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Abstract 

 

Ion Mobility Spectrometry coupled with Multi Capillary Columns (MCC -IMS) 

is a fast analytical technique working at atmospheric pressure with high sensitivity and 

selectivity making it suitable for the analysis of complex biological matrices. 

 MCC-IMS analysis generates its information through a 3D spectrum with 

peaks, corresponding to each of the substances detected, providing quantitative and 

qualitative information. Sometimes peaks of different substances overlap, making the 

quantification of substances present in the biological matrices a difficult process.  

In the present work we use peaks of isoprene and acetone as a model for this 

problem. These two volatile organic compounds (VOCs) that when detected by MCC-

IMS produce two overlapping peaks. In this work it’s proposed an algorithm to identify 

and quantify these two peaks. This algorithm uses image processing techniques to treat 

the spectra and to detect the position of the peaks, and then fits the data to a custom 

model in order to separate the peaks. Once the peaks are separated it calculates the 

contribution of each peak to the data. 
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Resumo 

 
 A espectroscopia de mobilidade iónica (IMS) acoplada a Colunas Multicapilares 

(MCC) é uma técnica analítica rápida, que funciona a pressão atmosférica, com alta 

sensibilidade e alta selectividade tornando-a ideal para a análise de matrizes biológicas 

de alta complexidade. 

 A MCC-IMS gera informação sobre a forma de um espectro 3D. Este espectro 

fornece informação qualitativa e quantitativa na forma de picos, correspondentes a cada 

substância. No entanto estes picos por vezes aparecem sobrepostos dificultando a sua 

quantificação. 

 Neste trabalho utilizamos os picos de isopreno e acetona como modelo para este 

problema. Estes dois compostos voláteis orgânicos quando detectados pela MCC-IMS 

geram dois picos que se sobrepõem. É proposto neste trabalho um algoritmo para 

quantificar estas duas substâncias. Este algoritmo utiliza técnicas de processamento de 

imagem para tratar os espectros e para detectar a posição dos picos. Após a detecção 

destes picos o algoritmo ajusta um modelo personalizado aos dados do espectro de 

maneira a se poder separar os picos. Uma vez separados os picos calcula a contribuição 

de cada pico no espectro. 
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1. Introduction  

 

Ion Mobility Spectrometry is a recent analytical technique for the detection of 

gas-phase analytes. Because its operation does not require vacuum, IMS is seen as one 

of the most promising techniques for gas spectrometry. 

 Developed during 1970’s it was initially used for military purposes [1]. Initially 

seen as a niche technology, without much room for improvement, its development 

slowed down and the technique turned into a rejected method. This rejection occurred 

due to the lack of understanding of the principles of ion molecule chemistry and ion 

behavior at atmospheric pressure. In the 90’s refinements in the IMS instrumentation 

expanded the capabilities of the technique, becoming a general-purpose technology [2]. 

The coupling of IMS with multi capillary columns (MCC) increased the technique 

selectivity without resorting to pre-separation techniques. 

This combination brought new possible applications for the technique, being the 

detection of volatile organic compounds (VOCs) one of the most interesting and 

promising applications. Volatile organic compounds are organic chemicals that possess 

low boiling point and so evaporate at ambient temperatures. These compounds have 

numerous origins, including biological and anthropogenic sources. VOC monitoring has 

numerous applications, some of them can be harmful to human health while others can 

be indicators of biological processes, like the detection of Dyacetyl in beer 

fermentation, quality control of food, and detection of marker substances in human 

breath [3]. Isoprene and acetone are two VOCs that, due to their characteristics, appear 

in the IMS spectra in close positions and because they have some relevance in the 

metabolic profiling, medical diagnosis and therapy monitoring will be studied in this 

work. 

Acetone ((CH3)2 CO) is an organic compound widely used as a solvent in the 

industry. It has a molar mass of 58.08 g mol
−1

 and its boiling point is between 56ºC and 

57ºC in standard conditions, making it a high volatile substance. In ambient conditions 

is a highly flammable liquid with a characteristic odor. It’s also a compound produced 

in the human body as part of the breakdown and utilization of fats and lipids. The 

earliest report of acetone related to a human pathology dates 1798 described as an “odor 
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of decaying apples” by John Gallo. More recent studies have found relationships 

between the concentrations of acetone in breath and diabetes (e.g. in human breath 

acetone at a concentration of 400 ppb is normal but at 1000-1200 ppb can be an 

indicator for diabetes). Also correlations of the concentration of acetone in breath and 

exercise intensity have been found [4] [5]. 

Isoprene (C5H8) is another organic compound with a molar mass of 68.12 g 

mol
−1

 and its boiling point is 34ºC in standard conditions. Possesses high volatility and 

it’s produced by all kinds of living organisms, including human beings. Like Acetone, 

it’s always present in the human breath and variations of its concentration levels can be 

used as an indicator of health and disease. Although no conclusive results have been 

taken isoprene levels are believed to be a good additional indicator to metabolic 

disorders and also in cancer screening [6] [7] [8].    

The MCC-IMS spectrum is a 3D matrix that contains the information of the 

detected substances as peaks. The position of these peaks in the spectrum gives 

qualitative information of the detected substances. Resorting to automatic methods to 

detect peaks and, subsequently, using statistical analysis, correlation between a peak 

position and what substance it represents can be achieved. There is also the possibility 

to extract quantitative information from these peaks.  

