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Abstract 

 

Release of chloroethene compounds into the environment often results in groundwater 

contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-

dichloroethene) accumulation on subsurface environments is a common environmental problem due to 

stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain 

JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic 

cDCE degradation. Although being the only suitable microorganism found capable of such, further 

studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic 

processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome 

annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance 

Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. 

The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed 

to design key experiments which should be done for further model improvement and, also, produced 

viable predictions for the use of biostimulant metabolites in the cDCE biodegradation. 

Keywords: Polaromonas JS666 cDCE Biostimulation GEM FBA 
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Resumo 

 

 A libertação no ambiente de compostos clorados derivados do etileno muitas vezes resulta 

em contaminação de águas subterrâneas, o que coloca as pessoas em risco de exposição por beber 

água contaminada. A acumulação de cDCE (cis-1,2-dicloroeteno) nas águas subsuperficiais é um 

problema ambiental recorrente, devido à estagnação e degradação parcial de outras espécies 

precursoras deste cloroeteno. A estirpe Polaromonas sp. strain JS666 aparentemente não requer 

factores de crescimento adicionais para ser utilizada na biodegradação aeróbia do cDCE. Apesar de 

ser o único microrganismo encontrado capaz de tal degradação, são necessários mais estudos para a 

melhoria das taxas de biorremediação intrínsicas e para compreender plenamente os processos 

metabólicos envolvidos. Com esse intuito, o modelo metabólico, iJS666, foi reconstruído a partir da 

prévia anotação do genoma e dados bibliográficos disponíveis. As técnicas de FVA (Análise à 

Variabilidade dos Fluxos) e FBA (Análise ao Balanço dos Fluxos) foram utilizadas para validar 

satisfatoriamente as capacidades preditivas do modelo iJS666. O modelo iJS666 foi capaz de prever o 

crescimento da biomassa em diferentes condições previamente testadas, permitiu projectar 

experimentos-chave que devem ser realizados para melhorar as capacidades predictivas do modelo e, 

também, preveu o uso de compostos viáveis para servirem de bioestimulantes na biodegradação 

cDCE. 

Palavras-chave: Polaromonas JS666 cDCE Bioestimulação GEM FBA 
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1. Introduction 

1.1. Chlorinated Ethenes: A Worldwide Pollution Problem 

The class of compounds known as chlorinated ethenes (chloroethenes or chloroethylenes) 

include all the molecules with an ethene backbone and one or more chlorines replacing the hydrogen 

positions. These include perchloroethene (PCE), trichloroethene (TCE), three forms of dichloroethene: 

1,1-dichloroethene (DCE), cis-1,2-dichloroethene (cDCE), and trans-1,2-dichloroethene (tDCE), and 

vinyl chloride (VC). PCE, TCE and cDCE are worldwide for use as industrial solvents and degreasers 

and are particularly commonly used in dry cleaning and metal fabrication (USEPA, 2000). Likewise, in 

plastic industry, VC is produced for polymerization into the plastic polyvinylchloride (PVC) (Kielhorn et 

al., 2000). Therefore, it is not surprising to find them among the “Top 25 Most Frequently Detected 

Priority Pollutants at Hazardous Waste Sites in North America and in Europe” (Alvarez & Illman, 2006) 

(See Table 1.1). The cleanup of these and other volatile organic compounds is estimated to cost “more 

than $45 billion dollars (1996 dollars) over the next several decades” (USEPA, 2000). 

 

Table 1.1. The 25 Most Detected Pollutants at Waste Sites in North America and Europe. Adapted from Alvarez & 

Illman, 2006. 

 

Frequently the chloroethenes are leaked into the ecosystem as PCE or TCE. On the anaerobic 

zones where they are introduced, different microorganisms from Dehalobacter, Dehalospirillum, and 

Dehalococcoides genera reduce those compounds into dehalogenated daughter products usually by 

using hydrogen, acetate or lactate as electron donors (Christ et al., 2005). Although communities of 

these organisms have been shown to completely dehalogenate PCE and TCE to ethene (ETH), a 

nontoxic compound degradable by many other bacteria) this process is often stalled at the daughter 

1. Trichloroethene (TCE) 14. Cadmium 

2. Lead (Pb) 15. Magnesium 

3. Perchloroethene (PCE) 16. Copper 

4. Benzene 17. 1,1-Dichloroethane (DCA) 

5. Toluene 18. Vinyl Chloride (VC) 

6. Chromium 19. Barium 

7. Dichloromethane (DCM) 20. 1,2-Dichloroethane (1,2-DCE) 

8. Zinc 21. Ethylbenzene 

9. 1,1,1-Trichloroethane (TCE) 22. Nickel 

10. Arsenic 23. Di(ethylhexyl)phthalate 

11. Chloroform 24. Xylenes 

12. 1,1-Dichloroethene (DCE) 25. Phenol 

13. 1,2-Dichloroethene (cDCE) 
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products cDCE or VC usually due to insufficient supply of electron donor and/or inadequate microbial-

community composition (Löffter et al., 2013). 

Chloroethenes have a higher density than water and therefore have the tendency to accumulate 

below the aquifer forming a Dense Non-Aqueous Phase Liquid (DNAPL). Since, they are also 

hydrophobic compounds usually they are adsorbed into soil particles and therefore have an increased 

recalcitrance. VC only occurs in the dissolved and gaseous phases is the only known the exception. 

This phenomenon is one of the main causes for the long term chloroethenes pollution in aquifers (Christ 

et al., 2005). Release of these chloroethene compounds to the environment from leakage or improper 

disposal often results in groundwater contamination, which puts people at risk of exposure through their 

drinking water. Chlorinated ethenes have been shown to have serious liver and central nervous system 

effects, and several are proven carcinogens (USEPA, 2000). Some of the daughter products produced 

in the partial anaerobic dehalogenation (especially VC) are more toxic and carcinogenic than their 

precursors (Kielhorn et al., 2000). For this reason, the USEPA has set very low limits for chlorinated 

ethene pollution in groundwater (USEPA, 2000), as reported in Table 1.2. 

 

Table 1.2. Properties of Chlorinated Ethenes. Adapted from Löffter et al., 2013; Kh – Henry’s Law Constant; AOTC 

– Air Odor Threshold Concentration; MCL – Maximum Concentration Level. 

 

 

1.2. (Bio)remediation of Chlorinated Ethenes 

In order to remediate the contaminated groundwater of the affected sites several different 

treatment technologies were tested over the years. Pump and Treatment (P&T) was initially used along 

with the reduction of the chloroethenes. This process involves pumping large volumes of groundwater 

out of the sediment, followed by on-site treatment with chemical oxidation or adsorption onto activated 

carbon, then return of the treated water to the ground. Although this technology was able to 

decontaminate dissolved chloroethenes, long operational periods were often needed in order to allow 

dissolution of this recalcitrant compounds at great monetary expense (De Wildeman & Verstraete, 2003) 

and still residual contamination would be present in the ecosystem (Christ et al., 2005).  

Permeable reactive barriers have also been used to treat chlorinated ethene pollution by 

reductive dechlorination to ethene, a more benign compound that occurs naturally in the environment. 

These barriers consist of trenches filled with an electron donor matrix (such as zero-valent iron or zinc) 

Compound 
MW 

[g/mol] 

Liquid 
Density 
(20°C) 

[g/cm3] 

Vapour  
Pressure  

(20°C) 
[kPa] 

Solubility 
(H20-20°C) 

[mM] 
Kh 

AOTC  
[ppm, v/v] 

MCL 
[mg/L] 

PCE 165.83 1.62 1.90 1.20 0.72 27 0.005 

TCE 131.39 1.46 5.78 8.40 0.39 28 0.005 

cDCE 96.94 1.25 24.00 36.10 0.17 - 0.07 

tDCE 96.94 1.26 35.30 65.00 0.38 17 0.10 
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that will reduce the contaminants as the groundwater plume flows through. Although, the degradation 

efficiency of this using chemical donors could exceed 85% for cDCE (Mahendra et al., 2007) and had 

the advantage of lower operational costs than pump-and-treat remediation, some problems arise when 

geological site singularities make the construction of a barrier difficult or when long-term efficacy of this 

strategy with the less oxidized of the chlorinated ethenes (cDCE and VC) decreases (De Wildeman & 

Verstraete, 2003). 

Of the technologies used to remediate contaminated sites, in situ bioremediation is recognized 

as being the most promising and cost-effective solution. Bioremediation, the removal or detoxification 

of xenobiotic compounds by living organisms, is currently a popular and proven strategy for sites 

contaminated with chlorinated ethenes in a variety of ways (Löffter et al., 2013).The most common 

bioremediation strategy takes advantage of the ability of some microbes to reductively dechlorinate 

these compounds sequentially in a similar way to the permeable reactive barriers action. As referred 

before, microbes capable of dehalogenate PCE and TCE are fairly common, but only members of the 

genus Dehalococcoides have been shown to achieve complete reductive dechlorination to ethene and 

chloride ion (Dworkin et al., 2001). Subsequently after the identification of this microorganisms and their 

potential role in biodegradation, a huge number of bioaugmentation applications were executed 

worldwide (See Figure 1.1). 

Figure 1.1. Bioaugmentation using Dehalococcoides spp. for site cleanup. Adapted from Lyon & Vogel, 

2013. 

 

Complete biological reductive dechlorination (dehalorespiration) therefore fundamentally 

requires the presence of Dehalococcoides (increasing cell numbers in soil by bioaugmentation), a 

sufficient amount of electron donors and an anaerobic environment. The absence of any one of these 

prerequisites will result in partial reductive dechlorination, as denoted before. In practice, this reductive 
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bioremediation of chlorinated ethene plumes frequently stalls, resulting in accumulation of cDCE (the 

most common form of DCE) and/or VC (DiStefano et al., 1991), see Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Representation of chloroethene groundwater contamination. Adapted from Jennings, 2008. 

 

Although the by-products from of the initial dehalogenation (cDCE and VC) can migrate into 

aerobic plume zones and be totally mineralized by many aerobic co-metabolizing bacteria holding 

nonspecific monooxygenases, these processes are generally co-metabolic, since those microorganisms 

are unable to convert the product of this oxidation into a useful compound for the cell and therefore 

require presence of co-substrates (i.e. methane or toluene as carbon sources) to survive (McCarty et 

al., 1998; Verce et al., 2000; Bradley, 2003; Sun et al., 2010).  In many cases where aerobic co-

metabolism has been observed in the field, it was generally an unexpected occurrence at the edges of 

plumes where the systems had become aerobic, and there was still need for the presence of other 

contaminants/carbon sources in order to maintain the main metabolism (Bradley, 2003). Usually, the 

bioremediation of groundwater with those endogenous microorganisms was achieved supplementing 

additional oxygen since the degradation of the co-substrates could otherwise cause the site to become 

anaerobic (Hopkins & McCarty, 1995). Co-metabolic VC-oxidizing and cDCE-oxidizing bacteria have 

been used successfully for bioremediation, but have several limitations (Van Hylckama Vlieg et al., 

1996; McCarty et al., 1998; Van Hylckama Vlieg et al., 1998). For instance, co-metabolic degraders can 

encounter toxicity problems due to accumulation of the mutagenic chlorinated epoxide by-products 

(Alvarez-Cohen & Speitel, 2001; Bradley, 2003) and they exhibit slower degradation rates due to the 

competition between chlorinated ethene and carbon-source substrate for the monooxygenase active 

site (Van Hylckama Vlieg et al., 1996).  
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An alternative to co-metabolic oxidation of chlorinated ethenes is assimilative oxidation, where 

chlorinated ethenes are used simultaneously as carbon and energy source. Several microbial species 

were isolated from soil that are capable of VC-assimilation (Hartmans et al.,. 1985; Verce et al., 2000; 

Verce et al., 2001), but early work prospecting contaminated aerobic plumes showed that indigenous 

microorganisms in black-water stream sediments were also capable of aerobic assimilative oxidation of 

cDCE without any additional co-substrates, yet no causative organism was initially isolated (Bradley & 

Chapelle, 2000). More recently, Coleman et al. (2002a and 2002b) sought after aerobic bacteria that 

use VC and cDCE as sole carbon and energy sources. In that work 12 isolates were produced that 

achieved autonomous growth in a medium with VC as the only carbon and energy source, corroborating 

that such microbes are commonly found in the aerobic zones of VC-contaminated plumes. Also as a 

result of that work, only one isolate microorganism, Polaromonas sp. strain JS666, was able to 

aerobically oxidize cDCE as sole carbon and energy source (Coleman et al., 2002b). 

 

1.3. Polaromonas sp. strain JS666 

Polaromonas sp. strain JS666 apparently requires no exotic growth factors, it is considered a 

promising bioaugmentation agent for aerobic sites where cDCE has accumulated since this 

accumulation in aerobic subsurface environments is a common problem in the remediation of 

contaminated sites where other chloroethenes were previously partially degraded (Bradley, 2003). Also, 

aerobic remediation might be preferred over anaerobic reductive dechlorination in situations where the 

cDCE concentration is low (but still above maximum concentration limit) due to the co-metabolic 

competition previously referred; where the aquifer is partial or fully aerobic since anaerobic 

microorganisms could not endure this conditions; and/or where the byproducts of anaerobic biological 

activity (methane, sulfides, reduced iron, etc.) are adverse to Polaromonas sp. strain JS666 growth 

(Giddings et al., 2010a).  

Polaromonas sp. strain JS666 is a member of the family Comamonadaceae in the β-

proteobacteria class. This Gram-negative bacteria is a yellow-colored, devoid of vacuoles, non-motile, 

psychrotrophic with an optimal growth temperature around 20°C (Coleman et al., 2002a). It was first 

discovered in activated-carbon of a P&T plant being used to degrade PCE, TCE and cDCE in 

Dortmound, Germany (Coleman et al., 2002a).  Based on analysis of 16S rRNA sequences, the 

Polaromonas sp. strain JS666 most closely relates with the psicotrophic arsenite oxidizing isolate 

Polaromonas sp. strain GM1, with a 98% sequence identity (Osborne et al., 2010), 97,9% sequence 

identity with Polaromonas vacuolata (Coleman et al., 2002b) and having a 97% sequence identity with 

Polaromonas naphthalenivorans strain CJ2, (Jeon, 2006), see Figure 1.3. 
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Figure 1.3. 16S rRNA phylogenetic tree of Polaromonas spp. Bootstrap values for 100 trials and the percentage of 

variation in sequence identity are both shown in the figure. Adapted from Osborne et al., 2010. 

 

Recently it was found that Polaromonas is one of the most commonly occurring genus in 

granular activated carbon filters used to treat surface and ground water (Magic-Knezev et al., 2009). 

This is consistent with the common observation of Polaromonas species in extremely oligotrophic 

environments (Page et al., 2004; Loy et al., 2005; Kämpfer et al., 2006). In addition to that, Polaromonas 

species tend to be slow-growing and psychrotolerant, which hamper their isolation from environmental 

samples by ordinary methods (Irgens et al., 1996; Darcy et al., 2011; Margesin et al., 2012). The strain 

JS666 is no exception, having long latency times and a doubling time of 74 ± 8 hours being very difficult 

to cultivate in vitro. The strain number “666” praises those characteristics. (Coleman et al., 2002b).  

The growth yield of Polaromonas sp. strain JS666 on cDCE is 6.1 ± 0.4 g protein/mole cDCE, 

which is comparable to VC-assimilating bacteria, despite the lower energy content of cDCE (Coleman 

et al., 2002b). A maximum specific substrate utilization rate (k) of 12.6 ± 0.3 nmol/min/mg protein and a 

half-velocity constant for cDCE transformation (Ks) of 1.6 ± 0.2 μM were determined (Coleman et al., 

2002b). Moreover, cDCE was degraded routinely to below 0.03 μg/L by Polaromonas sp. strain JS666 

(Coleman et al., 2002b). So, in the context of bioaugmentation or natural attenuation potential, the 

Polaromonas sp. strain JS666 have the capability to extract enough energy from cDCE for reasonable 

growth and simultaneously degrade cDCE to a concentration below the MCL (see Table 1.2.) without 

significant effects on substrate utilization rate (Coleman et al., 2002a; Verce et al., 2001).  

Elucidation of the metabolic pathway responsible for cDCE assimilation in Polaromonas sp. 

strain JS666 would provide important insights into the use of this bacteria as a bioaugmentation agent.  

Due to the importance and uniqueness of the Polaromonas sp. strain JS666 in biodegradative 

processes, an effort to completely sequence the genome of this Polaromonas specie was necessary 

(Mattes et al., 2008). The genome of Polaromonas sp. strain JS666 contains many mobile genetic 

elements and evidences of putative horizontal gene transfer, including two plasmids (pPOL338 and 

pPOL360 with 338 and 360 kbp, respectively) (Mattes et al., 2008). A putative haloalkane 
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biodegradation gene cluster is present in nearly identical copies on the chromosome and the 360 kbp 

plasmid within a 9.9 kbp duplicated region. This duplication may have been mediated by two nearby 

transposases, and the increase in gene dosage could have played a role in the adaptation of 

Polaromonas sp. strain JS666 to growth on chlorinated alkenes or aromatics (Mattes et al., 2008). Many 

other catabolic genes are found closely associated with transposable elements throughout the genome, 

indicating recent acquisition and/or rearrangement of genes necessary for the degradation of various 

xenobiotic compounds, including alkanes, cycloalkanes, and cyclic alcohols (Mattes et al., 2008).  

While the specifics remain to be determined, it appears likely that the acquisition of the two 

plasmids by Polaromonas sp. strain JS666 was a major step in the evolution of its cDCE assimilating 

capability. This hypothesis is supported by the observation that these two plasmids have been 

maintained by the strain throughout enrichment, isolation, and many generations of growth in the 

laboratory, suggesting that they are necessary for growth on cDCE (Coleman et al., 2002b; Mattes et 

al., 2008). The cDCE degrading phenotype has also been found to be unstable, which would be 

consistent with plasmid or transposon-carried genes, but may also be due to imperfect regulatory control 

of the newly constructed pathway (Alexander, 2010). 

 Concerning the cDCE degradative pathway(s), due to the structural similarities between cDCE, 

VC, and ethene, Polaromonas sp. strain JS666 was expected to grow on both VC and ethene. VC-

assimilating microbes oxidize the VC molecule by an alkene monooxygenase (AkMO), then this 

chlorinated epoxide metabolite is conjugated with coenzyme M and incorporated into the metabolism of 

the cell (Mattes et al., 2010). Therefore, epoxidation of cDCE by a monooxygenase was a reasonable 

hypothesis supported by the observation that this microorganism also produces epoxyethane from 

ethene at an increased rate after growth on cDCE (Coleman et al., 2002a). However, no homologue of 

the typical downstream epoxyalkane coenzyme M transferase was identified in the Polaromonas sp. 

strain JS666 genome. 

An integrated ‘omics’ study was conducted using proteomic mass spectrometry, microarray 

techniques, CSIA (Compound-Specific Isotope Analysis) and enzyme assays in order to establish the 

cDCE degradative pathway (Jennings et al., 2009). This approach revealed upregulated genes of 

Polaromonas sp. strain JS666 bacteria grown in cDCE. They included genes for cyclohexanone 

monooxygenase, glutathione-S-transferase, cytochrome P450 and genes for (di)chloroacetaldehyde, 

(di)chloroacetate, and (chloro)glycolate transformation were also upregulated in a pattern expected for 

growth on cDCE or 1,2-dichloroethane (DCA). The results of both molecular techniques and CSIA 

suggested that cDCE degradation via monooxygenase catalyzed epoxidation (teorically achieved by 

cyclohexanone monoxygenase, Bpro_5565) may be only a minor pathway and that the initial step in the 

major cDCE degradation pathway involves carbon-chloride bond cleavage due to the isotope 

fractionation pattern obtained in the CSIA, most likely to be a glutathione-S-transferase catalyzed initial 

dehalogenation reaction. Further research was needed to identify the functional activity of upregulated 

enzymes and to identify their roles in the cDCE degradation pathways of this unique Polaromonas 

specie (Jennings et al., 2009). 

In the research made by Nishino et al., in 2013, several upregulated enzymes of Polaromonas 

sp. strain JS666 were tested in order to clarify their roles. Several lines of evidence indicate that 
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cytochrome P450 monooxygenase (Bpro_5301) is responsible for the initial steps in cDCE 

biodegradation because cDCE was degraded only in the presence of oxygen, degradation was inhibited 

by cytochrome P450-specific inhibitors, heterologously expressed cytochrome P450 monooxygenase 

catalyzes the transformation of cDCE to dichloroacetaldehyde (Alexander, 2010), and Bpro_5301 gene 

was upregulated 3.5-fold by cDCE accordingly to the findings of Jennings et al., 2009. Probably, the 

glutathione-S-transferase, upregulated 99.8-fold on cDCE medium, participates in the detoxification of 

the minor cDCE-epoxide compound produced by cytochrome P450 or in the detoxification of the 

(di)chloroacetaldehyde produced in the main degradation pathway (Cox, 2012; Nishino et al., 2013), as 

displayed in Figure 1.4. 

 

Figure 1.4. Simplified pathway(s) of cDCE degradation in Polaromonas sp. strain JS666. Blue arrows 
represent pathways that were confirmed with biochemical evidence. Black arrows indicate pathways 
supported by iTRAQ study. Dotted arrows indicated proposed and not yet confirmed reactions. Genes 
involved in the reactions are represented bellow the arrows and the generic terms on top. From Cox, 
2012. 

 

A recent study found that Polaromonas sp. strain JS666 degraded cDCE in a microcosms 

constructed with contaminated sediment and groundwater, even when presented with alternative carbon 

sources or competitive/predatory microbes (Giddings et al., 2010a; Kurt et al., 2014). This activity was 

also reliably correlated with the abundance of a developed DNA probe for the JS666 chromosomal gene 

encoding isocitrate lyase, an enzyme apparently not directly associated to cDCE degradation (Giddings 

et al., 2010b). Additionally, a pilot study using Polaromonas sp. strain JS666 as a bioaugmentation 

agent began in October, 2008, at St. Julien’s Creek Annex (SJCA), Chesapeake, Virginia, USA, 

predicted that 100 L of inoculum culture (OD600=1.0) should be able to treat a 10x30×80 meters plot 

(24,000 square meters) within 2 months after inoculation, a clear demonstration of Polaromonas sp. 

strain JS666 biodegradative potentiality (Giddings et al., 2010a). 
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1.4. Genome-scale Metabolic Modeling 

1.4.1. GENRES: Genome-scale Metabolic Network Reconstructions 

With the recent growth in genomics research, sustained by the decreasing DNA sequencing 

prices, complete genomic sequences of a multitude of species are assembled at an unprecedented rate 

(Wetterstrand, 2015) Therefore, it’s evident that full comprehension of encoded functionality is displaced 

from that increased knowledge rate. A perfect example of this discrepancy is evident for Polaromonas 

sp. strain JS666 whose genome is completely sequenced although few biochemical evidences were 

further obtained (Mattes et al., 2008; Jennings et al., 2009). 

Genome-scale metabolic network reconstructions (GENRES) try to achieve a complete 

understanding of the metabolic features of an organism by assembly a network of metabolic reactions 

catalyzed by enzymes and transporters found on the annotations made for the genome sequence 

(Palsson, 2009). Such gene annotations are often generated by applying prior knowledge to the 

genomic sequence using automated algorithms, like for example BLAST, which compares the sequence 

similarity to previously known enzyme sequences and identifies best matching homologs or PRIAM, 

which attempts to fit a novel sequence into position-specific enzyme profiles based on the discovered 

domains. 

There are several public domain database’s that are capable of incorporating these organism-

specific gene annotations and the biochemical functionality of the encoded enzymes, in a manual or 

automatic way. The ultimate objective of different databases, like KEGG, BRENDA and MetaCyc, is the 

association between different omics information. Since the main objective is the reconstruction of 

metabolic networks usually the data is classified and stored in hierarchical GPR (Gene-Protein-

Reaction) associations although the storage of transcriptional and regulatory associations/networks in 

many cases are also included. Although all those databases could be used in the reconstruction of 

metabolic networks they have very different proprieties and incorporated information: KEGG does not 

provide reliable gene annotations for metabolic network reconstruction purposes (Green & Karp, 2006) 

but have some of the most complete pathway schemes and can still serve as a reference framework for 

network modeling and network gap filling; BRENDA (BRaunschweig ENzyme DAtabase) is an enzyme 

database which contains manually curated data from organism-specific enzyme assays or protein 

structure studies (Scheer et al., 2011) and therefore is suitable for high confidence reconstructions 

although the overall association coverage is very low for a single specific organism; MetaCyc is a 

metabolic network database with more than 2260 pathways from 2600 different organisms having a 

description of every reaction, metabolite, gene association on each pathway and also is complemented 

with literature citations. The pathways are hierarchized accordingly to phyla in superpathways that 

decomposed in smaller organism specific pathways. In the study made by Wittig & Beuckelaer, 2001, a 

complete review and comparison between the advantages and potentialities of different databases in 

the reconstruction of metabolic networks were assessed. 
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With the increasing number of whole sequenced genomes, there was also an increasing 

number of newly annotated genes and pathways discovered. The number of GENRES is therefore also 

increasing although at much slower rate (Palsson, 2009).  In order to help researcher in the infamous 

task of building a genome-scale metabolic networks, automated reconstruction software packages were 

developed. These bioinformatics tools retrieve the stored information in the previously described 

databases in order to assemble automatically a draft reconstruction of the metabolism of a specific 

organism. Some software like Model SEED and PathwayTools have the ability of automatically predict 

the GPRs based solo in the annotation (Karp et al., 2011), filling up network gaps (Karp et al., 2009) 

and even converting the network to functional models (Karp et al., 2009; Overbeek et al., 2014). 

Hamilton & Reed, in 2014, made a review that reported the principal functionalities of the most 

commonly used prediction software, as shown in Table 1.3. 

 

Table 1.3. Visual comparison between some of the most used GENRES predictive software packages. The 

displayed stages and steps arise from Thiele & Palsson, 2010. From Hamilton & Reed, 2014. 

 



 

30 

  

However, since many of the functions of gene products are predicted from prior knowledge 

derived from orthologous genes, some predictions result in unannotated or even missannotated 

enzymes (Schnoes et al. 2009). Even if the enzyme annotation is correct, some of those enzymes are 

able to use different substrates simultaneously, challenging the identification of their function inside the 

cell. Also, with the increasing number of annotated genes on those databases the predictions made by 

software that use those same databases have lesser confidence about specific functionality. For 

example, PathwayTools (more specifically PathoLogic) have included predictive algorithms based on 

the phylogeny of the organisms to sort out false positives reactions from the metabolic reconstruction 

(Karp et al., 2009). Simultaneously, with the increased interest in systems biology and especially in the 

genome-scale metabolic modelling, illustrative high quality protocols were developed in order to help 

researchers in the manual curation stage necessary to debug the obtained draft network (Thiele & 

Palsson, 2010). 

Currently produced genome-scale reconstructions usually have a genome coverage around 

20%, due to the large percentage (30-40%) of hypothetical proteins unannotated in the genome  (Wittig 

& De Beucklelaer, 2001) and due to the fact that many of the predicted coding sequences belong to 

non-physiologically relevant proteins. That means that it’s necessary to complement the initial list of 

enzymes with other sources of biochemical knowledge, in order to fill gaps, add new pathways that 

confer specific attributes or to have a globally higher confidence level in the reconstructed metabolic 

network. In instances where the metabolic network model is missing one or more reactions to complete 

a metabolic pathway, the researcher has to decide whether to include a biochemical reaction lacking 

any source of evidence.  

 
1.4.2. GEMS: a Constraint-based Approach 

A genome-scale metabolic network can be adapted into a mathematical model, GEM (GEnome-

scale Model), in order to simulate biological behavior (Palsson et al., 2006). One approach to metabolic 

modeling is the use of ordinary differential equations (ODEs) to evaluate the thermodynamic equilibrium 

between the metabolites of each reaction in the model. However, such approach is almost unfeasible 

for modeling a large complex system with little a priori knowledge, since it requires a large amount of 

pre-determined kinetic parameters and/or intracellular concentration measures. Some improvements on 

predicting thermodynamic parameters of those reactions were achieved using algorithms that 

incorporate group-contribution theory to calculate the reactional Gibbs free energy (Feist et al., 2007).  

Another approach, more suitable for genome-scale metabolic modeling, is constraint-based 

modeling, which imposes zero-order kinetic constraints (mass balanced reactions) to limit the possible 

behaviors of a reactional event and simultaneously optimizes for the maximization of a flux rate or a 

metabolite production, usually biomass for growth (Thiele & Palsson, 2010). Although all the work 

developed in this study is based on the genome-scale metabolic modeling, due to the vast amount of 

bibliographic information already published related to the constrain-based methodologies applied for 

analyzing those models (Palsson, 2006), the decision of not include a complete explanatory review over 

those techniques in this dissertation was made since they are not the main focus of this work. Instead, 
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a brief review on the used methodologies - Flux Balance Analysis (FBA) and Flux Variability Analysis 

(FVA) - is hereby given; 

 FBA is a widely used technique for constraint-based modeling of metabolic networks. It 

defines each enzymatic and transport reaction in the metabolic network as a flux, and computes a 

pseudo steady-state distribution of the flow of metabolites within constrained flux bounds set for the 

model, thereby allowing the researcher to examine the interdependency of various metabolic pathways 

from a systems perspective (Palsson et al., 2006; Orth et al., 2010). 

The first step in a FBA is to mathematically represent metabolic reactions. The core feature of 

this representation is in the form of a stoichiometric matrix (S) of size m × n. Every row of this matrix 

represents one unique compound in each compartment (for a system with m compounds) and every 

column represents one reaction (for a system with n reactions). The entries in each column are the 

stoichiometric coefficients of the metabolites participating in a reaction being a negative coefficient for 

every metabolite consumed and a positive coefficient for every metabolite that is produced, assuming 

that substrates are in the left side and products on the right side of the balanced equation (Orth et al., 

2010).  

The matrix of stoichiometries imposes mass-balanced fluxes in the system, ensuring that the 

total amount of any compound being produced must be equal to the total amount being consumed at 

the pseudo steady-state. The other constraint of this model defines the space of allowable flux 

distributions of a system—that is, the rates at which every metabolite is consumed or produced by each 

reaction. 

Therefore, to every reaction will be given upper bound (ub) and lower bound (lb), which define the 

maximum and minimum allowable fluxes of the reactions, respectively. In irreversible reactions, the 

minimum flux is always set to zero. The flux through all of the reactions in a network is represented by 

the vector v, which has a length of n. The system of mass balance equations at a pseudo steady-state 

will assume that x, the vector of metabolite concentrations, will not have any change over time since the 

production and consumption of all metabolites are balanced (Orth et al., 2010). 

 

𝒅𝐱

𝒅𝒕
= 𝟎 

 

In the biological system’s level, that means; 

 

𝐒 . 𝐯 = 𝟎 

 

In any realistic large-scale metabolic model, there are more reactions than metabolites (n > m) 

since different reactions can use the same metabolites. So, like any other linear system, where there is 

present a higher number of variables than equations, there is no unique solution to this defined system. 

Even though the previously described constraints define a range of different possible solutions, it is still 

viable to identify and analyze single points within the solution space. As the basis of the FBA method, 

the identification of such interest point within a constrained space is achievable by the maximization or 

minimization of a specific objective function. The objective function Z, which can be any linear 
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combination of fluxes, where c is a vector of weights indicating how much each reaction (i.e. biomass 

reaction when simulating maximum growth) contributes to the objective function. If the reaction to be 

maximized already include all the metabolites that should be maximized then c will be a vector of zeros 

with a positive entry equal to 1 in the column of the reaction to be maximized. This is the case when the 

biomass components are displayed in the same equation – the biomass equation.  

