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Abstract 

The development of devices based on heterostructured thin films of biomolecules conveys a huge 

contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of 

water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is 

mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability 

to rearrange spontaneously into vesicles creating a stable barrier between two aqueous 

compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles 

on the heterostructures. In this work, the conditions that govern the deposition of open and closed 

liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto 

polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic 

transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet 

spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray 

photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS 

and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, 

in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. 

Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to 

determine the kinetics parameters that are related with adsorption processes namely, electrostatic 

forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from 

atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption 

mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by 

electrostatic forces. The power spectral density treatment enabled a thorough description of the 

accessible surface of the samples as well as of its inner structural properties. These outcomes proved 

that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a 

polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid 

bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of 

open liposomes calculated from the normalized maximum adsorbed amounts decreases with the 

cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable 

that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the 

development of well-designed sensors based on functional biomolecules incorporated in liposomes. 

Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated 

were successfully applied to sensors of olive oil. 

 

 

KEYWORDS: Layer-by-layer films; Surface Roughness; Quartz Crystal Microbalance; DPPG; 

Liposomes; Kinetic Adsorption; Atomic Force Microscopy; Scaling Laws; Power Spectral Density; 

Vacuum Ultraviolet Spectroscopy; X-ray Photoelectron Spectroscopy, Sensor. 
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Resumo 

A criação de dispositivos baseados em filmes finos heteroestruturados de biomoléculas podem 

contribuir em larga escala para o desenvolvimento da área da biomedicina. No entanto, a eficácia 

destes dispositivos está dependente das condições que permitem manter as moléculas biológicas 

hidratadas e, portanto, é necessário que estas heteroestruturas armazenem água. Um ambiente 

hidratado pode ser obtido a partir de moléculas lipídicas que têm a capacidade de se reorganizar 

espontaneamente em vesículas criando uma barreira estável entre dois compartimentos aquosos. 

Contudo, é necessário encontrar as condições que levam à imobilização de vesículas intactas sobre 

heteroestruturas. Neste trabalho foram analisadas as condições que levam à deposição de 

lipossomas abertos e fechados de 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sal de 

sódio) (DPPG) em almofadas de polieletrólitos, preparados pelo método de camada-sobre-camada 

(LbL). As transições eletrónicas das moléculas de DPPG bem como os coeficientes de absorção 

foram obtidos por espectroscopia de ultravioleta de vácuo (VUV), enquanto a composição elementar 

das heteroestruturas foi caracterizada por espectroscopia de fotoeletrão de raios-X (XPS). A presença 

de moléculas de água nos filmes foi inferida por XPS e espectroscopia de infravermelho. A análise de 

dados obtidos por microbalança de cristal de quartzo (QCM) permitiu deduzir que, em alguns casos, a 

quantidade de DPPG adsorvida depende do número de bicamadas previamente absorvidas. Além 

disso, as curvas de cinética de adsorção, tanto da quantidade adsorvida como da rugosidade da 

superfície, permitiram determinar os parâmetros de cinética relacionados com os processos de 

adsorção em causa, ou seja, forças electrostáticas, difusão de lipossomas e reorganização dos 

lípidos sobre a superfície. Os expoentes de escala calculados a partir da análise estatística de 

imagens obtidas por microscopia de força atómica demonstraram que a adsorção das vesículas de 

DPPG é regida pelo modelo de difusão de Villain confirmando que a adsorção é regida por interações 

eletrostáticas. O tratamento da densidade espectral de potência permitiu uma descrição minuciosa da 

superfície das amostras, bem como das suas propriedades estruturais internas. Estes resultados 

provaram que a rugosidade da superfície influencia a adsorção dos lipossomas de DPPG em 

superfícies cobertas por uma camada de polieletrólito. Assim, uma baixa rugosidade provoca a 

ruptura dos lipossomas originando uma bicamada lipídica, enquanto uma elevada rugosidade induz à 

adsorção de lipossomas inteiros. Mais ainda, a quantidade máxima adsorvida normalizada obtida por 

QCM, uma medida de fracção de lipossomas abertos, mostra um decréscimo com o aumento da 

rugosidade, permitindo concluir que a rugosidade da superfície é uma variável crucial que regula a 

absorção de lipossomas abertos ou inteiros. Esta conclusão é de interesse fundamental no 

desenvolvimento de sensores com base em biomoléculas funcionais incorporadas em lipossomas. De 

facto, filmes LbL compostos por polieletrólitos e lipossomas com e sem melanina encapsulada foram 

aplicadas com sucesso para sensores de azeite. 

PALAVRAS-CHAVE: Filmes de Camada-sobre-camada; Rugosidade da superfície; Microbalança de 

Cristal de Quartzo; DPPG; Lipossomas; Cinética de adsorção; Microscopia de Força Atómica; Leis de 

escala; Densidade Espectral de Potência; Espectroscopia de ultravioleta de vácuo; Espectroscopia 

fotoeletrão de Raio-X; Sensor.  
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Ra Average roughness 

𝑅𝐻 Hydrodynamic radius 

Rku Kurtosis 

Rms Root-mean-square roughness 

Rp Parallel reflection coefficient 

Rpm Average maximum profile peak height 

Rq Root-mean-square roughness 

Rs Perpendicular reflection coefficient 

Rsk Skewness 

Rt Maximum height of the profile 

Rtm Average maximum height of the profile 

Rv Maximum profile valley depth 

Rvm Average maximum profile valley depth 

S Surface area of the deposited film 
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Sox Maximum slope of the current curve in the oxidation phase 

Sred Maximum slope of the current curve in the reduction phase 

t time 

T Absolute temperature 

𝜏 Characteristic time  

𝜏𝑠ℎ  Lateral size of surface aggregates 

Γ Adsorbed amount per unit area 

Γ𝐷𝑃𝑃𝐺 DPPG adsorbed amount per unit area  

Γ𝑚𝑎𝑥  Maximum adsorbed amount per unit area 

Γ𝑃𝐴𝐻 PAH adsorbed amount per unit area  

V Particle volume 

W1 Gaussian width of peak 1 

z Dynamic exponent 
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1  INTRODUCTION 

The growing interest in developing molecular devices for electronics, photonics and sensors based on 

biological molecules is due essentially to their ability to interact with dedicated and located chemical 

species. The creation of devices can be achieved condensing biomolecules in heterostructured thin 

films assembled onto solid supports making sure that these molecules have an adequate environment 

in order to maintain its specificity. Among others, the main factors that influence biomolecules 

functionality are ionic strength, pH, ionization degree, hydrogen bonds and especially water content. 

However, at room conditions, thin films lose water molecules that are bound to the biological 

molecules, the so-called structural water, compromising the biomolecular structure and stability, and 

consequently its own functionality.  Therefore, it is mandatory an aqueous environment inside these 

heterostructures in order to provide well-designed biomimetic supramolecular devices. Such 

environment may be achieved with lipid molecules, which are the building blocks of all living cells, 

representing 50% of mass of the cell membranes. Lipids can be used to prepare simplified membrane 

models intra-layered with biomolecules or to obtain “water bags”, liposomes, due to their poor 

solubility in water which causes a spontaneous rearrangement into vesicles creating a stable barrier 

between two aqueous compartments. Both, lipid membrane models or liposomes immobilized on 

surfaces, allow the creation of a biological compatible environment. 

The deposition of lipids on solid supports can be achieved by Langmuir-Blodgett (LB) and Layer-by-

Layer (LbL) techniques [1]. LB technique allows the deposition of sequences of lipid monolayers inter 

or intra-layered with functional biological molecules, e.g. proteins or DNA. However, this technique 

excludes the possibility of intact liposomes being deposited on a support. On the other hand, the LbL 

method, originally applied to the physical adsorption of oppositely electrical charged polyelectrolyte 

layers from aqueous solutions, has been extended to prepare lipid bilayers [2, 3] and, in certain cases, 

to adsorb whole liposomes that, in a proper way, can be assembled with encapsulated biological 

molecules [4, 5]. Immobilization of intact liposomes can be achieved with unprotected vesicles, i.e., 

vesicles with no polymer protective shell or biomolecules, but only under experimental conditions with 

a suitable combination of surfaces and liposomes. Consequently, the adhesion and stabilization of 

intact liposomes layers requires a strategy to avoid the vesicles rupture. In addition, recent research 

on polyelectrolytes LbL films composition reveal that when adsorption parameters are adequately 

controlled during layers assembly, water molecules remain in these films even when samples are 

submitted to high vacuum for several hours [6]. Therefore, the LbL technique seems to be an excellent 

approach to incorporate water molecules into these supramolecular heterostructures aiming a 

successful maintenance of the biological molecules functionality. Nevertheless, the conditions that 

define the deposition of open or whole liposomes onto solid supports are not well established in 

literature, so it is necessary to find these conditions in order to store water molecules into LbL films.  

The main goal of this work is to evaluate and optimize the conditions for water molecules storage into 

functional supramolecular heterostructures, with the ability to mimic membranes or rudimentary cells, 

obtained from polyelectrolytes and biomolecules, by using the LbL method. Owing that LbL technique 

is based on physical adsorption phenomena both adsorbate and adsorbent should be considered. 
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Besides other physicochemical surface properties which are determinants for the adsorption of 

biomolecules and the conformational state of the adsorbent, such as chemical nature, charge, 

hydrophilicity, or structure; the role of the surface roughness in the adsorption phenomena is poorly 

characterized. Roughness imposes local geometrical constraints on the adsorbents that can be crucial 

for self-assembly processes, particularly when the sizes of self-assembled domains exceed the 

characteristic dimensions of the surface features. Thus, roughness is expected to influence the 

formation and organization of the self-assembled biomolecules.  

As a first approach, the adsorption phenomena should be characterized in order to find the adequate 

parameters that lead to liposomes immobilization on surfaces. One of the main parameters to be 

exploited, e.g. by Quartz Crystal Microbalance (QCM) or by spectrophotometries, is the mass per unit 

area of the adsorbed layers on solid supports as a function of different adsorption parameters.The 

measurements with QCMs at the solid-liquid interface was introduced in the eighties when a suitable 

oscillator circuit for operation in liquids was developed [7] and it is often used to discriminate between 

systems with a low amount of water, e.g., supported-lipid bilayers (SLBs), in opposition to those with 

higher volume of water storage such as liposomes. However, in situ QCM measurements require 

improvements in order to overcome limitations associated to experimental setups configurations. In 

order to improve the QCM technique at solid/liquid interface a homemade cell was designed and 

implemented, providing a new successful experimental setup. Since lipids absorb in the ultraviolet 

region, the vacuum ultraviolet (VUV) spectroscopy technique, available in Synchrotron Radiation 

facilities and vastly used for macromolecules characterization which allows identifying their electronic 

transitions, was found to be an adequate method to analyse the amount of lipid bilayers or liposomes 

adsorbed onto solid supports. 

The surface morphology characterization of the heterostructures can provide information about the 

liposomes immobilization mechanism on a surface. The surface analysis is usually associated to the 

concept of surface roughness which has a huge influence on many physical phenomena acting with 

higher effectiveness as the size of the objects decreases (to microscale). The present reduction of the 

devices, e.g., microelectromechanical systems, requires an improved grasp of the role of surface 

roughness, e.g., in contact mechanics and adhesion. Surface roughness is also of great importance 

for the function of many biological systems as cell adhesion in different microorganisms [8] and tumor 

growth [9]. Some animal species such as flies, bugs, crickets and lizards are able to attach and move 

on both very smooth and rough vertical solid walls, e.g. stone walls or leaves, due to the presence of 

very soft layers on their feet. On the other hand, plant surfaces developed non-wetting coatings, based 

on surface roughness on many different length scales, the so-called lotus effect, in order to reduce 

water losses as an adaptation to terrestrial environment. Currently, surface morphologies can be 

probed by atomic force microscopy (AFM) technique. Because of its ability to provide nanometer-scale 

images of biological samples, AFM is a powerful method used in biology and in membrane biophysics. 

It is known that for randomly rough surfaces, the function surface roughness power spectrum, inferred 

from the measured height profile, allows to determine the growth mechanisms based on scaling 

exponents as well as the mean grain size of the surfaces. Thus, the study and characterization of the 
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surface roughness is important to understand the adsorption mechanisms as well as the inner 

structure of the films. 

Bearing in mind the goal of this work, the presence of water molecules inside the heterostructures can 

be analyzed by infrared (IR) and X-ray photoelectron (XPS) spectroscopies. IR spectroscopy is a 

method used to determine the fundamental vibrations and the associated rotational-vibrational 

structures of the molecules and XPS probes the surface region allowing the chemical qualitative and 

quantitative characterization of the heterostructures. 

Therefore to achieve the proposed main goal, this work is focused on LbL films composed by 

polyelectrolytes such as poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH) and 

poly(sodium 4-styrenesulfonate) (PSS) and by the synthetic lipid 1.2-dipalmitoyl-sn-Glycero-3-

[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG). This lipid is widely studied since the natural 

phosphatidylglycerol (PG) is present in biological membranes of many organisms showing a crucial 

role in vital functions, e.g., induction of DNA replication in E. coli [10] and increase of the gases 

diffusion efficiency in pulmonary alveolus [11]. Melanin was used to be incorporated in DPPG 

liposomes and was selected to this work since is an important bio-macromolecule present in different 

organs of animals and plants [12-14], but also because it has different physicochemical properties 

including piezoelectricity and photoconduction being its main functions: photoprotection, 

photosensitization and thermoregulation [15]. Different types of supramolecular heterostructures were 

produced using the Layer-by-Layer technique such as: i) LbL films composed by polyelectrolytes 

interspersed with whole liposomes or lipid bilayers; ii) LbL films composed by a cushion of 

polyelectrolyte multilayers with intact liposomes and/or lipid bilayers adsorbed on top; iii) in certain 

cases, LbL films composed by polyelectrolytes interspersed with liposomes having melanin 

encapsulated or with lipid bilayers intra-layered with melanin. The adsorbed layers growth processes 

were monitored by the QCM technique in situ and by VUV spectroscopy. Kinetic characteristic 

parameters as a function of adsorption time and layers number were extracted by fitting the data with 

the Johnson-Mehl-Avrami equation [16]. The surface morphology of the LbL films was characterized 

by AFM imaging ex situ and in situ before and after polyelectrolytes multilayers assembly and lipid 

vesicles immobilization. Roughness amplitude parameters and dynamic scaling exponents were 

obtained from AFM data treatment. QCM and AFM imaging were combined to gather information of 

the layers growth mechanisms. Spectroscopic techniques, such as FTIR, VUV and XPS were used to 

find the composition, ionization and vibrational energy states of the organic molecules, but also to 

validate QCM and AFM interpretations.  

This thesis is divided into 5 chapters. Chapter 2 describes cell membrane models and the techniques 

used to produce supramolecular heterostructures based on biological molecules onto solid supports. 

Chapter 3 presents the experimental section, such as the materials and the methods used to prepare 

the thin films, as well as the techniques used to characterize the heterostructures. The results and the 

discussion of the work are present in chapters 4 and 5. The characterization of DPPG liposomes 

suspension and DPPG cast films; the advances in instrumentation and experimental details developed 

for measurements in situ with a Quartz Crystal Microbalance; as well as the growth analysis of 

PEI/DPPG and PAH/DPPG LbL films can be found in chapter 4. Chapter 5 discusses the storage of 
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water molecules on LbL films, by creating planar lipids bilayers or depositing intact vesicles, through 

DPPG liposomes adsorption onto smooth and rough polyelectrolytes multilayers and solid supports. 

This chapter also presents a multisensory system using the produced LbL films for classification of 

olive oils collected from different Moroccan and Portuguese regions. Finally, the conclusions of the 

developed work and the future perspectives are present in Chapter 6. 
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2 LIPID BARED HETEROSTRUCTURES 

An overview of the cell membranes models and the techniques used to produce supramolecular 

structures with biological molecules immobilized onto solid supports is presented in this chapter. 

Furthermore, a review of the experimental conditions that lead to adsorption of intact liposomes on 

solid supports or formation of lipid bilayers is also reported.  

2.1 Cell membrane 

In a sense, life is defined by membranes, because they delimit the barrier between the living cells and 

its surroundings. The cell membrane structure model currently accepted, fluid mosaic model, was 

proposed by Singer and Nicholson [17] in 1972. According to this model, see figure 2.1, the biological 

membrane is a dynamic and fluid structure whose basic constitution is a phospholipid bilayer (lipid 

bilayer) with incorporated proteins. The hydrophilic polar heads of the phospholipids bilayer are outer 

disposed occupying the two surfaces (intra and extracellular) and the hydrophobic tails are thus 

oriented to each other. The lipids of the bilayer are movable, often changing their position within a 

layer [18]. 

 

 

 

Figure 2.1. Schematic representation of a cell membrane [19].  

 

On the external face of the cell membrane, carbohydrates are linked to phospholipid heads 

(glycolipids) or to proteins (glycoproteins), which are believed to be important to substances 

recognition. The biomembrane’s ultrastructure presents an asymmetric arrangement, because it has 

some proteins linked to the membrane surface (extrinsic proteins) and others partially or wholly 

embedded in the bilayer (intrinsic proteins). These proteins may work as enzymes, substances 

transporters or signals receptors of the external environment. The relative proportions of proteins and 

lipids vary with the type of cell membrane and with its function. Besides, this model proposes that 

lipids and proteins diffuse freely in the plane of the cell membrane [20].  
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Lipid membranes structures are extremely difficult to study because of the polymorphic nature of the 

lipid arrangement, which presents a considerable variety of lipids, with different physical properties 

such as cross section, fluidity, electrical charge, molecular weight, among others. Furthermore, the 

covalent bonds of proteins and carbohydrates increases the complexity of the membrane structure 

[21]. The in vivo lipids role extends beyond structural division, involving also those molecules in cell 

signaling pathways [21] and in maintenance of the differences in electrolyte concentration and 

electrical field gradient between the extracellular environment and the cytoplasm. Biomembranes are 

essential to life mechanisms of regulation throughout many interfaces of the cell. Moreover, cell 

membranes composition can change quickly to respond to environmental stimuli [22]. Due to the 

complexity and heterogeneity of cell membranes, mechanisms and functions of lipid-biomolecule 

interactions have been often investigated using simplified models called biomimetic systems.  

 

2.2 Cell membrane models 

2.2.1 Phospholipids 

The plasma membrane of a cell is composed by a bilayer of glycerophospholipid molecules. A single 

glycerophospholipid molecule is composed of two major regions: a hydrophilic head and a 

hydrophobic tail. Figure 2.2 shows the subregions of a glycerophospholipid molecule, in this case a 

phosphatidylcholine. The hydrophilic head is composed of a choline structure and a phosphate which 

is connected to a glycerol with two hydrophobic tails called fatty acids.  
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Figure 2.2. The lipid bilayer (A), structure (B and C) and composition (D) of a phosphatidylcholine molecule is 

shown as example of a glycerophospholipid. As shown in (C), the hydrophilic head is composed of a choline 

structure (blue) and a phosphate (orange); this polar head is connected to a glycerol (green) with two hydrophobic 

tails (purple) called fatty acids. View (D) shows the specific atoms within the various subregions of the 

phosphatidylcholine molecule. Note that a double bond between two of the carbon atoms in one of the 

hydrocarbon (fatty acid) tails causes a slight kink on this molecule, so it appears bent [23]. 

 

 

When phospholipids are mixed with water, a self-organization of the molecules occurs, where the 

hydrophobic portion is directed toward the center and may form various types of systems, as disposed 

on figure 2.3, including:  

i) Micelles: aggregates with hydrophobic chains oriented inwards and the remaining 

hydrophilic groups at the surface in contact with water molecules, creating an environment 

without water. Essentially spherical, micelles can be also disc-shaped, cylindrical, 

ellipsoidal, among others; 

ii) Liposome: vesicles obtained from phospholipids dispersion in an aqueous environment; 

they may comprise one or more lipid bilayers interspersed with aqueous surroundings. 
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Figure 2.3. Schematic illustration of liposome, micelle and lipid bilayer sheet [24]. 

 

These features can be used to mimic biological membranes that are present in the organelles of living 

cells, e.g. mitochondria, golgi apparatus, nucleus cell, lysosomes, endoplasmic reticulum, amongst 

others.   

 

2.2.2 Liposomes 

Liposomes can be formed by sonication or mechanical dispersion of phospholipids in an aqueous 

solution and may be composed of one or more concentric lipid bilayers separated by an aqueous 

medium. These systems are often used to encapsulate active drugs or to incorporate proteins [25-27] 

and have proved to be useful as controlled models increasing the knowledge of the permeability 

properties of biological membranes [28]. Phospholipid vesicles were first described in 1965 by Alec 

Bangham and coworkers [27]. Immediately after the Bangham work, liposomes showed up as 

simplified systems for biological membranes research. Since Gregory Gregoriadis studies, in 1971, 

liposomes have been widely investigated [26, 29-31] in what concerns their physical properties [32-

34], preparation [35, 36], formation and fusion mechanisms [37, 38], membrane transport [39] and 

characterization methods. Apart from its utility in physical chemistry, these biomimetic models have 

been extended to the medicine field [40, 41], such as for encapsulate bioactive agents [42] or to 

interact with living cells [43], for vaccines [44] and for veterinary goods [45] production, for 

erythrocytes substitution [46, 47] and for cosmetic applications [48]. The liposomes may also be used 

as pharmaceutical transporters, e.g. in cancer therapy [25], by introducing exogenous molecules 

which are carried in their “water bags” or within the lipid bilayer, into living cells, i.e., liposomes 

containing soluble molecules that after fusion with the cell membrane release their contents into the 

cell cytoplasm [49]. In 2005, Michel et al. have successfully assembled intact vesicles interlayered with 

polyelectrolytes layers onto solid supports, extending these models’ ability to be used as drug 

reservoirs and for advances in well-designed sensors and devices [50]. 
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Liposomes can be prepared from natural or synthetic phospholipids. The first can be extracted from 

biological material of living cells; e.g. phosphatidylcholine (lectin) phospholipid can be removed from 

egg yolk or soybeans. These natural phospholipids are used as the main lipid components for the 

production of liposomes because they are quite abundant in cell membranes. They may vary 

concerning the length, composition and saturation of the hydrocarbon chains. Synthetic lipids, despite 

having a well-defined lipid composition of their hydrocarbon chains, may have greater or lesser 

number of carbon atoms, equal or different and saturated or unsaturated fatty acid chains. Besides, 

they possess a greater homogeneity allowing a better understanding, characterization and 

manipulation of their behavior in opposition to natural phospholipids.  

Currently, liposomes are not only applied to the biomedical field (e.g. diagnostic tests, blood 

transfusion in the absence of an appropriate donor, or detoxification through the use of chelating 

agents), but their applications have been extended to industry, cosmetics, agriculture (fertilizer 

stabilization), livestock (dairy maturation of milk), purification, recovery, catalysis and energy 

conversion processes [51]. 

Summarizing, liposomes can be defined as a colloidal association of amphipathic lipids that 

spontaneously organize themselves in closed concentric structures or vesicles.  They can be 

extracted from natural lipid mixtures or extracted and purified from synthetic lipids that are 

commercially available. These vesicles can be classified by their size, lamellae number, lipid 

formation, stability and preparation mode [31]. Figure 2.4 depicts liposomes types that are commonly 

used as membrane model systems, namely multilamellar vesicles (MLV), small unilamellar vesicles 

(SUV) and large unilamellar vesicles (LUV). SUVs are usually obtained by extrusion of multilamellar 

liposomes through porous polycarbonate membranes at high pressure or by sonication of lipid 

aqueous suspensions  [52]. The liposome category is essentially determined by their preparation 

method which should always be selected carefully, since its composition, number of layers, size 

distribution and encapsulated volume influence considerably the liposomes applications. 
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Figure 2.4. Schematic representation of multilamellar vesicles (MLV), small unilamellar vesicles (SUV) and large 
unilamellar vesicles (LUV) preparation methodologies [53]. 

The key factors for vesicles’ characterization are size, lamellae number and lipid bilayers constitution. 

Various parameters such as charge, stability, curvature of the bilayer or bilayers, phase membrane 

and formation of lipid domains depend on the phospholipid composition, the presence of sterols, the 

proportion of these components and the insertion of exogenous molecules into their bilayers [51]. The 

true conformation of the liposomes may be crucial for specific applications.  

 

 

2.3 Supramolecular structures production techniques 

Nanostructured thin films based on organic and inorganic compounds, are systems that can act as 

simplified models of the cell membrane and have been widely exploited in different fields, from physics 

to medicine, for example in the development of molecular devices and sensors and in pharmaceutical 

research, respectively. Their potential applications in biology and medicine have been highlighted in 

the second half of the twentieth century, when these supramolecular heterostructures were combined 

with biological materials at a molecular level. The methods most commonly used for thin film 

deposition on solid substrates are the Langmuir-Blodgett (LB) and Layer-by-Layer (LbL) techniques 

[54]. 
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2.3.1 Langmuir-Blodgett technique 

Langmuir-Blodgett technique was designed in the 30s by Irving Langmuir and Katharine Blodgett. 

Langmuir was responsible for the equipment development of monomolecular films adsorbed at the air-

water interface and also for their theoretical models. Katherine Blodgett contributed primarily for the 

film’s transfer methods from the water surface to a solid substrate. The films adsorbed onto solid 

surfaces are named Langmuir-Blodgett (LB), while films spread on water are called Langmuir [55]. A 

schematic representation of these techniques is displayed in figure 2.5. Molecules used to 

manufacture Langmuir and LB films are amphiphilic, generally having a hydrophilic head and a 

hydrophobic apolar tail [56]. Due to its polar head the molecules have affinity for water, spreading out 

the surface without dissolving due to the presence of a nonpolar tail. These materials are immiscible 

with water and can only be dissolved in volatile solvents which evaporate rapidly, leaving the 

amphiphilic molecules dispersed over the water surface. Examples of amphiphilic materials are fatty 

acids, such as stearic acid, and esters and ethers with long hydrocarbons chains. The steps to 

produce Langmuir and LB films are the following:  i) a small amount of solution containing amphiphilic 

molecules is spread on the water surface, allowing the formation of a monomolecular film; ii) 

thereafter, movable barriers are used to compress the monolayer, causing rearrangement of the 

molecules with their heads anchored on the aqueous surface and the tails facing the air; iii) at 

maximum packing, molecules reach a condensed state, and if the compression continues the film 

collapses [55]; iv) this monolayer can be transferred to a solid substrate by dipping through it. Each 

dipping cycle transfers two additional monolayers to the substrate. 

 

 

Figure 2.5. Schematic diagram of Langmuir and Langmuir-Blodgett films procedures: a) a small amount of a 
suspension with amphiphilic molecules is spread on the water surface and a monomolecular film is formed; b) 
movable barriers compress the monolayer, leading to rearrangement of the molecules, with their heads anchored 
on the aqueous surface and the tails facing the air, until a maximum packing is reached and the condensed state 
is attained; c) the condensed monolayer can be transferred into a solid substrate by dipping through it; d)  another 
monolayer can be added by pulling the solid surface from water. This process can be repeated in order to obtain 
various multimolecular layers [57].  

a) 

b) 

c) 

d) 
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2.3.2 Layer adsorption techniques 

2.3.2.1 Self-assembled monolayers  

Self-assembly monolayer (SAM) technique is a process used to produce well-organized structures 

obtained from the spontaneously adsorption of molecules onto solid supports or substrates (polymers, 

metals, semiconductors, ceramics) upon chemical interactions (see figure 2.6). In 1978, Sagiv 

reported the first results of irreversible adsorption of organic solutions on solid surfaces through 

covalent bonding as a method to produce monolayers holding a controllable in-plane molecular 

organization [58, 59]. SAM is a model system used to investigate organic and biological interfaces 

comprising a technical interest for the fabrication of sensors, transducers and protective layers for 

lubrication and is a pattern able for lithography applications with nanometer precision. For example, 

SAM arrays of immobilized single-stranded deoxyribonucleic acid (DNA), the so-called DNA chips, 

have revolutionized the genetic analysis for disease detection, toxicology, forensics, industrial 

processing and environmental monitoring [60].  

 

 

 

 

 

 

 

 

 

Figure 2.6. Scheme of the self-assembly monolayer technique. Due to chemical interactions the molecules are 
spontaneously adsorbed on a substrate resulting in a well-organized structure [60]. 

 

2.3.2.2 Layer-by-layer technique 

An alternative method to produce functional biomolecular heterostructures was developed in 1992, by 

Decher et al. [61], named the layer-by-layer (LbL) technique [1] and is based on the electrostatic 

interactions between oppositely charged molecules. The experimentally procedure to produce the LbL 

films is shown in figure 2.7, where a negatively charged solid substrate is immersed, for example, in a 

cationic solution, until a polycationic layer is adsorbed on the substrate surface. Then, the sample is 

immersed in an anionic solution, promoting the adsorption of the polyanionic layer onto the 

polycationic layer previously adsorbed, creating a bilayer. The desired number of bilayers is achieved 

by repeating the explained method [62].  After each layer deposition the sample is washed in order to 

remove any weakly adsorbed molecules. Finally, the LbL films can be dried with a nitrogen flow or at 

       Substrate (metals, semiconductors, ceramics, polymers, etc.) 

Chemical reaction 

Inter-molecular 

interaction 

Regularly arranged molecules 

Order molecular interaction 

Raw molecules 
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room temperature. This technique allows the assembly of alternately cationic and anionic species on 

solid substrates of any shape or size. Regarding to LbL films growth, it is known that the major driving 

forces are the ionic attraction between the electrically charged layers, although other interactions such 

as hydrogen bonding and hydrophobic interactions can also conduce the LbL films assemblage [16]. 

 

 

Figure 2.7. Scheme LbL technique procedure. The desired number of bilayers is achieved by repeating the 
method represented. 

 

The LbL technique offers experimental simplicity, it is a low cost method and is suitable for aqueous 

solutions [1]. Furthermore, the absorption of each layer is dependent on the following parameters: 

polyelectrolyte solution molarity, pH of the polyelectrolyte and washing solutions, ionic strength, room 

temperature, adsorption time, substrate affinity, surface roughness, polyelectrolyte volume solution 

with respect to substrate area, and drying procedures. All these variables can contribute to adsorption 

or desorption phenomena of the layers when immersed in a solution or subjected to vacuum [1]. 

Studies done by Lourenço et al. [6, 63] allowed to verify that the amount of water molecules in LbL thin 

films is influenced by the salt concentration in the solution, drying procedures, as well as the type of 

materials used in the heterostructures assembly.  

The creation of molecular heterostructures is governed by the variables described above, but the 

surface roughness is an important parameter that must be highlighted. Furthermore, the number and 

diameter of the molecular aggregates, called "particles", strongly depend on the adsorption time, as 

well as the number of layers already adsorbed and rinsing and drying procedures [1]. Moreover, we 

have to consider the different types of interactions between biological molecules, deeming it a 

challenge not only due to molecules complexity, but also because different non-covalent bonds to 

which molecule is subjected. 
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2.4  Liposomes immobilization onto solid supports 

Liposomes formed from self-assembly of lipids are important cell membrane models since lipids are 

the basic building blocks of the living cells, representing approximately 50% of their membrane mass. 

The liposomes immobilization on LbL films is suitable to exploit important characteristics of these 

heterostructures when functional biological materials are combined, especially the ability to preserve 

bioactivity and to serve as template for surface functionalization, e.g. in tissue engineering. In fact, the 

effectiveness of LbL assemblies has been proved for several other biological materials such as 

proteins, enzymes, DNA and viruses [54]. Aiming to mimic cell membranes, liposomes have been 

immobilized on solid supports, called supported-lipid bilayers (SLB). However, during liposome 

adsorption three situations may occur, as explained in figure 2.8: they may adsorb as intact vesicles 

(C); or the vesicles can adhere, break and spread creating a planar lipid bilayer (A and B); or 

adsorption could not occur at all (D) [64]. 

 

 

 

        A            B                  C         D    

Figure 2.8. Schematic representation of the pathways of vesicle deposition and SLB formation: (A) Formation of 
an SLB generated at low vesicular coverage; (B) Formation of an SLB produced at high vesicular coverage; (C) 
Formation of a liposome layer; (D) Inhibited adsorption [64].  

 

When liposomes are adsorbed on polyelectrolyte multilayers obtained by the LbL technique they may 

remain intact creating a polymer-supported liposomes (PSLs) [61, 65] or suffer rupture followed by 

their spreading throughout the surface producing bilayers, named polymer-supported phospholipid 

bilayers (PLBs) [3, 64, 66]. These systems have been widely used as well-defined model systems to 

study biomembranes’ properties, particularly structures and functions, e.g. to understand cells 

adhesion and protein interactions [67],  as well as to design biosensors [68]. A crucial example is the 

interaction between beta-amyloid peptides and lipid membranes working as trigger agents in 

Alzheimer's disease [69]. Also, negatively charged liposomes keep their integrity when adsorbed on 

highly curved surfaces [70]. Vesicles immobilization onto surfaces and the factors responsible for 
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creating conditions for liposome rupture must be analyzed in order to increase vesicles half-life and to 

activate a controlled drug release using an external stimulus [71]. 

 

2.4.1 Solid-supported phospholipid bilayers  

Solid-supported phospholipid bilayers (SPBs) were introduced in the eighties by Tamm and McConnell 

[72, 73] and can be easily formed by the SUVs adsorption and fusion onto solid supports. Adsorption 

kinetic processes underlying SPB formation are dependent on the liposomes composition, size, 

osmotic pressure and ionic strength, pH of the solution and charge and roughness of the surface [74]. 

Phospholipid liposomes easily disperse and self-assemble in a reproducible way to form bilayers on 

hydrophilic solid supports, such as glass [70], silica (SiO2) [75] and mica [76] surfaces.  

A number of studies have identified some of the critical stages of vesicles adsorption (adhesion), 

fusion, deformation, rupture, and spreading of the lipid bilayer. The most promising conditions required 

for attaining homogeneous single bilayers from adsorption of neutral lipids onto charged surfaces are 

displayed in table 2.1, namely: vesicle-support electrostatic interactions; high liposome concentration 

(0.1 mg/mL); edges vesicle-bilayer interactions; vesicle composition; temperature above the chain 

melting point; presence of calcium ions; and polyelectrolytes multilayers cushions [77].  

 

Table 2.1. Conditions for liposome rupture during adsorption. 

Conditions for liposome rupture 
during adsorption 

Literature 

High ionic strength  
(vesicle-support electrostatic interactions) 

[77] Anderson et al, Langmuir, 2009, 25 (12), 6997. 
[78] Faiss et al, Eur Biophys J, 2004,33, 555. 
[64] Richter et al, Biophys J, 2003, 85, 3035. 

Critical vesicular surface coverage [64] Richter et al, Biophys J, 2003, 85, 3035. 
[77] Anderson et al, Langmuir, 2009, 25 (12), 6997. 
[75] Reimhult et al, Langmuir, 2006, 22, 3313. 
[79] Stroumpoulis et al, AIChE J, 2006, 52 (8), 2931. 
[66] Richter et al, Langmuir, 2006, 22, 3497. 

Edges vesicle-bilayer interactions  [77]Anderson et al, Langmuir, 2009, 25 (12), 6997. 
[67] Weirich et al, Biophys J, 2010, 98, (1)85. 
[75] Reimhult et al, Langmuir, 2006, 22, 3313. 
[79] Stroumpoulis et al,  AIChE J, 2006, 52 (8), 2931. 
[64] Richter et al, Biophys J, 2003, 85, 3035. 
[66] Richter et al, Langmuir, 2006, 22, 3497. 

Vesicle composition [78] Faiss et al, Eur Biophys J, 2004,33, 555. 
[64] Richter et al, Biophys J, 2003, 85, 3035. 

Temperature above the chain melting point [77] Anderson et al, Langmuir, 2009, 25 (12), 6997. 

Calcium Ions [80] Marquês et al, Biochim Biophys Acta, 2011, 
1808,405.  
[64] Richter et al, Biophys J, 2003, 85, 3035. 
[66] Richter et al, Langmuir, 2006, 22, 3497. 

Polyelectrolyte Multilayers (PEMs) [2] Haas et al, Biophys J (Annual Meeting Abstracts), 
2001, 80 (1):100 Part 2. 
[81] Kohli et al, J Colloid Interface Sci, 2006, 301, 461. 
[3] Gromelski et al, Colloids Surf B Biointerfaces, 2009, 
74, 477. 
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Formation of SPBs can be described in different stages, displayed in figure 2.9 [72, 75, 82, 83]: 1) 

Initially some whole liposomes populate the surface (A and B); 2) At a critical coverage, liposomes 

start to break, fuse and form bilayer islands (C to E), coexisting both liposomes and a bare surface (F); 

3) Finally, a coherent SPB is formed, covering the whole surface (H). Additionally, Tang et al. [84] 

demonstrated that the ionization degree of the polymers-cushions and the phospholipid composition 

can also influence the liposomes kinetics adsorption and the bilayer formation.  

 

 

 

Figure 2.9. Different stages of vesicle adsorption: (A) adhesion, (B) crowding, (C, D, E) stress-induced rupture 
and spreading of bilayer patches that can expose leaflets either by mechanism 1 or 2 (F, G), coalescence of high 
energy edges and expulsion of water and excess of lipid and (H) growth of patches into a continuous bilayer; 
further adsorption of vesicles to the bilayer is weak and does not lead to their rupture or spreading [77]. 

 

2.4.2 Polymer-supported liposomes  

Polymer-supported liposomes (PSLs) obtained by the LbL technique offer key advantages over the 

direct use of liposomes [61, 85] and may find several applications, including the modeling of cell 

membranes and the incorporation of pharmaceutical drugs or biomolecules for drug delivery [4, 5]. 

Recently, it was demonstrated [86-91] that using the LbL technique based on the adsorption of 

oppositely charged materials [1, 61, 92, 93], also called the self-assembly technique, liposomes can 

be adsorbed without rupture and consequently permitting the creation of heterostructures based on 

whole liposome layers alternated with polyelectrolytes. Adsorption of intact liposomes embedded in 
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polyelectrolyte multilayers (PEMs) greatly enhances the capabilities of liposomes towards dedicated 

biosensors, namely for the development of new functionalized surfaces or drug release systems for 

biomolecules encapsulation allowing the preservation of their activity [94]. Tanaka and Sackmann [95] 

used the LbL method to investigate the properties of membranes and membrane-associated proteins, 

while Yamauchi et al. [96] prepared lipid/DNA LbL films for stent-assisted gene transfer. Until now it 

was demonstrated that a controlled adsorption of vesicles containing a small fraction of charged lipids 

allows their adsorption without rupture and their subsequent embedding in PEM films, meaning that 

vesicles may be immobilized in an intact or slightly deformed state, turning them suitable to act as 

drug reservoirs [3, 64, 90, 97, 98]. Table 2.2 presents an overview from literature of works related to 

conditions for closed vesicles adsorption. 

 

Table 2.2. Intact vesicles adsorption conditions. 

Conditions for intact vesicles 
adsorption 

Literature 

Gold surface (hydrophobic surface) [83] Keller and Kasemo, Biophys J, 1998, 75, 1397. 
[75] Reimhult et al, Langmuir, 2006, 22, 3313. 
[99] Morita et al, J Colloid Interface Sci 2006, 298, 672. 

Polyelectrolyte Multilayers (PEMs) [100] Moraes et al, Mater Sci Eng C Mater Biol Appl, 2008, 28, 
467. 
[3] Gromelski et al, Colloids Surf B Biointerfaces, 2009, 74, 477. 
[90] Volodkin et al, Soft Matter, 2009, 5 1394. 
[94] Michel et al, Langmuir, 2004, 20, 4835. 

 

Due to the low stability of a lipid bilayer on solid supports, studies have been done to immobilize 

liposomes in LbL heterostructures. In studies performed by Moraes et al., they used surface plasmon 

resonance (SPR) to confirm liposomes’ integrity of interspersed layers in dendrimer/liposome 

produced by the LbL technique [100]. Delajon et al. [101] employed neutron reflectivity to study the 

charge effects on adsorption processes of LbL films. Volodkin and coworkers produced LbL films with 

liposomes coated with two biocompatible polyelectrolytes (Hyaluronic acid (HA) and poly-L-lysine 

(PLL)) and proved the structural integrity of the liposomes. In another study [4], fluorescence 

measurements, showed that melanin activity was preserved when encapsulated in liposomes 

interspersed in polymer layers produced by the LbL method. On the other hand, in LbL films 

containing melanin adsorbed on polyelectrolyte layers, degradation of melanin was found, which 

proves that liposomes are crucial in maintaining an environment close to physiological, thus 

preserving melanin integrity and enabling their application in biological systems [4].  
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2.5 Water  

Covering 70% of the surface, water is the most abundant molecule on Earth, responsible for the 

existence of life in our planet and it can be found in three physical states: solid, liquid and gaseous. 

Interactions with water are part of our world, existing both in a large scale of as in ice, snow and rain, 

and at a molecular scale, playing an important role in the macromolecular conformation of the 

biological molecules. 

Thus, water can be found in cells, having the ability of hydrating membranes and large biomolecules. 

In geology, interfacial water molecules can control mineral dissolution and ion adsorption. In 

chemistry, water is an important polar solvent that is often in contact with interfaces. Different 

hydration water orientations are assumed to occur in the first solvation shell on anions and cations: (A) 

an anion orients the OH bond toward it, whereas (B) a cation orients the water dipole moment vector 

away from it [102]. Although, water is a very small molecule with a radius of 1.4 Å [103], it can form a 

rather extended hydrogen bond networks.  

 

 
 
 

 
 

Figure 2.10. Different hydration water orientations are assumed to occur in the first solvation shell on anions and 
cations: (A) an anion orients the OH bond toward it, whereas (B) a cation orients the water dipole moment vector 
away from it [102].  

 

A large number of experimental [104-106], computational [103, 106] and theoretical studies [107, 108] 

have revealed how the properties of water molecules and ionic aqueous solutions change due to 

neighborhood membranes and, in turn, how the membranes properties strongly depend on properties 

of aqueous solutions at the membrane boundary. The importance of incorporating a molecular-level 

description of water into the study of biomembrane surfaces can be demonstrated by the examination 

of the interaction within the phospholipid bilayers, that can serve as biological membrane models. 

