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Abstract

In this thesis a large panel of data on Portuguese workers is used to estimate the effect of the

entry of the first graduate in a firm in his colleagues’ productivity. Propensity Score Matching is

the methodology used and robustness tests are also presented to reinforce the credibility of the

results. A spillover of approximately 5.10% is found, which means that the hiring of the first

college graduate is an important stage in the development of a firm which benefits all workers. It

is also shown that small firms benefit more from the entry of the first college graduate, specifically,

firms with 5 or less employees had a spillover effect of around 9.63%.
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I. Introduction

The last years have seen a growth in the field of Labor Economics with different topics regarding

education, job training and wages, among others, receiving a lot of attention. While it seems now

to be consensual that education has a positive effect on a worker’s wage, there is less discussion and

consensuality on whether the education of a worker also benefits his co-workers. The idea that a

worker’s education or performance may affect his colleagues is not a new one, however. Models of

Macroeconomics, for example, have incorporated this idea of positive externalities from human capital

since the Lucas Model (1988).

The relevance of this question is of the utmost importance for our understanding of a society’s

development and also for public policy matters. The existence of a positive externality of education

would justify Government’s subsidization of public education, which is more difficult to justify if

education only benefits the individual who takes it. Furthermore, this kind of understanding would

also be useful to understand the mechanics of growth in developed countries.

This thesis attempts to give a response to the question: "does the first graduate increase the

productivity of his colleagues in the firm?". While very specific, this question addresses an essential

issue of whether college education brings some kind of benefit to the productivity of a firm. A college

graduate has gone through a process of education which is more specialized in an area and has learned in

an environment much more challenging than the one provided by secondary school. It is interesting to

see if this has strong effects, both from an Economics of Education perspective and a Labor Economics

perspective.

A large panel of data is used to estimate spillovers through the method of the propensity score

matching. This differentiates this thesis from any other paper on firm-level spillovers, given that

these always use a simple panel regression and do not look specifically at the first graduate hiring but

rather at the average level of education. The advantage of using matching is that we are taking into

consideration the fact that the firms that hire may not be easily comparable to the ones that do not,

so we try to find firms that are comparable, instead of trying to compare different things. The results

found, because of this, are also quite different from the existent literature, however, I believe they are

also more credible. I try to control for all relevant variables that could cause bias.

Evidence is found that there is, indeed, a positive spillover and this positive spillover holds true

over the different robustness tests that are made. In the general specification a spillover of around

5.10% is found. This means that the hiring of the first graduate causes an increase of 5.10% in the
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productivity of his colleagues during the first year. As intuition would predict, I show that smaller

firms have a higher spillover from human capital.

This thesis continues as follows. The next section provides a comprehensive description of the

literature that already exists on this topic. Section III discusses a little bit of the theory that is behind

the analysis in order to help understand the choices made in the estimation. This is complemented

by section IV which discusses the methodology used, matching. Section V analyses the data that was

used and Section VI presents and discusses the results. In Section VII additional results on the effect

of the second graduate are presented. Section VIII concludes and suggests the direction for further

research.

II. Literature Review

Since the advent of Labour Economics, many studies have been interested in finding the relationship

between education and productivity, or education and wages. The question of whether schooling has

inherent value in itself rose to proeminence with the battle between the rival theories of Human Capital

theory of education supported by economists such as Becker and the signalling theory of education

advanced in Spence (1973). The difference between these two theories is that the former argues that

education raises productivity and has inherent value in itself while the latter states that education

serves only as a tool to signal more able workers and does not really increase productivity in itself.

The difficulty in estimating the real effects of education are in the possible and probable correlation

between education and ability which is not measurable. Some papers have managed to overcome

this problem in a convincing way, like Angrist and Krueger (1991)1 who taking into consideration

compulsory schooling laws use date of birth as an instrumental variable and find a return of educationof

7.3%; Ashenfelter and Krueger (1994) who use data of identical twins to isolate the effect of schooling

from the ability level and find an estimate of 12-16% increase in wages per year of education; Card

(1995) who uses geographical proximity to college and finds a return of 10-14% per year of education.

The present thesis however, concerns itself with the importance of education to productivity, but not

in a similar fashion. It looks at the effects of education on the productivity of the workers’ colleagues

or fellow citizens. These externalities are termed spillover effects.

The idea that education may have these kind of external effects comes already from Alfred Mar-
1It is true that the procedure used in this paper has already been fairly questioned by Bound et al. (1995) who

suspect that the results are driven by inconsistency, because of a weak instrumental variables problem.
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shall’s Principles of Economics first published in 1890. There is however, many different channels

through which they can appear. Acemoglu and Angrist (2000) provide a clear explanation of the dis-

tinction between nonpecuniary and pecuniary external effects of education. The former work through

the exchange of ideas and learning by doing that can occur in the contact between workers. Contrarily,

the latter works through the price mechanism or through the accumulation of capital, that may occur

as a consequence of the complementarity of educated workers and physical capital, which can also

benefit non-educated workers. Acemoglu (1996) gives a model for education spillovers at the city level

in which, simultaneously, firms have to choose their physical capital level and workers have to choose

their human capital. Matching in the labor market has some degree of randomness, which means that

higher physical capital firms will not be able to get the higher educated workers with certainty. The

equilibrium of this model is one in which all firms invest in the same level of physical capital which

is dependent on the whole level of human capital of the city, therefore if a group of workers increases

their human capital level, firms will increase their physical capital and some of the workers who did

not increase their education will also benefit from this higher level of physical capital. Some studies

do confirm this idea that physical capital has a higher complementarity effect the higher the education

of workers. Bartel and Lichtenberg (1987), for example, find evidence of a comparative advantage of

educated workers in implementing new technologies, while Griliches (1969) estimates parameters for

a production fuction finding evidence of higher complementarity between capital and skilled workers

than with unskilled workers.

The first empirical study of the existence of spillover effects in education was published by James

Rauch in 1993. The author attempts to look at spillovers at the city level and finds evidence of

its existence - one additional year of schooling increases total factor productivity by 2.8%. A lot of

different work has followed this and some examples of research papers that aim at estimating spillovers

at the city or state level are Acemoglu and Angrist (2000), Rudd (2000), Moretti (2004), Ciccone and

Peri (2006), Iranzo and Peri (2009), Gille (2011) with contrasting results being found. While Acemoglu

and Angrist, using compulsory schooling laws as instruments for education level, find no evidence of

spillovers, Moretti finds significant spillovers across different manufactures in the same city. Iranzo and

Peri try to provide an explanation for the diverging results found in the literature. They present us a

theoretical model in which more educated workers are complementary to advanced technologies while

the less educated workers are complementary to traditional technologies. Schooling externalities, they

theorize, arise from the complementarity of highly educated workers with the advanced technologies so
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an increase in the average level of education at low levels, like high school, will not produce spillovers,

the increase in the share of college graduates will. Indeed this theory is reconcilable with the fact

that Acemoglu and Angrist, as well as Rudd, do not find spillovers effects, whereas Moretti finds an

effect between 6% and 7% for an increase of 10p.p. in the share of college graduates, as the former use

average years of education while the latter uses share of college graduates.

Another important contribution to the literature was given by Ciccone and Peri (2006). They show

that estimating spillover effects with a Mincer equation will provide results that are biased upwards

in a very significant way. Using a calibrated model that they create, they find that the Mincerian

Approach may find a spillover of around 8 percent when in fact there is no spillover in the model by

construction. The reason for this has to do with the general equilibrium effects in wages caused by

increases in the number of educated workers and consequent decrease of uneducated.

The present thesis, contrarily to the literature thus far discussed, estimates spillovers at the firm-

level instead of at the city or state level. The literature which takes this approach is far less vast. In

all likelihood there is more than one reason for this. To start with, endogeneity issues may be present -

as will be discussed later - which have made some researchers stay away from the topic. Secondly, and

perhaps more important, is that even if these spillover effects exist, they will obviously be much smaller

than the effect of education on one’s wage and because of that it is a topic less appealing to researchers.

