
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Novembro, 2014 

 

Pedro de Abreu Avó Baião 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

Licenciado em Ciências de Engenharia de Materiais 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

Nanostructuring silicon probes via electrodeposition: 

Characterization of electrode coatings for acute in vivo 

neural recordings  

 

 

[Título da Tese] 

 

Dissertação para obtenção do Grau de Mestre em 

Engenharia de Micro e Nanotecnologias 

 

 

Dissertação para obtenção do Grau de Mestre em 

[Engenharia Informática] 

 

Orientador: Adam Kampff, Professor Doutor, 

Champalimaud Center for the Unknown 

 
  

Co-orientador: Elvira Fortunato, Professora Doutora, 

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 

  

 

 

Júri: 

 

Presidente:   Prof. Doutor Rodrigo Ferrão Paiva Martins 

Arguente:   Prof. Doutor Rui Alberto Garção Barreira do Nascimento Igreja 

Vogal:   Prof. Doutor Adam Raymond Kampff 





 

 

 





 

 

i 

 

NANOSTRUCTURING SILICON PROBES VIA ELECTRODEPOSITION: CHARACTERIZATION 

OF ELECTRODE COATINGS FOR ACUTE IN VIVO NEURAL RECORDINGS 

NANOSTRUCTURING SILICON PROBES VIA ELECTRODEPOSI-

TION: CHARACTERIZATION OF ELECTRODE COATINGS FOR 

ACUTE IN VIVO NEURAL RECORDINGS 

 

 

 

 

 

 

Copyright © Pedro de Abreu Avó Baião 

Faculdade de Ciências e Tecnologia 

Universidade Nova de Lisboa 

 

 

 

 

 

 

 

 

 

 

 

 

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo 

e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos 

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha 

a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e 

distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado 

crédito ao autor e editor. 



 

 

ii 

 

NANOSTRUCTURING SILICON PROBES VIA ELECTRODEPOSITION: CHARACTERIZATION 

OF ELECTRODE COATINGS FOR ACUTE IN VIVO NEURAL RECORDINGS 

  



 

 

iii 

 

NANOSTRUCTURING SILICON PROBES VIA ELECTRODEPOSITION: CHARACTERIZATION 

OF ELECTRODE COATINGS FOR ACUTE IN VIVO NEURAL RECORDINGS 

 

 

 

 

 

 

 

 

 

 

So the future is like a huge freight train barreling down the tracks, headed our way. Be-

hind this train is the sweat and toil of thousands of scientists who are inventing the future in 

their labs. You can hear the whistle of the train. It says: biotechnology, artificial intelligence, 

nanotechnology, and telecommunications. However, the reaction of some is to say, “I am too 

old. I can’t learn this stuff. I will just lie down and get run over by the train.” However, the re-

action of the young, the energetic, and the ambitious is to say, “Get me on that train! This train 

represents my future. It is my destiny. Get me in the driver’s seat.” 

Michio Kaku 
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Resumo 

 

Para compreender o funcionamento do cérebro são necessárias ferramentas capazes de 

medir a atividade elétrica de neurónios a uma grande escala. Todavia, são necessários progressos 

para aumentar o número de neurónios registados e identificados simultaneamente com 

microeléctrodos existentes. Este projeto tem como objetivo avaliar como diferentes materiais 

podem modificar a eficiência da transferência de sinal entre o tecido neuronal e elétrodos. 

Dessa forma, diversos materiais para revestimento (ouro, PEDOT, óxido de tungsténio, 

nanotubos de carbono) foram caracterizados em termos dos fenómenos eletroquímicos e 

eficiência de aquisição de sinal. Elétrodos de irídio (177-706 μm2) foram revestidos através de 

deposições galvanostáticas sob diferentes densidades de carga. 

 Através de espectroscopia de impedância (EIS) em solução salina foi determinado que o 

módulo da impedância a 1 kHz depende do material de revestimento e diminui um máximo de 

duas ordens de magnitude para PEDOT (1 MΩ para 25 kΩ). Os elétrodos foram também 

caracterizados por voltametria cíclica (CV) demonstrando um aumento de uma ordem de 

magnitude na capacidade de armazenamento de carga, alcançando um máximo de 84.1 mC/cm2 

para o compósito PEDOT:nanopartículas de ouro (aumento de 38 vezes na capacidade). 

Gravação da atividade neuronal espontânea no córtex foi efetuada em roedores 

anestesiados para avaliar o desempenho dos revestimentos de elétrodos. 

Palavras-chave: neurónios, microeléctrodos, electrodeposição, impedância, voltametria 

cíclica, potencial de acção.  
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Abstract 

 

Understanding how the brain works will require tools capable of measuring neuron elec-

trical activity at a network scale. However, considerable progress is still necessary to reliably 

increase the number of neurons that are recorded and identified simultaneously with existing mi-

croelectrode arrays. This project aims to evaluate how different materials can modify the effi-

ciency of signal transfer from the neural tissue to the electrode. 

Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-

tubes) are characterized in terms of their underlying electrochemical processes and recording ef-

ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different 

charge densities.  

By performing electrochemical impedance spectroscopy in phosphate buffered saline it 

is determined that the impedance modulus at 1 kHz depends on the coating material and decreased 

up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes 

are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-

proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold 

nanoparticles composite (38 times the capacity of the pristine). 

Neural recording of spontaneous activity within the cortex was performed in anesthetized 

rodents to evaluate electrode coating performance. 

 

Keywords: neurons, microelectrodes, electrodeposition, impedance, cyclic voltammetry, 

action potential. 
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1. Introduction 

 

 

 

1.1. Overview 

Steady progress in biology and medicine has led to major advances in our comprehension 

of how complex living systems function. However, one of the ultimate challenges facing science 

and engineering remains – understanding how the brain works. Developing a theory explaining 

brain functionality would not only be a major advance in the field of biology, but it would also 

open paths allowing the comprehension of the pathophysiology of neurological and neuropsychi-

atric diseases such as Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Dementia 

and Epilepsy. [1] But even with the enormous efforts and substantial progress made by neurosci-

entists trying to comprehend the molecular and cellular components of neural circuits both in 

humans and in animals, an all-encompassing theory explaining how the brain works is yet to be 

found. [2]  

Hence, continued progress in neuroscience is vital yet with approximately eighty-five bil-

lion neurons, one hundred trillion synapses and over one hundred chemical neurotransmitters in 

the human brain, this is an overwhelming task. Communication between neurons is the cellular 

basis for thinking, decision making and control of muscular movement. [3] 

Neurons are specialized cells that input, process, store and output information through elec-

trical and chemical signals in four basic paths: (i) Ca2+ evoked exocytosis with chemical neuro-

transmission, (ii) gap junction electronic coupling, (iii) secretion of neurosteroids, nitric oxide 

and derivatives of the arachidonic acid acting in paracrine manner, and (iv) cellular adhesive 

protein interaction with scaffold protein reorganization. [4] At rest, the neuron’s cell membrane 

has an excess of positive charges at the extracellular surface, and the cytoplasm an excess of 

negative charge. The charge separation gives rise to a voltage across the membrane called mem-

brane potential [5]. Temporary changes in the current flow into and out of the cell produce elec-

trical signals that drive a potential across the cell membrane – action potential (Figure 1.1). These 

produce a large transmembrane voltage change due to the ionic movement across the membrane 

through voltage-gated channels in the vicinity of the soma (axon hillock) that can be detected in 

the extracellular environment by placing a conductor in close proximity to the neuron. The elec-

trodes record a combined extracellular signal gathered from all the spiking neurons in its vicinity 

and the contribution of a single neuron depends on its distance to the electrode. [6, 7] 

Developments in the recording and stimulation of neuronal activity has had many applica-

tions in different areas of biomedicine such as neural interface systems, systems to assist in the 
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understanding of neural network behavior, drug discovery pharmacology and cell-based biosen-

sors. [8] In one hand, the use of non-invasive tools allows whole brain imaging through different 

available techniques (electroencephalography (EEG), positron emission tomography (PET) and 

functional magnetic resonance imaging (fMRI)) that span the scale of both spatial and temporal 

resolution. [9] On the other hand, by using invasive techniques it’s possible to visualize popula-

tions and networks of neurons. [10,11,12] 

      

Figure 1.1 – The structure of a neuron. Axons are the transmitting element of neurons: Most axons in the central 

nervous system are very thin (between 0.2 and 20 μm in diameter) compared with the cell body (50 μm or more). 

The axon terminals of the presynaptic neuron transmit signals to the postsynaptic cells (a). Configuration of an 

action potential: (b) phases of an action potential and (c) inward and outward current of Na+ and K+. [13] 

Therefore, the use of invasive tools to record the electrical brain activity has led to sig-

nificant advances in basic neuroscience. [14] In the past, neuroscience research focused on the 

recording of single neurons due to their available tools (single wires for example). However, the 

need of retrieving information from complex neuron networks has led to the creation of new 

systems such as arrays of wires, silicon shafts and other complex micro machined silicon systems; 

all of these with a capability for probing simultaneously more individual neurons. [15]  

Technologies have evolved from early electrolyte-filled micropipettes to the current 

emerging microelectromechanical systems (MEMS) and polymer electrodes (flexible electrodes), 

to more specific hybrid neuronal probes which have the combined capability to record electrical 

activity, specific neural biochemical markers and even stimulate and silence neurons optically. 

[16, 17, 18] 
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Figure 1.2 – Exponential growth in the number of recorded neurons seen on (a). The number of simultaneously 

recorded neurons doubled approximately every 7 years; (b) shows a timeline of recording technology develop-

ment from single-electrode recordings to multi-electrode arrays and in vivo imaging techniques. [19] 

As shown in Figure 1.2, the development from single-electrode recordings to multi-elec-

trode arrays and in vivo imaging techniques has increased the number of simultaneously recorded 

neurons. Optical imaging of multiple single neurons is a recent promising development in this 

field. However, this approach is too slow to monitor action potentials and is not practical for 

monitoring deep cortical activity. [20] To achieve high spatial resolution of neural recording with 

extracellular probes, efforts are underway to produce ultra-high density probes with small elec-

trodes (< 10 μm) arranged in dense arrays. [21] Micro and nanosystems technology allow for the 

arrangement of multiple microelectrodes on the same substrate over small distances. Thus, there 

is a possibility for simultaneous recording from many neurons. However, to accomplish this task, 

and in order to optimize the recorded data and allow identification of all adjacent neurons, a high 

quality signal from the nearby tissue must be obtained. [22, 23] With current electrodes, there are 

problems and fundamental limits for the current materials used in respect to charge storage ca-

pacity and impedance. Therefore, it is desired to develop microelectrodes for simultaneous mon-

itoring of neural activity from multiple neurons in order to record in vivo neural activity from the 

largest number of neurons possible distributed in different places throughout the brain. [24] Im-

proving existing tools, as proposed in this thesis, promotes a connection between neuroscience 

and nanotechnology and allow both the possibility of mapping neuronal circuits and to compre-

hend brain functionality. [25] 

1.2. Electrode-tissue interface 

The two principles behind the transduction of electrical signals from the ionic world of 

the neural tissue to the microelectrodes have been reported extensively in the literature as a ca-

pacitive coupling and charge transfer mechanism. [26] The chemical and electrochemical reac-

tions that take place at the surface of the microelectrodes when exposed to the extracellular fluid 

(EF) of the neural tissue generate a space-charge region on the fluid also known as electrochem-

ical double layer (EDL) The ionic currents from activated neurons can transiently modify this 

charge distribution and induce changes on the interfacial potential that can be easily detected. [27] 
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Figure 1.3 – Gouy-Chapman-Stern model of the Electrochemical Double Layer (EDL). [27] 

The exact nature of this charge distribution depends on the conductor material, the surface 

properties of the microelectrode, as well as on the amplitude and frequency of the electrical sig-

nals involved, and is the key for understanding the signal transduction across the electrode-tissue 

interface. [22] 

1.3. Electrode modifications 

For recording electrodes, different materials have been used such as platinum, gold, tung-

sten, iridium and even stainless steel taking usually in consideration the impedance magnitude at 

1 kHz (biological relevant frequency of a neural action potential). [28, 29] 

 

Figure 1.4 – Equivalent circuit of a metal microelectrode recording from the isopotential line ‘en’ of a neuron 

in a conductor volume. [30] 

Metal electrode-tissue interface can be represented by a parallel ReCe combination in se-

ries with the resistances, Rm and RS, due to the metal interconnects and the solution, respectively. 