Berkowitz and Vácha described the interaction of pure water and also of aqueous ionic solutions with 

model membranes and explained the origin of the hydration force, the structural properties at interface 

water-phospholipid bilayers, and the influence of phospholipid headgroups on water dynamics [109]. 

Works accomplished by Israelachivili et al. [77] showed that when phospholipid bilayers are deposited 

on solid surfaces, a presence of a thin layer with 0.6-0.9 nm of thickness can be found between the 

lipid bilayer and the silica substrate. Recent experimental advances in vibrational spectroscopy 

allowed to investigate the interface water-reverse micelles depicted in figure 2.11 [110]. This study 
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showed that at low hydration levels, all water molecules penetrate deeply into the headgroup region, 

except for zwitterionic phosphatidylcholine lipids, thus interacting favorably with phosphate and 

carbonyl groups, which are, in fact, 5-10 Å from the headgroup surface. 

 

 

              

 

Figure 2.11.(A) Diagram of a reverse micelle with water trapped. (B) Schematic showing the various regions of 
the reverse micelle structure [104]. 
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3 EXPERIMENTAL SECTION AND CHARACTERIZATION 

TECHNIQUES 

This chapter describes the experimental procedures used to prepare thin films and the techniques 

employed to characterize the samples. 

 

3.1 Materials  

This sub-chapter describes the materials used to prepare supramolecular heterostructures. 

3.1.1 Organic polyelectrolytes 

The polycations used to assemble supramolecular heterostructures were the poly(allylamine 

hydrochloride) (PAH; average Mw = 50,000–65,000 gmol
−1

) whose monomer has an ionic group NH3
+ 

with a Cl
-
 counterion and the poly(ethyleneimine) (PEI; average Mw = 60,000 gmol

−1
). The polyanion 

used was poly(sodium 4-styrenesulfonate) (PSS; average Mw = 70,000 gmol
−1

) whose monomer has 

an ionic group SO3
-
 with a Na

+
 counterion. LbL films preparation was done using aqueous 

polyelectrolyte solutions with a monomeric concentration of 10 mM, and pH~4, pH~8 and pH~6 for 

PAH, PEI and PSS solutions, respectively. Under these conditions, PAH and PEI are positively 

charged and PSS is negatively charged.  PEI, PAH and PSS polyelectrolytes were purchased from 

Sigma–Aldrich and their molecular structures are depicted in figure 3.1. All chemicals were used as 

received and solutions were prepared using ultrapure water (Milli-Q, Millipore GmbH) with a resistivity 

of 18.2 MΩ.cm and pH~5.7. These solutions were chosen due to their well-known assembly 

characteristics, namely growth features and adsorption kinetics [111, 112].  

 

 

 

 

 
 

 PAH  PSS  PEI

 

Figure 3.1.Polyelectrolytes molecular structures used in LbL self-assembly technique. 
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Regarding LbL self-assembly technique, these polyelectrolytes allow incorporation of molecules 

intercalated between layers, as a method for immobilizing inorganic nanoparticles or colloids, DNA, 

proteins, viruses and dyes. The main requirement to achieve a proper configuration is that pK values 

of the polyelectrolyte molecules must be known and the pH value at which the assembly occurs must 

be controlled. The advantage of using PSS, PAH and PEI polyelectrolytes interspersed, for example, 

with proteins, is their ability to provide a flexible arrangement acting as a cushion for the adsorbed 

layer  [113].  

 

3.1.2 Lipid 

Highly pure (>99%) synthetic 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) 

(DPPG), with a molecular weight of 744.96 gmol
-1

 was purchased from Avanti Polar Lipids and its 

chemical structure is shown in figure 3.2. The fact that DPPG liposomes are negatively charged at 

pH~5.7 allows its use in LbL films’ assembly. In addition, it is one of the most common lipids in model 

membranes.  

 

 

 

 

 

     

Figure 3.2. Chemical structure of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG). 

 

 

Natural phosphatidylglycerol (PG) is an ubiquitous phospholipid in biological membranes of many 

organisms. It is found in all bacterial membranes as well as in the mitochondrial inner membranes of 

eukaryotic cells. The PG constitutes about 15-20% of the total phospholipids in Escherichia coli 

bacteria. Owing to its simple lipid composition, E. coli serves as a useful model organism for 

understanding the primary roles played by PG in membranes [114]. In vivo evidences have shown that 

the presence of anionic phospholipids is essential for the initiation of DNA replication in E. coli [10]. In 

plants, PG is mainly present in thylakoid membranes and it has been suggested to play specific roles 

in photosynthesis [115]. Small quantities of PG are found in almost animal tissues, but it is particularly 

abundant in the surfactant pulmonary mixture which has the function of reducing the pulmonary 

alveolus surface tension in order to improve gases diffusion efficiencies [11]. It is well established that 

PG concentration increases during fetus development. Respiratory distress syndrome (RDS) is the 

major cause of neonatal mortality and affects about 1 % of all newborns. The RDS is caused by the 

structural immaturity of the lungs and the inadequate levels of surfactant in the alveoli. The PG test 

measures these phospholipid levels in the amniotic fluid in order to know the lung maturity of the fetus. 

This test is done between 34 and 38 weeks of pregnancy and can be used to determine the 

appropriate course of action if the baby is at risk of being born prematurely [116].  
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3.1.3 Melanin  

Melanin belongs to an important class of bio-macromolecules and it is observed in different organs of 

living organisms. This protein can be found in various regions of the human body and animals [12, 13], 

such as skin, hair, eyes, inner ear and brain and in plants, such as black tea leaves, amongst others 

[14]. There are four main categories of melanins: eumelanin, pheomelanin, allomelanin and 

neuromelanin [117]. The eumelanin has been widely studied for decades, it can be found in animals 

and it contains both brown and black pigments [117]. These bio-macromolecules have different 

physicochemical properties including piezoelectricity and photoconduction and their main functions are 

photoprotection, photosensitization and thermoregulation [15]. They can absorb a broad UV-visible 

range and can act as antioxidants [14]. Due to their diverse functions and physical properties, these 

macromolecules have been used in diseases’ treatment [118] and in electronics, biosensors and 

photoactive devices [119]. Melanin’s immobilization and manipulation onto solid substrates is 

interesting for technological applications because of its electronic properties; however it is very difficult 

to preserve melanin’s functionality [48], due to its low solubility and chemical stability in aqueous 

solution. However, it was demonstrated that melanin incorporated into liposomes exhibit better 

solubility and stability than free melanin in an aqueous solution [4]. 

Synthetic melanin was purchased from Sigma–Aldrich (product number M8631) and incorporated into 

DPPG liposomes (see section 3.2.1) and its chemical structure is shown in figure 3.3. 

 

 

 

 

Figure 3.3. Chemical structure of melanin. 

 

3.1.4 Olive oils 

Olive oil is a highly appreciated food product not only in the Mediterranean basin’s countries, where 

there is intense olive oil production [120], but all over the world due to its owing nutritional properties 

[121], remarkable digestibility, high oxidative stability even after being cooked, strong capacity to 

prevent heart and vascular diseases [122]. Geographical origin is one of the most important factors 

involved in olive oil quality. In fact, there are many different varieties of olive, each one with a 
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particular flavor, texture, and shelf-life that make them more or less suitable for different applications 

such as direct and indirect human consumption. For example, Cobrançosa and Gallo olives are two 

famous varieties cultivated in Portugal, on the other hand, Picholine olive is largely grown in Morocco, 

France, Italy, United States of America and other places around the world [123, 124]. The relationship 

between geographical area and quality as well as chemical composition of different olive oil varieties 

has been studied by several authors using different techniques. Indeed, several techniques were used 

to determine geographical origin of olive oils, namely: high performance liquid chromatography 

(HPLC) [125], gas chromatography coupled with mass spectroscopy (GC-MS) [126], capillary 

electrochromatography (CEC) with UV–Vis detection [127]. Most of these methods are based on 

conventional analytical techniques that require complex instruments and qualified personnel. It is 

therefore of great interest to develop a simple and reliable method that may characterize and classify 

olive oil geographical origins. In this context, the use of electrochemical sensors can be considered as 

an interesting alternative tool to assess the quality of olive oil and their application in classification or 

authentication trials [128]. 

In this study a total of 11 olive oil samples from Portugal and Morocco were analyzed: 6 samples 

came from six different commercial Portuguese olive oils and the other five came from Moroccan olive 

oils namely, Gallo Classico, Fio Dourado, Oliveira da Serra, Paladin, Gallo Reserva and SOS 

Pobreza; and Moulay Idriss, M’rirt, Ouarzazate, Ouazzane and Taounate, respectively. For 

electrochemical measurements, 15 ml of olive oil of each sample were dissolved in 45 ml of 

dichloromethane (CH2Cl2) and tetrabutyl-ammonium tetraphenylborate (C40H56BN) (70 mg) was used 

as a supporting electrolyte, solutions were magnetically stirred and thermostatically controlled using a 

water bath of ~30 °C. Results and discussion can be found in section 5.6. 

 

3.1.5 Solid supports 

According to the suitable characterization technique different solid supports or substrates were used to 

prepare thin films. Calcium fluoride and silicon substrates were previously washed with detergent, 

followed by immersion in a 7:3 H2SO4/H2O2 “piranha” solution for about 5 minutes in an ultrasound 

bath, and then washed with ultrapure water. The gold-quartz crystal substrate was cleaned in an 

ultrasound bath at 60°C during 15 min in a 2 % Mucasol solution, followed by rinsing with ultrapure 

water, ethanol and ultrapure water again. Thereafter the substrate received a UV/Ozone treatment 

during one hour and finally was washed with ultrapure water. The voltammetry (interdigitate) 

electrodes were cleaned successively in acetone, “piranha” solution for 1 min and rinsed with distilled 

water. After the cleaning steps all substrates went through a final wash with ultrapure water and then 

were dried with a nitrogen stream before thin films assembly. 
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3.2 Methods 

This sub-chapter describes the methods used to prepare DPPG liposomes suspensions and 

polyelectrolyte solutions used to create thin films. Some experimental details of the characterization 

techniques used are introduced in this sub-chapter, but a detailed description can be found in section 

3.3.  

 

3.2.1 DPPG Liposomes suspension 

Small unilamellar vesicles (SUV) were obtained by starting to dissolve DPPG in methanol:chloroform 

(2:8); after solvent evaporation, using a gentle stream of nitrogen, the lipid film was hydrated for 2 h in 

ultrapure water supplied by a Millipore system; this dispersion was vortexed intermittently leading to 

multilamellar vesicles (MLVs); then an ultrasonic processor UP50H from Hielscher Ultrasonics (GmbH, 

Germany) was used to sonicate the MLVs suspensions at 30 kHz of working frequency, in an ice bath, 

during 30 seconds. This procedure was repeated 15 times with 1 minute delay between cycles. In 

other experiments, the SUV suspensions were obtained by the MLVs suspension extrusion in a mini-

extruder, purchased at Avanti Polar Lipids, plugged with polycarbonate membranes containing 0.1 μm 

pores diameter. All the liposomal suspensions were stored in the fridge at 6C. Figure 3.4 represents 

schematically SUVs suspension procedure. The size distribution of DPPG liposomes obtained by 

sonication and extrusion methods were analyzed by Dynamic Light Scattering (DLS) and results are 

shown in section 4.1. 

To encapsulate melanin into SUVs, a methanol solution containing 0.16 mg/mL of melanin was mixed 

with DPPG in a methanol:chloroform (2:8) solution. The following steps are the same as those 

described above to produce DPPG SUVs liposomes by the sonication procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Schematic representation of MLVs and SUVs preparation by the lipid film hydrating method. 1) Lipids 
dissolution into a suitable organic solvent. 2) Lipid film formation on the walls of the flask by evaporation of the 
organic solvent. 3) Film hydration by adding an aqueous solution. 4) Agitation and obtaining of MLVs. 5) SUVs or 
LUVs obtained by sonication or extrusion (adapted from [53]). 
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3.2.2 Thin films preparation  

In this subsection it is explained the different experimental procedures performed to create the thin 

films. It is also introduced the characterization techniques used to analyzed each sample. 

 

3.2.2.1 Cast films 

This technique consists in the injection, with the aid of a micropipette, of the solution under study over 

a substrate. Cast films of extruded SUVs were obtained by casting 5mM of DPPG SUV suspension 

onto a calcium fluoride substrates for Fourier transform infrared spectroscopy (FTIR) measurements 

and onto silicon supports to be analyzed by atomic force microcopy (AFM), scanning electron 

microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron 

spectroscopy (XPS) techniques. The PAH cast films were obtained by casting the polycationic solution 

onto quartz substrates. The water solvent was removed by submitting the samples to primary vacuum 

during 12 h. The DPPG cast films characterization is provided in section 4.2 and 4.5 and for the PAH 

cast films is presented in section 4.5. 

 

3.2.2.2 LbL films   

This subsection presents all LbL films produce throughout the work. Although the LbL technique is 

generally defined by adsorption of solutions oppositely charged, depending on the characterization 

techniques used, different methods were performed in order to get more reliable results.  

 

3.2.2.2.1 PEI/DPPG 

Kinetic growth of PEI/DPPG bilayers, i.e. DPPG layer adsorbed onto a PEI layer, was monitored using 

a quartz crystal microbalance (QCM), explicitly QCM 200 from Standford Research Systems, disposed 

in five different arrangements: Stationary Horizontal Open (SHO), Stationary Horizontal Closed (SHC), 

Stationary Vertical Open (SVO), Continuous Vertical Closed (CVC) and Stationary Vertical Closed 

(SVC). These five different QCM experimental configurations for in situ measurements, i.e. at solid-

liquid interface, were compared. The constraints related to mechanical and acoustic vibrations and the 

liquid-quartz crystal interface fluctuation temperature were studied. LbL films’ growth based on cationic 

polyelectrolyte PEI and anionic DPPG liposomes, obtained by sonication and adsorbed onto Au-quartz 

crystal resonator in aqueous solutions were characterized. Monomeric concentrations of 10 mM and 

1.5 mM, respectively.  The kinetics curves attained in each procedure were analyzed to infer about the 

adequate configuration that will improve QCM measurements in liquid phase. For experimental details 

please access section 3.3.1. Topographic images of the PEI cushion and the PEI/DPPG LbL film were 

obtained by atomic force microscopy (AFM), in non-contact mode, using an Asylum MFP3D. Section 

4.3 displays the obtained results and respective discussion. 
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3.2.2.2.2 (PAH/PSS)10 cushion and (PEI/DPPG)10  

Assembly of ten PEI/DPPG bilayers adsorbed onto a cushion prepared with common polyelectrolytes 

was monitored in situ by QCM using the SHC system described in section 4.3. The (PAH/PSS)10 

cushion was adsorbed onto Au-quartz crystal by the LbL method, via sequential adsorption of 

oppositely charged PAH and PSS polyions solutions. The polyelectrolytes solutions and the DPPG 

suspension’s adsorption time were 3 minutes and 15 minutes, respectively. The (PEI/DPPG)10 LbL 

films prepared from cationic aqueous solutions of PEI polyelectrolyte and anionic DPPG liposomes, 

obtained by extrusion, with 10 mM and 5 mM, respectively, were assembled onto the (PAH/PSS)10 LbL 

film. To infer about the adsorption processes, the kinetics curves were analysed and the obtained 

findings are discussed in section 4.4.  

 

3.2.2.2.3 PAH/DPPG and (PAH/DPPG)10 

LbL films build up with ten PAH/DPPG bilayers were deposited onto calcium fluoride, quartz and 

silicon substrates for spectroscopy studies. LbL films were obtained by immersing the substrates in a 

PAH solution during 3 min, followed by rinse with ultra-pure water. Then the substrate was immersed 

in a DPPG suspension for 30 min, followed by another rinse with water. Timepoints for adsorption 

were chosen based on adsorption kinetics studies [129, 130]. After each bilayer deposition samples 

were dried with a gentle nitrogen flow. This adsorption procedure was repeated to obtain the desired 

number of bilayers. Film growth was monitored with vacuum ultraviolet (VUV) spectroscopy 

measurements. Surface morphology of a PAH/DPPG LbL film deposited onto silicon substrate was 

characterized by AFM technique in non-contact mode using a Nanoscope III microscope (Digital 

Instruments, Veeco). Results and discussion are presented in section 4.5. 

 

3.2.2.2.4 (PAH/DPPG)5 and (PEI/DPPG)5 

(PAH/DPPG)5 and (PEI/DPPG)5 LbL films prepared for XPS measurements were assembled by 

immersing a silicon substrate in PAH or PEI solution during 3 min, followed by rinse with ultrapure 

water. Then the substrates were dipped in DPPG suspensions, obtained by sonication, for 10 min, 

followed by wash process again. This adsorption procedure was repeated in order to obtain the 

number of bilayers desired. The achieved results are presented and discussed in subsection 4.5.5.  

 

3.2.2.2.5 PEI/(PSS/PAH)5 and PEI/(PSS/PAH)5/DPPG 

PEI/(PSS/PAH)5 polyelectolyte multilayer (PEM) was assembled ex situ onto a gold-quartz crystal 

resonator via LbL technique. NaCl salt concentration of PAH and PSS solutions was 1 M. The 

adsorption times for the polyelectrolytes solutions were 30 min and 20 min, for PEI layer and PAH and 

PSS layers, respectively. Between each adsorption step the crystal/PEM was rinsed with ultrapure 

water. At the end, the LbL film was dried at room temperature. The adsorption of a layer of DPPG 

liposomes, obtained by sonication,  was performed using the SVC setup by placing the quartz/PEM in 

a holder QCM cell, filled with ultrapure water (for more details please access section 4.3), reaching a 
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stagnation point volume of 6 ml. After ultrapure water injection in the QCM cell, the capacitance was 

cancelled. Then, a certain quantity of DPPG solution was injected into the cell in order to obtain 1 mM 

as final concentration. The frequency shift was recorded during 300 minutes at 20°C. Both PEM and 

DPPG surface topographies were imaged by a MFP-3D (Asylum Research, USA) AFM apparatus in 

non-contact mode and the DPPG kinetic curves were obtained by QCM (using the SVC system). 

Obtained data are shown and debated in section 5.1. 

 

3.2.2.2.6 Au/DPPG, Au/PAH/DPPG and PEI/(PSS/PAH)4/DPPG 

Preparation of Au/PAH and Au/PEI/(PSS/PAH)4 polymers-supported surfaces were performed ex situ. 

In the first case, the Au-quartz crystal resonator was dipped in a PAH solution for 3 minutes, followed 

by a washing process with ultra-pure water. The second LbL film was executed using the same 

immersion times for each polyelectrolyte solution which then were sequentially adsorbed until reaching 

the desired number of layers.  In this case, NaCl salt concentration of PAH and PSS solutions was 1 

M. Finally, the polymers-supported surfaces were dried at room temperature. 

Surface morphologies of Au-quartz crystal, polymers-supported surfaces and DPPG liposomes, 

obtained by sonication, adsorbed onto Au and different polymers were investigated by AFM in situ 

measurements, i.e., the sample was immersed into a liquid cell with ultrapure water. Au and polymers-

supported surfaces were initially covered with 40 μL of ultra-pure water followed by the injection of 60 

μL of DPPG suspension. Imaging was performed using a Multimode Nanoscope IIIa Microscope 

(Digital Instruments, Veeco). 

The amount of DPPG layer assembled onto PAH was monitored in situ via QCM using the SVC 

experimental configuration. Prior to QCM measurements, the Au-quartz crystal/PAH was plugged in 

the crystal holder and then the liquid cell was attached to it. The frequency shift was recorded during 

70 minutes. All QCM measurements were made at 20°C with a fundamental frequency of 5 MHz.  

LbL films of Au/(PAH/DPPG)4 were obtained by immersing the Au-quartz crystal substrate in a PAH 

solution during 3 minutes, afterwards it was washed with ultrapure water, then it was immersed in the 

DPPG dispersion, obtained by sonication, for 10 minutes, followed by another rinsing process. This 

procedure was repeated four times. The film was dried at room temperature. Optical characterization 

of the gold substrates before and after (PAH/DPPG)4 LbL film adsorption was done with an 

ellipsometer (SENTECH Instruments GmbH, Berlin).  

The outcomes are displayed and discussed in sections 5.2 and 5.3. 

 

3.2.2.2.7 PEI/(PSS/PAH)b/DPPG and PAH/DPPG 

PEI/(PSS/PAH)b heterostructures with different number of bilayers, n (1≤b≤4), were prepared ex situ 

from PEI, PSS and PAH polyelectrolyte solutions. These polyelectrolytes solutions were adsorbed 

sequentially using the LbL technique onto Au-quartz crystal resonator. The heterostructure preparation 

method started with the immersion of the Au-quartz crystal in an aqueous PEI polycationic solution for 

3 minutes, followed by a rinse process with ultrapure water. Afterwards, the PEI/quartz crystal was 

dipped in a PSS polyanionic solution for 3 minutes, followed by a wash process. The previous steps 
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were repeated using PAH as polycationic solution. In this case a PEI/(PSS/PAH)1 heterostructure was 

created. PSS/PAH assembly was repeated until the LbL film attained the desired number of bilayers. 

NaCl salt concentration of PAH and PSS solutions was 1 M. To produce a sample with a single PAH 

layer, the Au-quartz crystal support was dipped for 3 minutes in a PAH solution, followed by washing 

with ultrapure water. This Au/PAH sample was prepared without salt in order to reduce the roughness. 

pH of both PAH solutions, with and without salt, is similar in order to guarantee the same ionization 

degree of the outer PAH layers. All samples were left to dry under ambient conditions. Prior to QCM 

measurements, using the SVC setup, the quartz crystal/PEM was plugged to the crystal holder and 

the liquid cell attached to it, giving rise to a volume stagnation point of 6 mL. For operation in liquids, 

after ultrapure water injection in the QCM cell the capacitance cancellation was carried out. Then a 

certain volume of DPPG suspension, obtained by sonication, was injected into the cell in order to 

attain 1.47 mM as final concentration. All QCM measurements were recorded during 900 minutes at 

20°C with a fundamental frequency of 5 MHz. The findings are presented and discussed in sections 

5.4 and 5.5. 

Surface morphology of DPPG liposomes adsorbed onto the Au-quartz crystal/PAH and Au-quartz 

crystal/PEI(PSS/PAH)4 obtained with different adsorption times, namely 5, 30, 60, 300, 900 and 1800 

seconds, was investigated ex situ using the AFM MFP-3D (Asylum Research, USA) , in non-contact 

mode. The achieved results are available and discussed in section 5.4.  

PEI/(PSS/PAH)b heterostructures, before and after DPPG liposomes adsorption, as produced with the 

QCM, were imaged ex situ using the AFM MFP-3D (Asylum Research, USA), in non-contact mode. 

PEI/(PSS/PAH)4 and PEI/(PSS/PAH)4/DPPG LbL films were analyzed by XPS technique. Obtained 

data are accessible and debated in section 5.5. 

 

3.2.2.2.8 (PAH/DPPG)3, (PEI/DPPG)3 and (PEI/(DPPG+melanin))3 

(PAH/DPPG)3, (PEI/DPPG)3 and (PEI/(DPPG+melanin))3 LbL films were prepared onto glass 

substrates with interdigitated electrodes deposited on it. Adsorption time used for both PAH and PEI 

polyelectrolytes solutions was 3 minutes. For the DPPG and DPPG+melanin suspensions, obtained by 

sonication, with 1 mM of monomeric concentration, the interaction time was 10 minutes. 

DPPG+melanin designation refers to melanin encapsulated into DPPG liposomes. The results are 

accessible and discussed in section 5.6. 
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3.3 Characterization techniques 

The following section describes the experimental techniques used to obtain a detailed characterization 

of the prepared thin solid films.  

 

3.3.1 Quartz Crystal Microbalance  

Nowadays, Quartz Crystal Microbalance (QCM) is a fundamental instrument used to measure the 

mass of the nanomaterials assembled on solid surfaces. The QCM concept first developed by 

Sauerbrey [131, 132] is based on the quartz crystal piezoelectric properties [133]. Currently, AT-cut 

quartz crystals with a thickness shear mode vibration [134] are most commonly used as QCM sensors 

because of their superior mechanical and piezoelectric properties [135]. The QCM operation is based 

on placing the crystal in resonance, at a frequency proportional to the mass uptake on the crystal, 

according with the relation: 

  

∆𝑓 = −
𝑓𝑞

2𝑀𝑓

𝑁𝜌𝑞𝑆
= −

𝑓𝑞
2𝑚𝑓

𝑁𝜌𝑞

                                                                        (3.1) 

        

where 𝑓𝑞 is the fundamental resonant frequency of the quartz crystal, N is the frequency constant of 

the specific crystal cut, AT-cut or BT-cut (𝑁𝐴𝑇 = 1.67 × 105𝐻𝑧 ∙ 𝑐𝑚; 𝑁𝐵𝑇 = 2.5 × 105𝐻𝑧 ∙ 𝑐𝑚), 𝜌𝑞 =

2.65 𝐾𝑔 ∙ 𝑑𝑚−3 is the quartz density; S is the surface area of deposited film and 𝑀𝑓 is the mass of the 

film. When the deposited films covers the whole sensitive area of the quartz resonator it is easier to 

use the real areal density, 𝑚𝑓 = 𝑀𝑓/𝑆, to further calculate the film thickness, 𝑙𝑓 = 𝑚𝑓/𝜌𝑓, where 𝜌𝑓 is 

the deposited film density. A typical quartz resonator is shown in figure 3.5. The quartz crystal is 

usually covered by gold or silver keyhole-shaped electrodes on both major faces, with approximately 

150 nm of thickness, deposited by vacuum evaporation. The central part of the resonator brings up the 

mass-sensitive area, covering the area where the two electrodes overlap. Equation 3.1 shows that the 

QCM mass sensitivity, 𝛥𝑓/𝑀𝑓, is proportional to the square of the quartz resonator frequency [136]. 

 

 

 

Figure 3.5.Typical quartz resonator (a) front gold and (b) back gold electrodes, (c) quartz crystal. 
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QCM200 system acquired from Stanford Research Systems (SRS), California, was used to carry out 

the experiments. This model is a stand-alone instrument with a built-in frequency counter and 

resistance meter which includes a controller, an electronic crystal oscillator, a crystal holder and a 

quartz crystal double coated with chromium and gold. The crystal holder can be electrically connected 

to the QCM25 crystal oscillator that operates with a QCM200 controller. The crystal probe connector is 

an RJ-45 receptacle used to connect the QCM200 controller to the QCM25 crystal oscillator. The 

standard sensor crystal used by the QCM200 system consists of a thin disk, with a nominal output 

frequency of 5 MHz, AT-cut, α-quartz with circular electrodes patterned on both sides. The crystal 

holder is rugged, compact and easy to operate and may be used in liquid or gas environments.  

This instrument is stand-alone type with a frequency counter and a resistance meter, where the 

resonance frequency and the resistance are measured and displayed on the LCD panel, although the 

software control allows the data real-time reading, this also enables data acquisition connected via 

RS-232 to a computer. Figure 3.6 shows the digital controller and the crystal oscillator. 

 

 

Figure 3.6. Scheme illustrating the experimental procedure for measuring the mass variation analysis of the 
solutions using a QCM200 (adapted from [137]). 

 

For many years, QCMs were regarded as just gas-phase mass detectors [138], however, the work 

produced by Nomura and Okuhara (1982) showed that they can be operated in contact with liquids 

and viscoelastic deposits [7]. Currently, there is a large variety of QCM applications such as, 

immunosensors  [139], sorption sensors  [140], moisture analyzers [141], particulate monitors [142], 

contamination monitors [143], electrovalency measurements [144], hydrogen absorption on metal films 

[145], bubble formation [146], redox and conductive polymer research [147], double-layer 

characterization [148], corrosion studies [149], surface oxidation [150], DNA and RNA hybridization 

studies [151], antigen-antibody reactions [152], protein adsorption [153], detection of virus capsids 

[154], bacteria [155] and mammalian cells [156], protein-protein interactions [157], self-assembled 
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monolayers [158], molecularly imprinted polymers [159], Langmuir/Langmuir-Blodgett films [160], laser 

ablation [161], desorption and breakdown studies [162] and intelligent biomaterials [163], amongst 

other applications. 

Given the great variety of applications described above it is essential to underline that the major QCM 

advantage is its high mass sensitivity in situ measurements, associated to its weightless that turns the 

equipment portable and its moderate cost compared with other measuring mass techniques. In 

addition, is a nondestructive technique so the thin films can be further analyzed using different 

techniques, e.g. atomic force microscopy, scanning electron microscopy or X-ray photoelectron 

spectroscopy. QCM can be a very useful tool for suspended particles measurements as long as the 

operational limitations are acknowledged, such as the particle size, concentration, humidity, 

temperature, molecules physical/chemical properties, or quartz crystal position angle [164]. 

The QCM technique allows differentiating between intact and disrupted liposomes adsorbed on the 

quartz crystal resonator. Usually, the immobilized liposomes tend to i) keep an intact structure, ii) form 

lipid bilayers or iii) monolayers, depending on the solid surfaces, properties of the modified surface, 

immobilization methods and liposome properties. Also, other experimental parameters as 

temperature, size, surface nature and osmotic pressure have been studied on supported phospholipid 

bilayers (SPB) build-up using the QCM technique [165-167]. Israelachvilli and collaborators [168] used 

a QCM to study the influence of salt and liposome concentration of 1.2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) vesicles on silica. Reimhult et al observed vesicles adsorption on gold (Au) 

surfaces [75] and vesicles adsorption followed by SPB formation on silicon dioxide supports using the 

QCM technique [169].  

Although this technique is strongly disseminated for liquid measurements, it is common to obtain 

kinetic curves with noise and instabilities and, in certain cases, non-reproducible data specifically due 

to different experimental procedures carried out by the operator. So, in order to study these and other 

limitations such as mechanical and acoustic vibrations and liquid-quartz crystal interface temperature 

fluctuation, different QCM experimental configurations were tested and compared using the LbL 

assembly [170] onto a quartz crystal resonator from aqueous solutions of PEI polyelectrolyte and 

DPPG liposomes. The kinetics curves attained by each QCM setup (see section 4.3) were analyzed to 

infer about its suitability for mass uptake measurements in liquid phase.  

Five different experimental configurations were developed, three with the quartz crystal vertically 

positioned and in the other two horizontally placed. The horizontal modes were called the Stationary 

Horizontal Closed (SHC) and the Stationary Horizontal Open (SHO) as shown in figure 3.7 a) and b), 

respectively and the vertical setups were named the Continuous Vertical Closed (CVC), the Stationary 

Vertical Closed (SVC) and the Stationary Vertical Open (SVO) as shown in figure 3.7 c), d) and e), 

respectively. A flow cell, shown on figure 3.7 (c), was acquired from SRS to test a closed system with 

a continuous liquid flux. The liquid flux was provided by a peristaltic pump purchased from ISMATEC, 

model ISM795C (1.00 REGLO ANALOG MS-2/12-160 EA) connected to two-stop tubes IDEX Tygon 

LfL with an internal diameter of 1.6 mm. An inject cell, represented in figure 3.7 d), was designed and 

produced to test a stationary closed system.  
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                                           a)                                                      b) 

 

           c)                                                        d)                                                    e) 

Figure 3.7. (a) Stationary Horizontal Closed (SHC), (b) Stationary Horizontal Open (SHO), (c) Continuous Vertical 
Closed (CVC), (d) Stationary Vertical Closed (SVC) and (e) Stationary Vertical Open (SVO) experimental 
configurations. 1 – crystal holder; 2 – quartz crystal; 3 – crystal holder head;  4 – solution;  5 – Pasteur pippete; 6 

– support; 7 – acrylic protection chamber; 8 –  flow cell; 9 – inject cell. 

In order to monitor the buildup of a PEI/DPPG bilayer with monomeric concentrations of 10 mM and 

1.5 mM for PEI and DPPG, respectively, the QCM was attuned by the following method. The dry 

operation was achieved by switching the Co compensation to HOLD and the ten-turn dial to 8.0. The 

OSC led from the QCM controller turns on as soon as proper quartz oscillation is established in the 

dry crystal. After a short initialization period, an absolute frequency very close to 5 MHz (nominal dry 

frequency) should be presented on the front panel measurement display. The PARAMETER key was 

pressed to display the absolute resistance and a value less than 75 Ohms should appear at this time. 

The frequency should stabilize in approximately 2 hours. Subsequently, the frequency stabilization in 

liquid was performed by injecting ultra-pure water into the crystal holder head and then the controller 

was switched to ADJUST mode for nulling Co. The frequency stabilization time depends on the 

temperature gradient between the quartz crystal and the liquid. When the liquid stabilization frequency 

was achieved the injection of the PEI and DPPG solutions could be initiated. 
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For SHO and SHC experimental configurations, PEI/DPPG assembly begins with the PEI solution 

injection using a Pasteur pipette onto the crystal holder head horizontally positioned.  After 3 minutes, 

the PEI solution was removed using a Pasteur pippete, followed by a wash process with ultrapure 

water. Next the phospholipid suspension was injected onto the crystal holder head followed by a rinse 

process after 10 minutes of DPPG deposition.  

The SVO is the simplest setup tested and consists in dipping the crystal holder head into the solution 

with an adsorption time of 3 and 10 minutes for PEI and DPPG solutions respectively, with an ultra-

pure water rinse process between adsorptions. 

The CVC system is the most complex system, because its continuous flux needs a flow cell coupled to 

a peristaltic pump. The main drawback is that the solution volume needed to perform the 

measurements is considerably larger than the other experimental configurations. The liquid operation 

started by filling the two-stop connecting tubes with ultra-pure water after switching to ON the 

peristaltic pump. A frequency decrease of 700 Hz should be displayed on the front panel when the 

ultra-pure water filled the flow cell chamber. After the frequency stabilization, the pump is stopped, the 

tube switched from the ultra-pure water to the PEI solution and the pump is switched ON again. The 

same process is repeated for the DPPG suspension adsorption and for the rinse processes. The 

adsorption time for both solutions was 10 minutes. 

The SVC system procedure started by attaching the inject cell to the crystal holder head (see figure 

3.8) and then, with the help of a syringe, the chamber is filled with 6 ml of ultra-pure water until 

covering the quartz crystal. The PEI solution was introduced into the inject cell, followed by a resting 

time of 10 minutes. Care must be taken when the operator is filling the crystal holder cell in order to 

avoid the formation of microbubbles. After the PEI solution was removed and a rinse process with 

ultrapure water was performed. The same procedure was repeated for the DPPG suspension with a 

resting time of 15 minutes, followed by a rinsing process.  

 

Figure 3.8. Schematic representation of the inject cell apparatus.  

Inject cell rear 

Inject cell 

forefront 

Crystal holder 
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The five different experimental configurations were used with the intent to detect, understand and 

overcome weaknesses found during adsorption kinetics curves in liquid QCM measurements, taking 

into account parameters such as mechanical vibration, acoustic vibrations and thermal fluctuations. 

After a detailed analysis of the five QCM obtained data, discussed in section 4.3, the SVC system 

proved to be the more reliable method, and therefore was the most used experimental configuration 

throughout this work. Nevertheless, the SHC system was selected to grow LbL films with a large 

number of layers because small amounts of solution are required; on the other hand, it is less 

expensive and has low time consumption.  

 

3.3.2 Atomic Force Microscopy 

Binnig and Rohrer, in 1981 developed a technique known as Scanning Tunneling Microscopy (STM) 

[171], and since then the nanometric techniques have emerged. STM can produce images of 

conductive surfaces. Based on this idea, Binnig, Quate and Gerber invented in 1986 [172], the Atomic 

Force Microscope (AFM) also known as Scanning Force Microscopy (SFM), which can produce 

images of conductive and non-conductive surfaces. These techniques (STM and AFM) and their 

various operating modes are a new class of instruments belonging to a microscopy group called 

Scanning Probe Microscopy (SPM). 

AFM involves the use of a cantilever bearing a tip at its end, which can be used to scan or probe 

surfaces. When the tip approach a solid surface, attraction and repulsion forces between the tip and 

the sample lead to a deflection of the cantilever [173]. Typically, the deflection is measured by using a 

laser spot which is reflected from the cantilever top surface into an array of photodiodes whose output 

signal is collected by a differential amplifier. In figure 3.9, it is illustrated a schematic representation of 

the atomic force microscope technique. 
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Figure 3.9. Schematic representation of the atomic force microscope (AFM) technique. The tip is fixed under a 
cantilever focused by a light beam which is reflected and is used to detect the cantilever movement across the 
four quadrant photodetector [174].  

 

AFM technique can be used either to image surface topographies or to obtain forces profiles of the tip-

sample interactions as a function of the gap between the tip and the sample. Thus, during the imaging 

procedure, AFM can be operated in a number of modes, depending on the application, such as 

contact mode and non-contact mode [175]. In contact mode, the cantilever tip scans across the 

surface. A feedback loop maintains a constant ‘‘setpoint’’ deflection between the cantilever and the 

surface while the scanner is moving across the surface area. The force between the tip and the 

surface is kept constant during this operation. In the non-contact mode, the cantilever tip is oscillating 

while is scanning the surface. A feedback loop maintains a constant ‘‘setpoint’’ oscillation amplitude 

while the scanner is moving across the surface area. So, AFM can be used either to image surfaces, 

e.g. with liposomes immobilized, or to carry out force measurements giving information about their 

rigidity and stability [173].  
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3.3.2.1 Surface morphology 

The surface morphology of an interface is usually described by statistical parameters based on a 

topographic function normally involving a large amount of data. 

A surface is formed by aggregates with different heights distributed over a certain area and the AFM 

image is formed by x and y points and height, z, distributed in a given area, A, with a matrix whose 

elements are the height z(x,y). The mean height of an image, with N lines and M columns, can be 

calculated by the following expression [176]: 

  

𝑧𝑚𝑒𝑑 (𝑁, 𝑀) =  
1

𝑁𝑀
 ∑ ∑ 𝑧(𝑥, 𝑦)

𝑀

𝑦=1

𝑁

𝑥=1

                                                             (3.2) 

 

The main statistical amplitude parameter used to characterize the smoothness of a surface is the root-

mean-square roughness (Rq) and it is expressed by the equation [176]: 

 

𝑅𝑞 (𝑁, 𝑀) = √
1

𝑁𝑀
 ∑ ∑[𝑧(𝑥, 𝑦) − 𝑧𝑚𝑒𝑑 (𝑁, 𝑀)]2

𝑀

𝑦=1

𝑁

𝑥=1

                                            (3.3) 

 

Average roughness (Ra) and root-mean-square roughness (Rq) are the most used amplitude 

parameters. Particularly, the latter is used to study temporal changes during the growth surface and 

spatial differences when the surface feature has different scales because this parameter is more 

sensitive to large deviations with respect to the mean line. 

The amplitude distribution function also allows determining skewness (Rsk) and kurtosis (Rku) 

parameters. Rsk is a measure of asymmetric distribution of a particular frequency. This parameter 

measures the symmetry of the profile at a mean line. A symmetric distribution of the heights’ peaks 

means that the number of peaks and valleys is the same and consequently Rsk=0. If the profile has 

more peaks than valleys than Rsk>0, and if it has more valleys than peaks than Rsk<0. Rku measures 

the surface sharpness. When Rku is equal to 3 it indicates a gaussian amplitude distribution and the 

surface is called Mesokurtic, but if Kurtosis is smaller than 3 the surface is flat and it is called 

Platykurtic. Finally, in case of Kurtosis being higher than 3, the surface has more peaks than valleys 

and is named Leptokurtic [177].  

The one-dimensional roughness amplitude parameters used to characterize the surface topographies 

of the images acquired to execute this work were attained by the Gwyddion software and are listed in 

table 3.1. The texture is split to waviness (the low-frequency components defining the overall shape) 

and roughness (the high-frequency components) at the cut-off frequency.  
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Table 3.1. One-dimensional roughness amplitude parameters used to characterize the AFM topography surfaces. 

Parameters Description 

Roughness 
Average (Ra) 

Arithmetical mean deviation. The average deviation of all points roughness profile from 
a mean line over the evaluation length: 
 

𝑅𝑎 =
1

𝑁
∑|𝑟𝑗|

𝑁

𝑗=1

 

Root Mean Square 
Roughness (Rq) 

The average of the measured height deviations taken within the evaluation length and 
measured from the mean line: 
 

𝑅𝑞 = √
1

𝑁
∑ 𝑟𝑗

2

𝑁

𝑗=1

 

Maximum Height of 
the Profile (Rt) 

Maximum peak-to-peak-valley height. The absolute value between the highest and 
lowest peaks: 

𝑅𝑡 = | min
1≤𝑗≤𝑁

𝑟𝑗| + | max
1≤𝑗≤𝑁

𝑟𝑗| 

 

Maximum Profile 
Valley Depth (Rv) 

Lowest valley. There is the depth of the deepest valley in the roughness profile over the 
evaluation length: 
 

𝑅𝑣 = | min
1≤𝑗≤𝑁

𝑟𝑗| 

 

Average Maximum 
Height of the Profile 
(Rtm) 

Mean peak-to-valley roughness. It is determined by the difference between the highest 
peak ant the lowest valley within multiple samples in the evaluation length: 
 

𝑅𝑡𝑚 = 𝑅𝑣𝑚 + 𝑅𝑝𝑚 

 

Average Maximum 
Profile Valley Depth 
(Rvm) 

The mean valley depth based on one peak per sampling length. The single deepest 
valley is found in five sampling lengths (m = 5) and then averaged: 
 

𝑅𝑣𝑚 =  
1

𝑚
∑ 𝑅𝑣𝑖

𝑚

𝑖=1

 

where,  

𝑅𝑣𝑖 =  |min 𝑟𝑗|            𝑓𝑜𝑟          (𝑖 − 1)
𝑁

𝑚
< 𝑗 < 𝑖

𝑁

𝑚
 

 

Average Maximum 
Profile Peak Height 
(Rpm)  

The mean peak height based on one peak per sampling length. The single highest peak 
is found in five sampling lengths (m = 5) and then averaged: 
 
 

𝑅𝑝𝑚 =  
1

𝑚
∑ 𝑅𝑝𝑖

𝑚

𝑖=1

 

where,  

𝑅𝑣𝑖 =  |max 𝑟𝑗|            𝑓𝑜𝑟          (𝑖 − 1)
𝑁

𝑚
< 𝑗 < 𝑖

𝑁

𝑚
 

 

Skewness (Rsk) Skewness is a parameter that describes the shape of the Amplitude Distribution 
Function (ADF). Skewness is a simple measure of the asymmetry of the ADF, or, 
equivalently, it measures the symmetry of the variation of a profile about its mean line: 

𝑅𝑠𝑘 =  
1

𝑁𝑅𝑞
3 ∑ 𝑟𝑗

3

𝑁

𝑗=1

 

Kurtosis (Rku) Kurtosis is the ADF shape parameter considered. Kurtosis relates to the uniformity of 
the ADF or, equivalently, to the spikiness of the profile: 
 

𝑅𝑘𝑢 =  
1

𝑁𝑅𝑞
4 ∑ 𝑟𝑗

4

𝑁

𝑗=1
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Despite that the statistical parameters listed in table 3.1 only give vertical information, both longitudinal 

and lateral information can be obtained by spectral and correlation techniques based on Fourier 

transformation [178]. The Power Spectral Density (PSD) provides a more detailed description of 

surface topography, including fractal geometry, scaling concepts and film properties [179]. The 

characterization of LbL films [180, 181] polymeric blends [182], field-effect transistors [183] and 

biological samples [182] were accomplished by dynamic scaling analysis. For example, Buchko et al. 

have used PSD analysis to measure the different length scales of a neuron corresponding to its cell 

body, axon and fillipodia [184]. 

