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Abstract 

Nowadays, a significant increase in chronic diseases is observed. Epidemiological studies 

showed a consistent relationship between the consumption of fruits and vegetables and a 

reduced risk of certain chronic diseases, namely neurodegenerative disorders. One factor 

common to these diseases is oxidative stress, which is highly related with proteins, lipids, 

carbohydrates and nucleic acids damage, leading to cellular dysfunction. 

Polyphenols, highly abundant in berries and associated products, were described as having 

antioxidant properties, with beneficial effect in these pathologies. 

The aims of this study were to evaluate by proteomic analyses  the effect of  oxidative insult in a 

neuroblastoma cell line (SK-N-MC) and  understand the mechanisms involved in the 

neuroprotective effects of digested extracts from commercial and wild blackberry                    

(R. vagabundus Samp.). 

The analysis of the total proteome by two-dimensional electrophoresis revealed that oxidative 

stress in SK-N-MC cells resulted in altered expression of 12 protein spots from a total of 318. 

Regarding some redox proteomics alterations, particularly proteins carbonylation and 

glutathionylation, protein carbonyl alterations during stress suggest that cells produce an early 

and late response; on the other hand, no glutathionylated polypeptides were detected. 

Relatively to the incubation of SK-N-MC cells with digested berry extracts, commercial 

blackberry promotes more changes in protein pattern of these cells than R. vagabundus. From 9 

statistically different protein spots of cells incubated with commercial blackberry, only             

β-tubulin and GRP 78 were until now identified by mass spectrometry.  

Further studies involving the selection of sub proteomes will be necessary to have a better 

understanding of the mechanisms underlying the neuroprotective effects of berries. 

 

Keywords: neurodegenerative diseases | polyphenols | digested berry extracts | 

cytoprotective effect | proteomics. 
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Resumo 

Nos dias de hoje assistimos a um aumento significativo das doenças crónicas. Estudos 

epidemiológicos mostraram uma relação consistente entre o consumo de frutas e vegetais e uma 

redução do risco de certas doenças crónicas, nomeadamente doenças neurodegenerativas. Um 

fator comum a estas doenças é o stresse oxidativo, que está relacionado com danos nas 

proteínas, lipídios, hidratos de carbono e ácidos nucleicos levando à disfunção celular. 

Os polifenóis, muito abundantes em pequenos frutos e produtos associados, foram descritos 

como tendo propriedades antioxidantes com efeito benéfico nestas patologias. 

Desta forma, este estudo teve como objetivos a avaliação do efeito do stresse oxidativo numa 

linha celular de neuroblastoma humano (SK-N-MC) e dos mecanismos envolvidos nos efeitos 

neuroprotetores de extratos digeridos de amoras comerciais e de uma variedade endémica (R. 

vagabundus Samp.) recorrendo à proteómica. 

A análise do proteoma total por eletroforese bidimensional revelou que o stresse oxidativo 

imposto às células SK-N-MC promoveu a alteração de 12 spots proteicos num total de 318.  

Em relação a algumas alterações redox nas células, particularmente carbonilação e 

glutationilação proteica, a resposta das proteínas carboniladas ao stresse ao longo do tempo 

sugerem que as células respondem de forma diferente no início e no final do período de stresse 

ao qual estão sujeitas. Por outro lado, não foram detetadas proteínas glutationiladas. 

Relativamente à incubação das células SK-N-MC com extratos de amoras, a variedade 

comercial promove mais mudanças no padrão das proteínas do que a R. vagabundus. Dos 9 

spots proteicos estatisticamente diferentes das células incubadas com amora comercial, apenas a 

β-tubulina e a GRP 78 foram identificados até agora através de espectrometria de massa. 

Estudos adicionais envolvendo a seleção de subproteomas serão necessários para uma melhor 

compreensão dos mecanismos subjacentes aos efeitos neuroprotetores das amoras. 

 

 

Palavras-chave: doenças neurodegenerativas | polifenóis | extratos digeridos de amoras | 

efeito citoprotetor | proteómica. 
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1. Objectives 

Neurodegenerative disorders are an increasing concern of the World’s population. 

Understanding the mechanisms underlying the development of these disorders is a crucial step 

in the quest for alternative therapies or even in the prevention of these diseases. 

Recently, berries upsurge as potential functional foods in the prevention of neurodegenerative 

diseases.  

In order to have insights of the metabolic pathways involved in oxidative stress responses and 

neuroprotective effect of digested berry extracts (commercial blackberry and R. vagabundus) an 

in vitro cell model will be used to:  i) study the alterations that occur in the total proteome, 

protein carbonylation and glutathionylation of a neurodegeneration cell model, which uses SK-

N-MC cells submitted to oxidative injury; and  ii) study the alterations that occur in the total 

proteome of the human neuroblastoma  SK-N-MC cells incubated with digested berry extracts. 

A detailed analysis of the protein profiles obtained using appropriate software for image 

analyses should be performed to pinpoint the polypeptides that respond to the conditions 

imposed to the cells. The identification of those polypeptides will contribute to the overall 

understanding of our neurodegeneration cell model and neuroprotective effects that digested 

berry extracts exert in this model.  
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2. Theoretical Fundaments 

 

2.1. Neurodegeneration 

  Neurodegeneration may be a consequence of various forms of neural cell death, e.g. necrosis 

and apoptosis. These forms of cell death may result from a variety of cellular insults, including 

excitotoxicity and oxidative stress [1-3]. Commonly, neurodegeneration is defined by the 

progressive loss of specific neuronal cell populations and is associated with protein aggregates.  

Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder; is 

characterized by dementia, cognitive impairment and memory loss, which in the near future will 

affect around 22 million persons in the world [4-6]. AD is characterized by the accumulation of 

extracellular amyloid-β deposited in senile plaques, and intracellular neurofibrillary tangles 

composed principally of abnormal and hyperphosphorylated tau protein [7]. 

The second most common neurodegenerative disorder affecting elderly people is Parkinson’s 

disease (PD). The patients suffer from progressive loss of dopaminergic neurons in basal 

ganglia and the substantia nigra, which entails a substantial decrease of the neurotransmitter 

dopamine [8]. 

AD and PD are all major neurodegenerative disorders where oxidative stress is implicated. 

Many proteomic studies have provided confirmation of the oxidative damage of particular 

proteins in these diseases [3, 9]. 

 

2.1.1.  Neurodegeneration and Oxidative Stress 

Oxidative stress can induce neuronal cell death in a variety of circumstances and is a condition 

in which the imbalance of reactive oxygen species (ROS) and reactive nitrosative species (NOS)   

production and the level of antioxidants are significantly disturbed resulting in damage to cells 

[3, 10]. Indeed, ROS/NOS are able to modulate the function of biomolecules causing protein, 

DNA, RNA oxidation, or lipid peroxidation contributing for the progression of 

neurodegeneration [10]. Compared to DNA and lipids, proteins are the most abundant cellular 

targets for oxidation [11]. Therefore, protein oxidation may disrupt cellular functions by altering 

protein expression, gene regulation, protein turnover and modulation of cell signaling, among 

others alterations. Typical oxidative modifications of brain proteins involve carbonyls, protein-

bound 4-hydroxy-2-trans-nonenal (HNE) and 3-nitrotyrosine (3-NT), thiol groups oxidation and 

glutathionylation [8]. 

Central Nervous System (CNS) is said to be especially sensitive to oxidative stress because it 

presents high oxygen (O2) consumption leading to the production of free radicals; unexpectedly 



Proteomic analysis of a neurodegeneration cell model, treated with plant extracts with potential 

neuroprotective activity 

 

 

4 
 

it is relative deficient in the enzymes that metabolize a number of oxygen-based reactants to 

innocuous species, and highly enriched in polyunsaturated fatty acids which are readily oxidized 

by toxic oxygen derivates [12, 13].  

In our lab, Disease and Stress Biology (DSB) Lab, SK-N-MC cell line is used as a human 

neuronal cell model. It is a clonal neuroblastoma cell line composed of small fibroblast-like 

cells which contain a reduced cytoplasm. This is a continuous cell line, obtained from human 

metastic neuroblastoma tissue [14]. Cellular models may have some limitations but they are a 

very helpful way to try to reproduce and manipulate molecular mechanisms that can be 

extrapolated for whole organisms, offering a faster approach to get solid results and providing 

valuable biochemical information. 