 

𝐙 = 𝐜𝑻. 𝐯 

 

In this sense, the output of FBA is a particular flux distribution, v, which maximizes or 

minimizes the objective function, can be displayed as linear problem; 

 

 

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 (𝐙) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝐒 . 𝐯 = 𝟎 

𝒍𝒃𝒊 ≤ 𝐯𝒊 ≤  𝒖𝒃𝒊   ,   𝟏 ≤ 𝒊 ≤ 𝒏 

       

 

In order to solve this equation system with many variables, the use of dedicated computational 

linear solvers is needed. Several system biology software that included dedicated solvers are available 

to the public, but the COBRA (COnstraint-Based Reconstruction and Analysis) toolbox is one of the 

most popular and includes methods to simulate, analyze and predict a variety of metabolic phenotypes, 

network gap filling, 13C analysis, metabolic engineering, omics-guided analysis and network visualization 

(Schellenberger et al., 2011). Over the years, new methodologies for analyzing genome-scale metabolic 

networks were developed based on FBA. Some of those are gene deletion studies (OptKnock), 

minimization of metabolic adjustment (MOMA), dynamical FBA (dFBA), parsimonious FBA (pFBA), 

robustness analysis and FVA, being the last one also used in this dissertation and described below 

(Palsson, 2006; Schellenberger et al., 2011); 

 

 FVA is used to find the minimum and maximum flux for reactions in the network while 

maintaining some pre-established state of the network. Applications of FVA for molecular systems 

biology include the exploration of alternative optimal solutions, studying flux distributions under 

suboptimal growth, investigating network flexibility and network redundancy for example. FVA starts as 

a regular FBA, maximizing or minimizing a particular objective function, but then uses the achieved 

objective flux(es) value(s) as a fixed (optimal (γ=1) or suboptimal (γ <1)) constraint and executes 

simultaneously a minimization and maximization of each remaining individual fluxes in order to predict 

their variability in the system, as described in Gudmundsson et al., 2010; 

 

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞 (𝐙) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schellenberger%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21886097
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schellenberger%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21886097
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𝐒 . 𝐯 = 𝟎 

𝒍𝒃𝒊 ≤ 𝐯𝒊 ≤  𝒖𝒃𝒊   ,   𝟏 ≤ 𝒊 ≤ 𝒏 

 

Then; 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆/𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 (𝐯𝑖) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝐒 . 𝐯 = 𝟎 

          𝒘𝑻 . 𝐯 ≥ γ.Z   ,   𝟎 ≤ 𝜸 ≤ 𝟏  

𝒍𝒃𝒊 ≤ 𝐯𝒊 ≤  𝒖𝒃𝒊   ,   𝟏 ≤ 𝒊 ≤ 𝒏 

 

 
1.4.3. Genome-scale Metabolic Networks in Bioremediation 

Biotechnology industries have beneficiated significantly from the development of metabolic 

networks and respective modeling (Saha et al., 2014). However, concerning the field of bioremediation, 

the development of genome-scale metabolic networks has only recently emerged (Oberhardt et al., 

2009). As stated by Mahadevan et al., 2011, there exists a wide diversity of unexplored metabolic 

reactions encoded in the genomes of microorganisms that have an important environmental role.  

Similar approaches that have been used in the field of biotechnology could accelerate the elucidation of 

the physiology and ecology of these microorganisms and could guide optimization of the practical 

applications in the field of bioremediation.  

 Bioremediation takes advantage of a microbe’s ability to reduce and potentially eliminate toxic 

effects of environmental pollutants. Additionally, microbes capable of degrading harmful waste produce 

useful chemicals as byproducts, and hence are intriguing production organisms as well (DESe Lorenzo, 

2008). An updated list of the genome-scale metabolic networks that were used in order to correlate and 

predict bioremediation events are listed below; 

 Acinetobacter baylyi is an innocuous soil bacterium that degrades pollutants (e.g. 

biphenyl, phenol, benzoate, crude oil, nitriles) and produces lipases, proteases, bioemulsifiers, 

cyanophycine, and biopolymers. Acinetobacter baylyi is easily transformed and manipulated by 

homology-directed recombination, enabling straightforward metabolic engineering. Therefore, the 

genome-based model is accompanied by an extensive library of mutants, and was validated against 

wild type growth phenotypes in 190 environments and gene essentiality data for nine environments 

(Durot et al., 2008). 

 Pseudomonas putida KT2440 metabolic network that captures the important 

biotechnological capabilities, such as biodegradation of aromatic compounds (i.e. toluene, xylene), was 

constructed for this paradigmatic bacterium. Also, this study evaluated the metabolic network content 

and showed some examples of how P. putida could be used for biotechnological purposes (i.e. 

production of polyhydroxyalkanoates) (Nogales et al., 2008). More recently, an additional reconstruction 

of the previously described model was achieved in order to comprehend the degradation of 

polychlorinated bisphenols by Pseudomonas putida KT2440 in marine ecosystems (Taffi et al., 2014). 
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 Geobacter metallireducens reduces Fe3+ and is used in bioremediation of uranium, 

plutonium, technetium, and vadium. Its ability to produce electrically conductive pili makes it useful for 

harvesting electricity from waste organic matter and as a biocatalyst in microbial fuel cell applications. 

Using G. metallireducens GEM, growth on different electron donors and electron acceptors was 

investigated. Model analysis revealed energy inefficient reactions in central metabolism, and 

experimental data suggested that the inefficient reactions were inactive during biomass optimization on 

acetate, but up-regulated when grown with complex electron donors. Additionally, the model was tested 

for flux predictions by comparison with 13C labeling flux analysis. Simulations suggested that the 

tricarboxylic acid cycle was used to oxidize 91.6% of acetate, in agreement with 90.5% in 13C labeling 

experiments (Sun et al., 2009). 

 Geobacter sulfurreducens has similar industrial applications to G. metallireducens and 

is also able to reduce Fe3+ (Mahadevan et al., 2006). OptKnock was applied to the G. sulfurreducens 

GEM to improve extracellular electron transport (Izallalen et al., 2008). Gene deletions in the fatty and 

amino acid pathways and in central metabolism were predicted to increase respiration and cellular ATP 

demand. To study the ATP demand increase, an ATP drain was added to the GEM. The model showed 

the rise in ATP usage correlated to decreased biomass flux and increased respiration rate. Experimental 

results confirmed that an ATP drain demonstrates the predicted results. Increasing electron transfer in 

G. sulfurreducens has advantages in both bioremediation and microbial fuel cell development, though 

increased fuel cell current was not found with this mutant strain (Mahadevan et al., 2006; Izallalen et al., 

2008). 

 Rhodococcus erythropolis is a remarkable bacteria used for bioremediation and fuel 

desulfurization. On a study developed by Aggarwal et al., 2011, it was reported the reconstruction of the 

first genome-scale metabolic model for R. erythropolis that could successfully predict cell growth results 

and explaining several experimental observations in the literature on biodesulfurization using 

dibenzothiophene. The in silico experiments and flux balance analyses allowed to propose minimal 

media, determine gene and reaction essentiality, and compare effectiveness of carbon, nitrogen, and 

sulfur sources (Aggarwal et al., 2011). 

 Rhodoferax ferrireducens strain DMS 15236 is one of the few known facultative 

microorganisms that can grow anaerobically by oxidizing organic compounds to carbon dioxide with 

Fe3+ serving as the electron acceptor. This attribute, as well as its ability to grow at the low temperatures 

found in many subsurface environments, suggests that it could contribute to the oxidation of organic 

matter coupled to the reduction of Fe3+ in many soils sediments. The genome of R. ferrireducens harbors 

genes for benzoate degradation that are likely to be active under both aerobic and anaerobic conditions. 

The R. ferrireducens model contains a pathway for benzoate degradation, and predicts the growth of R. 

ferrireducens on benzoate with Fe3+ as an electron acceptor (Risso et al., 2009).  

A common feature to all those metabolic reconstructions is the comprehension of the metabolic 

processes that are need to be present in one microorganism in order to predict their bioremediation 

potential for the degradation of environmental pollutants. More recently, some studies also include the 

relationship between some of biodegradative microorganisms and other present in the soil environment 

(Zhuang et al., 2011). 
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1.5. Dissertation Overview 

In order to comprehend the influence of different extracellular compounds on the Polaromonas 

sp. strain JS666 metabolism a representative in silico genome-scale metabolic model was reconstructed 

for this microorganism. This knowledge platform was built by integrating information provided from 

genome annotation and biochemical data from past studies. The produced model was further compared 

against physiological and phenotypic data using FBA and FVA with the purpose of validating the final 

model, hereby designated iJS666. 

The genome-scale iJS666 model was also used with the combination of FBA with the final aim 

of predicting some compounds that may be added in cDCE contaminated soils towards an in situ 

biostimulation of Polaromonas sp. strain JS666 growth. In fact, both VC, TCE and cDCE are present 

down gradient from the Estarreja Chemical Complex site, an industrial complex located in North-West 

Portugal near Ria de Aveiro and classified as a priority remediation area under the Environmental 

Liabilities Recover Program (Branco, 2007). As such, ways in which to increase the metabolic rates 

and/or efficiency of these microorganisms is of national interest. 
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2. Methods 

2.1. Hardware and Software Environment 

The model reconstruction and the in silico analysis performed in this study were done on a 

Windows 7 Professional, 64 bit operating system with an AMD FX-4100 QuadCore Processor (3.60 

GHz), 4GB of RAM.  

All the initial raw data used on the draft reconstruction was extracted from PathwayTools 

software (V18.0 Tier 1) that simultaneously predicted the initial enzymatic reactions and GPRs.  

MATLAB® (v8.0.0.783, R2012b, The MathWorks, Inc) was simultaneously used to convert the 

Microsoft Excel previously obtained file into a COBRA model and to execute all necessary scripts 

present in the COBRA Toolbox (v2.0.6), being glpkmex the linear solver used on the constraint-based 

algorithms. Since many other scripts and functions were developed during this dissertation, the 

complete MATLAB programming code is displayed in Supplementary Data 1 and sorted by 

script/function sequencial usage throughout this dissertation. 

The iJS666 metabolic network visualization was achieved by converting the COBRA model into 

a .sbml file that was imported by CySBML(v1.30) into Cytoscape (v2.8.2). The CyFluxViz (v0.94) 

application was used for the visual representation of the reaction fluxes, simultaneously. 

 

2.2. Genome-scale Metabolic Network Reconstruction 

2.2.1. Automated Draft Reconstruction 

Due to the scarce amount of biochemical evidence for the Polaromonas sp. strain JS666 

enzymatic activity, the PathoLogic application available on the PathwayTools software was used initially 

to retrieved the genome annotation information from National Center for Biotechnology Information 

(NCBI) (NC_007948.1, NC_007950.1 and NC_007949.1) Genebank (.gb) and Fasta files (.fa) for the 

chromosome, plasmid pPOL338 and pPOL360, respectively and to generate the initial draft 

reconstruction as exemplified in Karp et al., 2009, and explained in Karp et al., 2011. The reactions 

predicted by PathwayTool were previously stored in MetaCyc database and were, a priori, mass and 

charge balanced to a physiological pH of 7.3 (Caspi et al., 2006). The predicted information for the 

reactions, metabolites and gene-protein-reactions were then download and stored in Microsoft Excel file 

which allowed faster information processing and was suitable to make the needed modifications on the 

manual refinement stage. Hence, the initial metabolic network was further improved by following the 

protocol for generating high quality genome-scale metabolic networks step-by-step (Thiele & Palsson, 

2010).  

http://www.ncbi.nlm.nih.gov/
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2.2.2. Manual Refinement 

The initial automated reconstruction file yielded a representation of an metabolic network that 

functioned as a starting point to the final reconstruction although extensive manual curation was need 

in order to obtain a functional model. The initial reactions list included many non-physiological reactions 

that should not be included in the final model since those reactions are not mass balanced or have any 

relevant information to the metabolic process. Some of the reactions excluded in this process are 

involved in post-translational modifications, non-metabolic protein phosphorylation activity, DNA/RNA 

modification and degradation, etc…, as exampled below (Thiele & Palsson, 2010); 

 

Example 1: Non-physiological reaction excluded from model. 

 

Protein-L-histidine + ATP → Protein-N-phospho-L-histidine + ADP + H+ 

 

Some enzymatic reactions displayed in the initial draft were presented in a generic form, in 

which one or more of the used metabolites were chemically unspecific. Most of these reactions were 

immediately excluded since it was impossible to identify the specific metabolites used by them (those 

reactions were easily identified by searching for metabolites with no molecular mass associated or with 

generic chemical terms). Some generic reactions that could be easily associated (same substrates, 

products and gene associations) with well-defined reactions already included in the model, were also 

excluded in order to avoid repetitions (Thiele & Palsson, 2010); 

 

Example 2: Reaction excluded due to unspecific metabolites.  

 

Carboxylic ester + H2O → Alcohol + Carboxylate + H+ 

 

Some of those enzymatic reactions present in the initial draft had unspecific cofactors. When 

the data revealed the generic group of the cofactor, the reaction unspecific cofactor was substituted by 

the most common representative cofactor for that respective group. When no information was given for 

the used cofactor then the reaction was modified to include NAD+/NADP+ (depending if they were 

present on a catabolic or anabolic pathway, respectively). This assumption lead to an insignificant flux 

variation since the used cofactors had interconvertible redox reactions included in the model; 

 

Example 3: Reaction with unspecific cofactor. 

 

Octanol + Oxidized electron acceptor → Octanal + Reduced electron acceptor 

 
 

Many similar enzymatic reactions, present in the initial draft, had in their stoichiometric 

constitution isomeric convertible metabolites. In order to simplify the iJS666 model, only one isomer was 
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selected for those reactions. This simplification was pertinent due to the huge amount of metabolites 

present with an isomeric form that lead to metabolic network dead-ends. This simplification did not affect 

the reaction fluxes, although in the real cellular metabolism if more than one isomer is produced on the 

biological system, those compounds could have different downstream pathways or one of those 

metabolites could accumulate in the cellular pool. The only way to amend this problem in a constraint-

based methodology would be to add demand reactions to simulate the consumption of such metabolites 

although in many cases there is no information about the inclusion rate of those metabolites in the 

cellular pool. Also, since the metabolic network model had the purpose to be analyzed by constraint-

based methods, some polymer associated reactions, in which polymer product had a stoichiometry 

algebraically representation, could not be inputted with the initial format cause they had to be mass 

balanced due to the pseudo-stationary constraint. In order to solve this problem, those reactions were 

simplified to the production/consumption of their respective monomers and the polymer produced was 

set to a sink/depletion reaction. 

 

Example 4: Polymeric reactions with algebraically stoichiometry. 
 

10-formyl-THP-[γ-Glu]n + L-glutamate + ATP → 10-formyl-THP-[γ-Glu]n+1 + ADP + phosphate 
 

In the manual curation stage, linking macromolecular reactions to the predicted metabolic 

reactions should be taken in consideration by the researcher in order to achieve a functional model that 

have the expected physiognomic characteristics, as explained in the next sections. 

 

2.2.2.1. DNA, RNA and Protein Coefficients 

DNA, RNA and protein are some of the most fundamental biomass constituents present in a 

cell. Therefore, the relative contribution to the biomass composition and monomer composition for each 

of those biopolymers are crucial for high-quality metabolic modelling (Thiele & Palsson, 2010). 

Unfortunately, it was impossible, within the framework of this dissertation, to quantify 

experimentally the relative fractional composition values for all of those molecules in the Polaromonas 

sp. strain JS666 biomass and some assumptions were made based on previously published literature. 

More specifically, the biomass relative composition regarding those biopolymers was assessed base on 

the biomass composition of R. ferrireducens, the closest phylogenetically related microorganism with a 

correlated genome-scale metabolic model (Risso et al., 2009). 

Nevertheless, the monomer composition of those polymers was estimated from genome data. 

The DNA composition was determined by the stoichiometric quantification of each nucleotide in all 

genetic elements, assuming the double strand configuration of the molecule, as described in Thiele & 

Palsson, 2010. Henceforward, the nucleotide relative composition of the RNA was recovered by the 

quantification of the different monomers present on all the coding sequences (CDS) assuming a single 

strand configuration for this molecule (Thiele & Palsson, 2010). Using the codon usage information 
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displayed in Kazusa database (Nakamura, 2007) for the Polaromonas sp. strain JS666, the amino-acid 

composition of the proteins was estimated based on the coding sequence, as reported in Table 2.1.  

 

Table 2.1 Major macromolecules of biomass composition in iJS666 model. DNA, RNA and protein coefficients  (left) 

are defined by the amount of constituent monomers. For example, 18.763 mmol gDW-1 h-1 of dATP are required to 

produce 1 mmol gDW-1 h-1 of a DNA molecule with 100 total deoxyribonucleotides. In the case of phospholipids 

and acyl-ACP all values are in mmol gDW-1 h-1 and the components of biomass are expressed in mmol gDW-1. 

dNTPs DNAJS666 
 Phospholipids 

Heads 
PhospholipidJS666 

dATP 18.763  cardiolipin 0.057 

dCTP 31.236  phosphatidyl-ethanolamine 0.688 

dGTP 31.236  phosphatidyl-glycerol 0.193 

dTTP 18.763  phosphatidyl-serine 0.062 

TOTAL 100  TOTAL 1 

NTPs RNAJS666  Acyl-[ACP] Pool Component Acyl-[ACP] 

ATP 18.904  palmitoleoyl-[acp] 1.34 

CTP 31.238  cis-vaccenoyl-[acp] 0.158 

GTP 31.446  palmitoyl-[acp] 0.392 

UTP 18.412  3-oxo-decanoyl-[acp] 0.05 

TOTAL 100  TOTAL 1.94 

AA ProteinJS666 
 Biomass 

Component 
Coefficient 

GLY 25.85  DNAJS666 0.00104 

GLU 16.56  RNAJS666 0.006566 

ASP 15.82  ProteinJS666 0.001610 

VAL 24.22  PhospholipidJS666 0.00256 

ALA 38.93  4-methylphenol 0.00034 

ARG 20.56  coenzyme A 0.000345 

SER 18.03  glycogen 0.1598 

LYS 11.99  heme-O 0.000034 

ASN 8.67 
 (2r,4s)-2-methyl-2,3,3,4-

tetrahydroxytetrahydrofuran 
0.00102 

MET 8.05  lipid A-core 0.00908 

ILE 14.46  peptidoglycan 0.02614 

THR 16.65  putrescine 0.03527 

TRP 4.5  pyridoxal 5’-phosphate 0.000034 

CYS 3.08  spermidine 0.00713 

TYR 7.18  tetrahydrofolate 0.05 

LEU 33.81  thiamine diphosphate 0.00034 

PHE 11.38  UDP-α-glucose 0.003 

GLN 12.66  FAD 0.00069 

HIS 7.13  NADH 0.0022 

PRO 16.47  NADPH 0.0017 

SEL 1  ubiquinol-8 0.00034 

TOTAL 317  GAM 46.7 
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2.2.2.2. Membrane Phospholipid Composition 

On previously reported genome-scale metabolic networks, the membrane phospholipid fraction 

could vary from 9.1 % (w/w) (Thiele & Palsson, 2010) to 15 % (w/w) (Mahadevan et al., 2006) of the 

biomass content and have an enormous relevance on the predictive capabilities of the metabolic model 

due to the variable composition, high molecular weight and energetic cost for its biosynthesis (Thiele & 

Palsson, 2010). 

Similar to the DNA, RNA and protein relative composition, the membrane phospholipid relative 

composition was set to be the same as in Geobacter sulfurreducens and Rhodoferax ferrireducens 

(Mahadevan et al., 2008; Risso et al., 2009). Nevertheless, the phospholipid composition was 

determined by experimental data retrieved from other Polaromonas species (Margesin et al., 2012). 

Some of the discovered phospholipids acyl-groups present in the Polaromonas species were not 

included in the previously described microorganism’s models. Therefore, the relative acyl phospholipid 

composition was set differently from the R. ferrireducens and G. sulfurreducens. In order to culminate 

this problem, the relative phospholipid composition of the Polaromonas sp. strain JS666 was set as 

described in the Table 2.1. 

 

2.2.2.3. GAM and NGAM Balance 

In biological systems, ATP hydrolysis is required in order to growth and to maintain some of the 

biological processes active. GAM (growth associated maintenance) is the consumption rate of ATP 

hydrolysis necessary to the growth of the microorganism. This rate represent mainly an output of energy 

cost necessary to DNA, RNA and protein polymerization reactions to occur. NGAM (non-growth 

associated maintenance) is the rate of ATP hydrolysis related to the maintenance of the cell when there 

is no growth occurring. For example, some reactions that contribute to the value of this rate are related 

with cell osmoregulation, repair mechanisms and cascade signaling. Both GAM and NGAM have a huge 

influence on the model predictions, especially on the predicted growth rate (Thiele & Palsson, 2010).  

Usually GAM values used in genome-scale models are very similar even between different 

organisms although the same is not true to NGAM values. For example, Escherichia Coli model iAF1260 

have a NGAM value of 8.31 mmol gDW-1 h-1 (Feist et al., 2007) while the slow growing bacteria R. 

ferrireducens and G. sulfurreducens models have a NGAM value of only 0.45 mmol gDW-1 h-1 attributed. 

When not mention otherwise, the NGAM was set to an invariable flux value of 0.45 mmol gDW -1 h-1 as 

reported previously by Mahadevan et al., 2006, and Risso et al., 2009. Later on in this dissertation, the 

influence of this flux value in the predicted growth rate was accessed in Chapter 3.2.2. The GAM rate 

represents an energy cost that is proportional to the growth rate and, therefore, was included directly in 

the biomass equation. A flux value of 46.7 mmol gDW-1 was established for iJS666 model based on the 

previously reported value for the G. sulfurreducens (Esteve-Núñez et al., 2005; Mahadevan et al., 2006) 

and in G. metallireducens (Jun et al., 2009). 

 



 

41 

  

2.2.2.4. Final Biomass Equation  

The biomass reaction accounts for all known biomass constituents, their fractional contributions 

to the overall cellular biomass (Thiele & Palsson, 2010). The metabolites in the biomass reaction may 

affect the in silico essentiality of reactions and their associated genes and when the model tries to predict 

the optimal growth rate accurately the fractional distribution of each compound plays an important role 

(Thiele & Palsson, 2010). Since the fractional quantities of the biomass precursors were not 

experimentally measured for Polaromonas sp. strain JS666, the remaining metabolites present on the 

biomass equation of the iJS666 model were set as reported in R. ferrireducens biomass equation (Rossi 

et al., 2006). The unit of the biomass reaction is h-1 since all biomass precursor fractions are defined in 

mmol gDW-1 and uptake/internal fluxes were introduced in mmol gDW-1 h-1. Therefore, the biomass 

reaction sums the mole fraction of each precursor necessary to produce 1 g dry weight of cells, as 

reported in Table 2.1. 

 
2.2.2.5. Model Compartmentalization and Transport Reactions 

Polaromonas are bacteria from the family of Comamonadaceae which belongs to the class 

of Betaproteobacteria and therefore are Gram-negative (Osborne et al., 2010). Hence, the iJS666 model 

was initially compartmentalized in cytoplasm, periplasm and extracellular spaces.  

The PathwayTools software was able to predict the existence of some inner and outer 

membrane transport systems operating on Polaromonas sp. strain JS666 from the genome annotation. 

Some of those predicted reactions were in the generic form and consequently they had to be simplified 

or excluded in cases when the information provided was insufficient to identify the transported 

metabolites. There was a huge lack of information regarding the cellular localization of those enzymes 

and many of the periplasmic inner transport reactions would form gaps since there was no 

corresponding uptake from the extracellular medium. 

In the early stages of the model reconstruction, an attempt was made in order to identify and 

debug those transport systems. PSORT 3.0 was used for the identification of membrane proteins and 

their intracellular localization. Subsequently, a BLASTp was performed using the CDS of those 

membrane proteins (data not showed) and the majority of the found results were unclear since, once 

again, the reactions associated to those homologous enzymes were unspecific. Also, PSORT was 

unable to predict the membrane localization (inner or outer) of many transmembrane proteins and 

consequently a simplification of the model was became absolutely necessary. All predicted transport 

reactions were modified, limiting the intracellular localization of a metabolite to the cytoplasm - [c] - or 

to the extracellular medium - [e]. The directionality of transport reactions (reversible/irreversible) was 

kept along with the transport mechanism (symport or antiport) as exemplified below; 

 

Example 5: Draft transport reaction and the respective final transport reaction. 
 

https://en.wikipedia.org/wiki/Comamonadaceae
https://en.wikipedia.org/wiki/Betaproteobacteria
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ammonium[periplasmic] + H+[periplasmic]  →  ammonium[cytosol] + H+[cytosol] 

    
ammonium[extracellular] + H+[extracellular]  →  ammonium[cytosol] + H+[cytosol] 

 
 

Although this simplification could have a negative influence on the predictive potential, since 

metabolites could accumulate in different compartments within the microorganism, but it simultaneously 

reduced the possibility of Type III Pathway formation (Thiele & Palsson, 2010). A similar simplification 

was also previously reported on the R. ferrireducens model without compromising the model predictive 

capabilities even that those relied mainly on the transmembrane systems (Risso et al., 2009). 

Finally, there was experimental evidence that some compounds could be degraded and used 

as carbon-sources for biomass growth (Alexander, 2010) as reported in Table 3.2. An extracellular 

active (with ATP hydrolysis) transport reaction was added for charged metabolites as suggested in 

Thiele & Palsson, 2010. In order to facilitate the mass balance of extracellular compounds and easier 

medium control, the uptake from extracellular medium was defined by exchange reactions in the format 

exampled below for all the extracellular metabolites; 

 

Example 6: Exchange reaction between extracellular medium and the closed system. 

 

ammonium[extracellular]  ↔  ( Closed System) 
 

 

2.2.3. Metabolic network debugging 

2.2.3.1. Confidence score 

The lack of biochemical evidence for the enzymatic reactions present in the obtained 

Polaromonas sp. strain JS666 initial draft resulted in insufficient information needed to proceed with the 

network debugging described in the previously referred protocol (Thiele & Palsson, 2010).  In order to 

overcome the lack of a confidence test for the iJS666 model reactions, an automatic confidence scoring 

system was developed assuming that the reactions present simultaneously in iJS666 draft model and 

in the genome-scale metabolic network of the phylogenetically related R. ferrireducens microorganism 

had a higher probability of occurring. Also, the existence of a predicted GPR (gene-protein-reaction 

association) or biochemical evidence was positively accounted by the scoring system (Thiele & Palsson, 

2010) as described in Table 2.2. 
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Table 2.2. Automatic confidence scoring system used in iJS666 model. 

 
 
2.2.3.2. Pathway Gap Filling 

In every genome-scale metabolic network reconstruction the first step on the debugging mode 

is the identification of the metabolic gaps present in the draft network. A metabolic/pathway gap can be 

seen as a hole in the network that don’t allow the in silico model achieve a feasible result on the objective 

function/equation (e.g.: feasible growth under some specific growth condition previously determined 

given a set of nutrients and secretion products), making therefore the biological system unfeasible. If 

one had a complete knowledge about the functionality of the genome, no gap-filling would be needed. 

However, as reported before, a complete genome annotation is near impossible to obtain. With the 

increased rate of genome-scale metabolic networks, new parsimony-based algorithms to automatically 

fill the gaps of the network were developed although these software’s only search for possible reactions 

to be added to network under the available databases and it is the curator’s ultimate responsibility to 

decide which criteria to apply to close the metabolic gap (Latendresse, 2014). 

In order to find the metabolic gaps in the iJS666 draft reconstruction, the COBRA toolbox script 

GapFind.m was used, as described in Thiele & Palsson, 2010. This script allowed to identify 

topological/root gaps and non-topological although a minor modification was made in order to also 

identify metabolites exclusively inserted in one reversible reaction since they would also form dead-

ends. Depending on the type of formed gap and on the unbalanced metabolite, different procedures to 

correct those gaps were taken into consideration, as described in Thiele & Palsson, 2010. Since many 

reactions had to be manually introduced to the metabolic network, the identifier (‘NEWRXN’) was used 

in the Excel file in order to distinguish between reactions predicted by the automatic draft reconstruction 

software, PathwayTools, and those manually introduced. The confidence scoring system, previously 

described, was also applied to this reactions.  

  

Evidence type 
Confidence 

score 
Examples 

Biochemical Data 
 

4 Direct evidence for gene product function and biochemical reaction. 

Strong Annotation 
Evidence 

3 Gene predicted by PathwayTools and reaction present on R. ferrireducens 

Weak Annotation 
Evidence 

2 Gene/Reaction only predicted in PathwayTools 

Weak Evidence 2 
No evidence is available but reaction is required for modeling and similar 

reaction is present at R. ferrireducens 

Modelling Data 1 No evidence is available but reaction is required for modeling. 

Not evaluated 0 
Not applied to this model since all reactions were automatically scored. 

Serves as a scoring error identifier. 
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2.2.3.4 Stoichiometric inconsistencies and cyclic infeasibilities 

Assuming a set of metabolic reactions correctly mass-balanced, the metabolic reactions with 

the same metabolites would always have the same (or proportional) amount of stoichiometric 

coefficients for each metabolite, independently of the reaction directionality. Since initially the reactions 

were admitted in the metabolic network as they were uploaded from the database MetaCyc, a method 

analogous to the one presented by Gevorgyan et al., 2008, was used in order to identify possible 

inconsistencies in the stoichiometry of similar reactions. All the reactions which had identical metabolite 

constitution or similar, diverging at most by one metabolite, were found by the script similarity.m 

including, but not limited to, the presence of different metabolite stoichiometry, the variation in one proton 

molecule or the use of different cofactor (correct as described in the Manual Refinement section of 

Thiele & Palsson, 2010, protocol), then the comparison of those reactions and curation of eventual 

stoichiometric inconsistencies was done manually. 

A common problem when construction metabolic network models is the formation of undesired 

cycles/loops within the system. Accordingly to Schilling et al., 2000, metabolic pathways could be 

categorized based on mathematical principles such as linear algebra and convex analysis into three 

different types of extreme pathways; Type I pathways, requiring the use at least of one of the primary 

exchange fluxes to be active, Type II pathways (or futile pathways), that only need the currency 

exchange fluxes (energy and reductive power) to be active and finally Type III pathways (internal loops) 

that do not require any of the exchange fluxes to be active (Schilling et al., 2000). Although the latter 

pathways do not influence the final flux rate of the objective function, it can mislead the understanding 

of the network and respective dependencies by predicting existent intracellular fluxes that are unrealistic 

accordingly to the real thermodynamic constraints. 

In order to avoid those intracellular loops from the model while using COBRA toolbox, an 

alternatively FBA methodology was tried: Loop Less FBA (LL-FBA) as described in Schellenberger et 

al., 2011. This method turns any linear programming problem into a modified mixed-integer problem 

solving the initial problem with an additional constraint: exclusion of network fluxes that contain loops 

by removing solutions which the sum of the intracellular Gibbs energy is null (Schellenberg et al., 2011). 

Although, solving the system with this methodology was possible (same objective function flux rates but 

with different and lesser intracellular fluxes), it has long-processing time especially in a large genome 

metabolic network. As alternative the objectiveCbModel.m script presented from the COBRA toolbox 

was used to solve all linear problems, from this point on, using norm one minimization of internal fluxes. 

These different approaches had very identical results in eliminating intracellular loops (data not shown) 

however the second methodology had faster processing time. 

 

2.2.3.5. Initial Growth Testing 

A viable carbon and energy source is necessary for any organism in order to accumulate 

biomass and reproduce. Therefore, the absence of a suitable carbon source should result in a zero flux 



 

45 

  

value on the biomass reaction/equation since biomass precursors are organic molecules constituted by 

carbon atoms. Before any FBA on the reconstructed model, one should test for grow without carbon 

source (Thiele & Palsson, 2010). In order to achieve that, a script called blank.m, representing a medium 

without a carbon source, was used to verify the previously described condition. Initially the reconstructed 

model was able to grow (have positive flux value to biomass equation) without any carbon source 

because there were intracellular reactions that allowed the acquisition of carbon from CO2 and, 

simultaneously, there were reactions present that had incorrect directionality and allowed the transport 

of protons to extracellular medium, allowing costless ATP formation. Also, exchange reactions for H2O 

and H+ were set to zero, meaning that there was no addition/removal of water molecules from the 

medium and that pH of the cell/extracellular medium remained constant. Also, the exchange reactions 

for CO2, H2 were set in order to only release those compounds to the medium, never incorporating them 

in the defined system. After all those manual curations, the iJS666 model was not able to growth in the 

medium without carbon source as supposed. 