PSD function offers a representation of the space periodicity and the roughness amplitude, because 

such method decomposes the surface profile into spatial wavelengths, and consequently compares 

different roughness values attained in several spatial frequency ranges. Accordingly, PSD functions 

provide information about height deviations from a mean plane and lateral distance over which this 

variation happens [185]. Briefly, PSD may provide quantitative information about spatial periodicity, 

roughness, growth regime, grain size and correlation length [186, 187], describing a surface much 

better than roughness parameters.  

Grain size can be estimated using PSD function defined by [176]: 

 

𝑃 (𝑢, 𝑣) =  |𝐹(𝑢, 𝑣)|2                                                                             (3.4) 

   

where 𝐹(𝑢, 𝑣) is the Fourier Transform of the matrix of the heights 𝑧(𝑥, 𝑦) obtained from the AFM 

images, given by: 

𝐹(𝑢, 𝑣) =  
1

𝑁2
∑ ∑ 𝑧(𝑥, 𝑦) 𝑒𝑥𝑝

𝑁−1

𝑦=0

𝑁−1

𝑥=0

[−𝑗2𝜋 
(𝑢𝑥 + 𝑣𝑦)

𝑁
]                                  (3.5) 

                                      

It represents a function in the reciprocal space if k, defined by  𝑘2 = 𝑢2 + 𝑣2, is the wavelength.  

However, this two-dimensional information is complex and therefore interpretation of the 

measurements is difficult. In order to simplify the analysis concepts, we will take into account only the 

surface profiles measured along the AFM fast-scan direction.  

 

 

3.3.2.2 Power spectral density analysis 

Typically, PSD plots present three regions: (i) the plateau height at low frequencies, which is related to 

the height of the rough surface. This section has an absence of correlation (it does not change with 

the scale) and of any characteristic length; (ii) the region of the medium frequencies gives the 

correlation length, which defines the lateral extent of the rough surface, this section is strongly 

frequency dependent and it represents the power-law decay; and (iii) the section of large frequencies 

gives the nature of roughness [188]. PSD analysis de-convolutes roughness as a function of surface 

lateral length scales, correlates vertical amplitude with spatial frequency of surface features and may 
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also reveal characteristics of the surface microstructure [189]. Variation of height fluctuations of the 

structures can be represented through PSD spectra where singularities can characterize the evolution 

of the surface during particles’ assembly. So, power spectrum of the surface morphology shows not 

only the growth process and the microstructure of thin film but also characterizes the dynamic scaling 

behavior related to the surface roughness and correlation. This allows us to treat the entire surface 

deposit as a self-affine fractal structure. Analysis of the PSD curves becomes much easier if models 

are applied to extract information retained in these curves. An overview of models applied in surface 

characterization can be found in ref. [190].  

The scaling behavior of surfaces can be analyzed from 1D PSD. In a finite frequency range, a self-

affine structure exhibits a power–law decay [191],  

 

1𝐷 𝑃𝑆𝐷 (𝑓𝑠) = 𝐾0𝑓𝑠
−𝛾

                                                      (3.6) 

where 𝑘0 is a constant dependent on the systems and 𝛾 is related to the roughness exponent (𝛼) by 

𝛼 = (𝛾 − 𝑗)/2, where the line scan dimension j=1. In a limited length scale, real surfaces, occasionally, 

also show fractal behavior, called fractal dimension, which can be described by the roughness 

exponent. 

Experimental PSD plots are relatively constant at low frequencies and exhibit an exponential 

dependence at high frequencies. Frequently thin film surfaces are found to be self-affine fractals over 

a considerable length scale. Such surface growth can be due to both layer-by-layer assembly and 

unstable growth [192]. Thus, thin film morphology can be quantitatively characterized by fractal 

strengths and fractal dimensions which allow acquiring useful information about thin film structure, 

making this approach considerably more suitable when compared to other common conventional 

analyses. 

Scaling laws can be applied to describe the surface topography [130],  

 

𝑃𝑆𝐷(𝑓) = {
𝐾𝑓𝑠

−𝛾
 , 1 𝑓⁄ < 𝜉

 𝐴,          1 𝑓⁄ > 𝜉 
                                                                 (3.7) 

 

where 𝐾 and A are constants, 𝛾 is the roughness related exponent and 𝜉 is the correlation length. The 

conventional method for determine the correlation length (𝜉) is to calculate the inverse of the transition 

frequency between two regions (𝜉 = 1/𝑓𝑡), e.g. the transition between the low-frequency level and the 

high-frequency self-affine section, which defines 𝑓𝑡. Generally, the correlation length reports 

progressions between physical processes that occur during surface growth. Regarding nanocrystalline 

films the correlation length is the minimum distance between two points that are not affected by each 

other, i.e. the mean distance between two grains. But for dense features the correlation length 

expresses the mean grain diameter [185].  

Generally, for high spatial frequencies PSD function reflects the roughness contribution from all 

features of the surface which can be described by the inverse power law decay as follows [179]:  
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𝑃𝑆𝐷𝑓𝑟𝑎𝑐𝑡𝑎𝑙(𝑓, 𝐾, 𝜈) =  
𝐾

𝑓𝜈+1
                                                                   (3.8) 

where f is the spatial frequency, K is the spectral strength and 𝜈 is the spectral index. 

This index allows to determine the fractal dimension, 𝐷𝑓, which in turn can be used to quantify the 

surface morphology. The 𝐷𝑓 values can be calculated, in the case of PSD at one dimension, by the 

equation:  

𝐷𝑓 =  
1

2
(7 − (𝜈 + 1)) =  

1

2
(6 − 𝜈)                                                          (3.9) 

The dimension value determinates the relative amounts of the surface irregularities at different 

distance scales. If Df = 3 it is called the extreme fractal; Df = 2.5 it is named the Brownian fractal; and 

if Df = 2 is called the marginal fractal. 

For medium spatial frequencies, PSD plots can be characterize by the k-correlation or ABC model  

(PSDABC), which is a generalization of the fractal model presenting a flat response below a cut-off 

frequency followed by a decrease of the PSD values with the increase of spatial frequency, and is 

represented by the equation [193]: 

𝑃𝑆𝐷𝐴𝐵𝐶 =  
𝐴

(1 + 𝐵2𝑓2)
(𝐶+1)

2

                                                              (3.10) 

where A, B and C are the functional parameters. A parameter describes the low frequency limit of the 

spectrum meaning there is no significant deviation in the height value across these dimensions in real 

space. B parameter determines the transition between the low-frequency plateau and the sloped part 

of PSD indicating the position of the curve “knee” which is related to the correlation length and 

represents the mean grain size. C parameter is the inverse slope at high spatial frequency range, 

which gives the nature of roughness and is related to different growth mechanisms; it is a constant 

greater than 1. This parameter explains film growth in terms of: viscous flow (C = 1), evaporation and 

condensation (C = 2), bulk diffusion (C = 3) and surface diffusion (C = 4). The fractal dimension which 

determines the relative amounts of the surface irregularities at different distance scales, can be 

obtained from the C parameter of the k-correlation model by the relation, 

𝐷𝑓 =
(7 − 𝐶)

2
                                                                            (3.11) 

However, if we are dealing with surfaces with clusters or aggregates on the top, the ABC model 

cannot characterize such superstructures. It should be necessary to consider the superstructure PSD 

model (PSDsh) which makes possible the characterization of the aggregates or superstructures formed 

on the surface [194]. This model is represented by the following equation: 

𝑃𝑆𝐷𝑠ℎ =  𝐾𝑠ℎ𝑒𝑥𝑝[−𝜋2𝜏𝑠ℎ
2 (𝑓 − 𝑓𝑠ℎ)2]                                                        (3.12) 

 where 𝜏𝑠ℎ represents the lateral size of the features on the surfaces, 𝐾𝑠ℎ is associated to the volume 

of the features and  𝑓𝑠ℎ is the spatial frequency of the superstructures of the surface. 
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There are several ways to define a fractal. Perhaps the simplest manner regards to the geometric 

invariance condition of an object when observed on different scales. These objects are called self-

similar fractals because they magnify (or shrink) in an isotropic order. Strictly, we can say that self-

similarity is a symmetry property which makes the fractal invariable under an isotropic geometric 

transformation. While mathematical fractals are generally statisticians, many natural fractals are 

random (e. g. the coast of a country) and their self-similarity should be observed from the statistical 

point of view; i.e. these fractals maintain a statistical correlation when observed in different scales. 

There are fractals which are also formed by mini-prints, but these do not maintain fixed the original 

proportions, i.e., they are invariant under anisotropic transformations. In this case they are called self-

affine fractals, for example the morphology of a cauliflower [192].  

Using fractal analysis it is possible to extract varied information from measured textures and it is a 

very useful approach to describe surface characteristics of thin films [185]. Because particle deposition 

is a far-from-equilibrium process, growth of an interface can be characterized quantitatively using 

different growth models which can explain the observed morphology. The complexity of thin film 

morphology and the growth process at an interface is mainly governed by the interaction of deposition, 

desorption and surface diffusion (relaxation) of atoms or molecules when arriving on the surface [192]. 

Thus, fractal theories have been used to provide a new quantitative method to describe particle 

aggregates structures in many water systems. Previous research in this area includes fractal 

characterization of particles produced from wastewater treatment [195], bacterial and yeast 

aggregates from laboratory batch experiments [196], and phytoplankton aggregates in a simulated 

oceanic system [196]. So, it is now believed that most particle aggregates in nature and engineered 

systems are fractal in their morphological structure [197]. Recent researches proved that fractal 

geometry and scaling concepts can describe the morphology of a rough surface by the fact that its 

symmetry do not change at different scales. Therefore, the surface morphology is governed by scaling 

laws [193, 194].  

 

3.3.2.3 Surface growth 

Surface temporal evolution can be obtained by Rq behavior as function of the surface growth time. 

Surface growth usually has two phases; first a strong surface roughness variation occurs as a function 

of time, followed by a stabilization stage which corresponds to a saturation time - crossover time. For 

time values below the saturation point the roughness can be defined by the scaling law, 

𝑅𝑞 (𝐿, 𝑡) ∝ 𝑡𝛽                                                                                 (3.13) 

where L is the scan length, t the time and 𝛽 the growth exponent which represents the temporal 

dependence of the surface formation process. When time is larger than saturation time roughness 

depends on the scan length, L, which may be expressed as follows: 

𝑅𝑞 (𝑡) ∝ 𝐿𝛼                                                                                   (3.14) 

where 𝛼 is called the critical exponent which characterizes the roughness of a saturated interface.  
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Saturation time depends on the size of the systems analyzed according to the expression: 

𝑡𝑥(𝐿) ∝ 𝐿𝑧                                                                                      (3.15) 

where z is the dynamic exponent. This exponent is associated to 𝛼 and 𝛽 by the following relation: 

 𝑧 =
𝛼

𝛽
                                                                                         (3.16) 

Determination of the scaling exponents is important because there are empirical models that describe 

phenomena which are associated with morphological changes during growth of thin films. The most 

important models are listed in table 3.2, with typical values for the respective critical exponents. 

Table 3.2. Critical exponents values of different surface growth models. 

Models 𝜶 𝜷 𝒛 

Random deposition [198] - 0.5 - 

Edwards-Wilkinson [199] 0 0 2 

Villain [200] 0.667 0.2 3.33 

Villain (with diffusion)  [192] 1 0.25 4 

Kardar-Parisi-Zhang [192] 0.38 0.24 1.58 

 

The models mentioned in table 3.2 describe the height growth of a film based on an asymptotic 

stochastic differential equation of Langevin type: 

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
=  𝐴𝑖  {ℎ} + 𝜂𝑖 (𝑥, 𝑡) + 𝐹                                                        (3.17) 

 

where 𝑖 represents a particular class, 𝐴𝑖 {ℎ}  a function that can depend on the spatial derivatives of 

ℎ(𝑥, 𝑡), 𝜂𝑖(𝑥, 𝑡) noise that may exist in random fluctuations of the deposition process and 𝐹 average 

number of particles that deposit on the surface. Random deposition model is based on the particle 

deposition on top of a randomly selected column which is the simplest case of all growth processes, 

and it is described by the equation: 

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
=   𝜂𝑖 (𝑥, 𝑡) + 𝐹                                                                (3.18) 

The characteristic roughness parameters for random deposition are 𝛽 = ½ and 𝛼 = 0, because there is 

an absence of a correlation between the different columns that constitute the system. The Edwards-

Wilkinson (EW) model complements the random deposition model adding the relaxation mechanism, 

i.e., the particle that is deposited can spread to a local with a minimum height, Figure 3.10. 
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Figure 3.10. Schematic representation of the Edwards-Wilkinson model. It is possible to observe the random 
diffusion of particles A and C to a local with a minimum height that can be either to the left or to the right. The 
particle B can spread only to one side, since it has only a minimum location [201]. 

For the EW model the equation 3.18 takes the following form: 

 

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
= 𝜈∇2ℎ(𝑥, 𝑡) +  𝜂(𝑥, 𝑡) + 𝐹                                                         (3.19) 

 

where 𝜈 is the surface tension and the term 𝜈∇2ℎ(𝑥, 𝑡) is related with the surface smoothing, i.e., it 

describes the irregular redistribution of the interface. Roughness parameters that characterize this 

model are both zero, 𝛼 = 0 and 𝛽 = 0, because they characterize very smooth surfaces. 

The Kardar-Parisi-Zhang (KPZ) model is based on particles aggregation. When a particle reaches the 

surface containing aggregates, a link occurs and it becomes part of it. This type of growth may lead to 

empty spaces inside the film, Figure 3.11. 

 

Figure 3.11. Schematic representation of the Kardar-Parisi-Zhang (KPZ) model. The particles A and B can spread 
to its local minimum, the particle D can adhere laterally to the column without having to have a position 
immediately below, thereby forming an aggregate. Any particle may be subjected to desorption [201]. 

The model can be described by the KPZ equation: 

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
= 𝜈∇2ℎ(𝑥, 𝑡) +

𝜆

2
(∇ℎ(𝑥, 𝑡))2 +  𝜂(𝑥, 𝑡) + 𝐹(𝑥, 𝑡)                               (3.20) 

 

where a non-linear 
𝜆

2
(∇ℎ(𝑥, 𝑡))2 term appears,  referring to the lateral growth of an interface.  
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Villain model takes into account the number of neighboring bonds rather than its height, i.e., when the 

particle reaches the surface it will preferentially choose a position with the highest possible number of 

connections, figure 3.12.  

 

Figure 3.12. Scheme of the deposition of particles by the Villain model. The particle A will connect to one of its 
neighboring particles and the particle B will connect with the particle which is at the top of the column or with the 
particles of the base. In this model the bonds do not depend of the height but the place where they can make the 
largest number of connections [201]. 

The equation that describes the Villain model is the following: 

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
= 𝜈∇2ℎ(𝑥, 𝑡) − Ω∇4ℎ(𝑥, 𝑡) +  𝜂(𝑥, 𝑡) + 𝐹(𝑥, 𝑡)                                  (3.21) 

where the term Ω∇4ℎ corresponds to the particles diffusion at certain correlation length, Lx. Correlation 

length corresponds to the average diameter of the grain saturation. When L ≤ Lx diffusion of particles 

occurs, meanwhile L ≥ Lx the particles aggregate. 

 

Three types of AFM equipments were used in this work to image surface morphologies of the thin 

films as described below. 

Topographic images of PAH and PAH/DPPG LbL films deposited onto silicon substrates, were 

acquired by Nanoscope III microscope (Digital Instruments). Commercial Si cantilevers with a spring 

constant between 20 and 100 N/m and free oscillation interval between 250 and 300 Hz were used. 

The topographic images were obtained using the non-contact mode and are shown and discussed in 

section 4.5. 

Surface morphologies of Au-quartz crystal support and PAH, PEI and PEMs heterostructures before 

and after adsorption of DPPG liposomes were also characterized by AFM. Measurements were made 

in non-contact mode ex situ at room temperature using an MPF-3D (Asylum Research, USA). Silicon 

probes OMCL-AC160TS (Olympus, Japan), with nominal spring constant and resonance frequency of 

26 N/m and 300 kHz, respectively, were used. Images of topography with 512512 pixels each 

were obtained at a scan rate of 1 Hz on scan areas of either 0.50.5 and 22 m
2
, giving a maximum 

single pixel spacing of ~ 3.9 nm in the latter case. Surface roughness of each sample has been 

evaluated as the root mean square of the distribution of heights in the AFM topographical images. All 

measurements were taken in Height Mode with display of amplitude and/or phase.  

Surface morphologies in situ of Au quartz crystal, Au/PAH and Au/PEI/(PSS/PAH)4 and of DPPG 

liposomes being adsorbed onto these surfaces were investigated using AFM measurements at room 
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temperature using a Multimode Nanoscope IIIa Microscope (Digital Instruments, Veeco). Samples 

were initially covered with 40 μL of ultra-pure water followed by injection of 60 μL of DPPG 

suspension. Topographic images were taken with a scan rate of ca. 2 Hz in non-contact mode. Use of 

an oscillating probe drastically reduces the force applied to the sample during scanning as compared 

to measurements performed in contact mode, since the cantilever only touches the surface after one 

oscillation cycle. Images were recorded with 256256 pixels on height and phase modes. Before each 

experiment, the glass block holding the cantilever was washed several times with water and ethanol. 

Cantilevers used were made of silicon nitride (NPS, ca. 0.58 N/m of spring constant, Veeco) with a 

resonance frequency in liquid of about 9 kHz. 

The row/column statistics tool of Gwyddion software was used to calculate the standard deviation of 

Rq of all individual row/column values and the obtained values were used as roughness error bars. 

AFM experiments were performed to identify the best scan area to perform roughness comparisons 

among different samples. Roughness of surfaces or layers formed in random processes are usually 

scale invariant, at least over some regions of scale, and this must be reflected in the mathematical 

description inherent to the kinetic growth models employed to explain the data. 

 

3.3.3 Dynamic Light Scattering  

Dynamic Light Scattering (DLS), also called Photon Correlation Spectroscopy, is a spectroscopic 

technique used in Chemistry, Biochemistry and Physics mainly to characterize the hydrodynamic 

radius of polymers, proteins, and colloids in solution. DLS is a useful technique that allows to 

determine the size distribution of nanoparticles in a suspension, but also to detect small amounts of 

high mass species in protein samples.  

In a typical DLS experiment, presented in figure 3.13, a solution/suspension of analytes is irradiated 

with a monochromatic laser light and the intensity fluctuations of the diffracted light are measured as a 

function of time. Intensity data is then collected using an autocorrelator to determine the size 

distribution of particles or molecules in a sample. 

 

 

Figure 3.13. Scheme illustrating the experimental procedure of DLS [202]. 

http://chemwiki.ucdavis.edu/Physical_Chemistry/Physical_Properties_of_Matter/Solutions/Colloid
http://chemwiki.ucdavis.edu/Physical_Chemistry/Physical_Properties_of_Matter/Solutions/Colloid
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In practice, particle samples are typically not stationary because they are suspended in a solution and 

as a result they are moving randomly due to collisions with solvent molecules. The hydrodynamic 

radius of the particle (particle hydrated radius) can be calculated by the Stokes-Einstein equation [203, 

204] that describes the motion for spherical particles and is given by the following equation: 

 

𝑅𝐻 =  
𝑘𝐵𝑇

6𝜋𝜂𝐷𝑇

                                                                        (3.22) 

                                                        

where, 𝑅𝐻 is the hydrodynamic radius, 𝑘𝐵 Boltzmann constant, T the absolute temperature, 𝜂 viscosity 

and 𝐷𝑇 diffusion coefficient which is inversely proportional to the particle radius, demonstrating that 

small particles should diffuse faster than large ones [60].  

The fundamental distribution generated by the DLS device is an intensity distribution that can be 

converted into a volume distribution and thus converted into a number distribution. However, the 

number distributions are of limited use because small errors collected during the correlation function 

generate large errors. To notice that although equation 3.22 is valid for monodispersed suspensions of 

particles it cannot be applied for populations with different sizes, i.e. polydisperse systems. Methods of 

analysis of polydisperse samples require higher resolution and an additional mathematical algorithm 

for correlation function treatment. The resulting correlation of this type of populations consists of a 

mixture of exponential decays, each one with a different relaxation time related to the particle size. 

Each different size contributes in a different way with its exponential to the total scattered light. In 

addition, the smaller the particle size the smaller the intensity of scattered light. This relation is given 

by the equation: 

Is

Io

∝ V2                                                                                     (3.23) 

where Is is the scattered light intensity, Io the incident light intensity and V the particle volume. 

According to this equation and considering spherical particles, a difference of one order of magnitude 

in the particles radius leads to a difference of three orders of magnitude in the percentage of volume 

and six orders of magnitude in the scattered light intensity value.  

In this work two different DLS equipments were used to analyse the DPPG liposomal suspensions. 

The mean hydrodynamic diameter of the extruded DPPG liposomal suspension was measured using 

a DLS particle size analyser Model BI-90 (Brookhaven Instruments Corp., Holtsville, NY). One drop of 

the nanoparticle suspension, 80 𝜇𝑙, was added to the cuvette with 3 ml of ultrapure water, and the 

contents were mixed by gentle shaking, followed by measurement at 25 °C. Measured values are 

given as mean volume-average; dispersion from the mean value is described as the full-width half 

maximum in square brackets [FWHM]; both values are given in nanometers. For further information 

see section 4.1. 

The DLS Zetasizer Nano-ZS Series ZEN3600 device (Malvern Instruments Ltd., UK) equipped with a 

4 mW He-Ne Laser (633 nm), using a 1x1 cm
2
 polystyrene latex cuvette was used to find the average 

hydrodynamic diameter of the sonicated DPPG liposomes in an aqueous solution. For additional 

information see section 4.1. 
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3.3.4 Ultra-Vacuum Ultraviolet Spectroscopy 

Ultra-vacuum ultraviolet absorption spectroscopy is a technique that allows characterization of 

materials and is based on the electronic states of molecules obtained from interaction between 

ultraviolet radiation and matter. Absorption spectra can be acquired by setting a sample between the 

radiation source and the detector. Thus, the radiation absorbed by the sample leads to an increase of 

its internal energy that can rise to values equal to the absorbed photon energy and it is expressed 

using the Planck relation [205]:  

∆𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
                                                                           (3.24) 

 

where ℎ is the Planck's constant, 𝑐 is the speed of light in vacuum and ΔΕ is the absorbed energy per 

each molecule in an electronic transition from the fundamental state to a high-energy state , i.e. 

excited state [206]. Spectroscopic classification of molecules can be obtained because each molecule 

will absorb characteristic energy levels that correspond to specific electronic transitions. Typically, 

electronic transitions are situated in the ultraviolet or visible region in two different ranges of 

wavelengths (λ): visible and ultraviolet. Table 3.3 lists the different absorption regions and their 

radiation wavelength ranges. 

 

Table 3.3. Visible and Ultraviolet subregions and the respective radiation wavelength ranges.  

Region Subregions 
Range 

(wavelength) 

 

 

 

Visible 

 

Red 770 nm – 622 nm 

Orange 622 nm – 597 nm 

Yellow 597 nm – 577 nm 

Green 577 nm – 492 nm 

Blue 492 nm – 455 nm 

Violet 455 nm – 390 nm 

Ultraviolet 

UVA 390 nm – 320 nm 

UVB 320 nm – 290 nm 

UVC 290 nm – 200 nm 

Vacuum UV  200 nm – 10 nm 

 

 

In polyatomic molecules three types of electrons may be considered: those which form simple 

chemical bonds (𝜎 electrons), the responsible for double bonds (𝜋 electrons) and the nonbonding or 

unshared that do not participate in chemically bond (n electrons). The p or s atomic orbitals which are 

projected in the bond direction are named 𝜎 orbitals, and the resultant ligand orbitals that are overlap 

are called 𝜎 bonds. 𝜋 orbitals are obtained through the perpendicular projection of the atomic orbitals p 

in the bond direction. Typically, in unsaturated systems, i.e. containing double bonds, the 𝜋 electrons 
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predominate and determine the energy states of the valence electrons which are excited by absorption 

of visible and ultraviolet radiation.  

 

 

Figure 3.14. Schematic representation of the energy levels. Adapted from [205]. 

In polyatomic systems, such as in organic molecules, three main groups of electron transitions can 

occur: i) transitions from a stationary state orbital to a higher energy orbital, which means, 𝜋→𝜋* 

transitions and 𝜎→𝜎* transitions; ii) transitions from an unshared atomic orbital to a higher energy 

molecular orbital, named, 𝑛→𝜋* transitions and 𝑛→𝜎* transitions and; iii) transitions from a stationary 

state orbital to higher energy orbitals, towards molecule ionization, that are designated Rydberg 

orbitals. 

 

Table 3.4. Electronic transitions for each region of the electromagnetic spectrum. Adapted from [205]. 

Electronic Transitions Electromagnetic Spectrum Regions 

σ  σ* Vacuum Ultraviolet 

  * Ultraviolet 

n  * Near Ultraviolet 

n  σ* Far Ultraviolet or Near Ultraviolet (exceptionally) 

Rydberg Vacuum Ultraviolet 

 

The majority of the absorption spectra of the organic molecules are located in the near UV zone and in 

the visible region and are owed to 𝜋  𝜋 * or 𝑛  𝜋 * transitions. The first ones are much more intense 

then the latter since, in this case, the unfavorable spatial orientation between 𝑛 and 𝜋 * orbitals gives 

  

  

n 

 

  

 

 

Empty 
Levels 

Occupied 
Levels 

Molecular  Orbitals 

Atomic Orbital Atomic Orbital 

Molecular  Orbitals 

Energy 
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place to low intensity transitions. On the other hand, bands observed in the vacuum ultraviolet region 

are owed to 𝜎  𝜎* and 𝑛  𝜎* transitions. 

 

 

Figure 3.15.  Schematic representation of the energy levels. Adapted from [207] . 

The occurred transitions from radiation and matter interactions are usually represented using an 

absorbance spectrum in which absorbance is plotted against incident beam wavelength. This function 

is given by the Lambert-Beer Law defined as:  

𝐴 =  𝜀 𝑏𝑐 = 𝑙𝑜𝑔 (
𝐼𝑂

𝐼
)                                                                        (3.25) 

 

where A is the absorbance, 𝜀 is the extinction coefficient, c is the concentration (g/l) of the solution 

under study, b is the optical path (cm), I0 is the radiation intensity of the incident beam and I is the 

radiation intensity of the emerging beam. The energy absorption quantity treatment depends on the 

Lambert-Beer law where for a given substance and a given wavelength, absorbance is directly 

proportional to the concentration of the absorbing species. This is a basic law for all types of 

absorption of the electromagnetic radiation applied to solutions, gases and solids. 

High resolution vacuum ultraviolet (VUV) photo-absorption spectra of LbL films were recorded at the 

ultraviolet beam line (UV1) [208] in the ASTRID Synchrotron Radiation facilities at Aarhus University, 

Denmark. The synchrotron radiation allows high spectral resolution because it is characterized by high 

intensity and collimated beam, and may be highly polarized. When the high intensity and the broad 

spectrum space are combined with other properties, such as polarization control and collimation, the 

synchrotron radiation is a powerful tool in diverse fields as physics, materials, chemistry, biology, 

medicine, among others. The setup depicted in figure 3.16 consists of a vacuum chamber containing 

up to three CaF2 sample disks and one reference disk mounted on a MDC SBLM-266-4 push-pull 

linear motion. The VUV beam light passed through the disks and the transmitted intensity is measured 

at 1.0 nm intervals using a photomultiplier detector (Electron Tubes Ltd., UK). The transmitted light 

intensity and the synchrotron beam ring current are measured at each wavelength, with a typical 
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resolution better than 0.08 nm. The sample chamber has a LiF entrance window and a MgF2 exit 

window in front of the photomultiplier. The minimum wavelength is determined by the CaF2 substrates 

so that the lowest wavelength at which reliable data could be collected was ~125 nm. In order to avoid 

absorption from molecular oxygen in air for wavelengths below 190 nm, the small gap between the 

sample chamber exit window and the photo multiplier detector was flushed with He gas.  

 

 

Figure 3.16. Scheme ASTRID synchrotron accelerator [209]. 

 

The obtained VUV spectrum is the sum of the absorption bands with a maximum absorbance at 

wavelengths where the electronic transitions are observed. Afterwards, such spectrum is 

deconvoluted, using specific software, to several peaks and the transitions associated to the obtained 

energy values are assigned, allowing the characterization of the material under study. VUV spectra 

were obtained using the following protocol: (i) radiation intensity transmitted by the substrate is 

measured (I0); (ii) radiation intensity transmitted by the substrate with the film absorbed on it is 

determined (I); (iii) radiation intensity transmitted by the substrate is measured again (I`0). This last 

step is required because there is an intensity decay of the beam throughout time which consequently 

leads to a transmitted radiation intensity decrease caused, not by the film absorption, but by the 

characteristic beam decay. In this case, Lambert-Beer law must be adjusted as follows: 
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The spectroscopic characterization of LbL films containing liposomes is essential not only to determine 

the precise film architecture but also to guide the design of drug delivery systems. In this study we 

provide the first report of vacuum ultraviolet spectroscopy characterization of LbL films made with 

liposomes from DPPG alternated with PAH. Measurements in the 6.0–9.5 eV range allowed us to 

identify the electronic transitions responsible for the spectra. To calculate the absorbance, light 

intensity spectra of the CaF2 disc/or quartz cuvette were measured before and after measuring the 

spectrum of the disc covered with LbL film or DPPG dispersion or PAH solution. The average of those 

two spectra and the spectrum of the coated solid support (with film, dispersion or solution) were used 

to calculate the absorbance using the Lambert-Beer equation. Surface mass density of LbL films could 

be determined. Damage of UV irradiation in vacuum of DPPG liposomes during the course of VUV 

measurements was inferred. Discussion of the results and respective treated data are presented in 

section 4.4.  

  

3.3.5 X-Ray Photoelectron Spectroscopy  

X-ray photoelectron spectroscopy (XPS) is a surface-specific spectroscopic technique and is based on 

X-ray irradiation of the surface under study, followed by analysis of the emitted electrons kinetic 

energies [210]. The depth of analysis does not go beyond 10 nm. This technique allows determining 

the oxidation state of an element and infers the type of chemical species to which is connected to. For 

each element, there is a characteristic binding energy associated to each photoelectron in a given 

orbital, i. e. each element will give rise to a characteristic set of peaks in the XPS spectrum. The 

photoelectron kinetic energy is equal to the incident photons energy minus the photoelectron binding 

energy. Manifestation of specific energy peaks indicates presence of a specific element in the sample. 

Furthermore, the intensity of the peaks is related to the atomic concentration in the sample. Thus, the 

XPS technique, also known by the alternative acronym ESCA (Electron Spectroscopy for Chemical 

Analysis) permits both qualitative and quantitative analysis of the surface composition. Based on this 

technique it is possible to obtain a quantitative elemental chemical analysis, oxidation states, 

functional groups presence and ligands, as well as the nature of the connections (ionic and covalent). 

The sensitivity of the technique is about 0.1 % to all elements of the periodic table, except for H and 

He. It can be used for all solid materials stable at high vacuum, conductors such as metals, or 

insulators such as ceramics, polymers, glass and others. Figure 3.17 outlines the typical experimental 

arrangement of the XPS technique. 
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Figure 3.17. The typical experimental arrangement of the XPS technique [211]. 

XPS technique instrumentation consists in a X-ray source, with or without a coupled monochromator, 

an electron energy analyzer and an electron detector. The sample needs to be placed on a high 

vacuum chamber in order to perform analysis. The X-ray source is composed by a heated filament 

(cathode) electron emitter; these electrons are accelerated to the anode, usually cooled with water. 

Due to the electron bombardment, it creates holes in the innermost levels of the anode atoms, which 

are filled by electronic transitions from the higher levels L (n = 2) to the lowest K (n = 1) emitting X 

radiation. The X-ray sources most used are the Mg Kα photons beam with primary energy of 1253.6 

eV and the Al Kα photons beam with primary energies of 1486.6 eV. A X-ray monochromator allows 

narrowing of the line widths with 0.2 eV, which improves the signal lines by eliminating the satellites 

that confound the spectra interpretation. 

XPS characterization has grown significantly in the recent decades, especially in multidisciplinary 

fields of science, such as biomaterials, composites, nanotechnology and others. Typically, this 

technique is used in semiconductor, electronic materials, biomedical applications materials, polymers 

and plastics industries. 

In this work the XPS spectrometer used was a XSAM800 (Kratos) non-monochromated comprising a 

dual anode source, with one of the anodes covered with magnesium and the other with aluminum 

which emit photons, respectively, with 1253.6 eV (Mg Kα) and 1486.6 eV (Al Kα). The apparatus was 

operated in FAT (Fixed Analyzer Transmission) mode  [212], in which the electrons are accelerated or 

delayed in order to always be conducted at the same pass energy. The advantage of this mode is the 

constant analyzer resolution in the whole energy range. The current and voltage used were 10 mA 

and 13 kV, respectively. Samples were analyzed at room temperature in ultra-high vacuum pressures 

of the order of 10
-7

 Pa. All samples were analyzed in their central part, in an area of 3x1 mm
2
 at a 

take-off angle of 0° relatively to the sample’s normal, using the high mode amplification. Spectra were 

recorded with a Sun SPARC Station 4 with Vision software (Kratos) using a step of 0.1 eV. X-ray 

source satellites were subtracted; Shirley background and pseudo-Voigt profiles (Gaussian and 
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Lorentzian products) were fitted to each region using a non-linear least-squares algorithm. No flood-

gun charge compensation was used. Binding energies (BE) were corrected setting C 1s BE lowest 

energy to 284.7 eV, corresponding to a C sp
2
, in the sample with the PEM cushion and to 285 eV, 

corresponding to C sp
3
, in the samples with DPPG [213]. For quantification purposes, sensitivity 

factors were 0.66 for O 1s, 0.25 for C 1s, 0.42 for N 1s, 0.29 for P 2p, 0.54 for S 2p, 2.3 for Na 1s, and 

0.73 for Cl 2p as supplied by Kratos. 

 

3.3.6 Fourier Transform Infrared Spectroscopy 

Absorption spectroscopy in the infrared region is based on the fact that chemical bonds have specific 

frequencies of vibration which correspond to energy levels of the molecule (in this case called 

vibrational levels) [210]. Thus, this spectroscopy detects radiation that is absorbed by the molecular 

vibrational bonds. The infrared regions of the electromagnetic spectrum ranges between the visible 

and microwaves, and is subdivided into near (4000 - 12500 cm
-1

), medium (400 - 4000 cm
-1

) and far 

(10 - 400 cm
-1

) infrared. Thus, the near infrared spectral region comprises the interval between 800 

and 2500 nm for wavelengths lectures corresponding to 4000 - 12500 cm
-1

 for measurements in wave 

numbers [214]. The chemical bonds of the substances have specific frequencies of vibration which 

correspond to vibrational levels of the molecule. Radiation absorption in the infrared region is due to 

the electrical dipole moment variation of the molecule as a result of its vibrational movement. There 

are two types of molecular vibrations: stretching and bending. Stretching vibrations consist in the 

rhythmic movement along the bond axis giving rise to interatomic distances that increase or decrease. 

Figure 3.18 schematizes the two modes of stretching vibrations: antisymmetric and symmetric. 

 

 

 

 

 

 

 

(A)                                                  (B) 

Figure 3.18. Stretching vibration modes: (A) antisymmetric and (B) symmetric. 

 

Bending vibrations are defined as an angle change between bonds with a shared atom or as the 

movement of a group of atoms which move in relation to one part of the molecule, but not considering 

the remaining atoms of the other part of the molecule. For example, rotational vibrations of balance 

and wagging, involve bond angle changes considering a set of arbitrary coordinates inside the 

molecule. Figure 3.19 depicts four modes of bending vibrations, namely: scissoring, twisting, rocking 

and wagging. 
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                       (A)                                         (B)                                    (C)                                     (D)                

Figure 3.19. Schematic representation of the four modes of bending vibrations: (A) scissoring, (B) twisting, (C) 
rocking and (D) wagging. 

Fourier Transform Infrared (FTIR) spectrophotometers are based on the Michelson interferometer. In 

this system the radiation of the light source is split into two equal beams by a beamsplitter, as shown 

in figure 3.20. One of the beams follows toward a fixed position mirror which reflects back to the 

beamsplitter and here again split up and part of this goes to the detector. The other beam leaves the 

beamsplitter towards a movable mirror, this mirror also reflects, a division of the radiation occurs and a 

portion of this is received by the detector. As the moving mirror travels a certain distance from the 

interferogram, a recombination of the two beams occurs. Thus, the interferogram is formed by the sum 

of all the waves of different frequencies and amplitudes that arrives at the interferometer. However, 

despite the interferogram contain all the information provided by the spectrophotometer this way is not 

very useful, and this information must be converted into a spectrum that relates the intensities with 

respective frequencies via Fourier transform [215]. 

 

 

 

Figure 3.20. Schematic representation of a FTIR spectrometer [216]. 

 

+ 
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The main advantages of the FTIR technique are the accuracy, simplicity and rapid interpretation of the 

data, it does not need qualified personnel to perform and can be directly used on the local production, 

as well as is a non-destructive method. Therefore, this methodology has applications in various types 

of industry, such as food, agricultural, pharmaceutical, textile, oil, cosmetics, among others [217].  

FTIR measurements of DPPG cast films deposited on calcium fluoride were obtained with a 

spectrophotometer Thermo Scientific Nicolet-model 530 (Waltham, MA, USA). 

 

3.3.7 Scanning electron microscope  

The first high-resolution Scanning Electron Microscope (SEM) with a sub-micron probe was developed 

by Manfred von Ardenne, in 1937. However, the major impulse in materials characterization using the 

electronic microscope occurred in the 50s [218-220] . An account of the early history of SEM has been 

presented by McMullan [221].   

SEM is a powerful tool used to support scientific research, as well as the development and quality 

control of materials and it is applied to domains extended from microstructural characterization 

(metals, ceramics, composites, biomaterials, coatings) to applications in geology, biology and 

medicine, powder characterization, etc. This technique can be applied to thin films in order to 

determine heterostructures’ thicknesses, to analyze microstructures, to identify defects and impurities, 

and to perform adherence, corrosion and fracture studies. SEM achieve similar pictures to those 

obtained by reflection optical microscope, but in a range of magnification dramatically higher (from 10x 

to 18000x) with a field depth of 30 μm. This technique is generally associated to Energy Dispersive X-

ray Spectroscopy (EDS), which allows a semi-quantitative analysis of the chemical elements of the 

materials surface. 

The operational principle is based on the incidence of an electron beam to a point on the surface of 

the target sample and subsequent collection of electronic signals sent by the target material, as 

displayed in figure 3.21. Samples are sequentially scanned by an electron beam accelerated by a 

voltage which varies between 0 and 40 kV, finely focused through an electromagnetic lens system. 

Interaction of the electronic beam with the sample results in emission of various types of radiation like 

electrons, including secondary electrons used in the formulation of the sample image (with energies 

less than 50 eV). Secondary electrons are electrons suffering excitation and "escaping" from the 

sample’s surface. Back-scattered electrons allow discrimination of regions of the sample under 

analysis using light and heavy atoms. Secondary electrons are generated by inelastic interaction 

processes of primary and back-scattered electrons with higher energy bonding electrons. The 

electrons depth does not exceed a few dozens of nanometers. The images obtained by detecting 

secondary electrons have a strong topographic contrast being the contrast a consequence of the 

emission of back-scattered electrons, whose intensity increases with the atomic number. The fact that 

the secondary electrons come from a small volume makes it possible to obtain excellent images, 

allowing visualization of the topographic contrast. 

 

 

http://en.wikipedia.org/wiki/Manfred_von_Ardenne
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Figure 3.21. Schematic representation of the SEM technique [222]. 

 

Substrate surface of DPPG cast films deposited on silicon was analyzed on a ZEISS Auriga 

CrossBeam model DSM 962 SEM focused ion beam setup. To increase the surface sensitivity, SEM 

images were typically obtained at a low acceleration voltage of 2 kV. Semi-quantitative analysis of the 

cast films was obtained by energy-dispersive x-ray spectroscopy (EDS) integrated in the same Zeiss 

Auriga platform using an Oxford INCA x-act silicon drift detector and an Oxford INCA microanalysis 

software. Analysis was performed at 15 keV, with an aperture size of 30 µm, a magnification of 1000 

and an acquisition time of 120 s for each sample. 