To create a neurodegeneration cell model, cultured SK-N-MC are exposed to relatively low 

concentration of hydrogen peroxide (H2O2) that induces changes in cell metabolism leading to 

some neuronal cell death, mimicking what may occur during neurodegeneration [15].    

 

2.1.2. Neurodegeneration and Berries 

Berries are rich sources of a wide variety of antioxidant phenolics such phenolic acids, 

flavonoids, stilbenes and tannins, which are associated with many biologically significant 

mechanism of action, like scavenging and detoxification of ROS [16]. 

The importance of the diet in relation to human health has increased the interest of consumers 

about rich diets, which include fruits and vegetables [16]. 

Epidemiological studies have shown a consistent relationship between the consumption of fruits 

and vegetables and a reduced risk of certain chronic diseases such as neurodegenerative 

disorders. In particular, berries and associated products have an increasing focus of attention, 

not only because of its high nutritional value and beneficial effects to human health, but also 

because they are crops with agro-economic importance [17-19]. 

Some in vitro studies demonstrate a potent antioxidant, antiproliferative and anti-inflammatory 

activities of blackberry; moreover studies with rodents have revealed an attenuation of brain 

aging when these fruits are ingested [20-22]. 

Recent studies revealed that endemic blackberry species of the Northeast of  Portugal, as for 

instance Rubus brigantinus and Rubus vagabundos Samp., are promising sources of 

polyphenols that are able to protect neuronal cells from oxidative injury, one of the most 

important characteristics in neurodegeneration [23]. However, for the understanding of the 

mechanisms underlying these beneficial effects, it is necessary to have in consideration the 

bioavailability of these berry polyphenols in the human body [24-26]. 
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2.1.2.1. Bioavailability – In vitro Digestion 

The health effects of phenolic compounds are largely dependent upon their bioavailability. The 

commonly accepted definition of bioavailability is the proportion of the polyphenols that is 

digested, absorbed and metabolised. Consequently, it is not only important to know how much 

of a polyphenol is present in a food or dietary supplement, but even more important to know 

how much of that is bioavailable, i.e. the quantity of polyphenols that reach the target tissue 

[27].  

Various studies established that the chemical structure of phenolics reaching the peripheral 

circulation and tissues differ from those present in foods, due to the biotransformation in the 

gastrointestinal tract (GI) [24]. Since the GI-tract is a barrier of access of phytochemicals to 

other organs, the use of an in vitro digestion procedure provides a simple and rapid method to 

assess the potential stability of phytochemicals from fruits [28]. 

In order to understand the mechanisms underlying the neuroprotection of digested berry 

polyphenols, we used a in vitro digestion model (IVD) that simulates the physicochemical and 

biochemical changes that occur in the GI-tract (Fig. 2.1) [28]. 

Serum available fractions (SAF) from commercial blackberry (BB) and R. vagabundus Samp. 

(RV) obtained by IVD were used in the neurodegeneration cell model to evaluate the 

mechanisms involved in the neuroprotective effects of these two species by using proteomic 

analyses.   

 

 

Fig. 2. 1 - Representative scheme of the in vitro digestion model, adapted from Aura A. M. and McDougall G. J, et 

al. [28, 29] 
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2.2. Proteomics 

The knowledge gathered so far indicate that proteins are involved in almost all biological 

activities meaning that the study of the proteome of a cell or organism can contribute to the 

understanding of biological systems [30, 31]. As in the case of the understanding of disorders in 

the nervous system, where proteomic approaches are being successively used.  

The comparative analysis of cerebral disorders such AD and PD is one of many examples where 

proteomics plays an important role [8].    

Several technologies can be used in proteomic research being the gel-based applications (one 

and two-dimensional polyacrylamide gel electrophoresis (1DE or 2DE)) one of the most 

commonly used approaches [32-35]. However, for the characterization of a complex proteome a  

combination of different proteomic approaches can be used [31].  

Nevertheless, proteomic research is still dealing with some difficulties due the origin and 

complexity of the protein extract, physical and chemical properties of certain proteins and 

instrumental limitations. Therefore, proteomics is an ongoing and developing field with the 

existing technologies being still further improved [36].  

 

2.2.1.  Total proteome analysis 

An ideal separation method would be able to resolve, in a single map, all of the proteins 

expressed by a single cell. Current technologies, however, have not achieved this resolution yet, 

and nowadays the only available technique that provides a global profile of a cell proteome is 

high resolution two-dimensional electrophoresis (2DE) [37]. This technique was developed 

during the 1970s, and is the first approach and probably still the most frequently used technique 

to separate complex protein mixtures prior to downstream protein characterization by mass 

spectrometry (MS) [4, 31, 36, 38, 39]. The 2DE is based on two important physicochemical 

properties of the polypeptides: isoelectric point (pI), the specific pH at which the net charge of 

the protein is zero, and molecular weight (MW) [4]. 

Protein spots on 2DE gels can be visualized by a variety of protein staining techniques, each 

with specific technical aspects, sensitivity, linear range for quantification, reproducibility and 

compatibility with mass spectrometry [36] .  

After 2DE gel image acquisition analysis by specialized software is performed. These 

software’s are used for spot detection, spot matching, and comparison of spot intensities among 

several gels [36]. Then the protein spots of interest can be identified by MS. This technique 

represents one of the most important tools in proteomics, because presents a short time analysis, 

high sensitivity, feasibility and automation. 



Proteomic analysis of a neurodegeneration cell model, treated with plant extracts with potential 

neuroprotective activity 

 

 

7 
 

 

2.2.2.  Redox Proteomics 

Redox proteomics approaches aims to identify oxidatively modified proteins such as protein 

carbonyls, 3-NT-, and HNE-modified proteins in various biological samples in redox signaling 

scenarios and oxidative stress [40-43]. 

Oxidatively modified proteins can have repercussions at both physiological and pathological 

levels [43-45]. One consequence of protein oxidation can be conformational changes, thereby 

leading to exposure of the hydrophobic amino acids residues to an aqueous environment, 

promoting protein aggregation and accumulation of the oxidized proteins as cytoplasmatic 

inclusions. Another consequence can be the loss of tertiary structure of a protein consequently 

affecting its function [8, 42].  

Some amino acids like lysine, arginine, proline and threonine side-chains can be oxidatively 

converted to reactive aldehyde or ketone groups causing inactivation, cross-linking or 

breakdown of proteins. Also sulphur-containing residues, cysteine and methionine, are 

especially susceptible to oxidation, and cysteines can be also oxidized forming disulfides in 

proteins or as mixed disulfides with cysteine or GSH (Fig. 2.2) [46, 47]. 

In redox proteomics approaches the same principles for separation and identification of proteins 

are employed, however a 2DE Western Blot is used in complement to immunochemically detect 

oxidatively modified proteins [40, 41]. 

Redox proteomics methods for the detection of protein carbonylation and glutathionylation 

allowed the identification of various oxidatively modified brain proteins in a variety of 

neurodegenerative disorders or associated models, providing new insights to the mechanisms of 

these diseases, namely identification of associated markers. The identification of oxidatively 

modified proteins, especially in neurodegenerative diseases is the ongoing pursuit of redox 

proteomics [40]. 
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Fig. 2.2 - Involvement of oxidative stress in the pathophysiology of cells, adapted from Radak, Z., et al. [48]. 

 

2.2.2.1. Protein carbonylation 

The detection of protein carbonylation are general and widely used markers to determine the 

extent of oxidative modifications in aging and physiological disorders, including 

neurodegenerative diseases either in vivo or in vitro conditions (Fig. 2.2) [40, 49]. 

The usage of protein carbonyl groups as biomarkers for oxidative stress has some advantages in 

comparison with the measurement of other oxidation products, due to their relative early 

formation and relative stability of carbonylated proteins [50]. 

Protein carbonylation may occur via:  i) oxidation of the protein backbone leading to the 

formation of protein fragments with a N-terminal α-ketoacyl amino acid residue; ii)  oxidation 

of some amino acids side chains: histidine, arginine and lysine, into ketone or aldehyde 

derivates; iii) reaction with products of lipidic peroxidation, and conjugation with reducing 

sugars or their oxidation products [49]. 