The need for the extraction of quantitative information arises from necessity to 

identify changes in the quantity of the substances detected, these changes are vital to 

characterize certain biological processes. Isoprene and Acetone are two substances 

represented in the MCC-IMS spectrum in positions near one from the other, creating 

overlapping peaks. Overlapping peaks are hard to quantify due to their addictive 

contributions. A method to correctly deconvolute these peaks is needed in order to 

quantify both substances. In this work the development of an algorithm to identify and 

quantify the acetone and isoprene peaks is proposed.  
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1.1. Outline 

 

This thesis is organized in 6 main chapters. Chapter 1 is the introduction, where 

the theme of this thesis is introduced. Chapter 2 is comprised of the IMS-MCC details, 

giving an idea of the physical background, the resulting data and its associated 

problems. In Chapter 3 the current state of art techniques used in the IMS-MCC data 

are presented. In Chapter 4 all the methods used in this work are explained as well as 

the justifications of the choices made throughout the work. Chapter 5 contains the 

analysis of the data obtained as result of this work. Chapter 6 is where the final 

conclusions of this work are made and proposals of future work are given. This work 

also has two appendixes. Appendix A contains a series of results achieved with the 

algorithm presented in this thesis. Appendix B contains the poster accepted and 

exposed in the 8th International Conference on Breath Research & Cancer Diagnosis. 

Appendix C is the certificate of presence as a speaker in the JORTEC 2014. 
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2. Theory 

2.1. Ion Mobility Spectrometry 

2.1.1. Working Principles 

 

IMS is based on a simple principle, ions created at normal pressure move in the 

direction established by an external electrical field against the direction of a carrier gas. 

IMS ionizes gaseous analytes and then extracts the information of their characteristic 

drift time.  The ions drift time is characteristic because their mass and/or structure make 

them attain different velocities in the drift gas [9] [10]. Due to the relation between the 

ion velocity and the intensity of an applied external electric field an independent 

component for each ion can be extracted. This component is the quotient between ion 

velocity (  ) and Electric field ( ) and is referred as ion mobility ( ).   

   
  

 
 

2.1 

 

Ion velocity is expressed in        and the electric field is in       therefor 

the ion mobility is expressed in          . Due to the physical laws of our universe, 

ion mobility is susceptible to both temperature and pressure. This susceptibility required 

a correction in order assure stable results. By normalizing to the standard temperature 

and pressure we get the reduced ion mobility (  ). 

     (
 

  
) (

  

 
) 

 

2.2 

Where P and T are the values of pressure and temperature during the 

experiment. This means that the reduced ion mobility constant (  ) is a substance-

specific value.  
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An ion mobility spectrometer is comprised of a series of components. Usually 

the spectrometer main components are a drift tube, a sample inlet, a high voltage 

supply, a shutter grid, an amplifier, a drift gas supply, pressure and temperature sensors, 

and a computer. 

The drift tube is the main component of the spectrometer. Two entrances (the inlet 

sample and the drift air entrance), an exhaust exit, a Faraday detector, a shutter grid, a 

radiation source, drift rings and an aperture grid are the elements present in the tube. 

Divided by the shutter grid two regions exist, the ionization region and the drift region.  

In the ionization region the radiation source forms positive and negative ions. 

Because these ions are reactant the sample molecules undergo ion molecules reactions 

forming product ions. Opening the shutter grid for a moment allows the product ions to 

get into the drift region. An electric field is applied on the product ions. These ions 

migrate against the drift gas due to the electric field. Since the ions possess different 

masses and/ or structure, they reach the Faraday plate at different times. The different 

signals generated by the detector are recorded in the ion mobility spectrum, giving 

information on the different drift times (ms) and their respective intensity.  

2.1.2. Spectrometer Components 

 

The tube is usually made of metal rings separated by isolators. The high-voltage 

supply (±1-10 kV) creates an electric field inside the tube with field gradients from 150 

to 300 V/cm. Their design depends on the ionization source selected. Presently the know 

FIGURE 2.1 - A model of an IMS tube and its working principle 
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sources for IMS include radiation sources (α and β radiation), UV lamps, lasers, 

different kinds of discharges, and electrospray ionization [2].  The most common β 

radiation source is 
63

Ni although Tritium can also be used for some applications.  

The shutter grid works by creating an additional field gradient that is 

perpendicular to the one of the measuring tube not allowing the ions to pass. When the 

field is turned off the ions can pass through the grid.  

For the purpose of getting better mobility spectra an aperture grid is positioned 

in front of the detector. It provides a capacitive decoupling between arriving ions and 

the detector resulting in a mall line width of the peaks in the spectra. 

 

2.2. Multi Capillary Columns Coupling 

 

 Multi capillary columns consist of various capillaries (around 1000) all bundled 

into a single tube with a typical diameter of 3 mm. Their function is to separate complex 

mixtures, while offering high flow rate and a high sample capacity when compared to 

single narrow bow columns [11]. 

Because the ion mobility spectrometer does not have a very high selectivity, there is the 

need to be coupled with MCC. MCC offers a high carrier gas flow which enables an 

isothermal separation of VOCs at ambient temperatures. Thus, because of the high 

capacity, favorable flow conditions, and low working temperatures, MCC is ideal to be 

coupled with IMS, assuring that the equipment does not have to increase in size. 

 

 
FIGURE 2.2 - A multi capillary column  
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The IMS-MCC coupling also enables a multidimensional data analysis, allowing 

identification of VOCs by both chromatographic data (retention times) and by the ion 

mobility data. The multidimensional data analysis also allows the distinction of 

monomers, dimers and trimmers of certain molecules.  

 

2.3. Spectrum 

 

 The spectrum generated by the IMS-MCC spectrometer is a 3 dimensional plot. 

The drift time is in the x-axis, the retention time is in the y-axis, and the intensity of the 

signal from the Faraday plate is in the z-axis. This data can be plotted in topographic 

view with the intensity being color-coded, which allows easy pattern detection, crucial 

for the detection of VOCs.  

 An IMS spectrum has one characteristic peak that appears in all spectra. It’s 

called the reactant ion peak (RIP) and its descent signal is called the RIP tailing. The 

RIP is formed by the ionization of the carrier drift gas. If there are no molecules 

detected the RIP has the maximum amount of ions, this means that in zone where a 

Figure 2.3 - Pseudo color representation of IMS data  
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molecule is detected the RIP decreases in size. This phenomenon occurs because the 

product ions of the sample molecules are made by the collisions of reactant ions and 

sample molecules [2]. 

