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ABSTRACT 

The study of the effect of radiation on living tissues is a rather complex task to address mainly 

because they are made of a set of complex functional biological structures and interfaces. 

Particularly if one is looking for where damage is taking place in a first stage and what are the 

underlying reaction mechanisms. In this work a new approach is addressed to study the effect 

of radiation by making use of well identified molecular hetero-structures samples which mimic 

the biological environment. These were obtained by assembling onto a solid support 

deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing 

polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface 

with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams 

were systematically investigated in these heterostructures, namely damage on DNA by means 

vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance 

spectroscopy. Experimental results revealed that UV affects furanose, PO2
-
, thymines, cytosines 

and adenines groups. The XPS spectrometry carried out on the samples allowed validate the 

VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium 

counterions, congregate hydration water molecules which play a role of UV protection. The ac 

electrical conductivity measurements revealed that the DNA electrical conduction is arising from 

DNA chain electron hopping between base-pairs and phosphate groups, with the hopping 

distance equal to the distance between DNA base-pairs and is strongly dependent on UV 

radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to 

a 4 keV C
3+

 ions beam revealed also carbon-oxygen bonds break, phosphate groups damage 

and formation of new species. Results from radiation induced damage carried out on biomimetic 

heterostructures having different compositions revealed that damage is dependent on sample 

composition, with respect to functional targeted groups and extent of damage. Conversely, LbL 

films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) 

liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even 

by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG 

molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O 

and –PO
2-

 bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces 

revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA.  

In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be 

smaller, which means that ionic products from biomolecules degradation stabilize the intact 

DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate 

cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV. 

 

 

KEYWORDS: Biomimetic, Biomolecules, Impedance biosensor, Ion damage, Langmuir films, 

Liposome, UV Radiation damage, Thin films 
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RESUMO 

O estudo do efeito da radiação em tecidos vivos constitui uma tarefa complexa uma vez que 

estes são constituídos por um conjunto de estruturas biológicas com interfaces e funções 

específicas e complexas. A complexidade aumenta quando se pretende estudar onde ocorre o 

dano numa primeira fase e os posteriores mecanismos de proliferação dos danos. Neste 

trabalho é utilizada uma nova abordagem para o estudo do efeito da radiação, recorrendo ao 

uso de heteroestruturas preparadas com moléculas bem identificadas que simulam o meio 

biológico. Neste trabalho foram desenvolvidas heteroestruturas em substrato sólido, compostas 

por diferentes combinações de ácido desoxirribonucleico (ADN), fosfolípidos e polieletrólitos 

que possibilitam a retenção das moléculas de água, e pela produção de camadas lipídicas na 

interface líquido/ar, com solução aquosa de ADN como subfase. Os danos por radiação 

ultravioleta (UV) e feixe de iões carbono (C
3+

) foram caracterizados por espectroscopia de 

ultravioleta de vácuo (VUV), de infravermelho (IV), de fotoeletrões de raio-X (XPS) e de 

impedância. Os resultados revelaram que a radiação UV danifica as moléculas de furanose, 

timina, citosina, adenina e os grupos PO
2-

. Os resultados de XPS obtidos permitiram não só 

validar os resultados já obtidos como também concluir que os grupos fosfato ionizados, 

rodeados por iões sódio, retêm água, protegendo-os da radiação UV. As medições de 

condutividade eléctrica do ADN revelaram que a condução processa-se por saltos de electrões 

entre os pares de base e os grupos de fosfato com a distância de salto igual à distância entre 

os pares de bases de ADN sendo, devido à perda de grupos fosfato, dependente da exposição 

à radiação UV. A caracterização de amostras de ADN exposta a um feixe de iões de C
3+

 

revelou também a quebra de ligações carbono-oxigénio, danos nos grupos fosfato e formação 

de novas espécies. Dos resultados obtidos foi possível concluir que os danos induzidos pela 

radiação nas heteroestruturas biomiméticas, cuja composição varia entre estudos, dependem 

da composição da amostra, afetando diferentes grupos moleculares e em diferentes extensões. 

Por outro lado, filmes LbL de 1,2-dipalmitoil-sn-glicero-3-[fosfo-rac(1-glicerol)] (sal de sódio) 

(DPPG) lipossomas, alternado com poli (cloridrato de alilamina) (PAH) revelaram-se 

inalterados, mesmo em caso de exposição prolongada a radiação UV na ausência de 

moléculas de água. No entanto, as moléculas de DPPG foram danificadas por radiação UV na 

presença de água, com a quebra de ligações CO, C=O e -PO
2-

. Finalmente, o estudo da 

interacção de ADN com lípidos iónicos nas interfaces líquido/ar revelou que a carga eléctrica 

do lípido influencia a sua interacção com o ADN. Na presença de ADN na subfase, os efeitos 

de radiação UV foram visivelmente menores, o que significa que os produtos iónicos de 

degradação das biomoléculas estabilizam as moléculas intactas de DPPG. Este mecanismo 

pode explicar por que a radiação UV não causa o colapso das células imediato, dando tempo 

para a célula ativar os mecanismos de reparação, corrigindo os danos causados pela radiação 

UV. 

PALAVRAS-CHAVE: Biomimética, Biomoléculas, Biosensor de Impedância, Danos por iões, 

Danos por radiação UV, Langmuir filmes, Lipossomas, Filmes finos  
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1. INTRODUCTION 

The mutagenic or lethal effects of ionising radiation at the cellular level can be traced to structural and 

chemical modification of the biomolecular environment and its constituents. As far as radiation is 

concerned, not only is deoxyribonucleic acid (DNA) found to be a sensitive biomolecule in living tissue, 

but also the effects on the cellular constituents, namely the cell membrane, are not to be discarded 

particularly when its role on the interface mechanisms within the cell are vital for the physiological 

balance survival. Although the radiation damage in biological tissues has been extensively 

investigated, the processes that occur at molecular level are not well understood [1]. In fact, it is 

known that when ionizing radiation attains the matter, it produces in very short periods of time large 

amount of ions, radicals, excited neutrals and ballistic secondary electrons with initial kinetic energies 

below 100 eV [2,3], which causes physical and chemical modifications in the medium. Moreover, it 

was shown that electrons with energies between 4 to 6 eV induce strand break formation in double-

stranded supercoiled DNA [3,4]. Concerning the effect of low energies, in the ultraviolet range, several 

efforts have been developed in order to attain answers about interaction mechanisms leading to 

damage at the molecular level. Results of radiation damage carried out in DNA plasmid investigated 

using 7-150 eV synchrotron radiation [5], revealed DNA single-strand (SSB) and double-strand (DSB) 

breaks occurs in all energy range, for both dry and solution plasmid DNA. The presence of water 

molecules was seen to boost the radiation effect [6], due to OH
●
 radical and other reactive oxygen 

species, such as the superoxide radical and oxygen peroxide. It is now well established that low 

energy electrons (< 30 eV) on DNA/RNA and its constituents (the nucleotide bases, nucleosides and 

water) can increase the damage probability, at very specific incident energies or resonances [4,7]. 

Moreover, the effect of these low energy electrons through dissociative electron attachment processes 

have been found to be site and bond selective as a function of the energy [8].  

Due to the complexity of biological tissues and to go further in the research of the radiation effects on 

biological molecules a new approach should be addressed in order to obtain well controlled biological 

samples in an environment close to the cell. This new approach involves the production of functional 

biomimetic heterostructures, namely, membranes and rudimentar cells at planar interfaces. In this 

context, will be necessary to keep the membrane in an as far as much natural aqueous environment, 

and for the sake of quantitative characterization, it is desirable to have it at a planar solid interface. A 

strategy to accomplish this is to assemble, at a liquid/solid interface, biological molecules as lipids, 

DNA, proteins and enzymes together with a soft cushion of adsorbed polyelectrolytes having high 

water content [9,10]. Another possibility is to produce lipid layers at a liquid/air interface and 

introducing cell constituents as DNA, through the liquid phase – Langmuir membranes [11]. These 

heterostructures can be exposed to radiation and the damage can be quantified in each constituent 

[12]. As DNA molecule is within the cell nucleus responsible for the transmission of the genetic 

information, stress should be made on of radiation damage to this molecule. The importance given by 

the scientific community to the study of DNA, the richness and diversity of the existing literature, 

motivated for the present doctoral project. Thus the effect of UV radiation and Carbon Ions beams 

onto DNA and phospholipids cast films and on biomolecular heterostructures has been addressed to 
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better understand radiation damage in these biological molecules under conditions close to the cell 

environment, where water molecules are known to play a relevant role.  Due to past experimental 

results within this thematic, this work started with the characterization of the effect of UV radiation on 

DNA cast films by means of by vacuum ultraviolet spectroscopy (VUV), Fourier transform infrared 

spectroscopy (FTIR) and X-ray photoelectrons spectroscopy (XPS). The obtained results with the 

nitrogenous bases showed that the damage depends on the nature of the heterostructure in the study, 

thus it was considered more appropriate to the study of the DNA molecule instead of their various 

elementary units. The studies performed show that although these may be visible changes in the VUV 

spectrum of films of DNA, they are not sufficient to characterize the changes at the molecular level, 

unlike infrared spectroscopy that has shown that most characteristic bands of chemical bonds 

decreased in intensity, and generally the affected bonds are the C-O stretch of the furanose in 

backbone, in the PO2
-
 groups, in the thymines, cytosines and adenines groups. UV radiation was 

shown to affect the thymines involved in reverse Hoogsteen third strand binding which is consistent 

with the observed decrease C2=O2 stretching of thymines involved in reverse Hoogsteen third strand 

binding, while the C2=O2 stretching vibration of thymine in single or double-stranded remain 

unchanged. The XPS spectroscopy allowed validate the VUV and IR results and conclude that ionized 

phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules 

which play UV radiation protection a role. At a later stage of this work came the opportunity of also 

conducting studies on damage caused by ion beams, namely carbon ions. Since the exposure of 

carbon ions beam is being currently addressed for cancer therapy, measurements on their effect on 

DNA samples have also been included in this thesis.  

In real biological systems the DNA molecule is within the nucleus, which consists of a phospholipid 

membrane, thus it was considered important, after the study of radiation damage in the DNA chain, 

understand if the phospholipid membrane comprises a barrier protective radiation or present other 

behaviour. It was considered important to carry out studies on the effect of UV radiation on 

phospholipids but, due to the short and limit period of time to access to the synchrotron facilities, just 

one phospholipid was selected, DPPG, because is an constituent of lung, that is one of most affected 

tissues in the case of carcinogenic pathology. DPPG solution and DPPG cast films were prepared and 

to facilitate the DPPG adsorption on the substrate and to preserve the water molecules in the sample, 

DPPG/PAH layer-by-layer films were prepared. The samples were irradiated and studied by UV 

spectroscopy and atomic force microscopy, allowing the UV spectrum characterization and concluding 

that the LbL films were not affected by prolonged UV irradiation in the absence of water molecules 

indicating that the VUV technique can be used for characterization of lipid heterostructures. 

After isolated DPPG studies, to simulated the system nuclear biomembrane with DNA inside, 

phospholipid Langmuir monolayers were prepared with DNA in the subphase. The results allowed 

concluding that the presence of DNA in the subphase influences the stability of monolayers of DPPG 

due to the interaction of charges. To further understand the influence of ionic strength study were also 

conducted studies with EDPPC monolayers, that these results demonstrated the importance of the 

ionic nature of the monolayers, in this case, the monolayer stabilized by the presence of DNA. In the 

case of DPPG, given the importance of developing anti-cancer therapies for lung, the work progreed 
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with the study of the effect of radiation on DPPG monolayers, having concluded that at high surface 

pressures, corresponding to a real membrane, the DNA molecules decreased monolayer instability 

caused by irradiation. 

Finally being the radiation necessary for the anticancer therapy emerged the idea to create a radiation 

biosensor that allows monitors the radiation exposure during the therapies. The electrical impedance 

sensors are the most adequate to this function, so DNA cast films electrical characterization was done 

by impedance spectroscopy. The obtained results reveals experimentally about the DNA electrical 

conduction mechanism was electron hopping between base-pairs and phosphate groups, where these 

work as electron acceptors. The hooping distance was calculated using the correlated barrier hopping 

(CBH) model and revealed to be equal to the distance between base pairs. The results obtained show 

that the electrical conductivity can be used to monitor DNA damage by UV radiation, condition 

important to the UV radiation biosensor. Moreover, it was found that the electrical conductivity is 

proportional to the number of phosphate groups in the DNA chain, and therefore, this conclusion 

allows explain the divergence found in the literature about its electrical properties where there is no 

agreement is DNA is conductor, semiconductor or insulator. 

This thesis is organized into four more sections. Section two presents a literature review on 

fundamental concepts to focus the presents work, an explanation of biological environment and its 

main constituent, a description of the phenomena of radiation-matter interaction and finally the 

potential of mimicking the cellular medium and its application to the biosensors development. On 

section three the artificial membranes preparation techniques are addressed stressing materials and 

methods the details of particles sources used to irradiate the samples are presented and finally 

description of sample techniques characterization are summarized. In section four, the scientific 

papers which compile the experimental data obtained during the implementation of the PhD work are 

presented. Finally, the section five contain the principal conclusion obtained in this study, the future 

prospects and finally the publications and communications presents during the works period.  
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2. THE EFFECTS OF RADIATION ON BIOLOGICAL SYSTEMS 

The study of physical and chemical damage occurring in models of the cellular environment, termed 

biomimetic systems, was the purpose of the work presented in this dissertation. This chapter 

examines the theoretical concepts necessary to understand the experimental results, in particular the 

cell model, the interaction between radiation and the cellular environment, processes for mimicking 

cell and the use of these models in the development of biosensors for radiation. 

2.1. BIOLOGICAL ENVIRONMENT 

2.1.1. THE CELL 

The cell is the basic unit of life. It is the structural and functional unit of all living beings. The cells were 

first observed in 1665 by Robert Hooke [13] when examining cork slides under a crude microscope. A 

cell theory was only developed in 1847 by Theodor Schwann and Matthias Jakob Schleiden stating 

that all organisms are composed of one or more cells. All cells come from preexisting cells. Vital 

functions of an organism occur within cells [14], and all cells contain the hereditary information 

necessary for regulating cell functions and for transmitting information to the next generation of cells 

[15]. There are two main groups of cells, prokaryotic and eukaryotic cells. 

 

(i) Prokaryotic: These cells are usually small, lack a nucleus and do not have any membrane-bound 

organelles (see figure 2.1.A). The genetic information of prokaryotes is typically in nucleoid of DNA 

strands arranged in a circular shape, but they may have additional DNA in a circular loop called a 

plasmid [16,17,18]. 

 

(ii) Eukaryotic: These cells are more complex than prokaryotic cells. Its volume is about 10 times 

higher than the prokaryotic cells and may reach volumes 1000 times larger. The main differences are 

the existence of many types of organelles and a nuclear membrane which stores the DNA that offers a 

spiral configuration associated with proteins (see figure 2.1.B). The complex of DNA and proteins is 

called chromatin. The membrane that surrounds this type of cell contains the same functions as a 

prokaryotic cell membrane, varying slightly in the configuration. Unlike in animals, plants present cell 

waals which prevent the cellular expansion after absorbing water [16,17,18]. 

(A)          (B) 

Figure 2.1. Cell structure: (A) Prokaryotic cell; (B) Eukaryotic cell [19]. 
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2.1.2. CELL MEMBRANE 

The cell membrane, also known as plasmatic or cytoplasmic, represents one of the main components 

of the cell, since it defines the bounds and adjusts the transport mechanisms across cell waals. The 

membrane structure obeys the Fluid-Mosaic model, suggested by Seymour Jonathan Singer and 

Garth L. Nicolson in 1972, which states that the membrane is considered a two-dimensional liquid 

where molecules diffuse freely [20]. Despite this model being the one accepted by the scientific 

community, research is still ongoing. It is, however, well known that the fluidity of the membrane 

depends on the type of connection that occurs between the phospholipids. Connections only occur 

between phospholipids and proteins, without any covalent bonds, resulting from hydrophobic forces 

and hydrogen bonds [16,17,18]. The cell membrane is essentially formed by a phospholipid bilayer 

with integral (intrinsic) and peripheral (extrinsic) proteins, as depicted in figure 2.2. The cell membrane 

displays characteristics such as high hygroscopicity, selective permeability, a porous surface, a 

system for active transport of ions and numerous enzymes across the membrane which help its 

molecular stabilization. In addition, eukaryotic membranes have significant amounts of cholesterol that 

decreases membrane fluidity due to the presence of its rigid planar ring structure [16,17,18]. 

 

 

Figure 2.2. Eukaryotic cell membrane structure – Fluid-mosaic model [21]. 

 

 

2.1.3. PHOSPHOLIPIDS 

As already mentioned, a phospholipid bilayer forms the body of the biological membranes. Although 

the lipid molecules belong to a quite heterogeneous family with diverse structures, they all exhibit 

water insolubility and solubility in organic solvents and are molecules formed by aliphatic chains that 

have –CH2– groups with at least eight carbons, where as there are rare exceptions having shorter 

chains. The lipids are classified according to the diagram displayed in figure 2.3 [16,17,18]: 
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Figure 2.3. Shematic summary of lipids classification. 

 

 

In the body these molecules are mediators of intra and intercellular signaling, they also constitute the 

main energy reserves (triacylglycerols) and lastly, they are the main structural elements of biological 

membranes. Although the relative amount of each type of lipid varies according to the organism the 

membranes hold [16,17,18]: 

 

 

(i) Glycerophospholipids: They are the main constituents of biological membrane since they form the 

double lipid layer. They have a highly polar head group, integrated with a phosphate group, and a 

nonpolar aliphatic tail [16,17,18]. 
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Figure 2.4. Glycerophospholipids structure [16,17,18]. 

 

Table 2.1. Example of glycerophospholipids composition [16,17,18]. 

Glycerophospholipid 

designation 

Substituent Group 

designation                                                                           

Substituent Group 

structure 

Phosphatidic acid Hydrogen -H 

Phosphatidylethanolamine Ethanolamine -CH2-CH2-NH3
+
 

Phosphatidylcholine Choline -CH2-CH2-N
+
-(CH3)3 

Phosphatidylserine Serine -CH2-CH2-N
+
-(CH3)3 

Phosphatidylglycerol Glycerol -CH2-CHOH-CH2OH 

Phosphatidylinositol Inositol -CH(CHOH)5 

 

 

(ii) Sphingolipids: Biological membrane’s second class of lipids which mostly derives of sphingosine 

(C18) and has an amine chain link connecting the hydrophobic chain to the hydrophilic head 

[16,17,18]. 

 

Figure 2.5. Sphingolip structure [16,17,18]. 

 

Table 2.2. Example sphingolip structure composition [16,17,18]. 

Sphingolipid designation 
Substituent Group 

designation 
Substituent Group 

structure 

Ceramide Hydrogen -H 

Sphingomyelin  Choline -CH2-CH2-N
+
-(CH3)3 

Glycocerebroside  Glucose -CH-(CHOH)4O 

Lactosylceramide Lactose C12H22O11 

Ganglioside Complex Oligosaccharide and Sialic Acid 
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(iii) Steroids: Structural lipids which provide rigidity to the membrane. Steroids are compounds 

possessing the skeleton of cyclopenta[a]phenanthrene or a skeleton derived therefrom by one or more 

bond scissions or ring expansions or contractions. Methyl groups are normally present at C-10 and C-

13. An alkyl side chain may also be present at C-17. Sterols are steroids carrying a hydroxyl group at 

C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain 

[16,17,18]. 

A   B 

Figure 2.6. Examples of steroids: A) Cholesterol; B) 24-methylene-3β,4β,22-trihydroxycholesterol. 

 

 

In the physiological environment phospholipid molecules aggregate in a crystalline state which allows 

an effective diffusion through biological membrane. The arrangement of hydrophilic heads and 

hydrophobic tails which allows selective diffusion is preventing the polar solute - amino acids, nucleic 

acids, proteins, ion – from crossing the membrane (its passage is made by a carrier protein) while the 

hydrophobic molecules pass through the membrane easily [16,17,18]. This is due to the special 

characteristics of phospholipids and the interactive forces between themselves - Colombian forces, 

hydrophobic and hydrogen bridges – making a cell capable to control its activity through exchanges 

between the intercellular medium and the extracellular medium. Inside the cell nucleus the same 

happens, such as it has a membrane formed by the same types of lipids that allow those types of 

exchanges. 

 

 

2.1.4. CELL NUCLEUS 

The nucleus is a membrane-enclosed organelle found 

in eukaryotic cells. It stores hereditary information as 

DNA and synthesizes RNA and ribosomes. The 

surface of the nucleus is bounded by two phospholipid 

bilayer membranes that form the nuclear envelope with 

a porous nature which confers permeability properties 

which allows efficiently exchanging substances with 

the cytoplasm [16,17,18].  

 

Figure 2.7. Cell nucleus structure: 1 – Nuclear envelope, 
2 – Ribosomes, 3 – Nuclear pores, 4 – Nucleolus, 5 – 
Chromatin, 6 – Nucleus, 7 – Endoplasmic reticulum, 8 – 
Nucleoplasm [22]. 
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When the cell is in a resting state there is chromatin in the nucleus. The chromatin clusters form the 

chromosomes that are thread-like structures located inside the nucleus of animal and plant cells. Each 

chromosome is made of protein and a single molecule of deoxyribonucleic acid. Passed from parents 

to offspring, DNA contains the specific instructions that make each type of living creature unique. 

 

 

Figure 2.8. Cell nucleus: composition and structural units [14,15,16, 19]. 

 

 

2.1.5. DEOXYRIBONUCLEIC ACID 

The most important molecule of life called deoxyribonucleic acid is found inside the nucleus. The 

presence of the DNA molecule in the cells was first detected in 1869 by the Swiss Friedrich Miescher 

[23] and its composition discovered by Russian Phoebus Aaron Levene in 1909 [24]. However, its 

structure was only published in 1953 by James Watson and Francis Crick [25]. Further in 1962, this 

discovery earned them a Nobel Prize of Medicine. The DNA is a long biopolymer whose monomers 

are nucleotides formed by a nitrogenous base (adenine, cytosine, guanine or thymine), a pentose and 

at least one phosphate group, and its sequence defines the genetic information that commands the 

development of any living being and its main vital functions. The DNA structure was also published in 

1953 by Maurice Wilkins and Rosalind Franklin in two separate works featured in Nature magazine 

[26,27], where the DNA molecule patterns of x-ray diffraction exhibited a diagram in X-form. This 

method helped uncovering its structural properties, and revealed the presence of a helix, and even 

exterior arches which put in evidence the repetitive nature of the structural units. 

These results were in agreement with the model proposed by Watson and Crick which argues that the 

DNA molecule (i) consists of two antiparallel helical polynucleotide chains coiled around the same axis 

to form a double helix (twisted in a right-handed fashion), (ii) provides the complementary base pairing 

which means the links between chains are made by pairs of specific molecules through hydrogen 

bonds, (iii) has the sugar and phosphate groups facing outwards in order to minimize the repulsive 

forces between the phosphate groups and nitrogen bases inside the helix (iv) obeys the rule of 

Chargaff, i.e. Adenine = Thymine and Guanine = Cytosine; (iv) is a very acidic species [16,17,18]. 
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Figure 2.9. DNA double helix. (A and C) Helical structure. (B) Molecular composition and complementary 
base-pairing [19].       

 

 

However, Watson-Crick Model does not mention this biopolymer’s ability to acquire various structural 

conformations (figure 2.10); it solely postulates the principles of the DNA molecule structure. 

In its most common form, B shape, the DNA molecule folds back upon itself in a complete loop every 

10.5 base pair (bp) [28]; though this value may vary according to disturbances in the environment, 

such as A shape, conformation acquired when the molecule undergoes denaturation [29,30] or Z-form, 

called zig-zag, when the molecule undergoes chemical transformation, which is the least common 

structure [31]. The main features of the three structures that can be found in living organisms are 

presented in figure 2.10 – the most common B form, the rarer forms A and Z – note that other may be 

obtained by manipulation of the molecule. 

 

 

Figure 2.10. DNA double helix structure properties of A, B and Z forms [32]. 
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Table 2.3. DNA double helix structure characteristics of A, B and Z forms [31]. 

 A form B form Z form 

Helix Diameter ≈ 2.6 nm ≈ 2.4 nm ≈ 1.8 nm 

Directional Torque Right Right Left 

Torque Angle +32.7º +34.6º -30.0º 

Helix Base Pairs per Turn 11.0 10.5 12.0 

Major groove 2.8 nm 3.4 nm 4.5 nm 

Minor groove 0.25 nm 0.33 nm 0.38 nm 

 

 

The conformation acquired by the double helix is strongly influenced by the type of stabilization forces 

acting on the molecule. These forces are a consequence of the base-stacking between nitrogenous 

bases which varies accordingly with the type of base pairing, its repetition sequence, the hydrophobic 

interactions and the ionic interactions resulting of the negatively charged phosphate groups’ protection 

by boding to divalent ions (repulsive forces). It is important to note that even though hydrogen bonds 

are extremely important in the double helix formation, these interactions do not have a role in 

stabilizing them [17]. 
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2.2. RADIATION – MATTER INTERACTION 

2.2.1. RADIATION  

Radiation consists in energy emission and propagation through matter or space using perturbations 

with wave-particle duality properties. In order to simplify classifications of the type of radiation existing 

in nature, the scientific community divided radiation in two different types: (i) Corpuscular radiation, 

related to atomic and subatomic particles propagating at high speed; (ii) Electromagnetic radiation as 

a result of combining an electric field and a magnetic field which propagate simultaneously through 

space carrying energy. Electromagnetic radiation is classified according to its wavelength in the 

electromagnetic spectrum (See figure 2.11). 

 

 

Figure 2.11. Regions of the electromagnetic spectrum and respective sources [33]. 

 

 

2.2.2. ELECTROMAGNETIC RADIATION AND BIOLOGICAL SYSTEMS 

Electromagnetic radiation consistently produces effects on tissue or in any other kind of biological 

material in a situation in which there is energy transfer from radiation into the medium and the 

radiation is absorbed. Electromagnetic radiation is classified as non-ionizing and ionizing radiation 

depending on the produced effects. Non-ionizing radiation is all the absorbed radiation which leads to 

electronic excitation, i.e., an electron passage to a higher state of energy; it is an example ultraviolet 

radiation above 200 nm, visible radiation, infrared and microwave radiation. Ionizing radiation refers to 

the type of radiation which is absorbed and drives the liberation of one or more electrons of an atom or 

molecule; examples are Gama-rays, X-rays and UV rays under 200 nm [34]. 
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2.2.2.1. Non-ionizing radiation 

The main biological effects caused by non-ionizing radiation can be divided in two different types: 

thermal effects and non-thermal effects. 

 

(i) Thermal effects: All the effects which produce an increase in the tissues temperature, which are a 

consequence of a direct heating of the biological tissue as a result of electromagnetic radiation 

absorption. Unlike non-ionizing radiation which has a higher wavelength, as in infrared radiation case, 

microwaves and radio-frequency radiation not only are absorbed by the skin but can also be absorbed 

by deeper layers of the tissues. Since temperature sensors can only be found in the skin, prejudicial 

effects can occur due to excessive heating in deeper regions which are not perceived by the living 

being [20,35]. 

(ii) Non-thermal effects: Electromagnetic energy non-thermal effects are the greatest concern basis 

because they involve the lowest energy fields. Unlike thermal effects which essentially depend on 

absorbed energy, non-thermal effects can significantly depend on the signal features, it being 

analogical or digital, and in addition, they can also depend on the type of modulation. Researchers 

defend that radio-frequency fields can influence cell membranes properties, including permeability, 

immune system response and also the activity of several enzymes. Nevertheless, studies have been 

inconclusive due to their inability to show cause-effect relations [36]. 

 

 

2.2.2.2. Ionizing radiation 

Ionizing radiation can be classified in two different types according to its mode of interaction on matter: 

directly ionizing radiation and indirectly ionizing radiation. 

 

(i) Directly ionizing radiation: Its energy is directly deposited through coulombian interactions on 

electrons contained in orbitals of atoms that constitute the medium. The main feature of this type of 

radiation is the fact that the ionizing particle is charged; examples include electrons, protons, alpha 

particles or heavy ions [34]. 

 

(ii) Indirectly ionizing radiation: The transfer process of radiation occurs in two stages: 

(1) In the medium, release of a charged particle occurs which can be an electron released by a photon 

or a proton released by a neutron. (2) The released particles interact with other atoms or molecules of 

the tissue, in particular with water molecules, producing highly reactive free radicals which have the 

ability to diffuse and subsequently damage the molecules constituting the cellular tissue [34]. 
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2.2.3. BIOLOGICAL EFFECT OF ELECTROMAGNETIC RADIATION 

The effect of radiation on biological systems is characterized by progressive formation of events which 

differ according to a time scale leading ultimately to biological damage [20].  

 

(i) Physical phenomena: They consist in interaction between charged particles and the atomic 

structures of tissues, which leads to ionization and ionic radicals formation in an extremely short time 

frame (around 10
-18

 s).     

 

(ii) Chemical phenomena: Formation of ion pairs through an ionization process which leads to 

formation of free radicals and chemical bonds rupture (around 10
-6

 s). 

 

(iii) Biological phenomena: The time that it takes to manifest biological damage after chemical bonds 

rupture is usually long, from a few hours to several days, weeks, months or even years. This type of 

damage is characterized by altering the proper functioning of cells or even cell death. Cellular activity 

is crucial for this kind of phenomena since cellular division requires DNA replication to be precisely 

performed; the higher the cellular activity is, the more vulnerable it becomes [37].  

When a molecule is irradiated there are two types of changes which can occur. In high LET (Linear 

Energy Transfer) radiation, the direct action effects prevail which renders a molecule in stable yet 

damage state. Regarding ionizing radiation, damages caused by indirect action are more ordinary 

because the initial radiation does not directly affect the target molecule, it hits another molecule 

instead. In a situation where cells have a water content of approximately 70%, reactive centers 

produced intracellularly which interact with target molecules are essentially originated from changes in 

water molecules [34]. When radiation strikes a water molecule, formation of OH• and H• free radicals 

occurs which are characterized by a short half-life, high reactivity and by the presence of hydrated 

electrons [34]. The reactions occurring during water radiolysis will be promptly described:  

 

     H2O  H2O
+ + e- 

  e- + H2O  H2O
- 

   H2O
+ + H2O  H+ + H2O + OH• 

   H2O
- + H2O  OH- + H2O + H• 

H+ + OH-  H2O 

Global Reaction         H2O  H• + OH• 

 

 

OH• radicals produced will essentially react with nitrogenous bases, even though in the sugar 

molecule reduction of the hydrogen atom may occur. In pyrimidines’ case (cytosine and thymine), OH• 

radicals are added to the double bond C(5)=C(6). Meanwhile, in pyridines’ case (adenine and 

guanine), the radical is added to one of the molecule’s double bonds, since any of them has reaction 

potential [38].  

Partial Reactions 

of Water 

Radiolysis  
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Figure 2.12. Example of the OH• radical representative reactions. (A) Pyrimidines; (B) Purines.  

Analogous to OH• radical, H• radical is also an electrophile which confers a high affinity for 

electronegative centers, as in C=C double bonds case. 

 

 

Figure 2.13. Example of the H• radical representative reactions in nitrogenous bases. 

 

 

In the presence of oxygen, most radicals are converted to the corresponding peroxyl radicals, with the 

exception of radicals composed of central heteroatoms which do not react in substantial amounts with 

O2 molecules [38]. 

 

e
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In basic or neutral medium, C(6)-peroxyl radicals show a sufficiently long half-life to experience a N(1) 

deprotonation followed by a O2•- radical elimination. In acid and basic medium where the radicals 

concentration is high, O2•- radical elimination is exceedingly slow and it becomes irrelevant when 

compared to the peroxyl radicals half-life [38].   

 

 

Figure 2.14. Example of reactions occurring in the presence of oxygen. 

 

Ionizing radiation can also lead to structural changes in several macromolecules present in cells. In 

lipids case, radiation damage comprises the formation of unsaturated fatty acids peroxides which 

induce structural changes in the cell membrane, inactivation of membrane receptor molecules and 

permeability changes. Regarding nucleic acids, changes occurring are essentially loss or damage of 

bases, thymine dimers formation, single or double strand breaks and also DNA-protein dimmers 

formation (figure 2.15) [39,40], as well as liking chains and adducts [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Types of damage produced by 
ionizing radiation in the DNA molecule. 

5-Hydroxyuracil 

Isobarbituric Acid Uracilglycol 
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2.3. CELL MEDIUM MIMETIZATION 

2.3.1. BIONIC AND BIOMIMETICS 

Biomimetics is a technologically-driven approach which employs fundamental principles of nature’s 

design. According to Benyus [42] there are three factors that describe this new field of study. 

 

(i) Nature as a model: Study and mimicking of nature’s models, using those as a source of inspiration 

for models and processes aiming to solve essential human problems. 

 

(ii) Nature as a standard measure: Use of ecological time scales to evaluate the relevance of human 

innovations. Nature, after four billion years of evolution, has optimized the things which work, last and 

are fit.  

 

(iii) Nature as a mentor: Observation and evaluation of nature from a different perspective aiming to 

the beginning of a new era based on what we can learn from Nature and not on what we can extract 

from it.  

 

According to Podborschi et al, bionics or biomimetics is a science which studies the principles of 

nature followed by application of these principles [43]. Since biomimetics deals with application of 

biological system’s principles, structures and processes, this field of study has become an 

interdisciplinary area which combines biology and engineering, architecture and mathematics [44,45].  

 

Podborschi et al [43] classify bionics according to five primary categories:  

(i) Total mimetics: The product’s material structure is indistinguishable from its natural model. 

Examples are the flying machine first attempts of construction. 

 

(ii) Partial mimetics: Modified version of the natural model, as an example is artificial wood. 

 

(iii) Non-biological analogy: Functional mimetics used, for example, in developing building support’s 

surfaces and structures.  

 

(iv) Abstraction: Use of an isolated mechanism, an example is upgrading of fiber resistance of certain 

materials. 

 

(v) Inspiration: Driving creativity in developing architectonic materials and structures with similar 

engineering to plants, animals and insects. 

 

Wahl suggests that bionics and biomimetics represent two distinct approaches to design and nature 

based in different conceptions of the relationship between nature and culture [46]. On one hand, 

bionics deals with predicting, manipulating and controlling nature; on the other hand, biomimetics aims 
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at having nature’s participation, and as a consequence, holds a greater contribution to sustainability. 