Protein carbonyls most often are detected by derivatization with 2,4-dinitrophenylhydrazine 

(DNPH), that reacts with carbonyl groups to form protein resident-2,4-dinitrophenylhydrazona 

(DNP), which can be detected using commercially available anti-DNP antibodies [46, 51]. 
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2.2.2.2. Protein glutathionylation 

The thiol redox state can also be use to reflect the oxidant conditions in a biological system. 

Thiols have numerous functions, including a central role in antioxidant defense [52]. This 

antioxidant system includes a low molecular weight thiol compound, glutathione, GSH, 

composed of three amino acids: δ-glutamyl-cysteinyl-glycine, in which the thiol on the cysteine 

plays an important role in maintaining the cellular redox state under oxidative stress [53, 54]. 

An increase in ROS/NOS may induce reversible formation of mixed disulfides between protein 

sulfydryl groups (PSH) and glutathione  on multiple proteins (S-glutathionylation), however, S-

glutathionylation is an oxidative pos-translational modification (PTM) that occur also on some 

protein cysteines under basal conditions [53, 55]. 

Nowadays S-glutathyonilation is considered a regulatory event in redox signaling and it is 

involved in physiological processes including kinase signaling, channel function, apoptosis and 

regulation of transcription [56]. 

The measurement of glutathionylated proteins by Western blot analysis has emerged as the 

technique of choice. This approach is possible due to the availability of antibodies that 

recognize GSH-protein complexes [46, 57].  

Also a high performance liquid chromatography (HPLC) procedure can be used for the 

determination of GSH released from the proteins, an indirect way to determine the extent of 

protein glutathionylation in a biological system [58]. 

These two techniques were employed in order to determine the extent of protein 

glutathionylation in the neurodegeneration cell used in the present study. 
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3. Material and Methods 

 

3.1. Chemicals 

Eagle Minimum Essential Medium (EMEM), L-glutamine, non-essential aminoacids, hydrogen 

(H2O2) peroxide, dithiothreitol (DTT), n-ethylmaleimide (NEM), thiourea, glycerol, sodium 

pyruvate, sodium azide, formaldehyde and Tween-20®, glycerol, sodium borohydride, m-cresol 

and phenantroline were order from Sigma-Aldrich® (Sintra, Portugal). Opti-Protein XL Marker 

was from abm® (Richmond, Canada) Penicillin-streptomycin, trypsin and foetal bovine serum 

(FBS) were order from Gibco® (New York, USA). Triton X-100, sodium dodecyl sulphate 

(SDS), Ponceau S, trichloroacetic acid and sulfossalicylic acid were order from Merck S.A. 

(Lisbon, Portugal). Acetic acid and ethanol were order from Panreac S.L.U (Barcelona, Spain). 

Acrylamide:Bis 29:1, commassie brilliant blue G and phosphoric acid were order from Carl 

Roth® (Karlsruhe, Germany). Sodium carbonate and urea were from Riedel-de Haёn® 

(Hanover, Germany). DNase I was order from Roche (Basel, Switzerland), and protease 

inhibitor cocktail EDTA-free were order from Calbiochem® (Massachusetts, USA). 

Ammonium sulphate was order from Prolabo® (Carnaxide, Portugal) and methanol was from 

Carlo Erba (Telheiras, Portugal). 

Rabbit anti-DNP antibody and Goat Anti-Rabbit IgG HRP conjugated were order from 

Millipore (Billerica, USA). Mouse anti-GSH antibody was order from Virogen (Watertown, 

USA), Stabilized Rabbit Anti-mouse HRP conjugated and Goat anti-Rabbit HRP conjugated 

were from Thermo Fisher Scientific Inc. (Waltham, USA).  Rabbit anti-actin antibody was order 

from Frilabo Lda (Porto, Portugal). 

 

3.2. Plant Material  

Commercial blackberry (Rubus L. Subgenus Rubus Watson) cv. Apache was grown in Fataca 

Experimental field (Odemira, Portugal) and berries were harvested at full ripeness. 

Fruits of a wild blackberry species (R. vagabundus Samp.) were collected in September 2009 in 

Bragança region (northeast region of Portugal) and stored at -80 ºC. Fruits were collected from 

several populations, growing in different locations in order to be representative of species. For 

this specie, voucher samples were authenticated and deposited at herbarium “João de Carvalho e 

Vasconcelos”, Instituto Superior de Agronomia, Lisbon, Portugal [23]. 

 

3.3. Extract Preparation 

The samples were freeze-dried, ground without separation of seeds in an IKA M20 mill to pass 

a 0.5 mm sieve and stored at -80 ºC until further use. 
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Fruits extracts were prepared using ethanol 50 % (v/v) as previously described [59].  Briefly, to 

each 1 g of lyophilized powder, 12 mL of ethanol 50 % (v/v) were added and the mixture 

shaken for 30 min at room temperature in the dark.  The extracts obtained were dried under 

vacuum. 

 

3.4. In vitro digestion  

Phytochemical alterations during digestion were mimicked using the in vitro digestion model 

(IVD) already described by McDougall et al. [15, 60] performed in collaboration with Gordon 

McDougall and Derek Stewart from The James Hutton Institute, Dundee, Scotland (former 

Scottish Crop Research Institute). Briefly, the extracts were submitted to conditions that mimic 

gastric digestion such as adjusted pH to 1.7, addition of pepsin and incubation at 37 ºC with 

shaking at 100 rpm for 2 h. Small intestine conditions were mimicked by addition of pancreatic 

and bile salts, followed by dialysis with a cellulose tube containing NaHCO3 to neutralize 

titratable acidity. After 2 h of incubation at 37 ºC, the solution inside de dialysis tubing that 

mimic the SAF was collected and dried under vacuum. 

 

3.5. Cell Culture 

Human neuroblastoma SK-N-MC cells were obtained from the European Collection of Cell 

Cultures (ECACC) and cultured in EMEM supplemented with 2 mM L-glutamine, 10 % FBS, 1 

% (v/v) non-essential aminoacids, 5000 U mL
-1

 of penicillin and 5000 µg mL
-1

 (w/v) of 

streptomycin. The cells were maintained at 37 ºC in 5 % CO2 and split at sub confluence of 90-

100 %, using 0.05 % trypsin/EDTA. Treatments with digested extracts or with (H2O2) were 

carried out in medium with 0.5 % (v/v) FBS. Periods of incubation varied according with the 

purpose of the experiment. 

  

3.6. Time course profile of cells incubated with hydrogen peroxide 

To evaluate a time-dependent response to oxidative stress induction, SK-N-MC cells were 

incubated with H2O2 for different periods (0-24 h). For that purposes, cells were seeded in T-

flasks of 25 cm
2
 (1.4 x 10

5 
cells mL

-1
). After 24 h, growth medium was removed and cells 

washed with PBS. Cells were pre-incubated with medium containing 0.5 % (v/v) FBS, and 24 h 

later, H2O2 at a final concentration of 300 μM  was applied with new fresh medium to the T-

flask [15]. 

After incubations periods of 0 h, 1 h, 2 h, 4 h, 6 h, 8 h, and 24 h, cells were collected with 

trypsin. 
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3.7. Incubation of cells with digested plant extracts 

SK-N-MC neuroblastoma cells were incubated for 24 h with digested berries extracts of 

commercial blackberry (BB) and R. vagabundus (RV). Cells were seeded in T-flasks with 25 

cm
2 
(1.4 x 10

5 
cells mL

-1
) and 24 h after seeding, growth medium was removed and cells washed 

with PBS. Cells were incubated with non-toxic concentration of digested blackberry 

metabolites: 0.5 μg GAE mL
-1

 for, ressuspended in medium containing 0.5 % (v/v) FBS [23]. 

After 24 h of incubation cells were collected with trypsin. 

 

3.8. Protein Quantification 

Protein quantification was made using modified Lowry’s method as reported by Bensadoun and 

Weinstein [61]. The original method has been modified so that protein can be assayed in the 

presence of interfering chemicals such as Tris or ammonium sulphate. The absorbance of the 

samples was measured at 750 nm [61, 62].  

 

3.9.  Electrophoresis 

3.9.1.  1D Electrophoresis 

Protein extraction from SK-N-MC samples was performed according to Barata with slightly 

adjustments [63]. Briefly, protein extracts for detection of protein carbonyls were obtained 

using a fresh lysis buffer containing 25 mM Tris-HCl at pH 8.0, 1 % (v/v) Triton X-100, 45 % 

(v/v) ethyleneglycol, 16 mM NEM, 18 mM sodium metabissulfide, 5 mM phenantroline, 1 mg 

mL
-1

 DNase I, 1 % (v/v) cocktail inhibitor proteases III] and 50 mM DTT, whereas protein 

extracts for detection of glutathionylated proteins were obtained with the same lysis buffer but 

without DTT. After this, samples were centrifuged at 13,400 g during 10 min at 4 ºC and 

supernatants were collected.  