 Each substance has a specific peak due to its reduced ion mobility constant. 

However, when multiple substances are analyzed, some peaks can overlap. When peaks 

are overlapped they give cumulative contributions to the spectrum. For a precise 

quantification of substances peaks the different contributions need to be isolated.  

Figure 2.4 is an example of a simple IMS spectrum. It will be used to explain the 

profile of a peak and its characteristics.  

 First the peaks need to be characterized A process of fitting is to be applied to 

modulate these peaks. This process allows an easier analysis of the complexities of the 

spectrum. After the identification of the individual peaks’ characteristics, a correlation 

between these characteristics and the concentration of substance can be achieved. 

Figure 2.4 is an example of two overlapped peaks (Isoprene and Acetone). Using 

a side view we can observe the peaks profile, allowing a better understanding of what 

shape each peak has. The peaks seem to exhibit the shape of a Gaussian curve with a 

tailing in the direction of the drift time. They are also standing on top of a baseline 

curve. To isolate the “real” values of the peaks, they need to be isolated. First the peaks 

need to be characterized and a model created. Then a process of fitting is to be applied 

Acetone Isoprene 

Figure 2.4 - A Topografic view of a MCC-IMS spectrum and a single spectrum line  
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to find the parameters that best represent the data in the model. This process allows for 

an easier analysis of the complexities of the spectrum their corresponding contributions. 

After the identification of the individual characteristics of peaks, a correlation between 

these characteristics and the concentration of substance can be achieved. 

 

 

 

 

Figure 2.5 - Example of a 2D fitting process to a MCC-IMS spectrum 
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3. State of Art of Spectra Analysis 

 

In the scope of quantitative analysis of IMS spectra, this section presents the 

current techniques for IMS spectra data analysis. These methods provide the necessary 

tools to treat the data in a way that the peaks deconvolution can be achieved.  

 

3.1. De-noising and Smoothing 

 

Like most spectra, MCC-IMS spectra contains noise. This noise makes it 

difficult to detect low intensity signals. The process of de-noising and smoothing the 

data allows the reduction or the enhancement of certain aspects of the data. However 

this process can lead to loss of crucial information. This means that there is the need to 

find a filter that produces negligible loss of information and still maintain the important 

aspects of the data. The characteristics of the noise and the data influence the choice of 

the filter. The following sections present some filtering techniques.  

 

3.1.1. Moving Average Filter 

 

The Moving average filter is a filter that evaluates the average value on a 

determined window focused on each point of a data set. Although it is very fast filter to 

compute, it does not distinguish data and noise very effectively, leading to strong 

attenuations of the data and loss of important information. 

 

3.1.2. Savitzky-Golay Filter 

 

The Savitzky-Golay filter is a digital filter proposed by Savitzky et al. in 1964 

[12]. The filter possesses 2 adjustable parameters, the window size and the polynomial 

degree. This filter is very effective in reducing the noise and maintaining the shape and 
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height of waveform peaks [13]. The filter works by splitting the data in samples 

(window size determines the size of this samples) then a linear regression of some 

polynomial individually for each sample, followed by the evaluation of that polynomial 

exactly at the very position of the sample [14].  

 

3.1.3. State of Art 

 

 Wavelet transforms were used by Bader et al. 2008 [15]. Applied to different 

levels of resolutions these wavelet transforms achieved both de-noising and smoothing. 

Removing low amplitude coefficients resulted in de-noising.  Removing the coefficients 

corresponding to high frequency regions resulted in smoothing of the data. 

 Bunkowski used a combination of filters to achieve de-noising [16]. A median 

filter followed by a Gaussian filter. The median filter is used to eliminate single noise 

fragments and the Gaussian filter to smooth the remaining values. 

 

3.2. Curve Fitting 

 

Curve Fitting is the process of finding a curve that best fits a certain data set.   

This curve or mathematical equation allows for a better visualization and a better 

analysis of the data. Two things are needed for this process, a model that can describe 

the data and a method that can find the ideal parameters for the model. The fitting 

process can require a lot of computation time, depending on the size of the data and the 

number of parameters that needs to calculate. 

For the purpose of this thesis the Levenberg-Marquardt method is going to be 

used. This method is used to solve Non-linear least squares problems, being essentially 

a search method used for non-linear regressions. It searches for the ideal parameters that 

solve non-linear regression problems. It is based in the Gauss-Newton method because 

it evaluates partial derivatives to ascertain the direction of the search, but contrary to the 
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Gauss-Newton method it possesses the ability to create boundaries to the parameters 

that solved the non-linear regression problem. 

 

3.3. RIP detailing 

 

 A characteristic signal structure is found in all MCC-IMS spectra, the reactant 

ion peak (RIP). To facilitate analysis there is the need to eliminate this peak. This 

process is called RIP detailing. 

 In 2008 Bader et al. achieved RIP detailing by fitting a modified lognormal 

function (3.1), where θ is the shift in the x axis, σ defines the shape of the curve, and μ 

is the log scale, to the mean of all spectra and then subtracting the fitted function from 

each spectrum [15].  

 

 (  )   
  

(    ) √  
     * 

[    ((    )  )] 

   +  
3.1 

 

 This lognormal function met the general assumption of Gaussian peaks and the 

right screwed shape of the RIP tailing.   

   

 More recently, Bunkowski proposed a method where an ascending sorted list 

with all the values with the same 1/K0 value is created [16]. Then, the 25% quantile of 

every 1/K0 is selected and subtracted over all spectra. This method removes the RIP and 

corrects the baseline. 

