
Miguel Bispo Alves

Licenciado em Engenharia Informática

Integrated Data model and DSL modifications

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientadores : João Costa Seco, Prof. Doutor,
Universidade Nova de Lisboa
Lúcio Ferrão, Chief Architect,
Outsystems

Júri:

Presidente: Prof. Dr. Nuno Manuel Ribeiro Preguiça

Arguente: Prof. Dr. Francisco Cipriano da Cunha Martins

Vogal: Prof. Dr. João Costa Seco

Março, 2013

iii

Integrated Data model and DSL modifications

Copyright c©Miguel Bispo Alves, Faculdade de Ciências e Tecnologia, Universi-
dade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o di-
reito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação
através de exemplares impressos reproduzidos em papel ou de forma digital, ou
por qualquer outro meio conhecido ou que venha a ser inventado, e de a divul-
gar através de repositórios científicos e de admitir a sua cópia e distribuição com
objectivos educacionais ou de investigação, não comerciais, desde que seja dado
crédito ao autor e editor.

iv

To my father Carlos,
my mother Rita,

my aunts Isabel and Regina,
and to my love Heidi.

I owe you more than I can ever say.

vi

Acknowledgements

This dissertation is the result of the last five year dedication and hard work, aim-
ing to achieve a dream. That would not be possible without the contribute of
many people that I would like to thank. I hope I have remembered everyone.

I would like to thank to my advisors, João Costa Seco and Lucio Ferrão. They
provided me guidance and support at key moments in my work. Their careful
review of several versions of this manuscript improved the quality of this disser-
tation. Without them this work would not have been possible. To António Melo,
that gave the opportunity to do this thesis in a collaboration between the Facul-
dade de Ciências e Tecnologias of Universidade Nova de Lisboa (FCT-UNL) and
the R & D team of OutSystems. I also ankowledge FCT-UNL for giving me work
conditions and partial financial support.

I am also thankful to Hugo Lourenço, Luís Lopes and many other R & D team
elements for their availability to help whenever was possible along the project.

And because the last five years were not made only of hard work, thanks to
André Simões, Nuno Grade, Stefan Alves, Miguel Pinheiro, Sérgio Casca, Diogo
Matos, Pedro Almeida and Tiago Almeida for all the great moments we spent
during our academic journey.

To all my friends that always have supported me and showed their friendship.
Pedro Marques, Álvaro Paulino, Luís Fernandes, João Paixão, Bruno Lameiras,
Jorge Pinto, Diogo Valente, Pedro Costa, Ana Afonso, Rafaela Proença and many
others: Thank You !

A special thanks for my parents, Carlos and Rita, because any of this would
not be possible without them. I want to thank them for being always there to
support me if I need, for their constant love and immeasurable sacrifice. A special
thanks to my father, because I know that you are proud of this, wherever you are.

I also would like to thank to my grandparents, my aunts Isabel, Regina and

vii

viii

Sandra, my uncle Filipe, my cousins Diogo and Martim for their support.
All errors and limitations remaining in this thesis are mine alone.

Abstract

Companies are increasingly more and more dependent on distributed web-based
software systems to support their businesses. This increases the need to maintain
and extend software systems with up-to-date new features. Thus, the develop-
ment process to introduce new features usually needs to be swift and agile, and
the supporting software evolution process needs to be safe, fast, and efficient.

However, this is usually a difficult and challenging task for a developer due
to the lack of support offered by programming environments, frameworks, and
database management systems. Changes needed at the code level, database model,
and the actual data contained in the database must be planned and developed to-
gether and executed in a synchronized way.

Even under a careful development discipline, the impact of changing an ap-
plication data model is hard to predict. The lifetime of an application comprises
changes and updates designed and tested using data, which is usually far from
the real, production, data. So, coding DDL and DML SQL scripts to update
database schema and data, is the usual (and hard) approach taken by develop-
ers. Such manual approach is error prone and disconnected from the real data in
production, because developers may not know the exact impact of their changes.

This work aims to improve the maintenance process in the context of Agile
Platform by Outsystems. Our goal is to design and implement new data-model
evolution features that ensure a safe support for change and a sound migration
process. Our solution includes impact analysis mechanisms targeting the data
model and the data itself. This provides, to developers, a safe, simple, and guided
evolution process.

Keywords: DSLs, Database Refactoring, Database migrations

ix

x

Resumo

No dias de hoje, as empresas estão cada vez mais dependentes de aplicações
centralizadas para sustentar os seus negócios. Devido a esse facto, é necessário
evoluir os sistemas de software adicionando-lhe novas funcionaliades, de forma
a mante-los actualizados. Portanto, esse processo de desenvolvimento tem de ser
rápido e ágil, sendo que o suporte de evolução desses sistemas tem também que
ser seguro, rápido e eficiente.

No entanto, é normalmente difícil e desafiante para os programadores, pois os
ambientes de programação, plataformas e sistems de suporte de bases de dados,
não oferecem o devido suporte. As alterações necessárias no código, base de
dados e nos dados existentes, têm que ser planeadas, desenvolvidas e aplicadas
de uma forma sincronizada.

Mesmo seguindo rigorosos critérios no desenvolvimento de aplicações, é di-
ficil de prever o impacto das mudanças efectuadas ao seu modelo de dados. O
ciclo de vida de uma aplicação envolve mudanças e actualizações, desenhadas e
testadas em dados que estão longe de ser os dados reais em produção.

A abordagem mais utilizada por programadores para evoluir e actualizar o
modelo de dados é o desenvolvimento manual de scripts SQL. Essa abordagem é
propicia a erros e não está em sintonia com os dados reais existentes em produção.

Esta dissertação tem como objectivo melhorar o processo de manutenção e de-
senvolvimento de aplicação no contexto da Agile Platform da OutSystems. O nosso
objecto é desenhar e implementar novas funcionalidades que permitam evoluir o
modelo de dados das aplicações e que esse processo seja seguro e não coloque em
causa os dados em produção. O nosso modelo da solução inlcui mecanismos de

xi

xii

analise do impacto das mudanças ao modelo de dados das aplicações em produ-
ção e nos dados existentes nas mesmas. Pretende-se fornecer aos programadores
um processo de evolução das aplicações seguro, simples e guiado.

Palavras-chave: DSLs, Refactorização de Bases de Dados , Gestão de mudança
de Bases de Dados, Migrações de Bases de Dados

Contents

1 Introduction 1
1.1 Problem and Goals . 3
1.2 Approach . 4
1.3 Outline . 5

2 The Agile Platform 7
2.1 Service Studio . 8

2.1.1 Data Model . 9
2.2 Programming language . 11
2.3 Applications Lifecycle . 13

2.3.1 Deploying an application . 13

3 Related Work 15
3.1 Background . 15
3.2 Database Refactoring . 17

3.2.1 Database Smells . 18
3.2.2 Process of Database Refactoring 19
3.2.3 Database Refactoring Strategies 20
3.2.4 Database Refactoring Categories 21

3.3 Schema Modification Language . 21
3.3.1 SMO Invertibility . 23

3.4 Data Migration . 24
3.5 Access Program Adaptation . 25
3.6 Change Patterns . 25

4 Preliminary Analysis 29
4.1 Interviews Structure . 30

xiii

xiv CONTENTS

4.1.1 First Part . 30
4.1.2 Second part . 30

4.2 Interviews Notes . 31
4.3 Change Operations Identified . 33

5 Model Solution 35
5.1 Migrations Model . 37

5.1.1 Merging Migrations . 43
5.1.2 Commutativity of migrations 46
5.1.3 Impact Analysis on Production Environment 47

5.2 Deploy into Production . 51
5.3 Deprecated Data . 51

6 Implementation 53
6.1 Migrations Object Model . 53
6.2 Generating Migrations . 55
6.3 Migrations through different environments 56
6.4 Merging Migrations . 60
6.5 Production Warnings . 61

7 Final Remarks 65
7.1 Future Work . 66

8 Appendix 69

List of Figures

2.1 Agile Platform Architecture . 7
2.2 Service Studio - Outsystems applications development environment. 9
2.3 Service Studio - Application Data Model 10
2.4 Example of an Action flow . 12
2.5 Ousystems applications lifecycle . 14

3.1 Relational Schema Diagram Example 16
3.2 Database architectures . 18
3.3 Schema Modification Operators . 22
3.4 Schema Example . 22
3.5 SMO Language: SMO+ICMO . 23
3.6 Schema Modification Operators Inverses 24

4.1 Interviews second part results . 31

5.1 Application Development and Deployment process 36
5.2 Migrations within Agile Platform . 36
5.3 Class Diagram. 38
5.4 Property IsMandatory changed from No to Yes. 41
5.5 Generated Migration after the property was changed. 42
5.6 Merge Example . 43
5.7 Merge Example . 44
5.8 Merge between two consecutive migrations. 44
5.9 Merge Conditions Example . 45
5.10 Relevant architecture components for Impact Analysis 48
5.11 Before changing the attribute . 49
5.12 Production Warning Example . 50

xv

xvi LIST OF FIGURES

5.13 Relevant Architecture component to deploy the application into
production . 52

5.14 Deprecated Data . 52

6.1 Service Studio: Entity Editor. 57
6.2 Service Studio: Entity Editor with final state of entity Client. 58
6.3 Service Studio: Generated migration for the changes on entity Client. 59
6.4 Service Studio: Production Warning. 62
6.5 Service Studio: Specifying upgrade rule for an entity attribute . . . 63

Listings

3.1 Information-Preserving Example . 23
6.1 Migrations Object Model Example 54
6.2 Merge Algorithm . 60

xvii

xviii LISTINGS

1
Introduction

This work aims to design and implement software evolution features in the Out-
systems Agile Platform. We focus on the modification operations targeting the
database layer of web applications, by adding database evolution features to the
Service Studio, the development environment of the Agile Platform, in order to help
the developers to change applications database model in a safer and sound way
and to reduce the development teams effort.

