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Highlights 

 Numerical model describes the nZVI transport by diffusion and under electric fields 
 Data from different porosity media and electrolytes were used to validate the model 
 Diffusion, electromigration, electrophoresis and electroosmosis were considered 
 Aggregation of nZVI particles due to high suspension concentrations 
 Electrophoretic transport of the nZVI is counteracted by electroosmosis 
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Abstract 

 Zero valent iron nanoparticles (nZVI) are considered very promising for the 

remediation of contaminated soils and groundwaters. However, an important issue related to 

their limited mobility remains unsolved. Direct current can be used to enhance the 

nanoparticles transport, based on the same principles of electrokinetic remediation. In this 

work, a generalized physicochemical model was developed and solved numerically to 

describe the nZVI transport through porous media under electric field, and with different 

electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled 

system of equations, which accounts for the mass balance of ionic species in a fluid 

medium,when both the diffusion and electromigration of the ions are considered. The 

diffusion and electrophoretic transport of the negatively charged nZVI particles were also 

considered in the system. The contribution of electroosmotic flow to the overall mass 

transport was included in the model for all cases.The nZVI effective mobility values in the 

porous medium are very low (10-7-10-4 cm2V-1s-1), due to the counterbalance between the 

positive electroosmotic flow and the electrophoretic transport of the negatively charged 

nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; 

therefore, low concentration of nZVI suspensions must be used for successful field 

application. 

Nomenclature 

A cross-sectional area (cm2) 

c concentration (mol cm-3) 
D* effective diffusion coefficient 

E redox potential (V) 

E0 standard redox potential (V) 

F Faraday constant 
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I current intensity 

ke electroosmotic permeability coefficient 

N mass flux (mol cm2 s-1) 

Q reaction quotient 

R ideal gas constant 

R reaction rate 

T temperature (K), assuming a constant room temperature of 25ºC 

t time 

U* effective electrophoretic mobility  

V volume (cm3) 

z ionic charge 

Greek letters 

ϕ electrical potential 

η Faradaic efficiency 

Subscripts 

i species 

j cell 

 

Keywords: Electrokinetics; nZVI; porous media; electrolytes;Nernst–Planck equations 
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1. Introduction 

 Zero valent iron was used successfullyfor soil and groundwater remediation in 

permeable reactive barriersfor more than two decades[1-3]. With the development of 

advanced nanotechnologies since late nineties, due to their size and reactivity that allowed an 

easy injection,zero valent iron nanoparticles (nZVI) were considered a promising step 

forward in soil and groundwater clean-up, particularly targeting organochlorines [4-8]. The 

nZVI transport in porous media was studied in column tests with sand [9-16], glass beads 

[17-19] and model soils [20, 21]. These studies showed that nZVI has a tendency to 

aggregate quickly and settle in the pores, primarily due to magnetic attractive forces [22]. 

Results from field scale applications [23-27] confirm this limited mobility, ranging from 1 m 

[28] to 6-10 m [26], depending on soil characteristics, test operations, and injection velocities 

[29]. 

  One of the methods tested to overcome poor nZVI mobility was the use of direct 

current (DC) [16, 30-34], using the same principles of electrokinetic remediation (EKR). In 

this method, low-level direct current is the “cleaning agent”, inducing different transport 

mechanisms (electroosmosis, electromigration and electrophoresis) and electrochemical 

reactions (electrolysis and electrodeposition) in contaminated soils [35]. Direct comparison of 

the resultsprovided in previous studies on nZVI enhanced transport with direct current is 

limited due to the differences in experimental setups, soils or other solid media used, types of 

iron nanoparticles, injection places (i.e., directly in the soil, anode or cathode compartments), 

magnitude and duration of the voltage gradients applied. In general electrophoretic transport 

of the particles was shown to be predominant in sandy soil [33, 36, 37], while electro-osmotic 

transport appeared more important in kaolin clay and loamy sand soil [16, 32]. The available 

analytical models of the nanoparticle transport in literature include only the electrophoretic 

effect that mostly takes place in sands [33, 37]. 
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 The numerical modeling of electrokinetic remediation of heavy metals contaminated 

soils was first implemented by Wilson et al [38, 39], and lately adapted also for organic 

contaminants [40, 41]. Further developments include the electrodialytic and dialytic 

treatment of a fly ash [42], and also the electrokinetic desalination treatments [43]. 

