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Resumo 

 

O surgimento de novos contaminantes pode representar um perigo para o ambiente e para a 

Humanidade com repercussões ainda desconhecidas. Uma das maiores produções mundiais 

de produtos farmacêuticos e de higiene pessoal são produtos antimicrobianos. Triclosan é um 

agente antimicrobiano presente na maioria dos produtos. Apesar da alta eficiência de remoção 

de triclosan nas Estações de Tratamento de Águas Residuais, os seus níveis estão em franco 

aumento nos ecossistemas, através de descargas de efluentes domésticos e lamas utilizadas 

em aplicações no terreno. Regulado pela norma EC/1272/2008 (anexo VI, tabela 3.1), este 

composto é considerado muito tóxico para a vida aquática com efeitos a longo prazo, tendo 

também sido reportado que a sua transformação fotoquímica deriva em dioxinas. 

 
Neste trabalho foram definidos três objectivos. Determinar o processo fotoquímico mais 

eficiente na degradação do triclosan, comparando diversas fontes de luz; identificação dos 

subprodutos principais que se formam durante a degradação do triclosan e por último o estudo 

da influência das reacções Fenton e foto-Fenton. 

 

Foram comparados métodos de degradação fotoquímica tais como: fotocatálise com recurso a 

luz ultravioleta (UV), fotocatálise com recurso a luz solar, fotocatálise com recurso a LEDs, 

reacção Fenton e foto-Fenton. A degradação do triclosan foi observada através de 

cromatografia de gás/espectrometria de massa (GC/MS).  

 
Os resultados obtidos com a reacção foto-Fenton demonstram sucesso na oxidação do 

triclosan em H2O e CO2 sem a formação de nenhum subproduto ao fim de duas horas. Foi 

possível a foto degradação do triclosan com recurso a dióxido de titânio (TiO2) e LEDs, obtendo 

uma taxa de degradação de 53% num ensaio com a duração de 8 horas. A taxa de degradação 

da reacção Fenton, luz UV e luz solar demonstraram uma degradação entre os 90% e 95%. Os 

resultados são reportados aos dados observados sem suporte estatístico, uma vez que tal não 

foi possível no decorrer do período do trabalho. Foram identificados subprodutos como 

hidroquinona e 2,4-diclorofenol durante a primeira hora de reacção de fotocatálise por UV. Um 

composto identificado possivelmente como C7O4H estava transversalmente presente na 

degradação por UV, luz solar e LEDs concluindo-se que se tratava de um contaminante. 

 

Estudos futuros sobre a utilização de LEDs devem ser considerados, não só pelas suas 

vantagens de longa durabilidade e baixo consumo energético, mas também em substituição às 

lâmpadas UV. O potencial de contaminação ambiental das lâmpadas UV levou a que estas 

estejam a ser progressivamente retiradas dos mercados pelos governos. As reacções Fenton e 

foto-Fenton não são alternativa pois são processos custosos devido aos reagentes envolvidos.  

 

Palavras-chave: Triclosan, dióxido de titânio, fotoquímico, fotocatálise, foto degradação, luz 

fluorescente, LEDs, foto-Fenton. 
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Abstract 

 

New emerging contaminants could represent a danger to the environment and Humanity with 

repercussions not yet known. One of the major worldwide pharmaceutical and personal care 

productions are antimicrobials products, triclosan, is an antimicrobial agent present in most 

products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan 

levels are on the rise in the environment through disposal of wastewater effluent and use of 

sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this 

compound is considered very toxic to aquatic life and it has been reported that photochemical 

transformation of triclosan produces dioxins. 

 
In the current work it was defined three objectives; determination of the most efficient process in 

triclosan degradation, recurring to photochemical degradation methods comparing different 

sources of light; identification of the main by-products formed during the degradation and the 

study of the influence of the Fenton and photo-Fenton reaction. 

 

Photochemical degradation methods such as: photocatalysis under florescent light (UV), 

photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and 

Fenton reaction have been compared in this work. The degradation of triclosan was visualized 

through gas chromatography/mass spectrometry (GC/MS). 

 
In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without 

any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was 

possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the 

Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results 

are reported to the data observed without statistic support, since this was not possible during 

the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the 

first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was 

present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. 

 

 In the future more studies in the use of LEDs should be undertaken given the advantages of 

long durability and low consumption of energy of these lamps and that due to their negative 

impact on the environment fluorescent lamps are being progressively made unavailable by 

governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also 

be costly processes given the expensive reagents used. 

 

 

 

 

Keywords: Triclosan, titanium dioxide, photochemical, photocatalysis, photodegradation, 

fluorescent light, LEDs, photo-Fenton.  
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1 Introduction 
 

Our society has thrived to great extent due to antimicrobial products which allow for a longer 

life-span for Humanity and greater comfort in treatment of the sick. Triclosan (5 – chloro – 2 – 

[2,4 – dichlorophenoxy] – phenol) is an antimicrobial agent widely used in various consumer 

products of health and personal care (Yang et al., 2011). Globally the production of triclosan is 

over 1500 tons per year (Dann & Hontela, 2011), available in more than 2 000 antimicrobial 

products in the U.S, representing only in this country a market of $1.4 billion in 2014 (Halden, 

2014). 

 

Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to 

aquatic life with long lasting effects causing serious irritation to the skin and irritation to the 

eyes. A final classification has not yet been established. The main sources of contamination in 

the environment are the release of wastewater effluent and the use of sewage sludge in land 

application (Dann & Hontela, 2011; Ricart et al., 2010; Thompson et al., 2005). 

 

There is a growing concern regarding the persistence of triclosan in the environment and its 

potential adverse impacts, such as bacteria resistance (Yazdankhah et al., 2006), endocrine 

disruptive chemical (Dann & Hontela, 2011; Foran et al., 2000) and acute and chronic toxicity 

(Nassef et al., 2010; Chalew & Halden, 2009; Orvos et al., 2002).  

Structurally related to toxic and carcinogenic dioxins for instance  2,3,7,8–tetrachlorodibenzo–

p–dioxin and 2,3,7,8–tetrachlorodibenzofuran, triclosan has been labeled has a predioxin 

(Halden, 2014). Higher toxicity intermediates and by-products formed during triclosan 

degradation, as the phototransformation of triclosan to produce 2,8–dicholorodibenzo–p–dioxin 

(2,8–DCDD) are the major hazards  and reasons for  alarm (Mezcua et al., 2004).  

 

Advanced oxidation processes (AOPs), can be defined as systems that produce strong 

reactivity species, precisely the hydroxyl radical (OH
●
) or sulfate radical anion (SO4

●-
) to oxidize 

or degrade micropollutants such as endocrine disrupting chemicals and pharmaceutical and 

personal care products (Júnior. et al., 2012; Song et al., 2012). Catalysis under light irradiation 

has received great attention for pollution control, has the advantages of use inexpensive 

photocatalyst (TiO2), operations conditions such as room temperature and atmospheric 

pressure, and nearly complete oxidation of carbon and hydrogen containing pollutants to CO2 

and H2O (Shie et al., 2008). 

 

The use of mercury discharge lamps to conduct irradiation is the traditionally used method in 

TiO2 photocatalysis (Yu et al., 2014), however this process has the disadvantages of the short 

life, energy cost, the instability of the output power and the hazardous materials from the 

emitted wastes from the lamps (Yu et al., 2014; Shie et al., 2008). The handling of UV lamps 



 
 

2 
 

should be taken with care because of the UV emission from the UV lamps are harmful to 

humans eyes (Shie et al., 2008). 

 

The LEDs offer numerous advantages: long lifetime, lower power, inexpensive installation, 

possibility of selective monochromatic light, more effectiveness converting electricity to light with 

little or no heating and the use of direct current power which offers greater flexibility for field 

applications, especially for remote areas (Ghosh et al., 2009; Shie et al., 2008).  

 

LEDs are a reliable competitor to florescent lamp. There are only a limited number of papers 

that study the LED photocatalysis applied in the field of environmental engineering (Yu et al., 

2014). No paper on LED photocatalysis in triclosan was found at the time of this written study.  

 

1.1 Thesis Objectives  
 

The main aim of this thesis was to study methods of degradation applied to the environmental 

contaminant triclosan using traditional light sources (UV and sunlight), as well as the Light 

Emitting Diode (LEDs). An additional aim was to study the influence of the Fenton and photo 

Fenton reaction. The objectives were:  

 

i) To analyze which is the best degradation method based on the degradation rate; 

ii) To identify the main by-products formed during the degradation. 

 

1.2 Thesis Organization 
 
This thesis was divided in five chapters, and respective subchapters.  

 

1. Introduction, establishes the context and aim of the dissertation. 

2. Literature Review, characterization and description of the environmental problems and 

concerns about triclosan. The state of the art of the photocatalytic process as well as 

case-studies of other degradation processes are presented.  

3. Methodology, the experimental methodology is described. The instruments explored 

and the analytical treatment methods are defined.  

4. Results and discussion, the results are exposed according to the degradation variables 

and characterization of the standard solution agreeing to the analytical instruments was 

done. In this chapter a comparison between degradation methods and identification of 

by-products was presented in order to achieve a response to the thesis objectives. 

5. Conclusions and future recommendations, the accomplishment of the objectives is 

evaluated and futures recommendations to improve results towards and theme 

development are proposed. 
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2 Literature Review 
 

2.1 The compound triclosan 
 
Triclosan (TCS) is a broad-spectrum antimicrobial, widely used as main ingredient in various 

consumer products as disinfectant, preservative or antiseptic. It is used in personal care and 

household products like: soaps, deodorant soaps, mouthwash, toothpastes, shampoos, body 

lotions and detergents. It is also used in clinical settings, medical devices, plastic materials and 

toys (Dann & Hontela, 2011; SCCS, 2010; Fang et al., 2010; Bhargava & Leonard, 1996). 

 

TCS was first synthesized by the chemical company Cyba-Geigy in Basel, Switzerland. Firstly 

registered as a pesticide in 1969, it was later on introduced to the healthcare industry in 1972 

and it met widespread use throughout Europe in toothpastes during the 80`s (Kola et al., 2013; 

Fang et al., 2010; Bhargava & Leonard, 1996). 

 

According to the European Union in the Scientific Committee on Consumer Safety (SCCS, 

2010) apud The European Association of the Cosmetics Industry (COLIPA, 2007) indicates that 

about 85% of the total of volume of triclosan is used in personal care products, 5% in textiles 

and 10% for plastics and food contact materials. 

 

Over the years consumer demand for antimicrobials products has increased and so has the 

amount of triclosan (Figure 2.1). Between 1976 and 2008 the US Patent and Trademark Office 

issued a total of 2385 patents containing the word triclosan. The production of TCS has now 

exceeded 1500 tons per year, with Europe having a part of 350 tons of total production. In the 

U.S over 2 000 antimicrobials products are available with TCS representing a market of $1.4 

billion (Halden, 2014; Dann & Hontela, 2011; Fang et al., 2010; ; Singer et al., 2002). 

 

 
Figure 2.1 Historic evolution of triclosan (Adapted from: Fang et al., 2010) 

The widespread use and mass production of TCS brings new concerns to human health and to 

the environment that must be studied (Fang et al., 2010). 
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Triclosan is the name given by the Internacional Nomenclature of Cosmetic Ingredient (INCI), 

but TCS takes on many different trade names: Irgasan; CH 3565; Irgasan DP300; Ster-Zac; 

Aquasept; Sapoderm; Irgacare MP; Lexol 300 and Cloxifenolum. In fibres and other materials it 

can take the name of Ultra-Fresh, Amicor, Microban, Monolith, Bactonixans Sanitized (Dann & 

Hontela, 2011). 

 

2.1.1 Physico-chemical properties 
 

This nonionic antibacterial agent, is a halogenated phenol with a molecular weight of 289,55 

gmol
-1

 and its molecular structure is represented in Figure 2.2. 

 

 
Figure 2.2 Molecular structure of triclosan (Adapted from: Fang et al., 2010) 

 

On the Table 2.1 are gathered the most important physico-chemical features of TCS. 

