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STOCK MARKET 

 

ABSTRACT 

 

The aim of this work project is to find a model that is able to accurately forecast the 

daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to 

expand empirical literature for the Portuguese stock market. Hence, two subsamples, 

representing more and less volatile periods, were modeled through unconditional and 

conditional volatility models (because it is what drives returns). All models were 

evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual 

results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an 

accurate model for our purposes. 
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1. INTRODUCTION 

 “Nothing ventured, nothing gained” is what leads investors to take risks, as higher 

potential return requires taking higher risk. However, sometimes the probability of losses 

is higher than, or just as high as, gains. Therefore, risk – “volatility of unexpected 

outcomes” (Jorion, 2007:3) - must be managed and measured carefully. One of the most 

popular methods is designated as Value-at-Risk (VaR): a risk management tool that puts 

a monetary (or percentage) value in the potential maximum loss one can incur in, when 

holding an asset, for a predefined time horizon, at a given confidence level.  

Companies, financial institutions or individual investors are exposed to several types 

of risk, but this work project will focus on market risk, which refers to the potential 

losses that come from variations on securities, such as stocks’ market prices. According 

to Jorion (2007), the market risk of holding portfolios with various stocks (each one with 

different sources of risk) must be evaluated, and the best way to do it is using VAR. Note 

that, in the context of this work project, it will be set as a percentage value, instead of 

monetary, which is well approximated by a stock continuously compounded return
1
. 

Nowadays, there are several approaches one can follow to estimate VaR, which have 

been improving over time, in order to provide both simple implementation and precise 

estimations (usually there is a trade-off). In the present thesis, two perspectives will be 

evaluated: unconditional (simple) and conditional volatility models (sophisticated 

econometrics ones) of returns
2
. Hence, one of the hypotheses tested in this thesis is: 

      The use of sophisticated econometric models provides advantages in VaR 

predictions over simpler ad-hoc methods. 

                                                           

1
 Returns represent the economic gain (positive return) or loss (negative return) of an investiment/portfolio, 

being a good approximation for percentage VaR. 
2
 Continuously compounded returns (or log-returns) will be referred simply as ‘returns’ for simplicity. 
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Although evolving, one of main challenges regarding forecasting in finance continues 

to be whether the models applied are able or not to anticipate changes in the market 

volatility, as in the recent financial crisis in 2008 that certainly led to changes in the stock 

market conditions all over the world. This issue is also tested in this work project: 

(  ) There is one model approach which provides good one-day VaR forecasts, 

independently of the actual market conditions. 

As one of this work project intents is to expand empirical research for the Portuguese 

stock market, which has little or no space into the literature so far, to test those 

hypotheses, a sample from PSI-20 Index daily returns will be collected and afterwards 

divided into (i) before and after 2008 crisis subsamples and an (ii) out-of-sample 

evaluation period, which corresponds to the present year of 2014 (until October 17
th

). In 

the end, one expects that some of the findings of this thesis can be useful for the 

Portuguese risk managers to improve the way they forecast risk and better protect the 

Portuguese institutions against any unexpected negative event.  

Finally, in order to validate these models, the actual losses/gains of PSI-20 Index in 

2014 will be compared to the ones predicted by each model (technique designated as 

backtesting), where the likelihood ratios of unconditional (or Kupiec) and conditional (or 

Christoffersen) coverage tests are the methods applied for this end.  

Note that, one of the thesis limitations is the lack of comparison data and the 

assumption that the modeling and analysis of PSI-20 Index returns are good enough to 

provide empirical findings that can be applied in any type of assets in Portugal. 

2. LITERATURE REVIEW 

Value-at-Risk (VaR) is a statistical tool that summarizes a portfolio’s “worst loss over 

a target horizon such that there is a low, prespecified probability that the actual loss will 
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be larger” (Jorion, 2007:106). By convention, VaR is set as a positive number – 

percentage, in this case – hence: 

                                          (1) 

where    is the actual daily PSI-20 Index return and α is the “prespecified probability” 

which we call significance level. Recall that VaR, in this work project context, is being 

established as a percentage. Therefore, according to the standard time-series modeling of 

daily returns:  

                                                       (2) 

where    is the mean for returns,    is the squared-root of   
  - the volatility for returns - 

and    is a series of independent and identically distributed (i.i.d.) random variables with 

mean 0 and variance 1 (Tsay, 2002). However, daily changes in prices are not 

systematically positive or negative, which means that daily returns are usually not 

significantly different from zero. This is why, in the literature, daily VaR is stated as: 

                                            (3) 

To better understand VaR definition, consider the following illustration: if, for a 95% 

confidence level, daily VaR is €100.000,00 one interprets it as having 5% probability (or 

being 95% certain) that tomorrow’s loss will (not) be higher than €100.000,00. 

One of the most widely used VaR estimation approaches is the Historical Simulation 

(HS). Under HS assumptions, past distribution of returns is a good proxy for its future 

distribution, which is not true if market conditions change. This was one of the findings 

of a study carry out by Beder (1995). He analyzed two samples of the U.S. Treasury 

Strips returns – with the previous 100 and 250 days – and found that the HS method 

predicted an appreciation of the Treasury strips, when it should not, since the selected 
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estimation windows corresponded to “a period of rising interest rates” (Beder, 1995:15) 

i.e., the U.S. market conditions were changing, which HS did not captured. 