According to this author, a switch to design-mediated sustainability requires a holistic and nature and 

culture supported approach inside a dynamic and interlinked system. 

In literature a diverse array of definitions can be found, among them: Bionics is a science which 

studies the principles of nature and its application on searching for solutions against the problems 

humanity faces [43]. Additionally, biomimetics will continue to influence our lives because even though 

major progresses were accomplished, there is still a lot to know about nature.  

 

2.3.2. ORIGIN AND EVOLUTION OF A NEW SCIENCE 

In the history of mankind there are records of several designers using natural models as a source of 

inspiration for their works. According to Lodato [44], Leonardo Da Vinci could be considered the first 

Bionic researcher, since most of his creations were based on observations of nature.  

The term Bionics appeared for the first time in 1968, introduced by Jack E. Steele, an engineer of the 

USA Air Force, while working in the Aeronautics Division. Steele defined bionics as “the analysis of 

the different ways living systems operate and the discovery of nature’s artifices, representing them in 

hardware”. Steele’s Bionic concept was focused on mimicking biological forms and physiological 

structures of organisms, using induced biological characteristics as a starting point to technical 

development. The term Bionics, from the greek element of life, was officially used as a symposium title 

in September 1960 [47]. Only in 1997, scientist and writer Janine Banyus introduced the concept 

Biomimetics in her book Biomimiry: Innovation Inspired by Nature. This new concept was 

characterized by having wider significance domains then the bionics concepts until then known. 

Biomimetics not only considers the imitation of the biological form, but also includes the concept of 

replication of the living organisms’ behaviour. 

In the last years, engineers have shown an increase interest in capturing design concepts from nature, 

especially in the last decade [44]. This rise has been notorious since it became more frequent to find 

books, articles, conference sessions and university courses about Bionics and Biomimetics [48]. 

According to Dicksion, nowadays one of the reasons for the increase interest in Bionics is the 

production methods’ high degree of sophistication. Only recently has Humankind came across with a 

group of sufficiently sophisticated tools able to mimic characteristics of biological structures which are 

very complex. Since there has been extensive innovation in the fields of Science of Materials, 

Electrotechnic Engineering, Chemistry and Molecular Genetics (among other science fields), it is 

possible to design and develop complex structures at a molecular level. Developing knowledge in 

plants and animals allows the biologist to identify specific relations between structure and function 

and, consequently, provides assistance to engineers when they come across with similar problems. 

 

 

2.3.3. BIOMIMETICS OF MEMBRANES 

As noted previously, biological membranes are characterized by a single lipid bilayer whose function, 

among others, consists in the transport of molecules and ions. Molecules which take part in the lipid 
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bilayer do not form covalent bonds among themselves and consequently, are characterized by some 

degree of flexibility, ability of conformation switching and motility [49]. The most studied models among 

cell membrane biomimetic systems are: (i) Langmuir films composed of lipid molecules at the air/water 

interface [50]; (ii) Liposomes, phospholipids vesicles mimicking a sphere-shaped lipid bilayer [51]. 

Vesicles’ method was developed in 1965 by Bangham and his collaborators when studying ion 

diffusion in the mimetic lipid membrane [52]. In the last years, study of liposomes has been focused in 

controlled incorporation and release of drugs – drug delivery – due to its protection ability, structural 

versatility, composition, fluidity and possible molecule incorporation independent of solubility and 

structure [53]. 

Liposomes are obtained by liposomal dispersion in aqueous medium, and they can exhibit different 

sizes and number of bilayers. Size, as well as number of bilayers intercalated with aqueous medium, 

can be manipulated with different preparation methods and lipids composition. The most common 

liposomes found in literature are multilamelar vesicles (MLVs), small unilamelar vesicles (SUVs), large 

unilamelar vesicles (LUVs) and multivesicular vesicles (MVVs). 

       

Fig. 2.16. Schematic representation of lipid bilayer and SUV, LUV, MLV and MMV. 

 

 

Liposomes can be immobilized over a substrate in order to study interactions between membranes 

and molecules of biological interest, such as, proteins, peptides or drugs. Liposome immobilization 

and stabilization over solid surfaces play an important part in biosensors [54], whose development is 

based on interactions between immobilized lipids and specific proteins, and additionally, may require 

incorporation of drugs or proteins, as in the case of drug delivery. 

In literature there is an array of different studies of the development of membranes in solid substrate 

model-systems, including Langmuir-Blodgett (LB) films and layer-by-layer (LBL) films. Since 

liposomes’ interior and exterior layers are hydrophilic, surface interactions include electrostatic and 

hydration forces, besides van der Waals forces, and consequently, this technique will allow 

phospholipids to be assembled with multilayers of polyelectrolytes which constitute a suitable matrix to 

their immobilization. This technique also allows encapsulating biomolecules without altering the native 

aqueous environment by contact with polyelectrolytes [55]. 
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2.4. BIOSENSORS 

In literature, a Biosensor can be defined as an analytic device which contains a biological element 

capable of recognizing a certain substance connected or integrated in a transductor which converts a 

biological response in an electric or optical signal proportional to the detected compound 

concentration [56]. The typical components of a biosensor are: a) Bioreceptor, which interacts 

specifically with the analyte; b) Interface Architecture, where a specific biological molecule interacts 

with an analyte and originates a signal captured by the transductor; c) Transductor; whose signal is 

converted in an electrical signal and amplified by a circuit detector using an appropriate reference and 

sent to a processor; d) Software, it converts the effects in clean data; e) Display, presents data 

converted by software in order to facilitate a query. Biosensors can be used in different types of 

samples, such as animal fluids, food samples, cell cultures and environment samples.  

 

 

2.4.1. BIOSENSORS DEVELOPMENT 

Biosensors constitute a selective model due to the possibility of adjusting specific interactions to a 

certain biological compound through its fixation over an electrolyte surface. The most used molecules 

as biosensors are enzymes, nucleic acids, antibodies and antigens; enzymes are the most commonly 

found in literature [57,58,59]. A multiplicity of biosensors can be found in laboratory and some of them 

are fundamental tools for clinical diagnostic tests. Nevertheless, production of portable and cheap 

devices is limited to a well-known example, the glucose sensor [60]. In many cases, the major 

limitations of producing devices for diagnostic tests are the weak ability to improve the transduction 

principle and the production method low quality-cost ratio. As a consequence, clinical tests are limited 

to qualified users and to high cost equipments. 

Biosensors can be classified according to the technique used to convert a biochemical process in an 

analogical signal, accordingly, the documented sensors include: a) Optical [61]; b) Piezoelectric [62]; 

c) Calorimetric [63]; d) Electrochemical [56]; e) Electrical [64]. They can also be classified according to 

the biomolecule which recognizes the target-analyte, as an example: i) Affinity sensors, when the 

bioreceptor uses only interactions between molecules, as in antigen-antibody’s case [64]; ii) 

Enzymatic or catalytic sensors, when the analyte is the enzyme substrate which participates in a 

catalytic reaction; the latter is detected using the signal produced by the substrate or by the enzymatic 

reaction product [56]. Electrochemical techniques and electrical impedance allow measuring electrical 

properties in order to extract such informations from biological systems. Electrochemical biosensors 

are usually based on enzymatic catalysis of a reaction, which occurs in solution and produces and 

consumes electrons [56]. During this PhD work, the aim was to develop biosensors for application in 

solid/air interfaces and not in solid/solution interfaces. Therefore, instead of employing the 

electrochemical technique, the electrical impedance technique was used in the development of the 

radiation biosensors studied.  
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2.4.2. ELECTRICAL IMPEDANCE BIOSENSORS 

Biosensors based on electrical impedance measurements can render different informations about the 

system, from film changes to medium changes.  Such is owed to the ability of the impedance 

measurements with tension or alternating current (AC) of a material to combine both capacitive and 

resistive properties [65]. Frequency regions of AC tension can give us informations about the electrical 

properties of different events occurring in the analyzed system, as in biological reactions on electrode 

surfaces. The variety of biomolecules used as AC biosensors is extensive, just as the degrees of 

success obtained. Antibodies and recognition molecules have been immobilized over electrodes, and 

its detection is studied by changes in capacity and/or resistance when the antigen binds to the sensor 

[64]. Even though AC impedance measurements in the field of biological systems were not extensively 

explored, several works describe this detection model with sensors of polymeric films, such as the 

electronic tongue [66].   
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3. EXPERIMENTAL METHODS 

Experimental studies using an array of different sample preparation methods, different radiation 

sources and some widespread physical chemistry characterization techniques of materials were 

developed to study particle damage in biomimetic membranes. In this chapter, the preparation of 

heterostructure techniques, the radiation sources and the characterization techniques used throughout 

this work will be thoroughly described. 

 

3.1. THIN FILMS PREPARATION TECHNIQUES 

In chapter two was reported the necessity to resort to a few simulated membranes techniques to study 

physical chemistry phenomena happening in the cellular membrane during the exposure to particle 

beams. To do so, cast, layer-by-layer and Langmuir techniques were adopted. In this section, the 

techniques mentioned will be described in detail.  

 

3.1.1. CAST TECHNIQUE 

Thin films production using the cast technique was applied in isolated material characterization. This 

technique consists in covering the substrate surface using a volume of an aqueous solution of the 

material studied. Using a rotator bomb, water evaporates by bombing, leaving the material in a 

condensed state deposited in the substrate surface. This technique allows the production of films 

composed of only one material having a micrometre thickness and the inexistence of high 

concentration of water molecules in the sample [66]. 

 

Figure 3.1. Scheme illustrating the film preparation using the spilling technique.  

 

 

 

3.1.2. LAYER-BY-LAYER TECHNIQUE 

Layer-by-layer technique is used to prepare self-assembled films of ionic molecules [67,68,69] since 

the film assembling process is based in electrostatic interactions. The substrate with its surface 

covered in OH
-
 ions, after a previous chemical treatment using piranha solution, is immersed in a 
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solution of cationic material during a time frame ∆t. Afterwards, the material is removed and washed in 

ultra-pure water and immersed in an solution of anionic material during a time frame ∆t´ (that can be 

the same as ∆t or not). After immersion, the substrate is removed and washed in ultra-pure water, and 

the process is repeated n times depending on the number of bilayers needed. In figure 3.2 the process 

of layer-by-layer film preparation is depicted. 

 

Figure 3.2. Scheme illustrating the layer-by-layer preparation method of a bilayer film.      

 

 

In addition, the potential of this method is reinforced by the large variety of molecular systems that 

have been successfully used to assemble macromolecules such as polyelectrolytes, functional 

polymers, dendrimers, ceramic and biological molecules [70]. Particularly, with respect to biological 

molecules, proteins as cytochrome C, lysozyme, myoglobin, bacteriorhodopsin, glucose and/or 

diaphorase, enzymes, DNA and lipids have been successfully incorporated in a LbL structure [59]. 

Therefore, the LbL method has shown to be suitable for the creation of biomolecular heterostructures 

with different functionalities such as those in a living cell, or at least to mimic these biological 

structures. As the LbL technique requires adsorption at a solid/liquid interface, the kinetics of 

adsorption and layer proprieties greatly depends on adsorption parameters such as solution 

concentration, ionic strength, pH, temperature, molecular weight, molecule charge density and time of 

immersion.  
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3.1.3. LANGMUIR MONOLAYERS TECHNIQUE 

Langmuir technique is used to prepare films composed of molecules with both hydrophilic and 

hydrophobic regions, which is the case of the phospholipids that were characterized in this work. This 

technique requires a specific device – a Langmuir probe – which consists in a plate coupled to a 

Langmuir trough working as in a surface tension sensor, and two movable barrier blocks that allow the 

probe surface area variation. This apparatus is described in detail in the section 3.3.5 On the other 

hand, Langmuir films or more accurately called Langmuir monolayers are prepared adding over the 

aqueous surface an amount of amphipathic molecules dissolved in a volatile and immiscible solvent, 

typically clorophorm, occupying the total surface area available. It is important to note that choosing 

between a pure solvent or a mixture of solvents is a decisive factor since it should favour the highest 

molecule dispersion possible over the aqueous phase surface [11]. When the solvent evaporates, the 

molecules will be disposed in an energetically favourable monolayer, having its polar groups 

immersed in the aqueous subphase and the hydrophilic tails directed in the opposite direction [71]. 

Afterwards, the monolayer is compressed leading to a decrease in the surface area available, which 

forces the molecules to gather, creating a compact monolayer. The monolayers obtained can be 

studied over the aqueous subphase or, alternatively, they can be deposited in a substrate, being the 

last ones called Langmuir-Blodgett films [72,73]. 

 

 

Figure 3.3. Scheme illustrating the preparation method of a Langmuir layer. 

 

 

When preparing the Langmuir monolayers, after adding the solution to the surface water, the surface 

tension () of the monolayer covered area will equal the surface tension of the clean water surface (γ0) 

and consequently, the surface pressure measured () will be zero, since it is defined by  = 0 – .  
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3.1.4. SUBSTRATES 

Throughout this work different substrates of different materials were selected depending on the 

characterization technique suitable to analyse each film obtained. Calcium fluoride (CaF2) substrates 

and magnesium fluoride (MgF2) substrates were analyzed in ultra-high vacuum ultraviolet 

spectroscopy and Fourier transform infrared spectroscopy. In impedance spectroscopy glass subtrates 

were used with interdigital gold electrodes. In X-ray photoelectron spectroscopy silicon and aluminium 

substrates were used. In studies of neutron reflectivity and atomic force microscopy, cubic crystalline 

structured silicon substrates were used. Substrate cleaning was performed as following: 1. Wash with 

water and a commercially available detergent; 2. Wash with an organic solvent (acetone and 

methanol); 3. Piranha solution immersion (H2SO4:H2O2/7:3) – Attention: this solution is corrosive and 

obtained through an exothermal reaction; 4. Wash with ultra-pure water to remove the waste left by 

the piranha solution bath; 5. Storage in ultra-pure water until use.  
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3.2. PARTICLES SOURCES 

The study of the effect of particles sources in biomimetic membranes was done using photons and 

carbon ions. The photons used correspond to the ultraviolet region, namely between 140 and 340 nm 

(8,5 – 3,5 eV). The two photon sources and the ion sources used to study the effect of these particles 

in biological materials will be described below. 

3.2.1. PHOTON SOURCES 

3.2.1.1. Germicidal UVC lamps 

A Germicidal UVC lamp (TUV PL-L 66W/4P HF 1CT) is a low pressure mercury lamp in which 35% of 

entry power is converted in UVC power. So, in the case of the lamp used (55 W) a UV power of 

approximately 19 W is obtained [74]. This lamp gives off UV radiation mostly around 254 nm (UVC), 

as depicted in figure 3.4, which shows the lamp spectral power emission distribution curve plotted 

against the wavelength. 

 

 

Figure 3.4. Spectral power emission relative distribution curve of UVC lamps. Adapted from [71]. 

 

Any low pressure lamp while working displays a relation between the lamp temperature and the output 

spectral intensity, in which the resonance line at 254 nm is the strongest for given mercury vapour 

pressure in the discharge tube. This pressure is determined by the operating temperature and it is 

optimized for a wall tube temperature of 40°C. Even though the lamp glass filters the mercury line at 

185 nm, responsible for ozone formation when operating at an atmospheric pressure [75], emission at 

different wavelengths also leads to ozone formation. For that reason, an irradiation chamber was 

developed, as shown in figure 3.5 that allows the atmospheric ozone extraction and protects the 

operator from the UV radiation harmful effects. 
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Figure 3.5. Extraction chamber developed to irradiate the samples with a 254 nm low pressure mercury 
lamp. 

 

 

3.2.1.2. Synchrotron radiation 

Synchrotron radiation is the radiation obtained through the deceleration of an electron beam when it is 

forced to travel in a curved path. This type of radiation main characteristics are: a) a high intensity 

(intense scintillation) surpassing other natural and artificial light sources [76]; b) being highly 

collimated; c) a high polarization; and d) allowing a high spectral resolution. Synchrotron radiation is 

emitted in a wide energy range, from near infrared to X-ray, emerging as a crucial energy source in 

the study of photophysics and photochemistry [77]. In addition, synchrotron radiation is highly 

polarized and has a short pulse emission nature allowing a continuous beam and the possibility to 

perform time dependent studies. 

 

3.2.1.2.1. Synchrotron accelerator 

Synchrotron radiation production process begins in the electron cannon, where a high voltage current 

passes through a cathode that emits electron pulses. The cathode is heated up until electron release 

occurs with enough energy to allow electron injection at the surface and acceleration towards the 

linear accelerator (LINAC). In the LINAC, 2 to 140 nanosecond electron pulses are produced which 

are then injected in the storage ring. Until a new storage ring refuelling occurs, the LINAC functioning 

is interrupted. This system operates in vacuum conditions to avoid the collision between accelerated 

electrons and residual gases molecules. When electrons reach energies around 2900 MeV, they are 

transferred through the injection system arriving inside the storage ring that is in a ultra-high vacuum 

state, where they move circularly during hours producing photons at each instant of beam  

deceleration by the trajectory curve. In the end of each round there is an aperture that allows light 

passage reaching the beamlines. Figure 3.6 depicts a schematic representation of a synchrotron 

accelerator. Collision of a few stored electrons with some residual gas particles produces a current 

decay, and as a consequence, it is necessary to perform a ring refuelling and an additional electron 

injection to maintain the needed current for the proper functioning of the system. 
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Figure 3.6. Simplified scheme of a synchrotron accelerator. Adapted from [82].  

 

 

For the proper functioning of a synchrotron accelerator is essential to include some magnetic 

components responsible for acceleration and beam deflection inside the storage ring. These 

components are called dipole magnets, undulators and wigglers. Dipole magnets are used to alter 

electron direction occurring deflection at different degrees and consequently radiation is emitted. 

Undulators and wigglers (figure 3.7), composed of a series of periodic magnet, induce a come-and-go 

electron movement and consequently, create a collimated beam of higher intensity. Wigglers produce 

a wide X-ray range of high intensity, on the other hand, undulators produce for given energy range a 

higher X-ray intensity [78]. 

 

 

 

Figure 3.7. Schematic representation of the synchrotron accelerator magnetic components: A – dipole 
magnet; B – Wiggler. Adapted from [82]. 

 

 

Wavelength selection is performed using a monochromator followed by its focusing on the sample 

using a mirror system. In addition, each workstation is intended to distinct techniques. To study the 

radiation effect in membranes the two synchrotron accelerators described below were used. 
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3.2.1.2.2. Daresbury Synchrotron Radiation Source 

In the early experiments performed in this study the synchrotron accelerator from Daresbury Science 

& Innovation Campus, United Kingdom, Daresbury Synchrotron Radiation Source (SRS) was used 

[79]. Figure 3.8 illustrates the array of components that make up the synchrotron accelerator and their 

respective workstations. 

 

 

Figure 3.8. Schematic representation of the disposition of the various SRS components and their 
respective workstations. Adapted from [79]. 

 

 

SRS is an electron storage ring of 2 GeV which produces synchrotron radiation that will be used in 

different experimental techniques and, in addition, can function simultaneously using a diverse set of 

workstations. In the Figure 3.8 schematic representation, an illustration of the existing workstations in 

different ring points is depicted. Each workline is optimized for a given spectral zone of the energies 

obtained by the SRS. In this work, the experiments were performed in the 3.1 station, which is used 

for ultra-high vacuum ultraviolet, fluorescence and fragmentation processes spectroscopy studies. 3.1 

station has a 1 m UV monochromator and functions between a 30 to 300 nm wavelength range with a 

resolution between 0,1 and 1 nm, and additionally, two diffraction nets are used in the swiping process 

[79]. The UV radiation beam used for the line proper functioning is provided by a focalizing mirrors 

system. Since this line can be used in different characterization techniques, SRS makes available for 

users only the radiation beam, and as a result, each user needs to assemble the remaining necessary 

components to accomplish the studies. Figure 3.9 depicts a schematic representation of the system 

which belongs to The Open University, United Kingdom, and whose main purpose is radiation and 

absorption spectroscopy studies, that will be presented in the next chapters. Vacuum symbology is in 

accordance with the DIN 28401 of Nov.76 norms. In the system, the zones referred as A and B are 

kept isolated using a metallic valve with a manual drawer (5). A Region possesses a four way clamp 

(2), a piranni type pressure sensor (3) and a flexible membrane (4). B region is composed of a six 
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valve clamp (6), a three way valve (7) and a piranni type pressure sensor (3). In the assembly inferior 

region, there is a pumping system which is composed of a turbomolecular pump (8), a rotary pump 

and a piranni type vacuometer (9) which connects the two pumps. In addition, the assembly also has a 

detection system that possesses a silicon junction photodiode p-n (11) developed by the International 

Radiation Detectors series AXUV, and also a measurement control unit with a digital indicator (12). To 

avoid sudden vacuum declines in the irradiation chamber there is an additional manual valve (13) 

which allows the air input control in the chamber [80]. 

 

 

 

Figure 3.9. Schematic representation of the assembly used in obtaining an absorption spectra of vacuum 
UV synchrotron radiation: 1 – manual drawer valve with CaF2 window, 2 – four way crosshead, 3 – piranni 
type pressure sensor, 4 – flexible membrane, 5 – metallic valve with a manual drawer, 6 – six valve 
crosshead, 7 – three way valve, 8 – turbomolecular pump, 9 – piranni type pressure sensor, 10 – rotary 
pump, 11 – phalange with photodiode, 12 – measurement control unit with a digital indicator, 13 – manual 
escape valve. Adapted from [80]. 

 

 

This workstation beam has a maximum value of radiant power (Pmax) at 160 nm (7.4 eV) in the output 

line, and its value is 5x10
-7

 W. At this wavelength, the photon flux (Nf) is 4x10
11

 s
-1

 and the beam 

irradiance (E) value is 7x10
-4

 W/m
2
. The beam total area is 734 mm

2
. There is a beam decaying 

throughout time, so it is imperative to understand its behaviour in order to quantify the radiation dose 

that each sample is irradiated with. The beam decay curve is shown in figure 3.10, in which the beam 

relative intensity change during a 24 hour period after injection is represented [102].  
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Figure 3.10. Normalized decay curve for the beam current during a 24 hour period after injection. Bold line 
corresponds to an extended exponential adjustment. Adapted from from de [80].  

 

 

By analyzing figure 3.10. it is possible to verify that the beam decay follows a type 














t

e extended 

exponential. Adjusting the decay curve to an extended exponential using the least squares method the 

following values are obtained: relaxation time () is 41.0 ± 0.1 hours, extended exponential coefficient 

(β) is 0.879 ± 0,002 with a correlation coefficient (R) of 0.999. In the sample position at 160 nm (7.4 

eV), beam radiant power (P) is 2x10
-7

 W and irradiance (E) is 1x10
-3

 W/m
2
. Beam area is 505.13 mm

2
 

with a irradiated sample area of 202.50 mm
2
, which is approximately 40% of the total beam area in the 

sample. 

 

 

3.2.1.2.3. Institute for Storage Ring Facilities 

After SRS 3.1 line deactivation, experiments proceeded using UV1 and CD1 lines of the Aarhus 

Storage Ring Denmark accelerator (ASTRID) located in the Institute for Storage Ring Facilities, 

University of Aarhus, Denmark.  ASTRID is a storage ring of electrons of smaller dimensions than the 

SRS, whose maximum energy is 580 MeV and characteristic decay time is around 60 hours [81]. 

Figure 3.12 depicts a simplified schematic representation of the ASTRID synchrotron accelerator.  
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Figure 3.11. Schematic representation of the ASTRID synchrotron accelerator. Adapted from [82]. 

 

 

Samples irradiation was performed in the UV1 line essentially used for photoabsorption spectroscopy 

studies and in the CD1 line which is normally used for circular dichroism studies and also for 

absorption spectrophotometry studies. In the table below the main features of each line are indicated. 

 

Table 3.1. Table depicting the main features of each workstation used in the sample irradiation protocol. 

Workstation  UV1 line CD1 line 

Spectral range 100 – 350 nm (11.9 – 3.4 eV) 125 – 700 nm (9.5 – 1.7 eV) 

Resolution 0.075 nm 1.0 nm 

Photon flux 2x10
11

 s
-1

 1x10
12

 s
-1

 

Area 40 x 40 mm 55 x 75 mm 

 

 

Samples are placed inside the work chamber that is in primary vacuum state using a four cavity 

vertical positioner for 20 nm diameter circular substrates, with a position adjustment that enables the 

sample alignment with the radiation beam. The incident beam wavelength is selected by the control 

software and the irradiation time is selected by the security valve aperture time. 
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3.2.2. ION SOURCES 

The ion radiation studies made use ion apparatus at Queen’s University, Belfast (QUB) composed by 

two low energy ion accelerators, both equipped with electron cyclotron resonance (ECR) ion sources. 

One accelerator uses a conventional arrangement where the beam line is held at earth potential with 

the source at positive potential to achieve the desired ion energy. The second accelerator uses the 

same basic design but the beam analysis is carried out using a “floating” beamline arrangement where 

the beamline “floated” at -4 kV and the source again at positive potential to achieve the desired ion 

energy. The principal benefit of this design is that, in contrast to a conventional accelerator, analysis 

can be carried out a ion energies where the mass to charge resolution is good, even when the 

delivered ion energy is low. As a result, ions may be delivered from the system with lower energies 

than in conventional accelerator [83]. 

 

3.2.2.1. Principles of ECR ion sources 

Ion sources are used to produce intense beams of singly and multiply charged ions. Many different 

sources types are available ranging from those designed to make very highly charged atomic ions 

(electron beam ion sources/traps – EBIS/EBIT) through to those which can produce very large 

molecular ions (eletrospray ion sources – ESI). For the purpose of producing beams of small atomic 

ions, an ECR ion source is suitable and is capable of producing both singly and multiply charged ions. 

An ECR ion source extracts ions form a plasma [84] consisting of positive, negative and neutral 

species. In order to produce large number of positively charged ions, electrons within the plasma are 

accelerated using high frequency electromagnetic fields giving rise to electron impact ionization within 

the plasma. The production of a multiply charged ion (MCI) relies upon sequential electron impact 

ionization thus is linked to the time t it spends in the vicinity of the electron cloud, as well as to the 

electron velocity v and number density n. It follows that the desirable to increase t in order to increase 

the efficiency of MCI production. In the ECR ion source, this is achieved by confining the plasma 

within a magnetic structure [83].  

Charged particles experience forces when they are within electric or magnetic fields. In a magnetic 

field, this force is perpendicular to the plane containing the particle velocity and the magnetic field and 

depends upon the particle velocity. The force F experienced by a singly charged particle moving at 

velocity v in a field B is given by: 

𝐹 = 𝑒(𝑣 × 𝐵) (3.1) 

 

The component of this in the direction of motion will be zero, hence a particle travelling parallel to the 

magnetic field lines will experience no force in this direction. The particle will however experience a 

force which is, at all times, perpendicular to its direction of motion and thus follow a helical orbit about 

the magnetic field lines. Using Newton’s second law and equation 3.1: 

𝐹 =
𝑚𝑣2

𝑟
= 𝐵𝑞𝑣 

(3.2) 
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Therefore: 

𝑟 =
𝑚𝑣

𝑞𝐵
    (3.3) 

 

This is known as the cyclotron, Larmor or the gyro-radius and the particles will travel in a helical orbit, 

about the magnetic field lines, with this radius. Since the radius depends on the charge q, electrons 

and ions will orbit the field lines in opposite directions: electrons rotate in the left-handed sense with 

respect to the magnetic field lines and ions in right-handed sense. The frequency of this will be given 

by the cyclotron frequency: 

𝜔𝑐 =
𝑞𝐵

𝑚
= 2𝜋𝑓𝑐 

(3.4) 

               

In ECR sources, the ions and the electrons are confined by a combination of two magnetic fields. 

Firstly a minimum B-field configuration – an axial field – is produced by solenoid coils or permanent 

magnets. Figure 3.12 shows a schematic diagram of such a magnetic field configuration.  

 

 

Figure 3.12. Minimum B-field configuration. Adapted from [83]. 

 

 

The second field is a radial field, produced by a hexapole magnet, superimposed on the axial field. 

The combination of the two fields produces a “magnetic well” with the minimum in the center and the 

magnetic field increasing in all directions, the field intensity in function of distance from the flange is 

displayed in figure 3.13. 
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Figure 3.13. Combined axial and radial magnetic fields. Adapted from [83]. 

 

 

For an electron, the magnetic moment is given by: 

𝜇 = 𝐴 × 𝐼 (3.5) 

 

Where I is the current due to the rotating electrons (equal to 𝑒𝑓𝑐) and A is the cross sectional area 

outlined by the electron motion (equal to 𝜋𝑟2). 

 

𝜇 =
𝜋𝑟2

𝜔𝑐
2

×
𝑒𝜔𝑐

2𝜋
=

1

2
×

𝑚𝑣2

𝐵
 

(3.6) 

         

Therefore, due to the conservation of magnetic moment, the transverse velocity of electrons increases 

with increasing magnetic field. However to conserve energy, the axial velocity must decrease. As 

result, electrons will eventually reverse their axial direction and travel back to the minimum B-field 

region, as shown in figure 3.12. The electrons have therefore been reflected i.e. a magnetic mirror has 

been created. In practice, the mirror is not perfect and has a net electron loss leading to a small net 

positive charge in the plasma known as the plasma potential. 

In an ECR plasma, heating is achieved by the combined effects of an electromagnetic field and static 

B field. When the frequency of the EM field is equal to the cyclotron frequency of the electrons, energy 

is resonantly transferred to the electrons producing an efficient coupling of electromagnetic energy to 

the plasma. 
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3.2.2.2. Permanent Magnet ECR Ion Source and Ion Extraction System 

The ECR ion sources use permanent magnets and 10 GHz microwave radiation for plasma heating. 

The sources were capable of producing beams of singly and multiply charged ions with low microamp 

currents with an energy resolution ~ 5q eV. In these sources, the radial field is provided by hexapole 

magnets made from NdFeB. This magnet was a 75 mm long “Halbach” magnetic structure [84] 

consisting of 24 trapezoidal segments whose axis magnetization varied by 45º from one segment to 

the next. This produced a magnetic field strength of 0.94 T at the plasma tube inner wall. Two outer 

NdFeB rings, magnetized radially with respect to the plasma chamber, and four smaller axially 

magnetized rings, positioned cover the hexapole magnet, produced the axial magnetic mirror field. 

Figure 3.14 shows the axial magnetic field along the mid-plane of the magnetic structure. This 

extraction electrode was located at the maximum of the magnetic field. Since the sources used 

permanent magnets, the plasma chamber was water-cooled and the magnets were also air cooled to 

prevent high temperatures and demagnetization (> 70ºC). 

 

 

Figure 3.14. Schematic of the 10 GHz ECR ion source and extraction system. Adapted from [83]. 

 

 

The extraction and lens systems were situated in 150 mm bore, 6-way crosses, electrically isolated 

from the sources. On both systems, the extraction section was evacuated using a single 500 dm
3
/s 

turbomolecular pump with a second, 200 dm
3
/s, pump attached to the source (again electrically 

isolated). The base pressures in these sections were ~10
-6

 mbar, measured using penning/pirani 

vacuum gauges. The source and extraction sections were vacuum isolated from the rest of the system 

using ultra-high vacuum gate valves. In both systems, beam analysis was achieved using 90 degree 

bending magnets which selected ions based on the mass to charge ratio. For an ion of mass m, 

charge q, travelling at a velocity v in a magnetic field B, the force experienced is given by: 

 

𝐹 = 𝐵𝑞𝑣 =
𝑚𝑣2

𝑅
 

     (3.7) 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

38 

 

Where R is the bending radius. The kinetic energy of the ions is given by: 

 

𝐾𝐸 =
1

2
𝑚𝑣2 = 𝑞𝑉 

(3.8) 

             

Where V is the accelerating voltage.  

𝐵 = (𝛼
𝑚

𝑞
)

1
2⁄

 
(3.9) 

Where 𝛼 =
2𝑉

𝑅2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Thus, by choosing the correct magnetic field, ions of specific mass to 

charge ratio can be selected to travel along the bending radius and out through the exit aperture. 

 

 

3.2.2.3. Conventional Accelerator 

The conventional accelerator maintained the beamline and target at earth potential while the source 

was maintained at potential +Vs. In this design, the ion beam energy throughout was equal to qVs 

where q is the charge state of the ion species. The upper energy limit of this system was 6q keV 

(limited by power supply) while the lower limit is approximately 500 eV below which power supply 

stability, resolution of the magnet and ion beam blow up became problematic. A schematic of this 

accelerator is shown in [83]. 

 

 

3.2.2.4. “Floating Beam” Accelerator 

In this arrangement the beamline and its elements were “floated” at -4 kV thus with a potential +Vs 

applied to the source, extraction was at an energy of (4+Vs)q keV. When ions exited the floating 

beamline section, they were referenced to earth (instead of -4 kV) and thus entered the experimental 

area with energy Vsq KeV. Since transport and beam analysis were carried out at (4+Vs)q keV, even 

as Vs tends towards zero, the beam energy was >4q keV. Thus is possible to deliver beams with 

almost zero energy, at the accelerator exit. A schematic of this accelerator is shown in figure 3.17. 

 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

39 

 

 

Figure 3.15. Schematic diagram of the “floating beamline” accelerator. Adapted from [83]. 

 

 

Since the beamline was held at high potential, it was shielded for safety reasons. In contrast, the 

conventional accelerator required only the source to be shielded in this way. Electrical isolation from 

the vacuum system was also required and was achieved by using ceramic breaks. Another 

consideration with this setup was the previously mentioned plasma potential. The value for this was 

~+5 V, thus the source was biased negative by this amount in order that beam was produced near to 0 

eV. 

 

 

3.2.2.5. Measurements Chamber Design 

The apparatus was based around an IR transmitting sample substrate which was mounted on a UHV 

chamber. The chamber was evacuated by two turbomolecular pumps which were connected, by 

flexible stainless steel pipes, to two of the remaining flanges on the 6-way cross. The pressure was 

measured by two gauges (one ionization and one penning/pirani) mounted in CF40 'T' pieces, 

between the 6-way cross and each of the pumps. During the experiments described, the base 

pressure for the system was measured by the ionization gauge to be a few 10
-7

 mbar. 