In this work, a generalized physicochemical model has been developed to describe the 

electrically induced transport of nZVI particles through different types of porous media of 

varying porosity and surface reactivity. The model is sufficiently detailed,including the 

fundamental processes, and its numerical solution offers a reliable predictionof the nZVI 

transport. Experimental data using different porosity media and different pore fluid 

electrolytes were used to validate the model [30, 31].  

2. Experimental 

2.1. Experimental procedure 

The experimental data used for the validation of the model have been published 

previously by Gomes et al[30, 31], where the experimental conditions are described in detail. 

The experiments were designed so that the transport of nZVI took place in the domain of a 

layer of porous solid (kaolin and/or glass beads) saturated with an electrolyte. 

 

The experiments were conducted in a modified electrophoretic cell (Econo-Submarine 

Gel Unit, model SGE-020) as shown in Figure 1.The cell is a rectangular translucent box 

10 cm height, 40 cm long and 23 cm width, with a square (20 cm x 20 cm) sample tray and a 

lid that covers the whole apparatus. Two liquid chambers hold the anolyte and the catholyte 

and platinum working electrodes on either side of the sample tray (Figure 1). In all 

experiments, both the anolyte and catholyte compartments were filled with the same 

electrolyte solution (volume of 650 mL each, Table 1) as that used to saturate the porous 

specimen. The level of the solutions in the side compartments was kept slightly below the 
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specimen surface,thus preventing preferential transport of nZVI through a liquid pool over 

the specimen. Compressed fiberglass wool pads, saturated and immersed in the electrolyte 

solution, helped transport the migrating ions from the solution into the specimen and vice 

versa. Different porosity and surface reactivity test media, ranging from glass beads (with 

particle diameter less than 1 mm, previously sieved) to white Georgia kaolinite clay (> 2 μm) 

were used in the transport experiments (Table 1). The polyacrylic acid coated iron 

nanoparticles (PAA-nZVI) suspensions were freshly prepared before each experiment, 

according to the method used by Kanel et al [18] and had a concentration of 4 g L-1 of nZVI. 

The particle size distribution of the nanoparticles had a mean particle diameter value of  

63 nm and the median size was 60.2 nm, based on a count of 420 particlesin TEM images 

[30, 31]. Two sets of control experiments were conducted for each mixture under the same 

conditions, one without direct current but with PAA-nZVI, and another with current but 

without PAA-nZVI. In the experiments with current, a constant potential was applied for  

48 h. The cell was kept in a dark location to prevent iron photo-oxidation. The nanoparticle 

suspension was delivered in the electrophoretic cell using a syringe to inject 2 mL through a 

tube, which allowed the suspension disperse into a pre-cut shallow channel in the porous 

specimen between the auxiliary electrodes E2 and E3. 

The soil and aqueous samples were analyzed for total iron and ferrous iron 

concentrations. The iron was extracted from the test medium with the sodium dithionite-

citrate-bicarbonate (DCB) method. The iron analyses were conducted using a Perkin-Elmer 

AAnalyst 200 flame atomic absorption spectroscopy (AAS) and a Hach DR 2800 

spectrophotometer (UV). 

2.2. Model description 

The analytical model operates in two steps: first the kinetic process is simulated by 

integrating forward in time the one-dimensional transport equations, including the 
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electrochemical reactions at the electrodes; then the chemical equilibriums are reestablished 

before the next step of integration. This is done because chemical equilibriums are considered 

instantaneous when compared with the transport time. 

