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Abstract

OutSystems Platform is used to develop, deploy, and maintain enterprise web an
mobile web applications. Applications are developed through a visual domain specific
language, in an integrated development environment, and compiled to a standard stack
of web technologies. In the platform’s core, there is a compiler and a deployment service
that transform the visual model into a running web application.

As applications grow, compilation and deployment times increase as well, impact-
ing the developer’s productivity. In the previous model, a full application was the only
compilation and deployment unit. When the developer published an application, even
if he only changed a very small aspect of it, the application would be fully compiled and
deployed.

Our goal is to reduce compilation and deployment times for the most common use
case, in which the developer performs small changes to an application before compiling
and deploying it. We modified the OutSystems Platform to support a new incremen-
tal compilation and deployment model that reuses previous computations as much as
possible in order to improve performance.

In our approach, the full application is broken down into smaller compilation and
deployment units, increasing what can be cached and reused. We also observed that
this finer model would benefit from a parallel execution model. Hereby, we created a
task driven Scheduler that executes compilation and deployment tasks in parallel. Our
benchmarks show a substantial improvement of the compilation and deployment process
times for the aforementioned development scenario.

Keywords: Incremental Deployment, Incremental Compiler, Deployment pipeline, Out-
Systems, Large Projects
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Resumo

A plataforma OutSystems é usada para o desenvolvimento, deploying e manutenção
de applicações web empresariais e móveis. As aplicações são desenvolvidas através de
uma linguagem visual de domínio específico, em um ambiente integrado de desenvol-
vimento, e são compiladas numa pilha convencional de tecnologias web. Na plataforma,
existe um compilador e um serviço de deployment que são responáveis pela transformação
do modelo visual numa applicação web funcional.

Com o crescimento de uma aplicação, os seus tempo de compilação e deployment tam-
bém aumentam, o que afecta a produtividade do programador. No modelo anterior, a
aplicação era a única unidade de compilação e deployment. Quando uma aplicação era
publicada, ainda que o programador tivesse realizado uma alteração de muito pequena
dimensão, a aplicação seria sujeita a um processo completo de compilação e deployment.

O nosso objectivo é reduzir os tempos de compilação e deployment para o caso de uso
mais comum, em que o programador efectua pequenas mudanças numa aplicação antes
despoletar a sua compilação e deployment. Nós modificámos a plataforma OutSystems
para suportar um novo modelo de compilação e deployment incremental que reutiliza
resultados de publicações antecedentes, de forma a reduzir processamentos redundantes
e consequentementemente os tempos de espera.

Na nossa abordagem, a modelo de aplicação é partido em unidades de compilação
e deployment mais pequenas, aumentando, assim, o que pode ser aproveitado por pu-
blicações posteriores. Observou-se, também, que este modelo mais fino benificiaria de
um modelo de execução paralelo. Nesse sentido, criou-se uma unidade de execução de
tarefas que escalona as tarefas de compilação e deployment tirando partido paralelismo.
As nossas métricas revelam uma redução substancial dos tempos de compilação e deploy-
ment, para os cenários acima mencionados.

Palavras-chave: Deployment incremental, Compilação Incremental, Deployment Pipe-
line, OutSystems, Projectos de grande dimensão
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1
Introduction

OutSystems is a company with a single product, the OutSystems Platform. The platform
is used to develop standard enterprise web applications or mobile web applications that
are scalable, easy to maintain and easy to change. The developer designs applications
on an integrated development environment, on the top of a proprietary visual domain
language. An application is compiled to a web application that runs over a standard web
technology stack.

1.1 Motivation

Over the last years, the applications developed with the platform grew in complexity and
number. Such growth exposed the compiler and deployment limits, as the compilation
and deployment times reached uncomfortable levels. Large applications take a signifi-
cant amount of time to compile, which affects negatively the developer’s productivity.
Our goal with this project is to identify the inefficiencies of the compilation process and
propose a incremental compilation model that reduces compilation times.

Lets consider a scenario where Dave, a seasoned developer, is working on a supplier
management web application. The current task on his backlog is to implement a inter-
face that displays a table that lists the supply contracts celebrated with a given supplier.
Requirements dictate that the table must contain a column for the customer’s name along
the dates in which the contract is valid. In this table, contracts are identified by an inte-
ger, that figures in the first column and if it is clicked on, shows a more descriptive view
of that contract. Dave implements this interface and the underlying logic, and deploys
the application in order to test what he has just changed. Despite the simplicity of these
changes, the supplier management application is very large, and the platform takes about

1



1. INTRODUCTION 1.2. Dissertation Context

3 minutes to compile and deploy it.

Compilation is an event that disrupts Dave’s workflow, since it breaks his cognitive
flow, forcing him to temporarily switch his attention from the problem he is working on,
to the output produced by the compiler. This leads Dave to postpone the compilation
process as much as possible.

1.2 Dissertation Context

This is a proposal for a master dissertation, that is being carried out in the context of
OutSystems Research and Development Team (R&D), together with Faculdade de Ciências e
Tecnologia de Lisboa (FCT).

OutSystems platform contains an integrated development environment (IDE) that has
been developed in the last 13 years, and currently comprises than 1.9 million lines of
code.

The platform is used to develop typical enterprise web applications connected to an
SQL database. Easy to learn, easy to change, and scalability, are the three core values of
the platform. Development is made under an integrated environment, using a visual do-
main specific language that covers all the aspects of a standard web application, includ-
ing the data model definition, the business logic, the user interface, and the integration
with other systems.

1.3 Problem Identification

In the last years, the applications developed on the top of the platform have become
bigger and more complex, and their compilation times increased as well. Reducing com-
pilation time has become a priority. This is not, however, a easy goal, for the process that
accomplishes the compilation and deployment of the applications is a complex pipeline
that currently has got 320 thousand lines of code.

The pipeline consists in three phases: Code Generation, Compilation, and Deployment.
In prior work, the OutSystems R&D team optimized some parts of the process to use
incremental strategies, achieving substantial gains in its efficiency (about 40% faster).
The other phases, however, were not so optimized.

The problem is that the application as a whole is currently the only Deployment Unit.
Consequently, even a superficial change on an already deployed application, triggers a
full compilation and deployment, that does not reuse work performed in previous runs.
Our goal is towards a more granular model where parts of application can be compiled
and deployed separately using incremental mechanisms.

2



1. INTRODUCTION 1.4. Goals

1.4 Goals

With this work, we intent to optimize the compilation and deployment process so that
developers can see the effects of their application changes as fast as possible, even in large
projects. In order to do so, we attack the problem identified in the previous subsection,
by decomposing it into the following subgoals:

1. Break down an application into smaller deployment units;

2. Propose and implement an incremental compilation and deployment model;

3. Design an solution that has minimal impact in the existing compiler and deploy-
ment code base.

1.5 Document Organization

The rest of the document is structured as follows:

Chapter 2: Before we tackled the problem we have in hands, we had made some re-
search about akin problems and challenges, both in the industrial and the academic con-
text. This chapter is dedicated to the synthesis of our research.

Chapter 3: The purpose of this chapter is to provide all the context that is necessary to
understand the problem and the proposed solution. Here, we introduce the platform,
we describe the pipeline and we finally identify the main problems with it, guided by
metrics, that not only regard the pipeline process, but also the development patterns.

Chapter 4: In the chapter, we describe our proposed model, and justify our choices.

Chapter 5: We detail implementation aspects and describe what was needed to change
on the former pipeline implementation in order to leverage the proposed model.

Chapter 6: In order to demonstrate the improvements yielded by our new model, we
performed some benchmarks. The chapter is dedicated to the discussion of those mea-
surements.

Chapter 7: We make a retrospective of all the work that was accomplished and we look
at the key insights in our implementation.

3
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2
Related Work

In this chapter we describe topics related to out core theme, which is partial and in-
cremental compilation of an application. We first describe and help understand how
programming language mechanisms can improve the process of code compilation. We
describe some module mechanisms present in programming languages, and argue about
the properties they convey into the (partial) compilation of an application.

We also describe how compiler related tools tackle the problem of efficiently compil-
ing fragments of programs, the so called compilation units. We describe and relate our
problem to the strategies of differential compilation that have been put to use in widely
used tools. We considered the standard UNIX tool Make, the Vesta the Eclipse Java Com-
piler.

Our research also lead us to more generic computational approaches, namely the re-
sults in incremental computation, that inspired the core of our partial compilation model.
From this type approaches, we focused on the Umut Acar’s Self-Adjusting computation
model.

2.1 Modules in Programming Languages

In a programming-in-the-large context, good programming and software engineering
practices recommend the decoupling of parts of an application, and the distribution of
functionality by small and manageable components. It is commonly accepted that the
wise modularization of application code, as promoted by software development method-
ologies, improve maintenance, safety, readability, and flexibility on using third party
components.

From early on, it was identified the necessity of optimizing the recompilation process,

5



2. RELATED WORK 2.1. Modules in Programming Languages

by exploiting the capability of separate compilation, leveraged by the modularization
facilities provided by the languages. [Car97]. Tools like Make would function upon the
basis of the "Conventional Recompilation Rule"[Tic86], which states that a compilation
unit must be recompiled whenever:

(1) the compilation unit changes, or

(1) a context changes upon which the compilation unit depends.

However, those conditions are not strong enough to minimize redundant computa-
tions. Under this rule, a module that depends on a definition whose signature did not
change is unnecessary compiled, because the context it depended on changed.

A more granular model is proposed by Walter F.Tichy and Mark C.Baker[Tic86] that
minimizes the set of modules to compile in recompilations. The idea is that the smart
compiler computes for every pair of modules (Ma,Mb), where Ma depends on Mb, it is
computed a context Cab for module Ma that comprises all the free identifiers belonging
to Mb. Whenever Mb is modified, the compiler recomputes a change set Gb that contains
all the declarations whose signature did change relatively to the last version of the mod-
ules. The module Ma is only compiled when Cab

⋂
Gb 6= ∅, i.e. , when it changes or the

signature of a definition it depends changes.