As it does not rely on any parameter estimation, HS is also denominated as a non-

parametric technique. In 1996, Hendricks compared one-day VaR predictions provided 

by HS and two parametric approaches - equally and exponentially weighted moving 

averages -, considering four data set periods with 125, 250, 500 and 1250 days of several 

currencies’ exchange rate against the dollar. His study’s results showed that “the best 

performer is the 1,250-day HS approach (…) while the worst performer is the 125-day 

HS approach” (Henndricks, 1996:50), meaning that HS for “longer horizons provide 

better estimates of the tail of the distribution” (Hendricks, 1996:47). However, for HS to 

be an accurate model, it may require too aged data, which may be irrelevant to explain 

the current market behavior of the period under analysis, as showed by Beder (1995). 

To overcome this HS drawback, research over parametric models, which do not 

require such long periods of historical data, increased. Here, a theoretical distribution of 

returns, given their past behavior, is assumed known. According to Brooks, “financial 

assets returns tend to exhibit leptokurtic distributions” (2008:380), which predicts more 

extreme returns (fatter tails) that the Normal distribution. Xiong and Idzore went even 

further by finding that “extreme events seem to occur 10 times more often than the 

normal distribution predicts” (2011:23). Given that, and because Student’s t distribution 

has fatter tails than the normal, the parametric Student’s t is also a common technique 

adopted for forecasting VaR purposes. In order to assess the advantages of this technique, 

Huisman at al. (1998) compare the results between parametric-normal and parametric 

Student’s t VaR approaches. Their study was composed by bi-weekly data of S&P 500 

Composite Returns Index and US 10-Year Government Bond Returns Index. According 
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to Huisman at al. results, not only Student’s t characteristics fit better the distribution of 

returns, but it is also true for more than one asset’s type, since “for both US stocks and 

bonds, the VaR-x
3
 estimates reflect the true downside risk apparent in financial returns 

much better than those from the standard
4
 VaR estimators” (1998:59). 

 In the end, all of those were reasons for parametric Student’s VaR model to emerge in 

the literature as preferred instead of the normal. Nevertheless, note that both HS and 

parametric Student’s t VaR assume that returns have constant volatility – the so-called 

unconditional volatility models. However, as stated by Brooks (2001:380), financial data 

has a stylized characteristic of volatility clustering i.e., returns have time-varying 

volatility. To overcome that, Bollerslev (1986) suggested a generalized autoregressive 

heteroscedastic (GARCH) process that, not only is able to capture the leptokurtosis, but 

also the volatility clustering of the returns distribution. Nevertheless, according to 

GARCH models, positive price shocks have the same impact in the volatility of returns 

as negative ones. However, there is empirical evidence for shocks to have asymmetric 

effects over prices: negative shocks have greater impact than positive ones (Brooks, 

2008:380). Therefore, to capture such asymmetry effects, two extensions of GARCH 

widely used in the literature - exponential GARCH and GJR-GARCH -, were suggested 

by Nelson (1991) and Glosten at al. (1993), respectively. 

Regarding the performance of these three models, past studies are not unanimous: 

Ramasamy and Munisamy concluded that, when forecasting exchange rates’ volatility, 

“the leverage effect brought in GJR and EGARCH models do not improve the results of 

GARCH much” (2012:98). In the other side, for Tel-Aviv stock market, according to 

                                                           

3
 VaR-x is their notion for parametric Student’s t VaR. 

4
 Parametric-normal VaR and empirical (which is their denomination for Historical Simulation) VaR. 
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Alberg et al., “the asymmetric GARCH model with fat-tailed densities improves overall 

estimation for measuring conditional variance” (2008:201). In fact, as different types of 

assets have different statistical characteristics, it seems difficult to find a model that suits 

and captures all of those properties accordingly. Thus, it will be interesting to find which 

conclusion, of the two (if any), one is able to reach in this thesis. 

3. METHODOLOGY 

3.1.Data: PSI-20 Index 

As the aim of this work project is to find a method of VaR calculation that works 

effectively in the Portuguese stock market, regardless of the financial market conditions, 

PSI-20 Index was the proxy chosen as the most relevant for the purposed analysis since it 

already corresponds to a well-diversified portfolio with stocks of the major 20 

Portuguese companies. Furthermore, financial assets must be evaluated at their market 

value, and because the stocks composing PSI-20 Index are traded on a daily basis, the 

information about its current market price is publically available. Given that, the day-to-

day returns (net of dividends) from January 2
nd

, 2002 to October 17
th

, 2014 were 

collected from Bloomberg, where the period from (i) 2
nd

 January 2002 to 31
st 

December 

of 2007 is the Before Crisis period subsample; (ii) 2
nd

 January 2008 to 31
st 

December of 

2013 is the After Crisis period subsample and (iii) 2
nd

 January to 17
th 

October of 2014 is 

the out-of-sample forecasting period. 

As seen before, there are 3 factors one has to establish in order to calculate VaR: 

i. Time horizon: The one-day VaR implies the use of daily returns for the models to 

be coherent. For management purposes, the access to prompt information is crucial, 

which means that, if one only updates prices’ information weekly or monthly, it might 

miss some trends in the data that could have been important to anticipate an event and 
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protect against it. Nevertheless, one of the inconveniences daily data is the fact of 

requiring a lot of historical data, which loses relevance the older it is, because market 

conditions are constantly. According to Zangari and Bayraktar (2005/2006), the 

drawbacks of analyzing daily returns do not overcome the benefit of precision it offers, 

being the reason why daily returns were preferred. 

ii. Probability Distribution Function: According to Xiong and Idzore, “extreme 

events seem to occur 10 times more often than the normal distribution predicts” 

(2011:23). For that reason, it is not accurate, just for simplicity, to assume that PSI-20 

Index returns follow a normal distribution. Firstly, although almost symmetric, returns’ 

empirical probability distribution function is skewed (asymmetric do the left – negative 

skewness - or to the right – positive skewness) and leptokurtic (has fatter tails, which 

means that more extreme returns are likely when compared to the normal distribution
5
). 