 

3.3.8 Ellipsometry 

Ellipsometry is an optical technique sensitive to changes occurring on the surface, based on the fact 

that the polarization state of the light changes when a light beam is reflected by a surface. Indeed, 

when a substrate is covered by a thin film, the optical system comprising the film and the substrate 

causes a change in light polarization. It is thus possible to deduce information on the properties of the 

films, especially thickness and refractive index. Polarization state is characterized by amplitude (𝛹) 

and phase difference (𝛥) of the two components of the polarized light: parallel (P) and perpendicular 

(S) to the plane of incidence. A schematic illustration of the principle of ellipsometry is shown in figure 

3.22. 
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Figure 3.22. Schematic illustration of the principle of ellipsometry, from [223]. 

 

Ellipsometry measurements allow determining the angles, 𝜓 , and variations, 𝛥. The total effect caused 

by the reflection is described by the ellipsometry fundamental equation [223]: 

𝜌 =  
𝑅𝑝

𝑅𝑠

= tan (𝜓)(𝑗Δ)                                                                  (3.27) 

                                                     

where 𝜌 is the ratio between the reflection coefficients of the parallel and perpendicular components,  

𝑅𝑝 and 𝑅𝑠. These coefficients depend on the wavelength of light, incidence angle and optical 

properties of the system (layers thickness and their refractive indices). 

Thickness of a PAH/DPPG bilayer after adsorption onto Au-quartz crystal surface, see section 4.6, 

was recorded using an ellipsometer (SENTECH Instruments GmbH, Berlin) fitted with a He–Ne laser 

(632.8 nm). Data was processed and fitted using the software provided by SENTECH (SE 400). 

Measurements were carried out at an angle of incidence of 70°. 

 

 

3.3.9 Voltammetric electronic tongue  

According to the International Union of Pure and Applied Chemistry (IUPAC) [224] an electronic 

language (EL) is a multi-system sensor composed of chemical sensors with reproducible response, 

high stability and cross-sensitivity to different species in solution and therefore provide signals profiles 

that translate global information about the samples. Multivariate statistical methods are used to 

processing the signals profiles in order to achieve the analysis main goal, which may be the 

recognition of the qualitative composition (samples classification and discrimination), the quantitative 

analysis of chemical multi-species and the evaluation of the samples taste. ELs are systems with 

earned interest because they allow acquiring global information on complex samples which cannot be 
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possible with other analytical methodologies, mostly mimicking the human tongue in flavors 

appreciation. This information varies according to the characteristics of the EL used.  

Electronic tongues are defined as an array of non-specific (electro) chemical sensors with cross-

sensitivity to different species in a solution combined with an appropriate chemometric tool for the data 

processing. A huge effort has been devoted to the development of innovative sensors with improved 

characteristics. The sensors used in the electronic tongue may use several measurement principles, 

including mass detection quartz microbalances [225], optical transduction [226] and electrochemical 

measurements. In particular, electrochemical sensors (voltammetric, impedimetric, or potentiometric) 

are the most widely used in electronic tongue technology. Electronic tongues are usually applied to 

give qualitative information about the studied samples, but they can also predict the concentration of 

individual species in the product. More recently, voltammetric electronic tongues associated with 

chemometrics data analysis have been proposed for the olive oil characterization using the chemical 

composition responsible for the delicate taste [227, 228]. Up to now, electronic tongue systems have 

proved their reliability and versatility in a wide range of fields, such as agro-food analysis [229], 

environmental monitoring [230], clinical diagnostic [231] and pharmaceutical analysis [232]. In this 

work, a hybrid voltammetric electronic tongue (HVE-tongue) is applied to classify a set of olive oil 

samples coming from different Moroccan and Portuguese regions. Indeed, HVE-tongues can include 

two or more sensor families. Usually, it is a combination of potentiometric, voltammetric and/or 

conductimetric sensors. After getting signals from all types of sensors, data processing is performed 

by means of chemometric methods to extract useful information. The HVE-tongue allows obtaining 

more diverse information about the sample. This gives the opportunity for better, more reliable and 

more accurate characterization of the sample and increases the probability of correct samples 

classification [233] . 

 

3.3.9.1 HE-tongue set-up measurement 

The voltammetric measurement cell was formed by two kinds of working electrodes, Ag/AgCl as a 

reference electrode and platinum plate as a counter electrode, which was housed inside a stainless 

steel cylinder as the body of the devise.  

Fig. 3.23 shows a schematic representation of the experimental set-up used in the measurements. 

Sensors were assembled in a homemade glass backer. Working electrodes were connected to a relay 

box, enabling each of them to be connected separately to a standard three electrodes configuration. 

Current responses were measured by a portable potentiostat (PalmSens BV, The Netherlands). 

Electrochemical experiments were performed at a room temperature. Several tests were carried out 

on olive oil samples for each working electrode, in order to optimize the electrochemical window 

range. Cyclic voltammetry (CV) was recorded in a range of varying potentials from -700 to 1300 mV at 

scan rate of 20 mVs
-1

 [234].  
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Figure 3.23. Portable HE-tongue setup for the evaluation of olive oils [235]. 

 

3.3.9.2 Features extraction 

Extraction of features from voltammograms is an essential pre-processing issue towards pattern 

recognition. The goal of this procedure is to determine the values of the variables which characterize a 

certain category of very similar products. This is seeking for the discriminative features that are 

invariant to irrelevant transformations of a final HE-tongue database. In this study, in order to fully 

exploit the maximum information existing in the response, features were directly extracted from the 

responses of each sensor of the array, as follows:  

 ΔI = Imax - Imin:  current change calculated as the difference between maximum and minimum 

values of the current, were Imax is the maximum value of the current measured in the final 

potential range and Imin is the minimum value of the current measured in the initial potential. 

 Sox: maximum slope of the current curve in the oxidation phase.  

 Sred: maximum slope of the current curve in the reduction phase.  

These features were the ones which give a better discrimination of the analyzed products according 

with previous works from others [234, 236]. Features obtained from the voltammograms of HE-tongue 

were gathered in a dataset and used to build a model to classify olive oils samples. In total, each olive 

oil measurement was characterized by thirty features (i.e., 10 sensors × 3 features per sensor). These 

variables were organized in a rectangular matrix as a database.  

 

3.3.9.3 Principal Component Analysis 

Data contained in the dataset was analyzed by using Principal Component Analysis (PCA). The aim of 

using this pattern recognition method in this study is to estimate the performance of HE-tongue in 

identifying and classifying the geographical origin of different olive oils samples. PCA is a linear and 

unsupervised technique that is useful for the compression and classification of data [21, 23]. The 

purpose is to reduce the dimensionality of a data set by finding a new set of variables, smaller than the 

original set of variables that nonetheless retains most of the sample's information. PCA summarizes 
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variation in a correlated multi-attribute to a set of uncorrelated components, each of which is a 

particular linear combination of the original variables. Extracted uncorrelated components are called 

principal components (PCs) and are estimated from the eigenvectors of the covariance or correlation 

matrix of the original variables.   

 

A HVE-tongue was developed by combining two electrochemical sensors types, such as: i) three LbL 

films based on PAH and PEI common polyelectrolytes, the synthetic phospholipid DPPG, and the 

biopolymer melanin and ii) seven voltammetric sensors: Copper (Cu), Glassy Carbon (GC), Gold (Au), 

Nickel (Ni), Palladium (Pd), Platinum (Pt) and Silver (Ag). Advantages that make these sensors well 

suited for this application are the small size, low cost, reproducibility and easy integration into the 

measurement system in the same platform. Therefore, they can be integrated in a portable and a 

miniaturized analytical system to achieve rapid and in-field measurements. The data treatment was 

carried out by Principal Component Analysis (PCA). In this study, a total of eleven olive oil samples 

were analyzed: six commercials Portuguese olive oils, namely Gallo Classico, Fio Dourado, Oliveira 

da Serra, Paladin, Gallo Reserva and SOS Pobreza and other five commercials Moroccan olive oils, 

specifically Moulay Idriss, M’rirt, Ouarzazate, Ouazzane and Taounate. Results and discussion are 

shown in section 5.6. 
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4 IMMOBILIZATION OF LIPOSOMES ON SURFACES 

This chapter reports the characterization of the DPPG small unilamellar vesicles (SUVs) suspension, 

obtained by extrusion and sonication procedures, immobilized on flat solid supports and on rough 

polyelectrolyte multilayers (PEMs). A detailed and comparative kinetic study of the assembly of 

PEI/DPPG LbL films by five different experimental configurations using a quartz crystal microbalance 

(QCM) in situ, i.e. at solid-liquid interface, is also reported. Furthermore, the growth of (PEI/DPPG)10 

self-assembled films using the layer-by-layer (LbL) technique based on the adsorption of oppositely 

charged materials of DPPG SUVs layers alternated with polyelectrolytes onto a PEM surface, was 

monitored by QCM and the calculated mass amounts of the layers as well as the adsorption kinetic 

processes are presented. Also, the growth of (PAH/DPPG)10 LbL film onto a smooth solid surface was 

examined by vacuum ultraviolet (VUV) spectroscopy. The electronic transitions and functional groups 

assignments and the mass surface density are described. Besides, statistical analysis of the 

PAH/DPPG surface topographies imaged by atomic force microscopy (AFM) is also presented. 

 

4.1 DPPG suspension analysis 

The size distribution by intensity of DPPG liposomes suspension produced by the extrusion method 

was determined by dynamic light scattering (DLS) using the model BI-90 equipment and is shown in 

figure 4.1. These values were fitted and a Gaussian curve with a single peak centered at 169±3 nm 

was obtained, showing a monomodal distribution. The polydispersity of the solution was 0.179 

revealing the homogeneity of the liposomal suspension because it presents a value below 0.3. 

However, it should be referred that probably the mean effective hydrodynamic radius of the particles is 

smaller than the achieved due to the fact that the DLS equipment is outdated and it took too much 

time collecting the data. Thus, and because DLS measures the Brownian movement of the particles 

and analyzes the fluctuations of the intensity of scattered light, it is worth to consider that the smaller 

particles weren’t gathered during measurements.  
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Figure 4.1. Size distribution by volume of the DPPG vesicles obtained by the extrusion method in a mini-extruder 

containing polycarbonate membranes with 0.1 m pores. The Gaussian fit curve (red color) presents a single 
peak centered at 169±3 nm showing a monomodal distribution. 

The size distribution characteristics by intensity and volume of DPPG liposomes produced by the 

sonication method were determined by DLS model Zetasizer Nano-ZS Series ZEN3600 (Malvern 

Instruments) and the obtained hydrodynamic diameters (HD) are displayed in table 4.1. The particle 

size shows a polymodal distribution, since the volume distribution has three maxima, centered at 25, 

102 and 195 nm. The intensity distribution presents two maxima centered at 30 and 388 nm. The third 

peak, for higher HD, cannot be distinguished in size intensity distribution of the DPPG as it is almost 

constant without prominent peaks. Since scattered light is proportional to square of volume, an order 

of magnitude in the particles radius leads to a difference of three orders of magnitude in the volume 

percentage and six orders of magnitude in the scattered light intensity value. Indeed, the volume 

distribution HD of peak 2 is roughly 4 times the HD of peak 1, and light intensity scales as the square 

of volume, HD of peak 2 in light intensity distribution is expected to be approximately 16 times the HD 

of peak 1; in fact it is more than 13 times, showing good agreement.  Regarding the intensity 

distribution, the presence of a peak centered at 388 nm with 92% of intensity is justified by the fact 

that larger particles, associated to peaks 2 and 3 of volume distribution and with a low volume 

percentage value (8%), are contributing strongly for the intensity of the scattered light. Consequently, 

despite the residual presence of larger particles in DPPG suspension, one can consider that most of 

the DPPG liposomes have a mean diameter size of 25 nm. The fact that the sum of percentage 

volume from the three peaks does not reach 100% may be related to the possible presence of titanium 

residues, in DPPG suspension, with micron size (see figure 4.2), released from the probe during 

sonication, which were not taken into account by the model.  
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Table 4.1. Volume and Intensity distributions characteristic of DPPG liposomes obtained from DLS 
measurements: HD (hydrodynamic diameter) associated with peak position, peak intensity and peak width. 

 

 

 
 
Figure 4.2. Size distribution by volume of the DPPG vesicles obtained by the sonication method using an 
ultrasonic processor over 30 seconds and repeated 15 times with 1 minute delay between cycles. It should be 
referred that the high values of hydrodynamic diameter (around 1000 nm) probably correspond to titanium 
particles released from the ultrasonic probe during sonication. 

 
 

4.2 Characterization of DPPG cast films  

Topographic images with 0.50.5 m
2
 of DPPG cast films produced with extruded DPPG suspensions 

deposited on silicon surfaces were obtained by AFM technique in non-contact mode and are shown in 

figure 4.3 a) (3D view) and b) (height phase). Figure 4.3 c) presents a height profile of the surface. 

The DPPG suspension concentration used to perform the cast films was 5 mM. On the left side of the 

figure 4.3 c) a profile of a DPPG vesicle with approximately 100 nm of length is displayed and, on the 

right side, two terraces with about 5±1 nm of height, each corresponding to the thickness of two 
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1 25 75.7 6 29 8 7 

2 102 4.5 26 388 92 321 

3 195 3.8 40 ---- ---- ---- 
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different supported lipid bilayers (SPBs). SPBs can be easily formed by the assembly of liposomes on 

considered smooth hydrophilic solid supports, such as silicon. This behavior is greatly reported in 

literature, for an overview see [3, 67, 75, 77, 165, 169]. Although, a greater number of studies have 

identified some of the critical stages of vesicle adsorption and spreading of lipid bilayer on smooth 

surfaces, further investigations are needed concerning rough surfaces and lipid loading a net charge. 

In this case, and considering the fact that the silicon is a hydrophilic substrate with a root-mean-square 

roughness of 0.3±0.1 nm and the DPPG liposomes are negatively charged, it’s easy to realize that 

when the first DPPG vesicles reach on the surface, they readily start to break and spread throughout 

the surface forming SPB patches. Afterwards, the vesicles accumulate preferentially along the SPB 

patches edges, where they disrupt more quickly and fuse with the adjacent SPB islands. SPB 

coverage reaches a critical point, where liquid-like coalescence of patches occurs rapidly (at a 

constant bilayer area). Probably, due to SPB lost edges, more vesicles will bind, spread and coalesce, 

creating another lipid bilayer that will cover partly the underlayer SPB formed previously, as it can be 

seen in figure 4.3 a) and b) by the large round islands found at different heights. Then, when a critical 

surface coverage is attained and perhaps due to the fact that the surface has become more rough or 

because the interactions between DPPG liposomes and silicon substrate diminished, new liposomes 

attached to the SPBs surface without rupture, corresponding to the small circles domains found at 

high heights in figures 4.3 a) and b). The surface root-mean-square roughness (Rq) found was 11±2 

nm. A statistical analysis of the intact liposomes adsorbed on the top surface reveals an average 

height and width of 11±3 nm and 87±9 nm, respectively, meaning that after adsorption the SUVs kept 

closed but with a certain flattening. These values showed that the effective mean diameter of the 

DPPG liposomes is lower than the obtained by DLS, due to some constrains reported in section 4.1. 

Israelachvilli works demonstrate the presence of a thin layer of water between 0.6 and 0.9 nm trapped 

between the phospholipid bilayer and the silicon surface [77]. This explains the thickness difference 

between SPB levels presented in figure 4.3 c), with 5 nm, and DPPG phospholipid bilayer, reported in 

[237], with 4.5 nm.   

   

 

 

a) b) 

 

Profile 
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c) 

Figure 4.3.Topographic AFM images a) and b) with 0.50.5 µm
2 

area of DPPG cast films deposited onto a silica 
substrate. c) The height profile obtained from topographic image b) shows a liposome, on left, with a diameter of 
~100 nm and two levels, on right, with about 5 nm corresponding two to DPPG lipid bilayers deposited one above 
the other.  

 

In order to confirm the presence of intact liposomes and the SUVs vesicles size found in DPPG cast 

films, samples were imaged via SEM. Figure 4.4 shows an image obtained by this technique where it 

is possible to observe the presence of vesicles with a range diameter from 75 to 110 nm. Although 

other measurements, data none shown, revealed a presence of vesicles with lengths fluctuating 

between 40 to 70 nm.  

Combining the AFM and SEM results with the accomplished by DLS measurements, see section 4.1, 

a mean diameter value of 120 nm was found and will be considered for later studies performed with 

DPPG suspensions attained by the extrusion method.  
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Figure 4.4. SEM image of a DPPG cast film showing vesicles with diameters between 75 and 109 nm. 

 

A semi-quantitative analysis of DPPG cast films was performed by Energy-dispersive X-ray 

Spectroscopy (EDS). The obtained spectrum presented in figure 4.5 reveals the presence of carbon 

(C), oxygen (O), sodium (Na) and phosphorus (P) elements assigned to the DPPG liposomes and of 

silicon (Si) element owned to the substrate.   

 

 

 

Figure 4.5. EDS spectrum of DPPG cast film with a concentration of 5mM deposited onto a silicon substrate. 
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Aiming to verify if DPPG vesicles adsorbed on the top of SPB, as shown by AFM topographic images 

(figure 4.3), have the ability to serve as water molecules reservoirs more measurements were made, 

specifically via spectroscopies techniques. Thus, the DPPG suspension was casted onto calcium 

fluoride (CaF2) surfaces to be analyzed by Fourier transform infrared (FTIR) spectroscopy. The 

obtained infrared spectrum, shown in figure 4.6, reveals a major band with a peak centered at 3440 

cm
-1

 which can be assigned to OH group of the glycerol and to water retained in liposomes [238]. The 

strong bands at 2915 and 2852 cm
-1

 corresponding to C–H stretching of the phospholipid hydrocarbon 

tails, namely CH2 and CH3 groups, respectively [4]. The peak at 1738 cm
-1

 can be assigned to 

stretching of carbonyl group (C=O) [239-241] while the large peak at 1638 cm
-1

 can be also associated 

to vibrations of C=O groups which are embedded in hydrogen bonds, taking into account Blume et al 

which observed that in presence of stronger hydrogen bonds and/or more hydrogen bond donors the 

vibrational frequency of the lipid ester C=O group shifts to lower wavenumbers [242, 243]. It should be 

also referred that Paolorossi and  Montich observed that DPPG presents a band at 1643 cm
-1

 which 

has been associated to unfolded structure [244] while Surewicz and Mantsch observed a peak at 1649 

cm
-1

 which was associated to unordered conformations [245, 246]. The peak at 1467 cm
-1

 represents 

the CH2 scissoring [247, 248]. The small peak at 1414 cm
-1

 can be assigned to in-plane bending of C–

O–H group. The peak at 1241 cm
-1

 is associated to antisymmetric stretching of hydrated PO4
− 

group 

[249], while the peak at 1222 cm
-1

 is related to P=O antisymmetric stretching  of  PO4
− 

group [247, 

248]. The peaks at 1169 and 1070 cm
-1

 can be assigned, respectively, to asymmetric and symmetric 

stretching of CO–O–C groups [250]. Finally, the peaks at 1096, 1057 and 1047 cm
-1

 can be 

associated to symmetric stretching of CO–O–C, C–O–C and C–O–P groups, respectively [247, 248, 

251]. 

 

Figure 4.6. Infrared spectrum of DPPG cast film prepared onto a CaF2 substrate. 
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DPPG cast films deposited on silicon surfaces were also analyzed by X-ray photoelectron 

spectroscopy (XPS). According to the XPS spectra of DPPG cast films, taken at take-off angle of 0 

relative to the normal surface of films, it was possible to detect the following elements: carbon (C), 

oxygen (O), sodium (Na) and phosphorus (P). Furthermore, in table 4.2 is listed the atomic 

percentages, as well as the binding energies (BE) that were corrected using the aliphatic C 1s BE 

equal to 285.0 eV as reference. The C 1s region was fitted with four peaks. The two first peaks with 

low BE centered at 285.0 and 285.6 (± 0.1) eV are attributed to an aliphatic carbon and to a carbon 

single bonded to an oxygen (hydroxyl carbon), respectively [213]. The others two peaks with higher 

BE centered at 286.9 and 289.2 (± 0.1) eV are associated to a carbon double bonded to oxygen, 

namely a carbonyl carbon (C=O) and a carboxylate carbon (O–C=O), respectively [252]. The origin of 

the oxygen detected in the XPS spectra can not only be attributed to DPPG vesicles but also to the 

silicon substrate. At the O 1s core level binding energies region the sample exhibit three components 

centered at 531.4, 533.0 and 535.8 (± 0.2) eV. The first one is assignable to the oxidation from the 

silicon surface [213] and the third to water molecules aggregates entrapped in the film [6, 253]. The 

second peak can be assignable to an oxygen single bonded to a phosphate and to a carbon and the 

oxygen double bonded to a carbon [213]. The region of the P 2p comprises one doublet. The most 

intense component P 2P3/2 centered at 133.7 ± 0.2 eV is typical of a phosphorous with a neighborhood 

rich in oxygen [254]. The BE of 1071.4 eV corresponds to sodium DPPG counterion.    

 

Table 4.2. Atomic Concentrations (%), Binding Energies (BE), eV, and respective assignments of the DPPG cast 
films deposited on silicon substrates. 

 

 

Atomic 

percentage 

(%) 

BE 

(eV) 
Assignments 

C 1s 1 44.3 285.0 C-C, C-H  

C 1s 2 21.0 285.6 C-O 

C 1s 3 7.4 286.9 C=O 

C 1s 4 3.8 289.2 O=C-O 

O 1s 1 5.2 531.4 Substrate oxide 

O 1s 2 13.8 533.0 -OPO3
-
 

O 1s 3 0.8 535.8 -OH 

P 2p3/2 1 1.2 133.7 -PO3
-
 

P 2p1/2 2 0.6 134.6 -PO3
-
 

Na 1s 1.8 1071.4 Na 
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During XPS measurements the samples are submitted to high vacuum for several hours. 

Consequently, water molecules present in samples that are not bounded are easily removed, while 

bonded water molecules, i.e. structural water, remain in the sample. As the peak obtained 535.8 eV [6] 

is associated to the presence of water molecules aggregates entrapped in the film, one can conclude 

that water is retained inside of the intact vesicles of the DPPG cast films. This finding is corroborated 

by AFM topographies and SEM images where it was possible to verify the presence of intact 

liposomes adsorbed onto a hydrophilic surface after the completely coverage by SPBs.  

 

4.3 Improving Quartz Crystal Microbalance measurements accuracy in 

liquids 

The accuracy of a commercial Quartz Crystal Microbalance (QCM200 from Stanford Research 

Systems, California) to measure the adsorbed amount of polyelectrolytes and biological molecules at 

solid/liquid interface was tested using different experimental configurations to conclude about the 

quality, stability and reproducibility of the measured data. The evaluation consisted in comparing the 

adsorb kinetics curves of adsorption of the cationic polyelectrolyte PEI and the anionic DPPG 

liposomes, obtained by sonication, when disposing the quartz crystal in five different experimental 

configurations, namely: Stationary Horizontal Open (SHO), Stationary Horizontal Closed (SHC), 

Stationary Vertical Open (SVO), Continuous Vertical Closed (CVC) and Stationary Vertical Closed 

(SVC). For this last configuration a new homemade cell was designed and implemented. 

 

4.3.1 Testing QCM setups sensor 

Figures 4.7 a), b) c) d) and e) show the frequency shift as a function of adsorption time of a PEI/DPPG 

bilayer assembled by disposing the quartz crystal resonator in five different experimental 

configurations, explicitly: (a) Stationary Horizontal Open (SHO), (b) Stationary Horizontal Closed 

(SHC), (c) Stationary Vertical Open (SVO), (d) Continuous Vertical Closed (CVC) and (e) Stationary 

Vertical Closed (SVC).  
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a) 

 

b) 
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c) 

  

d) 
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e)   

 

Figure 4.7. Frequency shift as a function of time corresponding to PEI/DPPG bilayer assembling measured in the 
(a) Stationary Horizontal Open (SHO), (b) Stationary Horizontal Closed (SHC), (c) Stationary Vertical Open 
(SVO), (d) Continuous Vertical Closed (CVC) and (e) Stationary Vertical Closed (SVC) experimental 
configurations. The inset in graph d) displays the stabilization frequency in liquid before the PEI/DPPG assembly 
in the CVC system. 

 

Kinetic curves obtained from five different QCM experimental configurations were analyzed in order to 

realize and overcome handicaps related to laboratory procedures, mechanical and acoustic vibrations.  

The quartz crystal horizontal setups, SHO and SHC, proved to be more sensitive to external 

mechanical vibrations, see figures 4.7 a) and b), namely because the injection of solutions on the 

quartz crystal is handmade, using a Pasteur pippete, and does not allow maintain a continuous flow 

when the solution is being deposited. On the other hand, the main advantages of these experimental 

setups are the ease of use and the fact that small amounts of solution, about 1.5 ml, are required.  

The SVO is the simplest setup due to the fact that the crystal holder head is vertically submerged into 

the solution, however this procedure is unreliable and may produce mechanical vibrations due to the 

crystal holder head immersion, see figure 4.7 c). In addition, this system requires a great amount of 

solution, of about 35 ml, per layer. Although it is an open system, the acoustic vibrations can be 

reduced by the high quantity of solution. 

The CVC system presents some drawbacks concerning to mechanical vibrations caused by the 

peristaltic pump work, as revealed by the inset in figure 4.7 d), where is displayed an irregular 
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frequency after liquid balance operation. Note that the acquired peristaltic pump has 12 cylinders in 

order to reduce the noise. However, the noise reduction is not enough and more improvements 

concerning to peristaltic pumps must be done. Furthermore, the appearance of microbubbles inside 

the tubes during the solutions flow is very common and compromise severely the measurements. Also 

the high expense of solution and operational costs are strong limitations.  

Analyzing the data acquired by the SVC system, figure 4.7 e) and comparing with the other setups, it 

is possible to realize that, during PEI and DPPG adsorptions, mechanical and acoustic vibrations were 

reduced as well as thermal variations. It seems that this system has an adequate chamber volume 

that supports external inputs. Nevertheless, kinetic curves displayed in figure 4.7 e) are distinct from 

the other setups due to solution diffusion processes [111]. 

Table 4.3 displays the final frequency shift achieved after the completion of a PEI/DPPG bilayer for 

each experimental setup. The PEI/DPPG frequency shift attained by SHO and SHC systems was 

141±21 Hz and 154±23 Hz, respectively. These values are much greater than the obtained by the 

vertical setups, such as de SVO, CVC and SVC, with a final frequency shift of 84±13 Hz, 99±15 Hz 

and 93±14 Hz, respectively. Thereby, values measured with quartz crystal resonator in the horizontal 

position present a higher frequency shift than the ones obtained with the vertical arrangement. These 

results allow us to conclude that, due to gravity force, the vertical alignment of the quartz crystal 

reduces the measured mass since non-adsorbed molecules are not being weighted. 

 

Table 4.3. PEI/DPPG final frequency shifts measured with Stationary Horizontal Open (SHO), Stationary 
Horizontal Closed (SHC), Stationary Vertical Open (SVO), Continuous Vertical Closed (CVC) and Stationary 
Vertical Closed (SVC) experimental configurations. 

System 

Type 

Adsorption time 

(min) 

Frequency shift 

(Hz) 

PEI DPPG PEI/DPPG 

SHO 3 10 141±21 

SHC 3 10 154±23 

SVO 3 10 84±13 

CVC 10 10 99±15 

SVC 10 15 93±14 

 

4.3.2 QCM comparison setups summary 

To systematize the comparison between the different experimental configurations setups, a set of 

qualitative parameters were define, namely the reproducibility, the system sensibility to mechanical 

and acoustic vibrations, MVS and ACS, respectively, and the influence of temperature variation (TSV). 

So, if during measurements the oscillator only gets interference when the user is operating the system 

(e.g. washing the quartz crystal support between adsorptions), the MVS parameter receives the LOW 
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status; but if in the same conditions, the oscillator responds to any vibration caused by managing 

items on the working bench, it receives the MEDIUM status; and if it responds to any mechanical 

vibration produced in the room, HIGH status is assumed for this parameter. The ACS parameter is 

related to any noise produced during measurements, for example, if the system responds to any 

sound noise in the room, it receives the HIGH status, but if it only responds to the sound noise near 

the system, the parameter is classified with MEDIUM status; and if the system does not respond to 

any kind of sound noise, the parameter receives the LOW status. The qualitative scale associated to 

temperature is based on temperature change rates, for example, if the system responds to a 

difference of temperature from 0.5 to 1.0 C per hour, the TVS parameter is considered HIGH; but if 

the system only responds between 1.0 and 3.0 C per hour the parameter is stated as MEDIUM; and if 

the system doesn’t respond to temperature differences between 3.0 and 5.0 C the parameter 

receives the LOW status. Reproducibility is a parameter dependent of the previous parameters, i.e., if 

an experimental configuration receives a HIGH status for the reproducibility parameter thus, all the 

previous parameters must to be LOW; a MEDIUM reproducibility means that at least two of the 

previous parameters does not assume the HIGH status; and a LOW reproducibility means that at least 

two of the previous parameters takes the HIGH status. The quantitative parameter Operational Cost is 

related to the volume of solution(s) used for QCM measurements and is presented in percentage, 

being the maximum value of reference equivalent to the adsorption of 20 layers in the SVC system, 

with a total volume value of 120 ml. The result of the qualitative analysis according with the described 

above is displayed in table 4.4. 

 

Table 4.4. Comparison between the different tested QCM systems, namely Stationary Horizontal Open (SHO), 
Stationary Horizontal Closed (SHC), Stationary Vertical Open (SVO), Continuous Vertical Closed (CVC) and 
Stationary Vertical Closed (SVC) experimental configurations. 

System Type Reproducibility MVS
i
 ACS

ii
 TVS

iii 
Operational Cost

iv 

(%) 

SHO Low High High High 10 

SHC Medium High Low Medium 10 

SVO Medium Medium Low Low 47* 

CVC Medium Medium Low Medium 40 

SVC High Low Low Low 100 

 

i
 Mechanical Vibration Sensitivity; 

ii
Acoustic Vibration; 

iii
Thermal Variations; 

iv
 Operational Cost per 20 layers  

*In the SVO system the solution change was performed only after 5 adsorbed layers.  
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4.3.3 Analysis of PEI and DPPG Kinetics  

In order to compare the data acquired by the five different experimental setups configurations, PEI and 

DPPG adsorption kinetics curves were plotted together, as shown in figures 4.8 a) and b), 

respectively. Comparing the PEI adsorption kinetic curves between the different setups configurations, 

presented in figure 4.8 a), one can infer that the open systems (SVO and SHO) present larger 

disturbances in their kinetic curves and therefore are less reliable. In fact, these experimental setups 

configurations are subjected to changes in the film viscoelastic properties during PEI adsorption and 

are also affected by temperature fluctuations because they are open systems. PEI frequency shift 

results obtained by CVC and SHC setups demonstrated that those are more trustworthy systems for 

polyelectrolytes adsorptions, being more resilient to solutions viscoelastic properties changes, i.e. 

changes from rigid to soft film, because small amounts of solution to preform measurements are 

needed, allowing the reduction of the interactions between the adsorbent and the adsorbed. The SVC 

system showed a smaller PEI frequency shift (25 Hz) then the other systems due to diffusion 

processes inherent to polyelectrolyte solution injection [111]. After PEI adsorption the rinse procedure 

leads to an increase of ~10 Hz, see figure 4.7 e), suggesting entrapped water molecules in the film. 

PEI frequency shift average in solution obtained by Baba and co-workers after 15 minutes of 

adsorption time was 31.5 Hz [130]. The closed systems (SHC, SVC and CVC) also demonstrated that 

are less affected by mechanical and acoustic vibrations and by small temperature variations. 

Figure 4.8 b) illustrates frequency shift versus time, corresponding to the growth of an adsorbed 

DPPG layer, obtained by the five different setups. Overall, the SVO, SHO and SHC systems revealed 

a decrease of the frequency shift after five minutes of DPPG absorption suggesting that desorption 

took place into some extent or that liposomes have disrupted releasing the entrapped water. However, 

Morita et al proved that even without liposomes volume change, a decrease of the adsorbed mass can 

be detected when the water sphere deforms [99]. This assumption leads us to suggest that after the 

adsorption of DPPG vesicles a spatial rearrangement of the vesicles took place affecting the QCM 

measurements. DPPG kinetic adsorption data acquired by CVC experimental configuration revealed a 

more stable curve without frequency shift decrease, probably due to the fact that the DPPG 

continuous flux through the cell gives rise to a decrease in the number of collisions between the 

liposomes and the PEI cushion combined with the fact that it is a closed circuit and so can avoid 

thermal fluctuations. In the SVC system the liposomes kinetic immobilization is mainly controlled by 

two processes, such as diffusion and adsorption due to electrostatic interactions and therefore the 

DPPG kinetic curves present two stages, as we can see in figure 4.8 b), taking longer than 10 minutes 

until total adsorption occurs [111]. In this setup configuration, one should take into attention that the 

diffusion rates increase with the reduction of the particle size increasing the number of collisions 

between adsorbate and adsorbent [255]. 
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a) 

 

b) 

Figure 4.8. Adsorption kinetics curves of a) PEI and b) DPPG measured by Stationary Horizontal Open (SHO) 
(squares), Stationary Horizontal Closed (SHC) (up triangles), Stationary Vertical Open (SVO) (stars), Stationary 
Vertical Closed (SVC) (circles) and Continuous Vertical Closed (CVC) (diamonds) systems. 
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The amount of DPPG adsorbed amount onto PEI polymer cushion, obtained by the SVC QCM system, 

was calculated from equation 3.1 and a value of 9±1 mg/m
2
, corresponding to frequency shift of 53 Hz, 

was attained. This value is twice the one predicted for a planar DPPG bilayer [256] suggesting the 

presence of closed DPPG liposomes immobilized on the PEI surface. Since the first layer is the 

support for the liposomes adsorption, the type of polyelectrolyte used as cushion plays an important 

role for the anchoring of the subsequent layers and the stability of the whole film. It should be 

emphasized that the structure of the film is also strongly dependent on the deposition conditions, 

namely the ionic strength and pH of the solution [257]. At high pHs only a small fraction of amino 

groups of PEI is charged, approximately 5% of monomer [258, 259] and at pH 9 the PEI ionization 

degree is ~0.25 presenting a coiled conformation. Electrostatic interactions between the neighboring 

ionized groups may be disregarded at a low degree of ionization region, i.e. smaller than 0.4 [260]. 

LbL films assembled with PEI as a precursor layer at high pH are thicker giving a greater robustness 

to the heterostructure. Thus, the weakly charged PEI is more hydrophobic and promotes the formation 

of denser layers. It has been demonstrated that an increase of the surface hydrophobicity influences 

the adsorption phenomena and, consequently, avoids the liposome rupture [111].  

Bearing in mind that DPPG suspension used in QCM measurements is sonicated a mean diameter of 

25 nm for DPPG vesicles is expectable and a mass amount of 16 mg/m
2
 for hexagonal packing 

vesicles adsorbed onto a flat surface was calculated. Thus a value of 9 mg/m
2
 attained from equation 

3.1 is smaller than the predicted, suggesting that two situations may have occurred: the PEI surface is 

not completely filled with intact DPPG liposomes, and/or several vesicles have disrupted releasing the 

entrapped water. This is in agreement with previous adsorption experiments revealing that the 

adsorbed amounts are dependent of the adsorbent roughness and the number of pre-adsorbed 

bilayers [261, 262]. In order to better understand the deposition of each layer and to compare to the 

obtained QCM data the surface morphology will be analyzed by atomic force microscopy (AFM).  

 

 

4.3.4 Analysis of topographic surfaces 

AFM topographic images with 2x2 μm
2
 obtained from Au-coated quartz crystal surface and from PEI 

and PEI/DPPG LbL films deposited onto the crystal are shown in figure 4.9. Surface profile 

parameters as root-mean-square roughness (Rq) and kurtosis (Rku) values are displayed in table 4.5. 

Here, a meaningful difference of Rq values can be found for Au-quartz crystal surfaces before and 

after the adsorption of a PEI layer, namely of 1.3 nm and 0.5 nm, respectively. These results indicate 

that when the PEI layer is adsorbed onto the Au-quartz crystal surface, the PEI molecules fill the 

spaces between the peaks of the gold surface decreasing the surface sharpness, i.e. mesokurtic, with 

a Rku equal to 3±1.  This result is in accordance with Kolasińska [257] who postulated that when the 

PEI is used as a first layer, it can act as a scaffold making multilayer structures thicker and more 

stable for treatment in environments at various pHs, with a more homogeneous electronic distribution, 

providing a more homogeneous and smooth surfaces than those containing strong polyelectrolytes. 

When the DPPG layer is adsorbed onto Au/PEI layer the Rq value increases from 0.5 to 4 nm, 
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revealing that liposomes have been adsorbed in an intact closed shape. Furthermore, the Rku also 

increased revealing a surface with more peaks than valleys [177], which in turn proves the adsorption 

and the integrity of the DPPG vesicles. 

 

a) 

 

 

b) 

 

 

c) 

 

Figure 4.9. Topographic images with 22m
2
 area of a) Au-coated quartz crystal, b) Au/PEI and c) Au/PEI/DPPG 

surfaces.  
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Table 4.5. AFM 1D statistical parameters of Au-coated quartz crystal, Au/PEI and Au/PEI/DPPG surfaces. 

Topographic data were obtained from a measured area of 22 µm
2
. 

  
Rq – root-mean-square roughness; Rku – Kurtosis; P1 – peak 1 position; W1 – width peak 1; A1 – peak 1 area;  
P2 – peak 2 position; W2 – width peak 2; A2 –peak 2 area. 

 

 
The height profiles with 160 nm of scan length obtained from 22m

2
 surface images of Au, Au/PEI 

and Au/PEI/DPPG were plotted together and are displayed in figure 4.10. The profile of the DPPG 

layer, with a width and height values of approximately 60 nm and 30 nm respectively, presents larger 

roundish features than the mean diameter determined by DLS, 25 nm.  

 

Figure 4.10. Profiles obtained from 22m
2
 surface images of Au (squares), Au/PEI (circles) and Au/PEI/DPPG 

(up triangles). 

 

The height distribution curves achieved for the three analyzed surfaces are displayed in figure 4.11. 

The plots were fitted with Gaussian curves and the obtained parameters are displayed in table 4.5. 

Concerning to the height distributions of Au and PEI surfaces only one peak centered at 4.663±0.007 

nm and 3.015±0.002 nm, respectively, was found. After the deposition of PEI onto Au substrate there 

LbL films 

AFM 1D Statistical parameters (rows) 

Rq 
(nm) 

Rku 
Height distribution Gaussian fit parameters 

P1 
(nm) 

W1 
(nm) 

A1 
P2 

(nm) 
W2 

(nm) 
A2 

Au 1.3±0.2 3.3±0.7 4.663±0.007 2.42±0.02 0.959±0.007 ---- ---- ---- 

Au/PEI 0.5±0.2 3±1 3.015±0.002 0.853±0.004 0.988±0.005 ---- ---- ---- 

Au/PEI/DPPG 4±1 4±2 13.01±0.02 5.73±0.04 0.90±0.02 20±2 10±2 0.09±0.03 
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is a small reduction of the height confirming the observed Rq roughness decrease. Regarding to the 

height distribution of the DPPG layer, two peaks, slightly smaller than the nominal vesicles diameter, 

centered at 13.01±0.02 nm and 20±2 nm were obtained. This evidence suggests two situations: i) 

liposomes are immobilized in a close packed way, so that AFM tip is only probing the upper parts 

[263]; however and taking into account that the DPPG adsorption attained by the QCM data was 

smaller than the theoretical expected leads us to believe that a large fraction, approximately 50%, of 

the DPPG vesicles have disrupted, forming lipid bilayers, and thus releasing the water entrapped; ii) 

because the weakly PEI polyelectrolyte underlayer is hydrophobic, but also smooth, after DPPG 

vesicles immobilization they flattened due to nearly absence of interactions. 

 

 

Figure 4.11. Height distribution of Au (squares), Au/PEI (circles) and Au/PEI/DPPG (triangles) obtained from the 
AFM images. The respective Au/PEI/DPPG height distributions Gaussian fits are represented in green. 

The calculated surface statistical parameters obtained from AFM topographic images have supported 

the kinetics data obtained by the SVC QCM system. Summarizing, PEI and DPPG adsorptions were 

proved by the differences attained in Rq and Rku values before and after solutions deposition. In 

addition, the height distribution parameters are consistent with DPPG liposomes adsorbed on PEI 

surface in a close packed form. The possibility of having DPPG lipid bilayers or vesicles slightly 

flattened on PEI surface cannot be discarded, which explains the much lower DPPG adsorbed amount 

achieved during QCM measurements. 

Regarding to the purpose of this study, the comparison between the five different QMC experimental 

configurations allowed us to conclude that both SVC and CVC systems are the more reliable setups to 

be use in LbL films assembly in situ using polyelectrolytes and liposomes aqueous solutions. 

Nevertheless, it must be taken into account that the SVC system has inherent diffusions processes, 
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precluding kinetic curves comparison between both systems. For further studies of LbL films growth 

with a large number of bilayers, the SHC setup will be the system selected because small amounts of 

solution are needed and requires less time is requirement to perform the measurements, but we 

cannot discard the fact that this system requires a meticulous operationalization in order to QCM 

measurements derive successfully. 

 

 

4.4 Growth analysis of PEI/DPPG LbL films 

Taking into account the previous studies where it has been suggested that the breaking of DPPG 

liposomes after immobilization on PEI polyelectrolyte layer is probably due to low roughness surface; 

the buildup of LbL films with DPPG extruded vesicles interspersed in PEI layers was implemented onto 

a rough polyelectrolyte multilayers (PEM) cushion in order to avoid liposomes rupture.  As described 

above the assembly of a LbL film with a great number of bilayers, in this case (PEI/DPPG)10, was 

executed using the SHC QCM system.  

 

4.4.1 (PAH/PSS)10  LbL Film Cushion 

The analysis of QCM data cushion associated to (PAH/PSS)10 LbL film, prepared to prevent the rupture 

of the  extruded DPPG liposomes, revealed a frequency shift of 248 Hz. Despite the exponential build-

up of this film, a mean value for the adsorbed amount per unit area per bilayer of 4.4 mg/m
2
 was 

calculated using the equation 3.1. This value, obtained for the (PAH/PSS)10 LbL film prepared from 

aqueous solutions without salt, is in accordance with literature for LbL films assembly prepared in 

aqueous solutions with 0.5 M of salt, where a value of 6 mg/m
2
 mass amount per PAH/PSS bilayer was 

attained [264]; since a high salt concentration origin a high adsorbed amount. Surface topographies 

measured by AFM, indicate Rq values of 4±1 nm for (PAH/PSS)2 LbL films [265]. Such result allows us 

to conclude the roughness value is relatively small when compared with the size of liposome which 

should take an average value of 120 nm [91]. 