Despite this, there is some literature around this subject. There is a set of papers which look at peer

effects at a workplace level - examples of which are Falk and Ichino (2006), Mas and Moretti (2009)

and Guryan et al. (2009). Again, contradicting results are found. Guryan et al. (2009), nevertheless,

argue that the different results can be conceivable in the light of the different workplace environments

that each paper uses in its research. These authors discuss that possibly productivity peer effects

occur at menial tasks but not in those jobs that require a lot of talent or knowledge. This would, then,

explain why Mas and Moretti (2009) find significant peer effects in the job of supermarket cashier

and Falk and Ichino (2006) in a simple job of folding letters and stuffing them into envelopes whereas

Guryan et al. (2009) fail to find any significant effects in professional golfing.

A study that resembles this thesis in much more detail is the one by Pedro Martins (2004). In

this paper, Martins uses the data from "Quadros de Pessoal" to try to find spillover effects at the

firm level. Some of the theoretical analysis of the author can be transposed into this thesis. Wages

are also used to measure the increase in productivity, this is legitimate as long as the labor market

is competitive. The main difference of the present thesis to Martins’ is one of focus, the focus on
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college graduates instead of average level of education, as well as the difference of empirical strategy.

While we look at the entry of the first college graduate to estimate a spillover of this particular event,

Martins simply tries to access the effect of average education on wages in the stock of workers. We

believe that looking at data for the entry of workers in a firm is much more trustworthy than looking

at data from a stock of workers and trying to find spillovers. Battu et al. (2003) and Metcalfe and

Sloane (2007) also look at education spillovers at a firm level in the UK, both finding spillovers around

11% per year of education. This value is huge, above the value that they find for the return of own

education. A problem of ommited variable bias is likely to be present though. The authors do not

take into consideration the possibility that the choice of a firm to hire workers more educated may be

correlated to factors that increase wages by themselves.

III. A Discussion about Spillovers

As discussed in the Literature Review there is already some research on the area of spillovers of

education. Nevertheless, most of these studies take a different or broader focus than this thesis. The

main interest of this thesis is a very specific one - to find out whether there are significant positive

spillovers from the entry of the first college graduate in a firm. The idea underlying this is that this

first college graduate brings in new knowledge which can benefit other workers. Obviously, there is no

reason to believe that the first college graduate is the only one that brings benefits to the firm, it is

even possible that a second one brings higher spillovers by a mechanism of complementarity between

both graduates. Despite this possibility, we still start by looking at the first graduate because of

two reasons. To begin with, this feels like the right place to start the research, the impact of the

first college graduate, not the second or the third, etc. Secondly, looking at the entry of additional

graduates creates additional complications. Say that the second graduate joins right after the first, it

may be hard to detach both effects from each other, especially if we do not expect the two spillovers

to take the same time to act. That being said, in Section VII we take a brief look at the effects of the

entry of other graduates besides the first, leaving, nevertheless, room for further research.

Having established that we are interested in the entry of the first graduate we must now discuss

whether this spillover effect, if existent, should disappear or not after the college graduate leaves. This

would necessarily depend on the type of spillover we are looking at, pecuniary or nonpecuniary. At

a firm level, where prices are taken as given, nonpecuniary spillovers seem to be more reasonable.

Nevertheless, the mechanism for this spillover could also be a peer effect. Nonpecuniary spillovers,
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such as share of knowledge, would be permanent because learning is a process that once completed does

not depend on the presence of the graduate, nevertheless, peer effects, which also look as a reasonable

hypothesis, would disappear once the graduate leaves because workers no longer feel social shame for

being less productive. This is a relevant point because if we look for an effect that happens two years

after the entry of the graduate we need to know whether we should look for spillovers if the graduate

has already left. I decide to look at effects of the first type, based on the share of knowledge. This

means that the effects would be permanent. Jovanovic and Rob (1989) create a model for "the growth

and diffusion of knowledge".2 This also takes us to another point that must be discussed, the lag of

the effect.

We need to find out how many years after we should expect the effect to appear. This is not

considered in other papers of this type.3 In the methodology used in this paper, matching, which is

discussed in the next section, this becomes important to get the adequate results, as will be explained.

Again, theory does not really tell us much on this. Different empirical frameworks must be tested to

find out which one more accurately describes the behavior of the data.

Another issue in this thesis is the desire to estimate changes in productivity. Data on individual

productivity is very rarely available. To begin with, most databases are not collected from the firms

themselves, the only entity which could possibly have information on which part of the production is

attributable to each worker. Secondly, most of the time this information is not possessed by even firms

themselves because of a difficulty in observability. This thesis, then, bases itself on the assumption that

there is no strong market power by firms and so increases in productivity can be collected by workers

in wages. Wages can, then, be used as a measure of productivity. Before proceeding, let us analyze the

consequences of this assumption. If a market is perfectly competitive, indeed, all productivity gains will

be reflected in the wage, but if, on the opposite end, it is monopsonistic, any increases in productivity

of a worker will be appropriated by the firm and no increase in wages will, thus, occur. If there is

some degree of market power of the firms (monopsonistic competition) in the labor market which is

less extreme than monopsony we will get a middle-of-the-way situation, in which workers receive part

of their productivity increase in wages and another part is appropriated by the firm. Formally:

4w = (1 − M) × 4P

2The reference to this paper has the sole objective of providing the reader with the information of where to find a
theoretical model for the share of knowledge and how these mechanisms can be modelled. The model itself is not in
anyway relevant for the understanding of the empirical framework of this paper.

3Martins (2004) and Battu et al. (2003) just do a panel regression in which, while they do not discuss it, they are
assuming a contemporaneous effect.
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Where M is a measure of the market power of the firms, M = 1 for monopsony and M = 0 for

perfectly competitive labor markets. Under these conditions, it can be stated that by using wages I

will be finding a lower bound on spillovers. To see this:

4w = α ⇔ (1 − M) × 4P = α ⇔ 4P = α
1−M ⇔ 4P ≥ α. The key for the last step is the fact

that M ∈ [0, 1].

This result tells us that if we find spillovers, then we can be certain of its existence, however if we

do not, that could be an effect of the existence of strong market power and we cannot conclude with

certainty that no spillovers are present.

IV. Methodology

The methodology which I use to estimate the presence or absence of spillovers is matching. The

idea is to consider the entry of the first graduate as a "treatment" that will increase the productivity

of the other workers of the firm. While matching does not, in itself, eliminate the possibility of

hidden bias it presents significant advantages to a standard regression approach. To begin with, unlike

regression analysis, matching will allow us to look for the spillover effects without making any restrictive

assumptions on the functional form. In a multiple regression one must necessarily assume that the

independent variables affect the outcome, in a specific way, most of the times linearly. Matching does

not require this. Secondly, given that the hiring of the first graduate by a firm is not really random, a

matching estimator is more convicing to try to overcome this issue by focusing on the common support

(I explain the common support concept below).

The idea of matching is to compare two firms in the same conditions in which only one has hired

its first graduate. By doing this comparison, we expect to find an effect in the wages of this firm which

we can attribute to the entry of the college graduate. The first relevant question is on which covariates

to do the matching, that is, what variables do we require to be similar so that we can consider the

firms comparable? Theoretically, matching should be done on those covariates that affect both the

independent variable (wages) and the probability of having been treated (probability that the firm

would hire its first college graduate). This means that in our example we need to match on firm’s

characteristics that look relevant for the hiring of a college graduate. This is likely to include the

education and tenure of its workers, the size, the percentage of males, among others.

As mentioned in the last section an issue before we start is how many years after should we evaluate
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the effects of the hiring. There is no good theoretical answer for this and to get an idea of how to

proceed I run a preliminary panel data regression with fixed effects, with dummies for the year of the

hiring, one year after, two years after and three years after.