To allow IR transmission spectroscopy, two differentially pumped, potassium bromide (KBr) windows 

were mounted on CF40 flanges on opposite sides of the cube. The sample mount was positioned at 

the center of the chamber, equidistant from the two windows. The entire copper mount was machined 

out of a single piece of OFHC (oxygen free, high conductivity) copper to avoid any additional 
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interfaces which may affect thermal conduction. The sample mount was attached to the base of the 

cryostat heat exchanger using four screws with a thin silver foil sandwiched between to improve 

thermal conduction. A zinc selenide window (giving high transmittance in the 0.6 - 20 micron range) 

was located in the copper mount and used as the substrate. This window sat in a groove in the copper 

mount and was secured by screws and oversized washers. When mounted, the substrate provided a 

circular sample area with diameter of 20 mm. 

Between the main chamber and the floating beamline accelerator was a vacuum isolated section 

containing adjustable ion beam collimators (two sizes were used, 10 and 15 mm diameter) and an ion 

beam setup and monitoring assembly. The collimators were mounted either side of a 4-way CF40 

cross. The beam measurement device was mounted on this cross and consists of an electrically 

isolated translator onto which was attached a faraday cup and a 90% transmission mesh. The faraday 

cup was translated into the beam path to allow measurement and optimization of the full beam. Once 

this was complete, and prior to irradiation of an ice, the ion mesh was moved into the beam path 

allowing 90% of the ions to be transmitted while the remaining 10% could be monitored. This allowed 

the ion beam to be monitored 'in situ' without the need to interrupt the irradiation. A schematic of this 

arrangement can be seen in figure 3.16. 

 

 

Figure 3.16. Schematic diagram irradiation and FTIR measurements setup. Adapted from [83]. 
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3.3. CHARACTERIZATION TECHNIQUES 

The radiation effect on biomimetic membranes study was performed using a few techniques that are 

recurrent in materials studies, allowing data crossover of obtained results and consequently validation 

of the conclusions obtained. 

 

3.3.1. ULTRA-VACUUM ULTRAVIOLET ABSORPTION SPECTROSCOPY 

Ultra-vacuum ultraviolet absorption spectroscopy is based on interactions between ultraviolet radiation 

and matter, allowing the characterization of materials based on electronic states of the molecules 

studied. Absorption spectra are obtained placing a sample between the radiation source and the 

detector, the sample absorbs radiation and consequently, its internal energy rises [85]. The internal 

energy rise value equals the absorbed photon energy and it is expressed using the Planck relation. 

The energy absorbed by the molecule will lead to electronic transitions that will allow a characteristic 

spectroscopic classification of each molecule depending on the energy values obtained. The electrons 

of molecules containing only single bonds are called σ electrons, on the other hand, the electrons that 

participate in double bonds are called π electrons. In systems composed of double bonds, π electrons 

prevail and consequently determine the valence electrons energy states, which are excited by visible 

or ultraviolet radiation absorption. Besides electrons that take part in covalent bonding, there are also 

unshared electrons that are called n electrons. 

 

Figure 3.17. Schematic representation of the energy levels. Adapted from [85]. 

 

 

Electronic transitions can be grouped in three categories that are associated with energy absorption of 

given zones of the electromagnetic spectrum [85]: 

I. Transitions from a stationary state orbital to a higher energy orbital, which means, π→π* transitions 

and σ→σ* transitions. 
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II. Transitions from an unshared atomic orbital to a higher energy molecular orbital, which means, 

n→π* transitions and n→σ* transitions. 

 

III. Transitions from a stationary state orbital to higher energy orbitals, towards molecule ionization, 

that are designated Rydberg orbitals. 

 

Table 3.2. Table showing the respective electronic transitions for each region of the electromagnetic 
spectrum. Adapted from [85]. 

Electronic Transitions Electromagnetic Spectrum Regions 

σ  σ* Vacuum Ultraviolet 

  * Ultraviolet 

n  * Near Ultraviolet 

n  σ* Far Ultraviolet or Near Ultraviolet (exceptionally) 

Rydberg Vacuum Ultraviolet 

 

 

In the majority of organic molecules, absorption bands observed in the UV near zone and in the visible 

region spectra are owed to   * or n   * transitions. The first ones are much more intense then 

the latter since, in this case, the unfavorable spatial orientation between n and * orbitals gives place 

to low intensity transitions. On the other hand, bands observed in the vacuum ultraviolet region are 

owed to σ  σ* and n  σ* transitions [86]. 

 

 

Figure 3.18. Schematic representation of the energy levels. Adapted from [86]. 
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The transitions occurring when there are radiation and matter interactions are usually depicted using 

an absorbance spectrum in which absorbance is plotted against incident beam wavelength. This 

function is given by the Beer Law and it is defined as: 











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0I

I
Absorbance log  (3.10) 

 

In which I0 is the incident radiation and I is the radiation reaching the detector after going through the 

sample. A maximum absorbance is reached at wavelengths where electronic transitions are observed, 

and these are called absorption bands. These are deconvoluted using specific software so that the 

several peaks composing the absorption band are obtained. Afterwards, the transitions associated 

with the obtained energy values are identified, allowing the characterization of the material studied. 

VUV (Vacuum Ultra-Violet) spectra were obtained using the Daresbury and Aarhus accelerators, 

described previously, and the following protocol: (i) radiation intensity transmitted by the substrate 

without absorbed material is measured (I0); (ii) radiation intensity transmitted by substrate plus film 

absorbed at the surface is determined (I); (iii) a new measurement of the transmitted radiation intensity 

of the substrate without the film at the surface is made (I`0). This last step is needed due to the beam 

intensity decay throughout time which consequently leads to a transmitted radiation intensity decrease 

caused, not by film absorption, but by the characteristic beam decay. In this case, Beer law must be 

adjusted and is defined the following way: 
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Figure 3.19. VUV absorbance spectrum of a DNA cast film, obtained in the region between 130 and 300 
nm. 
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3.3.2. INFRARED FOURIER TRANSFORM SPECTROSCOPY 

Molecular chemistry bonds possess specific vibration frequencies that are characteristic of each group 

of atoms and correspond to the vibrational levels of the molecules. For radiation absorption within 

infrared region wavelengths to occur, change of the molecule electric dipole moment must take place 

as a consequence of its vibrational movement. There are two types of molecular vibrations: stretching 

and deformation. Stretching vibrations consist in the rhythmic movement along the bond axis in a way 

that the interatomic distance increases or decreases. These vibrations are divided in two modes, 

symmetrical and asymmetrical stretching vibrations. 

 

(A) (B) 

Figure 3.20. Stretching vibration modes: (A) asymmetrical and (B) symmetrical. 

 

Deformation vibrations are defined as an angle change between bonds with a shared atom or as the 

movement of a group of atoms which move in relation to one part of the molecule, but not considering 

the remaining atoms of the other part of the molecule. For example, rotational vibrations, of balance 

and wagging, involve bond angle changes considering a set of arbitrary coordinates inside the 

molecule. Figure 3.21 depicts four modes of deformation vibrations, which are: scissoring, wagging, 

twisting and rocking.  

 

 

    

(A) (B) (C) (D) 

Figure 3.21. Schematic representation of the four modes of deformation vibrations. 

 

Infrared spectroscopy is a simple instrumental technique of rapid acquisition which has the ability to 

detect several functional groups. Infrared radiation causes a rise in covalent bonds amplitude vibration 

between atoms and groups that compose the molecules studied, in agreement with the previously 

described modes. Currently, the technique in use is called FTIR (Fourier Transform Infrared), which 

allows obtaining a signal with less noise even when using samples with a low quantity of material. 
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Since functional groups of organic molecules include atomic bonding by specific arrays, a given 

organic molecule absorption of infrared energy depends on the types of bonds and atoms found in the 

specific functional groups of this molecule. Obtained vibrations are quantized and while they occur, 

compounds absorb IV energy in specific regions that are displayed in the shape of peaks in an 

absorbance spectrum plotted against wavelength [87]. 

 

 

Figure 3.22. FTIR absorbance spectrum of a DNA cast film within 875 to 4000 cm
-1

 region.  

 

 

FTIR technique constituted a vital tool in the progression of the studies performed that compose the 

body of this work. This technique has several limitations, including those regarding monoatomic 

molecules analysis, absence of asymmetry, and also, unsuitability for aqueous solution analysis. 

However, because there is low water quantity, this technique also possesses numerous advantages, 

examples include: operation cost is low, low material quantity is needed for adsorption at the substrate 

surface, working conditions are at atmospheric pressure, and in addition, absorption bands are distinct 

for similar molecules, allowing a precise distinction between the diverse functional groups. 

 

 

3.3.3. X-RAY PHOTOELECTRON SPECTROSCOPY 

XPS (X-ray Photoelectron Spectroscopy) allows the identification of all the periodic table elements 

with the exception of hydrogen and helium. When using this technique is also possible to determine 

the oxidation state of an element and the type of chemical specie to which is connected to. XPS is 

based on X-ray irradiation of the surface of interest followed by analysis of the surface emitted 

electrons kinetic energies until around a 10 nm thickness [88]. Figure 3.23 depicts a schematic 

representation of the typical XPS experimental arrangement. 
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Figure 3.23. Schematic representation of the XPS apparatus. Adapted from [89]. 

 

 

To perform XPS analysis the Instituto Superior Técnico - Universidade Técnica de Lisboa equipment 

was used. The XPS apparatus consists in a XSAM800 (Kratos) operating in FAT (Fixed Analyzer 

Transmission) mode, where a double anode source was used, and where as an excitation source a 

Mg Kα photon beam can be used, with 1253.6 eV of energy, or alternatively, a Al Kα photon beam, 

with 1486,6 eV of energy can be used. Current and tension were around 10 mA and 13 kV, 

respectively. Samples were analyzed at room temperature and in ultra-high vacuum, at a pressure 

value around 10
-7

 Pa. All samples were analyzed in their central region, which is an area of 1x3 mm
2
 

and with an angle of 0° relative to the surface sample, using the high amplification mode. Spectra 

were acquired using a Sun SPARC Station 4 equipped with Vision software (Kratos) and a swiping 

step of 0.1 eV was used. X-ray sources satellites were subtracted. Experimental peaks fitting was 

performed with Voigt curves (Gaussian and Lorentzian) and using a nonlinear algorithm based in the 

least squares method. Subtracted base lines were Shirley or linear type. Charge compensation (flood 

gun) was not applied. Bond energies (BE) of the analyzed samples were corrected using as reference 

carbon C 1s bond energy (285 eV).  

 

 

3.3.4. ATOMIC FORCE MICROSCOPY 

AFM (Atomic Force Microscopy) [90] is an essential technique in characterizing surfaces morphology, 

and its application is being extended to surface characterization of soft condensed matter studies. In 

the case of thin film studies, like for instance, self-assembled films, atomic force microscopy has 

shown to be an essential tool in quantitative and qualitative characterization of surfaces. As a result of 

surface studies using atomic force microscopy, a few examples stand out as being essential for the 

development of models which explain materials behaviour in films; those include: roughness statistical 
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parameters, topographic analysis and its interpretation using growth and fractality theoretical models 

applied to self-assembled films [91,92,93,94]. AFM technique emerged as a consequence of the 

Scanning Tunneling Microscope (STM) creation [95], and its mechanism is based on the tunnel effect 

observed between a sharp tip (probe) and the surface of interest when these are a few nanometers 

away from each other. The tip sweeps the sample surface (X and Y directions) at a controlled distance 

in Z direction. Movements in X,Y and Z directions are done using a stage with piezoelectric control 

known as a scanner or piezo [96]. Figure 3.25 depicts a schematic illustration of the atomic force 

microscope apparatus [97]. The tip is assembled under a flexible crossbeam responsible for 

performing movement in the horizontal plane (XY) over the sample surface. The light beam emitted by 

a laser reaches the crossbeam upper part and consequently, it is reflected by the crossbeam and 

detected in a four-quadrant photodetector. The position in which the reflected beam reaches the 

photodetector computes the position of the tip under the crossbeam whose change depends on the 

studied surface relief. The atomic force microscopy (AFM) measurements presents in this work was 

done in a Nanoscope III microscope (Digital Instruments) at Grupo de Polímeros Professor Bernhard 

Gröss, Brazil. 

 

Figure 3.24. Schematic representation of the atomic force microscope (AFM) apparatus. The tip is fixed 
under a crossbeam where the light beam hits and consequently it is reflected, and whose purpose is 
detecting the crossbeam movement with a four-quadrant photodetector. Adapted from [97]. 

 

 

Several distinct forces are accountable for the interaction between tip and surface that include: Van 

der Waals forces, electrostatic forces or surface tension forces, being the first ones predominating. 

Figure 3.25 depicts a graph illustrating the existing forces between the tip and surface plotted against 

relative distance. 
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Figure 3.25. Schematic representation showing the existing forces between tip and surface plotted against 
relative distance. 

 

 

Interaction force is almost null when there is a high distance value. However, as the tip progressively 

comes close to the sample, around distances that vary from 1 to 10 nm, the interaction force becomes 

attractive, and for distances beyond that range, the interaction force is repulsive, and of increasing 

intensity as it reaches a zero distance. The atomic forces microscope has the ability to work in these 

two regions. In the repulsive forces region, it works in a contact mode and on the other hand, in the 

attractive forces region, it works in a noncontact mode.  

 

 

3.3.5. LANGMUIR BALANCE  

Surface pressure isotherm data recording – area per molecule (π-A) and area per molecule – time 

stability curves (A-t) are crucial to characterize the monolayer formed in the air-water interface. To 

perform this kind of experiment a Langmuir trough is used. This equipment consists in a trough made 

up of hydrophobic material (Teflon) full with the aqueous subphase (ultra-pure water or a aqueous 

solution of a water soluble substance), two movable barriers which compress the monolayer while 

moving along the trough, and finally a surface pressure monitoring system. Compression velocity is 

possible to adjust using specific software and a thermostatic bath controls the temperature. 

Experiments were performed with two KSV Instruments Lda.® systems, models KSV 2000 and KSV 

5000. 
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Figure 3.26. Langmuir trough used in Langmuir monolayer preparation: (a) KSV 2000; (b) KSV 5000. 

 

 

Surface tension measurements were performed with a Wilhelmy system. Its experimental system is 

composed of a metallic blade partially immersed in the subphase and connected, through the opposite 

end, to high sensitivity electronic weighing scale. Among the forces acting on the blade, weight, 

impulse and surface tension, there is only surface tension change in the presence of the monolayer 

over the surface. For that reason, the difference in the measured force throughout the process is a 

consequence of the surface tension variation alone, and it is determined at each instant by the 

following mathematical expression (figure 3.27), which corresponds to the surface tension, as referred 

in 3.1.3. 




cos


l

F
 

(3.12) 

  

Where 

wdl 22   (3.13) 

 

      

Figure 3.27. Scheme illustrating Wilhelmy method. (a) Experimental system; (b) Representation of the 

variables needed to determine the surface tension,  [22].  
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Any surface tension determination method can be used to measure the surface pressure, namely the 

Willhemy method [98,99] or the Langmuir method [72]. After evaporation of the solvent, the monolayer 

is compressed by reducing the available surface area, thus increasing the density of molecules, 

decreasing  and increasing  accordingly. Thus, the representation of a function  area per molecule 

(A) increases as the area decreases, making up the two-dimensional analogy isothermal pressure-

volume (figure 3.28). After solvent evaporation, the monolayer is compressed reducing the available 

surface which allows a rise in the molecules density and consequently decreases  (increasing ). Like 

this,  function plotted against the area per molecule (A) increases when the area decreases, creating 

a bidimensional analogy of a pressure-volume isothermal curve (figure 3.28). Using the -A isothermal 

curve is possible to obtain parameters highly important in characterizing the Langmuir monolayers. 

The limit area value is possible to obtain extrapolating the final branch of the curve for a surface 

pressure equals to zero, which is analogue to the area per molecule in a maximum packing case. It is 

also possible to determine the maximum pressure value in which the monolayer loses its stability, 

called collapse pressure (c). The -A isothermal curves display distinct regions which are related to 

the monolayers different organization states (or phases), and also to regions where different phases 

co-exist [73].  

 

 

Figure 3.28. -A isothermal curve displaying its distinct phases (variations may occur according to the 
system composition and the working temperature) and illustration of the molecules special disposition.  

 

 

Figure 3.28 illustrates a isothermal curve where the theoretical different phases of a amphipathic 

substance are shown in accordance with the following description: 

(i) Gaseous phase: In the really low pressure zone the molecules are displayed in a highly spaced 

monolayer and consequently with a low interaction level. This phase is called bidimensional gaseous 

phase. 
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(ii) Liquid phase: When the surface pressure rises, the compressed liquid phase is reached which is 

characterized by suitably intense attractive forces between the molecules. These interactions allow the 

formation of a compact structure, creating an liquid expanded (LE) phase. In between the gaseous 

phase and the expanded liquid phase, a condensation process occurs in which we have the 

coexistence of both states, G+LE (T1), characterized by a constant pressure, in accordance with a first 

order transition from state G to state LE [100,101].The pressure progressive rise originates a more 

condensed monolayer called liquid condensed (LC) phase. This compact monolayer displays a 

perpendicularly oriented hydrophobic region in relation to the monolayer-water interface. Between the 

expanded liquid phase and the condensed liquid phase, LE+LC (T2), a second transition is observed, 

which some authors argue as being a first order transition [102,103], while others postulate that is a 

transition of higher order [73,104]. 

 

(iii) Solid phase: When increasing the monolayer compression before reaching a collapse situation, a 

solid state (S) is obtained, characterized by maximum packing of hydrophobic chains in an extremely 

rigid film structure. 

It is important to note that the above description comprises a theoretical model, therefore, differences 

in the number and complexity of an isothermal curve phases are possible to occur depending on the 

studied system and the essays experimental conditions. 

 

 

3.3.6. IMPEDANCE SPECTROSCOPY 

Characterization of the electric properties of the samples studied was performed using impedance 

spectroscopy, also called dielectric spectroscopy or alternating-current (AC) electric conductivity, and 

is the measurements of the dielectric properties of a medium as a function of frequency, based on the 

interaction of an external field with the electric dipole moment of the sample. Therefore, it is possible 

to study processes like, charge transport, films conductivity or charge carriers diffusion coefficients 

[105], among others, using impedance and phase angle measurements. 

This technique requires applying a potential or a current disturbance in the sample of interest. System 

disturbance requires the application of a continuous potential followed by the additional overlapped 

application of a sinusoidal change of a small amplitude potential. This application potential method 

allows system disturbance using few milivolts which makes possible investigating electrical 

phenomena. It is also possible to disturb the system using different values of frequency since the 

applied potential is sinusoidal and it can be defined as: 

)exp(0 tjVVs 
 

(3.14) 

 

Since the system’s disturbance is of low amplitude, this technique constitutes a nondestructive 

characterization method [106,107]. In impedance spectroscopy, as a result of applying a sinusoidal 

potential in the sample, a sinusoidal current emerges. The relation between the applied potential and 
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current is recorded and consequently complex impedance and current shift in relation to the applied 

potential are obtained, and it is called phase angle. Complex impedance is defined as: 
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(3.15) 

and it can be represented in the imaginary plane as depicted in figure 3.29.  

 

 

 

 

 

Figure 3.29. Graphical representation of complex impedance in 
the complex plane. Im – Imaginary component axis, Re – Real 
component axis, Z – Impedance, R – Resistance, jX – 
Inductance and  δ – Phase angle.  

 

 

The concept of impedance, originally introduced to describe the response of systems composed of 

capacitors, resistances and inductors, it was extended to biological and polymeric materials analysis, 

since countless processes can contribute to the link between the system’s current and potential. The 

impedance is total resistive load of an AC circuit i.e., the sum of the resistance related to the energy 

loss in the form of heat (Joule effect) and the reactance, related to energy storage. The impedance 

indicates the total opposition that a circuit offers to the flow of an electric current varying in time.  

 

For a thin film of thickness s in the area A, applied an electrical field, E, the current density, J, would 

be: 
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For the complex permittivity, ε, has been: 
 

"'  j
 (3.17) 

 
 
For the current density, J, has been: 
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where  is angular frequency. 

 
 

Comparing the expressions 3.16 and 3.18 we get the expressions of the real and the imaginary part of 

the relative permittivity: 
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Where Zʹ and Zʹʹ are the real and imaginary impedances. One can normalize ε' and ε on the 

dimensions of the sample, and write them in the form: 
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The tangent of loss angle, represented by δ, is given by: 
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(3.24) 

 

 

The conductivity, σ, can also be given from the Ohm law by the relation: 
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Comparing the expressions 3.19 and 3.24 we get the relation between permittivity, ε, and conductivity, 

σ: 
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4. RESULTS 

4.1. BIOMIMETIC HETEROSTRUCTURES FOR RADIATION DAMAGE STUDIES  
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ABSTRACT 

The present work describes a methodology that can be used for the creation of biomimetic 

membranes based in sequential assembling of biological molecules, to be used for radiation damage 

studies in an environment mimicking that of bio-systems. The major features of the method, the so 

called layer-by-layer technique, as well as the experimental parameters to take into account for 

heterostructures production are summarized here. Results for radiation damage in DNA containing 

biomimetic membranes prepared from different conditions methods revealed that the radiation induced 

damage is dependent on the heterostructure molecular composition, proving that the environment is of 

extreme importance for the extent of radiation induced damage in biological molecules.   

 

 

INTRODUCTION 

The mutagenic or lethal effects of ionizing radiation at the cellular level can be traced to structural and 

chemical modification of the biomolecular environment and its constituents. As far as radiation is 

concerned, not only is DNA found to be the most sensitive biomolecule in living tissue, but also the 

effects on the cellular constituents, namely the cell membrane, are not to be discarded particularly 

when its role on the interface mechanisms within the cell are vital for the physiological balance 

survival. The genotoxic effects of ionizing radiation as energetic photons, electrons, ions and neutrons 

in living cells are produced not only by the direct impact of the primary high energy projectiles but are 

also induced by secondary species generated by the primary ionizing radiation, such as electrons or 

even radical species from the physiological environment as is the case of OH
●
 from the water 

molecules and other reactive oxygen species, such as the peroxide radical. It is now well established 

that low energy electrons (< 30 eV) on DNA/RNA and its constituents (the nucleotide bases, 

nucleosides and water) can increase the probability that leads to damage for both single and double 

strand breaks, SSBs and DSBs, at very specific incident energies or resonances [4,7]. Moreover, the 

effect of these low energy electrons through dissociative electron attachment processes have been 

found to be site and bond selective as a function of the energy [8]. An approach to address radiation 

damage on a biosystem is to observe the radiation induced changes at chemical and physical levels 

on well controlled artificial biologic structures as biomimetic membranes obtained by assembling 
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layers of biological molecules in an environment containing water molecules. These membranes can 

be exposed to radiation doses and the damage can be quantified in each constituent. In this article, 

the preparation of biomimetic membranes by assembling biomolecules, can be attained via the layer-

by-layer technique from the point of view of a set of well-studied molecules, e.g., polyelectrolytes, 

which can be easily extend to biological materials. Results on the radiation effects on different 

biomimetic membranes are also given, showing that the conditions of membrane preparation have 

clear influence in the extent of damage caused. 

 

 

LAYER-BY-LAYER HETEROSTRUCTURES: BACKGROUND 

The layer-by-layer (LbL) technique was developed by G. Decher and co-workers in 1992 and 

preliminary used for the buildup layered heterostructures of polyelectrolytes [67,108,109,110,111,112]. 

The production of LbL films consists on the alternated adsorption of polyelectrolytes of opposite 

electrical charges from aqueous solutions into solid surfaces, according to the following procedure: a 

solid substrate is immersed in a polycationic (or polyanionic) solution during a given period of time, 

after which the substrate with the adsorbed film is washed in pure water or in an aqueous solution with 

the same pH of the polyelectrolyte solution;  the substrate is then immersed in the polyanionic (or 

polycationic) solution to complete a bilayer, substrate plus bilayer, being again washed to remove the 

weakly adsorbed molecules. Repetition of these steps may be performed to deposit the desired 

number of bilayers. Consequently, the typical buildup behaviour of the adsorbed amount per unit of 

area as a function of the number of bilayers is shown to be a straight line. The main features of LbL 

technique are: the production of ultra-thin molecular layers via a simple experimental procedure, 

attainment of well controlled film thickness, use of any size, shape and type of the adsorbing surface 

(e.g., quartz, hydrophilic and hydrophobic glass, silicon, mica, calcium fluoride, polymers or metals) 

and water soluble molecules.  In addition, the potential of this method is reinforced by the large variety 

of molecular systems that have been successfully used to assemble macromolecules such as 

polyelectrolytes, functional polymers, dendrimers, ceramic and biological molecules [70]. Particularly, 

with respect to biological molecules, proteins as cytochrome C, lysozyme, myoglobin, 

bacteriorhodopsin, glucose and/or diaphorase, enzymes, DNA and lipids have been successfully 

incorporated in a LbL structure [59]. Therefore, the LbL method has shown to be suitable for the 

creation of biomolecular heterostructures with different functionalities such as those in a living cell, or 

at least to mimic these biological structures. 

As the LbL technique requires adsorption at a solid/liquid interface, the kinetics of adsorption and layer 

proprieties greatly depends on adsorption parameters such as solution concentration, ionic strength, 

pH, temperature, molecular weight, molecule charge density and time of immersion. The contribution 

of these parameters for the adsorbed amount per layer and layer morphology are described below. 
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INFLUENCE OF TIME, CONCENTRATION AND IONIC STRENGTH   

The adsorption time used in the preparation of the LbL films strongly influences the adsorbed amount 

as is shown in figure 4.4.1, where, as an example, adsorption kinetic curves of poly[1-[4-(3-carboxy-4-

hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) adsorbed onto 

(poly(allylamine hydrochloride) (PAH)/PAZO)n/PAH LBL films are shown [113,114,115]. These curves 

represent the typical adsorption kinetics behaviour showing that the polyelectrolyte adsorption is ruled 

by two processes: an initial which has been associated with nucleation and another to diffusion [116]. 

As it can be seen from the two kinetics curves of figure 4.4.1, the initial adsorbed amount is dependent 

of the polyelectrolyte solution concentration. Results, not shown here, revealed a linear increase of the 

adsorbed amount for short adsorption periods with the polyelectrolyte solution concentration [113]. 

This behaviour has also been observed in adsorption curves of poly(o-methoxyaniline)(POMA) [117]. 

The initial linear adsorbed amount increase as a function of concentration can be attributed to the 

Columbic interactions between the polyelectrolyte molecules and the substrate as this is immersed in 

a solution.  However, as the first molecules are adsorbed, they create a potential barrier that difficult 

that more polyelectrolyte molecules are adsorbed. This justifies the first observed plateau in the 

kinetics curves. Nevertheless, the presence of adsorbed charged molecules into the oppositely 

charged substrate allows that small ions, the polyelectrolyte counterions and/or solution ions when salt 

is added to solution, can be adsorbed into the substrate contributing for the potential barrier decrease, 

allowing that more molecules are adsorbed and also accounting for the second adsorption process. 

Moreover, the total adsorbed amount attained for longer adsorption times is concentration 

independent while the one associated only with the second process is concentration dependent as 

revealed by both adsorption kinetics characteristic times and adsorbed amounts. This model, for the 

creation of one layer, is corroborated by the observed increase to a maximum of surface roughness at 

short adsorption times, corresponding to the first adsorption plateau in the kinetics curve, and 

decreasing to a constant value which can be associated to adsorbed amount saturation. The kinetics 

curves behaviour is also strongly affected by the polyelectrolyte solution ionic strength. The increase 

of the salt amount in the polyelectrolyte solution leads to an increase of the total polyelectrolyte 

adsorbed to a maximum, followed by a decrease, behaviour which is accounted by the ions screening 

of both substrate charges and already adsorbed molecules. 

 

Figure 4.1.1. PAZO adsorption kinetics curves obtained from two different PAZO aqueous solutions 
concentrations. The layers were not dried during the film preparation (wet) [114]. 
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INFLUENCE OF PH AND DEGREE OF IONIZATION 

The ionic groups of the polyelectrolytes can behave as strong or weak acids or bases. When the acids 

or bases groups are strong, the degree of ionization is pH independent, while when they are weak the 

degree of ionization is pH dependent. Consequently, the adsorbed amount and morphology of an 

adsorbed layer is strongly dependent on the polyelectrolyte solution pH as this parameter controls the 

polyelectrolyte degree of ionization. Moreover, the stability of LbL films is: a) pH dependent, since the 

interactions leading to the formation of LbL films are essentially ionic in nature; b) dependent on the 

degree of ionization for the stability; c) dependent also on the adsorbed amount [118]. The washing 

solutions pH also contributes for the adsorbed amount and film stability. Surface morphology is also 

affected by the solution pH and ionization degree [119] by affecting strongly the conformation of weak 

polyelectrolytes in solution and the topography of surfaces having polyelectrolyte molecules adsorbed 

on it. In fact, for pH values where the ionisable groups are charged, the adsorbed amount is found to 

be small. According to theoretical models for polyelectrolyte adsorption, the adsorbed amount 

corresponds essentially to adsorbed polymer trains while the number of loops and tails is low. For pHs 

where the ionisable groups are uncharged and the adsorbed amount is higher. This situation 

corresponds to a larger number of loops, to some trains because the number of adsorbed trains 

decreases comparatively with the number for pH where the ionisable groups are charged, and to 

some tails. So, the pH effect on weak polyelectrolytes is to cause the chains to be more or less coiled, 

leading to more planar or rougher surfaces after adsorption. 

 

 

WATER MOLECULES IN LAYER-BY-LAYER FILMS 

The presence of water molecules inside the layers is of extreme importance for the production of 

heterostructures containing biological molecules, as the presence of entrained water allows the 

safeguarding of biomolecule environment and activity. Particularly, the presence of water near 

biological molecules plays an important role as far as radiation damage is concerned [6,120,121]. The 

presence of water molecules in LbL films has already been reported in the literature 

[117,119,122,123]. By studying the amount of counterions in poly(allylamine hydrochloride) (PAH) and 

poly(styrene sulfonate) (PSS) (PAH/PSS) LbL films, Lourenço et al [9,10 confirmed that the amount of 

counterions decreases by almost one order of magnitude if the film is dried under room conditions 

after adsorption of each layer. This was justified by water removal during the drying process, which 

allowed the formation of NaCl nanocrystals that subsequently dissolved into the solution during the 

adsorption of the next layer. For samples which were not dried during the preparation process, wet 

samples, the increase in salt concentration lead to a decrease in the number of NH3
+
 ionized groups, 

confirming a theoretical prediction made by Muthukumar [124], which accounts for the condensation of 

counterions on flexible polyelectrolytes. Therefore, the presence of bound water molecules in the films 

was seen to be conditioned by the fabrication process, in such a way that in wet samples, aggregates 

of water molecules are entrapped in the film. This conclusion resulted from the analysis of film 

composition via X-rays photoelectron spectroscopy (XPS) by analyzing the XPS spectra in the energy 

region were oxygen is expected. However, the number of water molecules in the PAH/PSS is 
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practically independent of salt concentration and revealed to be associated with the number of 

polyelectrolyte ionic groups. Taking into account these results, the composition of other polyelectrolyte 

LbL systems, mainly, poly(o-methoxyaniline)(POMA)/PSS was also determined using XPS as a 

function of film composition by changing the ionic strength of sodium chloride and potassium chloride 

of PSS aqueous solutions. Eight bilayers POMA/PSS LbL films were prepared from POMA solutions 

with a concentration of 0.6 g/L [116], while PSS solutions were prepared with a concentration of 10
-2

 M 

[9,10]. The adsorption period of time was 10 minutes for each layer and the samples have not been 

dried during the preparation. The XPS characterization procedure was similar to the one described 

elsewhere [9,10]. The polyelectrolyte POMA was chosen taking into account the obtained infrared 

results where hydrogen bonds associated to water were found [117,119]. In figure 4.1.2, the ratio 

between the percentage of oxygen atoms which are not related with the assembled polyelectrolytes 

and the percentage of ionic associated groups is plotted as a function of solution salt concentration. 

These results show that the number of adsorbed water molecules in the POMA/PSS decreases as the 

ionic strength increases, which can be related to the increase of number of counterions in the film.  

This result allows us to conclude that the type of salt ions possibly does not influence the amount of 

retained water molecules and the number of them in a biomimetic membrane obtained via the LbL 

technique can be controlled with precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.2. Plot of the ratio between the percentage of oxygen atoms which are not related with the 
assembled polyelectrolytes and the percentage of ionic groups associated to them. The POMA/PSS films 
were prepared from PSS aqueous solutions with the ionic strength of sodium chloride (NaCl) and 
potassium chloride (KCl). 

 

 

BIOMIMETIC MEMBRANES FOR RADIATION DAMAGE STUDIES 

As mentioned above, the LbL technique can be applied to the creation of molecular heterostructures 

composed by biomolecules such as proteins, enzymes, nucleic acids (DNA) and lipids, and used to 

investigate radiation damage in a membrane like structure. The LbL technique has been used to 
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prepare thin films of DNA bases [125], DNA and lipids. To compare the damage both in DNA 

containing LbL films and cast films, both type of samples were irradiated with vacuum ultraviolet 

synchrotron radiation (VUV) at 140 nm (8.85 eV) and a mean light intensity impinging the samples of 

the order of 9x10
-4

 W/m
2
. The DNA LbL films were prepared alternating DNA layers with PAH. The 

DNA solutions were obtained dissolving deoxyribonucleic acid sodium salt from calf thymus (from 

Aldrich), in ultra-pure water to a concentration of 0.5 mg/mL. The PAH aqueous solutions were 

obtained with a concentration of 10
-2

 M. The adsorption period was 3 minutes in both polyelectrolytes 

and films have not been dried during its production. The film building up was monitored using VUV 

spectrophotometry by plotting the absorbance band intensity at 203 nm, the most intense band, as a 

function of the number of deposited bilayers. The expected linear growth behaviour with the number of 

DNA layers was observed, showing that the adsorbed amount of PAH and DNA are constant for each 

adsorbed layer. This proves the reliability of producing PAH/DNA films with accurate controlled 

thickness. Radiation damage was monitored with infrared spectrophotometry allowing the assignment 

of spectra peaks changes to characteristic DNA molecular vibrations. As in a previous work [12], it has 

been observed that the energy of 8.85 eV causes damage to DNA molecule as revealed by the 

decrease in the C-O stretch vibration of furanose in backbone, PO2
-
 groups, thymines, cytosines and 

adenines groups. Moreover, the observed changes occur at different rates, indicating that several 

damage processes are taking place. To compare the DNA damage in both type of LbL and cast 

samples, the ratio between the area of the absorbance peak at 1090 cm
-1

 associated to the phosphate 

groups relatively to the area of the peak at 961 cm
-1

 which is associated with DNA skeletal bonds was 

plotted as a function of the irradiation time as shown in figure 4.1.3. The curves indicate that the 

damage in the phosphates groups is higher in DNA cast films than in LbL films, which can be 

accounted by the amount of water molecules in these samples to be quite different or due to the fact 

that PAH is acting as a DNA protective shield. In both cases further measurements have to be 

addressed to obtain precise information on the amount of water molecules and of radiation damage on 

PAH films.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.3. Normalized infrared peak area at  1090 cm
-1

 relative to peak area at 961 cm
-1 

of a DNA cast 
sample and PAH/DNA film irradiated for different periods of time with synchrotron radiation at 140 nm. The 
lines are imposed exponential decays. 
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Conclusions 

Fabrication of biomimetic membranes was shown to be achieved via layer-by-layer (LbL) technique. 