For protein carbonyls detection OxyBlot™ Protein Oxidation Detection kit (Millipore, Billerica, 

USA) was used. Briefly, the supernatant obtained was immediately used for the derivatization 

of the carbonyl groups by DNPH. The reaction was stopped by the addition of the neutralization 

solution from kit, and samples were stored at 4 ºC until further use.  

For glutathionylated protein, supernatants were collected after centrifugation (13,400 g) and 

stored with Sample Buffer [1 M (w/v) Tris-HCl, pH 6.8; 1 % (w/v) m-cresol purple and 10% 

(v/v) glycerol] at -20 ºC until further use.  

Fifteen micrograms of protein were subjected to SDS-PAGE in 10 % (w/v) acrylamide gels 

with 1 mm thick at 200 V during 1 h. The electrophoresis buffer used was composed by 25 mM 

(w/v) Tris base, 192 mM  (w/v) glycine and 0.1 % (w/v) SDS [64].  Protein standards were run 

along with the sample.  
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3.9.2.  2D Electrophoresis 

Protein extraction from SK-N-MC samples was performed according to Esteves, S. [65].  

Briefly, cells were tripsinizated and centrifuged at 200 g during 10 min. The cells were washed 

with PBS, and centrifuged at 200 g during 10 min. Then the supernatant was discarded and a 

ressuspension buffer [60 mM DTT, 7 M Urea, 2 M Thiourea, 4 % (w/v) CHAPS, 0.4 % (v/v) 

Triton X-100, 2 % (v/v) IPG Buffer (1:2, 3-10NL:4-7L), 1 mg mL
-1

 DNase, 1 % (v/v) cocktail 

inhibitor proteases III] was added to the cells. Protein samples were collected after 

centrifugation at 13,400 g during 10 min and stored at -20 ºC until further use. 

For isoelectric focusing electrophoresis (IEF), the IPGphor system was used (Amersham 

Biosciences, Uppsala, Sweden) with a non-linear gradient gel of pH 3-10, 13 cm (IPGstips, GE 

Healthcare, Uppsala, Sweden). 

The samples, containing 65 μg of protein were centrifuged at 13,400 g at room temperature 

during 5 min, and the supernatant was applied to the Strip Holder. The IEF was carried out at 

30 V for 12 h, followed by 250 V for 1 h, 500 V for 1.5 h, 1000 V for 1.5 h, 2500 V for 1.5 h, 

8000 V for 1 h gradient and 8000 V for 4 h at 20 ºC. In the end of the IEF the strips were stored 

at -20 
o
C until second dimension separation was performed [65]. 

Prior to SDS-PAGE the IPGstrips were equilibrated twice for 15 min in a buffer solution 

containing 50 mM Tris-HCl (pH 6.8), 6 M urea, 1 % (w/v) SDS, and 30 % (v/v) glycerol. DTT 

in a concentration of 0.06 (w/v) mM was added to the first equilibration step and 0.135 mM 

(w/v) iodoacetamide to the second one.  The samples were subjected to SDS-PAGE in 12.5% 

(v/v) acrylamide gels with 1 mm thick. The electrophoresis buffer used was composed by 25 

mM Tris base (w/v), 192 mM (w/v) glycine, 0.1 % (w/v) SDS [64].  Protein standards were run 

along with the sample using 15 mA per gel for 15 min and then 30 mA per gel for 3 h. 

 

3.9.3.   Gel Staining 

3.9.3.1.  Commassie Brilliant Blue 

This staining was done according to Neuhoff et al.[66]. After second dimension, the gels were 

fixed in a solution containing 2 % (v/v) of phosphoric acid and 50 % (v/v) of methanol during 2 

h, followed by 3 wash steps with bidestilled of 20 min each. Then the gels were incubated in 34 

% (v/v) methanol, 17 % (w/v) ammonium sulphate and 2 % (v/v) of phosphoric acid during 1 h.   

After this period, a solution containing 1.1 % (w/v) Commassie Brilliant Blue G and 34 % (v/v) 

methanol was added and gels stayed in this solution for 2 days. Gel images were acquired by the 

Image Scanner (Amercham Biosciences, Uppsala, Sweden).  
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3.9.4.  2DE Gel analysis 

Commassie Brilliant Blue stained gels were used for image analysis. 

Gel images were analysed in Progenesis SameSpots software (Nonlinear Dynamics, Newcastle, 

United Kingdom) for spot detection, measurement and matching. 

The first step in the analysis of Progenesis SameSpots software was image control. Images went 

through a process of image quality assessment for accurate image analysis. 

Second, an appropriate reference image was selected to align the images to and then the areas of 

the gel to be excluded from the analysis were defined. Once made the detection of spots they 

were edited, validated and reviewed. 

One of the crucial steps in this analysis is spot volume normalisation: the intensity of each spot 

in a gel is expressed as a proportion of the total protein intensity detected in the entire gel [67, 

68]. 

Individual spots with irregularities (i.e. ink spikes) were rejected and a protein spot was kept for 

further analysis and declared reliable if at least n-1 normalized volume values were available in 

each condition. 

3.10. Mass spectrometry analysis 

After protein spots excision from the 2DE gels, the protein spots were submitted to a digestion 

with trypsin. After this, the trypsin digested proteins were analyzed by matrix-assisted laser 

desorption/ionization/time-of-flight (MALDI-TOF/TOF) performed in collaboration with 

Proteomics Unit by the INIBIC- University Hospital Complex of Coruña.  

Briefly, protein spots were diced in small pieces and in-gel digested following standard 

procedures [69]. The samples were desiccated with acetonitrile, reduced with DTT, alkylated 

with iodoacetamide and trypsin-digested (6 ng µL
-1

, Roche (Basel, Switzerland)) for 16 h at 

37 
o
C. Peptides were then extracted, dried in a speed-vac reconstituted in 0.1 % trifluoroacetic 

acid and de-salted using nu-tipC18 (Glygen). 

The samples were analyzed in a MALDI-TOF/TOF instrument (4800 ABSciex) and 4000 series 

Explorer v.4.2 software was used to generate the spectra and peak list. MS adquisitions were 

done with a laser voltage of 3800 kV and 1500 shots/spectrum. Automated precursor selection 

was done using an interpretation method (up to 20 precursors/fraction, Signal to Noise lower 

threshold = 50) with a laser voltage of 4800 and 1500 shots/spectrum. Collision-induced 

dissociation (CID) collision energy range: medium.  

Fragmentation spectra were acquired by selecting the 20 most abundant ions of each MALDI-

TOF peptide mass map (excluding trypsin autolytic peptides and other background ions) and 
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averaging 2000 laser shots per fragmentation spectrum. The parameters used to analyze the data 

were a signal-to-noise threshold of 20, minimum area of 100 and a resolution higher than 

10, 000 with a mass accuracy of 20 ppm. For database queries and protein identification, the 

monoisotopic peptide mass fingerprinting data obtained from MS and the amino acid sequence 

tag obtained from each peptide fragmentation in MS/MS analyses were used to search for 

protein candidates using Mascot v.1.9 from Matrix Science (www.matrixscience.com). Peak 

intensity was used to select up to 50 peaks per spot for peptide mass fingerprinting and 50 peaks 

per precursor for MS/MS identification. Tryptic autolytic fragment-, keratin-, and matrix-

derived peaks were removed from the data set utilized for database search. The search for 

peptides mass fingerprints and tandem MS spectra were performed in NCBInr database (August 

2012). Fixed and variable modifications were considered (Cys as S-carbamidomethyl and Met 

as oxidized methionine, respectively), allowing one trypsin missed cleavage. MS/MS ions 

search were conducted with a mass tolerance of 50 ppm on the parent and 0.3 Da on fragments. 

Decoy search was done automatically by Mascot on randomized database of equal composition 

and size. Mascot scores for all protein identifications were higher than the accepted threshold 

for significance (at the p < 0.050 level, positive rate measured to be 0.047). 