  

Figure 3.1 - Before and after RIP detailing by subtracting the detailing function  
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3.4. Peak Detection 

 

 Both Bader and Bunkowski presented different approaches to detect peaks in 

IMS data. Bader introduced three different methods, the Merged Peak Cluster 

Localization (MPCL), the Growing Interval Merging (GIM), and the Wavelet-Based 

Multiscale Peak Detection (WBMPD) [15]. Bunkowski introduced an algorithm based 

on Watershed Transformations (WST) [16]. 

 

3.4.1. Merged Peak Cluster Localization 

 

 This method instead of utilizing a preprocessing baseline correction, it uses a 

LOWESS algorithm [17]. LOWESS is a robust locally weighted regression method that 

was used to reduce the RIP tailing and mitigate the signal noise. After the LOWESS 

algorithm is applied the data is the data is truncated after the RIP. This truncated data is 

then classified into two types, peaks and noise by k-means clustering. Finally a merging 

algorithm is applied to group the adjacent data points that were classified as peaks. 

Although some positive results were achieved, an important limitation of the method is 

its inability to detect superimposed peaks. 

 

3.4.2. Growing Interval Merging 

 

This method was developed to overcome the limitations of the MPCL method 

[15]. It starts by defining a sequence of intensity thresholds that characterize the 

growing intensity intervals. A histogram of the intensity is used to define these 

thresholds that divide the data in three regions, noise, peak, and RIP. The peak region is 

divided into subintervals with evenly distributed data points. Then a similar procedure 

to the MPCL is employed to each subinterval. This process allowed distinction between 

peak and non-peak and also different peak regions could be identified. An ellipse shape 

was chosen for each peak for the purpose of storing the peak information with minimal 

parameters. To detect overlapping peaks the GIM method was structured in a stage wise 
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manner. In each stage a list is created with the peaks detected. If in the next stage a 

common peak is found the old peak parameters are overridden by the new parameters. 

Although the GIM outperforms the MPCL, there are still limitations in the detection off 

overlapping peaks.  

 

3.4.3. Wavelet-Based Multiscale Peak Detection 

 

This method is based on the approach by Randolph and Yasui for multiscale 

processing of single spectra [18] but applied to three-dimensional spectra. A maximal 

overlap discrete wavelet transform (MODWT) to perform multiple resolution analysis is 

used. This wavelet transform is translation invariant and can be applied to arbitrary data 

dimensions. A Haar wavelet yield better results. The wavelet transform produces four 

matrices with information of the data, the lowpass-lowpass (LL), the lowpass-highpass 

(LH), the highpass-highpass (HH), and the highpass-lowpass (HL). For the IMS data the 

LH matrices provided the necessary information for peak localization. Bader et al. 

applied the GIM method to the LH matrix to detect the peaks and extract their 

information. This method proved to be highly sensitive and provided better results than 

the standalone GIM method.  

 

3.4.4. Watershed Transformation 

 

Bunkowski proposed this method based on the work of Wegner et al. for the 

detection of spots in gel electrophoresis images. The concept of WST is by analyzing 

the data as a topological permeable map which is submerged into an imaginary water 

basin [16]. The IMS data is inverted so that the peaks reach the water first. The water 

starts filling the peaks until the data is fully immersed. When water from different peaks 

meet, a dam is built. This process partitions the data into regions separated by dams, 

called watersheds. 
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3.5. Peak Modeling 

 

Kopcynski, Baumbach and Rahmann proposed a model for the IMS peaks [19]. 

This model is an inverse Gaussian distribution. While the original inverse Gaussian has 

its origin at zero the proposed model has an additional offset parameter, this means a 

total of three parameters are needed. Although there is no physical theory to describe 

the peaks observed this model possesses similar characteristics to the observed peaks. 

The ability to represent the data in a mathematical model and a series of parameters for 

each peak requires less space than saving millions of data points.  
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4. Methods 

4.1. Process 

 

In order to extract the quantitative information of Isoprene and Acetone peaks 

from the IMS spectra data, a methodology had to be applied.  

To reduce noise and fix data irregularities, a filter is applied in order to enhance the 

aspects of interest and improve the ensuing methods of the algorithm. Then, the RIP 

tailing is detected using 2D fitting and then subtracted, followed by the segmentation 

algorithm (described later on) applied in a specific area in order to detect the number of 

peaks and its position. Once the necessary information is collected a 3D fitting using the 

defined peak model is applied to achieve a representation of the data can be used to 

deconvolute the peaks and allow their quantification. 

 

4.2. Data Filtering 

 

The first step in the methodology was to apply a smoothing filter to reduce the noise 

influence. The filter was chosen considering the MCC-IMS spectra data, i.e. containing 

overlapping peaks.The filter had to be able to reduce the noise without significant 

changes to the shape of the peak curves.  

The Savitzky-Golay filter is the filter widely used in the literature and in the 

industry, with proven results in this type of data. This filter efficiently removes de noise 

without changing the peaks’ shape. In this work Savitzky-Golay filter was applied using 

the MATLAB
®
 function sgolayfilt to each retention time spectra. A 13 pixel window 

size and a 4
th

 degree polynomial approximation was the configuration found empirically 

that produced the best results.  
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 In figure 4.1 it can be clearly seen that the Savitzky-Golay filter reduces the 

noise in the data without changing the curve shapes like it happens in a moving average 

filter. 

 

4.3. RIP Detailing 

 

In order to facilitate the quantitative analysis of IMS the RIP tailing had to be 

described in a mathematical formula and then proceed to its removal. The IMS RIP has 

incremental contributions to the value of the peaks. To quantify the peaks, these 

contributions need to be found and removed. Based on the work of Bader et al. a 

lognormal equation was used to describe the RIP tail [15]. This lognormal equation in 

based on the lognormal statistical distribution. The calculation of the equation 

parameters required a series of steps as well as observation of the equation behavior in 

order to create reasonable bounds to those parameters.  