C

The C language has a very simple module system. Importing a module consists in in-
serting the code in the file. Modules in C do not create namespaces, so name clashing
occurs whenever two modules contain definitions that have the same name. Program-
mers typically solve this problem by prefix a definition name with the module’s name.
Information hiding is possible through a static annotation. A static type is internal to the
module where it is defined.

Java

Packages and Classes are the primitives of the Java’s module system. A Java project
typically comprises a set of packages that aggregate classes in a cohesive and logical way,
as defined by the developer.

In Java, a Compilation Unit exists under a package, comprises a set of types declara-
tions and declares external types that it imports, possibly from other packages. A type
can either be class or a interface. Compilation in Java compiles types of a Compilation Unit
(commonly a Java file) into class files [GJS+13].

Before a class can be instantiated, it has to be loaded, linked an initialized [LYBB13].
Loading a class consists in searching for the class file correspondent to the class that is
being loaded and from it extracting the Class object that will represent that class.

6



2. RELATED WORK 2.2. Build Automation Tools

Linking takes a binary form of a class or interface type and combines it into the state
of the Virtual Machine. During linking, symbolic references to other classes may be re-
solved, triggering the Load-Link-Initialize process for each class that is resolved. Alter-
natively, an Virtual Machine implementation may choose to defer resolution, resolving
symbolic references only when they are needed.

Finally, in Initialization, the class’s static fields are initialized and its superclass’s fields
are initialized too.

ML

In ML, there is a difference between open modules and closed modules. A closed module
is a module which has no free terms. A module that is not close is opened. A module’s
signature, beside its exports, enunciates also the signatures of modules that it depend.
Before a module can be used in a certain context, it has to be instantiated. Instantiation
consists in replacing the free terms required by the module with concrete modules that
respect the signatures.

Linking

Linking is the process that glues separate compiled modules, through their interface, into
a full application.

Modules may be compiled independently but they have to be glued together some-
how; the step that accomplishes this is Linking. During compilation, a program written in
a source language is translated to a new language, while Linking combines modules, by
resolving dependencies and collapsing them into an executable unit [TGS08]. However,
as we’ll see, linking can also happen during runtime.

Compilation and linking is an extensive subject that is handled differently by different
languages. We’ll reduce our scope to languages that compile to native code, such as C
or OCaml. In languages that compile to machine code, modules are ultimately compiled
to libraries, which can be either shared or static and whose representation depends on
the underlying Operative System. When a program is linked against static libraries, an
executable is created that includes both the code of the program and the library to which
it is linked. Shared Libraries, on the other hand, are loaded by the operative system’s
linker before the program is loaded – alternatively, shared libraries can also be load at
runtime through wrappers to linker provided by the system [BWC01].

2.2 Build Automation Tools

The development tools under the category of Build Automation Tools share a considerable
amount of characteristics with the OutSystems pipeline. Their purpose is to build an ap-
plication from a set of primitive compilation units; their main feature is to manage the
dependencies between the different compilation units, in order to, efficiently orchestrate

7



2. RELATED WORK 2.2. Build Automation Tools

the building process; they usually resort to external tools like compilers and databases to
implement primitive operations such as code generation, linking, testing, and configura-
tion. We relate our approach, that of a new model for the OutSystems compiler pipeline,
with some of the more commonly used tools, and describe how they work.

2.2.1 Make

Make is a Build Automation Tool whose execution is driven by a configuration file, the
makefile, where a sequence of rules describe how the different parts of a project are
built [Fow90].

The basic rule mechanism is supported by the existence of target and source files. A
rule, as seen in the example 1 below, is fired when there is an active dependency to it. By
default, the execution of make starts with the target all.

Example 1. huffman.o: huffman.c heap.o

cc -Wall -std=c99 -o huffman huffman.c heap.o

A rule declares a sequence of dependencies (possibly empty) that if are all active
trigger the rule. A dependency can be either the head of other rule or a filename. In
the case of the filename, it’s considered to be active if it changed since the last make’s
execution. Make does such by using the filesystem’s metadata. When a rule is triggered,
the designated system command is executed. The rule of example 1 states that target
huffman.o is recompiled whenever huffman.c or heap.o become active. Its second
line indicates which system commands have to be executed so that the target is generated.
This rule language, together with the conventions of targets and sources being files in the
filesystem, and using timestamps, results in a very flexible and simple to use compilation
tool. Moreover, it permits granular build models that only do what is strictly needed,
reusing as much as possible from previous builds. If the application is very monolithic,
however, it will not benefit much of the finer build mechanisms that make allows.

Complex building may involve diverse tasks such as running different compilers,
generating documentation, updating databases, among other activities that we left aside
[Baa88]. Make is able to deal with such scenarios, because it is not sensible to the se-
mantics of the tools and files that it manipulates, it just blindly executes a sequence of
commands defined by the developer, for each unit that is assumes as changed.

Make has some disadvantages too. Stating the dependencies between compilation
units is cumbersome, time consuming, and error prone. Also, make is not aware of the
semantics of files and tools that it manipulates, therefore rules cannot considerate units
finer than files. Nonetheless, it is heavily supported in the UNIX environment and its
conventions, and has inspired a broad range of modern tools such as Rake, Vesta or Ant.

2.2.2 Vesta

Vesta is a software configuration management tool (SCM) targeted at the development of
very large software projects[HLMY99]. This tool merges Version Control with Automatic
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Building. Vesta is a complete solution that supports many aspects of the development of
big projects. Vesta is an extensive tool and we only describe here the automatic building
aspect where there is a significant intersection with the scope of our work.

Diagram 2.1 shows the parts of Vesta’s architecture that are relevant to us. One im-
portant design decision in Vesta is that all sources are immutable, that is, every time a file
is edited, a new version is created while the old one is kept.

Vesta, as well as Make, is not sensible to the semantics of the compilation units that it
manipulates. Versions of sources and tools are immutable, what allows Repeatable Builds:
any version can be rebuilt at any time in future. Building is driven by System Models,
which are descriptions that express how parts of the project are built and how to combine
those parts into a final unit; it is a more sophisticated makefile counterpart. When a tool
is spawned, a cache entry is created in Function Cache Server, that maps the name of the
tool, along with the arguments with which it was called, to the set of references that
point to the artifacts that were generated. We should recall that everything is immutable
in Vesta, therefore we can be sure that the files that are referenced don’t change, in any
circumstance.

Repository
Server

Underlying
File

System

System 
Models

Client Host

Function
Cache
Server

Tools

Runtool
Server

Evaluator

Figure 2.1: Vesta’s architecture

A System Model describes how a certain application is built, and it is interpreted by
the Evaluator, that communicates with other components in order to accomplish what
is expressed in the system model. Tools are requested by the Evaluator to the Run Tool
server, that spawns them inside an encapsulated process. Processes are encapsulated
by Vesta so that file accesses to disk by those tools can be captured and dependencies
subsequently inferred.
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2.3 Eclipse Java Compiler

The Eclipse Java Compiler is an incremental compiler that compiles only what changed
relatively to the previous compilation. The rational is that a modification of the source
of the program should contribute proportionally to compilation time relatively to the ex-
tension of such modification. Naturally, a compiler that follows this model has to cache
results for each unit that it compiles. This technique exploits the fact that typically be-
tween successive compilations there is a considerable amount of redundant work, unless
the program was radically changed.

Eclipse JDT, a set of development tools shipped with eclipse, contains an incremental
compiler, the Eclipse Compiler for Java (ECJ). ECJ compiler takes the idea further: it is
able to run valid fragments of source code even when the whole file doesn’t compile, as
long the invalid excerpt is not reachable from the fragment that is to be ran.

ECJ is based on the incremental compiler of VirtualAge for JAVA an integrated devel-
opment environment for JAVA developed by IBM, but that was discontinued.

We are dealing with a compiler that has been designed and adapted to support incre-
mental compilation, due to this being a promising path towards a faster compilation; it is,
thus, of our interest to understand how other compilers achieve incremental compilation
and, hopefully, adapt some of their ideas to our work.

2.4 Incremental Computation

So far, we’ve been analysing how some tools approach the problem of orchestrating com-
plex build processes efficiently. The tools that we’ve studied were designed to a specific
use case, however, it is notable that they share some characteristics: the use of depen-
dency graphs to infer a minimal set of units to be compiled or built, and the caching of
resources and their subsequent reuse. The computation model that we present follow, it
is the more generalist of the models and therefore can be applied to far wider range of
problems, although, we’ll also see that this model articulates exactly the aforementioned
notions but in a more generic form.

An incremental program aims to reduce its execution time by avoiding computations
that don’t depend on the changes of its input[*]. The less sensible a program is to small
changes of its input, more benefits this technique brings to its running times. Two no-
table examples are Stylesheets and compilers [Aca09].A change of a cell in a Stylesheet
shouldn’t lead to the re-computation of cells whose expression doesn’t have the changed
cell as operand. Concerning the subject of our study, the Compiler, small changes to inde-
pendent modules or isolated functions shouldn’t provoke the recompilation of modules
or functions that not depend on the affected units, provided that the interface remains
unaltered[SA93][Tic86].
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2.4.1 Self-Adjusting Computation

Self-Adjusting computation is an incremental computation model that was introduced by
Umut Acar, as the theme of his dissertation for Phd, in 2005[Aca05]. An adaptive program
minimizes what is recomputed in response to small changes of its input - relatively to the
preceding execution. As an adaptive program executes, dependencies between data are
captured into a dependency graph, which is used, in further executions, to infer what needs
to be recomputed. This is the most generalist model that we’ve discussed so far and can
be applied to a wide range of problems.

In this model, the smallest changeable unit is the Mutable Reference. It can be either a
memory cell or an expression that uses a value that is computed from another mutable
reference. Mutable References and their dependencies form a Dynamic Dependency Graph,
which drives changes propagation. Changes Propagation is the mechanism by which changes
are propagated through the graph, triggering, along its path, re-evaluation of expressions
that depend on changed data and subsequently marking them as changed too.