 

Table 2.1 Chemical Properties of triclosan (Adapted from: Dann & Hontela, 2011; Fang et al., 2010) 

INCI name Triclosan 

Synonymous 
5-cloro-2-(2,4-dichlorophenoxy)phenol or 2,4,4`-trichloro-

2`hydroxydiphenyl ether 

Chemical abstracts service 
registry number 

3380–34–5 

Formula C12H7Cl3O2 

Molecular Weight 289,55 gmol
-1

 

Specific gravity 1,55 x 10
3
 kg/m

3 
at 22ºC 

Melting point 54-57ºC 

Vapor Pressure 4 x 10
-6

 mm Hg at 20ºC 

Octanol – water partition 
constant (log Kow) 

4,76 

Boiling point 280 – 290ºC 

Physical state Colorless to off white crystalline powder 

Solubility 

Water (20ºC): 0,01 g/l ;  

n–Hexane (25ºC): 85 g/l; 

Other solvents such as ethanol; acetone, Tween 20 are highly 
soluble (25ºC) : >1000 g/l 
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2.1.2 Antibacterial properties 
 

The first action of TCS is on the cytoplasmic membrane, directed to the RNA and protein 

synthesis (Bhargava & Leonard, 1996). In addition TCS demonstrates a tendency to disorder 

membrane activities, compromising the functional activity without causing leakage of 

intracellular components (Villalaín et al., 2001). 

 

Triclosan inhibits bacterial fatty acid biosynthesis by inhibiting the enzyme enoyl–acyl–carrier 

protein (ACP) reductase or FabI (Russell, A.D., 2004, Heath et al., 1999). This enzyme 

catalyzes chemical reactions essential in the synthesis of fatty acid. The bacterial enzyme ACP 

sequence and structural organization are different from those of mammalian fatty acid 

biosynthesis enzymes (Ling et al., 2004). So the efficacy and specificity of triclosan against 

bacteria’s making this compound an antibacterial.     

 

 Triclosan has different reactions depending on its concentration (SCCS, 2010). At low 

concentrations triclosan is bacteriostatic, inhibiting the enzyme ACP; at higher concentrations it 

becomes bactericidal, destabilizing the membrane structure and compromising the functional 

integrity of those membranes (SCCS, 2010; Villalaín et al., 2001). According to Heidler & 

Halden, (2007) and Bhargava & Leonard, (1996) referring Regos et al., 1979 triclosan is 

effective at low concentrations against a broad spectrum of gram-negative and gram-positive 

bacteria. 

 

2.2  The environmental problem of triclosan  
 

2.2.1  Sources of contamination 
 

The main sources identified of contamination of the environment are (Dann & Hontela, 2011; 

Ricart et al., 2010; Thompson et al., 2005): 

 

1) The release of wastewater effluent into the receiving waters; 

2) The use of sewage sludge in land application. 

 

Biological wastewater treatment is currently considered the principal destructive mechanism 

limiting dispersal of and environmental contamination of TCS (Heidler & Halden, 2007). 

 

Removal efficiencies are between 95% to 98% for activated sludge plants (Heidler & Halden, 

2007; Thompson et al., 2005; Bester, 2003; McAvoy et al., 2002), 58% to 96% for rotating 

biological contactors and 86% to 97% for trickling filter (Thompson et al., 2005). Activated 

sludge treatment had the higher removal efficiencies because it is maintained in high dissolved 
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oxygen levels (Thompson et al., 2005). TCS shows no biodegradation under anaerobic 

conditions (McAvoy et al., 2002).  

 

According with Bester, (2003) in a study performed in a German activated sludge sewage 

treatment plant that processed 200 000 m
3
 wastewater per day, about 5% of TCS was dissolved 

in the effluent and 30% was absorbed to the sludge. It was considered that the other 65% was 

transformed into unknown metabolites or strongly bound residues. There are four process that 

could remove TCS from the liquid phase: volatilization, photolysis, sorption to wastewater 

sludge and biodegradation (Thompson et al., 2005). Volatilization could be considered refutable 

since triclosan vapor pressure is 4 x 10
-6

 mm Hg (Heidler & Halden, 2007; Thompson et al., 

2005). TCS is mostly in its photostable form in the pH range that normally wastewater treatment 

works, from  6.5 to 8.5, therefore photolysis is minimal (Thompson et al., 2005). TCS is a 

hydrophobic compound, and hydrophobic compounds tend to adsorb to primary sludge 

(Thompson et al., 2005). 

 

In a deep research, Chalew & Halden, (2009) found the maximum amount detected in rivers in 

the U.S was 2.3 µg/l. The potential environmental risk is higher in waters with low dilution 

capacity (Ricart et al., 2010). 

 

Currently there are some methods available to remove TCS from the water, like advanced 

oxidation or granular activated carbon. Unfortunately these methods are expensive to install and 

operate (Thompson et al., 2005). 

 

2.2.2 Environmental fate 
 

TCS`s trichlorinated binuclear aromatic structure shares similarities with dioxins, suggesting 

potentially problematic properties, including persistence and bioaccumulation (Heidler & Halden, 

2007). Bioaccumulation in tissue, opens a potential pathway for chemical biomagnification up 

the food chain (Chalew & Halden, 2009).  

 

Photodegradation seems to be the major route of elimination of triclosan in aquatic 

environments (Latch et al., 2003; Singer et al., 2002). It takes place at low intensity under UV 

light (254, 313 or 365 nanometer), simulated solar light or artificial white light under laboratory 

assays. In Figure 2.3 is showed the photodecomposition pathways of TCS. 
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Figure 2.3 Photodecomposition pathways of TCS (Adapted from: Sanchez-Prado et al., 2006) 

 
Tixier et al., (2002) concluded that photochemical transformation of TCS accounts for up 80% of 

its loss from the epilimnion in Lake Greifensee during summer months. Dioxins accumulate in 

the water due to the TCS photodegradation (Aranami & Readman, 2007). 

2.2.3 Toxicity 
 

Since TCS is an anthropogenic chemical, its presence in the environment derives directly from 

human activities. TCS it is an apolar molecule (log Kow = 4,8), and is likely to bioaccumulate 

(Thompson et al., 2005).  

 

The main concerns originated by the TCS compound are: 

 

1. Resistance of bacteria 
 

Antibacterials are similar to antibiotics in the point that both inhibit bacterial growth. One 

concern is bacteria will become resistant to antibacterial products like TCS. Another concern is 

bacteria that becomes resistant to TCS can also become resistant to antibiotics (Yazdankhah et 

al., 2006).  

 

2. Endocrine disruptive chemical 
 

The molecular structure of TCS is very similar to non-steroidal estrogens and the thyroid 

hormones (Dann & Hontela, 2011; Foran et al., 2000), molecules with two aromatic rings 

(Figure 2.4).  
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Figure 2.4 The structural similarity of TCS to Bisphenol A, Diethylstillbestrol and the thyroid hormone 

thyroxine (Adapted from: Dann & Hontela, 2011) 

 
3. Acute and chronic toxicity 

 

Higher toxicity intermediates and by-products are produced during TCS degradation in the 

environment bring new concerns to its degradation mechanism in the environment. TCS has 

been detected in water, sediments, biosolids, soils, aquatic species and humans (Dann & 

Hontela, 2011). Worldwide TCS survey indicates a large dispersion being referred in aquatic 

environments and organisms from the United States, to Germany and Australia (Katz et al., 

2013; Xie et al., 2008; Coogan et al., 2007; Ying & Kookana, 2007).  

 

In humans, exposure and bioaccumulation were registered by detection of TCS in human breast 

milk in the United States, Sweden and Australia (Toms et al., 2011; Dayan, 2007; Allmyr et al., 

2006; Adolfsson-Erici et al., 2002). In China and Korea it was detected in urine (Li et al., 2013; 

Kim et al., 2011). Human blood and plasma samples with the presence of TCS were reported in 

Sweden and Australia (Allmyr et al., 2006; Adolfsson-Erici et al., 2002). 

 

 An in vitro study revealed that the exposure to TCS inhibits phase II enzyme metabolism in 

human liver (Wang et al., 2004). Other studies (SCCS, 2010; Dayan, 2007) conclude that TCS 

is rapidly absorbed from the gastrointestinal tract and although at a lower rate is also absorbed 

through the skin. 

 

The route of administration and the kind of species has a substantial influence on the toxicity of 

triclosan (Fang et al., 2010; Bhargava & Leonard, 1996). TCS inhibited plant growth with a half 

maximal effective concentration (EC50) between 57 mg/kg
 
to 108 mg/kg. Soil respiration was 

inhibited in treatments with triclosan at concentrations more than 10 mg/kg (Liu et al., 2009). At 

concentrations below 10 mg/kg, TCS can disturb the nitrogen cycle in some soils (Waller & 

Kookana, 2009). 

 

TCS has the potencial to bioaccumulate in aquatic organisms and exert adverse physiological 

effects (Hontela & Habibi, 2013). From the studied aquatic species, the ones that appeared 

most vulnerable are crustacea and algae species, with growth inhibition occurring at 
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concentrations measured in surface waters (Dann & Hontela, 2011; Chalew & Halden, 2009; 

Tatarazako et al., 2004; Orvos et al., 2002).  

 

 Algae 

 

In Tatarazako et al., 2004 the microalga Selenastrum capricornutum was about 30 to 80 times 

more sensitive to Triclosan toxicity than the bacterium (Vibrio fisheri) and fish (Danio rerio and 

Oryzias latipes). The half maximal inhibitory concentration (IC50) growth inhibition of microalga 

Selenastrum capricornutum was 4,7 µg/l while fish Danio rerio and Oryzias latipes were 

respectively 220 µg/l and 400 µg/l.  

 

Another algae, Scenedesmus subspicatus, revealed a EC50 (96h) of 1,4 µg/l (Orvos et al., 

2002). Chalew & Halden, (2009) performed a study where the summary of occurrence data for 

TCS and contrasts of toxicity thresholds for aquatic organisms were gathered. According to this 

study the toxic concentrations to algae lays in the range of 0,2 µg/l to 2,8 µg/l. The increased of 

concentration of TCS affects the viability of the diatom cell (Ricart et al., 2010). 

 

The influence that TCS has on algae, important organisms for being the first-step producers in 

the ecosystem, opens the possibility for the destruction of the ecosystem’s balance if a high 

volume discharge in the environment occurs (Tatarazako et al., 2004). 

 

 Crustacea 

 

Orvos et al., 2002 studied the aquatic toxicity of triclosan using activated sludge 

microorganisms, algae, invertebrates and fish. The Daphnia magna acute toxicity EC50 (48h) 

was 390 µg/l and to the Ceriodaphnia was 184,7 µg/l. The study of Chalew & Halden, (2009) 

stated acute toxicity for crustacea lays in the range from 185 µg/l to 390 µg/l and chronic toxicity 

lower levels initiate from 6 µg/l
 
to 182 µg/l.  

 

 Fish 

 

Fish show a great vulnerability to TCS too. Nassef et al., 2010, measured the effects on feeding 

behavior and swimming speed in adult Japanese medaka fish (Oryzias latipes). Exposure to 

0,17 mg/l TCS in nine days resulted in a decrease in the mean of the swimming performance, 

but not in the feeding behavior. However, swimming performance is closely related to food 

capture and is considered to be a primary determinant of survival in many species of fish and 

other aquatic animals. Other study performed by Foran et al., 2000, in a exposure of 14 days 

with 1,10 µg/l and 100 µg/l TCS in Japanese medaka fish (Oryzias latipes), suggested TCS may 

act as an environmental anti-estrogen or androgen. At lower concentrations swimming 
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performance and feeding behaviors were affected. At high concentrations it was lethal to 

medaka infant fish, calculating the lethal concentration at 50% (LC50) in 48h of 352 µg/l.  

 

For the zebrafish (Danio rerio), the effects of TCS count teratogenic effects and delaying 

embryo development, resulting in mortality within 48h (Nassef et al., 2009 apud Dann & 

Hontela, 2011). The acute toxicity levels in fish have been determined to range from 260 µg/l to 

440 µg/l and the chronic toxicity range from 34 µg/l to 290 µg/l (Chalew & Halden, 2009). 

Aquatic invertebrates also exhibit vulnerability to TCS (Dann & Hontela, 2011).  

 

Due to the large increase of exposure, even if a product is non-toxic, the accumulation of TCS 

from different sources in the environment can have a greater effect of which exposure dangers 

are not yet known.  

 

 

2.3 Different processes studied for degradation. Triclosan case 

studies 

 

AOPs, can be defined as systems that produce strong reactivity species, precisely OH
●
 or SO4

●-
 

to oxidize or degrade micropollutants such as endocrine disrupting chemicals and 

pharmaceutical and personal care products (Júnior et al., 2012; Song et al., 2012).  

 

AOPs recognized examples are (Júnior et al., 2012; Bauer & Fallmann, 1997): 

 Oxidant (catalyst, when used)/ light: H2O2/UV; O3/UV; O3-H2O2/UV; (TiO2)/UV; 

Fe(III)/(TiO2)/UV; 

 Fenton-reaction or H2O2-Fe(III); 

 Photo-Fenton reaction or H2O2 [Fe (II)/(Fe(III)]/UV. 