  The first step was to calculate the second derivative of the curve in order to find 

the major peaks. Then the Savitzky-Golay filter is applied to the second derivative 

result in order to facilitate the use of the findpeaks function of MATLAB
®
. The 

findpeaks function was sed to find the peaks that have at least 20% of the max value of 

the spectra and a minimum distance of 15 pixels between peaks. The position and the 

value of these peaks are then extracted to a data structure.  

Figure 4.1 - Results of different filters applied in a single line spectrum 
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The second step uses the information saved in the data structure to create an 

estimation model. The number of peaks found decides the number of Inverse Gaussian 

Distribution curves it creates. The Inverse Gaussian distribution is an exponential 

distribution with 2 parameters, μ and λ. 

Where μ < 0 is the mean and  λ < 0 the shape. Its probability density function is given 

by the equation 4.1 and it’s characterized by having a single peak and by not being 

symmetric, having a right tail. The position of the single peak is given by the mode. The 

mode depends on both parameters (μ, λ) and is given by [(  
   

   )

 

 
 

  

  
].  For the 

modeling of a single curve two extra parameters were added. An intensity parameter 

that allows the curve to better adapt to the data and an offset x0 that represents position 

where the curve starts. 

 The model consists in the major peaks, found with the second derivative and 

modeled with the Inverse Gaussian distribution curve, plus the lognormal function for 

the RIP tail. A function type file receives two structures, the drift time vector (tDrift) 

and a structure (GParameters) with all the parameters necessary to create the 

mathematical model.  

The third step uses the Levenberg-Marquardt algorithm to find the ideal 

parameters for the model created. In order to apply the Levenberg-Marquardt algorithm 

we use the lscurvefit function of MATLAB®. This function receives the estimation 

model we want to use, a structure with the initial parameters, the values of the raw data, 

the tDrift, and two structures with the maximum and minimum bounds for the 

parameters. 

The parameters bounds were added through the observation of the behavior of 

the curve. For the lognormal curve to best represent the RIP tail its behavior had to be 

controlled using a set of bounds within the Levenberg-Marquardt algorithm. These 

bounds are specific to the type of spectra used in this work. They ultimately limit the 

values found by the Levenberg-Marquardt algorithm, which means the values found 
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may not be the most optional values in terms of the minimum value found by the error 

function but are the values that best represent the data. 

Once the all parameters are found, they are introduced in the model function and 

the data representation is created. For the detailing of the RIP, only the parameters of 

the lognormal function are used.  

The RIP detailing was tested in two different ways. In one the model fitting was 

applied to all the spectral lines and then the mean log normal curve was calculated. In 

the other way the mean spectrum was calculated and then the model fitting was applied 

to the mean spectrum. 

The process where the fitting was applied to all the spectral lines produced good 

results but its time consumption was really high. The application of Levenberg-

Marquardt algorithm in each line requires a really high processing power. Assuming 

that the model in average possesses 3 inverse Gaussian curves (4 parameters) and a 

lognormal curve (5 parameters), the algorithm had to calculate the optimal value of 17 

parameters for each line. Even though this process produces more consistent results, the 

differences in results did not compensate the time spent. This process also had a 

different set of bounds of the lognormal curve then the other process, in table 4.1 the 

parameters used in this process is presented.  

Table 4.1 - Initial parameters of lognormal curve and their upper and bottom bounds   

  A tDrift μ σ b 

First Estimation 0,01 6,2 1,3 1 0,1 

Lower Bound 0 tDriftMIN 0,5 0,5 0 

Upper Bound 2 8 1,3 2 Intensitymean 

Calculating the mean spectrum along the retention time and then fit the model to 

this new data resulted in a faster process, mainly because the Levenberg-Marquardt 

algorithm runs a single time. In order for this method to work with acceptable results it 

required some customizations.  

Table 4.2 - Initial parameters of lognormal curve and their upper and bottom bounds   

  A tDrift μ σ b 

First Estimation 0,01 6,2 1,3 1 0,1 

Lower Bound 0 tDriftMIN 0,5 0,5 0 

Upper Bound 2 7,5 5 5 Intensitymean 
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The lognormal curve has a different set of bounds (table 4.2) and the process of 

finding peaks is wider in terms of the number of peaks it can find. This means that the 

model can find more curves, being more precise describing the mean spectrum. In 

figure 4.2 we can see an example of the RIP detailing. On the left is the result of the 

detailing and on the right is the plot of all the spectrum and the RIP tail curve that was 

calculated with the method developed. 

Figure 4.2 - Result of the rip detailling 
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4.4. Region of Interest 

 

 To find the correct position of the Acetone and Isoprene peaks it was necessary 

to find the region of interest in which the peaks were to be found using the spectral peak 

detection tool. This region of interest was found using several spectra that contained 

acetone and isoprene peaks.  

Table 4.3 - Analysis of the empiric detection of acetone peak 

Acetone Peak 

 

tDrift (ms) tRet (s) 

Average 8,543 8,737 

Standard Deviation 0,056 0,908 

Maximum Values 8,653 9,828 

Minimum Values 8,440 6,174 

 In table 4.3 and 4.4 the positions of the acetone and isoprene peaks extracted 

empirically are presented.  It can be seen that the position of the acetone peak is very 

contained in the tDrift axis, with its average value being 8,543ms and with a standard 

deviation of 0,056ms, indicating that the value does not deviates much from its average 

value. On the other hand the position on the tRet axis has a wider range with the 

average value being at 8,737s with a standard deviation of 0,908s. This wider range is 

justified by some peaks reaching a maximum of 9,828s (~+1) and a minimum of 6,174s 

(~+2), indicating some considerable fluctuation in the tRet.  