A functional program can easily be transformed into an adaptive program, by adapt-
ing it to use a set of primitives: mod, read, write; and a set of meta-primitives: init, change
and propagate[ABH01]. Any powerful enough underlying type system can enforce the
correct use of those primitives [Car02]; for example, forcing the expression of a mod or a
read to terminate with a write (soon we’ll understand why and how). Example 2 exem-
plifies an instantiation of this model as an Ocaml’s library.

Example 2.
module SelfAdjusting :

sig

type a’ mod

type a’ dest

type changeable

val mod: (’a * a’ -> bool) ->

(a’ dest -> changeable) ->

a’ mod

val read: a’ mod * (a’ -> changeable) -> changeable

val write: a’ dest * a’ -> changeable

val init: unit -> unit

val change: a’ mod * a’ -> unit

val propagate: unit -> unit

end

Types are opaque and they enforce to some extent a correct use of the library. Mutable
references have type (a’ mod). Write can only be applied to (a’ dest) values, with obligates
writes to be call inside mod and read expressions, that is, a write is made under the
context of a mutable reference expression. These primitives are just functions and can be
implemented in any language that supports functions as values.

11
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Mod creates a mutable reference. Its first argument, whose signature is (’a * ’a -> bool),
it is a comparison function that defines a conservative equality class between elements
of generic type ’a; its role is testing if the reference’s value, after an explicit change, was
effectively changed, in other words, if the new value is really different from the previous
– this avoids triggering unnecessary changes propagation. Along with that function, it
also receives an initializer function that initializes the mutable reference with a value.

Read reads a value from a mutable reference, its first argument, and applies it to an
expression passed as second argument. This expression has return type "changeable",
suggesting that it should terminate with a write: unless the value of the mutable reference
is ignored, an expression that reads that value becomes dependent upon the mutable
reference that it refers.

Write writes a value to a mutable reference and commits a dependency between the
node that is read and the node that is written. Writes only appear in the context of read
expressions or mod expression.

Dependencies: They arise from the use of reads, writes and mods. As the program is
evaluated, a dynamic dependency graph is constructed, as those primitives are called.
An edge is added whenever a write is committed in the context of a mod or read expres-
sion. The edge’s source node is the mutable reference that is read, and its incidence is the
mutable reference that is written. Edges are labeled with time spans (t0, t1), where both
ti are time stamps; t0 is assigned before read’s expression is evaluated, and t after write
expression is committed. Any totally ordered infinite set T defined on relation≤T is a valid
candidate to time stamp’s domain – It’s not specified a concrete structure. We say that
edge e1 is contained in e2 if TS(e1) is within TS(e2).

let x = mut (==)

(fun m -> write(m, 2))

let y = mut (==)

(fun m -> write(m, 3))

let z = mut (==) (fun m ->

read y (fun valFromX ->

read z (fun valFromY ->

let w = valFromX + valFromY in

write(m, w))))

y

Z

x

Figure 2.2: A functional self-adjusting program and the respective dynamic dependency graph

Example 3.

Changes propagation: A mutable expression’s value is changed by calling the meta-
primitive change, and propagations are triggered by propagate. During propagation, ex-
pressions that depend on changed mutable references are re-evaluated and the depen-
dency graph is updated: dependencies may become obsolete and new dependencies may

12
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emerge, consequence of the conditional expressions that may entail distinct call trees that
depend on the input. When a certain mutable expression is recomputed, all edges that
are within that expression’s time span become obsolete and subsequently are removed
from the graph.

In 2007, Ancar generalizes this mechanism to imperative programming, by extending
the model with a new concept: traces. A trace is a sequence of reads and writes which
has as target certain mutable reference, which imply a memorized value [AAB08]. Traces
are comparable to multi-version mechanism in a database or persistent data structures.
Basically, instead of memorizing the value of an expression, it stores the log of writes and
reads that target that expression.
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3
OutSystems Context

Our description of the platform is focused on the components that have a role in the
publication process. As our ultimate goal is to improve the development experience,
it becomes necessary to comprehend the developer’s workflow as well, hence we also
briefly describe what developing with the OutSystems Platform consists in. Finally, we
provide an in-depth description of the pipeline, the process that compiles and deploys an
application developed with the platform into a typical Web application.

An application is deployed to either one of two currently supported stacks: .NET or
JAVA. Under the context of this work, the differences between the two are not significant,
so we just focus on the .NET one. In the stack we used for this thesis, data is stored
on MICROSOFT SQL SERVER DATABASE, server logic is leveraged by ASP.NET FRAME-
WORK (using the C# programming language), and the application is hosted by INTERNET

INFORMATION SERVER(IIS).

3.1 The OutSystems Platform

The OutSytems Platfom is an high-productivity tool used to develop Web Applications
and Enterprise Web Applications. The platform offers an Integrated Development En-
vironment, the Service Studio, where the developer develops, maintains and triggers the
compilation and the deployment of the applications he works on. In figure 3.1 it is shown
how it is to work with Service Studio during a typical development period. All the de-
velopment is made through a Visual Domain Specific Language that provides graphical
metaphors with which the developer defines the data model, composes user interfaces,
and programs business logic. Those metaphors are the OutSystems language elements.
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Figure 3.1: A typical development session on Service Studio

Despite the simplicity of developing with the OutSytems Platform, its language is ac-
tually very rich and extensive. Due to its dimension, it would be too overwhelming to
focus on the whole language, therefore we chose to prioritize a subset of its elements,
under the criterion that the ones that are most frequently changed have more relevance
to the compilation times.

3.1.1 The Language Elements

The OutSystems Platform provides a proprietary Visual Domain Specific Language that al-
lows the developer to work on all aspects of an application. The language aggregates
a set concepts and metaphors that abstract the development of a application from the
implementation details. To narrow the scope, we focus just a subset of those elements,
justifying our choice with the developing metrics that are given in section 3.2. The el-
ements are: Espace, Action, Entity, WebScreen, WebBlock, Stylesheet, Structure, Image, and
Javascript.

Espace

An Espace may be both a running deployable application and a module. All the elements
we further describe are contained in it. As a module, an Espace may export a set of ele-
ments which may be used by other Espaces. An Espace that imports an element is called
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Figure 3.2: The definition of an action

a Consumer, whereas the one that provides the element is a Producer. Modules are used
to aggregate related functionality wrapped in a pluggable interface so other systems can
reuse it, which makes them an fundamental building block for more complex systems.

Currently, the Espace is only deployment unit.

Action

Actions are used to encode business logic, through the composition of visual elements,
instead of the traditional programming languages that are text-based. Visually, an action
resembles a graph, where the nodes are the action elements, and the control flow arrows
are the edges.

An Action may be invoked from two different contexts: when some event on a screen
is triggered: for instance, when a screen is loaded or when a button in a WebScreen is
clicked on; or they may appear somewhere in the middle of some other action, as an
action element itself.

Identified by a name, an Action defines an interface and an implementation. The
interface specifies the action’s inputs and outputs. Inputs are values passed to the action
at its invocation. Outputs are values that the action produces and that can be used by
action elements on the context where the action was called. Values can be entity instances
or basic types such as text, integers, dates, etc.

Developers define actions by connecting action elements using arrows that drive the
control flow. An action element is the basic building block, that may be a control struc-
ture, such as an if or foreach, action calls, queries to the database, among others.

As an example, consider the action shown in Figure 3.2. The goal of the action is to
seed a database with data that is loaded from an Excel file. The execution flow always
departs from element Start and ceases at an End element. When the action terminates, the
execution flow continues in the context where the action was called from. In our example,
when this action is triggered, an SQL query is executed that selects all clients from the
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Figure 3.3: Entity’s attributes and actions Figure 3.4: Entity’s meta-information

database (a query element is represented by a stack of three purple cylinders). Then, it is
followed by an IF element (whose icon is a losang) that checks if the list returned by the
query is empty; if it is not, the action ends, otherwise, the execution continues: the Excel
file is loaded. Each record in the file is iterated and inserted in the database. The orange
element, labeled as "CreateClient", is an action call to one of the default actions that are
automatically created for each Entity.

Entity

An Entity abstracts and encapsulates access to a database’s table. It is described by a
list of attributes, that correspond to database columns, and meta-data. For each defined
entity, there is a set of Actions that perform basic CRUD (Create, Read, Update, Delete)
operations over entity instances.

Web Screen

Web Screens are elements used to define dynamic web pages. Associated to a Web Screen
there are variables, widgets and actions. The scope of screen local variables include the
screen actions and the screen definition. Widgets are UI components that define an inter-
face, which includes typical items like "input boxes", "buttons" or "links".

Web Block

A Web Block is a reusable web screen component that is used to build modular interfaces.
Just like the Web Screen, they are composed by Web Widgets, however, they are not web
pages and they do not have an autonomous existence: they either exist inside a Web-
Screen or other Web Block. A Web Block depends on the parent component in which it is
contained, which can be a Web Screen or a Web Block.

Contrary to Web Screens, Web Blocks are exportable, which means that the developer
can define Web Blocks and share them between Espaces. They are a modular approach to
interfaces. Web Blocks can also have logic associated to them by providing Actions that
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Figure 3.5: Developer iterating a Web Screen in Service Studio

Figure 3.6: A Web Block that modularizes the user context panel

allow their manipulation.

Stylesheet

Cascading Style Sheets as defined by W3C. The following elements can have a CSS asso-
ciated them: Web Screens, Web Blocks, Themes. A CSS can be global or local. A global CSS
affects all UI elements of the application, while a local CSS affects particular elements,
such as a Web Screen or Web Block.

Structure

Structures are containers that are used to store and manipulate data in memory, during
an action execution, for example. A Structure instance is similar to an entity instance in
the sense that both are composed by a set of attributes, however, contrary to the entity
counterpart, a Structure instance is ephemeral as it only exists in memory.