 

3.11. Western Blot 

3.11.1.  Electrotransfer of polypeptides  

The electrotransfer of polypeptides was done according to Swerdlow et al. [70]. After SDS-

PAGE, gels were incubated in electrotransfer buffer containing 25 mM (w/v) Tris base, 19 mM 

(w/v) glycine, 0.1 % (w/v) SDS and 20 % (v/v) of methanol at pH 8.3 during 15 min. PVDF 

membranes (Amersham Biosciences, Uppsala, Sweden) were incubated in methanol followed 

by incubation in electrotransfer buffer. The gel and the membrane were assembled in the 

transfer cell (Trans-Blot electrophoretic transfer cell, BioRad, Amadora, Portugal) containing 

transfer buffer. Transfer was carried out at 70 V for 1.5 h for gels with 1 mm thick at 4 ºC. 

 

3.11.2. Ponceau S Staining 

Ponceau S staining solution [0.2 % (w/v) Ponceau S, 3 % (w/v) trichloroacetic acid, 3 % (w/v) 

sulfosalicylic acid] was used for the detection of proteins on PVDF membranes. 

After electrophoresis, the blotted membrane was immersing in Ponceau S staining solution 

during 5 to 10 min, and then washed with bi-distilled water until the appearance of 

polypeptides, according to manufactures instruction (Merck S.A. Lisbon, Portugal). 
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3.11.3. Immunodetection 

OxyBlot™ Protein Oxidation Detection kit (Millipore, Billerica, USA) was used according to 

the manufacturer’s instructions for the detection of carbonylated proteins, and the detection of 

glutathionylated proteins was done according to Newman et al. [54] with slightly adjustments. 

After protein transfer or Ponceau S staining, membranes were dried at room temperature and 

blocked with 5 % (w/v) membrane blocking agent (MBA-GE Healthcare, Uppsala, Sweden) in 

PBS containing 0.01 % (w/v) sodium azide and 0.1 % (v/v) Tween 20® (PBS-Tween) overnight 

at 4 
o
C or 1 h at room temperature.  

The membranes were incubated with primary antibody in blocking/dilution buffer for 2 h, 

which was verified to develop better signal than one hour of incubation, with gentle stirring at 

room temperature. The membranes were then washed twice for 5 min with PBS-Tween and 

once for 15 min with PBS-Tween followed by incubation with secondary antibody in 

blocking/dilution buffer for 1 h at room temperature. The conditions for each antibody are 

described in Table 3.1. Antibody detection was performed with the chemiluminescent substrate 

(FemtoMax Super Sensitive Chemiluminescent HRP Substrate; Rockland Inc., Gilbertsville, 

USA). Membrane images were acquired in the Molecular Imager ChemiDoc XRS (Quantity 

One© software v. 4.6.6; BioRad, Amadora, Portugal).   

 

Table 3.1 - Antibodies and dilutions used in Western blot analyses.  

 Protein Carbonyls Glutathionylated 

Proteins 

Loading Control 

1º Antibody Rabbit anti-DNP 

antibody (1:150) 

Mouse anti-GSH 

antibody  (1:1000) 

Rabbit anti-actin 

antibody (1:1000) 

2º Antibody Goat Anti-Rabbit IgG 

HRP conjugated 

(1:300) 

Stabilized Rabbit 

Anti-mouse HRP 

conjugated (1:2500) 

Goat anti-Rabbit HRP 

conjugated (1:50000) 

 

 

3.12. Measurement of glutathione released from glutathionylated 

proteins 

This method was performed in collaboration with Dr Inês Figueira from DSB Lab. 

To quantify GSH and GSSG, cold 10 % (w/v) metaphosphoric acid was carefully added to 

samples or standards. After incubation (4 ºC, 10 min) and centrifugation (16,000 g, 20 min, 

4 ºC) supernatants were collected (50 μL for determination of GSH and 200 μL for 

determination of GSSG). 
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The procedure for the reduction of proteins by sodium borohydride was performed according to 

Hiil, et al. [57]. The pellet (PSSG – Protein S-glutathionylated) was washed 4 times with cold 

10 % (w/v) metaphosphoric acid, sonicated and then samples were centrifuged (1,000 g, 5 min, 

4 ºC). After this 0.25% (w/v) sodium borohydride in 10 mM (w/v) Tris-HCl, pH 7.5, was added 

to the samples (45 min at 41 ºC). The next step was acidification of the samples by adding cold 

10 % (w/v) metaphosphoric acid. After incubation (4 ºC, 10 min) and centrifugation (16,000 g, 

20 min, 4 ºC), supernatants were collected (50 μL for determination of GSH and 200 μL for 

determination of GSSG). 

Derivatization was performed accordingly to Kand’ar and co-workers [71], that was adapted 

from Hissin and Hilf [72]. Briefly, for GSH analysis 1 mL of 0.1 % (w/v) EDTA in 0.1 M 

sodium hydrogen phosphate, at pH 8.0, was added to 50 μL of supernatant. To 20 μL portion of 

this mixture, 300 μL of 0.1 % (w/v) EDTA in 0.1 M PBS, at pH 8.0, and 20 μL of 0.1 % (w/v) 

OPA in methanol, were added. Tubes were incubated at 25 ºC for 15 min in the dark. The 

reaction mixture was then stored at 4 ºC until analysis. 

For GSSG analysis, 200 μL of supernatant was incubated at 25 ºC with 200 μL of 40 mM

NEM for 25 min in dark. To this mixture, 750 μL of 0.1 M NaOH was added. A 20 μL portion 

was taken and mixed with 300 μL of 0.1 M NaOH and 20 μL of 0.1 % OPA. Tubes were 

incubated at 25 ºC for 15 min in dark and stored at 4 ºC until analysis. Chromatographic 

analysis was accomplished using isocratic elution on C18 analytical column (SupelcosilTM 

ABZ+Plus HPLC Column 15 cm x 4.6 mm, 3 μm (Supelco)) at 40 ºC on an AcquityTM Ultra 

Performance LC system (Waters). The mobile phase consisted of 15 % (v/v) methanol in 25 

mM (v/v) PBS at pH 6.0. The flow rate was kept constant at 0.7 mL min
-1

. The excitation and 

emission wavelengths were set at 350 and 420 nm, respectively. The amount of GSH and GSSG 

was quantified from the corresponding peak area using Empower® Pro 2.0 software. The 

concentration of GSH and GSSG in the samples was determined from standard curves with 

ranges 0-100 μM for GSH and 0-5 μM for GSSG. Values were normalized for total protein 

content. 

 

3.13. Statistical Analysis 

A complete data matrix of protein spot normalized volumes  was generated by replacing the 

missing values in a condition by the mean of existing values for that protein spot [73]. The 

protein spots were statistically evaluated by ANOVA-Tukay HSD (Analysis of variance-

Honest Significant Difference) test when normality test passed, however, when normality test 

failed, One Way ANOVA on Ranks was used. 
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For all the statistical analysis performed the SigmaStat v.3.10 software (Systat software Inc, 

Erkrath, Germany) was used. 
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4. Results and Discussion 

 

4.1. Evaluation of Oxidative Stress  

To mimic pathological situations with increased oxidative stress, peroxides are often used to 

implement cell models [74]. To reproduce a neurodegeneration cell model, 300 µM H2O2 was 

used to induce oxidative stress in SK-N-MC neuroblastoma cells, a concentration of H2O2 that 

reduces cells viability to approximately 50 % after 24 h of incubation [15].  

 

4.1.1. Time course profile of protein extracts from SK-N-MC cells treated with hydrogen 

peroxide 

To detect the proteins altered during oxidative stress in neuronal cells, the cells were treated 

with 300 µM of H2O2 for 1 h, 2 h, 4 h, 6 h, 8 h and 24 h. After protein extraction, the proteins 

were separated using 2DE technique. The separated proteins were visualized with CBB and 

analyzed with Progenesis SameSpots software. 

After statistical analysis, 318 protein spots were pinpointed, from which 12 were statistical 

different from the control which corresponds to 3,77 % of  the total protein spots (Fig. 4.1 (A)). 

For 1 h, 2 h, 4 h, 8 h and 24 h of stress injury the protein spots altered were upregulated, 

however, after 6 h of stress the protein spots were downregulated relatively to control (Fig. 4.1 

(B)); the time course profile for each protein spot as well as the estimated pI and MW (kDa) are 

described in Table 4.1. 