Table 4.4 - Analysis of the empiric detection of isoprene peak 

  Isoprene Peak 

 

tDrift (ms) tRet (s) 

Mean 8,384 8,285 

Standard Deviation 0,053 0,878 

Maximum Values 8,568 9,324 

Minimum Values 8,286 5,922 

 

Isoprene peak position has an average tDrift value of 8,384ms with a standard 

deviation of 0,053ms and an average tRet value of 8,285s with a standard deviation 

0,878s. Once again there are some fluctuations in the tRet axis which affect the 

uncertainty of the isoprene peak. The standard deviation of both peaks is similar, which 

assures that the peak positioning is consistent despite being different substances.  
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Table 4.5 - Analysis of the empiric region of interest 

Region 

 

Average Standard Deviation Maximum Minimum 

Bottom tDrift (ms) 8,22961 0,05651 8,38600 8,14000 

Top tDrift (ms) 8,75627 0,07078 8,98000 8,58600 

Bottom tRet (ms) 6,90348 0,69106 8,06400 5,16600 

Top tRet (ms) 11,77109 1,35701 16,51000 9,07200 

Surface (ms2) 2,59745 0,84202 6,55829 1,60149 

Dif tDrift (ms) 0,52666 0,05738 0,75400 0,39300 

Dif tRet (ms) 4,86761 1,10720 9,07600 2,89600 

 

Table 4.5 gives the information of the region that contains the peaks. The region 

contains the relevant area to correctly quantify the peaks. Once more the range in the 

tDrift axis does not vary much, which correlates to the fact that the Drift time is related 

to the ionic mobility of the substances. Using this information the region of interest was 

defined as μ+2σ to the top values of tDrift and tRet and as μ-2σ to the bottom values of 

tDrift and tRet. This resulted in a region with a top corner situated at (8,8978ms ; 

14,4851s) and a bottom corner situated at (8,1166ms ; 5,5214s).  

 

FIGURE 4.3 - Example of the region of interest selection 
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    In figure 9 we have two examples of the region of interest implemented in the 

algorithm. The region chosen has the necessary information for the peak detection and 

fitting. 

 

4.5. Spectral peak detection 

 

For the spectral peak detection the gradient path labeling algorithm (GPL) was used 

[20]. GPL detects the regional maximums in the region of interest chosen earlier. 

Because a gradient image have a confluence of several ascending paths towards a 

regional maximum, GPL is a method of segmentation based on the labeling of these 

gradient paths. The algorithm is divided in two stages.  

The first stage starts by attributing a label to each pixel of the image in a top-left to 

bottom-right direction and determining its gradient azimuth using a 3x3 Sobel operator. 

Once all the pixels are labeled the algorithm propagates the labels following the 

gradient path until an already marked or outside image boundaries pixel is found. When 

the propagation finishes on a different label, the two labels are tagged as equivalents 

and considered to belong to the same maximum. 

Figure 4.4 - Peak detection algorithm example 
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The second stage of the algorithm is when the equivalences are applied and the 

image is segmented and each segment is a maximum or, in the context of this work, is a 

peak. 

Due the shape of the curves, not all gradient paths end on the same maximum pixel, 

resulting in over-segmentation of the image. Although a merging method exists in the 

GPL algorithm, it was not sensitive enough to correctly detect the peaks. In order to 

extract the correct position of the isoprene and acetone peaks, the regional maximums 

detected by the GPL are posteriorly filtered. The filter applied has 3 steps and is based 

in the empiric observation of various spectra presented in the region of interest chapter 

(5.4). First the method checks if any peaks are present in an area with one standard 

deviation of uncertainty around the average value of the peaks. If no peaks are found the 

method passes to the second step, this one is basically equal to the first but widens up 

the area to two standard deviations on uncertainty. If more than one peak is found, the 

method picks the one with the highest intensity.  

   

4.6. Spectral peaks modeling 

 

The substance peaks in the IMS spectra, at first sight, look like they can be 

described by a Gaussian curve, but the elongations in tDrift and tRet discredit the first 

observation. Based on the work of Kopcynski, Baumbach, and Rahmann and the 

observation of various spectra the Inverse Gaussian Distribution curve was found to be 

the equation that could be used to describe the peaks with the elongations [19]. 

To develop the 3D model that describes the IMS peaks, two Inverse Gaussian 

Distribution curves were multiplied, one representing the tRet axis and another the 

tDrift axis. The curves also had some changes to the original equation in order to be 

able to adapt to the IMS data. These changes consisted in adding two new parameters, 

the intensity (Ax,Ay) and the position of the beginning of the curves (x0, y0). In the final 
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model a single parameter for the intensity (A) appears due to the multiplication of Ax 

and Ay, the reduction of the parameters number simplifies and reduces the number of 

calculations needed to find the optimal value.  

 During the peak location stage, the algorithm finds the position of the peaks 

however the model uses the position of the start of the curve making it necessary the 

calculation of the position of the peak related to the start of the curve. This is achieved 

using the mode of each curve. The mode gives the position of the maximum value 

relatively to the start of the curve. Using this information the position of the peak in tRet 

and tDrift is given by           and         . 

 The Levenberg-Marquardt algorithm is used to find the parameters that allow the 

model to best adapt to the data, resorting once again in the MATLAB
®

 lscurvefit 

function. The lscurvefit function receives the region of interest data, a structure 

containing both the tDrift and tRet vectors of the region of interest in grid form, a 

structure with all the initial parameters to the model, and two structures with the top and 

low bounds for the parameters.  

The tDrift and tRet vector were transformed into matrices using the meshgrid 

function of MATLAB
®
, this step was a necessity due to the characteristics of lscurvefit, 

because as the name implies it’s a function for curves and not surfaces, this was 

circumvented using a single structure with both vectors as grids. The other reason this 

method works is because once the data enters the function, the Levenberg-Marquardt 

algorithm does not care it it’s a curve or a surface and resolves the non-linear problem 

presented. 