Since Student’s t distribution, although symmetric, has fatter tails than the Normal, it will 

be the conditional distribution of returns, given their past, assumed. However, note that 

their unconditional distribution can exhibit asymmetry and even heavier tails than a 

Student’s t because it is given by      (equation (3)). Therefore, even though    are 

Student’s t distributed, they are being multiplied by    (which is a random variable in the 

estimation models), so the distribution of their product will no longer be Student’s t. 

iii. Confidence Level: As it is a more subjective parameter, it will be defined as both 

Basel Committee on Banking Supervision – according to Basel III (Latham&Watkins, 

2011:53) – and RiskMetrics (JP Morgan and Reuters, 1996:37) consider it. Hence, the 

99
th

 and 95
th

 one-day VaR percentiles will be set in order to also compare, respectively, a 

more conservative approach towards risk with one less risk averse. 

                                                           

5
 Normal distribution has skewness of 0 (symmetric) and kurtosis of 3 (low probability mass in its tails) 
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3.2.Unconditional VaR Models 

These models postulate that returns are stationary, which implies that the unconditional 

moments of the series are constant or non-varying over time. In practice, it means that 

     in equation (3), where   is the daily standard deviation of the returns’ sample. 

Under these restrictions, a non-parametric (Historical Simulation) and a parametric 

unconditional VaR models will be presented. These will be the ‘simpler ad-hoc methods’ 

category, as they are the easiest to implement. 

3.2.1. Historical Simulation 

A classic approach to compute VaR is the Historical Simulation (HS). HS is a non-

parametric approach, in the sense that it does not require the use of statistical methods to 

estimate any parameter since it uses the empirical distribution of returns. As it assumes 

that historical returns are a good proxy for future returns forecasts, HS implicitly assumes 

that returns are strictly stationary
6
. It is a strong assumption once market conditions are 

constantly changing and, consequently, the distribution of PSI-20 Index returns today 

will most likely not be the same as before the 2008 financial crisis. 

 According to this method, VaR is calculated as: 

                                   (4) 

where     is the   -quantile of the returns’ empirical distribution (the     lowest 

return of all observations, where    is the number of observations) and      is the 

expected value of returns, estimated by their sample average. 

3.2.2. Unconditional Parametric Student’s t VaR Model 

Recall Equation (3). For now,      and, in practice,    is assumed to follow a 

determined probability distribution function. As explained in the previous section, it is 

                                                           

6
 The probability distribution function of returns remains always the same as time goes by. 



9 

 

not expected returns to follow a normal distribution, so that Student’s t is being assumed, 

which expresses returns as: 

                                    (5) 

where      is the threshold value of the cumulative Student’s t distribution with α 

probability mass to the left and ν degrees of freedom. The model is denominated as 

parametric because, although assumed known, the (Student’s t) distribution of    still 

depends on the degrees of freedom parameter, which needs to be estimated.  

Besides the fact of seeing both mean and standard deviation of returns as constant over 

time, the fact of assuming one probability distribution function of returns that may be 

wrong is another drawback of this forecasting method, since it leads to higher forecasting 

errors by undervaluing or overvaluing the predicted VaR. 

3.3. Conditional VaR Models 

Stationarity restricts the unconditional moments of the returns time series (section 

3.2.); however it allows for the conditional moments to vary in time. Moreover, empirical 

evidence supports that it is not accurate to assume constant volatility, as summarized in 

the following “stylized facts” (Brooks, 2008:380): 

i. Clustering: there is empirical evidence that days with high (low) volatility are 

followed by days with high (low) volatility, so there is positive autocorrelation between 

the conditional variance of returns in a given day and its lags. 

ii. Serial dependence (or persistence): empirically, volatility appears to have long 

memory, i.e., returns from a long period ago seem to have some explanatory power over 

the current variance forecast (specially for daily returns); 

iii. Leverage effects: in the stock market (and in general), negative shocks (‘bad 

news’) have a greater impact on volatility than positive shocks (‘good news’) do. 
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Thus, conditional volatility means that the volatility forecasts at time   – the values 

plugged in in equation (3) – are conditional on the information (Ω) that is available at 

time    , i.e.        
                                    (6) 

In order to be able to model volatility, one needs more advanced econometric models 

as GARCH, EGARCH and GJR that are able to capture the aforementioned dynamics. 

Moreover, the coefficients of these models will be estimated through an advanced 

software package – EViews –, as well as the tests to verify their accuracy. 

3.3.1. Generalized Autoregressive Conditional Heteroscedastic Models 

Bollerslev (1986) expressed the conditional variance as a function of past shocks and 

its own lags. In this work project, only one-day lag of each is being modeled, being 

designated as GARCH(1,1): 

   
          

       
                    (7) 

where               to ensure non-negative variance (note that, for      we are 

before an ARCH(1) type model). Although this model is able to account for volatility 

clustering by including variance lags, GARCH(1,1) has some limitations. Firstly, the 

non-negativity restrictions can be violated. Furthermore, it does not capture the 

asymmetry effects explained previously since all the shocks, according to (7), have the 

same absolute impact on volatility (shocks are squared).  