Image

An Image is a resource. The supported file types are png, jpg and gif. Images can have
three types: static, external, and database. Static images are included in the Application
Model; database images are stored in the database, whereas external images are stored
somewhere outside of the application.
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Figure 3.7: A Structure

Javascript

A Javascript is a Javascript snippet written by the developer. Typically, it is used when the
developer wants to implement complex client logic that could not be implement uniquely
through the facilities offered by the visual language. Javascripts are encoded in the appli-
cation model in raw.

Other Elements

We did not consider all the OutSystems DSL since that would make the problem too ex-
tensive for a dissertation context. Moreover, the elements that we chose cover most of the
developers workflow, as proven at the section about the platform usage patterns.

3.2 Developer Workflow

Understanding the user work-flow lets us to appreciate better the impact of publication
times on the development experience. From previously collected metrics about the de-
velopment patterns, we identify the model elements’ subset that are most often changed
between publications. This metrics tells what we should prioritize in order to maximize
the impact on perceived publication times and consequently on developer’s experience.

3.2.1 Change-Publish-Validate cycle

The Figure 3.8 illustrates the typical developer’s interactive workflow, where the devel-
oper changes the application model using Service Studio, publishes using the develop-
ment environment, and validates the results by testing the deployed application. This
cyclic process goes on during development and maintenaince phases, which are basically
the whole application’s lifetime.

In the OutSystems Platform, editing and validation of the application model is per-
formed using Service Studio, while code translation and optimization is the job of the,
so called, Compiler Service. During a development session, Service Studio constantly val-
idates the modification that are applied to the model, and alerts the user with error and
warning messages in realtime, as shown by Figure 3.9. An Action call that does not agree
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Figure 3.8: Developer’s Workflow

Figure 3.9: ServiceStudio notifying the user to errors in the model

with the callee’s interface, or a web link that refers to a Web Screen that has been deleted,
are some examples of errors that may occur. When there are no more validation errors,
the developer is free to trigger the publication from the Service Studio.
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Figure 3.10: Top elements most changed between consecutive versions

3.2.2 Platform Usage Patterns

In order to improve the developer’s experience we need to know which are the actual
usage patterns of the platform. We now show some metrics, previously collected by the
OutSystems team, for a typical set of projects, and obtained by analysing which are the
most changed elements, and hence that are most often compiled.

These results account for 4715 publication operations and 15 different projects. From
this data, we obtained the probabilities of each element being changed between succes-
sive publications, and present it in figure 3.10. The results reveal that the most frequently
changed elements are in the UI components instances, such as Web Screen, Web Block,
Stylesheets, and Javascript. These results are not surprising since the UI elements are the
ones that require the largest amount of fine-tuning, given their relevance to application
user’s adoption. It is worth noting that in more than half of publications, a least one Web
Screen is changed.
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Figure 3.11: OutSystems Platform Server’s architecture

3.3 Platform Architecture

The OutSystems Platform has two major components: the Service Studio, the integrated
development environment where the developer creates and develops applications, and
the Platform Server, where those applications are compiled and deployed. Both the com-
pilation and deployment are aggregated in a single action called the Publication, which is
performed on the Platform Server side.

Inside Platform Server, there are smaller components, that assume different responsi-
bilities in the publication, and cooperate to achieve an application’s publication. Figure
3.11 details both the components and the interfaces that bind them. The Service Center acts
as a facade between Service Studio and the remaining components of Platform Server. For
the particular case of the Publication, the Service Center communicates just with the Ser-
vice Center, which orchestrates most of the publication process. Figure 3.14 is a sequence
diagram that explains the control and data flow between components as the publication
unfolds, to help the reader in the description we are about to make.
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Figure 3.12: An example of the structure of a deployed application.

3.3.1 Publication Overview

The publication of a publication is a process that consists in transforming the Application
Model into a standard ASP.NET application and deploying it to the application server.
Typically, the ASP.NET application has a structure akin to the one that is shown in figure
3.12. The result of publication comprises code in different languages and file formats. It
includes: ASPX files and ASCX files to define the web pages of the application, Stylesheets
and Javascript scripts to define the client’s behaviour, DLL assemblies that contain the
application logic, and SQL scripts to define changes to the meta-model and migrate data
and database schema.

These files are generated from Compilation Units, which are the model elements that
are transformed in files of some sort. Examples of Compilation Units are the WebScreen
and the Action. Other important concept is the Deployment Unit. A Deployment Unit is a
model element that can be compiled and deployed independently. Currently, only the
Espace is a Deployment Unit.

An Espace is compiled into three assemblies: Main, CodeBehind, and Proxy. Model
elements that may be consumed by a Consumer Espace are compiled into the Main as-
sembly (which are the majority), whereas CodeBehind receives everything else that is
private to an Espace (in this case, only the WebScreens). The Proxy assembly acts as layer
between a Consumer and a Producer, by which the former consumes the elements exported
by the latter. Further on, we will not care about the Proxy’s role, because it is very specific
and out of the context of this work.

Figure 3.13 shows the three phases that a publication goes through: Code Generation,
Compilation, and Deployment. Publication is triggered in the Service Studio. It begins with
a publication request message carrying the Application Model being sent to the Service
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Center. The Service Center drives the Deployment Controller Service throughout the pro-
cess, dispatching the publication phases as the feedback it receives from the Deployment
Controller Service is positive.

Figure 3.13: Publication’s phases

The Code Generation phase begins; the Deployment Controller Service delegates the gen-
eration of sources to the OutSystems Compiler. Associate to each model element that is
a Compilation Unit, there is a set of transformation processes that generate the files. The
OutSystems compiler handles the application model and recursively treats all model el-
ements, executing all applicable transformations. The files generated in this phase are
stored in the Applications Repository. The Application Repository is where applications’
code is compiled and stored to be deployed.

After the compiler finishes translating the model, the Deployment Controller Service
invokes the C# compiler to compile the source files into the set of assemblies mentioned
above. The compiler groups the files among the assemblies they belong to. The first
assembly that is compiled is the Main, followed by the compilation of the CodeBehind,
which is then linked against the Main. These assemblies are also stored in the Application
Repository.

Generated files also include database scripts that update the database schema and
data so that it conforms with the new data model. Scripts are executed at publication
time, thus updating the data-model in the database as well as the application’s meta-data
in the database.

The Deployment Controller Service acknowledges the Service Center of the termination
of the first two phases of the publication process, which then triggers the deployment
through the Deployment Controller Service.

The Deployment Service deploys the application to the Application Server. Recall that
the application was stored in Application Repository, and that the Deployment Service re-
quests the generated application to the Deployment Controller Service, which produces an
archive containing all the deployable files. The last step of the publication process is
taken by the Deployment Service, that makes the Application server (IIS) aware of a new
application version.

The Service Center gives feedback to the developer in Service Studio about a new ver-
sion running in the attached server, or about any kind of error in the publication process.
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Figure 3.14: Publication’s Protocol

3.3.2 Compiler Pipeline per Model Element

The description of the compiler pipeline that we gave above does not consider the whole
detail of the smaller processes performed over each particular kind of elements. In this
section, we complete the description of the pipeline with the details of the compilation
operations on individual model elements. All these descriptions should be understood
in the context of the general compiler pipeline described at subsection 3.3.1.

Appendix A shows a comprehensive graphical explanation of the pipeline.

Espace pipeline

Each Compilation Unit contained in a Espace is translated to a set of files inside the Ap-
plication Repository. From this set of generated files, C# source files are compiled by the
C# compiler into either the Main assembly or the CodeBehind assembly, depending on
whether that element is exportable or not. During Deployment, the deployment service
copies the application repository to the application server, SQL scripts are executed, and the
server is signaled that a new version of the application is available and running.
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Figure 3.15: Overall diagram of pipeline

Action pipeline

Actions are directly transformed into C# code. A cs file is created for each Action, which
are compiled together into the MAIN assembly, in the case of user-defined actions that can
be used by other ESpaces, or into the CodeBehind assembly, in the case of Web Screen
actions.

WebScreen pipeline

During the Code Generation phase, two files are created: one aspx.cs and one aspx,
following the structure of a typical ASPX.NET application. The former contains visual
structure of the screen, that is, markup with common ASPX metadata that, among other
information, identifies the file as an ASPX page. The latter contains the server C# code
of the Actions bound to that WebScreen.

In Compilation Phase, the aspx.cs, along with all the other files of the same type, are
compiled into the Code Behind assembly. The aspx is deployed, but the aspx.cs is
not, for it was already compiled into the assembly.

WebBlock pipeline

For a WebBlock, the compiler generates an ascx and an ascx.cs. As it is with WebScreens
aspx, the ascx is the HTML document that represents the component; in ASP.NET,
these files represent User Control elements: reusable user defined blocks that are inte-
grated in broader components. The ascx.cs contains the backbend logic for the block
and it is compiled into the Main assembly; recall that WebBlocks are exportable, contrarily
to WebScreens.
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Figure 3.16: Entity pipeline

Entity pipeline

During theCode Generation Phase, the OutSystems Compiler takes an entity definition in
the Application Model and generates SQL scripts containing all the operations needed to
update the database so it complies with the new metamodel. To create those scripts, the
OutSystems Compiler inspects the metamodel on the database and identifies the minimum
sequence of SQL operations that have to be executed so the metamodel on the server
becomes coherent with the new one. In addition, C# code is also created to implement
the set of actions that are implicitly defined to manipulate instances of entities.

At the Compilation Phase, the C# source files are compiled into the Main assembly.
Next, at the Deployment Phase, Deployment Controller Service executes the SQL scripts up-
dating the database.

Structure pipeline

Structures are translated to C# source code that define their representation in memory, as
well as operations that permit their manipulation in programmatic contexts, such as in a
Action. The produced source files are compiled into the Main assembly, because they can
be exported by a producer Espace.

Stylesheets, Images, and Javascript

These elements are simply extracted from the application model and deployed along
with all the other generated files.