The frequency-dependent impedance Z (jω), where j is the imaginary number and ω is the angular 

frequency. 

𝑍 (𝑗𝜔) = 𝑍′ + 𝑗𝑍′′ = 𝑅𝑠 +
𝑅𝑒

1 + (𝜔𝑅𝑒𝐶𝑒)2
− 𝑗

𝜔𝑅𝑒
2𝐶𝑒

1 + (𝜔𝑅𝑒𝐶𝑒)2
 

Where Rs = RS + Rm is the lumped series resistance, and Z’ and Z’’ are the real (resistance) and 

imaginary (reactance) part of the impedance. For recording electrodes, the impedance magnitude 

Eq. 1.1 
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at 1 kHz is very important since this is the characteristic frequency of a neural action potential (1 

ms). For such a high frequency, Eq. 1.1 can be approximated by: 

𝑍 (𝑗𝜔) = 𝑅𝑠 + 𝑗
1

𝜔𝐶𝑒

 

Since Rs << (1/ωCe) we obtain:  

|𝑍|(𝜔) ≈
1

𝜔𝐶𝑒

 

Taking in consideration the Guy-Chapman-Stern theory, the electrodes capacitance is given by 

Equation 1.4 where CH is the Helmholtz capacitance, ε0 the vacuum permittivity, εr the dielectric 

constant, A the electrodes area and dOHP the distance to the Outer Helmholtz Plane (Figure 1.3). 

Since impedance scales inversely with the capacitance, miniaturizing the electrodes area (for the 

design of probes with multiple micro and nanoelectrodes) would increase their impedance. [31] 

𝐶𝐻 =
𝜀0𝜀𝑟𝐴

𝑑𝑂𝐻𝑃

 

The design of these small electrodes that are biocompatible, highly conductive, with a high tough-

ness, long-term resilience to the biological environment and with the desired impedance values 

depends on new approaches concerning their fabrication. [32] Conventional materials used to 

make these electrodes do not provide significantly low impedance at such scales. Therefore, 

there’s a need in modifying these electrodes either by replacing the pristine material or by coating 

them with nanostructures or porous materials leading to lower impedance values and a wide range 

of new properties such as improved conductivity or increase charge storage capacity. [31]  

               

              
Figure 1.5 – Optical microscospe and SEM images taken of microelectrodes: (a) silicon probe (Neuronexus), (b) 

pristine electrode, (c) Au:PVP coated electrode and (d) PEDOT:PSS coated electrode.   

Eq. 1.2 

Eq. 1.3 

Eq. 1.4 

(a) (b) 

(c) (d) 
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2. Materials and Methods 
The work abridged in this dissertation involved the synthesis and characterizations of a 

broad range of solutions and their electrodeposition on silicon probe’s electrodes. Following the 

electrodeposition, electrochemical and morphological characterizations were performed. To con-

clude the work, neural recordings of spontaneous activity within the motor cortex were performed 

in anesthetized rodents to evaluate the performance of the electrode’s coatings. This chapter sum-

marizes relevant techniques used. 

2.1. Solution-based synthesis 

2.2.1. Commercial gold solution 

Commercial non-cyanide gold solution was obtained from Neuralynx.  

2.1.2. Tetrachloroauric acid solution (HAuCl4) – Polyvinylpyrrolidone (PVP) 

Gold solution synthesis was obtained by mixing a 25 mM tetrachloroauric acid solution (Sigma-

Aldrich, 99.9%) with polyvinylpyrrolidone (20% (w/v); Sigma-Aldrich, MW = 10 000). [33] 

2.1.3. Gold nanoparticles (Au NPs) 

Synthesis of gold nanoparticles was done via the citrate reduction method. A solution consisting 

of 1 mM of tetrachloroauric acid (Sigma-Aldrich, 99.9%) was heated on a hot plate with a mag-

netic stirrer until it reached the boiling point. To this solution, 1% (w/v) trisodium citrate (AnalaR 

NORMAPUR, 100%) was added quickly and continuously stired. After the addition of the so-

dium citrate solution, stirring continued until the solution turned red. [34]  

2.1.4. Poly(3,4-ethylenedioxythiophene) – Poly(styrenesulfonate) (PEDOT:PSS) 

Initial preparation of EDOT:PSS is achieved by mixing 0.01 M of EDOT (Sigma-Aldrich, 97%, 

MW = 142.18) in water and adding 0.1 M of PSS (Sigma-Aldrich, MW = 1000000). The solution 

must be vigorously stirred to dissolve the EDOT. PEDOT:PSS is obtained after the polymeriza-

tion process during electrodeposition.  

2.1.5. Tungsten oxide nanoparticles (WO3 NPs) 

For the hydrothermal synthesis of WO3 nanoparticles, 0.4 g of Na2WO4.2H2O (Fluka, 99%) was 

first dissolved in 8 g of deionized water with 0.15 g of NaCl (Panreac, 99.5%) and then acidified 

with 1 g of 5M HCl solution (Fluka, 37%). The final solution was transferred to a 23 mL PTFE 

chamber, set inside a stainless steel autoclave (4745 general purpose vessel, Parr) and installed in 

the oven (L3/11/B170, Nabertherm). The synthesis was set to 180º C during 1 hour and let cool 

down to room temperature inside the oven. The product of synthesis was collected by centrifuga-

tion at 3000 rpm for 2 minutes (F140, Focus instruments) and washed three times with water. 

Then it was left to dry at room temperature. The final solution is achieved by mixing WO3 NPs 

with water (1:1 ratio) followed by filtering (Sartorius, 0.250 μm). [35] 
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2.1.6. Carbon Nanotubes – Sodium dodecyl Sulfate (CNTs:SDS) 

For the preparation of the carbon nanotubes solution, 1.6 mg of CNTs (Multi-Wall (MW) CNTs, 

NANOCYLTM) were added to a solution containing 0.3% (w/v) SDS (Sigma-Aldrich, 98.5%). 

The solution was then submitted to 45 minutes of an ultrasonic bath (Bandelin Sonorex) followed 

by sonication (Sonics VibraCell) for a period of 2 minutes. The final solution product was then 

collected by centrifugation at 4000 rpm for 90 minutes (Focus Instruments). [36] 

2.1.7. Carbon Nanotubes – Poly(3,4-ethylenedioxythiophene) composite (CNTs:PEDOT) 

Composite mixtures of carbon nanotubes with PEDOT:PSS were obtained by mixing the previous 

CNTs:SDS solution with EDOT:PSS solution at three different volume ratios, respectively: 11% 

(v/v), 20% (v/v) and 50% (v/v). PEDOT:PSS is obtained after the polymerization process during 

electrodeposition. 

2.1.8. Gold Nanoparticles - Poly(3,4-ethylenedioxythiophene) composite (Au NPs:PEDOT) 

Composite mixtures of gold nanoparticles with EDOT:PSS were obtained by mixing the previous 

gold nanoparticle solution with EDOT:PSS solution at three different volume ratios respectively: 

11% (v/v), 20% (v/v) and 47% (v/v). PEDOT:PSS is obtained after the polymerization process 

during electrodeposition. 

After the synthesis all solutions were stored at low temperatures (4 - 6 ºC) in order to 

prevent deterioration. Later the solutions were used for electrodeposition at room temperature. 

 

Figure 2.1 – Picture from different solutions prepared for electrodeposition. From left to right: EDOT:PSS, 

tungsten oxide nanoparticles (WO3 NPs), commercial gold solution, Au:PVP solution, gold nanoparticles solu-

tion, and carbon nanotubes solution. 

2.2. Solution Characterization 

2.2.1. X-Ray Diffracion (XRD) 

Structural characterization of tungsten oxide powder was performed by X-ray diffraction (XPert 

PRO, PANalytical). 

2.2.1. Dynamic Light scattering (DLS) 

Hydrodynamic diameter of gold and tungsten oxide nanoparticles in water was confirmed by 

Dynamic Light Scattering (DLS) technique (W130i Avid Nano) 
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2.2.3. Scanning Electron Microscopy (SEM) 

Gold and tungsten oxide nanoparticles morphology and size were confirmed by scanning electron 

microscopy (SEM-FIB, Zeiss Auriga). 

2.2.4. Energy-dispersive X-ray Spectroscopy (EDS) 

Elemental analysis and chemical characterization of the electrode coatings was performed by en-

ergy-dispersive x-ray spectroscopy (SEM-FIB, Zeiss Auriga). 

2.3. Silicon Probes 

Silicon probes (polytrodes from Neuronexus) with different configurations were used 

(Appendix Section A): 

- One shank: 16 electrodes with a diameter of 30 μm; 

- One shank: 32 electrodes with a diameter of 15 μm; 

- Two shank: 8 electrodes per shank presenting a tetrode configuration - in total 

16 electrodes with a diameter of 20 μm; 

- Four shank: 8 electrodes per shank presenting a tetrode configuration - in total 

32 electrodes with a diameter of 20 μm; 

- Eight shank: 4 electrodes per shank presenting a tetrode configuration - in total 

32 electrodes with a diameter of 20 μm. 

2.3.1. Silicon probe characterization 

Prior to surgery, all electrode arrays were evaluated in terms of morphological and electrochem-

ical performance. 

2.3.2. Electrochemical characterization 

A Gamry Instruments Potentiostat (Gamry Instruments, Reference 3000) was used with a three 

electrode cell configuration where the silicon probe’s electrodes were connect as the working 

electrodes, a platinum wire served as counter electrode and an Ag/AgCl wire as the reference 

electrode. Every microelectrode was characterized in a phosphate buffered saline solution (PBS 

1x) by electrochemical impedance spectroscopy (EIS) (1 MHz to 1 Hz) and cyclic voltammetry 

(CV) (voltage range from -0.2 to 0.8 V, ν = 0.1 V s-1). The fitting of the impedance spectra was 

carried out using Gamry Echem Analyst software by testing different models for each solution. 

All electrochemical data was then compared to pristine (non-modified) microelectrodes and also 

between different coatings. Moreover, NanoZ (Neuralynx) was used to measure impedance at 1 

kHz with a two electrode cell configuration – probes were connected as working electrodes and 

the reference electrode was an Ag/AgCL wire (Science Products GmbH, E-255). 

2.3.3. Morphological characterization 

Assessment of electrode structural modifications was done by SEM (SEM-FIB, Zeiss Auriga) 

between 1 and 2 kV using a specific probe setup. 
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2.3.4. Electrodeposition set-up 

The electrochemical depositions were done with the NanoZ hardware through a galvanostatic 

deposition process (constant current and varied time). Moreover, NanoZ was used with a two 

electrode cell configuration as shown in Figure 2.2. 

 

 

Figure 2.2 – Picture from the NanoZ with the two electrode cell deposition setup (a). The reference wire is 

placed around the deposition cup while the probe is maintained at a fix and equal distance to all points of the 

reference wire (b). 

By using the ‘Manual Control’ from the software it’s possible to select individual probe elec-

trodes. For each probe, an electrode array map must be created. Deposition process starts after 

selecting the deposition current.   

2.4. Acute Recordings 

For in vivo experiments we utilize anesthetized rodents (Long Evans) that are head-stabilized in 

a stereotaxic frame and receiving intraperitoneal injections to maintain an adequate depth of an-

esthesia during the surgery (Ketamine and Medetomidine, respectively, 1 g/10 mL and 1 mg/ml). 

Equipment for monitoring animal health (body temperate) as well as a video system for dorsal 

craniotomy and durotomy were integrated into the setup. 

Anesthetized rodents undergo a surgical procedure to remove the skin and expose the skull above 

the targeted brain regions. An image of the exposed skull is acquired. Landmarks on the skull are 

then identified and used to target the brain region of interest with the help of a rat brain atlas in 

stereotaxic coordinates. [37] A craniotomy (4 x 2 mm) was made above the targeted brain region 

Reference electrode Probe location 

(a) 

(b) 
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and the dura matter was removed to expose the brain surface where the brain vasculature, is vis-

ible. It was possible to evaluate the superficial damage that occurs during the probe insertion/ex-

traction.  