3.3.2. Glosten, Ravijagannathan and Runkle (GJR) Models 

Consider the following extension of equation (7) to express the conditional variance, 

denominated as GJR-GARCH(1,1) or GJR(1,1), suggested by Glosten at al. (1993):  

      
          

       
       

                  (8) 

Here,      is a dummy variable equal to 1 if        and to 0 otherwise. Moreover, 

          and       ensure a non-negative variance, which allows   to be 
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negative but not higher than  . However, it usually is positive to account for asymmetry, 

because when a positive shock happens, the term including the dummy vanishes and we 

stick to a simple GARCH(1,1) model; but if it is negative, the dummy variable is 

“activated” increasing  the forecasted conditional variance and the expected VaR. 

Although the asymmetry dynamics are captured by GJR, the non-negativity constraints 

can still be violated, which is why exponential GARCH is introduced. 

3.3.3. Exponential Generalized Autoregressive Heteroscedastic Models 

The EGARCH(1,1) expression for the conditional variance, suggested by Nelson (in 

1991) has the following form: 

     
           

    
      

   
 
  

    

   
 
               (9) 

The model has two main advantages over GARCH(1,1): first,     
  ensures the non-

negativity constraint for the variance, thus no restrictions on the parameters are 

necessary. Secondly, leverage (or asymmetry) effects are taken into account through γ. 

To account for leverage effects, γ must be negative:  when there are ‘bad news’ (negative 

shocks), it augments volatility, and the expected loss will be higher; and when there are 

‘good news’, the volatility decreases and so does the expected VaR. 

Note that the coefficients of GARCH(1,1), and its extensions, are estimated through 

maximum likelihood estimation, by maximizing the log-likelihood  function     . Here, 

the assumption for the returns conditional distribution becomes crucial, since    depends 

on its density function. Thus, for the Student’s t distribution:         
   

 
  

    
 

 
  

 

 
           

 

 
      

            
  
 

   
   

                (10) 

where      is the gamma function.  
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In these cases, because all models are highly non-linear, no expressions for the 

coefficients can be derived from     first order conditions, therefore numerical 

optimization has to be the method adopted instead.  

3.4. Backtesting 

 In this section, the accuracy of all methods applied to forecast VaR is tested through 

the unconditional and conditional coverage tests, where the predicted VaR is compared to 

the actual loss. For both tests, we have:     VaR model is adequate. 

3.4.2. Unconditional Coverage Test (Kupiec’s Test) 

Recall Equation (1): VaR is being estimated assuming α% probability of being 

exceeded, which means that the expected exception rate  
 

 
  is α%, being   the total 

number of exceptions. An exception,     can be interpreted as a dummy variable where   

is equal to 1 when          and to 0 otherwise, thus      
 
              (11) 

where   the number of observations in the out-of-sample forecasting period. 

Consider the following example: for a 95% confidence level, the expected 
 

 
 is 5%. If 

one considers a sample of 1000 days    , then   should be                days.  

The unconditional coverage      test, developed by Kupiec (1995), tests whether the 

number of VaR exceedances is statistically equal to the expected one     
 

 
     where 

the following likelihood ratio is the test statistic: 

                               
 

 
 
   

  
 

 
 
 

    
   (12) 

Under the null hypothesis,         follows a Chi-Squared distribution with 1 degree 

of freedom (  
  , so if        is higher than   

  critical values, the model is not accurate. 
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3.4.3. Conditional Coverage Test (Christoffersen’s Test) 

One of the previous test limitations is the fact of not taking into account whether the 

exceptions are concentrated or dispersed over time. Firstly, one expects an exception to 

happen once in a while (to be dispersed), otherwise if exceptions do occur 2 or more days 

in a row, it would mean that VaR forecasting model applied is not able to capture some 

market risk changes. Secondly, it is also expected that an exception today does not 

depend on whether an exception happened in the previous day or not, i.e. it is expected 

exceptions to be independent and spaced over time. Hence, to overcome this Kupiec’s 

test flaw, Christoffersen (1998) implemented the temporal independence test, which test-

statistic is a likelihood ratio:                                    

          
     

         
     

                   (13) 

where     is the number of times   (recall that 1 corresponds to the exception) on 

day     was followed by   on day  . Moreover,   
       

 
  

 

 
  is the exception 

rate,    
   

       
 is the exception rate conditional on no exception in the previous day 

and    
   

       
 is the exception rate conditional on exception in the previous day. 

Given that, the overall likelihood ratio of the conditional coverage      test not only 

verifies if the exception rate is equal to the expected one, but also if it is independent on 

whether an exception happened yesterday or not              . Its test statistic is: 

                         
            (14) 

Under the null hypothesis,         follows a Chi-Squared distribution with 2 degrees 

of freedom (  
  , so if        is higher than   

  critical values, the model is not accurate. 



14 

 

4. EMPIRICAL RESULTS 

Intuitively, it seems relevant to subdivide the overall sample into two periods: one pre 

crisis (2002-2007) and one post crisis (2008-2013), as the stock market behavior was 

different between the two. However, is it statistically relevant to analyze two different 

subsamples to estimate the daily VaR for PSI-20 Index?  