Table 1: Panel Estimation with Fixed Effects
Variable Coefficient (Std. Err.)

tenure 0.00151∗∗∗ (0.00001)
hab_1 -0.26343∗∗∗ (0.00655)
hab_2 -0.28268∗∗∗ (0.00531)
hab_3 -0.11586∗∗∗ (0.00534)
hab_4 -0.01121∗∗ (0.00529)
hab_5 0.00261 (0.00528)
log_size 0.01703∗∗∗ (0.00079)
male -0.02670∗∗∗ (0.00187)
age_25 -0.03134∗∗∗ (0.00221)
age_26_45 0.05479∗∗∗ (0.00147)
treat 0.03280∗∗∗ (0.00170)
L.treat 0.03479∗∗∗ (0.00175)
L2.treat 0.03449∗∗∗ (0.00174)
L3.treat 0.04258∗∗∗ (0.00192)
Intercept 4.94233∗∗∗ (0.00562)

N 1886907
R2 0.05982
F (382917,1503989) 6834.82990
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Given the results found, we can see that most of the effect in wages can already be seen in the year

of the entry. This points out that it will be reasonable to use only the year of the hiring, as the effect

does not take longer to appear than that. Again, I point out that this is only a preliminary estimation,

to guide us in the choice of the lag structure of the effect. The methodology of matching which is now

explained is applied for the results and provides a more rigorous analysis.

Here I present the matching in a formal setting.

Each year we have a population of firms which can hire (d = 1) or not hire (d = 0) their first college

graduate. In an experimental setting the expected distribution of covariates X in firms with d = 1

and d = 0 would be the same and comparing the average wages would be enough to get the effect of

the treatment "entry of the first graduate". Nevertheless, the choice to hire a college graduate is, in

all likelihood, not random, which means that we have to control the covariates. Formally:

d = 1 [f (X, ε) > 0] (1)
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w = g (X, d) (2)

Where f and g represent arbitrary functions. That is, the average level of the wages in a firm is

a function of the characteristics of that firm and also, possibly, from having hired a college graduate.

Notice that matching, as previously mentioned, allows us to estimate an effect for d without assuming

any particular form for how X affects the wages, this is a nonparametric estimator. Each firm has

either chosen d = 1 or d = 0 so we cannot compare the two situations from the exact same firm, it is

possible that the firms which have chosen to hire a college graduate have different characteristics from

the ones that did not and this creates a selection bias.

We want to find E
[
E(w1

f − w0
f |X)

]
, that is the average value of the treatment across firms. But

for each firm we either have w1
f (the average wage level after being treated in firms that hired a college

graduate) or w0
f (the average wage level after not being treated, in firms that chose not to hire a college

graduate). So, for each treated firm, in which we have w1
f we need to construct a counterfactual to get

E(w0
f |d = 1, X). A simple and perfect way to do this would be to find firms that are exactly the same

and one hired a college graduate while the other did not; unfortunately this is not possible given the

set of values that X can take and its dimensionality. Using a neighborhood could be an alternative.

However, given that the vector X has many variables in it, the easiest way to procceed to the matching

is by using the method developed in Rosenbaum and Rubin (1983) and use the propensity score. The

propensity score is the probability that a subject would be treated given his vector of covariates, that

is:

π(X) = Pr(D = 1|X) (3)

Rosenbaum and Rubin show that using the propensity score to do the matching solves the multi-

dimension problem of X (we can match again on one single variable). They show that if w0
f ⊥D|X,

then w0
f ⊥D|π(X) and also the propensity score will have balancing properties (that is, the conditional

distribution of X given π(X) does not depend on D). A vital assumption that is being made is that

0 < π(X) < 1 for any vector X that characterizes one of the observations. The problem is that we do

not have the true propensity score and we must estimate it, this of course may change these properties.

The following equation, presented in Rosenbaum and Rubin (1983), shows how the bias caused by the

selection is eliminated:
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Bias reduction =
ˆ

E(X|π(X)) {prm(π(X)|d = 0) − pr(π(X)|d = 0)} .dπ (4)

Where prm(π(X)|d = 0) is the distribution of the propensity score in matched samples from the

control group.

To estimate the propensity score I use a logit model with the following covariates: size of the

firm, percentage of workers with each level of education, percentage of workers in each age group,

percentage of males. The reason why I choose to divide education and age in groups instead of

calculating an average is that this characterizes the distribution better. If we used simply average

age, for example, we would be saying that we expect every firm with a 40 years average age to have

the same average wages, regardless of whether it has only 40 years old workers or a mix of 20 and 60

years old. The variables used in this estimation are very important, leaving variables out will violate

the Conditional Independence Assumption causing bias, just like in a standard regression model, but

an over-parameterized model should also be avoided as it reduces efficiency.4 Equation (5) presents

the functional form used, education and age are divided by dummies, so β2 and β3 are row vectors

and education and age are column vectors. I use the logwage of the previous period also because by

matching on this variable we can assure that we are really comparing companies that had the same

wages before the entry of the graduate.

π(X) = Λ [β0 + β1logsize + β2education + β3age + β4tenure + β5male + β6logwaget−1] (5)

After this I determine the common support. The common support is the region of the propensity

score where there is overlap between the control group and the treated. A simple way to find the

common support is to find the maximum and minimum propensity score of the two groups and then

find the intersection of the two groups, that is: Common Support = [mT , MT ] ∩ [mC , MC ], where

mi and Mi are the minimum and maximum propensity scores of group i, respectively. The treatment

effect found is only applicable to the common support found. This means that if many observations

are left out of the computation (are not part of the common support), the effect that I find is not very

generally applicable, instead it only applies to a certain limited type of observations. Because of this,

caution must be taken in observing how many observations are not part of the common support.
4See Bryson, Dorsett, and Purdon (2002)
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Finally, I procced to the matching. It is very important that I define which observations can

be used as controls. Notice that the treatment dummy equals 0 for a firm in a year in which it

goes from 2 to 6 graduates for example. If this were to be a control, we could fail to find spillovers

when they actually happened because there could also be spillovers in the control. So, what could be

an acceptable counterfactual? If we want the real effect of the entry of the first graduate the only

reasonable counterfactual seems to be firms which could be submitted to the treatment too, that is

firms who had 0 graduates and keep these 0 graduates. This means that observations from firms who

hire the first graduate should be ignored after the period of the effect used. Different matching methods

are possible. In large samples theory shows that there is a very small difference between the method

chosen. Thus, with simplicity in mind, I use a nearest neighbor method. The nearest neighbor method

is a method in which, to each treated observation, the n controls with nearest propensity score are

used to form the counterfactual. A trade-off exists, as using a larger number of neighbors decreases the

standard errors, but may increase the bias as the matching quality is reduced. I perform the matching

both with only one neighbor (nearest neighbor matching) and with 10 neighbors and find that the

difference is not very significant.

After all matches have been calculated, I assess the matching quality. To do this I use the t-test.

The t-test checks differences between the means of the covariates in the treated and matched samples.

Before matching differences should be expected, but not after matching.

Finally, the average treatment effect may be calculated. Once treated observations have been

matched, the average treatment effect on the treated (the value of interest) can be simply calcu-

lated as the difference between the average wages of the two groups. That is: E
[
E(w1 − w0|X)

]
=

E
[
E(w1|X) − E(w0|X)

]
= E(w1 − w0) = E(w1) − E(w0), where we are only using the matched

observations. For the standard errors, bootstrapping has been used widely in the past, nevertheless,

it has been criticized and Abadie and Imbens (2008) show that there are no good reasons to use this

technique. I compute simple standard errors.

An issue in our methodology is that we have a big panel of data. While this is, undoubtedly,

advantageous over a simple cross-section, the literature does not discuss how to use matching with

such a database where treatments are taken in different periods. Ignoring the fact that we are using a

panel of data would make a firm be a control for its own treatment. For example, it would be possible

that the observation of firm A in 1990 would be the control for the treatment of firm A in 1995 (if

this is the year when it gets treated). This should not happen, so in establishing the way to deal with
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the panel of data, this must be avoided. I decide to calculate treatment effects separately for each

year. One reason why this approach is advantageous is because it filters possible year effects that may

exist, as we are only comparing wages of firms in the same year and not in completely different periods

of time. It may be argued that the advantage of using a panel of data over a cross-section is lost in

this way, this however need not be true, as I use lagged observations of wages as a covariate in the

matching.

Some challenges to the methodology must be recognized - if we do not use all relevant variables

to estimate the propensity score we may face a hidden bias. Heckman and Lozano (2004) provide a

comprehensive explanation of why it is important to have all the appropriate variables in the matching

process. This is the most serious threat to the results of this thesis.