The obtained layered heterostructures resulted from adsorption of alternated oppositely charged 

molecules from aqueous solutions into solid surfaces. The build-up and morphology of each layer 

depend on adsorption parameters such as solution concentration, molecular weight, temperature, 

time, pH, and ionic strength. These heterostructures contain bound water molecules near to the 

adsorbed macromolecules giving rise to the presence of water molecules in the final layered molecular 

structure, which is fundamental for keeping the biological molecules environment. In addition, the 

presence of water molecules in the heterostructures depend of the type of adsorbed species and the 

ionic strength of the solutions used to prepare the adsorbed layers. Results obtained in polyaniline LbL 

heterostructures showed that the increase of solution ionic strength leads to an increase of the 

number of counterions in the heterostructure and decrease in the number of water molecules per ionic 

group. However, this is not a general trend in such a way that in other polyelectrolytes the number of 

water molecules per ionic group was observed to be independent of salt concentration and number of 

counterions. As a consequence, it is fundamental to systematically analyses the processes that are 

leading to increase and control the number of water molecules within biomimetic membranar 

structures. This is particularly relevant in what concerns radiation damage studies of DNA containing 

biomimetic molecular heterostructures where different salt solution contents are leading to different 

damage levels. In this way, controlling water molecules within a biomimetic system is fundamental to 

understand the role of water in the radiation damage processes. Finally, the biomimetic membranes 

composed of biological molecules, promise to be a new approach to address the study of radiation 

damage on biological systems with the main objective to understand the physical processes that take 

place when radiation is impinging into the biological molecules within a supramolecular biological 

structure, which can then also have implications in radiation therapy, radiation sensors and radiation 

equivalent materials development. 
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ABSTRACT  

The Layer-by-Layer (LbL) technique has recently been developed as a promising method for 

production of thin films functional molecular heterostructures since the interactions occurring are 

essentially ionic and hydrogen bonding patterns are found to be the identical to those observed in 

biological systems. Such films have been shown to be also potentially good mimics of biological 

membranes. Though, it is possible that a study of biological relevant molecules assembled in LbL films 

will provide a closer analogue to their role in cellular systems. Thin films of adenine (A) and the 

polyelectrolyte poly(vinylsulfonic acid sodium salt) (PVS), were prepared by cast and Layer-by-layer 

(LbL) techniques. In this article, the experimental results on the UV irradiation of adenine cast films are 

described and the effect of 140 nm irradiation, with an estimated dose of about 8.5×10
-4

 W/m
2
, is 

evaluated at the molecular level. 

 

INTRODUCTION 

Synchrotron radiation (SR) has been used for studying photo-induced processes in research areas 

such as physics, chemistry, astronomy, biology and medicine, among many others. Due to its nature 

of high intensity, broad spectral range, high degree of polarization and collimation, makes SR a 

powerful tool for basic and applied research [126]. Since the UV1 beam line at the ASTRID 

synchrotron light source at the Institute for Storage Ring Facilities (ISA), University of Aarhus, 

Denmark became available at the end of 2001, we have been studying the spectroscopy of a wide 

variety of molecular targets, including aeronomic molecules contributing to global warming and ozone 

depletion [127]. Therefore, Vacuum Ultraviolet (VUV) photoabsorption investigations of several 

biomolecular targets in the gas phase have also been studied (see e.g. ref. [128,129]), providing 

results on the electronic state spectroscopy of these molecular systems. Although a few experiments 

have been carried out on the effects of radiation on key biological molecular targets, the knowledge of 

the photoabsorption processes are also extremely necessary to evaluate the role of these molecular 

systems in physiological environments. Nevertheless, and in order to assess the risks from radiation 

damage and modelling the effect of radiation on cellular material, a comprehensive understanding of 

the underlying interactions between the primary radiation (e.g. UV photons) and the biomolecules 

(e.g., DNA and its constituents) is required. This may, in turn, provide information about the molecular 
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pathways that lead from initial deposition of radiative energy to the formation of irreversible biomaterial 

damage. 

Recently the effects of radiation on DNA and other biomaterials have been shown to be a 

consequence of local damage at the molecular level, which means, site specific reactions in the 

nucleotide’s bases [130]. The early stages after irradiation (10
-16

 – 10
-9

 s) in the chronology of radiation 

damage have been well established to be physical and physical-chemistry in nature, which in turn 

means that the underlying mechanisms can be identified and described at the molecular level. 

Therefore, understanding mutagenesis as a consequence of radiation damage depends on the 

detailed knowledge of the spectroscopy and dissociation dynamics of key components in certain 

initiation reactions and/or of the biomolecular environment constituents [4]. 

Gas phase experiments often do not represent the medium in which photon interactions occur within 

the physiological environment. In order to gain some insight into how the spectroscopy and 

dissociation dynamics of certain molecules (e.g., water) is influenced by its environment, we have 

started a series of experimental measurements in both liquid and condensed phases [123]. The layer-

by-layer (LbL) film technique has recently been developed as a promising method for production of 

functional molecular heterostructures [131,109] by alternated adsorption at solid/liquid interface of 

opposite charged polyelectrolytes, where the interactions occurring are essentially ionic and the 

hydrogen bonding patterns [116,119,131,132,] are found to be the same as those observed in 

biological systems. In addition such films are also potentially good mimics of biological membranes 

[108,133]. Therefore, it is possible that a study of the presence of biological relevant molecules 

assembled in LbL films will provide a closer analogue to their role in cellular systems [9,10]. Recent 

studies of the UV radiation effect on cast DNA, where films have been prepared by spreading the 

material solution into a solid substrate and allowing the solvent to evaporate, and LbL films, revealed 

an increase in the absorbance band intensity centered at 190–200 nm [12]. This band is associated 

with the electronic transitions of the nucleic bases. In order to infer on the transitions induced by UV 

radiation and the specific molecular site where damage is taking place, further parallel studies into 

solid films of nucleic bases were carried out. In this article, the experimental results on the UV 

irradiation of adenine cast films are described. Taking into account the recent experimental results, 

showing that the presence of water molecules are an important role in DNA damage, efforts have 

been done to obtain adenine layer-by-layer films in order to control the amount of water molecules 

present in these films. The conditions required to build adenine LbL molecular films are also 

addressed here. 

 

 

EXPERIMENTAL SET-UP 

CONDENSED PHASE MEASUREMENTS 

The set-up used for film samples characterization in the VUV photoabsorption region consisted of a 

vacuum chamber containing a holder which supports up to three CaF2 sample discs and one 

reference disk mounted on a MDC SBLM-266-4 push-pull linear motion. Synchrotron radiation passes 

through the sample and a photomultiplier was used to measure the transmitted light intensity. The 
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incident wavelength was selected using a toroidal dispersion grating with 2000 lines/mm providing a 

resolution of ~ 0.075 nm at FWHM. In both type of samples, the UV beam light passes through the 

samples and the transmitted intensity, It measured at 1.0 nm intervals. For wavelengths below 200 nm 

a flow of He gas is flushed through the small gap between the photomultiplier and the exit window of 

the gas cell to prevent any absorption by air contributing to the spectrum. The minimum and maximum 

wavelengths between which scans are performed, 115 – 320 nm (10.8 – 3.9 eV), are determined by 

the windows of the gas cell (LiF entrance and CaF2 exit) and the grating, respectively. The synchrotron 

beam ring current is monitored throughout the collection of each spectrum in order that spectra can be 

corrected for any changes in incident photon flux during the period of spectral accumulation and each 

sample measurement was accompanied by a background scan recorded with the reference disk. The 

apparatus is calibrated using O2 and SO2. The Schuman-Rünge absorption band of O2 (6.9 eV – 9.5 

eV) [134] is used to calibrate the absolute cross section because its broad nature minimizes the effect 

of any changes in energy resolution. SO2 is used to calibrate the energy scale as it has absorption 

bands with clearly defined sets of sharp absorption peaks in the ranges 3.8 eV to 5.1 eV [135] and 

5.15 eV to 7.25 eV [136]. 

 

 

FILMS PREPARATION 

Films were obtained from adenine (A) and the polyelectrolyte poly(vinylsulfonic acid sodium salt) 

(PVS), both from Sigma-Aldrich. Aqueous solutions were prepared dissolving these materials in ultra-

pure water with 18.2 MΩ.cm resistivity supplied by a Millipore system (Milli-Q, Millipore GmbH). The 

polyelectrolyte monomer concentration was estimated to be 10
-2 

M and for adenine a concentration of 

7×10
-3 

M. 

Cast films were prepared by spreading the aqueous solutions of adenine into CaF2 substrates. The 

films were led resting for a 24 hours period in order to allow water to evaporate. The substrates have 

been hydrophilized in a H2SO4/H2O2 (7:3) solution for 10 minutes previously to film deposition. 

Layer-by-layer (LbL) films were also prepared from these materials and its production comprised the 

following steps: i) immersion of the substrate in a cationic solution (adenine) during 5 seconds; ii) 

substrate + cationic macromolecule layer washing in an aqueous solution with the same pH of the 

cationic solution; iii) immersion of the substrate + cationic macromolecule layer into the anionic 

solution (PVS) during 5 seconds; iv) substrate + cationic macromolecule/cationic macromolecule 

bilayer washing with an aqueous solution with the same pH of the anionic solution. By repeating steps 

i) to iv), a large number of bilayers can be deposited. In figure 4.2.1 the procedure sequence for 

production of layer-by-layer films is schematically shown. 

Cast and LbL films were prepared and characterized with VUV synchrotron radiation. Cast films were 

irradiated with UV 140 nm wavelength with an estimated dose of about 8.5 × 10
-4

 W/m
2
. 
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Figure 4.2.1. Schematic sequence of layer-by-layer (LBL) technique for membranes’ production. 

 

RESULTS 

As it was already mentioned, recent studies of ultraviolet irradiation of DNA cast and LBL films showed 

an increase of the absorbance band centered at 190–200 nm [12]. This band has been associated 

with the adenine absorption peaks at 207 nm (5.90 eV) and at 179 nm (6.80 eV) and to the thymine 

absorption peaks at 208 nm (5.86 eV) and 173.5 nm (7.04 eV) [137], corresponding to ( → *) 

transitions. In order to clarify the role of adenine as far as DNA damage is concerned, studies on the 

UV irradiation of adenine films were performed. Figure 4.2.2 shows the VUV absorption spectra of a 

cast adenine sample after and before irradiation at 140 nm with an estimated dose of about 8.5 × 10
-4

 

W/m
2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.2. VUV absorbance spectra of a cast adenine film after and before irradiation at 140 nm with an 
estimated UV dose of about 8.5 × 10
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These spectra show that the irradiation has a strong influence in the molecule’s electronic states since 

some of the intensity peaks are changed. In order to quantify the effects of radiation, spectral bands 

were fitted to Gaussian curves and the positions of the bands were compared with the literature 

available data [138,139,140,141]. Table 4.2.1 shows the calculated and relative peak areas before 

and after irradiation. The relative peak areas are obtained dividing the peak area by the total spectrum 

area without baseline. From table 4.2.1, it is noticeable the same proportion of decrease in the peak at 

236 nm to the increase of the peak at 218 nm. This can be closely related to intramolecular 

rearrangement leading to change in the molecule’s conformation, which can be attributed to the 

rupture of C4=C5 bond. We also noticed a significant decrease in the structure at around 236 nm but 

can only resume ourselves to some speculation on the change observed based on the previous 

assumptions. Therefore, our next investigations are to perform FTIR spectroscopy measurements in 

order to evaluate which sort of bond (and/or bonds) might be affected and which are probably being 

formed. 

 

Table 4.2.1. Adenine absorption features, assignments, peak areas and relative peak areas after and 
before irradiation. 

 

(nm) 

ΔE 

(eV) 

Assignment 

[138] 

Assignment 

[141] 

Peak Area 
Area 

deviation 

Relative Peak Area 

Before 

irradiation 

After 

irradiation 

Before 

irradiation 

After 

irradiation 

266 4.66 3 
1
A′ S1(n→*) 0.30±0.08 0.38±0.04 0.08±0.12 0.17 0.19 

236 5.25 --- 
S2(→*) 

S3(→*) 
0.54±0.07 0.16±0.06 0.38±0.13 0.31 0.08 

218 5.69 4 
1
A′ 

S4(→Ryd) 

S5(n→Ryd) 
0.23±0.08 0.57±0.08 0.34±0.16 0.13 0.29 

202 6.17 5 
1
A′ S7(n→Ryd) 0.38±0.05 0.52±0.06 0.14±0.11 0.21 0.26 

190 6.53 6 
1
A′ S8(n→*) 0.32±0.07 0.35±0.04 0±0.11 0.18 0.18 

 

 

The preparation of LBL of nucleic bases films is not a straightforward procedure, mainly because they 

are small neutral molecules, much smaller and less charged than normally used polyelectrolytes, 

which makes adsorption from solution difficult [109]. Concerning the interactions accounting for 

molecules adsorption, ionic and secondary interactions such as hydrogen bonding and hydrophobic 

interactions have been reported [116,117,119,132] and a classification of the various types of LBL 

films in terms of mechanisms responsible for adsorption, has been proposed by Oliveira et al [139]. 

Marletta and co-workers [142] have shown that small molecules can be used in the production of LBL 

films. Changing the nucleic bases pH solution, molecules can acquire electrical charge allowing its 

adsorption at solid/liquid interface to take place. Layer-by-layer films of adenine alternated with PVS 

were successfully prepared from aqueous solutions at different pHs between 2 and 6. At pH = 3 

adenine acquire positive electrical charge and LBL films can be obtained in agreement with the results 

of figure 4.2.3 where we show that absorbance at 257 nm versus the number of bilayers increases 
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linearly, therefore indicating that LBL films were successfully produced. At pH = 2, adenine continues 

electrically charged but its solubility in aqueous solutions is seen to increase which justifies that no 

LBL films can be produced. 
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Figure 4.2.3. Absorbance at a fixed wavelength as a function of the number of bilayers for LbL films of 
adenine/PVS at pH=3. 

 

 

CONCLUSIONS 

Synchrotron radiation should be used as an important source for future investigations of biological 

relevant molecules. In this article it was shown that the UV radiation induces changes in the adenine 

molecule covalent bonds and that VUV spectrometry can be used to detect the induced changes and 

to some extent localize the damage. The VUV spectroscopy can also be used to monitor the adenine 

adsorbed amount during the formation of LbL films. In the present article, it was demonstrated for the 

first time the conditions that lead to the formation of adenine LbL films as a function of the pH solution. 

 

 

FUTURE DIRECTIONS 

The main goal at short/medium term is the understanding of the processes which occurs when well 

controlled membranes are exposed to radiation. For that, biological membranes and interfaces can be 

simulated by sequential layers obtained by the layer-by-layer technique using common 

polyelectrolytes, functional polymers and biological molecules as a result of alternated adsorption from 

aqueous solutions of molecular species having opposite electrical charges. In order to infer 

information about the membrane build up mechanism, it will be necessary to characterize the 

adsorption kinetics of the biological layers and the formation of self-organized sequential layers. Since 

the adsorption process comes from solution, and greatly dependent on solution parameters, 

adsorption kinetics should be fully characterized in terms of solution concentration, pH, ionic strength 

and temperature, which also influence the film final structure and characteristics. Adsorption models of 

macromolecules should also be addressed to interpret the experimental results. Optimized 

membranes can be used as a mimic to study the effect of radiation damage in soft condensed 
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biological materials when submitted to several radiation sources mainly X-rays, neutrons, electron 

beams, neutral particles beams and UV radiation both in a controlled environment and, to simulate the 

cell environment, in a solid/liquid interface. The description of radiation damage at the molecular level 

in these artificial (mimic) membranes can be performed by the traditional techniques of materials 

characterization, particularly adapted for in situ measurements. In addition, the LBL technique allows 

the incorporation of radiation sensitive polymer layers in the biomimetic membrane during its building-

up process which in turn will allow to quantifying the radiation damage with the real radiation dose. 

Therefore, tissue equivalent materials can be built using the LbL technique. However, as far as we are 

aware, no studies concerning this approach have been done until now, which in turn means that 

several experimental and theoretical investigations are usefully needed.  
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ABSTRACT 

The effects of UV synchrotron radiation on deoxyribonucleic acid (DNA) cast films have been 

systematically investigated by vacuum ultraviolet and infrared spectrophotometry as a function of 

irradiation time. Cast DNA films exposed at 140 nm (8.85 eV) for different irradiations times, revealed 

consistent changes in its VUV spectra which indicate a decrease of  thymine groups and an increase 

of * transition spectral signature associated with the C=O group of the open sugar chain. This 

result was corroborated by a decrease in C-O stretching vibration at 1061 cm
-1

 observed in the 

infrared spectra. Both these results are consistent with the creation of single strand breaks in the 

deoxyribose component of DNA molecule and a decrease in the phosphate groups. It was also 

evidenced that UV radiation is effective in damaging the thymine groups involved in Hoogsteen base 

pairing with adenine. The analysis of the infrared data suggests that the usual spectroscopic 

fingerprints of DNA denaturation are not necessarily a reliable measure of DNA damage. 

 

 

INTRODUCTION 

Radiation induced damage in biomolecules is currently a hot topic in molecular physics since research 

has shown that irradiation with particle/photon energies below the ionizing potential can induce 

damage in deoxyribonucleic acid (DNA) [143]. However, how such radiation damage is induced at 

molecular level is still not well understood [1]. When ionizing radiation interacts with matter it produces, 

in very short time periods (femtoseconds), a large number of ions, radicals, excited neutrals and 

ballistic secondary electrons with initial kinetic energies below 100 eV [2,3], which can subsequently 

cause both physical and chemical modification in the biological media. Furthermore it has recently 

been shown that secondary electrons with energies between 4 to 6 eV can induce strand break 

formation in double-stranded supercoiled DNA [4]. Major experimental and theoretical studies have 

sought to determine the interaction mechanisms leading to such low energy and damage at the 

molecular level and dissociative electron attachment is now believed to be dominant mechanism. 

Complementary studies on the effect of radiation damage in DNA plasmid has been investigated using 

7-150 eV synchrotron radiation [5] and results have revealed that DNA single-strand (SSB) and 

double-strand (DSB) breaks occur at all these measured energies, for both dry and solution plasmid 

DNA, with tissue damage being induced in the presence of water molecules which is more 

representative of the situation in  real cells [6], as OH radicals are released to undertake chemical 
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rather than direct physical attack on the DNA. It should be remarked here that a large amount of 

studies about free radical chemistry of DNA have been performed [38,144 and references therein], 

and these studies are fundamental to understand the reaction processes which occur when the DNA 

molecule is irradiated in presence or not of water molecules. 

A new approach is needed in which biological samples are studied within an environment that mimics 

the cell. This new approach involves the production of functional biomimetic membranes at planar 

interfaces. It is necessary to keep the membrane in, as far as possible, a natural aqueous environment 

and, for sake of quantitative characterization, it is desirable to have it at a planar solid interface. A 

methodology to accomplish this is to assemble, from a liquid/solid interface, biological molecules such 

as lipids, DNA, proteins and enzymes onto solid substrates covered with a soft cushion of adsorbed 

polyelectrolytes having a high water content [9,10]. A simple and versatile method for producing these 

architectures is the sequential buildup of layers of functional materials by the layer-by-layer (LBL) 

technique [109,131]. This technique, initially applied to the production of polyelectrolyte thin films, has 

also been found to be suitable for the production of functionalized biomolecular architectures 

[57,108,110,111,112] and is therefore a relevant methodology for  producing biological mimics to 

address radiation damage studies. However, it is fundamental to characterize the radiation 

degradation of the biological macromolecules in vacuum. In this paper, the effect of UV radiation [140 

nm] on condensed phase DNA cast films in vacuum is reported. Analysis by both UV and IR 

spectroscopies allows obtainins information about the effect of radiation damage on DNA’s constituent 

molecules. The results obtained in the present work indicate that the main damage induced is the 

rupture of C-O-C deoxyribose bonds leading to the creation of C=O bonds and fragmentation of 

phosphate groups with damage to the thymine molecules which are involved in Hoogsteen base 

pairing.  

It should be denoted that the conditions of DNA as a dry film are far away of the conditions of DNA in 

a living cell, being the radiation damage in vacuum conditions less effective than in wet real conditions 

where the presence of water molecules is significant and the interaction of water photolysis/radiolysis 

products with the DNA molecules takes place. However, the characterization of the UV radiation effect 

(140 nm) onto DNA molecules in vacuum as performed in this article is of extreme importance for 

comparison of the effect of UV radiation on DNA molecules surrounded by water molecules to infer its 

real contribution for the DNA damage. Actually, data not reported in this article, the amount of water 

molecules surrounding the DNA molecules is being controlled [145] taking into account the 

achievements of Lourenço et al [9,10] obtained with LbL films of common polyelectrolytes prepared 

from different salted aqueous solutions, and producing DNA LbL films.   

 

 

MATERIALS AND METHODS 

Cast films were prepared from deoxyribonucleic acid sodium salt from calf thymus (DNA), obtained 

from Aldrich. DNA was dissolved in ultra-pure water to a concentration of 0.5 mg/mL. The solution was 

deposited onto calcium fluoride (CaF2) substrates and dried by 2 hours into vacuum desiccators. The 

cast DNA films were irradiated for different periods of time and characterized, after each exposure, 
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using synchrotron radiation at station 3.1 at the Daresbury Synchrotron Facility, UK. The mean light 

intensity impinging the sample at 140 nm was of the order of 8.5x10
-4

 W/m
2
. Infrared spectra of the 

samples were measured using a Fourier transform infrared spectrophotometer Nicolet - model 530. 

 

 

RESULTS AND DISCUSSION  

1. EFFECT OF VUV RADIATION ON DNA ELECTRONIC TRANSITIONS 

The absorbance spectrum of a DNA cast film prepared from aqueous solution deposited onto a CaF2 

substrate is shown in figure 4.3.1.  
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Figure 4.3.1. The vacuum ultraviolet absorbance spectrum of a DNA cast sample. The solid lines 
correspond to spectrum peak structure obtained by fitting of VUV spectrum with a set of Gaussians. 

 

 

Although some evidence for fine structure could be seen in the spectrum, two main bands, one at 

about 260 nm and other at about 190-200 nm can be observed. The 260 nm band is the well-known 

DNA absorption band generally attributed to the DNA bases [146]. The band centered at about 190-

200 nm may be attributed to the adenine peaks at 207 nm (5.90eV) and at 179 nm (6.80 eV) and to 

thymine base peaks at 208 nm (5.86 eV) and 173.5 nm (7.04 eV) [146]. In order to obtain more 

information about the peak structure, the spectrum was deconvoluted into a set of Gaussians with the 

features listed in Table 4.3.1. The values displayed in this table correspond to the average of peak 

positions and widths at half heights calculated using four different spectra.  
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Table 4.3.1. Characteristics of peaks observed in DNA cast films by VUV. 

Peak Position (nm) Peak Position (eV) Peak Width (nm) Assignment 

119.8±1.1 10.4±0.1 42.5±1.4 Direct ionization of nucleobases 

161.8±0.8 7.66±0.04 25.5±1.4 Thymine 

177.4±0.5 6.99±0.02 12.2±1.0 Purine N(7)H and N(9)H 

188.3±0.8 6.59±0.03 17.9±2.1 Purine N(7)H and N(9)H 

201.5±1.6 6.15±0.05 11.5±1.6 Purine N(7)H and N(9)H 

209.9±0.6 5.91±0.02 21.8±0.6 
n * guanine 

* thymine 

263.4±0.08 4.708±0.002 42.0±0.2 All bases 

 

The peak centred at 119.8 nm (10.4 eV) is due to direct ionization of nucleobases [147]. The peak at 

161.8 nm (7.66 eV) arises from strong thymine absorption as determined by Shlukla and Leszczynsky 

[148]. The peaks at 177.4 nm (6.99 eV), 188.3 nm (6.59 eV) and 201.5 nm (6.15 eV) are due to the 

strong transitions located at 6.28 (4
1
 A’), 6.38 (6

1
 A’) and 6.81 (8

1
 A’) calculated by Borin et al [149] for 

purine N(7)H and N(9)H. The peak 209.9nm (5.91 eV) may be due to n  * guanine transition and a 

* transition in thymine [148] and the peak at 263.4 (4.708 eV) is generally assigned to all bases, 

see for example the recent work of So and Alavi [150], with assignments of vertical excitation energies 

displayed in [147]. In addition, the DNA molecule spectra should have contributions of deoxyribose 

and phosphate groups as will be discussed later.  

The absorbance spectra obtained before and after different irradiation time periods of DNA cast films 

with synchrotron radiation are shown in figure 4.3.2.  The films were irradiated at 140 nm which is 

close to the first ionization potential of several DNA constituents of about 9 eV [151].  
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Figure 4.3.2. Absorbance spectra of a DNA cast sample for different irradiation time periods using 140 nm 
wavelength radiation.  
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It should be noted that the apparent increase of absorbance with irradiation time is due to an increase 

in the baseline absorption. Such changes in the baseline upon irradiation might be indicative of 

fragmentation. Baseline corrected DNA VUV spectra, in the 170 to 230 nm wavelength region, plotted 

for irradiation times are shown in figure 4.3.3. From these curves one can observe a slight increase in 

absorbance intensities and change in the behaviour of the absorbance curves after irradiation of the 

DNA samples which is indicating that some transitions are being promoted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3. DNA VUV spectra, after correction for baselines, for different irradiation times in the 170 to 
230 nm range. 

 

 

The DNA spectra for different irradiation times were deconvoluted into Gaussians with the same 

characteristics as unirradiated samples (listed in table 4.3.1). The peak areas of each Gaussian were 

plotted versus the irradiation time as shown in figure 4.3.4 a), b) and c). These peak areas were found 

to decrease with irradiation time for the 162 nm and 263 nm peaks, indicating a decrease of thymine 

groups. However, one cannot discard that other DNA bases groups are not being affected. An 

increase of 188 nm and 202 nm peaks areas was also observed which indicates a modification in the 

DNA molecule. Recently, Nielsen et al [152] using VUV circular dichroism measurements on aqueous 

sugar solutions suggested the presence of a weak band at 188 nm associated with the  

transition of the C=O chromophore in the sugar open-chain. Therefore the increase of absorbance 

observed at 188 nm can be ascribed to an increase in the C=O groups as a result of formation of 

sugar open-chains.  
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Figure 4.3.4. Peak area versus the irradiation time for a DNA cast film. Peak centered at: a) 162 nm; b) 
188 nm and 202 nm and c) 263 nm. 
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Finally, it should be remarked here that after one hour of radiation exposure no further changes are 

observed in the spectra, which means that under the present experimental conditions irradiation of 

DNA films with 140 nm light of flux of 8.5x10
-4

 W/m
2
 is sufficient to induce DNA damage in 10-15 

minutes. 

 

 

2. EFFECT OF VUV RADIATION ON THE VIBRATIONAL SPECTRA 

2.1. DNA BANDS ASSIGNMENTS  

As the duration of the scan of a VUV spectrum took about 15 to 20 minutes, the measurement of VUV 

spectra can clearly induce changes in the DNA. For this reason, the effect of the UV radiation on DNA 

films was further investigated by FTIR spectroscopy. The spectra in the 1800-900 cm
-1 

range of a DNA 

film before and after 80 minutes of irradiation at 140 nm are shown in figure 4.3.5. Three main regions 

can be observed in these spectra namely, at 1800-1500 cm
-1

, 1500-1250 cm
-1

 and 1250-900 cm
-1

. 

These regions are composed by a set of absorbance peaks components that can be associated with 

DNA molecular vibrations according the literature [153,154,155], as follows: a) DNA bases (1800-1500 

cm
-1

) - This range is associated with the DNA bases and contains 6 peaks centered at 1711, 1693, 

1651, 1605, 1581 and 1531 cm
-1

; b) Base-sugar (1500-1250 cm
-1

) - This region corresponds to the IR 

absorption in the bases vibrations and base vibrations influenced by the sugar component. In this 

region, 8 peaks were found at 1485, 1446, 1414, 1390, 1366, 1297, 1280 and 1241 cm
-1

 ; and  c) 

Backbone (1250-900 cm
-1

) - This region is associated with the phosphate backbone region and 

contains seven peaks centered at 1210, 1183, 1097, 1061, 1020, 961 and 927 cm
-1

. The assignments 

of all these peaks are displayed in table 4.3.2.  
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Figure 4.3.5. Infrared absorbance spectra of a DNA cast sample before and after irradiation with 140 nm 
UV light for 80 minutes. 
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Table  4.3.2. Characteristic infrared absorptions in DNA cast films. The Peak Area Ratio Tendency (PART) 
indicates the increase or decrease with irradiation time of each peak area relatively to the 961 cm

-1
 peak 

area. [153,154] 

Wavenumber 

(cm
-1

) 

Peak Width 

(cm
-1

) 

Literature 

Wavenumber (cm
-1

) 
Assignment PART 

Base frequency region 

1711 ± 1 23±1 
1715 

1712 

C6=O6 stretching of guanines involved 

in Hoogsteen third strand binding 

and/or C2=O2 stretching of thymines 

involved in reverse Hoogsteen third 

strand binding 

decrease 

1693 ± 1 28±2 1698 - 1691 
C2=O2 strength of thymine single 

stranded or double stranded 
constant 

1651 ± 1 50.8±0.2 1655 - 1657 
C2=O2 strength of cytosine single 

stranded or double stranded 
constant 

1605± 1 22.0±0.2 1601 C=N ring vibration of guanine decrease 

1581± 1 33.2±0.5 
1590 - 1575 

1585 

C=N ring vibration of Guanine single 

stranded or double stranded 

Ring vibration of guanine and adenine 

decrease 

1531± 1 19.0± 0.9 
1527 - 1520 

1530 

In-plane vibration of cytosine single 

stranded or double stranded 
constant 

Base-sugar frequency region 

1485± 1 29.4± 0.5 1495 - 1476 
Ring vibration of Adenine and Guanine  

N7C8H bend of Adenine/Guanine  
constant 

1446± 1 21.9± 0.5 
1457 - 1453 

1438 - 1434 

Adenine A/B forms  

Adenine Z form  
decrease 

1414± 1 27± 2 1413 - 1408 
C3’-endo deoxyribose in A form helices  

C3’-endo deoxyribose in Z form helices  
decrease 

1390± 1 23± 2 1389 - 1374 
Calc: CH3 Symmetric deformation of 

deoxyribose thymine  
decrease 

1366± 1 21.7± 0.7 1381 - 1369 
Cytidine and guanosine in 

anticonformation  
decrease 

1297± 1 11.9± 0.1 1297 – 1285 C4-NH2 strength of cytosine [28], [29] decrease 

1280± 1 23.3± 0.6 
1281 

1275 

C5=C6 vibration of cytidine  

CN3H bend of deoxyribose thymine  

 

decrease 

1241± 1 37.9± 0.3 1245 - 1235 Antisymmetric  PO2

-
 stretch in A-form  decrease 

Backbone frequency region 

1210± 1 21.2± 0.1 1225 - 1220 Antisymmetric  PO2

-
 stretch in B-form  increase 

1183± 1 20.9± 0.2  
A form marker – Sugar phosphate 

backbone 
decrease 

1097± 1 36.7± 0.6 1090 - 1085 Symmetric PO2
-
 stretching of Backbone  decrease 

1061± 1 31.3± 0.7 1069 - 1044 CO stretch of the furanose in backbone  decrease 

1020± 1 33.7± 0.4 1020 - 1010 Furanose  vibrations  constant 

961± 1 20.9± 0.2 970 - 950 CC stretch of the backbone  ---- 

927± 1 25.6± 0.5 930 - 924 Z-form constant 
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Several changes in the IR spectra have seen observed after irradiation. In order to better analyze the 

infrared spectra changes, spectra baselines were removed and the peaks which did not change as a 

result of exposure to UV radiation were identified. From this analysis, the peak area at 961 cm
-1

 

wavenumber, which is associated with CC stretch of DNA backbone, was found not change under UV 

radiation and in such a way that this peak was used to normalize the obtained data, dividing the other 

peaks areas by the area of this peak, avoiding that the small changes due to the measurement of the 

infrared spectra in different regions of the sample are not affecting the observed peak areas decrease 

or increase. 

In order to quantify the changes induced by UV radiation the spectra were fitted with Gaussian 

components after baseline removal. The peak characteristics namely, peak position and peak width, 

were calculated as free fitting parameters for each spectrum. Mean values for the peak positions and 

widths were then calculated from all fitted values and are displayed in table 4.3.2. These mean values 

were then used in new fittings and the peak areas were calculated. The calculated peak areas are 

essentially proportional to the number oscillators which lead a particular absorbance peak. These 

calculations allow to determinate peak area ratios relative to the 961 cm
-1

 peak area, which is 

associated with the backbone frequency region, as a function of irradiation time. In table 4.3.2 it is also 

displayed the general behaviour with the irradiation time, designed by increase, decrease or constant, 

of each peak area relative to that under the 961 cm
-1

 peak. 

 

 

2.2. DAMAGE IN DNA SUGAR RELATED COMPONENTS 

Since the VUV spectra results suggested that the UV radiation opens the deoxyribose ring, the related 

sugar components were investigated. In figure 4.3.6, the calculated area ratios of the furanose 

vibration (1020 cm
-1

), of the C-O stretching vibration of nucleic acid sugar (1061 cm
-1

) and of the PO2
-
 

stretching of backbone (1097 cm
-1

) relative to bonds associated with the DNA backbone (961 cm
-1

) are 

plotted as a function of irradiation time. This figure reveals that vibrations associated with the furanose 

are independent of the irradiation time, while those associated with C-O stretching of nucleic acid 

sugar (1061 cm
-1

) and PO2
-
 stretching vibrations are seen to decrease with the irradiation time. Such a 

decrease in the C-O bond stretching vibration of deoxyribose during irradiation has also been 

observed by Tang and Guo [156] in characterizing the effect of UVA and UVB irradiation on aqueous 

solutions of DNA calf thymus using Raman spectroscopy analysis. Therefore it can be concluded that 

140 nm radiation is sufficient to open the sugar ring and to break the DNA phosphate groups. 