As described in Thiele & Palsson, 2010, in the Network Evaluation section, preliminary tests 

were done to access if the model was able to predict growth under a known viable medium composition. 

In order to achieve that, an initial test condition was defined based in Minimal Salt Medium (MSM) 

mentioned in the bibliography (Hartmans et al., 1985) and using the script glucose.m, which was similar 

to blank.m but included glucose as carbon-source, as shown in the Table 2.3. Also, every intracellular 

reaction bound was set to a value of -1000 and 0 mmol gDW-1 h-1 to the lower bound for reversible 

reactions and irreversible reactions, respectively, and a value of 1000 mmol gDW-1 h-1 to the upper 

bounds for all those reactiosn. 

 

Table 2.3. MSM proposed by Hartmans et al., 1985 (left). Exchanged metabolites and exchange bounds (right). 

MSM [weight/L] 
Exchanged 
Metabolite 

Lower Bound 
[mmol gDW-1 h-1] 

Upper Bound 
[mmol gDW-1 h-1] 

3.88 g K2HPO4 

2.13 g NaH2PO4▪2H2O 

2.0 g (NH4)2SO4 

0.1 g MoCl2▪6H20 

10 mg EDTA 

2 mg ZnSO4▪7H2O 

1 mg CaCl2▪2H2O 

5 mg FeSO4▪7H2O 

0.2 mg Na2MoO4▪2H2O 

0.2 mg CuSO4▪5H2O 

0.4 mg CoCl2▪6H2O 

1 mg MnCI2▪2H2O 

Co2+ -100 0 

Fe3+ -100 0 

Mg2+ -100 0 

Mo2+ -100 0 

Ni2+ -100 0 

Zn2+ -100 0 

Na+ -100 0 

K+ -100 0 

phosphate -100 0 

ammonium -100 0 

chloride -100 0 

selenite -100 0 

sulfate -100 0 

oxygen -100 0 

D-glucose -1 0 

Secreted 
Metabolites 

0 100 
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In the initial growth test, the model predicted an excessive specific growth rate indicating that 

some reactions within the model were allowing a costless incorporation of carbon in the metabolism. 

With the intention of detecting those prone-to-error reactions the incorporation of the carbon-source was 

set to very low value (0.001 mmol gDW-1 h-1), the bounds for all intracellular reactions were set to an 

inflated value (10000 mmol gDW-1 h-1) and a FVA was conducted in order to identify the reactions that 

were necessary to maintain that excessive growth rate (very high flux rate with low variation). Those 

reactions allowed free incorporation of carbon due to previously undetected errors on equation mass-

balance or in reaction directionality. After this final curation, the model was able to demonstrate a 

reasonable growth rate for the tested carbon-source and simultaneously demonstrated that without any 

carbon-source added to the medium, the growth rate value was, as expected, zero. 

 

2.3. Model Validation 

Model validation is a necessary step on the reconstruction of a genome-scale metabolic network 

(Thiele & Palsson, 2010) since the predictive capabilities of the iJS666 model should reproduce flux 

values similar to the observable production and consumption rates in Polaromonas sp. strain JS666 and 

also the model should be able to reveal which GPRs contribute to those fluxes. For that reason the 

model validation was accessed by the correlation the real degradative capabilities of the microorganism 

in comparison to those predicted by the iJS666 model. 

As stated before, Polaromonas sp. strain JS666 is a poorly studied microorganism and therefore 

few bibliographic data is available from which experimental chemostat data could be retrieved. In 2010, 

Alexander did an extensive work analyzing the viable mediums/carbon sources that support 

Polaromonas sp.JS666 growth. Some growth mediums only allowed Polaromonas sp. strain JS66 to 

grow in Petri plates, at very low concentrations, while others indorsed relatively faster growth in liquid 

cultures and therefore cellular concentration was measured alongside.  

The iJS666 model was tested for all compounds referenced accordingly the following criteria; 

the model should not predict grow for carbon-sources that revealed negative auxanography plates; the 

model should predict a positive biomass flux value for compounds that allowed Polaromonas sp. strain 

JS666 to grow in auxanography plates; and for those compound which allowed growth in liquid cultures 

the growth rates were directly compared with the experimental extrapolated values. That was achieved 

by the scripts validationnegative.m, validationpositive.m, respectively. In the liquid growth cultures, the 

extrapolated specific growth rate were obtain using the following formulation; 

 

𝑂𝐷𝑓𝑖𝑛𝑎𝑙 = 𝑂𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 2𝑀𝐷   

 

µ (ℎ−1) =
ln(𝑂𝐷𝑓𝑖𝑛𝑎𝑙) − ln (𝑂𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

𝑡𝑀𝐷
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Assuming that all substrate present on the medium was consumed during the growth (S = 0), X 

defining the biomass concentration, the specific substrate consumption rate (Rs) was acquired by the 

following expression;  

 

−
𝑑𝑆

𝑑𝑡
= 𝑅𝑠 .  𝑋     ,      

𝑑𝑋

𝑑𝑡
=  µ . 𝑋     𝑎𝑛𝑑     𝑋 (𝑔𝐷𝑊 𝐿−1) = 𝑋0 . 𝑒µ.𝑡𝑀𝐷 

 

𝑅𝑠(𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1ℎ−1) =  
−𝑆𝑜 .  µ

𝑋0 −  𝑋0 . 𝑒µ.𝑡𝑀𝐷
 

 

The specific growth rate specific substrate consumption rates were directly introduced in the 

model iJ666 as lower bounds for the respective substrate exchange reactions. Each metabolite used as 

substrate had a different script that defined the extracellular medium composition as exampled by the 

cDCE.m script that defines the system boundaries for the iJ666 model using cDCE. In all the predictions 

made using iJS666 the objective function was defined as the maximization of the growth and therefore 

the predicted values of the specific growth rate were directly compared to the value extrapolated from 

the collected data. Since the majority of the predictions obtained using the iJS666 model for the liquid 

cultures were not initially correlated to experimental data, further assessments were made in other to 

identify the influence of the specific substrate consumption rate using the script validationvariation.m. 

Also, since some oxygen uptake rates of resting Polaromonas JS666 cells were acquired from 

Nishino et al., 2013, the exchange oxygen rates from the model iJS666 under different substrates and 

substrate consumption rates were also compared for validation using the script validationox.m. 

After those initial validation tests, further predictions were made using the established iJS666 

model in order to access the influence of model parameters, to test the effect environmental conditions 

on the biomass growth and to predict viable compounds to be used as biostimulants. 

 

2.5. Analysis of cDCE degradation in iJS666 model 

In order to analyze the intracellular fluxes of Polaromonas sp. strain JS666 the internal fluxes 

of the reactions downstream to the cDCE degradation were predicted by maximization of the biomass 

production using a specific cDCE consumption rate of 0.561 mmol gDW-1 h-1 in a FBA. Also, further 

analysis to the bottleneck reactions of the iJS666 model, using the previously described parameters, 

were assessed using the script FVAcDCE.m, as reported in Supplentary Data 2.  



 

48 

  

Similarly, the influence of the intracellular glutathione was evaluated by performing an FVA with 

different objective functions (see Supplementary Data 3) using the model iJS666 with and without the 

presence of the glutathione molecule in the biomass equation by the script gluta.m and FVAcDCE.m 

Furthermore, with the intend of analyzing the influence of the parameters NGAM and GAM in 

the specific growth rate as well as to comprehend the influence of different transport systems in the 

iJS666 model, a FBA was done by varying those parameters using the script TNGAM.m. 

Finally, the influence of nitrogen and sulfur sources were also taking in consideration in the 

predictive biodegradation capabilities of the iJS666, using the script nitrogen.m and sulfur.m, 

respectively, since those nutrients may have a significant role in the growth of Polaromonas sp. strain 

JS666 as reported in Mattes et al., 2008. 

 

2.6. Biostimulants prediction using iJS666 model 

The final objective of this dissertation was to predict some compounds to be used as 

biostimulants in the cDCE degradation by Polaromonas sp. strain JS666. In order to do so, all 

metabolites defined in this reconstruction were tested in the model iJS666 in which cDCE was the main 

carbon source by the script testsub.m. A threshold of 30% for bioaugmention, measure by the increase 

of the specific growth rate, was set to avoid the false discovery of potential biostimulants since many 

intracellular metabolites were manually defined. All the tested metabolites were introduced in the cytosol 

by setting a putative active transport system in order to underestimate the bioaugmentation capabilities. 

Also, a parallel FBA was done in order to verify if the added compound would serve as solo carbon 

source and allow the growth of Polaromonas sp. strain JS666 without cDCE degradation. The objective 

of this restraining condition was to avoid a possible catabolic repression that was double checked by 

the verification whether the cDCE consumption rate did not decrease comparing to the medium without 

the added compound. After that a manual selection of the positively identified putative biostimulants was 

done in order to exclude the presence of artefacts or complex metabolites that could not be used in field 

as biostimulants due to practical reasons. 
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3. Results and Discussion 

3.1. The iJS666 Model 

3.1.1. Main Characteristics of iJS666 GENRE 

The systematic reconstruction of the metabolic capabilities of Polaromonas sp. strain JS666, 

which illustrates the extent of our current metabolic knowledge of this microorganism, was included in a 

spreadsheet representation of the model. The displayed reactions were manually categorized in 

different basic pathways for easier user comprehension/localization. The final iJS666 model was 

successfully implemented in the COBRA toolbox for Matlab software, yielding 1395 reactions and 1068 

metabolites (6054 single interactions), as exampled by the stoichiometric matrix in the Figure 3.1. 

. 

 

 

 

 

 

 

Figure 3.1. Representation of iJS666 network in Cytoscape (left) and the respective stoichiometric S matrix (right). 

In comparison to most other genome-scale metabolic networks, the iJS666 model has a relative 

high number of associated reactions due to the fact that major biosynthetic pathways with linear 

dependent reactions were not simplified to shorten the number of reactions present in the system. That 

decision relied on the fact that GPR associations could be misleading and function dependency would 

not be totally understood in posterior analysis. Also, the total number of reactions include a great number 

of sink and transport reactions that were added in order to remove dead-ends or to uptake metabolites, 

see Table 3.1. As can be seen in the complete reactions breakdown in Table 3.1, the total number of 

iJS666 model’s reactions also account for the automatically added exchange reactions for metabolites 

present in the extracellular medium. Therefore, the number of intracellular and transport reactions is 

similar to the number presented in different metabolic models of close related microorganisms (Risso et 

al., 2009; Mahadevan et al., 2006). 
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                                              Table 3.1. Metabolic network proprieties of iJS666. 

 

 
 
 
 
 
 
 
 

As for the type of the reactions included in the iJS666 model, approximately 81.5% were 

irreversible reactions and 18.5% reversible reactions, respectively. These values are also in conformity 

with the previously referred metabolic reconstructions. The distribution of intracellular reactions among 

the different defined pathways is represented in the Figure 3.2. The significant amount of reactions 

present in the amino acid, cofactor, carbohydrates, lipid and nucleotide metabolism is due to the general 

need for those reactions in the synthesis of biomass components of the cell and therefore those 

reactions are more prevalent in every metabolic reconstruction. 

Figure 3.2. Affiliation of intracellular reactions to the different major metabolic pathways. 
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Due to insufficient knowledge of the full metabolic pathways that reside in Polaromonas sp. 

strain JS666, some metabolic root dead-ends were corrected by adding sink reactions for their depletion 

as referred before. Since many of those compounds are essential factors in cell development and 

growth, further studies should be done in order to access their relative proportion in the biomass 

composition. The disclosure of the complete list of those root dead-end metabolites is given in Table 

3.2. 

Table 3.2. Root dead-end metabolites added as sink reactions. 

Root Dead-end Metabolite 

5'-deoxyadenosine L-ascorbate 

glycolaldehyde guanylyl molybdenum cofactor 

cadaverine siroheme 

benzene myo-inositol 

γ-linolenate α,α-trehalose 

5-hydroxy-7a-methyl-1-oxooctahydro-1-h-indene-
4-carboxylate 

β-D-mannose-6-phosphate 

dialurate dTDP-β-l-rhamnose 

protoanemonin GDP-4-dehydro-α-D-rhamnose 

urate GDP-mannuronate 

Mg2+ adenosine-3',5'-bisphosphate 

Ni2+ cis-vaccenate 

Zn2+ laurate 

K+ palmitate 

Hg0 palmitoleate 

chromate stearate 

S-adenosyl-4-methyl,thio-2-oxobutanoate cyanophycin 

biotin(II) polyphosphate 

coenzyme B12 polysulfide 

cGMP tetrahydrofolate glutamate 
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3.1.2. Confidence Score and Robustness Analysis 

Many of the reactions added to the reconstruction had essential enzymes for a specific 

functional pathway but no attributed gene association. In order to catalogue those reactions for further 

improvement and for establishing some degree of confidence about the existence of the pathways used 

by the iJS666 model, a relative confidence score algorithm was establish as previously described in 

Table 2.2. An overview of the iJS666 reaction’s confidence score is displayed in the Figure 3.3. 

 

 

 

 

 

 

 

 

Figure 3.3. Confidence score attributed to the different reactions in iJS666. The total percentage of reactions with 

a given confidence score is displayed in right side of the figure. The reactions identified with corresponding colour 
rectangle correspond to artefacts identified in the algorithm. 

 

As represented in the Figure 3.3, the majority of the reaction used in the metabolic model of 

iJS666 have a high confidence score (62.5% having a confidence score superior to 3) meaning that the 

great majority of those reactions are well defined GPR associations or could be also found in the 

phylogenetic related organism R. ferrireducens. The major contributions to the lowest confidence scores 

arise from reactions that were manually introduced (gap-filling reactions and sink reactions) since it was 

impossible to identify the corresponding gene that codes for the respective enzymes. 

The initial tests carried by the model iJS666 were done using D-glucose as carbon source, as 

referred in Chapter 2.2.3.5., and simultaneously the system was tested under those initial constraints 

with reaction-by-reaction deletions in order to test the inherent robustness of the model. The results are 

presented on the Figure 3.4 and there was no significant variance in the distribution of those values 

using different carbon sources (data not displayed). As displayed by the Figure 3.4, approximately only 

22% of the total reactions were essential reactions, causing a lethal effect when deleted, meaning that 

in the remaining cases the system have a great number of alternative pathways to reach the same 

objective, which is in general agreement with the properties of metabolic networks. 
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Figure 3.4. Robustness analysis of the iJS666 model. Substrate was set to be D-glucose and biomass equation 

was set as objective function. 
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3.2. iJS666 model correlation to Polaromonas sp. strain JS666 

3.2.1. Culture Growth vs Model Growth 

 
The validation of the iJS666 model was achieved by comparing model predictions with 

bibliographic data. The results from the initial validation, present in the Table 3.3, were generated using 

the scripts referred in Chapter 2.3. Initially, a flux value of 0.561 mmol gDW-1 h-1 (equal to the measured 

rate for cDCE degradation) was assumed for the specific substrate consumption rate when it was 

impossible to estimate the value using the expression also described in the Chapter 2.3. From 36 

different mediums tested in the iJS666 model for biomass growth only one medium (phthalate medium) 

had a different outcome from the expected observable phenotype. Some possible explanations for this 

phenomena may be that the software PathwayTools could have made a false positive identification of 

the complete degradation pathway for phthalate or maybe the phthalate degradation really occurs in 

this microorganism although the experimental tested concentrations were excessive too allow growth. 

For example, Alexander, 2010, reported absence of Polaromonas sp. strain JS666 biomass growth for 

DCA although it was reported that Polaromonas sp. strain JS666 have the ability to degrade DCA and 

grow at very low concentrations of that carbon source (Nishino et al., 2013). Other possibility is that the 

predicted enzymes for phthalate degradation in Polaromonas sp. strain JS666 could be involved in 

utilization of (Meta)-phthalate or (Para)-phthalate isomers, rather than the tested (Ortho)-phthalate or, 

alternatively, they may encode phthalate ester degradation, which requires the ester form for transport 

or induction, as referred by Mattes et al., 2008. 

In the last liquid culture mediums reported in the Table 3.3, the substrate consumption rate was 

insufficient to allow biomass growth. The initial used substrate consumption rates derived from the 

expression described in Chapter 2.3 and were under estimated, meaning that the real flux values were 

superior to the flux values used in the optimization. It is possible that the estimated values were 

miscalculated due to the fact that the integration values used were not taken solely from the exponential 

phase, where the maximum growth rate was obtained. For example the estimated/extrapolated 

substrate consumption rate for cDCE was 0.01028 mmol gDW-1 h-1 when the real observable value is 

0.561 mmol gDW-1 h-1. 

In order to further comprehend the specific substrate consumption rates influence on the 

biomass growth rate in the iJS666 model, specific growth rates using different Rs values were predicted 

for each substrate tested in liquid culture mediums. The results originated by the script 

validationvariation.m are reported in the Figure 3.5. Also, the oxygen consumption rates (RO2) were 

assessed for the different Rs values, using the script validationox.m, as displayed in the Figure 3.6. As 

reported in the Figure 3.5, the model iJS666 was able to predict a specific growth rate similar to the 

observable values when higher substrate uptake rates were considered. It is perceptible that a minimum 

substrate uptake is necessary to predict a positive specific growth rate. This phenomena is associated 

with the fact that the system needs to produce enough energy for maintenance (NGAM) before any 
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biomass growth. Due to the lack of chemostat data it was impossible to fully compare the model 

predictions to all experimental substrate consumption rates, but in the case of cDCE as carbon source 

the model predicted a specific growth rate of 0.0046 h-1 while the extrapolated and experimental values 

for the specific growth rate were 0.0089 h-1 and 0.0088 h-1. Also, the predicted oxygen consumption rate 

(for cDCE degradation at a rate of 0.561 mmol gDW-1 h-1) was 1.05 mmol gDW-1 h-1. This implies that 

the model was predicting a suboptimal value for the biomass growth rate and an excessive oxygen 

consumption rate when compared to the experimental value of 0.43 mmol gDW-1 h-1 for RO2 obtained 

in resting cells growing in cDCE. In order to understand the reason for this singularity in the model’s 

predictive capabilities further assessments were done in the Chapter 3.2.2. Although, when the oxygen 

consumption rates predicted by the model iJS666 grown in other carbon sources were compared 

against their respective experimental values, a better agreement seems evident. Particularly, the 

predicted values of RO2 for succinate and chloroacetate (1.59 mmol gDW-1 h-1 and 0.85 mmol gDW-1 h-

1, respectively) were very similar to the experimental values obtained, represented in the Table 3.4. The 

minor differences may be due to the uncertainty of the relative protein biomass composition and average 

protein molecular weight, which were assumed to be equal when the model iJS666 was tested for 

different carbon source mediums.  
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Table 3.3. Real specific growth rate of Polaromonas sp. strain JS666 and predicted specific growth rate from iJS666 model using different mediums. Green and red rows 

represent carbon sources with positive and negative growth associated, respectively. Blue rows refer to liquid cultures further assessed in Figure 3.5 and extrapolated specific 
growth rate values determined as described in Chapter 2.3.*Experimental data from Alexander, 2010; +Experimental data from Nishino et al., 2013. 

Tested Metabolite Culture Type 
Initial 

Concentrations 
[mM] 

Growth or 
µ [h-1] 

Rs [mmol 
gDW-1 h-1] 

Predicted 
µ [h-1] 

Causes 

*Benzoate Auxanograph - Positive 0.561 0.0391 - 

*Catechol Auxanograph - Positive 0.561 0.0351 - 

*Hydroxyquinol Auxanograph - ? 0.561 0.0032 - 

Glucose Auxanograph - Positive 0.561 0.0417 - 

+Glycolate Auxanograph - Positive 0.561 Positive Insufficient Rs rate 

+DCA Auxanograph - Positive 0.561 0.0305 - 

*Chloroacetaldehyde Auxanograph 0.2-10 Negative 0.561 0 No transporter associated 

*Cyclohexane Auxanograph 0.2-10 Negative 0.561 0 No transporter & degradative pathway 

*Cyclohexaneacetate Auxanograph 0.2-10 Negative 0.561 0 No transporter & degradative pathway 

*DCP (dalapon) Auxanograph 0.2-10 Negative 0.561 0 No transporter & degradative pathway 

*Ethane Auxanograph 0.2-10 Negative 0.561 0 No transporter associated 

*Ethanol + Nitrate (Anoxic) Auxanograph 5-30 (Nitrate) Negative 0.561 0 Not energetically viable 

*Ethylcyclohexane Auxanograph 0.2-10 Negative 0.561 0 No transporter & degradative pathway 

*Hexane Auxanograph 0.2-10 Negative 0.561 0 No transporter & degradative pathway 

*4-hydroxybenzoate Auxanograph 2 Negative 0.561 0 No transporter associated 

*Naphthalene Auxanograph 2 Negative 0.561 0 No transporter associated 

*2-Nitrobenzoate Auxanograph 2 Negative 0.561 0 No transporter associated 

*4-Nitrobenzoate Auxanograph 2 Negative 0.561 0 No transporter associated 

*Phthalate Auxanograph 2 Negative 0.561 0.0376 - 

*Propane Auxanograph 0.2-10 Negative 0.561 0 No transporter associated 

*Thiosulfate Auxanograph 10-40 Negative 0.561 0 No transporter associated 

*Thiosulfate + Ethanol Auxanograph 10-40 Negative 0.561 0 No transporter associated 

 
     To be continued… 
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Continuation of Table 3.3…      

*Acetate Liquid Culture 10.0 0.0375 0.08704 Positive Insufficient Rs rate 

*cDCE Liquid Culture 1.3 0.0089 0.01028 Positive Insufficient Rs rate 

*Chloroacetate Liquid Culture 6.0 0.0018 0.06287 Positive Insufficient Rs rate 

*Cyclohexanecarboxylate Liquid Culture 6.0 0.0190 0.10162 Positive Insufficient Rs rate 

*Cyclohexanol Liquid Culture 1.2 0.0097 0.04414 Positive Insufficient Rs rate 

*Ethanol Liquid Culture 10.0 0.0090 0.04866 Positive Insufficient Rs rate 

*Ferulate Liquid Culture 2.0 0.0035 0.05794 Positive Insufficient Rs rate 

*Gentisate Liquid Culture 2.0 0.0079 0.02029 Positive Insufficient Rs rate 

*Heptane Liquid Culture 0.9 0.0047 0.02651 Positive Insufficient Rs rate 

*3-hydroxybenzoate Liquid Culture 2.0 0.0080 0.01326 Positive Insufficient Rs rate 

*Octane Liquid Culture 0.2 0.0025 0.01992 Positive Insufficient Rs rate 

*Protocatechuate Liquid Culture 2.0 0.0094 0.01357 Positive Insufficient Rs rate 

*Salicylate Liquid Culture 0.6 0.0121 0.04594 Positive Insufficient Rs rate 

*Succinate Liquid Culture 10.0 0.0231 0.17851 Positive Insufficient Rs rate 

 
 
Table 3.4. Converted specific oxygen consumption rates (RO2) to iJS666 model. Initial data from Nishino et al., 2013. 

Tested Metabolite 
RO2 

[nmol min-1 mg protein-1 ] 
RO2 

[mmol gDW-1 h-1 ] 

Glycolate 95.00 3.15 

DCA 23.60 0.78 

cDCE 13.00 0.43 

Chloroacetate 26.00 0.86 

Cyclohexanone 276.00 9.15 

Succinate 41.00 1.36 

MW protein [mg mmol-1] Relative Composition of Biomass [mmol protein gDW-1] 

34335.1 0.0161 
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Figure 3.5. Influence of the specific substrate consumption rate on the specific growth rate in the iJ666 model predicted by FBA with biomass maximization as objective 

function. The last value represented in each individual plot corresponds to the extrapolated specific growth rate.  
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Figure 3.6. Influence of the specific substrate consumption rate on the specific oxygen consumption rate in the iJS666 model predicted by FBA with biomass maximization as 

objective function. The last value represented in each individual plot corresponds to the extrapolated specific growth rate. 
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3.2.2. cDCE degradation on iJS666 model 

The cDCE degradation pathways inserted in the iJS666 model reconstruction were obtained 

from Cox, 2012, and Nishino et al., 2013, and were introduced into the iJS666 model as displayed in 

the Table 3.5. Since those reactions were not present in the MetaCyc database they were manually 

mass-balanced. As reported by the same authors, the most likely cofactor used in the initial cDCE 

monooxygenase (Bpro_5301) oxidation is a ferredoxin molecule. In the iJS666 model the reduced 

ferredoxin molecule was replaced by the preceding regenerating cofactor, NADH. This modification had 

no influence in the observable fluxes, as referred in Chapter 2.2.2, since every cofactor had 

interchangeable redox reactions. 

As displayed in Table 3.5, the two primary cDCE degradation pathways and the glycolate 

degradation pathway merge into the production of the glyoxylate metabolite downstream. In the Table 

3.5, the intracellular fluxes for those reactions are also displayed when the system was solved for the 

maximization of the biomass rate (µ=0.0046 h-1) with a specific substrate (cDCE) consumption rate of 

0.561 mmol gDW-1 h-1. 

 

Table 3.5. cDCE degradation pathways in iJS666 and respective fluxes. (µ=0.0043 h-1, Rs=0.561 mmol gDW-1 h-1) 

ID Name of Reaction Reaction Gene 
Fluxes 
[mmol 

gDW-1 h-1] 

Glycolate Initial Degradation Pathways  

Glycolate Oxidation  

RXN-969 glycolate oxidase 
glycolate + oxygen  →  glyoxylate + 

hydrogen peroxide 
glcF, glcE 0 

cDCE Initial Degradation Pathways  

Monooxygenase Main Pathway  

NEWRXN
6661b 

cytochrome P450 
cDCE + oxygen + NADH + H+  →  

2,2-dichloroacetaldehyde + NAD+ + 
H2O 

Bpro_5301 
0.561 

 

NEWRXN
6662 

dichloroacetaldehyde 
dehydrogenase 

2,2-dichloroacetaldehyde + NAD+ + 
H2O  →  2,2-dichloroacetate + 

NADH + H+ 
? 0.561 

NEWRXN
6663 

dichloroacetic acid 
dehalogenase 

2,2-dichloroacetate + H2O  →  
chloroglycolate + chloride + H+ 

Bpro_5186 
Bpro_0530 

0.561 

NEWRXN
6664 

chloroglycolate 
spontaneous 
halogenase 

chloroglycolate  →  chloride + 
glyoxylate + H+ 

- 0.561 

Monooxygenase Epoxide Pathway  

· Spontaneous Dechlorination  

NEWRXN
6665b 

cytochrome P450 
cDCE + oxygen + NADH + H+  →  

cDCE-epoxide + NAD+ + H2O 
Bpro_5301 0 

NEWRXN
6666 

cytochrome P450 
cDCE-epoxide + H2O  →  1,2-

dichloroethane-1,2-diol 
Bpro_5301 0 

NEWRXN
6667 

1,2-dichloroethane-
1,2-diol spontaneous 

dehalogenase 

1,2-dichloroethane-1,2-diol  →  
glyoxal + 2 chloride 

- 0 
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To be continued… 

Continuation of Table 3.5…  

· Glutathione Catalysed Dechlorination  

NEWRXN
6668 

cDCE-glutathione 
synthase 

cDCE-epoxide + glutathione  →  
GS-conjugateI + chloride 

Bpro_0645 0 

NEWRXN
6669 

Gsconjugate 
dehalogenase I 

GS-conjugateI + H2O  →  GS-
conjugateII + chloride 

? 0 

NEWRXN
66610 

Gsconjugate 
dehalogenase II 

GS-conjugateII  →  glutathione + 
glyoxal 

? 0 

NEWRXN
66613 

glyoxylate synthase glyoxal + H2O  →  glyoxylate + 3 H+ Bpro_0577 0 

Shared Degradation Pathway  

GLYOCA
RBOLIG-

RXN 

glyoxylate 
carboligase 

2 glyoxylate + H+  →  CO2 + 
tartronate semialdehyde 

Bpro_4561 0.2798 

SERINE-
GLYOXY

LATE-
AMINOT
RANSFE
RASE-
RXN 

serine-glyoxylate 
transaminase 

glyoxylate + L-serine  ↔  
hydroxypyruvate + glycine 

Bpro_0548 -0.0022 

MALSYN-
RXN 

malate synthase 
acetyl-CoA + glyoxylate + H2O  →  

(S)-malate + coenzyme A + H+ 
Bpro_4517 0.0035 

 
 

As described in Table 3.5, the iJS666 model predicted an intracellular flux value of 0.561 mmol 

gDW-1 h-1 for the reactions of the main monooxygenase pathway, using the cytochrome P450 enzyme 

that is coded by the Bpro_5301 gene. The predicted intracellular flux for that reaction was equal to the 

absolute value of the substrate consumption rate meaning that all degraded cDCE is oxidized by this 

reaction and no side epoxide metabolite is produced. The iJS666 model was, therefore, unable to predict 

the cDCE-epoxide that is a minor side product, as reported in Nishino et al., 2013. 

Also, the iJS666 model predicted flux values of 0.2798, -0.0022 and 0.0035 mmol gDW-1 h-1 for 

the glyoxylate carboligase (Bpro_4561), serine-glyoxylate transaminase (Bpro_0548) and malate 

synthase (Bpro_4517), respectively. In the reaction catalysed by the serine-glyoxylate transaminase, 

the negative flux value means that glyoxylate and L-serine are produced from hydroxypyruvate and 

glycine. The overall sum of the previously reported fluxes, taking in consideration their respective 

stoichiometry, adds up to the absolute value of the substrate consumption rate. The fact that glyoxylate 

follows the anabolic tartronate semialdehyde biosynthesis pathway over 400 % times more than the (S)-

malate/TCA pathways could be explained, at first glance, by some unbalanced proton in either of the 

different pathway reactions, since the malate synthase would produce (S)-malate and would be further 

incorporated into TCA cycle, a more direct route to the central metabolism. However, in an unlimited 

energy system (obtained by allowing costless proton exchange) only a small increment in the absolute 

fluxes values was observed for the reactions catalysed by the serine-glyoxylate transaminase and 

malate synthase, meaning that the glyoxylate carboligase reaction was still by far (~350% glyoxylate 

usage) the most prevalent anabolic pathway. A closer look to the reactions proceeding the tartronate 

semialdehyde biosynthesis revealed that hydroxypyruvate was produce by the hydroxypyruvate 

isomerase and then reduced to D-glycerate, which was further mainly incorporated into glycolysis 
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central pathway. In the unlimited energy system the observed maximum growth rate was 0.0070 h-1 

meaning that the main cause for the underestimated biomass growth was probably energy/redox 

potential production. In order to verify the cause of such energetic bottleneck, a FVA was performed to 

analyse, which flux values were reaching the predefined upper and lower bounds and/or were invariable, 

as displayed in Figure 3.7.  

 

Figure 3.7. FBA and FVA of intracellular iJS666 reactions. Red stars and blue points represent minimal and 

maximal FVA predicted values, respectively. Yellow squares represent the flux values acquired from FBA with the 
biomass production set as objective function and with Rs=0.561 mmol gDW-1 h-1. 

 

As displayed in Figure 3.7, no flux value reached the lower bound or upper bound of the defined 

system meaning there are no bottleneck reactions in the iJS666 model. Although, some intracellular 

reactions seemed to have invariable flux values (minimal and maximum values obtained in FVA are 

equal). Those reactions were easily identified by screening the Figure 3.7 for the 3 representation 

symbols overlapping each other and the reactions that had an absolute flux value superior to 0.1 mmol 

gDW-1 h-1 were represented in Supplementary Data 2. As suspected, those reactions are involved in 

redox potential and ATP synthesis as well in the main carbon metabolism. However, it was not possible 

to identify which reactions contributed the most to the underrated specific biomass growth rate 

prediction. 

During the analysis of the intracellular fluxes, two reactions from the cDCE-epoxide degradation 

pathway, that recycle glutathione, were found to be incorrectly annotated by the PathwayTools software. 

As described in Cox, 2012, glutathione may have a major relevance not only in the degradation of the 

cDCE-epoxide, but also in detoxifying intracellular (di)chloroacetaldehydes by limiting their cytosolic 

concentration. As demonstrated in the Table 3.6, the re-annotated reactions for the glycolyl-glutathione 

lyase and hydroxyacyl-glutathione hydrolase had no influence on the iJS666 model predictions when 

biomass reaction was maximized.  
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Tabela 3.6. Re-annotated reactions for the glyoxylate synthesis from glyoxal and respective fluxes (µ=0.0046 h-1, 

Rs=0.561 mmol gDW-1 h-1). 