V. Data

The database that I use for this estimation is "Quadros de Pessoal", a database with annual information

on every portuguese worker working in the private sector from 1986 to 2012. It must be mentioned

that there is no data regarding 1990 and 2001 because the information was not collected in these

years. The data collection is made by the Portuguese Department of Employment and includes many

information on each worker and firm, including identifiers that allows us to follow one worker along

time. The database has information on each workers’ level of education, I use this to calculate the

number of college graduates of each firm. The levels of education distinguished by the database are

the following ones:

Variable Definition

hab_1 Less than 4 years of schooling

hab_2 4 years of schooling

hab_3 6 years of schooling

hab_4 9 years of schooling

hab_5 12 years of schooling

hab_6,7 More than 12 years but not university

hab_7,8,9 College graduate (bachelor, masters or PhD)

This last variable is, then, used to calculate our treatment effect dummy. The treatment occurs

whenever a firm goes from 0 to 1 or more graduates. Some issues are, however, raised. Some workers
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may be in several firms at the same time and the database does not allow us to see in which they are

really working. If one of these cases is the first graduate of a firm we should not expect spillovers if he

is not really working at the firm in full time. To solve this issue I eliminate all observations of workers

who are working in more than a firm. Similarly, I eliminate information on part-time workers because

it would complicate the analysis.

Since I only want to look at the entry of the first graduate and I will look at the effect of the

treatment in the first year, I keep only observations of firms with 0 graduates and 1 or more in the

year in which they hire the first (because some firms hire more than one at once). After this, because I

chose to use the matching on firms and not workers, I aggregate the variables that I want to use at a firm

level. This is not without a consequence, the aggregation of data may make us lose some information,

however, it still seems advantageous to do this. To begin with, from a simplicity perspective - every

worker in the same firm in a certain year will either have been treated or not treated and the effects

expected would be the same, so the effect occurs really at a firm level. No information on the treatment

is then lost, only on the other determinants of wages. Secondly, from a computational perspective, the

slight advantage of worker-level estimation is not likely to compensate the computational inefficiency

caused by the enormous ammount of observations that exist at a worker-level. Furthermore, for some

of the variables I aggregate the data in a way in which it loses less of its distributional properties.

Instead of just averaging values over the firms, I divide the variables in many interval dummies and

then I average these dummies over the firm, the result obviously is the percentage of workers in each

group interval. In a way this follows what has already been shown for the level of education - instead

of having a variable with years of education there were different dummies for different levels. The

variables that I use from the database follow the literature on the returns of education and the typical

Mincer Equation, that is, log of wages as dependent variable, age, education, tenure and log of firm size

as explanatory variables. For wages I use total compensation, instead of the wage base, as this is more

representative of the real remuneration of a worker. Age is divided into three intervals - less than 25,

between 26 and 45 and more than 46 years old. This division tries to follow approximately the life-cyle

theory of earnings. Education as already presented is divided into 7 cathegories. Tenure is averaged

over the firm. Finally, firm size is used in log-form. Firm-size is an important variable because there

is evidence that larger firms pay higher wages.5 The variables that come from the worker-level data,

such as age, education and tenure do not include the information of the college graduates that join the
5There are several different empirical studies that find this result. One such study is Mellow (1982).
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firm. This means that the logarithm of wages that we have after hiring a college graduate does not

include the graduate’s wage, which makes it easier to calculate our treatment effect.

There are still some problems that must be taken into consideration. As any database, Quadros

de Pessoal may be subject to some measurement errors. For example, once we restrict the data to

observations with 0 graduates or first hiring we find cases of firms which supposedly went from 0

to more than 10 graduates in a year, some even went from 0 to more than 50, which looks slightly

unlikely. Because these firms would obviously undermine our analysis, I decide to drop observations

of the firms which went from 0 to more than 3 graduates. This is just 0,04% of the sample so it is not

very significant and leaving it could bias the spillover effects as we would have some cases where the

treatment represented the entry of many graduates. This leaves me with a database with a total of

4,676,709 firm-year observations and 803,918 firms.

Table 2: Summary statistics
Variable Obs Mean Std. Dev.

sales_euro 4675541 326274.3 8000544
tenure 4615250 68.258 64.905
hab_1 4676709 .023 .118
hab_2 4676709 .368 .401
hab_3 4676709 .232 .336
hab_4 4676709 .202 .322
hab_5 4676709 .161 .303
hab_67 4676709 .015 .094
log_size 4673127 1.214 .961
male 4676709 .589 .4
age_25 4676709 .174 .277
age_26_45 4676709 .563 .36
age_45_65 4676709 .263 .333
treat 4676709 .021 .144
logwage 4217387 4.88 .532

The average number of workers per firm is 3.4.

VI. Results

As discussed I perform propensity score matching using the age dummies, education dummies, loga-

rithm of wage in the previous period, percentage of males, average tenure and logarithm of firm size.

A Logit is run to estimate the propensity score and then matching is done. This is done for each year

of our sample, except for 1990 and 1991 because we have no observations and 2001, 2002 and 2003.

The tables presented below show us the results found with matching using the 10 nearest neighbors:
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Table 3: Average Treatment Effects on the Treated

(1987) (1988) (1989) (1992) (1993) (1994) (1995)

logwage logwage logwage logwage logwage logwage logwage

ATT 0.0416∗∗∗ 0.05091∗∗∗ 0.0614∗∗∗ 0.0747∗∗∗ 0.1015∗∗∗ 0.0864∗∗∗ 0.0783∗∗∗

(3.44) (4.42) (5.65) (6.64) (8.90) (8.72) (7.71)

N 61900 66015 72521 84786 89332 89955 106571

Off Support 1218 617 177 107 203 102 301

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1996) (1997) (1998) (1999) (2000) (2004) (2005)

logwage logwage logwage logwage logwage logwage logwage

ATT 0.0632∗∗∗ 0.0588∗∗∗ 0.0549∗∗∗ 0.0520∗∗∗ 0.0652∗∗∗ 0.0429∗∗∗ 0.0421∗∗∗

(6.21) (6.50) (6.40) (5.56) (9.89) (5.99) (6.17)

N 108168 117012 125483 133070 144349 178599 186735

Off Support 1484 555 312 1142 952 476 1360

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(2006) (2007) (2008) (2009) (2010) (2011) (2012)

logwage logwage logwage logwage logwage logwage logwage

ATT 0.0375∗∗∗ 0.0246∗∗∗ 0.0414∗∗∗ 0.0456∗∗∗ 0.0422∗∗∗ -0.0016 0.0122∗

(6.75) (4.06) (6.25) (6.49) (6.05) (-0.25) (1.77)

N 199003 197511 196205 193463 163879 159557 150239

Off Support 407 567 1881 1390 2890 1053 1360

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

17



The effect which is found in each year does vary, however this is not completely surprising. If

we look at it carefully, we see that changes are usually progressive - it starts increasing until 1993

when it starts decreasing again progressively. This is likely to be related to the business cycle, which

makes wages freeze some years during a bust, and then increase a lot to keep up with productivity

when the economy recovers. For example, 2011 and 2012 do not seem to have spillovers and this can

be explained by the fact that the economic crisis has basically frozen wages during this period. On

general, spillovers found are around 5% (the geometric average calculated over all years is 5.10%). This

means that when a firm hires its first college graduate, the productivity of each worker on the firm

increases on average by 5%. This is not a negligible result. It is obviously much lower than the return

on own education of 8 to 11% per year, but it is still meaningful and affects all workers in the firm.

It is hard to compare this result with the others on the literature, as they look to average education

and never to the entry of the first graduate. Nevertheless, some conclusions may still be drawn in

contrasting the different results. Let us look at a simple example: in a firm of 5 workers (already

more than the average size) with an average education of 8 years of schooling (the average years of

schooling nowadays in Portugal is 8.2 according to the UNESCO Institute for Statistics) the entry

of the first college graduate would increase average education of the firm to 8×5+17
6 = 9, 5.6 Which

means that an increase of average education in 1.5 years would increase average wages by something

like 9.63% (this is the geometric average for the treatment effect in firms with 5 or less employees. The

difference between the treatment across firm sizes is discussed in the next paragraph). This value of

6.42% spillover per year7 is much lower than 11% per average year of education (Battu et. al (2003))

and possibly in line with the findings of Martins (2004) which are around 3%. Our calculations were

already done with caution, as a firm above the average size was used with an average education above

the average of the sample and the spillover was calculated for firms with 5 or less workers, so the 9.63%

spillovers are also an upper bound. With more rigour, we would see that our spillover, on general, is

much lower than that found in Battu et. al (2003) and Metcalfe and Sloane (2007). However, it also

seems more reasonable, the idea that average education of co-workers benefits a worker as much as

own education seems exaggerated.
6Explained slower we have a firm with 5 workers and an average education of 8 years. When the college graduate

joins (given that he has 17 years of education) the average is the summation of education which is 8 × 5 + 17 divided
by the number of workers which now are 6. This equals 9.5 as shown in the main text. So the average education went
from 8 to 9.5, it increased by 1.5.