The high density electrode array silicon (Poly3-25s, Neuronexus Technologies) was then inserted 

to target the layer 5 of cortex. The silicon probe is on a micromanipulator that was lowered at a 

constant velocity (1 – 5 μm s-1). Spontaneously neural activity was recorded from each electrode 

site available on the probe (32 electrodes). An open-source electrophysiology acquisition board 

(Open Ephys) was used along with a RDH2000 series digital electrophysiology interface chip 

that filter, amplify, and multiplex 32 channels (Intan Technologies). Electrodes are connected to 

one side of the chip, and digital data streams out the other side after analog-to-digital conversion 

with 16-bit resolution. The acquisition of extracellular traces sampled at 30 kSamples/s in a fre-

quency band from 0.1 to 7500 Hz was performed for subsequent offline analysis. 

Recordings were performed at different depths during 5 minutes using Bonsai software to record 

all neural data. All neural data was analyzed off-line using Python, Spikedetekt and Klustakwick 

(scripts on Appendix Section B). Analysis after the acquisition was made by filtering, aligning all 

spike events from the selected channel(s) and representing all channel traces in the correct geo-

metric arrangement. Last surgical step is to euthanize the animal. Post-surgery, the probe must be 

rinsed with miliQ water and then cleaned with trypsin for a period that can vary from 45 minutes 

to 24 hours in order to remove tissue attached to the probe. 
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3. Results 

3.1. Solution characterization 

3.1.1. Au NPs 

Au NPs morphology was evaluated via SEM. Even though some agglomerates can be 

seen (Figure 3.1), the nanoparticles have a spherical shape with an average diameter value close 

to 15 nm (14.5 ± 3.1 nm), corresponding to what is obtained through this technique in literature. 

[34] Additionally, by Dynamic Light Scattering (DLS), the nanoparticles dispersion was charac-

terized with a mean hydrodynamic diameter of 13.1 ± 0.6 nm which is in accordance with SEM 

images. 

Table 3.1 - Average diameter and standard deviation obtained by DLS and SEM images for Au NPs. 

DLS diameter (nm) SEM nanoparticle diameter (nm) 

13.1 ± 0.6 14.5 ± 3.1 nm 

 

Figure 3.1 – Au NPs observed by SEM: (a) shows dispersed nanoparticles and (b) shows the presence of big 

agglomerates of nanoparticles. 

A chemical analysis of the produced nanoparticles was performed by EDS to determine the syn-

thesis quality. Table 3.2 and Figure 3.2 show the presence of gold (Au) corresponding to the 

nanoparticles and also to other chemical elements. Silicon (Si) and oxygen (O) are present due to 

the presence of the silicon wafer, and sodium (Na) and chlorine (Cl) appear due to the use of 

sodium citrate (Na3C6H5O7) and gold salts (HAuCl4) during the nanoparticle synthesis. 

Table 3.2 – EDS quantitative element analysis of average weight % and average atomic %. 

 Average Weight % Average Atomic % 

O K 10.84 22.43 

Na K 2.78 4.05 

Si K 57.55 67.65 

Cl K 1.24 1.17 

(a) 

(b) 
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Au M 27.59 4.70 

 

Figure 3.2 – EDS spectrum for Au NPs samples. Presence of Au NPs is evident due to the gold peaks through-

out the spectrum.  

3.1.2. Tungsten Oxide Nanoparticles (WO3 NPs) 

For the WO3 NPs, the hydrothermal synthesis was chosen due to the low manufacture 

temperatures, easy morphologic and structural control of the nanoparticles and good reproduci-

bility. [35] The morphology of WO3 NPs was obtained via SEM. The nanoparticles present a non-

uniform shape and are largely agglomerated to each other. The average diameter values obtained 

are close to 53 nm (52.69 ± 10.10 nm), corresponding to what is described in literature. [35] Also 

by DLS, the nanoparticle dispersion was characterized with a mean hydrodynamic diameter of 

51.57 ± 6.91 nm which is in accordance with SEM images (Figure 3.3). 

Table 3.3 - Average diameter and standard deviation obtained by DLS and SEM images for WO3 NPs. 

DLS diameter (nm) SEM agglomerate diameter (nm) 

51.57 ± 6.91 52.69 ± 10.10 nm 

 

 

Figure 3.3 – WO3 NPs observed on SEM. 
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The analysis of the chemical composition of the nanoparticles was obtained by EDS. 

Table 3.4 and Figure 3.4 show the presence of high amounts of tungsten (W) corresponding to 

the nanoparticles. Other chemical elements were also detected (Si, K, Na and Cl) due to reasons 

already specified above.  

Table 3.4 - EDS analysis of average weight % and average atomic %. 

 Average Weight % Average Atomic % 

O K 19.30 73.32 

W M 80.70 26.68 

 

Figure 3.4 - EDS spectrum for WO3 NPs samples. Presence of WO3 NPs is evident due to the gold peaks 

throughout the spectrum. 

The crystallographic structure obtained for these nanoparticles was characterized by 

XRD (Figure 3.5). The structure obtained can be attributed to orthorhombic hydrated tungsten 

oxide (ortho-WO3.0.33H2O). All diffraction peaks can be indexed to the reference pattern ICDD 

01-072-0199, except in the case of the marked peaks which are probably due to structure distor-

tion caused by the lack of total formation of the nanoparticles. This leads to a wide range of 

nanoparticle sizes and broad XRD peaks which are typical for structures with low crystallinity or 

nanocrystallinity. [35] 

 

Figure 3.5 – XRD diffractograms of: (a) WO3 synthesized powder and (b) orthorhombic WO3.033H2O reference 

pattern (ICDD 01-072-0199). 
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3.1.3. CNTs 

The morphology of the CNTs was evaluated via SEM. Hollow cylindrical shaped CNTs were 

observed and can be seen in Figure 3.6. The average diameter values obtained by SEM are close 

to 11 nm (11.08 ± 1.65 nm).  

    

Figure 3.6 - CNTs observed by SEM: (a) shows an agglomerate of CNTs with their typical cylindrical shapes 

and (b) shows their hollow structure. 

The analysis of the chemical composition of the CNTs was obtained by EDS. Table 3.5 

and Figure 3.7 show the presence of high amounts of carbon (C) corresponding to the CNTs. 

Other chemical elements were also detected, with sulphur (S) and sodium (Na) being the result 

of the use of sodium dodecyl sulfate (SDS: CH3(CH2)11OSO3Na) as a dispersing agent for the 

CNTs. 

Table 3.5 - EDS analysis of average weight % and average atomic %. 

 Average Weight % Average Atomic % 

C K 13.59 25.07 

O K 11.38 15.76 

Na K 0.25 0.24 

Si K 74.36 58.65 

S K 80.70 26.68 

 

Figure 3.7 - EDS spectrum for CNT samples. Presence of C and S indicate that CNTs and SDS are present on 

the sample 
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3.2. Coating characterization 

Different parameters were used in order to ascertain which would be the optimal modifi-

cation to be used on the silicon probes’ electrodes with the diameters presented on the previous 

chapter. It’s known that a low deposition current would yield a poor modification of the electrode 

and a high deposition current value could lead to a contamination outside the electrode (conse-

quently lead to short-circuit between them). Moreover, the impedance drop, stability over time 

(normally a period of a few days/to a week) and low material contamination outside the electrodes 

were taken into consideration.  

3.2.1. Commercial Gold Solution 

Commercial gold solution has been used as the standard material for coating electrodes. 

[38] During this work, gold deposition parameters will be assessed for future reference in order 

to optimize the coating process.  

      

    

Figure 3.8 - Surface morphology of a pristine electrode on (a) and a typical gold modification on (b), (c) and (d). 

Figure 3.8 shows the morphological differences between a pristine electrode and a gold 

coated electrode. A smooth surface is observed on Figure 3.8 (a) (pristine electrode) while a more 

rough surface is seen on Figure 3.8 (b) (gold coated electrode). This increase in surface area is 

one of the key aspects in lowering the impedance modulus at 1 kHz (frequency for neurons ac-

tivity, action potential). The results presented on Figure 3.9 for gold coated electrodes (commer-

cial gold solution) show a change in impedance (lower impedance values by increasing deposition 

times) and charge storage capacity (higher charge storage capacity by increasing deposition 

(a) (b) 

(c) (d) 
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times). Different behaviors/ electrochemical performances were observed for the different depo-

sition times which will be discussed in detail.  

 

Figure 3.9 - Electrochemical characterization of non-modified and modified electrodes (with commercial gold 

solution): (a) EIS, (b) phase angle, (c) Nyquist plot and (d) CV. 

At high frequencies (between 10 kHz and 1 MHz) the modified electrodes presented 

phase angle values closer to 0º (φ = 0º (resistive) and φ = -90º (capacitive)) (Figure 3.9 (b)) and 

an increased semi-circle (Figure 3.9 (c)) that is proportional to the deposition time. This means 

that the coated electrodes prolong their kinetic behavior to a broader range of frequencies affect-

ing therefore the impedance values. A close analysis of the semicircle’s dimensions shows a re-

duction on their length with increasing deposition time, meaning the total charge transfer re-

sistance of the electrode decreases leading to a reduced impedance modulus (seen on Figure 3.9 

(a)). Succeeding the semi-circles, the charge transfer boundary is followed by a 45º line meaning 

that the system is under diffusion control (the kinetics of the charge transfer at the electrode-

electrolyte interface are much faster than the diffusion of ions in the solution). Figure 3.9 (c) 

shows a different behavior for a 90 second deposition that can also be observed on Figure 3.9 (b)) 

exhibiting two maxima in the phase-shift (two time constants), one for low frequencies (between 

1 and 10 Hz) and the other for higher frequencies (between 100 kHz and 1 MHz). This behavior 

disappears for longer deposition times and combining it with the fact that the coatings for this 

solution are only possible after a period of 60 seconds (at least for the studied silicon probes with 
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iridium electrodes) means that depositions below 90 seconds aren’t ideal for coating these elec-

trodes. The response given at 1004 Hz shows that an electrode coating with a 180 second depo-

sition (-30 nA) yields a lower impedance value. Though this may seem as the ideal parameters to 

obtain a higher impedance drop, a higher structural instability is attained meaning that the struc-

tures formed on top of the electrodes tend to deteriorate in a short period of time leading to an 

increase in the impedance value.  

The electrochemical stability of these gold coatings was evaluated by CV (cycle number 

3 was used in total of 7 cycles) and a higher overall capacity was achieved for depositions with 

higher times. The highest capacity obtained (total area under the CV curve calculated on Echem 

Gamry Analyst) was 6.65 mC/cm2 (11.7 nF) for a 180 second deposition which corresponds to 

approximately 3 times the capacity of a pristine electrode.  The characteristic redox peaks indi-

cating the presence of gold on the electrodes are seen at approximately 50 mV and 200 mV. [39] 

The data presented on Table 6.1 and Figure 6.2 (Appendix Section C) shows the variation in 

impedance before and after deposition, also taking in consideration the impedance values one day 

after deposition in order to assess stability of the coatings and, charge storage capacity for each 

coating. 

3.2.2. Au-PVP 

 

Figure 3.10 - SEM images for: (a) pristine electrode, (b) modified with Au-PVP (-30 nA, 120 seconds) and (c) 

modified with Au-PVP (-30 nA, 180 seconds). 

The optimal parameters obtained for the Gold-PVP solution were -30 nA during a con-

tinuous deposition of 120 seconds. A lower deposition time (30 seconds) wouldn’t be enough for 

(a) (b) 

(c) 
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the formation of nanostructures and for the complete coverage of the electrode. A higher deposi-

tion time (180 seconds) would yield in the agglomeration of gold disenabling the formation of 

nanostructure (Figure 3.10). Also, longer deposition times create a structure that stretches beyond 

the limits of the electrodes area which demonstrates to be highly unstable since, after one day, the 

electrodes impedance returns to its initial value. Moreover, the acidity of the solution (pH value 

of 2.5) for higher deposition times can lead to unwanted damage influencing the electrodes im-

pedance. The morphological differences between the pristine electrode and the Au-PVP coated 

electrodes can be cleared observed on Figure 3.10 with a highly rough structure due to the 

nanostructures formed on top of the electrodes (highest increased surface area observed on Figure 

3.10 (b) for a 120 second deposition). 