 

The generation of OH
●
 radicals in AOPs is very important because it affects not only the decay 

rate of the parent compound triclosan but also the accumulation of toxic intermediates (Song et 

al., 2012). One usual problem for the AOPs is the high demand of electrical energy for 

ozonizers and/or UV lamps. The pursuance for a total cost reduction process can be possible 

by using the catalyst TiO2 that used 5% of the solar spectrum and the photo-Fenton reaction, 

since O3 and H2O2 alone don’t absorb light of wavelength superior to 300 nanometers (nm), 

having the main precondition the use of sunlight (Bauer & Fallmann, 1997).   
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Triclosan case studies 
 

2.3.1 Photocatalysis perform under ultraviolet light (UV) 
 
Sankoda et al., 2011 performed one study through TiO2 photocatalysis by UV light with the 

objective of identify structures of intermediates and evaluate the endocrine disrupting activities 

from TCS treated with TiO2 during the oxidative reactions.  

 

The conditions of the photo reactor are exposed in the Table 2.2. It should be noted that 

experiments to measure the photodegradation rate of the TCS used smaller volume of sample 

than the experiments to analyze the intermediates.  

 

Table 2.2 Main conditions of the photodegradation of TCS experiment made by Sankoda et al., 2011 

 
 
The main achievements and conclusions of the study are: 

 

 Identified intermediates: dichlorophenols, specially 2,4-dichlorophenol (2,4-DCP); 

tetraclosans, mono-chlorinated derivative of TCS, hydroxylated triclosan and 2,8–

DCDD; 

 TCS was hardly decomposed by TiO2 without UV irradiation; 

 TiO2 degraded approximately 90% of the initial concentration within 2h of irradiation; 

 Tetraclosan and 2,4-DCP have stronger thyroid hormone activities than triclosan in the 

presence of postmitochondrial supernatant fraction, known as S9, prepared from rat 

liver. 

Some carcinogenic chemicals, such aromatic amines and polycyclic aromatic hydrocarbons, are 

biologically inactive unless they are metabolized to active forms (Mortelmans & Zeiger, 2000). In 

humans and lower animals like rats, the cytochrome P450 enzymes, important to oxidase 

xenobiotic compounds are mainly present in the liver and are capable of metabolizing these 

carcinogenic chemicals. Since bacteria do not have this metabolic capability, an exogenous 

mammalian organ activation needs to be add to the assay. Human or rat S9 liver fraction are 

the typical metabolic activation preparation used in this type mutagenicity of assays for being 

rich in metabolizing enzymes (Hakura et al., 2002; Mortelmans & Zeiger, 2000; Hakura et al., 

1999).  

 

Rafqah et al., 2006 conducted a study with the objective to investigate the photocatalytic 

degradation of TCS using different types of TiO2 (Degussa P25, PC50 and PC500). TiO2 

Light
Solution 

(ml)
Water TCS (mg/l) Sample (ml) Analysis

Time 

experiment (h)

UV 500 Deionized 1 5 and 400
GC/MS after 

derivatization
4
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Degussa P25 used a mixture of anatase/rutile (80/30) and PC50 and PC500 which are 100% of 

anatase. Table 2.3 resumes the main experimental: 

 

Table 2.3 Main conditions of the photodegradation of TCS made by Rafqah et al., 2006 

 

 

The main achievements and conclusions of the study performed were: 

 

 Identified intermediates: 2,4–DCP, chlorocatechol hydroxylated triclosan and 5–chloro–

2–(4–chlorophenoxyl)phenol; 

 The direct photolysis on the degradation of TCS was negligible; 

 Photolysis accounted less than 8% after 60 minutes (min) and TiO2 P25 photocatalysis 

showed a total disappearance of TCS in the same time; 

 TiO2 P25 was by far the more efficient catalyst; 

 The p-dioxin derivatives (2,8–DCDD and 2,7-dicholorodibenzo-p-dioxin) were not 

detected; 

 The degradation of TCS in the presence of TiO2 was efficient but at a slower initial rate 

when compared with natural water. 

 
Yu et al., 2006 study the destruction of TCS in aqueous solution using TiO2 (Degussa P25) at 

two different wavelengths in the UV spectral region (254 and 365 nm). The experimental 

conditions are exposed at the Table 2.4. 

 

Table 2.4 Main conditions of the photocatalysis degradation experiment performed by Yu et al., 2006 

 

 

The main achievements and conclusions of the study performed were: 

 

 Identified intermediates: 2,4–DCP, quinone of triclosan (2-chloro-5-(2,4-

dichlorophenoxy)-[1,4]benzoquinone) and hydroquinone of triclosan (2-chloro-5-(2,4-

dichlorophenoxy)benzene-1,4-diol); 

 No chlorinated dibenzo-p-dioxin congener was detected at 365 nm, however a 

chlorinated dibenzo-p-dioxin was found in samples exposed to 254 nm UV light, 

indicating wavelength dependency;  

Light (nm)
Solution 

(ml)
Water TCS (mg/l) TiO2 (g/l) Sample (ml) Analysis

Time 

experiment (h)

300 - 450 150

Deionized 

and Natural 

(River)

4 to 11 1 0,2
HPLC/MS/

MS
1 and 0,5

Light (nm)
Solution 

(ml)
Water TCS (mg/l) TiO2 (g/l) Sample (ml) Analysis

Time 

experiment (h)

254 and 365 600 Deionized 9 0,1 10 and 2,5
GC/ITMS 

and GC/MS
6
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 2,4–DCP is the major intermediate; 

 Photocatalytic degradation of TCS over TiO2 was 95% over 6h. 

 

Latch et al., 2003 used water samples from the Mississippi river to comprehend the 

photochemical behavior of TCS. The water river was spiked with 4,7 mg/l of TCS and analyzed 

the presence of dioxins trough GC/MS, HPLC and NMR. This work concludes that TCS is likely 

to be converted to 2, 8 – DCDD in sunlight – irradiated surface waters.  

 

2.3.2 Sunlight 
 

Sanchez-Prado et al., 2006 observed the photochemical degradation of TCS samples non-

spiked with TCS from a wastewater treatment plant located in Galicia, in the northwest of Spain.  

The estimated concentration of TCS was in the order of the nanograms per mililiter. The 

samples were submitted at UV lamp in a wavelength equal to 254 nm and to a solar simulator 

photo reactor. The same experiment was made in ultrapure water, with the influence of the pH 

also studied. The experimental conditions are exposed at the Table 2.5. 

 

Table 2.5 Main conditions of the experiment performed by Sanchez-Prado et al., 2006 

Water Sample (ml) Analysis 
Time 

experiment (h) 

wastewater and 
deionized 

5 GC/MS 0,5 

 

The main achievements and conclusions of the study performed were: 

 

 Identified intermediates: 2,8–DCDD, another di-chlorinated dioxin or 

dichlorohydroxydibenzofuran, dichlorohydroxydiphenyl ether, monochlorophenol and 

dichlorophenol; 

 TCS photodegradation occurred in both light sources; 

 TCS degradation altought fast, is slower in wastewater than in ultrapure water; 

 Photodegradation of TCS and formation of 2,8–DCDD occurred independently of the 

pH; 

 The photodegradation in basic pH solutions is faster than in acidic pH solutions. 

 

2.3.3 Fenton and photo-Fenton reaction 
 
Fenton is a simple redox reaction in which Fe

2+ 
is oxidized to Fe

3+ 
and H2O2 is reduced to 

hydroxide ion (OH
-
) and OH

●
 (eq.2.1) (Júnior. et al., 2012): 

 

                          (eq.2.1) 



 
 

14 
 

 

In the absence of light, the Fe
3+

 can be reduced to ferrous ion by a second molecule of H2O2 

(eq.2.2), (Júnior. et al., 2012): 

 

                          
     

   (eq.2.2) 

 

For the degradation of organic molecules, the optimum pH for the Fenton reaction is in the 

range of pH of 2-4 (Júnior et al., 2012; Bauer & Fallmann, 1997). One way to accelerate the 

Fenton reaction is thought the irradiation of ultraviolet light, giving the name photo-assisted 

Fenton or photo-Fenton reaction (Júnior et al., 2012). The photo-reaction produces additional 

OH
●
 radicals and leads to the recycling of the Fe

2+
 catalyst (Bauer & Fallmann, 1997). The 

general mechanism is show in the eq.2.3. 

 

        
  
                 (eq.2.3) 

 

 
Yang et al., 2011 determined the rate constants and identified intermediates for the reaction of 

Fe (VI) with triclosan and evaluated the toxicity changes during the Fe (VI) oxidation of triclosan 

using algal toxicity tests. The conditions of the Fenton reaction experiment are reported in the 

Table 2.6. For the identification of the intermediate products samples were adjusted to a pH 

equal to 2. 

 

Main conditions are presented in the Table 2.6. 

 

Table 2.6 Main conditions of the Fenton reaction experiment performed by Yang et al., 2011 

 

 

The main achievements and conclusions of the study performed were: 

 

 Identified intermediates: 2,4–DCP, 2-chlorobenzoquinone, chlorophenol and 

hydroquinone of triclosan;  

 The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the 

scission of the ether bond and phenoxy radical addition reaction; 

 The degradation processes of triclosan resulted in a significant decreased of algal 

toxicity. 

 

Solution  

(ml)
pH Water TCS (mg/l)

[FeO4]2- 

(mg/l)
Analysis

Time 

experiment (h)

150  7 - 10 Deionized 0,87 5

GC/MS and 

RRLC – 

MS/MS

1,5
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Son et al., 2010 studied the degradation efficiency of TCS in the Fenton reaction, photo-Fenton 

reaction and photolysis (UV-C only). In this work it was estimated the participation of OH
●
 

radicals into the reactions by adding methanol, a radical scavenger. In all the reactions the 

concentration of TCS and the duration of the experiments were identical; in the photolysis 

experiment the UV-C lamps had a wavelength of 254 nm. The main conditions of the Fenton 

and photo-Fenton reaction are reported in the Table 2.7 and Table 2.8. 

 

Table 2.7 Main conditions of the Fenton reaction performed by Son et al., 2010 

 

 

Table 2.8 Main conditions of the photo-Fenton reaction experiment performed by Son et al., 2010 

 

 

The main achievements and conclusions of the study performed were: 

 

 Identified intermediates: Chloride (ionic intermediate of TCS); 

 TCS was completely degraded after 90 min under photolysis (UV-C), and after 30 min 

in the Fenton and photo-Fenton.  

 The primary degradation mechanism in both Fenton and photolysis is oxidation by OH
●
 

radicals. The presence of methanol, considerably reduced the degradation rate of TCS 

in all tree reactions, but with more expression in the Fenton and photolysis reactions; 

 The reversible reaction of Fe
2+

 to Fe
3+ 

occurs in the photo-Fenton reaction, but not in 

the Fenton reaction; 

 The photo-Fenton reaction can overcome the disadvantages of the Fenton reaction like 

sludge production, the use of expensive H2O2 and pH adjustment. 

 

Degradation products 
 
Dioxins, specifically 2,8–DCDD, are one of the most dangerous by-products produced in the 

photodegradation of TCS. Dioxin can be highly carcinogenic and can cause health problems as 

severe as weakening of the immune system, decreased fertility, altered sex hormones, 

miscarriage, birth defects and cancer (Glaser, 2004). 

The by-product 2,4–DCP is considered a priority pollutant by the US EPA (United States 

Environmental Protection Agency), suspected to be a carcinogenic compound. 

 

 

Solution  

(ml)
pH Water TCS (mg/l)

FeSO4.7H2O 

(mg/l)

H2O2 

(mg/l)
Analysis

Time 

experiment (h)

1500 3 Deionized 5 556 180 GC/MS 2

Light (nm)
Solution  

(ml)
Water TCS (mg/l)

FeSO4.7H2O 

(mg/l)
Analysis

Time 

experiment (h)

365 1500 Deionized 5 556 GC/MS 2
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2.4  Mechanism of photocatalysis. The catalyst TiO2  
 
The inspiration to the conception of the photocatalysis came from the natural photosynthesis 

from plants. Plants use sunlight energy to grow, this process is possible by the oxidation of 

water, producing O2 and the reduction of CO2 through solar energy (Kaneko & Okura, 2002).   