 The initial parameters are generic values for the peak shape and the positions 

detected by the GPL for the peak location. The Levenberg-Marquardt algorithm 

receives the parameters for the number of peaks detected plus one additional peak. This 

additional peak helps the algorithm to shape the model to the best fit possible, it also 

tries to stop the algorithm to try to compensate noise structures with the peaks.   

 The parameters bounds were chosen based on the observation and testing of the 

Levenberg-Marquardt algorithm in a series of spectra. These bounds give enough 

freedom to the algorithm without de-characterizing the curves, in order to get the best fit 

possible. 
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Table 4.6 - Initial parameters and their upper and lower bounds for the peaks model  

  A tDrift tRet 

    x0 λ μ y0 λ μ 

Estimation GPL GPL 1 1 GPL 1 1 

Lower Bound 0 GPL - 0,05 0,5 0,1 GPL - 0,9 0,5 0,1 

Upper Bound 10 GPL + 0,05 100 10 GPL + 0,9 100 10 

 With the parameters found, seven for each peak, a recreation of the data is 

produced that can be used for comparison with the data. To evaluate the goodness of the 

fit it is possible to calculate the total volume of both images and compare the values. It 

is also possible to calculate the mean squared error between each pixel of the image. 

The parameters found can be used to compute each peak individually. This 

representation is used to quantify both isoprene and acetone. This quantification is an 

absolute value that can be later used to create a relation with volume values of these 

substances.   
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5. Results of Peak Analysis 

 

For data analysis there are two main indicators being evaluated, the automatic 

detection of the peaks and the goodness of the fit. These two indicators are the ones that 

best assess the quality of the algorithm. Good automatic peak detection is essential for 

future works and has multiple applications. The goodness of the fit can be used to 

validate if the chosen method and model are correct to quantify substances in MCC-

IMS spectra.  

5.1. Peak Detection 

 

To give an overview of the results produced by the GPL algorithm the same 

spectra empirically analyzed were analyzed by the algorithm and a comparison of the 

results is presented here. A total of 77 spectra with isoprene and acetone peaks were 

analyzed. The average value of the peaks and its respective standard deviation will be 

analyzed as well as the differences in the position of the peaks in each spectrum. 

 

5.1.1. Acetone Peak 

 

 In the spectra analyzed the acetone peak is usually the most intense. As it was 

referred before, it is located around the point (8,543ms; 8,737s). In table 5.1 is given an 

overview of the differences between the empiric detection and the automated detection. 

The differences in value of the mean value and the standard deviation are small, what 

may indicate a good behavior of the algorithm, although not enough to formulate a 

conclusion.  

Table 5.1 - Results of the acetone peak detection 

  Acetone Peak 

 
Empiric GPL Difference 

 

tDrift (ms) tRet (s) tDrift (ms) tRet (s) tDrift (ms) tRet (s) 

Mean 8,54261 8,73677 8,51618 8,59091 0,02643 0,14586 

Standard Deviation 0,05637 0,90752 0,04620 0,87877 0,01017 0,02874 
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 In order to get a better overview of the GPL algorithm’s behavior, in figure 5.1 

the multiple acetone peaks detected, empirically and by the algorithm, are presented. 

Here it’s displayed the position of the mean value for each detection method, with error 

bars representing two standard deviation of uncertainty. It can be noticed that the peak 

positions follow a similar distribution. The average error between peaks detected by 

both methods is 0,50% in the tDrif axis and 6,89% in the tRet axis, although in some 

cases in the tRet axis the error is up to 60,78%. According to these values, it can ve 

concluded that the acetone peak is being correctly detected by the algorithm. 

5.1.2. Isoprene Peak 

In the analyzed spectra the isoprene peak is not always present and is usually 

less intense than the acetone peak.  

 

  Isoprene Peak 

 
Empiric GPL Difference 

 

tDrift (ms) tRet (s) tDrift (ms) tRet (s) tDrift (ms) tRet (s) 

Mean 8,38416 8,28520 8,37467 7,73951 0,00949 0,64465 

Standard Deviation 0,05248 0,87764 0,05918 0,98086 0,00670 0,10322 
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Figure 5.1 - Acetone peaks distribution 

Table 5.2 - Results of the isoprene peak detection 
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 In table 5.2 it can be seen that the differences in the tDrift values are minimal 

and in the tRet, although bigger than the differences in tDrift, are small enough to get a 

good overview in the quality of the detection.  

 

In figure 11 the distribution of the peaks is represented, once again with the 

position average value and its respective error bars with a two standard deviation 

uncertainty. The behavior of the algorithm when detecting the isoprene peak is also very 

good. With an average error of 0,48% in the tDrift axis and  8,67% in the tRet axis, and 

a maximum error of 2,43% in the tDrift axis and 44,68% in the tRet axis. It can be 

concluded that the algorithm detects the correct position of the isoprene peak. It is also 

worth to mention that some isoprene peaks were not detected by the algorithm. There 

are two reasons for this. In some spectra the acetone peak was so intense that masked 

the isoprene peak. While in other spectra the isoprene peak was so small that the 

algorithm ignored it because it didn’t have enough intensity. 
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5.2. Fit 

 

To have a perception of the goodness of the fit first the analysis will focus in a 

single spectrum and then a statistical overview of a series of tests will be presented.  

This spectrum went through the whole process algorithm and the results are 

going to be discussed. 

Figure 5.3 is presents the result of the fit. It can be observed the presence of 3 

peaks. At first sight the main difference is how smooth the fit is. In the treated data the 

position of the acetone peak, found by the detection method, was 8,500ms in tDrift and 

7,938s in tRet and in the fit its position is 8,493ms in tDrift and 9,938s in tRet. As for 

the isoprene peak the detection method determined its position was 8,313ms in tDrift 

and 7,308s in tRet and in the fit its position was 8,340ms in tDrift and 7,560s in tRet, 

we can conclude that the peaks position is correct, as was expected. A third peak was 

also added in order to get the best fit possible.  