Exposure of cells to H2O2 for 24 h caused more alterations in the protein pattern than in the 

remaining treatments, while 2 h of incubation with H2O2 had less effect on protein pattern. 

These results showed that longer exposure times to H2O2 lead to more changes in the pattern of 

the proteins (Fig. 4.1 (B)). 

The identification by MS of the protein spots statistically different is currently an ongoing work.  
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(A) 

 

 

 

 

(B) 

Fig. 4.1 - (A) Representative 2DE control gel of SK-N-MC cells (65 µg).The gel was CBB stained. Twelve spots 

were found to change quantitatively between the control and stress conditions evaluated (0-24 h), and numbered spots 

have been sent for protein identification by MS; (i) Zoom in of some protein spots of 2DE gel with high contrast; (B) 

Comparison of protein spots differentially expressed against control, white columns for upregulated proteins and gray 

column for downregulated protein spots. 
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Table 4.1 - Time course profile for the expression of protein spots differentially expressed in SK-N-MC cells tretated 

with 300 µM H2O2 and their characteristics (pI and MW (kDa)). Differences between treatments in relation to control 

are denoted as *p<0.05 **p<0.01, ***p<0.001. 
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Time course profile and normalized volumes pI MW (kDa) 
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Time course profile and normalized volumes pI MW (kDa) 
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Time course profile and normalized volumes pI MW (kDa) 
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Taking into account what is already known about the induction of stress in this cell model (50% 

reduction in cell viability, changing on free GSH levels and caspases activity) it would be 

expectable that the percentage of protein spots that are different expressed from control would 

be higher than the obtained [23]. However, these facts could indicate that protein changes do not 

occur in the most abundant proteins, those which can be detect on global proteome analysis, but 

most likely occur in the less abundant proteins, specific sub proteomes or specific proteins. 
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The 2DE technique exhibit a great potential to resolve thousands of proteins simultaneously, 

providing important clues even for PTM’s that involve changes in protein total charge, but has 

several limitations like the inability to detect low-abundance proteins, this become a limiting 

step because these proteins can be hampered by protein with similar size and charge or by 

expression levels below the current detection limits of the technique used [4, 36, 38]. Current 

available proteomic approaches are estimated to focus on 30 % most abundant proteins such as 

cytoskeleton proteins that tend to interfere with proteomic analysis by masking proteins with 

lower copy numbers. An advantage of selecting protein populations for proteomic analysis is 

that it substantially decreases the complexity of extracts and thus increases the likelihood of 

identifying proteins with lower abundance [36].  

It becomes clear that could be interesting to fractionate our sample; this allows to reduce the 

complexity of protein/peptide mixtures and to separate various groups of proteins for 

subsequent analysis [75]. 

Proteome analysis was the first approach but since oxidative reactions are the main features 

during neurodegeneration we looked more specifically for redox proteomics alterations, 

focusing in some redox alterations in particular some chemical groups in the proteins, such as 

protein carbonyls and protein glutathionylation. 

 

4.1.2. Protein Carbonyls 

The determination of carbonyl groups has been widely employed as a parameter of protein 

oxidation to characterize tissue alterations occurring in neurodegenerative diseases [76].  

Protein carbonyls can be easily detected by forming a hydrazone derivative with DNPH. This 

product can then be detected by various methods such as spectophotometric assay, enzyme-

linked immunoabsorbent assay (ELISA), and 1DE or 2DE followed by Western blot 

immunoassay [50, 77].  

The detection of oxidatievely modified proteins by immunoblotting has advantages over the 

methods listed above: i) the sensitivity of the method is at least 100 times greater than those 

obtained by other procedures; ii) individual oxidized proteins can be separated and identified 

from a complex mixture by 1DE/2DE; and the oxidative status of each polypeptide can be 

analyzed quantitatively by comparison of the signal intensity of the same polypeptide in 

different lanes on the same gel. Based on this we decided to use this method to determine 

carbonylated proteins. 

In our work, SK-N-MC samples were tested by the immunodetection in membrane of the adduct 

protein-hydrazone after resolve in SDS-PAGE, by using the OxyBlot™ Protein Oxidation 

Detection kit. In parallel, also a positive control (oxidized BSA) was derivatized and analyzed.  
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After some adjustments in the protocol to achieve better results as described in section 3, the 

pattern of carbonylated proteins obtained for SK-N-MC cells treated with H2O2 was evaluated 

(Fig 4.2). Slightly differences for polypeptides with MW between 35 and 17 kDa were detected. 

Apparently the first two hours of stress promote an overall increase in the signal of carbonylated 

protein (Fig 4.2 (A)).  

 

 

 

Fig. 4.2 - (A) Protein carbonyl profile of SK-N-MC cells submitted to oxidative injury (300 µM H2O2) with different 

times of exposure (0-24 h), in comparison to control (CTRL), as well as oxidized BSA (Ox. BSA – positive control); 

(B) immunodetection of the loading control (β-actin). Protein carbonyl profile was obtained after sample 

derivatization using OxyBlot™ Protein Oxidation Detection kit (Intergen) Western blot was exposed to 

chemiluminescence detection using FemtoMax Super Sensitive Chemiluminescent HRP Substrate – Rockland Inc. A 

representative image is shown; 

 

A polypeptide of ~30 kDa appears with increase oxidation only for incubations longer than 6 h. 

On the other hand an early response is observed for a polypeptide with lower MW (~20 kDa), 

with oxidation trough carbonylation in the first 4 h of stress returning to the control levels after 

this period. 

Sample
Ox.
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CTRL 1 h 2 h 4 h 6 h 8 h 24 h

H2O2     

(300 µM)
- - + + + + + +

(A)
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These different responses to stress over the time in the oxidation state of proteins suggests that 

cells metabolism produces different responses to early and late oxidative injury. Further studies 

to identify the polypeptides differentially altered will be helpful to understand the mechanisms 

involved in this stress response and potential protein targets to observe after cytoprotection by 

the digested berries extracts. 

Differences in polypeptide intensity are not due to different amounts of protein loaded into the 

gel, but with greater expression of these polypeptides for the respective conditions, since there 

are no significant differences in the loading control (Fig. 4.2 (B)). 

The ability to visualize proteins on high resolution 2DE immunoblots offers significant 

advantages over 1DE molecular weight separation, so in future work we will also try to 

implement 2DE immunoblots for the detection of carbonylated proteins [77]. 

 

4.1.3. Protein S-Glutathionylation 

Over the years methods for measuring glutathionylated proteins were developed to quantify the 

total amount of GSH bound to proteins. These approaches demonstrated that GSH forms 

covalent bonds with proteins and that the levels of glutathionylated proteins (or mixed 

disulfides) change with specific diseases or pathological conditions associated with oxidative 

stress [57]. 

Complementary approaches were subject to consideration in this work: an immunological 

method and a high performance liquid chromatography (HPLC). In our work, SK-N-MC protein 

samples were assayed by immunodetection in a PVDF membrane after SDS-PAGE. In parallel 

a positive control (cells from control + 5 mM GSSG) was analyzed.  

The pattern of glutathionylated proteins obtained for SK-N-MC cells treated with H2O2 showed 

that only the positive control presents a glutathionylated protein, for the remaining incubation 

times with H2O2 no polypeptide appears glutathionylated.  (Fig. 4.3 (A)). 

 

 (A) 
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(B) 

Fig. 4.3 - Protein glutathionylation profile of SK-N-MC cells submitted to oxidative injury (300 µM H2O2) with 

different times of exposure (o-24 h), in comparison to (A) control (CTRL), as well as (B) oxidized samples with 5 

mM GSSG. Glutationylated protein profile was obtained after incubation with mouse anti-GSH antibody (Virogen). 

Western blot was exposed to chemiluminescence detection using FemtoMax Super Sensitive Chemiluminescent HRP 

Substrate – Rockland Inc. A representative image is shown; 

 

An indirect way to evaluate which proteins from our model are prone to be glutathionylated and 

assess if stress affects that ability is to add 5 mM of GSSG to the protein samples. The Fig. 4.3 

(B) shows that a polypeptide with ~63 kDa has avidity to be glutathionylated; interestingly, we 

observed that this pattern ability to be glutathionylated increases after 4 h of stress. Previous 

results from DSB Lab (see annexes, Fig. S1) showed that GSH levels start to decrease after 4 h 

of H2O2 incubation, this decrease is consistent with the glutathionylation avidity increase 

detected (Fig. 4.3 (B)). Further studies should be done to identify this polypeptide.  