 

4.4.2 Growth of the (PEI/DPPG)10 LbL films  

A (PEI/DPPG)10 LbL film was assembled onto (PAH/PSS)10 polyelectrolyte multilayer. The growth of 

the LbL heterostructure was monitored by QCM using the SHC setup and the frequency shift (ΔF) 

plotted as a function of time is shown in Figure 4.12 (a). LbL film growth can be characterized by 

plotting the accumulated ΔF as a function of the number of layers or bilayers. Figure 4.12 (b) shows 

the accumulated frequency for PEI, DPPG and PEI/DPPG layers during assembly. The analysis of 

these plots points toward a typical LbL film growth, where the roughness of the substrate has an 

influence in the adsorbed amounts as demonstrated by [262, 266]. In fact, the adsorbed amount 

increases exponentially until the 4
th
 bilayer followed by a linear growth.  
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a) 

 

b) 

Figure 4.12. a) QCM frequency shift due to the successive adsorption of PEI/DPPG bilayers with water rinsing 
between deposition steps. b) Accumulated frequency shift of the assembly of ten PEI (open squares), DPPG (up 
triangles) and PEI/DPPG layers (circles). 
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The adsorbed mass per unit of area for each PEI, DPPG and PEI/DPPG deposited layers was 

calculated using equation 3.1 and the results as a function of number of bilayers are displayed in 

figure 4.13. Analyzing this figure, it is found that the adsorbed amount of DPPG increases until the 4
th
 

bilayer where it reaches a saturation point, attaining to a constant value of mass adsorbed of 103±14 

mg/m
2
. This finding suggests that different processes occur when DPPG layers are being attached to 

the surface since it takes diverse adsorbed mass values until reach saturation. 

The adsorbed amounts for DPPG lipid bilayer and close-packed layer with liposomes with 120 nm of 

diameter were calculated in order to compare with the experimental values. Assuming that one DPPG 

lipid bilayer is adsorbed on the crystal surface, the DPPG adsorbed amount per unit of area should 

take a value of 5.5 mg/m
2
. This value was calculated taking into account that the DPPG molar mass is 

744.96 g/mol and considering condensed lipids where the hydrophilic area of the phospholipid 

molecule head is ~45 Å
2
 [267]. This means that about 5.9x10

14
 DPPG molecules should be adsorbed 

on the crystal surface which gives an adsorbed amount of 5.5 mg/m
2
. Kasemo et al have found a 

value of ~5mg/m
2
 for 1-Palmitoyl-2-oleoyl-sn-glycero-3--phosphocholine (POPC) lipid bilayers 

adsorbed onto silica-coated quartz crystals [268]. Considering a DPPG liposome layer immobilized on 

the same surface in a close-packed spheres model one can find a value of 77 mg/m
2
. The 

experimental adsorbed amounts for each DPPG layer can now be compared with these theoretical 

values. 

During first DPPG layer adsorption, an adsorbed amount of about 24 mg/m
2
 was attained indicating a 

higher value than for a single lipid bilayer. Thus, two reasons can lead to this adsorbed value: i) some 

of DPPG liposomes adsorbed on the PEI surface disrupt and spread in the surface while others are 

intact increasing the surface roughness. Israelachvilli et al. [67] demonstrated that isolated vesicle 

rupture is rare. However, the coexistence of ruptured and intact liposomes adsorbed on MgF2 was 

observed in [269]; ii) it was observed that after washing, the first PEI adsorbed layer, the QCM 

frequency increases 42 Hz indicating that PEI and cushion molecules were removed. This trend, that 

originated an increase of the film roughness, was already observed by Lvov et al. [270]. The ablation 

of molecules from the surface can also create both positive and negative islands, where DPPG 

liposomes can or cannot be adsorbed. Both reasons prompt to a roughness increase which can now 

create conditions to adsorb a higher amount of PEI. This sequence is repeated until the 4
th
 bilayer, 

where the surface is prepared to adsorb a DPPG maximum amount due to liposomes organization. 

Afterwards, the structural rearrangement of liposomes creates conditions to surface roughness 

decrease with subsequent reduction of the PEI adsorbed amount, for the next two bilayers where the 

PEI mass attains to a constant value, as shown in figure. 4.13. When DPPG adsorbed amount is 

maximum, i.e. reaches to the saturation point, it means that liposomes are in close-packed spheres 

and, consequently the surface roughness becomes higher than the cushion roughness leading to a 

greater PEI adsorbed amount for these deposited layers. However, it is expected that after the 5
th

 

bilayer the layers become more homogeneous than the first which is in opposition with the found by 

Warsynski et al. [271]. They demonstrate that the inner structure of the LbL films formed with PEI as 

an anchor is more homogeneous and therefore less rough. The mass amount attained for the DPPG 
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after the 5
th
 layer is higher, 103±14 mg/m

2
, than the predicted theoretically, 77 mg/m

2
. One of the main 

reasons could be the fact that QCM measurements were made using the SHC setup, in which higher 

values of adsorbed mass are achieved because the quartz crystal resonator is disposed at the 

horizontal, as already been discussed in the previously section. However, more advanced adsorption 

kinetic treatments need to be performed in order to find the processes that are occurring during the 

assembly of the (PEI/DPPG)10 LbL film.  

 

Figure 4.13. Adsorbed amount of PEI and DPPG layers and PEI/DPPG bilayers plotted as a function of the 
number of bilayers.  

 

4.4.3 DPPG adsorption kinetics 

In order to study DPPG adsorption kinetics, QCM frequency shifts of each DPPG layer were plotted 

as time function. As an example, figure 4.14 shows the kinetic curve of the first DPPG layer. This 

adsorption kinetic curve points to the combination of two different adsorption processes. This is in 

accordance with several adsorption kinetic studies on LbL films which follows the general equation [16]:  

𝛤 = 𝛤1(1 − 𝑒𝑥𝑝(−𝑡/𝜏1)) + Γ2(1 − 𝑒𝑥𝑝(−(𝑡/𝜏2)𝑛𝐽𝑀𝐴))                               (4.1) 

 

where Г is the amount adsorbed per unit area, 𝛤1 and Γ2 are constants representing the maximum 

amount adsorbed during each process, 𝜏1 and 𝜏2 are the characteristic times of the processes, 

respectively, and nJMA is the exponent of the variable time value that relates to the type of adsorption 

that occurs in the film. The DPPG adsorption kinetic plots were fitted with this equation maintaining nJMA 
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equal to the unit. One possible explanation for these two processes can be the adsorption of liposomes 

during the first stage (first process), followed by adsorption and rearrangement of the adsorbed 

liposomes on the surface, corresponding to the second process. The parameters obtained from fitting 

the DPPG kinetic curves reveal that the maximum adsorbed amount associated to the process with 

shorter characteristic time takes a mean value of 14±3 mg/m
2
 with a mean characteristic time of 24±4 

seconds. However, the process for larger times (second process) revealed that both maximum 

adsorbed amount and characteristic time are dependent of the number of bilayers already adsorbed.  

The characteristic times behavior is easily observed by plotting 𝜏1 and 𝜏2 as a function of the number of 

bilayers (Inset of Fig. 4.14). As we can see in the inset of figure 4.14, the time required to the second 

process is lower in first and second DPPG deposition layers, greatly increasing in third and fourth 

layers, and then decreasing to a constant value. This variation suggests some structural rearrangement 

and relaxation after the liposomes adsorption in the 3
rd

 and 4
th 

layers.  
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Figure 4.14. Adsorbed amount of DPPG-liposome on a LbL film (PAH/PSS)10/PEI as a function of immersion time. 
The first-order kinetics showed a characteristic time of 0.49 minutes and the second process showed a 
characteristic time of 4.7 minutes. The inset shows 𝜏 (min) of the first (circles) and second (squares) order kinetics 

as a function of bilayers number. 
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This result is in accordance with the proposed model of adsorbed amount increase associated to 

surface roughness growth. However, it is difficult to define all changes that are arising, because 

adding a new layer onto liposomes already immobilized causes deformations in the previous one. It 

should be referred that the DPPG maximum adsorbed amount of 103±14 mg/m
2
 is higher than the 

value calculated to a close-packed spheres model in somewhat due to the viscoelastic properties of 

liposomes, related to the fact that they are structures substantially larger and less compacted subject 

to greater deformation [83], and also because QCM measurements were made using the SHC setup. 

Figure 4.15 outlines the proposed model for the (PEI/DPPG)6 LbL film adsorption onto a rough 

polyelectrolyte cushion.  

 

 

Figure 4.15. Schematic representation of the adsorption of (PEI/DPPG)6 LbL film onto a rough polyelectrolytes 
cushion. The numbers correspond to the PEI successive layers adsorbed and the letters are concerned to the 
DPPG liposome layers adsorbed.  

 

The QCM data analysis allowed to infer that DPPG adsorbed amount is dependent of the number of 

bilayers already adsorbed, increasing from 24 mg/m
2
 in the first bilayer to a constant value of 103±14 

mg/m
2
 after the 4

th 
bilayer. This dependence was interpreted by the roughness evolution with the 

number of bilayers which increases until a maximum and after that decreases to a constant value. 

Kinetic curves reveal that the DPPG adsorption is justified by two processes, one which is associated to 

adsorption of DPPG liposomes with a small constant time independent of the bilayers number and 

another depending on the number of bilayers, associated to a structural rearrangement of DPPG 

liposomes on surface.  
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4.5 Growth analysis of PAH/DPPG LbL films 

In order to test the adsorption of DPPG liposomes onto a smooth planar surface a (PAH/DPPG)10 LbL 

film was build-up onto a silicon surface. This assembly was monitored by vacuum ultraviolet (VUV) 

spectroscopy and the adsorbed amounts of DPPG and PAH layers were determined. To our 

knowledge this is the first report of VUV measurements for DPPG liposomes, which also served to 

verify possible damage of prolonged UV irradiation on DPPG-containing LbL films, with the 

implications for biological systems. The characterization of the PAH/DPPG LbL films was 

complemented by AFM. Furthermore, XPS analysis was carried to better understand the inner 

structure of the PAH/DPPG and PEI/DPPG LbL films. 

 

4.5.1 VUV characterization of DPPG and PAH molecules 

To our knowledge, there are no VUV studies for DPPG or any other phospholipid in condensed or gas 

phases. For the sake of comparison, we first obtained the VUV absorption spectra of DPPG and PAH 

cast films which were fitted with Gaussian curves as indicated by the solid green curves in the figures. 

Gaussian curves were chosen because they provide the best fits to the experimental data. The inset in 

Figure 4.16 a) shows an absorbance spectrum for a DPPG cast film, prepared with a suspension 

obtained by extrusion. The spectra of DPPG and PAH cast films are shown in Figure 4.16 b), to be 

used as comparison with the spectra of LbL films containing the two components. Since the PAH film 

was cast onto a quartz substrate, the spectrum was measured only down to 160 nm. The peak 

positions and Full Width at Half Maximum (FWHM) obtained in the fitting are listed in table 4.6. The 

error were obtained from the fitting. 
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a) 

 

 

 

b) 

 

Figure 4.16. a) Absorption coefficient spectrum obtained from VUV absorption measurements for a DPPG cast 
film. Green curves depict the fitting of the absorption spectrum with Gaussian curves with bands at 138.2±0.4 nm, 
145.8±0.4 nm, 169.8±0.3 nm and 192±2 nm. In the inset is shown the VUV spectra of DPPG cast film and of 
DPPG dispersion. b) Absorption coefficient spectrum obtained from VUV absorption measurements for DPPG 
and PAH cast films. The green lines correspond to the fitting of PAH spectrum with Gaussian functions with bands 
at 172.9±0.1 nm and 203.8±0.8 nm.  
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The smallest peak for the DPPG cast film at 194.4±0.7 nm (6.38±0.04 eV) is assigned either to the 

nO π∗
CO transition from the lone-pair on the carbonyl oxygen to the antibonding πCO-valence orbital 

[272, 273] and to the valence shell electronic excitations of hydroxyl groups [274-278]. For the peak at 

168±3 nm (7.38±0.09 eV) several assignments are possible: i) n’O  π∗  transitions, where n’O is the 

second lone pair orbital on the carbonyl group oxygen [272]. ii) nO σ ∗ transition in the carboxyl 

group, from the atomic orbital n (ground state) to the antibonding  σ -valence orbital [272, 273]. iii) 

nO σ∗ transition due to the promotion of an electron from the highest filled molecular orbital to an 

antibonding orbital (σ∗
O–H), which normally appears from 165 to 200 nm (6.2-7.5 eV) [274]. iv) water 

dissociation [279]. The peak at 147.2±0.2 nm (8.424±0.009 eV) is assigned to the phosphate group 

[273, 280, 281]. The strongest peak at 138.2±0.8 nm (8.97±0.03 eV) is ascribed to πC=O π∗
CO, where 

a valence transition from the bonding π orbital to the antibonding π-valence orbital occurs [272, 273]. 

The amount of DPPG in the film can be estimated from the VUV spectrum, but this requires a precise 

measurement of film thickness, which is hampered by the non-uniformity of the cast film. Therefore, in 

a control experiment we obtained the VUV spectrum of a 5 mM aqueous solution of DPPG. The 

measurement was performed only up to 170 nm owing to the use of aqueous solutions [279]. The 

absorption coefficients were estimated by assuming that DPPG molecules absorb similarly in the liquid 

and in cast films, which is justified by the similarity in the spectra for the film and solution, as shown in 

the inset of figure 4.16 a). Using the Lambert-Beer law, the DPPG absorption coefficient at 180 nm 

was calculated from DPPG solution spectra. This absorption coefficient calculated from the DPPG 

solutions spectra was then used for the DPPG cast films, from which the absorption coefficients could 

be calculated for small wavelengths, as displayed in Figure 4.16 a). DPPG absorption coefficient curve 

was fitted with four Gaussians which allows one to calculate the partial absorption coefficients,  𝜀p, at 

peak position by considering the maximum absorbance of the peak. These values are displayed in 

Table 4.6. As the PAH spectrum was not measured for small wavelengths, the partial absorption 

coefficient (𝜀p138nm) of 3.7±0.4 g
−1

 m
2
 calculated for the maximum absorption peak at 138 nm for DPPG 

allows us to determine the adsorbed amount of DPPG in LbL films. The absorption coefficients, 𝜀, at 

peak position are also listed in table 4.6. 

Using the VUV spectra of PAH aqueous solutions and the Lambert-Beer law, the PAH absorption 

coefficient spectrum was calculated and shown in Figure 4.16 b). Absorption from the nitrogen group 

was expected according to the literature, as excitation energies below 8 eV have been found for 

ammonia [282-285] and amine [283-287] molecules. The spectrum for the PAH cast film could be 

fitted with two Gaussian curves, as shown in figure 4.16 b), whose parameters are given in table 4.6. 

The more intense peak at 172.9±0.1 nm (7.172±0.004 eV) is assigned to electronic nN→3pa 

transitions from the lone-pair electrons on nitrogen to nitrogen atomic-like orbitals [283, 287]. This 

peak is superimposed onto another at 203.8±0.8 nm (6.08 eV) in figure 4.16 b) which can be assigned 

to the nN→3sa [283, 287, 288] transitions. The partial absorption coefficients for the peaks at 173 nm 

and 204 nm were estimated as 8.51±0.02 and 0.77±0.01 g
−1

 m
2
, respectively, while the absorption 

coefficients attain 10.81±0.02 and 3.33±0.02 g
−1

 m
2
 values, respectively. 
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Table 4.6. Peak position and FWHM parameters for the peaks obtained from fitting the VUV spectra and 
corresponding assignments of DPPG and PAH cast films and PAH/DPPG LbL films. The absorption coefficients 
(𝜀) and partial absorption coefficients (𝜀p) were calculated for each peak position. 

 

a
Reference [273]. 

b
Reference [272]. 

c
Reference [280]. 

d
Reference [279]. 

e
Reference [274]. 

f
Reference [275]. 

g
Reference [286]. 

h
Reference [282]. 

i
Reference [287]. 

j
Reference [283]. 

k 
Reference [284]. 

l
 Reference [288]. 

 

 

 

Peak parameters for VUV data of  DPPG cast film Literature Assignment 

Peak Position 

(nm/eV) 

FWHM 

(nm) 

p 

(g-1m2) 

 

(g-1m2) 

Peak Position 

(eV) 

Electronic 

Transition 
Functional Group 

138.2±0.4 /8.97±0.03 31.8±0.3 3.7±0.4 4.42±0.02 8.4a  8.5a,b 𝜋C=O 𝜋∗
CO Carboxyl 

145.8±0.4 /8.50±0.02 13±1 0.50±0.05 4.24±0.02 8.5c ---- Phosphate 

169.8±0.3 /7.30±0.01 14.5±0.6 0.66±0.07 1.70±0.02 

7.7a  7.1ª,b 

7.4d 

6.2-7.5e  ;7.8a,b 

n’O  𝜋∗ 

---- 

nO 𝜎∗
 

Carboxyl 

Hydroxyl 

Hydroxyl/carboxyl 

192±2/6.46±0.07 34±5 0.17±0.02 0.61±0.02 
5.8a,b 

6.2-7.5e  6.4f 

nO 𝜋∗
CO 

nO 𝜎∗
 

Carboxyl 

Hydroxyl 

Peak parameters for VUV data of  PAH cast film Literature Assignment 

Peak Position 

(nm/eV) 

FWHM 

(nm) 

p 

(g-1m2) 

 

(g-1m2) 

Peak Position 

(eV) 

Electronic 

Transition 
Functional Group 

172.9±0.1/7.172±0.004 22.9±0.2 8.51±0.02 10.81±0.02 

8.19g,h 7.14g 7.01g 

7.1i, j7.0i, j 

7.927k 

𝑛𝑁 – 3pa 

 

Amine 

 

203.8±0.8/6.08±0.05 18±2 0.77±0.01 3.33±0.02 

6.4g 6.51h 5,77g  

5.83g, 5.7i 5.8i, 

6.0j, 6.392k , 6.56l 

𝑛𝑁 - 3sa 

 

Amine 

 

Peak parameters for VUV data of  DPPG/PAH  LbL film Literature Assignment 

Peak Position 

(nm/eV) 

FWHM 

(nm) 

p 

(g-1m2) 

 

(g-1m2) 

Peak Position 

(eV) 

Electronic 

Transition 
Layer 

136±2/9.12±0.07 28±3 3.7±0.4 --- 8.4a 8.5a, b 𝜋C=O 𝜋∗
CO DPPG 

147.2±0.2/8.424±0.009 13±2 0.50±0.05 --- 8.5c ---- DPPG 

168±3/7.38±0.09 18±3 --- --- 

7.7a  7.1ª, b 

7.4d 

6.2-7.5e  7.8a, b 

8.19g,h,7.14g ,7.01g 

7.1i, j7.0i, j,7.927k 

n’O  𝜋∗ 

---- 

nO 𝜎 ∗ 

 

𝑛𝑁 – 3pa 

DPPG 

 

 

 

 

PAH 

194.4±0.7/6.38±0.04 15±2 --- --- 

5.8a, b 

6.2-7.5e , 6.4f 

6.4g, 6.51h 5,77g  

 

 5.83g , 5.7i , 5.8i 

6.0 j , 6.392k, 6.56l 

nO 𝜋∗
CO 

nO 𝜎∗
 

 

𝑛𝑁 - 3sa 

DPPG 

 

 

PAH 
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4.5.2 PAH/DPPG LbL Films  

The VUV spectra for PAH/DPPG LbL films are shown in figure 4.17 a), which were fitted with four 

Gaussian curves, as indicated in the inset. Since DPPG has four and PAH has two components, these 

fitting points are the result of the overlapping of PAH and DPPG peaks. Taking into account the 

assignments above for DPPG and PAH molecules, one can assign the peaks for PAH/DPPG LbL films 

as follows: those at 194.4±0.7 nm and 168±3 nm are due to both types of molecules while the other 

peaks are only due to DPPG. With peaks associated with only one type of molecule (DPPG in this 

case), it is possible to use the VUV data for the films to estimate the adsorbed amount of DPPG, and 

then ascribe the remainder to PAH. Table 4.6 gives the parameters from these fittings and the 

assignment to electronic transitions in each bilayer and type of molecule. 

   

a) 
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b) 

Figure 4.17. a) VUV Absorption spectra for LbL PAH/DPPG films with distinct numbers of bilayers. In the inset is 
shown the VUV spectrum of the (PAH/DPPG)10 film. The green lines in the inset indicate the fitting with Gaussian 
functions, with bands at 136±2 nm, 147.2±0.2 nm, 168±3 nm and 194.4±0.7 nm. b) Maximum absorbance (142 
nm) with baseline correction versus the number of bilayers in the PAH/DPPG LbL film.  

 

The adsorbed amount per bilayer can be estimated because the PAH/DPPG LbL films grow linearly 

with the number of bilayers, as indicated in Figure 4.17 b) for the maximum absorbance with baseline 

correction. This is in accordance with results by Constantino et al [289, 290] who measured the 

conventional UV-Vis absorption spectra of DPPG/PAH LbL films, and found that the absorbance at 

200 nm increased linearly with the number of bilayers. This linear growth is due to adsorption 

processes governed by electrostatic interactions between NH3
+
 groups from PAH and PO4

-
 groups 

from DPPG without significant increase of roughness. These interactions are sufficiently strong to 

break the liposomes adsorbed on each layer, as we shall see from the adsorbed amounts calculated 

below from the VUV spectra data. The amount of DPPG adsorbed per bilayer was calculated by taking 

the intensity of the 136±4 nm peak in the VUV spectra for PAH/DPPG LbL films, since it is due only to 

adsorption of DPPG molecules (Table 4.6). From the absorbance intensity using the Lambert-Beer 

law, one obtains the adsorbed amount per layer per unit area (ΓDPPG) using the partial absorption 

coefficient at 138 nm calculated from aqueous solutions and cast films in figure 4.16 a):  

138

138

2
nm

p nm

DPPG

p

Abs


                                              (4.2) 
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The factor 2 in the denominator appears because the PAH/DPPG film was deposited on both sides of 

the substrate. The mass of a DPPG adsorbed layer per unit area was calculated 6±1 mg/m
2
 per layer, 

as shown in table 4.7, corresponding to 3.8×10
18

 (=2×1.9×10
18

) molecules/m
2
. This is a reasonable 

value if one considers that the surface density of DPPG molecules in a Langmuir monolayer is 

2.1×10
18

 molecules/m
2
 [237, 289-292].

 
The latter density was obtained for a condensed monolayer 

with surface pressure of 30 mN/m and mean molecular area of 45 Å
2
. The good agreement indicates 

that the vesicles collapsed forming a lipid bilayer in the LbL film, which would lead to a mass of 5.5 

mg/m
2
, which is very closed to the measured value of 6±1 mg/m

2
. Moreover, this value is totally in 

accordance with the DPPG amount per unit of area adsorbed onto a PAH layer of 4.93±0.09 mg/m
2 

measured by QCM [111]. The amount of PAH adsorbed can be calculated from the absorbance at 168 

nm peak, for which both DPPG and PAH molecules contribute, since the adsorbed amount of DPPG 

was already calculated, by using a simple absorbance values relation: 

 

168

168

168

2

nm

DPPG DPPG nm

PAH

PAH nm

Abs




 

                                                 (4.3) 

 

where ΓPAH is the adsorbed amount per layer per unit area, Abs168nm is the absorbance at 168 nm per 

bilayer and the 𝜀PAH168nm and 𝜀DPPG168nm where the absorption coeficients at 168 nm of PAH and DPPG, 

respectively. Using the absorption coeficients at 168 nm presented in Figure 4.17 a),  ΓPAH was 

estimated as ~ 0.9 mg/m
2
, consistent with  0.4 mg/m

2
 obtained by Baba et al [130] for a dried PAH 

layer measured with a quartz crystal microbalance. 

 

Table 4.7. Properties of PAH/DPPG LbL films, where  is the adsorbed amount per layer. 

Layer 
 

(mg/m
2
) 

 from 

literature 

(mg/m
2
) 

Molecules(or monomers) per Area (m
-2

) 
Roughness 

(nm) 

DPPG 6±1 5.5 (lipid bilayer) 
3.8×10

18
=2×1.9x10

18
 

(Langmuir layer =2.1×10
18  

[287-290, 293]) 
0.3

i)
 

PAH ~0.9 0.4 [1] 9×10
15

- 12×10
15

 --- 

i) 
Measured by atomic force microscopy.  

 

Because the LbL films were dried in between the adsorption process for each bilayer and submitted to 

vacuum, changes may have occurred in the adsorbed amounts and in the surface roughness [181]. In 

order to better analyze the DPPG layer, its surface morphology after drying was characterized by 

atomic force microscopy. 
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4.5.3 Surface Characterization of a DPPG layer  

The surface of one bilayer PAH/DPPG film adsorbed onto silicon substrate was characterized by AFM. 

A topographic image in Figure 4.18 a) points to a quasi-flat surface with a root-mean-square 

roughness (Rq) of only 0.3 nm. The values of 3.24 and 20.9 for Skewness and Kurtosis functions, 

respectively, obtained from a statistical and frequency analysis of the topographic data, indicate that 

the surface has more peaks than valleys. The valleys can be explained by adsorption of liposomes on 

the PAH surface which were then ruptured and formed a lipid bilayer. In these regions the roughness 

was lower than the average for the whole sampled area. The valleys are surrounded by regions 

(peaks) that are two-bilayer thick, then leading to one-bilayer thick peaks in the AFM image of figure 

4.18 b). The unfolding of liposomes to form lipid bilayers was proposed by Reimhult et al. [169]. The 

sites where liposomes were adsorbed could be determined from the distance between peaks varying 

from 80 to 150 nm and from 200 to 300 nm in figure 4.18 b). The largest diameters correspond to 

twice the original diameter of the extrused liposomes, suggesting that the entire liposome spreads on 

the substrate. It should be referred that AFM topographies of DPPG cast films revealed intact 

liposomes. The small valleys with the dimensions of twice liposome diameter, see figure 4.18 b), are 

surrounded by several peaks caused by an increased roughness when liposomes at the edges do not 

have space to spread completely into a bilayer or even to surface irregularities due to PAH adsorption. 

This explanation is consistent with models [67, 77, 169] for the formation of supported lipid bilayers 

onto solid substrates. An important requirement for the rupture of DPPG liposomes is a high adhesion 

strength between PAH and DPPG regions, which is expected as the PAH molecules were almost fully 

ionized for the film fabrication at pH 4 [129].  

 

 

a) 
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b) 

Figure 4.18. a) AFM topographic image and b) A topographic profile of a 1-bilayer PAH/DPPG LbL film.  

 

4.5.4 Effects from ultraviolet (UV) irradiation on a PAH/DPPG film  

Since UV irradiation is known to affect biological systems, with effects being noted at the 

molecular level for cell membrane models, we verified whether damages on the PAH/DPPG LbL films 

could bring artifacts to the VUV data. No significant changes were noted in the spectra upon irradiating 

the films with UV at a fixed wavelength (140 nm) during one hour, as shown in figure 4.19. This result 

allows us to conclude that the VUV technique can be used for characterization of this type of 

heterostructures since the measurements were performed with the samples in vacuum and no 

noticeable damage caused by radiation occurs for the duration (ca. 20 min.) of the experiment.  
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Figure 4.19.VUV spectra of a (PAH/DPPG)10 biomimetic membrane before and after being irradiated at 140 nm 
during 1 h in vacuum. 

4.5.5 XPS characterization of (PAH/DPPG)5 and (PEI/DPPG)5 LbL films 

The (PAH/DPPG)5 and (PEI/DPPG)5 XPS spectra taken at a take-off angle of 0◦ and 60◦ of relative to 

the surface normal revealed the presence of carbon (C), oxygen (O), nitrogen (N) and phosphorous 

(P). Atomic percentages of these elements and respective binding energies (BEs) are summarized in 

table 4.8.  

Both samples were fitted with three peaks in C 1s regions assigned to an aliphatic carbon, a carbon 

single bonded to an oxygen (C-O) or to a nitrogen (C-N), and a carbon bonded to oxygen through a 

double bond (C=O), respectively, from lower to higher BEs [213]. O 1s region of PEI/DPPG LbL film 

exhibit three components centered at 531.4, 532.6 and 535.0 (± 0.2) eV at a take-off angle of 0. The 

first one is assignable to an oxygen single bonded to a phosphate and to a carbon and the oxygen 

double bonded to a carbon [213] and the third to water molecules aggregates entrapped in the film [6, 

253]. At a take-off angle of 60 the BE of this third peak is higher. The second peak is assignable to a 

carbon linked to an oxygen by a single bond [213]. For PAH/DPPG LbL film at O 1s region could only 

be fitted with one peak centered at 532.2 eV. This finding is due to some constraints during the plots 

fitting however, it may reflect a different position of the polar head of the DPPG phospholipids and also 

the absence of water inside the heterostructure. Figure 4.20 shows the O 1s XPS spectra obtained at 

a take-off angle of 0 for both samples, where a clearly shift to higher BE is observable for the 

(PEI/DPPG)5 LbL film due to the contribution of water molecules in the heterostructure. The region of 

the P 2p of both samples comprises one doublet. The most intense component P 2p3/2 centered at 

133.2 ± 0.2 eV is typical of a phosphorous with a neighborhood rich in oxygen [254]. The N 1s 

spectrum is adjustable, for (PEI/DPPG)5 LbL films, with three components centered at 399.1±0.2, 

400.9±0.3 and 402.3±0.5 eV assignable, respectively, to imine (N), amine (NH) and to ionized nitrogen 
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[253], but only two peaks centered at 399.7±0.2 and 401.5±0.1 eV where found for the (PAH/DPPG)5 

LbL films with analogous correspondence for the two last PEI/DPPG assignments.    

 

Table 4.8. Element composition in percentage and the respective Binding energies (eV), obtained from XPS 

spectra taken at 0◦ and 60 of ejection relative to the normal surface of (PAH/DPPG)5 and (PEI/DPPG)5 LbL films. 
Relative error not exceed ±10%. 

 

(PAH/DPPG)5 (PEI/DPPG)5 

Assignment Atomic (%) BE (eV) Atomic  (%) BE (eV) 

0 60 0 60 0 60 0 60 

C 1s1 53.2 58.1 285.0 285.0 56.0 67.8 285.0 285.0 C-C, C-H 

C 1s2 9.9 8.1 286.6 286.5 13.6 8.7 286.3 286.6 C-O, C-N 

C 1s3 3.7 3.6 288.7 288.5 3.3 2.1 288.7 288.8 O=C-O 

O 1s1     4.4 2.9 531.0 531.0 O-P, O=C 

O 1s2 27.8 19.2 532.2 532.2 8.0 6.8 532.6 532.5 O-C 

O 1s3     0.4 0.2 535.0 535.7 Water 

N 1s1     6.1 4.3 399.1 399.0 N-C 

N 1s2 0.5 0.6 399.7 399.6 1.6 1.1 400.9 400.6 N-H 

N 1s3 1.8 1.4 401.5 401.5 0.3 0.5 402.3 401.7 N
+
 

P 2p3/3 2.0 6.0 133.4 133.6 4.2 3.7 133.2 133.1 P-O 

P 2p1/2 1.0 3.0 134.3 134.4 2.1 1.8 134.1 134.1 P-O 

[P]/[N] 1.3 4.5   0.77 0.91    

[N
+
]/[Ntotal] 0.78 0.72   0.20 0.19    

 

  

Figure 4.20. O 1s XPS spectra obtained at 0◦ of incidence for PAH/DPPG and PEI/DPPG LbL films. 
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Quantitative analysis can offer information about the inner structure of LbL films. The (PAH/DPPG)5 

LbL film atomic ratio P/N increases significantly from 0 to 60 reflecting the fact that we are dealing 

with a highly stratified heterostructure and a flat uniform lipid bilayer is covering the entire surface. On 

the other hand, the (PEI/DPPG)5 LbL film presents atomic ratio P]/[N which slightly increases from 0 

to 60 indicating that interdigitation is taking place and probably both situations, closed liposomes and 

lipid bilayers exist on the heterostructure. Previous studies (see section 4.3), have shown the 

frequency shift of sonicated liposomes when deposited onto a PEI surface and a value of ~50 Hz was 

obtained by QCM using the SVC system. This value can be converted in mass per unit area using the 

equation 3.1, where a value of ~9 mg/m
2
 for a DPPG layer adsorbed on PEI is achieved. However, 

this value is lower than the 16 mg/m
2
 predicted by theoretical calculations for a hexagonal close 

packing spheres adsorbed onto the quartz crystal. This difference suggests that after the DPPG 

liposomes immobilization on surface, vesicles disruption starts to happen leading to a release of the 

water molecules from liposomes, but it can also express some flattening of the liposomes on the 

surface. The ratio N+/Ntotal allows quantifying the ionization degree for both polyelectrolytes in the 

film. A higher value of net electrical charge for films prepared with PAH was found, pointing to stronger 

PAH/DPPG electrostatic interactions which contribute to vesicles rupture after the deposition. 

Therefore, two main questions arise from this result: Is the PEI low ionization degree contributing to 

the adsorption of intact DPPG liposomes and will it be enough to create a biological heterostructure 

totally covered by liposomes with entrapped water? Although the PAH surface is highly ionized if the 

surface roughness is incremented is it possible to adsorb closed DPPG vesicles? So far it is known 

that when the surface hydrophobicity increases that allows the counterions anchorage near the ionic 

groups and then electrostatic forces become lower [253], leading to a release of water molecules from 

surface. Recently, Herminghaus et al [294] demonstrated theoretically that some self-affine profiles of 

rough surfaces can induce hydrophobicity. Hence, for truly realize the DPPG liposomes dynamic 

growth during and after adsorption, more studies of polymer cushions surfaces properties must be 

taken in order to better characterize such heterostructures. 

 

4.6 Conclusions 

Aqueous dispersions of DPPG small unilamellar vesicles (SUVs) produced by two different processes 

such as extrusion and sonication were characterized by DLS. DPPG sonicated liposomes showed a 

polymodal distribution, however, after a careful analysis, a mean hydrodynamic diameter of 25 nm 

was considered for the most SUVs. The dispersion with extrused SUVs showed a monomodal 

distribution with a mean hydrodynamic diameter of 169±3 nm. Though, this value was considered to 

be much higher than the expected because extrusion procedure was performed with polycarbonate 

membranes with a pore diameter of 100 nm. DPPG cast films produced with extrused vesicles were 

analyzed by optical and spectroscopies techniques. Topographic images of the DPPG cast films 

probed by AFM allowed to understand that when vesicles are immobilized on smooth surface they 

break and spread all over originating a lipid bilayer. Nevertheless, and due to the fact that we were 

dealing with a concentrated suspension, this process is repeated until the entire surface is covered by 
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more lipid bilayers levels contributing to the increase of the surface roughness leading to the 

adsorption of intact SUVs on top. The integrity of the vesicles was confirmed by SEM. By combining 

these optical techniques, a mean diameter of 120 nm was found for DPPG vesicles produced by 

extrusion. The absorption spectra in the infrared region of cast films have shown the vibration levels 

corresponding to the chemical bonds of the DPPG molecules. The cast films were also characterized 

by XPS technique which has enable to calculate the atomic percentages of the detected elements 

such as carbon, oxygen, sodium and phosphorous and the respective binding energies that were 

assigned to the organic groups of the DPPG phospholipid molecules, confirming the FTIR 

assignments. The FTIR and XPS techniques have detected the presence of structural water on the 

cast films considered to be storage in the sealed DPPG liposomes. 

Five different QCM experimental configurations were addressed to study the adsorption kinetics 

curves in liquid phase measurements, taking into account parameters such as mechanical vibration, 

acoustic vibrations and thermal fluctuations. Analysis of the kinetics curves of PEI polyelectrolyte and 

DPPG liposome revealed that horizontal modes create conditions to a higher frequency shift, due to 

the measurement of non-adsorbed molecules which are deposited on the quartz crystal caused by 

gravity force and to an increase of the kinetic curves instability of the measurements as a result of a 

fostering noise due to the mechanical vibrations. The vertical (CVC and SVC) systems proved to be 

more reproducible presenting much less instability in their kinetic curves.  

Calculations for a close-packed DPPG liposome layer adsorbed onto the quartz crystal resonator 

showed that the DPPG mass amounts adsorbed onto PEI layer, attained by the SVC setup should be 

higher. Statistical analysis of the amplitude parameters calculated from AFM topographic images of 

PEI and PEI/DPPG LbL film surfaces have justified the measurement of a lower amount of DPPG 

showing that this weak and smooth polyelectrolyte layer creates conditions to the adsorption of intact 

flattened DPPG vesicles probably neighboring lipid bilayers domains. 

After QCM improvements at solid/liquid interface, this technique was used to monitor the growth of a 

(PEI/DPPG)10 LbL film onto a rough polyelectrolyte cushion. The results demonstrated that PEI and 

DPPG adsorbed amounts are in function of the number of bilayers already adsorbed, suggesting that 

the initial roughness of the surface controls the quasi-equilibrium adsorbed amount. The smaller mass 

amounts attained for the first DPPG layers suggests the following statements: i) a few intact vesicles 

are adsorbed while others spread on surface; and ii) by the fact that after PEI layer adsorption, rinse 

process leads to desorption of PSS molecules from the cushion, with the consequently formation of 

positive and negative charged surface islands where DPPG molecules can or cannot adsorb. Both 

cases lead to an increase of the surface roughness creating conditions to higher adsorbed amount for 

the next layers. Hence, it is expected that along the growth (PEI/DPPG)10 LbL film, the roughness 

increases until a maximum, afterwards decreasing to a constant value which explains the DPPG and 

PEI adsorbed amount values. Therefore, it is expected that the last DPPG layers have a higher level of 

organization. The adsorption kinetic curves treatment has attested that the liposomes adsorption is 

governed by two processes. The first process, with adsorbed amounts and characteristic time 

parameters independent of the number of bilayers, is associated to fast adhesion of liposomes onto 

surface. The second is related to reorganization of liposomes and present characteristics times and 
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adsorbed amounts dependent of the number of bilayers. The high values found for the adsorption 

characteristic times parameters for this second process is an indicative of liposomes organization. 

VUV measurements of DPPG in aqueous solutions and in cast and LbL films were reported. From the 

spectra we could assign the electronic transitions responsible for the light absorption and determine 

the amount of DPPG adsorbed on LbL films with PAH. Significantly, the adsorbed amounts pointed to 

adsorption as a lipid bilayer, which means that the DPPG liposomes have broken after the adsorption 

process. The final structure of the LbL films was reflected on the film topography investigated with 

AFM, for the images showed terraces with thicknesses again corresponding to lipid bilayers. The LbL 

films were not affected by prolonged UV irradiation in the absence of water molecules indicating that 

the VUV technique can be used for characterization of lipid heterostructures. We therefore propose 

VUV spectroscopy as a new powerful tool for LbL film characterization which we hope will be useful in, 

among others, cell membrane modeling and drug delivery studies based on phospholipids. It was 

shown that the surface roughness influences the adsorption of DPPG liposomes onto surfaces 

covered by an electrically charged PAH polyelectrolyte layer giving rise to its rupture or maintenance 

of its integrity. Low roughness was shown to induce liposome rupture while high roughness induces 

adsorption of whole liposomes.  

XPS spectra of PAH/DPPG LbL films revealed that the PAH layer cushion is greatly ionized which 

promotes DPPG vesicles rupture and a polymer-supported phospholipid bilayers is formed, giving rise 

to a highly stratified heterostructure; while the XPS spectra of PEI/DPPG LbL film demonstrated that 

the lower ionization degree PEI has contributed to the adsorption of intact DPPG vesicles with 

entrapped water.   
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5 STORAGE OF WATER MOLECULES ON LbL FILMS 

This chapter presents a thorough discussion of the dynamic processes occurred when DPPG 

liposomes are adsorbed on smooth and rough PEM surfaces, in order to understand the role of the 

surface roughness to maintain water molecules storage inside the intact vesicles with the aim of such 

heterostructures being used for application in sensors. Surface topographies of PEMs and 

PEMs/DPPG were characterized and models for adsorption and evolution of the growth surfaces are 

proposed. A statistical analysis of thin films morphologies is offered in terms of roughness amplitude 

and power spectral density (PSD) parameters. PSD curves were fitted with different models in order to 

obtain information about correlation lengths and mean grain size of the features, scaling exponents, 

fractal dimension and growth mechanisms. A detailed description of DPPG liposomes rupture 

phenomena onto surfaces with different values of roughness, i.e. surfaces prepared with a different 

number of polyelectrolyte layers, with the capacity to promote or to avoid this process is also reported. 

Adsorbed amounts and specific kinetic characteristic parameters of DPPG liposomes onto these 

different surfaces are presented and the adsorption phenomena of the liposomes inferred.  

 

 

5.1 Adsorption of intact DPPG liposome layer on rough polyelectrolyte 

multilayers (PEMs) 

The PEI/(PSS/PAH)5 polyelectrolyte multilayer (PEM) cushion, comprising a last layer electrically 

charged, was assembled onto Au-quartz crystal resonators aiming to adsorbed and immobilize closed 

liposomes. The DPPG adsorption was supervised in situ by QCM using the SVC setup. AFM 

topographic images of PEM and DPPG surfaces were acquired ex situ and the 1D statistical 

parameters were analyzed in order to infer if confined vesicles were immobilized onto a PAH rough 

layer. 

 

5.1.1 QCM measurements 

The DPPG liposome adsorption kinetic curves were obtained by QCM at solid/liquid interface using the 

SVC experimental configuration. The QCM gives the oscillation frequency variation as a function of 

immersion time and using equation 3.1 it is possible to convert frequency shift in adsorbed amount per 

unit of area [112]. DPPG suspension, obtained by sonication, was adsorbed on PEI/(PSS/PAH)5 

cushion, assembled ex situ onto Au-quartz crystal support by the LbL technique, and the frequency 

variation of DPPG suspension adsorption was recorded with an appropriate software. Figure 5.1 

shows the DPPG liposome adsorption kinetic curve onto this cushion.  