Enterprise applications are continuously evolving to be up-to-date to contex-
tual changes. In software maintenance in large and long-lived applications, the
most challenging changes derive from the evolution of the database schema of
an application, as well as the associated changes in code and data. Most web
applications are centralized around a database (or the opposite), where the struc-
ture of data is represented through a database schema. Thus, changes to the
database model have significant impact on the rest of the application components
[Sjo93], requiring adequate adaptation to occur. During the maintenance phase of
a project, the developer teams face problems when trying, to evolve the database
model. Changing is difficult for several reasons. The missing access to data in
production, hence it is difficult to predict the impact of those changes, the cost
and the risk to execute the desired changes on the data model can be very high,
since it can decrease the performance and the integrity of the application, and
they must change model data and code. Besides, database models are usually
shared by several applications, which requires a very broad impact analysis.

As an example, consider a developer doing maintenance tasks of an enterprise

1

1. INTRODUCTION

application with a few hundred tables, some of those tables with millions of rows.
He needs to evolve the database model by replacing a foreign key column from
user foreign key to user_master. The process would require manually: 1) column
rename from userId to user_masterId; 2) Fix the application code referencing the
old attribute; 3) Validate the new attribute type in all applications sharing the
database model; 4) Fill the new column defining a rule based on the old attribute
values, assuming that is possible to convert user values to user_master values. The
usual approach to accomplish such operation is to write SQL scripts, applying it
on the database schema and data, change the code by hand, and deploy a new
version of the application. The problem is that typically developers do not know
the impact of the database change operations nor its risk on the database model
of the application already in production. Due to this fact developers try to start
with the more complete possible, and flexible, database model, and then change
as less as possible the database model during maintenance operations. Running
the scripts manually in the database can break data consistency and integrity, that
may lead to system downtimes, as well as the errors within the application code.
Application downtimes are not acceptable for every enterprise because it means
profit loss.

While changing and evolving applications database model, developers do not
know the impact of those changes on the real data in production. When an op-
erator wants to deploy the application to the production environment, does not
have any information about what changes are going to be applied to the database
model. If the operator gets some error the deployment needs to be aborted, he
needs to ask to the developer teams to fix those errors and the deployment of the
applications needs to be postponed.

So, this problem provides fertile ground to new developments that improve
the life of developers in this kind of scenarios. On this dissertation, we exercise a
solution in the context of the Agile Platform, an integrated development environ-
ment that includes the database modelling, the application modelling and a con-
nection to both development and production environments. Thus, the main mo-
tivation for this thesis is to implement database model evolution features within
the Outsystems Agile Platform, to allow the evolution of the database model and
its data, that alert to necessary data fixes in the production database model, and
provide an efficient, safe and smooth evolution process, requiring the minimum
development effort and maintaining the same data migration as before.

2

1. INTRODUCTION 1.1. Problem and Goals

1.1 Problem and Goals

The process requires to modify the database by upgrading its schema, migrating
the data and adapt the programs accessing to the database model to work with
the new changed version. To fully support database modifications is a major and
unrealistic endeavour. Thus, we need at first to identify which features are most
needed, and which solutions are more effective in this context. So, in order to
build a solution reducing the risk and the effort of developers when evolving
applications database model we try to answer the following questions:

• Which evolution features give us a greater gain?

• In which steps should the evolution process be divided in?

• How can we measure the impact and cost of changes?

• How and to what extent should the data migration be automatic?

• How and to what extent should be code automatically adapted ?

At this moment, the Outystems Agile Platform does not provide mechanisms to
allow the developer to automatically change the database model and to migrate
data. However, it provides a tool called LifeTime, having full visibility of all appli-
cations across all the environments, where developers can see the exact version
of each application running in the development and production environments.

The main goal of this work is to implement evolution features within Out-
systems Agile Platform. Our approach relies on the concept of migrations. Mi-
grations are generated when developers changes applications database model.
Then, through LifeTime the system analyzes the impact of those changes in the
real data in production and presents warnings to developers in Service Studio if
the data needs to be fixed.

Our approach is to bring the necessary information related to the database,
from the production environment to the development environment, making it
available to developers when evolving the database model. Afterwards, taking
into account the information presented developers may write upgrade rules in
order to fix the bad data. The process can be performed by measuring the impact
of the transformation made to the database model and by warning the user about
the impact of such change within the database model and its data. For example,
changing the IsMandatory property of an attribute may srequires all rows in the
database having some value. Thus, in our approach, developers may define a
default value or write an expression to fix rows having NULL value.

3

1. INTRODUCTION 1.2. Approach

At this moment, developers need to run manual SQL scripts against the database
model to execute changes, which is more difficult than an automatic tool to per-
form those changes because developers do not know the impact of the operations
specified within the scripts.

For example, some operations need to be preceded by other ones in order to
be executed. So, if the tools help and advise developers about the impact of their
changes in applications database model, integrity and consistency errors may be
avoided.

That said, this project aims:

• to enrich the Service Studio with new database model change features;

• to enrich the deployment support system to support the model changes and
data migration;

• to build an impact analysis tool to give feedback about the data in the pro-
duction environment to the developer.

• to provide to developers safe, guided and simple evolution process

1.2 Approach

In our project we will implement new evolution features to the development en-
vironment, the Service Studio. We anticipate that the new features introduced
will provide enough information to specify the transportation of relevant data
from the production environment to the development environment. Develop-
ers are able to execute the operations in the development environment having
the knowledge about the impact of such changes in the production environment
database model. The impact is measured depending on whether there is data in
the database of the production environment. If there is no data in the production
environment the developer can change safely knowing that he will not loose any
information. On the other hand and in most of cases, if exists data in the produc-
tion environment database the developer should receive a warning and should
be able to specify a rule in order to upgrade the information.

In the first phase of this thesis, we inquired some Outsystems developers to
find out which are the most usual changes on the database models during the
lifetime of an application. The results of the interviews, help us to decide which
evolution features to implement in the Agile Platform. We also studied techniques

4

1. INTRODUCTION 1.3. Outline

as a basis to the design and implement our solution, for example, database refac-
toring techniques [AS06], schema modification operators [CMZ08] and data mi-
gration approaches.

We aim to build a solution that improves the database model change process
in the Agile Platform, helping the developers during the process, by performing
changes to the database model and by calculating the impact of those both on
data and code.

1.3 Outline

In this chapter we introduced the motivation for our work. After that, we pre-
sented the problem we are trying to solve, the goals we expect to reach in the end
of this thesis and the approach we are planning to take.

Chapter 2 presents the context of the project, by referring the architecture and
functionalities of the Agile Platform, and where our work fits on the platform.

Chapter 3 describes the approach for the first stages of the project. We analyze
the interviews we did to developers to capture the goals, risks, cost and the most
frequent and potential interesting change scenarios. We describe the interviews
structure, followed by a discussion about the patterns that we extracted.

In chapter 4 we provide the state of art relevant for our work. We discuss
about database refactoring, database migration, query adaptation, modification
languages and change patterns, referring in which systems we can find those
patterns and how they implement them.

In chapter 5 we describe in detail the solution model and its features. We
present our database migrations based solution and they are integrated in the
Agile Platform.

Chapter 6 explains how the prototype for our solution model was imple-
mented and which features we were able to implement. We also describe the
limitations of implementing our solution through the other Agile Platform com-
ponents.

Finally, in Chapter 7 we describe and discuss the work done during this dis-
sertation, as well as the future work, that could enrich this solution and the built
prototype.

5

1. INTRODUCTION 1.3. Outline

6

2
The Agile Platform

This project is being developed in the context of the R&D team of Outsystems,
particularly in the context of the Agile Platform, an integrated platform to develop
and model enterprise web applications. In this chapter we present the platform
and its components, in order to know more deeply the environment where we
want to implement and test our solution.

The Agile Platform offers to developers a fast and incremental way to build
and maintain a complete web application. In Figure 2.1 is depicted the platform
high level architecture, in the perspective of the software development process.