2.2.1 Governing equations 

The mass conservation equation for ith species in a jth volume element, including 

electrochemical reactions, is described by: 

 (1) 

where Vj is volume of water in jth cell (cm3), cijis the concentration of ith species (ions and 

nZVI) in the aqueous phase of the jth volume element (mol cm-3), t is the time, Ni, j-1and Ni, j 

the mass flux of ith species from (j-1)th into jth element volume and from jth into (j+1)thvolume 

element (mol cm2 s-1), A cross-sectional area of the domain (cm2), and Ri the reaction rate for 

i species. With respect to the chemical reactions, only the chemical equilibria and the 

electrochemical reactions at the electrodes are considered. 

 The model consists of a coupled system of Nernst–Planck equations, which accounts 

for the mass balance of the ionic species in a fluid medium, when diffusion and 

electromigration are considered in the transport process. In the case of charged nZVI (i.e., the 

nanoparticles are stabilized with polyacrylic acid – PAA, which gives them the negative 

charge), diffusion and electrophoretic terms have to be taken into account. The 

electroosmotic flow is included in all cases. 

Therefore, the flux of any chemical species or charged particles ifrom a jth volume 

element of the system can be expressed as: 

 (2) 

  jij,ij,i
ij

j VRANN
dt

dc
V 








1

  iei
*
ii

*
ii ckcUcDN
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where (sub index j is omitted), ci is the molar concentration, Di
* is the effective diffusion 

coefficient, and is the electrical potential, keis the electroosmotic permeability coefficient 

and Ui
*, is the effective electrophoretic mobility for nZVI charged particles or effective ionic 

mobility, estimated by the Einstein–Nernst relation for ions [44]: 

 (3) 

where R is the ideal gas constant, F is the Faraday constant, zi is the ionic charge of the 

species and T is the temperature (K), assuming a constant room temperature of 25 ºC.The 

value of the electroosmotic permeability coefficient usually is in a very tight range of 10−5 to 

10−4 cm2 s−1 V−1[45]. Electroosmotic permeability and mobility can be combined into a new 

effective mobility in the porous medium, Ui
**: 

          (4) 

The mass balance equations for nZVI and the ionic species are integrated over the one-

dimensional region limited by the electrodes compartments in order to obtain the 

concentration profile for a given set of experimental conditions. Due to the negative charge of 

polyacrylic acid coated nZVI, the sign of electrophoretic term is negative, whereas the 

electroosmotic term is positive, resulting in a low value for the effective mobility. 

Table 1 shows the experimental conditions and parameters used in solution of the 

model to simulate the experimental tests. The nZVI effective diffusion coefficient values in 

Table 1 were obtained from fitting the experimental results, that varied between 0.5 × 10-5 

and 5.9 × 10-5 cm2 s-1.The electrophoretic mobility (EPM) of PAA-nZVI was obtained from 

experimental measures for the different particle suspensions using Laser Doppler 

Velocimetry in a ZetaSizer Nano ZS, Malvern (Southborough, MA). Stock suspensions of 

PAA-nZVI were diluted to 2 g L-1 to obtain measurements for the electrolytes used in the 

transport tests. 



RT
FzDU i

*
i*

i 

e
*
i

**
i kUU 
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2.2.3. Electrochemical reactions 

The rate of generation term is not included in the continuity equation for the porous 

specimen because we assume that the main chemical reactions that need to be considered are 

the electrochemical reduction and oxidation of water at the electrodes. The other 

electrochemical reactions had to be taken into account only in experiments 10 and 11, as 

explained in the following paragraphs. Nernst equation is used to calculate the redox 

potential for each electrochemical half reaction, as: 

          (5) 

where Q is the reaction quotient, defined as the product of the activities of the chemical 

species to the power of their stoichiometric coefficients, for non-equilibrium conditions. In 

the special case that the reaction is at equilibrium, the reaction quotient is equal to the 

equilibrium constant at 25º C. υ in this case is the stoichiometric coefficient of the electrons 

in the redox equation, i.e. the number of electrons exchanged during the oxidation or reaction 

process. E (V) is the redox potential in the reduction sense and E0 (V) is the standard redox 

potential, which is measured under standard conditions which are 25 ºC, 1 M concentration 

for each ion participating in the reaction, a partial pressure of 1 atm is assigned for each gas 

that is part of the reaction and metals in their pure state [46]. 