3.4 Differential Code Generation

The OutSystems Compiler supports two compilation modes: Integral Compilation and Dif-
ferential Compilation. It runs in Integral Compilation mode when it has to re-compile the
whole application model, typically on the first time an application is published, or when
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a differential publication was aborted by some reason. The Differential Compilation is an
optimization introduced in the compiler previous to this work, and that targets only the
Code Generation phase. The OutSystems Compiler runs in this mode for publications that
occur after an integral publication. With this mode, only sources provided by the mod-
ified model elements are regenerated. OutSystems internal benchmarks show that the
Differential Compilation is 40% faster than the Integral counterpart.

The Differential is sustained above three principles:

1. Cache Invalidation

2. Merge

3. Cache Update

The OutSystems Compiler keeps a table in the filesystem that maps Model Elements
to the files that they generated in previous publications, the Cache. Before a publication
starts, a Cache Invalidation has to be triggered, because there are possibly parts of the cache
that cannot be reused, for they no longer apply due to their elements had been changed
or deleted. The Compiler identifies the model elements that did change by comparing
their signatures. In addition, there are some rules that have to be executed in order to
enforce constraints on model elements.

The Merge adds to the reused model elements the new model elements. At the end of
the publication, the cache is updated with the new model elements and the files that they
generate.

3.5 Analysis of Publication Times

Now that we have a more complete notion of how applications are published, it is time to
see how much takes to publish a typical medium size application, as well as how much
time is spent on each phase. This will allow us to understand which are the phases less
efficient and assay the effect of differential mode on the publication times.

Figure 3.17 shows those metrics for both the full publication and differential pub-
lication of Lifetime, an OutSystems application that is used to manage the life cycle of
deployed applications.

We are not interested in the Misc Steps times, as it regards steps that do not fall un-
der the scope of this work. Figure 3.17 shows that the full publication takes roughly 38
seconds to compile, whereas differential publication takes 29 seconds. Despite slight os-
cillations, the difference in times is very small for all the phases but the Code Generation
phase. Recall that in prior work to this project, the Code Generation phase has been opti-
mized to use differential compilation strategies, whose gains are not subtle, for it has an
improvement of 40% in compilation times.
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Figure 3.17: Time spent on each phase

The Compilation and Deployment phases are the current bottlenecks of the publication,
so they are now subject of our attention. To justify why the times for those two phases
are high, we must recall that in the Compilation, two large assemblies are compiled for
every publication, while in the Deployment the compiled application is fully deployed to
the Application Server. These are the key observations that will drive our proposal.

Note that from the observations presented above we conclude that the publication
time is always bounded by the time it takes to compile those two assemblies plus the
time it takes to deploy the complete application. This lower bound, which we denote by
L, is the minimum time a developer has to wait, independently of the number of elements
he has changed after the last time he fired a publication. Ideally, the constant L would
not exist; instead, publication times would depend primarily on the number of model
elements changed by the developer.

3.6 Dependencies

There are many types of dependencies: two Web Screens bound by http link, a nested
Action call, a Web Block that is contained inside other UI component, among others. Refer
to example 4 for a common type of dependency.

Example 4. Consider an Espace BookStore, in which we have a Web Screen Frontpage and
Web Screen Personal Area. The Frontpage model contains a link that targets Personal Area,
which is served through HTTPS. When Frontpage is translated to an html page, the link
to Personal Area has to be rendered to a valid html link tag with https as schema. In order
to do so, Personal Area’s model propriety https has to be consulted.
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Matrix 3.18 shows all the dependencies that exist between the elements of the subset
we are focusing on. These dependencies are the reason why the Main assembly is linked
against the CodeBehind: the WebScreen, for instance, depends on Entity, but they be-
long to different assemblies.

Recall that Service Studio validates the application model in real time as this is being
changed. When an element’s interface changes, the Service Studio uses the dependencies
graph to find all the elements that depend on it, so it can tell the developer about what
become unsound.

WebScreen WebBlock Action Structure Entity Javascript Stylesheet Image

WebScreen 3 3 3 3 3

WebBlock 3 3 3 3 3

Action 3 3 3

Entity 3 3 3

Structure 3

Javascript

Stylesheet

Image

Figure 3.18: Model Dependencies Matrix
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4
Approach

The Code Generation Phase of the OutSystems compiler is optimized to use an incremental
strategy, by caching results for future reuse. All other phases of the compilation pro-
cess are executed from scratch on each publication triggered by the developer. In the
Compilation Phase, the assemblies Proxy, Main, and Code Behind are compiled, and
in the Deployment Phase the Deployment Controller does not distinguish between new and
untouched components, which causes the deploying of the whole application. This is
mainly due to granularity of the assemblies being generated, since any (partial) change
will cause that at least one of these "big" assemblies to be modified. In chapter 2, we con-
cluded that the Compilation Step is the main bottleneck of the entire publication process,
as it accounts for 39% of the total publication time.

The approach presented in this chapter should allow compile times to be somehow
proportional to the expectations a developer has about the impact its changes have in
the application model. For instance, changing the background color of a Web Screen
should have a publication time close to zero. We propose to increase the granularity
of compilation units, so that a change on a model element has a smaller impact on the
compiled code, fits into a smaller assembly, which is faster to compile than the ones
generated in the present model. Typically, the number elements changed by developers
between publications is small. Hence, our approach is that of a increased compilation
granularity, using thinner assemblies.

We present the notion of Assembly Distribution, that defines a systematic distribution
of model elements’ code by assemblies, and that can be parameterized to obtain different
a compilation granularity. This mechanism is static in the previous model.

The distribution into assemblies is constrained on static code dependencies. The con-
crete publication process is described set of tasks, where each Task is a logical execution
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Main ProxyCodeBehind

Figure 4.1: Initial distribution and linking relationships

unit that produces data, and consumes data produced by other tasks, their predecessors
or dependencies. Dependencies enforce an execution (partial) order in which tasks ought
to be executed.

The graph of tasks is defined by the dependencies, and called Task Graph, is built at
publication time and is executed by a user level parallel Scheduler.

A task defines one operation, from a set of three available types: source code genera-
tion, compilation of generated code units, and deployment of compiled code units.

4.1 Refinement of the Deployment Units

With finer modularization, a change on a model element has less impact on the recompi-
lation of an application. Ideally, only the parts that changed or that depend on changed
parts are compiled. This is the idea is exploited by tools such as Make or Incremental
Compilers, that allow efficient build strategies which reuse as much as possible from bast
builds. In the context of this work, we do not care about modules’ cohesion, that is, our
approach to the modularization of the application has as aim the publication’s efficiency,
and not so much if modules are “logical”, as the publication is transparent process and
the developer is not aware of what applications are compiled into.

Until now, applications were compiled into just three assemblies: Main, CodeBehind,
and Proxy. Both CodeBehind and Main were very dense, for the former contained the
code from Web Screens and Web Services, while the later contained code for everything
else. Figure 4.1 depicts those assemblies and the way they are linked with the previous
model, from which we departed.

With this model, nothing could reused from past compilations, leading to redundant
processing and inefficient executions. A single change would entail the compilation of
the whole application. This inefficiency would ultimately entail publication that took
longer than what the developer expected. By increasing the number of modules we aim
for efficient a incremental publication mechanism.

4.1.1 Assembly Distribution

We begin by introducing a new notion. A Assembly Distribution is a publication’s param-
eter that states how model elements are distributed by assemblies. More concretely, an
Assembly Distribution defines a set of assemblies A, which is possibly unbounded, and a
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function Γ that maps model elements into assemblies in A. For convenience, we assume
that model elements belong to a set M . For instance, the previous model is described by
the distribution in which:

A = {Main, CodeBehind} and Γ(o) =

{
CodeBehind o ∈WebScreensM

Main otherwise

We do not considerate the Proxy in assembly distributions because as we said in
subsection 3.3.1 this assembly assumes a special role that is to act as an interface between
a Producer Espace and its Consumer. From now on, we just assume that all assemblies link
against he proxy.

Moreover, a code level dependency between x and y is expressed by a → b, while
linkage between assemblies a, b ∈ A is denoted by a ↪→ b. Recall that in table 3.18 are
represented all the code dependencies for the elements that we are focusing.

Assembly Distributions are constrained by the code level dependencies between the
model elements. Recall that model elements, prior to being compiled into assemblies,
are transformed into source code, more specifically, they are transformed into classes
that may depend on other classes generated from other elements. Figure 4.2 shows code
level dependencies for the model elements that fall under the scope of this work. Refer to
section 3.6 for a more in depth discussion about this matter. We do not consider Javascript
scripts nor Stylesheets for they have no dependencies.

For two assemblies a and b, if a has an element t1 such that t1 → t2, and if t2 belongs
to b, then a must link against b. So, for two dependent elements, either they fall into the
same assembly, or the assembly the dependent element is in has to be linked against the
assembly where its dependency lives in. Moreover, elements should not be distributed in
such way that there are cyclic dependencies between assemblies, otherwise compilation
is not attainable.

if a→ b then Γ(a) = Γ(b) or Γ(a) ↪→ Γ(b)

In chapter 4, we will present the iterative process that we undertook in order to find an
adequate distribution, as well as the chosen one. The problem is stated as follows: Find
an Assembly Distribution D, that is, a set A and a function Γ that reduces the compilation
times for differential compilations.

We anticipate already that one more factor has to be taken into account, the overhead
of calling the framework’s compiler. While it is true that compiling smaller modules
improves publication time, this strategy can lead to a inverse effect when number of the
modules to compile is too large.

The first compilation is particularly critical: since there is nothing that could be reused,
all assemblies will have to be compiled. With a more modular distribution, it will take
sensibly as much time as the less modular model, because in both all the sources files are
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WebBlock

ESpace

WebScreen

Figure 4.2: Code Level Dependencies Hierarchy

compiled, but now there is a new toll, the increased number of calls to the C# compiler.
Thereof, a more granular distribution entails a trade-off between decreased differential

compilation times and increased full compilation times. The challenge in finding a distribu-
tion arises is in the balancing between the times for the two publication modes. On one
hand, if the times of a first publication are too high, the developer may create a negative
first impression about the platform. On the other hand, a Full Publication is triggered less
frequently, so a even if its times increase, the impact is amortized throughout develop-
ment.

