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Abstract

We derive super-replicating bounds on European option prices when the underlying asset is
illiquid. llliquidity is taken as the impossibility of transacting the underlying asset at some
points in time, generating market incompleteness. We conclude that option price bounds
follow a Black—Scholes partial differential equation where the volatility term is adjusted to
reflect different levels of illiquidity.
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1 Introduction

In frictionless complete markets, absence or arbitrage results in a unique price for
an option. The option’s price is given at any point in time by the value of the
continuously rebalanced portfolio that replicates the payoff of the option at maturity.
In economies with market frictions, however, classical valuation theories fail and there
is no longer an uniquely determined option price. Examples of such market frictions
widely studied in the literature include transaction costs, trading restrictions, taxes
and borrowing costs. In this work, the imperfection studied is the existence of liquidity
constraints.

Liquidity is often defined in terms of the bid-ask spread and/or transaction costs.
In this sense, illiquidity is the situation where traders face higher trading costs than
at other times or in other markets. However, market participants feel illiquidity
in a rather different way. Traders view illiquidity as a restriction on their ability
to transact an asset, rather than the existence of transaction costs. This type of
illiquidity became more relevant after the recent financial crises when some markets
temporarily disappeared. Besides Longstaff (2001), this type of liquidity has not been
given much attention, although being an important characteristic of actual financial
markets.

We consider illiquidity as the impossibility to transact the underlying asset at
given points in time. Therefore, markets are no longer complete and the ability
to construct at any point in time a replicating portfolio is constrained. We follow
the super-replication approach developed by El Karoui and Quenez (1991,1995) and
Karatzas and Kou (1996) to construct the best possible replicating portfolios under
this incomplete market structure. This approach determines the minimum (maxi-
mum) value that allows a trader selling (buying) options to hedge completely his
position. Such values are arbitrage-free bounds for the option price.

In this work, option price bounds are generated only as a consequence of illiquidity
in the stock market. This way of modeling the bid-ask bounds comes very much in
the spirit of the recent paper of Cho and Engle (1999), who empirically explain
option spreads by the illiquidity of an underlying market, rather than by the usual
imperfections'.

The note is organized as follows. Section 2 introduces the model and derives the
cost of the super-replicating portfolios for both a long and a short position in options.
Section 3 derives upper and lower bounds in a more flexible way of defining illiquidity.
The last section presents the main conclusions. Proofs are presented in the appendix.

I Examples of other imperfections that result in options price bounds are transaction costs studied
in Leland (1985), Boyle and Vorst (1992) and Constantinides and Zariphoupoulou (1999), among
others, and trading restrictions as in Naik and Uppal (1994) and Jouini and Kallal (1995). The
assumption of stochastic volatility also led Frey and Sin (1999) to derive bounds to the prices of
European options and Cochrane and Sas-Requejo (2000) developed bounds in a more general setting
of incomplete markets.



2 The Model

Let the stock price follow a binomial process over discrete periods. In each period
the stock’s value evolves according to the rates U and D, where U > R > D and R
denotes one plus a constant riskless interest rate over each time period. This way of
modelling the evolution of the stock price follows Cox, Ross and Rubinstein (1979).

Consider a European call option with exercise price K and 7" periods to maturity.
At time t = 0 the option is traded for a value C. At time t = T the option matures
and its value is given by Cr; = max(0,U'DT~'S — K) where i = 0,1, ..., T denotes
the number of upward movements of the stock price until maturity.

If there are no arbitrage opportunities, the call option must be worth the same
as the cheapest portfolio that exactly replicates the value of the call at each point in
time. This portfolio consists of A shares of the stock and an amount B in riskless
bonds. As time changes, the portfolio is adjusted to continue replicating the final
payoff of the call option.

The way we defined illiquidity in the underlying asset makes the construction of
such a replicating portfolio impossible, in the sense that it can not be readjusted at
all the points in time.

Assume in this section that the portfolio constructed at time ¢t = 0 can not be
adjusted until time ¢ = T and consider a financial institution selling a call option at
t = 0. In order to be hedged maximizing its wealth, the institution must minimize the
cost of replicating the payoff of the option at maturity. In other words, the problem
of the intermediary is

Min AS+ B
{A, B}

subject to the terminal conditions:
AU'DT—S + BRT > Cr; fori=0,...T

The solution to this problem is obtained following El Karoui and Quenez (1991, 1995)
and is given by . . . -
— 1 (R —D U'—R
O=gr [gr—prCrr T gr—proo|- M)
This discrete time model can be used to derive a continuous time valuation equa-
tion, following Cox, Ross and Rubinstein (1979). Notice that in this context, the
expected rate of increase of the underlying asset per unit time is pU + (1 — p) D,
where p denotes the probability that the rate is U. Also per unit time, the variance of
the value of the underlying asset is then given by 02 = S%p (1 — p) (U — D)* . Suppose
now that each original time period is divided into 1/h smaller periods. The issue in
order to take the limit A — 0 is to suitably characterize the evolution rates for each
of these small time intervals. To preserve the expected rate of increase and variance



of the value of the underlying asset per unit time in the limit above, Cox, Ross and
Rubinstein (1979) show that the rates of increase per time interval h may be adjusted
as Uy, = e"‘/ﬁ, Dy, = e°V* and R;, = R". Substituting them in equation (1), it follows
that

C(S,7) = %WhC’(eT"\/ES, T —Th)+ (1 —m,) Ce ™VRS, 7 — Th)

where
elog RT _ echr\/E

Th = eTcr\/E _ efTa\/E

and 7 denotes the time to maturity. Then, expanding the function C around (S, 7)
and then each exponential around h = 0, in the limit when h — 0 the equation above
becomes the Partial Differential Equation (PDE)

1 2
a%TazSz + g—gS(log R) — C(logR) — %—f =0. (2)
This is simply the Black-Scholes PDE changed by the fact that the volatility o is
replaced by ov/T.
On the other hand, if the financial institution is concerned about the cost of

replicating a long call option on the same underlying asset, its problem is

Max AS + B
{A, B}

subject to the terminal conditions:
AU'DT'S + BRT < Cr; fori=0,..,T.

