
mM Tris-HCl, pH 8 for PpcE (flow rate of 1 ml/min). Primary and second y-axis, represent the variation 
of absorbance at 280 nm (dark solid line) and the NaCl gradient profile (grey dashed line), respectively. 
Two bands (1 and 2) are collected as indicated in the profile of elution. 

 

 
Figure G- 2: Elution profiles for the molecular exclusion column chromatography equilibrated with 
100 mM sodium phosphate buffer, pH 8 for PpcE. A- Corresponding to the fractions of band 1 of cation 
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exchange chromatography; B- Corresponding to the fractions of band 2 of cation exchange 
chromatography. 

 

 
Figure G- 3: SDS-PAGE electrophoresis gel stained with Comassie blue (A) and the TMBZ/H2O2 (B) 
correspondent to the collected fractions of PpcE cytochrome purification steps. From the left to the 
right: 1- molecular exclusion column chromatography (band 1); 2- molecular exclusion column 
chromatography (band 2); 3- cation exchange column chromatography (band 2); 4- cation exchange 
column chromatography (band 1); 5- periplasmic fraction and marker Precision plus protein

tm
 Dual Xtra 

Standards (M). 
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H. Resume of Purification  
 
Table H- 1 Calculated molecular weight and isoelectric point for the triheme cytochromes from G. 
metallireducens using the EXPASY tool

31 

Protein pI Molecular weight 
(Da)* 

PpcA 9.32 9681.08 

PpcB 9.39 9394.64 

PpcC 8.86 9513.83 

PpcE 9.36 9709.01 

PpcF 8.96 9734.21 

* Total molecular mass considering a MW of 616 Da per heme. 
 

 
 
Table H- 2: Elution gradient value and elution volume for the triheme cytochromes from G. 
metallireducens in the cationic and molecular exclusion chromatography steps, respectively. 

Protein Gradient value (%)
1
 Elution volume (ml)

2
 

PpcA 74 85 

PpcB - - 

PpcC 62 85 

PpcE 65 45 

PpcF 55; 65; 70; 75 85 

1
 Gradient from 0 to 300 mM NaCl 

2
 16/60 superdex 75 gel column  
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4.3. Spectrometry and Spectroscopic 

Characterization 
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I. Mass spectrometry spectra  

 

Figure I- 1 Mass spectrometry spectrum of purified PpcA. MALDI-TOF-MS with external calibration of 
horse cytochrome. 

 

Figure I- 2: Mass spectrometry spectrum of purified PpcF. MALDI-TOF-MS with external calibration of 
horse cytochrome  
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J. Visible spectra  

 
Figure J- 1: Absorption spectrum of PpcF in the oxidized (solid line) and reduced (dashed line). 

 
Figure J- 2: Absorption spectrum of PpcC in the oxidized (solid line) and reduced (dashed line). 
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Figure J- 3: Absorption spectrum of PpcE in the oxidized (solid line) and reduced (dashed line). 
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K. NMR spectra  

 

Figure K- 1: 1D-
1
H NMR spectra of the oxidized before (A) and after (B) lyophilized triheme 

cytochrome PpcF (70 µM) obtained at 25 ºC. 

 

Figure K- 2: 1D-
1
H NMR spectra of the reduced (A) and oxidized (B) triheme cytochrome PpcF (70 

µM) obtained at 25 ºC.  

A 

B 
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L. Solutions 

 

Table L- 1: Main solutions used in this work 

Buffer Composition Quantity 
LB medium solid 

V=1 L 

 

Peptone (Fluka) 

Yeast extract (Himedia) 

NaCl(Panreac) 

10g 

5g 

10g 

2xYT medium solid 

V=1 L 

 

Peptone (Fluka) 

Yeast extract (Himedia) 

NaCl(Panreac) 

16g 

10g 

5g 

LB medium solid 

V=200 mL 

 

Peptone (Fluka) 

Yeast extract (Himedia) 

NaCl(Panreac) 

Agar (nzytech) 

2g 

1g 

2g 

4g 

2xYT medium solid 

V=200 mL 

 

Peptone (Fluka) 

yeast extract (Himedia) 

NaCl(Panreac) 

Agar (nzytech) 

3.2g 

2g 

1g 

3g 

Lysis buffer 

V=60mL 

20% sucrose (Fisher scientific) 

1 M Tris-HCl (VWR chemicals) pH 8.0  

0.5 M EDTA pH 8 (Sigma) 

12g 

12mL 

24 µL 

1 M Tris-HCl pH8 

V=1L 

Tris (VWR chemicals) 

Set pH 8 using HCl (Carlo Erba) 

 

121.14g 

100 mM NaPi pH8 

V=1L 

16.856 g Na2HPO4 (Panreac) 

0.731 g NaH2PO4 (Panreac) 

16.856 

0.731g 

Loading Buffer SDS page 

V=5 mL 

100 mM Tris HCl pH 6.8 

20% glycerol (Fluka) 

4% SDS (Fluka) 

200mM Mercaptoethanol 

1 mL 

2 mL 

4g 

140.5 µl 

Tris-glycine Buffer pH 8.3 

V=1L 

Tris (VWR chemicals) 

Glycine (nzytech) 

10% SDS (Fluka) 

15.1g 

72.05g 

50 mL 

SDS PAGE electrophoresis 

Concentration 5% 

Solução II 

Acrilamide/Bis (Fluka) 

H2O 

10% PSA (Riedel-de Haën) 

TEMED (Fluka) 

 

450 µl 

300 µl 

 

1,020 mL 

13.5 µl 

2 µl 

SDS PAGE electrophoresis 

Resolution 15% 

Solução I 

Acrilamyde/Bis (Fluka) 

H2O 

10% PSA (Riedel-de Haën) 

TEMED (Fluka) 

750 µl 

2.5 mL 

1,66 mL 

38 µl 

2.5 µl 

Dye solution 

V=1L 

Blue comassie (Merck) 

Acetic acid (Sigma alderich) 

Methanol (Carlo Erba) 

1g 

100 mL 

400 mL 

Bleach solution 

V=1L 

Acetic acid (Sigma alderich) 

Methanol (Carlo Erba) 

100 mL 

400 mL 
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Table L- 2: Heme dye solution protocol 

Solution Reagents Preparation 

A 4,17mM TMBZ (Acrós 

organics) 

30mg TMBZ in 30mL metanol (Carlo Erba). Protect from light 

B 0,25M de Sodium acetate 

(Panreac) 

17,01g Sodium acetate in 500mL. Adjust pH to 5 

C Dye solution Add 30mL solution A to 70mL solution B 

D Wash solution Mix 70mL solution B in 30mL propanol (Fluka) 

 

 

Transfer the gel of acrylamide to dye solution (solution C), and maintain per 30 minutes 

protect from light and agitate. Add 300 µl 30% H2O2 (Sigma Aldrich) and shake per 30 minutes. 

Wash two times with solution D. 

 
 

 