Figure 2.1: Agile Platform Architecture

7

2. THE AGILE PLATFORM 2.1. Service Studio

The web applications are developed within Service Studio, which is develop-
ment tool. Service Studio is an IDE based on a safe and easy to use visual Domain
Specific Language (DSL), that covers the definition of business processes, user
interfaces, business logic, and data definition and manipulation, web services,
security, emails and scheduled jobs. After that, through the 1-Click Publishing
feature, applications are sent to the application server and the compiler located
there generated the C#, Java, HTML, CSS, JavaScript, SQL code. This feature ends
with the deploy process, an operation that updates the eSpace published version.
Afterwards, the application is ready to be used in a web browser.

Our work is focused on equipping Service Studio, with new database refactor-
ing operations directed towards the database model and to design and implement
the required changes across the whole platform targeting a set of features. In the
next section we describe Service Studio.

2.1 Service Studio

Service studio is a tool integrated in the Outsystems Agile Platform that supports
the development of web applications available in the Agile Platform and allows
the development of eSpaces. An eSpace is an OML (OutSystems Markup Language)
file containing all definitions needed to develop and manage those applications,
such as the application logic, database model, web pages interfaces, and security
settings.

This tool implements a visual programming language, where screen, pro-
gram, and process flows are represented by graphs. Hence, the applications el-
ements are created though simple drag and drop actions, having the developer
only to configure some properties.

Figure 2.2 depicts Service Studio interface. The most left part of the interface
contains the elements the user adds to the action flows. The right part is divided
by the elements tree, showing the elements within the eSpace. Below there is
the properties panel where elements properties are edited. In the top part of
the interface we have the navigation commands, as well as the 1 Click Publish
button. The middle part of the interface is the flow screen, where the user draws
the application interfaces and defines the actions flow. The lower panel contains
three tabs: 1) TrueChange where developer checks eSpace errors and warnings; 2)
debugger where the developer checks the runtime behaviour of the application;
3) The 1-Click Publish where the developer checks the publishing process status.

8

2. THE AGILE PLATFORM 2.1. Service Studio

Figure 2.2: Service Studio - Outsystems applications development environment.

2.1.1 Data Model

In Service Studio we define the logic, interface and database model for the applica-
tions. Our work focus on the database model and in this section we explain how
the developer can build it within Service Studio. Figure 2.3 depicts a Service Studio
screen showing the created Entity Diagram for an application.

As we observe in Figure 2.3, the application has defined an Entity-relationship
diagram [Che76]. We have two types of Entities: Entity and Static Entity. An
Entity is an element which allows the developer to keep business information in a
persistent way. Entities are used to represent and manage the database model. A
Static Entity is an entity that has static data associated to it, The static data is then
managed in design time and can be used directly in the business logic design.

9

2. THE AGILE PLATFORM 2.1. Service Studio

Figure 2.3: Service Studio - Application Data Model

10

2. THE AGILE PLATFORM 2.2. Programming language

Good examples of static data implementation are constants and enumerations.
In the right side of the tool we can add new Entities and in order to visualise
them in the diagram, the users need to drag and drop the Entity they want. To
edit an Entity the user clicks on the respective one, and then edits the properties
associated to it. To add new attributes to an Entity the user selects the Entity and
then he adds new attributes to it. To check where the Entity is being used the
user needs to select the Find Usages feature. The information is presented below
within the tab "Application_Name Entity usage".

The structures defined by the tables in the database model are used not only
in the database queries, but also in the application logic and interface.

2.2 Programming language

A Domain Specific languages (DSL) is a programming language that is focused,
through appropriate notations and abstractions, on a particular problem domain.
Due to its focus on a specific domain, a DSL allows a very efficient application
development process, since the development is not focused on implementation
details. Examples of its usage are programming languages for robots, graphic
environments definition or physics simulations. Some web developing tool like
Agile platform, implement a DSL. The tool interacts with the system components
though simple constructions, making easier the communication with data repos-
itories, the manipulation of its data, and the interface with the user.

The main components of the language implemented by Service Studio are: 1)
Web Flows, to connect the application web pages and define the possible end-user
interaction sequence; 2) Web Screens and Web Blocks , to define the application web
interface; 3) Action Flows, to implement system behaviour; 4) Entities, to build the
database model.

A web flow is represented by an directed graph, containing an initial node fol-
lowed by an infinite number of nodes. Each node represent a web Screen and the
edges the transitions between web Screens. The web screens represent the applica-
tion web pages.

An action flow is also a directed graph, representing each node an operation of
the language. An edge defines the next action to perform. Figure 2.4 depicts an
example of an Action flow.

In order to handle the events triggered by user interaction with the applica-
tion, the language allows the creation of Actions. An Action is formed by: 1) Input
and Output parameters; 2) Local variables; 3) Own Action flow. Below we briefly

11

2. THE AGILE PLATFORM 2.2. Programming language

Figure 2.4: Example of an Action flow

describe some constructs supported by the language:

• If & Switch - Control the execution flow by evaluating expressions.

• Assign - Assign a value to a variable.

• Foreach - Performs a single or a collection of actions for each element of a
list.

• Simple Query - Executes a database query over one or more Entities within
the eSpace. Service Studio provides a graphical interface to define the query
elements, which permits the user to build database queries without coding
SQL.

• Advanced Query - Similar to the previous construct, however in this case
the user needs to specify the SQL code for the query.

• Destination - Deviates the execution flow to a web page created within the
application (web screen).

• Execution Action - Executes any action defined in the eSpace. The user has
available various action types, like Entity Actions or User Actions.

Figure 2.4 representing the action flow is possible to see some of the language
constructs being used.

12

2. THE AGILE PLATFORM 2.3. Applications Lifecycle

By adding new data migration constructs to the Service Studio language, we
offer to developers functionalities to reduce the difficulty, effort and problems for
the maintenance process.

After building the applications, those are ready to compile and publish to
Platform Server. In the next section we describe the application lifecycle.

2.3 Applications Lifecycle

In Outsystems application lifecycle consists in two environments: Development
and Production. Considering applications lifecycle depicted in Figure 2.5 we
briefly describe the main steps:

1. Developers use Service Studio to implement and model their web applica-
tions. To test those applications it is necessary to publish them to the devel-
opment environment.

2. After the testing phase, if the application is ready to go into production the
delivery manager is responsible for that.

3. The users use the applications published to the production environment.

Service Center is a web application within the web server connecting Service
Studio and the development environment. In the last version of the Agile Plat-
form, was integrated a tool called LifeTime1. The tool is similar to Service Center,
however it connects both development and production Service Centers.

2.3.1 Deploying an application

When the implementation process is concluded, the application is ready to be de-
ployed to the development environment through the 1Click-Publish feature. This
operation involves four main steps:

• Save - Saves the eSpace

• Upload - Uploads the eSpace (OML) to the server

• Compile - The compiler receives the eSpace and generates C#, Java, HTML,
CSS, SQL and more files. After that, the files are compiled into assem-
bly/byte code files.

1http://www.outsystems.com/help/lifetime/7.0/

13

2. THE AGILE PLATFORM 2.3. Applications Lifecycle

Figure 2.5: Ousystems applications lifecycle

• Deploy - Updates the last published eSpace version.

In this chapter we described the Agile Platform components and services to
support the development and execution of Outsystems web applications. We
present next the approach taken for the first phase of this project and the related
work.

14

3
Related Work

In order to better understand the context of our problem, it is necessary to discuss
concepts and the related work previously done. In this chapter we will provide
an overview of this subject’s state of the art.

3.1 Background

Relational Data Model The relational model is the primary model used by
commercial data-processing applications, and uses relational algebra as its under-
lying theory. We will describe the structure of the relation model briefly. There-
fore, to know more about relational algebra and the relational model we refer to
[SKS10].

The Relation model is consists in a collection of tables or relations, each one
with a unique name. Those relations consist in a set of attributes, each with a
unique name within the relation. Each attribute in a relation defines the set of
allowed values of a given attribute, being called domain of the attribute.

keys aim to distinguish various Entities. There are the following key types:

• Primary Key is a candidate key to identify the tuples within the relation.

• Foreign Key - If we have two relations R1 and R2, a foreign key of R2 is the
primary key of R2 referenced in R1

Diagrams to represent this type of database models have the following rules:

15

3. RELATED WORK 3.1. Background

• Relations are represented by boxes

• Relation attributes are listed on those boxes

• Attributes belonging to the primary key of relation are listed first

• Foreign key dependencies are drawn as arrows from the referencing relation
to the referenced relation.

We can see an example of a diagram in Figure 3.1.

2.1.3 Relational Schema Diagram Notation

A relational database schema can be visualized by a relational schema diagram.
Its notation is similar to ER [24] or UML [35], but the notation is highly focused
and specific for the relational data model. In contrast to, for instance, UML class
diagram, it is very easy.

The rules for drawing relational schema diagrams are as follows:

• Relations are drawn as boxes with the relation name above the box.

• Attributes of given relation are listed within its box.

• The attributes belonging to the primary key of relation are listed first.
There is a line separating primary key from other attributes and the back-
ground is gray.

• Foreign key dependencies are drawn as arrows from the referencing relation
to the referenced relation.