Consider the following equation, which is an extended version of (8):     
     

      
     

      

   
 
   

    

   
 
          

        
      

   
 
      

    

   
 
,         (15) 

where     is a dummy variable equal to 0 if January 2
nd

, 2002     December 31
st
, 

2007 and equal to 1 if January 2
nd

, 2008     December 31
st
, 2013. According to Table 

1, none of the parameters individually (except   for 5% significance level) are 

statistically significant. However, one must perform a joint significance test, with the 

following hypotheses:                                                     

and                                                        .  

Table 1: Joint Significance of Equation (14) Dummy Variables 

According to maximum likelihood, the test 

statistic for a joint significance test is the 

following likelihood ratio:  

              
  
    

          (16) 

which, under the null hypothesis, follows a 

Chi-Squared distribution with 3 degrees of freedom   
  . 

According to Table 1, there is no statistical evidence, for 5% and 1% significance 

levels, to reject the null hypothesis since         is higher than the respective critical 

values of   
 . Thus, it is appropriate to distinguish two subsamples. 

       

Coefficient 
-0.021 

(0.0397) 

-0.052 

(0.022) 

-0.0063 

(0.004) 

p-value 0.59 0.02 0.078 

Log-Likelihood                 

Null Hypothesis:         

Log-Likelihood                

                             

Notes: The critical values of    
  are, respectively for 1% 

and 5% significance levels, 11.34 and 7.82. The standard 
errors are in parentheses. 
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4.1. Descriptive Statistics 

Table 2: Discriptive Statistics 

According to Table 2, the 

subsample with respect to the 

after crisis (AC) period has more 

observations than the before 

crisis (BC) period, even with the 

same length in years. The main reasons for that are: (i) some holidays that coincided with 

weekends in BC period, may have not in AC period and (ii) in 2013, some holidays were 

suspended, so there were more business days in Portugal, in the AC period. 

As expected, the average of daily returns and the daily standard deviation are different 

as the samples describe different market characteristics: BC period has a higher average 

of daily returns (    of 0.048% which contrasts with     of -0.019%), while the AC 

period, where the markets were very unstable, is a much more volatile one (    of 0.0146 

against     of 0.00778). 

Regarding the normality of the returns distribution, and in agreement with the stylized 

facts of returns, one can conclude that, in both cases, it is not normal. First, although 

almost symmetric, both subsamples are slightly skewed: while the BC period is 

negatively skewed (-0.39), the AC one is asymmetric to the right (positive skewness of 

0.209). In other words, most of the probability is around the mean of returns, meaning 

that the difference between the samples’ distributions is in the tails: BC has less 

probability mass spread to negative returns (left to the mean) while the AC period has 

less mass probability of positive gains (right to the mean). Secondly, both subsamples are 

also leptokurtic (           of 13.02 and            of 9.10). This result is also not 

surprising since, the AC period being a more volatile one, has more extreme results 

  Before Crisis  

2002-2007 

After Crisis  

2008-2013 

Observations 1529 1538 

Mean (µ) 0.048% -0.019% 

Standard deviation (σ) 0.0078 0.0146 

Minimum -4.53% -9.86% 

Maximum 3.91% 11.62% 

Skewness -0.39 0.21 

Kurtosis 9.10 13.02 

Jarque-Bera Test 651.43 3172.00 

Jarque-Bera Test p-value 0.00% 0.00% 
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(range between -9.86% and 11.62% against the BC period range between -4.53% and 

3.91%) and, as we stated in the previous section, the more extreme returns results, higher 

the probability mass left to the tails, thus more leptokurtic. The ultimate confirmation for 

the non-normality of the series’ distribution is the performance of the Jarque-Bera test. 

According to Table 2, in both subsamples, the test’s p-value is 0.00%, which means that 

we strongly reject, for both significance levels, the hypothesis of PSI 20 Index returns 

being normally distributed. 

4.2. Models Estimation 

Table 3: Unconditional VaR Models Forecasts 

According to Table 3, the parametric (refer to Appendiz 1 for more details concerning 

the estimation of the degrees of freedom,   ) Student’s t predicted VaRs, for both 

significance levels in both subsamples, are higher than HS ones. As the main limitation 

of assuming a theoretical distribution of returns is the possibility of being the wrong one, 

it seems that the t-student distribution is a conservative approach regarding PSI-20 VaR 

predictions, since it overvalues it when compared to HS. 

Regarding the conditional volatility VaR models, one must assure that the order 

chosen (or the fitted model) is adequate for our purposes. According to Tsay, it “can be 

checked by using the standardized residuals” (2001:95). The standardized residuals 

     
  

  
  are i.d.d. random variables assumed to follow a standardized Student’s t 

distribution – recall equation (3) –, therefore one can examine the       series (Tsay, 

2001:89) which must have no evidence of serial dependence nor ARCH effects. 