The other approach used to detect and quantify GSH released from glutathionylated proteins 

was HPLC technique. Protein-GSH complexes can be reduced by sodium borohydride, and the 

thiol liberated measured by HPLC [78].  

The detection is based in the fact that both reduced and oxidized forms of glutathione 

(GSH/GSSG) form a stable, highly fluorescent tricyclic derivate with OPA [71, 72]. This 

method overcomes most of the difficulties of enzymatic and chemical procedures, increasing the 

detection power relatively to spectrophotometric or fluorimetric methods once it is a 

chromatographic approach [72]. 

Cells were incubated with H2O2 during 4 h, this time was chosen accordingly with data from 

GSH levels since oxidative stress conditions lead to GSH oxidation (see annexes Fig. S1). A 

decrease of free GSH inside the cell is observed after 4-6 h of treatment. Since there is no 

increase in GSSG content (data not shown), we may expect that GSH may be used for other 

cellular mechanisms, namely S-glutathionylation.  

The results from HPLC analysis (Table 4.2) showed that there was not GSH liberated from 

proteins, compared with free GSH from control and 4 h of incubation, i.e., these results agree 

with those obtained previously by Western blot analysis, there was no glutathionylated protein.  
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Table 4.2 - HPLC chromatograms of GSH and GSSG for SK-N-MC cells incubated with H2O2 (300 µM) during 4 h 

and HPLC chromatograms for GSH released from glutathionylated proteins (PSSG) relatively to SK-N-MC control 

cells (0 h). Glutathione-OPA adduct was monitored at excitation and emission wavelengths of 350 and 420 nm, 

respectively. 

GSH GSSG 

0
 h

 

 

 

4
 h

 

  

Time (min)

Time (min)
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GSH GSSG 

P
S

S
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--- 

 

These results can be explained by the fact that S-glutathionylation is a reversible PTM and the 

amount of cells used in the experiment was too small to determine GSH levels. To overcome 

this limiting step, in further studies we should use purification methods, such as the purification 

of glutathionylated proteins on a GSH-affinity column before Western blot and HPLC analyses 

to improve our results [57, 79]. 

 

 

4.2. Protein pattern of SK-N-MC cell line treated with different digested 

berry extracts 

 

Recent studies in DSB Lab evaluate the potential of digested blackberries (commercial 

blackberry and R. vagabundus) as dietary strategies to prevent or retard neurodegeneration. The 

results demonstrated that digested berry extracts were able to maintain cell membrane integrity, 

protecting neurons from death, and that the differences on cell protection mediated by BB and 

RV was accompanied by caspases -3 and -7 activation and a differential modulation of GSH 

levels [15, 23]. 

The use of in vitro digested extracts of berries is very important since it mimics the metabolites 

that may reach the external surface of the blood brain barrier (BBB) and then could induce some 

neuroprotective effects. Also the levels tested are in the range of the levels detected in the serum 

of human organism which ensures to mimic physiological conditions [15]. Based on this, in 

Time (min)
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order to contribute to the understanding of the mechanisms underlying these beneficial effects a 

proteomic analysis was used. The results are shown in Fig. 4.4. 

 

 

Fig. 4.4 - Representative 2DE control gel of SK-N-MC cells. The gel was CBB stained. One protein spot (white spot) 

from SK-N-MC cells incubated with R. vagabundus (RV) during 24 h, and 9 protein spots (black spots) from SK-N-

MC cells incubated with commercial blackberry (BB) during 24 h were statistical different from control. Numbered 

spots were sent for protein identification by MS.  

 

From the statistical analysis of 277 protein spots only 1 protein spot (white spot) from SK-N-

MC cells incubated with RV was statistically different from control, and 9 protein spots (black 

spots) from SK-N-MC cells incubated with BB were statistically different from control. 

The results also showed that the majority of the statistically different spots are protein spots 

with MW more than 40 kDa and with basic pI (Fig. 4.4). 

When SK-N-MC cells were incubated with digested berries extracts, the number of altered 

protein spots was higher for BB than for RV. These results are consistent with data from 

transcriptomic analyses, the number of changed genes was equally higher for SK-N-MC cells 

incubated with BB than with RV, however, not mediating so efficacious protection (DSB Lab 
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unpublished work and [23]). From proteomic analysis we may register that RV promotes 

protein changes to a lesser extent than BB.  

The normalized volume for each protein spot differentially expressed from control and some of 

the characteristics of proteins such as pI and MW are described in Table 4.3, also their 

identification by MS (Table 4.3).  

 

Table 4.3 - Normalized volumes for protein spots in SK-N-MC cells treated with commercial blackberry (BB) and R. 

vagabundus ( RV) differentially expressed from control (CTRL) and their characteristics (pI and MW (kDa)). 
Differences between treatments in relation to control are denoted as *p<0.05 **p<0.01 ***p<0.001. 
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Spots nr and normalized 

volumes 
m/z MS/MS 
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Protein ID 
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Spots nr and normalized 

volumes 
m/z MS/MS 

sequence 
 

Protein ID 

(accession 

number) 
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(kDa)
ii
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iii
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Spots nr and normalized 

volumes 
m/z MS/MS 

sequence 
 

Protein ID 

(accession 

number) 
i
 

MW 

(kDa)
ii
 

pI 
iii

 

 

- - - 46.0 7.2 

 

- - - 19.0 8.0 

i) Protein identification according to the UniProt database (http://www.uniprot.org). 

ii) Predicted MW (kDa) was obtained by using an ExPASy tool (http://expasy.org). 

iii) Predicted pI and was obtained by using an ExPASy tool (http://expasy.org). 

 

The 10 protein spots differentially expressed from control relatively to SK-N-MC cells 

incubated with BB and RV were analyzed by MS technique, and so far, 2 proteins were 

identified: β-tubulin (spot nr. 538) and GRP 78 (spot number 272) (Table 4.4).  
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Table 4.4 - Protein identification by MS/MS and respectively gel images for control (CTRL) and commercial 

blackberry (BB). 

Protein ID  

β-tubulin (538) 

 

GRP 78 (272) 

 

 

The results showed that β-tubulin was statistically different from control and slightly 

downregulated (Fold change of 1.5) for cells incubated with BB. 

β and α -tubulin are dynamic assembled polymers that compose microtubules (MTs), one of the 

components of the cytosqueleton that are present in all eukaryotic cells [80-82]. In neurons, 

MTs actively participate in the initial steps of neural polymerization, the organization of 

intracellular compartments and the remodeling of denditric spines [82]. 

Tubulin receives diverse PTMs such as acetylation, tyrosination and phosphorylation that are 

implicated on the regulation of the neuronal MTs cytoskeleton. Processes like MTs dynamics, 

motor traffic and interaction between MTs and MTs associated proteins are regulated by tubulin 

PTMs, a contribution of these modifications to neurodegenerative disorders becomes a 

possibility that should be considered [80, 82]. 

Several studies have investigated the role of tubulin acetylation in AD, and suggested that 

changes in the levels of this PTM are involved in the pathogenesis of this disease [83]. 

Glucose regulated protein 78 (GRP 78) also referred as BiP or heat shock protein A5 is an 

important chaperone protein that is predominantly expressed in the endoplasmic reticulum (ER). 

This protein is described to be involved in various functions such as protein folding, 

endoplasmic reticulum calcium binding, cytoprotection, anti-apoptosis and autophagy inducer. 

This protein contains an ER stress elements in its promoters and are upregulated during ER 

stress [84, 85]. 

CTRL BB

CTRL BB
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The results showed that GRP 78 (protein spot nr. 272) was statistically different from control 

(CTRL) being strongly downregulated (Fold change of 5) for cells incubated BB.  Thus, we 

decided to observe the time course profile of this protein when cells were subjected to oxidative 

injury. The results obtained showed that over 6 h of stress the expression levels of this protein 

also decreased despite not statistically different (Fig. 4.5). 

Then, the fact that GRP 78 was downregulated for cells when incubated with BB and also 

downregulated for 6 h, 8 h and 24 h of stress injury could mean that exposure of cells to 

components in the BB could be an initiating event that leads to protection against subsequent, 

potential lethal stimuli, known as preconditioning. This mechanism is clearly described for 

other heat shock proteins (HSP) [86, 87]. Also it is consistent with previous data that suggest 

preconditioning by digested berries metabolites [23]. 