An example of relational database schema is illustrated in Figure 2.1. The
example describes documents in an school information system - relation docu-
ment. Each document was written by a student, relation student, and it belongs
to some user, relation user. Each document contains keywords, relation keyword.
Assigning of the keyword to the given document is represented by a relation
doc-keyword.

Figure 2.1: A sample of relational schema diagram

2.2 SQL Language

The SQL language became a de facto standard language for relational databases.
Therefore every relational database management system (RDBMS) uses SQL as
its front end.

The SQL language is, in fact, composed of three parts:

• Data Definition Language (DDL)
This part of the language specifies constructs for defintion of schema, rela-
tions, integrity constraints and views.

9

Figure 3.1: Relational Schema Diagram Example

SQL language [SKS10] is the standard language for relational databases. Each
relational database management system (RDBMS) uses this as its front-end. The
language is composed by :

1. Data Definition Language (DDL) - Constructs supported by a database that
enable the insertion, delete or modification of structures (relational tables or
classes) within the database.

2. Data Manipulation Language - Constructs supported by a database that en-
ables the access of data within it, including insertion, delete, search, and
update of data.

We will refer next the important SQL commands for our work. For a complete
list and more deeply explanation about the SQL language we refer [SKS10]:

• The SELECT command specifies the structure of the result of the query. It is
one of the most used SQL commands.

• The FROM command do specify the data sources for a given query. It can be
constituted by one or more tables, which can be linked by some operators
like the JOIN construct.

16

3. RELATED WORK 3.2. Database Refactoring

• The clauses WHERE, ORDER BY, HAVING or GROUP BY are used to filter
the results of a given query.

• The INSERT and UPDATE commands. The first one allows to insert new
data into the database, whereas the second one allow to update the existent
data within the database.

• The CREATE or ALTER commands that allows to create and alter tables in
the database schema.

These commands fit in our work since we want to have modification and cre-
ation clauses to allow us to perform the changes both in the data model and its
data. Consequently, we present an example of a query updating a field of a table
gathering the data from another table using the SELECT command:

1 UPDATE Customer SET

2 TotalAccountBalance =

3 (SELECT SUM(balance) FROM Account

4 WHERE Accound.CustomerId = Customer.CustomerId)

The most usual and used way to modify and migrate the schema and data
is through SQL scripts. Due to the difficulty (because it is a manual approach)
of that method arises the need to build tools to help the developers to perform
changes on the data models and its data in a more automatic way. In the next sec-
tion we will speak about Database refactoring, explaining the process and strate-
gies to refactor database models.

3.2 Database Refactoring

In [AS06], a Database Refactoring is defined as a simple change to a database,
that improves not only its design, but retains its behavioural and informational
semantics. Refactoring a database is conceptually more difficult than performing
code refactorings [FBB+99], since code refactorings need to maintain behavioural
semantics, whereas database refactoring must also maintain informational se-
mantics [AS06].

The process of refactoring a database gets even more complicated by the amount
of coupling resulting from the database architecture. We can define coupling as a
measure of the dependence between two item, thus, the more highly coupled two
things are, the greater is the possibility that a change in one will require a change
in the another one. In Figure 3.2 we can see both database architectures. The

17

3. RELATED WORK 3.2. Database Refactoring

single-application database architecture consists in only one application interact-
ing with the database, whereas the second architecture is much more complicated
because there are many external sources interacting with the database, some of
them beyond our control.

Application

Database

Other Applications
Application

Other Applications

Persistent

frameworks Other

Databases

Data Files

Test Code

Database

Figure 3.2: Database architectures

3.2.1 Database Smells

"code smell" concept was introduced by Fowler in [FBB+99], defining it as cate-
gories of problems in the code that lead us to the need of refactoring. Similarly,
the concept of database smells was defined in in [AS06], indicating the possible
need to refactor the database. The smells identified by the authors were the fol-
lowing:

• Multipurpose column - a column being used for many purposes can possi-
bly mean extra code exists to ensure the use of the data in the right way.

• Multipurpose table - when a table is being used to represent for example
several types of entities, which means that we possibly could have some
NULL values. As an example, if we have a Customer table to represent peo-
ple and companies, and to represent a company we need a legal name, while
a person has first,middle and last name, in some rows we will have NULL
values.

• Redundant data - This can lead to inconsistency issues, once we have the
data stored in too many places.

18

3. RELATED WORK 3.2. Database Refactoring

• Tables with too many columns - When a table has lots of columns, it indi-
cates a lack of cohesion, then we need to normalize the structure.

• Tables with too many rows - Large tables are an indicative of poor perfor-
mance, since the search is time-consuming in a table with millions of rows.

• Smart Columns - Smart Columns are the ones in which different positions
within the data represent different meanings. We need to parse to discover
more granular information.

• Fear of change - If we have fear to change the database it is because we are
afraid of breaking something, and it is a sign that we really need to refactor
our database schema. This is one of the main goals of our work, we want to
reduce the fear of change of the developers when facing a change scenario.

3.2.2 Process of Database Refactoring

In this section we describe the process implementing safely a refactoring within
a production environment [AS06]. The process of a database refactoring starts
when the developers has the need to fix an issue in the application or when he
his faced with a new requirement to implement. The order we should follow
defined by [AS06] is:

• Verify if the refactoring is appropriate;

• Choose the most appropriate refactoring;

• Deprecate the original schema;

• Test before, during and after;

• Modify the schema;

• Migrate Source Data;

• Modify the programs accessing the database;

• Run regression tests;

• Version Control;

• Announce the refactoring.

We will describe the steps we are more interested in our work, however if the
reader wants to know more deeply all the steps we suggest [AS06].

19

3. RELATED WORK 3.2. Database Refactoring

Verify and choose the most appropriate refactoring Before performing a database
refactoring we should reflect if it is really necessary perform that refactoring or if
it is the right one to perform. Moreover, we should think if the change it is worth
of the effort.

Deprecate the original schema The life cycle of a database refactoring consists
in three phases: Implementation, Transition and, Completed. While the refac-
toring is not completed and could exist applications accessing the old data we
should maintain in the database the data as deprecated data.

Modify the schema This step is one of our main goals. We want to modify
a schema in a more user friendly and automatic way. In [AS06] is proposed a
manual way to perform the changes in the schema, which we believe is the most
used nowadays due to the interviews we did in Chapter 4. Two characteristics
we should take in account is the Simplicity of performing the changes, by not
creating scripts difficult to maintain, and the Correctness, once we want that the
database schema evolves in a defined manner.

Migrate the source data We may want not only change the schema, but all the
cases when we are in a production environment we need to take in account the
data. Thus, we can have DML scripts to migrate the data.

Modify the programs accessing the database Changes on the database schema,
may require the adaption of the external programs that access the changed por-
tion of the schema. When many programs are accessing to the database schema,
we run the risk that some of the application were not changed to work with the
new version. So, we should assign to someone (usually a team) the task of update
the external programs.

3.2.3 Database Refactoring Strategies

[AS06] refers strategies we could follow to accomplish the refactorings. We will
use the ones we think are more relevant to our work, letting to the reader the
reference to know more deeply the description of each one.

• Smaller changes are easier to apply;

• Identify uniquely individual refactoring;

• Implement large change by small one;

20

3. RELATED WORK 3.3. Schema Modification Language

• Have a database configuration table;

• Choose a sufficient deprecation period.

3.2.4 Database Refactoring Categories

Refactoring were divided by categories in [AS06], those being:

• Structural Refactorings - Changing the table structure of the database schema

• Data Quality Refactorings - Intended to improve the quality of the informa-
tion within the database. Improve consistency and usage of the values.

• Referential Integrity Refactorings - Changes that ensure that a referenced row
exists in another table.

• Architectural Refactorings - To improve the overall manner in which the ex-
ternal programs interact with the database.

In the Appendix we list all refactorings associated to each category. We do not
explain all of them, besides we analyze the change pattern we are more interested
for our work and that we identified in Chapter 4. In the next section we will
discuss about Schema modification language[CMZ08], an approach to evolve a
schema with a set of defined operators.

3.3 Schema Modification Language

A Schema modification Operator (SMO) is a function that receives a schema with
a database as input and produces as output the modified version of that schema
and a migrated version of the database. These operators tie together schema and
data transformations and they carry enough information to enable the automatic
query mapping. The SMOs together represent the SMO language and are shown
in 3.3.

As an example we can consider the operation "JOIN TABLE R,S into T". This
operation creates a table T that results from joining the tables R and S. Consider-
ing sequences of SMOs we have the following characteristics:

• Depending the order in which operator is used the result can be different;

• Each operator acts in isolation on its input to produce the output;

• Different sequences of SMOs can produce the same result on the same schema.