Having the fit similar to the data is not enough. To have a perception of the fit 

result the absolute volume of both matrices was calculated. To find the volume beneath 

each surface the discrete integral of both surfaces was calculated. Because both surfaces 

are matrices of the same size the computation of the discrete integral becomes trivial. 

Assuming the surface is divided in the same number of unitary divisions, the 

contribution to volume is only the intensity. So summing all the intensities in the image 

Figure 5.3 - Result of the fit 

Treated Data Fit  
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we have the volume beneath the surface. The absolute volume of the treated data was 

1365,44 and the volume of the fit was 1459,09. This means a difference in volumes of 

6,86%  with a  mean squared error between each pixel of the images of 0,002.  

Table 5.3 - Parameters of the each individual peak 

 Peak A tDrift tRet 

 

  x0 λ μ y0 λ μ 

Acetone 0,2350 8,5142 0,5125 0,2569 8,0084 12,4926 2,2546 

Isoprene 0,5356 8,3152 2,0120 0,3664 7,0080 63,5250 8,9232 

Additional 0,1473 8,3565 9,6718 0,5011 7,7328 3,2109 2,2416 

 

 Table 5.3 contains the parameters found by the Levenberg-Marquardt algorithm 

these parameters are used to represent the acetone and the isoprene peak individually. 

Using these parameters it’s possible to calculate the absolute volume of each individual 

peak. 

 

 In figure 5.4 and figure 5.5 we have the acetone and isoprene peaks, 

respectively. It is possible to observe how each peak contributes to the fit result. 

Figure 5.4 - Acetone peak isolated 
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Figure 5.6 - Isoprene peak isolated 

Figure 5.5 - Third peak isolated 
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 The value of the absolute volume of each peak was 256,33 for acetone, 606,42 

for isoprene, and 171,539 for the third peak. Although the results of the algorithm show 

that the isoprene has a higher volume then the other peaks, no conclusions can be made 

in terms of what substance has higher concentration in the analyzed sample. 

5.3. Peak Volumes  

 

To have an overall review of the fitting process several spectra were analyzed. 

The algorithm returned for each spectrum an image of the data and an image of the fit 

and a text file with the values of the volumes and the mean squared error calculated.  

Due to the nature of the Levenberg-Marquardt algorithm, not all the fitting were 

satisfactory, as some fits could not characterize correctly all the peaks. The algorithm 

was able to produce good fits in 59,2% of the cases and the average difference between 

the volume of the data and the fit was 11,37%. Separating the good fits from the bad 

fits, we have a difference in volume of 10,4% for the good fits and a difference of 

12,8% for the bad fits. 

 In terms of the mean squared error between the data and the fit the average 

value was 0,00295. Once again separating the good fits from the bad fits produced a 

different result. For the good fits the average value of the mean squared error was 

0,00158 and for the bad fits was 0,00494.  

Figure 5.7 - Example of a bad fit 
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Analyzing the results it can be concluded that a good fit is less associated with 

the volume difference and more associated with differences at pixel level. Also some of 

the bad fits, result from spectra that possess acetone and isoprene peaks that are too 

close (Figure 5.7), leading the Levenberg-Marquardt algorithm to represent the two 

peaks as just one, leading to a poor fit. 
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6. Concluding Remarks 

 

This thesis is the result of the creation of a methodology to automatically 

identify and quantify isoprene and acetone peaks, using to image processing techniques. 

The sequence of methods applied to the raw data was the result of a series of 

developments and tests in order to achieve the proposed objective, to identify and 

quantify isoprene and acetone peaks in MCC-IMS spectra.  

Generally speaking the objective of the proposed work was achieved: the 

algorithm was able to identify and quantify isoprene and acetone. 

The analysis shows that the algorithm was able to effectively treat the data by 

correctly attenuating the noise, removing the RIP tail, detecting and identifying isoprene 

and acetone peaks, and finally fitting de data to the custom model. 

We can conclude that de chosen mathematical models to describe the RIP tail 

and to describe the peaks produce convincing results and that with some fine tuning can 

offer even better results. 

In terms of isoprene and acetone detection and identification it’s possible to 

conclude that the algorithm reliably detects and identifies the correct position of the 

peaks with minimal deviations. 

In the quantification the produced results were not as positive. The Levenberg-

Marquardt algorithm doesn’t always produce the best result, creating fits that don’t 

represent the data in a reliable way but only when the two peaks are present are 

overlapped. If a single peak is present the algorithm offers a good result in terms of 

quantification.  

The solution to the problem relies in finding better parameter bounds to the peaks, 

finding a better way to eliminate the RIP tail, and find a curve to better represent the 

peaks base. These solutions all require further testing with specific spectra that produce 

expected results in order to tune the parameters of the curves and their respective 

values. 

The algorithm developed in this work achieved promising results in terms of 

detecting and quantifying the isoprene and acetone peaks in MCC-IMS spectra. These 
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results were exposed in the 8th International Conference on Breath Research & Cancer 

Diagnosis and received a recommendation for the creation of a scientific paper. 

6.1.  Future Work 

 

The developed algorithm has plenty of future works.  To have better parameter 

boundaries it is proposed to test samples of known concentrations of isoprene and 

acetone. The spectra produced with these tests will have characteristic shapes and 

behaviors depending on the concentrations used, for example it can be determined the 

shape of a single acetone peak without isoprene present, it can also be determined the 

behavior of the overlapping peaks depending in what substance has a higher 

concentration in the testes sample. 

These tests will also provide means for the creation of calibration curves 

between the volume calculated by the algorithm and the concentration of substances.  

Finally for further research it is also proposed to proceed the testing with 

different substances. These different substances produce different peaks in different 

positions, requiring a more complex algorithm to detect the various VOCs present in a 

MCC-IMS spectrum. Looking at the future the ideal algorithm is one that receives a 

spectrum and identifies all the meaningful substances and their respective concentration.   
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