At the cathode, cations Na+ and Ca2+ are attracted, but the redox potential of alkali 

and alkaline earth metals is too high to be competitive to that of water in aqueous media. 

Consequently, it seems reasonable to assume that only water reduction is taking place at the 

cathode. Thus, the only electrochemical half-reaction at the cathode is: 

  (6) 

On the other hand, anions are attracted to the anode, where oxidation reactions occur. In the 

most of experiments (5 to 9 and 12) only water oxidation is expected. In contrast, the 

Qln
F

RTEE


 0

    V8280222 0
22 .EgasHaqOHeOH  
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oxidation of ions Cl− (0.1 M) in experiment 10 and of ions SO3
= (0.1 M) in experiment 11 

could compete with the water oxidation at the anode. Therefore, the possible half-reactions at 

the anode is given by equation  (7) for experiments 5 to 9 and 12; by equations (7) and (8) for 

experiment 10; and by equations (7) and (9) for experiment 11: 

 (7) 

  (8) 

 (9) 

Although a slight smell to chlorine was detected in experiment 10, the calculations revealed 

that even in the most favourable conditions (pH < 1) the fraction of current used for chloride 

oxidation is negligible. On the contrary, the sulphite oxidation predominates at the anode in 

the experiment 11. 

The electrochemical reactions were included in the mass balance equations of anode 

and cathode compartments as given in equations (10) and (11) for all the experiments, with 

the exception of experiment 11 which also included the equations (12) and (13): 

 (10) 

 (11) 

  (12) 

 (13) 

where V0 and VN+1are the volumes of electrolyte in the anodic and cathodic compartments, c10 

and c2N+1, H+ and OH- concentrations generated there by electrochemical reactions, c40 and 

c120, SO3
= and SO4

= concentrations at the anodic compartment corresponding to the mass of 

    V2291442 0
22 .EegasOaqHOH  


 V360122 0

2 .EeClCl  


 V936022 0

243 .EOHeSOOHSO  


F
I

dt
dcV

ER







 10

0


F
I

dt
dcV

ER

N
N 






 


12

1


zF
I

dt
dcV

ER







 40

0


zF
I

dt
dcV

ER







 120

0
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 
   
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3

3
133 10132 ·.

HCO

HCO
KCOHHCO 









sulfite and sulfate consumed and generated by oxidation respectively, I is the current 

intensity, F, the Faraday’s constant and η the Faradic efficiency. 

2.2.4. Chemical equilibria 

Once the transport calculations are completed at each time step, the value of 

concentration corresponding to the chemical equilibrium of every species is calculated from 

the last value obtained from the transport. Therefore, in every volume element a system of 

non-linear equations given by the mass balances, the electrical neutrality condition, and the 

equilibrium mass action equations were solved. 

The extremely rapid reactions between protons and hydroxyls to form water and 

reverse must be taken into account in all the experiments. The chemical equilibrium of water 

is: 


    14

2 10  OH·HKOHOHH w  (14) 

In the experiments using NaCl (0.001 M) as electrolyte, as no equilibrium process 

affects Cl- and Na+, the conservation equations for them are trivial. In contrast, additional 

equilibrium equations are necessary for the experiments 9, 10 and 11, using NaOH 

(0.001 M), CaCl2 (0.05 M) and Na2SO3 (0.1 M) as electrolytes, respectively. The exchanges 

between the atmospheric CO2 and the electrolyte were also considered in the simulations: 

           (15) 

 

 

          (16) 

 

          (17) 

 

          (18) 
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The only effect expected of Ca2+ ion is its precipitation as Ca(OH)2 due to the high 

pH present in the cathodic zone. 