Although both C-O and PO2
-
 stretching vibrations decrease with irradiation time the ratio between the 

peak areas of 1097 cm
-1

 and 1061 cm
-1

 peaks is also seen to decrease with the irradiation time which 

indicates that the effect of radiation is more dramatic in the PO2
-
 groups.  
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Figure 4.3.6. Ratios of the infrared peak areas at 1020 cm
-1

 (furanose  vibrations), 1061 cm
-1

 (CO stretch 
of the furanose in backbone) and 1097 cm

-1
 (symmetric PO2

-
 stretching of backbone) relative to the peak 

area of the 961 cm
-1

 feature. The peak area was calculated from infrared peaks obtained from spectra of 
DNA cast sample irradiated for different periods of time using 140 nm synchrotron radiation. The solid lines 
are guidelines. 

 

 

Taking into account these results the ratios of the vibrations associated with the deoxyribose group 

were plotted as a function of irradiation time, figure 4.3.7. The graph shows the normalized peak area 

ratios for C-O stretching vibration of nucleic acid sugar (1061 cm
-1

), PO2
-
 stretching of backbone (1097 

cm
-1

), antisymmetric PO2
-
 stretch in A DNA form (1241 cm

-1
)  and CN3H bend of deoxyribose thymine 

(1280 cm
-1

) relative to the CC stretch in the DNA skeleton (961 cm
-1

).  All of these ratios decrease with 

irradiation time but the radiation effect on the sugar chain is weaker than CN3H bend of deoxyribose 

thymine (1280 cm
-1

). The ratio for C-O stretching vibration of nucleic acid sugar (1061 cm
-1

) decreases 

by 10%, while the intensity of the CN3H bending mode of deoxyribose thymine (1281 cm
-1

) decreases 

by some 40%. This result shows that the effect of UV radiation is located essentially in the 

deoxyribose thymine groups. In addition, both PO2
-
 stretching of backbone (1097 cm

-1
) and 

antisymmetric PO2
-
 stretch in A-form DNA (1241 cm

-1
) decrease similarly, confirming the consistency 

of this method of analysis.   
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Figure 4.3.7. Normalized infrared peak area ratios at 1061 cm
-1

(CO stretch of the furanose in backbone), 
1097 cm

-1
 (symmetric PO2

-
 stretching of Backbone), 1241 cm

-1
 (antisymmetric  PO2

-
 stretch in A-form) and 

1280 cm
-1

 (C5=C6 vibration of cytidine and CN3H bend of deoxyribose thymine) relative to peak area at 
961 cm

-1
 of a DNA cast sample irradiated for different periods of time with synchrotron radiation at 140 nm. 

The solid lines are guidelines. 

 

 

The normalized peak area ratio between the CH3 symmetric stretch with deformation of deoxyribose 

thymine (1390 cm
-1

) relative to vibrations associated with DNA skeleton (961 cm
-1

) also decreases 

with irradiation time, as is shown in figure 4.3.8, where this peak area ratio is plotted together with the 

normalized ratio between the CN3H bend of deoxyribose thymine (1280 cm
-1

) peak area relatively to 

the peak area associated to DNA skeletal vibrations (961 cm
-1

). Although, the ratio at 1390 cm
-1

 

seems to decrease to smaller values, it can be observed that both ratios decrease in a similar way, 

within the error bars. As both these vibrations are related with deoxyribose thymine vibrations these 

similar decreases are consistent. For comparison with the effect of UV radiation in cytidines and 

guanosines, the normalized peak area ratio between the vibrations associated with cytidine and 

guanosine in anticonformation (1366 cm
-1

) and the vibrations associated to DNA skeletal (961 cm
-1

) is 

also observed to decrease with irradiation time, as is shown in figure 4.3.9, where this peak area ratio 

is plotted together with the normalized peak area ratio between the CH3 symmetric deformation of 

deoxyribose thymine (1390 cm
-1

), relative to the vibrations associated to DNA skeleton. From this plot 

one can conclude that the UV radiation effect is more severe in the deoxyribose thymines than in the 

cytidines and guanines. 
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Figure 4.3.8. Normalized infrared peak area ratios at 1280 cm
-1

 (C5=C6 vibration of cytidine and CN3H 
bend of deoxyribose thymine), 1097 cm

-1
 (symmetric PO2

-
 stretching of backbone) and 1241 cm

-1
 

(antisymmetric PO2
-
 stretch in A form) relative to peak area at 961 cm

-1
 of a DNA cast sample irradiated for 

different periods of time with synchrotron radiation at 140 nm. The solid lines are guidelines. 
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Figure 4.3.9. Normalized  infrared peak area ratios at 1366 cm
-1

 (cytidine and guanosine in 
anticonformation) and 1390 cm

-1
 (CH3 Symmetric deformation of deoxyribose thymine) relative to peak 

area at 961 cm
-1

 of a DNA cast sample irradiated for different periods of time with synchrotron radiation at 
140 nm. The solid lines are guidelines. 

 

 

Related with the deoxyribose a similar decrease in the area ratios of 1414 cm
-1

 and 1446 cm
-1

 peaks, 

respectively, associated with C3’-endo deoxyribose in A and Z forms helices, and with adenine in A, B 

and Z forms,  can be observed in figure 4.3.10. In this figure was also plotted the peak area ratio of the 

1280 cm
-1

 which is associated C5=C6 vibration of cytidine and to CN3H bend of deoxyribose thymine 

for comparison. From this comparison, one can see that the decrease in the 1280 cm
-1

 feature is 

slightly more accentuated indicating that deoxyribose associated to thymines is more affected by the 

radiation. It should remarked here that DNA molecules are more easily attacked by ozone than RNA 
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molecules [157,158], suggesting that thymine groups are the DNA components more easily attain 

damage which corroborates these conclusions. 
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Figure 4.3.10. Normalized infrared peak area ratios at 1280 cm
-1

 (C5=C6 vibration of cytidine and CN3H 
bend of deoxyribose thymine), 1414 cm

-1
 (C3’-endo deoxyribose in A-form helices and C3’-endo 

deoxyribose in Z form helices) and 1446 cm
-1

 (adenine A, B and Z forms) relative to peak area at 961 cm
-1

 
of a DNA cast sample irradiated for different periods of time with synchrotron radiation at 140 nm. The 
solid lines are guidelines. 

 

 

2.3. DAMAGE IN THYMINE GROUPS 

The above described results suggest that the infrared region associated with the thymine groups 

should be further explored. Moreover, it is known that two adjacent thymine groups when submitted to 

UV A and B radiation tend to dimerize. In fact, the cyclobutane pyrimidine dimer is the most abundant 

lesion caused by ultraviolet radiation and consists of a reaction of the carbon-carbon double bonds of 

two proximal pyrimidine bases to form a cyclobutane ring. This reaction has been recently investigated 

by femtosecond time–resolved infrared spectroscopy [159] and it was revealed that for DNA samples 

irradiated with 266 nm, the intensity of bands due to double-band stretch associated with the two 

carbonyl groups and the C5=C6, double bond (1632 and 1664 and 1693 cm
-1

) decreases after several 

minutes of irradiation. On the other hand, the intensity of some peaks in the range of 1300 to 1500 cm
-

1
 is seen to increase with the UV exposure. In the present work, related with the thymine there are 

three peaks respectively associated with CN3H bend of deoxyribose thymine (1280 cm
-1

), CH3 

symmetric vibration of deoxyribose thymine (1390 cm
-1

) and a peak at 1701 cm
-1

, not listed in table 

4.3.2, which is the sobreposition of two peaks, one associated with C2=O2 stretching of thymine in 

single or double-stranded (1693 cm
-1

) and other associated to  C2=O2 stretching of thymines involved 

in reverse Hoogsteen third strand binding and/or to C6=O6 stretching of guanines involved in 

Hoogsteen third strand binding (1711 cm
-1

). The area of the 1701 cm
-1

 peak was calculated for 

comparison of the decay of the C2=O2 bond in all thymines. Figure 4.3.11 shows the plot of the 

normalized areas ratios of the peaks at 1280 cm
-1

, 1390 cm
-1

 and 1711 cm
-1

 relative to the area of the 

961 cm
-1

 peak. The peaks associated with both CN3H bend of deoxyribose thymine and CH3 
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symmetric deformation of deoxyribose thymine decrease by 40% and both showing a similar 

behaviour with irradiation time, whilst peaks due to C=O stretching of thymine decreases only by 10%. 
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Figure 4.3.11. Normalized infrared peak area ratios at 1280 cm
-1

(C5=C6 vibration of cytidine and CN3H 
bend of deoxyribose thymine), 1390 cm

-1
 (CH3 Symmetric deformation of deoxyribose thymine) and 1701 

cm
-1

 (C2=O2 strength of thymine single stranded or double stranded and C6=O6 stretching of guanines 
involved in Hoogsteen third strand binding and/or C2=O2 stretching of thymines involved in reverse 
Hoogsteen third strand binding) relative to peak area at 961 cm

-1
 of a DNA cast sample irradiated for 

different periods of time with synchrotron radiation at 140 nm. The solid lines are guidelines. 

 

 

Changes observed in the thymine group may be seen in the 1675 to 1750 cm
-1

 region, where two 

Gaussian components were found, taking into account that the C2=O2 strength of thymine single 

stranded or double stranded is associated to 1693 cm
-1

 vibrations and the C2=O2 stretching of 

thymines involved in reverse Hoogsteen third strand binding is present as a vibration peak at 1711  

cm
-1

.  In figure 4.3.12, the normalized 1693 cm
-1

 and 1711 cm
-1

 peak ratios relative to 961 cm
-1

 are 

plotted. The area ratio considering only a peak at 1701cm
-1

 in this region was also plotted for 

comparison. From the plot, it can be seen that the UV radiation does not affect the peak at 1693 cm
-1

 

associated with C2=O2 strength of thymine, while the C2=O2 stretching of thymines involved in 

reverse Hoogsteen third strand binding and/or to C6=O6 stretching of guanines involved in Hoogsteen 

third strand binding [1711 cm
-1

] is affected. Moreover the decrease of the C=O peak is followed by an 

increase in the intensity of the 1210 cm
-1

 peak at the same rate of decrease in the 1711 cm
-1

 peak, 

which can be seen in figure 4.3.13.  
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Figure 4.3.12. Normalized infrared peak area ratios at 1693 cm
-1

 (C2=O2 strength of thymine single 
stranded or double stranded), 1711 cm

-1
 (C6=O6 stretching of guanines involved in Hoogsteen third strand 

binding and/or C2=O2 stretching of thymines involved in reverse Hoogsteen third strand binding) and 1701 
cm

-1
 (C2=O2 strength of thymine single stranded or double stranded and C6=O6 stretching of guanines 

involved in Hoogsteen third strand binding and/or C2=O2 stretching of thymines involved in reverse 
Hoogsteen third strand binding) relative to peak area at 961 cm

-1
 of a DNA cast sample irradiated for 

different periods of time with synchrotron radiation at 140 nm. The solid lines are guidelines. 
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Figure 4.3.13. Normalized infrared peak area ratios at 1210 cm
-1

 (antisymmetric  PO2
-
 stretch in B form) 

and 1711 cm
-1

 (C6=O6 stretching of guanines involved in Hoogsteen third strand binding and/or C2=O2 
stretching of thymines involved in reverse Hoogsteen third strand binding) relative to peak area at  
961 cm

-1
, of DNA cast sample irradiated for different periods of time with synchrotron radiation at 140 nm. 

The solid lines are guidelines. 

 

 

However, here it should be remembered that the peak at 1210 cm
-1

 can be assigned to both 

antisymmetric PO2
-
 stretch in B DNA form and to a normal C-O bond. Since an increase in the B-DNA 

form is not expected to occur, one can infer that the C=O bond of thymine is being replaced by C-O, 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

86 

 

which can be accounted by the different spatial distribution of the adenine and thymine and the pairing 

between them. From the theoretical point of view Cubero et al [160] calculate average hydrogen-bond 

energies of -13.3 and -12.1 kcal/mol for Hoogsteen and Watson-Crick pairings, respectively, values 

which are in accordance with the ones  calculated by Monajjemi and Chahkandi [161]. In addition, 

these authors also calculated the dipole moment for both Watson-Crick and Hoogsteen adenine 

thymine hydrogen bonds and achieved values of about 2 and 8 Debyes, respectively. Similar values 

for hydrogen bonds can be also found in [162]. Moreover, Kryachko and Sabin [163] investigated the 

variety of facets of the hydrogen-bond pattern of the Watson-Crick adenine-thymine (A-T) base pair of 

DNA obtaining the transition state of adenine-thymine which governs the conversion of the Watson-

Crick pair of adenine-thymine into the Hoogsteen one and discussed the energetic and geometrical 

features of this conversion. In fact, these authors reported the transition state of adenine-thymine 

between the Watson-Crick and Hoogsteen base pairs of adenine-thymine, where the pairs are 

disposed nearly perpendicular to each other, being the barrier height, taken relatively to the WC pair 

comprise a value of 6.5 kcal/mol at the Hartree-Fock computacional level and 5.4 kcal/mol at the 

B3LYP method.  Taking into account the described literature, our results show that the presence of 

Hoogsteen pairings, highly polarizabled, contributes for the degradation by UV and the Hoogsteen 

pairings are not being converted in Watson-Crick pairing as should be suggested by the theory. 

 

 

2.4. DNA DENATURATION 

Finally, in order to confirm that irradiation leads to DNA denaturation, the ratios between the intensities 

at 1690 cm
-1

 and 1652 cm
-1

 were evaluated. This ratio has been shown to be representative of 

denaturation (Miyamoto et al [164]). In fact, these authors in investigating the DNA hybridization and 

denaturation in aqueous solutions using infrared spectroscopy concluded that the ratio of absorbance 

of the C=O stretching peak at 1690 cm
-1

 to the absorbance peak at 1660 cm
-1

 provides a metric for 

DNA hybridization and denaturation. In DNA cast films the band at 1693 cm
-1

 can be assigned to the 

C6=O6 stretch of base paired guanines plus C2=O2 bond stretching vibration of thymines, while the 

1651 cm
-1

 band is assigned to C2=O2 of cytosines plus C4=O4 stretching vibrations of  thymines [165 

and references therein]. However, when the intensity ratios at these wavenumbers are plotted as 

shown in figure 4.3.14, as a function of the irradiation time only a slight denaturation can be inferred, 

which is in contrast with the data discussed above. However, changes in DNA molecular conformation 

have been observed. It has been that vibrations associated with the antisymmetric  PO2
-
 stretch in A 

form decrease, while there is an increase in the antisymmetric PO2
-
 stretch in B DNA form (1210 cm

-1
). 

As discussed before this increase can be related to an increase in the C-O bond. These results allow 

concluding that the ratio proposed by Miyamoto el al is not necessarily a reliable indication of DNA 

damage or rather the method is only sensitive to one type of DNA damage. This conclusion is also 

corroborated by the work of Cataldo [157] which demonstrated that DNA is also remarkably damaged 

by ozone as revealed by the FTIR spectra of DNA samples submitted to ozone stream which change 

significantly in whole 700 to 1800 cm
-1

 wavenumber region in comparison with spectra of samples 

without ozone treatment. 
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Figure 4.3.14. Infrared ratio of absorbance intensity at 1690 cm
-1

 relative to absorbance intensity at  
1952 cm

-1
 for different periods of time with synchrotron radiation at 140 nm. The solid line corresponds to 

data fitting with a straight line. 

 

 

 

CONCLUSIONS 

Vacuum ultraviolet and infrared spectroscopies showed that vacuum synchrotron radiation at 140 nm 

(8.85 eV) induces damage in calf thymus DNA molecules. Although, only small changes in the VUV 

spectra were revealed during UV irradiation, spectra band deconvolution, allowed conclude that the 

contribution of transitions, associated to open sugar chain, tend to increase in magnitude during 

irradiation. At the same time, a decrease in the peaks associated with the DNA bases has been 

observed. Although such effects could be inferred from measured VUV spectra, this technique is not 

sensitive enough to characterize DNA damage at a molecular level. Infrared spectra of the samples 

allowed us to assign observed infrared absorbance peaks to particular DNA molecular vibrations. 

Analysis of changes in the infrared spectra after irradiation generally, revealed that UV radiation leads 

to a decrease in the magnitude of the absorbance peaks. A decrease is observed in the C-O stretch of 

the furanose in backbone, in the PO2
-
 groups, in the thymines, cytosines and adenines groups. These 

changes occur at different rates indicating that several damage processes are involved. UV radiation 

was shown to affect the thymines involved in reverse Hoogsteen third strand binding which is 

consistent with the observed decrease C2=O2 stretching of thymines involved in reverse Hoogsteen 

third strand binding, while the C2=O2 stretching vibration of thymine in single or double-stranded 

remain unchanged. An increase in the anti-symmetric PO2
-
 stretch in B form was also observed which 

has been related to an increase in the number of C-O bonds. It has been shown that the spectroscopic 

fingerprints suggested by Miyamoto et al [164] as characteristic of DNA denaturation are not 

necessarily a reliable measure of DNA damage and other spectroscopic signatures may be/should be 

used. Comparison of the obtained results with what is known about free-radical induced damage 

[109,131 and references therein] is being done. This study will be fundamental to understand the 
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reaction processes occurring when the DNA molecules are irradiated. To advance in this study it is 

fundamental control the amount of water molecules surrounding the DNA molecules which is being 

done using the LbL technique to produce water containing DNA films and characterize the effect of 

radiation on them.  
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ABSTRACT 

This work stresses on the effects of damage caused by UV radiation, in the energy range of 3.5 to 8 

eV, on deoxyribonucleic acid (DNA) cast films, observed by X-Ray Photoelectron Spectroscopy (XPS). 

The elements atomic percentages present on DNA samples irradiated at different energies were 

obtained from XPS spectra and the extent of damage, on bases, sugar and phosphate groups 

evaluated in terms of radiation energy. Nitrogen and carbon atomic percentages values point out to 

damage on pyrimidine groups as revealed by the decrease in both ratio between N-(C=O)-N and the 

total carbon and the ratio between the imine nitrogen and total nitrogen with the radiation energy 

increase. Analysis of the initial and final values of these ratios is indicating that thymine is the most 

damaged base, with hydrogen being removed from thymine and leading to the creation of thymine 

radical cations with resonance structures having lower ionization energies as predicted by theoretical 

results. Nevertheless, the energy value found to break thymine is about 5.7 eV, which is lower than 

the theoretical predicted values. Decrease in C-O groups was seen to take place at 6.8 eV, which is 

consistent with the opening of sugar rings. The phosphate groups are seen to be damaged at low 

energy values, <3.5 eV, which accounts for the observed distinct conductivities values of DNA 

samples reported in literature. Finally, analysis of sodium XPS data revealed that the degree of 

ionization of DNA increases with radiation energy this is explained by the presence of sodium atoms 

near phosphorous atoms congregate hydration water molecules which have an important role as UV 

radiation protection of phosphate groups.  

 

 

INTRODUCTION 

Radiotherapy is an effective technique for elimination of malignant cells due to its lethal action 

resulting from focused radiation. However, this treatment consists in the irradiation with high energy 

particles of a region with both diseased and healthy cells. The irradiation of healthy cells is a collateral 

effect with adverse outcomes which can be minimized if the nanoscale mechanisms of the direct 

effects of radiation in DNA are understood to make them more effective. As the high energy particles 

or radiation pass through the cell, they create a shower of excited and ionized molecules, electrons 

with lower energies which may also damage the DNA molecules and to make matters worse 
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irradiation with particle or photon beams, even at energies below the ionizing potential, is able to 

induce damage within deoxyribonucleic acid (DNA) molecules [3,4,5,6,12,143,170,172,173,174,175], 

namely by creating single and double strand breaks [167] and changing or removing parts [170]. For 

example, phosphate groups were seen to be removed from DNA cast films irradiated with visible 4.88 

eV light, with consequent reduction of DNA chain conductivity, arising from electron hopping between 

base-pairs and phosphate groups [176]. Despite the different studies carried out making use of 

different approaches and techniques [177,178,179,180,181,182,183,184], the mechanisms taking 

place when DNA molecules are submitted to low energy radiation are not yet well understood, mainly 

due to the complexity of both the DNA molecule and the surrounding biological environment. For this 

reason, most of the data on the effect of radiation or particle beams has been obtained on DNA 

constituents, with only few works dedicated to this effect on DNA molecule and even less to DNA 

within a biological environment.  

In this work, damage on DNA films caused by exposure to a vacuum UV radiation beam, in the range 

of 300 nm (3.5 eV) to 160 nm (8 eV), was studied using XPS. The same DNA here studied presents 

vacuum ultraviolet absorption spectrum which exhibits peaks assigned as follows [170]: the band at 

263.4 nm (4.708 eV) was assigned to all the bases [147,150]; the peak at 209.9 nm (5.91 eV) was 

considered to be due to n  * guanine transition and a   * transition in thymine [148]; the peaks 

at 177.4 nm (6.99 eV), 188.3 nm (6.59 eV) and 201.5 nm (6.15 eV) were referred to the strong 

transitions located at 6.28 eV (4
1
 A’), 6.38 eV (6

1
 A’) and 6.81 eV (8

1
 A’) for purine N(7)H and N(9)H 

[149]; the peak at 188 nm was also associated with the  transition of the C=O chromophore in 

the sugar open-chain [152]; a peak at 161.8 nm (7.66 eV) was considered arising from strong thymine 

absorption as determined by Shlukla and Leszczynsky [148] and a peak centered at 119.8 nm (10.4 

eV) was attributed to direct ionization of nucleobases [147]. From both qualitative (binding energies) 

and quantitative analysis (peak area combined with sensitive factors), as a function of the energy 

radiation, the damage thresholds will be estimated by XPS and correlated with the UV-Vis absorption 

spectrum. 

 

 

EXPERIMENTAL DETAILS 

Cast films were prepared using deoxyribonucleic acid sodium salt from calf thymus (DNA), obtained 

from Aldrich. DNA was dissolved in pure water, obtained from the Millipore Milli-Q system (resistivity ≥ 

18.2 MΩ.cm), to a concentration of 0.5 mg/mL and cast onto silicon substrates which were previously 

hydrophilized in a Piranha solution – H2SO4/H2O2 (7:3) during 10 minutes. The films were dried for 2 

hours in vacuum desiccators and exposed to a 1.14x10
15

 photons UV radiation beam in the range of 

160 nm to 340 nm,  from the Astrid Synchrotron radiation source (UV1) facility at Aarhus University, 

Denmark, was used [185,186]. The characterization of DNA samples was performed in an X-ray 

photoelectron spectrometer XSAM800 (KRATOS) operating in the fixed analyzer transmission (FAT) 

mode [187], with a pass energy of 10 eV, a power of 130 W and the non-monochromatised Mg K X-

ray (h=1253.7 eV) source. All the samples were analyzed on the central part of the sample, i.e. over 
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a 13 mm
2
 spot area at an angle of 0º with respect to the sample surface normal using the high 

magnification mode. The measurement time was similar for all samples. The spectra were recorded 

with a Sun SPARC Station 4 with Vision software (Kratos) using a 0.1 eV step. The X-ray source 

satellites were subtracted, Shirley background and pseudo-Voigt profiles (Gaussian - Lorentzian 

products) were fitted to each region using a non-linear least-squares algorithm [188]. No charge 

compensation (flood-gun) was used. Binding energies (BE) were corrected by using aliphatic C 1s BE 

equal to 285.0 eV [189]. For quantification purposes, sensitivity factors were 0.66 for O 1s, 0.25 for C 

1s, 0.42 for N 1s, 0.39 for P 2p and 2.3 for Na 1s. For the sake of damage referencing, the chemical 

structure of the DNA bases and a schematic DNA molecule fragment are displayed in figure 4.4.1. 

 

 

Thymine 

 

Cytosine 

 

Adenine 

 

Guanine 

 

DNA fragment 

Figure 4.4.1. DNA bases chemical structures on the left and a schematic representation of a fragment of 
DNA molecule. 
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RESULTS AND DISCUSSION 

XPS CHARACTERIZATION 

A survey over XPS spectra of UV irradiated DNA films at different wavelengths revealed the presence 

of carbon, oxygen, nitrogen, phosphorus and sodium. The detailed spectra of carbon, oxygen and 

nitrogen presented several components, as shown in figures 4.4.2 a), b) and c), respectively, where 

the pseudo-Voigt profiles used to fit experimental peaks, for the sample irradiated with 160 nm 

wavelength UV radiation, have also been included. 

     

Figure 4.4.2. C 1s, O 1s and N 1s XPS spectra obtained at take-off angle of 0º with respect to the normal 
to the surface, for DNA samples h, from bottom to top, irradiated with 160 nm, 180 nm, 200 nm, 220 nm 
and 300 nm UV radiation. The top curves correspond to the non irradiated sample spectra. For the sake of 
simplicity, only the fittings with pseudo-Voigt profiles for the sample irradiated with 160 nm radiation are 
shown and curves were set off along the y axis. 

 

The XPS C 1s region was fitted, for all the samples, with four components centered at 285.0 ± 0.1 

(C1), 286.5± 0.1 (C2), 288.1 ± 0.1 (C3) and 289.3± 0.2 eV (C4). The first one is assignable to carbon 

in C-C or C-H and the last one to N-(C=O)-N groups. The two intermediary peaks correspond to a 

mixture of functions which should have binding energies between those two values. By increasing 

binding energy order, should correspond to the groups: C-N, C=N, C-O, N-C=N, N-C-O, N-C=O, 

N=C(NHx)2. These peaks are in accordance with literature [190,191,192,193]. The calculated atomic 

percentages for those components are displayed in table 4.4.1. At the low binding energies tail, a 

supplementary peak was required for a good fitting which is likely attributable to the sample holder 

carbonaceous contamination (not included in table 4.4.1).  

The O 1s peak was fitted with four components: one centered at 531.0±0.1eV (O1) assigned to O=C 

bonds in an aromatic system; a second one centered at 532.1± 0.2 eV (O2), assigned to both O in 

phosphate group and carbonyl in an aliphatic chain; a third one centered at 532.9± 0.1 eV (O3), 

assigned to O in O–C bonds, and a fourth one centered at 536.1± 0.2 eV (O4) assignable to water 

entrapped in the film [194]. The N 1s spectrum was fitted, for all the samples, with two components, 

constrained to the same full width at half-maximum, FWHM = 2.0±0.1 eV and to the same Gaussian-
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Lorentzian percentage, ranging from 46 to 57%, centered at 399.2 ± 0.2 and 400.4 ± 0.1 eV. These 

components are assignable, respectively, to sp
2
 and sp

3
 nitrogen atoms in accordance with XPS data 

of the DNA bases, in which N 1s spectra present two major peaks [195]. Usually, the peak at the lower 

binding energy (BE), around 398–399 eV, is attributed to imine nitrogen (–N=), while the peak at 

higher BE, around 400–401 eV, is attributed to the amine and/or amide nitrogen (–NH– or NH2) [191-

203]. Phosphorus P 2p region which, in all the samples, presented a single doublet with a spin orbit 

split of 0.9 eV and with the main component, P 2p3/2 centered at 133.4 ±0.1 eV, is assignable to 

phosphorus in phosphate group [185]. Finally, Na 1s was fitted with a single peak centered at 1071.3 

±0.3 eV. The FWHM was about 2.0 eV in all the samples, except for samples irradiated with 200 and 

220 nm where it shifted to 2.2 and 2.7 eV, respectively. This observation suggests that part of the Na
+
 

ions, instead of being next to the DNA strand, are water solvated. This leads to the broadening of the 

Na 1s peak as a result of neighborhood diversity increase. Quantitative information may be also 

extracted from XPS data by taking into account the contribution to the total intensity of photoelectrons 

coming from different regions as demonstrated in ref. [204]. The obtained elemental composition 

values of DNA samples are listed in Table 4.4.1 together with the respective assignments. 

 

Table 4.4.1. Element composition in percentage, obtained from XPS spectra taken at take-off angle of 0º 
relatively to normal surface of DNA cast films, irradiated with 1.14×10

15
 photons UV beam at different 

wavelengths. Relative errors are estimated to be less than  10% for components and less than  2% for 
the total. Sample not irradiated but submitted to ambient light conditions during handling was considered 
as irradiated at 340 nm. 

Wavelength(nm) 160 180 200 220 300 340
 

Assignment 

C1 22.0 20.5 17.9 18.7 19.7 19.8 C-C, C-H 

C2 18.2 19.8 21.1 20.3 20.9 20.7 C-N, C=N, C-O 

C3 10.2 9.8 10.2 9.5 9.4 9.8 N-C=O, N-C=N, C(N)3 N-C-O 

C4 1.5 1.5 1.8 1.9 1.8 2.2 N-(C=O)-N 

Total C 51.8 51.7 50.9 50.5 51.9 52.4 --------------------- 

O1 10.7 9.8 9.5 9.8 9.9 10.5 Aromatic O=C 

O2 10.4 9.8 8.4 7.7 6.6 7.5 POx + Aliph. O=C 

O3 7.4 8.8 10.0 11.8 10.4 9.5 POx + O-C 

O4 1.0 0.7 0.9 0.6 0.6 0.5 H2O 

Total O 29.4 29.1 28.8 29.9 27.5 28.0 --------------------- 

N1 5.2 5.3 6.5 5.9 7.0 6.8 N sp
2 

N2 7.9 8.6 8.0 8.0 8.1 7.4 N sp
3 

Total N 13.1 13.9 14.5 14.0 15.1 14.2 --------------------- 

P 2p3/2 1.5 1.7 2.0 1.9 2.2 2.1 
Phosphate 

P 2p1/2 0.9 0.9 1.0 1.0 1.1 1.1 

Total P 2.4 2.6 3.0 2.9 3.2 3.2 --------------------- 

Na 1s 3.2 2.8 2.8 2.8 2.3 2.3 Na
+ 
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DAMAGE ANALYSIS  

Since qualitative analysis of the elements shows that all the functional groups existing in the non-

irradiated samples are kept in the irradiated ones, a quantitative analysis is required to follow the 

evolution of the relative amounts as a function of photon energy, using the values in table 4.4.1 It 

should be remarked that part of the degradation products may be in the gaseous state at room 

temperature escaping the sample once they are produced, which could be C, N, O and P based. 

Therefore, the only element which is not expectable to escape from the sample is sodium, which was 

then used as reference to evaluate the evolution of all the other elements with the UV energy 

increasing. All [X]/[Na] ratios are displayed in figure 4.4.3 as a function of the radiation energy, where 

X is total P, C, O, and N. The UV absorption spectrum was superposed to look for the causes for 

composition changes. 

Since all samples have been submitted to ambient light conditions during handling, for the purpose of 

data consistency, non-irradiated samples will be considered as submitted to 340 nm wavelength 

radiation. Consequently, data relative to non-irradiated samples will be designated hereinafter as 

irradiated at 340 nm wavelength radiation. 

 

Figure 4.4.3. XPS atomic ratios between all the elements – carbon, oxygen, nitrogen and phosphorus – 
and sodium. The UV absorption spectrum is superposed. 

 

 

From figure 4.4.3, two energy intervals may be identified where all the elements decrease their 

amounts with respect to sodium, strongly suggesting that dissociative degradation is taking place. 

Those intervals are ~4.2 eV to ~5.6 eV and ~7 eV to 7.8 eV. It should be noted that the first interval, a 

strong UV absorption band is centered. Other authors found thresholds for dissociative DNA 

degradation, leading to the production of oxygen and nitrogen based fragments, between 3.5 and 5 

eV, when irradiated with electron beams [205]. Here, it is clearly above 4.2 eV. Present data shows 

also decrease in phosphate groups with UV irradiation. 
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The UV action may also promote chemical modifications without element releasing. Therefore, the 

analysis of the evolution of the fractions of each chemical group as a function of the irradiation energy 

may also be useful. These plots are shown in figure 4.4.4.   

        

         (a)                                                                (b) 

Figure 4.4.4. Fraction of element which is under the form of each fitted component: (a) carbon; (b) oxygen. 

 

 

Plots of figure 4.4.4 a) reveal that the N-C=O, N-C=N and C(N)3 N-C-O (C3) fractions are not being 

affected by radiation energy. All the other carbon group fractions are being affected: the C-C or C-H 

(C1) fraction increases while the C-N, C=N, C-O (C2) and N-(C=O)-N (C4) decrease, with increasing 

irradiation energy. The decrease of C2 fraction is, in principle, mainly related to the opening of sugar 

rings. The decrease of C4, since the group N-(C=O)-N exists only in thymine and cytosine, is related 

to the degradation of pyrimidines. The relative decrease of C2 occurs at the energy value of about 6.2 

eV (200 nm), which falls within the vacuum ultraviolet (VUV) absorbance band in the spectrum, 

corroborating that the group which is being most affected by dissociation is the sugars C-O group 

[170]. Analysis of graphs of figure 4.4.4 b) reveal that increase in radiation energy keeps the aromatic 

O=C (O1) fraction almost unchanged, within the experimental error, trendily decreasing for low 

irradiating energies and slightly increasing for irradiating energies above 7 eV. O-C (O3) fraction 

keeps being rather constant till ~5.6 eV and clearly decreases for higher energies. This trend is 

indicating, once again, the rupture of sugar ring, which may transform the C-O bond into a C=O one, 

explaining the behaviour of the O1 fraction. Summarizing, quantitative analysis of XPS data related 

with carbon and oxygen elements indicates that radiation is affecting the DNA bases, mainly 

pyrimidines and sugar rings. However, since carbon and oxygen also exist in most common 

contaminants, oxygen is also bound to P and its binding energy may vary with the phosphate 
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degradation, the soundest elements to characterize samples degradation are nitrogen, phosphorus 

and sodium. Thus, the effect of UV radiation on these elements will be discussed below.  

The effect of UV radiation on DNA bases can be better analyzed by plotting, the N sp
2
 and N sp

3
 

atomic percentage ratios, calculated with respect to total nitrogen for the different DNA samples 

irradiated at different energies, as displayed in figure 4.4.5. 

 

Figure 4.4.5. Fractions of N sp
2
 (N1) and N sp

3
 (N2) as a function of the UV irradiating energy. 