 

As displayed in the Table 2.1, the glutathione metabolite was not included in the iJS666 initial 

biomass composition. Due to the fact that many reactions may use this metabolite in Polaromonas sp. 

strain JS666 under the cDCE degradation and to the fact that a glutathione-S-transferase (Bpro_0645) 

was the most overexpressed gene on cDCE medium, it is very unlikely that this compound is not 

produced in the cytosol of this microorganism. In order to evaluate the influence of this metabolite on 

the predicted specific biomass growth rate, the biomass equation for the iJS666 model was altered in 

order to incorporate different final concentrations of glutathione in the biomass, as displayed in the 

Figure 3.8. 

 

 

 

 

 

 

 

 

Figure 3.8. Glutathione influence on the specific growth rate (left) and specific oxygen consumption rate 

(right). 

As presented in Figure 3.8, the inclusion of glutathione in the biomass reaction had a minor 

negative effect on the specific growth rate. The predicted specific growth rate and RO2 values under 

these conditions may reflect the expensive cost for glutathione biosynthesis, since this molecule 

ID Name of Reaction Reaction Gene 
Fluxes 
[mmol 

gDW-1 h-1] 

Deleted Reaction 

NEWRXN
66613 

glyoxylate synthase glyoxal + H2O  →  glyoxylate + 3 H+ Bpro_0577 0 

Re-annotated Reactions 

GLYOXI-
RXN2 

glycolylglutathione 
lyase 

glyoxal + glutathione  →  S-glycolyl-
glutathione 

Bpro_3549 
Bpro_2168 

0 

GLYOXII-
RXN2 

Hydroxyacyl-
glutathione hydrolase 

S-glycolyl-glutathione + H2O  →  
glutathione + glyoxylate + 3 H+ 

Bpro_2055 0 
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requires more ATP consumption than other biomass precursors due to the use of energetically 

expensive amino acid precursors as L-cysteine. 

 The maximum tested percentage of glutathione tripeptide in the biomass reaction was way 

above the normal concentrations when comparing to others cofactors present in the biomass (i.e. 

Coenzyme A have a final percentage of only 0.3% (w/w)). Since the yield of glutathione in the biomass 

was not experimentally measured, posterior analysis of the flux variation using different objective 

functions were assessed with 2% (w/w) glutathione and without glutathione. The overrated pre-set value 

of glutathione in the biomass allowed to easily identify differences between those cases. The results of 

the maximization of different objective functions are reported in Supplementary Data 3. 

When the model iJS666 was tested for the degradation of cDCE (Rs = 0.561 mmol gDW-1 h-1) 

with the biomass equation as the objective function, the intracellular fluxes for the different cDCE 

degradation pathways remained practically the same. The main difference was that the model with 2% 

(w/w) glutathione in the biomass allowed a maximum value of 2.87x10-5 mmol gDW-1 h-1 for all fluxes in 

the epoxide-derived pathways instead of 8.61x10-6 mmol gDW-1 h-1 for the model without glutathione 

incorporated in the biomass. Since one of the pathway that degrades the cDCE-epoxide metabolite 

does not depend on the use of glutathione for further degradation (spontaneous dehalogenation), the 

predicted data reflect the effect of the glutathione in the redox potential/energy production. The model 

that included 2% (w/w) glutathione in the biomass equation allowed higher import fluxes through the 

sink reactions, suggesting that the system could use the carbon source to the biosynthesis of those 

compounds more efficiently. The ATP synthase flux value slightly decreased for the model incorporating 

glutathione however higher flux values in the electron transport chain and other cofactor interchangeable 

redox reactions were reported in the end of the list presented in Supplementary Data 3, meaning that 

glutathione as a biomass precursor had a positive effect on the redox state of the iJS666 model. As for 

the fate of the glyoxylate, the model incorporating glutathione in the biomass also predicted maximum 

flux values for serine-glyoxylate aminotransferase and malate synthase slightly increased. No alteration 

was detected in the glyoxylate carboxylase maximum flux rate under these conditions confirming that 

this reaction is highly demanded for ATP production as referred before. 

Using the minimization of NADH and ATP consumption reactions fluxes as objective functions 

in the iJ666 model, a higher maximum flux rate for the epoxide-derived pathways reactions was 

predicted, 0.135 (~24% of the maximum substrate consumption flux) and 0.171 mmol gDW-1 h-1  (~30% 

of the maximum substrate consumption flux), respectively. Since the biomass equation was not subject 

to optimization in the later cases, it is important to refer that the specific growth rate was approximately 

null. Once again the presence of glutathione in the biomass equation had no effect on the fluxes 

predicted for the epoxide-derived pathway. Further analysis of the predicted fluxes and methodologies 

used suggested that the iJS666 model and used solver (using norm one minimization to block loops) 

were unable to predict the effect of glutathione in those reactions. Glutathione is regenerated to the 

initial redox state every time it is consumed in linear dependent reactions. A more suitable way to predict 

the epoxide-related flux values could be the use of ODE although the concentrations of those epoxide 

intermediates is almost impossible to quantify. Also, all intracellular flux for the reactions that used 

glyoxylate had a higher maximum value under minimizing ATP/NADH consumption. Even the serine-
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glyoxylate aminotransferase reaction changed directionality, having a maximum value of positive 0.602 

and 0.514 mmol gDW-1 h-1 for the minimization of ATP and NADH, respectively. The maximum flux value 

for malate synthase’s reaction was 0.882 mmol gDW-1 h-1 and constant for the different minimization 

objectives. Flux values superior to the observable substrate consumption rate may suggest that 

glyoxylate and the other metabolites used as substrates on those reactions are being produced 

downstream, since the minimization of the norm to block loops was used. Nevertheless, it was possible 

to contemplate that these fluxes may vary, depending on the cellular objectives and their experimental 

quantification may have the most important significance in the validation and comprehension of the 

metabolic state of the microorganism. 

In order to understand how the ATP consumption rate influenced the predicted specific biomass 

growth, the iJS666 model was also tested using different NGAM and GAM flux values. Simultaneously, 

different transporter reactions were defined to infer the transport mechanism of cDCE and chlorine, as 

reported in the Figure 3.9. In all those iJS666 model predictions, the NGAM flux was the parameter that 

had the most influence in the biomass specific growth rate. Excluding active export of chlorine, where 

the solution was unfeasible, and all the other transport systems had a linear dependency to the NGAM 

flux value. Also, varying the GAM flux allowed the prediction of higher specific growth rates for the 

different models. In all the cases where active transport was assumed, either for cDCE or chloride, no 

specific growth rate had similar values to the reported experimental value of 0.0089h-1. For the remaining 

tested transport systems, only the model that assumed cDCE symport and chloride antiport (three 

protons entering the cytoplasm for each for each cDCE degraded) had a minor decrease in the specific 

growth rate, indicating that the cause for the iJS666 model predicted values for specific growth rate may 

be mainly underrated due to an ATP production shortcoming. Jennings et al., 2009, findings revealed 

the upregulation of a putative ABC transport system and two sodium/solute symporters in cDCE grown 

Polaromonas sp. strain JS666 cells, meaning that further work should be done in order to assess the 

function of those transporters and refine the model predictions. 

. 
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Figure 3.9. Influence of NGAM (mmol h-1), GAM(mmol gDW-1 h-1) and different types of cDCE and chloride transporter in the specific growth rate (Biomass as objective and 

Rs=0.561 mmol gDW-1 h-1). 
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As reported in the work of Giddings et al., 2010a, the growth of cDCE degrading bacteria in 

aerobic plumes is advantageous when byproducts of anaerobic biologic activity, like sulfides, are 

present in the groundwater. In order to assess the influence of different sulfur sources on the iJS666 

model predicted specific growth rates, different sulfur substrates were allowed to enter the system by 

changing the respective exchange reactions, as represented in the Figure 3.10. 

 

 

 

 

 

 

 

Figure 3.10. Predictions made by the iJS666 model for the specific growth rate (left) and sulfur consumption rates 

(right) using the following sulfur source: 1 - Sulfate; 2 - Thiosulfate; 3 – Sulfite; 4 - Hydrogen Sulfide; 5 - Elementar 
Sulfur. The predicted hydrogen sulfide consumption rate was 0.0128 mmol gDW-1 h-1 and is not displayed in the 
figure. 

From the Figure 3.10, it is evident that the model is capable of predict the specific growth rate 

(positive growth) under the conditions described previously. Moreover, all the predictions of the iJS666 

model for the specific growth rate using sulfur sources different than sulfate had superior rate values. 

This means that less oxidized sulfur species favored the redox potential of the model, allowing it to use 

the redox potential to catalyze other relevant intracellular reactions. Thiosulfate carries two sulfur atoms 

and that is the reason the sulfur consumption rate being lower than sulfate/sulfite but still the final specific 

growth rate is slightly increased. The hypothesis that Polaromonas sp. strain JS666 could grow 

chemolithotrophically by oxidizing thiosulfate was tested previously in Mattes et al., 2008 and the results 

were negative. However, the growth tests with thiosulfate (0 to 40 mM) were done assuming ethanol as 

carbon source and the model iJS666 was able to predict the absence of growth under this conditions, 

but not when cDCE carbon source was taken in consideration, as seen in Figure 3.10. By the other 

hand, hydrogen sulfide had an overrated consumption rate value compared to the other sulfur sources. 

It seems that a proton unbalanced was the cause for the reactions that used this metabolite but after 

exploiting the intracellular fluxes of those reactions, it was assessed that hydrogen sulfide react with 

acetyl-L-serine and acetyl-L-homoserine to generate L-cysteine and L-homocysteine without using any 

reductive cofactors. 

Since the majority of the biomass content is composed of protein, as referred in Chapter 2.2.2.1, 

the nitrogen source may be a crucial factor in the prediction of specific biomass growth by the iJS666 

model. With regard to the nitrogen influence in the specific growth rate, different nitrogen sources were 

assessed, as demonstrated in Figure 3.11. Similar to sulfur sources, the influence of the different 

nitrogen sources in the predicted specific growth rate was due to an increased intake nitrogen source 
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consumption rate from the extracellular medium, as displayed in the Figure 3.11. All the different 

nitrogen sources tested had a higher predicted consumption rate than the prediction using ammonium 

as nitrogen source in the iJS666 model.  The maximum variation in the specific growth rate was greater 

when comparing to the maximum variation using any of the sulfur sources tested, because nitrogen 

atom is more prevalent in protein composition, and therefore, as in biomass equation. Although the 

iJS666 model predicts higher growth rates for nitrate, nitrite and hydroxylamine, those values may occur, 

because the exceeding consumption rates contribute to nitrate/nitrite/hydroxylamine respiration that 

generates proton motive force for energy, which as reported before is limiting the predicted growth rate 

of the iJS666 model. In a similar way, the model assumes that ammonia is transformed into ammonium 

with the release of one proton to cytosol that increases the NADH redox potential to the electron 

transport chain and, consequently, the generation of more energy although, due to the reasons reported 

before, these predictions may not be accurate. 

  

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3.11. Predictions made by the iJS666 model for the specific growth rate (left) and nitrogen consumption 

rates (right) using the following nitrogen sources: 1 – Ammonium; 2 – Nitrate; 3 – Nitrite; 4 - Hydroxylamine; 5 - 
Ammonia.  
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3.3. Metabolites for Biostimulation 

As reported in the Chapter 2.6, after the initial validation of the iJS666 model further calculations 

were made in order to predict biostimulant compounds to be used in the bioaugmentation of 

Polaromonas sp. Strain JS666 in the degradation of cDCE. From the initial 1073 tested metabolites only 

315 had positive scores for the criteria described in Chapter 2.6, and only 74 of those had a predicted 

increment in the specific growth rate above 2%. The top 30 metabolites that had the most influence on 

specific growth rate are displayed in the Table 3.7.  

 
Table 3.7. Predicted biostimulant compounds by iJS666 on cDCE medium, (Rs=0.561 mmol gDW -1 h-1). Rb – 

specifc biostimulant consumption rate (mmol gDW-1 h-1). 

Putative Biostimulant 
Increment 
in % of µ 

Rb 
[mmol gDW-1 h-1] 

% of 
salvaged 
reactions 

# of activated 
reactions 

sarcosine 29.6 -2.7E-02 86.0 18 

histidinal 29.4 -1.5E-02 84.2 26 

L-histidine 28.0 -1.1E-02 84.4 29 

3-phospho-L-serine 27.6 -2.6E-02 85.8 35 

L-citrulline 27.4 -8.8E-03 85.8 29 

L-serine 25.9 -2.6E-02 86.0 23 

3-ureidopropionate 24.5 -1.4E-02 91.3 59 

L-asparagine 22.5 -1.4E-02 86.4 22 

5,6-dihydrouracil 20.8 -2.0E-02 90.9 23 

N-formyl-N-5-phospho-β-D-
ribosyl-glycinamide 

18.2 -4.7E-03 85.6 35 

glycine 17.6 -2.4E-02 84.8 21 

N-5-phospho-β-D-ribosyl-
glycinamide 

16.1 -3.6E-03 85.8 15 

L,L-diaminopimelate 16.0 -2.7E-01 87.0 23 

2-iminoacetate 14.0 -2.4E-02 87.8 13 

creatine 13.5 -7.8E-03 86.0 50 

CDP 12.0 -2.1E-03 85.4 23 

orotidine-5-phosphate 12.0 -2.1E-03 86.0 34 

UMP 11.7 -2.1E-03 90.9 35 

UDP 11.6 -2.1E-03 85.4 14 

uridine 11.5 -2.1E-03 85.8 17 

CTP 11.4 -2.1E-03 85.8 53 

UTP 11.0 -2.1E-03 86.0 26 

5-phospho-β-D-ribosylamine 10.8 -3.4E-03 87.4 24 

cytosine 10.2 -7.6E-03 86.2 21 

GDP 10.0 -1.5E-03 87.2 35 

GTP 10.0 -1.5E-03 87.8 37 

ppGpp 8.9 -1.5E-03 86.6 30 

pppGpp 8.4 -1.5E-03 86.6 25 

L-tryptophan 7.6 -2.2E-02 87.8 36 

lipid-A-core 6.5 -4.5E-05 81.7 12 
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 The majority of the putative biostimulants presented in the Table 3.7 are metabolites involved 

in the amino acid, cofactor and nucleotide metabolism maybe due to the fact that those compounds are 

used in the major cellular biomass components. Some amino acids that were predicted as putative 

biostimulants have a higher influence in the specific growth rate comparing to other cellular metabolites 

since the highest biomass coefficient is protein. The script testsub.m could screen those metabolites 

from their precursors due to higher increment on the specific biomass growth rate.  

The hypothesis that metabolites which have a smaller number of inducted reactions are more 

suitable for biostimulation, due to the fact that the microorganism have to undertake minor adaptions to 

the pre-existent metabolic network (i.e. MOMA) (Palsson, 2009), were also taken in consideration. It’s 

evident that using these metabolites as biostimulants the iJS666 model predicts that the majority of 

active metabolic pathways remains equal as seen by the percentage of salvaged reactions from cDCE 

degradation metabolism. Also, iJS666 model assumes that less energetical nucleotides give higher 

specific growth rate predictions (i.e. 12% growth rate increase with CDP and 11.4% increase using 

CTP). It is possible that those metabolites are used by the iJS666 model reactions in that particular state 

although, in reality, the more energetical metabolites are most appreciated by the cellular metabolism.  

L-serine and glycine metabolites are direct inputs in some of the downstream degradation 

reactions of cDCE, more specifically in the degradation pathway of glyoxylate. The model iJS666 still 

predicted the activation of 23 and 21 reactions, respectively, that were not active on the model iJS666 

set with the cDCE as solo carbon source, meaning that those metabolites may influence many more 

pathways than those previously reported. Although not displayed in the figure, the predictions that 

generate biostimulants wich activate the smallest number of not previously used reactions are those 

which had the smallest increment in the specific growth rate. This means that the model was very robust 

and that those biostimulants did not have a major impact in the system individually. A common feature 

to all the predicted biostimulants presented on Table 3.7 is that the biostimulant consumption rate (Rb) 

was always much smaller than the substrate consumption rate (only L,L-diaminopimelate had reported 

values in the same order of magnitude) implicating that in the final balanced system those biostimulants 

only contribute to a small amount of the biomass constitution and thus that only small amounts of those 

compounds would be needed on medium and putatively cDCE will still be degraded at the same rate 

with an improvement on the yield of biomass production. 
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4. Conclusion 

As reported by Cox, 2012, “The evolution, regulation and potential for improvement of the cDCE 

pathway are compelling mysteries that can be explored now that the basic biochemistry and molecular 

biology of the pathway has been established”. Hence the overall goal of this dissertation was to generate 

a comprehensive genome-scale metabolic model for the Polaromonas sp. strain JS666 to predict 

biostimulants for improving cDCE bioremediation and better understand the metabolic network and their 

relationship to the observable phenotype since the biodegradation capabilities of this microorganism, 

previously validated in field, did not met the desired requirements.  

In particular, the major methodological objectives of this research were to build an updated 

genome-scale metabolic reconstruction, a functional and validated genome-scale metabolic model and, 

finally, the prediction of biostimulants using the validated GEM using FVA and FBA approaches. Also, 

the aerobic oxidation pathway for cDCE in Polaromonas sp. strain JS666 was studied for a system’s 

biology point of view. The main downfalls of these methodologies are that the predicted intracellular 

fluxes and uptake reactions may not account for post-translational modifications, specific and divergent 

activity of enzymes or repression effects of some metabolites. 

The developed model, iJS666, could only be partial validated since biochemical data for 

Polaromonas sp. strain JS666 was scarce. The model iJS666 predicted growth under the previously 

tested carbon sources, predict different growth rates in the same order of magnitude of the experimental 

reported values and yielded a reasonable prediction for other cellular uptake rates. Also, the model 

iJS666 was built in such way that it was possible to inquire the substrate consumption rates at the 

maximum specific growth rate for each of those substrate sources. 

During this dissertation, fundamental key aspects needed for a high quality genome-scale 

metabolic network reconstruction were individually addressed and a confidence score was assigned to 

each reaction in order to facilitate the interpretation of the accuracy of the model during future 

experiments. Although the predicted specific growth rate for Polaromonas sp. strain JS666 was a sub 

optimal value comparing to the experimentally reported one, the deviousness was find to be manly 

dependent on the energy state of the system and FVA identified various chokepoints reactions related 

to the ATP production which when fully refined could give rise to a more accurated model since those 

reactions dictate the predicted growth rate. 

Several other gaps of information, such as fatty acid pool, cofactor biosynthesis pathways and 

glutathione composition in biomass, were identified for future scientific research. The model works as a 

preliminary checkpoint for cyclic rounds of improvement in which genes will be accurately annotated to 

account for experimentally observed metabolic reactions (i.e. the test of the different predicted 

pathways), and contrariwise, metabolic processes predicted by genomic annotations could be 

experimentally validated. All the information integration in the iJS666 will allow that further improvements 

may easily be introduced by correcting preexistent information or by adding new data.  

Finally, some biostimulant compounds were predicted using the iJS666 model and their 

predicted improvement values on the bioaugmentation were within reasonable magnitude. In the future, 
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tests using these biostimulants could be accomplished simultaneously for confirming the improvement 

of the specific growth rate of Polaromonas sp. strain JS666 grown in cDCE and further validation of the 

iJS666 model.  

 

 

4.1. Further Research 

As referred on the previous chapter, some of the parameters inputed on the iJS666 model 

should be experimentally determined in order to refine the iJS666 model. Therefore, a complete list of 

the needed experiments and techniques that should be used in order to accomplish that final curation 

are displayed in the Table 4.1. 

Table 4.1. Future relevant experiments to improve iJS666 model. 

  

Further Research Method References 

Determine the NGAM 

and GAM values 

Measure of 3 different carbon sources 
along growth, limiting the specific 

growth rate in the model and solving 
the system to obtain NGAM. 

Risso et al, 2009 

Determine the 

secondary products 

during exponential 

growth 

 

Mass spectrometry quantification 
- 

Determine the biomass 

composition 

experimentally 

 

Mass spectometry quantification 
- 

Determine the 

glutathione pool 

Assay for quantitative determination of 
glutathione and glutathione disulfide 

levels using enzymatic recycling 
method 

Rahan, 2007 

Determine the 

cDCE/chloride 

Transport System 

Crystallography and kinetic assays - 

Obtain Rs and Ro for 

the different carbon 

sources 

Mass spectometry quantification - 

Test the intracellular 

glyoxylate reactions 

 

Microarrays 

Gene knock-out 

 

Jennings et  al., 2009 

Test the different 

putative biostimulants 

 

Growth culture experiments 
- 



 

74 

  

6. References 

Alexander, A. K. (2010). Bioremediation and biocatalysis with Polaromonas sp. Strain JS666. 
University of Iowa. 

Alvarez, P., & Illman, W. (2006). Environmental contamination by hazardous substances: magnitude 
of the contamination problem. In Bioremediation and natural attenuation: Process fundamentals 
and mathematical models. (1st ed., p. 4). Hoboken, New Jersey: John Wiley & Sons, Inc. 
Retrieved from http://link.springer.com/chapter/10.1007/978-1-4614-5764-
0_5\nhttp://link.springer.com/content/pdf/10.1007/978-1-4614-5764-0_5.pdf 

Alvarez-Cohen, L., & Speitel, G. E. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. 
Biodegradation, 12(2), 105–126. http://doi.org/10.1023/A:1012075322466 

Bradley, P. M. (2003). History and ecology of chlororethene biodegradation: a review. Bioremediation 
Journal, 7(2), 81–109. http://doi.org/10.1080/10889860390246141 

Bradley, P. M., & Chapelle, F. H. (2000). Aerobic microbial mineralization of dichloroethene as sole 
carbon substrate. Environmental Science and Technology, 34(1), 221–223. 
http://doi.org/10.1021/es990785c 

Branco, C. (2007). Estudo da contaminação do aquífero superior na região de Estarreja. Universidade 
de Coimbra. 

Caspi, R., Foerster, H., Fulcher, C. a, Hopkinson, R., Ingraham, J., Kaipa, P., … Karp, P. D. (2006). 
MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids 
Research, 34(Database issue), D511–D516. http://doi.org/10.1093/nar/gkj128 

Christ, J. a., Ramsburg, C. A., Abriola, L. M., Pennell, K. D., & Löffler, F. E. (2005). Coupling 
aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL 
source zones: A review and assessment. Environmental Health Perspectives, 113(4), 465–477. 
http://doi.org/10.1289/ehp.6932 

Coleman, N. V, Mattes, T. E., & Gossett, J. M. (2002a). Biodegradation of cis -Dichloroethene as the 
Sole Carbon Source by a β-Proteobacterium. APPLIED AND ENVIRONMENTAL 
MICROBIOLOGY, 68(6), 2726–2730. http://doi.org/10.1128/AEM.68.6.2726 

Coleman, N. V., Mattes, T. E., Gossett, J. M., & Spain, J. C. (2002b). Phylogenetic and kinetic 
diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Applied and 
Environmental Microbiology, 68(12), 6162–6171. http://doi.org/10.1128/AEM.68.12.6162-
6171.2002 

Cox, E. (2012). Elucidation of the Mechanisms and Environmental Relevance of cis-Dichloroethene 
and Vinyl Chloride Biodegradation, (November). Retrieved from 
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA581957 

Darcy, J. L., Lynch, R. C., King, A. J., Robeson, M. S., & Schmidt, S. K. (2011). Global distribution of 
Polaromonas phylotypes - evidence for a highly successful dispersal capacity. PLoS ONE, 6(8). 
http://doi.org/10.1371/journal.pone.0023742 

De Lorenzo, V. (2008). Systems biology approaches to bioremediation. Current Opinion in 
Biotechnology, 19(6), 579–589. http://doi.org/10.1016/j.copbio.2008.10.004 



 

75 

  

De Wildeman, S., & Verstraete, W. (2003). The quest for microbial reductive dechlorination of C (2) to 
C (4) chloroalkanes is warranted. Applied Microbiology and Biotechnology, 61(2), 94–102. 
http://doi.org/10.1007/s00253-002-1174-6 

DiStefano, T. D., Gossett, J. M., & Zinder, S. H. (1991). Reductive dechlorination of high 
concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence 
of methanogenesis. Applied and Environmental Microbiology, 57(8), 2287–2292. 

Durot, M., Le Fèvre, F., de Berardinis, V., Kreimeyer, A., Vallenet, D., Combe, C., … Schachter, V. 
(2008). Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using 
high-throughput growth phenotype and gene essentiality data. BMC Systems Biology, 2, 85. 
http://doi.org/10.1186/1752-0509-2-85 

Dworkin, M., Harder, W., & Tru, H. (2001). Enrichment, Cultivation, and Detection of Reductively 
Dechlorinating Bacteria. Methods in Enzimology, 397(1996), 1018–1020. 
http://doi.org/10.1016/S0076-6879(05)97005-5 

Esteve-Núñez, A., Rothermich, M., Sharma, M., & Lovley, D. (2005). Growth of Geobacter 
sulfurreducens under nutrient-limiting conditions in continuous culture. Environmental 
Microbiology, 7(5), 641–648. http://doi.org/10.1111/j.1462-2920.2005.00731.x 

Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., … Palsson, B. Ø. 
(2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that 
accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 3(121), 
121. http://doi.org/10.1038/msb4100155 

Giddings, C. G. S., Jennings, L. K., & Gossett, J. M. (2010a). Microcosm Assessment of a DNA Probe 
Applied to Aerobic Degradation of cis-1,2-Dichloroethene by Polaromonas sp. Strain JS666. 
Ground Water Monitoring & Remediation, 30(2), 97–105. http://doi.org/10.1111/j.1745-
6592.2010.01280.x 

Giddings, C. G. S., Liu, F., & Gossett, J. M. (2010b). Microcosm Assessment of Polaromonas sp. 
JS666 as a Bioaugmentation Agent for Degradation of cis-1,2-dichloroethene in Aerobic, 
Subsurface Environments. Ground Water Monitoring & Remediation, 30(2), 106–113. 
http://doi.org/10.1111/j.1745-6592.2010.01283.x 

Green, M. L., & Karp, P. D. (2006). The outcomes of pathway database computations depend on 
pathway ontology. Nucleic Acids Research, 34(13), 3687–3697. http://doi.org/10.1093/nar/gkl438 

Gudmundsson, S., & Thiele, I. (2010). Computationally efficient flux variability analysis. BMC 
Bioinformatics, 11(1), 489. http://doi.org/10.1186/1471-2105-11-489 

Hamilton, J. J., & Reed, J. L. (2014). Software platforms to facilitate reconstructing genome-scale 
metabolic networks. Environmental Microbiology, 16(1), 49–59. http://doi.org/10.1111/1462-
2920.12312 

Hartmans, S., Bont, J. A. M. de, Tramper, J., & Luyben, K. C. A. M. (1985). Bacterial degradation of 
Vinyl Chloride. Biotechnologg Letters, 7(6), 383–388. 

Hopkins, G. D., & McCarty, P. L. (1995). Field Evaluation of in Situ Aerobic Cometabolism of 
Trichloroethylene and Three Dichloroethylene Isomers Using Phenol and Toluene as the Primary 
Substrates. Environmental Science & Technology, 29(6), 1628–1637. 
http://doi.org/10.1021/es00006a029 

Irgens, R. L., Gosink, J. J., & Staley, J. T. (1996). Polaromonas vacuolata gen. nov., sp. nov., a 
psychrophilic, marine, gas vacuolate bacterium from Antarctica. International Journal of 
Systematic Bacteriology, 46(3), 822–826. http://doi.org/10.1099/00207713-46-3-822 



 

76 

  

Jennings, L. K. (2008). Proteomic Analysis for the Determination of Biodegradation Pathways in 
Polaromonas sp . JS666. 

Jennings, L. K., Chartrand, M. M. G., Lacrampe-Couloume, G., Lollar, B. S., Spain, J. C., & Gossett, J. 
M. (2009). Proteomic and transcriptomic analyses reveal genes upregulated by cis-
Dichloroethene in Polaromonas sp. strain JS666. Applied and Environmental Microbiology, 
75(11), 3733–3744. http://doi.org/10.1128/AEM.00031-09 

Jeon, C. O., Park, M., Ro, H., Park, W., & Madsen, E. L. (2006). The naphthalene catabolic (nag) 
genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters 
and novel regulatory control. Applied and Environmental Microbiology, 72(2), 1086–1095. 
http://doi.org/10.1128/AEM.72.2.1086 

Kämpfer, P., Busse, H. J., & Falsen, E. (2006). Polaromonas aquatica sp. nov., isolated from tap 
water. International Journal of Systematic and Evolutionary Microbiology, 56(3), 605–608. 
http://doi.org/10.1099/ijs.0.63963-0 

Karp, P. D., Latendresse, M., & Caspi, R. (2011). The Pathway Tools Pathway Prediction Algorithm. 
Standards in Genomic Sciences, 5(3), 424–429. http://doi.org/10.4056/sigs.1794338 

Karp, P. D., Paley, S. M., Krummenacker, M., Latendresse, M., Dale, J. M., Lee, T. J., … Caspi, R. 
(2009). Pathway Tools version 13.0: Integrated software for pathway/genome informatics and 
systems biology. Briefings in Bioinformatics, 11(1), 40–79. http://doi.org/10.1093/bib/bbp043 

Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, a, & Mangelsdorf, I. (2000). Vinyl chloride: still a cause 
for concern. Environmental Health Perspectives, 108(7), 579–588. 

Kurt, Z., Mack, E. E., & Spain, J. C. (2014). Biodegradation of cis -Dichloroethene and Vinyl Chloride 
in the Capillary Fringe. Environmental Science & Technology, 48(22), 13350–13357. 
http://doi.org/10.1021/es503071m 

Latendresse, M. (2014). Efficiently gap-filling reaction networks. BMC Bioinformatics, 15(1), 225. 
http://doi.org/10.1186/1471-2105-15-225 

Löffter, F., Ritalahti, K., & Zinder, S. (2013). Anaerobic Microbial Degradation of Chlorinated Ethenes. 
In Bioaugmentation for Groundwater Remediation (pp. 39–54). New York: Springer. 