By analogy to the natural photosynthesis, A. Fujishima and K. Honda investigated the 

photoelectrolysis of water using light energy. The now called Honda-Fujishima effect, first tried 

in 1972, consisted in a system with a TiO2 semiconductor electrode and a Pt electrode 

connected by an electrical circuit (Figure 2.5). When TiO2 is irradiated with light of wavelengths 

shorter than ~ 415 nm, photocurrent flowed from the platinum counter to the TiO2 electrode 

thought the external circuit. The direction of the current reveals that the oxidation reaction 

(oxygen evolution) occurs at the TiO2 electrode and the reduction reaction (hydrogen evolution) 

at the Pt electrode. This proved that water can be decomposed, using UV visible light, into 

oxygen and hydrogen, without the application of an external voltage (Kaneko & Okura, 2002).   

 

 

Figure 2.5 Honda – Fujishima effect – water splitting using a TiO2 photoelectrode, demonstrating the 

valence band (VB) and the conduction band (CB) ( Adapted from: Kudo & Miseki, 2009) 

Photocatalysis is an oxidative decomposition activated by light, which uses a semiconductor or 

a catalyst to accelerate the chemical reaction without being consumed as a reactant. 

TiO2 photocatalysis was performed in this work. The TiO2 photocatalysis process can be 

described as follows (Nakata & Fujishima, 2012; Kaneko & Okura, 2002): 

 

 Illumination of TiO2 by light with energy larger than the band gap energy elevates 

electron in the valence band to the conduction band; a positive hole (h
+
) is formed in the 

valence band after elevated electron (e
-
). Following the reaction: 

     
  
             (eq. 2.4) 

 Photogenerated holes in the valence band diffuse to the TiO2 surface and react with 

adsorbed water molecules, forming hydroxyl radicals (OH
●
) or directly to the pollutant, 

according to the following reactions: 
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                     (eq. 2.5) 

                           (eq.2.6) 

 In the meantime, electrons in the conduction band typically react with molecular oxygen 

in the air to produce superoxide radical anions (O2
-
), following the reaction:  

            
                  (eq.2.7) 

 These strong reactive oxygen species oxidize and decompose organic substances 

(Figure 2.6); when the degradation is complete the final products are CO2 and H2O. 

 

 

Figure 2.6 Principles of oxidative decomposition of TiO2 photocatalysis (Adapted from: Fujishima & 

Murakami, 2010) 

 

The most difficult problem in photocatalysis is the rapid recombination of separated positive and 

negative charges, the oxidant–reduction process should occur simultaneously, otherwise 

electrons accumulate in the conduction band and the recombination between electron and 

positive hole increase. For this reason an effective consumption of electrons is essential to 

achieve  efficient photocatalysis (Kaneko & Okura, 2002). 

 

Currently many applications exist for photocatalysis technology like self-cleaning materials, air 

cleaning, water purification, antitumor activity and self-sterilizing (Figure 2.7).   
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Figure 2.7 Applications of TiO2 photocatalysis (Adapted from: Nakata & Fujishima, 2012)  

 

The catalyst: TiO2  

 

The ideal catalyst is the one that makes strong oxidizing species and uses light energy with high 

efficiency. The semiconductor should be chemically and biologically inert, photocatalyst stable, 

easy to produce, efficiently activated by sunlight, able to efficiently catalyze reactions, cheap, 

and without risks to the environment and humans (Carp et al., 2004). 

 

TiO2 has become the principal photocatalyst in environmental decontamination for a huge 

variety of organics, viruses, bacteria, fungi, algae, and cancer cells that can be totally degraded 

and mineralized to CO2, H2O and harmless inorganic compounds (Carp et al., 2004). The TiO2 

demonstrates many advantages towards its use in environmental photocatalysis and over other 

semiconductors: availability of the catalyst; availability in nature; high chemical stability; 

relatively inexpensiveness; nontoxic and high photoactivity (Kaneko & Okura, 2002). 

 

TiO2 can crystalize in three main polymorphs: rutile, anatase and brookite. In the Figure 2.8 are 

represented the structures of the polymorphs; rutile (a in Figure 2.8) and anatase (b in Figure 

2.8) have a tetragonal structure, brookite has a orthorhombic form (c in Figure 2.8). These 

structures can be defined in by the distortion of TiO6 octahedrals, where each Ti
4+ 

ion is 

surrounding by six O
2- 

in the positions of the vertices (Fuertes et al., 2013; Carp et al., 2004). 

Red spheres are Ti
4+

, blue spheres are O
2-

 and the yellow lines represent the unit cell. 
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Figure 2.8 Crystal structures of TiO2 polymorphs, (a) rutile, (b) anatase and (c) brookite (Adapted from: 

Fuertes et al., 2013). 

Differences in lattice structures are responsible for different mass densities and electronic band 

structures among the polymorphs (Fuertes et al., 2013). Anatase has a larger photocatalytic 

activity, explained by a higher band gap then rutile, as reported in Table 2.9. 

 

Nevertheless a mixture of anatase and rutile, like commercial Degussa “TiO2 P25”, is claimed to 

be more active than anatase (Sun & Xu, 2010; Kaneko & Okura, 2002). 

 

Table 2.9 Some properties of the main polymorphs of TiO2 (Adapted from: Carp et al., 2004) 

 

 

  

Rutile Anatase Brookite

Polymorph form tetragonal tetragonal orthorhombic

Density (kg/m3) 4240 3830 4170

Band Gap (eV) 3,05 3,26 -



 
 

20 
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3  Methodology 
 

3.1 Experimental setup 

 
The Figure 3.1 demonstrates the experiments based in advanced oxidation process made to 

recognize the degradation degree of triclosan and identification of the main products. An 

additional experiment was done, with Rhodamine B as a control to the operation system 

reactor. 

 

 
Figure 3.1 Advanced oxidation process experiments carried out to the degradation of TCS 

 

To fully understand the triclosan molecule and the standard solution, GC/MS, NMR, ESI-MS 

and UV-VIS spectrometry analysis were performed (Figure 3.2).  
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Figure 3.2 Advanced oxidation process experiments carried out to the degradation of TCS 

 

Commercial Aeroxide “TiO2 P25” purchased from Evonik Degussa was used in this work. The  

“TiO2 P25” it is well known for his composition of anatase and rutile crystallites, but it seems that 

some absence of information about the exact crystalline composition exists (Ohtani et al., 

2010). The powder was characterized with a Transmission Electron Microscopy (TEM) and with 

X Ray Diffraction (XRD) and this information was shared by Professor R. Bertani in personal 

communication, March 2014, from the chemistry laboratories of Università degli Studi di 

Padova. The TEM allows evaluation of the particle dimension and the XRD the composition of 

TiO2 and the ratio between anatase and rutile.  

TEM analysis showed the most of the particles has a diameter of 20 nm, illustrated in Figure 

3.3. 

 

Figure 3.3 TEM images of commercial “TiO2 P25” 
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The XRD analysis reveals two main peaks related to the crystallographic plane, peak 25.3 

related to the anatase phase (red line Figure 3.4) and peak 27.45 to the rutile phase (green line 

Figure 3.4). The blue line in the Figure 3.4 refers to the diffractogram of TiO2. 

 

 

Figure 3.4 XRD spectrum of commercial “TiO2 P25” 

Comparing the intensity values, in the table 3.1; the content of rutile is 15.8% as show by the 

ratio of the intensities signals appearing at 2theta 25.3 peak (anatase) and 2theta 27.45 peak 

(rutile).  

 

Table 3.1 XRD peaks of commercial “TiO2 P25” 

 
 

2theta intensity

25.3 995.43

27.45 153.73

36.04 78.45

37.8 192.52

38.5 85.27

48.03 276.48

53.98 160.29

54.26 139.09

54.99 140.36

56.66 35.2

62.83 129.76

68.97 72.51
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According to the information in the label product the specific surface area is 50 ± 15 m
2
/g, the 

percentage in weight of TiO2 is 99.5% and the typical crystalline composition was 70-78% 

anatase, 10-15% rutile and 7-20% amorphous phase. 

 

In all the experiments the maximal amount of solubility of TCS in water was chosen given the 

difficulties of determination in the GC/MS analysis. The maximum solubility of TCS in distilled 

water is 0,01 g/l at 20ºC (SCCS, 2010; Yu et al., 2006).  

 

The amount of TiO2 was chosen based on literature, Rafqah et al., 2006, compared different 

concentrations of commercial “TiO2 P25” (0.2, 0.5, 1, and 2.5 g/l) concluded that the most 

efficient concentration was 1 g/l. Since the concentration of 0,5 g/l in this study yielded 

approximated values of efficiency has the concentration 1 g/l,  the concentration  of 0,5 g/l of 

TiO2 was used. The standard solution was prepared by dissolving triclosan in deionized 

laboratory water.  

 
 

3.1.1 Rhodamine B as operational control 
 
Photocatalytic degradation of Rhodamine B 
 
To verify the efficiency of the photocatalytic system constructed a first experiment was done 

with Rhodamine B. This experiment was common to students who were using the same system 

created for photocatalysis but were studying other proposed selections.  

 

The degradation of the Rhodamine B by photocatalysis using commercial “TiO2 P25” from 

Degussa was proven by Aliabadi & Sagharigar, (2011), the Rhodamine B changed color in 

function of the UV exposition time due of it destruction. Therefore the same was tried to confirm 

if the system worked. The Rhodamine B aqueous solution was placed in the beaker with 100 

mg of TiO2 and placed in the reactor (a) in Figure 3.5). A continuous mixing was ensure by the 

magnetic stirred. The experiment had a duration of 2 hours (b) in Figure 3.5) and samples of 1 

ml were collected every 5 min.  
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Figure 3.5 Picture of the photocatalytic degradation of Rhodamine B, a) in the beginning with UV lights of, 

b) in the end of the experiment 

 

Two blanks experiments were effectuated in the same conditions although blank 1 was 

performed on an dark room and blank 2 was performed in the absence of TiO2. The blank 

experiments were run during 2 hours and every 30 minutes 1 ml of solution was collected. 

 

The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 100 ml 

 Concentration of Rhodamine B: 48 g/l  

 Concentration of TiO2: 1 g/l 

 Time of experiment: 2 hours 

 
 

3.1.2  Photocatalysis by UV light 
 
The photocatalytic degradation under UV light was performed in a glass structure, covert with a 

quartz plaque. A beaker, containing the suspension was placed inside the glass structure 

(Figure 3.6). Two parallel lamps at a distance of 5,5 cm from each other and at 23,5 cm to the 

surface of the suspension were placed on the top of the quartz plaque (a) and b) in Figure 3.7). 

The lamps used were from Philips model PL –S 9W /01 /2P 1CT with maximum wavelength at 

310 nm corresponding to 90 µW/mm
2
 (c) in Figure 3.7). Technical manufacture features are 

presented in the Figure 3.8. The quartz plaque permits the transmission of UV light inside the 

glass structure. 
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Figure 3.6 Picture in detail of the glass structure, beaker and quartz plaque used in the reactor 

 

 

Figure 3.7 Pictures of the reactor under the photocatalysis by UV experiment and detail of the UV lamps, 

a) experimental setup with UV lights on, b) experimental set up with UV lights of, c) UV lamps 

 

Figure 3.8 Emission spectra of the UV lamps used and technical features according to the manufacture 
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The suspension with TCS was allocated inside the structure of glass and covered with the 

quartz plaque and the UV light (a) in Figure 3.7). Contents were stirred during an hour in dark 

conditions to guarantee maximum absorption of the catalyst and during the time of the 

experiment to maintain uniformity of the suspension. After this hour the lights were turned on to 

begin the process of photocatalysis. This process was replicated four times to gather samples 

of 1, 3, 4 and 5 hours. 

 

The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 250 ml 

 Concentration of TCS: 0,01 g/l 

 Concentration of TiO2: 0,5 g/l 

 Time of experiment: 1, 3, 4 and 5 hours 

 

3.1.3 Photocatalysis by sunlight 
 
This experiment was chosen to be done under the best weather conditions; a sunny and clouds-

free day during the time of the experiment. One crystallizer with 1 l of the suspension was 

placed on the top of the floor of the industrial engineering department tower in the Università 

degli Studi di Padova, and left under the sun for 8h (Figure 3.9). No stirred conditions were 

possible to maintain.  

 

 

Figure 3.9 Picture of the crystallizer ready to place on the top of the tower 

 
The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 1 l  

 Concentration of TCS: 0,01 g/l 

 Concentration of TiO2: 0,5 g/l 

 Time of experiment: 8 hours 
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3.1.4 Photocatalysis by LEDs 
 
To perform the photocatalytic degradation under LEDs, sixteen LEDs in a current of 0.1 A and a 

voltage of 24 V were placed on the top of a crystallizer with 60 ml of suspension (Figure 3.10 

and a) in Figure 3.11). The LEDs were at a distance of 1,2 cm from the surface of the 

suspension (b) in Figure 3.11).  