 (19) 

In fact, in this experiment, a white precipitate was observed at the cathode compartment as 

predicted by the model calculations. 

In the case of sulfite, several equilibrium equations were taken into account: 

 

 (20) 

 

           (21) 

 

           (22) 

 

           (23) 

 

           (24) 

 

           (25) 

 

3. Results and Discussion  

The model reproduces satisfactorily the nZVI concentration profiles in the porous 

media, as well as the anodic and cathodic pH values over time. 

Model and experimental results for nZVI concentrations profiles in the variousporous 

specimens at the end of the 48 h diffusion control tests are presented in Figure 2. It was 

detected that, in some cases, an important fraction of the nZVI tends to aggregate when the 
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concentration is high relative to the available pore volume, becoming immobile. In fact, in 

experiments 2 and 4 only about 19% and 8% of the injected nZVI remained mobile over the 

experiment, respectively. At high iron nanoparticle concentration (1-6 g L-1) there is higher 

agglomeration [11]. Also, when iron nanoparticles aggregate they become larger than the 

pores, restricting their transport through the matrix [47].  

Model and experimental results for nZVI concentrations profiles and pH at the anode and 

cathode over time in enhanced transport tests are presented in Figures 3 and 4. As can be 

seen, the concentration of nZVI away from the injection point is higher than in the 

experiments without current, in all the cases.This result shows that the current enhances nZVI 

transport by preventing or hindering the nZVI aggregation at the injection location. In Figure 

5, the mobile mass of nZVI vs.pore volume is shown for the nZVI transport without and with 

current. In all cases, the mobile mass is higher in the experiments with current. 

The model predicts very low effective mobility values in the porous medium (Ui
**) as 

showed in Table 1 as a consequence of the opposing transport directions between the 

electroosmotic advection and the electrophoretic migration of the negatively charged 

nanoparticles. This effect manifests itself as higher concentrations close to the injection point 

in most of experiments. Thus, if the nanoparticles could be stabilized with a surface modifier 

to give them a positive charge, the nZVI effective mobility could potentially be 

increased.Nevertheless the probability of the positively charged particles be attracted onto the 

soil particle surfaces, particularly clays, could increase. Also the use of stabilizers without 

charge could enhance the electroosmotic transport of the iron nanoparticles.  

The ionic strength of the electrolyte was also determinant in the transport of the 

nanoparticles – the higher the ionic strength of the electrolyte the lower the transport, what 

should also be considered for field applications with contaminated groundwaters with high 

concentrations of salts and metals. The distance covered by iron nanoparticles when using 
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0.001 M NaCl as the electrolyte is approximately the double when compared with 0.05 M 

CaCl2 and 0.1 M Na2SO3(Table2).  

Figure 6 shows the model predictions of the transport distance covered by the iron 

nanoparticles using different electrolytes and porous media, with and without current. It is 

clearly distinct the enhancement of the nZVI transport when current in applied, especially in 

the kaolin clay. When using only kaolin clay and direct current the predicted distance covered 

by iron nanoparticles is almost the double of diffusion only.  

4. Conclusions 

Both the experimental and the model results showed that an important aggregation of 

nZVI occurs when the nanoparticles are allowed to diffuse into the porous medium from an 

injection point. The higher the nZVI concentration is in the matrix, the higher the 

aggregation; therefore, low concentrations nZVI suspensions must be used for successful 

field application.The use of electrical current to transport the nanoparticles prevents or 

hinders the nZVI particle aggregation, increasing their mobility. However, opposing 

directions of electrophoretic transport of negatively charged particles and the electroosmotic 

advection still produces low nZVI transport. To enhance this transport, possible solutions 

could be reversing the charge of the iron nanoparticle surface or by using neutrally charged 

nanoparticles, both of which could be transported by electroosmotic advection.  
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Figure 5. Mobile mass of nZVI in the diffusion and enhanced transport experiments. 

 

Figure 6. Prediction of the distances covered by nanoparticles in the different porosity media 

with and without current.  
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