21

3. RELATED WORK 3.3. Schema Modification Language

Table 2: Schema Modification Operators (SMOs)
SMO Syntax Input rel. Output rel. Forward DEDs Backward DEDs
create table r(Ā) - R(Ā) - -
drop table r R(Ā) - - -
rename table r into t R(Ā) T(Ā) R(x̄) ! T(x̄) T(x̄) ! R(x̄)
copy table r into t RVi(Ā) RVi+1(Ā), T(Ā) RVi(x̄) ! RVi+1(x̄) RVi+1(x̄) ! RVi(x̄)

RVi(x̄) ! T(x̄) T(x̄) ! RVi(x̄)
merge table r, s into t R(Ā), S(Ā) T(Ā) R(x̄) ! T(x̄); S(x̄) ! T(x̄) T(x̄) ! R(x̄) _ S(x̄)
partition table r into s with cond, t R(Ā) S(Ā), T(Ā) R(x̄), cond ! S(x̄) S(x̄) ! R(x̄),cond

R(x̄), ¬cond ! T(x̄) T(x̄) ! R(x̄),¬cond
decompose table r into s(Ā,B̄), t(Ā,C̄) R(Ā,B̄,C̄) S(Ā,B̄), T(Ā,C̄) R(x̄,ȳ,z̄) ! S(x̄,ȳ) S(x̄,ȳ) ! 9z̄ R(x̄,ȳ,z̄)

R(x̄,ȳ,z̄) ! T(x̄,z̄) T(x̄,z̄) ! 9ȳ R(x̄,ȳ,z̄)
join table r, s into t where cond R(Ā,B̄), S(Ā,C̄) T(Ā,B̄,C̄) R(x̄,ȳ), S(x̄,z̄), cond ! T(x̄,ȳ,z̄) T(x̄,ȳ,z̄) ! R(x̄,ȳ),S(x̄,z̄),cond
add column c [as const|func(Ā)] into r R(Ā) R(Ā,C) R(x̄) ! R(x̄, const|func(x̄)) R(x̄,C) ! R(x̄)
drop column c from r R(Ā,C) R(Ā) R(x̄,z) ! R(x̄) R(x̄) ! 9z R(x̄,z)
rename column b in r to c RVi(Ā,B) RVi+1(Ā,C) RVi(x̄,y) ! RVi+1(x̄,y) RVi+1(x̄,y) ! RVi(x̄,y)
nop - - - -

supported by means of SMO to DED translation and query
rewriting. In our example S0

41 = S41, thus all the queries in
Qold can be answered on the data in DB42.

(iv) the DBA, based on this validation phase, can decide
to repeat Steps 1 through 3 to improve the designed evolu-
tion or to proceed to test query execution performance in
Step 4 —Desiderata: D1.2.

Step 4: Materialization and Performance
(i) the system automatically translates the forward (in-

verse) SMO sequence into an SQL data migration script13—
Desiderata: D3.4.

(ii) based on the previous step the system materializes
DB42 di↵erentially from DB41 and support queries in Qold

by means of views or query rewriting. By default the sys-
tem preserves an untouched copy of DB41 to allow seamless
rollback—Desiderata: D2.5.

(iii) query in Qnew can be tested against the materialized
DB42 for absolute performance testing—Desiderata: D2.5.

(iv) query in Qold can be tested natively against DB41

and the performance compared with view-based and query-
rewriting-based support of Qold on DB42—Desiderata: D2.5.

(v) the user reviews the performance and can either pro-
ceed to the final deployment phase or improve performance
by modifying the schema layout and/or modify the indexes
in S42. In our example the DBA might want to add an index
on the latest column of page to improve the join perfor-
mance with revision—Desiderata: D1.2.

Step 5: Deployment
(i) DB41 is dropped and queries Qold are supported by

means of SQL views V41�42 or by on-line query rewriting—
Desiderata: D3.3.

(ii) the evolution step is recorded into an enhanced
information schema to allow schema history analysis and
schema evolution temporal querying—Desiderata: D1.3.

(iv) the system provides the chance to perform a late
rollback (migrating back all the available data) by generat-
ing an inverse data migration script from the inverse SMO
sequence—Desiderata: D3.6.

Finally desideratum D1.4 and scalability issues are dealt
with at interface and system implementation level, Section 7.

13The system is capable of generating two versions of this
script: a di↵erential one, preserving DB41, and a non-
preserving one, which reduces redundancy and storage re-
quirements.

Interesting underlying theoretical and engineering challenges
have been faced to allow the development of this system,
among which we recall mapping composition and invertibil-
ity, scalability and performance issues, automatic transla-
tion between SMO, DED and SQL formalisms, which are
discussed in details in the following Sections.

4. SMO AND INVERSES
Schema Modification Operators (SMO) represent a key

element in our system. This section is devoted to discussing
their design and invertibility.

4.1 SMO Design
The set of operators we defined extends the existing pro-

posal [4], by introducing the notion of function to support
data type and semantic conversions. Moreover, we provide
formal mappings between our SMOs and both the logical
framework of Disjunctive Embedded Dependencies (DEDs)14

and the SQL language, as discussed in Section 5.
SMOs tie together schema and data transformations, and

carry enough information to enable automatic query map-
ping. The set of operators shown in Table 2 is the result
of a di�cult mediation between conflicting requirements:
atomicity, usability, lack of ambiguity, invertibility, and pre-
dictability. The design process has been driven by contin-
uous validation against real cases of Web Information Sys-
tem schema evolution, among which we list: MediaWiki,
Joomla!, Zen Cart, and TikiWiki.

An SMO is a function that receives as input a relational
schema and the underlying database, and produces as output
a (modified) version of the input schema and a migrated
version of the database.

Syntax and semantics of each operator are rather self ex-
planatory; thus, we will focus only on a few, less obvious
matters: all table-level SMOs consume their input tables,
e.g., join table a,b into c creates a new table c containing
the join of a and b, which are then dropped; the partition
table operator induces a (horizontal) partition of the tuples
from the input table—thus, only one condition is specified;
nop represents an identity operator, which performs no ac-
tion but namespace management—input and output alpha-
bets of each SMO are forced to be disjoint by exploiting the
schema versions as namespaces. The use of functions in add
column allows us to express in this simple language tasks

14DEDs have been firstly introduced in [11].

766

Figure 3.3: Schema Modification Operators

[CMDZ10] extends the SMO language by introducing new six operators called
ICMO (Integrity Constraints Modification Operators), used to perform the evo-
lution of integrity constraints. Following we can analyze an example integrating
both types of operators, and then in Figure 3.5 is presented the SMO and ICMO
syntax.

1 ALTER TABLE exon DROP PRIMARY KEY pk1;

2 DROP COLUMN rank FROM exon;

3 ALTER TABLE exon ADD PRIMARY KEY pk2(id) ENFORCE;

In Figure 3.4 we have the table exon. The evolution example starts by dropping
the primary key of the table exon, dropping the rank column too after that. The
last step adds a new primary key for the same table, but the new key is only
composed by the id field.

id description

g_descr

id type

gene

region start end

region_id name

seq_region

length

id rank

exon
region start end

id biotype

gene

start end

region_id name

seq_region
length

source region description

id region start end

exonS 1 S 3

id description

g_descr

id type

gene

region start end

region_id name

seq_region

length

id

exon
region start end

S 2

Figure 1: Three (simplified) schema versions from the actual Ensembl genetic DB schema history.

The challenge in achieving this semantics is to avoid the pro-
hibitive cost of actually migrating data to support legacy queries
or updates. Rather than performing the costly materialization of I ,
PRISM++ rewrites the legacy queries Q and updates U to queries Q0

and updates U 0 against current schema S0, such that the intended se-
mantics is preserved by operating only on the current database ver-
sion: Q0(I 0) = Q(I) and U 0(I 0) is equivalent to executing U(I)
and migrating it forward to S0.

Our first attempt in this direction [11], lacked the support of up-
dates, was not designed to handle evolution steps modifying integrity
constraints, and could only rewrite a limited class of queries.

PRISM++ solves all this by introducing update rewriting to adapt
legacy updates to run on the current schema, evolution of integrity
constraints significantly extending the class of evolution steps cov-
ered, and finally provides support for a wider class of queries, that
now include queries with negation and simple functions.

In addition to these external functionality extensions, major chan-
ges were made internally to incorporate the advances made in mod-
eling and mapping legacy update, including: (i) the representation
of updates in a fashion that is amenable to rewriting, namely based
on query equivalence, (ii) a new inference engine combining novel
algorithms and chase-based rewriting technology to rewrite queries
and updates through both structural changes of the schema and in-
tegrity constraints evolution, and (iii) a set of operators that support
modeling of integrity constraint evolution, and a characterization of
how integrity constraints are affected by structural schema changes.

In its design the system balances the need to achieve sufficient
expressivity to cover a wide range of practical cases, with compu-
tational complexity of several related problems that are notoriously
hard in the general case, including: the view update problem [5], de-
ciding schema equivalence [28], schema mapping composition [16]
and inversion [17], and consistent query answering [3]. The most
general version of the schema evolution problem modeled under
these formalisms tend to be intractable or even undecidable (for
schema mappings expressed classically, in the language of arbitrary
views [31] or of source-target tgds [19, 23])—see Section 6 for a
discussion of related work. Thus, the design of PRISM++ uses the
evolution language as its main defense against the complexity threat:
indeed, this language allows us to “divide and conquer” the tasks, by
applying case-by-case analysis for each evolution operator.