 

One hour before the experiment started, the suspension was maintained in the dark, under 

stirring, to improve the absorption of the catalyst. During the time of the experiment, the rate of 

stirring was cut down to avoid splashes to the LEDs while keeping the suspension mixtured.  

 

 

Figure 3.10 Picture of the LEDs experiment (system of volt-ammeter and LEDs connection) 

 

 

Figure 3.11 Picture in detail of the sixteen LEDs and photocatalytic experiment 
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The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 60 ml 

 Concentration of TCS: 0,01 g/l 

 Concentration of TiO2: 0,5 g/l 

 Time of experiment: 8 hours 

 

3.1.5 Photo-Fenton reaction 
 
A beaker was ready with a solution of TCS and FeSO4.7H2O. The pH was measured by a 

universal pH indicator stripes and is dropped until around 3 by adding H2SO4 96%. H2O2 30% is 

added to the suspension and UV lights are turn on for 2 hours of experiment.  

 

The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 250 ml  

 Concentration of TCS: 0,01 g/l 

 FeSO4.7H2O: 77,7 mg 

 H2O2 (30%): 1 ml 

 Time of experiment: 2 hours 

 

 

3.1.6 Fenton Reaction  
 
- Degradation under addition of H2O2 at once 
 

The FeSO4.7H2O was weighed and placed in a balloon and 250 ml of volume suspension was 

added to the balloon (Figure 3.12). The Fenton-reaction was initiated. A magnetic stirrer device 

was turned on to ensure complete mixing of the reagents during the time of the experiments. 

The pH was measured by a universal pH indicator stripe and the pH was decreased about 3 by 

adding H2SO4 96%, respecting the optimal pH for the Fenton reaction found in the literature 

(between 2-4) (Júnior et al.,2012; Bauer & Fallmann, 1997). The addition of H2O2 at 30% 

ensued. The reaction stopped when the extraction with n-hexane began. The Fenton reaction 

was replicated to gather samples for 2 and 4 hours. 
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Figure 3.12 Picture of the development of the Fenton reaction experiment 

 
The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 250 ml  

 Concentration of TCS: 0,01 g/l 

 FeSO4.7H2O: 77,7 mg 

 H2O2 (30%): 1 ml 

 Time of experiment: 2 and 4 hours 

 
- Degradation under addition of H2O2 in 3 instants of time 
 

The FeSO4.7H2O was weigh and placed in a balloon, 250 ml of volume suspension was added 

to the balloon. The magnetic stirrer device ensured complete mixing of the reagents during the 

experiments time (2 and 4 hours). The pH was measured by a universal pH indicator stripe and 

is dropped until around 3 by adding H2SO4 96% and the addition of H2O2 30% was made in 3 

separate times during the duration of the experiment. For instance in the 2h experiment, the 

addition of H2O2 was made at 20 min (0,35 ml), 60 min (0,35 ml) and at 100 min (0,30 ml).  

 

The concentration of FeSO4.7H2O and H2O2 are based on the concentrations adopted in the 

studies of I. Casalatina (I. Casalatina, personal communication, May 2014) in the Laboratory of 

the Università degli Studi di Padova and it was respected in the photo-Fenton and Fenton 

reaction to maintain uniformity in the experiments.  
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The conditions that have been respected for the elaboration of the assay were: 

 

 Volume of solution: 250 ml  

 Concentration of TCS: 0,01 g/l 

 FeSO4.7H2O: 77,7 mg 

 H2O2 (30%): 1 ml (0,35 ml + 0,35 ml + 0,30 ml) 

 Time of experiment: 2 and 4 hours 

 

 

3.2  Determination of phenols and TCS by GC/MS 

 

On the analytical determination of phenols, specifically triclosan, one obstacle was encountered 

in the collection of the results: 

 

 Derivatization: the OH
 
group can be attached to the internal solid phase of the GC/MS; 

the strong iteration can interdict the OH group to leave the column and consequently 

not show in the mass spectra. To avoid this problem, derivatization is necessary. 

 

Several methods of treatment of analysis based in the literature were tested in this work but did 

not succeed, like: chloroform extraction by Yu et al., 2006; n-hexane extraction and addition of 

NaCl to facilitate the extraction and passage of the organic phase in Na2SO4 by Gómez et al., 

2009; n-hexane extraction and derivatization with N-Methyl-N Trifluoroacetamida (MSTFA) by 

Catrinescu et al., 2012. The analytical method founded that suit better are described hereafter.  

 

 - Derivatization with acetic anhydride acid 
 

The best method found for identification of triclosan and respective byproducts was in 

Czaplicka, (2001). In all experiments all the volume was treated to analysis in the GC/MS.  

 

Firstly, in the end of the experiments and after measurement of the pH, the volume of solution 

was filtered with a filtering round paper (pore size 4 - 7 μm) (Whatman filter n° 597) to remove 

TiO2. This step was not taken in experiments without TiO2. The pH was measured in each 

experiment by a universal pH indicator stripes of Macherey – Nagel, reference 921 10, pH from 

0 to 14. 
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This method encloses extraction, derivatization and quantitative/qualitative determination using 

GC/MS. 

 

 Extraction 

 

Three extractions of the solution with n-hexane were performed. The n-hexane quantity was 

chosen respecting a ratio of 2:1 (volume of solution / volume n-hexane) divided by the three 

extractions. The remaining aqueous solution was discarded, while combined n-hexane extracts 

were concentrated in a nitrogen stream until a volume of 2 ml was reached.  

 

 Derivatization 

 

To the n-hexane extract sample after nitrogen concentration, 3 ml of 0.1 M K2CO3 were added, 

followed by 2 ml of n-hexane containing 100 µl of acetic anhydride. Triclosan molecule contains 

a phenolic hydroxyl group. The hydroxyl group was functionalized with acetic anhydride acid. 

The solution was mixed intensively and then was left to settle until the layers were separated. 

After 30 minutes the layer of water was discarded. The n-hexane layer was dried and 

concentrated in a stream of nitrogen to 200 µl and then analyzed. 

 

 Quantitative and qualitative determination on GC/MS 

 

To perform the quantitative analysis, 1µl of benzonitrile (the internal standard) was added in all 

samples, having a retention time of about 4 minutes, ensuring that the peak did not coelute. The 

integration of the area of the peaks and a comparison with the area of the internal standard 

allowed a quantitative analysis. The retention time and the respective mass spectra of the 

peaks allowed a qualitative analysis. 

 

 

3.3  Instruments 

  

3.3.1  GC/MS: Gas chromatography/mass spectrometer 
 

Gas chromatography is based upon the partition of the analyte between a gaseous mobile 

phase and a liquid phase immobilized on the surface of an inert solid by adsorption or chemical 

bonding. Mass spectrometer measures the mass to charge ratio (m/z) of ions produced from the 

sample. The GC/MS is a hyphenated technique; it is an analytical method in which two 

instrumental techniques are coupled combining the separation capabilities of chromatography 

with the capacity detection of electrical or spectral methods (Skoog et al., 2004). 
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The schematic representation of the GC/MS system is represented in the Figure 3.13, here the 

sample is injected into the capillary column, where the separation of the components occurs. 

After the fragmentation they are ionized, mass analyzed, and then detected by the electron 

multiplier. The separated ions are recognized and a plot of the ion intensity versus m/z value is 

produced by the data-system (Skoog et al., 2004). 

 

Figure 3.13 Schematic of a typical capillary GC/MS instrument (Adapted from: Skoog et al., 2004) 

 
From the chromatogram is possible to make a qualitative and quantitative analysis. The 

retention time, the time between injection of a sample and the appearance of a solute peak at 

the detector of a chromatographic column, was valuable to the identifications of the 

components. The comparison of the area of an analyte peak with an internal standard allows to 

make a quantitative analysis. The internal standard method offers a highest precision analysis, 

because uncertainties introduced by sample injection, flow rate, and variations in column 

conditions are minimized (Skoog et al., 2004). 

 
Analysis by the GC/MS were run using an AUTO HRGC/MS Carlo Erba gas chromatograph 

spectrometer equipped with an Agilent DB-5MS column (diameter of 0,25 mm, length of 30 m 

and film thickness of 0,25 μm), helium as gas carrier (He flow rate = 4 ml/min) and coupled to a 

QMD 1000 Carlo Erba mass spectrometer as detector. The injector temperature was 280°C and 

the GC temperature program ranged from 80°C (2 min) at 10°C/min to 280°C (15 min). All 

samples were analyzed by direct injection of 1 μl with a microsyringe (mode splitness). The 

internal standard used was benzonitrile. The interpretation of the chromatogram was performed 

with the aid of the program management of the instrument, the mass lab, equipped with the 

National Institute of Standards and Technology (NIST) and Wiley libraries. The instrument used 

is show in the Figure 3.14. 
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Figure 3.14 Carlo Erba GC/MS 

 

3.3.2  ESI–MS: Electrospray ionization mass spectrometry  
 

ESI uses electrical energy to assist the transfer of ions from solution into the gaseous phase 

before they are subjected to mass spectrum analysis (Ho et al., 2003).  

 

The electrospray ionization process stated in the Figure 3.15 starts when a stream of liquid 

solution is pumped through a stainless quartz silica capillary tube which is at a high voltage 

relative to the wall of the surrounding chamber. A mist of highly charged droplets with the same 

polarity as the capillary voltage is generated from the Taylor cone. The application of a 

nebulizing gas (e.g. nitrogen), which shares around the eluted sample solution, develops a 

higher sample flow rate. These droplets are continuously reduced as the solvent evaporate and 

as they move towards the entrance to the mass spectrometer. Finally it yields free charged 

analyte molecules that can be analyzed for their molecular mass and ion intensity (Ho et al., 

2003; Cech & Enke, 2002; Bruins, 1998). 

 

 

Figure 3.15 Schematic of the electrospray ionization process (Adapted from: Cech & Enke, 2002) 
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The ESI-MS analyses were performed using a Thermo-Finnigan LCQ-Duo spectrometer 

operating in positive ion mode (Figure 3.16). Instrumental parameters: capillary voltage 10 V, 

spray voltage 4.5 kV; capillary temperature 200 °C; mass scan range from 150 to 2000 amu; N2 

was used as sheath gas; the He pressure inside the trap was kept constant. The pressure read 

directly by an ion gauge (in the absence of the N2 stream) was 1.33 × 10
−5

 Tor. Sample 

solutions were prepared by dissolving the compounds in acetonitrile. Sample solutions were 

directly infused into the ESI source by a syringe pump at 8 μl/min flow rate.  

 

 

Figure 3.16 Thermo-Finnigan LCQ-Duo spectrometer 

 

3.3.3 UV-Vis spectrophotometer: Ultraviolet–Visible Spectrophotometer 
 

The UV-Vis spectrophotometer equipment performs quantitative analysis by the absorption of 

spectral radiation based on the Beer–Lambert law which states that the absorption is 

proportional to the concentration of the analyte.  

 

The beam of selected wavelength reaches the beam splitter and one beam passes through the 

reference solution to a photodetector, and the second passes through the sample to other 

photodetector. The two outputs are amplified and their ratio or the log ratio is obtained by 

computer and displayed. This process is illustrated in Figure 3.17.  

 

The UV-Visible spectra were recorded at a Perkin-Elmer Lambda 25, showing in Figure 3.18, a 

double been spectrophotometer in the range 190-800 nm with 1 cm light path cuvettes made of 

UV grade silica (quartz). 
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Figure 3.17 Optical Path in UV-Vis spectrophotometer (Adapted from: Skoog et al., 2004) 

 

Figure 3.18 Perkin-Elmer Lambda 25 

 

3.3.4 
1
H NMR Spectrometry: Proton Nuclear Magnetic Spectrometry 

 

Nuclear magnetic resonance (NMR) is another form of absorption spectrometry. All nuclei carry 

a charge and a mass; some isomers possess spin or angular momentum. Spinning charge on 

proton generates magnetic field, where there is associated an magnetic moment (Silverstein et 

al., 2005).  

 

The magnetic moment of the spinning charge can be described in terms of its quantum spin 

number. The spin number determines the number of orientations a nucleus can assume in an 

external nuclear field. For a nucleus with spin ½, two levels of energy are possible. In the 

absence of magnetic field the state of energy returns to the ground state (Silverstein et al., 

2005; Bovey et al., 1988).  