 

 

Fig. 4.5 - Time course profile for the expression of GRP 78 in SK-N-MC cells when incubated for different periods 

of time with 300 µM H2O2 (0-24 h). 

 

Some studies have demonstrated that GRP 78 forms a complex with caspase-7 and caspase-12 

on the cytosolic side of the ER membrane, thereby blocking the main apoptosis-related 

machinery [84]. In previous works it was verified that BB and RV lead to caspases-3 and -7 

activation (see annexes Fig. S2) [23].  

The decrease in the expression of GRP 78 in cells incubated with BB could lead to apoptosis, 

since the complex GRP 78 with caspase-7 and -12 cannot be formed and the machinery of 

apoptosis will not be blocked. As so it is expected that cells incubated with BB will be protected 

from lethal injuries by controlled cell death mechanisms like apoptosis (Fig. 4.6 (A)). 

In the case of cells incubated with RV there are no statistically differences from control, which 

suggest that GRP 78 could form a complex with caspases and beside caspases activation, the 

apoptosis was blocked (Fig. 4.6 (A)). The cross-talk between apoptosis and autophagy suggests 
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that RV could use autophagy as an alternative protective mechanism against possible lethal 

injuries (Fig. 4.6 (B)). Recently, it has been shown that ER stress could induce autophagy for 

cell survival in a neuroblastoma cell line [85]. 

 

 

 

Moreover, the importance of this protein in the physiological systems is reiterated by their 

participation on canonical pathways, such as Ubiquitin-Proteasomal pathway, because this 

pathway is central to the maintenance of homeostasis during stress by signaling damage or 

misfolded proteins for degradation and GRP 78 is an important chaperone that assist and 

regulate the correct folding of proteins [84, 88].    
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GRP 78 Caspases activity

Autophagy Apoptosis

GRP 78/caspases
complex

Rubus vagabundus

Autophagy Apoptosis
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Fig. 4.6 - Scheme of the hypothetical effect of commercial blackberry (A) and R.vagabundus digested extracts (B) in 

caspases and GRP 78 expression in SK-N-MC cells. 
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5. Final considerations and future perspectives 

 

Neurodegenerative diseases are among the most complex human disorders. These devastating 

illnesses currently do not have any effective therapies or treatments, and are thus a social and 

economic encumber for modern society. Epidemiological studies showed a consistent 

relationship between the consumption of fruits and vegetables and a reduced risk of 

neurodegenerative diseases. Recently, berries upsurge as potential functional foods in the 

prevention of these diseases. One factor common to these diseases is oxidative stress, which is 

highly related with proteins, lipids, carbohydrates and nucleic acids damage, leading to cellular 

dysfunction and ultimately cell death [10, 16-19]. 

Evaluation of oxidative stress in our model of neurodegeneration by the described methods is a 

very helpful way to increase the knowledge about the pathways that can be compromised due to 

oxidative injury. The use of cellular models are a very helpful way to try to reproduce and 

manipulate molecular mechanisms that can be true for whole-organism systems, offering a 

faster approach to get trustable results and providing valuable biochemical information. 

Deregulation of mechanisms underlying neurodegenerative disorders can be a hallmark in 

preventing disease progression and important to understand novel ways to fight extreme 

oxidative stress environments. 

The analysis of the total proteome by 2DE revealed that oxidative stress in SK-N-MC cells 

resulted in altered expression of 12 protein spots from a total of 318. Since oxidative reactions 

are the main features during neurodegeneration we focused in some redox alterations, 

particularly proteins carbonylation and glutathionylation. 

Responses at the protein carbonyl levels to stress over time suggest that cells produce early and 

late responses to oxidative injury. On the other hand, the pattern of glutathionylated proteins 

obtained for SK-N-MC cells treated with H2O2 showed that only the positive control presents a 

glutathionylated protein, for the remaining incubation times with H2O2 no polypeptide appears 

glutathionylated. However, the avidity for glutathionylation increases after 4 h of stress. 

Previous results from DSB Lab showed that free GSH levels start to decrease after 4 h of H2O2 

incubation, this decrease is consistent with the glutathionylation avidity increases detected. 

Further studies should be done to identify this polypeptide.  

The ability to visualize proteins on high resolution 2DE immunoblots offers significant 

advantages over 1DE molecular weight separation, so in future work we will try to implement 

2DE immunoblots for both redox proteomic targets. Moreover, it becomes clear that could be 

interesting to fractionate our sample; this allows to reduce the complexity of protein/peptide 

mixtures and to separate various groups of proteins for subsequent analysis [57, 75, 77] 
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Endemic blackberry species revealed to be a promising source of metabolites with 

neuroprotection capabilities. Although the number of altered protein spots was higher for cells 

incubated with BB than for RV, the former not mediate so efficacious protection [23].  

From 9 statistically different protein spots detected in cells incubated with BB, only β-tubulin 

and GRP78 were until now identified by mass spectrometry. 

Tubulin can receive diverse PTMs such as acetylation, tyrosination and phosphorylation that are 

implicated on the regulation of the neuronal MTs cytoskeleton. Processes like MTs dynamics, 

motor traffic and interaction between MTs and MTs associated proteins are regulated by tubulin 

PTMs, a contribution of these modifications to neurodegenerative disorders becomes a 

possibility that should be considered [80, 82]. 

GRP 78 is described to be involved in various functions such as protein folding, endoplasmic 

reticulum calcium binding, cytoprotection, anti-apoptosis and autophagy inducer. The decrease 

in the expression of GRP 78 in cells incubated with BB could lead to apoptosis, since the 

complex GRP 78 with caspase-7 and -12 cannot be formed and the machinery of apoptosis will 

not be blocked. As so, it is expected that cells incubated with BB probably will be protected 

from lethal injuries by controlled cell death mechanisms like apoptosis. 

In the case of cells incubated with RV there are no statistically differences from control, which 

suggest that GRP 78 could form a complex with caspases and beside caspases activation, the 

apoptosis was blocked. The cross-talk between apoptosis and autophagy suggests that RV could 

use autophagy as an alternative protective mechanism against possible lethal injuries.  

However, further studies should be performed, to understand the role of these two proteins in 

neuroprotection and validate the mechanisms proposed. 

Further studies involving the selection of sub proteomes will be necessary to have a better 

understanding of the mechanisms underlying the neuroprotective effects of berries. 
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7. Annexes 

 

 

Fig. S1 - Thiols time course profile of stressed SK-N-MC cells: GSH. SK-N-MC cells were submitted to an oxidative 

stress (300µM H2O2) for different incubation periods (0-24 h) and protein cellular extracts were derivatized and 

quantified by HPLC with fluorescence detector. Glutathione-OPA adduct was monitored at excitation and emission 

wavelengths of 350 and 420 nm, respectively. Quantifications of GSH were normalized for total protein content. 

Represented values are the averages ± S.D. of at least three independent determinations. Differences between 

treatments in relation to control are denoted as *p<0.05 **p<0.01. Data provided by a colleague from DSB Lab. 
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Fig. S2 - (A) Caspase-3 and -7 activity from SK-N-MC cells when incubated with 0.5 µg GAE mL-1 of commercial 

blackberry (BB) or R.vagabundus (RV); Differences between treatments in relation to control (CTRL) are denoted as 

*p<0.05 **p<0.01 (B) Caspase-3 and -7 activity from SK-N-MC cells when pre-incubated with 0.5 µg GAE mL-1 of 

commercial blackberry (BB) or R.vagabundus (RV) and then submitted to oxidative stress (300 µM H2O2); 

Differences between treatments in relation to oxidative stress (Stress) are denoted as  **p<0.01. Data provided by a 

DSB Lab colleague.  

  

 

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

µ
m

o
lG

SS
G

.g
-1

p
ro

te
in

Time (h)

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20

µ
m

o
lG

SH
.g

-1
p

ro
te

in

Time (h)

**

* *

 

0

50

100

150

200

250

300

CTRL BB RV 

C
a

sa
p

a
se

s 
a

c
ti

v
it

y
 (
a

.u
.)

Caspases activity

*

**

0

50

100

150

200

250

300

350

400

450

500

CTRL Stress BB RV 

C
a

sa
p

a
se

s 
a

c
ti

v
it

y
 (
a

.u
.)

Caspases activity

**