Loy, A., Beisker, W., & Meier, H. (2005). Diversity of Bacteria Growing in Natural Mineral Water after 
Bottling Diversity of Bacteria Growing in Natural Mineral Water after Bottling, 71(7), 3624–3632. 
http://doi.org/10.1128/AEM.71.7.3624 

Lyon, D., & Vogel, T. (2013). Development of Bioaugmentation for Groundwater Bioremediation. In 
Bioaugmentation for Groundwater Remediation (pp. 3–4). New York: Springer. 
http://doi.org/10.1007/978-1-4614-4115-1 

Magic-Knezev, A., Wullings, B., & Van der Kooij, D. (2009). Polaromonas and Hydrogenophaga 
species are the predominant bacteria cultured from granular activated carbon filters in water 
treatment. Journal of Applied Microbiology, 107(5), 1457–1467. http://doi.org/10.1111/j.1365-
2672.2009.04337.x 

Mahadevan, R., Bond, D. R., Butler, J. E., Coppi, V., Palsson, B. O., Schilling, C. H., & Lovley, D. R. 
(2006). Characterization of Metabolism in the Fe ( III ): Reducing Organism Geobacter 
sulfurreducens by Constraint-Based Modeling Characterization of Metabolism in the Fe ( III ) -
Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling †. Applied and 
Environmental Microbiology, 72(2), 1558–1568. http://doi.org/10.1128/AEM.72.2.1558 



 

77 

  

Mahendra, S., Petzold, C. J., Baidoo, E. E., Keasling, J. D., & Alvarez-Cohen, L. (2007). Identification 
of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria. 
Environmental Science and Technology, 41(21), 7330–7336. http://doi.org/10.1021/es0705745 

Margesin, R., Spröer, C., Zhang, D. C., & Busse, H. J. (2012). Polaromonas glacialis sp. nov. and 
Polaromonas cryoconiti sp. nov., isolated from alpine glacier cryoconite. International Journal of 
Systematic and Evolutionary Microbiology, 62(11), 2662–2668. 
http://doi.org/10.1099/ijs.0.037556-0 

Masip, L., Veeravalli, K., & Georgiou, G. (2006). The many faces of glutathione in bacteria. 
Antioxidants & Redox Signaling, 8(5-6), 753–762. http://doi.org/10.1089/ars.2006.8.753 

Mattes, T. E., Alexander, A. K., Richardson, P. M., Munk, a. C., Han, C. S., Stothard, P., & Coleman, 
N. V. (2008). The genome of Polaromonas sp. strain JS666: Insights into the evolution of a 
hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. 
Applied and Environmental Microbiology, 74(20), 6405–6416. http://doi.org/10.1128/AEM.00197-
08 

McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T., & Carrothers, 
T. J. (1998). Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in 
groundwater through toluene injection. Environmental Science and Technology, 32(1), 88–100. 
http://doi.org/10.1021/es970322b 

Nakamura, Y. (2007). Kazusa Codon Usage Database. Acessed August 28, 2015, from 
http://www.kazusa.or.jp/codon/  

Nishino, S. F., Shin, K. a., Gossett, J. M., & Spain, J. C. (2013). Cytochrome P450 initiates 
degradation of cis-dichloroethene by polaromonas sp. strain JS666. Applied and Environmental 
Microbiology, 79(7), 2263–2272. http://doi.org/10.1128/AEM.03445-12 

Nogales, J., Palsson, B. Ø., & Thiele, I. (2008). A genome-scale metabolic reconstruction of 
Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Systems Biology, 2, 79. 
http://doi.org/10.1186/1752-0509-2-79 

Oberhardt, M. a, Palsson, B. Ø., & Papin, J. a. (2009). Applications of genome-scale metabolic 
reconstructions. Molecular Systems Biology, 5(320), 320. http://doi.org/10.1038/msb.2009.77 

Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 
28(3), 245–248. http://doi.org/10.1038/nbt.1614 

Osborne, T. H., Jamieson, H. E., Hudson-Edwards, K. a, Nordstrom, D. K., Walker, S. R., Ward, S. a, 
& Santini, J. M. (2010). Microbial oxidation of arsenite in a subarctic environment: diversity of 
arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser. BMC 
Microbiology, 10, 205. http://doi.org/10.1186/1471-2180-10-205 

Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., … Stevens, R. (2014). The 
SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). 
Nucleic Acids Research, 42(D1), 206–214. http://doi.org/10.1093/nar/gkt1226 

Page, K. A., Connon, S. A., & Giovannoni, S. J. (2004). Representative Freshwater Bacterioplankton 
Isolated from Crater Lake, Oregon. Applied and Environmental Microbiology, 70(11), 6542–6550. 
http://doi.org/10.1128/AEM.70.11.6542-6550.2004 

Palsson, B. (2009). Metabolic systems biology. FEBS Letters, 583(24), 3900–3904. 
http://doi.org/10.1016/j.febslet.2009.09.031 



 

78 

  

Palsson, B. Ø. (2006). Systems Biology: Properties of Reconstructed Networks. Cambridge: 
Cambridge University Press. 

Risso, C., Sun, J., Zhuang, K., Mahadevan, R., DeBoy, R., Ismail, W., … Methé, B. a. (2009). 
Genome-scale comparison and constraint-based metabolic reconstruction of the facultative 
anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics, 10, 447. 
http://doi.org/10.1186/1471-2164-10-447 

Saha, R., Chowdhury, A., & Maranas, C. D. (2014). Recent advances in the reconstruction of 
metabolic models and integration of omics data. Current Opinion in Biotechnology, 29(1), 39–45. 
http://doi.org/10.1016/j.copbio.2014.02.011 

Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., … Schomburg, D. (2011). 
BRENDA, the enzyme information system in 2011. Nucleic Acids Research, 39(SUPPL. 1), 670–
676. http://doi.org/10.1093/nar/gkq1089 

Schellenberger, J., Lewis, N. E., & Palsson, B. (2011). Elimination of thermodynamically infeasible 
loops in steady-state metabolic models. Biophysical Journal, 100(3), 544–553. 
http://doi.org/10.1016/j.bpj.2010.12.3707 

Schilling, C. H., Letscher, D., & Palsson, B. O. (2000). Theory for the systemic definition of metabolic 
pathways and their use in interpreting metabolic function from a pathway-oriented perspective. 
Journal of Theoretical Biology, 203(3), 229–248. http://doi.org/10.1006/jtbi.2000.1073 

Sun, J., Sayyar, B., Butler, J. E., Pharkya, P., Fahland, T. R., Famili, I., … Mahadevan, R. (2009). 
Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Systems Biology, 
3, 15. http://doi.org/10.1186/1752-0509-3-15 

Sun, W., Xie, S., Luo, C., & Cupples, A. M. (2010). Direct link between Toluene degradation in 
contaminated-site microcosms and a polaromonas strain. Applied and Environmental 
Microbiology, 76(3), 956–959. http://doi.org/10.1128/AEM.01364-09 

Taffi, M., Paoletti, N., Angione, C., Pucciarelli, S., Marini, M., & LiÃ2, P. (2014). Bioremediation in 
marine ecosystems: a computational study combining ecological modeling and flux balance 
analysis. Frontiers in Genetics, 5(September), 1–12. http://doi.org/10.3389/fgene.2014.00319 

Thiele, I., & Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic 
reconstruction. Nature Protocols, 5(1), 93–121. http://doi.org/10.1038/nprot.2009.203 

Usepa. (2000). Engineered approaches to in situ bioremediation of chlorinated solvents: 
Fundamentals and field applications, 1–144. http://doi.org/EPA 542-R-00-008 

Van Hylckama Vlieg, J. E., Kingma, J., Van Den Wijngaard, a J., & Janssen, D. B. (1998). A 
glutathione S-transferase with activity towards cis-1, 2-dichloroepoxyethane is involved in 
isoprene utilization by Rhodococcus sp. strain AD45. Applied and Environmental Microbiology, 
64(8), 2800–2805. 

Van Hylckama Vlieg, J. E. T., De Koning, W., & Janssen, D. B. (1996). Transformation kinetics of 
chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by 
on-line gas chromatography. Applied and Environmental Microbiology, 62(9), 3304–3312. 

Verce, M. F., Ulrich, R. L., & Freedman, D. L. (2000). Characterization of an isolate that uses vinyl 
chloride as a growth substrate under aerobic conditions. Applied and Environmental 
Microbiology, 66(8), 3535–3542. http://doi.org/10.1128/AEM.66.8.3535-3542.2000 



 

79 

  

Verce, M. F., Ulrich, R. L., & Freedman, D. L. (2001). Transition from cometabolic to growth-linked 
biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environmental 
Science and Technology, 35(21), 4242–4251. http://doi.org/10.1021/es002064f 

Wetterstrand, K. (2015). DNA Sequencing Costs: Data from the NHGRI Genome Sequencing 
Program (GSP). Retrieved August 28, 2015, from www.genome.gov/sequencingcosts 

Wittig, U., & De Beuckelaer, a. (2001). Analysis and comparison of metabolic pathway databases. 
Briefings in Bioinformatics, 2(2), 126–142. http://doi.org/10.1093/bib/2.2.126 

Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R., & Lovley, D. R. (2011). 
Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in 
anoxic subsurface environments. The ISME Journal, 5(2), 305–316. 
http://doi.org/10.1038/ismej.2010.117 

 

  
  



 

80 

  

7. Supplementary Data 

7.1. Supplementary Data 1 – MATLAB functions and scripts. 

 

Total.m 

%% Retrieving data... 
clear all; 
clear all; 
clc; 
h=waitbar(0,'Retrieving data...' ); 
[~, ~, raw] = xlsread('\Work\RECON\Stage2\6-

22\rxnformation2.xlsx','REVIEWD','A2:V2000'); 
%% Cleaning non rxns lines... 
waitbar(0.1,h,'Cleaning non rxns lines...'); 
u=[]; 
for i=1:length(raw); 
    if ~isnan(cell2mat(raw(i,3))); 
        u(length(u)+1,1)=i; 
    end 
end 
raw=raw(u,:); 
[~,idx]=sort(raw(:,1)); 
raw=raw(idx,:); 
ind=[]; 
for i=1:length(raw)-1 
    if ~strcmp(raw{i,1},raw{i+1,1}) 
       ind(length(ind)+1,1)=i; 
    end 
end 
ind(end+1,1)=length(raw); 
raw=raw(ind,:); 
%% Loading other data files... 
waitbar(0.2,h,'Loading other data files...'); 
all=raw(:,1:21); 
ID1=all(:,1); 
%Info from base file 
file2='\Work\RECON\Stage1\2-4.PathwayTools Data\FULLREACTIONS.xlsx'; 
sheet2='FULLREACTIONS'; 
id2=['A','1',':','A','2000']; 
spon2=['X','1',':','X','2000']; 
[~,~,ID2]=xlsread(file2,sheet2,id2); 
[~,~,SPON2]=xlsread(file2,sheet2,spon2); 
%% Spontaneous check 
waitbar(0.3,h,'Cheking sptnx rxns...'); 
 for i=1:length(ID2) 
    if ~isnan(ID2{i,1}) 
        if strcmp(SPON2{i,1}(1,1),'T') 
           for j=1:length(ID1) 
               if strcmp(ID1{j,1},ID2{i,1}) 
                  all{j,21}='Y'; 
               end 
           end 
        end 
    end 
end 
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%% Scoring CS rxns... 
waitbar(0.4,h,'Scoring CS rxns...'); 
%Accordingly to Palson et al; 
% Evidence type  |  Confidence score  |  Examples 
% Biochemical data  |  4  |  Direct evidence for gene product function and 

biochemical reaction: Protein purification, biochemical assays, 

experimentally solved protein structures, and comparative gene-expression 

studies (e.g., Chhabra et al. 95). 
% Genetic data  |  3  |  Direct and indirect evidence for gene function: 

Knock–out characterization, knock-in characterization, and over-expression. 
% Physiological data  |  2  |  Indirect evidence for biochemical reactions 

based on physiological data: secretion products or defined medium 

components serve as evidence for transport and metabolic reactions. 
% Sequence data  |  2  |  Evidence for gene function: Genome annotation, 

SEED annotation32. 
% Modeling data  |  1  |  No evidence is available but reaction is required 

for modeling. The included function is a hypothesis and needs experimental 

verification. The reaction mechanism may be different from the included 

reaction(s). 
% Not evaluated 0    
% Accordingly to Guerra et al; 
% Evidence type  |  Confidence score  |  Examples 
% Biochemical data  |  4  |  Direct evidence for gene product function and 
% biochemical reaction: Protein purification, biochemical assays, 

experimentally solved protein structures, and comparative gene-expression 

studies. 
% Annotation Strong Evidence  |  3  |  Direct and indirect evidence for 

gene function: Predited by PathwayTools/Transport Predicter and present on 

R.ferrireducans. Spontaneus rxns go here. 
% Annotation Weak Evidence  |  2  |  Predicted only by 

PathwayTools/Transport Predicter. 
% Weak Evidence  |  2  |  No evidence is available but reaction is required 

for modeling and similar rxn is present at ferroreducans. 
% Modeling data  |  1  |  No evidence is available but reaction is required 

for modeling. The included function is a hypothesis and needs experimental 

verification. The reaction mechanism may be different from the included 

reaction(s). 
% Not evaluated  |  0  |  Not applied to this case since all rxns were 

scored. Serves as an scoring error identifier. 
%SCORE 4 will be manually introduced since the cases when happen are 

very,very few. 
for i=1:length(all); 
    %If its not biochemical/Logical evidenced 
    if isnan(all{i,5});      
        %score spontaneous 
        if findstr('Y',all{i,21}) 
        all{i,5}='3'; 
        %SCORE NON SPONT 
        elseif ~isnan(all{i,18}) %with genes 
            if ~isnan(all{i,13}) %and R ferri equivalent 
            all{i,5}='3'; 
            elseif isnan(all{i,13}) %no R ferri equivalent 
            all{i,5}='2'; 
            end 
        elseif isnan(all{i,18}) %no GPR 
            if ~isnan(all{i,13}) % with R ferri equi 
            all{i,5}='2'; 
            elseif isnan(all{i,13})%no GPR OR equiv 
            all{i,5}='1'; 
            end 
        end 
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    else 
        all{i,5}=num2str(all{i,5}); 
    end 

     

     
end 
%% Converting to COBRA 
waitbar(0.5,h,'Extracting META & RNX independent data...'); 
%import independent data to work on. 
rxn=all(:,3); 
left=all(:,14); 
right=all(:,15); 
%% join metabolites 
join={left{:,1},right{:,1}}; 
join=join'; 
join(any(cellfun(@(x) numel(x)==1 & isnumeric(x) && isnan(x),join),2),:) = 

[]; 
%% rearranjments of metabolites list 
x={}; 
for i=1:length(join); 
    pos=findstr(', ',join{i,1}); 
       if ~isempty(pos) 
            tmp = regexp(join{i,1},'\, ','split'); 
            x=[x;tmp']; 
        else           
            x((length(x)+1),1)=join(i,1); 
        end 
end 
xx=strtrim(x); 
xxx=deblank(xx); 
xxxx=sort(xxx); 
[~,ii]=unique(xxxx); 
metabolite=xxxx(ii); 
s=cellfun(@size,metabolite,'uniform',false); 
[trash is]=sortrows(cat(1,s{:}),-[1 2]); 
metabolites=metabolite(is); 
%% Converte rxns 
waitbar(0.6,h,'Directionality & reversibility correction...'); 
%conversor of direccionality (ATENTION: CAN NOT BE EQUAL! CONVERT &harr; 

AND <==>) 
a={}; 
for i=1:length(rxn); 
    if findstr('  &harr;  ',rxn{i,1}) 
        a{i,1}=strrep(rxn{i,1},'  &harr;  ',' <--> ');     
        elseif findstr('  &rarr;  ',rxn{i,1}) 
        a{i,1}=strrep(rxn{i,1},'  &rarr;  ',' --> ');   
        elseif findstr('  &larr;  ',rxn{i,1}) 
        a{i,1}=strrep(rxn{i,1},'  &larr;  ',' <-- '); 
        else 
            a{i,1}=rxn{i,1}; 
        end 
    end 

  
all(:,3)=a(:,1); 
 %% Convert direccionality para 1 e 0. 
 for k=1:length(all) 
     if findstr(' <--> ',all{k,3}) 
        all{k,4}='1'; 
     else 
        all{k,4}='0'; 
     end 
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end 

  
%% remove unnecessary spaces in the names of metabolites 
 waitbar(0.7,h,'Metabolites deblanking, sorting and fixing'); 
%remove spcaes 
for i=1:length(metabolites); 
    if findstr('[c]',metabolites{i,1}); 
        metabolites{i,2}=metabolites{i,1}; 
    elseif findstr('[e]',metabolites{i,1}) 
        metabolites{i,2}=metabolites{i,1}; 
    else 
    metabolites{i,2}=[metabolites{i,1} '[c]']; 
    end 
end 
for i=1:length(metabolites); 
    metabolites{i,2}=strrep(metabolites{i,2},' ',''); 
    metabolites{i,2}=strrep(metabolites{i,2},'-',''); 
    metabolites{i,2}=strrep(metabolites{i,2},'<','('); 
    metabolites{i,2}=strrep(metabolites{i,2},'>',')'); 
    metabolites{i,2}=strrep(metabolites{i,2},'&',''); 
    metabolites{i,2}=strrep(metabolites{i,2},';',''); 
    metabolites{i,2}=strrep(metabolites{i,2},',',''); 
    metabolites{i,2}=strrep(metabolites{i,2},'[','('); 
    metabolites{i,2}=strrep(metabolites{i,2},']',')'); 
    metabolites{i,2}=strrep(metabolites{i,2},'(c)','[c]'); 
    metabolites{i,2}=strrep(metabolites{i,2},'(e)','[e]'); 
end 
 %% adds localization 
 waitbar(0.9,h,'Adding localization to rxns...'); 
 for i=1:length(metabolites) 
    oldmet=[metabolites{i,1} ' ']; 
    newmet=[metabolites{i,2} ' ']; 
    for j=1:length(all); 
        all{j,3}=[all{j,3} ' ']; 
        all{j,3}=strrep(all{j,3},oldmet,newmet); 
    end 
 end 
 %% adds coeficient stoich 
 for i=1:length(metabolites) 
    for j=1:length(all) 
        pos=findstr(metabolites{i,2},all{j,3}); 
        if ~isempty(pos) 
            if pos(1,1)==1; 
                all{j,3}=['1 ' all{j,3}]; 
            end 
            try 
                all{j,3}=strrep(all{j,3},['> ' metabolites{i,2}],['> 1 ' 

metabolites{i,2}]); 
            catch 
            end 
            try 
                all{j,3}=strrep(all{j,3},['- ' metabolites{i,2}],['- 1 ' 

metabolites{i,2}]); 
            catch 
            end 
            try 
                all{j,3}=strrep(all{j,3},['+ ' metabolites{i,2}],['+ 1 ' 

metabolites{i,2}]); 
            catch 
            end 
        end 
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    end 
end 
%% resort dos metabolitos 
waitbar(0.95,h,'Resorting...'); 
 met=sort(metabolites(:,2)); 
ind=[]; 
 for i=1:length(met)-1 
    if ~strcmp(met{i},met{i+1}) 
       ind(length(ind)+1,1)=i; 
    end 
end 
 ind(end+1,1)=length(met); 
 met=met(ind); 
 s=cellfun(@size,met,'uniform',false); 
[trash is]=sortrows(cat(1,s{:}),-[1 2]); 
met=met(is); 
%% 
%clears preexistent data 
Filename='G:\Work\RECON\Stage3\38\EXCELTOCOBRA\MODEL2.xls'; 
for SheetNum=1:2 
     [N, T, Raw]=xlsread(Filename, SheetNum); 
     [Raw{:, :}]=deal(NaN); 
     xlswrite(Filename, Raw, SheetNum); 
end 
%% saving mets 
waitbar(1,h,'Final arrangments and Saving...'); 
met(:,2)=met(:,1); 
met(:,3)={'C1'}; 
met(:,4)=met(:,3); 
met(:,5)={'0'}; 
for i=1:length(met) 
    if findstr('[c]',met{i,2}) 
        met{i,6}='cytosol'; 
    elseif findstr('[e]',met{i,2}) 
        met{i,6}='extracellular'; 
    end 
end 
met(:,7:12)={'NaN'}; 
metheader={'Abbreviation', 'Description', 'Neutral formula', 'Charged 

formula', 'Charge', 'Compartment', 'KEGG ID', 'PubChem ID', 'ChEBI ID', 

'InChI string', 'SMILES', 'HMDB ID'};  
meta=metheader; 
for i=1:length(met) 
    meta(i+1,:)=met(i,:); 
end 
[n,m]=size(meta); 
for nn=1:n; 
    for mm=1:m; 
        meta{nn,mm}=deblank(meta{nn,mm}); 
    end 
end 
%% 
%saves mets 
xlswrite('G:\Work\RECON\Stage3\38\EXCELTOCOBRA\MODEL2.xls',meta,'Metabolite 

List') 
%% Creating exchange rxns. 
metext={}; 
for i=1:length(met) 
    if findstr('[e]',met{i,1}) 
        metext{length(metext)+1,1}=met{i,1}; 
    end 
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end 
for j=1:length(metext); 
exchange{j,1}=['EX_' metext{j,1}]; 
exchange{j,2}=['Exchange rxn for ' metext{j,1}]; 
exchange{j,3}=['1 ' metext{j,1} ' <--> ']; 
exchange{j,4}={'NaN'}; 
exchange{j,5}={'NaN'}; 
exchange{j,6}={'NaN'}; 
exchange{j,7}='EXCHANGE'; 
exchange{j,8}='1'; 
exchange{j,9}='-1000'; 
exchange{j,10}='1000'; 
exchange{j,11}='0'; 
exchange{j,12}='3'; 
exchange{j,13}={'NaN'}; 
exchange{j,14}={'NaN'}; 
exchange{j,15}={'NaN'}; 

  
end 

  
%% saving rxns 

  
rxn(:,1:3)=all(:,1:3); 
rxn(:,4)=all(:,18); 
rxn(:,5)=rxn(:,4); 
rxn(:,6)={'NaN'}; 
rxn(:,7)=all(:,6); 
rxn(:,8)=all(:,4); 
for j=1:length(rxn); 
    if findstr(' <--> ',rxn{j,3}) 
        rxn{j,9}='-1000'; %LB 
        rxn{j,10}='1000'; %UB 
    elseif findstr(' --> ',rxn{j,3}) 
        rxn{j,9}='0'; %LB 
        rxn{j,10}='1000'; %UB 
    else 
        rxn{j,9}='-1000'; %LB 
        rxn{j,10}='0'; %UB 
    end 
end 
rxn(:,11)={'0'}; 
rxn(:,12)=all(:,5); 
rxn(:,13)=all(:,8); 
rxn(:,14)={'NaN'}; 
rxn(:,15)={'NaN'}; 
rxnheader={'Abbreviation', 'Description', 'Reaction', 'GPR', 'Genes', 

'Proteins', 'Subsystem', 'Reversible', 'Lower bound', 'Upper bound', 

'Objective', 'Confidence Score', 'EC Number', 'Notes', 'References'}; 
rxns=rxnheader; 
for i=1:length(rxn) 
    rxns(i+1,:)=rxn(i,:); 
end 
% adds exchange rxns 
rxns=[rxns;exchange]; 
%deblanks; 
[n,m]=size(rxns); 
for nn=1:n; 
    for mm=1:m; 
        rxns{nn,mm}=deblank(rxns{nn,mm}(1:end)); 
        if isempty(rxns{nn,mm}) 
           rxns{nn,mm}={'NaN'}; 
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        end 
    end 
end 
%% 
xlswrite('G:\Work\RECON\Stage3\38\EXCELTOCOBRA\MODEL2.xls',rxns,'Reaction 

List') 
close(h); 
%% 
clearvars -except rxns meta exchange; 
% xls2model Writes a model from Excel spreadsheet. 
% 
% model = xls2model(fileName,biomassRxnEquation) 
% 
% INPUT 
% fileName      xls spreadsheet, with one 'Reaction List' and one 

'Metabolite List' tab 
% 
% 'Reaction List' tab: Required headers (case sensitive): 
%   'Abbreviation'      HEX1 
%   'Description'       Hexokinase 
%   'Reaction'          1 atp[c] + 1 glc-D[c] --> 1 adp[c] + 1 g6p[c] + 1 

h[c] 
%   'GPR'               (3098.3) or (80201.1) or (2645.3) or ... 
%   'Genes'             2645.1,2645.2,2645.3,...  (optional) 
%   'Proteins'          Flj22761.1, Hk1.3, Gck.2,...  (optional) 
%   'Subsystem'         Glycolysis 
%   'Reversible'        0 (false) or 1 (true) 
%   'Lower bound'       0 
%   'Upper bound'       1000 
%   'Objective'         0   (optional) 
%   'Confidence Score'  0,1,2,3,4 
%   'EC Number'         2.7.1.1,2.7.1.2 
%   'Notes'             'Reaction also associated with EC 2.7.1.2' 

(optional) 
%   'References'        PMID:2043117,PMID:7150652,...   (optional) 
% 
% 'Metabolite List' tab: Required headers (case sensitive): (needs to be 

complete list of metabolites, i.e., if a metabolite appears in multiple 

compartments it has to be represented in multiple rows. Abbreviations need 

to overlap with use in Reaction List 
%   'Abbreviation'      glc-D or glc-D[c] 
%   'Description'       D-glucose 
%   'Neutral formula'   C6H12O6 
%   'Charged formula'   C6H12O6 
%   'Charge'            0 
%   'Compartment'       cytosol 
%   'KEGG ID'           C00031 
%   'PubChem ID'        5793 
%   'ChEBI ID'          4167 
%   'InChI string'      InChI=1/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-

11H,1H2/t2-,3-,4+,5-,6?/m1/s1 
%   'SMILES'            OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O 
%   'HMDB ID'           HMDB00122 
% 
% OPTIONAL INPUT (may be required for input on unix macines) 
% biomassRxnEquation        .xls may have a 255 character limit on each 

cell, 
%                           so pass the biomass reaction separately if it 

hits this maximum. 
% 
% OUTPUT 
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% model         COBRA Toolbox model 

  
%% loading data 

  
% assumes that one has an xls file with two tabs 
fileName='G:\Work\RECON\Stage3\38\EXCELTOCOBRA\MODEL2.xls'; 
[~, Strings, rxnInfo] = xlsread(fileName,'Reaction List'); 
[~, MetStrings, metInfo] = xlsread(fileName,'Metabolite List'); 
rxnInfo = rxnInfo(1:size(Strings,1),:); 
metInfo = metInfo(1:size(MetStrings,1),:); 
rxnHeaders = rxnInfo(1,:); 
% Assuming first row is header row 
rxnAbrList = 

Strings(2:end,strmatch('Abbreviation',rxnHeaders,'exact'));%correct loading 

of abreviation of reactions 
rxnNameList = 

Strings(2:end,strmatch('Description',rxnHeaders,'exact'));%correct loading 

of name of reactions 
rxnList = Strings(2:end,strmatch('Reaction',rxnHeaders,'exact'));%correct 

loading of formula of reactions 
grRuleList = Strings(2:end,strmatch('GPR',rxnHeaders,'exact'));%correct 

loading of associated genes 
Protein = Strings(2:end,strmatch('Proteins',rxnHeaders,'exact'));%correct 

loading of protein name 
subSystemList = 

Strings(2:end,strmatch('Subsystem',rxnHeaders,'exact'));%correct loading of 

subsystem 
if ~isempty(strmatch('Reversible',rxnHeaders,'exact')) 
    revFlagList = 

cell2mat(rxnInfo(2:end,strmatch('Reversible',rxnHeaders,'exact')));%Matrix 
else 
    revFlagList = []; %if is empty 
end 
if ~isempty(strmatch('Lower bound',rxnHeaders,'exact')) 
    lowerBoundList = cell2mat(rxnInfo(2:end,strmatch('Lower 

bound',rxnHeaders,'exact')));%Matrix 
else 
    lowerBoundList = 1000*ones(length(rxnAbrList),1);%if is empty 
end 
if ~isempty(strmatch('Upper bound',rxnHeaders,'exact')) 
    upperBoundList = cell2mat(rxnInfo(2:end,strmatch('Upper 

bound',rxnHeaders,'exact')));%Matrix 
else 
    upperBoundList = 1000*ones(length(rxnAbrList),1);%if is empty 
end 
if ~isempty(strmatch('Objective',rxnHeaders,'exact')) 
    Objective = 

cell2mat(rxnInfo(2:end,strmatch('Objective',rxnHeaders,'exact')));% matrix 
else 
    Objective = zeros(length(rxnAbrList),1);% if is empty 
end 
%% 
%createModel Create a COBRA model from inputs or an empty model 
%structure if no inputs are provided. 
% 
% model = createModel(rxnAbrList,rxnNameList,rxnList,revFlagList,... 
%    

lowerBoundList,upperBoundList,subSystemList,grRuleList,geneNameList,... 
%    systNameList) 
% 
%INPUTS 
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% rxnAbrList            List of names of the new reactions 
% rxnNameList           List of names of the new reactions 
% rxnList               List of reactions: format: {'A -> B + 2 C'} 
%                       If the compartment of a metabolite is not 
%                       specified, it is assumed to be cytoplasmic, i.e. 