 

In the schematic presented in a) Figure 3.19, the sample tube is placed in the field of a strong 

magnet (the superconducting solenoid), then radio frequency transmitter applies a radio 

frequency sufficiently wide to cover the entire range of magnetic field strength. This pulse 

simultaneously excites all of the nuclei in the sample. Immediately following this pulse, the 
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excited nuclei begin to return to the ground state and radiate the absorbed energy. A detector 

collects this energy producing free induction decay (FID) which is the sum of all the nuclei 

radiating over time. By Fourier transform the information in the FID is converted in a spectrum in 

function of the frequency (Silverstein et al., 2005; Bovey et al., 1988).  

 

The 
1
H NMR spectra were run at 298 K on a Bruker 200 AC spectrometer, presented in b) 

Figure 3.19, operating at 200.13 MHz, respectively; δ values are given in ppm. Peak positions 

are relative to TMS and were calibrated against residual solvent resonance (
1
H) or the 

deuterated solvent multiplet (
13

C). 

 

 

Figure 3.19 Bruker 200 AC spectrometer and cross section of superconductive magnet for 
1
H NMR 

spectroscopy (Adapted from: Bovey et al., 1988) 

 

3.3.5 Liquid/liquid extraction 
 
Solvent extraction is an operation based on the limited miscibility and the distribution of the 

solute between two liquid phases (Jabrou, 2012). The solute is in an aqueous solution and an 

organic solvent (in this work, n-hexane) immiscible with water is added.  

 

The two immiscible liquids were strongly mixed in a magnetic stirrer with the objective to have 

good dispersion of the solvents in each other (a) in Figure 3.20). Since the solubility of the 

solute is different in the two solvents, a transition occurred, from the water to the n-hexane. The 

separation between the solvents is performed in a separation funnel (b) in Figure 3.20); the two 

layers have to be visibly separated to ensure the success of the extraction. The yield is 

enhanced when the process is repeated on the water layer. The extraction was repeated three 

times. 
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Figure 3.20 Liquid/liquid extraction a) Mixing of the solvents, b) separation funnel   
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4 Results and discussion 
 

4.1  Characterization of the TCS standard solution by analytical 

instruments 

 

To fully understand the triclosan molecule and the standard solution, GC/MS, 
1
H NMR, ESI-MS 

and UV-Vis spectrometry analysis were performed. The standard solution consisted in water 

and triclosan in a concentration of 0,01 g/l (maximum solubility of TCS in water at 20°C). 

 

 GC/MS 
 

The GC/MS analysis of TCS (Figure 4.1), shows two major peaks at the retention time 20.396 

and 21.046 min in the abundance of 100% and 50%. Other two peaks of lower strength appear 

in the retention times 18.812 and 19.863 min with 8% and 11%. All these peaks reveal very 

similar mass spectra, the mass spectra of the most abundant species are presented in Figure 

4.2 and 4.3. The less abundance peaks mass spectra are in the Figure I.1 and I.2, in the 

Appendix I. As an example, the presence of one chloride is visible in the TCS (C12H7Cl3O2), 

mass spectrum characterized by the base peaks ions m/z 288 and 290, corresponding to the 

molecular ions [M]
+
 and [M + 2]

+
, which represent a typical chlorine signature.  

 

The ion peak m/z 218 and 220 reveal the presence of other chloride. Mezcua et al., 2004 made 

a GC/MS analysis under electron impact ionization, the same performed in this work, the 

resulting mass spectrum is illustrated in the Figure 4.4 and shows the stronger base peaks ions 

at m/z 288, 290 and 218. The ions peaks of m/z 51, 63, 114 and 146 are always present in both 

analysis, also characterizing the TCS compound. 

 

Presence of the same molecular base peak ions in all the mass spectra, determined the 

presence of isomers which constitute the commercial mixture.  

 

 

Figure 4.1 Triclosan chromatogram 
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Figure 4.2 Peak at 20.396 

 

 

Figure 4.3 Peak at 21.046 

 

 

Figure 4.4 Triclosan chromatogram by Mezcua et al., 2004 

 

 
1
H NMR Spectroscopy 

 
The analysis of the 

1
H NMR spectra of the TCS (Figure 4.5) reveals six protons plus one 

referring to the OH group. Only the signals due to the most abundant isomer are visible in the 

spectrum. 

 

The six protons were identified and located in the molecular structure of triclosan reported in 

Figure 4.6, as H1, H2, H3, H4, H5 and H6.  

The J-coupling is the frequency difference in Hz between the component peaks. The J-coupling 

is calculated by the following equation: 

 

                                                            (eq. 4.1) 
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The H6 is a doublet centered at δ 7.54 ppm with a J-coupling of 
4
JH5H6 4 Hz, the H5 is a doublet 

of doublets centered at δ 7.225 ppm with a J-coupling of 
3
JH4H5 4 Hz and a J-coupling of 

4
JH5H6 2 

Hz, the H1 is a triplet at δ 7.05 ppm with a J-coupling of 
4
JH1H2 ~ 1 Hz. The H2 and H3 are 

centered at δ 6.875 ppm with a J-coupling with H1 about 1Hz and the H4 is a duplet centered at 

δ 6.775 ppm with a J-coupling of 
3
JH5H4  8 Hz. The OH is at δ 7.66 ppm.  

 

 

Figure 4.5 
1
H NMR spectra of triclosan 

 

 

Figure 4.6 Identification of the protons in the molecular structure of triclosan 

 

 ESI-MS 
 

The ionization of TCS generates the ion peak m/z 310 with 85% relative abundance by the 

addition of Na
+
, the peak m/z 325 (20%) is referred to the addition of K

+
. These two ions appear 

as part of contamination present in the equipment.  
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The ion peak m/z 287 characterized the radical TCS with the abundance of 45%. The loss of a 

Cl (M–35) gives the peak m/z 255 (70% relative abundance) from here there is a loss of a CO 

(M–28), respecting the ion peak of m/z 227 with 25% relative abundance. The ion peak m/z 191 

is regarding the loss of a HCL (M–36) with the relative abundance of 25%. The tallest peak in 

the chromatogram is the addition of a OH
●
 in the ion base peak m/z 304 with the highest relative 

abundance, 100%. The chromatogram is exposed in the Figure 4.7. 

 

 

Figure 4.7 Chromatogram of TCS in positive ion mode 

 
 

 UV-Vis spectrophotometer 
 

A solution with the concentration of TCS of 10
-4

 M was prepared for analysis in the UV–Visible 

spectrophotometer. One peak appears in the range of 280 to 340 nm and the maximum peak is 

established approximately between 300 and 310 nm. The UV-Visible spectrum of TCS is 

showed in the Figure 4.8. 
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Figure 4.8 Emission spectra of TCS 

4.2 TCS degradation and by-products by GC/MS  

4.2.1 Rhodamine B as operational control 
 
Photocatalytic degradation of Rhodamine B 
 
The efficiency of the photocatalytic system was demonstrated by the gradual changed of color, 

from pink to white as showed in the Figure 4.9. 

 

 

Figure 4.9 Picture of degradation samples of Rhodamine B during the time of experiment 

The blank experiments showed in the Figure 4.10 confirmed no degradation of Rhodamine B. 

 
Figure 4.10 Picture of the blank samples 
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4.2.2 Photocatalysis by UV light   
 

 

 1 hour  
 

The chromatograph resulting from the photocatalytic degradation with UV lamps reveals 5 

peaks, two higher peaks in the retention time 20.361 and 20.995 with the abundance of 100% 

and 70% (Figure 4.11). The other 3 peaks are at the retention time 10.477, 12.227 and 17.461 

with the respective abundance of 12, 7 and 19%. In order to confirm if the small peaks that 

appear between the retention time 9 and 19 min are significant, an amplification was performed. 

This chromatograph is exposed in the Appendix II, Figure II.1. The degradation during this first 

hour achieved 68% of removals of TCS, (Figure III.1, Appendix III).  

 

 

Figure 4.11 Chromatogram of the UV lamps degradation of 1 hour experiment 

 
→ Peak at the retention time 10.477: 

 

The peak in the retention time 10.477 min has been identified has C8H6Cl2O2, this compound 

was a result of 2,4–DCP and acetic anhydride reaction.  

 

The base peak ions typical of 2,4–DCP are m/z 162 (100% abundance) and the 164 (about 

60%) (Figure 4.12). A comparison with the mass spectrum of 2,4-DCP obtained by Yu et al., 

2006 confirms the 2,4-DCP presence (Figure 4.13). The ratio between the m/z 162, 164 and 

166, the m/z 63, 98 and 126 are also visible in both mass spectra. The final compound 

C8H6Cl2O2 is characterized by the base peaks ions 204 and 206.  

 

 

Figure 4.12 Peak 10.477: C8H6Cl2O2 
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Figure 4.13 Mass spectrum of 2,4-DCP by Yu et al., 2006 

 

The identified C8H6Cl2O2 compound, was a result of the acetic anhydride reaction from the 

treatment of the analysis and the by-product 2,4–DCP (a) and b) in Figure 4.14). The molecular 

structure of C8H6Cl2O2 was proposed and is presented in point c) Figure 4.14. 

 

 

Figure 4.14 a) Molecular structure of acetic anhydride b) Molecular structure of 2,4-DCP, c)Molecular 

structure suggested for  C8H6Cl2O2 

 
The appearance of 2,4–DCP is verified in the literature as being one common intermediate as 

presented in the table IV.1, Appendix IV by the authors: Sankoda et al., 2011; Yang et al., 2011; 

Rafqah et al., 2006 and Yu et al., 2006. In the case study of Yu et al., 2006 2,4–DCP was the 

major intermediate. The nature of the this compound was a result of the homolytic scission of 

carbon – oxygen bond leading directly to the formation of 2,4–DCP (Rafqah et al., 2006). Even 

being referred as a by-product in the Fenton reaction by Yang et al., 2011, in this study 2,4–

DCP was only identified in the UV experiment after 1 hour of degradation. 

  

→ Peak at the retention time 12.227: 

 

In the retention time 12.227 the mass spectrum has the base peak ion m/z 114 with 100% 

abundance, is characterized by the C8H2O radical cation (Figure 4.15).  
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Figure 4.15 Peak 12.227: C8H2O radical cation 

→ Peak at the retention time 17.461: 

 

The peak at the retention time 17.461 characterize by the base ion peak m/z 149 (abundance at 

100%) is suggested as a C7O4H and possibly is a contaminant (Figure 4.16). The identification 

of this peak was extremely difficulty. The ion peak m/z 105 is represented of the aromatic 

compound C6O2H. The addition of a COO reveals the ion peak m/z 149. This ion peak appears 

once again in the amplified chromatogram at the retention time 18.561 (Figure I.3 in the 

Appendix I). 

 

 

Figure 4.16 Peak 17.461 

→ Peak at the retention time 20.361 and 20.995: 

 
The peaks at the retention time 20.361 and 20.995 are TCS (Figure I.4 and Figure I.5 in the 

Appendix I). 

 

→ Amplified chromatograph; peak at the retention time 10.927: 

 

From the amplified chromatograph (Figure II.1, Appendix II); the peak at the retention time 

10.927 the m/z 89 was associated to a C6OH (Figure 4.17). C3H3O2 radical cation is identified at 

the m/z 71, the difference between the m/z 56 and 71 denotes the addition of a CH3. The 

compound C12H7Cl3O5 was identified in this mass spectrum. The m/z 336 verifies the presence 

of this compound.  

 

Figure 4.17 Peak 10.927: C12H7Cl3O5 
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Based in the article of Rafqah et al., 2006 this compound probably is the result of successive 

oxidations. The proposal structure (a) in Figure 4.18) and the molecular base peak ion (m/z 

336) belong to the type of product identified in the article of Rafqah et al., 2006 (b) in Figure 

4.18). These species are hydroquinone’s and are formed due to the very few protons found in 

the presence of a lot of fragments. 

 

 

Figure 4.18 Hydroquinine`s species, a) Proposal structure b) Proposal structure by Rafqah et al., 2006 

 

Other two peaks present the amplified chromatogram; at retention time 12.177 and 14.011 min. 

 

→ Amplified chromatograph; peak at the retention time 12.177: 

 

By the retention time 12.177 the ion base peak m/z 57 (100% abundance) denotes the 

presence of a C2HO2 (Figure 4.19).  

 

 

Figure 4.19 Peak 12.177: C2HO2 

→ Amplified chromatograph; peak at the retention time 14.011: 

 

The ion peak m/z 71 at the peak in the retention time 14.011 correspond to C3H3O2 radical 

cation. Here the difference between the m/z 56 and 71 represents a CH3 (Figure 4.20). 