The solution to this problem depends on the relation between R? and the value of
the asset at each rebalancing point in time. Let = be defined as the integer satisfying
UT-@t)patl « RT « UT=2D* and 0 < 2 < T — 1. Following Karatzas and Kou
(1996), the lower bound to the price of the call option, is given by

1 UTf(erl) Dz+1 Ur-=p» _ RT

C= RT |UT—=zpz — JT—(a+1) pa+1 Crrs + UT-z Dz _ [JT—(z+1) Da+1 Crra

Proceeding as before, in the continuous-time limit the bound above can be shown to
satisfy the PDE

10°Co? , 8C oC

which is, once again, the Black-Scholes PDE where the volatility o is replaced by

a/VT.



3 General Model

This section develops a more flexible way of characterizing illiquidity. In the former
section, the underlying asset could not be transacted after ¢ = 0 and before t = T It is
now assumed that, in the discrete-time setting, the asset cannot be transacted during
f consecutive points in time and then can be transacted for g consecutive points in
time. This structure is repeated until the maturity date 7. In other words, for all
integer a < 7;—;5 the asset is not transacted for t € U, [a (f +g) + 1,a(f +g) + f]
and may be transacted in the remaining set of points in time. Under this setting, an

analogous development of the upper and lower bounds can be made, leading to the
following PDE:

1°C (f+1)°+(9g—1) ,, 0OC oc
205? ftg 05 + 55 S(log R) — Clog R) — 7= =0 (4)
for the upper bound and
1820 g 2 o2 (90 aC
2052 f_+ga S +%5(10gR)—C(logR)—E_() (5)

for the lower bound.

As before, option price bounds follow a Black-Scholes PDE with an adjustment
in the volatility. Notice that when it is possible to trade the underlying asset in
every point in time, i.e. when f = 0, equations (4) and (5) are exactly equal to the
Black-Scholes PDE. Notice also, that equations (2) and (3) can be readily obtained
respectively from (4) and (5) by considering that, according to the assumptions in
section 2, there is a sequence of T'— 1 points in time where we cannot transact the
underlying asset, i.e. f =T — 1, followed by just one point where the asset can be
transacted, i.e. g = 1.

4 Conclusion

The model presented introduces illiquidity in the sense that it is not be possible to
transact the underlying asset in every point in time. This inability to adjust the
hedging portfolio will result in additional risk for traders. Therefore, there is no
price that guarantees the absence of arbitrage opportunities for both short and long
position in the trade of options. In this work, super-replication bounds on European
options prices are derived under this assumption.

Super-replicating price bounds follow a Black-Scholes PDE where the volatility
comes adjusted to consider different levels of illiquidity. As expected, the Black-
Scholes price lies between these arbitrage-free bounds. Moreover, as liquidity in the
underlying asset increases, bounds become narrower and collapse in the Black-Scholes
price.
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A appendix

A.1 The PDE for the upper bound

Let g be the number of initial points in time with transactions, including t = 0; f
is the number of points in time between two consecutive transactions, that is, f + 1
is the number of perlods one have to wait to transact again the underlying asset;
p— T3] D and 7 = gT or- Then,

1. the term multiplying C' is
g—1 ) )
> ("= p) = (L4 (g + f)hr) = —(g+ Phr

1=0

2. the term multlplylng 2= is

-1

92) (4P (=P (=g + HB) = —(g + s

3. the term multlplymg 0’\/_ hS' is

S (7 e i 420+ i -9l = 2
and finally

4. the term multiplying 2 852 9C 52hS? is

) (20 f 42— g (L) f 0]
=(f+1)2*+g-1

Then, the partial differential equation can be rewritten as

2
—rC — 95 4+ 9 Sr + BS§U2S2£—LJrl 19

f+g

A.2 The PDE for the lower bound

Let g be the number of initial points in time with transactions, including ¢t = 0; f
is the number of points in time between two consecutive transactions, that is, f + 1
is the number of periods one have to wait to transact again the underlying asset;
p—— and P’ = RT D . Then,

1. the term multiplying C' is
g—1

> ()P = pp T = (L4 (g + Hhr) = (g + b

1=0

6



2. the term multlplymg £= is
g—1

S ()P =) (g + £)R) = ~(g + b

1=0

3. the term multlplymg 0’\/_ hS' is

Z (g i 1)?’“ ~ P 22— )+ (1= )2 = g)] = —=(f +9)
and finally

4. the term multiplying 2 852 9L 52hS? is

g—1

(W i 42— g (1 )2~ g = g

Then, the partial differential equation satisfied by the call price is given by

252—‘L—0

ac | aC
—rC — 5=+ Sr—|—8520 o