Our newly developed testbed [10] provided us with the ability of
testing the expressivity of the PRISM++ evolution language and the
effectiveness of our rewriting techniques on the evolution history
and workloads (queries and updates) of several real-world systems,
including Ensembl DB and Wikipedia. A short video demo of
PRISM++ is available on-line3.

1.1 Running Example: a Genetic DB
The PRISM++ system has been designed and validated on many

evolution histories from several application domains [10], among
which we chose the genetic DB Ensembl as running example.

The Ensembl project1, funded by the European Biology Institute
and the Welcome Trust Sanger Institute, provides a data-centric plat-

3See: http://tinyurl.com/updaterewriting

form used to support the homonymous human genome database, and
other 15 genetic research endeavors. Ensembl DB has witnessed an
intense schema evolution history. In about 9 years of life-time over
410+ schema versions appeared to public (i.e., almost a version a
week in the last decade). Ensembl users can to underlying database
in multiple ways, including web-page mediated searches, direct SQL
access, and data-mining and querying APIs. Every change to the
schema potentially impacts all the applications and interfaces built
on it, some developed by third parties and therefore hard to maintain.
Hence, there is a substantial need for transparent evolution support.

We select from this long schema history a few representative ex-
amples, compressed and adapted for the sake of presentation. The
starting schema S1 of Figure 1 is an excerpt of the CVS4 schema re-
vision 188.2.6; this schema describes how the Ensembl DB stores
its information about DNA sequences, exons5 and genes. Under-
lined attributes are primary keys and arrows indicate foreign keys.
Each table has a primary key constituted of one numerical identi-
fier, except for the exon table, where the rank of an exon is also
needed to uniquely identify its tuples. Both exon and gene refer
to DNA sequences stored in table seq region, by referencing
their region id and specifying start and end positions in the DNA
sequence. The g descr table, stores textual descriptions of genes.

In July, 2003 the team of DBAs decided to remove from exon
the rank attribute and force id to be the new primary key, discard-
ing violating tuples6, leading to the schema S2 in Figure 1 (revision
188.2.8 CVS schema).

In August 2005, a new evolution step impacting this subset of the
schema appeared in the public release of the DB. This evolution step
involved two actions: (i) renaming of column type to biotype in
table gene, and (ii) the joining of the tables gene and g descr
into a unified table gene, leading to the schema S3 in Figure 1 (re-
vision 226 of CVS schema). This example is used throughout the
paper to illustrate our technical contributions.

The remainder of this paper is organized as follows: Section 2
presents the evolution language, Section 3 describes the resulting
data migration, Section 4 details query and update rewriting, Sec-
tion 5 discusses optimizations and experiments. Section 6 and 7
summarize related works and conclusions.

2. A SCHEMA EVOLUTION LANGUAGE
In [11] we introduced the Schema Modification Operators (SMO)

of Table 1. Each operator captures an atomic (and natural) change
performed to evolve the schema. By combining them, it is possi-
ble to express complex evolutions. The SMOs’ atomicity and clear
semantics represent an ideal basis to tackle the problem of data mi-
gration and schema evolution. However, SMOs alone do not capture
integrity constrains evolution. PRISM++ extends this approach by
introducing six new operators used to edit the schema integrity con-
straints: the Integrity Constraints Modification Operators (ICMOs)

4See Ensembl CVS repository at: http://tinyurl.com/
ensembl-schema
5An exon is a nucleic acid sequence related to a portion of DNA.
6This information is derived from the CVS logs and from the SQL
used for data migration.

118

Figure 3.4: Schema Example

Forcing Information Preservation for SMOs Some technical challenges for the
data migration and query rewriting problems were raised by the operators that
were not information-preserving. The authors defined that an operator O is
information-preserving if and only if:

• Is invertible

• The old and new schema are equivalent, i.e. have the same information.

With the introduction of ICMOs, each SMO operator can be information-preserving
by adding the correct Integrity Constraints, whereby any information loss will be

22

3. RELATED WORK 3.3. Schema Modification Language
shown in the second part of Table 1. The “<policy>” place-holder
is used as a selector to chose among the various integrity constraints
enforcement policies offered by PRISM++, as discussed in detail in
Section 3. PRISM++ supports three basic integrity constraints: pri-
mary keys, foreign keys, and simple value constraints7. This set of
simple constraints covers all the constraints that were actually used
in the large dataset of [10]. In the following, we provide details on
how the two sets of operators interact and combine into a powerful
and intuitive language for evolution.

Let us start by presenting as an example the evolution step S1 �
S2 of Section 1.1. The DBA describes the structural and integrity
constraints changes as in the following:

EXAMPLE 2.1. Three operators that transform S1 into S2

1) ALTER TABLE exon DROP PRIMARY KEY pk1;
2) DROP COLUMN rank FROM exon;
3) ALTER TABLE exon ADD PRIMARY KEY pk2(id) ENFORCE;

The operators 1 and 3 are ICMOs (introduced by the ALTER key-
word), while operator 2 is an SMO.

The keyword ENFORCE in the third statement, prescribes that the
systems will discard all tuples involved in a violation of the newly
introduced key. This is only one of the alternative enforcement poli-
cies provided by PRISM++, as detailed in Section 3.

2.1 Impact of SMO on Integrity Constraints
Integrity constraint evolution occurs directly (when the adminis-

trator add or remove constraints via ICMOs), or indirectly (when an
SMO changes a schema structure mentioned by a constraint). An in-
teresting question is thus: “given a set of constraints IC1 on schema
S1, that is evolved by the sequence of SMOs and ICMOs M into
schema S2, which are the constraints IC2 that must hold on S2?”

Formally, we say that IC2 is implied by IC1 under the evolution
M and we write IC1 |=M IC2 —see Appendix A, for details.

Note that, for general evolution steps given by arbitrary views,
and for general classes of integrity constraints, this problem is no-
toriously hard: checking that a constraint is implied is undecidable,
and the implied constraints may have non-finite cover. [21].

However, in PRISM++ we do not have to solve the general ver-
sion of this problem. We only have to deal with three types of
supported constraints (key, foreign key and value), and with sim-
ple evolution steps expressed by SMOa and ICMOs—that have been
carefully designed to enable all common evolution scenarios, while
avoiding complexity/decidability pitfalls. It is therefore feasible to
pre-compute, for each type of constraint on the initial schema and
for each evolution operator, the derived constraints it corresponds to
on the evolved schema—see Appendix A.

2.2 Forcing Information Preservation for SMOs
It turns out that the key technical challenges to PRISM++ data

migration and query/update rewriting are raised by those evolution
operators that are not information-preserving.

DEFINITION 2.1. We say that an evolution operator O from sche-
ma S1 to schema S2 is information preserving if (i) O is functional,
i.e. for every S1-instance I1 there is a unique S2-instance I2 with
O(I1) = I2, and (ii) there is an operator O�1 from S2 to S1 (the
inverse of O) such that for every S1-instance I2, O�1(O(I1)) = I1.

This notion of information preservation is related to classical no-
tions of invertibility of schema mappings [17], schema equivalence
[28], information capacity [27], instantiated to the special case when
the schema mapping is given by our evolution operators: O is inform-
ation-preserving if and only if it is invertible, if and only if schemas
S1 and S2 are equivalent, i.e. have the same information capacity.
7These are simple equality assertions about the value of a column
and constants, supported by the SQL DDL.

Table 1: A language for schema evolution: SMO+ICMO
Schema Modification Operators (SMO) Syntax
CREATE TABLE R(a,b,c)
DROP TABLE R
RENAME TABLE R INTO T
COPY TABLE R INTO T
MERGE TABLE R, S INTO T
PARTITION TABLE R INTO S WITH cond, T
DECOMPOSE TABLE R INTO S(a,b), T(a,c)
JOIN TABLE R,S INTO T WHERE cond
ADD COLUMN d [AS const|func(a, b, c)] INTO R
DROP COLUMN c FROM R
RENAME COLUMN b IN R TO d

Integrity Constraints Modification Operators (ICMO) Syntax
ALTER TABLE R ADD PRIMARY KEY pk1(a, b) <policy>
ALTER TABLE R ADD FOREIGN KEY fk1(c, d) REFERENCES T (a, b) <policy>
ALTER TABLE R ADD VALUE CONSTRAINT vc1 AS R.e = “0” <policy>
ALTER TABLE R DROP PRIMARY KEY pk1
ALTER TABLE R DROP FOREIGN KEY fk1
ALTER TABLE R DROP VALUE CONSTRAINT vc1

Since non-information-preserving operators require special care,
we made the design decision of minimizing their number by normal-
izing the evolution history so as to force every structural change op-
erator (i.e. every SMO) to apply in a context in which it is information-
preserving—this is an important difference from [11]. To this end,
we successfully exploited ICMOs, which are by definition not infor-
mation-preserving and require special handling anyway (as discussed
in Sections 4.1 and 4.3).