7If 1.5 years increase average wages by 9.63% then one year increases it by 6.42%.
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It is important to analyse these results carefully, to do this we must look at the quality of our

matching. We should see whether the covariates we used have the same mean in the treated and

control group. The table presented below shows these tests for the first year of the sample. In the

appendix I present a table with the tests for all years of the sample.

Table 4: Tests of the Quality of the Matching
(1987)

Variable Treated Control Bias t P-value Variances Ratio
logwage0 4.9483 4.944 0.9 0.28 0.783 1.05
tenure 84.107 83.71 0.7 0.19 0.851 1.13
hab_1 0.05956 0.06021 -0.4 -0.13 0.893 0.90
hab_2 0.47866 0.47464 1.2 0.35 0.728 0.99
hab_3 0.1503 0.14972 0.3 0.08 0.934 1.10
hab_4 0.12358 0.1249 -0.7 -0.19 0.850 1.03
hab_5 0.16529 0.1684 -1.5 -0.37 0.712 1.01
age_25 0.2217 0.2246 -1.2 -0.38 0.706 1.11
age_26_45 0.55951 0.56013 -0.2 -0.07 0.941 1.18
log_size 2.8735 2.8708 0.2 0.06 0.952 0.99
male 0.59176 0.58823 1.0 0.29 0.770 1.04

We can see that all our p-values are quite high, which means that we cannot reject the null hy-

pothesis that the means are the same. Particular importance should be given to the variable logwage0,

the logarithm of the wages in the period before. By matching on it, we are comparing firms that had

previously comparable wages and after one is treated they no longer have the same wages. From the

quality of the matching we can infer that all our covert bias (the one caused by selection on observ-

ables) was eliminated through matching and that our results for the treatment effect are not affected

by this selection bias.

If this spillover is explained by the share of knowledge that occurs from the interaction of the college

graduate with the other workers, firms with less employees would experience higher spillovers, as there

are more interactions. If a firm has a lot of employees, there may be no contact between most of the

employees and the college graduate, so there should be no significant spillovers in this case. I test this,

by segmenting the sample in 3 groups, firms with less than 5 workers, between 5 and 10 workers and

more than 10 workers. I perform the matching again by year, for each of these segment of firms. The

results that I come up with support the idea that the spillover comes from interactions. Indeed, firms

with less workers have higher spillovers, this also provides robustness to the results. Here, to keep

things tractable and short, I only present the results for the first year (1987), but these results happen

for each one of the years.
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Table 5: Differences in the ATT by Size

(1987)

logwage Observations

ATT Small Firm 0.1351∗∗∗ 30123

(3.74)

ATT Medium Firm 0.0615∗∗ 13937

(2.06)

ATT Large Firm 0.0131 17840

(1.04)

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The possible threat to this analysis, as already discussed in the methodology, is that the firms who

hire a college graduate do so because they expect positive reasons. Having this threat in mind I repeat

the estimations adding one more covariate - the sales of the company in the previous year. If indeed,

firms that hire were already in a positive cycle and hired because of it, we should be able to see it in

a higher level of sales the previous period. Using this variable as a covariate would then match on it

too so the treatment effect would disappear. Before estimating, I point out that I was already using

wages of the previous period as a covariate which in principle could already eliminate partially this

effect, nevertheless, I add sales to make sure that the spillover found is caused by the hiring and not

because of rent-sharing.

Again, there are no significant changes in the results, and the treatment effect continues to be

around 5%.8

8The geometric average in this specification is 5.43%, higher than the previous 5.10% but not significantly different.
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Table 6: ATT when Lagged Sales are Added

Year ATT Year ATT Year ATT

1987 0.0402∗∗∗ 1996 0.0696∗∗∗ 2006 0.0432∗∗∗

1988 0.0531∗∗∗ 1997 0.0620∗∗∗ 2007 0.0260∗∗∗

1989 0.0665∗∗∗ 1998 0.0616∗∗∗ 2008 0.0454∗∗∗

1992 0.0820∗∗∗ 1999 0.0584∗∗∗ 2010 0.0430∗∗∗

1993 0.0997∗∗∗ 2000 0.0678∗∗∗ 2011 0.0039

1994 0.0866∗∗∗ 2004 0.0507∗∗∗ 2012 0.0137∗∗

1995 0.0772∗∗∗ 2005 0.0412∗∗∗

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

VII. Additional Results

In Section III I explained why I chose to look at the entry of the first graduate. Nevertheless, to

expand a little bit the focus of this thesis, in this section I procceed to the evaluation of the effects of

the entry of a second graduate, or better said, of the second hiring of graduates. For this I am going to

look at the firms which had already one graduate, and then hire more, most of them will be hiring the

second, but some will hire 2 at once or more, like previously. A thing that must be said is that these

results will necessarily be much less accurate as the number of observations falls steadily to 401,083.

This happens because now the firms that can be subject to the treatment are firms with 1 graduate

instead of 0 and this is a much smaller number.

I follow the methodology that was used before and use the same covariates to estimate the propen-

sity score. In most of the year of the sample, I find no statistically significant spillovers. This result

must be looked at with caution, taking into consideration that the number of observations has de-

creased a lot. Still, it is a result which seems to be supportive of the idea that the hiring of the first

college graduate is relatively more important. This result is important in two ways. Firstly, it can be

also seen as a placebo test, we would expect to see the first graduate as more important and indeed

this is confirmed. Secondly, it shows that the entry of the first graduate has higher externalities than
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the ones that follow because the knowledge that the second graduate may bring in to the company

may be in some way equal to the one brought by the first.

Table 7: ATT for the Entrance of the Second Graduate

(1987) (1988) (1989) (1992) (1993) (1994) (1995)

logwage logwage logwage logwage logwage logwage logwage

ATT -0.0099 0.0365 0.0202 0.0250 0.0374 0.0449∗∗ 0.0248

(-0.37) (1.36) (0.76) (1.09) (1.48) (2.29) (1.16)

N 4386 4753 4854 6063 6317 6690 7596

Off Support 35 94 160 61 19 148 123

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1996) (1997) (1998) (1999) (2000) (2004) (2005)

logwage logwage logwage logwage logwage logwage logwage

ATT 0.0202 0.0248 0.0149 0.0259 0.0223∗ 0.0184 -0.0108

(1.04) (1.39) (0.90) (1.59) (1.76) (1.34) (-0.77)

N 8011 8981 10140 11074 14040 18951 21108

Off Support 51 169 20 268 177 50 142

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(2006) (2007) (2008) (2009) (2010) (2011) (2012)

logwage logwage logwage logwage logwage logwage logwage

ATT -0.0139 0.0090 0.0100 0.0063 0.0156 0.0022 -0.0183

(-1.20) (0.76) (0.87) (0.52) (1.28) (0.19) (-1.47)

N 24467 26387 27266 26693 23777 23055 21690

Off Support 514 417 155 363 269 253 223

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

VIII. Conclusion

I have used the method of propensity score matching to evaluate how the entry of the first graduate

in a firm benefits the productivity of his co-workers. I find evidence that there is a positive spillover

of this hiring, which is around 5%. This value while meaningful is smaller than the 11% increase by

average year of education that can be found in the literature of education spillovers in Great Britain

and maybe in the same order of magnitude of the one found by Martins for Portugal, 3% per average

year of education. Nevertheless, it is hard to make these comparisons and the results of this thesis

should not be extended to average education. The evidence found shows that the hiring of the first

graduate is an important step in the development of a firm and it also tells us that human capital

externalities exist at a college level of education. This means that there are reasons for education to

be subsidized, because in choosing his level of investment in human capital an individual would not

take these positive external effects into account.