 

 

Figure 4.20 Peak 14.011: C3H3O2 radical cation 
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 3 hours 
 
After 3 hours of degradation, four peaks appear at the retention times 14.011, 17.461, 20.345 

and 20.995 with respective abundance of 11, 62, 100 and 91% (Figure 4.21). The major 

abundance peaks (retention time 20.345 and 20.995) match TCS peaks as portrayed in the 

Figure I.8 and I.9 from the Appendix I. 

 

In the peak in the retention time 14.011 the mass spectrum revealed the base peak ion m/z 71 

in the abundance of 100%, identified as C3H3O2 radical cation. Here the difference between the 

m/z 56 and 71 represents a CH3. The mass spectrum is presented in the Appendix I, Figure I.6. 

The peak in the retention time 17.461 is characterized by the mass spectrum with a base peak 

ion m/z 149 in the abundance of 100% (Appendix I, Figure I.7). The C7O4H compound is 

recognized to be a contaminant. 

 

 

Figure 4.21 Chromatogram of the UV lamps degradation of 3 hours experiment 

 
 

 4 hours 
 
In the 4 hour experiment the chromatograph showed 4 peaks (Figure 4.22). The peaks in the 

retention time 20.346 and 20.963 with the respective abundance of 100 and 11% are TCS as 

the matching mass spectrum reveals in the Figure I.12 and I.13 in the Appendix I. The two 

peaks at the retention time 17.429 and 18.529 with the abundance of 11 and 4% have the same 

peaks in the mass spectra; the base ion peak of m/z 149 is identical in the abundance of 100%. 

These peaks are identified has C7O4H compound as contaminant. The respective mass 

spectrum is exposed in the Figure I.10 and I.11 in the Appendix I. 
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Figure 4.22 Chromatogram of the UV lamps degradation of 4 hours experiment 

 
 

 5 hours 
 
For the 5 hours experiment, TCS was present at the retention time 20.430 and 21.064 with the 

abundance of 100 and 20% (Figure 4.23). The mass spectra presented in the Figure I.16 and 

I.17 in the Appendix I verified the TCS compound. The peaks in the retention time 17.546 and 

18.630 (43 and 11% of abundance) have the base ion peak m/z 149 at 100%, the peaks that 

appear are the same so we conclude to be in the presence of isomers. The identified compound 

was the C7O4H compound, a contaminant; the respective mass spectra are present in the 

Figure I.14 and I.15 in the Appendix I. 

 

 

Figure 4.23 Chromatogram of the UV lamps degradation of 5 hours experiment 

The pH values measure in the standard solution and in the different time experiments realized 

are exposed in the Table 4.1. 

 
Table 4.1 pH measurements from the photocatalytic experiment under UV light 

 

 

The concentration of TCS by UV lamps had the higher percentage of degradation during the 

first hour, equivalent to 68% degradation (Table 4.2). The major degradation during the first 

Time (h) 0 1 3 4 5 8

pH 7,5 7 7 7 7 7
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hour is present in the studies by Sankoda et al., 2011; Rafqah et al., 2006 and Yu et al., 2006. 

The presented percentages in these articles were always above to the percentage of 

degradation achieved, Yu et al., 2006 had an estimated degradation rate of 96% within 6h, and 

after 5h a total of 92% was achieved in this work. These differences could be due to different 

operational conditions.  

 

Table 4.2 Degradation percentages of the UV experiment 

 
 

 
 

4.2.3  Photocatalysis by sunlight 
 

The chromatogram of the photocatalytic degradation of TCS with sunlight exposes 4 peaks 

(Figure 4.24). The peaks in the retention time 20.395 and 21.011 with the respective abundance 

of 100% and 22% are characteristic of the TCS compound proven by the respective mass 

spectra in the Figure I.20 and I.21 in the Appendix I. The peaks 17.461 and 18.561 with the 

abundance of 12 and 3% are identified by the same base peak ion of m/z 149 (100% 

abundance) which is representative of the C7O4H compound, a contaminant (Figure I.18 and 

I.19 in the Appendix I).  

 

 

Figure 4.24 Chromatogram of the photocatalytic sunlight degradation for the 8 h experiment 

 

The operational conditions related to sunlight are very difficult to control since they directly 

depend from the weather conditions. However, when photocatalytic degradation was performed 

under the best weather conditions, the degradation of TCS achieved a degradation of 90% in 8 

hours (Figure III.2, Appendix III).  

 
The pH measure in the standard solution and after 8h of photocatalytic degradation under 

sunlight is presented in the Table 4.3.  

 

1 3 4 5

68 73 84 92

Time (h)

Degradation (%)
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Table 4.3 pH measurement under photocatalytic degradation under sunlight 

 
 
 

4.2.4  Photocatalysis by LEDs  

 

In the chromatogram of the photocatalytic LEDs experiment (Figure 4.25), the peaks at the 

retention times 17.529, 18.613 and 21.046 were produced. The peaks 1.626 and 4.610 are 

referring to the solvent n-hexane and the internal standard benzonitrile. 

 

 Peaks at the retention time 17.529 and 18.613 with the abundance of 20% reveal similar mass 

spectra (Appendix I Figure I.22 and I.23). This mass spectrum is characterized by the base ion 

peak 149 at 100% abundance and was identified as C7O4H compound, a contaminant The peak 

related to triclosan appear at the retention time of 21.046 in the abundance of 28%, the related 

mass spectrum is in the Appendix I, Figure I.24. 

 

 

Figure 4.25 Chromatogram of the photocatalytic LEDs degradation of 8h experiment 

In the chromatogram of 8h photocatalysis only one peak of TCS appear (Figure 4.25), in the 

opposite at what happened in the chromatograms of the photocatalytic experiments by UV, 

sunlight and Fenton reaction. In these reactions TCS appears always in two peaks, 

chromatograms were presented in Figure 4.11, Figures 4.21 to 4.24 and Figures 4.28 to 4.31. 

Although since the intensity signal is lower in the chromatogram of the Figure 4.25 when 

compared with the others, it is possible that the quantity it is to low to be detected by the signal 

and for this only one peak appears.. 

 

Comparing the ratio of the base peak ions on the mass spectrum of TCS in photocatalysis by 

LEDs (Figure I.24 in Appendix I) and the mass spectra of TCS produced in all the other 

experiments, with the exception of photo-Fenton, was notable some differences. The 

degradation rate was low, when compared with the other methods, this could indicate a 

changed to the mechanisms of action in photocatalysis by LEDs.   

Time (h) 0 8

pH 7,5 7
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The pH measure in the standard solution and after 8h of photocatalytic degradation under LEDs 

is presented in the Table 4.4.  

 
Table 4.4 pH measurement under photocatalytic degradation under LEDs 

 
 

The degradation of TCS on photocatalysis by TiO2 with LEDs was possible and the rate of 

removal reached 53% after 8h (Figure III.3, Appendix III). By comparing the degradation rate of 

LEDs with sunlight, LEDs yield almost twice less degradation than sunlight. 

 
There are only a limited number of papers that study the LED photocatalysis applied in the field 

of environmental engineering (Yu et al., 2013). No paper on LED photocatalysis performed in 

triclosan was found at the time of this written study.  

 

LED photocatalytic degradation of phenols, specifically of 4–chlorophenol (4-CP) and 2,4–DCP 

might be a good approximation to what could happen with TCS. These compounds are 

structurally related to TCS due to its aromatic character and phenol presence. Yu et al., 2013 

had percentages of removal of 4-CP and 2,4–DCP in the order of 25% and 28% after 1 hour of 

irradiation, showed in the Table 4.5.  

 

Table 4.5 Percentage of removal of pesticides (4 - CP and 2,4-DCP) (Adapted from: Yu et al., 2014) 

 
 

When comparing LEDs with UV lamps, LEDs confirmed to be more energy-efficient and the 

emissions of LEDs have the advantage that they can be matched with the absorption band of 

TiO2 (Yu et al., 2013).  

 

 Different authors studied the feasibility of the application of LEDs in the degradation of 

hazardous compounds through photocatalysis (Jo & Tayade, 2014; Yu et al., 2013 ; Levine et 

al., 2011; Ghosh et al., 2009; Shie et al., 2008; Wang & Ku, 2006; Han et al., 2004). The 

degradation always occurred, demonstrating that LEDs are a viable photon source for 

photocatalytic process. Even if the rates of removal are minor than fluorescent lamps the 

potential of LEDs could be improved by optimizing operational conditions, such as the light 

distribution over the catalyst, like TiO2 nanotubes, is a good solution to increase the contact 

surface with the catalyst (Levine et al., 2011). 

 

 

Time (h) 0 8

pH 7,5 7

Pesticides 4-CP 2,4-DCP

Degradation (%) 25 28
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4.2.5 Photo-Fenton reaction 
 
The chromatogram resulted of the degradation by photo–Fenton reaction experiment showed 

no peaks in the area expected for the retention time of triclosan (Figure 4.26). Two peaks 

appeared which resulted from the treatment for analysis, the extraction and derivatization made 

with hexane arises at the retention time 1.526 min and the adding of the internal standard at the 

retention time of 4,410 min. The initial pH of the suspension with FeSO4.7H2O and TCS before 

the drop by the addition of H2SO4 was 6, and after 3. 

 

 

Figure 4.26 Chromatogram of the photo-Fenton reaction experiment 

 
In the photo-Fenton experiment no degradation products were detected, evidencing that there 

was a complete degradation of the products and a high conversion to CO2. One option is the 

fast degradation that makes harder the follow-up of the evolution products. Klamerth et al., 2009 

only gathered two experimental points due to the rapid evolution of the compounds during 

photo-Fenton reaction. Bear in attention that this chromatogram has a very high signal when 

compared with all the others. 

 

The photo-Fenton reaction revealed a full degradation of the TCS compound by the end of the 

2
nd

 hour (Figure III.4 in Appendix III). In Son et al., 2010 photo-Fenton reaction experiment, 

triclosan was almost completely removed within the 1
st
 hour. The photo-Fenton experiment 

performed by Klamerth et al., 2009 by sunlight over a mixture of emerging contaminants 

(acetaminophen, antipyrine, atrazine, caffeine, diclofenac, isoproturon, progesterone, 

sulfamethoxazole, and triclosan), showed degradation of TCS in 20 minutes in demineralized 

water and degradation of the total of the other contaminants over 38 minutes.  

 

Bauer & Fallmann, (1997) compared the systems UV/O2/Fe
2+

, UV/TiO2, UV/O3/Fe
2+

 and 

UV/H2O2/ Fe
2+ 

(photo-Fenton reaction), in the degradation of 10
-3

 mol/l 4-CP). The degradation 

was followed by total organic carbon analysis, results are exposed in the Figure 4.27. The 

photo-Fenton reaction was the most effective method in the degradation of 4-CP. 
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Figure 4.27 Degradation of 10
-3

 mol/l 4-CP by different AOPs (Adapted from Bauer & Fallmann, 1997) 

  

 Once again, photo-Fenton achieved removals of 96,4% in dipyrone, an analgesic drug with 

aromatic character, having the best degradation rate when compared with Fenton reaction, 

UV/H2O2 photolysis and UV/TiO2 photocatalysis in the study performed by Giri & Golder, (2014). 

 

Photo–Fenton reaction has proven to be a method that brings rapid and complete degradation 

of the compounds even in different operational conditions.  

 

 

4.2.6  Fenton Reaction 
 

 Single addition of H2O2 
 
The Fenton experiment with the addition of H2O2 with all the volume released at once was 

performed twice, firstly for the duration of 2 hour experiment and then for 4 hours experiment. In 

both no peaks appear apart from TCS peaks.  

 

At the 2 hours experiment TCS appears at the retention time 20.395 and 21.061 (Figure 4.28). 

For the 4h experiment, TCS appears at the retention time 20.478 and 21.095 (Figure 4.29).  

 

The mass spectra that allowed to confirm the TCS identification, are exposed in Figure I.25, 

I.26, I.27 and I.28 of the Appendix I. The initial pH of before the drop of the suspension with 

FeSO4.7H2O and TCS by the addition of H2SO4 was 6, and after 2.8, and had the same values 

in the experiment of 2 and 4 hours. After 2 hours, the degradation of TCS achieved 92%, at the 

end of the 4
th
 hour, it was 95% (Figure III.5, Appendix III). 
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Figure 4.28 Chromatogram of the Fenton reaction of 2 hour experiment 

 

 

Figure 4.29 Chromatogram of the Fenton reaction of 4 hour experiment 

 
 

 Triple addition of H2O2 
 
The Fenton reaction experiment performed in 2 and 4 hours, by adding H2O2 in three instants 

throughout the duration of the experiment; exposed only TCS peaks. The 2 hour experiment 

showed TCS peaks at the retention time 20.345 and 20.995 in the abundance of 100% and 

38% (Figure 4.30). The 4 hour experiment revealed the TCS peaks at the retention time 20.378 

and 21.011 with the respectively abundance of 100% and 22% (Figure 4.31).  