 

Figure 3.11 - Electrochemical characterization of non-modified and modified electrodes with Au-PVP 

solution: (a) EIS, (b) phase angle, (c) Nyquist plot and (d) CV.    

Au-PVP coated electrodes show a similar electrochemical behavior when compared to gold 

coated electrodes. By increasing deposition times, the impedance magnitude decreases and the 

charge storage capacity increases. This is only valid up to the 120 seconds of deposition since no 

impedance and charge storage capacity improvements are seen beyond that value. At high fre-

quencies (between 10 kHz and 1 MHz) the different Au-PVP coatings show a similar phase angle 

(Figure 3.11 (b)) corresponding to a similar initial kinetic behavior leading to identical impedance 

magnitude values. For higher deposition times (120 seconds and 180 seconds) two peaks (two 

time constants) appear on the spectra (Figure 3.11 (b)), in the mid and low frequency range (3 
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KHz and 200 Hz, respectively). These can also be seen in the Nyquist plots (Figure 3.11 (c)) by 

the display of two semi-circles. 

The second peak (second time constant) may be linked with the external and porous layer 

formed by the Au-PVP coating. [40] Electrodes coated with the optimal parameters described 

previously, showed a better stability and higher overall capacity when compared to a pristine and 

commercial gold modified electrode. The highest charge storage capacity obtained was 19.46 

mC/cm2 (34.4 nF) for a 120 second deposition which represents approximately 9 times the capac-

ity of a pristine electrode. The characteristic redox peaks indicating the presence of gold on the 

electrodes are seen at approximately 50 mV and 200 mV. The data presented on Table 6.2 and 

Figure 6.3 (Appendix Section C) shows the variation in impedance obtained before and after 

deposition, also taking in consideration the impedance values one day after deposition in order to 

assess stability of the coatings) and charge storage capacity for each coating. 

3.2.3. Au NPs 

Due to their small size (around 15 nm), gold nanoparticles are expected to yield a rugged 

nanostructure on top of the electrodes increasing total surface area. Several parameters were used, 

modifying both current and time as well as type of deposition (pulsed or continuous deposition). 

It was found in one hand that continuous depositions below 10 seconds resulted in low or virtually 

no deposition on top of the electrodes and in another hand high deposition times (above 120 

seconds) would contaminate the entire probe. Therefore, small pulsed depositions were used in 

order to avoid the contamination. Also, the amount of nanoparticles deposited on top of the elec-

trodes was rather small but there was a uniform distribution of nanoparticles on top of the elec-

trodes. This way, it was possible to avoid aggregation of nanoparticles. [41,42] Morphologically, 

the gold nanoparticles tend to aggregate in a coral like structure on top of the electrodes increasing 

the total surface area.  

   

Figure 3.12 -SEM images of electrodes coated with Au NPs: (a) well distributed amount of gold nanoparticles 

and (b) dense distribution of Au NPs at the edge of the electrode. Contamination outside the electrode observed. 

Outside of the electrode Electrode 

(a) (b) 
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The results showed that throughout the frequency range, gold nanoparticle coated elec-

trodes displayed a slight decrease on the impedance modulus (Figure 3.13 (a)) and an increase on 

the charge storage capacity (Figure 3.13 (d)). 

 

Figure 3.13 - Electrochemical characterization of non-modified and modified electrodes with Au NPs: (a) EIS, 

(b) phase angle, (c) Nyquist plot and (d) CV. 

The slight impedance drop verified is due to the reduction of the charge transfer re-

sistance, as seen on Figure 3.13 (c) (reduced semicircle dimension). In CV, the characteristic 

redox peaks indicating the presence of gold nanoparticles on top of the electrode are seen at ap-

proximately 50 mV and 200 mV, as expected. The total area of the curve had essentially no alter-

ation when compared to a pristine electrode except for the area above and below the reduction 

and oxidation peaks, respectively. The value obtained for the capacity was 7.01 nF which corre-

sponds to about 2.2 times the capacity of a pristine electrode. Though the presence of the nano-

particles can be clearly identified by SEM pictures and CV, their influence on the electrochemical 

properties of the electrode were insignificant. Problems with the nanoparticles adhesion onto the 

electrode surface could be a possible contribution to the poor performance of the Au NPs coating. 

A possible approach to consider is pre-treating the electrodes with UV light or submitting them 

to a heat treatment post-deposition. [43, 44] The data presented on Table 6.3 and Figure 6.4 (Ap-

pendix Section C) shows the variation in impedance obtained before and after deposition, also 

taking in consideration the impedance values one day after deposition in order to assess stability 

of the coatings and charge storage capacity for each coating. 
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3.2.4. PEDOT:PSS 

Conducting polymers have been the focus of extensive studies and due to their electronic 

and ionic conductivity, they provide low impedance and high storage charge capacitance. [45] In 

addition, these materials are complemented with pseudocapacitance due to redox reactions and 

chemisorption processes that take place at the electrode surfaces of conducting polymers. Im-

portantly, this kind of capacitance is faradaic in nature, rather than being associated with poten-

tial-dependent accumulation of electrostatic charge. [27]  

 

Figure 3.14 – SEM images of a PEDOT modified electrode with +30 nA for a period of 5 seconds.   

Figure 3.14 shows a trans-lucid coating on top of the electrodes. Compared to metals, 

these conducting polymer coatings presented a relatively soft material when coated onto the elec-

trodes surface. With the NanoZ equipment, under galvanostatic conditions, the working potential 

usually starts at values above +1.0 V and rapidly decreases (almost instantaneously) indicating a 

decline in the impedance modulus. The parameters used to provide the best coating are +30 nA 

for a 5 second deposition. With a deposition time of 15 seconds, there is a high probability of 

short circuiting nearby electrodes in these high density probes since the coating area is broader 

than the electrode area. So, with increased deposition time, the outgrowth of PEDOT is a factor 

to be taken under consideration. By lowering the deposition time to 5 seconds, it’s possible to 

achieve lower impedance modulus drops (7% less, Appendix Section C). Since this difference is 

not considerably high, the 5 second protocol was adopted. By using the PEDOT:PSS coating, it 

was possible to achieve impedance drops by two orders of magnitude (from values as high as 1 

MΩ to values as low as 20 kΩ (Figure 3.16 (a)). 

PEDOT:PSS coatings showed an improvement in electrode performance both in terms of 

impedance magnitude (high impedance drop, between 90 and 100%) and charge storage capacity 

(about 17 times more charge storage capacity). At high frequencies (between 10 kHz and 1 MHz) 

the data obtained from a deposition of 15 seconds and 5 seconds are fairly similar, as seen on 

Figure 3.15. The actual changes only occur at the mid/ low frequency range (1 Hz and 1000 Hz) 

where a longer deposition causes a higher impedance drop on the electrodes. This difference is 

(a) (b) 



 

 

24 

 

NANOSTRUCTURING SILICON PROBES VIA ELECTRODEPOSITION: CHARACTERIZATION 

OF ELECTRODE COATINGS FOR ACUTE IN VIVO NEURAL RECORDINGS 

due to the formation of a higher coating area on top of the electrodes due to the longer polymeri-

zation time. 

The behavior seen on the Nyquist plots (Figure 3.15 (c)) represents a system with an initial kinetic 

behavior followed by a diffusive regime. In the transition regime into the diffusive behavior, the 

charge transfer resistance is higher for the lower time deposition which is consistent with the 

smaller drop in impedance. Since these values only differ slightly, they are both considered a high 

and stable improvement over the pristine electrodes. Charge capacity increased with higher dep-

osition times as expected and the highest value obtained was 36.44 mC/cm2 (44.1 nF) which 

corresponds to about 17 times the capacity of a pristine electrode. Table 6.4 and Figure 6.5 (Ap-

pendix Section C) show the variation in impedance obtained and charge storage capacity for each 

coating. 

3.2.5. PEDOT – Au NPs composite 

An increase in charge storage capacity (of 1 order of magnitude) and a decrease in the 

impedance magnitude at 1 kHz (2 orders of magnitude) has already been shown for PEDOT:PSS 

coatings. By adding nanoparticles to their surface, the total electrode area is likely to increase. 

From Figure 3.16, it’s possible to see the presence of nanoparticles on the PEDOT:PSS matrix. 

Different gold nanoparticle concentrations were used (as seen on the previous section, Materials 

and Methods) and it was concluded that a low ratio of gold nanoparticles:PEDOT needs to be 

Figure 3.15 - Electrochemical characterization of non-modified and modified electrodes with PEDOT/PSS: (a) 

EIS, (b) phase angle, (c) Nyquist plot and (d) CV. 
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used in order to avoid nanoparticle agglomeration and allow the polymerization process for 

PEDOT. The visible increase in surface area (dispersed agglomerated nanoparticles add 

roughness to the surface) was expected to yield a higher charge storage capacity.  

 

Figure 3.16 – SEM images of electrodes modified with PEDOT and Au NPs: (a) PEDOT:Au NPs coated electrode 

and (b) backscattered electron image showing gold nanoparticles clusters on top of the metal lines. 

Electrochemical characterization showed that by adding Au NPs to PEDOT:PSS the 

overall charge storage capacity increases even though the impedance drop at 1 kHz was not sig-

nificant (lower impedance drop than for a PEDOT:PSS coating). 

    

Figure 3.17 - Electrochemical characterization of non-modified and modified electrodes (with PEDOT:PSS and 

Au NPs): (a) EIS, (b) phase angle, (c) Nyquist plot and (d) CV. 

(a) (b) 
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For high frequency values (between 10 kHz to 1 MHz) the presence of these nanoparticles 

influences the electrochemical behavior of the electrodes. Figure 3.17 (c) shows the presence of 

a very large semicircle on the high frequencies range for PEDOT:Au NPs coated electrode which 

represents an increase on the charge transfer resistance. This will be reflected in higher impedance 

values when compared to a PEDOT:PSS coating (Figure 3.17 (a)). This is probably due to the 

presence of the gold nanoparticle clusters on the PEDOT matrix acting as a charge transfer barrier. 

[46] In Figure 3.17 (d), the electrochemical stability was tested and during each cycle the coating 

would undergo reduction and oxidation reactions corresponding with movement of ions from in 

or out of the coating. The characteristic redox peaks indicating the presence of gold nanoparticles 

on the electrodes are seen at approximately 50 mV and 200 mV. The total area under the CV 

curve shows that the nanoparticles on the PEDOT matrix increase the total charge storage capac-

ity. The highest value obtained was 84.06 mC/cm2 (101.71 nF) which corresponds to about 38 

times the pristine capacity value. Table 6.5 and Figure 6.6 (Appendix Section C) show the corre-

sponding impedance drops obtained and charge storage capacities. 

3.2.6. PEDOT:PSS – Carbon Nanotubes composite 

Carbon nanotubes (CNTs) have been successfully used to modify neural electrodes pre-

viously [47]. By adding CNTs to a PEDOT matrix, an enhancement of the surface area of the 

electrode is expected. Figure 3.18 shows the effect of the CNTs presence on the PEDOT structure. 

 

Figure 3.18 - Scanning electron microscopy (SEMFIB, Zeiss Auriga) images of electrodes modified with PE-

DOT:CNT composites: (a) pristine electrode, (b), (c) and (d) PEDOT:CNT modified electrodes with different 

concentration of CNTs: 11% (V/V), 20% (V/V) and 47% (V/V), respectively. Electrode area shown in red. 

(a) (b) 

(d) (c) 
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As concentration of CNTs increases (Figure 3.18), their agglomeration on the PEDOTs surface 

also increases. The optimal parameters for the deposition of this coating were +30 nA for a period 

of 30 seconds. The deposition parameters were maintained constant in order to study the influence 

of the concentration of CNTs. 

Figure 3.19 shows that the electrochemical behavior of PEDOT:CNTs composite 

coatings differs from those previsouly analysed (PEDOT:PSS and PEDOT:AuNPs composite). 