The DPPG adsorption kinetic curves were fitted with equation 4.1 maintaining nJMA equal to the unit 

[112]. However, in the present case, the kinetic curve can only be adapted to one exponential, meaning 

that only one adsorption process is taking place. The adsorption characteristic time and the maximum 

adsorbed amount per unit of area parameters found from are 22.05±0.03 minutes and 40±3 mg/m
2
, 
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respectively. The existence of a unique adsorption process can be easily explained by two motifs: i) this 

kinetic curve was obtained after adding a concentrated DPPG liposome suspension into the QCM 

holder cell with the PEM+crystal already plugged and filled with ultrapure water. In the first seconds the 

DPPG vesicles do not adsorb onto PEM, since they are obliged to spread in the QCM holder cell and 

only then the adsorption occurs. This means that the nucleation process, common in LbL films literature 

[16, 295] is omitted, occurring only the diffusion process; ii) liposomes adsorbed onto PEM maintain the 

structural integrity. When the vesicles rupture occurred during the adsorption process, mechanisms 

such as adhesion, disruption, spreading and fusion of lipid membranes will be present and the kinetic 

curves will have more than one process [67]. 

The DPPG total adsorbed amount obtained by QCM suggests that liposomes should have a diameter 

of 60 nm, which is far from the mean value of 25 nm found by DLS measurements for the 

hydrodynamic diameter of DPPG liposomes, results showed in section 4.1. Assuming a compact 

distribution of spherical vesicles with 25 nm of diameter, it is expected to find 16 mg/m
2
 of adsorbed 

amount per unit of area which is about a half of the experimental value. This result suggests that the 

surface morphology of PEM and of DPPG liposomes adsorbed on PEM should be carefully analyzed 

since a high roughness leads to a higher DPPG adsorbed amount. 
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Figure 5.1. Adsorbed DPPG-liposome amount on a LbL film PEI/(PAH/PSS)5 as a function of immersion time 

(grey) and the fit (black) obtained using equation 4.1, where nJMA is equal to the unit. 

. 
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5.1.2 AFM characterization 

AFM topographic images showing surface morphologies of 2x2μm
2
 scan area obtained from 

PEI/(PSS/PAH)5 and PEI/(PSS/PAH)5/DPPG LbL films are shown in Fig. 5.2. Surface profile 

parameters as root-mean-square roughness (Rq), correlation length and skewness were calculated 

and the obtained values are displayed in table 5.1. 

 

 

 

a)  

 

 

b) 

Figure 5.2. AFM 3D topographic images of 2x2μm2 areas obtained from the a) template PEI(PSS/PAH)5  and  b) 
PEI(PSS/PAH)5/DPPG LbL films. 
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Rq values reveal that when liposomes adsorbed on the rough cushion, roughness surface increases 

meaning that liposomes are immobilized in an intact form. Moreover, in the present case the 

roughness of the PEM surface is an order of magnitude plus than the values measured for the smooth 

PAH cushion, where the liposomes disrupted creating a supported-polymer phospholipid bilayer. 

The correlation length indicates the distance that shows the position of the neighbors. Moreover, 

points of the surface profile that are separated by more than a correlation length may be considered 

as uncorrelated. The correlation length of PEM/DPPG has a small value than PEM; this indicates a 

random liposome distribution on the surface, according to the Langmuir adsorption model which 

usually has a first kinetic order curve as it was found in figure 5.1.  

Skewness (Rsk) is the third moment of profile amplitude probability density function and is used to 

measure the profile symmetry about a mean line. When the height distribution is symmetrical, Rsk is 

zero. If the height distribution is asymmetrical, and the surface has more peaks than valleys the 

Skewness moment is positive, and if the surface is more planar and valleys are predominant, the 

Skewness is negative. As we can see in Table 5.1, the PEM has a negative Rsk and the PEM/DPPG 

has a positive Rsk, demonstrating that the valleys of the PEM are filled with DPPG liposomes. 

Statistically analyzing figure 5.2 b) and measure the profile diameter of the intact liposomes, a mean 

diameter of 55 nm can be calculated. This value reveals that the adsorbed liposomes can be flattened 

if we compare it with DLS measurements. 

In fact, grain size measurements of PEM/DPPG topographies indicate that the small grains (78%) 

have a mean width of 55±19 nm while the bigger (22%) have a value of 129±44 nm. The later 

suggests that some liposomes are aggregated. 

Valuable information can be obtained also from the height distribution curves obtained from 

topographic data of the two surfaces which are plotted in figure 5.3. Both distribution plots were fitted 

with Guassian curves and the obtained characteristics peaks are displayed in table 5.1.  In PEM 

height distribution one can see two types of characteristics heights, one with a value of 69±2 nm and 

other with 80.1±0.5 nm. These values justify the DPPG adsorbed amount per unit of area measured 

by QCM since the adsorption area is significantly higher than the quartz crystal surface which is used 

in the theoretical adsorbed amount calculation. The height distribution associated to PEM/DPPG 

reveals the presence of three structure types, while the data can be fitted with three Gaussian curves, 

namely 32.2±0.3 nm and 42.4±0.07 nm assigned to liposome mean diameter and 69±2 nm indicating 

that the original structure is maintained after adsorption of the liposome layer. The decrease of the 

mean heights in the case of PEM/DPPG surfaces indicates that the vesicles are adsorbed in the PEM 

valleys as already have been demonstrated by skewness values. 
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Table 5.1. AFM statistical parameters obtained from topographic images of PEI/(PSS/PAH)5 and 
PEI(PSS/PAH)5/DPPG surfaces with  2x2μm

2
 scan area.  

PEM – PEI/(PSS/PAH)5; Rq – root-mean-square roughness; T – correlation length; RSk – Skewness; P1 – peak 1 
position; W1 – width peak 1; A1 – area peak 1;  P2 – peak 2 position; W2 – width peak 2; A2 – area peak 2;  P3 – 
peak 3 position; W3 – width peak 3; A3 – area peak 3. 

 

 

Figure 5.3. Height distribution of PEI/(PSS/PAH)5 (closed triangles)  and  PEI(PSS/PAH)5/DPPG (closed circles) 
obtained from the AFM images. The respective Gaussian fits of the height distributions are represented with open 
symbols. 

 

5.2 AFM in situ surface analysis of Au/DPPG and Au/PAH/DPPG films  

This section is dedicated to the analysis of topographic surfaces imaged by AFM in situ, i.e. at 

solid/liquid interface, of DPPG liposomes, obtained by the sonication method, deposited on Au-quartz 

crystal and on PAH surfaces. Roughness amplitude parameters of the surfaces, including root-mean-

square roughness as well as height distribution functions are presented. A PSD analysis of the 

features, treated as self-affine structures, was infer and parameters including mean grain size, 

correlation lengths, fractal geometry, growth regimes and scaling concepts were found by applying a 

combination of three PSD models namely, the conventional, the fractal and the ABC or K-correlation. 

LbL 
films 

AFM 1D Statistical parameters (rows) 

Rq 
(nm) 

T 
(nm) 

Rsk 
Height distribution Gaussian fit parameters 

P1 
(nm) 

W1 
(nm) 

A1 
P2 

(nm) 
W2 

(nm) 
A2 

P3 
(nm) 

W3 
(nm) 

A3 

PEM 13±5 297±3 -0.3±0.4 69±2 24±1 0.8±0.1 80.1±0.5 16±2 0.2±0.1 --- --- --- 

PEM/

DPPG 
26±5 128±2 0.8±0.3 32.2±0.3 13.7±0.8 0.10±0.02 42.43±0.07 28±1 0.38±0.05 69±2 58±3 0.53±0.05 
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5.2.1 Amplitude parameter analysis 

Figure 5.4 shows AFM in situ images with 2 m of scan length of DPPG suspension deposited on Au 

surface at room temperature: a) and b) Au surface in ultra-pure water; c) and d) Au/DPPG at 3 

minutes; e) and f) Au/DPPG at 5 minutes; g) and h) Au/DPPG at 10 minutes; and finally i) and j) 

Au/DPPG at 120 minutes, heights and phases, respectively. The time t=0 minutes corresponds to the 

instant before the injection of DPPG suspension into the AFM liquid cell. A topographic view of the 

height Au surface (figure 5.4 a)) suggests that considerable constrains may hinder the AFM analysis 

since the gold surface is not a flat surface and its grain diameter has the same size order of magnitude 

than the DPPG vesicles [111]. Like most of AFM studies of liposomes adsorption found in literature 

were carried out onto flat surfaces, it will be a huge challenge to understand the surface evolution 

when vesicles adsorb on a non-smooth surface. Various statistical quantities applied to characterize 

the surface topography such as, roughness amplitude parameters and height distribution gaussian fit 

parameters are presented in table 5.2. 

 

 
a)  

 
b) 

 
c)  

d) 



Storage of Water Molecules into Biomimetic Heterostructures: The Role of Roughness 

 

109 
 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

 
j) 

 

Figure 5.4. AFM in situ images with 2m of scan size of DPPG suspension deposited on Au surface obtained in 

ultra-pure water at room temperature: a) and b) Au surface; c) and d) Au/DPPG at 3 minutes; e) and f) Au/DPPG 
at 5 minutes; g) and h) Au/DPPG at 10 minutes; and finally i) and j) Au/DPPG at 120 minutes, of heights and 
phases, respectively. 
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The heights and phases dynamic morphological changes of DPPG liposomes suspension deposited 

on a PAH-gold quartz crystal are shown in figures 5.5 a) and b), c) and d), e) and f), g) and h), and 

lastly i) and j) for 0, 3, 5, 10 and 60 minutes of adsorption time, respectively. The calculated surface 

parameters such as, roughness amplitude parameters and height distribution gaussian fit parameters 

are presented in table 5.3. 

  

 

a) 

 

b) 

 

c) 

 

d) 
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e) 

 

f) 

 

g) 

 

h) 

 

i) 

 

j) 

Figure 5.5. AFM in situ images with 2m of scan size of kinetics adsorption of DPPG liposome deposited on a 

Au/PAH surface, at room temperature: a) and b) 0 seconds (Au/PAH surface); c) and d) 3 minutes; e) and f) 5 
minutes; g) and h) 10 minutes; and i) and j) 60 minutes. The first and seconds images correspond to heights and 
phases, respectively. 
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According table 5.2, the gold substrate revealed a kurtosis (Rku) moment of 3.1±0.6 which means that 

the surface has a normal distribution of peaks and valleys, indicating that we are dealing with a non-

flat surface, as expected. After 3 and 5 minutes of DPPG injection into the liquid AFM cell, the Rku 

slightly increased to 4±1. This value suggests that the surface has more peaks than valleys which can 

be attributed to liposomes adsorption onto gold surface.  Subsequently, Rku reduced to 3.3±0.9 and 

3.1±0.6 at t=10 and t=120 minutes, respectively, which are values that resemble those that were found 

before vesicles assembly. Analyzing Rq values listed in table 5.2, one can see that after the first 3 

minutes of DPPG adsorption the root-mean-square roughness rises from 1.5±0.3 to 2.7±0.6 nm, 

decreasing to 2.3±0.3 nm two minutes later. Five minutes after DPPG injection, this parameter was 

preserved decreasing again, at t=120 minutes, to a value close to the gold surface. This Rq behavior 

suggests that at 3 minutes the anionic DPPG vesicles are closed. But, as time passes, they interact 

electrostatically with the hydrophilic and oxidized gold surface, since the substrate had a specific 

treatment with UV/ozone during one hour [296]. Afterwards, vesicles start to open and deploy through 

the substrate creating a supported-lipid bilayer (SLB) as described by Israelachvilli [77]. Thus, surface 

evolution for SLB development presents two regimes: i) initially, there is a surface roughness variation 

as a function of time; ii) then a stabilization stage of the surface roughness which corresponds to a 

saturation time or crossover time is attained. 

 

Table 5.2. AFM 1D Statistical parameters calculated from topographic images with 22m
2
 areas of Au surface 

(t=0) and DPPG deposited on Au at t = 3, 5, 10 and 120 minutes. 

Rq – root-mean-square roughness; Ra – Roughness average; RKU – Kurtosis; Rtm - Average Maximum Height of 
the Profile; Rvm - Average Maximum Profile Valley Depth; Rpm - Average Maximum Profile Peak Height;  P1 – 
peak 1 position; W1 – width peak 1; A1 – area peak 1. 

 

 

 

 

 

 

Time 

(min) 

AFM 1D Statistical parameters (rows) 

Rq 

(nm) 

Ra 

(nm) 

Rtm 

(nm) 

Rvm 

(nm) 

Rpm 

(nm) 
RKU 

Height distribution Gaussian fit parameters 

P1 

(nm) 

W1 

(nm) 
A1 

0 1.5±0.3 1.2±0.2 11±1 3.0±1.0 6.8±0.1 3.1±0.6 7.064±0.006 3.42±0.01 0.981±0.004 

3 2.7±0.6 2.1±0.4 25±3 9±2 16.9±0.3 4±1 16.79±0.01 5.13±0.02 0.959±0.005 

5 2.3±0.3 1.8±0.3 21±2 7±1 13.6±0.2 4±1 13.410±0.007 4.45±0.02 0.970±0.003 

10 2.3±0.3 1.8±0.3 17±2 5±1 10.8±0.2 3.3±0.9 10.596±0.008 4.53±0.02 0.977±0.004 

120 1.9±0.2 1.4±0.2 13.4±0.9 3±1 8.1±0.2 3.2±0.6 7.984±0.008 3.61±0.02 0.973±0.005 



Storage of Water Molecules into Biomimetic Heterostructures: The Role of Roughness 

 

113 
 

Table 5.3. AFM 1D Statistical parameters calculated from topographic images with 22m
2
 areas of Au/PAH 

surface (t=0 min) and DPPG deposited on Au/PAH at t= 3, 5, 10 and 60 minutes. 

Rq – root-mean-square roughness; Ra – Roughness average; RKU – Kurtosis; Rtm - Average Maximum Height of 
the Profile; Rvm - Average Maximum Profile Valley Depth; Rpm - Average Maximum Profile Peak Height;  P1 – 
peak 1 position; W1 – width peak 1; A1 – area peak 1.  
* The large error is due to the fact that some DPPG vesicles have attached on surface after lipid bilayer formation.  

 

 

Table 5.3 shows the one-dimensional height statistical parameters obtained from topographic images 

with 2 m of scan length of DPPG liposomes deposited on Au/PAH polyelectrolyte surface at 0, 3, 5, 

10 and 60 minutes. The Au/PAH substrate revealed a kurtosis moment (Rku) of 4 meaning that the 

surface has more peaks than valleys which can be associated to PAH layer adsorption onto the gold 

surface. After DPPG suspension deposition at t=3 min, the Rku remains unchanged suggesting that a 

DPPG lipid bilayer is already formed. Although, as the time passes the Rku moment slightly increase 

probably due to the presence of some aggregates of liposomes that have attached on Au/PAH/DPPG, 

see figure 5.5 g). The root-mean-square roughness (Rq) of the first and second topographic images 

took after DPPG dispersion deposition, at 3 and 5 minutes, are marginally higher than the PAH 

surface, being an evidence of liposomes disruption and subsequent formation of a phospholipid 

bilayer. At 10 minutes it is possible to observe an increment of Rq which presents a large error; this is 

due to the presence of some liposomes aggregates immobilized onto the cushion layer as already 

mentioned above. After one hour, Rq values decreased revealing liposomes desorption. Nevertheless, 

we must consider the preservation of the Rq values at 3 and 5 minutes. This Rq conservation are in 

accordance with adsorption studies of DPPG liposomes onto PAH which revealed that kinetics is ruled 

by three processes: i) the first with a small characteristic time (𝜏1 = 2.19 ± 0.02 𝑚𝑖𝑛) during which the 

liposomes adsorb onto the PAH surface and break releasing the water stored; ii) followed by a long 

characteristic time with approximately 23 min corresponding to the end of the diffusion-controlled 

process; iii) and after another characteristic time, ~60 minutes, associated to a minor fraction of 

phospholipid desorption from the surface [111].  

Generally, comparing the root-mean-square roughness of the Au/DPPG and Au/PAH/DPPG surfaces 

(see tables 5.2 and 5.3), it is possible to realize that after DPPG injection onto PAH the Rq value is 

smaller, representing a fast DPPG adsorption followed by vesicles disruption due to the electrostatic 

forces between both molecules. It is well known that at pH ~ 4 PAH is highly ionized [129] and, 

therefore, the electrostatic interactions between NH3
+
 and PO4

-
 groups of PAH and DPPG, 

Time 

(min) 

AFM 1D Statistical parameters (rows) 

Rq 

(nm) 

Ra 

(nm) 

Rtm 

(nm) 

Rvm 

(nm) 

Rpm 

(nm) 
RKU 

Height distribution Gaussian fit parameters 

P1 

(nm) 

W1 

(nm) 
A1 

0 1.6±0.2 1.3±0.2 12±4 2.8±0.7 6.7±0.1 4 6.478±0.007 3.23±0.01 0.984±0.004 

3 1.9±0.6 1.4±0.3 13±3 2.7±0.7 6.6±0.3 4 6.284±0.009 3.45±0.02 0.963±0.006 

5 2.0±0.8 1.5±0.4 14±2 2.3±0.6 6.3±0.3 5 5.813±0.009 3.66±0.02 0.967±0.005 

10 2.8±2* 1.9±1.0 17±9 2.6±0.8 7.2±0.9 6 6.433±0.008 4.06±0.02 0.958±0.004 

60 2.1±0.8 1.5±0.3 15±6 2.4±0.7 6.7±0.2 6 6.357±0.007 3.89±0.02 0.988±0.004 
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respectively, are strong, as indicated by XPS data (see section 4.5.5). On the other hand, interactions 

between the polar head groups of the DPPG and the nonpolar PAH chains (hydrophobic interactions) 

might be weak. 

To better understand the processes that occur during liposomes adsorption, the DPPG kinetic curve 

onto PAH and the Rq in situ values were plotted together, and are presented in Figure 5.6 a). The 

DPPG frequency shift measured by QCM was converted into adsorbed amount per unit area using 

equation 3.1 and a value of  5±1 mg/m
2
 was attained corresponding to a planar DPPG bilayer [297].  

The height distribution curves obtained by treatment of the AFM in situ topographic images of 

Au/DPPG and Au/PAH/DPPG at different DPPG adsorption times are shown in figures 5.6 b) and c), 

respectively. The parameters achieved by fitting the height distribution gaussian curves, as well as the 

average maximum height of the profile (Rtm), the average maximum profile valley depth (Rvm) and 

the average maximum profile peak height (Rpm) are listed in tables 5.2 and 5.3 for Au/DPPG and 

AU/PAH/DPPG samples, respectively.  

For the adsorption of DPPG vesicles onto the gold surface, the peak positions of the height gaussian 

distributions at 0, 3 and 120 minutes are centered at 7.064±0.006 nm, 16.79 ±0.01nm and 

7.984±0.008 nm, respectively, assigned to the height of the Au surface, closed DPPG vesicles 

attached to the Au surface and to a supported-lipid bilayer (SPB), correspondingly. Thus, the height 

profiles revealed a substantial increase in the first three minutes of DPPG deposition, but afterwards 

decreasing to values close to the gold surface. Therefore, these height parameters are in accordance 

with the Rq, Ra and Rku values confirming the adsorption of closed DPPG liposomes onto the Au 

solid support in the first minutes, followed by vesicles break and scattering of the lipid bilayer on the 

surface. 

Concerning the DPPG adsorption onto PAH, the estimated height parameters obtained by fitting the 

gaussian curves of figure 5.6 c) are listed in table 5.3. Similar peak position values at different 

adsorption times, such as 0, 3, 5, 10 and 60 minutes, reveals that the DPPG phospholipid bilayer has 

already been formed at 3 minutes which is in accordance with the small characteristic time, 𝜏1 =

2.19 ± 0.02 𝑚𝑖𝑛, estimated by fitting the QCM kinetic curve of figure 5.6 a). The height residual peaks 

(that could not be fitted) with a range between 15-40 nm and presented in figure 5.6 c) are related to 

some DPPG vesicles that have attached onto the Au/PAH/DPPG surface. 



Storage of Water Molecules into Biomimetic Heterostructures: The Role of Roughness 

 

115 
 

 

a) 

  

b) 
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c) 

Figure 5.6. a) DPPG adsorbed amount per unit of area onto a PAH layer measured by QCM (green circles) and 

Rq values obtained from 22m
2
 topographic images of DPPG liposomes adsorbed onto PAH at 3, 5, 10, 30 and 

60 minutes (red squares). b) Height distribution curves obtained by treatment of 1D AFM topographic images in 
situ of Au and Au/DPPG films at 3, 5, 10 and 120 minutes and c) Au/PAH and Au/PAH/DPPG at 3, 5, 10 and 60 
minutes. 

 

The ex situ (in air) ellipsometry technique allows to measure the polarization state of an elliptically 

polarized light when it is reflected at a surface and was used to quantify optical parameters changes of 

the gold surface before and after a (PAH/DPPG)4 LbL film build up. From the changes in the 

ellipsometric angles (Δ,Ψ) the refractive index and the thickness of the film can be deduced [298]. The 

results showed that there is a small increase of the amplitude angle (Ψ) from 43.65±0.025 to 44.2±0.3 

and a significant decrease of the phase difference (Δ) from 105.89±0.06 to 90±3, which agrees with 

the presence of a thin nearly transparent layer, as expected for the formation of a (PAH/DPPG)4 LbL 

film. According to the optical parameters, of the gold surface before and after (PAH/DPPG)4 assembly, 

and assuming a linear PAH/DPPG growth as bilayers are added [289], the PAH/DPPG bilayer 

thickness was estimated in 5±1 nm. It should be referred that a comparable result was found by 

Schönherr et al [299] for a continuous phosphatidylcholine (PC) lipid bilayer. 
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5.2.2 Fractal Analysis 

In order to characterize the surface topography of Au/DPPG and Au/PAH/DPPG, one must rely on the 

amplitude parameters; however, they only provide vertical information. PSD analysis, which offers 

both lateral and longitudinal information, was used to study the kinetics behavior of DPPG liposomes 

deposited on Au solid support and Au/PAH polymer surface as a function of time.  

Figures 5.7 a) and b) show the one-dimensional PSD spectra of the AFM morphological images of 

figures 5.4 and 5.5, respectively, collected at discrete times for DPPG liposomes assemble on Au-

quartz crystal surface and Au/PAH. This one-dimensional spectral analysis provides a representative 

description of the overall surface roughness. 

All power spectra exhibit three distinct regions represented as parts I, II and III: (I) the plateau at low 

frequencies which is related to the height of the rough surface. This section has an absence of 

correlation (it does not change with the scale) and of characteristic length; (II) the region of the 

medium frequencies gives the correlation length, which defines the lateral extent of the rough surface, 

is strongly frequency dependent and it represents the power-law decay; and (III) the region at high 

frequencies, where the PSD is strongly influenced by tip artifacts, which was not considered for 

surface analysis [188]. PSD analysis de-convolutes the roughness as a function of surface lateral 

length scales, correlates the vertical amplitude with the spatial frequency of surface features and may 

also reveal the characteristics of the microstructure surface [189]. 

PSD spectra of figure 5.7 a) present a plateau at low spatial frequencies (region I) of 𝑓  7 10
7 

m
-1

, 

revealing a nearly constant value for roughness and an absence of any characteristic length beyond 

ca. 15 nm. The magnitude of PSD curves in this zone revealed that after 3 minutes of DPPG addition 

in the liquid AFM cell an increase occurs followed by a decrease 5 minutes later, which was 

maintained at t=10 minutes. When 120 minutes have elapsed, the magnitude at this section suffers a 

marginal reduction. The PSD spectra at region I complies with the roughness of the surface. The 

region II involves intermediate frequencies and characterizes the mechanism of the surface growth, 

where PSD is strongly frequency dependent. It also shows the surface self-affine behavior. Looking at 

this sector, it is possible to observe that after 3 minutes of DPPG vesicles injection in the liquid cell, 

there is a decrease of the slope value of the PSD curve. However, in the following measurements (t= 

5, 10 and 120 minutes) the slope of the PSDs spectra in this region increased progressively, until 

reach a value close to the initial. So, at intermediate frequencies the PSD spectra reveals two 

regimes, strongly frequency dependent, with a constant slope (sub-regions IIa and IIb), representative 

of a combination of two mechanisms that are involved in surface growth. In the subzone IIa, the 

surface evolution corresponds to an anomalous dynamic scaling, i.e., roughening and smoothing 

mechanisms cannot reach equilibrium and the local surface changes with time. The subregion IIb is 

attributed to the balance between random fluctuations and diffusion processes, so the local structure 

remains unchanged [179]. As mentioned this region characterizes the surface self-affine behavior. The 

region III (𝑓 > 310
8
 m

-1
) relates to the highest frequencies of the spectrum. This spatial frequencies 

range is associated with physical dimensions of the AFM tip. Thus, the convolution of the tip and 

surface features happens and consequently, the PSD is highly affected by AFM tip artefacts and it 

was not considered to surface analysis [185]. 
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PSD spectra in Figure 5.7 b) at low frequencies (𝑓  3 10
7 

m
-1

) have showed large changes probably 

due to the presence of some aggregates of DPPG vesicles that have attached on surface during 

growth surface evolution. Analyzing the first region frequency, we can detect a small increase of the 

PSD magnitude at 3 and 5 minutes, followed by an enhanced growth at 10 minutes revealing that 

some liposomes have aggregated. At an earlier stage (t=60 minutes) one can notice the typical 

behavior with the roll-off corner related to vesicles disruption promoted by electrostatic interactions 

between the anionic DPPG vesicles and the cationic PAH surface, leading to a decay of the power 

law. However, at the region II the PSD spectra of PAH and PAH/DPPG are quite similar leading us to 

conclude that the formation of the lipid bilayer have been occurred at 3 minutes of DPPG liposomes 

adsorption. The region III (𝑓 > 310
8
 m

-1
) was not considered to surface analysis. 

 

a) 

I II III 

b a 

𝜉𝑎𝑏 𝜉𝑏𝐼 
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b) 

Figure 5.7. Power spectra density evolution of the of the a) Au/DPPG and b) Au/PAH/DPPG LbL films.  

The conventional mode to calculate the correlation length (𝜉) involves determining the transition 

spatial frequency (𝑓𝑡) of the intersection point between two fitted curves of two distinct regions of the 

PSD spectra. However, both PSD spectra (figures 5.7 a) and b)) showed that this medium-frequencies 

region is governed by two growth regimes which must be treated individually. The transition 

frequencies, marked with arrows in figures 5.7 a) and b), correspond to correlation lengths that define 

transitions between physical processes responsible for surface development. The first correlation 

length (𝜉𝑎𝑏) is defined by the inverse of the transition frequency (𝑓𝑡) between the high-frequency and 

the self-affine intermediate frequency regions (transition between subregions IIa and IIb) and the 

second correlation length (𝜉𝑏𝐼) by the inverse of 𝑓𝑡 among the low-frequency random roughness 

plateau and the intermediate-frequency self-affine region (transition between the section I and the 

subregion IIb). The first (𝜉𝑎𝑏) and second (𝜉𝑏𝐼) correlation lengths of the PSD spectra for DPPG 

adsorption onto Au and PAH at different adsorption times were calculated and are listed in tables 5.4 

and 5.5, respectively.  

The first (𝜉𝑎𝑏) and second (𝜉𝑏𝐼) correlation lengths estimated for the gold-quartz crystal show values of 

~13 nm and ~9 nm, respectively, related to the mean grain diameter of the surface resonator and are 

depicted in table 5.4. Probably the presence of two different values is related with the fact that the 

quartz crystal resonator is coated with an under layer of chromium and an upper layer of gold. 

Therefore, the fact that these correlation length values are maintained during DPPG adsorption, lead 

us to conclude that the rupture of the vesicles on the Au surface arises. Similar correlation length 

I II III 

b a 

𝜉𝑎𝑏 𝜉𝑏𝐼 
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values can be found in table 5.5 for the DPPG vesicles deposition onto PAH. However, the first and 

second correlation lengths have a mean value higher which can be attributed to the PAH assemble 

onto the quartz crystal sensor.  

The roughness exponents (𝛼) were determined by the relation, 

𝛼 =  
𝛾 − 1

2
                                                                                  (5.1) 

where 𝛾 is the value of slope of the fitted PSD at two separate establishments and the obtained results 

are presented in tables 5.4 and 5.5. The 𝛼𝑎 and 𝛼𝑏 roughness exponents describe a combination of 

two processes that control the surface morphologies during growth and the mechanism responsible for 

the particles deposition [179]. 

The 𝛼𝑏 scaling exponent value, 𝛼𝑏 = 0.68, for DPPG liposomes adsorbed onto Au surface at 5 minutes 

is consistent with Villain model. This model predicts that the deposition of particles is preferentially 

driven by interactions with neighboring particles. This rough exponent shows the balance between 

random fluctuations and diffusion processes, i.e. the mechanism is far-from-equilibrium. At 10 minutes 

of liposomes adsorption 𝛼𝑏 = 1, meaning that the stabilization of the process has occurred and a 

presence of a smooth DPPG lipid bilayer covering the surface is formed. 

Roughness exponents estimated from region IIb for the deposition of DPPG onto PAH show values 

close to the unit, signifying that the surface is totally covered by a lipid bilayer after 3 minutes of 

phospholipid adsorption, i.e. the solid-liquid interface reached the steadiness. In addition, the fast 

adsorption and rupture of the liposomes is due to a strong interaction between the liposome and the 

completely charged PAH surface [6]. The explanation for this behavior has been also reported in 

literature, whereby the spread of the lipid membrane over a planar surface is favored at low pH, 

regardless to the net charge of the bilayer, process which is driven by van der Waals forces [70].  

Although it was proved that the DPPG adsorption mechanism and consequent formation of a lipid 

bilayer reached its balance before t=3 minutes [111], afterwards (t=10 minutes) the rough exponent 

increased, due to the accumulation of aggregates of liposomes onto the Au/PAH/DPPG-bilayer 

surface; being  𝛼𝑎 ≫ 1 which implies a locally rough surface and a decrease of the fractal dimension. 

After 3 minutes of DPPG adsorption the rough exponent, 𝛼𝑏, is close to the unit, which are in good 

agreement with the linear growth equation of the diffusion Villain model [192]. 

Scaling exponents calculated from region IIa for both (Au and PAH) surfaces have a similar 

anomalous dynamic behavior, shown by the increase of rough exponent as time passes; it became 

𝛼𝑎 ≫ 1, which is more evident in the Au/PAH/DPPG film. In this last situation, the roughening 

fluctuations and the smoothing effects cannot reach a balance, and the local surface slope increases 

and changes with time, as it is possible to observe by the large error of the Rq at 10 minutes of DPPG 

adsorption. 

By plotting the Rq roughness evolution of Au/PAH/DPPG surface films as a function of time and fitting 

the power law behavior to the Rq roughness as Rq (L,t)∝t 
β
, we can obtain the growth exponent 𝛽. 

However, as described above, at 3 minutes of DPPG adsorption onto PAH layer a lipid bilayer has 

already been formed and thus the growth exponent cannot be estimated.  
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Table 5.4. Slopes (𝛾) and the respective scaling exponents (𝛼) acquired from the subregions a and b and the 

correlation lengths (𝜉) attained for the transition of the ab and bI zones of the PSD curves of figure 5.7 a). 

DPPG time adsorption  

(min) 
𝜸𝒃 𝜶𝒃 𝜸𝒂 𝜶𝒂 

𝝃𝒂𝒃 

(nm) 

𝝃𝒃𝑰 

(nm) 

0 3.1±0.2 1.05 5.53±0.07 2.26 8.6 13.3 

3 1.69±0.05 0.3425 2.89±0.07 0.943 5.9 13.3 

5 2.48±0.08 0.678 3.09±0.06 1.043 5.3 12.7 

10 3.2±0.1 1.0848 3.69±0.06 1.346 6.5 12.7 

120 2.4±0.1 0.7183 4.34±0.07 1.6723 6.8 13.8 

 

Table 5.5. Slopes (𝛾) and the respective scaling exponents (𝛼) acquired from the subregions a and b and the 

correlation lengths (𝜉) attained for the transition of the ab and bI zones of the PSD curves of figure 5.7 b). 

DPPG time adsorption  

(min) 
𝜸𝒃 𝜶𝒃 𝜸𝒂 𝜶𝒂 

𝝃𝒂𝒃 

(nm) 

𝝃𝒃𝑰 

(nm) 

0 2.5±0.1 0.75 4.63±0.06 2.815 9.9 15.9 

3 3.1±0.1 1.05 4.09±0.05 1.545 11.8 14.5 

5 3.0±0.1 1 4.12±0.05 1.56 11.8 15.2 

10 3.0±0.1 1 4.72±0.05 1.86 10.6 14.5 

60 2.8±0.2 0.9 4.43±0.08 1.715 10.6 15.2 

 

More valuable information can be extracted from PSD spectra, e.g. mean grain diameter and fractal 

dimensions, by applying PSD models, such as the Fractal model (PSDfractal) and the ABC or K-

correlation model (PSDABC).  

To determine surface fractal components the medium-frequency region (region II) of the PSD of 

Figures 5.7 a) and b) were fitted with the PSDfractal model given by equation 3.8.  The spectral index 

found (𝜈) and the fractal dimensions (Df) obtained by the equation 3.9 are listed in table 5.6. Initially, 

the Au/DPPG surface has stronger fractal components than the Au/PAH/DPPG film. But as time 

passes, fractal components of the Au/DPPG surface decrease and the final Df reaches a value close 
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to the Au/PAH/DPPG surface. Both films have a Df nearly 2; so the surfaces can be described as 

fractal marginal/smooth. 

Table 5.6. Spectral index (𝜈) obtained by fitting the PSD curves of figures 5.7 a) and b) with equation 3.8, and the 

respective fractal dimension calculated using the equation 3.9. 

DPPG 

 adsorption 

time 

Fractal contribution 

(PSDfractal model) 

DPPG  

adsorption 

time 

Fractal contribution  

(PSDfractal model) 

Au/DPPG Au/PAH/DPPG 

(min) 𝝂  DF (min) 𝝂 DF 

0 4.00±0.08 1.00 0 2.7±0.1 1.65 

3 1.16±0.05 2.42* 3 2.54±0.07 1.73 

5 1.64±0.03 2.18 5 2.60±0.08 1.70 

10 2.39±0.03 1.80 10 2.96±0.09 1.52 

120 2.48±0.06 1.76 60 2.67±0.09 1.67 

* At Df~2.5 the surface reveals a Brownian fractal.  

 

Another model can be applied to extract information retained in these PSD curves. Tables 5.7 and 5.8 

present the PSDABC model parameters obtained by fitting the region II of the PSD curves of figures 5.7 

a) and b) with the equation 3.10. In this model the correlation length is given by the parameter B, 

which is related to the mean grain diameter of the surface. The results showed values similar to those 

obtained by the frequency inverse mode (𝜉𝑏𝐼), see tables 5.4 and 5.5. The exception falls on the 

Au/PAH/DPPG at 10 minutes where the correlation length shows a value close to the mean vesicle 

diameter, ~27 nm. Probably the real value is under masked by some vesicles that have been stuck on 

the Au/PAH/DPPG surface after formation of the DPPG bilayer, as mentioned above in analyses of 

figure 5.5 g). The magnitude at low spatial frequencies (A parameter) is related to the height of the 

rough surfaces. In tables 5.4 and 5.5 it is possible to observe that the A parameter generally remains 

constant in 1D PSD at low frequencies for Au/DPPG and Au/PAH/DPPG LbL films, however and 

because of the formation of vesicles aggregated on both surfaces at 3 and 10 minutes, for the first and 

second films respectively, there is an increase of the A parameter. The C parameter, corresponding to 

the inverse slop of the PSD curve, gives the nature of the roughness and is associated to growth 

mechanisms. Looking at the major periods of DPPG adsorption, both samples present a C~3 

revealing that the film growth corresponds to bulk diffusion. 

The final fractal dimension (Df) values for DPPG liposomes immobilization on both surfaces were also 

attained by the K-correlation or ABC model using the equation 3.11. At 3 and 10 minutes of DPPG 
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deposition on Au and PAH, respectively, the Df values increased to a value close to 3, which is 

representative of liposomes aggregation on surface. However at the end, the Df trends to values close 

to 2 proper of a marginal fractal surface. 

 

Table 5.7. PSDABC model parameters given by equations 3.10 and 3.11 applied to the region II of the PSD curves 
of Figures 5.7 a). The correlation coefficient (CC) was obtained from the fit of experimental data to equation 3.10. 

LbL films 

DPPG 

adsorption  

time 

(min) 

Intrinsic contributions 

 (PSDABC or K-correlation model) 

A 

(nm
3
) 

B 

(nm) 
C  CC DfABC 

Au 0 19.7±0.4 6.8±0.2 5.6±0.3 0.98458 0.7 

Au/DPPG 3 46±2 17±2* 1.2±0.3 0.98637 2.9 

Au/DPPG 5 36.8±0.8 11±1 3.1±0.6 0.99401 1.95 

Au/DPPG 10 46.1±0.9 11±1 3.9±0.1 0.9959 1.5 

Au/DPPG 120 25.5±0.9 12±2 2.8±0.8 0.98604 2.1 

* Value close to the mean diameter of the DPPG liposomes. 

Table 5.8. PSDABC model parameters given by equations 3.10 and 3.11 applied to the region II of the PSD curves 
of Figures 5.7 b). The correlation coefficient (CC) was obtained from the fit of experimental data to equation 3.10. 

LbL films 

DPPG 

adsorption  

time 

(min) 

Intrinsic contributions  

(PSDABC or K-correlation model) 

A 

(nm
3
) 

B 

(nm) 
C CC DfABC 

Au/PAH/DPPG 0 17.0±0.5 7.5±0.2 4.8±0.3 0.9758 1.1 

Au/PAH/DPPG 3 31±2 15±3 2.7±0.2 0.98063 2.15 

Au/PAH/DPPG 5 39±2 15±3 2.8±0.8 0.98858 2.1 

Au/PAH/DPPG 10 82±8 27±5* 1.6±0.4 0.98645 2.7 

Au/PAH/DPPG 60 39±2 12±3 3.1±0.2 0.97846 1.95 

* Value close to the mean diameter of the DPPG liposomes. 
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5.3 AFM in situ surface analysis of Au/PEI/(PSS/PAH)4 and 

Au/PEI/(PSS/PAH)4/DPPG films  

The surface analysis performed in last section, such as amplitude roughness parameters and the 

conventional, fractal and ABC or K-correlation PSD models were applied to Au/PEI/(PSS/PAH)4 and 

Au/PEI/(PSS/PAH)4/DPPG-liposomes topographic surfaces imaged by AFM in situ, in order to extract 

information of surface morphology, microstructure and growth mechanisms. However, and bearing in 

mind that this PEM is rough and leads to the formation of aggregates or superstructures after DPPG-

liposomes adsorption, another PSD model (PSDsh) must be implemented in order to make available 

the size of these features.  

 

5.3.1 Amplitude parameter analysis 

Heights and phases of topographic images of Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG LbL 

films were obtained by AFM in situ and are displayed in figure 5.8. The DPPG suspension was 

obtained by the sonication method and the time adsorption onto PEM was 60 min. 

 

 

a) 

 

b) 
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c) 

 

d) 

Figure 5.8. AFM in situ topographic images with 22 m
2
 of a) and b) Au/PEI/(PSS/PAH)4 and c) and d) 

Au/PEI/(PSS/PAH)4/DPPG LbL films, heights and phases, respectively. 

Table 5.9 displays the height amplitude parameters obtained from Au/PEI/(PSS/PAH)4 (PEM) and 

Au/PEI/(PSS/PAH)4/DPPG topographic images. The Ra roughness values are equal in both cases, 

being the Rq roughness slightly lower after DPPG adsorption. Furthermore, it can be detected a 

reduction of the mean peak-to-valley roughness (Rtm) and a growth of the height peaks (Rpm) 

justified by the adhesion of closed vesicles onto PEM surface, as we can see in PEM and PEM/DPPG 

profiles exhibited in figure 5.9 a).  Although, the Rku is higher than 3 for both surfaces, i.e. the surface 

has more peaks than valleys, it slightly decreases after the adsorption of DPPG liposomes onto PEM, 

meaning a reduction of the surface sharpness due to the fact that intact vesicles have been 

immobilized. Height distributions for both surfaces are accessible in figure 5.9 b) and the parameters 

obtained after fitting the gaussian curves are displayed in table 5.9. Both surfaces present two 

maximum values of height centered at 17.7±0.2 and 26±3 nm for Au/PEI/(PSS/PAH)4 and 20.6±0.2 

and 33±3 nm for Au/PEI/(PSS/PAH)4/DPPG. The largest area of the obtained fitted curves is the one 

centered at 20.6±0.2 nm proving that liposomes are adsorbed onto the PEM surface maintaining its 

own structure, i.e., being not flattened.  

 

Table 5.9. AFM 1D Statistical parameters calculated from topographic images with 22m
2
 areas of 

Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG. 

Rq – root-mean-square roughness; Ra – Roughness average; Rku – Kurtosis; Rtm - Average Maximum Height of 
the Profile; Rvm - Average Maximum Profile Valley Depth; Rpm - Average Maximum Profile Peak Height; P1 – 
peak 1 position; W1 – width peak 1; A1 – area peak 1; P2 – peak 2 position; W2 – width peak 2; A2 – area peak 2. 