 

 

Plots of figure 4.4.5 reveal that the fraction of the aromatic nitrogen decreases while the one for 

aliphatic nitrogen increases as the irradiation energy increases. In addition, the curves suggest that an 

inflexion is taking place round 6.0 eV. Comparing this value with the VUV absorbance spectrum, one 

can associate this inflexion to the threshold of the large absorption band associated with the excitation 

of -* in purines (guanine, the main contributor of sp
2
 nitrogen, and adenine). This means that the 

relaxation of this transition leads, at least partially, to the breaking of the bonding and nitrogen 

changes from sp
2
 to sp

3
 bonding likely to a hydrogen atom. The initial and final values of N sp

2
/N can 

give some idea about the amount of damaged bases. If all the bases are present in the same number 

in DNA samples, considering that all the DNA bases have a total number of imines and amines equal 

to 6 and 9, respectively, the ratio between the N sp
2
 and total nitrogen atomic percentage should take 

the value of 0.4, which is below the experimental one of 0.48, measured for the non-irradiated 

samples. However, the XPS spectra of N 1s of thymines may be considered as composed by two 

peaks, one at a binding energy of 398.7 and another at 400.4 eV [193], thus the ratio N sp
2
/N 

assumes the value of 0.47, corresponding to 7 N sp
2
 per 15 total N (7/15), which is now much closer 

to the experimental value obtained for non-irradiated samples. On the other hand, the ratio C4/ Na 

decreases from 0.97 to 0.46 as the irradiation energy increases. This behaviour can be translated into 

a percentage value of 53% which can be obtained from (0.97-0.46)×100/0.97. Now, assuming that 

only thymines are being damaged by the UV radiation, i.e. the DNA samples are composed by 53% of 

thymines and 47% of cytosines, one can count [Nsp
2
] = 0.53×4+0.47×3=3.53 and 
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Nsp
3
=0.53×3+0.47×5=3.94. This means that under these conditions the ratio N sp

2
/N assumes the 

value of 0.47, very close of the experimental one. Therefore, these results indicate that thymine is the 

most damaged base at these wavelengths. However, the damage could not be only associated to the 

N-(C = O)-N group since cytosine does not seem to be affected. Thence, the damage most likely 

should be due to the loss of imine group or to selective loss of H
- 
[178]. Results from atom molecule 

collisions studies are consistent with loss of hydrogen by electron harpooning mechanisms, which 

exclusively takes place from the N positions of methylated thymine [172,206] at about 7.6 eV. In turn, 

in dissociative electron attachment (DEA) studies, the minimum electron energy required to break 

thymine bonds as  N1–H, N3–H, C6-H or CH2–H lies between 4 to 5 eV [207].  Thereby, the loss of 

hydrogen explain by itself why the N-(C=O)-N group is being destroyed as the UV energy increases 

since, from calculated geometries and ionization energies of DNA bases and their radical cations, 

Improta et al [208] found a match between the results of the kinetic characterization of thymine 

fragmentation and those of thymine electronic structure analysis, with the N1-C2 bond broken in a first 

step of the fragmentation reaction. In addition, Jochim et al [209] demonstrated that a loss of an H
-
 

from the thymine group results in the creation of a thymine radical cation with m/z =126 and  with an 

ionization energy of 8.82 eV, which can be decomposed into ions through  Retro-Diels-Alder (RDA) 

reaction, by the rupture of N3-C4 and C2-N1 bonds. Consequently, it can be concluded that the effect 

of 5.7 eV radiation is the cleavage of hydrogen ions (H
-
)  from the thymine groups, followed by the 

creation of a lower ionization energy radical cation and by the fragmentation, leading to N-(C=O)-N  

group vanishing. 

The effect of UV radiation is also critical on the phosphate groups; this can be clearly seen by 

establishing a relation between phosphorus and carbon percentage ratios since the stoichiometric 

ratios for these elements in DNA, neglecting end chain effects, should be C/P=20/2 for the A-T pair 

and 19/2 for the G-C pair. Therefore, the expected ratio C/P should be between 9.5 and 10, depending 

on DNA base composition. The ratios of total carbon atomic percentages relative to phosphorus 

percentages increase with the radiation energy as shown in plot of figure 4.4.6, indicating that 

phosphate groups are being removed by the UV radiation, at a rate larger than carbon [170]. To 

further analyze the behaviour of phosphate groups with the increase of irradiation energy, the 

phosphorus/nitrogen ratio will be also investigated. In intact DNA molecules, the phosphorus/nitrogen 

ratio is between 0.25 and 0.285 in such a way that each DNA stack has 2 phosphate groups per 7 

nitrogen atoms in the adenine-thymine pair and per 8 nitrogen atoms in the guanine-cytosine pair. The 

atomic percentage ratio between phosphorus and nitrogen as a function of the UV irradiation energy, 

plotted in figure 4.4.6 b), is also seen to decrease with the increase of irradiating energy. In the 

irradiating energy range investigated, phosphorous decreases with respect to all the elements, 

suggesting that the threshold for damaging phosphate groups is lower than 3.5 eV. This energy value 

falls within the visible region and per se justifies the different conductivities values found in literature 

for DNA samples [210-221]. This conclusion is further corroborated by the fact that the DNA 

conductivity to be proportional to the loss of phosphates as demonstrated in ref. [222].  
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Figure 4.4.6. XPS atomic ratio between phosphorous and, from bottom to top, carbon, oxygen and 
nitrogen.  

 

 

Also a quantitative analysis of the P/Na ratio (figure 4.4.3) is interesting to discuss: in non-irradiated 

samples, the atomic percentage of Na is, roughly, one half of the phosphorus atomic percentage, 

indicating that half of the phosphate groups are being neutralized by protons and, consequently, DNA 

is behaving as a polyelectrolyte with an ionization degree of 0.5. Since sodium atoms are not leaving 

from DNA and the ratio between sodium and phosphorus is tending to unity as the radiation energy 

increases, this means that protonated phosphate groups are leaving from DNA. This conclusion is 

further supported by the presence of sodium counterions which can also associated to DNA hydration 

[223], and is consistent with the observed presence of oxygen component associated to water (O4), 

and by the fact of water molecules starting to absorb UV radiation at energies above 6.5 eV [128]. 

Therefore, a small interaction of radiation with the phosphate groups that are surrounded by water 

molecules and counterions is expected. This can be outlined from the top plot of figure 4.4.6., where a 

stabilization of the [P]/[N] ratio as radiation energy increases is observed. This allows conclude that 

water molecules are playing a role of protecting the phosphate groups. 

For summarizing, the values of energy required to damage different DNA components discussed are 

summarized in table 4.4.2. The agreement of values of energy when analysed the different elements 

for the same chemical group demonstrates the reliability of the obtained values. 
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Table 4.4.2. Summarization of the energy values of the different DNA groups damaged. 

DNA Group Component Energy (eV) XPS components 

Phosphate < 3.5 
(O2+O3) 

P 

Purines ~ 6.1 Nsp2 

Sugar Ring(deoxyribose) 6.8 
C2 (C-O) 

O3 (O-C) 

 

 

CONCLUSIONS 

Synchrotron UV radiation in the energy range of 3.5 to 8 eV was shown to cause damage to several 

DNA components as revealed by XPS spectra analysis of DNA cast films. Analysis of XPS data show 

that all the elements decrease with respect to sodium, revealing that the absorption of UV leads to 

dissociative damage of DNA yielding gaseous products. Two main energy intervals were associated to 

that kind of damage. Besides, the analysis of each element fractions with radiation energy reveals 

some group transformations. Carbon fractions revealed that the set of N-C=O, N-C=N, C(N)3 N-C-O  

(C3) groups is not affected by the radiation, while other carbon groups are affected: the C-C or C-H 

(C1) fraction increases and the C-N, C=N, C-O (C2) and N-(C=O)-N (C4) ratios decrease, when the 

samples are irradiated at higher energies. The decrease of C-O and N-(C=O)-N ratios indicate the 

opening of sugar rings and the breaking of pyrimidines, respectively. The rupture of sugar rings was 

confirmed by the O-C (O3) fraction decrease. This range of energies leads also to loss of DNA PO4
-
 

groups which pointed out by the decrease of all the ratios [P]/[X], X being any other element: Na, C, O 

and N.  

Analysis of Nsp
2
 and Nsp

3
 atomic percentages allowed conclude that at 6.1 eV irradiating energy an 

important decrease (~17%) in the fraction of N sp
2
 groups. This energy value is close of the VUV peak 

associated to -* transitions of both guanine and adenine, suggesting that these bases can be 

affected. The decrease of N-(C=O)-N groups revealed also that the pyrimidines (thymines and/or 

cytosines) are being degradated.  

Analysis of the XPS data, associated to phosphate groups, pointed out that an energy below 3.5 eV is 

sufficient to break DNA phosphates groups, fact which is useful to account the different conductivities 

values found in literature for DNA samples. 

Finally, analysis of XPS [P]/[Na] ratio which changed from ~1.4 to ~0.8 as radiation energy increases, 

revealed mainly that the protonated phosphate groups are being removed and not the ionized ones. 

This allows to conclude that ionized phosphate groups, surrounded by the sodium counterions, 

congregate hydration water molecules which play UV radiation protection a role.  
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ABSTRACT 

Damage caused to deoxyribonucleic acid (DNA) thin films as a result of exposure to 4 keV 

carbon ions beam was accessed by analyzing the infrared spectra, obtained in situ for different 

irradiation times, with both bidimensional correlation spectroscopy and independent component 

analysis. Results indicate that deoxyribose, phosphate and bases groups of the DNA molecule 

are being damaged and new reaction products as oxime and furfural groups are being formed. 

Damage on DNA bases is consistent with the formation of oxime products which react with DNA 

deoxyribose products forming furfural groups, confirming that DNA damage is caused by direct 

and indirect processes.  

 

 

INTRODUCTION 

Although ion-beams are being successfully used in cancer therapy, the underlying mechanisms 

that occur when an energetic ion interacts with biological tissue are not fully understood or 

quantitatively estimated at molecular level. This is primarily due to the fact that biologic tissues 

are complex multi-component materials which provide a challenge for traditional molecular and 

atomistic analytical techniques. Moreover, in radiotherapy, secondary species such as nuclear 

fragments, reactive radicals, electrons, low energy and excited neutral species are often 

produced [3,4,224,225,226] with energies that can range from a few hundred of electron volts 

up to ~1 keV and can present a variety of charge states [228]. These species are also known to 

cause damage within DNA. Damage induced by ions to DNA molecules is usually evaluated by 

the number of single and double strand breaks which lead to the production of short linear 

fragments arising from multiple double strand breaks [229]. Moreover, damage caused by low 

energy singly and doubly charged carbon ions to super coiled plasmid DNA was shown to follow 

an exponential dependence of strand breaks upon fluency, suggesting that the fragmentation 

dominates at high exposures [230]. To obtain further information about degradation processes 

and role of secondary species on DNA damaged fragments, the new reaction products should 

be also characterized.  
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In the present work, in situ infrared spectroscopy (FTIR) was used to monitor the damage on 

calf thymus DNA films exposed to 4keV C
3+ 

ions beam in order to access where main changes 

are taking place within DNA molecules. From the small changes in FTIR spectra, the 

experimental data analysis was processed via bidimensional correlation spectroscopy and 

independent component analysis (ICA) methods. 

 

 

EXPERIMENTAL DETAILS 

Films of DNA calf thymus, obtained from Sigma Aldrich, were prepared by dissolving DNA in 

ultra-pure water to a concentration of 0.5 mg/mL. This solution was deposited onto calcium 

fluoride (CaF2) substrates and dried for 2 hours in vacuum desiccators. The DNA films were 

introduced to a high vacuum chamber and exposed to triply charged carbon (
13

C
3+

) ions, 

derived from 
13

CO gas, produced by a 10 GHz permanent magnet, compact Electron Cyclotron 

Resonance (ECR) ion source [231], coupled to a floating beamline accelerator [83,232]. The 

energy of C
3+

, beam was set to 4 KeV and the ion fluxes were maintained at a low level with a 

value of ~ 2×10
11

 ions/second to ensure a linear damage response. Exposure was carried out 

over various time periods and characterized using a Fourier Transform Infrared (FTIR) 

spectrophotometer Nicolet-model 530, adapted for in situ measurements [154]. The 

spectrophotometer is provided with Deuteriated L-Alanine Doped Triglycine Sulfate (DLTGS) 

detector with a sensitivity of 1V/mW.  The spectra were all collected with 64 scans and EZ-Scan 

software was used to instrument setting and data acquisition. The sample, with a diameter of 20 

mm, was positioned at 45 degrees to the incident ion beam, which leads to an elliptical profile 

with a dimension of 14x10 mm
2 

on it, and ensures that the entire FTIR probed area was 

subjected to ion exposure. Since DNA samples contain different DNA fragments composition, 

their IR spectra are slightly different, in such a way that the damage caused by the exposure to 

carbon beam was characterized as a function of irradiation time for each different sample.  In 

addition, it should be referred that infrared difference spectroscopy [233] should be a 

straightforward technique to address the DNA damage, with the obtained data also treated by 

the advanced data analysis techniques as demonstrated by Mezzetti et al [234]. However, this 

technique was not used in this work because is not yet implemented in our laboratories.  
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RESULTS AND DISCUSSION 

Figure 4.5.1 shows the infrared spectra in the 1800-900 cm
-1 

range, of a DNA film irradiated with 

carbon ions for several periods of times. No changes were observed after 15 minutes of C
3+

 

beam exposure.  
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Figure 4.5.1. Infrared spectra of a DNA film exposed to 4 keV C
3+

 beam for different periods of time. 
Inset emphasizes the small changes observed.  

 

 

Three main regions can be observed in these spectra, 1800-1500 cm
-1

, 1500-1200 cm
-1

 and 

1200-900 cm
-1

. These regions contain a number of absorbance peaks that can be associated t 

DNA molecular vibrations [12,153,154,155] as follows: 

 

I) DNA bases (1800-1500 cm
-1

) - This range is associated with the DNA bases and is expected 

to contain contributions from six molecular vibrations: i) C6=O6 stretching of guanines involved 

in Hoogsteen third strand binding and C2=O2 bond of thymine involved in reverse Hoogsteen 

third strand binding (1711 cm
-1

); ii) C2=O2 stretching of thymine in single or double-stranded 

(1693 cm
-1

); iii) C2=O2 stretching vibrations of cytosine in single or double-stranded (1651 cm
-

1
); iv) C=N ring vibration of guanine (1605 cm

-1
); v) C=N ring vibration of guanine in single 

stranded or double-stranded and ring vibration of guanine and adenine (1581 cm
-1

); and vi) in-

plane vibration of cytosine single stranded or double-stranded and in plane vibration of cytosine 

(1531 cm
-1

). 

 

II) Base-sugar (1500-1200 cm
-1

) - This region corresponds to the IR absorption associated with 

the bases vibrations and the base vibrations influenced by the sugar groups. In this region, 

contributions from eight molecular vibrations are expected: i) ring vibration of adenine and 

guanine and N7C8H bend of adenine/guanine (1485 cm
-1

); ii) adenine A, B and Z forms (1446 

cm
-1

); iii) C3’-endo deoxyribose in A form helices and C3’-endo deoxyribose in Z form helices 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

104 

 

(1414 cm
-1

); iv) CH3 symmetric deformation of deoxyribose thymine (1390 cm
-1

); v) cytidine and 

guanosine in anti-conformation (1366 cm
-1

); vi) C4-NH2 strength of cytosine and C5=C6 

vibration of cytidine (1297 cm
-1

); vii) CN3H bend of deoxyribose thymine (1280 cm
-1

); and viii) 

antisymmetric  PO2
- stretch in A form (1241 cm

-1
). 

 

III) Backbone (1250-1000 cm
-1

) - This region is associated with the phosphate backbone region 

and contributions from seven molecular vibrations are expected: i) antisymmetric  PO2
- stretch 

in B form (1210 cm
-1

); ii) A form marker, the sugar phosphate backbone (1183 cm
-1

); iii) 

symmetric PO2
-
 stretching of the backbone (1097 cm

-1
); iv) CO stretching of the furanose in the 

backbone (1061 cm
-1

); v) furanose vibrations (1020 cm
-1

); vi) CC stretching in the backbone 

(961 cm
-1

); and vii) z DNA form (927 cm
-1

). 

 

Changes caused by the carbon beam irradiation in the IR spectra are rather small, as 

emphasized in the inset of figure 4.5.1, where the 900-1000 cm
-1

 wavenumber region was 

plotted as an example. These small changes in the IR spectra are somehow expected since 

damage is essentially taking place at sample surface as carbon ions do not penetrate much 

further from the surface. It should also be denoted that after 15 minutes of irradiation no further 

changes are observed. As C
3+

 ions cause small changes in the IR spectra, computational 

methods as bi-dimensional correlation spectroscopy [235] and independent component analysis 

(ICA) [236] were addressed to infer about the DNA damage.  

Bi-dimensional correlation spectroscopy allows analyse small intensity changes, band shifts and 

band shapes changes, arising from an external perturbation. The fluctuations of FTIR spectra 

obtained for different irradiation times, transformed into a 2D spectrum by using the correlation 

method, were obtained in the form of schematic contour maps of synchronous and 

asynchronous 2D correlation spectra. In figure 4.5.2, the synchronous contour map is displayed 

where diagonal peaks, or autopeaks, were marked. These diagonal peaks represent the overall 

susceptibility of the corresponding spectral region to change in intensity, as a result of the DNA 

sample exposure to the ions beam. In the synchronous contour map, it is also possible to define 

several correlation squares, discontinuous lines that form squares, which join the pair of cross 

peaks located at opposite sides of a diagonal line drawn through the corresponding autopeaks. 

These correlation squares prove the existence of coherent variation in the spectral intensity at 

these wavenumbers. In the present case, the observed changes in the wavenumber regions of 

each autopeak are correlated with the wavenumber region of the other autopeaks. This means 

that the changes in the 1750 to 1600 cm
-1

 region are synchronously correlated with those close 

at 1175 and 1000 cm
-1

. In addition, some sequential or successive, but not coincidental, 

changes of spectral intensities can be inferred from the schematic asynchronous contour map, 

not shown here. However, the synchronous and asynchronous maps only indicate the 

wavenumber where absorbance intensity changes are taking place, not indicating whether there 

is an increase or a decrease in absorbance. Thus, to better discern about the extent of DNA 

damage, the IR spectra were analysed by Independent Component Analysis (ICA) method. 
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Figure 4.5.2. Contour map of the synchronous 2D correlation spectra of a DNA sample exposed to 
4 keV C

3+
 beam for different periods of time. The scales in both maps correspond to wavenumber 

in cm
-1

.  The red circles represent diagonal peaks/autopeaks regions. 

 

 

The ICA is a computational method for signal separation, often used in spectrum analysis of 

independent competitive processes [237]. The ICA algorithms, developed for blind source 

separation, are based on the principle that the multivariate signal being processed is the result 

of the addition of mutual statistical independent of the non-Gaussian source signals. In this 

study the standard Fast ICA implantation [238] was used and a dedicated MATLAB application 

was developed for automatic calculus. The full processing algorithm is as follows: a) Import data 

spectra corresponding to the different irradiation times in the region of interest [900-1800 cm
-1

]; 

b) Apply the Fast ICA computational method was set for two signal decomposing components 

because in the present case it is expected to obtain as result only two independent spectra 

associated to non-degraded DNA and to DNA damage; c) As Fast ICA algorithms can produce 

output signals that are the inverse of the intended signal, the signal of both decomposition 

components was identified by addition of both decomposition components and comparing the 

result with the original DNA spectra; and d) Apply a low pass 5
th
 order Butterworld filter to 

smooth the signal in order to remove random higher frequency noise present in the signals. 

 

The DNA IR spectra two independent components obtained from ICA method, namely,  ICA 

component 1 associated with the infrared spectrum of non-irradiated DNA, and ICA component 

2 associated with DNA damage are plotted in figure 4.5.3. However, the ICA component 1 can 
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only be associated with the non-irradiated DNA spectra if the normalized ICA signal 1 is 

considered to be the same as the normalized DNA infrared spectrum without ion exposure. 

These signals, the ICA component 1 and the FTIR of the non-irradiated DNA, both normalized 

to the 1241 cm
-1

 peak, after baseline removal, revealed to be coincident, in such a way that the 

ICA method is suitable for the analysis of DNA damage caused by carbon ions beam. Moreover, 

the ICA component 2 peaks are in accordance with the results obtained from the 2D correlation 

spectra contour maps, which guarantees the validity of the spectrum associated with the DNA 

damage. 
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Figure 4.5.3. ICA signal components obtained from infrared spectra of a DNA film exposed to 
C

3+
(4KeV)  beam.  

 

The ICA component 2 spectrum, associated with DNA damage when exposed to carbons beam, 

present positive peaks related to formation of new bonds and the negative peaks associated to 

decrease of the number of bonds associated to DNA molecules. The features of ICA component 

2 spectrum, i.e., peak position, peak signal, corresponding literature peak position and 

respective assignments, are displayed in table 4.5.1. In the peak signal column, a signal “+” or “-

“ was attributed, respectively, if the absorbance peak of ICA component 2 spectrum is positive 

or negative.  A positive peak is associated with a new bond formation and a negative peak 

represents a decrease of the chemical bonds number of a determined DNA group.  

The reduction of the DNA number of bonds, leading to negative peak signals in table 4.5.1, are 

easily associated with damage caused by the carbon ion beam. The negative peak at 972 cm
-1

 

indicates that carbon ions beam has a strong effect on the C-O-C deoxyribose bonds. This is 

confirmed with the creation of C=O bonds, increase of 1632 cm
-1 

peak. Similar behaviour has 

been observed during UV irradiation of DNA samples [12]. The negative peaks at 1301, 1253 

and 1119 cm
-1

 are associated to PO4
2-

 groups fragmentation. The damage on thymine, cytosine, 

adenine and guanine groups is indicated by the negative peaks at 1717, 1663, 1539 and 1499 
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cm
-1

. However, it should be referred that carbons ions are effective in all DNA bases damage by 

opposition to UV radiation [12] or ozone [158,157], for which thymine is the most affected DNA 

base. 

 

The ICA component 2 spectrum positive peaks require a more detailed discussion as they result 

from several reactions that lead to the formation of new bonds and, consequently, new 

products. The obtained positive peaks will be individually discussed as follows: 

 

i) The 1685 cm
-1

 peak is associated with the C=N bond within the oxime group (C=NOH) [239]. 

The presence of this group is also revealed by an increase of absorbance at 947 cm
-1

 which is 

related to N-O stretching vibration of oxime group. Oxime groups are also evidenced by 

reactions between the native a basic sites, a product of oxidation of 2-deoxyribose in DNA with 

methoxyamine [240] which can be formed by the carbon ion beam action. The presence of 

these oxime groups in DNA indicate that reactions can occur in the DNA bases, similar to those 

occurring with various (heterocyclo) carbonyl mono-oxime esters of anthraquinone who 

exhibited ability for DNA cleavage upon UV irradiation [241]. 

 

ii) The absorbance increase of the 1632 cm
-1

 peak is associated to C=O stretching of guanine in 

Z form which is consistent with DNA conformation changes [242]. 

 

iii) The 1593 cm
-1

 peak is associated to C=N stretch in guanine [243] being the absorption 

coefficient dependent of DNA conformation. A study about the B-Z conformational transition of 

DNA oligonucleotides showed that a peak at 1683 cm
-1

 moves to 1664 cm
-1

, the experimental 

band at 1579 cm
-1

 increases in intensity and a shoulder at 1562 cm
-1

 evolves into a peak [242]. 

From these, one can imply the absorbance increase result from a DNA conformation conversion 

to Z form.  

 

iv) The presence of peak at 1565 cm
-1

 is associated with the stretching of nitroso compounds, 

the peak at 1523 cm
-1 

can be associated to asymmetric stretching of aromatic nitro compounds 

NO2  and the peak at 1355 cm
-1

 is  associated to symmetric stretching of aromatic nitro 

compounds, NO2 [239, 244]. 

 

v) The peak at 1471 cm
-1

 is related to C=C in phase stretching in a specific position, namely, if 

the double bond is conjugated to a carbonyl group [245], meaning the presence of this group is 

related with furfural. The presence of this product is in accordance with literature since it is 

related with degradation products of nucleoside-5´-aldehyde which in turn is a product of 

oxidation of 2-deoxyribose in DNA [246]. 

vi) The absorbance increase of the peak at 1055 cm
-1

 can be also be associated with loss of 

water molecules due to DNA sample to be submitted to vacuum during irradiation. This loss of 
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water is known to improve the delocalization of sugar-phosphate modes [242] and also leading 

to DNA conformation changes. 

 

vii) The peak at 1001 cm
-1

 is associated with phosphate groups directly bonded to a metal ion 

[247], suggesting that the interaction of PO3
2-

 groups with sodium ions is increasing meaning 

that water molecules are being removed by vacuum. 

 

viii) The increase of 913 cm
-1

 peak is associated to change of DNA conformation to Z form. 
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Table 4.5.1 Features of ICA Component 2 spectrum associated with DNA damage. 

Peak 

Position 

(cm
-1

) 

Peak 

signal 

Literature Peak 

Position (cm
-1

) 
Peak Assignment 

1717 - 

1715; 1712; 

1711 

[243, 12] 

C6=O6 stretching of guanines involved in 

Hoogsteen third strand binding and/or C2=O2 

stretching of thymines involved in reverse 

Hoogsteen third strand binding 

1685 + 1665 ± 15 [239] C=N  stretching of C=NOH (oxime) 

1663 - 
1655 -1657 

[12,242,243] 

C2=O2 stretching of cytosine single stranded or 

double stranded 

1632 + 1634 [242] C=O Stretching of guanine in Z form 

1609 - 1605 [12] C=N ring vibration of guanine 

1593 + 1590 [243] C=N stretch in guanine 

1565 + 
1550 ± 50  

[239, 244] 
N=O stretching of  nitroso compounds 

1539 - 
1531 [12] 

1538 [243] 

In-plane vibration of cytosine single stranded or 

double stranded 

Vibrations of the bonds within sugar rings 

1523 + 1530 ± 20 [243] N=O  Assymetric stretching 

1499 - 
1495-1476; 

1485 [243] 
Ring vibration of adenine and guanine 

1471 + [245] Furfural 

1424 - 1414 [12] C3’-endo deoxyribose in A  form helices 

1378 - 
1389-1374; 

1390 [12] 

CH3 Symetric deformation of deoxyribose 

thymine; Cytidine and guanosine in 

anticonformation 

1355 + 1350 ± 30 [239] Stretching vibration of N=O 

1301 - 1297 [12] C4-NH2 strength of cytosine 

1253 - 1245-1235 Antisymmetric PO2
-
 stretch in A-form 

1119 - 1097 [12] Symmetric PO2
-
 stretching of Backbone 

1055 + 1061 [12] 

CO stretch of the furanose in backbone 

Loss of water molecules which improves the 

delocalization of sugar-phosphate modes 

1001 + 
1001-1014 

[247] 
Phosphate groups directly bonded to a metal ion 

972 - 972 [243] Sugar Ring vibrations 

947 + 945±15 [239] N-O stretching of  C=NOH (oxime) 

913 + 927 [12] DNA Z-form 

 

 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

110 

 

CONCLUSIONS 

In summary, the damage of DNA films as a result of irradiation with C
3+

 ions reveals the rupture 

of C-O-C deoxyribose bonds and consequent creation of C=O bonds,  fragmentation of PO4
2-

 

groups and the decrease in the number of thymine, cytosine, adenine and guanine groups.  

Damage on DNA bases leads to the formation of oxime products, which in turn react with DNA 

deoxyribose products forming furfural groups. Loss of structural water and DNA conformational 

changes were also observed. As a final remark, this work shows that the use of infrared 

spectroscopy together with bidimensional correlation spectroscopy and ICA methods is a 

suitable method for the characterization of molecular damage to DNA or other biological 

molecules caused by charged particles or radiation.  
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ABSTRACT 

The spectroscopic characterization of layer-by-layer (LbL) films containing liposomes is 

essential not only for determining the precise film architecture but also to guide the design of 

drug delivery systems. In this study we provide the first report of vacuum ultraviolet 

spectroscopy (VUV) characterization of LbL films made with liposomes from 1.2-dipalmitoyl-sn-

Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) alternated with poly(allylamine 

hydrochloride) (PAH). Measurements  in the 6.0–9.5 eV range allowed us to identify the 

electronic transitions responsible for the spectra, which were assigned to carboxyl, hydroxyl and 

phosphate groups in DPPG while the PAH spectra were governed by electronic transitions in 

the amino groups. The surface mass density of the LbL films could be determined, from which 

the formation of a DPPG bilayer was inferred. This rupture of the liposomes into bilayers was 

confirmed with atomic force microscopy measurements. In subsidiary experiments we ensured 

that the UV irradiation in vacuum had negligible damage in the DPPG liposomes during the 

course of the VUV measurements. In addition to demonstrating the usefulness of VUV 

spectroscopy, the results presented here may be exploited in biological applications of 

liposome-containing films.  

 

 

INTRODUCTION 

The formation of layer-by-layer (LbL) films [67] from phospholipid liposomes may find several 

applications, including the modelling of cell membranes and the incorporation of pharmaceutical 

drugs or biomolecules for drug delivery [248,249]. Liposomes formed from self-assembly of 

lipids are important cell membrane models since lipids are basic building blocks of cells, 

representing approximately 50% of their membrane mass. Their immobilization in LbL films is 

suitable to exploit important characteristics of these films for biological materials, especially the 

ability to preserve the bioactivity and serve as template for surface functionalization, e.g. in 

tissue engineering. In fact, the effectiveness of LbL assemblies has been proven for many other 

biological materials such as proteins, enzymes, DNA and viruses [59]. Polyelectrolyte-supported 

lipid liposomes in LbL films offer key advantages over the direct use of liposomes [250]. For 
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example, melanin encapsulated in LbL films made with liposomes retained its fluorescence 

properties, but this did not occur for melanin films without protection in liposomes [251]. 

Therefore, the combination of liposomes and LbL films is useful for encapsulating biological 

molecules with activity preserved. Tanaka and Sackmann [252] used the LbL method to 

investigate the properties of membranes and membrane-associated proteins, while Yamuchi et 

al [253] prepared lipid/DNA LbL films for stent-assisted gene transfer.  

During adsorption liposomes may remain intact in the LbL films [248,254,255] or suffer rupture 

to form bilayers [256,257,258]. Recently, it is shown that the surface roughness influences the 

adsorption of DPPG liposomes onto surfaces covered by an electrically charged PAH 

polyelectrolyte layer giving rise to its rupture or maintenance of its integrity [259]. Low 

roughness was shown to induce liposome rupture while high roughness induces adsorption of 

whole liposomes. Determining the true conformation of the liposomes may be crucial for 

interpreting data on the films or for specific applications. LbL films may be characterized by a 

variety of experimental methods (for a review see ref. [109]), some of which allow one to 

determine the structure of the materials adsorbed. Delejon et al [260] employed neutron 

reflectivity to study charge effects on the adsorption processes of LbL films. In this paper we 

used vacuum ultraviolet (VUV) spectroscopy measurements to determine the adsorbed amount 

of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) layers in the 

LbL films with poly(allylamine hydrochloride) (PAH), which confirmed the rupture of DPPG 

liposomes during adsorption. To our knowledge this is the first report of VUV for DPPG, which 

also served to verify possible damage of prolonged UV irradiation on DPPG-containing LbL 

films, with the implications for biological systems. The characterization of LbL films was 

complemented with atomic force microscopy (AFM).  

 

 

MATERIALS AND METHODS 

MATERIALS 

Highly pure (>99%) synthetic 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium 

Salt) (DPPG), with molecular weight of 744.96 g.mol
-1

 and structure shown in figure 4.6.1 a), 

was purchased from Avanti Polar Lipids. Small unilamellar vesicles (SUV) were obtained by 

dissolving 5 mM DPPG in methanol:chloroform (2:8). After solvent evaporation using a gentle 

stream of nitrogen, the lipid film was hydrated overnight in pure water supplied by a Milli-Q 

purification system (resistivity 18.2 MΩ.cm and pH~5.7). The dispersion was vortexed 

intermittently leading to multilamellar vesicles (MLVs). The SUV or liposomes were then 

obtained by extruding this dispersion in a mini-extruder from Avanti Polar Lipids in a 

polycarbonate membrane with 0.1 μm pores. A mean hydrodynamic diameter of 162 nm was 

found for DPPG liposomes in a dispersion prepared in similar conditions. The hydrodynamic 

diameter value was determined by dynamic light scattering (DLS) using a Zetasizer Nano-ZS 

Series ZEN3600 DLS device from Malvern Instruments, which makes use of a 4 mW He-Ne 

Laser (633 nm) light source, passing through a 1x1 cm
2
 section polystyrene latex cuvette. The 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

113 

 

DPPG aqueous solutions have pH~7 and the formed liposomes have negative electrical charge, 

which allows for the fabrication of LbL films. This is one of the reasons why DPPG was chosen 

here, in addition to its being one of the most studied lipids in model membranes. In the 

preparation of LbL films, polycationic aqueous solutions of poly(allylamine hydrochloride) (PAH) 

(average Mw = 50.000–65.000 g/mol) with a monomeric concentration of 10 mM and pH~4 

were used. Under these conditions, PAH is positively charged [261]. PAH was obtained from 

Sigma–Aldrich and has the molecular structure of Figure 4.6.1 b). 

 

 

a)  b) 

Figure 4.6.1. Chemical structure of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium 
Salt) (DPPG) (a) and poly(allylamine hydrochloride) (PAH) (b). 

 

 

THIN FILMS 

The films were deposited on calcium fluoride, quartz and silicon substrates for spectroscopy 

studies. The substrates were cleaned with a “piranha” solution containing hydrogen peroxide 

and a sulfuric acid (7:3) bath for 1 h and then rinsed exhaustively with pure water. The layer-by-

layer (LbL) films were obtained by immersing the substrate in the PAH solution during 3 min, 

rinsing with water, then immersing the substrate in the DPPG dispersion for 30 min., followed by 

another rinsing with water. The periods of time for adsorption were chosen based on adsorption 

kinetics studies [254,262]. After deposition of each bilayer the samples were dried with a gentle 

nitrogen flow. This adsorption procedure was repeated to obtain the number of bilayers desired. 

Bilayer in this context means a layer of PAH adjacent to a DPPG layer. The DPPG layer itself 

can consist of one or more lipid bilayers or entire liposomes adsorbed or a mixture of lipid 

bilayers and entire liposomes. Film growth was monitored with vacuum ultraviolet spectroscopy 

(VUV) spectroscopy measurements. Cast films of DPPG and PAH were obtained by casting 

DPPG dispersion and PAH solution onto calcium fluoride and quartz substrates, respectively. 