On the low frequency range (below 10 Hz) the effect of the CNTs is neglected due to the 

impedance modulus being similar to the PEDOT:PSS coating (Figure 3.19 (a). Nyquist plots 

(Figure 3.19 (c)) show that the concentration of CNTs is directly proportional to both the size of 

the semicircle and the tilting of the vertical lines that appear after them. A higher concentration 

of nanotubes will have an increased charge transfer resistance inhibitting a decrease in the 

impedance modulus for higher frequencies (Figure 3.19 (a). The results suggest that CNTs behave 

as a charge transfer barrier. The CV curves (Figure 3.19 (d)) show that lower concentrations of 

CNTs will yield higher charge storage capacity. The highest charge storage capacity value 

obtained was 62.23 mC/cm2 (75.3 nF) which corresponds to 28 times the value for a pristine 

electrode. Table 6.6 and Figure 6.7 (Appendix Section C) show the corresponding impedance 

drops obtained and charge storage capacities. 

    

Figure 3.19 - Electrochemical characterization of non-modified and modified electrodes with PEDOT:CNT com-

posite: (a) EIS, (b) phase angle, (c) Nyquist plot and (d) CV. 
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3.2.7. WO3 

Semiconducting oxides are amongst the most widely studied materials with interest being 

driven both by the fundamental challenges posed by their electronic and magnetic structures and 

properties, and by the wide range of applications. Tungsten oxide has shown very promising 

properties especially in the form of nanostructures with large surface area due to the wide band 

gap typical of this material and its high stability. [35] 

 

Figure 3.20 -SEM images of electrodes coated with WO3NPs: (a) deposited near a metal line and (b) dense dis-

tribution of WO3 NPs at the edge of the electrode. Contamination outside the electrode observed. 

Taking into consideration the work done by [35], tungsten oxide nanoparticles were able 

to lower the impedance value of gold electrodes (1 mm2). Similar to what was completed on the 

previous paper, the same protocol was performed in this thesis in order to create a WO3 nanostruc-

ture on top of the electrodes. Moreover, the possibility of taking advantage of the pseudocapaci-

tive effects of tungsten oxide is also evaluated. [48] Figure 3.20 shows that a WO3 NPs structure 

was formed onto the electrodes but with a high contamination on the insulating area outside the 

electrodes (deposition time of 120 seconds with -30 nA).  

The results obtained on Figure 3.21, show that throughout the frequency range, impedance 

and phase angle values remained fairly similar to the pristine electrode. As previously reported 

[35], heat treatment after nanoparticle deposition could increase the adhesion to the electrodes 

surface. Since the electrodes on these probes are made of iridium (which will oxidize fairly easily 

when submitted to a heat treatment) there’s a need in placing them under vacuum conditions for 

any pre or post deposition treatments involving temperature. On the cyclic voltammetry curve 

(Figure 3.21 (d)), the total area under the curve had virtually no alteration when compared to a 

pristine site. No significant increase on the charge storage capacity was obtained. Table 6.7 and 

Figure 6.8 (Appendix Section C) show the corresponding impedance drops obtained and charge 

storage capacities. 

Section D shows a table (Table 6.8) with the summary of all the best results obtained. 
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Figure 3.21 - Electrochemical characterization of non-modified and modified electrodes (with WO3 NPs): (a) 

EIS, (b) phase angle, (c) Nyquist plot and (d) CV. 

3.3. Equivalent circuit modelling: Electrode-Coating-Electrolyte Interface (ECEI) 

 

Figure 3.22 - Electrode-coating-electrolyte interface components scheme: (a) shows the representation of the 

impedance of the coating-electrolyte interface and (b) shows the equivalent circuit used to fit the impedance 

spectra. 

Figure 3.22 shows the equivalent circuit that had the better fit for the data. The model is divide in 

3 components from the reference electrode (R.E) to the working electrode (W.E): (1) corresponds 

to an uncompensated electrolyte resistance that models the resistance of the electrolyte seen by 

the electrode, RE; (2) takes in consideration the nature of an imperfect coating where the electro-

lyte contacts the metal electrode through porous structures and, also takes in consideration grand 

boundaries where the behavior of the materials differs: CPE1 a constant phase element used to 

model the capacitance of the coating layer, Rp is the resistance associated with defects (from the 
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porous structure), CPE2 a constant phase element used to model the capacitive double layer at the 

electrode interface, also known as the Helmholtz double layer (accounts for no-idealities due to 

surface inhomogeneity), RCT1 is the charge transfer resistance that models the resistive pathway 

due to electrochemical reactions and, (3) corresponds to a continuous coating not taking in ac-

count imperfections, where CPE3 is the constant phase element used to model the capacitive dou-

ble layer, RCT2 the charge transfer resistance and W represents the Warburg diffusion process in 

the metal. [49,50,51] Further work in simulation is needed in order to understand the results ob-

tained. 

3.4. Acute Neural Recordings 

In order to evaluate the performance of different electrode modifications, five minute 

recordings of spontaneous neural activity under ketamine at different depths within the cortex 

were performed. The high density probe (HDP) had a deposition layout that allowed for maximum 

variety of coatings taking in consideration paired depositions (depositions with the same param-

eters and materials) in order to provide a valid comparison between nearby electrodes. 

                    

Figure 3.23 – High density 32 channel probe from Neuronexus: (a) shows the site number layout on the probe, 

(b) the modification layout with different materials and (c) probe image with the standards. 

Throughout the experiment, higher cell activity was detected during recording number 2 

(Figure 3.24). So, an extensive study of the previous recording (recording number 1) and the 

following recording (recording number 3) was done in order to compare cell activity for the dif-

ferent recordings at different depths. The neural recording ability of both coated and uncoated 

electrodes was evaluated by detecting spontaneous activity within the cortex, as previously stated. 

By moving the electrode array in the tissue, it is expected that the neural signals from the same 

neurons are to be collected through both the coated and uncoated electrodes. Table 6.16 (Appen-

dix Section F) shows the data from three consecutive recordings performed at different depths 

and Figure 3.25 shows a  piece of the data set to retrieve neuron spiking data. No significant data 

was obtained for WO3NPs and PEDOT:WO3NPs coatings throughout the recordings. This may 

be the result of these coatings being located on the upper electrodes of the HDP where almost no 

(a)  (b) (c) 
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cell activity was detected during this experiment. Future recordings are necessary to further assess 

the in vivo recording capability of WO3NP coatings. 

 

 

Figure 3.24 – Cell activity from multiple recordings taken from the tip of the HDP. Appendix Section G presents 

the location of the recordings with the corresponding brain atlas map. 

 

 

Figure 3.25 – Neural spontaneous activity within the cortex for a PEDOT modified electrode: (a) high-pass 

filtered data containing 30 seconds of information, (b) zoom in the filtered data, (c) and (d) spike average and 

standard deviation obtained after applying a voltage threshold (-100 μV). 
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The average peak-to-peak (P2P) amplitudes are given by averaging the maximum ampli-

tude values obtained for similar electrodes, for example: 

𝑃2𝑃𝑎𝑣𝑔(𝑃𝐸𝐷𝑂𝑇) = 𝑃𝐸𝐷𝑂𝑇𝑀𝑎𝑥𝐴𝑚𝑝 1 + ⋯ + 𝑃𝐸𝐷𝑂𝑇𝑀𝑎𝑥𝐴𝑚𝑝 𝑋 = ∑ 𝑃𝐸𝐷𝑂𝑇𝑀𝑎𝑥𝐴𝑚𝑝 𝑁

𝑁

𝑖=1

 

𝑃2𝑃𝑎𝑣𝑔(𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝐶𝑜𝑎𝑡𝑖𝑛𝑔) = ∑ 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝐶𝑜𝑎𝑡𝑖𝑛𝑔𝑀𝑎𝑥𝐴𝑚𝑝 𝑁

𝑁

𝑖=1

 

Coated electrodes show improved average P2P amplitudes with quality unit activity be-

ing evident on the modified electrodes across the HDP at every time point in this study (from 

highest to lowest: PEDOT:Au, PEDOT, Au:PVP, Pristine, Gold, respectively). Maximum P2P 

amplitude obtained was for a PEDOT coated electrode with a value of 404.37 μV on recording 

#2. These higher signal amplitudes obtained are related to the lowered impedance of the electrode 

by the deposition. Whether this decrease of impedance (increase in sensitivity) will also benefit 

long-term recordings needs to be tested with chronic experiments. Though gold coated electrodes 

seem to be underperforming when compared to pristine electrodes, previous studies have shown 

that gold modifications improve the in vivo performance of the electrodes [52] Signal-to-Noise 

Ratio (SNR) values are obtained through the following equation:  

𝑆𝑁𝑅 =
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑃2𝑃

2 × 𝑆𝑇𝐷𝑉
 

The recorded data exhibited a SNR as great as 8.86 for a PEDOT coated electrode (com-

pared to the maximum value of 6.05 obtained for a pristine electrode) while the average SNR 

across the HDP shows similar values for electrodes with PEDOT and/or PEDOT:AuNPs having 

the highest average values. Low impedance of the coated electrodes helped reducing noise levels 

allowing for the detection of lower amplitude single units (from neurons located further away 

from the recording electrode) which cannot be discerned on standard electrodes. The lowest noise 

level obtained was for a PEDOT modified electrode with a value of 19.84 μV. During the acute 

neural experiments, the silicon probes are subjected to mechanical strain when entering the brain. 

If the coatings are not stable enough and/or have a low adhesion to the surface of the electrode 

there is a high probability of deterioration of the nanostructures previously built on top of the 

electrodes. This process is inevitable and is responsible for the increase in impedance post-surgery 

(though, depending on the coating used, this values can remain fairly low when compared to the 

pristine equivalent).  

 

 

  

Eq. 3.1 

Eq. 3.2 
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4. Conclusions and Future Perspectives 

Neural probes, as a tool, offer unique scientific and clinical opportunities for investiga-

tion, diagnosis, and treatment of neural conditions. Dysfunctional activity can often be identified 

non-invasively using neuroimaging techniques, including fMRI combined with EEG. Once local-

ized, affected brain structures can be studied in further detail by introducing probes to analyze the 

neurochemistry, record the electrical activity, and stimulate either acutely or chronically. [27]  

This project aimed at improving the efficiency of signal transfer from the neural tissue to 

the electrodes. Different electrode coatings were developed, and successful proof-of-concept 

acute recordings within the cortex of rodents have been demonstrated. Moreover, the electrode’s 

coating performance was tested in saline in a variety of experimental models ranging from elec-

trode impedance monitoring, to charge storage capacity evaluation and to long-term multi-chan-

nel acute recordings. While acute experiments are essential to validate new implantable systems, 

they do not represent clinically relevant chronic settings. Future experiments concerning chronic 

implantation should proceed this work. 

The main conclusion to take from this work is that different materials (gold, PEDOT, 

tungsten oxide and carbon nanotubes) can be successfully used to modify high dense electrode 

arrays presented in commercial silicon probes  in order to increase the electrodes charge storage 

capacity and lower the impedance modulus. Additionally, the formation or deposition of 

nanostructures on top of the electrodes was achieved by using the same technique through this 

project – galvanostatic electrodeposition. The viability of these modifications is shown through 

several electrochemical measurements (electrochemical impedance spectroscopy and cyclic volt-

ammetry) and by performing acute neural recordings in rats. A wide range of deposition param-

eters  were studied in order to have a better understanding on how the electrodes behavior would 

be altered and what would be the ideal coating for the different materials used. These differences 

in the electrodes electrochemistry lead to a change in their intrinsic properties.  

Gold coated electrodes have shown the possibility of lowering the impedance magnitude 

(up to 1 order of magnitude) and increasing the total charge storage capacity. By adding a poly-

mer, in this case PVP, to a gold solution, a higher surface area was obtained due to an increase of 

the nanostructures being formed on top of the electrodes. The Au:PVP solution allows a more 

rugged structure leading to a higher decrease in the impedance modulus and an increase on the 

total charge storage capacity when compared to the standard commercial gold solutions. 

Gold nanoparticle and tungsten oxide nanoparticle coated electrodes where expected to 

yield a decrease in impedance by increasing the total surface area of the electrodes and ultimately 

increase the sensitivity of the electrodes due to their intrinsic properties. It was observed that no 

stable coatings were obtained through the parameters chosen and used during this work. Further 

studies need to be conducted in terms of nanoparticle adhesion to iridium electrodes. 