Testing the distributions is thus necessary to avail more concretely their impact.

4.2 Task Oriented Model

Two assemblies can be compiled in any order as long as they do not depend on each other,
which permits their parallelization. Parallel programming is hard, hence it demands
abstractions that mitigate complexity and that are easier to us to reason about. Finding
a suitable abstraction is the next goal. We observed that it is tractable to decompose the
sequential publication model into a set of tasks with narrower responsibilities. We noted
as well that the operations where the CPU would spent greater time intervals idle were:

1. Generation of source files;

2. Compilation of assemblies;

3. Introspection of the database.

Because many of those tasks existed already implicitly in the code, the notion of graph
of tasks seem a quite natural way of expressing the publication’s logic. The Task is the
main concept in our new architecture. A Task is an logical execution unit that accom-
plishes some goal. It may depend on artifacts produce by other tasks: its precedences.
From its precedence’s perspective, the task is a continuation. Task and their precedences
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Figure 4.3: Task’s Class Diagram

form a graph: the Task Graph. Any execution model shall respect the semantics of depen-
dencies between tasks, i.e, a task is not allowed to execute until after all of its dependen-
cies have terminated.

During its lifetime, a task goes throughout five states: Instantiated (I), Ready (W), Run-
ning (R), Finished (F), and Error (E). A task always starts in the Instantiated state, and while
it is in that state, it cannot execute. When all dependencies have terminated, the task is
in the Waiting state, that is, it’s allowed to run. It changes to the Running state when its
execution is triggered (supposing it was allowed to do so). Once a task successfully ter-
minates the job which was delegate to, it commutes to the Finished state. The Error state
is reserved for situations in which an anomaly occurred during the tasks’ execution.

FI W R F

E

forall d : Dependencies
{ State(d) = Finished } Execute()

Failed Failed Failed

Finished Task

Figure 4.4: Task’s States

Since some patterns are repeated throughout the code, we deemed that specializing
the general concept of task into more specific tasks that could abstract those patterns,
would bring more flexibility to the model. For instance, the compilation of an assem-
bly consists in the same sequence of steps for whatever set of sources we compile. A
call to the compiler is parameterized by a number of sources to compile, an assembly’s
output name, and a set of assemblies which it links to. The publication comprises dif-
ferent tasks that fall in one of three categories: Generation, Compilation and Deployment,
which a task may be specialized into. Generation tasks compile one or more model ele-
ments into source files; Compilation tasks compiles sources files into assemblies, and the
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Deployment tasks transport Deployment Units within remote nodes.

Figure 4.5: Task’s Class Diagram

4.2.1 Incremental Deployment Model

As an Espace grows, more are the files the Espace is compiled into, and therefore more is
the I/O between between the Compiler Service and the Deployment Service, which is exac-
erbated when the Compiler Service and the Deployment Service are distributed. Once again,
we set out to apply the ideas about incrementally with which we tackle the problem of
assemblies compilation.

Figure 4.7 gives a glimpse of the protocol between the Deployment Controller Service
and the Deployment Service. Deployment Tasks delegate the file transportation to the Dis-
patcher, that then decides when it should dispatch the file to the Deployment Service. The
Dispatcher should also be responsible for batching requests when the load is heavier. The
file cache is used to infer if a file should be updated or created on the front end, and that
information accompanies the request made by the Dispatcher, so the Deploy Service knows
what to do with the file. The files to delete are found by examining the meta information
that is used for the differential code generation.

4.2.2 Building the Task Graph

So far, we have talked about tasks but we have not yet made clear who and when they
are created; ditto for they dependencies. Both may be created statically and dynamically.
Compilation Tasks are created dynamically as they depend on the Assembly Distribution
Policy that is currently being enforced. For the rest, they are specified by the platform’s
programmer, as we will now go to describe.

Recall that the application model is hierarchical, that is, broader elements aggregate
smaller ones, and so on. Only a subset of those elements need to provide tasks, usually
the top level elements. We defined an interface Task Provider with which we tag the el-
ements that provide tasks. These tasks are defined statically in the model, contrary to
deployment ones.
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Figure 4.6: Deployment Protocol

The Task Graph is the model that defines all the tasks that have to be executed for
the impending publication, and implicitly defines the relative order in which they are
executed through the their dependencies. The Task Graph Orchestrator is who creates the
task Task Graph. It accomplishes that goal by using the Application Model, to find which
tasks need to be executed, and the Assembly Distribution Policy, to find which are the
assemblies to be generated so that it creates a compilation task for each one of them.

The Task Graph creation is a process that comprises two steps. They are:

• Task Harvesting

• Dependencies Definition

In Task Harvesting, the orchestrator picks from the model all the Task Provider that are
set to be compiled. For each one of those, it extracts their tasks and includes them into
the set of task Gtasks. Then, the Distribution Policy is used to find the assembly where that
element belongs. It is created the Compilation Task if it not exists and then it’s associated
to it that element’s compilation tasks.

Before a publication is started, we have to infer which tasks to execute, we have to
build a Task Graph. We defined a new annotation Task Provider. A Task Provider is an
element which have tasks associated to: if a task provider is set as modified, the tasks it
provides need to be executed for the imminent publication. We dubbed this step of Task
Harvesting: from the model, we look for all the modified Task Providers, and then we ask
them for the tasks to execute. The tasks provided by the Task Provider might regard not
only the provider itself, but also its descendants.

The Compilation Tasks are a special case. These tasks are not provided by the task
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Figure 4.7: Relationship between Task Graph Orchestrator and Assembly Distribution Policy

Figure 4.8: Assembly distribution

providers, instead they are created by a Assembly Distributor. The Distributor is param-
eterized by an Assembly Distribution Policy, which defines which assemblies are created
and map each compilation unit to the respective assembly. The distributor, driven by the
Policy, distributes the Tasks providers for the Compilation Tasks, and each Compilation
Task becomes dependent of the Compilation Tasks provided by the Provider.

Essentially, an AssemblyDistributionPolicy is a strategy that dictates in which assembly
each type belongs to. This notion allows for more sophisticated strategies, that could use,
for instance, statistical information about the developer’s patterns in order to generate
optimal distribution strategies.

4.3 The Execution Model

We have seen that parallelism was not a premise underlying the previous compiler’s ar-
chitecture. Multi-core architectures, which are now pervasive, makes parallelism very
desirable, because it improve significantly the efficiency of the publication model. Paral-
lelization is not suitable for every problem, though, and thus it is important to ascertain
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if our problem benefits from this strategy. Applications that rely heavily on I/O are im-
proved in a parallel context, because I/O is slow and results in a suspension of the exe-
cution, in which the application could be doing progress on other front of its execution.

The Execution model follows from a Observer-Notifier pattern and it comprises a sched-
uler and set of workers (threads). This is depicted by diagram 4.10. Each task assumes
the role of a notifier, whereas the scheduler assumes the role of the Observer. This pat-
tern allow us to keep orchestration logic separated from other aspects, such as logging,
by having one observer that is a scheduler and other observer that is a logger. The Worker
notifies each of its Observers of two events: when it starts executing a task (onTaskExecu-
tion), and when it finishes the execution of the task (onTaskEndExecution).

Both the workers and the scheduler execute an event-loop, being asleep in the periods
in which they have no work to do. Communication is achieved by asynchronous mes-
sage passing – each worker waits on a queue with its messages. Every time a workers
begins or finishes working on a task, it notifies each one of its observers. The scheduler
wakes whenever is notified of a task termination. On doing so, it updates the state of the
ongoing execution, and then dispatches any task that might have become ready due to
the termination of the task that triggered the event. The scheduler dispatches a task by
assigning it to a free worker. When the Scheduler cannot dispatch a task because there is
no free workers to whom delegate the task to, the task is kept in the waiting queue until
a worker becomes free.

Figure 4.9: Scheduler’s Class Diagram

The process keeps living until all the tasks have been executed. If the task graph
has no cycles and if no task ends up in an infinite loop, we have guarantees of progress
and thus that the process eventually terminates. It is easy to prove this claim: if a task
always finishes, every time a worker finishes its task, it can begin working on enqueued
task. If the scheduler only assigns to workers tasks that have its dependencies satisfied,
the workers will execute the tasks in topological order. Since task graph does not have
cycles, we prove that the algorithm at some point terminates.

Summarizing, the new publication process executes as follows:
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GenerateLoginWebScreenAspxCS

GenerateWebFlowAspxCS

CompileLoginWebScreenAssembly

CompileMainDLL

DeployLoginWebScreenAspx

GenerateLoginWebScreenAspx

DeployLoginWebScreenAssembly

Figure 4.10: An Instance of task graph

1. Task Harvesting: Look at application model; gather the tasks to execute from tasks
providers set to be compiled;

2. Assembly Distribution: Create a compilation task for each assembly to be gener-
ated and bind to it the tasks harvested in the previous step;

3. Deployment Tasks Creation: Create a deployment tasks for each deployment unit
that is to be generated;

4. Task Graph’s execution: Start the scheduler and pass to it the Task Graph; wait for
its termination.
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Implementation

In chapter 3, we presented a new publication model without making considerations
about its implementation. With this chapter, we aim to make the bridge between the
model and its concrete implementation, resolving open question such as the adoption of
an Assembly Distribution. Moreover, we also describe the difficulties we had as well as the
processes we adopted throughout development.

5.1 Architecture

Our work involved changing the Platform Server components, with a particular focus
on the Deployment Controller Service and the OutSystems Compiler. Our model obliges
that the Code Generation and Compilation (and Deployment from the dispatcher side) logic
to be centralized in a single component. We deemed moving such responsibility into
the OutSystems Compiler as the most straightforward alternative of all, since the Code
Generation’s logic is much larger and tangled.

Figure 5.1 gives an overview of the compilation process. Note that a big part of the
process is performed by the OutSystems Compiler. It uses the Task Graph Orchestrator and
the Scheduler to respectively create and execute the Task Graph. The job of the Deployment
Service did not change, it sills update the application on the Application Server.