Time 

(min) 

AFM 1D Statistical parameters (rows) 

Rq 

(nm) 

Ra 

(nm) 

Rtm 

(nm) 

Rvm 

(nm) 

Rpm 

(nm) 
RKU 

Height distribution Gaussian fit parameters 

P1 

(nm) 

W1 

(nm) 
A1 

P2 

(nm) 

W2 

(nm) 
A2 

0 8±3 5±1 45±12 7±3 21±3 5±1 17.7±0.2 10.4±0.6 0.6±0.1 26±3 17±2 0.3±0.1 

60 7±2 5±1 40±7 10±2 23±2 4±1 20.6±0.2 10.9±0.2 0.88±0.06 33±3 16±4 0.15±0.06 
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a) 

 

 

b) 

 

Figure 5.9. a) Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG height profiles with 2 m of scan length 
obtained from the topographic images showed in figures 5.9 a) and c). b) Height distribution curves and 
respective gaussian fitted curves obtained by treatment of 1D AFM topographic images in situ of 

Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG. 
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5.3.2 Fractal analysis 

Figure 5.10 presents the PSD spectra of Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG surfaces 

profiles. The plateau at low spatial frequencies (region I) 𝑓  2.210
7 
m

-1
 of the PSD spectra reveals an 

absence of any characteristic length beyond ca. 45 nm. This region can also give information about 

height profiles deviations of the surface. Thus, a rather decrease of the magnitude of the power 

spectra at low frequencies, after DPPG liposomes connection onto the PEM, means that vesicles have 

contributed to a small reduction of the surface roughness. The region II of PSD spectra obeys to two 

regimes that are frequency dependent and have a constant slope (sub-regions IIa and IIb). This region 

characterizes the surface self-affine behavior and involves intermediate frequencies at 2.210
7 

m
-1

  

𝑓  3.110
8 

m
-1

, representative of a combination of two mechanisms in the course of growth evolution. 

The region III (𝑓 > 3.110
8
 m

-1
) of the PSD spectra was not considered for surface analysis as 

explained above in subsection 5.2.2. At subregion IIb, these PSD spectra have a more smooth corner 

than the one obtained for DPPG vesicles immobilization on Au or PAH (see figure 5.7 a) and b)) 

meaning a surface with a higher thickness.  

 

 

Figure 5.10. Power spectra density of the Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG surfaces. 

 

 

 

 

 

I II III 

b a 

𝜉𝑎𝑏 𝜉𝑏𝐼 
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The first (𝜉𝑎𝑏) and second correlation length (𝜉𝑏𝐼) having each a specific transition frequency and 

marked with arrows in figure 5.10, can express the mean grain diameter of a self-affine surface, in this 

case containing two different arrangements. Table 5.10 shows the found values for the two correlation 

lengths, 9 and 42 nm for Au/PEM, and 13 and 45 nm for Au/PEM/DPPG assigned to the mean grain 

diameter of gold and PEM surfaces, respectively. Using this model it isn’t possible to determine the 

mean grain diameter of the DPPG vesicles attached to the PEM. 

The roughness exponents (𝛼) were estimated by equation 5.1 of the fitted PSD in the two regimes and 

the found parameters are listed in table 5.10. For both systems the 𝛼𝑏 is equal to one, meaning that 

the growth surface as reached the equilibrium following the diffusion Villain model and the grain 

morphology approaches to the ideal circular shape. The fact that 𝛼𝑎 decreased after the deposition of 

the DPPG vesicles reveals a reduction of the number of the aggregates on the surface.   

 

Table 5.10. Slopes (𝛾) and the respective scaling exponents (𝛼) acquired from the subregions a and b and the 

correlation lengths (𝜉) attained for the transition of the ab and bI zones of the PSD curves of figure 5.10. 

LbL film 𝜸𝒃 𝜶𝒃 𝜸𝒂 𝜶𝒂 
𝝃𝒂𝒃 

(nm) 

𝝃𝒃𝑰 

(nm) 

Au/PEI/(PSS/PAH)4 3.03±0.07 1.015 4.42±0.05 1.71 9 42 

Au/PEI/(PSS/PAH)4/DPPG 3.0±0.1 1.0 4.19±0.05 1.595 13 45 

 

The region II of the PSD spectra showed in figure 5.10 were also fitted with the PSDfractal model which 

takes into account the substrate influence and provides the information about the relative amounts of 

the surface irregularities at different scales. The spectral parameters and Df values were estimated 

using equations 3.8 and 3.9, respectively, and the found values are listed in table 5.11 The spectral 

indices (𝜈) for both films are similar. This is also evident in the high-frequency region were the slope of 

the PSD curves are almost the same. However, the spectral strength (K) is higher for the surface with 

DPPG liposomes. This outcome suggests that this heterostructure has stronger fractal components. 

Both films have a Df almost 2 which indicates that they belong to the category of marginal fractal, 

being the PEM/DPPG surface more smooth and with less irregularities on its topography than the 

PEM cushion. 
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Table 5.11. Spectral index (𝜈), spectral strength (K) and correlation coefficient (CC) parameters obtained by fitting 

the PSD curves of figure 5.10 with equation 3.8 and the respective fractal dimensions calculated by equation 3.9. 

Fractal contribution  

(PSDfractal model) 

Au/PEI/(PSS/PAH)4 Au/PEI/(PSS/PAH)4/DPPG 

K 𝝂  Df CC K 𝝂 Df CC 

2.5±0.4 2.60±0.05 1.7 0.9945 4.4±0.4 2.86±0.05 1.57 0.99296 

 

 

Conventional PSD analysis method reveals the correlation lengths for PEM and gold surfaces, but it 

does not allow the detection of DPPG vesicles on surface. So, a further examination using the ABC or 

k-correlation model was applied to medium frequencies of the PSD plots of figure 5.10. The PSD plots 

feature of the samples Au/PEM and Au/PEM/DPPG were characterized using the ABC model and the 

found A, B and C parameters are shown in table 5.12. The A parameter which is the magnitude at low 

spatial frequency, has shown to decreases after the DPPG vesicles deposition onto PEM indicating a 

diminution of the height of the rough surface. The B parameter determines the position of the ‘knee’, 

which is defined as the slope of a line connecting two points of the surface and corresponds to the 

mean grain diameter of the features of a rough surface. The obtained values for this parameter were 

50±9 nm and 21.0±0.5 nm corresponding to the mean grain size of PEM and of PEM/DPPG, 

respectively. It is interesting to observe that the attained mean grain size value for PEM is 

approximately equal to the 𝜉𝑏𝐼 parameter (42 and 45 nm) calculated by the conventional correlation 

length method and it is assigned to the PAH polymer domains. The mean grain size of 21.0±0.5 nm 

found for PEM/DPPG surface approaches to the mean grain hydrodynamic diameter of the DPPG 

liposomes measured by DLS. Once enhancing the idea that DPPG vesicles immobilize onto PEM 

surface maintaining its own structure, i.e. without being flattened. Besides, this is a proof of 

consistence of the ABC analysis method, since it is able to separate correctly the DPPG vesicles 

component from the total roughness of the sample, in this case the PEM domains. The results attained 

from this method allow to access observations that would not be possible from the conventional PSD 

examination. The intrinsic contribution obtained from C parameter outlines the growth mechanisms of 

the surface under analysis. The value found for the PEM LbL was 2.5±0.4 lying between the 

condensation mechanism and the bulk diffusion, and for the PEM/DPPG was 4.1±0.1 referring to a 

surface diffusion. The fractal dimension of the surface can be obtained from the C parameter of the k-

correlation model. The Df found for PEM was around 2.25 standing between the Brownian fractal and 

the marginal fractal. The PEM/DPPG reveals a Df of 1.46, a value nearly to the marginal fractal. Since 

Df value determines the roughness nature one can conclude that the PEM cushion has a more 

irregular structure than the PEM/DPPG surface, which is composed by an organized layer of close-

packed DPPG vesicles. 
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Table 5.12. PSDABC model parameters given by equations 3.10 and 3.11 applied to the region II of the PSD 
curves of figure 5.10. The correlation coefficient (CC) was obtained from the fit of experimental data to equation 
3.10. 

LbL films 

Intrinsic contributions  

(PSDABC or K-correlation model) 

f 

(m
-1

) 

A 

(nm
3
) 

B 

(nm) 
C  CC DfABC 

Au/PEI/(PSS/PAH)4 2.210
7
:8.810

7
 2000±418 50±9 2.5±0.4 0.99771 2.25 

Au/PEI/(PSS/PAH)4/DPPG 2.810
7
:1.510

8
 392±17 21.0±0.5 4.1±0.1 0.99568 1.46 

 

Although the ABC model has proved to be a good tool to apply to the plateau of medium frequencies 

(subregion IIb of figure 5.10), the PSD spectra is not adapted to this model at the low frequency region 

(I). It is well known that the low frequency components of the PSD spectra represent the aggregates or 

superstructures. The presence of such superstructures (or grain clusters) can be extracted from the 

PSD spectra of these films using the PSDsh model (see equation 3.12). This model was applied to the 

region I of the PSD plots of figure 5.10 and the found values are listed in table 5.13. The lateral size of 

the superstructures is given by the 𝜏𝑠ℎparameter. The results showed values of 43 nm and 87 nm for 

the 𝜏𝑠ℎ parameter of the PEM and PEM/DPPG surfaces, respectively. This observation leads us to 

assume that if vesicles with 25 nm of mean hydrodynamic diameter are densely immobilized onto 

PEM surface, comprising 43 nm of length size, a final value of 87 nm for the superstructures is 

reliable. This is also a proof that DPPG vesicles are disposed onto PEM domains. However, another 

superstructure located in the PSD curve at 1.6x10
7
 m

-1
 frequency (63 nm) could not be fitted due to 

the reduced number of points.
 
Concluding, after diffusion processes the DPPG vesicles joined to the 

PEM leading to a duplication of the length size of the PEM mounds and the surface morphology 

becomes more regular with a lower fractal dimension. Figure 5.11 outlines the ideal model obtained 

for the Au/PEI/(PSS/PAH)4/DPPG heterostructure.  

Table 5.13. Superstructure contribution components (PSDsh). Parameter 𝜏𝑠ℎ  describes the mean size of 

aggregates (superstructures). CC is the correlation coefficient.  

LbL films 

Superstructure contributions  

(PSDsh model) 

𝒇𝒔𝒉 

(m
-1

) 

𝝉𝒔𝒉 

 (nm) 
CC 

Au/PEI/(PSS/PAH)4 4.410
6
 43 0.838* 

Au/PEI/(PSS/PAH)4/DPPG 4.410
6
 87 0.917* 

* The second superstructure located at f= 1.6x10
7
 m

-1 
was not taken into account for the PSDsh model. 
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Figure 5.11. Schematic representation of the proposed model for Au/PEI/(PSS/PAH)4/DPPG-liposomes 
heterostructure, where Au substrate, PEI/(PSS/PAH)4  cushion and  DPPG liposomes are displayed in yellow, blue 
and red colors, respectively. The arrows symbolize the size obtained for each surface feature represented by 
numbers: 1) lateral size of the superstructures or aggregates of DPPG liposomes achieved by the PSDsh model; 
2) size of the DPPG liposomes acquired by the PSDABC model; 3) size of the PEM grains obtained by the PSD-
conventional, PSDABC and PSDsh models. 

 

5.4 Adsorption Kinetics of DPPG Liposome Layers: A Quantitative Analysis 

of Surface Roughness 

This section provides a quantitative analysis of the adsorption of DPPG liposomes, obtained by 

sonication, adsorbed onto flat and rough PEMs surfaces containing the same upper layer. The kinetic 

adsorption parameters obtained by fitting the QCM curves are presented and compared to root-mean-

square roughness and mean grain size values extracted from topographic surfaces imaged ex situ by 

AFM, at discriminated DPPG adsorption times.   

 

5.4.1 QCM measurements 

DPPG liposomes adsorption kinetics onto PAH and PEI(PSS/PAH)4 polymer cushions with different 

roughness were obtained from QCM measurements using the SVC system and the adsorbed amounts 

per unit area were calculated by equation 3.1 [300]. 

Figure 5.12 shows the DPPG adsorbed amount kinetic curves onto PAH and PEI/(PSS/PAH)4 polymer 

cushions. The total DPPG adsorbed amount measured onto a PAH cushion was 5±1 mg/m
2
, which is 

in accordance with the value calculated for a planar DPPG bilayer [297].  

2 

GOLD SUBSTRATE 

PEM 

DPPG 

LIPOSOME 3 

1 
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Figure 5.12. Adsorbed amount kinetics of DPPG-liposomes onto PAH and PEI/(PAH/PSS)4 cushions. The inset 
displays the DPPG adsorbed amount kinetics plotted as a function of t

1/2
.  

 

The DPPG adsorbed amount onto PEI/(PSS/PAH)4 was 51±1 mg/m
2
, which is higher than the 

predicted value for a planar DPPG bilayer, suggesting that most of the DPPG liposomes remained 

intact. Supposing a layer of close-packed intact DPPG liposomes adsorbed onto a flat surface having 

the crystal diameter, a mean value of 80 nm for the diameter size for intact liposomes is achieved. 

This value is however far from the one obtained from the DLS measurements, which indicates a large 

number of liposomes with 25 nm of diameter size. Even if some large liposomes are being adsorbed, 

their mass cannot justify the obtained adsorbed amount for DPPG onto PEI/(PSS/PAH)4.  However, if 

the polymer-cushion surface roughness is higher than that of quartz crystal an adsorbed amount of 

DPPG-liposomes of 51 mg/m
2 

is plausible.  Assuming 25 nm diameter DPPG liposomes, the surface 

area would have to be about 3 times larger than the flat support, to be able to adsorb a complete layer 

of intact liposomes, value that can be easily attained in a rough surface.  

Generally, the adsorption kinetics of layers onto LbL films is seen to follow a two processes 

mechanism as described by the equation 4.1. In the case of polyelectrolyte adsorption, the process 

with short characteristic time, or the first process, is associated to a nucleation process in which the 

adsorbed amount is proportional to polyelectrolyte concentration in solution. The second process, or 

the process with longer characteristic times, is related with diffusion of the polyelectrolyte molecules 

onto the double layer and due to the replacement of counterions by the polyelectrolyte [266]. The 

DPPG onto PEI/(PSS/PAH)4 cushion adsorption kinetics data was fitted to this equation and the 

obtained parameters are displayed in Table 5.14. 
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Table 5.14. Kinetics parameters for DPPG liposomes adsorption onto PAH and PEM (PEI/(PSS/PAH)4) cushions. 
The correlation coefficient (CC) parameter was obtained from the fit of experimental data to equation 4.1. 

LbL 

films 

𝜞𝟏 

(mg/m
2
) 

𝝉𝟏 

(min) 

𝜞𝟐 

(mg/m
2
) 

𝝉𝟐 

(min) 

n 
𝜞𝟑 

(mg/m
2
) 

𝝉𝟑 

(min) 

CC 

PAH 2.29±0.02 2.19±0.02 6.45±0.05 22.73±0.06 0.5 -3.81±0.02 64.3±0.2 0.9890 

PEM 30.75±0.03 12.87±0.01 21.57±0.03 22.73±0.06 0.5 --- --- 0.9999 

 

 

 

Regarding the adsorption of DPPG onto PAH, the data was better fitted when a second first order 

process is added to equation 4.1. The result parameters from fitting the adsorption of DPPG onto PAH 

are also displayed in table 5.14, where 𝛤3 represents the adsorbed amount per unit area and 𝜏3 is the 

characteristic time related with this third process. 

Parameters listed in table 5.14 reveal that the adsorption of DPPG liposome onto PEI/(PSS/PAH)4 

cushion is taking place in two stages. In an initial stage, liposomes migrate to the crystal-PEM surface, 

being the adsorption governed by both diffusion phenomena and attractive electrostatic forces 

between the positive PAH layer surface and the DPPG liposomes negatively charged. As the 

liposomes are being adsorbed, both concentration gradient and electrostatic forces intensity decrease 

contributing for the establishment of a constant DPPG adsorbed amount. By plotting the adsorbed 

amount as a function of t
1/2

 as shown in the inset of figure 5.12, a linear behavior can be observed, 

which confirms diffusion controlled adsorption as follows from Langmuir-Schaeffer equation [301]. 

Analyzing the parameters displayed in table 5.14, one can infer about the processes that are occurring 

during the adsorption. For the process with n taking a value of 0.5, process 2, the characteristic time 

parameter 𝜏2 obtained is about ~23 minutes, matching with the end of the diffusion controlled process 

as shown in the inset of figure 5.12. The maximum adsorbed amount associated to this process allows 

to conclude that about 2/5 of the DPPG liposomes adsorbed are caused by the liposome diffusion to 

the crystal-PEM surface. Process 1, with a characteristic time of about 13 minutes, is driven by the 

electrostatic interactions, having its intensity decreased as the liposomes are being adsorbed onto the 

surface.  

The DPPG liposome adsorbed amount data onto PAH cushion was fitted to two first order process 

plus a process having n equal to 0.5 and a characteristic time of 23 minutes. This latter process was 

imposed since it is expected that liposomes have a similar diffusion behavior for both cases of 

presented adsorption. However, experimental data revealed that the maximum adsorbed amount is 

attained in about 30 minutes, decreasing slightly after that. Such behavior can only be explained by 

the two other processes: the process having a smaller characteristic time, during which the liposomes 

adsorb on the PAH surface, and another process associated to phospholipid desorption from the 
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surface, having larger characteristic time. These processes are in accordance, respectively, with the 

liposome rupture and desorption of lipids which are in the spatial regions where lipid bilayers edges 

overlap. This has already been mentioned in literature [67, 75]. Moreover, adsorbed amounts around 5 

mg/m
2
 indicate a complete coverage by a lipid bilayer as a result of liposome rupture. In addition, it 

suggests that the liposome rupture is induced by a strong interaction between the liposome and the 

completely charged PAH surface [6]. The explanation for this behavior has been also reported in 

literature, whereby the spread of the lipid membrane over a planar surface is favored at low pH, 

regardless the net charge on the bilayer, process which is driven by van der Waals forces [70]. 

However, in the present case the difference between the PAH layer deposited on gold and that on the 

PEM surface, is the surface morphology itself, as one expects the PEM surface is rougher than the 

PAH single layer. To conclude about the roughness, the topographies of these surfaces were 

measured and its characterization will be described in next section.  

 

 

5.4.2 AFM topographic images 

Topographic images from PAH and PEI/(PSS/PAH)4 cushions deposited onto Au-coated quartz crystal 

surfaces both with DPPG adsorbed at different times, were obtained by AFM. Topographic images 

with an area of 22 m
2
 of a) Au/PAH, b) Au/PAH/DPPG, c) Au/PEI/(PSS/PAH)4  and  d) 

PEI/(PSS/PAH)4/DPPG are shown in figure 5.13 a), b), c) and d), respectively. The DPPG adsorption 

time was 5 minutes. Table 5.15 displays the root-mean-square roughness (Rq) and the mean grain 

size quantities. Grain size values were obtained from statistical treatment of the topography by the 

method described by Itoh et al [193]. One must to be aware that Rq calculations for rough surfaces, in 

cases of large polyelectrolytes aggregates and/or liposomes, leads to large error bars which in certain 

samples attains values of 40%. It should be referred that the error bars correspond to Rq standard 

deviation calculated from all individual row/column values of a unique topographic image data.  
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a) 

 

b) 

  

c) d) 

 

Figure 5.13. Topographic images with 22m
2
 area of a) Au/PAH, b) Au/PAH/DPPG c) Au/PEI/(PSS/PAH)4 and  

d) PEI/(PSS/PAH)4/DPPG surfaces. The adsorption time of DPPG in b) and d) was 5 minutes.   

 

From table 5.15, the Rq values, considering 0.5x0.5 m
2
 scan areas, indicate that roughness of PAH 

layer adsorbed onto Au-coated quartz crystal is 0.2 nm higher than that of the gold surface, while the 

PEI/(PSS/PAH)4 PEM is 2.6 nm higher. This result is consistent since as the number of layers 

increases the roughness also increase, as a result of coil-like conformation polyelectrolyte during 

adsorption which results in nonlinear buildup behavior [262]. 
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Table 5.15. Surface parameters obtained from statistical treatment of the AFM images. Topographic data was 

obtained from a measured area of 22 µm
2
 and the roughness was also calculated in scan areas of 0.50.5 µm

2
. 

 

Surface 

 

DPPG time 
adsorption 

(s) 

Rq 

(nm) 

 

Mean grain 

Size 

 (nm) 

Scanned Area --- 0.50.5 m
2
 2.02.0 m

2
 2.02.0 m

2
 

Au --- 1.4±0.2 1.5±0.2 8±1 

 

 

 

Au/PAH 

 

 

0 1.6±0.3 1.7±0.2 5.4±0.6 

5 1.9±0.4 1.9±0.3 4.8±0.7 

30 1.8±0.3 1.8±0.2 4.0±0.8 

60 2.0±0.6 2.1±0.9 5.8±0.6 

300 1.8±0.3 1.9±0.2 5.0±0.7 

900 1.5±0.3 1.6±0.2 5 ±2 

1800 1.5±0.3 1.5±0.2 6.5±0.9 

 

 

 

Au/PEI(PSS/PAH)4 

0 4±1 7±4 31±4 

5 7±1 19±6 42±2 

30 7±2 17±9 42±13 

60 7±2 14±4 31±5 

300 9±2 22±8 40±3 

900 9±5 29±11 49±5 

1800 8±2 22±7 24±3 

 

5.4.3 Adsorbed amount and roughness kinetics – a comparison 

The Rq values obtained for different DPPG adsorption times were plotted together with the respective 

QCM kinetics curves, as shown in figure 5.14 a) and b). For the case of PAH cushion, the roughness 

increases during the first few minutes, which coincides with the first fast process, with a smaller 

characteristic time. Afterwards the roughness decreases to a constant value, revealing that the 

liposomes are being disrupted at the surface and the lipids re-organized, in accordance with 

desorption as revealed by the third adsorption kinetics process. The Rq of PEI/(PSS/PAH)4 cushion 

surface as a function of adsorption time, as seen in figure 5.14 b), increases up to a constant value 

which is consistent with liposomes structural integrity preservation. The Rq values attained in both 

cases, 1.5 nm and 22 nm, respectively, for liposomes adsorption on PAH and on PEI/(PSS/PAH)4 
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cushions can be now compared with liposome sizes values of table 4.15, allowing to conclude that the 

liposomes disrupt on PAH layer while in PEI(PSS/PAH)4 cushion structure integrity is maintained.  

 

a) 

 

b) 

Figure 5.14. DPPG adsorbed amount per unit of area and roughness values obtained from 0.50.5m
2
 (triangles) 

and 22m
2
 (circles) topographic images of DPPG liposomes adsorbed during different periods of time onto: a) 

PAH and b) PEI/(PSS/PAH)4 cushions.  
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This conclusion is also consistent with the mean grain size values for the case of DPPG-liposomes 

adsorption onto the PEM cushion as a function of adsorption time as shown in figure 5.15, which 

reveals grain sizes values close to the liposome diameter, however the mean value is somewhat 

higher indicating that, in certain cases, the liposomes are immobilized on surface in a flattened 

arrangement. The liposomes flattening can occur during its deposition onto solid supports, by vesicles 

deformation during topography measurements as a result of interactions with the tip and by irregular 

distribution of liposomes on surfaces due to physical interactions [263]. 

 

Figure 5.15. Mean grain size values of topographic images PEI/(PSS/PAH)4/DPPG with 22m
2
 area versus 

DPPG time adsorption on PEI/(PSS/PAH)4.  

 

Roughness data obtained as a function of DPPG adsorption time onto PAH cushions show an 

increase in roughness within the first 2 min, which can be associated with the first liposomes adsorbed 

on the surface without rupture, followed by a decrease in roughness as a result of liposome rupture. In 

addition, the grain size seems to follow the grains of the gold surface, indicating once more rupture of 

liposomes. The fact that the values calculated from different scan areas follow similar behavior should 

be taken into consideration. 

 

5.4.4 Roughness as a measure of surface hydrophobicity at its contribution for 

rupture or maintenance of intact liposomes  

Adsorption of DPPG liposomes onto the PEI/(PSS/PAH)4 cushion suggests that the surface 

morphology evolution arises from adsorption of particles with self-organization behavior which, leads 

to a fractal surface as already observed in polyelectrolytes adsorption [179, 302-304]. For those self-

affine surfaces, the Rq is dependent of both scan length and adsorption time parameters. A relation 
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between roughness and roughness scaling parameters describing self-affine surfaces has been 

introduced by Family and Vicsek [305] by considering two parameters to give information about 

processes involved in surface creation in terms of topography and  growth. These parameters are the 

spatial scaling exponent, 𝛼, and the temporal growth exponent, 𝛽, obtained by the equations 3.14 and 

3.13, respectively. 

Roughness data obtained as a function of adsorption time of DPPG onto PEI/(PSS/PAH)4 cushion 

allows to determine a growth exponent of 0.19±0.07 and a value of about 0.84 for the roughness 

exponent. This last value is presented without error because it was calculated only from roughness 

calculated in two scanned areas. Comparing these values with those obtained for different self-affine 

fractal models, it is possible to conclude that the adsorption follows the Villain’s model [306]. This 

model considers a simple growth process where particles are randomly deposited onto a substrate 

and subsequently relax into a nearby position, where the binding is strongest. This mechanism is 

consistent with the prevalent electrostatic interactions between the DPPG liposomes and the last PAH 

layer of the PEM.  

However, roughness per se cannot explain the phenomena underlying liposomes adsorption onto 

rough surfaces which guarantees liposome integrity. With respect to this issue, in the 90’s 

hydrophobicity and roughness concepts began to be related [307] and in 2000 Herminghaus [294] 

demonstrated theoretically that certain class of self-affine profiles of surface roughness can induce 

hydrophobicity. Moreover, an increase of roughness was shown to give rise to an increase of surface 

hydrophobicity, as demonstrated by Jung and Bhushan [308-310]. In fact, water contact angle 

measurements of PAH/PSS films indicate [6] that rough films present higher contact angle and 

consequently are more hydrophobic. Recently, Herminghaus [311] presented an analytic theory which 

allows calculation of the wetting-phase diagram, adsorption isotherms, and percolation threshold of 

the adsorbed liquid film, for isotropic randomly rough substrates with arbitrary lateral correlation 

function and height distribution. As a result, it has been demonstrated that the roughness influences 

the adsorption phenomena and is associated to surface hydrophobicity. Consequently, liposome 

rupture can be controlled by the surface hydrophobicity. An increase in hydrophobicity reduces the 

number of water molecules on the PAH surface, contributing for counterions anchorage near PAH 

ionic groups, thus reducing the electrostatic forces between the liposome and the PAH layer and 

consequently preventing the liposome rupture.  

 

 

5.5 Adsorption of DPPG liposome on different roughness cushions: analysis 

of adsorbed amount, surface composition and topography 

Various polyelectrolyte multilayers (PEMs) with different number of layers and roughness, having as 

upper layer the charged PAH polyelectrolyte, were assembled onto Au-quartz crystal resonators. The 

assembly of intact DPPG vesicles, obtained by sonication procedure, onto these PEMs was monitored 

by QCM using the SVC setup and kinetic adsorption parameters were inferred. Surface topographies 

of the samples were ex situ imaged by AFM in non-contact mode and the amplitude parameters were 
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extracted. Grain values of the surface features were attained from PSD spectra of these surfaces 

using a combination of three PSD models, such as fractal, ABC or K-correlation and superstructures. 

Moreover, the elemental compositions of PEM and PEM/DPPG LbL films as well as binding energies 

of organic groups of the molecules were achieved by XPS analysis.  

 

5.5.1 DPPG Adsorption Kinetics  

Adsorption kinetic curves of DPPG liposomes onto PEI/(PSS/PAH)b polymer cushions with different 

number of bilayers, b, are shown in Figure 5.16 a). The curve of DPPG liposome adsorption kinetics 

onto a PAH layer is also included in this figure for comparison. It was shown that the total amount of 

DPPG adsorbed onto a PAH layer is 5±1 mg/m
2 

which is in accordance with the theoretical value 

calculated for a planar DPPG bilayer. The final amount of DPPG adsorbed per unit of area onto 

PEI/(PSS/PAH)3 and PEI/(PSS/PAH)4 is close to 51±1 mg/m
2
, a value higher than that one predicted 

for a planar DPPG bilayer, suggesting that the most of the immobilized DPPG liposomes remained 

intact. Supposing a layer of DPPG liposomes close-packed adsorbed onto a flat surface, a value of 16 

mg/m
2
 is achieved for the adsorbed amount per unit of area, for vesicles with a diameter of 25 nm. 

However, if the surface roughness of the polymer-cushion is higher than that of the quartz crystal, an 

adsorbed amount of DPPG-liposomes of 51 mg/m
2 

is plausible. Assuming a 25 nm diameter of the 

liposomes, in order to be able to adsorb a complete layer of intact liposomes the surface area should 

be 3 times larger than that of the flat quartz crystal, a value easily attained in a rough surface.  

Generally, the adsorption kinetics of layers assembled onto LbL films are seen to follow two or three 

processes as described in ref. [16]. Though, the adsorption behavior described by the kinetic curves 

can be interpreted by fitting the experimental data with a general theoretical curve such as: 

Γ = Γ𝑚𝑎𝑥 (1 − 𝑒𝑥𝑝 (− (
𝑡

𝜏
)

𝑛

))                                                (5.1)  

where Г is the adsorbed amount per unit area, Γ𝑚𝑎𝑥   is the maximum amount adsorbed at the end of 

the process, 𝜏 is the characteristic time of adsorption and 𝑛 is the exponent of time which is related 

with the type of adsorption process that is taking place. The adsorption parameters obtained from 

fitting the kinetic data of the DPPG liposomes to equation 5.1 are listed in table 5.16. To identify the 

general trends for the different number of adsorbed cushion bilayer, b, the maximum adsorbed 

amounts and characteristic times, were plotted in figure 5.16 b). In Figure 5.16 c), the 𝑛 parameter 

was also plotted as a function of the cushion number of bilayers, b. 
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a) 

 

b) 
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c) 

Figure 5.16. a) Kinetics of the adsorbed amount Γ of DPPG-liposomes onto PEI/(PAH/PSS)b cushions. b) 

Maximum adsorbed amount Γ𝑚𝑎𝑥 and characteristic time 𝜏 as a function of the number of bilayers in the cushion, 

b. c) The evolution of parameter n with the number of bilayers in the cushion. 

 

 

 

Table 5.16. Adsorption parameters obtained from the fitting of DPPG liposome kinetics curves.  

LbL films 

DPPG Kinetic Parameters 

max  

(mg/m
2
) 

  

(min) 
n CC 

PEI/PSS/PAH 16.87±0.02 43.6±0.7 0.3583±0.0008 0.98647 

PEI/(PSS/PAH)2 29.74±0.02 36.1±0.2 0.45±0.01 0.98449 

PEI/(PSS/PAH)3 50.713±0.005 19.69±0.02 0.6648±0.0005 0.99852 

PEI/(PSS/PAH)4 51.029±0.004 14.33±0.01 0.7281±0.0006 0.99842 

 

 

 

1 2 3 4
0.2

0.4

0.6

0.8
 n

n

Number of Bilayers
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5.5.2 XPS Characterization 

Quantitative information may be extracted from XPS data, even if in the present case of systems that 

are stratified in nature, the obtained values should be considered as just a qualitative indication [253]. 

Nevertheless, all the BE and elemental composition values resulting from XPS are listed in Table 5.17. 

The XPS survey spectrum of PEI/(PSS/PAH)4 LbL films revealed the presence of carbon, oxygen, 

nitrogen, sulfur, chlorine and sodium, as expected. However, for PEI/(PSS/PAH)4/DPPG the presence 

of sulphur, chlorine and sodium is just residual; but phosphorus, absent in the first one, is now clearly 

seen. Since sulfur, chlorine and sodium are constituents of the LbL cushion and phosphorus is only 

present on DPPG, this first result shows clearly that DPPG covered the entire cushion surface.  

The analysis of the detailed regions was also performed. The N 1s spectrum was fittable, for 

PEI/(PSS/PAH)4 sample, with two components (constrained to the same FWHM = 1.9±0.2 eV and the 

same Gaussian-Lorentzian percentage) centered at 399.5±0.2 and 401.6±0.1 eV and assignable to 

amine (>NH) and protonated amine (>NH3
+
), respectively [312]. In the sample with DPPG, the nitrogen 

signal is much weaker and only the second component could be fitted.  

The S 2p presents a single doublet for PEI/(PSS/PAH)4 sample: the component S 2p3/2 centered at 

168.1±0.2 eV and the component S 2p1/2 is centered at 169.5±0.2 eV. This doublet is assignable to the 

SO3
-
 group in PSS; it is perfectly defined for the PEI/(PSS/PAH)4 sample and just residual for the 

PEI/(PSS/PAH)4/DPPG one, as already verified in the survey spectrum. Cl 2p, in the PEI/(PSS/PAH)4 

sample, presented two doublets with a spin-orbit split of 1.60.1 eV, the components Cl 2p3/2 being 

centered at 198.00.1 eV and  200.10.2 eV. The presence of these two doublets is most likely related 

to a differential charging in the sample, due to the different location of the Cl
-
 ion (next to the 

polyelectrolyte chain or integrated into NaCl nanocrystals) [63]. In the presence of DPPG, Cl 2p 

became so weak that a detailed fitting was not possible. Na 1s was centered at 1071.70.2 eV and, 

once again, it was just residual in the sample covered with DPPG. Spectra of the sample with DPPG 

adsorbed onto the cushion presented the peak associated to phosphorus, P 2p, which is also a single 

doublet: the component P 2p3/2 centered at 133.5±0.2 eV and the component P 2p1/2 centered at 

134.3±0.2 eV.  

For the case of PEI/(PSS/PAH)4 sample, the O 1s peak was fitted with two components, one centered 

at 531.6±0.2eV, assigned to oxygen in PSS sulphonate groups and another one centered at 

533.3±0.1eV, tentatively, assigned to water entrapped in the film. For the case of the 

PEI/(PSS/PAH)4/DPPG sample, the O 1s peak was also fitted with two components, but one is 

centered at 531.3±0.2eV, assigned to the oxygen of phosphate and another centered at 532.8±0.1 eV 

that can be attributed to a mixture of ether and carbonyl oxygen in DPPG.  

Concerning the sodium, the Na 1s spectrum was fitted with a single peak centered at 1071.7±0.2 eV.  

Carbon, in the cushion, could be fitted with the components assignable to PSS and PAH groups, 

centered in the expected BE and in the expected quantitative proportions. In the DPPG covered 

sample, peaks corresponding to DPPG were adequate to fit the C 1s region; namely, * loss, due 

to the PSS  system not being detected. 
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Table 5.17. Binding energies and XPS elemental composition in atomic percentage, for PEI/(PSS/PAH)4 and 
PEI/(PSS/PAH)4/DPPG films. Relative error do not exceed ±10%.  

 

 PEI/(PSS/PAH)4  PEI/(PSS/PAH)4/DPPG 

 BE(eV) Atomic 

% 

Assignment  BE(eV) Atomic 

% 

Assignment 

C 1s 1 (PSS) 284.7 24.0 C-C,C-H (sp
2
)     

C 1s 2 (PSS) 285.0 9.6 C-C,C-H (sp
3
)  285.0 66.8 C-C, C-H (sp

3
) 

C 1s 3 (PSS) 285.2 4.8 C-S  286.6 10.1 C-O, C-N
+
 

C 1s 4 (PAH) 285.3 17.3 C-C, C-H  289.0 3.7 O-C=O
–
 

C 1s 5 (PAH) 286.5 8.7 C-N+     

C 1s 6 (PSS) 291.3  -*     

O 1s 1 531.6 13.6 O-S  531.3 5.7 O-P, O=C 

O 1s 2 533.3 1.9 Entrapped H2O  532.8 10.5 O-C 

N 1s 1 399.5 0.5 >N-     

N 1s 2 401.6 5.8 >N
+

<  401.4 1.6 >N
+

< 

Cl 2p3/2 1 198.0 3.2 see text   nq  

Cl 2p1/2 1 199.5 1.6    

Cl 2p3/2 2 200.1 1.5    

Cl 2p1/2 2 201.6 0.7    

S 2p3/2 168.1 2.8 SO3
–
   nq  

S 2p1/2 169.5 1.4    

Na 1s 1071.7 2.6 Na
+
   nq  

P 2p3/2     133.5 1.2 P-O 

P 2p1/2     134.3 0.6 

 

From the above results, we can conclude that the DPPG covers the LbL cushion very efficiently and 

that the charge compensation occurs between the phosphate group in the DPPG and the protonated 

amine in the PAH and does not involve (or it does to only a much lower extent) the sodium ion. 

 

5.5.3 AFM analysis 

AFM ex situ topographic images with an area of 22 m
2
 from PEI(PSS/PAH)b cushions, with b 

varying from 1 to 4 before and after adsorption of DPPG for 15 hours are presented in fig 5.17. From 

the analysis of the topographic data we calculated the root-mean-square roughness (Rq) parameters 

which are displayed in Table 5.18.  
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a)  

 

b)  

 

c)  

 

d)  

 

e) 
 

f) 
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g) 

 

h) 

Figure 5.17. Topographic images with 22m
2
 area of  a) PEI/(PSS/PAH)1; b) PEI/(PSS/PAH)1/DPPG; c) 

PEI/(PSS/PAH)2; d)PEI/(PSS/PAH)2/DPPG; e) PEI/(PSS/PAH)3; f) PEI/(PSS/PAH)3/DPPG; g) PEI/(PSS/PAH)4 
and h) PEI/(PSS/PAH)4/DPPG surfaces. The adsorption time of DPPG was of 15 hours.  

 

Table 5.18 Root-mean-square roughness (Rq) values obtained from surface topographies of PEI/(PSS/PAH)1b4 

and PEI/(PSS/PAH)1b4/DPPG imaged by AFM. Topographic data was obtained from a measured area of 22 
µm

2
. 

 

PEM 

Rq 

(nm) 

PEI/PSS/PAH 2.9±0.3 

PEI/(PSS/PAH)2 5.0±0.5 

PEI/(PSS/PAH)3 6.0 ±0.6 

PEI/(PSS/PAH)4 8.5±0.3 

 

DPPG onto PEM 

Rq 

(nm) 

PEI/PSS/PAH/DPPG 3.2±0.2 

PEI/(PSS/PAH)2/DPPG 4.0±0.8 

PEI/(PSS/PAH)3/DPPG 4.6 ±0.5 

PEI/(PSS/PAH)4/DPPG 9.0±0.4 
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The topographic images also allow to determine the curves of height distributions (HD) before and 

after DPPG liposomes adsorption onto PEI/(PSS/PAH)b cushion. In figure 5.18 the HDs are plotted for 

the cases of b=1 and b=4, for comparison. As the number of layers, b, in the cushion increases, these 

distributions show an increase of the maximum height. When comparing the cushions PEI/(PSS/PAH)1 

and PEI/(PSS/PAH)1/DPPG, only a small increase of the maximum height is observed (a couple of 

nm), while an increase of 10 nm is found when one compares the HDs associated to 

PEI/(PSS/PAH)4 and PEI/(PSS/PAH)4/DPPG. A similar increase is found when heights are compared 

at maxima for the DPPG-free cushions with number of layers between 1 and 4. This value can be 

easily explained if one considers that the liposomes have hydrodynamic diameter of 25 nm as 

measured by DLS, and then they are being adsorbed intact.  

 

 

Figure 5.18. Height distribution of AFM topographies before and after adsorption of DPPG onto PEI/(PSS/PAH)b 
cushion; with b=1 and b=4. 

 

5.5.4 Grain analysis 

The power spectral density (PSD) curves can provide improvement in grain analysis of the 

characterized surfaces. These spectra were calculated from topographies images of figure 5.17. In the 

present case the studies were done using the one-dimensional (1D) power spectral density which 

takes into account the surface profiles measured along the AFM fast-scan direction and because of 

this the units are in m
3
. The obtained PSD curves are plotted in Figure 5.19 a) and b) for the surfaces 

of PEI/(PSS/PAH)b cushions and for the same cushions with DPPG liposomes adsorbed, respectively. 
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a) 

 

b) 

Figure 5.19. Plot of the PSD functions versus spatial frequency, corresponding to: a) cushions with different 
number of bilayers, b, and b) same cushions as in a), but after adsorption of DPPG. 
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The PSD plots can be analyzed by a combination of different models applied to extract information 

retained in these curves. An overview of models applied in surface characterization can be found in 

ref. [190]. In accordance with these models one can interpret the obtained data in different regions. 

Therefore in the case of PSD curves of figure 5.19 a), one can find two well defined regions. For high 

spatial frequencies the PSD function reflects the roughness contribution from all features of the 

surface and in this case the PSD follows the inverse power law decay (equation 3.8). The 𝜈 index 

allows determining the fractal dimension (𝐷𝑓)  which in turn can be used to quantify the surface 

morphology. The 𝐷𝑓 values can be calculated in the case of PSD at one dimension by equation 3.9. 

For medium-low spatial frequencies, the PSD curve can be explained by the ABC model or the k-

correlation model and allows determining the mean grain size. This model, is a generalization of the 

fractal behavior, and presents a flat response below a cut-off frequency, followed by a decrease of the 

PSD values with the increase of spatial frequency, as described by the equation 3.10. This would 

permit the comparison of different methods of measuring the same morphological parameter.  

By analyzing the PSD data associated to samples with the DPPG adsorbed onto cushions, figure 5.19 

b), one can find that these curves cannot be associated only to those models. It is necessary to 

consider the superstructure PSD model, PSDsh, which makes possible characterize aggregates or 

superstructures formed on the surface, and it’s represented by the equation 3.12. 

These models were used to fit the PSD curves present in Figure 5.19 a) and b) and the calculated 

parameters are displayed in Table 5.19. The analysis of data listed in Table 5.19 reveals that the 

surfaces of all samples follow the fractal model for higher spatial frequency, revealing that the fractal 

dimension Df, parameter which provides information about the surface irregularities, increases as the 

number of bilayers of the cushions rises. In the case of the PEI/(PSS/PAH)b cushions, the changes in 

Df are not significant. However, in the case of DPPG adsorbed on the cushion, the evolution of the Df 

is significant and indicates that for cushions with few layers the surface is flat, suggesting the rupture 

of the liposomes. Nonetheless, for the case of cushions with higher number of bilayers, Df is 

approaching a value of 2, indicating that the surface is rough and therefore liposomes are being 

adsorbed intact. 