PEDOT coated electrodes allow for a maximum decrease of two orders of magnitude on 

the impedance modulus (from 1 MΩ to 25 kΩ) while increasing the total charge capacity by one 
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order of magnitude (from 2.2 mC/cm2 to 36.4 mC/cm2) for 15 μm diameter electrodes. By mixing 

PEDOT with gold nanoparticles and carbon nanotubes, slightly higher impedance values were 

obtained at 1 kHz (approximately 100 kΩ) while increasing the charge storage capacity up to a 

maximum of 62.2 mC/cm2 for PEDOT:CNTs and 84.1 mC/cm2 for PEDOT:AuNPs. Electrodes 

with lower impedance values may increase the recording sensitivity and possibly allow the de-

tection of signals even in the presence of the insulating tissue surrounding the silicon probe. How-

ever, the use of CNTs and nanoparticles in neural implants also raises concerns about their path-

ogenic potential and exposure limits. There still exists a lack of information regarding the acute 

and long-term effects that CNTs and nanoparticles may have on the brain. Such issues must be 

addressed concomitantly to the improvement of their physicochemical properties. 

Through the neural recordings, the maximum P2P amplitudes, the highest SNR and the 

lowest noise levels were obtained for coated electrodes when compared to their pristine equivalent 

(PEDOT with a P2P amplitude of 404.37 μV, SNR of 8.86 and noise level of 19.84 μV). Overall, 

the acute neural physiological experiments show that coated and uncoated electrodes can record 

neural signals within the cortex of rodents. These results demonstrated the capability of modifying 

pristine electrodes to record neural signals, the potential of modified electrodes in recording neu-

ral activity ranging from single units to network-wide bursts and improved performance of these 

electrodes which could facilitate the separation of discrete neural signals and the recognition at 

the cell’s distinct shape. This means that probe modification is a suitable and easy way to alter 

electric and physical properties of silicon probes without compromising their performance. 

For an actual and meaningful communication with the brain, recording and stimulation 

must be performed simultaneously. Although micro-fabrication has led to different concepts that 

allow the recording of numerous neural activities in awake animals, the quality of these recordings 

typically deteriorates over time: electrode performance decreases and properties vary over time. 

In most cases, it is still not clear what causes these variations so new methods must be employed 

in order to minimize problems involving biocompatibility, durability and reliability of the meas-

urements. These may include the use of hybrid neural probes with nanostructured materials. The 

major challenges for in vivo systems are the development of real-time and specific detection al-

gorithms, safe stimulation, minimal interference between recording and stimulation channels, and 

a stable electrode-tissue interface. Progress in this area relies on scientists being able to integrate 

and utilize methodologies from different disciplines, such as biomedical engineering, biomateri-

als, neuroscience, neurology, neurosurgery, information and communication technologies, mo-

lecular biology, etc. The procedures for the implantation of penetrating microelectrodes are 

straightforward and well within the reach of most well-trained neurosurgeons. Altogether these 

results suggest that the formation of nanostructures with different materials look promising in 

augmenting the signal transfer from the tissue to the microelectrodes and could form the basis of 

new neuroprosthetic devices for treating many disorders of the nervous system. The next step 

would be the study the long-term effects (chronic implants) of these modified microelectrode 

devices. 
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6. Appendix 

Section A 

Silicon probes with different configuration used on this work, obtained by optical mi-

croscopy. 

 

Figure 6.1 – Optical microscope images taken for multiple silicon probe configurations used during this work. 
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Section B 

Python scripts used for data analysis of acute neural recordings: 

Script #1 

import os 

import numpy as np 

import scipy.signal as signal 

import matplotlib.pyplot as plt 

import trigger_probes as trig 

 

### DATA PROCESSING ### 

def align_data(data,indices,before=0,after=0): 

columns = np.shape(data)[1] 

return [data[:,slice(index-before,index+after+1)] for index in indices if index-before >= 

0 and index+after < columns] 

 

def find_peaks(data,threshold,minstep=0): 

derivative = np.diff(np.sign(np.diff(data))) 

if threshold > 0: 

derivative = derivative < 0 

else: 

derivative = derivative > 0 

peaks = derivative.nonzero()[0] + 1 # local max 

if threshold > 0:  

peaks = peaks[data[peaks] > threshold] 

else: 

peaks = peaks[data[peaks] < threshold] 

if minstep > 0: 

gpeaks = split_list_pairwise(peaks,lambda x,p:x-p > minstep) 

peaks = np.array([g[np.argmax([data[i] for i in g])] for g in gpeaks]) 

return peaks 

 

def loadRawData(filename,numChannels,dtype): 

fdata = np.fromfile(filename,dtype=dtype) 

numsamples = len(fdata) / numChannels 

data = np.reshape(fdata,(numsamples,numChannels)) 

return (np.transpose(data)) 

 

def highpass(data,sampleFreq=30000.0,passFreq=500.0,stopFreq=100.0): 

# Define High Pass-band 

wp = passFreq/sampleFreq 
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ws = stopFreq/sampleFreq 

# Filter Data with Butterworth (HighPass) 

N, wn = signal.buttord(wp, ws, 3, 16) # (?) 

b, a = signal.butter(N, wn, btype='high') 

return signal.lfilter(b,a,data) 

 

Script #2 

import os 

import numpy as np 

import scipy.signal as signal 

import numpy as np 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import trigger_probes as trig 

from scipy import stats 

 

 

def extra_trigger_analysis(filename,triggerchannel=18,threshold=-80,minstep=100,be-

fore=500,after=500): 

global amplifier, filtamplifier, triggers, alignamplifier 

amplifier = trig.loadRawData(filename,numChannels=32,dtype=np.float32) 

filtamplifier = np.float32(trig.highpass(amplifier[:,:],passFreq=500.0,stopFreq=300.0)) 

trigchannel = filtamplifier[triggerchannel,:]  

triggers = trig.find_peaks(trigchannel,threshold,minstep) # Trigger on spikes 

alignamplifier = np.dstack(trig.align_data(filtamplifier,triggers,before,after)) 

 

### PLOTTING #### 

 

def triggerline(x): 

if x is not None: 

ylim = plt.ylim() 

plt.vlines(x,ylim[0],ylim[1]) 

 

def plot_triggers(triggerdata,channeloffset=0,trigger=None,**kwargs): 

number_samples=np.shape(triggerdata)[1] 

time_sec=number_samples/30000.0 

resolucao= time_sec/number_samples 

x_adc=np.arange(0, time_sec, resolucao)  

for t in range(np.shape(triggerdata)[2]): 

data = triggerdata[:,:,t] 
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rows = np.shape(data)[0] 

offset = np.arange(rows) * channeloffset  

plt.plot(x_adc, data.T + offset,**kwargs) ##### mV andf msec  

triggerline(trigger) 

 

def plot_triggers_single_channel(triggerdata,channel,trigger=None,number_wid-

ows=1,**kwargs): 

number_samples=np.shape(triggerdata)[1] 

time_sec=number_samples/30000.0 

resolucao= time_sec/number_samples 

x_adc=np.arange(0, time_sec*1000.0, resolucao*1000.0)  

for t in range(np.shape(triggerdata)[2]): 

data = triggerdata[channel,:,t] 

plt.plot( x_adc,data,**kwargs) ##### mV andf msec  

triggerline(trigger) 

v = [15,19,-310,250]  

axis(v) 

 

def plot_trigger_average(triggerdata,channeloffset=0,trigger=None,**kwargs): 

global data  

global x_adc 

 

data = np.mean(alignamplifier[channel,:,:], axis = 1) 

number_samples=np.shape(alignamplifier)[1] 

time_sec=number_samples/30000.0 

resolucao= time_sec/number_samples 

x_adc=np.arange(0, time_sec*1000.0, resolucao*1000.0)  

plt.plot(x_adc,data,'black') 

amplitude = abs(min(data))+abs(max(data)) 

stdv = np.mean(std(alignamplifier[channel,:,:],axis=1)) 

negative_error= (np.mean(alignamplifier[channel,:,:],axis=1)-(stdv)) 

positive_error= (np.mean(alignamplifier[channel,:,:], axis=1)+(stdv)) 

plt.fill_between(x_adc,negative_error,positive_error,alpha=0.2) 

SNR = (max(data)-min(data))/(2*stdv) 

print SNR 

print amplitude 

print stdv 

v = [15,19,-310,250]  

axis(v) 

triggerline(500/30) 
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resolucao= time_sec/number_samples 

x_adc=np.arange(0, time_sec*1000.0, resolucao*1000.0)  

plt.plot(x_adc, data.T + offset,**kwargs) 

triggerline(trigger) 

 

####NEURONEXUS sites geometry 

 

def plot_trigger_average_mapp_visualization(triggerdata,yaxis=80,trigger=None,**kwargs): 

global data  

global x_adc 

number_samples=np.shape(triggerdata)[1] 

time_sec=number_samples/30000.0 

resolucao= time_sec/number_samples 

x_adc=np.arange(0, time_sec*1000.0, resolucao*1000.0)  

stdv= stats.sem(triggerdata, axis=2) 

negative_error= (np.mean(triggerdata,axis=2)-(stdv)) 

positive_error= (np.mean(triggerdata,axis=2)+(stdv)) 

subplot(22,3,2)#channel 0 

plt.plot(x_adc, data[0,:].T) 

plt.fill_between(x_adc,negative_error[0,:],positive_error[0,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,5)#channel 31 

plt.plot(x_adc, data[31,:].T) 

plt.fill_between(x_adc,negative_error[31,:],positive_error[31,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

 

subplot(22,3,7)#channel 24 

plt.fill_between(x_adc,negative_error[24,:],positive_error[24,:], alpha=0.2,face-

color='#FF9848') 

plt.plot(x_adc, data[24,:].T) 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

 

subplot(22,3,9)#channel7 

plt.plot(x_adc, data[7,:].T) 
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plt.fill_between(x_adc,negative_error[7,:],positive_error[7,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,11)#1 

plt.plot(x_adc, data[1,:].T) 

plt.fill_between(x_adc,negative_error[1,:],positive_error[1,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,13)#channel21 

plt.plot(x_adc, data[21,:].T) 

plt.fill_between(x_adc,negative_error[21,:],positive_error[21,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,15)#channel10 

plt.plot(x_adc, data[10,:].T) 

plt.fill_between(x_adc,negative_error[10,:],positive_error[10,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,17)#channel30 

plt.plot(x_adc, data[30,:].T) 

plt.fill_between(x_adc,negative_error[30,:],positive_error[30,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,19)#channel25 

plt.plot(x_adc, data[25,:].T) 

plt.fill_between(x_adc,negative_error[25,:],positive_error[25,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,21)#channel6 

plt.plot(x_adc, data[6,:].T) 

plt.fill_between(x_adc,negative_error[6,:],positive_error[6,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 
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subplot(22,3,23)#channel15 

plt.plot(x_adc, data[15,:].T) 

plt.fill_between(x_adc,negative_error[15,:],positive_error[15,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,25)#channel20 

plt.plot(x_adc, data[20,:].T) 

plt.fill_between(x_adc,negative_error[20,:],positive_error[20,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,27)#channel11 

plt.plot(x_adc, data[11,:].T) 

plt.fill_between(x_adc,negative_error[6,:],positive_error[6,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,29)#channel16 

plt.plot(x_adc, data[16,:].T) 

plt.fill_between(x_adc,negative_error[16,:],positive_error[16,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,31)#channel26 

plt.plot(x_adc, data[26,:].T) 

plt.fill_between(x_adc,negative_error[26,:],positive_error[26,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,33)#channel5 

plt.plot(x_adc, data[5,:].T) 

plt.fill_between(x_adc,negative_error[5,:],positive_error[5,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,35)#channel14 

plt.plot(x_adc, data[14,:].T) 

plt.fill_between(x_adc,negative_error[14,:],positive_error[14,:], alpha=0.2,face-

color='#FF9848') 
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ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,37)#channel19 

plt.plot(x_adc, data[19,:].T) 