Different specifications were tried to test the robustness of the results and no significant changes

are found. Furthermore, this thesis presents evidence that smaller firms benefit more from the entry of

the first graduate. To be more specific, firms with 5 or less employees face a spillover of approximately

11.6% If we believe that the mechanism by which these spillovers occur is share of knowledge this is

no surprise because in smaller firms, there are more interactions between all workers and the college

graduate, where they can learn from him.

This result may be added to the vast literature of the return of education on wages, by comple-

menting it and showing how education benefits not only the individual who takes it but also the people

who will work with him.
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Further research on education spillovers is left open after this result. To begin with, the database

from Quadros de Pessoal, having information on the job title of each worker, allows one to evaluate

if the entry of a college graduate to the position of manager, for example, has a higher impact on the

productivity of his peers. This would be a research which would be interesting to see not only because

of its results, but also because it could provide further robustness to the results of this thesis. Similarly

research on which sectors have higher spillover would be of interest and if indeed these sectors are the

ones where more interaction between workers is expected. Despite the fact that this thesis points in the

direction of share of knowledge as the mechanism for spillovers, this is not really established therefore

research on what the mechanism for the spillovers is, would also bring new information to the Labor

Economics literature.

Another interesting addition to this thesis would be a different kind of analysis with instrumental

variables instead of matching. In fact, I have tried to perform this analysis as an additional robustness

test using, firstly, the data of number of graduates by municipality from the Censos and then from

Quadros de Pessoal itself, nevertheless, I have faced a problem of weak instrumental variable. Maybe

a better instrumental variable can be found which can shed even more light in the trustworthiness of

the results presented here. Hopefully, the findings of this thesis will stimulate in other researchers the

motivation to carry this research.
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Appendix
In this Appendix some results are presented that were not presented in the main text in order to make

it more readable. To begin with, I show the tables with the tests of matching quality for all years of

the sample. Following that, I present the treatment effects estimation for different firm sizes for each

year of the sample too.
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(1987)
Variable Treated Control Bias t P-value Variances Ratio

logwage0 4.9483 4.944 0.9 0.28 0.783 1.05
tenure 84.107 83.71 0.7 0.19 0.851 1.13
hab_1 0.05956 0.06021 -0.4 -0.13 0.893 0.90
hab_2 0.47866 0.47464 1.2 0.35 0.728 0.99
hab_3 0.1503 0.14972 0.3 0.08 0.934 1.10
hab_4 0.12358 0.1249 -0.7 -0.19 0.850 1.03
hab_5 0.16529 0.1684 -1.5 -0.37 0.712 1.01
age_25 0.2217 0.2246 -1.2 -0.38 0.706 1.11
age_26_45 0.55951 0.56013 -0.2 -0.07 0.941 1.18
log_size 2.8735 2.8708 0.2 0.06 0.952 0.99
male 0.59176 0.58823 1.0 0.29 0.770 1.04

(1988)
logwage0 4.9648 4.962 0.6 0.18 0.854 1.25
tenure 79.809 79.642 0.3 0.08 0.933 1.14
hab_1 0.0597 0.06008 -0.3 -0.08 0.934 0.94
hab_2 0.47993 0.4728 2.2 0.68 0.497 0.96
hab_3 0.15598 0.15927 -1.5 -0.51 0.612 0.97
hab_4 0.12456 0.1253 -0.4 -0.12 0.908 1.05
hab_5 0.16584 0.16768 -0.9 -0.24 0.811 0.89
age_25 0.22592 0.22808 -0.9 -0.31 0.757 1.08
age_26_45 0.54881 0.5479 0.3 0.12 0.904 1.16
log_size 2.9436 2.9348 0.8 0.22 0.827 0.95
male 0.62566 0.62154 1.2 0.38 0.702 1.00

(1989)
logwage0 5.0948 5.051 -0.3 -0.08 0.934 1.06
tenure 77.645 78.273 -1.0 -0.31 0.753 1.10
hab_1 0.05229 0.05265 -0.3 -0.08 0.933 0.89
hab_2 0.4459 0.44445 0.4 0.14 0.892 0.98
hab_3 0.15599 0.1573 -0.6 -0.20 0.841 1.07
hab_4 0.14027 0.14215 -1.0 -0.27 0.785 1.04
hab_5 0.1876 0.1871 0.2 0.06 0.952 0.97
age_25 0.23131 0.23117 0.1 0.02 0.985 1.16
age_26_45 0.55131 0.54936 0.7 0.25 0.801 1.12
log_size 2.8668 2.865 0.2 0.05 0.963 0.97
male 0.60018 0.59894 0.4 0.11 0.910 1.04

(1992)
logwage0 5.129 5.1263 0.6 0.19 0.852 1.08
tenure 70.882 70.673 0.3 0.11 0.909 1.19
hab_1 0.03693 0.03647 0.4 0.13 0.896 1.00
hab_2 0.40501 0.40022 1.4 0.48 0.633 0.97
hab_3 0.18434 0.18363 0.3 0.10 0.918 1.08
hab_4 0.15694 0.16217 -2.4 -0.75 0.453 1.00
hab_5 0.19832 0.19856 -0.1 -0.03 0.977 1.00
age_25 0.23482 0.2361 -0.5 -0.19 0.852 1.14
age_26_45 0.54808 0.54709 0.4 0.13 0.895 1.22
log_size 2.7379 2.729 0.8 0.24 0.810 1.00
male 0.56541 0.56345 0.6 0.18 0.853 1.09

29



(1993)
Variable Treated Control Bias t P-value Variances Ratio

logwage0 5.1571 5.16 -0.6 -0.19 0.851 0.99
tenure 71.706 72.62 -1.5 -0.49 0.622 1.21
hab_1 0.03111 0.03144 -0.3 -0.11 0.916 0.93
hab_2 0.40091 0.40197 -0.3 -0.10 0.917 1.01
hab_3 0.17907 0.17835 0.3 0.11 0.916 1.08
hab_4 0.15357 0.15516 -0.7 -0.24 0.813 1.00
hab_5 0.21313 0.21119 0.8 0.23 0.822 0.99
age_25 0.22493 0.22569 -0.3 -0.11 0.910 1.10
age_26_45 0.55723 0.55279 1.6 0.61 0.542 1.11
log_size 2.6943 2.693 0.1 0.03 0.973 0.95
male 0.56885 0.56524 1.0 0.35 0.730 1.01

(1994)
logwage0 5.1895 5.1866 0.5 0.21 0.830 1.04
tenure 79.428 79.455 -0.0 -0.02 0.986 1.24
hab_1 0.03291 0.03302 -0.1 -0.04 0.968 0.88
hab_2 0.36098 0.35853 0.7 0.30 0.761 0.98
hab_3 0.18414 0.18527 -0.4 -0.20 0.844 1.05
hab_4 0.18445 0.18989 -2.3 -0.89 0.372 0.97
hab_5 0.20886 0.20472 1.7 0.59 0.553 0.96
age_25 0.2184 0.21891 -0.2 -0.09 0.928 1.22
age_26_45 0.56507 0.56447 0.2 0.10 0.922 1.21
log_size 2.6145 2.6159 -0.1 -0.04 0.965 0.93
male 0.53253 0.52813 1.2 0.50 0.618 1.09

(1995)
logwage0 5.1892 5.1889 0.1 0.02 0.984 1.10
tenure 73.416 74.022 -1.0 -0.38 0.705 1.20
hab_1 0.02541 0.02529 0.1 0.05 0.961 1.04
hab_2 0.3464 0.33977 1.9 0.76 0.448 1.03
hab_3 0.18477 0.18431 0.2 0.08 0.940 1.02
hab_4 0.1867 0.19034 -1.5 -0.56 0.577 1.01
hab_5 0.22625 0.2306 -1.7 -0.54 0.588 0.97
age_25 0.229 0.22923 -0.1 -0.04 0.972 1.14
age_26_45 0.55974 0.55848 0.4 0.19 0.852 1.17
log_size 2.6066 2.5913 1.4 0.47 0.642 0.94
male 0.55925 0.55423 1.4 0.52 0.602 1.09