No generality is lost in our approach, since every structural change
operator can be sanitized into its information preserving counterpart
by simply adding the proper ICs—whereby any information loss will
now be imputed to the sanitizing ICMOs rather than the SMO. This
makes the overall set of SMOs and ICMOs a more precise, finer-
grained tool for describing evolution—the intuitive advantage is to
separate management of structural modifications from alterations of
the information capacity (i.e., IC editing).

This is illustrated by Example 2.2, which displays the operator
sequence used to evolve schema S2 into S3.

EXAMPLE 2.2. Three operators that transform S2 into S3

1) RENAME COLUMN type IN gene TO biotype;
2) ALTER TABLE gene ADD FOREIGN KEY fk2 (id)

REFERENCES g_descr(id) ENFORCE;
3) JOIN TABLE gene,g_descr INTO gene

WHERE gene.id = g_descr.id;

The example contains the following evolution steps: (i) renaming
of column type to biotype in table gene (operator 1), and (ii)
the join of table gene and g descr (operator 3), plus the needed
integrity constraints modifications (operator 2).

Operator 2 introduces a foreign key to table gene, constraining
its values, and thus guaranteeing that the subsequent JOIN operator
is information preserving (lossless). As one can see, any loss of tu-
ples that would have been incurred by operator 3 is now imputed to
operator 2. Similar sanitizing IC alterations have been studied and
identified for each SMO. PRISM++ automatically suggests the san-
itizing ICMOs required before each SMO entry, and provides feed-
back on the potential data losses. This is possible because for each
SMO we can statically define a set of pre-conditions under which
each the operator is information preserving.

The DBA tightens or relaxes the integrity constraints in the schema,
by issuing ICMOs that add or remove such constraints without mod-
ifying the schema structure. Issuance of such ICMOs (and the choice
of enforcement policies) can: (i) affect the current DB content and
(ii) determine the rewriting of queries and updates as discussed in
the following. These are the subjects of the next two sections.

3. DATA MIGRATION
The new evolution language we designed guarantees that data mi-

gration steps through SMOs will always be invertible (and informa-

119

Figure 3.5: SMO Language: SMO+ICMO

because of an ICMO and not because of a SMO. With this approach the manage-
ment of structural changes and alterations of information capacity can be sepa-
rated.

To better understand this approach we have the Listing 3.1. Constraining the
values of table gene with operator 2, guarantees that the JOIN operator will be
information preserving, and consequently any loss of tuples will be imputed to
operator 2 and not to operator 3.

Listing 3.1: Information-Preserving Example
1 RENAME COLUMN type IN gene TO biotype;

2 ALTER TABLE gene ADD FOREIGN KEY fk2 (id)

3 REFERENCES g_descr(id) ENFORCE;

4 JOIN TABLE gene,g_descr INTO gene

5 WHERE gene.id = g_descr.id;

3.3.1 SMO Invertibility

PRISM [CMDZ10] deals with invertibility within the operational SMO language,
having each SMO one or more inverses. The invertibility of each operator is
characterized by the existence of a perfect/quasi inverse and uniqueness of the
inverse. As we can see in Figure 3.6 JOIN TABLE and DECOMPOSE TABLE rep-
resents each other’s inverse, in the case of the information preserving step, while
if the forward step is not information preserving they represent a quasi inverse.

As we referred before some SMO can have multiple inverses. PRISM uses
integrity constraints or interaction with the DBA to disambiguate the inverse. If

23

3. RELATED WORK 3.4. Data Migration

Figure 3: SMOs characterization w.r.t. redundancy,
information preservation and inverse uniqueness

such as data type and semantic conversion (e.g., currency
or address conversion), and to provide practical ways of re-
covering information lost during the evolution, as described
in Section 4.2.2. The functions allowed are limited to oper-
ating at a tuple-level granularity, receiving as input one or
more attributes from the tuple on which they operate.

Figure 3 provides a simple characterization of the opera-
tors w.r.t. information preservation, uniqueness of the in-
verse, and redundancy. The selection of the operators has
been directed to minimize ambiguity; as a result, only join
and decompose can be both information preserving and
not information preserving. Moreover, simple conditions on
integrity constraints and data values are available to e↵ec-
tively disambiguate these cases [30].

When considering sequences of SMOs we notice that: (i)
the e↵ect produced by a sequence of SMOs depends on the
order; (ii) due to the disjointness of input and output alpha-
bets each SMO acts in isolation on its input to produce its
output; (iii) di↵erent SMO sequences applied to the same
input schema (and data) might produce equivalent schema
(and data).

4.2 SMO Invertibility
Fagin et al. [13, 15] recently studied mapping invertibil-

ity in the context of source-to-target tuple generating de-
pendencies (s-t tgds) and formalized the notion of quasi-
inverse. Intuitively a quasi-inverse is a principled relaxation
of the notion of mapping inverse, obtained from it by not dif-
ferentiating between ground instances (i.e., null-free source
instances) that are equivalent for data-exchange purposes.
This broader concept of inverse corresponds to the intu-
itive notion of “the best you can do to recover ground in-
stances,” [15] which is well-suited to the practical purposes
of PRISM.

In this work, we place ourselves within the elegant theoret-
ical framework of [15] and exploit the notion of quasi-inverse
as solid, formal ground to characterize SMO invertibility.
Our approach deals with the invertibility within the opera-
tional SMO language and not at the logical level of s-t tgds.
However, SMOs are translated into a well-behaved fragment
of DEDs, as discussed in Section 5. The inverses derived by
PRISM, being based on the same notion of quasi-inverse,
are consistent with the results shown in [13, 15].

Thanks to the fact that the SMOs in a sequence oper-
ate independently, the inverse problem can be tackled by
studying the inverse of each operator in isolation. As men-
tioned above, our operator set has been designed to simplify
this task. Table 3 provides a synopsis of the inverses of each

Table 3: SMO inverses
SMO unique perfect Inverse(s)
create table yes yes drop table
drop table no no create table

copy table
nop

rename table yes yes rename table
copy table no no drop table

merge table
join table

merge table no no partition table
copy table
rename table

partition table yes yes merge table
join table yes yes/no decompose table
decompose table yes yes/no join table

add column yes yes drop column
drop column no no add column, nop
rename column yes yes rename column

nop yes yes nop

SMO. The invertibility of each operator can be characterized
by considering the existence of a perfect/quasi inverse and
uniqueness of the inverse. The problem of uniqueness of the
inverse is similar to the one discussed in [13]; in PRISM,
we provide a practical workaround based on the interaction
with the DBA.

The operators that have a perfect unique inverse are:
rename column, rename table, partition table nop,
create table, add column, while the remaining operators
have one or more quasi-inverses. In particular, join table
and decompose table represent each other’s inverse, in
the case of information preserving forward step, and (first-
choice) quasi-inverse in case of not information preserving
forward step.

copy table is a redundancy-generating operator for which
multiple quasi-inverses are available: drop table, merge
table and join table. The choice among them depends
on the evolution of the values in the two generated copies.
drop table is appropriate for those cases in which the two
output tables are completely redundant, i.e., integrity con-
straints guarantee total replication. If the two copies evolve
independently, and all of the data should semantically par-
ticipate to the input table, merge table represents the ideal
inverse. join table is used for those cases in which the input
table corresponds to the intersection of the output tables15.
In our running example the inverse of the copy column
between S41 and S41.1 has been disambiguated by the user
in favor of drop table, since all of the data in cur1 were
also available in cur.

merge table does not have a unique inverse. The three
available quasi-inverses di↵erently distribute the tuples from
the output table over the input tables. partition table
allocates the tuples based on some condition on attribute
values; copy table redundantly copies the data in both
input tables; drop table drops the output table without
supporting the queries over the input tables.

drop table invertibility is more complex. This operator
is in fact not information preserving and the default (quasi-
)inverse is thus nop—queries on the old schema insisting
on the drop table are thus not supported. However, the
user might be able to recover the lost information thanks
to redundancy, a possible quasi-inverse is thus copy table.

15Simple column adaptation is also required.

767

Figure 3.6: Schema Modification Operators Inverses

the integrity constraints do not carry enough information the DBA can define a
unique inverse for all the queries or he can manage each query independently
and choose different inverses for different queries.

3.4 Data Migration

After the changes were made to the database structure, arises the need to mi-
grate and maintain the data consistent, hence the data needs to be migrated in a
manner it can work with the new version of the schema. There are several ways
to perform the migration of the data of a database. The migration mechanisms
proposed by [AS06] are manual SQL scripts, while in [CMZ08, CMDZ10] the mi-
gration of the data is done through logical mappings called DEDs (Disjunctive
Embedded Dependencies).

In [VWV11] is presented a DSL for the coupled evolution associated to data
models and its data. After creating the WebDSL language [GHKV08], the authors
modeled an evolution model, defining three types of migrations:

1. Schema Modification - Operators only requiring schema modification;

2. Conservative Migrations - To change the schema and re arrange the data;

3. Lossy Migrations - Exists data loss.

24

3. RELATED WORK 3.5. Access Program Adaptation

Ruby on Rails1 supports migration of databases for an evolving web applica-
tion. Those applications use an ORM to persists data in a relational database, and
the developer needs to specify the migrations himself.