 Before Crisis After Crisis 

 5% 1% 5% 1% 

α-Percentile -1.23% -2.34% -2.35% -4.09% 

Historical Simulation (HS) VaR 1.28% 2.39% 2.33% 4.07% 

   3.6 3.6 4 4 

   2.35 3.75 2.13 3.75 

Parametric (Students’) t VaR 1.78% 3.48% 3.13% 5.49% 
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Table 4: Ljung-Box Test (30
th

 Lag) for Autocorrelation in Squared Standardized Residuals 

 Before Crisis  After Crisis 

                               
GARCH(1,1) 28.01 0.57 32.42 0.35 

EGARCH(1,1) 30.16 0.46 33.24 0.31 

GJR(1,1) 28.2 0.56 28.82 0.53 

     
 

Primarily, to test for serial dependence, the Ljung-Box Q-Stat Test was applied over 

the standardized squared residuals     
    where the null hypothesis is no serial 

dependence (or                      ). Given that, until 30 lags of squared 

residuals’ autocorrelations were jointly tested and, according to Table 4, since the p-

value of the test         is highly above 1% and 5% significance levels, we do not 

reject the null, in any model. So, there is no evidence of serial dependence in the series. 

For models to be true, they must also be able to capture all volatility dynamics present 

in the data, which means that standardized residuals should have constant volatility (no 

ARCH effects). Therefore, an ARCH-Heteroscedasticity test was also performed. Here, 

under the null hypothesis (    No ARCH Effects), the test statistic – Langragian 

Multiplier      – follows a Chi-Squared distribution with 1 degree of freedom    
  . If 

   is not significant (p-value higher than the significance levels) or smaller than the 

critical values of   
 , we do not reject the null hypothesis. 

Table 5: Test for ARCH Effects in Standardized Residuals 

 Before Crisis After Crisis 

                       

GARCH(1,1) 0.47 0.49 0.029 0.87 

EGARCH(1,1) 0.76 0.38 0.007 0.93 

GJR(1,1) 0.74 0.39 0.49 0.48 

Notes: For 1% significance level, the critical values of   
  and    

  are, respectively, 
6.64 and 9.21. For 5% significance level, they are 3.84 and 5.99, respectively. 

 

According to Table 5, there is no statistical evidence to reject the null, in any model, 

since the test statistic has p-values highly above 1% and 5% significance levels, which 

means that is no ARCH effects – standardized residuals have constant volatility. 
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As there is no evidence of serial dependence nor extra ARCH effects in       series, the 

order (1,1) for GARCH, and its extensions, is well defined and their coefficients 

estimates should be consistent, efficient and accurate for forecasting purposes. 

Table 6: Estimated Coefficients for Conditional Volatility Models 

  
GARCH (1,1) GJR(1,1) EGARCH (1,1) 

  
Coefficient p-value Coefficient p-value Coefficient p-value 

B
ef

o
re

 C
ri

si
s 

   
5,3E-07 

(2,5E-07) 
0,019

 1,04E-06 

(3,41E-07) 
0,0023

 -0,419 

(0,094) 
0,00 

   
0,063 

(0,013) 
0,00 

0,041 

(0,014) 
0,0033

 0,181 

(0,03) 
0,00 

   
0,929 

(0,014) 
0,00 

0,912 

(0,022) 
0,0021

 0,97 

(0,008) 
0,00 

   - - 
0.069 

(0.069) 
0,00 

-0,06 

(0,018) 
0,001

 

   
6 

(0.86) 
0,00 

6 

(0.893) 
0,00 

6 

(0.898) 
0,00 

A
ft

er
 C

ri
si

s 

   
9.1E-06 

(2.7E06) 
0.001

 0.00001 

(2.4E-06) 
0,00 

-0.54 

(0.102) 
0,00 

   
0.131 

(0.023) 
0.00

 0.029 

(0.021) 
0.1662 

0.18 

(0.033) 
0,00 

   
0.823 

(0.029) 
0,00 

0.83 

(0.028) 
0,00 

0.95 

(0.0103) 
0,00 

   - - 
0.18 

(0.034) 
0,00 

-0.12 

(0.018) 
0,00 

   
10 

(2.197) 
0,00 

13 

(3.83) 
0.0009

 14 

(4.29) 
0.002

 

Notes:
 
The standard error are presented in parentheses 

According to Table 6 – where the numbers in the brackets are the standard errors –, all 

coefficients are strongly significant, as their p-values are below 1%, excepting     at 1% 

significance level, estimated via GARCH(1,1) using the BC subsample GARCH and   , 

for both significance levels, estimated VIA GJR(1,1) using the AC subsample. This 

implies that, it makes sense to set up such expressions to model conditional volatility, 

since one-day lag for both residuals (recall: except GJR) and conditional variance are 

significant to describe the behavior of the current conditional variance.  

What is more, GARCH effects,   , measure the persistence of shocks. Overall, 

volatility shocks for all models have long memory, i.e. they will have an impact on the 

future conditional variance forecasts, since    varies around 0.82-0.97 (the closer to 1, the 

higher the degree of persistence). Among the models, volatility is, by far, more 
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persistence when estimated via EGARCH(1,1), for both subsamples (     of 0.95      of 

0.97), while    estimated through GARCH(1,1) and GJR(1,1) varies around 0.82-0.93.  

Secondly,    being significant in all the scenarios leads us to conclude that returns react 

differently towards positive and negative PSI-20 volatility shocks. Consequently, and 

because it does not capture asymmetry effects in the PSI-20 Index returns’ series, 

GARCH(1,1) model is not suitable to fit its theoretical distribution. Moreover, recall 

sections 3.3.2. and 3.3.3., for EGARCH(1,1) model,    is negative in both sub-samples 

(     of -0.0596 and      of -0.116) while for GJR(1,1) it is positive (    of 0.069 

and     of 0.177), reinforcing the existence of leverage effects throughout the series.  

4.1. Models Diagnoses 

Some important conclusions were taken from the previous sub-section, however one 

still have to test whether the models are accurate or not for the aim of this project.  