(1996)
logwage0 5.1842 5.1862 -0.4 -0.15 0.882 1.05
tenure 74.296 40.918 -1.0 -0.39 0.694 1.25
hab_1 0.02313 0.02373 -0.6 -0.24 0.807 1.08
hab_2 0.32525 0.32087 1.3 0.53 0.598 1.00
hab_3 0.19754 0.19823 -0.2 -0.11 0.912 1.00
hab_4 0.18097 0.18319 -0.9 -0.36 0.720 0.98
hab_5 0.2404 0.24111 -0.3 -0.09 0.929 0.96
age_25 0.22211 0.22148 0.2 0.10 0.917 1.23
age_26_45 0.57157 0.57006 0.5 0.23 0.817 1.18
log_size 2.6041 2.5958 0.8 0.26 0.794 0.91
male 0.54981 0.54946 0.1 0.04 0.970 1.02
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(1997)
Variable Treated Control Bias t P-value Variances Ratio

logwage0 5.1883 5.1945 -1.2 -0.47 0.637 1.04
tenure 71.013 71.509 -0.8 -0.34 0.735 1.19
hab_1 0.0211 0.02166 -0.6 -0.26 0.795 0.92
hab_2 0.32279 0.32065 0.6 0.27 0.788 1.02
hab_3 0.18338 0.17979 1.3 0.62 0.534 1.06
hab_4 0.18112 0.18159 -0.2 -0.08 0.937 0.98
hab_5 0.25645 0.26061 -1.5 -0.53 0.595 0.96
age_25 0.22091 0.21898 0.8 0.34 0.736 1.15
age_26_45 0.56301 0.56261 0.1 0.06 0.949 1.16
log_size 2.5309 2.5122 1.8 0.63 0.529 0.89
male 0.53567 0.53505 0.2 0.07 0.945 1.05

(1998)
logwage0 5.1954 5.1964 -0.2 -0.09 0.931 1.07
tenure 71.366 71.803 -0.7 -0.33 0.743 1.19
hab_1 0.01823 0.01872 -0.5 -0.27 0.786 0.96
hab_2 0.31485 0.31049 1.3 0.61 0.545 1.02
hab_3 0.18697 0.18453 0.9 0.46 0.647 1.05
hab_4 0.18673 0.18777 -0.4 -0.19 0.850 1.03
hab_5 0.25134 0.25705 -2.1 -0.81 0.415 0.94
age_25 0.21602 0.21379 0.9 0.43 0.669 1.18
age_26_45 0.56547 0.56715 -0.6 -0.29 0.770 1.20
log_size 2.4699 2.4554 1.4 0.56 0.577 0.88
male 0.53885 0.53504 1.0 0.47 0.641 1.05

(1999)
logwage0 5.2144 5.2202 -1.2 -0.46 0.649 1.04
tenure 70.1 70.868 -1.3 -0.52 0.604 1.17
hab_1 0.01855 0.01828 0.3 0.13 0.893 1.05
hab_2 0.29534 0.19211 0.9 0.41 0.678 1.03
hab_3 0.18751 0.18401 1.2 0.59 0.552 1.06
hab_4 0.18824 0.19145 -1.3 -0.52 0.603 1.04
hab_5 0.26622 0.27046 -1.5 -0.53 0.597 0.99
age_25 0.2021 0.20148 0.2 0.11 0.913 1.21
age_26_45 0.57938 0.57719 0.7 0.34 0.736 1.20
log_size 2.4799 2.4633 1.7 0.58 0.565 0.87
male 0.53478 0.53122 1.0 0.39 0.698 1.07

(2000)
logwage0 5.2009 5.2022 -0.3 -0.15 0.883 1.10
tenure 69.916 70.178 -0.4 -0.26 0.797 1.14
hab_1 0.01891 0.01941 -0.5 -0.34 0.734 0.89
hab_2 0.31333 0.30811 1.5 0.94 0.347 1.03
hab_3 0.18939 0.18678 0.9 0.64 0.524 1.05
hab_4 0.19273 0.19429 -0.6 -0.36 0.718 1.06
hab_5 0.25845 0.26408 -2.0 -1.01 0.312 0.96
age_25 0.19162 0.19083 0.3 0.21 0.836 1.24
age_26_45 0.57562 0.57477 0.3 0.19 0.850 1.18
log_size 2.4008 2.3852 1.6 0.83 0.408 0.84
male 0.54645 0.54461 0.5 0.28 0.777 1.14
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(2004)
Variable Treated Control Bias t P-value Variances Ratio

logwage0 5.1676 5.1731 -1.1 -0.58 0.561 1.06
tenure 65.578 65.953 -0.6 -0.36 0.718 1.26
hab_1 0.01769 0.01707 0.6 0.39 0.696 1.09
hab_2 0.24607 0.24206 1.2 0.72 0.475 1.05
hab_3 0.2007 0.19675 1.3 0.83 0.408 1.10
hab_4 0.23457 0.23677 -0.7 -0.42 0.677 1.08
hab_5 0.26841 0.27426 -1.9 -0.95 0.348 0.99
age_25 0.16481 0.1638 0.4 0.25 0.802 1.27
age_26_45 0.59546 0.59543 0.0 0.01 0.995 1.20
log_size 2.128 2.1121 1.8 0.85 0.396 0.79
male 0.55705 0.55765 -0.2 -0.09 0.931 1.13

(2005)
logwage0 5.1625 5.1642 -0.3 -0.19 0.848 1.11
tenure 62.588 62.335 0.4 0.27 0.784 1.30
hab_1 0.01746 0.01786 -0.4 -0.25 0.801 0.99
hab_2 0.24635 0.24362 0.8 0.51 0.611 1.08
hab_3 0.2171 0.21302 1.3 0.87 0.385 1.12
hab_4 0.22988 0.22936 0.2 0.11 0.915 1.06
hab_5 0.25669 0.2644 -2.5 -1.32 0.187 1.00
age_25 0.16323 0.16217 0.5 0.29 0.775 1.21
age_26_45 0.60143 0.60155 -0.0 -0.02 0.981 1.18
log_size 2.1154 2.1011 1.6 0.81 0.415 0.77
male 0.60492 0.60693 -0.5 -0.30 0.761 1.20

(2006)
logwage0 5.135 5.1414 -1.3 -0.85 0.394 1.13
tenure 66.449 66.461 -0.0 -0.02 0.988 1.26
hab_1 0.01647 0.01587 0.6 0.49 0.621 0.99
hab_2 0.24799 0.24311 1.4 1.05 0.294 1.09
hab_3 0.20119 0.19562 1.8 1.47 0.141 1.15
hab_4 0.23833 0.23844 -0.0 -0.03 0.979 1.10
hab_5 0.26674 0.27687 -3.2 -2.05 0.041 1.03
age_25 0.14634 0.1457 0.3 0.22 0.829 1.28
age_26_45 0.60336 0.60351 -0.0 -0.04 0.971 1.22
log_size 2.0779 2.0588 2.1 1.34 0.179 0.83
male 0.59874 0.5989 -0.0 -0.03 0.978 1.22

(2007)
logwage0 5.1518 5.157 -1.0 -0.67 0.505 1.10
tenure 67.258 67.095 0.3 0.19 0.848 1.13
hab_1 0.01584 0.01484 1.1 0.81 0.420 1.06
hab_2 0.25542 0.25384 0.5 0.33 0.742 1.10
hab_3 0.2156 0.21201 1.2 0.87 0.385 1.12
hab_4 0.23318 0.23093 0.7 0.53 0.594 1.09
hab_5 0.24934 0.25701 -2.4 -1.51 0.131 1.03
age_25 0.13653 0.13517 0.6 0.46 0.649 1.26
age_26_45 0.60134 0.60398 -0.8 -0.63 0.528 1.21
log_size 2.064 2.0492 1.7 1.00 0.316 0.80
male 0.62644 0.62877 -0.6 -0.41 0.683 1.24
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(2008)
Variable Treated Control Bias t P-value Variances Ratio

logwage0 5.1941 5.1943 -0.0 -0.03 0.978 1.03
tenure 66.171 66.208 -0.1 -0.04 0.969 1.17
hab_1 0.01272 0.01234 0.4 0.32 0.748 1.06
hab_2 0.20351 0.19912 1.4 0.92 0.357 1.11
hab_3 0.19229 0.18754 1.6 1.11 0.267 1.10
hab_4 0.26445 0.26309 0.4 0.28 0.783 1.10
hab_5 0.29092 0.30139 -3.2 -1.78 0.075 1.00
age_25 0.1351 0.13445 0.3 0.20 0.845 1.27
age_26_45 0.59996 0.60111 -0.4 -0.25 0.806 1.21
log_size 2.0536 2.0372 1.8 0.98 0.326 0.80
male 0.57889 0.57474 1.1 0.65 0.516 1.17