5.2 Refinement of the Deployment Units

The rational behind sparser assemblies is that it minimizes the sources to reprocess in
the Compilation Phase, between consecutive differential publications. For instance, if each
element’s class was compiled into its own assembly, a change on a model element, as long
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Figure 5.1: The New Publication Model

as it does not change its signature, would entail the recompilation of a single class; two
model elements, would entail the compilation of two classes, and so on. While less classes
are recompiled, the calls to the C# increase, tolling an overhead that did not exist with the
previous model. It is not easy, however, to forecast the impact of calling the framework
compiler based on number of times that it is called. That is, we cannot assume a constant
c and state that overhead of the compiler depends linearly on that constant. Thereof, this
is a decision that cannot stand solely on theoretical grounds, but we have to assume an
empirical stance and actually test the distributions with real medium sized projects, so
we could avail their real impact.

5.2.1 Finding The Right Distribution

It is not easy to anticipate the impact of calling the C# Compiler, so finding an efficient dis-
tribution is something that has to be done both theoretically and empirically. Picking an
Assembly Distribution was an iterative process where we tried and validated different dis-
tributions until a balanced one was found. In the fist approach we tried, which we called
distribution UI1:1, each WebScreen and WebBlock was mapped, 1:1, into its own assembly.
Using the notation introduced in chapter 3, the distribution is defined as follows:
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AUI1:1 = {Main} ∪ {Name(x) : x is WebBlock} ∪ {Name(x) : x is WebScreen}

and

Γ(o) =


N for WebBlock with name N
N for WebScreen with name N

Main otherwise

Before we venture in further considerations on this distribution, we have to show
that the conditions for linking are satisfied, otherwise the compilation of certain ESpaces
may not be attainable, namely if they preconfigure the situations described at chapter 3.
Remember that a → b means that there is a code level dependency from model element
a onto b. First, we have to remember that code level dependencies for WebScreens and
WebBlocks are the following:

WebScreen→WebBlock and WebBlock →WebBlock

The aforementioned dependencies may compromise the Conditions for Linking. Ob-
serve that neither WebBlocks nor WebScreens depend on WebScreens, hence it is impossible
to close a cycle in which there is a WebScreen.

On other hand, WebBlocks may depend on other WebBlocks, and so a priori cyclic de-
pendencies could exist. The development environment, however, validates that we do
not find cyclic dependencies between Web Blocks, so there is no need to concern about
those dependencies. Figure 5.2 exemplifies the dependencies for a subset of elements of
an ESpace.

LoginFormWebBlock

ESpace

HomepageWebScreen

HeaderWebBlock

LastIssuesWebBlock

Figure 5.2: Assemblies Dependency Graph

With the confirmation that UI1:1 is a valid distribution, we may now look at the its
impact on the efficiency. Distribution UI1:1 reduces the number of elements to recompile
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at differential compilations. On the other hand, this distribution becomes fairly ineffi-
cient when the number of changed elements reaches a certain threshold: at some point,
compiling a large set of smaller assemblies takes longer than compiling a single albeit
larger assembly, due to a greater number of calls to the framework’s compiler. Indeed,
our metrics revealed an augment of 32% in compilation times for integral compilations
of large projects. Even though we already expected a deterioration of the times, we were
not expecting such a significant impact.

Distribution UI1:1 was an edge case where any Web Block and Web Screen are com-
piled into its own assembly. If there is no overhead in calling C# compiler, this distribu-
tion would be efficient, because it allowed to a greater reuse of past publication work.
However, as we have seen, this model is not satisfactory due to a keen increment on
the integral compilation times, consequence of the overhead of calling the compiler. We
proceed to propose and test more distributions.

Aiming for the sweet spot between a finer granularity and a low deterioration on
integral publication times, we proposed another distribution. Lets call it distribution
Web1:1block/WebN :M

screen. With Web1:1block/WebN :M
screen, WebBlocks are compiled into individual as-

semblies as well. This distribution differs from UI1:1 in how WebFlows and WebScreens
are compiled. A WebFlow is compiled into a separated assembly but it shares that as-
sembly with all its WebScreens too. A topological sort is still performed to drive the
compilation of WebBlocks as it was with distribution A.

This strategy reduces the number of assemblies to compile and keeps a reasonable
degree of modularity. The problem we had with distribution UI1:1 is less prominent
in distribution Web1:1block/WebN :M

screen, because we have less assemblies. Finally, using the
notation introduced in chapter 3, this distribution is defined as:

AWeb1:1block/WebN :M
screen

= {Main} ∪ {Name(x) : x is WebFlow} ∪ {Name(x) : x is WebBlock}

ΓB(o) =


N for WebBlock with name N

F o is WebFlow F

F o is WebScreen and it belongs to WebFlow F

Main otherwise

5.3 Construction of the Task Graph

In chapter 2, we made reference to Transformation Rules, which were used by the OutSys-
tems Compiler to transform the Application Model into source files. We extended those rules
to generate Compilation Tasks that accomplish that generation, instead of actively trans-
forming the model. That is, the transformation operations are now deferred and assume
the shape of Code Generation Tasks, which are extracted from the model at the beginning
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of a publication, through the transformation rules application, and executed latter by the
Scheduler.

Figure 5.3: Compilation Task Inference for an application model fragment

Following the Compilation Tasks creation, the model is subjected to a second analysis,
by the Task Orchestrator, in which the Compilation Tasks and its dependencies are created.
There is one Compilation Task for each assembly entailed from the Assembly Distribution in
use. To create the dependencies, we have first to find the dependencies between model
elements. The Application Model is already rich enough to provide us that information.
The Service Studio, the Platform’s IDE, uses a structure called the Referrers Graph to find
which elements need to be updated due to changes on the interfaces of its dependen-
cies. As figure 5.3 shows, the dependencies between Compilation Tasks are inferred from
the dependencies between model elements, for those that bind elements that belong to
different assemblies.

5.4 Task Graph Persistence

It would be wasteful to recompute parts of Task Graph for every run of a publication.
Hence, it could be stored for a posterior use, so we do not have to waste time on redun-
dant computations. We particularly interested in preserving the information about the
Compilation Tasks, because computing those is expensive. So a Compilation Task compiles
a assembly, it needs to know all the model elements that belong to it, so it can ask for
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their sources, which implies that task has to load them from the application model. Once
again, that would not be coherent with our incremental model, because it would load
elements that were of not use for the actual publication but because of the sources they
generate.

Our answer to this problem was devising a mechanism that accomplished the persis-
tence of the Compilation Tasks through a metadata file which is stored in the filesystem. On
the beginning of the Task Graph Construction, we load from that file the Compilation Tasks
created in previous publications, which is further updated with the new information
gathered from current publication, which may include modification, deletion or creation
of Compilation Tasks.

The file stores an entry for each compilation tasks. For each entry, it lists the sources
files that Task consumes and the names of the assemblies it depends on.

5.5 Task-Driven Model

Parallelism was barely used in the previous architecture, except for operations over the
database, that were costly and in which most of the thread’s lifetime consisted in waiting
for a response from the database. There were no implemented abstractions that could
easily support a parallel execution model throughout all the publication process.

Figure 5.4: Scheduler

We developed a small framework that provides primitives that permit the creation
of tasks and their dependencies, following the semantics described in chapter 4. With
this framework, we reimplemented the publication process, by scattering responsibilities
among a set of tasks.

Practically all the code that concerned the code generation from model elements was
reused, yet the execution of that code is delegated to the Code Generation tasks. When Code
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Generation task is created, it is passed to it a pointer to the generation method of a model
element, at the definition of the Tasks property of its Task Provider. A Code Generation
task necessarily has to be a singleton, because it can be referenced by other tasks, and all
that tasks need to share the same pointer. This would not be problem if the state of tasks
were tracked by an external component; that way, we could simply rely on the identity
of the task to query the component for its state, and we could let fall the condition that
all the references have to point to the same memory address.

The Scheduler executes the task graph. It is parameterized by the number of threads
to spawn. Its interface is quite simple: it has a method Start which receives a graph of
tasks to be executed.
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6
Metrics and Validation

Whether our new publication model is an improvement over the previous one has to be
demonstrated through proper metrics. We undertook a benchmark phase whose results
and their analysis motivate the chapter we are about to enter.

We simulated 3 typical development scenarios that fully capture the developer’s ex-
perience. In each scenario, the application was published and the results tracked. After
we gathered the metrics, we treated the data and analysed the results.

A test application was published using both the old and the new publication model.
For the new model, we tested different configurations having as parameters the Assembly
Distribution Policy and the number of threads. The distributions are the ones we intro-
duced in chapter 5. Furthermore, each test for each scenario was replicated 10 times to
reduce variance. The numbers that are presented next are the averages of those 10 repe-
titions.

One could argue that the average is not an reasonable metric, because the distribution
that rules publication times may not be normal, due to factors that generally are highly
variable, such as I/O and the machine’s load. That observation does not apply to our
context, since all tests were performed under a controlled setting, in which we do not
need to compete for the database and the workload besides of the compiler was reduced
to a minimum.

6.1 Test Environment

Our tests had as subject the Lifetime, an internal OutSystems application developed with
the platform that is used to track various aspects of other applications’ life cycle. The
Lifetime is considered to be a medium size application that currently comprises:
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• 40 WebScreens;

• 47 Web Blocks;

• 13 Entities;

• 103 Actions

The tests were performed on a machine with an Intel Xeon E5 2.26GHz and 16GB of
RAM, running Windows 7 64bits.

6.2 Development Scenarios

We have identified 3 main development scenarios that capture the whole development
experience with the platform:

• Full The application is compiled for the first time (testing integral computation);

• UI: The developer changes a small set of WebBlocks and a WebScreens (testing
differential case for the most favorable case);

• Generic: The developer changes a set of includes other elements besides WebBlocks
and WebScreens (testing the differential case for a generalized scenario)

Naturally, for any of the cases, the set of changed elements is the same for any simu-
lation of that scenario.