Table 7: Unconditional Coverage (Kupiec's) Test 

Table 8: Conditional Coverage (Christoffersen's) Test 

 

For better interpretation of results, Table 7 and Table 8 are divided into red, for 

rejected models, and green, for the models found to be accurate for VaR predictions. 

 
Before Crisis (BC) After Crisis (AC) 

 
5% 1% 5% 1% 

 
N/T LR(UC) N/T LR(UC) N/T LR(UC) N/T LR(UC) 

HS 16,7% 37,32 6,4% 26,84 6,4% 0,75 0,5% 0,66 

Parametric t 9,31% 6,44 1,0% 19,55 3,9% 0,54 0,0% n.d. 

GARCH (1,1) 3,4% 2,12 0,5% 0,66 5,4% 0,06 0,5% 0,66 

GJR (1,1) 4,4% 0,15 0,5% 0,66 5,9% 0,32 1,5% 0,40 

EGARCH (1,1) 5,9% 0,32 2,0% 1,49 5,4% 0,06 0,5% 0,66 

Notes: For 1% significance level, the critical values of    
  and    

  are, respectively, 6.64 and 9.21. For 5% 
significance level, they are 3.84 and 5.99. The test was based on a forecasting sample size of 204 observations. 

 

 
Before Crisis After Crisis 

 
5% 1% 5% 1% 

 
LR(Ind) LR(CC) LR(Ind) LR(CC) LR(Ind) LR(CC) LR(Ind) LR(CC) 

HS 6,27 43,59 9,49 36,33 8,13 8,87 n.d. n.d. 

Parametric t 17,08 23,53 n.d. n.d. 1,07 1,61 n.d. n.d. 

GARCH (1,1) n.d. n.d. n.d. n.d. 2,46 2,52 n.d. n.d. 

GJR (1,1) 0,73 0,88 n.d. n.d. 5,12 5,44 n.d. n.d. 

EGARCH (1,1) 5,12 5,44 n.d. n.d. 0,26 0,33 n.d. n.d. 

Notes: For 1% significance level, the critical values of    
  and    

  are, respectively, 6.64 and 9.21. For 5% 
significance level, they are 3.84 and 5.99. The test was based on a forecasting sample size of 204 observations. 
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Note also that, for 1% significance levels, the independence test shows not defined (n.d) 

results and there are two main reasons for that: first, the sample size is too short to find 

two exceptions in a row. Secondly, 1% significance level is too conservative, allowing 

for scarce exceptions and making it difficult to find two exceptions in a row. 

Table 9: Fisher’s Exact Independence Test (p-values) 

To solve this limitation, Fisher’s Exact 

Test is an alternative independence test one 

can resort to. It is mostly employed in 

small samples and provides the exact p-value from a hypergeometric distribution 

(contrarily to the p-value based on the Chi-Squared distribution which is only an 

approximation). According to Table 10, we strongly do not reject the null hypothesis of 

independence, as p-values are all close (or even equal) to 1. Due to the complexity of this 

test, refer Appendix 8 for more detailed information about the method it follows. 

Given that, a straightforward conclusion can be taken: as the unconditional VaR 

models are more often rejected than the conditional volatility ones, the assumption of 

volatility being constant, as expected, is rejected. Moreover, it seems that the estimated 

coefficients from the AC subsample provide better forecasts of VaR in 2014 than the 

ones estimated from the BC subsample. Here, we have two perspectives: primarily, the 

observations of the AC subsample are more recent whereas the BC subsample includes 

observations from 12 years ago. Given that, as the stock market conditions have changed 

in the last 7 years – especially for Portugal that also faced a huge crisis in investors’ 

expectations since International Monetary Fund intervention – such old data may have 

little or no power to explain how it behaves today. In the other hand, one can also 

interpret these results as evidence that Portugal is still living the repercussions of the 

mentioned drawbacks, not having recovered yet from them. 

 

Before Crisis After Crisis 

 
5% 1% 5% 1% 

HS - - - 0.999 

Parametric t - - 0.999 1.000 

GARCH(1,1) 1.000 0.999 - 0.999 

GJR(1,1) - 0.999 - 1.000 

EGARCH(1,1) - 0.999 - 1.000 
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According to Kupiec’s test (Table 7), both parametric Student’s t – excepting at 1% 

significance level – and HS models, for the BC period, underestimate VaRs for 2014, 

since they present exception rates above 12% (when it should have been 5%) and 5% 

(when it should have been 1%). When a financial crisis happens, the markets become 

much more volatile given the uncertainty a new situation implements. Being more 

volatile means higher probability of losses, hence if both unconditional models set up a 

VaR that is too low, it means they are unable to anticipate probable higher losses. In the 

other hand, for the AC period, both models seem to be accurate for VaR predictions, for 

both significance levels. Regarding the conditional volatility models, all models seem to 

produce accurate VaR forecasts, as their exception rates are aligned with the expected 

ones, using the coefficients estimated from both BC and AC subsamples. 

Regarding Christoffersen’s test (Table 8), BC parametric Student’s t, at 5% 

significance level, and HS (except, at 1% significance level) unconditional models, failed 

the independence test. As their VaR predictions led to too many exceptions, the 

probability of them being in a row increases, mainly when the out-of-sample size is 

small. At the end of the day, and although they are not a good fit for the PSI-20 Index 

returns’ theoretical distribution, both parametric Student’s t VaR (except for the BC 

subsample, at 5% significance level) and HS, via AC subsample, at 1% significance 

level, models turned out to be accurate to forecast VaR,. When it comes to the 

conditional volatility VaR models, all of them passed the conditional coverage test. 