The water solvent was removed by submitting the samples to primary vacuum during 12 h. The 

films were prepared at room temperature as well as all the characterizations. 

 

VACUUM ULTRAVIOLET (VUV) SPECTROSCOPY 

The high resolution VUV photo-absorption spectra of the LbL films were recorded at the 

ultraviolet beam line (UV1) [185] in the Synchrotron Radiation facility ASTRID at Aarhus 

University, Denmark. The setup consists of a sample vacuum chamber containing up to three 

CaF2 sample disks and one reference disk mounted on a MDC SBLM-266-4 push-pull linear 

motion. The VUV beam light passed through the disks and the transmitted intensity was 

measured at 1.0 nm intervals using a photomultiplier detector (Electron Tubes Ltd., UK). The 
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transmitted light intensity and the synchrotron beam ring current were measured at each 

wavelength, with a typical resolution better than 0.08 nm. The sample chamber has a LiF 

entrance window and a MgF2 exit window in front of the photomultiplier. The minimum 

wavelength is determined by the CaF2 substrates so that the lowest wavelength at which 

reliable data could be collected was ~125 nm. In order to avoid absorption from molecular 

oxygen in air for wavelengths below 190 nm, the small gap between the sample chamber exit 

window and the photo multiplier detector was flushed with helium gas. To calculate the 

absorbance, the light intensity spectra of the CaF2 disc/or quartz cuvette were measured before 

and after measuring the spectrum of the disc covered with the LbL film or DPPG dispersion or 

PAH solution. The average of those two spectra and the spectrum of the coated solid support 

(with film, dispersion or solution) are used to calculate the absorbance using the Beer-Lambert 

equation. 

 

ATOMIC FORCE MICROSCOPY 

The surface morphology of a PAH/DPPG LBL film deposited onto silicon substrate, was 

characterized by atomic force microscopy (AFM) in a Nanoscope III microscope (Digital 

Instruments). Commercial Si cantilevers with a spring constant between 20 and 100 N/m and 

free oscillation interval between 250 and 300 Hz were used. The topographies were obtained 

using tapping mode. 

 

 

RESULTS AND DISCUSSION 

VUV CHARACTERIZATION OF DPPG AND PAH MOLECULES 

To our knowledge, there are no VUV studies for DPPG or any other phospholipid in condensed 

or gas phases. For the sake of comparison, we first obtained the VUV absorption spectra of 

DPPG and PAH cast films which were fitted with Gaussian curves as indicated by the solid 

green curves in the figures. Gaussian curves were chosen because they provide the best fits to 

the experimental data. The inset in figure 4.6.2 a) shows an absorbance spectrum for a DPPG 

cast film. The spectra of DPPG and PAH cast films are shown in figure 4.6.2 b), to be used in 

comparison with the spectra of LbL films containing the two components. Since the PAH film 

was cast onto a quartz substrate, the spectrum was measured only down to 160 nm. The peak 

positions and Full Width at Half Maximum (FWHM) obtained in the fitting are listed in table 

4.6.1. The error bars are obtained from the fitting. 
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Figure 4.6.2. a) Absorption coefficient spectrum obtained from VUV absorption measurements for a 
DPPG cast film. Green curves depict the fitting of the absorption spectrum with Gaussian curves 
with bands at 138.2±0.4 nm, 145.8±0.4 nm, 169.8±0.3 nm and 192±2 nm. In the inset are shown 
the VUV spectra of DPPG cast film and of a DPPG dispersion. b) Absorption coefficient spectrum 
obtained from VUV absorption measurements for DPPG and PAH cast films. The green lines 
correspond to the fitting of PAH spectrum with Gaussian functions with bands at 172.9±0.1 nm and 
203.8±0.8 nm.  

 

 

The smallest peak for the DPPG cast film at 194.4±0.7 nm (6.38±0.04 eV) is assigned either to 

the nO π∗
CO transition from the lone-pair on the carbonyl oxygen to the antibonding πCO-

valence orbital [263,264] and to the valence shell electronic excitations of hydroxyl groups 

[265,266,267,268,269]. For the peak at 168±3 nm (7.38±0.09 eV) several assignments are 

possible:  

 

i) n’O  π∗  transitions, where n’O is the second lone pair orbital on the carbonyl group oxygen 

[263];  

 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

116 

 

ii) nO σ ∗ transition in the carboxyl group, from the atomic orbital n (ground state) to the 

antibonding  σ -valence orbital [263,264]; 

 

iii) nO σ∗ transition due to the promotion of an electron from the highest filled molecular orbital 

to an antibonding orbital (σ∗
O–H), which normally appears from 165 to 200 nm (6.2-7.5 eV) [265]; 

 

iv) water dissociation [128].  

 

The peak at 147.2±0.2 nm (8.424±0.009 eV) is assigned to the phosphate group [264,270,271].  

The strongest peak at 138.2±0.8 nm (8.97±0.03 eV) is ascribed to πC=O π∗
CO, where a valence 

transition from the bonding π orbital to the antibonding π-valence orbital occurs [263, 264]. The 

amount of DPPG in the film can be estimated from the VUV spectrum, but this requires a 

precise measurement of film thickness, which is hampered by the non-uniformity of the cast film. 

Therefore, in a control experiment we obtained the VUV spectrum of a 5 mM aqueous solution 

of DPPG. The measurement was performed only up to 170 nm owing to the use of aqueous 

solutions [272]. The absorption coefficients were estimated by assuming that DPPG molecules 

absorb similarly in the liquid and in cast films, which is justified by the similarity in the spectra for 

the film and solution, as shown in the inset of figure 4.6.2 a). Using the Beer-Lambert law, the 

DPPG absorption coefficient at 180 nm was calculated from DPPG solution spectra. This 

absorption coefficient calculated from the DPPG solutions spectra was then used for the DPPG 

cast films, from which the absorption coefficients could be calculated for small wavelengths, as 

displayed in figure 4.6.2 a). The DPPG absorption coefficient curve was fitted with four 

Gaussians which allows one to calculate the partial absorption coefficients,εp, at peak position 

by considering the maximum absorbance of the peak. These values are displayed in table 4.6.1. 

As the PAH spectrum was not measured for small wavelengths, the partial absorption 

coefficient (εp138nm) of 3.7±0.4 g
−1

 m
2
 calculated for the maximum absorption peak at 138 nm for 

DPPG allows us to determine the adsorbed amount of DPPG in LbL films. The absorption 

coefficient,ε, at peak position are also listed in table 4.6.1. 

Using the VUV spectra of PAH aqueous solutions and the Beer-Lambert law, the PAH 

absorption coefficient spectrum was calculated and shown in figure 4.6.2 b). Absorption from 

the nitrogen group was expected according to the literature, as excitation energies below 8 eV 

have been found for ammonia [273,274,275,276] and amine molecules [278]. The spectrum for 

the PAH cast film could be fitted with two Gaussian curves, as shown in figure 4.6.2 b), whose 

parameters are given in table 4.6.1. The more intense peak at 172.9±0.1 nm (7.172±0.004 eV) 

is assigned to electronic nN→3pa transitions from the lone-pair electrons on nitrogen to nitrogen 

atomic-like orbitals [274,278]. This peak is superimposed onto another at 203.8±0.8 nm (6.08 

eV) in figure 4.6.2 b) which can be assigned to the nN→3sa transitions [274,278,279]. The 

partial absorption coefficients for the peaks at 173 nm and 204 nm were estimated as 8.51±0.02 

and 0.77±0.01 g
−1

.m
2
, respectively, while the absorption coefficients attain 10.81±0.02 and 

3.33±0.02 g
−1

 m
2
 values, respectively. 
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Table 4.6.1. Peak position and FWHM parameters for the peaks obtained from fitting the VUV 
spectra and corresponding assignments of DPPG and PAH cast films and PAH/DPPG LbL films. 
The absorption coefficients (ε) and partial absorption coefficients (εp) were calculated for each peak 
position. 

a
Reference [264]. 

b
Reference [263]. 

c
Reference [270]. 

d
Reference [128]. 

e
Reference[265]. 

f
Reference [266]. 

g
Reference [277]. 

h
Reference [273]. 

i
Reference [278]. 

j
Reference[274]. 

k
Reference [275]. 

l
Reference[279]. 

 

Peak parameters for VUV data of DPPG cast film Literature Assignment 

Peak position 
(nm/ev) 

FWHM 
(nm) 

εp 
(g

-1
.m

2
) 

ε 
(g

-1
.m

2
) 

Peak position 
(eV) 

Electronic 
transition 

Functional 
group 

138.2 ± 0.4 

8.97 ± 0.03 
31.8 ± 0.3 3.7 ± 0.4 4.42 ± 0.02 8.4

a
 , 8.5

a,b
 C=O →*CO Carboxyl 

145.8 ± 0.4 

8.50 ± 0.02 
13.0 ± 1.0 0.50 ± 0.05 4.24 ± 0.02 8.5

c
 ---- Phosphate 

169.8 ± .3 

7.30 ± 0.01 
14.5 ± 0.6 0.66 ± 0.07 1.70 ± 0.02 

7.7
a
 , 7.1ª

,b 

7.4
d 

6.2-7.5
e
 , 7.8

a,b
 

n’O → * 

---- 

nO → * 

Carboxyl 

Hydroxyl 

192.0 ± 2.0 

6.46 ± 0.07 
34.0 ± 5.0 0.17 ± 0.02 0.61 ± 0.02 

5.8
a,b

 

6.2-7.5
e
 , 6.4

f
 

nO → * 

nO → * 

Carboxyl 

Hydroxyl 

 

Peak parameters for VUV data of PAH cast film Literature Assignment 

Peak position 
(nm/ev) 

FWHM 
(nm) 

εp 
(g

-1
.m

2
) 

ε 
(g

-1
.m

2
) 

Peak position 
(eV) 

Electronic 
transition 

Functional 
group 

172.9 ± 0.1 

7.172 ± 0.004 
22.9 ± 0.2 8.51 ± 0.02 

10.81 ± 

0.02 

8.19
g,h 

7.14
g
 

7.01
g
, 7.1

i, j
, 

7.0
i, j

, 7.927
k 

nN – 3p Amine 

203.8 ± 0.8 

6.08 ± 0.05 
18.0 ± 2.0 0.77 ± 0.01 3.33 ± 0.02 

6.4
g
 6.51

h
 

5,77
g
  5.83

g
,
 

5.7
i
 5.8

i
,
 
6.0

j
, 

6.392
k
 ,

 
6.56

l 

nN – 3s Amine 

 

Peak parameters for VUV data of DPPG/PAH cast 

film 
Literature Assignment 

Peak position 
(nm/ev) 

FWHM 
(nm) 

εp 
(g

-1
.m

2
) 

ε 
(g

-1
.m

2
) 

Peak position 
(eV) 

Electronic 
transition 

Functional 
group 

136.0 ± 2.0 

9.12 ± 0.07 
28.0 ± 3.0 3.7 ± 0.4 --- 8.4

a
, 8.5

a, b
 C=O →*CO DPPG 

147.2 ± 0.2 

8.424 ± 0.009 
13.0 ± 2.0 0.50 ± 0.05 --- 8.5

c
 ---- DPPG 

168.0 ± 3.0 

7.38±0.09 
18.0 ± 3.0 --- --- 

7.7ª, 7.1ª
, b 

7.4
d 

6.2-7.5
e
, 7.8

a, b
 

8.19
g,h

,7.14
g
, 

7.01
g
,7.1

i
,
j 

7.0
i,j
,
 
7.927

k 

n’O → * 

 

nO → * 

 

nN – 3p 

DPPG 

PAH 

194.4 ± 0.7 

6.38 ± 0.04 
15.0 ± 2.0 --- --- 

5.8
a, b

, 6.2-7.5
e
 

6.4
f
, 6.4

g
, 

6.51
h
, 5.77

g
, 

5.83
g
, 5.7

i
, 5.8

i
 

6.0
j
, 6.392

k
, 

6.56
l
 

nO → *CO
 

 

nO → * 

 

nN – 3s 

DPPG 

PAH 
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PAH/DPPG  LBL FILMS  

The VUV spectra for PAH/DPPG LbL films are shown in figure 4.6.3 a), which were fitted with 

four Gaussian curves, as indicated in the inset. Since DPPG has four and PAH has two 

components, this fitting points to overlapping of PAH and DPPG peaks. Taking into account the 

assignments above for DPPG and PAH molecules, one can assign the peaks for PAH/DPPG 

LbL films as follows: those at 194.4±0.7 nm and 168±3 nm are due to both types of molecules 

while the other peaks are only due to DPPG. With peaks associated with only one type of 

molecule (DPPG in this case), it is possible to use the VUV data for the films to estimate the 

adsorbed amount of DPPG, and then ascribe the remainder to PAH. Table 4.6.1 gives the 

parameters from these fittings and the assignment to electronic transitions in each bilayer and 

type of molecule. 
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Figure 4.6.3. a) VUV Absorption spectra for LbL PAH/DPPG films with distinct numbers of bilayers. 
In the inset is shown the VUV spectrum of the (PAH/DPPG)10 film. The green lines in the inset 
indicate the fitting with Gaussian functions, with bands at 136±2 nm, 147.2±0.2 nm, 168±3 nm and 
194.4±0.7 nm. b) Maximum absorbance (142 nm) with baseline correction versus the number of 
bilayers in the PAH/DPPG LbL film.  
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The adsorbed amount per bilayer can be estimated because the PAH/DPPG LbL films grow 

linearly with the number of bilayers, as indicated in figure 4.6.3 b) for the maximum absorbance 

with baseline correction. This is in accordance with results by Constantino et al [280,281] who 

measured the conventional UV-vis. absorption spectra of DPPG/PAH LbL films, and found that 

the absorbance at 200 nm increased linearly with the number of bilayers. This linear growth is 

due to adsorption processes governed by electrostatic interactions between NH3
+
 groups from 

PAH and PO4
-
 groups from DPPG without significant increase of roughness. These interactions 

are sufficiently strong to break the liposomes adsorbed on each layer, as we shall see from the 

adsorbed amounts calculated below from the VUV spectra data. The amount of DPPG 

adsorbed per bilayer was calculated by taking the intensity of the 136±4 nm peak in the VUV 

spectra for PAH/DPPG LbL films, since it is due only to adsorption of DPPG molecules (Table 

4.6.1). From the absorbance intensity using the Beer-Lambert law, one obtains the adsorbed 

amount per layer per unit area (ΓDPPG) using the partial absorption coefficient at 138 nm 

calculated from aqueous solutions and cast films in figure 4.6.2 a):  

138

138

2
nm

p nm

DPPG

p

Abs


   (4.6.1) 

 

The factor 2 in the denominator appears because the PAH/DPPG film was deposited on both 

sides of the substrate. The mass of a DPPG adsorbed layer per unit area was calculated 6±1 

mg/m
2
 per layer, as shown in table 4.6.2, corresponding to 3.8×10

18
 (=2×1.9×10

18
) 

molecules/m
2
. This is a reasonable value if one considers that the surface density of DPPG 

molecules in a Langmuir monolayer is 2.1×10
18

 molecules/m
2 

[280,281,282,283,284]. The latter 

density was obtained for a condensed monolayer with surface pressure of 30 mN/m and mean 

molecular area of 45 Å
2
. The good agreement indicates that the vesicles collapsed into a lipid 

bilayer in the LbL film, which would lead to a mass of 5.5 mg/m
2
 to be compared with the 

measured value of 6±1 mg/m
2
. Moreover, this value is totally in accordance with the DPPG 

amount per unit of area adsorbed onto a PAH layer of 4.93±0.09 mg/m
2 

measured by crystal 

quartz balance [259]. The amount of PAH adsorbed can be calculated from the absorbance at 

168 nm peak, for which both DPPG and PAH molecules contribute, since the adsorbed amount 

of DPPG was already calculated, by using a simple absorbance values relation: 

168

168

168

2

nm

DPPG DPPG nm

PAH

PAH nm

Abs




 

   
(4.6.2) 

 

Where ΓPAH is the adsorbed amount per layer per unit area, Abs168nm is the absorbance at 168 

nm per bilayer and the εPAH168nm and εDPPG168nm where the absorption coefficients at 168 nm of 

PAH and DPPG, respectively. Using the absorption coefficients at 168 nm presented in figure 

4.6.2 a), ΓPAH was estimated as ~ 0.9 mg/m
2
, consistent with  0.4 mg/m

2
 obtained by Baba et al 

[262] for a dried PAH layer measured with a quartz crystal microbalance. 
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Table 4.6.2. Properties of PAH/DPPG LbL films, where  is the adsorbed amount per layer. 
i) Measured by atomic force microscopy.  

Layer 
 

(mg/m
2
) 

 from literature 

(mg/m
2
) 

Molecules (or monomers) per 

Area (m
-2

) 

Roughness 

(nm) 

DPPG 6.0 ± 1.0 
5.5  

(lipid bilayer) 

3.8×10
18 

= 2×1.9x10
18

 
(Literature Langmuir layer = 2.1×10

18
)
[278-282] 0.3 

i)
 

PAH ~0.9 0.4 [109] 9×10
15 

- 12×10
15

 --- 

 

Because the LbL films were dried in between the adsorption process for each bilayer and 

submitted to vacuum, changes may have occurred in the adsorbed amounts and in the surface 

roughness [91]. In order to better analyse the DPPG layer, its surface morphology after drying 

was characterized by atomic force microscopy. 

 

 

 

SURFACE CHARACTERIZATION OF A DPPG LAYER  

The surface of one bilayer PAH/DPPG film adsorbed onto silicon substrate was characterized 

by AFM. A topographic image in figure 4.6.4 a) points to a quasi-flat surface with a roughness 

(Rms) of only 0.3 nm. The values of 3.24 and 20.9 for Skewness and Kurtosis functions, 

respectively, obtained from a statistical and frequency analysis of the topographic data, indicate 

that the surface has more peaks than valleys. The valleys can be explained by adsorption of 

liposomes on the PAH surface which were then ruptured and formed a lipid bilayer. In these 

regions the roughness was lower than the average for the whole sampled area. The valleys are 

surrounded by regions (peaks) that are two-bilayer thick, then leading to one-bilayer thick peaks 

in the AFM image of figure 4.6.5 b). The unfolding of liposomes to form lipid bilayers was 

proposed by Reimhult et al [285]. The sites where liposomes were adsorbed could be 

determined from the distance between peaks varying from 80 to 150 nm and from 200 to 300 

nm in figure 4.6.4 b). The largest diameters correspond to twice the original diameter of the 

liposomes, suggesting that the entire liposome spreads on the substrate. It should be referred 

that AFM topographies of DPPG cast films revealed intact liposomes. The small valleys with the 

dimensions of twice liposome diameter, see figure 4.6.4 b), are surrounded by several peaks 

caused by an increased roughness when liposomes at the edges do not have space to spread 

completely into a bilayer or even to surface irregularities due to PAH adsorption. This 

explanation is consistent with models [285,286,287] for the formation of supported lipid bilayers 

onto solid substrates. An important requirement for the rupture of DPPG liposomes is a high 

adhesion strength between PAH and DPPG regions, which is expected as the PAH molecules 

were almost fully ionized for the film fabrication at pH 4 [261].  
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Figure 4.6.4. a) AFM topographic image; b) Topographic profile of a 1-bilayer PAH/DPPG LbL film.  

 

 

EFFECTS FROM ULTRAVIOLET (UV) IRRADIATION ON A PAH/DPPG FILM  

Since UV irradiation is known to affect biological systems, with effects being noted at the 

molecular level for cell membrane models, we verified whether damages on the PAH/DPPG LbL 

films could bring artefacts to the VUV data. No significant changes were noted in the spectra 

upon irradiating the films with UV at a fixed wavelength (140 nm) during one hour, as shown in 

figure 4.6.5. This result allows us to conclude that the VUV technique can be used for 

characterization of this type of heterostructures since the measurements were performed with 

the samples in vacuum and no noticeable damage caused by radiation occurs for the duration 

(ca. 20 min.) of the experiment.  
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Figure 4.6.5. VUV spectra of a (PAH/DPPG)10 biomimetic membrane before and after being 
irradiated at 140 nm during 1 h in vacuum. 

 

 

CONCLUSIONS  

We reported VUV measurements of DPPG in aqueous solutions, and in cast and LbL films. 

From the spectra we could assign the electronic transitions responsible for the light absorption 

and determine the amount of DPPG adsorbed on LbL films with PAH. Significantly, the 

adsorbed amounts pointed to adsorption as a lipidic bilayer, which means that the DPPG 

liposomes were ruptured during the adsorption process. The final structure of the LbL films was 

reflected on the film topography investigated with AFM, for the images showed terraces with 

thicknesses again corresponding to lipid bilayers. The LbL films were not affected by prolonged 

UV irradiation in the absence of water molecules indicating that the VUV technique can be used 

for characterization of lipid heterostructures. We therefore propose VUV spectroscopy as a new 

powerful tool for LbL film characterization which we hope will be useful in, among others, cell 

membrane modelling and drug delivery studies based on phospholipids. 

 

 

ACKNOWLEDGMENTS  

The authors acknowledge the European Commission for access to the ASTRID facility at the 

University of Aarhus, Denmark and for their support through the Access to Research 

Infrastructure action of the Improving Human Potential programme. This work was supported 

also by the "Plurianual" financial contribution of "Fundação para a Ciência e Tecnologia" 

(Portugal) and by FAPESP and CNPq (Brazil). It resulted from taking part in the COST Action 

CM0601, Electron Controlled Chemical Lithography (ECCL) and in bilateral collaboration 

projects under the programs CAPES-Brazil/Grices-Portugal. A. A. Duarte and P. J. Gomes 

acknowledge the fellowships SFRH/BD/62229/2009 and SFRH/BD/35954/2007, respectively.  



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

123 

 

4.7. INTERACTION OF DNA WITH LANGMUIR MONOLAYERS OF OPPOSITE CHARGED 

PHOSPHOLIPIDS 

 

Paulo J. Gomes, Amélia M.P.S. Gonçalves da Silva,  

Paulo A. Ribeiro, Osvaldo N. Oliveira Jr. and Maria Raposo 

 

STATUS: To be submitted 

 

 

ABSTRACT 

The study of DNA interactions with lipids is of particular importance for the development of 

biosensors, nanodevices, drug delivery systems and radiation studies on biological molecules. 

This work addresses the interaction studies of two phospholipids, the anionic 1,2-distearoyl-sn-

glycero-3-phospho-(1'-rac-glycerol) (DPPG) and the cationic 1,2-distearoyl-sn-glycero-3-

ethylphosphocholine (EDPPC), with deoxyribonucleic acid (DNA). The surface pressure  area 

(A) isotherm of DPPG progressively deviates to larger areas at low surface pressures with the 

DNA concentration in the subphase, becoming nearly invariant at high surface pressures up to 

the collapse of the monolayer. This means that DNA penetrates in the expanded regime of 

DPPG monolayer, being excluded from the condensed regime due to repulsive electrostatic 

interactions. Differently, the A isotherm of EDPPC is not significantly affected in the expanded 

regime, while becomes steeper in the condensed regime and the collapse surface pressure 

increases with the DNA content in the subphase. DNA in the water subphase clearly stabilizes 

the cationic EDPPC monolayer.  

 

 

INTRODUCTION 

Langmuir monolayers at air-liquid interface are commonly used to characterize the interactions 

between phospholipids and biological molecules such as proteins but are also valuable tools for 

studying interaction between lipids and deoxyribonucleic acid (DNA). Indeed these studies are 

essential for developing DNA-based pharmaceuticals for gene therapy, biosensors and 

nanodevices [288] and determining effects from irradiation of biological molecules [289]. 

However, only a few studies of interaction of lipids with deoxyribonucleic acid (DNA) at air-water 

interface are available in the literature. In fact, Cardenas et al [290] studied the behaviour of 

monolayers of dioctadecyldimethylammonium bromide (DODAB) and of 

DODAB/disteroylphosphatidylcholine (DSPC) deposited onto a DNA aqueous solution 

subphase and demonstrated that in presence of DNA, the surface pressure versus area 

isotherms of the cationic lipid shift to larger mean molecular areas due to the electrostatic 

interaction with DNA while the typical liquid expanded-liquid condensed phase transition for 

DOBAB monolayers disappear and the monolayer remains to be in the liquid expanded phase. 
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The interaction of calf thymus DNA with 1,2-dimyristoyl-phosphatidylethanolamine (DMPE) 

monolayers in presence of Ca
2+

 or Mg
2+

 ions was studied and it was observed that DNA 

adsorption only in presence of the divalent ions and at low lateral pressure DNA partially 

penetrates into the lipid monolayer but is squeezed out at high pressure [291]. Interactions of 

native DNA with octadecylamine (ODA) and hexadecyl dimethylammonium bromide (HTAB) 

monolayers at the air/water interface were also studied and it had been shown that the 

microscopic structure of ODA-DNA complexes is definitely consistent with a single-stranded 

form for DNA while with HTAB, DNA complexes in its native form. This crucial difference in the 

behaviour of these two fairly similar lipids was interpreted as due to the presence of the amine 

group in ODA [292].  Antipina et al [293] characterized the DNA interaction with the cationic 

lipids 2-tetradecylhexadecanoic acid-{2-[(2-aminoethyl)amino]ethyl}amide (CI) and 2-

tetradecylhexadecanoic acid-2-[bis(2-aminoethyl)amino]ethylamide (CII) and demonstrated the 

ability of these cationic lipids to couple with DNA at low as well as at high pH value. Those 

authors also found that the observed DNA structuring does not seem to depend on subphase 

pH conditions.  

In this work, we analyse the interaction between 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DPPG) and 1,2-distearoyl-sn-glycero-3-ethylphosphocholine (EDPPC) monolayers 

with DNA molecules at air/liquid interface and the effect of UV radiation on the DPPG and DNA 

system. The choice of these lipids was based on both to be amphiphilic molecules, composed of 

two saturated chains and a hydrophobic tail and to present opposite charges, DPPG is 

negatively charged while EDPPC is positive. Nonetheless, Langmuir monolayers of DPPG are 

well-documented in the literature [294,295] while Langmuir monolayers of EDPPC are 

understudied although ethylphosphocholine lipids as EDPPC are highly biocompatible cationic 

amphiphiles that can be used for the formulation of liposomal DNA vectors, with negligible toxic 

effects on cells and organisms [296].  

 

 

EXPERIMENTAL DETAILS 

MATERIALS 

The anionic 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and the cationic  1,2-

distearoyl-sn-glycero-3-ethylphosphocholine (EDPPC) lipids both with purity higher than 99% 

were obtained from Avanti Polar Lipids
®
. The chemical structures of these lipids are shown in 

figure 4.7.1. Highly pure (A260/280nm  1.6) lyophilized deoxyribonucleic acid sodium salt from calf 

thymus (DNA) was obtained from Aldrich
®
. The solvents chloroform and ethanol were 

spectroscopic grade from Merck
®
. The ultrapure water was distilled twice and purified with the 

Millipore Milli-Q system (resistivity ≥ 18.2 MΩ.cm). 
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a) 

 

b) 

Figure 4.7.1. Chemical structures of the lipids: a) 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-
glycerol) (DPPG) and b)1,2-distearoyl-sn-glycero-3-ethylphosphocholine (EDPPC). 

 

METHODS 

Phospholipid solutions prepared in chloroform and ethanol (4:1) at 1 mM were spread on the 

aqueous subphase to yield an initial mean area per molecule of 1.6 nm
2
. The solvent was 

allowed to evaporate for 10 min before compression started. The subphase was either ultrapure 

water or DNA solutions at three concentrations, prepared with ultrapure water. Measurements 

were carried out at room temperature on a computer controlled KSV 5000 Langmuir-Blodgett 

system (KSV Instruments, Helsinki), according to procedures described elsewhere [297]. For 

the -A isotherms (either in single compressions or in compression-expansion cycles), a 

asymmetric compression (or expansion), with a constant barrier speed of 5 mm.min
-1

, was 

used. Several isotherms were performed for each system, with the same or different solutions.  

For investigating monolayer stability, the same procedure to obtain a -A isotherm was adopted, 

except that the compression was stopped at a target surface pressure, 0, which is kept 

constant by the continuous adjustment of the barriers position while the area A was recorded as 

a function of time (A-t). For the -t measurements, the surface pressure  was recorded as a 

function of time at constant area A0 (stopped barriers).  

 

 

RESULTS AND DISCUSSION 

Effects induced by incorporation of DNA solutions into the subphase for EDPPC and DPPG 

monolayers are shown in figure 4.7.2 a) and b), respectively. The surface pressure (-A) 

isotherm for a neat monolayer of the cationic EDPPC displays a liquid-expanded (LE) phase 

below 25 mN.m
-1

, with a phase transition to the liquid condensed state (LC) up to  

 ≈ 35 mN.m
-1

, and LC continues until collapse at 45 mN.m
-1

. A comparison of figures 4.7.2 a) 

and b) points to the bulky hydrophilic group of EDPPC occupying a larger area per molecule (90 

Å
2
) than the DPPG hydrophilic group (50 Å

2
), as the monolayer of the anionic DPPG is 

condensed, consistent with the literature [298]. The EDPPC monolayer is not significantly 
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affected by DNA in the expanded, low pressure regime, but the isotherms become steeper in 

the condensed phase. More importantly, the collapse pressure increases with the DNA content 

in the subphase, which reveals that the anionic biopolymer DNA stabilizes the EDPPC 

monolayer. In contrast, as shown in figure 4.7.2 b) DNA causes the DPPG monolayers to be 

more expanded at low pressures, and seems to be excluded from the condensed phase, since 

the isotherms practically coincide with that of neat DPPG. The expulsion at high surface 

pressures may be ascribed to repulsive, anionic-anionic electrostatic interactions. 

a) 

b) 

Figure 4.7.2. Surface Pressure for a) EDPPC and b) DPPG and monolayers at water interface. 
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Marked differences in the effects from DNA on EDPPC and DPPG monolayers are clearly seen 

in the compressional modulus calculated from the surface pressure isotherms of figure 4.7.2, 

defined as:  

Figure 4.7.3 shows that the modulus increases with the DNA concentration for EPPPC whereas, 

generally, it decreases for DPPG. The only exception to this behaviour is the lowest DNA 

concentration for the EDPPC monolayer, as commented upon later on. Overall, DNA causes the 

EDPPC monolayer to become more rigid, and in contrast it induces higher fluidity in DPPG 

monolayers. 

 

 a) 

 b) 

Figure 4.7.3. a) Compressional modulus values vs area per molecule plots for a)  EDPPC and b)  
DPPG and monolayers at the air/water interface.  
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The stabilizing effect from DNA on EDPPC monolayers is readily apparent in relaxation kinetic 

studies, which are suitable to investigate processes involving material loss from the interface 

[299,300]. Here, the EDPPC and DPPG monolayers on DNA subphases were compressed at a 

constant speed of 5 mm.min
-1

 up to a target surface pressure 0 = 30 mN.m
-1

, corresponding to 

the pressure of a real cell membrane [301,302,303,304]. Then, the area per molecule A was 

monitored as a function of time t. Figure 4.7.4 a) and b) show the normalized (normalized A/A0) 

A-t decay curves for EDPPC and DPPG, respectively. For EDPPC, the decay rate decreased 

with the DNA content except for the lowest DNA concentration. Therefore, DNA helped stabilize 

the EDPPC monolayer, in agreement with the results from the surface pressure isotherms. We 

have not investigated further the distinct behaviour for the lowest DNA concentration, but it may 

probably be associated with the insufficient amount of DNA to neutralize the head group 

charges. In contrast, adding DNA causes the DPPG monolayers to become less stable, as 

indicated by the increased decay rates.  

a) 

b) 

Figure 4.7.4. Relaxation kinetics with A-t decay curves, normalized A/A0, at constant surface 

pressure, 0 = 30 mN.m
-1

, for a) EDPPC and b) DPPG monolayers on pure water and DNA-
containing subphases. 
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Surface pressure isotherms obtained after the relaxation study (1 h) confirmed the increased 

stability of EDPPC and decreased stability for DPPG. These curves are shown in figure 4.7.5 a) 

and b), respectively, where for a DNA-containing EDPPC monolayer the isotherms taken before 

and after the relaxation study almost coincide. This is consistent with the stabilizing effect 

promoted by DNA; significantly, for EDPPC figure 4.7.5 a) shows strong deviation for the 

isotherm on pure water due to monolayer instability. On the contrary, for DPPG the DNA-

containing monolayer displays an isotherm after relaxation that further deviates from the initial 

one.  

a) 

b) 

Figure 4.7.5. Surface pressure-area (-A) compression curves for a) EDPPC and b) DPPG 
monolayers on pure water and DNA different concentrations subphases. 
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CONCLUSIONS 

This study allowed us to conclude that at low pressure regime, the presence of DNA in the 

subphase does not affect the cationic EDPPC monolayer. Nevertheless, in the condensed 

phase the DNA presence increases collapse pressure indicating that EDPPC monolayer is 

stabilized by DNA. For DPPG monolayer, the presence of DNA leads to expansion of the 

monolayer at low pressures indicating that DNA penetrates in the expanded regime of DPPG 

monolayer, being excluded from the condensed regime probably due to repulsive electrostatic 

interactions.  
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ABSTRACT 

The resilience of cells to ultraviolet (UV) irradiation is probably associated with the effects 

induced in biological molecules such as DNA and in the cell membrane. In this study, we 

investigated UV damage on the anionic 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(DPPG) phospholipid, which is an important component of cell membranes. In films cast from 

DPPG emulsions, UV irradiation induced cleavage of C-O, C=O and –PO2
-
 bonds, while in 

Langmuir monolayers at the air/water interface representing the cell membrane this irradiation 

caused the monolayer stability to decrease. When DNA was present in the subphase, however, 

the effects from UV irradiation were smaller, since the ionic products from degradation of either 

DPPG or DNA stabilize the intact DPPG molecules. This mechanism may explain why UV 

irradiation does not cause immediate collapse of cells, thus providing time for the cellular 

machinery to repair elements damaged by UV.  

 

 

INTRODUCTION 

Deoxyribonucleic acid (DNA) molecules are degraded with scission of single and double strands 

when irradiated with low energy electrons or photons [2,3,4,5,6]. Ultraviolet (UV) irradiation with 

synchrotron radiation, for instance, affected thymine, CO and phosphate groups of DNA cast 

films, according to vacuum ultraviolet and infrared spectra [12]. The electrical conductivity of 

DNA films was also found to decrease upon UV irradiation, since the loss of phosphate groups 

compromised electron hopping from base-pairs along the DNA chain [176]. Stronger effects 

from UV radiation occur in the presence of water [305], as DNA is altered directly by radiation 

and indirectly by secondary reaction products. Similar processes are expected to occur in the 

cell when DNA is irradiated, which should also affect the lipids comprising the cell membrane 

framework.  