[c] 
% 
%OPTIONAL INPUTS 
% revFlagList           List of reversibility flag (opt, default = 1) 
% lowerBoundList        List of lower bound (Default = 0 or -vMax) 
% upperBoundList        List of upper bound (Default = vMax) 
% subSystemList         List of subsystem (Default = '') 
% grRuleList            List of gene-reaction rule in boolean format 

(and/or allowed) 
%                       (Default = ''); 
% geneNameList          List of gene names (used only for translation 
%                       from common gene names to systematic gene names) 
% systNameList          List of systematic names 
% 
%OUTPUT 
% model                 COBRA model structure 
% 
%create blank model 
model = struct(); 
model.mets=cell(0,1);model.metNames=cell(0,1);model.metFormulas=cell(0,1); 
model.rxns=cell(0,1);model.rxnNames=cell(0,1);model.subSystems=cell(0,1); 
model.lb=zeros(0,1);model.ub=zeros(0,1);model.rev=zeros(0,1); 
model.c=zeros(0,1);model.b=zeros(0,1); 
model.S=sparse(0,0); 
model.rxnGeneMat=sparse(0,0); 
model.rules=cell(0,1); 
model.grRules=cell(0,1); 
model.genes=cell(0,1); 
lbGivenFlag = true; %reversibility implied by lower bound 
revGivenFlag = true; %reversibility implied by revFlag 
nRxns = length(rxnNameList); %número de rxns 
geneNameList=grRuleList; %assumes GPR genes 
systNameList(1:nRxns,1) = {''}; %empty vector for sys names 
kk=waitbar(0,'Starting Loading'); 
for i = 1 : nRxns 
    waitbar(i/nRxns,kk) 
    if i==nRxns 
        pause(eps) 
    end 
    % decomposoes GPRs 
    if ~isempty(grRuleList{i}); 
        if ~isempty(strfind(grRuleList{i},',')) 
          grRuleList{i}=(regexprep(grRuleList{i},',',' or '));  
        end 
        if ~isempty(strfind(grRuleList{i},'&')) 
           grRuleList{i}=(regexprep(grRuleList{i},'&',' and ')); 
        end 
       if ~isempty(strfind(grRuleList{i},'+')) 
          grRuleList{i}=(regexprep(grRuleList{i},'+',' and ')); 
       end 
    end 
    %FORMULA DECOMPOSITION!!!!!!!!!!!! 
    [metaboliteList,stoichCoeffList] = parseRxnFormula2(rxnList{i});   
    %adds reaction to model 
    [model,~,metasxx] = 

addReaction2(model,{rxnAbrList{i},rxnNameList{i}},metaboliteList,stoichCoef
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fList,revFlagList(i),lowerBoundList(i),upperBoundList(i),0,subSystemList{i}

,grRuleList{i},geneNameList,systNameList,false); 
end 
close(kk); 
%% 
if ~isempty(strmatch('Confidence Score',rxnHeaders,'exact')) 
    model.confidenceScores = rxnInfo(2:end,strmatch('Confidence 

Score',rxnHeaders,'exact')); 
else 
    model.confidenceScores = cell(length(model.rxns),1); %empty cell 

instead of NaN 
end 
if ~isempty(strmatch('EC Number',rxnHeaders,'exact')) 
    model.rxnECNumbers = Strings(2:end,strmatch('EC 

Number',rxnHeaders,'exact')); 
end 
if ~isempty(strmatch('Notes',rxnHeaders,'exact')) 
    model.rxnNotes = Strings(2:end,strmatch('Notes',rxnHeaders,'exact')); 
end 
if ~isempty(strmatch('References',rxnHeaders,'exact')) 
    model.rxnReferences = 

Strings(2:end,strmatch('References',rxnHeaders,'exact')); 
end 
%% fill in opt info for rxns 
if ~isempty(Objective) && length(Objective) == length(model.rxns) 
    model.c = (Objective); 
end 
model.proteins = Protein; 
metHeaders = metInfo(1,:); 
for n = 1:length(metHeaders) 
    if isnan(metHeaders{n}) 
        metHeaders{n} = ''; 
    end 
end 
%% case 1: all metabolites in List have a compartment assignement 
metCol = strmatch('Abbreviation',metHeaders,'exact'); 
    for i = 2 : length(MetStrings(:,metCol))% assumes that first row is 

header 
        % finds metabolites in model structure 
        MetLoc =  strmatch(MetStrings{i,metCol},model.mets,'exact'); 
        if ~isempty(MetLoc) 
            model.metNames{MetLoc} = 

MetStrings{i,strmatch('Description',metHeaders,'exact')};  
            model.metFormulasNeutral{MetLoc} = 

MetStrings{i,strmatch('Neutral formula',metHeaders,'exact')}; 
            model.metFormulas{MetLoc} = MetStrings{i,strmatch('Charged 

formula',metHeaders,'exact')}; 
            model.metCompartment{MetLoc} = 

metInfo{i,strmatch('Compartment',metHeaders,'exact')}; 

                           
            model.metCharges(MetLoc) = 

metInfo{i,strmatch('Charge',metHeaders,'exact')}; 
            model.metKEGGID{MetLoc} = MetStrings{i,strmatch('KEGG 

ID',metHeaders,'exact')};         
            model.metInChIString{MetLoc} = MetStrings{i,strmatch('InChI 

string',metHeaders,'exact')};   
            model.metHMDBID{MetLoc} = MetStrings{i,strmatch('HMDB 

ID',metHeaders,'exact')}; 
            model.metSmiles{MetLoc} = 

MetStrings{i,strmatch('SMILES',metHeaders,'exact')};   
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            model.metPubChemID{MetLoc} = MetStrings{i,strmatch('PubChem 

ID',metHeaders,'exact')}; 
            model.metChEBIID{MetLoc} = MetStrings{i,strmatch('ChEBI 

ID',metHeaders,'exact')}; 
        else 
            warning(['Metabolite ' metInfo{i,metCol} ' not in model']); 
        end 
        MetLoc=[]; 
    end 
%% Verify all vectors are column Vectors 
model.lb = columnVector(model.lb); 
model.ub = columnVector(model.ub); 
model.rev = columnVector(model.rev); 
model.c = columnVector(model.c); 
model.b = columnVector(model.b); 
model.rxns = columnVector(model.rxns); 
model.rxnNames = columnVector(model.rxnNames); 
model.mets = columnVector(model.mets); 
model.metNames = columnVector(model.metNames); 
model.metFormulas = columnVector(model.metFormulas); 
model.metCharges = columnVector(model.metCharges); % all others have plural 

for vector 
model.metFormulasNeutral = columnVector(model.metFormulasNeutral); 
model.subSystems = columnVector(model.subSystems); 
model.rules = columnVector(model.rules); 
model.grRules = columnVector(model.grRules); 
model.genes = columnVector(model.genes); 
model.confidenceScores = columnVector(model.confidenceScores); 
model.rxnECNumbers = columnVector(model.rxnECNumbers); 
model.rxnNotes = columnVector(model.rxnNotes); 
model.rxnReferences = columnVector(model.rxnReferences); 
model.proteins = columnVector(model.proteins); 
model.metPubChemID = columnVector(model.metPubChemID); 
model.metChEBIID = columnVector(model.metChEBIID); 
%% 
if isfield(model,'metCompartment') 
    model.metCompartment = columnVector(model.metCompartment); 
end 
if isfield(model,'metKEGGID') 
    model.metKEGGID = columnVector(model.metKEGGID); 
end 
if isfield(model,'metInChIString') 
    model.metInChIString = columnVector(model.metInChIString); 
end 
if isfield(model,'metSmiles') 
    model.metSmiles = columnVector(model.metSmiles); 
end 
if isfield(model,'metHMDBID') 
    model.metHMDBID = columnVector(model.metHMDBID); 
end 

  

 

GapFind.m 

function [allGaps,rootGaps,downstreamGaps] = 

gapFind(model,findNCgaps,verbFlag) 
%gapFind Identifies all blocked metabolites (anything downstream of a gap)  
%in a model.  MILP algorithm that finds gaps that may be missed by simple  
%inspection of the S matrix. To find every gap in a model, change the rxn 
%bounds on all exchange reactions to allow uptake of every metabolite. 
%% [allGaps,rootGaps,downstreamGaps] = gapFind(model,findNCgaps,verbFlag) 
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%%INPUT 
% model             a COBRA model 
%%OPTIONAL INPUTS 
% findNCgaps        find no consupmption gaps as well as no production gaps 
%                   (default false)    
% verbFlag          verbose flag (default false) 
%%OUTPUTS 
% allGaps           all gaps found by GapFind 
% rootGaps          all root no production (and consumption) gaps 
% downstreamGaps    all downstream gaps 
%% based on: 
% Kumar, V. et al. BMC Bioinformatics. 2007 Jun 20;8:212. 
%% solve problem: 
%   max ||xnp|| 
%       s.t. S(i,j)*v(j) >= e*w(i,j)        S(i,j) > 0, j in IR 
%            S(i,j)*v(j) <= M*w(i,j)        S(i,j) > 0, j in IR 
%            S(i,j)*v(j) >= e - M(1-w(i,j)) S(i,j) ~= 0, j in R 
%            S(i,j)*v(j) <= M*w(i,j)        S(i,j) ~= 0, j in R 
%            ||w(i,j)|| >= xnp(i) 
%            lb <= v <= ub 
%            S*v >= 0 
%            xnp(i) = {0,1} 
%            w(i,j) = {0,1} 
%% reformulated for COBRA MILP as: 
%   max sum(xnp(:)) 
%       s.t. S*v >= 0   (or = 0 if findNCgaps = true)               (1) 
%            S(i,j)*v(j) - e*w(i,j) >= 0     S(i,j) > 0, j in IR    (2) 
%            S(i,j)*v(j) - M*w(i,j) <= 0     S(i,j) > 0, j in IR    (3) 
%            S(i,j)*v(j) - M*w(i,j) >= e-M   S(i,j) ~= 0, j in R    (4) 
%            S(i,j)*v(j) - M*w(i,j) <= 0     S(i,j) ~= 0, j in R    (5) 
%            sum(w(i,:)) - xnp(i) >= 0                              (6) 
%            lb <= v <= ub 
%            xnp and w are binary variables, v are continuous 
% 
% 
% Jeff Orth 7/6/09 

  
if nargin < 2 
    findNCgaps = false; 
end 
if nargin < 3 
    verbFlag = false; 
end 
 M = length(model.rxns); %this was set to 100 in GAMS GapFind 

implementation 
N = length(model.mets); 
R = model.rev ~= 0; %reversible reactions 
R_index = find(R); 
IR = model.rev == 0; %irreversible reactions 
IR_index = find(IR); 
e = 0.0001; 
S = model.S; 
lb = model.lb; 
ub = model.ub; 
 % MILPproblem 
%  A      LHS matrix 
%  b      RHS vector 
%  c      Objective coeff vector 
%  lb     Lower bound vector 
%  ub     Upper bound vector 
%  osense Objective sense (-1 max, +1 min) 
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%  csense Constraint senses, a string containting the constraint sense for 
%         each row in A ('E', equality, 'G' greater than, 'L' less than). 
%  vartype Variable types 
%  x0      Initial solution 
 % initialize MILP fields 
 % get number of rows and cols for each constraint 
%rows 
m_c1 = N; %number of metabolites 
m_c2 = length(find(S(:,IR) > 0)); %number of Sij>0 in irreverisible 

reactions 
m_c3 = m_c2; 
m_c4 = length(find(S(:,R))); %number of Sij>0 in reversible reactions 
m_c5 = m_c4; 
m_c6 = N; %number of xnp (metabolites) 
%columns 
n_v = M; %number of reactions 
n_wij_IR = m_c2; 
n_wij_R = m_c4; 
n_xnp = N; 
 % LHS matrix A 
 % constraint 1 
A = [S sparse(m_c1,(n_wij_IR+n_wij_R+n_xnp))]; 
 % constraint 2 
% create Sij IR matrix and wij IR matrix 
Sij_IR = sparse(m_c2,n_v); 
wij_IR = sparse(m_c6,n_wij_IR); 
row = 1; 
for i = 1:length(IR_index) 
    rxn_index = IR_index(i); 
    met_index = find(S(:,rxn_index) > 0); 
    for j = 1:length(met_index) 
        Sij_IR(row,rxn_index) = S(met_index(j),rxn_index); 
        wij_IR(met_index(j),row) = 1; 
        row = row + 1; 
    end 
end   
 A = [A ; Sij_IR -e*speye(m_c2,n_wij_IR) sparse(m_c2,(n_wij_R+n_xnp))]; 
 % constraint 3 
A = [A ; Sij_IR -M*speye(m_c3,n_wij_IR) sparse(m_c3,(n_wij_R+n_xnp))]; 
 % constraint 4 
% create Sij R matrix 
Sij_R = sparse(m_c4,n_v); 
wij_R = sparse(m_c6,n_wij_R); 
row = 1; 
for i = 1:length(R_index) 
    rxn_index = R_index(i); 
    met_index = find(S(:,rxn_index) ~= 0); 
    for j = 1:length(met_index) 
        Sij_R(row,rxn_index) = S(met_index(j),rxn_index); 
        wij_R(met_index(j),row) = 1; 
        row = row + 1; 
    end 
end   
 A = [A ; Sij_R sparse(m_c4,n_wij_IR) -M*speye(m_c4,n_wij_R) 

sparse(m_c4,n_xnp)]; 
 % constraint 5 
A = [A ; Sij_R sparse(m_c5,n_wij_IR) -M*speye(m_c5,n_wij_R) 

sparse(m_c5,n_xnp)]; 
 % constraint 6 
A = [A ; sparse(m_c6,n_v) wij_IR wij_R -1*speye(m_c6,n_xnp)]; 
 % RHS vector b  
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b = [zeros(m_c1+m_c2+m_c3,1);(e-M)*ones(m_c4,1);zeros(m_c5+m_c6,1)]; 
 % objective coefficient vector c 
c = [zeros(n_v+n_wij_IR+n_wij_R,1);ones(n_xnp,1)]; 
 % upper and lower bounds on variables (v,w,xnp)  
lb = [lb;zeros(n_wij_IR+n_wij_R+n_xnp,1)]; 
ub = [ub;ones(n_wij_IR+n_wij_R+n_xnp,1)]; 
 % objective sense osense 
osense = -1; %want to maximize objective 
 % constraint senses csense 
if findNCgaps 
    csense(1:m_c1) = 'E'; 
else 
    csense(1:m_c1) = 'G'; 
end 
csense((m_c1+1):(m_c1+m_c2)) = 'G'; 
csense((m_c1+m_c2+1):(m_c1+m_c2+m_c3)) = 'L'; 
csense((m_c1+m_c2+m_c3+1):(m_c1+m_c2+m_c3+m_c4)) = 'G'; 
csense((m_c1+m_c2+m_c3+m_c4+1):(m_c1+m_c2+m_c3+m_c4+m_c5)) = 'L'; 
csense((m_c1+m_c2+m_c3+m_c4+m_c5+1):(m_c1+m_c2+m_c3+m_c4+m_c5+m_c6)) = 'G'; 
 % variable types vartype 
vartype(1:n_v) = 'C'; 
vartype((n_v+1):(n_v+n_wij_IR+n_wij_R+n_xnp)) = 'B'; 
 % inital solution x0 
x0 = []; 
 % run COBRA MILP solver     
gapFindMILPproblem.A = A; 
gapFindMILPproblem.b = b; 
gapFindMILPproblem.c = c; 
gapFindMILPproblem.lb = lb; 
gapFindMILPproblem.ub = ub; 
gapFindMILPproblem.osense = osense; 
gapFindMILPproblem.csense = csense; 
gapFindMILPproblem.vartype = vartype; 
gapFindMILPproblem.x0 = x0; 
 if verbFlag 
    parameters.printLevel = 3;  
else 
    parameters.printLevel = 0; 
end 
 solution = solveCobraMILP(gapFindMILPproblem,parameters); 
 % get the list of gaps from MILP solution 
metsProduced = 

solution.full((n_v+n_wij_IR+n_wij_R+1):(n_v+n_wij_IR+n_wij_R+n_xnp),1); 
allGaps = model.mets(~metsProduced); 
rootGaps = findrootgaps(model); %identify root gaps using findRootNPmets 
downstreamGaps = allGaps(~ismember(allGaps,rootGaps)); 
 

FindRootGaps.m 

function [rootGaps] = findrootgaps(model) 
%based on findRootNPmets and findGaps 
%Initially finds the root no production (NP) and no consumption(NC) 
%metabolites in a model. 
%PART1; 
%INPUT 
%model (COBRA model) 
%OUTPUT 
%NP (non-production root's) 
%NC (non-comsuption root's) 
%PART2; 
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%After identifying root mets, adds sink rxns for those mets to the model 
%and run gapFind to reveal non-topologycal gaps (NT); 
%INPUT 
%newmodel (new COBRA model with sink rxns) 
%OUTPUT 
%NT (non-topologycal unbalances) 
 % Andre Guerra 05/05/2015 
 %% Finding root gaps. 
% Finds metabolites that only have one entry on S matrix...meaning that 
% they are root gaps (non-production, non-consumption or a single 
% reversible rxn) 
 S=full(model.S); 
ind=find(S~=0); 
S(ind)=1; 
MetSum=sum(S'); 
rootGaps=find(MetSum==1); 
rootGaps=model.mets(rootGaps); 
 end 

 

Similarity.m 

%% - infeasibility -  
% This script looks for similar reactions in the model that may cause 

infeasibilities. 
% André Guerra: 07 - 05 - 1015 
%% Join rxns that use same metabolites. 
 [l,c]=size(model.S); 
a=cell([l,c]); 
for i=1:l     
 for j=1:c 
     if model.S(i,j)~=0 
         a(i,j)=model.mets(i,1); 
     end 
 end 
end 
 %% clear empty spaces with empty strings 
 for i=1:l     
 for j=1:c 
     if isempty(a{i,j}) 
         a{i,j}=''; 
     end 
 end 
end 
 %% Sort columns of mets 
 for i=1:length(model.S) 
a(:,i)=sortrows(a(:,i)); 
 end 
 %% find columns that use NADPH and NAD 
 [s,n]=size(a); 
b={}; 
for nn=1:n 
    if strmatch('NADPH[c]',a(:,nn)) 
    b(:,nn)=a(:,nn); 
    elseif strmatch('NADH[c]',a(:,nn)) 
    b(:,nn)=a(:,nn); 
    else 
    b(:,nn)=cell(s,1); 
    end 
end 
 %% clear empty spaces with empty strings 
[n,m]=size(b); 
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for i=1:n     
 for j=1:m 
     if isempty(b{i,j}) 
         b{i,j}=''; 
     end 
 end 
end 
 %% removing NADPH AND NADH 
 [~,m]=size(b); 
 for mm=1:m 
    posnadh=strmatch('NADH[c]',b(:,mm)); 
    if ~isempty(posnadh) 
    b(posnadh,mm)={''}; 
    end 
    posnadph=strmatch('NADPH[c]',b(:,mm)); 
    if ~isempty(posnadph) 
    b(posnadph,mm)={''}; 
    end 
    posnadhm=strmatch('NAD(sup)+(/sup)[c]',b(:,mm)); 
    if ~isempty(posnadhm) 
    b(posnadhm,mm)={''}; 
    end 
    posnadphm=strmatch('NADP(sup)+(/sup)[c]',b(:,mm)); 
    if ~isempty(posnadphm) 
    b(posnadphm,mm)={''}; 
    end 
end 
 %% Sort columns of mets 
 [~,m]=size(b); 
 for i=1:m 
b(:,i)=sortrows(b(:,i)); 
 end 
 %% 
[s,m]=size(b); 
 for ii=1:m 
    if length(strmatch('',b(:,m)))~=s 
        k=[]; 
        for aa=1:m 
            if isequal(b(:,ii),b(:,iinm)); 
                k(length(k)+1,1)=iinm; 
            end 
        end 
        if ~isempty(k) 
            disp(['rxn' num2str(ii) 'have the following similar 

reactions;']) 
            disp(k) 
        end 
    end 
end 
  

Blank.m 

function [blankmodel]=blank(model) 
%Blankmodel by Guerra 25/05/2015 
 % iJS666 was tested to grow in carbon-free 
% minimal salts medium (MSM) modified from Hartmans et al. 
% (1985) to contain 20 mM phosphate, 10 mM ammonium, and 
% 0.02 mM chloride. 
 % MSM contained per litre deionized water:  
% 3.88 g K2HPO4, 
% 2.13 g NaH2PO4'2H2O, 
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% 2.0 g (NH4)2SO4, 
% 0.1 g MoCl2'6H20, 
% 10 mg ethylenediaminetetraacetic acid (EDTA), 
% 2 mg ZnSO4" 7Hz, 
% 1 mg CaCl2" 2HzO, 
% 5 mg FeSO4"7HzO,  
% 0.2mg Na2MoO4"2H20,  
% 0.2mg CuSO4"5H20, 
% 0.4mg CoCl2-6H20  
% 1 mg MnCI2"2H2O 
 %NO CARBON CAN ENTER IN MEDIUM!!! 
 %% Change all bounds 
 a=find(model.rev==0); 
b=find(model.rev==1); 
blankmodel=changeRxnBounds(model,model.rxns(a),0,'l'); 
blankmodel=changeRxnBounds(blankmodel,model.rxns(a),1000,'u'); 
blankmodel=changeRxnBounds(blankmodel,model.rxns(b),-1000,'l'); 
blankmodel=changeRxnBounds(blankmodel,model.rxns(b),1000,'u'); 
  %% Getting the exchange rxns: 
 indices=strmatch('EX_',model.rxns); 
emedium=model.rxns(indices);       

  

  
%% The exchange reactions are in the format: A[e] <-->    , that means 

positive values means production and negative value means uptake. 
%% Metabolites that usually are consumed by the microorganism have negative 

exchange reactions associated Ex:O2,glucose, sais... 
%% Uptake 
 pos1=strmatch('EX_Co(sup)2+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos1),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos1),0,'u'); 
 pos2=strmatch('EX_Fe(sup)3+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos2),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos2),0,'u'); 
 pos3=strmatch('EX_Mg(sup)2+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos3),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos3),0,'u'); 
 pos4=strmatch('EX_Mo(sup)2+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos4),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos4),0,'u'); 
 pos5=strmatch('EX_Ni(sup)2+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos5),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos5),0,'u'); 
 pos6=strmatch('EX_Zn(sup)2+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos6),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos6),0,'u'); 
 pos7=strmatch('EX_Na(sup)+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos7),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos7),0,'u'); 
 pos8=strmatch('EX_K(sup)+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos8),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos8),0,'u'); 
 pos9=strmatch('EX_phosphate[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos9),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos9),0,'u'); 
 pos10=strmatch('EX_ammonium[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos10),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos10),0,'u'); 
 pos11=strmatch('EX_chloride[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos11),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos11),0,'u'); 
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 pos12=strmatch('EX_selenate[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos12),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos12),0,'u'); 
 pos13=strmatch('EX_sulfate[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos13),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos13),0,'u'); 
 pos14=strmatch('EX_oxygen[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos14),-100,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(pos14),0,'u'); 
 inlist=[pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 pos11 pos12 

pos13 pos14]; 
  %% Metabolites that exit the system have positive values for the exchange 

flux. Ex:CO2 e H2 
 otherslist=setdiff((1:length(emedium))',inlist); 
otherslistname=emedium(otherslist); 
blankmodel=changeRxnBounds(blankmodel,otherslistname,0,'l'); 
blankmodel=changeRxnBounds(blankmodel,otherslistname,100,'u'); 
 %% H20 

posagua=strmatch('EX_H(sub)2(/sub)O[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(posagua),0,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(posagua),0,'u'); 
 %% H+ 
posh=strmatch('EX_H(sup)+(/sup)[e]',emedium); 
blankmodel=changeRxnBounds(blankmodel,emedium(posh),0,'l'); 
blankmodel=changeRxnBounds(blankmodel,emedium(posh),0,'u'); 
 %% Disp name + bounds (just a simple display) 
for i=1:length(emedium); 
    if length(emedium{i,1})>19 
    emedium{i,1}=emedium{i,1}(1:19); 
    end 
end 
disp([emedium,num2cell(blankmodel.lb(indices)),num2cell(blankmodel.ub(indic

es))])  
end 
 

cDCE.m (equal to the previous blank.m script but with the following adaptation) 

%% Defining NGAM 
 cDCEmodel=changeRxnBounds(cDCEmodel,'NGAM',0.45,'b'); 
 %% FONTE CARBONO 
 pos16=strmatch('EX_cDCE[e]',emedium); 
cDCEmodel=changeRxnBounds(cDCEmodel,emedium(pos16),-0.561,'l'); 
cDCEmodel=changeRxnBounds(cDCEmodel,emedium(pos16),0,'u'); 
inlist=[inlist pos16]; 

 

Validationpositive.m 

%% validationpositive 
%% Test Growth for the experimentally tested substrates tha had an positive 

outcome. André Guerra – 10/07/2015 

  
benzoatemodel=benzoate(model); 
benzoateresult=optimizeCbModel(benzoatemodel,'max','one',1); 
 catecholmodel=catechol(model); 
catecholresult=optimizeCbModel(catecholmodel,'max','one',1); 
 DCAmodel=DCA(model); 
DCAresult=optimizeCbModel(DCAmodel,'max','one',1); 
 glucosemodel=glucose(model); 
glucoseresult=optimizeCbModel(glucosemodel,'max','one',1); 
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 glycolatemodel=glycolate(model); 
glycolateresult=optimizeCbModel(glycolatemodel,'max','one',1); 
 hydroxyquinolmodel=hydroxyquinol(model); 
hydroxyquinolresult=optimizeCbModel(hydroxyquinolmodel,'max','one',1); 

pos=[benzoateresult.f;catecholresult.f;DCAresult.f;glucoseresult.f;glycolat

eresult.f;hydroxyquinolresult.f]; 
disp(pos); 

 

Validationnegative.m 

%% validationnegative 
%% Test Growth for the experimentally tested substrates that had a negative 

outcome. André Guerra – 12/07/2015 

  
chloroacetaldehydemodel=chloroacetaldehyde(model); 
chloroacetaldehyderesult=optimizeCbModel(chloroacetaldehydemodel,'max','one

',1); 
 cyclohexanemodel=cyclohexane(model); 
cyclohexaneresult=optimizeCbModel(cyclohexanemodel,'max','one',1); 
 cyclohexaneacetatemodel=cyclohexaneacetate(model); 
cyclohexaneacetateresult=optimizeCbModel(cyclohexaneacetatemodel,'max','one

',1); 
 DCPmodel=DCP(model); 
DCPresult=optimizeCbModel(DCPmodel,'max','one',1); 
 ethanemodel=ethane(model); 
ethaneresult=optimizeCbModel(ethanemodel,'max','one',1); 

  
ethanolnitrateanoxicmodel=ethanolnitrateanoxic(model); 
ethanolnitrateanoxicresult=optimizeCbModel(ethanolnitrateanoxicmodel,'max',

'one',1); 
 ethylcyclohexanemodel=ethylcyclohexane(model); 
ethylcyclohexaneresult=optimizeCbModel(ethylcyclohexanemodel,'max','one',1)

; 
 hexanemodel=hexane(model); 
hexaneresult=optimizeCbModel(hexanemodel,'max','one',1); 
 hydroxy4benzoatemodel=hydroxy4benzoate(model); 
hydroxy4benzoateresult=optimizeCbModel(hydroxy4benzoatemodel,'max','one',1)

; 
 naphthalenemodel=naphthalene(model); 
naphthaleneresult=optimizeCbModel(naphthalenemodel,'max','one',1); 
 amino2benzoatemodel=amino2benzoate(model); 
amino2benzoateresult=optimizeCbModel(amino2benzoatemodel,'max','one',1); 
 amino4benzoatemodel=amino4benzoate(model); 
amino4benzoateresult=optimizeCbModel(amino4benzoatemodel,'max','one',1); 
 phthalatemodel=phthalate(model); 
phthalateresult=optimizeCbModel(phthalatemodel,'max','one',1); 
 propanemodel=propane(model); 
propaneresult=optimizeCbModel(propanemodel,'max','one',1); 
 thiosulfatemodel=thiosulfate(model); 
thiosulfateresult=optimizeCbModel(thiosulfatemodel,'max','one',1); 
 thiosulfateethanolmodel=thiosulfateethanol(model); 
thiosulfateethanolresult=optimizeCbModel(thiosulfateethanolmodel,'max','one

',1); 
neg=[chloroacetaldehyderesult.f;cyclohexaneresult.f;cyclohexaneacetateresul

t.f;DCPresult.f;ethaneresult.f;ethanolnitrateanoxicresult.f;ethylcyclohexan

eresult.f;hexaneresult.f;hydroxy4benzoateresult.f;naphthaleneresult.f;amino

2benzoateresult.f;amino4benzoateresult.f; 

phthalateresult.f;propaneresult.f;thiosulfateresult.f;thiosulfateethanolres

ult.f;] 
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Validationvariation.m 

%% Validationvariation.m 
%% This script was done in order to assess the influence of Rs values in 

the specific growth rate of microorganism. 
%% André Guerra - 28/07/2015 
 %% Positive Growth (with substrate consuming rate associated) 
 acetatemodel=acetate(model); 
i=0; 
acetatevariation=zeros(1,2); 
while acetatevariation(end,2)<0.0375 
    i=i+0.1 
acetatemodel=changeRxnBounds(acetatemodel,'EX_acetate[e]',-(i),'l'); 
acetateresult=optimizeCbModel(acetatemodel,'max','one',1); 
for j=length(acetatevariation) 
    acetatevariation(j+1,1)=i; 
if isfield(acetateresult,'f') 
acetatevariation(j+1,2)=acetateresult.f; 
else 
acetatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,1), plot(acetatevariation(:,1),acetatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 

    
title('Acetate'); 
 %% 
 cDCEmodel=cDCE(model); 
i=0; 
cDCEvariation=zeros(1,2); 
while cDCEvariation(end,2)<0.0089 
     i=i+0.01; 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_cDCE[e]',-(i),'l'); 
cDCEresult=optimizeCbModel(cDCEmodel,'max','one',1); 
for j=length(cDCEvariation) 
    cDCEvariation(j+1,1)=i; 
if isfield(cDCEresult,'f') 
cDCEvariation(j+1,2)=cDCEresult.f; 
else 
cDCEvariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,2), plot(cDCEvariation(:,1),cDCEvariation(:,2)), xlabel('Rs - 

mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('cDCE'); 
 %%  
 chloroacetatemodel=chloroacetate(model); 
i=0; 
chloroacetatevariation=zeros(1,2); 
while chloroacetatevariation(end,2)<0.0018 
     i=i+0.01 
chloroacetatemodel=changeRxnBounds(chloroacetatemodel,'EX_chloroacetate[e]'

,-(i),'l'); 
chloroacetateresult=optimizeCbModel(chloroacetatemodel,'max','one',1); 
for j=length(chloroacetatevariation) 
    chloroacetatevariation(j+1,1)=i; 
if isfield(chloroacetateresult,'f') 
chloroacetatevariation(j+1,2)=chloroacetateresult.f; 
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else 
chloroacetatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,3), 

plot(chloroacetatevariation(:,1),chloroacetatevariation(:,2)), xlabel('Rs - 

mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Chloroacetate'); 
 %% 
 cyclohexanecarboxylatemodel=cyclohexanecarboxylate(model); 
i=0; 
cyclohexanecarboxylatevariation=zeros(1,2); 
while cyclohexanecarboxylatevariation(end,2)<0.0190 
     i=i+0.01; 
cyclohexanecarboxylatemodel=changeRxnBounds(cyclohexanecarboxylatemodel,'EX

_cyclohexane1carboxylate[e]',-(i),'l'); 
cyclohexanecarboxylateresult=optimizeCbModel(cyclohexanecarboxylatemodel,'m

ax','one',1); 
for j=length(cyclohexanecarboxylatevariation) 
    cyclohexanecarboxylatevariation(j+1,1)=i; 
if isfield(cyclohexanecarboxylateresult,'f') 
cyclohexanecarboxylatevariation(j+1,2)=cyclohexanecarboxylateresult.f; 
else 
cyclohexanecarboxylatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,4), 

plot(cyclohexanecarboxylatevariation(:,1),cyclohexanecarboxylatevariation(:

,2)), xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 

1/(h)'),... 
title('Cyclohexanecarboxylate'); 
 %% 
 cyclohexanolmodel=cyclohexanol(model); 
i=0; 
cyclohexanolvariation=zeros(1,2); 
while cyclohexanolvariation(end,2)<0.0097 
     i=i+0.01; 
cyclohexanolmodel=changeRxnBounds(cyclohexanolmodel,'EX_cyclohexanol[e]',-

(i),'l'); 
cyclohexanolresult=optimizeCbModel(cyclohexanolmodel,'max','one',1); 
for j=length(cyclohexanolvariation) 
    cyclohexanolvariation(j+1,1)=i; 
if isfield(cyclohexanolresult,'f') 
cyclohexanolvariation(j+1,2)=cyclohexanolresult.f; 
else 
cyclohexanolvariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,5), 

plot(cyclohexanolvariation(:,1),cyclohexanolvariation(:,2)), xlabel('Rs - 

mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Cyclohexanol'); 
%%  
 ethanolmodel=ethanol(model); 
i=0; 
ethanolvariation=zeros(1,2); 
while ethanolvariation(end,2)<0.0090 
     i=i+0.01; 
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ethanolmodel=changeRxnBounds(ethanolmodel,'EX_ethanol[e]',-(i),'l'); 
ethanolresult=optimizeCbModel(ethanolmodel,'max','one',1); 
for j=length(ethanolvariation) 
    ethanolvariation(j+1,1)=i; 
if isfield(ethanolresult,'f') 
ethanolvariation(j+1,2)=ethanolresult.f; 
else 
ethanolvariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,6), plot(ethanolvariation(:,1),ethanolvariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Ethanol'); 
 %% 
ferulatemodel=ferulate(model); 
i=0; 
ferulatevariation=zeros(1,2); 
while ferulatevariation(end,2)<0.0035 
     i=i+0.01; 
ferulatemodel=changeRxnBounds(ferulatemodel,'EX_ferulate[e]',-(i),'l'); 
ferulateresult=optimizeCbModel(ferulatemodel,'max','one',1); 
for j=length(ferulatevariation) 
    ferulatevariation(j+1,1)=i; 
if isfield(ferulateresult,'f') 
ferulatevariation(j+1,2)=ferulateresult.f; 
else 
ferulatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,7), plot(ferulatevariation(:,1),ferulatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Ferulate'); 
 %% 
 gentisatemodel=gentisate(model); 
i=0; 
gentisatevariation=zeros(1,2); 
while gentisatevariation(end,2)<0.0079 
     i=i+0.01; 
gentisatemodel=changeRxnBounds(gentisatemodel,'EX_gentisate[e]',-(i),'l'); 
gentisateresult=optimizeCbModel(gentisatemodel,'max','one',1); 
for j=length(gentisatevariation) 
    gentisatevariation(j+1,1)=i; 
if isfield(gentisateresult,'f') 
gentisatevariation(j+1,2)=gentisateresult.f; 
else 
gentisatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,8), plot(gentisatevariation(:,1),gentisatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Gentisate'); 
 %% 
 heptanemodel=heptane(model); 
i=0; 
heptanevariation=zeros(1,2); 
while heptanevariation(end,2)<0.0047 
     i=i+0.01; 
heptanemodel=changeRxnBounds(heptanemodel,'EX_nheptane[e]',-(i),'l'); 
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heptaneresult=optimizeCbModel(heptanemodel,'max','one',1); 
for j=length(heptanevariation) 
    heptanevariation(j+1,1)=i; 
if isfield(heptaneresult,'f') 
heptanevariation(j+1,2)=heptaneresult.f; 
else 
heptanevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,9), plot(heptanevariation(:,1),heptanevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Heptane'); 
 %% 
 hydroxybenzoatemodel=hydroxybenzoate(model); 
i=0; 
hydroxybenzoatevariation=zeros(1,2); 
while hydroxybenzoatevariation(end,2)<0.0080 
     i=i+0.01; 
hydroxybenzoatemodel=changeRxnBounds(hydroxybenzoatemodel,'EX_3hydroxybenzo

ate[e]',-(i),'l'); 
hydroxybenzoateresult=optimizeCbModel(hydroxybenzoatemodel,'max','one',1); 
for j=length(hydroxybenzoatevariation) 
    hydroxybenzoatevariation(j+1,1)=i; 
if isfield(hydroxybenzoateresult,'f') 
hydroxybenzoatevariation(j+1,2)=hydroxybenzoateresult.f; 
else 
hydroxybenzoatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,10), 

plot(hydroxybenzoatevariation(:,1),hydroxybenzoatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('3-hydroxybenzoate'); 
 %% 
octanemodel=octane(model); 
i=0; 
octanevariation=zeros(1,2); 
while octanevariation(end,2)<0.0025 
     i=i+0.01; 
octanemodel=changeRxnBounds(octanemodel,'EX_noctane[e]',-(i),'l'); 
octaneresult=optimizeCbModel(octanemodel,'max','one',1); 
for j=length(octanevariation) 
    octanevariation(j+1,1)=i; 
if isfield(octaneresult,'f') 
octanevariation(j+1,2)=octaneresult.f; 
else 
octanevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,11), plot(octanevariation(:,1),octanevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Octane'); 
 %% 
protocatechuatemodel=protocatechuate(model); 
i=0; 
protocatechuatevariation=zeros(1,2); 
while protocatechuatevariation(end,2)<0.0094 
     i=i+0.01; 
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protocatechuatemodel=changeRxnBounds(protocatechuatemodel,'EX_protocatechua

te[e]',-(i),'l'); 
protocatechuateresult=optimizeCbModel(protocatechuatemodel,'max','one',1); 
for j=length(protocatechuatevariation) 
    protocatechuatevariation(j+1,1)=i; 
if isfield(protocatechuateresult,'f') 
protocatechuatevariation(j+1,2)=protocatechuateresult.f; 
else 
protocatechuatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,12), 

plot(protocatechuatevariation(:,1),protocatechuatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Protocatechuate'); 
 %%  
 salicylatemodel=salicylate(model); 
i=0; 
salicylatevariation=zeros(1,2); 
while salicylatevariation(end,2)<0.0121 
     i=i+0.01; 
salicylatemodel=changeRxnBounds(salicylatemodel,'EX_salicylate[e]',-