However, VaR predictions given by EGARCH(1,1) using the coefficients estimated from 

the BC subsample and by GJR using the ones estimated from the AC subsample, did not 

passed the independence test, at a 5% significance level. Note that, the aim of this work 

project is to forecast VaR, instead of returns. Thus, characteristics as time-varying 
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volatility or asymmetry effects, that are relevant when testing how well the models fit the 

returns theoretical distribution, may not be significant to improve forecasts of VaR, as 

suggested by both coverage tests’ results. This is why HS, parametric Student’s t and 

GARCH(1,1) models are still able to provide good VaR forecasts, even though they do 

not capture all the dynamics present in the series. 

Moreover, recall that one of this work projects’ aims is also to find a model able to 

generate good VaR predictions using the estimated coefficients of both subsamples (  ). 

According to Kupiec and Christoffersen, all models - excepting HS -, at 1% significance 

level – and GARCH(1,1) also at 5% – are able to do so. Note that, these tests are not 

structured to make comparisons between the models, just to evaluate the accuracy of 

each one. So, for comparison purposes, Jose A. Lopez suggested a backtesting procedure 

not based “on a hypothesis-testing framework” method (1999:7), contrarily to the 

previous two, designated as Loss Function     . A particular form of this method is: 

      
           

           
           

            (17) 

which not only addresses if the actual loss, at time    exceeded the predicted VaR (which, 

recall, would be scored as 1), but also the exceedance’s magnitude, by adding the     

    2 term. As    generates individual scores for each daily VaR forecasts, the average 

loss      for the forecasting sample is given by:    
 

 
     
 
                          (18) 

Table 10: Average Loss for the Forecasting Sample
 

Because the closer the prediction 

is to its true value, the smaller the 

exceedance’s magnitude, the 

model providing the lowest    is 

preferred. Hence, according to Table 10, VaR estimates generated by GARCH(1,1), 

 Before Crisis After Crisis 

 5% 1% 5% 1% 

HS 0.51 0.5 0.52 0.5 

Parametric t 0.5 0.5 0.5 0.5 

GARCH(1,1) 0.034 0.05 0.004935 0.004931 

GJR 0.044 0.004934 0.059 0.015 

EGARCH(1,1) 0.059 0.02 0.054 0.004933 

     Note: Forecasting sample size of 204 observations 
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EGARCH(1,1) –using the coefficients estimated from the AC subsample – and by 

GJR(1,1) – using the coefficients estimated from BC subsample –, produce the lowest 

average losses (the estimated VaR exceeds, on average, its true value by 0.00049). These 

results also lead to the conclusion that, for the Portuguese stock market, asymmetry 

effects do not offer improvements in VaR estimates, being irrelevant for that aim. Given 

that, GARCH(1,1), especially at 1% significance level, is a sufficient model to forecast 

VaR for the PSI-20 Index because, although by an almost immaterial difference, has the 

lowest average loss of all. 

In the other hand, the unconditional VaR models provide the highest average losses. 

Although, under certain assumptions, HS and parametric Student’s t are accurate models 

to predict VaR, the fact of not capturing the time-varying volatility seems to lead to a 

higher forecast error, so that modeling it may improve the results after all. 

5. CONCLUSIONS 

The aim of this work project was to find a useful model for the Portuguese risk 

managers more accurately predict one-day Value-at-Risk for 2014. For that purpose, two 

hypotheses were tested, and the conclusions are: 

1. Hypothesis    is rejected: One of the most interesting findings of this work 

project was, in fact, to conclude that misspecified models – which do not capture all the 

returns’ series dynamics – are able to produce acceptable VaR estimates. Recall that VaR 

is just the   th 
or 99

th
 percentile of the returns’ distribution, so it is possible to correctly 

specify such quantile’s distribution but misspecify the whole one. Therefore, even though 

parametric Student’s t VaR does not account for time-varying volatility and 

GARCH(1,1) does not capture the asymmetry effects present in the data, both models 

provided good VaR estimates for PSI-20 Index. 
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2. Hypothesis    is not rejected: According to the unconditional and conditional 

coverage tests, all the conditional volatility VaR models and parametric Student’s t , at 

1% - and GARCH(1,1) also at 5% - significance level, are able to produce accurate VaR 

predictions using both before and after crisis subsamples’ estimated coefficients. 

 Moreover, according to Loss Function based backtest results, VaR estimates of 

GARCH(1,1) - at both significance levels - and EGARCH(1,1) at 1% significance level 

(using the coefficients estimated through the after crisis subsample) and GJR(1,1), at 1% 

significance level (using the coefficients of the before crisis subsample) generate, on 

average, practically the same deviation from the actual loss. Therefore, including 

asymmetry effects is not relevant for VaR forecasting purposes, in the Portuguese stock 

market, as modeling conditional volatility through EGARCH(1,1) or GJR(1,1) does not 

provide any advantages over GARCH(1,1). Besides, as conditional volatility models 

outperform the unconditional ones - because the exceptions generated by HS and 

parametric Student’s t VaRs are, on average, higher than the ones from the remaining 

models -, one can conclude that accounting for time-varying volatility is relevant for PSI-

20 Index, as it improves its VaR estimates. 
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