plt.fill_between(x_adc,negative_error[19,:],positive_error[19,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,39)#channel12 

plt.plot(x_adc, data[12,:].T) 

plt.fill_between(x_adc,negative_error[12,:],positive_error[12,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,41)#channel17 

plt.plot(x_adc, data[17,:].T) 

plt.fill_between(x_adc,negative_error[17,:],positive_error[17,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,43)#channel27 

plt.plot(x_adc, data[27,:].T) 

plt.fill_between(x_adc,negative_error[27,:],positive_error[27,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,45)#channel4 

plt.plot(x_adc, data[4,:].T) 

plt.fill_between(x_adc,negative_error[4,:],positive_error[4,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,47)#channel8 

plt.plot(x_adc, data[8,:].T) 

plt.fill_between(x_adc,negative_error[8,:],positive_error[8,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,49)#channel18 

plt.plot(x_adc, data[18,:].T) 
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plt.fill_between(x_adc,negative_error[18,:],positive_error[18,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,51)#channel13 

plt.plot(x_adc, data[13,:].T) 

plt.fill_between(x_adc,negative_error[13,:],positive_error[13,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,53)#channel23 

plt.plot(x_adc, data[23,:].T) 

plt.fill_between(x_adc,negative_error[23,:],positive_error[23,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,55)#channel28 

plt.plot(x_adc, data[28,:].T) 

plt.fill_between(x_adc,negative_error[28,:],positive_error[28,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,57)#channel3 

plt.plot(x_adc, data[3,:].T) 

plt.fill_between(x_adc,negative_error[3,:],positive_error[3,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,59)#channel9 

plt.plot(x_adc, data[9,:].T) 

plt.fill_between(x_adc,negative_error[9,:],positive_error[9,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,61)#channel29 

plt.plot(x_adc, data[29,:].T) 

plt.fill_between(x_adc,negative_error[29,:],positive_error[29,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 
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subplot(22,3,63)#channel2 

plt.plot(x_adc, data[2,:].T) 

plt.fill_between(x_adc,negative_error[2,:],positive_error[2,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 

subplot(22,3,65)#channel22 

plt.plot(x_adc, data[22,:].T) 

plt.fill_between(x_adc,negative_error[22,:],positive_error[22,:], alpha=0.2,face-

color='#FF9848') 

ylim((-yaxis,yaxis)) 

xlim((15.5,18.5)) 
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Section C 

Impedance and charge storage capacity values obtained for the different coatings used. 

C.1. Commercial gold solution 

Table 6.1 - Impedance values and charge storage capacity obtained for gold depositions with different coating 

times. 

 

Figure 6.2 - Impedance drop after deposition for different coating times and stability after one day given by 

impedance rising. 

C.2. Gold nanoflakes solution 

Table 6.2 – Impedance values and charge storage capacity obtained for gold nanoflakes depositions with differ-

ent coating times. 

 

 

Coating Time (s) Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 1032.5±1.2 - - 2.67 

90 1114.7±2.5 687.0±5.3 38.4 - 

120 923.7±14.9 220.7±2.5 76.1 9.4 

180 951.7±7.2 52.7±0.6 94.5 11.74 

Coating Time (s) Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 1032.5±1.2 - - 2.67 

30 1208.3±3.2 230.3 ±1.2 81 6.2 

120 1740.7±10.1 343±2.4 80.3 34.4 

180 1004±10.1 517.3±4.2 48 23.5 
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Figure 6.3 - Impedance drop after deposition for different coating times and stability after one day given 

by impedance rising. 

C.3. Gold nanoparticles (Au NPs) 

Table 6.3 – Impedance values (at 1004 Hz) and charge storage capacity obtained for gold depositions with dif-

ferent coating times. 

 

Figure 6.4 - Impedance drop after deposition for different coating times and stability after one day given by 

impedance rising. 

C.4. PEDOT:PSS 

Table 6.4 – Impedance values (at 1004 Hz) and charge storage capacity obtained for gold depositions with dif-

ferent coating times. 

 

Coating Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 967±5.1 - - 3.18 

AuNPs 1060±2.0 648.3±10.1 38.8 7.01 

Coating Time (s) Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 1032.5±1.2 - - 2.67 

5 1054.33 35 96.7 22.67 

15 1053.71 25 97.6 44.1 
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Figure 6.5 - Impedance drop after deposition for different coating times and stability after one day given by 

impedance rising. 

C.5. PEDOT:AuNPs 

Table 6.5 - Impedance values (at 1004 Hz) and charge storage capacity obtained for gold depositions with dif-

ferent coating times. 

 

Figure 6.6 - Impedance drop after deposition for different coating times and stability after one day given by 

impedance rising. 

C.6. PEDOT:CNTs 

Table 6.6 - Impedance values (at 1004 Hz) and charge storage capacity obtained for gold depositions with dif-

ferent coating times. 

 

PEDOT:AuNPs 

Ratio 
Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 1032.5±1.2 - - 2.67 

4:05 975.1±3.4 25.3±0.3 97.4 101.71 

PEDOT:CNT 

Ratio 
Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 1032.5±1.2 - - 2.67 

4:1 891.7±4.1 35.3±0.6 96 75.3 

4:3.5 994.7±2.1 92.7 90.7 55.7 
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Figure 6.7 - Impedance drop for PEDOT:CNT modifications after deposition for different coating concentra-

tions and stability after one day (given by impedance rising). 

C.7. Tungsten Oxide Nanoparticles  

Table 6.7 - Impedance values (at 1004 Hz) and charge storage capacity obtained for gold depositions with dif-

ferent coating times. 

 

Figure 6.8 - Impedance drop for WO3 modifications after deposition for different coating concentrations and 

stability after one day (given by impedance rising). No data for 1 day after deposition is shown the impedance 

return to its original values. 

  

Coating Initial Z (kΩ) Z after coating (kΩ) Zdrop (%) Csc (nF) 

Pristine 638±3.2 - - 7.2 

WO3 613.1±2.5 374±3.4 39 8.1 
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Section D 

 

Summary of all the important results obtained throughout this work. 

 

Table 6.8 – Best results obtained for differing electrode coatings. 

 

Coating 

 

 

Current (nA) 

 

Time (s) 

 

|Zdrop|(%) 

 

Csc (mC/cm²) 

 

Pristine 

 

 

- 

 

- 

 

- 

 

2.2 

Commercial Gold -30 120 76.1 5.3 

 

Au-PVP 

 

 

-30 

 

120 

 

80.3 

 

19.5 

Au NPs - - - - 

 

PEDOT 

 

+30 

 

5 

 

96.7 

 

36.4 

 

PEDOT-AuNPs 

 

+30 

 

30 

 

97.4 

 

84.1 

 

PEDOT-CNTs 

 

+30 

 

30 

 

96 

 

62.2 

 

WO3 NPs 

 

- 

 

- 

 

- 

 

- 
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Section E 

 

Electrical component values obtained for the electronic scheme of the electrodes. 

Table 6.9 - List of elements, corresponding symbols and relations of admittance and impedance. 

Element description Symbol Admitance Impedance Parameters 

Resistance R 1/R R R 

Capacitance C jωC -j/ωC C 

Inductance L -j/ωL jωL L 

Warburg W Y0√(jω) 1/Y0√(jω) Y0 

CPE Q Y0(jω)n (jω)-n/Y0 Y0, n 

The equation that models the impedance of this system is composed by different electrical com-

ponents is given by: 

𝑍𝑇 = 𝑍1 +
𝑍4(𝑍2 + 𝑍3)

𝑍2 + 𝑍3 + 𝑍4
+

𝑍5𝑍6

𝑍5 + 𝑍6
 

𝑍1 = 𝑅𝐸 

𝑍2 = 𝑅𝑝 

𝑍3 =
𝑅𝐶𝑇1(𝑗𝜔)−𝑛/𝑌0𝐶𝑃𝐸2

𝑅𝐶𝑇1 + (𝑗𝜔)−𝑛/𝑌0𝐶𝑃𝐸2
 

𝑍4 =
(𝑗𝜔)−𝑛

𝑌0𝐶𝑃𝐸1

 

𝑍5 =
(𝑗𝜔)−𝑛

𝑌0𝐶𝑃𝐸3 
 

𝑍6 = 𝑅𝐶𝑇2 +
1

𝑌0√𝑗𝜔
 

 

 

 

 

 

 

 

 

Eq. 4.2 

Eq. 4.6 

Eq. 4.5 

Eq. 4.4 

Eq. 4.3 

Eq. 4.7 

Eq. 4.1 
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Equivalent Circuit fitting parameters 

Pristine Electrode 

Table 6.10 - Equivalent circuit parameters calculated via Gamry Echem Analyst Software for fitting the data 

from a   pristine electrode. 

Parameter Value Error Unit 

RE 22.34 x 10-3 1.972 x 103 Ω 

RP 32.31 x 103 11.22 x 103 Ω 

RCT1 1.163 x 103 564.2 x 103 Ω 

RCT2 713.4 x 103 7.190 x 109 Ω 

CPE1 19.74 x 10-12 28.64 x 10-12 S.sn 

CPE2 2.45 x 10-9 1.56 x 10-9 S.sn 

CPE3 238.0 x 10-12 453.9 x 10-12 S.sn 

n1 0.953 0.110  

n2 0.778 0.077  

n3 0.948 0.142  

W 259.9 x 10-12 64.32 x10-12 S.s1/2 

Goodness of Fit 287.3 x 10-6 -  

          

Figure 6.9 - Electrochemical Impedance Spectroscopy spectra given by Gamry Echem Analyst Software. Bode 

plot on (a) and niquist plot on (b) for a pristine electrode with the respective data fitting. 

 

(a) 

b) 
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Commercial gold electrode 

Table 6.11 - Equivalent circuit parameters calculated via Gamry Echem Analyst Software for fitting the data 

from an electrode modified with a commercial gold solution. 

Parameter Value Error Unit 

RE 66.24x10-6 1.489x103 Ω 

RP 37.26x103 7.967 x103 Ω 

RCT1 3.59x106 50.06x106 Ω 

RCT2 95.26x106 883.1x106 Ω 

CPE1 29.12x10-12 26.36x10-12 S.sn 

CPE2 34.00x10-9 234.6x10-9 S.sn 

CPE3 1.21x10-9 3.32x10-9 S.sn 

n1 0.929 0.065  

n2 0.649 0.463  

n3 0.993 0.503  

W 2.18x10-9 497.7x10-12 S.s1/2 

Goodness of Fit 95.88x10-6 -  

         

Figure 6.10 - Electrochemical Impedance Spectroscopy spectra given by Gamry Echem Analyst Software. Bode 

plot on (a) and niquist plot on (b) for a commercial gold solution coating with the respective data fitting. 

  

a) 

b) 
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Gold Nanoparticles electrode 

Table 6.12 - Equivalent circuit parameters calculated via Gamry Echem Analyst Software for fitting the data 

from an electrode modified with gold nanoparticles. 

Parameter Value Error Unit 

RE 4.444 1.951 x 103 Ω 

RP 25.10 x 103 3.391 x 103 Ω 

RCT1 180.6 x 103 153.1 x 103 Ω 

RCT2 998.7 x 106 313.2 x 106 Ω 

CPE1 28.04 x 10-12 32.91 x 10-12 S.sn 

CPE2 23.59 x 10-9 16.99 x 10-9 S.sn 

CPE3 731.8 x 10-12 39.37 x 10-12 S.sn 

n1 0.931 0.085  

n2 0.693 0.073  

n3 0.906 0.011  

W 4.237 x 10-3 13.75 x103 S.s1/2 

Goodness of Fit 282.3 x 10-6 -  

 

Figure 6.11 - Electrochemical Impedance Spectroscopy spectra given by Gamry Echem Analyst Software. Bode 

plot on (a) and niquist plot on (b) for gold nanoparticles coating with the respective data fitting. 

  

(

a) 

b) 
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PEDOT:PSS 

Table 6.13 - Equivalent circuit parameters calculated via Gamry Echem Analyst Software for fitting the data 

from an electrode modified with PEDOT:PSS. 