(i),'l'); 
salicylateresult=optimizeCbModel(salicylatemodel,'max','one',1); 
for j=length(salicylatevariation) 
    salicylatevariation(j+1,1)=i; 
if isfield(salicylateresult,'f') 
salicylatevariation(j+1,2)=salicylateresult.f; 
else 
salicylatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,13), plot(salicylatevariation(:,1),salicylatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Salicylate'); 
 %% 
 succinatemodel=succinate(model); 
i=0; 
succinatevariation=zeros(1,2); 
while succinatevariation(end,2)<0.0231 
    i=i+0.01; 
succinatemodel=changeRxnBounds(succinatemodel,'EX_succinate[e]',-(i),'l'); 
succinateresult=optimizeCbModel(succinatemodel,'max','one',1); 
for j=length(succinatevariation) 
    succinatevariation(j+1,1)=i; 
if isfield(succinateresult,'f') 
succinatevariation(j+1,2)=succinateresult.f; 
else 
succinatevariation(j+1,2)=0; 
end 
end 
end 
 subplot(3,5,14), plot(succinatevariation(:,1),succinatevariation(:,2)), 

xlabel('Rs - mmol/(gDW*h)'), ylabel('Specific Growth Rate - 1/(h)'),... 
title('Succinate'); 

 

Validationox.m 
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%% Positive Growth (with substrate consuming rate associated) for test of 

oxygen uptake 
%% 30/07/2015 - André Guerra 
 n=1 
acetatemodel=acetate(model); 
i=0; 
acetatevariation=zeros(1,3); 
while acetatevariation(end,2)<0.0375 
    i=i+0.1; 
acetatemodel=changeRxnBounds(acetatemodel,'EX_acetate[e]',-(i),'l'); 
acetateresult=optimizeCbModel(acetatemodel,'max','one',1); 
for j=length(acetatevariation) 
    acetatevariation(j+1,1)=i; 
if isfield(acetateresult,'f') 
acetatevariation(j+1,2)=acetateresult.f; 
else 
acetatevariation(j+1,2)=0; 
end 
 if isempty(acetateresult.x) 
acetatevariation(j+1,3)=0; 
else 
acetatevariation(j+1,3)=-

acetateresult.x(strmatch('EX_oxygen',acetatemodel.rxns)); 
end    
end 
end 
acetatevariation(all(acetatevariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
figure;subplot(3,5,1),... 
plot(acetatevariation(:,1),acetatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 acetatevariation(end,1) 0 acetatevariation(end,3)]),... 
title('RO2 vs Rs in Acetate'); 
 %% 
n=2 
cDCEmodel=cDCE(model); 
i=0; 
cDCEvariation=zeros(1,3); 
while cDCEvariation(end,2)<0.0089 
     i=i+0.01; 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_cDCE[e]',-(i),'l'); 
cDCEresult=optimizeCbModel(cDCEmodel,'max','one',1); 
for j=length(cDCEvariation) 
    cDCEvariation(j+1,1)=i; 
if isfield(cDCEresult,'f') 
cDCEvariation(j+1,2)=cDCEresult.f; 
else 
cDCEvariation(j+1,2)=0; 
end 
if isempty(cDCEresult.x) 
cDCEvariation(j+1,3)=0; 
else 
cDCEvariation(j+1,3)=-cDCEresult.x(strmatch('EX_oxygen',cDCEmodel.rxns)); 
end   
end 
end 
 cDCEvariation(all(cDCEvariation==0,2),:)=[]; %removing zeros for faster 

ploting. 
subplot(3,5,2),... 
plot(cDCEvariation(:,1),cDCEvariation(:,3)),... 
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xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 cDCEvariation(end,1) 0 cDCEvariation(end,3)]),... 
title('RO2 vs Rs in cDCE'); 
%% 
n=3 
chloroacetatemodel=chloroacetate(model); 
i=0; 
chloroacetatevariation=zeros(1,3); 
while chloroacetatevariation(end,2)<0.0018 
     i=i+0.01; 
chloroacetatemodel=changeRxnBounds(chloroacetatemodel,'EX_chloroacetate[e]'

,-(i),'l'); 
chloroacetateresult=optimizeCbModel(chloroacetatemodel,'max','one',1); 
for j=length(chloroacetatevariation) 
    chloroacetatevariation(j+1,1)=i; 
if isfield(chloroacetateresult,'f') 
chloroacetatevariation(j+1,2)=chloroacetateresult.f; 
else 
chloroacetatevariation(j+1,2)=0; 
end 
if isempty(chloroacetateresult.x) 
chloroacetatevariation(j+1,3)=0; 
else 
chloroacetatevariation(j+1,3)=-

chloroacetateresult.x(strmatch('EX_oxygen',chloroacetatemodel.rxns)); 
end   
end 
end 
 chloroacetatevariation(all(chloroacetatevariation==0,2),:)=[]; %removing 

zeros for faster ploting. 
subplot(3,5,3),... 
plot(chloroacetatevariation(:,1),chloroacetatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 chloroacetatevariation(end,1) 0 chloroacetatevariation(end,3)]),... 
title('RO2 vs Rs in Chloroacetate'); 
 %% 
n=4 
cyclohexanecarboxylatemodel=cyclohexanecarboxylate(model); 
i=0; 
cyclohexanecarboxylatevariation=zeros(1,3); 
while cyclohexanecarboxylatevariation(end,2)<0.0190 
     i=i+0.01; 
cyclohexanecarboxylatemodel=changeRxnBounds(cyclohexanecarboxylatemodel,'EX

_cyclohexane1carboxylate[e]',-(i),'l'); 
cyclohexanecarboxylateresult=optimizeCbModel(cyclohexanecarboxylatemodel,'m

ax','one',1); 
for j=length(cyclohexanecarboxylatevariation) 
    cyclohexanecarboxylatevariation(j+1,1)=i; 
if isfield(cyclohexanecarboxylateresult,'f') 
cyclohexanecarboxylatevariation(j+1,2)=cyclohexanecarboxylateresult.f; 
else 
cyclohexanecarboxylatevariation(j+1,2)=0; 
end 
if isempty(cyclohexanecarboxylateresult.x) 
cyclohexanecarboxylatevariation(j+1,3)=0; 
else 
cyclohexanecarboxylatevariation(j+1,3)=-

cyclohexanecarboxylateresult.x(strmatch('EX_oxygen',cyclohexanecarboxylatem

odel.rxns)); 
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end   
end 
end 
cyclohexanecarboxylatevariation(all(cyclohexanecarboxylatevariation==0,2),:

)=[]; %removing zeros for faster ploting. 
subplot(3,5,4),... 
plot(cyclohexanecarboxylatevariation(:,1),cyclohexanecarboxylatevariation(:

,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 cyclohexanecarboxylatevariation(end,1) 0 

cyclohexanecarboxylatevariation(end,3)]),... 
title('RO2 vs Rs in Cyclohexanecarboxylate'); 
%% 
n=5 
cyclohexanolmodel=cyclohexanol(model); 
i=0; 
cyclohexanolvariation=zeros(1,3); 
while cyclohexanolvariation(end,2)<0.0097 
     i=i+0.01; 
cyclohexanolmodel=changeRxnBounds(cyclohexanolmodel,'EX_cyclohexanol[e]',-

(i),'l'); 
cyclohexanolresult=optimizeCbModel(cyclohexanolmodel,'max','one',1); 
for j=length(cyclohexanolvariation) 
    cyclohexanolvariation(j+1,1)=i; 
if isfield(cyclohexanolresult,'f') 
cyclohexanolvariation(j+1,2)=cyclohexanolresult.f; 
else 
cyclohexanolvariation(j+1,2)=0; 
end 
if isempty(cyclohexanolresult.x) 
cyclohexanolvariation(j+1,3)=0; 
else 
cyclohexanolvariation(j+1,3)=-

cyclohexanolresult.x(strmatch('EX_oxygen',cyclohexanolmodel.rxns)); 
end   
end 
end 
 cyclohexanolvariation(all(cyclohexanolvariation==0,2),:)=[]; %removing 

zeros for faster ploting. 
subplot(3,5,5),... 
plot(cyclohexanolvariation(:,1),cyclohexanolvariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 cyclohexanolvariation(end,1) 0 cyclohexanolvariation(end,3)]),... 
title('RO2 vs Rs in Cyclohexanol'); 
 %% 
n=6 
ethanolmodel=ethanol(model); 
i=0; 
ethanolvariation=zeros(1,3); 
while ethanolvariation(end,2)<0.0090 
     i=i+0.01; 
ethanolmodel=changeRxnBounds(ethanolmodel,'EX_ethanol[e]',-(i),'l'); 
ethanolresult=optimizeCbModel(ethanolmodel,'max','one',1); 
for j=length(ethanolvariation) 
    ethanolvariation(j+1,1)=i; 
if isfield(ethanolresult,'f') 
ethanolvariation(j+1,2)=ethanolresult.f; 
else 
ethanolvariation(j+1,2)=0; 
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end 
if isempty(ethanolresult.x) 
ethanolvariation(j+1,3)=0; 
else 
ethanolvariation(j+1,3)=-

ethanolresult.x(strmatch('EX_oxygen',ethanolmodel.rxns)); 
end   
end 
end 
 ethanolvariation(all(ethanolvariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
subplot(3,5,6),... 
plot(ethanolvariation(:,1),ethanolvariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 ethanolvariation(end,1) 0 ethanolvariation(end,3)]),... 
title('RO2 vs Rs in Ethanol'); 
%% 
n=7 
ferulatemodel=ferulate(model); 
i=0; 
ferulatevariation=zeros(1,3); 
while ferulatevariation(end,2)<0.0035 

  
    i=i+0.01; 
ferulatemodel=changeRxnBounds(ferulatemodel,'EX_ferulate[e]',-(i),'l'); 
ferulateresult=optimizeCbModel(ferulatemodel,'max','one',1); 
for j=length(ferulatevariation) 
    ferulatevariation(j+1,1)=i; 
if isfield(ferulateresult,'f') 
ferulatevariation(j+1,2)=ferulateresult.f; 
else 
ferulatevariation(j+1,2)=0; 
end 
if isempty(ferulateresult.x) 
ferulatevariation(j+1,3)=0; 
else 
ferulatevariation(j+1,3)=-

ferulateresult.x(strmatch('EX_oxygen',ferulatemodel.rxns)); 
end   
end 
end 
 ferulatevariation(all(ferulatevariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
subplot(3,5,7),... 
plot(ferulatevariation(:,1),ferulatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 ferulatevariation(end,1) 0 ferulatevariation(end,3)]),... 
title('RO2 vs Rs in Ferulate'); 
 %% 
n=8 
gentisatemodel=gentisate(model); 
i=0; 
gentisatevariation=zeros(1,3); 
while gentisatevariation(end,2)<0.0079 
     i=i+0.01; 
gentisatemodel=changeRxnBounds(gentisatemodel,'EX_gentisate[e]',-(i),'l'); 
gentisateresult=optimizeCbModel(gentisatemodel,'max','one',1); 
for j=length(gentisatevariation) 
    gentisatevariation(j+1,1)=i; 
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if isfield(gentisateresult,'f') 
gentisatevariation(j+1,2)=gentisateresult.f; 
else 
gentisatevariation(j+1,2)=0; 
end 
if isempty(gentisateresult.x) 
gentisatevariation(j+1,3)=0; 
else 
gentisatevariation(j+1,3)=-

gentisateresult.x(strmatch('EX_oxygen',gentisatemodel.rxns)); 
end   
end 
end 
 gentisatevariation(all(gentisatevariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
subplot(3,5,8),... 
plot(gentisatevariation(:,1),gentisatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 gentisatevariation(end,1) 0 gentisatevariation(end,3)]),... 
title('RO2 vs Rs in Gentisate'); 
 %% 
n=9 
heptanemodel=heptane(model); 
i=0; 
heptanevariation=zeros(1,3); 
while heptanevariation(end,2)<0.0047 
     i=i+0.01; 
heptanemodel=changeRxnBounds(heptanemodel,'EX_nheptane[e]',-(i),'l'); 
heptaneresult=optimizeCbModel(heptanemodel,'max','one',1); 
for j=length(heptanevariation) 
    heptanevariation(j+1,1)=i; 
if isfield(heptaneresult,'f') 
heptanevariation(j+1,2)=heptaneresult.f; 
else 
heptanevariation(j+1,2)=0; 
end 
if isempty(heptaneresult.x) 
heptanevariation(j+1,3)=0; 
else 
heptanevariation(j+1,3)=-

heptaneresult.x(strmatch('EX_oxygen',heptanemodel.rxns)); 
end   
end 
end 
 heptanevariation(all(heptanevariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
subplot(3,5,9),... 
plot(heptanevariation(:,1),heptanevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 heptanevariation(end,1) 0 heptanevariation(end,3)]),... 
title('RO2 vs Rs in Heptane'); 
%% 
n=10 
hydroxybenzoatemodel=hydroxybenzoate(model); 
i=0; 
hydroxybenzoatevariation=zeros(1,3); 
while hydroxybenzoatevariation(end,2)<0.0080 
     i=i+0.01; 
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hydroxybenzoatemodel=changeRxnBounds(hydroxybenzoatemodel,'EX_3hydroxybenzo

ate[e]',-(i),'l'); 
hydroxybenzoateresult=optimizeCbModel(hydroxybenzoatemodel,'max','one',1); 
for j=length(hydroxybenzoatevariation) 
    hydroxybenzoatevariation(j+1,1)=i; 
if isfield(hydroxybenzoateresult,'f') 
hydroxybenzoatevariation(j+1,2)=hydroxybenzoateresult.f; 
else 
hydroxybenzoatevariation(j+1,2)=0; 
end 
if isempty(hydroxybenzoateresult.x) 
hydroxybenzoatevariation(j+1,3)=0; 
else 
hydroxybenzoatevariation(j+1,3)=-

hydroxybenzoateresult.x(strmatch('EX_oxygen',hydroxybenzoatemodel.rxns)); 
end   
end 
end 
 hydroxybenzoatevariation(all(hydroxybenzoatevariation==0,2),:)=[]; 

%removing zeros for faster ploting. 
subplot(3,5,10),... 
plot(hydroxybenzoatevariation(:,1),hydroxybenzoatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 hydroxybenzoatevariation(end,1) 0 

hydroxybenzoatevariation(end,3)]),... 
title('RO2 vs Rs in 3-Hydroxybenzoate'); 

  
%% 
n=11 
octanemodel=octane(model); 
i=0; 
octanevariation=zeros(1,3); 
while octanevariation(end,2)<0.0015 
     i=i+0.01; 
octanemodel=changeRxnBounds(octanemodel,'EX_noctane[e]',-(i),'l'); 
octaneresult=optimizeCbModel(octanemodel,'max','one',1); 
for j=length(octanevariation) 
    octanevariation(j+1,1)=i; 
if isfield(octaneresult,'f') 
octanevariation(j+1,2)=octaneresult.f; 
else 
octanevariation(j+1,2)=0; 
end 
if isempty(octaneresult.x) 
octanevariation(j+1,3)=0; 
else 
octanevariation(j+1,3)=-

octaneresult.x(strmatch('EX_oxygen',octanemodel.rxns)); 
end   
end 
end 
 octanevariation(all(octanevariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
subplot(3,5,11),... 
plot(octanevariation(:,1),octanevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 octanevariation(end,1) 0 octanevariation(end,3)]),... 
title('RO2 vs Rs in Octane'); 
 %% 
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n=12 
protocatechuatemodel=protocatechuate(model); 
i=0; 
protocatechuatevariation=zeros(1,3); 
while protocatechuatevariation(end,2)<0.0094 
     i=i+0.01; 
protocatechuatemodel=changeRxnBounds(protocatechuatemodel,'EX_protocatechua

te[e]',-(i),'l'); 
protocatechuateresult=optimizeCbModel(protocatechuatemodel,'max','one',1); 
for j=length(protocatechuatevariation) 
    protocatechuatevariation(j+1,1)=i; 
if isfield(protocatechuateresult,'f') 
protocatechuatevariation(j+1,2)=protocatechuateresult.f; 
else 
protocatechuatevariation(j+1,2)=0; 
end 
if isempty(protocatechuateresult.x) 
protocatechuatevariation(j+1,3)=0; 
else 
protocatechuatevariation(j+1,3)=-

protocatechuateresult.x(strmatch('EX_oxygen',protocatechuatemodel.rxns)); 
end   
end 
end 
 protocatechuatevariation(all(protocatechuatevariation==0,2),:)=[]; 

%removing zeros for faster ploting. 
subplot(3,5,12),... 
plot(protocatechuatevariation(:,1),protocatechuatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 protocatechuatevariation(end,1) 0 

protocatechuatevariation(end,3)]),... 
title('RO2 vs Rs in Protocatechuate'); 
 %% 
n=13 
salicylatemodel=salicylate(model); 
i=0; 
salicylatevariation=zeros(1,3); 
while salicylatevariation(end,2)<0.0121 
     i=i+0.01; 
salicylatemodel=changeRxnBounds(salicylatemodel,'EX_salicylate[e]',-

(i),'l'); 
salicylateresult=optimizeCbModel(salicylatemodel,'max','one',1); 
for j=length(salicylatevariation) 
    salicylatevariation(j+1,1)=i; 
if isfield(salicylateresult,'f') 
salicylatevariation(j+1,2)=salicylateresult.f; 
else 
salicylatevariation(j+1,2)=0; 
end 
if isempty(salicylateresult.x) 
salicylatevariation(j+1,3)=0; 
else 
salicylatevariation(j+1,3)=-

salicylateresult.x(strmatch('EX_oxygen',salicylatemodel.rxns)); 
end   
end 
end 
 salicylatevariation(all(salicylatevariation==0,2),:)=[]; %removing zeros 

for faster ploting. 
subplot(3,5,13),... 
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plot(salicylatevariation(:,1),salicylatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 salicylatevariation(end,1) 0 salicylatevariation(end,3)]),... 
title('RO2 vs Rs in Salicylate'); 
%% 
n=14 
succinatemodel=succinate(model); 
i=0; 
succinatevariation=zeros(1,3); 
while succinatevariation(end,2)<0.0231 
     i=i+0.01; 
succinatemodel=changeRxnBounds(succinatemodel,'EX_succinate[e]',-(i),'l'); 
succinateresult=optimizeCbModel(succinatemodel,'max','one',1); 
for j=length(succinatevariation) 
    succinatevariation(j+1,1)=i; 
if isfield(succinateresult,'f') 
succinatevariation(j+1,2)=succinateresult.f; 
else 
succinatevariation(j+1,2)=0; 
end 
if isempty(succinateresult.x) 
succinatevariation(j+1,3)=0; 
else 
succinatevariation(j+1,3)=-

succinateresult.x(strmatch('EX_oxygen',succinatemodel.rxns)); 
end   
end 
end 
 succinatevariation(all(succinatevariation==0,2),:)=[]; %removing zeros for 

faster ploting. 
subplot(3,5,14),... 
plot(succinatevariation(:,1),succinatevariation(:,3)),... 
xlabel('Rs - mmol/(gDW*h)'),... 
ylabel('RO2 - mmol/(gDW*h)'),... 
axis([0 succinatevariation(end,1) 0 succinatevariation(end,3)]),... 
title('RO2 vs Rs in Succinate'); 

 

FVAcDCE.m 

%%FVAcDCE.m - objective: analyse bottleneck reactions in common FBA. 
%% André Guerra 13/08/2015 
cDCEmodel=cDCE(model); 
 %% excludes exchange  
 cDCEex=cDCEmodel.rxns(strmatch('EX_',cDCEmodel.rxns)); 
diff=setdiff(cDCEmodel.rxns,cDCEex); 
a=[]; 
for i=1:length(diff); 
    b=strmatch(diff(i),cDCEmodel.rxns,'exact'); 
    if ~isempty(b) 
        a(length(a)+1,1)=b; 
    end 
end 
 posintra=a; 
 %% Runs FBA and FVA 
 FBA=optimizeCbModel(cDCEmodel,'max','one'); 
 [FVAmin,FVAmax]=fluxVariability(cDCEmodel,100,'max',cDCEmodel.rxns); 
 %% calculates the flux variability (normalized to max) 
 fbaintra=FBA.x(posintra); 
varmin=FVAmin(posintra); 
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varmax=FVAmax(posintra); 
 figure;plot(1:1:length(varmax),fbaintra,'sqy');hold on; 

plot(1:length(varmin),varmin,'*r');hold on; 

plot(1:1:length(varmax),varmax,'.b'), 
axis([1 length(varmin) -2 2]),xlabel('iJS666 Intracellular 

Reactions'),ylabel('Intracellular Flux Values - mmol/(gDW*h)');hold off; 
 indbottle=[]; 
for i=1:length(posintra) 
    if abs(FBA.x(posintra(i)))>0.1 && abs(FBA.x(posintra(i))-

FVAmin(posintra(i)))<0.001 && abs(FBA.x(posintra(i))-

FVAmax(posintra(i)))<0.001; 
        indbottle(length(indbottle)+1,1)=posintra(i); 
    end 
end 
 bottlerxn=cDCEmodel.rxns(indbottle); 
 printRxnFormula(cDCEmodel,bottlerxn); 

  

Gluta.m 

%% gluta.m 
%% See the influence of glutathione 0 and 2% of biomass content on growth 

rate. 
%% André Guerra - 10-08-2015 
i=0.001:0.001:0.033*2;%mmol gdw 
per=0.30732*(i);%*g mmol = g/gw 
perper=100*per;% in % 
val=ones(size(per))-per; 
%% 
cDCEmodel=cDCE(model); 
 %% 
res=[]; 
ox=[]; 
m=strmatch('glutathione[c]',cDCEmodel.mets); 
r=strmatch('NEWRXN18975418598',cDCEmodel.rxns); 
 for j=1:1:length(i) 
    cDCEmodel=cDCE(model); 
    cDCEmodel.S(:,r)=(val(j)).*(cDCEmodel.S(:,r)); 
    cDCEmodel.S(strmatch('BiomassJS666[c]',model.mets),r)=1; 
    cDCEmodel.S(m,r)=-(i(j)); 
    FBA=optimizeCbModel(cDCEmodel,'max'); 
    if isfield(FBA,'f') 
        res(j)=FBA.f; 
    else 
        res(j)=0; 
    end 

     
    if isempty(FBA.x) 
        ox(j)=0; 
    else 
        ox(j)=-FBA.x(strmatch('EX_oxygen',cDCEmodel.rxns)); 
    end 
  end 
 a=[perper',res']; 
maxres=max(res); 
maxresx=perper(find(res'==maxres)); 
figure;  
subplot(1,2,1);plot(a(:,1),a(:,2),'+g'),... 
xlabel('% (w/w) Glutathione in Biomass'),ylabel('Specific Growth Rate - 

(1/h)'),... 
axis([0 2 0 0.0047]); 
    b=[perper',ox']; 
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maxox=max(ox); 
subplot(1,2,2);plot(b(:,1),b(:,2),'+b'),... 
xlabel('% (w/w) Glutathione in Biomass'),ylabel('R02 - mmol/(gDW*h)'),... 
axis([0 2 0 1.1]); 

 

Testobj.m 

 
%%Influencia da função objectivo nos fluxos medidos 
cDCEmodel=cDCE(model); 

  
li={'NEWRXN6661b';'NEWRXN6662';'NEWRXN6663';'NEWRXN6664';... 
    'NEWRXN6665b';'NEWRXN6666';'NEWRXN6667';'NEWRXN6668';'NEWRXN6669';... 
    'NEWRXN66610';'GLYOCARBOLIG-RXN';... 
    'SERINE-GLYOXYLATE-AMINOTRANSFERASE-RXN';'MALSYN-RXN'}; 
indices=[strmatch('EX_',model.rxns);strmatch('SINK',model.rxns)]; 
emedium=model.rxns(indices); 
%other reactions redox 
la={'ATPSYN-RXN';'TRANS-RXN0-277';'RXN0-5266';'NADH-DEHYDROG-A-RXN';'NADH-

DEHYDROG-A-RXN';'RXN-14107';'1.10.2.2-RXN';'CYTOCHROME-C-OXIDASE-RXN';'RXN-

9510';'RXN-12444';'RXN0-271';'1.5.5.1-RXN';} 
% important reactions names 
access=[li;emedium;la]; 
% get indices for access 
ind=[]; 
for i=1:length(access) 
    ind(i,1)=strmatch(access(i),cDCEmodel.rxns); 
end 
%% FVA under max biomass (rs constant) - evolution drives system for 

maximum biomass yield bt substrate uptake. 
% Without glutathione in biomass 
FBA=optimizeCbModel(cDCEmodel,'max','one'); 
[minimo,maximo] = fluxVariability(cDCEmodel,100,'max',access); 
% minimo=(1/FBA.x(strmatch('SINK001',model.rxns))).*(minimo); 
% maximo=(1/FBA.x(strmatch('SINK001',model.rxns))).*(maximo); 
minimo=num2cell(minimo); 
maximo=num2cell(maximo);  
% With glutathione in biomass 
i=0.033;%mmol gdw 
per=0.30732*(i);%*g mmol = g/gw 
val=ones(size(per))-per; 
m=strmatch('glutathione[c]',cDCEmodel.mets); 
r=strmatch('NEWRXN18975418598',cDCEmodel.rxns); 
for j=1:length(i) 
    cDCEmodel=cDCE(model); 
    cDCEmodel.S(:,r)=(val(j)).*(cDCEmodel.S(:,r)); 
    cDCEmodel.S(strmatch('BiomassJS666[c]',model.mets),r)=1; 
    cDCEmodel.S(m,r)=-(i(j)); 
end 
[minimo2,maximo2] = fluxVariability(cDCEmodel,100,'max',access); 
minimo2=num2cell(minimo2); 
maximo2=num2cell(maximo2); 

  

  

  

  
%% FVA under min redox potencial (NADH)- cells reduce the number of 

oxidizing reactions thus conserving their energy of using it in the most 

efficient way. 
cDCEmodel=cDCE(model); 
%changing obj 
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%descobrir todas as reacções que utilizam NADH, esteq e sinal. 
idmet=strmatch('NADH[c]',cDCEmodel.mets); 
estsinal=cDCEmodel.S(idmet,:); 
num=length(find(estsinal~=0)); 
%nome das reacções 
names=cDCEmodel.rxns(estsinal~=0,1); 
cDCEmodel = changeObjective(cDCEmodel,names,(1/num).*estsinal'); 
%making biomass constant and equal to maximum 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_cDCE[e]',-0.561,'b'); 
% Without glutathione in biomass 
[minimo3,maximo3] = fluxVariability(cDCEmodel,100,'min',access); 
minimo3=num2cell(minimo3); 
maximo3=num2cell(maximo3); 
% With glutathione in biomass 
i=0.033;%mmol gdw 
per=0.30732*(i);%*g mmol = g/gw 
val=ones(size(per))-per; 
m=strmatch('glutathione[c]',cDCEmodel.mets); 
r=strmatch('NEWRXN18975418598',cDCEmodel.rxns); 
for j=1:1:length(i) 
    cDCEmodel.S(:,r)=(val(j)).*(cDCEmodel.S(:,r)); 
    cDCEmodel.S(strmatch('BiomassJS666[c]',model.mets),r)=1; 
    cDCEmodel.S(m,r)=-(i(j)); 
end 
[minimo4,maximo4] = fluxVariability(cDCEmodel,100,'min',access); 
minimo4=num2cell(minimo4); 
maximo4=num2cell(maximo4);  
%% FVA under min ATP consumption (rs constante) - cells grow with the 

minimal usage of energy, thus conserving the most energy possible. 
cDCEmodel=cDCE(model); 
%changing obj 
%descobrir todas as reacções que utilizam NADH, esteq e sinal. 
idmet=strmatch('ATP[c]',cDCEmodel.mets); 
estsinal=cDCEmodel.S(idmet,:); 
num=length(find(estsinal~=0)); 
%nome das reacções 
names=cDCEmodel.rxns(estsinal~=0,1); 
cDCEmodel = changeObjective(cDCEmodel,names,(1/num).*estsinal'); 
%making biomass constant and equal to maximum 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_cDCE[e]',-0.561,'b'); 
% Without glutathione in biomass 
[minimo5,maximo5] = fluxVariability(cDCEmodel,100,'min',access); 
minimo5=num2cell(minimo5); 
maximo5=num2cell(maximo5); 
% With glutathione in biomass 
i=0.033;%mmol gdw 
per=0.30732*(i);%*g mmol = g/gw 
val=ones(size(per))-per; 
m=strmatch('glutathione[c]',cDCEmodel.mets); 
r=strmatch('NEWRXN18975418598',cDCEmodel.rxns); 

  
for j=1:1:length(i) 
    cDCEmodel.S(:,r)=(val(j)).*(cDCEmodel.S(:,r)); 
    cDCEmodel.S(strmatch('BiomassJS666[c]',model.mets),r)=1; 
    cDCEmodel.S(m,r)=-(i(j)); 
end 
[minimo6,maximo6] = fluxVariability(cDCEmodel,100,'min',access); 
minimo6=num2cell(minimo6); 
maximo6=num2cell(maximo6); 
%LIST 
names = printRxnFormula(cDCEmodel,access,0,0,0,'FID666',0,0); 
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bind=[access names minimo maximo minimo2 maximo2 minimo3 maximo3 minimo4 

maximo4 minimo5 maximo5 minimo6 maximo6]; 

 

 

TNGAM.m 

%%FVAcDCE.m - objective: analyse bottleneck reactions in common FBA. 
%% André Guerra 17/08/2015 
cDCEmodel=cDCE(model); 
 %% excludes exchange  
 cDCEex=cDCEmodel.rxns(strmatch('EX_',cDCEmodel.rxns)); 
diff=setdiff(cDCEmodel.rxns,cDCEex); 
a=[]; 
for i=1:length(diff); 
    b=strmatch(diff(i),cDCEmodel.rxns,'exact'); 
    if ~isempty(b) 
        a(length(a)+1,1)=b; 
    end 
end 
 posintra=a; 
 %% Runs FBA and FVA 
 FBA=optimizeCbModel(cDCEmodel,'max','one'); 
 [FVAmin,FVAmax]=fluxVariability(cDCEmodel,100,'max',cDCEmodel.rxns); 
 %% calculates the flux variability (normalized to max) 
 fbaintra=FBA.x(posintra); 
varmin=FVAmin(posintra); 
varmax=FVAmax(posintra); 

  
figure;plot(1:1:length(varmax),fbaintra,'sqy');hold on; 

plot(1:length(varmin),varmin,'*r');hold on; 

plot(1:1:length(varmax),varmax,'.b'), 
axis([1 length(varmin) -2 2]),xlabel('iJS666 Intracellular 