Because studying these molecular mechanisms in real cell membranes is not possible with 

present technologies, one may resort to model membranes such as Langmuir monolayers. 

Interaction between DNA and lipids at the air-water interface has been studied in a few systems. 
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DNA in the subphase caused monolayers of dioctadecyldimethylammonium bromide (DODAB) 

and DODAB/ disteroylphosphatidylcholine (DSPC) mixtures to expand, in spite of an expected 

attractive electrostatic interaction with the lipids [290]. The latter authors assumed that DNA 

macromolecules did not penetrate into the hydrophobic region of the lipid monolayer, since the 

headgroup area of the lipids increased only slightly in the presence of DNA. This small increase 

in area was ascribed to increased disorder of the cationic lipid monolayer. With cationic 

monolayers, DNA is denatured adopting a single-stranded form in octadecylamine (ODA), but 

complexes in its native form with hexadecyl dimethylammonium bromide (HTAB) [292]. This 

crucial difference for two fairly similar lipids was interpreted as being due to the amine group in 

ODA, which could change DNA conformation. In zwitterionic monolayers of 1,2-dimyristoyl-

phosphatidylethanolamine (DMPE), calf thymus DNA only adsorbed at low surface pressures 

and in the presence of divalent (Ca
2+

 or Mg
2+

) ions, being squeezed out at high pressures [291]. 

To our knowledge, studies about interaction between DNA and negatively charged lipids have 

not been published.  

As for studies involving UV irradiation of Langmuir monolayers, various effects have been 

reported, from lipid degradation to rearrangement of polymer molecules. UV-irradiation induced 

oxidation in Langmuir monolayers of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) [306] 

and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLoPC) [307]. Reaction between 

photosensitizers and 1,2-di-O-linoleoyl-3-sn-phosphatidylcholine (1,2-DLPC) in Langmuir 

monolayers were induced by prolonged UV-irradiation [308], while chiral structures could be 

induced by irradiating monolayers of achiral biopolymers [309]. 

In this work, we analyze the interaction between 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DPPG) monolayers with DNA molecules at the air/liquid interface, including effects 

from UV irradiation. DPPG was chosen because its Langmuir monolayers have been well 

documented in the literature [294,295], in addition to being one major component of lung 

surfactant [310,311].  

 

 

EXPERIMENTAL DETAILS 

MATERIALS 

The phospholipid 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) shown in figure 

4.8.1 was purchased from Avanti Polar lipids
®
 and had purity higher than 99%. Highly pure 

(A260/280nm  1.6) lyophilized deoxyribonucleic acid sodium salt from calf thymus (DNA) was 

obtained from Aldrich
®
. The solvents chloroform and ethanol were spectroscopic grade from 

Merck
®
. The ultrapure water was distilled twice and purified with the Millipore Milli-Q system 

(resistivity ≥ 18.2 MΩ.cm). 

 

Figure 4.8.1. Chemical structure of 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG). 
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METHODS 

Phospholipid solutions prepared in chloroform and ethanol (4:1) at 1 mM were spread on the 

aqueous subphase to yield an initial mean area per molecule of 1.6 nm
2
. The solvent was 

allowed to evaporate for 10 min before compression started. The subphase was either ultrapure 

water or DNA solutions at three concentrations, prepared with ultrapure water. Measurements 

were carried out at room temperature on a computer controlled KSV 5000 Langmuir-Blodgett 

system (KSV Instruments, Helsinki), following procedures described elsewhere [297]. For the -

A isotherms (either in single compressions or in compression-expansion cycles), asymmetric 

compression (or expansion) was used with a constant barrier speed of 5 mm/min. Several 

isotherms were performed for each system, with the same or different solutions, in order to 

warrant reproducibility.  

For investigating monolayer stability, the same procedure to obtain a -A isotherm was adopted, 

except that compression was stopped at a target surface pressure, 0, while the area A was 

recorded as a function of time (A-t). For the -t measurements, the surface pressure  was 

recorded at constant area A0 (stopped barriers). These -t measurements were also performed 

upon irradiating the DPPG monolayer with a 254 nm UVC germicide lamp, model TUV PL-L 

55W/4P HF 1 CT from Philips
®
, whose UV radiance was 1.9 W/m

2
. FTIR measurements in cast 

films of DPPG on calcium fluoride were obtained with a spectrophotometer Thermo Scientific 

Nicolet-model 530 (Waltham, MA, USA). 

 

 

RESULTS AND DISCUSSION 

The effects induced by incorporation of DNA on DPPG monolayers are shown in figure 4.8.2. 

The surface pressure (-A) isotherm for a neat monolayer of the cationic DPPG displays a 

liquid-expanded (LE) phase below 15 mN.m
-1

, with a phase transition to the liquid condensed 

state (LC) up to  ≈ 30 mN.m
-1

, and the LC continuing until collapse at 55 mN.m
-1

. The 

extrapolated area to zero pressure is approximately 50 Å
2
, consistent with the literature [298]. 

DNA causes the DPPG monolayers to be more expanded at low pressures, and seems to be 

excluded from the condensed phase, since the isotherms practically coincide with the one for 

neat DPPG at  > 40 mN.m
-1

. The preferential interaction of DNA with the polar region of the 

DPPG monolayer may explain the squeezing out of the DNA from the condensed monolayer 

into the subphase forming an adsorbed layer at the interface. 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

134 

 

 

Figure 4.8.2. Surface Pressure for DPPG monolayers on ultrapure water and on subphases 
containing DNA. 

 

The DPPG monolayers on DNA subphases were compressed at a constant speed of  

5 mm.min
-1

 up to a target surface pressure 0 = 30 mN.m
-1

, corresponding to the value 

prevailing in a real cell membrane [302,304]. The decrease in the normalized area (A/A0) with 

time in figure 4.8.3 shows that adding DNA causes the DPPG monolayers to become more 

expanded and less stable. The decreased stability for DPPG with the DNA-containing 

monolayer was confirmed by surface pressure isotherms obtained after the relaxation study (1 

hour), which further deviated from the initial isotherm to lower molecular areas.  

 

Figure 4.8.3. Relaxation kinetics with A-t decay curves, for normalized A/A0, at constant surface 

pressure, 0 = 30 mN.m
-1

, for DPPG monolayers on pure water and DNA-containing subphases. 
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To analyze the UV radiation effect on DPPG monolayer on water and on DNA subphase area 

kinetics experiments (A-t) were performed. After compressing the monolayer at constant speed 

up a surface pressure of 30mN/m, the area as a function of time at constant pressure was 

recorded. The constant pressure was maintained constant by moving the barriers. During 

several intervals of time the monolayer was irradiated with UV light. Figure 4.8.4 shows these 

obtained curves.   
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Figure 4.8.4. Relaxation in molecular area, A-t decay curves, normalized A/A0, at constant surface 

pressure, 0 = 30 mN.m
-1

, of DPPG monolayers on pure water and DNA with 0.1mg/mL 
concentration subphases. The monolayers were irradiated during several periods of time of 5. The 
periods during which exposure to UV irradiation took place are marked with vertical lines. 

 

To compare the effect of radiation on the relaxation kinetics curves of DPPG on water and on 

DNA aqueous solution subphases, the relaxation curves without and with first irradiation were 

plotted in figure 4.8.5 a) and b), respectively for pure water and for DNA with 0.1 mg/mL 

concentration subphases. The relaxation kinetics in figure 4.8.5 a) shows that UV irradiation 

decreases the monolayer stability. In order to quantify the effects, we fitted the A-t decay curves 

with an exponential function: 

0 exp
t

y y


  
   

  
 (4.8.1) 

 

and obtained the characteristic time constants, . For neat DPPG, the time constant decreased 

from 14±2 h to 6.2±0.8 h upon irradiating the monolayer, thus confirming the UV-induced 

instability. The opposite effect was observed when DNA was in the subphase, as shown in 

figure 4.8.5 b), whose curves were fitted with exponentials with time constants of  

7.5±0.6 h and 19±3 h, without and upon UV irradiation, respectively.  
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Figure 4.8.5. Relaxation in molecular area, A-t decay curves, normalized A/A0, at constant surface 

pressure, 0 = 30 mN.m
-1

, of DPPG monolayers without and upon exposure to UV irradiation on: a) 
pure water and b) DNA with 0.1mg/mL concentration subphases.  

 

 

The damages from UV radiation on DNA molecules are well documented [12], but it has been 

reported that UV does not damage DPPG molecules in vacuum [314]. Since no reports appear 

to have been made on UV effects on lipids in water emulsions, we performed UV irradiation 

experiments on DPPG molecules in cast films from emulsions and in monolayers. The infrared 

spectra in figure 4.8.6, whose assignment is given in table 4.8.1, indicate that UV radiation does 

damage DPPG molecules in cast films, essentially by cleaving C-O, PO4
-
 and C=0 groups. This 

is inferred from the decreased intensity caused by irradiation in several bands, as indicated by 

the difference in the two spectra, before and after irradiation, in figure 4.8.6. The bands affected 

range from 1044 to 1102 cm
-1

, 1150 to 1240 cm
-1

 and 1578 to 1697 cm
-1

, assigned to CO-P, C-

O-C, CO-O-C, PO4
-
 and embedded hydrogen bonds C=0 groups, respectively.  
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Figure 4.8.6. Infrared spectra of DPPG cast films prepared from DPPG aqueous solutions without 
and with UV irradiation. To visualize the damage induced in DPPG by exposure to radiation, the 
difference between the spectra was also added. The vertical arrows indicate the wavenumber of 
bands that disappear upon irradiation. 

 

Table 4.8.1. Characteristic infrared absorptions in DPPG cast films. 

Wavenumber 

(cm
-1

) 
Assignment References 

1738 Stretching of carbonyl group (C=O) [315,316,317] 

1638 

Vibrations of C=O groups embedded in hydrogen bonds; 

DPPG unfolded structure; 

DPPG unordered conformations 

[318,319] 

[320] 

[321,322] 

1467 CH2 scissoring [306,307,308,309]  

1414 In-plane bending of C–O–H group. -------- 

1241 Antisymmetric stretching of hydrated PO4
− 

group [323] 

1222 P=O antisymmetric stretching  of PO4
− 

group [306,307,308,309] 

1169 Asymmetric stretching of CO–O–C groups 
[158] 

1070 Symmetric stretching of CO–O–C groups 

1096 Symmetric stretching of CO–O–C groups [300,306, 

307, 

308,309] 

1057 Symmetric stretching of C–O–C groups 

1047 Symmetric stretching of C–O–P groups 
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The reason why DNA increases stability of DPPG monolayer under UV irradiation is as follows. 

The damage to DNA molecules from UV induces formation of ionic products that stabilize both 

the intact DPPG molecules and the DPPG byproducts resulting from UV irradiation. The effects 

from DNA practically disappear for prolonged irradiation times (ca. 2500 s), as shown in figure 

4.8.4, probably because the reaction products from damaged DNA diffuse to the subphase and 

are no longer able to stabilize the DPPG monolayer.  

 

 

CONCLUSIONS 

UV irradiation of DPPG molecules in cast films obtained from emulsions induced cleavage of C-

O, C=O and –PO2
-
 bonds, in contrast to the lack of effects for DPPG under vacuum reported in 

the literature. Hence, the presence of water seems crucial for degradation, and this was 

confirmed in DPPG monolayers at the air/water interface, whose stability decreased when 

irradiated with UV. Significantly, the effects from UV irradiation were mitigated if DNA molecules 

were incorporated into the subphase. DNA caused the DPPG monolayer to expand at low 

pressures, with molecules penetrating into the monolayer. In condensed monolayers, however, 

the DNA molecules were excluded probably due to repulsive electrostatic interactions. 

Nevertheless, even at high surface pressures corresponding to a real membrane, the 

underneath adsorbed layer of DNA decreased monolayer instability caused by irradiation. This 

was attributed to the formation of ionic products from degradation of either DPPG or DNA, which 

would stabilize both the intact DPPG molecules and the DPPG products resulting from UV 

irradiation. Such mechanism could explain why cells do not collapse immediately after 

irradiation. Cell stability is maintained until the elements damaged by UV can be repaired by the 

cellular machinery.  
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ABSTRACT 

Analysis of AC electrical conductivity of deoxyribonucleic acid (DNA) thin films, irradiated with 

ultraviolet (UV) light, revealed that electrical conduction is arising from DNA chain electron 

hopping between base-pairs and phosphate groups, with the hopping distance equal to the 

distance between DNA base-pairs, as calculated from correlated barrier hopping model. Loss of 

conductivity with irradiation time was shown to be associated with the decrease of phosphates 

groups. In the high frequency regime, at a given frequency, real part of conductivity strongly 

depends on irradiation time particularly for low dose, levels suggesting the use of DNA films for 

UV radiation sensors.  

 

 

INTRODUCTION 

In the last decade many efforts have been made to understand the effects of non-ionizing 

radiation on biological molecules as deoxyribonucleic acid (DNA). This interest has been 

boosted from early studies on  the effect of 7-150 eV synchrotron radiation in DNA plasmid, 

showing that DNA single-strand (SSB) and double-strand (DSB) breaks can occur at all of these 

energies, for both dry and solution plasmid DNA [5]. Also irradiation with particles or photons at 

energies below the ionizing potential revealed to be capable of inducing DNA damage, [12, 

143,157,158,174 and references therein]. As DNA is a macromolecule consisting of a long 

chain of monomers, its electrical properties are also expected to change as a result of chain 

breaks, feature that might be used to probe the DNA damage induced by radiation. 

Experimental outcomes of DNA electrical conductivity proved to be amazingly diverse with 

respect to conductivity regimes observed [210,211,212,213,214,215,216,217,218,219,220, 

221], making difficult to clarify the conduction processes which are taking place within DNA 

molecules.  Nevertheless, it was demonstrated that double stranded DNA is one-dimensional 

semiconductor and AC impedance spectroscopy can be an effective method to measure the 
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electrical conduction on DNA samples [217]. In order to establish if radiation damage can be 

inferred from electrical properties, in this work, the electrical conductivity of DNA thin films was 

characterized through impedance spectroscopy, in the 0.01 Hz to 10 MHz range, in terms of 

exposure to 254 nm ultraviolet radiation (UV). 

 

 

EXPERIMENTAL DETAILS 

Cast films were prepared from 0.5 mg/mL solutions of calf thymus lyophilized DNA sodium salt 

obtained from Aldrich
®
. Solutions were prepared by dissolving the DNA in deionized water with 

a resistivity of 18.2 MΩ.cm (Milli-Q, Millipore GmbH). The DNA solutions were spilled onto glass 

substrates having deposited interdigitated gold electrodes for electrical conductivity 

measurements and onto calcium fluoride substrates for spectroscopic measurements. All 

substrates were previously cleaned with ultra-pure water and dried under nitrogen flux. Cast 

DNA films were obtained after drying the deposited solution for 2 hours in vacuum desiccators. 

The samples were irradiated for different periods of time by means of a 254 nm UVC germicide 

lamp, model TUV PL-L 55W/4P HF 1CT from Philips
®
, in a ventilated chamber at room 

conditions. The UV irradiance was 1.9 W/m
2
. Complex impedance spectra of the samples were 

measured before and after each period of irradiation using an Alpha-N analyzer from 

Novocontrol GmbH, covering a frequency range from 10
-1

 Hz to 10 MHz, being the AC potential 

applied to the two gold interdigitated electrodes. The electrical measurements were performed 

at 25±0.5 ºC controlled temperature and under a nitrogen atmosphere. Infrared spectra of the 

DNA thin film samples, prepared on calcium fluoride solid supports, were measured using a 

Fourier transform infrared spectrophotometer Nicolet-model 530. 

 

 

RESULTS AND DISCUSSION 

The electrical conductivity curves of DNA films obtained for different UV radiation exposures, 

are shown in figures 4.9.1 a) and 4.9.1 b) where, respectively, the real part of conductivity and 

the loss tangent curves are displayed as a function of frequency for different irradiation times. 

From figure 4.9.1 a) it can be seen that the real component of the conductivity is practically 

linear with frequency with the slope decreasing as the irradiation time increases. These curves 

when plotted in log scales, as shown in figure 4.9.1 a) inset, suggests that the conductivity 

follows a frequency power law. Since the slope of the inset curves is practically irradiation time 

independent, one expects that the conduction processes which are occurring are similar for all 

irradiation exposures. For the case of loss tangent curves, figure 4.9.1 b), a shoulder can be 

seen in the 1 kHz to 500 kHz range, which does not change monotonically in frequency position 

with irradiation time. This shoulder is likely due to polarization processes occurring in DNA 

molecules and hardly can be associated to only one type of DNA damage caused by irradiation. 

In addition, both real and imaginary permittivity components follow the behaviour observed by 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

141 

 

Laudát and Laudát [324] for the frequency dependence of the complex permittivity of dry solid 

sodium DNA.  
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Figure 4.9.1. a) Real component of complex conductivity spectra, in the inset the same curves are 
displayed in log-log plots, and b) loss tangent spectra of a DNA cast film irradiated for different 
periods of UV irradiation time. 

 

 

For frequencies above 1 MHz, each tangent loss curve obtained tends to a constant value, 

which decreases as the irradiation time increases. If one plots these values as a function of 

irradiation time at fixed frequency, for example 1 MHz, they are found to follow the real 

component conductivity behaviour as shown in figure 4.9.2. The exponential behaviour for the 

real conductivity with irradiation time suggests that this variable can be used to probe the effect 

of radiation on DNA molecules, since for short irradiation times; say first 20 minutes, the 

conductivity at fixed frequency presents a quasi linear response.  
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Figure 4.9.2. Real component of conductivity at 1 MHz, plotted as a function of irradiation time. The 
solid line is the fit of experimental data to a decay exponential curve. 

 

 

Concerning conduction processes within DNA molecules, several theoretical models such as 

band transport [325,326,327], polaronic transport [328,329], fluctuation facilitated charge 

migration [330,331] and multistep hopping [332,333,334] have been addressed to account for 

DNA conductivity behaviour.  By analyzing the real part of conductivity curve of figure 4.9.1 a), a 

power law, as observed in [324], dependence can be found as follows: 

  s    4.9.1 

where  is the frequency and  s is a constant. 

 

As a remark, equation 4.9.1 is usually used to describe conductivity driven by electron hopping 

and tunneling phenomena [335]. Predictions for these models were systematized in terms of 

𝜎(𝜔) dependence and calculated s values [336]. In the case of the quantum mechanical 

tunneling (QMT) through a barrier model [337], s is predicted to be temperature independent but 

frequency dependent, decreasing in value with the increase of frequency. In the QMT model 

and when the carriers become nonoverlapping small polarons, s becomes temperature 

dependent and increases as temperature increases. For large polaron tunneling [338], the 

polaron distortion cloud overlaps appreciably and s is both temperature and frequency 

dependent. For the correlated barrier hopping (CBH) of electrons, s is both temperature and 

frequency dependent. However, if the ratio WM/kT assumes large values, being WM the value of 

site separation energy, s is close to unity and effectively independent of frequency.  

This systematization allows infer about the adequate model to explain the current experimental 

results. Fitting data of figure 4.9.1 a), at high frequencies, to equation 4.9.1, a mean value of 

0.97±0.01 was obtained for s. Thus, s values are close to unity and, excluding the frequency 

range centered at 100 kHz associated to polarization phenomena, s is essentially frequency 

independent. Moreover, although the present data was obtained at room temperature, recent ac 
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measurements at 200 K and 300 K gave similar conductivity values [339], indicating that s 

should be considered frequency independent in the frequency range considered. Additionally, 

with respect to conductivity trend, proportionality with frequency is observed. These results are 

pointing out to correlated barrier hopping (CBH) of electron model proposed by Pike [335], 

where the electron is transferred by thermal activation over the barrier between two adjacent 

sites. Under this model, the AC conductivity was calculated in the narrow band limit, to be [340]: 

 
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2 6

0
24

N R


   

 
  
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 4.9.2 

 

where 𝜀 is the dielectric constant,  𝜀0 is the permittivity of free space, N is the concentration of 

pair sites and 𝑅𝜔is the hopping distance, given by the expression: 
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4.9.3 

 

where WM  is the energy barrier and 𝜏0 is a characteristic relaxation time. The frequency 

exponent s can then be expressed as: 

0

6
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1lnM
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s

W kT
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 

 
4.9.4 

 

Both, hopping distance and pair sites concentration can be now calculated as a function of 

irradiation time. For these calculations, the frequency was fixed at 1 MHz, the considered 

relative permittivity of dry DNA value was of 5 in accordance with [324] and the value of 3.75 

eV, given from spectrophotometric data [210], was used for the energy barrier. This energy 

barrier value is in accordance with Iguchi calculations [341] which showed that the nucleotides 

present semiconducting character with a gap energy of several eV. However, it should be 

remarked that calculations on the electronic structure of guanine and cytosine  based DNA gave 

rise to values of gap energies The calculated values of N when plotted as a function of 

irradiation time revealed to follow the conductivity behaviour, decreasing exponentially with 

irradiation time. These achievements suggest that conductivity is in fact governed by hopping 

between DNA bases pairs and phosphates and/or sugar-phosphate groups, known to be 

strongly affected by UV radiation [5,12,210,211,213]. This explanation is also supported by the 

Iguchi calculations which demonstrated the nucleotides groups behave as donors while the 

sugar-phosphates behave as acceptors [343]. To prove that conductivity is really due to 

hopping between base pairs and the sugar-phosphate groups, DNA cast films prepared onto 

calcium fluoride were irradiated on different periods of time and the damage was analyzed by 

infrared spectroscopy in the range of 900 to 1300 cm
-1

, where DNA presents backbone, sugar 

and phosphate groups vibrations [158]. The IR spectra for DNA cast films obtained for different 
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irradiation times are plotted in figure 4.9.3, showing the peaks associated to CC stretch of the 

backbone (966 cm
-1

), furanose vibrations (1018 cm
-1

), CO stretch of the furanose in backbone 

(1053 cm
-1

), symmetric PO2
-
 stretching of backbone (1088 cm

-1
), A-former marker-sugar 

phosphate backbone (1183 cm
-1

), anti-symmetric PO2
-
 stretch in B-form (1210 cm

-1
), anti-

symmetric PO2
-
 stretch in A-form (1241 cm

-1
), C5=C6 vibration of cytidine and CN3H bend of 

deoxyribose thymine (1281 cm
-1

) and C4-NH2 strength of cytosine (1296 cm
-1

), all  in 

accordance with ref. [158]. of 12 and 17 eV [342], which when applied to CBH of electron model 

leads smaller mean hoping distances. Recently, Yamada and Iguchi [343] also assumed energy 

differences between HOMO and LUMO of about 2 eV to 3 eV to apply the effective tight-binding 

models for electrons in DNA conduction and found if the  stacking of the base is perfect, there 

are two channels for -electron hopping: one is the channel through the base stacking and the 

other is the one through the backbone chain of the sugar-phosphate groups. Taking into 

account the discrepancy of theoretical energy values, the energy barrier given by 

spectrophotometric results has been considered. The values of R were then determined for all 

irradiation times resulting in an average value of 3.3899 ± 0,0002 Å which is remarkably close to 

3.4 Å [210], the distance between base-pairs in the DNA molecule. Note that the small uncertain 

is given by the closeness of Rω values individually calculated from different conductivity data.  
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Figure 4.9.3. Infrared absorbance spectra of a DNA cast sample irradiated with 254 nm UV light for 
different periods of time. 
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Figure 4.9.4. Absorbance at 1088 cm
-1

 associated with symmetric PO
2-

 stretching of backbone 
vibrations and concentration of pair sites calculated by equation 4.9.2 as a function of irradiation 
time.  

 

By analyzing the behaviour of the infrared peaks, a decrease in magnitude with irradiation time 

can be observed at different rates for each peak, indicating that the damage kinetics is 

dependent of each DNA group. With respect to symmetric PO2
-
 stretching of backbone (1087 

cm
-1

) vibrations, the number of vibrations is seen to decrease similarly to the decrease of 

conduction pair sites concentration as calculated from CBH model, equation 4.9.2. This 

behaviour can be seen in graph of figure 4.9.4 where both, absorbance at 1088 cm
-1

 associated 

with symmetric PO2
-
 stretching of backbone vibrations and pair sites concentration calculated 

from equation 4.9.2 where plotted as a function of irradiation time. This allows conclude that at 

high frequencies the conductivity behaviour follows the DNA damage with respect to phosphate 

groups.  

 

 

CONCLUSION 

In summary, DNA conductivity depreciation due to UV radiation exposure is associated with the 

decrease of the number of phosphate groups, which work as electron acceptors in the DNA 

conduction process, caused by electron hopping between base-pairs and phosphate groups. 

This conclusion was supported by the calculated hooping distance using the CBH model and by 

the similar decrease of both phosphate groups and CBH model hooping pair sites number with 

the irradiation time. Results obtained here also show that the electrical conductivity can be used 

to monitor DNA damage. 

 

 

ACKNOWLEDGEMENTS  

This work was supported by the "Plurianual" financial contribution of "Fundação para a Ciência 

e Tecnologia" (Portugal). PG acknowledges the fellowship SFRH/BD/35954/2007. 



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

146 

 

  



Characterization of Molecular Damage Induced by UV Photons and Carbon Ions on Biomimetic Heterostructures  

 

147 

 

5. FINAL REMARKS 

5.1. CONCLUSIONS 

This work contributes for the knowledge about radiation damage on relevant biomolecules such 

as DNA and phospholipids when placed in an environment closer to that of a cell, through the 

development of biomimetic heterostructures that can be changed in composition into some 

extent. The conclusions of scientific work carried out can be summarized as follows:  

- Biomimetic heterostructures can be achieved via cast, layer-by-layer (LbL) and Langmuir 

techniques. These heterostructures can contain bound water molecules near to the adsorbed 

macromolecules giving rise to the presence of water molecules in the final layered molecular 

structure, which is fundamental for keeping the biological molecules environment. In addition, 

the presence of water molecules in the heterostructures depends of the type of adsorbed 

species and the ionic strength of the solutions used to prepare the adsorbed layers. This is 

particularly relevant in what concerns radiation damage studies on DNA containing biomimetic 

molecular heterostructures where different salt solution contents are leading to different damage 

levels.  

- Synchrotron radiation is an important resource for research of the damage on biological 

relevant molecules. Obtained data proves that the UV radiation induces changes on covalent 

bonds of DNA and DPPG molecules and that VUV spectroscopy can be used to detect the 

induced changes and therefore some extent localize the damage. The VUV spectroscopy can 

also be used to monitor adsorption amount during the formation of LbL films.  

- Radiation at 140 nm (8.85 eV) was shown to induce damage in calf thymus DNA molecules. 

Band deconvolution in the VUV spectra allowed concluding that the contribution of transitions, 

associated to open sugar chain, tend to increase in magnitude during irradiation. At the same 

time, a decrease in the peaks magnitudes associated with the DNA bases has been observed. 

Although such effects could be inferred from measured VUV spectra, this technique is not 

sensitive enough to characterize DNA damage at a molecular level. Infrared spectra of the 

samples allowed us to assign observed infrared absorbance peaks to particular DNA molecular 

vibrations. Analysis of changes in the infrared spectra after irradiation generally, revealed a 

decrease in the C-O stretch of the furanose in backbone, in the PO2
-
 groups, in the thymines, 

cytosines and adenines groups. These changes occur at different rates indicating that several 

damage processes are taking place.  A decrease in C2=O2 stretching of thymines involved in 

reverse Hoogsteen third strand binding has also been observed, while the C2=O2 stretching 

vibration of thymine in single or double-stranded remain unchanged. An increase in the anti-

symmetric PO2
-
 stretch in B form was also observed which has been related to an increase in 

the number of C-O bonds. 

- UV radiation in the energy range of 3.5 to 8 eV was shown to cause damage to several DNA 

components as revealed by XPS spectra analysis of DNA cast films. Results revealed that all 

the elements decreased relatively to sodium which indicates dissociative damage of DNA 

yielding gaseous products. Two main energy intervals were associated to this kind of damage. 
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In addition analysis of each element fractions with irradiation energy also indicated functional 

group transformations. Carbon fractions revealed that the N-C=O, N-C=N, C(N)3 N-C-O  (C3) 

groups were not affected by the radiation, while: the C-C or C-H (C1) fraction increased and the 

C-N, C=N, C-O (C2) and N-(C=O)-N (C4) ratios decreased, when the samples have been 

irradiated at higher energies. The decrease of C-O and N-(C=O)-N ratios indicate the opening of 

sugar rings and the breaking of pyrimidines, respectively. The rupture of sugar rings was 

confirmed by the O-C (O3) fraction decrease. This range of energies was also lead to loss of 

DNA, PO4
-
 groups which as pointed by the decrease of all the ratios [P]/[X], X being any other 

element: Na, C, O and N. The analysis of N sp
2
 and N sp

3
 atomic percentages allowed to 

conclude that at 6.1 eV irradiating energy, a decrease (~17%) in the fraction of N sp
2
 groups. 

This energy value is close of the VUV peak associated to π-π* transitions of guanine and 

adenine, suggesting that these bases can be affected of the decrease of N-(C=O)-N groups 

shows that also the pyrimidines (thymines and/or cytosines) degradation occurs. Analysis of the 

XPS data, associated to phosphate groups, points out that energies below 3.5 eV are sufficient 

to break DNA phosphate groups this result is consistent with three different conductivities 

values found in literature for DNA films. Finally, the [P]/[Na] ratio changed from ~1.4 to ~0.8 

when radiation energy increases, reveals that the radiation energy mainly removes the 

protonated phosphate groups and not the ionized ones. This allows to conclude that ionized 

phosphate groups, surrounded by the sodium counterions, congregate hydration water 

molecules which play an important role as UV radiation protection of them. 

- The damage of DNA films as a result of irradiation with C
3+

 ions reveals the rupture of C-O-C 

deoxyribose bonds and consequent creation of C=O bonds,  fragmentation of PO4
2-

 groups and 

the decrease in the number of thymine, cytosine, adenine and guanine groups.  Damage on 

DNA bases leads to the formation of oxime products, which in turn react with DNA deoxyribose 

products forming furfural groups. Loss of structural water and DNA conformational changes 

were also observed.  

- From the VUV spectra of DPPG in aqueous solutions, and in cast and LbL films, we could 

assign the electronic transitions responsible for the light absorption and determine the amount 

of DPPG adsorbed on LbL films with PAH. Significantly, the adsorbed amounts pointed to 

adsorption as a lipidic bilayer, which means that the DPPG liposomes were ruptured during the 

adsorption process. The final structure of the LbL films was reflected on the film topography 

investigated with AFM, for the images showed terraces with thicknesses again corresponding to 

lipid bilayers. The LbL films were not affected by prolonged UV irradiation in the absence of 

water molecules indicating that the VUV technique can be used for characterization of lipid 

heterostructures. We therefore propose VUV spectroscopy as a new powerful tool for LbL film 

characterization which we hope will be useful in, among others, cell membrane modelling and 

drug delivery studies based on phospholipids. 

- In concern of Langmuir films studies, the presence of DNA in the subphase does not affect the 

cationic EDPPC monolayer at low surface pressures. Nevertheless, at condensed phase the 

DNA presence increases the value of the pressure collapse indicating that the EDPPC 
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monolayer is stabilized by DNA. In the case of DPPG monolayer, the presence of DNA leads to 

expansion of the monolayer at low pressures indicating that DNA penetrates in the expanded 

regime of DPPG monolayer, being excluded from the condensed regime probably due to 

repulsive electrostatic interactions. UV irradiation of DPPG molecules in cast films obtained from 

emulsions induced cleavage of C-O, C=O and –PO
2-

 bonds, in contrast to the lack of effects for 

DPPG under vacuum. Hence, the presence of water seems crucial for degradation, and this 

was confirmed in DPPG monolayers at the air/water interface, whose stability decreased when 

irradiated with UV. Significantly, the effects from UV irradiation were mitigated if DNA molecules 

were incorporated into the subphase. DNA caused the DPPG monolayer to expand at low 

pressures, with molecules penetrating into the monolayer. In condensed monolayers, however, 

the DNA molecules were excluded probably due to repulsive electrostatic interactions. 

Nevertheless, even at high surface pressures corresponding to a real membrane, the DNA 

molecules decreased monolayer instability caused by irradiation. This was attributed to the 

formation of ionic products from degradation of either DPPG or DNA, which would stabilize both 

the intact DPPG molecules and the DPPG products resulting from UV irradiation. Such 

mechanism could explain why cells not collapse immediately after irradiation. The stability of the 

cell is maintained during a determined time period until the damaged elements by UV to be 

repaired. 

- Finally, DNA conductivity depreciation due to UV radiation exposure is associated with the 

decrease of the number of phosphate groups, which work as electron acceptors in the DNA 

conduction process, caused by electron hopping between base-pairs and phosphate groups. 

This conclusion was supported by the calculated hooping distance using the CBH model and by 

the similar decrease of both phosphate groups and concentration of pair sites with the 

irradiation time. These results also allow conclude that the electrical conductivity can be used to 

monitor DNA damage. 
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5.2. FUTURE WORK 

The results and conclusions coming out from this work, allowed a significant advance in 

understanding the damage in biological materials caused either by photons or ions. The 

application of a diverse set of techniques, namely the LBL technique, addressed for the 

preparation of biomimetic heterogenic samples, together with the use of well known 

characterization techniques, succeed in obtaining information on damage caused by radiation in 

these biomimetic structures. Given the wide variety of existing materials in biological systems, 

and the features of the LBL technique, more realistic models are worth to be attempted. The 

buildup of more complex molecular structures designs require study of adsorption kinetics of the 

molecules to be include in the molecular structure. In addition, the conditions controlling the 

amount of water in the final structure is also a relevant issue to be addressed. The use of 

models with different combinations of biomolecules may allow understanding the molecular 

damage mechanisms causing some genetic lesions. This knowledge will allow a development in 

other areas, particularly in anti-cancer therapy and in its prevention. Taking into account the 

probes that nowadays are being attempted towards a more efficient radiotherapy techniques 

and procedures other radiations sources, namely electrons, positrons, protons and ions will be 

worth to use with these biomimetic structures. For this purpose it is also relevant to evaluate the 

doses necessary to damage a given biomolecule within a structure. 

Finally, attentive to the fact that most of the constituent materials of biological medium are 

composed of long chains where the electron transfer play an important role in electrical 

conductivity, the mechanisms driving the electrical current in thin films are worth to be further 

investigated toward the development of radiation biosensors. 
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