 

The corresponding peaks mass spectra are present in the Figures I.29, I.30, I.31 and I.32 in the 

Appendix I. The initial pH of the FeSO4.7H2O and TCS suspension was 6, after the addition of 

H2SO4, was 2.8, and had the same values in the experiment of 2 and 4 hours. After 2 hours, the 

degradation of TCS achieved 90%, at the end of the 4
th
 hour, it was 93% (Figure III.6, Appendix 

III). 
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Figure 4.30 Chromatogram of the Fenton reaction of 2 hour experiment by adding H2O2 in three instants 

of time 

 

Figure 4.31 Chromatogram of the Fenton reaction of 4 hour experiment by adding H2O2 in three instants 

of time 

The degradation of TCS under Fenton reaction by adding H2O2 once or in three instants of time 

during the duration of the experiment, resulted in the same magnitude of degradation of the 

compound (Figure III.5 and III.6 in the Appendix III). Since Fenton reaction with the addition of 

H2O2 at once was more efficiency (95% versus 93%) the comparison of the methods only 

consider Fenton reaction by adding H2O2 once. The initial idea for adding H2O2 in three times 

was due to the curiosity of knowing if OH
-
 and OH

●
 species would accelerate the rate of 

degradation by being consumed during three separated phase in time. The catalytic 

degradation of H2O2 became inefficient if it is transformed in water. 

 
 

4.2.7  Global aspects 
 

→The suggested identification of C7O4H compound being a contaminant characterized by 

the ion peak m/z 149: 

 

The ion peak m/z 149 appears repeatedly in the photodegradation experiments, except in the 

photo-Fenton and Fenton reaction. The identification of this peak was extremely difficulty; the 

NIST and Willey libraries gave very different compounds, showing some problems in the 

identification. The consultation of the literature revealed some inadequacy too. The ion peak 

m/z 149 must have in its composition one aromatic ring, constituted by carbon and hydrogen, 
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with the typical signature of chloride not present (M-2 and M-4). The final proposal is based on 

the assumption the ion peak m/z 105 is an aromatic compound of formula C6O2H and the 

addition of a COO presented the peak m/z 149 giving the C7O4H compound (Table 4.6). This 

compound is suspected to be a contaminant. 

 

Table 4.6 Mass spectrum of the ion peak m/z 149 in the different experiments

 

 

 

→ Dioxins 

Dioxins are the by-products of the degradation of TCS that cause more general concern. 

According to the literature, dioxins are formed in the first minutes of irradiation (Latch et al., 

2003), although after 1 hour in the UV experiment and all the others performed, no dioxins were 

detected.   

 

Rafqah et al., 2006 defends dioxins only are formed if triclosan in its anionic form absorbs light 

at waveleght inferior of 300 nm. The technical features of fabrication of the model of the UV 

lamps indicates that the maximum wavelength is 310 nm, the UV–Visible spectra from the 

manufacturer show a narrow peak in this wavelength so no irradiation is emitted under 300 nm. 

Yu et al., 2006 detected chlorinated dibenzo-p-dioxin in samples exposed to 254 nm UV light 

but in the samples exposed to 365 nm no chlorinated dibenzo-p-dioxin congener was found. 

 

 The wavelength of the LEDs was not measured and no manufacturer features existed, the LED 

system was built in the Università degli Studi di Padova, and for the same reason either the 

Hours (h) Retention times Descriptive Figure

17.461 Figure 4.16

18.561 Figure I.3, Appendix I

17.429 Figure I.10, Appendix I

18.529 Figure I.11, Appendix I

17.546 Figure I.14, Appendix I

18.630 Figure I.15, Appendix I

Descriptive Figure

Figure I.18, Appendix I

Figure I.19, Appendix I

Descriptive Figure

Figure I. 22, Appendix I

Figure I. 23, Appendix I

17.529

18.613

1

3 17.461 Figure I.7, Appendix I

4

5

Photocatalytic degradation by sunlight 

Retention time

17.461

18.561

Photocatalytic degradation by LEDs

Retention time 

Photocatalytic degradation by UV
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wavelength of the LEDs is higher than 300 nm or dioxins were produced in the first hour and 

were destroyed by the end of the experiment, which might account to no dioxins being visible.  

 

The photo-Fenton reaction revealed a full degradation of the TCS compound. In the destruction 

of TCS the method that yields best results by source of light was photo-Fenton followed by UV, 

sunlight and finally LEDs (Figure 4.32). The degradation percentages were given by the 

following order: Photo-Fenton reaction→ Fenton reaction→ UV→ Sunlight and finally LEDs 

 

 

Figure 4.32 Degradation of TCS by different AOPs 

 
 
In the Table 4.7, are presented the degradation percentages of the different methods used, this 

degradation had only in account the final concentration and the initial concentration since it was 

not possible to follow the reactions during the time, except in the UV experiment. We can gather 

the degradations in three groups, the photo-Fenton reaction with 100%, Fenton, UV and 

sunlight degradation in the range of the 90% and LEDs with a degradation of 53%.  

 

Since there was not a sufficient number of experiments to make a statistical study it’s possible 

the that the three methods of degradation, Fenton reaction, UV and sunlight, have very similar 

degradation rates.  

 

Table 4.7 Degradation percentages of the different methods used 

 

 
 

 

 

  

AOPs photo-Fenton Fenton UV Sunlight LEDs

Degradation (%) 100 95 92 90 53
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5 Conclusions and future work 
 
 

Throughout the course of this study, several methods of degradation of TCS, known as AOPs 

were evaluated. The analysis of the result and literature lead to the following conclusions: 

 

 Photon-Fenton reaction was the best AOPs, having a degradation rate of 100% of TCS 

within 2 hours, and no by-products were detected;   

 The degradation was given by the following order: photo-Fenton → Fenton reaction → 

UV → Sunlight → LEDs; 

 The photocatalytic degradation under UV produced by-products after the first hour. It 

was not possible to compare with the other methods since samples were not gathered 

after one hour; 

 Hydroquinone specie and 2,4–DCP intermediates were identified in the first hour of the 

photocatalytic degradation under UV; 

 A common contaminant, identified has C7O4H compound, was present at the 

degradation by UV, sunlight and LEDs; 

 Photocatalytic degradation by using LEDs is a viable possibility in the destruction of 

TCS. The degradation percentage was 53% after 8h;  

 Photocatalytic degradation under LEDs could follow different mechanisms of action 

when comparing the degradation rate with other degradation sources; 

 The addition of H2O2 once or in three separate times gave the same magnitude of 

degradation of the TCS; 

 No dioxins where detected in the operational conditions used. 

 

Future work and recommendations: 

 

 The study work with LEDs is worthwhile to continue given the advantages of long 

durability and low consumption of energy making the future potential for these lamps 

very high; fluorescent lamps in the ending of their life cycle carry the risk of spread of 

mercury in the environment and as governments make these lamps unavailable new 

solutions are required; Fenton and photo-Fenton reaction can be also a costly process 

due to the reagents cost used. 

 More studies in the use of LEDs should be performed in order to better define the 

kinetics reactions;  

 LEDs allowed a variable possibility to design devices. An industrial scale pilot can be 

used to research; 

 Improve the extraction and derivatization techniques to understand the degradation 

products; 
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 Following degradation of TCS through time in different AOPs and the by–products 

generated is an interesting point to have in considerer; 

 In the case of photo-Fenton process, possibly high quantities of TCS were transformed 

in CO2; the measurement of CO2 levels can be quantified on the absorption of CO2 by 

sodium hydroxide. 
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Appendix I – Mass spectra 
 
Characterization of the standard solution 

 
 GC/MS 

 

 
Figure I.1 Peak at 18.812: Triclosan isomer 

 
Figure I.2 Peak at 19.863: Triclosan isomer 

 

 Photocatalytic degradation with UV lamps 
 
1 hour: 
 
 

 
Figure I.3 Peak 18.561 

 
 

 
Figure I.4 Peak 20.361: Triclosan 

 

 
Figure I.5 Peak 20.995: Triclosan 

 
 
 
 
 



 
 

70 
 

3 hours: 
 

 
Figure I.6 Peak 14.011: C3H3O2 radical cation 

 

 
Figure I.7 Peak 17.461 

 

 
Figure I.8 Peak 20.345: Triclosan 

 

 
Figure I.9 Peak 20.995: Triclosan 

 
4 hours: 
 
 

 
Figure I.10 Peak 17.429 
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Figure I.11 Peak 18.529 

 

 
Figure I.12 Peak 20.346: Triclosan 

 

 
Figure I.13 Peak 20.963: Triclosan 

 
5 hours: 
 

 
Figure I.14. Peak 17.546 

 

 
Figure I.15 Peak 18.630 
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Figure I.16 Peak 20.430: Triclosan 

 

 
Figure I.17 Peak 21.064: Triclosan 

 
 

 Photocatalytic degradation with sunlight 
 

 
Figure I.18 Peak 17.461 

 

 
Figure I.19 Peak 18.561 

 

 
Figure I.20 Peak 20.395: Triclosan 
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Figure I.21 Peak 21.011: Triclosan 

 

 Photocatalytic degradation with LEDs 
 

 
Figure I.22 Peak at 17.529 

 

 
Figure I.23 Peak at 18.613 

 

 
Figure I.24 Peak 21.046: Triclosan 

 

 Degradation by the Fenton reaction 
 

- Used of H2O2 at once: 

2 hours: 

 
Figure I.25 Peak 20.395: Triclosan 
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Figure I.26 Peak 21.061: Triclosan 

 
4 hours: 
 

 
Figure I.27 Peak 20.478: Triclosan 

 

 
Figure I.28 Peak 21.095: Triclosan 

 
- Used of peroxide hydrogen in three times 

 

2 hours: 

 
Figure I.29 Peak 20.345: Triclosan 

 

 
Figure I.30 Peak 20.995: Triclosan 
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4 hours: 
 

 

Figure I.31 Peak 20.378: Triclosan 

 

 
Figure I.32 Peak 21.011: Triclosan 
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Appendix II – Chromatograms 
 
 

 
Figure II.1 Amplified chromatogram of the photocatalytic degradation by UV lamps experiment between 

the retention time 9 and 19 min 
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Appendix III – Quantitative Results 
 
 

 

 
Figure III.1 Degradation of TCS under UV light 

 
 

 

 
Figure III.2 Degradation of TCS under sunlight 
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Figure III.3 Degradation of TCS under LEDs 

 
 

 
Figure III.4 Degradation of TCS under photo - Fenton reaction 
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Figure III.5 Degradation of TCS under Fenton reaction (addition of H2O2 at once) 

 
 

  
Figure III.6 Degradation of TCS under Fenton reaction (addition of H2O2 in 3 instants of time) 
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Appendix IV – Resume of the main intermediate products 
founded in the literature 

 
 
Table IV.1 Main Intermediate products reported in the literature 

Identified Intermediates Reaction Author 

 

Dichlorophenols (2,4-DCP), tetraclosans, mono-

chlorinated derivative of TCS, hydroxylated TCS and  

2,8–DCDD 

 

Photochemical 
degradation by 

UV 

Sankoda et al., 
2011 

 

2,4–DCP, chlorocatechol hydroxylated TCS and  

5 – chloro – 2 – (4 – chlorophenoxyl)phenol 

 

Photochemical 
degradation by 

UV 

Rafqah et al., 
2006 

 

2,4–DCP, quinone of TCS (2-chloro-5-(2,4-

dichlorophenoxy)-[1,4]benzoquinone) and  

hydroquinone of TCS (2-chloro-5-(2,4-

dichlorophenoxy)benzene-1,4-diol) 

 

 
Photochemical 
degradation by 

UV 

Yu et al., 2006 

 

2,4–DCP, 2-chlorobenzoquinone, chlorophenol and 

hydroquinone of TCS;  

 

Degradation by 
Fenton reaction 

Yang et al., 2011 

 

Chloride (ionic intermediate of TCS) 

 

Degradation by 
Fenton reaction 

Son et al., 
 2010 

 

Chloride (ionic intermediate of TCS) 

 

Degradation by 
photo-Fenton 

reaction 

Son et al., 
 2010 

 

2,8–DCDD, another di-chlorinated dioxin or 

dichlorohydroxydibenzofuran, dichlorohydroxydiphenyl 

ether, monochlorophenol and dichlorophenol; 

 

Photochemical 
degradation by 

sunlight 

Sanchez-Prado et 
al., 2006 

 