Reactions'),ylabel('Intracellular Flux Values - mmol/(gDW*h)');hold off; 
 indbottle=[]; 
for i=1:length(posintra) 
    if abs(FBA.x(posintra(i)))>0.1 && abs(FBA.x(posintra(i))-

FVAmin(posintra(i)))<0.001 && abs(FBA.x(posintra(i))-

FVAmax(posintra(i)))<0.001; 
        indbottle(length(indbottle)+1,1)=posintra(i); 
    end 
end 
 bottlerxn=cDCEmodel.rxns(indbottle); 
 printRxnFormula(cDCEmodel,bottlerxn); 

  

Nitrogen.m 

%% Nitrogen.m 
%% Tests the ingluence of different nitrogen sources in the specific 

biomass growth. 
%% 15-08-2015 - André Guerra 
 %% Nitrogen Sources 
 %% Ammonium 
 cDCEmodel=cDCE(model); 
ammoniumresult=optimizeCbModel(cDCEmodel,'max','one',1); 
 %% Nitrate  
 cDCEmodel=cDCE(model); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_ammonium[e]',0,'b'); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_nitrate[e]',-100,'l'); 
nitrateresult=optimizeCbModel(cDCEmodel,'max','one',1); 
 %% Nitrite 
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 cDCEmodel=cDCE(model); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_ammonium[e]',0,'b'); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_nitrite[e]',-100,'l'); 
nitriteresult=optimizeCbModel(cDCEmodel,'max','one',1); 
 %% Hydroxilamine 
 cDCEmodel=cDCE(model); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_ammonium[e]',0,'b'); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_hydroxylamine[e]',-100,'l'); 
hydroxilamineresult=optimizeCbModel(cDCEmodel,'max','one',1); 
 %% Ammonia 
 cDCEmodel=cDCE(model); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_ammonium[e]',0,'b'); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_ammonia[e]',-100,'l'); 
ammoniaresult=optimizeCbModel(cDCEmodel,'max','one',1); 
 %% 
i=1:5; 
figure;subplot(1,2,1); plot(i,[ammoniumresult.f, nitrateresult.f, 

nitriteresult.f hydroxilamineresult.f ammoniaresult.f],'*');axis([0 6 

0.0036 0.0060]),... 
xlabel('Different Nitrogen Sources'),... 
ylabel('Specific Growth Rate - (1/h)'); 
subplot(1,2,2); plot(i,-

[ammoniumresult.x(strmatch('EX_ammonium[e]',cDCEmodel.rxns)) 

nitrateresult.x(strmatch('EX_nitrate[e]',cDCEmodel.rxns))... 
    nitriteresult.x(strmatch('EX_nitrite[e]',cDCEmodel.rxns)) 

hydroxilamineresult.x(strmatch('EX_hydroxylamine[e]',cDCEmodel.rxns))... 
    ammoniaresult.x(strmatch('EX_ammonia[e]',cDCEmodel.rxns))],'*');axis([0 

6 0 0.05]),... 
xlabel('Different Nitrogen Sources'),... 
ylabel('Specific Growth Rate - (1/h)'); 

 

Sulfur.m 

%% sulfur.m 
%% Influence of different sulfur sources in cDCE degradation 
%% 15-08-2015 - André Guerra 
 cDCEmodel=cDCE(model); 
 %% Sulfur 
 %% Sulfate 
 cDCEmodel=cDCE(model); 
% cDCEmodel = changeRxnBounds(cDCEmodel,rxnNameList,value,boundType) 
%  
%  
% pos13=strmatch('EX_sulfate[e]',emedium); 
% cDCEmodel=changeRxnBounds(cDCEmodel,emedium(pos13),-100,'l'); 
% cDCEmodel=changeRxnBounds(cDCEmodel,emedium(pos13),0,'u'); 
sulfateresult=optimizeCbModel(cDCEmodel,'max','one',1); 
%% Thiosulfate 
 cDCEmodel=cDCE(model); 
 cDCEmodel=changeRxnBounds(cDCEmodel,'EX_sulfate[e]',0,'b'); 
 cDCEmodel=changeRxnBounds(cDCEmodel,'EX_thiosulfate[e]',-100,'l'); 
 thiosulfateresult=optimizeCbModel(cDCEmodel,'max','one',1); 
 %% Sulfite 
cDCEmodel=cDCE(model); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_sulfate[e]',0,'b'); 
cDCEmodel=changeRxnBounds(cDCEmodel,'EX_sulfite[e]',-100,'l'); 
sulfiteresult=optimizeCbModel(cDCEmodel,'max','one',1);  
%% Hydrogen Sulfide 
 cDCEmodel=cDCE(model); 
 cDCEmodel=changeRxnBounds(cDCEmodel,'EX_sulfate[e]',0,'b'); 
 cDCEmodel=changeRxnBounds(cDCEmodel,'EX_hydrogensulfide[e]',-100,'l'); 



 

117 

  

 hydrogensulresult=optimizeCbModel(cDCEmodel,'max','one',1); 
%% Sulfur 
 cDCEmodel=cDCE(model); 
 cDCEmodel=changeRxnBounds(cDCEmodel,'EX_sulfate[e]',0,'b'); 
 cDCEmodel=changeRxnBounds(cDCEmodel,'EX_S(sup)0(/sup)[e]',-100,'l'); 
 sulfuresult=optimizeCbModel(cDCEmodel,'max','one',1); 
i=1:5 
figure;subplot(1,2,1); plot(i,[sulfateresult.f thiosulfateresult.f 

sulfiteresult.f hydrogensulresult.f sulfuresult.f],'*');axis([0 6 0.0046 

0.0050]); 
xlabel('Different Sulfur Sources'),... 
ylabel('Specific Growth Rate - (1/h)'); 
subplot(1,2,2); plot(i,-

[sulfateresult.x(strmatch('EX_sulfate[e]',cDCEmodel.rxns)) 

thiosulfateresult.x(strmatch('EX_thiosulfate[e]',cDCEmodel.rxns)) 

sulfiteresult.x(strmatch('EX_sulfite[e]',cDCEmodel.rxns)) 

hydrogensulresult.x(strmatch('EX_hydrogensulfide[e]',cDCEmodel.rxns)) 

sulfuresult.x(strmatch('EX_S(sup)0(/sup)[e]',cDCEmodel.rxns))],'*');axis([0 

6 0 0.0005]); 
xlabel('Different Sulfur Sources'),... 
ylabel('Sulfur Source Consumption Rate - mmol/(gDW*h)'); 

 %% 

 

Testsub.m 

%% testsub.m 
%% This script produces a list of putative biostimulants. 
%% André Guerra - 7-09-2015 

  
testsub=cell(length(cDCEmodel.mets),6); 
cDCEmodel=cDCE(model); 
cDCEinitial=optimizeCbModel(cDCEmodel,'max','one',1); 
 %reacçoes utilizadas 
usedrxns=[]; 
for i=1:length(cDCEinitial.x) 
    if cDCEinitial.x(i)~=0 
        usedrxns(i)=1; 
    else  
        usedrxns(i)=0; 
    end 
end 
%% 

  
for i=1:length(cDCEmodel.mets) 
    %% Define se o metabolito é intracellular 
    if findstr('[c]', char(cDCEmodel.mets(i))); 
        cDCEmodel=cDCE(model); 
        % Adicina transport 
        [cDCEmodel,~]=addReaction(cDCEmodel, 

strcat('TEST_',char(cDCEmodel.mets(i))), {'ATP[c]', 

strrep(char(cDCEmodel.mets(i)),'[c]','[e]'),'H(sub)2(/sub)O[e]', 

char(cDCEmodel.mets(i)),'ADP[c]','phosphate[c]','H(sup)+(/sup)[c]'},[-1 -1 

-1 1 1 1 1]);  
        %Define constraints no transport 
        %         

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TEST_',char(cDCEmodel.mets(i)))

,0,'l');%         

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TEST_',char(cDCEmodel.mets(i)))

,0.561,'u');   
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        % Adiciona exchange 
[cDCEmodel,~]=addReaction(cDCEmodel,strcat('TESTEX_',char(cDCEmodel.mets(i)

)), {strrep(char(cDCEmodel.mets(i)),'[c]','[e]')} ,-1); 
         %Define constraints na exchange 
cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TESTEX_',char(cDCEmodel.mets(i)

)),0,'u');        

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TESTEX_',char(cDCEmodel.mets(i)

)),-0.561,'l');                
        %Run 
        res=optimizeCbModel(cDCEmodel,'max','one'); 
        if res.f>cDCEinitial.f && res.f<(cDCEinitial.f*1.30)            
                if 

res.x(strmatch('EX_cDCE[e]',cDCEmodel.rxns))<cDCEinitial.x(strmatch('EX_cDC

E[e]',cDCEmodel.rxns)) 
                disp('não está a usar todo o cDCE') 
                else 
                    DCEmodel=changeRxnBounds(cDCEmodel,'EX_cDCE[e]',0,'b'); 
%                     

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TEST_',char(cDCEmodel.mets(i)))

,0,'l');                  

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TEST_',char(cDCEmodel.mets(i)))

,10,'u'); 
%                     

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TESTEX_',char(cDCEmodel.mets(i)

)),0,'u');       

cDCEmodel=changeRxnBounds(cDCEmodel,strcat('TESTEX_',char(cDCEmodel.mets(i)

)),-10,'l'); 
                    cat=optimizeCbModel(cDCEmodel,'max','one'); 
                           if cat.f==0 

                                                      
                            %test new used rxs 
                            nusedrxns=[]; 
                            for j=1:length(cDCEinitial.x) 
                                if res.x(j)==0 
                                        nusedrxns(j)=0; 
                                else  
                                        nusedrxns(j)=1; 
                                end 
                            end 
   %Finds the percentage of reactions useb on both simulations. 
                            equal=[]; 
                            for k=1:length(cDCEinitial.x) 
                                if usedrxns(k)==1 && nusedrxns(k)==1 
                                    equal(k)=1; 
                                end 
                            end 

                             
    %Finds newly activated rxns 
                            newly=[]; 
                            for m=1:length(cDCEinitial.x) 
                                if usedrxns(m)==0 && nusedrxns(m)==1 
                                    newly(m)=1; 
                                end 
                            end 

                       testsub(i,1)=cDCEmodel.mets(i);  
                       testsub(i,2)={num2str(((res.f/cDCEinitial.f)-

1)*100)}; 
testsub(i,3)={num2str(res.x(end,1))};           

testsub(i,4)={num2str(res.x(strmatch('EX_cDCE[e]',cDCEmodel.rxns)))}; 
testsub(i,5)={num2str((sum(equal)/sum(usedrxns))*100)}; 
testsub(i,6)={num2str(sum(newly))}; 
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                        else 
                            disp('Catabolic repression') 
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7.2. Supplementary Data 2 - Flux values for the constrained reactions in Figure 3.7. 

 

Reaction ID Reaction Formula Flux 

1.7.2.2-RXN 7 H+[c] + 6 reduced c-cytochrome[c] + nitrite[c] → 6 oxidized c-cytochrome[c] + 2 H2O[c] + ammonia[c]  0.1373 

2OXOGLUTARATEDEH-RXN NAD+[c] + coenzyme A[c] + 2-oxoglutarate[c] → NADH[c] + CO2[c] + succinyl-CoA[c]  0.2534 

2PGADEHYDRAT-RXN 2-phospho-D-glycerate[c] <=> H2O[c] + phosphoenolpyruvate[c]  0.263 

AMONITRO-RXN NADH[c] + oxygen[c] + ammonia[c] → NAD+[c] + H+[c] + H2O[c] + hydroxylamine[c]  0.1373 

ATPSYN-RXN 3 H+[c] + H2O[c] + ATP[c] <=> phosphate[c] + ADP[c] + 4 H+[e]  -0.5222 

CITSYN-RXN H2O[c] + oxaloacetate[c] + acetyl CoA[c] → H+[c] + coenzyme A[c] + citrate[c]  0.2544 

FUMHYDR-RXN (S)-malate[c] <=> H2O[c] + fumarate[c]  -0.2565 

GLYOCARBOLIG-RXN H+[c] + 2 glyoxylate[c] → CO2[c] + tartronate semialdehyde[c]  0.2798 

NADH-DEHYDROG-A-RXN NADH[c] + 3 H+[c] + menaquinone-7[c] → NAD+[c] + 2 H+[e] + menaquinol-7[c]  0.6042 

NEWRXN1363457344 chloride[e] <=> chloride[c]  -1.122 

NEWRXN23601623232501156 CO2[e] <=> CO2[c]  -1.0525 

NEWRXN56135355317 oxygen[e]  <=> oxygen[c]  1.0584 

NEWRXN66523692141213412 cDCE[e] → cDCE[c]  0.561 

NEWRXN6661b NADH[c] + H+[c] + oxygen[c] + cDCE[c] → NAD+[c] + H2O[c] + 2,2-dichloroacetaldehyde[c]  0.561 

NEWRXN6662 NAD+[c] + H2O[c] + 2,2-dichloroacetaldehyde[c]  → NADH[c] + H+[c] + 2,2-dichloroacetate[c]  0.561 

NEWRXN6663 H2O[c] + 2,2-dichloroacetate[c] → H+[c] + chloride[c] + chloroglycolate[c]  0.561 

NEWRXN6664 chloroglycolate[c] → H+[c] + chloride[c] + glyoxylate[c]  0.561 

NGAM H2O[c] + ATP[c] → H+[c] + phosphate[c] + ADP[c]  0.45 

RXN-3482 pyruvate[c] + hydroxylamine[c] → H2O[c] + pyruvic oxime[c]  0.1373 

RXN-3483 oxygen[c] + pyruvic oxime[c] → H+[c] + pyruvate[c] + nitrite[c]  0.1373 

RXN0-5266 4 H+[c] + 2 ubiquinol-8[c] + oxygen[c] → 2 ubiquinone-8[c] + 2 H2O[c] + 4 H+[e]  0.2227 

SUCCCOASYN-RXN coenzyme A[c] + ATP[c] + succinate[c] <=> phosphate[c] + ADP[c] + succinyl CoA[c]  -0.2531 
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'NEWRXN6661b' 5.61E-01 5.61E-01 5.61E-01 5.61E-01 4.26E-01 5.61E-01 4.26E-01 5.61E-01 3.90E-01 5.61E-01 3.90E-01 5.61E-01

'NEWRXN6662' 5.61E-01 5.61E-01 5.61E-01 5.61E-01 4.26E-01 5.61E-01 4.26E-01 5.61E-01 3.90E-01 5.61E-01 3.90E-01 5.61E-01

'NEWRXN6663' 5.61E-01 5.61E-01 5.61E-01 5.61E-01 4.26E-01 5.61E-01 4.26E-01 5.61E-01 3.90E-01 5.61E-01 3.90E-01 5.61E-01

'NEWRXN6664' 5.61E-01 5.61E-01 5.61E-01 5.61E-01 4.26E-01 5.61E-01 4.26E-01 5.61E-01 3.90E-01 5.61E-01 3.90E-01 5.61E-01

'NEWRXN6665b' 0.00E+00 8.61E-06 0.00E+00 2.87E-05 0.00E+00 1.35E-01 0.00E+00 1.35E-01 0.00E+00 1.71E-01 0.00E+00 1.71E-01

'NEWRXN6666' 0.00E+00 8.61E-06 0.00E+00 2.87E-05 0.00E+00 1.35E-01 0.00E+00 1.35E-01 0.00E+00 1.71E-01 0.00E+00 1.71E-01

'NEWRXN6667' 0.00E+00 8.61E-06 0.00E+00 2.87E-05 0.00E+00 1.35E-01 0.00E+00 1.35E-01 0.00E+00 1.71E-01 0.00E+00 1.71E-01

'NEWRXN6668' 0.00E+00 8.61E-06 0.00E+00 2.87E-05 0.00E+00 1.35E-01 0.00E+00 1.35E-01 0.00E+00 1.71E-01 0.00E+00 1.71E-01

'NEWRXN6669' 0.00E+00 8.61E-06 0.00E+00 2.87E-05 0.00E+00 1.35E-01 0.00E+00 1.35E-01 0.00E+00 1.71E-01 0.00E+00 1.71E-01

'NEWRXN66610' 0.00E+00 8.61E-06 0.00E+00 2.87E-05 0.00E+00 1.35E-01 0.00E+00 1.35E-01 0.00E+00 1.71E-01 0.00E+00 1.71E-01

'GLYOCARBOLIG-RXN' 2.80E-01 2.80E-01 2.80E-01 2.80E-01 0.00E+00 7.22E-01 0.00E+00 7.22E-01 0.00E+00 7.22E-01 0.00E+00 7.22E-01

SERINE-GLYOXYLATE-AMINO… -2.26E-03 -2.14E-03 -2.40E-03 -2.00E-03 -7.22E-01 6.02E-01 -7.22E-01 6.02E-01 -7.22E-01 5.14E-01 -7.22E-01 5.14E-01

'MALSYN-RXN' 3.51E-03 3.62E-03 3.52E-03 3.89E-03 0.00E+00 8.82E-01 0.00E+00 8.82E-01 0.00E+00 8.82E-01 0.00E+00 8.82E-01

'EX_(3E5Z)tetradecadienoate[e]' 0.00E+00 2.93E-07 0.00E+00 9.75E-07 0.00E+00 5.15E-03 0.00E+00 5.15E-03 0.00E+00 5.03E-03 0.00E+00 5.03E-03

'EX_Dglucono15lactone[e]' 0.00E+00 -2.22E-22 0.00E+00 0.00E+00 0.00E+00 -1.71E-27 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.84E-25

'EX_Co(sup)2+(/sup)[e]' -5.06E-08 0.00E+00 -1.69E-07 0.00E+00 -7.92E-04 0.00E+00 -7.92E-04 2.57E-50 -8.22E-04 -8.49E-27 -8.22E-04 6.78E-25

'EX_Fe(sup)3+(/sup)[e]' -2.85E-07 -1.58E-07 -5.77E-07 -1.54E-07 -2.11E-03 5.42E-26 -2.11E-03 4.29E-25 -2.17E-03 -7.61E-27 -2.17E-03 1.72E-26

'EX_Mg(sup)2+(/sup)[e]' -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00

'EX_Mo(sup)2+(/sup)[e]' -1.41E-07 0.00E+00 -4.70E-07 0.00E+00 -1.92E-03 0.00E+00 -1.92E-03 0.00E+00 -2.01E-03 0.00E+00 -2.01E-03 0.00E+00

'EX_Ni(sup)2+(/sup)[e]' -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00 -1.00E+02 0.00E+00

'EX_Zn(sup)2+(/sup)[e]' -8.18E-05 0.00E+00 -2.72E-04 0.00E+00 -1.29E+00 0.00E+00 -1.29E+00 0.00E+00 -1.29E+00 0.00E+00 -1.29E+00 0.00E+00

'EX_CO(sub)2(/sub)[e]' 1.05E+00 1.05E+00 1.05E+00 1.05E+00 9.99E-01 1.12E+00 9.99E-01 1.12E+00 9.98E-01 1.12E+00 9.98E-01 1.12E+00

'EX_Na(sup)+(/sup)[e]' 3.64E-20 3.64E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.28E-22 -2.28E-22 3.80E-24 3.80E-24

'EX_carbonmonoxide[e]' 1.58E-06 1.58E-06 1.54E-06 1.55E-06 0.00E+00 1.14E-06 0.00E+00 1.12E-06 0.00E+00 1.16E-06 0.00E+00 1.14E-06

'EX_indole3acetate[e]' 0.00E+00 5.42E-07 0.00E+00 1.80E-06 0.00E+00 9.12E-03 0.00E+00 9.12E-03 0.00E+00 9.67E-03 2.81E-26 9.67E-03

'EX_H(sub)2(/sub)[e]' 0.00E+00 1.17E-05 0.00E+00 3.89E-05 0.00E+00 1.84E-01 0.00E+00 1.84E-01 0.00E+00 2.57E-01 0.00E+00 2.57E-01

'EX_K(sup)+(/sup)[e]' -8.18E-05 0.00E+00 -2.72E-04 0.00E+00 -1.29E+00 0.00E+00 -1.29E+00 0.00E+00 -1.29E+00 0.00E+00 -1.29E+00 0.00E+00

'EX_epoxyethylene[e]' 0.00E+00 1.41E-06 0.00E+00 4.70E-06 0.00E+00 2.18E-02 0.00E+00 2.18E-02 0.00E+00 2.38E-02 0.00E+00 2.38E-02

'EX_betaDglucose[e]' 0.00E+00 -2.22E-22 0.00E+00 0.00E+00 0.00E+00 1.28E-28 0.00E+00 -3.57E-28 0.00E+00 0.00E+00 0.00E+00 7.35E-25

'EX_Larabitol[e]' 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.10E-28 0.00E+00 2.45E-29 0.00E+00 -4.86E-24 0.00E+00 0.00E+00

'EX_hippurate[e]' 0.00E+00 6.34E-07 0.00E+00 2.11E-06 0.00E+00 1.05E-02 0.00E+00 1.05E-02 0.00E+00 1.15E-02 0.00E+00 1.15E-02

'EX_phosphate[e]' -3.99E-03 -3.97E-03 -4.24E-03 -4.18E-03 -2.57E-01 0.00E+00 -2.57E-01 0.00E+00 -2.57E-01 0.00E+00 -2.57E-01 0.00E+00

'EX_ammonium[e]' -2.07E-02 -2.07E-02 -2.14E-02 -2.14E-02 -6.68E-02 0.00E+00 -6.68E-02 0.00E+00 -6.86E-02 0.00E+00 -6.86E-02 0.00E+00

'EX_chloride[e]' 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00

'EX_selenate[e]' -7.49E-06 -7.48E-06 -7.32E-06 -7.31E-06 -5.42E-06 0.00E+00 -5.30E-06 0.00E+00 -5.51E-06 0.00E+00 -5.39E-06 0.00E+00

'EX_ethanol[e]' 0.00E+00 2.34E-06 0.00E+00 7.78E-06 0.00E+00 3.90E-02 0.00E+00 3.90E-02 0.00E+00 4.43E-02 0.00E+00 4.43E-02

'EX_sulfate[e]' -8.70E-05 -8.65E-05 -2.38E-04 -2.36E-04 -7.63E-03 1.35E-14 -7.63E-03 -4.12E-30 -7.81E-03 -1.60E-13 -7.82E-03 -7.65E-25

'EX_oxygen[e]' -1.06E+00 -1.06E+00 -1.06E+00 -1.06E+00 -1.15E+00 -1.01E+00 -1.15E+00 -1.01E+00 -1.16E+00 -9.89E-01 -1.16E+00 -9.89E-01

'EX_cDCE[e]' -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01 -5.61E-01

'SINK001' 4.65E-03 4.65E-03 4.59E-03 4.59E-03 0.00E+00 3.37E-03 0.00E+00 3.32E-03 0.00E+00 3.42E-03 0.00E+00 3.38E-03

'SINK002' 3.16E-06 3.55E-06 3.09E-06 3.86E-06 0.00E+00 2.49E-03 0.00E+00 2.49E-03 0.00E+00 2.55E-03 0.00E+00 2.55E-03

'SINK003' 2.32E-04 2.33E-04 2.27E-04 2.28E-04 0.00E+00 3.34E-03 0.00E+00 3.33E-03 1.41E-16 3.44E-03 0.00E+00 3.44E-03

'SINK004' 0.00E+00 9.86E-07 0.00E+00 3.28E-06 0.00E+00 1.65E-02 0.00E+00 1.65E-02 0.00E+00 1.74E-02 0.00E+00 1.74E-02

'SINK008' 0.00E+00 2.39E-07 0.00E+00 7.95E-07 0.00E+00 4.17E-03 0.00E+00 4.17E-03 0.00E+00 4.11E-03 0.00E+00 4.11E-03

'SINK010' 0.00E+00 5.06E-08 0.00E+00 1.69E-07 0.00E+00 7.92E-04 0.00E+00 7.92E-04 0.00E+00 8.22E-04 0.00E+00 8.22E-04

'SINK012' 3.79E-05 3.95E-05 3.70E-05 4.23E-05 0.00E+00 1.67E-02 0.00E+00 1.67E-02 0.00E+00 1.71E-02 0.00E+00 1.71E-02

'SINK013' 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02

'SINK014' 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02

'SINK015' 0.00E+00 8.18E-05 0.00E+00 2.72E-04 0.00E+00 1.29E+00 0.00E+00 1.29E+00 0.00E+00 1.29E+00 0.00E+00 1.29E+00

'SINK016' 0.00E+00 8.18E-05 0.00E+00 2.72E-04 0.00E+00 1.29E+00 0.00E+00 1.29E+00 0.00E+00 1.29E+00 0.00E+00 1.29E+00

'SINK018' 0.00E+00 8.14E-08 0.00E+00 2.71E-07 0.00E+00 1.24E-03 0.00E+00 1.24E-03 0.00E+00 1.27E-03 0.00E+00 1.27E-03

'SINK020' 0.00E+00 8.14E-08 0.00E+00 2.71E-07 0.00E+00 1.24E-03 0.00E+00 1.24E-03 0.00E+00 1.27E-03 0.00E+00 1.27E-03

'SINK021' 0.00E+00 5.06E-08 0.00E+00 1.69E-07 0.00E+00 7.92E-04 0.00E+00 7.92E-04 0.00E+00 8.22E-04 0.00E+00 8.22E-04

'SINK022' 0.00E+00 6.25E-07 0.00E+00 2.08E-06 0.00E+00 8.87E-03 0.00E+00 8.87E-03 0.00E+00 9.12E-03 0.00E+00 9.12E-03

'SINK023' 0.00E+00 1.06E-06 0.00E+00 3.52E-06 2.02E-26 1.80E-02 0.00E+00 1.80E-02 2.90E-25 1.96E-02 0.00E+00 1.96E-02

'SINK024' 0.00E+00 1.41E-07 0.00E+00 4.70E-07 0.00E+00 1.92E-03 0.00E+00 1.92E-03 0.00E+00 2.01E-03 0.00E+00 2.01E-03

'SINK025' 0.00E+00 1.27E-07 0.00E+00 4.22E-07 0.00E+00 2.11E-03 0.00E+00 2.11E-03 0.00E+00 2.17E-03 0.00E+00 2.17E-03

'SINK026' 0.00E+00 9.98E-07 0.00E+00 3.32E-06 0.00E+00 1.65E-02 0.00E+00 1.65E-02 0.00E+00 1.89E-02 -1.75E-24 1.89E-02

'SINK027' 0.00E+00 4.99E-07 0.00E+00 1.66E-06 0.00E+00 8.24E-03 0.00E+00 8.24E-03 0.00E+00 9.45E-03 0.00E+00 9.46E-03

'SINK028' 0.00E+00 1.02E-06 0.00E+00 3.41E-06 0.00E+00 1.69E-02 0.00E+00 1.69E-02 0.00E+00 1.89E-02 0.00E+00 1.89E-02

'SINK029' 0.00E+00 3.75E-07 0.00E+00 1.25E-06 0.00E+00 6.30E-03 0.00E+00 6.30E-03 0.00E+00 6.70E-03 0.00E+00 6.70E-03

'SINK030' 0.00E+00 4.04E-07 0.00E+00 1.35E-06 0.00E+00 6.71E-03 0.00E+00 6.71E-03 0.00E+00 6.78E-03 0.00E+00 6.79E-03

'SINK031' 0.00E+00 4.15E-07 0.00E+00 1.38E-06 0.00E+00 6.91E-03 0.00E+00 6.91E-03 0.00E+00 6.99E-03 0.00E+00 6.99E-03

'SINK032' 8.65E-05 8.71E-05 2.36E-04 2.38E-04 0.00E+00 8.66E-03 0.00E+00 8.66E-03 1.60E-13 8.90E-03 0.00E+00 8.90E-03

'SINK033' 0.00E+00 2.41E-07 0.00E+00 8.03E-07 0.00E+00 4.21E-03 0.00E+00 4.21E-03 0.00E+00 4.21E-03 0.00E+00 4.21E-03

'SINK034' 0.00E+00 3.61E-07 0.00E+00 1.20E-06 0.00E+00 6.29E-03 0.00E+00 6.29E-03 0.00E+00 6.35E-03 0.00E+00 6.35E-03

'SINK035' 0.00E+00 2.67E-07 0.00E+00 8.89E-07 0.00E+00 4.65E-03 0.00E+00 4.65E-03 0.00E+00 4.68E-03 0.00E+00 4.68E-03

'SINK036' 0.00E+00 2.73E-07 0.00E+00 9.10E-07 0.00E+00 4.77E-03 0.00E+00 4.77E-03 0.00E+00 4.77E-03 0.00E+00 4.77E-03

'SINK037' 0.00E+00 2.36E-07 0.00E+00 7.86E-07 0.00E+00 4.11E-03 0.00E+00 4.11E-03 0.00E+00 4.14E-03 0.00E+00 4.14E-03

'SINK038' 0.00E+00 6.99E-07 0.00E+00 2.33E-06 0.00E+00 1.20E-02 0.00E+00 1.20E-02 0.00E+00 1.16E-02 0.00E+00 1.16E-02

'SINK039' 0.00E+00 6.34E-07 0.00E+00 2.11E-06 0.00E+00 8.19E-03 0.00E+00 8.19E-03 0.00E+00 8.40E-03 0.00E+00 8.40E-03

'SINK040' 0.00E+00 5.55E-07 0.00E+00 1.85E-06 0.00E+00 7.63E-03 0.00E+00 7.63E-03 0.00E+00 7.81E-03 0.00E+00 7.82E-03

'SINK041' 0.00E+00 1.98E-07 0.00E+00 6.59E-07 -1.33E-25 3.34E-03 -1.64E-27 3.33E-03 0.00E+00 3.44E-03 0.00E+00 3.44E-03

'ATPSYN-RXN' -5.22E-01 -5.22E-01 -5.19E-01 -5.19E-01 -1.16E+00 -3.10E-01 -1.16E+00 -3.10E-01 -1.16E+00 -4.50E-01 -1.16E+00 -4.50E-01

'TRANS-RXN0-277' 0.00E+00 4.09E-05 0.00E+00 1.36E-04 0.00E+00 6.43E-01 0.00E+00 6.43E-01 0.00E+00 6.43E-01 0.00E+00 6.43E-01

'RXN0-5266' 2.23E-01 2.23E-01 2.21E-01 2.21E-01 0.00E+00 5.61E-01 0.00E+00 5.61E-01 0.00E+00 5.61E-01 0.00E+00 5.61E-01

'NADH-DEHYDROG-A-RXN' 6.04E-01 6.04E-01 6.02E-01 6.02E-01 5.83E-02 1.12E+00 5.85E-02 1.12E+00 1.99E-01 1.12E+00 1.98E-01 1.12E+00

'NADH-DEHYDROG-A-RXN' 6.04E-01 6.04E-01 6.02E-01 6.02E-01 5.83E-02 1.12E+00 5.85E-02 1.12E+00 1.99E-01 1.12E+00 1.98E-01 1.12E+00

'RXN-14107' -9.99E+02 1.00E+03 -9.99E+02 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03

'1.10.2.2-RXN' -1.00E+03 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03 -1.00E+03 1.00E+03

'CYTOCHROME-C-OXIDASE-RXN' 0.00E+00 2.05E-05 0.00E+00 6.81E-05 0.00E+00 3.04E-01 0.00E+00 3.04E-01 0.00E+00 3.04E-01 0.00E+00 3.04E-01

'RXN0-271' 0.00E+00 4.09E-05 0.00E+00 1.36E-04 0.00E+00 6.43E-01 0.00E+00 6.43E-01 0.00E+00 6.43E-01 0.00E+00 6.43E-01

'1.5.5.1-RXN' 0.00E+00 1.19E-05 0.00E+00 3.91E-05 -3.92E-29 1.61E-01 6.65E-27 1.61E-01 1.38E-23 2.14E-01 5.14E-25 2.14E-01

7.3 Supplementary Data 3 - List of FVA on iJS666 model using different objectives. 

          MAX BIOMASS                MIN  (NADH)                    MIN  (ATP)                     

Reaction ID   NO GSH          GSH            NO GSH           GSH            NO GSH          GSH 

 MIN    MAX   MIN    MAX   MIN    MAX    MIN    MAX    MIN    MAX    MIN    MAX 



 

122 

  

 