(2009)
logwage0 5.207 5.2082 -0.2 -0.13 0.893 1.12
tenure 69.133 69.397 -0.4 -0.24 0.807 1.30
hab_1 0.01182 0.01206 -0.3 -0.18 0.859 1.09
hab_2 0.18461 0.18125 1.1 0.68 0.498 1.13
hab_3 0.19021 0.18835 0.6 0.39 0.695 1.16
hab_4 0.26131 0.26165 -0.1 -0.06 0.949 1.09
hab_5 0.31169 0.31432 -0.8 -0.40 0.686 1.02
age_25 0.12855 0.12651 1.0 0.57 0.571 1.24
age_26_45 0.59175 0.5927 -0.3 -0.18 0.856 1.19
log_size 1.9548 1.9454 1.1 0.53 0.595 0.74
male 0.56072 0.5581 0.7 0.38 0.706 1.17

(2010)
logwage0 5.246 5.2476 -0.3 -0.17 0.861 1.03
tenure 75.141 74.861 0.4 0.24 0.811 1.23
hab_1 0.01001 0.00992 0.1 0.08 0.940 1.07
hab_2 0.17795 0.17534 0.9 0.52 0.600 1.11
hab_3 0.18188 0.17974 0.7 0.46 0.647 1.13
hab_4 0.27758 0.2761 0.5 0.26 0.793 1.12
hab_5 0.31715 0.32277 -1.7 -0.84 0.402 1.05
age_25 0.11461 0.11367 0.5 0.27 0.791 1.30
age_26_45 0.58856 0.58944 -0.3 -0.16 0.871 1.22
log_size 1.9352 1.9224 1.5 0.71 0.480 0.79
male 0.56255 0.55968 0.7 0.40 0.687 1.21

(2011)
logwage0 5.2589 5.2611 -0.4 -0.22 0.829 1.05
tenure 69.588 69.217 0.6 0.30 0.762 1.29
hab_1 0.00742 0.00686 0.7 0.48 0.634 1.56
hab_2 0.15688 0.15338 1.2 0.67 0.505 1.13
hab_3 0.18419 0.18083 1.1 0.63 0.531 1.13
hab_4 0.29193 0.29044 0.4 0.23 0.818 1.09
hab_5 0.32292 0.33143 -2.4 -1.12 0.262 1.01
age_25 0.11623 0.11479 0.7 0.35 0.726 1.24
age_26_45 0.60675 0.60683 -0.0 -0.01 0.991 1.20
log_size 1.9106 1.8928 2.1 0.91 0.365 0.75
male 0.54526 0.54258 0.7 0.33 0.742 1.15
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(2012)
Variable Treated Control Bias t P-value Variances Ratio

logwage0 5.3316 5.3324 -0.2 -0.10 0.923 1.13
tenure 76.3 75.997 0.4 0.23 0.818 1.21
hab_1 0.00775 0.0079 -0.2 -0.12 0.903 1.01
hab_2 0.15635 0.1533 1.0 0.57 0.569 1.10
hab_3 0.18372 0.1796 1.3 0.75 0.451 1.15
hab_4 0.30025 0.2968 1.0 0.52 0.606 1.11
hab_5 0.31768 0.32854 -3.1 -1.41 0.159 1.00
age_25 0.11102 0.11185 -0.4 -0.20 0.841 1.21
age_26_45 0.58859 0.58791 0.2 0.10 0.916 1.19
log_size 1.8841 1.8691 1.7 0.76 0.448 0.79
male 0.5403 0.53975 0.1 0.07 0.946 1.12

(1987) (1988)

logwage Observations logwage Observations

ATT Small Firm 0.1352∗∗∗ 30123 0.1272∗∗∗ 31962

(3.74) (3.72)

ATT Medium Firm 0.0615∗∗ 13937 0.1098∗∗∗ 15196

(2.06) (3.73)

ATT Large Firm 0.0131 17840 0.0133 18857

(1.04) (1.08)

(1989) (1992)

logwage Observations logwage Observations

ATT Small Firm 0.1554∗∗∗ 35332 0.1410∗∗∗ 57964

(4.96) (6.52)

ATT Medium Firm 0.1050∗∗∗ 16856 0.0667∗∗ 11746

(4.18) (2.50)

ATT Large Firm 0.0274∗∗ 20333 0.0152 15076

(2.28) (1.13)

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(1993) (1994)

logwage Observations logwage Observations

ATT Small Firm 0.1769∗∗∗ 62443 0.1450∗∗∗ 63740

(7.84) (8.01)

ATT Medium Firm 0.1114∗∗∗ 12182 0.0869∗∗∗ 11959

(4.45) (3.71)

ATT Large Firm 0.0215 14707 0.0144 14256

(1.60) (1.22)

(1995) (1996)

logwage Observations logwage Observations

ATT Small Firm 0.1542∗∗∗ 79090 0.1272∗∗∗ 81659

(8.07) (6.81)

ATT Medium Firm 0.0453∗∗ 12934 0.0857∗∗∗ 12673

(2.02) (4.03)

ATT Large Firm 0.0078 14547 0.0099 13836

(0.65) (0.79)

(1997) (1998)

logwage Observations logwage Observations

ATT Small Firm 0.1192∗∗∗ 89026 0.1144∗∗∗ 96770

(7.38) (7.56)

ATT Medium Firm 0.0498∗∗∗ 13697 0.0311∗ 14319

(2.62) (1.75)

ATT Large Firm 0.0136 14289 0.0064 14394

(1.24) (0.60)

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(1999) (2000)

logwage Observations logwage Observations

ATT Small Firm 0.0921∗∗∗ 103824 0.1051∗∗∗ 112473

(5.71) (9.50)

ATT Medium Firm 0.0337 14982 0.0373∗∗∗ 16491

(1.60) (2.80)

ATT Large Firm 0.0268∗∗ 14264 0.0170∗ 15385

(2.28) (1.92)

(2004) (2005)

logwage Observations logwage Observations

ATT Small Firm 0.0738∗∗∗ 148119 0.0692∗∗∗ 156575

(7.00) (7.00)

ATT Medium Firm 0.0239∗ 17124 0.0182 17008

(1.75) (1.38)

ATT Large Firm 0.0086 13266 0.0140 13152

(0.76) (1.26)

(2006) (2007)

logwage Observations logwage Observations

ATT Small Firm 0.0715∗∗∗ 168254 0.0524∗∗∗ 167985

(9.13) (6.27)

ATT Medium Firm 0.0084 17141 0.0072 16568

(0.78) (0.64)

ATT Large Firm 0.0027 13608 -0.0048 12958

(0.29) (-0.44)

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(2008) (2009)

logwage Observations logwage Observations

ATT Small Firm 0.0590∗∗∗ 168238 0.0578∗∗∗ 168062

(6.36) (6.22)

ATT Medium Firm 0.0352∗∗∗ 15946 0.0447∗ 14849

(2.79) (3.26)

ATT Large Firm 0.0093 12021 0.0222∗ 10552

(0.83) (1.68)

(2010) (2011)

logwage Observations logwage Observations

ATT Small Firm 0.0574∗∗∗ 142345 -0.0048 139973

(6.08) (-0.55)

ATT Medium Firm 0.0299∗∗ 12764 0.0015 11665

(2.26) (0.11)

ATT Large Firm 0.0027 8770 -0.0005 7919

(0.23) (-0.04)

(2012)

logwage Observations

ATT Small Firm 0.0154∗ 133205

(1.76)

ATT Medium Firm 0.0053 10154

(0.36)

ATT Large Firm 0.0086 6880

(0.59)

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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