6.3 Results

We analyse each scenario separately. As you are about to see, our model performed better
at all the scenarios but the full.

6.3.1 Full Scenario

As it can be observed in Figure 6.3, the new publication model performs worser than the
former model, for whatever parameterization that is used. Still, from all configurations,
the Distribution UI1:1 with 2 threads is the one that achieves times nearer of the ones of
the former model, while DistributionW 1:1

blockW
N :M
screen in general yielded the worst results.

We have already noticed in chapter 4 the reason for this scenario’s times getting worse
with a more granular model. With a more fine grained model, an application is compiled
into more assemblies than it was in the previous model. Consequently, in the case of a full
publication, where there are no cached results yet and so all assemblies have to compiled,
it ends doing more processing that it previously did, which has impact on its times. As
such, Distribution UI1:1, which is very granular, as each UI element is compiled into its
own assembly, had the worst times.
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Model Time

Former 37.6s

Dist UI1:1 68.3s

Dist UI1:1 2 threads 57.5s

Dist UI1:1 3 threads 53.5s

Dist UI1:1 4 threads 50.2s

Dist W 1:1
blockW

N :M
screen 48.7s

Dist W 1:1
blockW

N :M
screen 2 threads 46.0s

Dist W 1:1
blockW

N :M
screen 3 threads 46.4s

Dist W 1:1
blockW

N :M
screen 4 threads 50.0s

Figure 6.1: Times for Full Publication Scenario

It should also be noted that without parallelism times have a very steep increment, of
about 81%. Therefore, it is recognized the efficiency of parallelism in this context, since
it attenuated the impact of the calls to the C# compiler, shrinking the augment of 81% in
times to 24%,

This deterioration of the times have low impact on the development experience, though,
because the full publication is a rare event. It is only expected to occur once: when an
application is compiled for the first time.

6.3.2 UI

In this scenario, our finer grained model pays off. For both distributions, it is yielded
a keen improvement of 38% of publication times. This is the kind of scenario that we
aimed to optimize, due to it being so frequent throughout an application development.
It is also the one that supposedly would benefit more from a fine grained model.

Times had a large decrease because now only a few set of small assemblies is compile,
instead of the three assemblies compiled previously. Figure 3.17 shows that for Lifetime,
12s were required for the compilation of the assemblies. Indeed, if we look at the data
shown in figure 6.2, we see a cut of nearly 12s on those times.
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Model Time

Former 27.5s

Dist UI1:1 18.1s

Dist UI1:1 2 threads 17.6s

Dist UI1:1 3 threads 16.2s

Dist UI1:1 4 threads 19.2s

Dist W 1:1
blockW

N :M
screen 19.0s

Dist W 1:1
blockW

N :M
screen 2 threads 17.1s

Dist W 1:1
blockW

N :M
screen 3 threads 16.8s

Dist W 1:1
blockW

N :M
screen 4 threads 19.5s

Figure 6.2: Times for UI Publication Scenario

6.3.3 Generic

Model Time

Former 27.5s

Dist UI1:1 25.0s

Dist UI1:1 2 threads 23.1s

Dist UI1:1 3 threads 21.2s

Dist UI1:1 4 threads 21.8s

Dist W 1:1
blockW

N :M
screen 29.0s

Dist W 1:1
blockW

N :M
screen 2 threads 24.9s

Dist W 1:1
blockW

N :M
screen 3 threads 26.6s

Dist W 1:1
blockW

N :M
screen 4 threads 27.1s

Figure 6.3: Times for Full Publication Scenario

For this scenario, our implementation improved the publication times too, even though
the reductions are not as high as the ones of the UI scenario. Recall that in this scenario
we also changed elements that belong to he Main assembly, which triggered its compila-
tion. However, the Main assembly is now much smaller, so its compilation has a smaller
contribution to the compilation times.
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6.4 Remarks

Our metrics reveal that the publication times for the UI (4̃1%) and the Generic (2̃4%) case
improved with our new model, while a Full compilation become slower (about 22%).
A fair trade off, if we consider that the full publication is a rare event but the other two
scenarios are not. With more experimentation and fine tunning we may find distributions
that achieve better compromises, but the actual results are already a sheer demonstration
of our point: a more granular compilation model can reduce significantly the publication
times.

Note that we did not implement the incremental deployment model envisioned in our
model, and so the deployment stills being the very inefficient step we described before
In the chapter 3, figure 3.17 showed that the Deployment Phase took 6s to be completed.
We strongly believe that a incremental deployment model can have as such substantial
gains on publication times. Indeed, we made a rough prototype that demonstrated that
this time slice could be reduce to 2s, in a publication under the same circumstances.

Finally, it shows that parallelism is very effective at fastening up the publication pro-
cess, but using more threads might, sometimes, have the inverse effect. It is something
that is hard to avail since it depends on the machine, on the network conditions, on the
workload borne by the machine on that moment. In our tests, where we had total control
on those factors, we observed that using 2-3 threads times yielded to the best possible
publication times.
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7
Conclusion

Do you remember Dave, the developer who was working on a supplier management
application? He was used to fast deployment times, for he formerly developed in Ruby
On Rails, whose pipeline is way less complex than the OutSystems pipeline. Notwith-
standing, he recognizes that the development with OutSystems platform is faster and less
prone to errors, which is a decisive advantage in an enterprise context. Nonetheless, this
story evinces that slow build times may disturb the developer. Waiting a long time span
every time he wishes to test the changes he made to an application decreases his produc-
tivity and satisfaction with the usage of the platform. Certainly, Dave would be happy to
know that he can get more productive with platform as result of these improvements.

Ideally, the programmer would receive feedback as soon as he performed an change
to the application. This is so important that OutSystems has a team whose ultimate goal
is to have nearly instant publication times. With this work, we explored a path that we
believed would yield considerable improvements on the publication’s times, based on
the measurements and observations about the previous publication pipeline, with the
potential of become the basis of future work by the OutSystems R&D.

Some insightful ideas can be drawn from this work. We saw that through smart strate-
gies that store and reuse work from previous publications we can improve significantly
the efficiency of computational processes. Underlying these strategies, there are two main
ideas: Cache Invalidation and Changes Propagation. Cache invalidation is the process that
finds what needs to be re-processed because it cannot be reused from previous runs. In
our context, cache invalidation was used to identify which tasks are re executed for the
imminent publication. Changes propagation finds which elements of the cache need to be
invalidated based on a set of modified elements that act as seeds, and the dependencies
between them.
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On more lesson is that sometimes design decisions impose trade-offs which we need
to judge either as fair or not and thus if we are willing to accept their implications. Such
dilemma was illustrated by the assembly distribution, in which though a deterioration of
the full publication times is inevitable, the times of the differential publication improved
significantly.

Finally, this project was opportunity to apply good engineering practices. The de-
ficiencies that we mentioned were not known from beginning, or at least they had not
been properly identified and characterized. Their identification was the culmination of
a preliminary analysis of the publication model, which the first semester was dedicated
to. After identifying the main inefficiencies, the posterior step was proposing solutions
that could be coherently integrated into the model, and were realistic for a dissertation
context and that accounted for backward compatibility

Some aspects were subject to several iterations until a good compromise could be
found. A good example of such is the distribution model, where we tried and measured
different configurations until we found the most balanced one.

7.1 Future Work

Our work was a step towards a model where model elements such as Web Screens, Entities,
and Actions are both compilation and deployment units. In such model, a single model
element could be subjected to the pipeline, instead of what happened in the previous
model, where the Espace was the only deployment unit.

In this section, we describe the insights we had both after and during the develop-
ment of this project. Due to the time constraints, the ideas we present here were not
implemented, but nevertheless they are promising extensions to this work that could be
undertaken in future iterations.

7.1.1 Differential Deployment

At the Deployment Step, the last step in the publication, all the generated files are com-
pressed by the compiler into a single file and dispatched to the Application Server. For
large applications, this final compressed artifact will be big as well, and its size will have
impact on the network I/O time.

Ideally, only the files that were modified should be dispatched to the server. The De-
ployment Controller Service would tell to the front-end which files it must create, update or
delete, through an extension to the actual deployment’s protocol. Despite the simplicity
of this idea, it would demand centralizing the orchestration of publication in a Deploy-
ment Controller Service, which is indeed the most correct approach to this problem, but it
would demand a considerable amount of time.
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7.1.2 Dynamic Assembly Distribution

The Assembly Distribution is a critical step in our model, for it can significantly improve
the times for differential publications, but at the same time carries some challenges as we
described at chapter 4. We already remarked that learning from the developer’s patterns
may be an interesting way of inferring optimal distribution models.

Every publication, the system would collect metrics about the elements that changed,
infer development patterns and it would cluster model elements driven by that data.
In one simply approach, the most changed elements would be segregated into a specific
assembly. If the system inferred that most of the times in which the developer changes the
element A would also change the element B, it would change the dynamic distribution
so the both elements are compiled in one assembly.

7.1.3 Workload Balancing

The compiler service might be running in the cloud. In such environment, the resources
usage is much more voluble and hereby the system should be sensible to those fluctu-
ations in order to not make decisions blindly that could compromise performance. The
scheduler, for example, should take the current workload into account when deciding on
how many workers to span.

Other strategies that aim to manage the workload by the workers should also be con-
sidered. For example, characterizing each task as I/O bound or CPU bound could be
used in order to schedule tasks in a smarter way. The scheduler would pair I/O bound
tasks with CPU bound tasks in order to increase the number of tasks being executed
concurrently.

7.1.4 Alternative Concurrency Models

Our execution model uses native threads as the underlying model concurrency model.
While they are efficient for parallelizing tasks that are CPU bound, they are wasteful for
I/O bound ones. Moreover, they are expensive and their use is liable to race conditions
and deadlocks. Non pre-emptive/cooperative alternative thread models should be sub-
ject of future considerations, for they solve some of those problems and more suitable for
heavy I/O scenarios.
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