The parameter A calculated from fitting the 1D PSD data to ABC model is associated to the height of 

the low spatial frequency plateau. A generally increases for the case of cushions with DPPG, and 

decreases for the case of DPPG adsorbed to the cushion. The parameter B, which is related to 

correlation length and consequently represents the mean grain size, a mean value of 42 nm was 

found for the cushions, while in the case of DPPG adsorbed onto these cushions a mean grain size 

value of 17 nm was achieved, which is close to hydrodynamic diameter for DPPG liposomes 

measured by DLS. However, these last samples present other features, DPPG aggregates, exhibiting 

a superstructure size, given by the superstructures PSD model (eq. 3.12), and dependent of the 

cushion bilayers number. In fact, this parameter takes a value of 149 nm for the PEM with one bilayer 

decreasing, with the growth of the PEM bilayers number, to 43 nm which is similar to the grain size 

values found for the cushions. But in the case of the DPPG adsorbed onto PEM containing four 

bilayers, superstructures with size of 78 nm were also found. This value can be easily justified if 

closed DPPG vesicles, with 25 nm of diameter, are hexagonal-packed onto the PEM grains, with a 
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size of 43 nm. The 149 nm value attributed to the grain size of the PEM containing one bilayer was 

obtained due to the unfold of the DPPG vesicles onto the cushion, consequently creating a lipid bilayer 

that covers the surface, making it more uniform and thus increasing the grain size. These results 

allows us to conclude that cushions with higher roughness leads to larger quantities of intact 

liposomes adsorbed on surface, while flat cushions causes the vesicles rupture creating lipid bilayers 

on surface. Figure 5.20 outlines the ideal model obtained for the Au/PEI/(PSS/PAH)4/DPPG 

heterostructure 

 

 

 

Figure 5.20. Schematic representation of the proposed model for Au/PEI/(PSS/PAH)4/DPPG-liposomes 
heterostructure, where Au substrate, PEI/(PSS/PAH)4  cushion and  DPPG liposomes are displayed in yellow, blue 
and red colors, respectively. The arrows symbolize the size obtained for each surface feature represented by 
numbers: 1) lateral size of the superstructures or aggregates of DPPG liposomes achieved by the PSDsh model; 
2) size of the DPPG liposomes acquired by the PSDABC model; 3) size of the PEM grains obtained by the PSDABC 
and PSDsh models. 
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Table 5.19. Data calculated from PSDfractal, PSDABC and PSDsh models. 

 

 

 

 

Fractal Model ABC model Sh model 

lnK 𝜸+1 Df CC 
A 

(nm
3
) 

B 

(nm) 
(C+1)/2 CC 

shk  

(nm
3
) 

sh  

(nm) 

shf  (10
6
) 

(m
-1

) 

CC 

PEM             

PEI/(PSS/PAH)1 16.4±0.9 4.20±0.05 1.40±0.03 0.997 740±30 29±2 2.10±0.05 0.979     

PEI/(PSS/PAH)2 17±2 4.36±0.07 1.32±0.04 0.994 220±10 38±1 2.18±0.07 0.989     

PEI/(PSS/PAH)3 4±1 3.63±0.05 1.69±0.03 0.996 990±30 61±3 1.82±0.05 0.957     

PEI/(PSS/PAH)4 10±1 3.82±0.05 1.59±0.03 0.996 1800±100 39±3 1.92±0.05 0.946     

DPPG onto PEM             

PEI/(PSS/PAH)1/DPPG 29±1 4.87±0.06 1.02±0.03 0.995 100±5 18.5±0.5 2.44±0.08 0.988 5.5±0.1 149±(1) 1.6±0.2 0.996 

PEI/(PSS/PAH)2/DPPG 33±2 5.03±0.09 1.00±0.05 0.994 157±5 15.8±0.3 2.52±0.09 0.997 320±20 59±(0.6) 3.2±0.1 0.969 

PEI/(PSS/PAH)3/DPPG 17±2 4.3±0.1 1.35±0.05 0.990 16.7±0.7 12.9±0.3 2.15±0.8 0.988 1340±40 61±(0.3) 3.1±0.1 0.975 

PEI/(PSS/PAH)4/DPPG 6.4±1.3 3.00±0.07 2.00±0.04 0.991 16±2 22±1 1.50±0.07 0.991 
5500±0.100

 

480±60*
 

78±(0.4)
 

43±(0.5)* 

3.2±0.1
 

15.8±0.01* 
0.995 

* A second superstructure was also included.
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5.5.5 Initial roughness - the key for opening the charged liposomes 

As the degree of ionization of the last layer of polyelectrolyte of the cushion is equal for all cushions, 

the last layer is PAH, prepared from similar conditions. Therefore, it is expected that the effect of 

adsorption of open or intact liposomes is not controlled by hydrophobicity. Thus, it is possible to verify 

if the roughness is influencing the liposomes adsorption by normalizing the QCM data in accordance 

with the equation: 

max

max min

DPPG
ol

DPPG DPPG

F
 


 

                                                 (5.2) 

where   is the DPPG adsorbed amount and maxDPPG  and min are the DPPG adsorbed amount 

onto the cushion with four bilayers and one bilayer, respectively. These last values were chosen 

because in the first case the adsorbed amount reveals that the liposomes are open while in the 

second case the liposomes are intact. Therefore, this normalization represents the fraction of open 

liposomes, olF . By plotting the fraction of open liposomes as a function of the cushion roughness, as 

shown in figure 5.21, it is observed that the fraction of open liposomes decreases with increasing 

cushion roughness. This result leads us to conclude that the surface roughness is a fundamental 

variable for control the fraction of intact liposomes adsorbed onto a surface, important parameter for 

the development of well-design sensors based on functional biomolecules encapsulated in liposomes. 

 

Figure 5.21. Normalized adsorbed amount as a function of the cushion roughness where the liposomes are 

adsorbed. 
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5.6 (PAH/DPPG)3, (PEI/DPPG)3 and (PEI/(DPPG+melanin))3 LbL films used as 

sensors 

Aiming to verify the functionality and ability of the supramolecular heterostructures investigated in this 

work, a multisensory systems constructed with three different LbL films, namely (PAH/DPPG)3, 

(PEI/DPPG)3 and (PEI/DPPG+melanin)3 combined with seven electrodes of silver (Ag), gold (Au), 

copper (Cu), glassy carbon (GC), palladium (Pd), nickel (Ni) and platinum (Pt) was developed in order 

to obtain geographical classification of olive oils samples from different Portuguese and Moroccan 

regions. The DPPG+melanin designation means DPPG vesicle with melanin encapsulated inside it 

aqueous “bag”. 

 

5.6.1 XPS characterization of PEI/(DPPG+melanin) LbL films 

The (PEI/DPPG+melanin)8 LbL film was characterized by XPS at of 0◦ and 60◦ of take-off angle. To 

better understand this heterostructure the PEI and DPPG+melanin cast films deposited onto silicon 

substrates were also analyzed by XPS at 0 of ejection. The PAH/DPPG and PEI/DPPG LbL films 

have been previously analyzed by XPS in section 4.5.5. The XPS spectra of the 

(PEI/DPPG+melanin)8 LbL film revealed the presence of carbon (C), oxygen (O), nitrogen (N) and 

phosphorous (P). The atomic percentages of these elements and the respective binding energies are 

summarized in table 5.20. The XPS spectra of this LbL film was fitted with three peaks in C 1s regions 

assigned to an aliphatic carbon, a carbon single bonded to an oxygen (C-O) or to a nitrogen  (C-N) 

and a carbon in a ester group (O-C=O), respectively, from lower to upper binding energies [213]. At 

the O 1s core level the XPS spectra exhibit only two components centered at 531.0±0.2 and 532.6±0.2 

eV of binding energies. The first one is assignable to an oxygen in a phosphate or double bonded to a 

carbon [213] and the second to a carbon singly bonded to an oxygen [6, 253]. The N 1s spectrum 

shows three components centered at 399.1±0.2, 400.7±0.3 and 402.1±0.5 eV assignable, 

respectively, to imine (N), amine (NH) and ionized nitrogen [253]. The P 2p region contains one 

doublet centered at 133.3±0.2 eV and 134.1±0.2 eV. The first BE is typical of a phosphorous 

surrounded by oxygen atoms [254]. 

The (PEI/DPPG+melanin)8 LbL film atomic ratio N]/[P presents a small decrease from the 0 to 60, 

proving the low stratification of the heterostructure meaning that probably intact DPPG+melanin 

vesicles are dispersed throughout the surface while others have disrupted originating a lipid bilayer 

with melanin intra-layered. To notice that to perform XPS measurements the samples are submitted to 

high vacuum for several hours. Although these results have proved the presence of intact 

DPPG+melanin liposomes in the heterostructure, the presence of water could not be confirmed by 

XPS measurements. However, Marli et al have detected the presence of water molecules in 

DPPG+melanin cast films by FTIR spectroscopy [4]. 
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Table 5.20. Elemental composition in percentage and the respective Binding energies (eV), obtained from XPS 

spectra taken at 0 and 60 of electron ejection relative to the normal surface of the (PEI/DPPG+melanin)8 LbL 
films. Also atomic percentage and BE of PEI and DPPG+melanin casted films are displayed. Relative error do not 
exceed ±10%. 

 

Cast films LbL film 

 

 

Assignments 

 

PEI 

 

 

DPPG+melanin 

 

 

(PEI/DPPG+melanin)8 

 

Atomic 

(%) 

BE 

(eV) 

Atomic 

(%) 

BE 

(eV) 

Atomic 

(%) 

BE 

(eV) 

0 60 0 60 

C 1s1 66.8 285.6 61.5 285.0 56.9 67.3 285.0 285.0 C-C, C-H 

C 1s2   9.9 286.6 14.1 9.5 286.4 286.5 C-O, C-N 

C 1s3   3.7 289.0 4.4 2.7 288.7 288.7 O=C-O 

O 1s1 2.8 531.5 5.2 531.3 5.2 4.0 531.0 530.8 O-P, O=C 

O 1s2   16.4 532.8 10.1 9.2 532.6 532.6 O-C 

N 1s1 29.6 399.1   5.4 4.2 399.1 399.2 N 

N 1s2 0.9 401.1 0.32 400.7 2.1 1.5 400.7 400.7 N-H 

N 1s3     0.72 0.60 402.1 401.9 N
+
 

P 2p3/3   1.2 133.7 0.75 0.70 133.3 133.1 P-O 

P 2p1/2   0.58 134.7 0.38 0.35 134.1 134.1 P-O 

Na   1.1 1071.3     Na 

 

 

5.6.2 Geographical classification of olive oils by a portable hybrid electronic tongue  

The (PAH/DPPG)3, (PEI/DPPG)3 and (PEI/(DPPG+melanin))3 LbL films were used to be applied in a 

multisensory system for the classification of olive oils collected from different Moroccan and 

Portuguese regions. Gallo Classico, Fio Dourado, Oliveira da Serra, Paladin, Gallo Reserva and SOS 

Pobreza were the Portuguese olive oils selected; and Moulay Idriss, M’rirt, Ouarzazate, Ouazzane and 

Taounate were the Moroccan olive oils picked out. The proposed system, called Hybrid Electronic 

tongue (HE-tongue), consists of a hybrid sensor array formed by two families of sensors; three LbL 

films with different PEMs and seven voltammetric sensors (Copper (Cu), Glassy Carbon (GC), Gold 

(Au), Nickel (Ni), Palladium (Pd), Platinum (Pt) and Silver (Ag)). The voltammetric signals provided by 

the sensors have been evaluated using the Principal Component Analysis (PCA). The HVE-tongues 

may comprise two or more sensor families and are frequently a combination of potentiometric, 

voltammetric and/or conductimetric sensors. After getting signals from all types of sensors, data 

processing is performed by chemometric methods to extract useful information. The HVE-tongue 

allows to obtain varied information about the sample giving the opportunity for a more accurate 

characterization, rising the probability of correct samples classification [233].  
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5.6.3 HE-tongue responses and radar plots 

The electrochemical measurements were carried out by dipping, simultaneously, in different olive oil 

solutions, three different LbL films with the seven electrodes. It is recognized, that the electrochemical 

response of a given compound depends on the intrinsic chemical nature of both the electrode and the 

redox behavior of the product itself. As a result, the reaction between the redox active compositions 

and sensors would be expected to produce specific cyclic voltammograms. Besides, adsorption of 

redox inactive compositions present in the sample matrices may also be expected to affect current 

signals. Therefore, the differences between samples in cyclic voltammograms yield an overall 

fingerprint which can be interpreted with the use of appropriate mathematical techniques. 

Figure 5.22 shows the cyclic voltammograms obtained from the immersion of PEI/DPPG sensor in 

Moroccan and Portuguese olive oil samples. The response of the electrodes to different olive oils 

origins directly affects causing shifts in the shapes and changes in the current intensities at the ends 

of the voltammograms. The highest current for Portuguese olive oils was observed in “Gallo Classico” 

(≈ 20 µA) and the lowest current was obtained for “Gallo Reserva” (≈ 5 µA) (Fig. 5.22 a)). Although the 

obtained voltammograms present similar shape, we succeed to distinguish them from the current 

values attained at the ends of the curves. 

 

 

Figure 5.22. Voltammetric responses of PEI/DPPG electrode immersed in (a) Portuguese olive oil samples, and  
in (b) Moroccan olive oil samples.  

 

To better visualize the differences amongst products, a radar plot of sensor responses was performed 

in which the vertices are the sensor arrays used in the HE-tongue, as shown in Fig. 5.23. From these 

plots, one can conclude that the use of ΔI feature allowed obtain patterns that clearly discriminate 

olive oil samples.  

 

a) b) 
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Figure 5.23: Radar plots of the response of the HE-tongue for the Moroccan and Portuguese olive oil samples 
(expressed as the current change ΔI). 

 

5.6.4 Principal Component Analysis  

For the discrimination of the different olive oils, the Principal Component Analysis (PCA) procedure 

was carried out using the three variables (ΔI, Sox and Sred). To reduce the variability associated with 

possible fluctuations in the HE-tongue signals, and to minimise other sources of variance also 

affecting the total signal of the sensors, normalised rather than absolute signals were used to conduct 

PCA analysis. Hence, to normalise the variables, the autoscaled pre-processing technique was 

applied to a dataset of 66 measurements×30 features. The first three principal components accounted 

85.15 % of the total variance (PC1 = 55.68 %; PC2 = 16.97 %; PC3 = 12.50 %). As observed in the 

score plot of Fig. 5.24, the three PC axes contribute for separating the olive oils in such way that the 

eleven different classes were well described by all components. However on this plot, the regions 

associated to “Oliveira da Serra” and “Paladin” overlap into some extent, making difficult to distinguish 

between this two oils. However, it should be referred that these oils are manufactured by the same 

producer. 
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Figure 5.24 : PCA plot performed on the 11-studied Portuguese and Moroccan olive oil measurements gathered 
using the HE-tongue.  

 

5.7 Conclusions 

It was proved that DPPG liposomes layer adsorbed onto a rough PEI/(PSS/PAH)5 surface maintains 

its integrity. The adsorbed amount obtained from adsorption kinetics curves revealed that the 

liposomes are covering the entire surface but with an effective surface higher than the QCM crystal 

quartz area which is consistent with a rough surface. The kinetic curves were obtained by QCM using 

the SVC system, where a concentrated DPPG suspension was injected in a homemade cell, with 

water filled and a PEI/(PSS/PAH)5+Au-quartz crystal resonator already plugged. It was verified that the 

adsorption kinetic is governed by a unique process with a characteristic time of approximately 20 

minutes which can be explained through the migration of liposomes to the surface during the diffusion 

phenomenon and also because vesicles are being adsorbed without rupture. The analysis of the 

surface topographies of PEM and PEM with DPPG liposomes, reveal that the intact DPPG liposome 

are randomly adsorbed on the PEM surface, filling the PEM valleys and thus decreasing the height 

parameters. The results of the height distribution functions demonstrated that the height of the 

adsorbed liposome ranges 30-40 nm. A mean diameter of 55 nm was calculated from the profile 

length of the DPPG vesicles, which is higher than the hydrodynamic diameter attained by DLS 

measurements, showing that liposomes are flattened.  

The evolution of surface morphology and microstructure of the LbL films growth, when DPPG 

liposomes are deposited on Au-quartz crystal resonator and Au/PAH surfaces was monitored by AFM 

in situ at discriminated adsorption times. An amplitude statistical analysis of Au/DPPG showed that 

after the DPPG liposomes addition, the height parameters have increased considerably in the first 3 

minutes which was attributed to intact vesicles immobilized on Au surface, decreasing after 5 minutes 

showing that liposomes collapse and spread all over the substrate creating a SPB, due to electrostatic 

interactions between the DPPG vesicles and the Au surface. Moreover, the peak position parameters 

obtained from the height distribution Gaussian fits centered at 16.79±0.01 nm for 3 minutes and 
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7.984±0.008 nm for 120 minutes, were assigned to closed DPPG vesicles and to supported-lipid 

bilayer (SPB), respectively, attached on Au surface. In the case of adhesion of DPPG vesicles on 

highly charged PAH surface, the statistical amplitude analysis showed that after 3 minutes, generally, 

the height parameters have maintained its values signifying that, at this adsorption time, a SPB is 

already formed. This assumption was confirmed by QCM measurements which revealed a 

characteristic time of 2.19±0.02 min for the first kinetic adsorption process associated to DPPG 

vesicles adsorption and consequent disruption on PAH surface. By converting the frequency shift in 

adsorbed mass per unit of area a value of 5 mg/m
2
 was calculated corresponding to a DPPG lipid 

bilayer mass. The PAH/DPPG bilayer thickness obtained by ellipsometry measurements showed a 

value of 5±1 nm. The only exception of the amplitude parameters analysis is situated at t=10 min of 

DPPG adsorption where an increase of the roughness is found, due to the presence of DPPG vesicles 

aggregates attached to the Au/PAH/DPPG-bilayer surface. Concluding, the disruption of DPPG 

vesicles and consequent creation of a DPPG-lipid bilayer on PAH is faster than on Au surface 

because the polyelectrolyte cushion is more ionized. Quantitative surface characterization of both 

Au/DPPG and Au/PAH/DPPG LbL films provided by 1D PSD analysis allowed to identify three distinct 

regions located at low, medium and high frequencies in all power spectra. The plateau at low 

frequencies behaves similarly to the height amplitude parameters obtained for both experiments. The 

correlation lengths of the two regimes found at medium and high frequencies of the PSD spectra of 

the Au/DPPG and Au/PAH/DPPG LbL films were calculated by determining its frequency transition 

and the found values were assigned to the grain size of the Au/Cr quartz crystal coverage and to the 

Au/PAH, respectively. The calculation of the roughness exponents revealed that DPPG-liposomes 

adsorbed onto Au and Au/PAH surfaces follow, respectively, the non-linear and linear Villain self-affine 

model. The region of medium frequencies of the PSD spectra of the Au/DPPG and Au/PAH/DPPG 

samples were also analyzed by the fractal model, revealing final Df values nearly 2, which means that 

both samples have fractal smooth/marginal surfaces. The medium and high frequencies regions of the 

PSD curves of both samples were successfully fitted with the ABC nonlinear parametrical model which 

allowed determining the roughness behavior, thus validating the amplitude analysis, and the mean 

grain size of the surface features. Besides, the Df results obtained from this model were ~2 for both 

samples confirming the values attained by the fractal model. 

It was proved by amplitude analysis of Au/PEI/(PSS/PAH)4 and Au/PEI/(PSS/PAH)4/DPPG 

topographic images, obtained by AFM in situ experiments, that after DPPG vesicles adsorption onto 

rough PEM there is a reduction of the sharpness of the surface because closed vesicles are mostly 

immobilized on PEM valleys. Besides, the found height characteristic parameters at 20.6±0.2 nm and 

33±3 nm, related to the PEM/DPPG surface, were assigned to the DPPG liposomes mean diameter. 

Both surfaces revealed similar PSD spectrum comprising three distinct regions situated at low, 

medium and high frequencies. Since, the found values for the two correlation lengths, positioned at 

the transition frequencies, were only assigned to the mean grain diameter of the PEM and the gold 

surface, a further PSD analysis have been made. Thus, fractal PSD analysis revealed Df values close 

to 2 for both samples, although for the PEM/DPPG surface the Df is smaller which is an evidence of 

less irregularities on its topography. The ABC model was also applied for both PSD spectra displaying 
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the following sentences: i) after DPPG vesicles adsorption there is a reduction of the magnitude at 

medium-low frequencies showing a decrease of the roughness parameters; ii) the grain size values 

attained are 50±9 and 21.0±0.5 nm attributed to PAH domains of the PEM cushion and to intact DPPG 

vesicles immobilized onto PAH, respectively; iii) the growth mechanisms for the PEM proved to be 

between condensation and bulk diffusion processes and the adsorption of DPPG liposomes onto PEM 

revealed to be by surface diffusion; iv) Df values for both topographies are close to 2; having the 

PEM/DPPG surface a lower value which is a prove of a more regular microstructure due to the 

adsorption of close-packed DPPG vesicles. However, the ABC model could not be adapted to the low 

frequencies region of the PSD spectra due to the presence of superstructures on surface. So, lateral 

sizes of the grain clusters of both samples were extracted using the PSDsh model, which have shown 

similar value for PEM features, although for PEM/DPPG surface a much higher value was achieved, 

proving the hexagonal packing of the DPPG liposomes onto PEM. Moreover, the roughness 

exponents achieved set forth that the DPPG adsorption onto PEM was governed by the diffusion 

Villain model. Concluding, the combination of these PSD models offers exhaustive information not 

only of the accessible surface of the sample but also of its inner structural properties. The fractal 

model describes self-affine properties of the surface providing its fractal dimension. Whereas k-

correlation (or ABC) and superstructures models provide information about growth mechanisms of thin 

films and give quantitative description of vertical and lateral dimensions of the surface features and 

their aggregates.  

Roughness of a positively charged PAH polyelectrolyte surface was shown to strongly influence the 

adsorption of DPPG liposomes on it. Adsorption kinetics curves of DPPG liposomes onto a low 

roughness PAH layer reveal an adsorbed amount of 5 mg/m
2
, pointing to liposome rupture while, high 

roughness surface leads to adsorbed amounts of 51 mg/m
2
, signifying adsorption of intact liposomes. 

Adsorption kinetic parameters calculated from adsorption kinetics curves, allow us conclude that the 

adsorption process is due to electrostatic interactions and also depends on processes such as 

diffusion and re-organization of lipids on surface. Analysis of the roughness kinetics enabled to 

calculate a growth exponent of 0.19±0.07 and a roughness exponent around 0.84 revealing that 

DPPG-liposomes adsorbed onto rough surfaces follow the Villain self-affine model. By relating self-

affine surfaces with hydrophobicity, the liposomes integrity was explained by the reduction of the 

number of water molecules on the PAH surface, contributing for counterions anchorage near PAH 

ionic groups, reducing the liposome/PAH layer electrostatic forces and, consequently, avoiding the 

liposome rupture. 

The maintenance of DPPG liposome integrity is conditioned by the surface roughness of the cushion 

used to adsorb liposomes. Low roughness was shown to induce liposome rupture while high 

roughness causes the adsorption of whole liposomes. In fact, the adsorption kinetics of DPPG layers 

onto LbL films revealed that the adsorbed amount increases from a value of 5±1 mg/m
2 

to a value of 

51 mg/m
2
. The first value is easily explained by a planar DPPG bilayer adsorbed while values higher 

than 16 mg/m
2 
can be only explained if DPPG liposomes with 25 nm of diameter, i.e. intact liposomes, 

are being adsorbed onto a rough surface. Also, the decrease of the adsorption characteristic time with 

the increase of the bilayers number also points to a higher adsorption of whole liposomes. Moreover, 
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the XPS characterization allowed us to conclude that the LbL cushion is covered efficiently by the 

DPPG liposomes and that the charge compensation occurs between the phosphate group of the 

DPPG molecule and the protonated amine of the PAH molecule without involving (or involving in a 

much lower extent) the sodium ion. The relation between the increase of PEI/(PSS/PAH)b cushions 

roughness with the growth of the bilayers number was confirmed by AFM topographies. In addition, a 

maximum height sequential growth, obtained from the height distribution (HD) curves, was observed 

as the number of bilayers of the cushion increase. Furthermore, a small shift of the height associated 

to the maximum of occurrences of PEI/(PSS/PAH)1 cushion and PEI/(PSS/PAH)1/DPPG was 

detected, while a value of ~10 nm was found when comparing the HD associated to PEI/(PSS/PAH)b 

and PEI/(PSS/PAH)b/DPPG, being 2 ≤ 𝑏 ≤ 4. The height difference of 10 nm can be easily explained 

if liposomes, with hydrodynamic diameter of about 25 nm, are adsorbed intact. The grain analysis 

carried out by exploration of power spectral density curves using the fractal, ABC and superstructures 

models, allowed to conclude that the cushions grain size takes a mean value of 42 nm, while in the 

case of DPPG vesicles adsorbed onto the cushion it presents a mean value of 17 nm which is close of 

the liposomes hydrodynamic diameters values. In addition, the fractal dimension values obtained from 

these models are in accordance with the values calculated from roughness parameters. The fraction 

of open liposomes calculated from the normalized maximum adsorbed amounts and plotted as a 

function of the initial surface roughness, decrease with the cushion roughness growth. This result 

leads us to conclude that surface roughness is a fundamental variable that can be used in order to 

control the adsorption of intact liposomes. This finding is of particular importance for the development 

of sensors based on liposomes with molecules encapsulated.  

In this sense, LbL films of (PAH/DPPG)3, (PEI/DPPG)3 and (PEI/DPPG+melanin)3 were prepared to be 

tested as sensors. The elemental composition of the LbL film (PEI/DPPG+melanin)3 and respective 

binding energies were obtained by XPS technique. The atomic ratio N/P have proved that this 

heterostructure possess a low stratification probably due to the existence of intact DPPG+melanin 

vesicles and lipid bilayers with melanin intra-layered. The presence of water could not be confirmed by 

XPS measurements. A Hybrid Electronic-tongue consisting of a liquid sensor array formed by those 

three different LbL films combined with seven electrodes, has been developed for the discrimination of 

Moroccan and Portuguese olive oil samples. The HE-tongue combined with chemometric techniques 

demonstrated high ability to distinguish between eleven olive oil clusters. Although for two Portuguese 

olive oils, the PCA analysis exhibited a slight overlap which mainly arises from its linear 

characteristics. As a final conclusion, it can be said that portable HE-tongue device coupled with 

chemometric techniques can be extended too many other products towards quality control.  
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6 CONCLUSION 

6.1 Conclusions 

This work shows that the roughness has a crucial role in the adsorption of whole liposomes on a 

surface. This main conclusion comes from the achievements described below. 

Cast films produced with DPPG liposomes suspensions deposited onto flat substrates were 

characterized by optical and spectroscopies techniques, which have confirmed the adsorption of 

DPPG molecules. Topographic images obtained by AFM showed several terraces of lipid bilayers, 

caused by the unfolding of the DPPG vesicles, and intact vesicles upon the bilayers. The integrity of 

these closed vesicles was confirmed by SEM. FTIR and XPS techniques confirmed the presence of 

structural water in these films. 

A commercial QCM was tested at solid/liquid interface using five specific experimental configurations 

with the quartz crystal resonator vertically or horizontally positioned. The kinetics curves analysis of 

the assembled aqueous solutions of PEI, weak polyelectrolyte, and DPPG liposomes revealed that 

horizontal modes lead to a higher resonance frequency shift, due to the measurement of non-

adsorbed molecules which are deposited on the quartz crystal and to an increase of the kinetic curves 

instability of the measurements as a result of a fostering noise due to the mechanical vibrations. The 

vertical modes proved to be more reliable. Topographic images obtained by AFM technique showed a 

smooth PEI polyelectrolyte surface covered by intact DPPG vesicles adjacent to lipid bilayers 

domains, explaining the lower measured mass compared to theoretical calculations due to the release 

of the entrapped water after the vesicles breakdown.  

Aiming to create heterostructures with intact liposomes, the LbL film growth of DPPG vesicles 

alternated with the PEI polyelectrolyte assembled upon a rough cushion were characterized in situ 

using QCM. The QCM data analysis allowed to infer that DPPG adsorbed amount is dependent of the 

bilayers number already adsorbed. This dependence was interpreted by roughness evolution with the 

number of bilayers which increases until a maximum, being followed by a decrease until attains a 

constant value. Kinetic curves reveal that the DPPG adsorption is justified by two processes: i) the first 

associated to DPPG liposomes adsorption with a small constant time independent of the bilayers 

number;  ii) the second dependent of the bilayers number is associated to a structural rearrangement 

of DPPG liposomes on the surface. 

DPPG emulsions and PAH/DPPG LbL films were characterized by VUV spectroscopy.  Measurements 

in the 6.0–9.5 eV range allowed us to identify the electronic transitions responsible for the spectra, 

which were assigned to carboxyl, hydroxyl and phosphate groups in DPPG while the PAH spectra is 

governed by electronic transitions in the amino groups. The surface mass density of the LbL films 

could be determined, proving that a DPPG lipid bilayer has been created. This liposomes rupture into 

bilayers was confirmed by AFM measurements. In subsidiary experiments we ensured that the UV 

irradiation in vacuum had negligible damage in the DPPG liposomes during the course of the VUV 

measurements. In addition to demonstrate the usefulness of VUV spectroscopy, the results presented 

here may be exploited in biological applications of liposome-containing films. The assembly of the 

PAH/DPPG LbL films, characterized by XPS spectroscopies and AFM, have confirmed the 
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development of a DPPG lipid bilayer. The PAH polyelectrolyte layer proved to be a smooth highly 

ionized cushion with strong electrostatic interactions thus leading to the vesicles disruption. The 

PEI/DPPG LbL film monitored by QCM, AFM and XPS techniques showed that DPPG vesicles 

immobilization onto PEI polyelectrolyte layer, having a low ionization degree and a smooth surface, 

leads to the adsorption of intact vesicles adjacent to lipid bilayers patches. Structural water was found 

in this heterostructure proving the integrity of the DPPG liposomes and its capacity to encapsulate 

functional molecules, e.g. proteins, to create sensors and devices. 

It was demonstrated that DPPG liposomes can be adsorbed without rupture on a rough cushion, such 

as PEI/(PSS/PAH)5. The in situ adsorption kinetic curves, obtained by QCM using a homemade 

aqueous cell, revealed that this process is governed by a diffusion phenomenon with a characteristic 

time of approximately 20 minutes. The total adsorbed amount per unit of area revealed that the 

integrity of the liposomes was maintained during adsorption. The analysis of the surface topographies 

of both surfaces revealed that intact vesicles are randomly adsorbed on cushion surface, filling its 

valleys leading to a decrease of the mean height.  

Surface topographies obtained by AFM in situ of DPPG liposomes deposited onto two different 

smooth surfaces, such as Au-quartz crystal resonator and PAH polyelectrolyte layer, have proved that 

vesicles break, unfold and spread throughout the surfaces, creating a DPPG lipid bilayer. Amplitude 

parameters comparison between both experiments showed that the time needed to form a lipid bilayer 

is faster when a more ionized surface is used, such as PAH surface. Kinetic adsorption curves 

obtained by QCM of DPPG liposomes adsorbed onto this highly charged surface allowed to verify that 

at ~2 minutes a lipid bilayer is formed, testifying the statistical analysis. The PSD spectra of both 

surface topographies, when DPPG liposomes are being adsorbed, were analyzed by conventional 

correlation length method and by fractal and ABC or k-correlation models. Two types of correlation 

lengths for Au/DPPG and Au/PAH/DPPG LbL films were found and assigned to the grain size of Au/Cr 

quartz crystal coverage and to the Au/PAH, respectively. The scaling exponents revealed that DPPG-

liposomes adsorbed onto Au and Au/PAH surfaces follow, respectively, the non-linear and linear 

Villain self-affine model. The ABC nonlinear parametrical model was well adapted to all PSD spectra 

allowing extracting the mean grain size of the surfaces and the roughness behavior thus validating the 

amplitude analysis. Both PSD models achieved Df values nearly 2, which means that both samples 

have fractal smooth/marginal surfaces. 

It was demonstrated by amplitude analysis of AFM surface topographies obtained in situ, that DPPG 

vesicles are intact adsorbed onto rough cushion (Au/PEI/(PSS/PAH)4) filling the valleys and 

consequently minimizing the surface acuity. The PSD spectra of both surface topographies were 

analyzed by the conventional correlation length method and by a combination of three PSD models, 

namely fractal, ABC or k-correlation and superstructure. The first method revealed to be inefficient 

because it could only found the grain size assigned to the PEM cushion and to the gold surface. The 

PSD analysis using the ABC model have shown that: i) surface roughness decreases after DPPG 

vesicles adsorption; ii) the attained grain size values of 50±9 and 21.0±0.5 nm are attributed to PAH 

cushion domains and to closed vesicles immobilized on cushion, respectively; iii) the adsorption of 

DPPG liposomes onto PEM revealed to be caused by diffusion. The PSD superstructure model 
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allowed obtaining the lateral sizes of the grain clusters, showing a value close to the size of the grain 

cushion, although for DPPG surface a much higher value was achieved, proving the hexagonal 

packing of the DPPG liposomes onto PEM. The fractal and ABC PSD models have shown Df close to 

2, being the Df of the PEM/DPPG surface smaller manifesting less irregularities on its topography. The 

roughness exponents set forth that DPPG vesicles deposition is ruled by the diffusion Villain model. It 

is important to say that all these methods complete each other providing an exhaustive description not 

only of the accessible surface of the sample but also of its inner structural properties. So, the 

information that can be achieved from experimental AFM images depends on method used for surface 

analysis. 

The surface roughness was shown to influence the adsorption of DPPG liposomes onto surfaces 

covered by an electrically charged PAH polyelectrolyte layer and also the conditions giving rise to its 

rupture or maintenance of its integrity. Low roughness was shown to induce liposome rupture while 

high roughness induces adsorption of whole liposomes. Whereas the roughness increase is leading to 

an increase of hydrophobicity, one can expect that the reduction of the number of water molecules on 

the PAH surface contributes for the counterions anchorage near PAH ionic groups and consequent 

reduce the electrostatic force between the liposome and the PAH layer and contributing to liposome 

integrity. Moreover, the adsorption kinetics curves, of both adsorbed amount and surface roughness, 

allowed to determine the adsorption kinetics parameters which were related with the adsorption 

processes namely, electrostatic forces, liposomes diffusion and of re-organization of lipids on the 

surface. It was possible also to conclude that the adsorption of whole liposomes follows the Villain 

fractal model. 

The capacity to control the final structure of liposomes adsorbed onto surfaces with different 

roughness values was validated. Thus, flat surfaces have shown to induce vesicles rupture while 

surfaces roughness growing causes an increase of the adsorption amount of whole liposomes. The 

adsorption of DPPG liposomes onto cushions, having its surface highly charged and roughness 

changing from flat to rough by increasing the number of bilayers, was monitored by QCM. The 

adsorption kinetics parameters demonstrate an increasing of the DPPG adsorbed amount from a 

value of 5±1 mg/m
2
, i.e. planar lipid bilayer, to a value of 51 mg/m

2
, i.e. intact liposomes adsorbed 

onto a rough surface. Besides, the adsorption characteristic time decreases with the increasing of the 

bilayers number suggesting the adsorption of whole liposomes. Furthermore, the XPS characterization 

allowed to set effort that the rough cushion is well covered by DPPG liposomes being the charge 

compensation between the phosphate group of the DPPG phospholipid and the protonated amine of 

the PAH molecule without involving (or involving in a much lower extent) the sodium ion. AFM 

topographies confirmed that the PEI/(PSS/PAH)b cushions roughness increases with the growth of 

bilayers number as well as the maximum height of the distribution curves. Besides, the height 

distribution (HD) of the PEI/(PSS/PAH)1 cushion and PEI/(PSS/PAH)1/DPPG demonstrate a small 

shift, i.e. no intact liposomes on PEM surface, while a value of about 10 nm was found when HD of 

PEI/(PSS/PAH)b cushions and PEI/(PSS/PAH)n/DPPG with number of layers (b) between 2 to 4 are 

compared, i.e. with close liposomes immobilized on PEM surface. Grain analysis performed by 

extracting information of the PSD plots using the fractal, ABC and superstructures models, allowed to 
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found that the cushions have a mean grain size of 42 nm, while in the DPPG adsorbed onto the 

cushion have a mean value of 17 nm attesting its integrity. In addition, the roughness parameters 

behavior was confirmed by the fractal dimension values attained from these PSD models. The fraction 

of open liposomes, calculated from the normalized maximum adsorbed amounts, decreases as the 

cushion roughness increases, allowing us to conclude that the surface roughness is a crucial variable 

that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the 

development of well-design sensors based on heterostructures comprising liposomes with functional 

biomolecules encapsulated. 

The (PAH/DPPG)3, (PEI/DPPG)3 and (PEI/DPPG+melanin)3 LbL films were prepared to be applied in 

sensors. The LbL film (PEI/DPPG+melanin)3 was characterized by XPS technique evidencing that this 

heterostructure has a low stratification probably due to the existence of both intact DPPG vesicles with 

encapsulated melanin and lipid bilayers with melanin intra-layered. Those three LbL films were 

successfully applied in a multisensory system combined with chemometric techniques for the 

classification of olive oils collected from different Moroccan and Portuguese regions demonstrating 

good ability in discriminating and classifying among 11 olive oil samples on account of their region. 

 

6.2 Future remarks 

The results and conclusions obtained from this work have enabled essential advances in 

understanding the role of the surface roughness on the adsorption of intact liposomes without and with 

functional biomolecules incorporated, such as melanin. However, more adsorption studies are 

necessary in order to confirm the roughness’ rules that lead to the adsorption of intact liposomes with 

any functional biomolecules incorporated. This study also demonstrated that roughness is associated 

to surface hydrophobicity. So, further research of surface hydrophobicity of self-affine rough surfaces, 

e.g. contact angle measurements, are required in order to verify experimentally if high roughness 

induce high hydrophobicity. Regarding LbL films assembly it is now known that an increase in 

hydrophobicity reduces the water molecules number on the surface, contributing for counterions 

anchorage near polyelectrolytes ionic groups, consequently reducing the electrostatic forces between 

the cationic and anionic polyelectrolyte layers. Hence, in order to prevent liposome rupture it becomes 

necessary systematic measurements to characterize the electrical charge of the surfaces. 

 

6.3 Developed work 

6.3.1 Papers published in international journals 

 Duarte AA, Gomes PG, Ribeiro JHF, Ribeiro PA, Hoffmann SV, Mason NJ, Oliveira Jr. ON, 

Raposo M. “Characterization of PAH/DPPG Layer-by-Layer films by VUV spectroscopy”, EPJ E-

Soft Matter & Biological Physics, 36 9 (2013) 98. 
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 Duarte AA, Filipe SL, Abegão LM, Gomes PG. Ribeiro PA, Raposo M (2013). “Adsorption Kinetics 

of DPPG Liposome Layers: A Quantitative Analysis of Surface Roughness”. Microscopy and 

Microanalysis,7:1-9. 

 

6.3.2 Papers published in proceedings 

 Duarte, A.A.; Filipe, S.L.; Raposo, M., "Adsorption of intact DPPG liposome on rough 

polyelectrolyte multilayers" Bioengineering (ENBENG), 2013 IEEE 3rd Portuguese Meeting in, 

vol., no., pp.1,4, 20-23 Feb. 2013. 

 Duarte, A.A.; Raposo, M., "Growth analysis of PEI/DPPG self-assembled films by quartz crystal 

microbalance" Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting in, vol., no., 

pp.1,6, 23-25 Feb. 2012. 

 

6.3.3 Submitted papers 

 Tahri K., Duarte A.A., Saidi T., Bougrini M., Ribeiro P. A., El Bari N., Raposo M. and Bouchikhi B. 

“Discrimination of olive oils according to geographical origin by a portable hybrid electronic tongue 

combined with chemometric analysis”, submitted to Journal of Food Engineering. 

 A.A. Duarte, L.M.G. Abegão, J.H.F. Ribeiro, J. P. Lourenço, P. A. Ribeiro and M. Raposo, “Study 

of adsorption kinetics in situ of polyelectrolytes and liposomes using quartz crystal microbalance: 

influence of experimental layout”, submitted to Review of Scientific Instruments. 

 

6.3.4 Papers to be submitted 

 A. A. Duarte, Ana Maria Botelho do Rego, Marco Salerno, Paulo A. Ribeiro, Nezha El Bari, 

Benachir Bouchikhi, and M. Raposo. “Adsorption of DPPG liposomes on different roughness 

polymer cushions with different roughness: analysis of adsorbed amount, surface composition 

and topography”. 

 A. A. Duarte, Joaquim T. Marquês, Francisco Brasil, Ana S. Viana, Pedro Tavares, Maria 

Raposo. “Surface analysis of dipalmitoyl phosphatidyl glycerol liposomes adsorption by AFM in 

situ”. 

 

6.3.5 Atas communications 

 Duarte, A. A. and M. Raposo. "Surface roughness as rupture control factor of lipid vesicles." 

Microscopy and Microanalysis19.S4 (2013): 107-108. 
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6.3.6 Oral communications 

 Duarte, A. A. et al, “Adsorption of intact DPPG liposome on rough polyelectrolyte Multilayers” 

proceedings book (Biomaterials, NanoBiotechnology, Biomolecular, BioProcess Engineering and 

BioInformatics: Oral 3) of 3rd Portuguese Bioengineering Meeting at University of Minho, Campus 

de Gualtar, CP2-B1, February 2013. 

 DUARTE, A.A. & RAPOSO, M. “Surface roughness as rupture control factor of lipid vesicles”. In 

"Microscopy: A tool for the advancement of science" abstracts book (Materials Science: Oral 5) of 

XLVI Congress of the Portuguese Society for Microscopy (SPMicros) September 2012 at Centro 

Hospitalar de Lisboa Central - Hospital D. Estefânia.  

 

6.3.7 Poster communications 

 DUARTE, A.A. & RAPOSO, M. "Growth analysis of PEI/DPPG self-assembled films by quartz 

crystal microbalance". In Bioengineering (ENBENG), Coimbra February 2012 IEEE 2nd 

Portuguese Meeting in, pp. 1-6 (poster presentation). 

 Duarte, P. Gomes, S. Hoffmann, M. Raposo. "Characterization of the VUV radiation effect on lipid 

emulsions". In Conference Proteção Radiológica na Saúde, Lisboa September 2013. 

Radiobiology Session (poster presentation). 
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