Parameter Value Error Unit 

RE 472.6 2.929x103 Ω 

RP 22.91x103 4.937x103 Ω 

RCT1 4.44x103 6.75x103 Ω 

RCT2 334.8x103 123.3x109 Ω 

CPE1 13.35x10-12 22.28x10-12 S.sn 

CPE2 112.3x10-9 599.2x10-9 S.sn 

CPE3 8.22x10-9 53.43x10-9 S.sn 

n1 0.965 0.122  

n2 0.675 0.567  

n3 0.991 0.053  

W 655.0x10-12 1.289x10-9 S.s1/2 

Goodness of Fit 9.858x10-6 -  

 

Figure 6.12 - Electrochemical Impedance Spectroscopy spectra given by Gamry Echem Analyst Software. Bode 

plot on (a) and niquist plot on (b) for a PEDOT coating with the respective data fitting. 

 

 

(

b) 

(

a) 



 

 

59 

 

NANOSTRUCTURING SILICON PROBES VIA ELECTRODEPOSITION: CHARACTERIZATION 

OF ELECTRODE COATINGS FOR ACUTE IN VIVO NEURAL RECORDINGS 

Gold Nanoflakes 

Table 6.14 - Equivalent circuit parameters calculated via Gamry Echem Analyst Software for fitting the data 

from an electrode modified with gold nanoflakes. 

Parameter Value Error Unit 

RE 32.95 2.575x103 Ω 

RP 26.05x103 7.352x103 Ω 

RCT1 184.6x103 164.0x103 Ω 

RCT2 964.9.8x103 430.5x106 Ω 

CPE1 13.32x10-12 38.07x10-12 S.sn 

CPE2 112.3x10-9 599.2x10-9 S.sn 

CPE3 4.973x10-9 3.312x10-9 S.sn 

n1 0.982 0.185  

n2 0.852 0.347  

n3 0.692 0.052  

W 3.826x10-9 3.528x10-9 S.s1/2 

Goodness of Fit 285.6x10-6 -  

 

Figure 6.13 - Electrochemical Impedance Spectroscopy spectra given by Gamry Echem Analyst Software. Bode 

plot on (a) and niquist plot on (b) for a gold nanoflakes coating with the respective data fitting. 

  

(

a) 

(

b) 
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PEDOT/CNT 

Table 6.15 - Equivalent circuit parameters calculated via Gamry Echem Analyst Software for fitting the data 

from an electrode modified with a solution of PEDOT and Carbon Nanotubes. 

Parameter Value Error Unit 

RE 2.171 2.269x103 Ω 

RP 22.23x103 5.36x103 Ω 

RCT1 461.7x103 7.88x103 Ω 

RCT2 30.14x106 143.9x109 Ω 

CPE1 39.18x10-12 87.74x10-12 S.sn 

CPE2 519.3x10-12 151.9x10-12 S.sn 

CPE3 38.34x10-9 4.05x10-9 S.sn 

n1 0.921 0.156  

n2 0.860 0.020  

n3 0.982 0.021  

W -2.334x10-19 7.005x10-9 S.s1/2 

Goodness of Fit 296.9x10-6 -  

 

Figure 6.14 - Electrochemical Impedance Spectroscopy spectra given by Gamry Echem Analyst Software. Bode 

plot on (a) and nyquist plot on (b) for a PEDOT:CNT coating with the respective data fitting. 

 

(

a) 

(

b) 
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Section F 

Acute neural data obtained for the different electrodes throughout the different recordings. 

Table 6.16 – Acute neural experiment data from different recordings. 

Recording #1 

Modifications Spike  

# Max 

Spike # 

Avg 

Amplitude 

P2P Max 

Amplitude P2P 

Avg 

SNR 

Max 

SNR Avg Noise 

Level Min 

Noise 

Level Avg 

Units A.U A.U μV μV A.U A.U μV μV 

Pristine 56 20±23 145.23 46.08±65.29 4.96 1.79±2.21 26.44 31.51±5.07 

PEDOT 120 32±52 134.78 40.71±58.03 5.41 2.09±2.56 20.24 23.48±3.24 

PEDOT:AuNPs - - - - - - - - 

PEDOT:WO3NPs - - - - - - - - 

Au - - - - - - - - 

Au:PVP 41 22±17 137.42 65.07±65.18 4.53 2.19±2.20 28.34 29.60±0.89 

AuNPs - - - - - - - - 

WO3 NPs - - - - - - - - 

Recording #2 

Pristine 1019 319±407 171.31 95.89±69.85 5.64 3.95±2.11 22.74 33.56±7.89 

PEDOT 304 165±90 404.37 161.27±122.25 8.86 4.66±2.92 19.84 33.47±8.92 

PEDOT:AuNPs 193 186±8 189.14 162.28±26.86 4.29 4.07±0.31 35.16 39.57±4.41 

PEDOT:WO3NPs - - - - - - - - 

Au 139 73±50 148.29 95.14±57.15 5.52 3.85±2.59 22.10 24.65±2.79 

Au:PVP 489 330±150 173.12 111.18±78.69 4.25 2.66±2.06 39.78 41.99±1.81 

AuNPs - - - - - - - - 

WO3 NPs - - - - - - - - 

Recording #3 

Pristine 121 47±42 216.98 122.98±70.92 6.05 3.95±1.93 20.18 32.04±8.79 

PEDOT 145 66±45 294.07 143.77±103.94 7.96 4.01±2.49 27.96 34.75±4.01 

PEDOT:AuNPs 337 200±137 184.98 151.9±46.78 4.6 4.03±0.58 34.4 37.31±2.91 

PEDOT:WO3NPs - - - - - - - - 

Au 63 29±22 121.03 116.61±4.89 4.81 4.17±0.39 25.18 28.14±1.91 

Au:PVP 338 236±71 176.55 137.21±68.23 4.97 3.50±1.62 28.82 39.83±5.95 

AuNPs 56 56 129.87 43.29±74.98 4.95 2.48±2.48 26.22 26.22 

WO3 NPs - - - - - - - - 
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Section G 

Table 6.17 – Electrodeposition parameters used for coatings with different materials.  

  Time (s) 

I (nA) Material 0.5  1 2 5 8 10 12.5 15 

-5 Au:PVP - - 14%*** 

(D1) 

- - - - - 

 AuNPs - - - - - - - - 

 WO3NPs - - 13%*** 

(D1) 

- - NCZ - - 

-10 WO3NPs - - NCZ - - NCZ - - 

-15 WO3NPs - - NCZ - - NCZ - - 

-20 WO3NPs - - 10%*** 

(D1) 

- - 7%*** 

(D1) 

- - 

-30 Commercial Au - - - - - - - - 

 Au:PVP - - - - - - - - 

 AuNPs - - - - - - - - 

 WO3NPs - - NCZ - 28%** 

(D1) 

56%** 

(D1) 

- 22%*** 

(D1) 

 AuNPs on PEDOT - - - - - - - - 

 WO3NPs on PE-

DOT 

- - - - - - - - 

-60 AuNPs - - - - - - - - 

 WO3NPs - - NCZ - - NCZ - - 

-120 Commercial Au - - - - - - - - 

 AuNPs - - - - - - - - 

 WO3NPs - - 40%** 

(D2) 

- 15%** 

(D1) 

- - - 

-240 WO3NPs - 46%** 

(D2) 

- - - - - - 

-480 WO3NPs 42%** 

(D2) 

- - - - - - - 

+5 WO3NPs - - - EC - EC - - 

+10 WO3NPs - - - - - - - - 

+15 WO3NPs - - - - - - - - 

+20 WO3NPs - - - - - - - - 

+30 AuNPs - - - - - - - - 

 WO3NPs - - - - - EC - - 

 PEDOT - - - 93%* 

(D4) 

- - - 97%* 

(D3) 

 PEDOT + AuNPs - - - NCZ - - - - 

 PEDOT + CNTs - - - - - - - - 
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  Time (s) 

I (nA) Material 17  20 25 30 40 50 60 90 

-5 Au:PVP - - - 40%** 

(D1) 

- - - - 

 AuNPs - - - 9%*** 

(D1) 

- - - - 

 WO3NPs - - - 18%*** 

(D1) 

- - 10%*** 

(D1) 

- 

-10 WO3NPs - - - 13%*** 

(D1) 

- - - - 

-15 WO3NPs - - - - - - - - 

-20 WO3NPs - - - - - - - - 

-30 Commercial Au - - - NCZ 15%*** 

(D1) 

- 54%** 

(D1) 

40%** 

(D1) 

 Au:PVP - - - 74%** 

(D2) 

- - - - 

 AuNPs - - - NCZ - - NCZ - 

 WO3NPs - - - 23%** 

(D2) 

- - 20%** 

(D2) 

- 

 AuNPs on PEDOT - - - - - - - - 

 WO3NPs on PE-

DOT 

- - - - - - NCZ - 

-60 AuNPs - - - - - - - - 

 WO3NPs - - - - - - - - 

-120 Commercial Au - - - - - - - - 

 AuNPs - - - - - - - - 

 WO3NPs - - - - 15%** 

(D1) 

- - - 

-240 WO3NPs - - - - - - - - 

-480 WO3NPs - - - - - - - - 

+5 WO3NPs - EC - EC - EC - EC 

+10 WO3NPs - - EC - - - - - 

+15 WO3NPs EC - - - - - - - 

+20 WO3NPs - - - - - - - - 

+30 AuNPs - - - - - - EC - 

 WO3NPs - EC - - - - EC - 

 PEDOT - - - 97%* 

(D1) 

- - - - 

 PEDOT + AuNPs - - - 97%* 

(D2) 

- - - - 

 PEDOT + CNTs - - - 94%* 

(D2) 

- - - - 
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  Time (s)     

I (nA) Material 120  180 300 600     

-5 Au:PVP 52%** 

(D1) 

- - -     

 AuNPs - - - -     

 WO3NPs - 12%*** 

(D1) 

2%*** 

(D1) 

-     

-10 WO3NPs - 9%*** 

(D1) 

- -     

-15 WO3NPs - - - -     

-20 WO3NPs - - - -     

-30 Commercial Au 78%** 

(D4) 

95%** 

(D2) 

- -     

 Au:PVP 82%** 

(D3) 

58%** 

(D2) 

- -     

 AuNPs NCZ NCZ NCZ NCZ     

 WO3NPs 50%** 

(D2) 

36%** 

(D1) 

- -     

 AuNPs on PEDOT - - - -     

 WO3NPs on PE-

DOT 

- - - -     

-60 AuNPs NCZ - - -     

 WO3NPs 37%** 

(D2) 

- NCZ -     

-120 Commercial Au 85% 

*** 

(D3) 

- - -     

 AuNPs NCZ - NCZ -     

 WO3NPs 85%** 

(D2) 

- - -     

-240 WO3NPs - - - -     

-480 WO3NPs - - - -     

+5 WO3NPs - - - -     

+10 WO3NPs - - - -     

+15 WO3NPs  - - -     

+20 WO3NPs - - - -     

+30 AuNPs EC - EC -     

 WO3NPs EC EC - -     

 PEDOT 98%* 

(D1) 

- - -     

 PEDOT + AuNPs - - - -     

 PEDOT + CNTs - - - -     
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Table Legend: 

* - Stable impedance, excellent deposition; 

** - Unstable impedance (stabilizes at impedance values superior than those after depo-

sition), good deposition; 

*** - Very unstable impedance (normally returns to initial values), bad deposition; 

D1 – One sample; 

D2 – Between 2 and 5 samples; 

D3 – Between 5 and 10 samples; 

D4 – More than 10 samples; 

EC – Electrochemical cleaning of the probe electrodes; 

NCZ – No change in impedance observed, no deposition. 
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Section H 

Atlas map corresponding to the section where the silicon HPD was inserted during surgical 

procedure. 

 

Figure 6.15 – Atlas map of the rodents’ brain where the probe was inserted (red arrow pointing insertion region). 

Insertion coordinates are AP (Y) 3.24 mm, ML (X) 1.75 mm and (Z) -3.417 mm.  

Table 6.18 – Coordinates for the different recordings, respectively. 

 ML (left to right) Z (top to bottom) 

Rec #1 1.647 mm -4.138 mm 

Rec #2 1.692 mm -4.188 mm 

Rec #3 1.730 mm -4.230 mm 

 

 