A tool implementing the migration mechanisms referred in [AS06] is Liquibase2,
which stores the changes in XML files and after that applying it to the databases.

3.5 Access Program Adaptation

We can have databases shared by many applications and databases accessed only
by an application. In both cases it is important to adapt the code of those pro-
grams, for example, queries working with an old schema version need to be
adapted to work with the refactored version of the schema.

[CMZ08, CMDZ10] solve that issue by using the chase and backchase algo-
rithm [DNR08] to rewrite the queries to work with the new version of the schema,
using the algorithm the DEDs referred in the previous section to rewrite the
queries.

3.6 Change Patterns

The goal of this section is to analyze the motivations, tradeoffs, impact on applica-
tion code and how to perform data migration in the change patterns we identify
with the interviews in chapter 4. Our is based in [AS06].

Move Column Move Column consists on moving a column from a table to an-
other one.

The motivation to achieve this refactoring is that we may want to normalize
the table, or to perform a refactoring afterwards, or denormalize if the column is
inserted in a join only due to its existence in the wrong place. Reorganizing the
tables structure is another motivation.

As potential tradeoffs, reducing the data redundancy may decrease the per-
formance if additional joins are required by the applications to obtain the data. If
we improve the performance we will increase data redundancy.

Updating the schema we need to take care about the value of the column and
if referential integrity constraints exists.

1http://guides.rubyonrails.org/migrations.html
2Available on-line: http://www.liquibase.org/

25

3. RELATED WORK 3.6. Change Patterns

Change ID column type This change is usually related with integrity constraints,
since by changing them deals with the consistency of the database. In some point,
because of a new requirement, the foreign key that was pointing, for example, to
user table is now pointing to the UserMaster table.

According to our research, we did not find any tools implementing a simi-
lar pattern, however it was realized in Chapter 4 that this is a common pattern,
within Outsystems context.

Adding a new constraint Constraints enforce data dependencies at the database
level [AS06], preventing persistent data to be invalid.

Adding foreign key constraints can decrease the performance of the database,
since the foreign key table will be always verified when an update is done to the
data. Furthermore, we need to take into account the order of insert or delete oper-
ations. Liquibase implements this operation by defining a change set specifying
the attributes required. [CMDZ10] allows the user to perform the refactoring
through the SMO operator "ALTER TABLE R ADD FOREIGN KEY fk1(c,d) REF-
ERENCES T(a,b) <policy>", having the user to specify the relation R to be changed
and the how the foreign key is formed. The last parameter policy can be as fol-
lowing defined by the authors:

• CHECK: The system verifies if the database instance satisfies the new con-
straint and, if not, the ICMO operation is rolled back.

• ENFORCE: The system removes all tuples violating a new integrity con-
straint. That removed tuples are kept in a temporary table named violation
tables.

Master/Detail table This operation consists on vertically split an existing table
into one or more tables. Consider as an example, a table Client with the attributes
Id, Name, Address, Phone, Phone_2, and Email. After, we realized we want to have
more than two phone numbers. Thus, we need to evolve our model by creating
a detail table, possibly with the name Contacts, to accomplish such functional-
ity. This operation implies splitting the table Client and migrate the existent data
within Phone,Phone_2 and email attributes into the Contacts table. Besides, we
need to take into account the applications using those fields. Using SMO opera-
tors [CMZ08, CMDZ10] it is possible to use the operation using the DECOMPOSE
Table operator. Liquibase does not implement the Split Table refactoring. A possible
approach is to manually code SQL scripts as referred in [AS06].

26

3. RELATED WORK 3.6. Change Patterns

Other Patterns There are simpler patterns that we are not discussing, but they
are completely identified. Although, because the patterns are already imple-
mented on usual database management systems we will not give then a special
emphasis. Those patterns are for example:

• Rename a column,

• Rename a table,

• Adding new attribute,

• Adding new table.

27

3. RELATED WORK 3.6. Change Patterns

28

4
Preliminary Analysis

The early stages of the project were dedicated to learn about the Agile Platform.
At first we performed tutorials available on OutSystems Academy, in order to un-
derstand how applications are developed in the Agile Platform. We wanted to
understand developers difficulties when developing web applications in Service
Studio focusing on the data model. Afterwards, we studied concepts, techniques
and solutions that guided our decisions along the solution model design and im-
plementation phase. Our research was focused on database refactoring, database
migrations and database schema evolution.

After that, in order to understand problems and difficulties faced by develop-
ers when evolving database models we interviewed experienced developers and
project managers frequently evolving applications database model, in the context
of the OutSystems Agile Platform. Interviews intended to capture the most fre-
quent scenarios faced by developers when changing and evolving the database
model. In order to introduce new customer requirements to applications or to
improve applications design and performance, developers may have different
approaches to accomplish those tasks. Thus, we also aimed to understand what
developers do to keep applications data model consistent and their approach to
evolve it.

29

4. PRELIMINARY ANALYSIS 4.1. Interviews Structure

4.1 Interviews Structure

Interviews were split in two parts. The first part was composed by questions
aiming to capture the problems, difficulties and most common scenarios faced by
the interviewee when evolving applications database model. In the second part
our goal was to understand if the scenarios captured from the related work, are
common in the context of the Agile Platform.

4.1.1 First Part

The questions composing the first part of the interviews are:

1. Which are the most frequent scenarios that require changing the database
model?

• Goals, Driver, Processes, Risk, Human Effort both for Development
and Operations

2. Which are the most costly scenarios that require changing the database
model?

3. How do you handle high risk database changes?

On this part, we forced the interviewee to think on scenarios faced during
previous projects, in order to understand, which are the most frequent scenar-
ios, when changing applications database model. We asked also, what is their
approach and how much effort was required to accomplish the requirements re-
quiring database changes. The second question aims to know, how costly were
the scenarios they faced. The third question aimed to know, how the intervie-
wee handles high risk database changes, for example when applications already
contain data in production.

4.1.2 Second part

The questions composing the second part of the interviews are:

• Can you prioritize the following scenarios by saying if they are Frequent or
Not Frequent?

1. Convert primary key to auto-number.

2. Convert compound key to a simple key.

30

4. PRELIMINARY ANALYSIS 4.2. Interviews Notes

3. Convert column between two different type of entity identifiers. e.g.:
ProductId→ CustomerId

4. Split column. e.g.: convert Name to FirstName, LastName.

5. Merge column e.g.: convert FirstName, LastName into Name

6. Move column to entities that have a one to one relation. e.g.: moving
binary data column to an extension entity, or moving back data from
an extension entity to the main entity

7. Move data from a master entity to a detail entity. e.g.: email attribute
from a person entity to a person_contact detail entity

8. Move data from a detail entity to a master entity. e.g.: Last modified
attribute

Chart 4.1 depicts the answers collected on the second part of interviews , and
also shows the frequency of the proposed database change scenarios.

Figure 4.1: Interviews second part results

4.2 Interviews Notes

Regarding the interviews, during the first part we did not follow strictly the ques-
tionnaire, once the respondents were free to relate their thoughts and experience

31

4. PRELIMINARY ANALYSIS 4.2. Interviews Notes

when evolving applications. They described the most difficult problems in the
development and maintenance process of applications, focusing on the database
layer.

As a common observation, respondents referred that in the early stages of
applications development, they aim to have the database model as clean as pos-
sible, because when later they need to evolve applications and introduce new
features requiring database model changes the process may be simpler. Writing
SQL scripts to update and evolve the database is the usual approach, as referred
by the respondents during interviews.

The most challenging problems when changing applications database struc-
ture, arise when applications already contain real data in production, as reported
in two interviews. It was also referred, that the evolution process is usually
painful for the developers, since loosing data or having application downtimes
are not acceptable options.

In addiction to the scenarios presented during interviews, respondents also
reported other common scenarios as for example:

• Changes in attribute type (Similar to the Change foreign key), reported in
three interviews;

• Change the attribute property isMandatory;

• Adding new constraint - When the developers want to add a new constraint
to the model, they insert manually the constraint in the database manage-
ment system, publishing after that in the eSpace.

In order to migrate data and change the database model, writing SQL scripts
is the most frequent approach as reported in an interview. Because of that, was
also reported that having an impact analysis tool analyzing the real data in pro-
duction would be very useful, since developers may know, if the transformations
performed in the database model on the development environment are compati-
ble with the real data in production. A tool analyzing the real data in production,
would improve extensively the maintenance process.

In the first part of the interviews, was difficult to developers to identify sce-
narios they faced on previous projects, while in the second part they properly
understood the scenarios and they gave us useful feedback.

Discussion Analyzing interviews results, we conclude that developers face the
problems we referred before when evolving applications database model. We
also conclude that does not exist an automatic, smooth and safe way to evolve

32

4. PRELIMINARY ANALYSIS 4.3. Change Operations Identified

the database models, data and code. Thus, implementing automatic features to
evolve database models and its data, it is very useful to improve applications
development and maintenance processes, keeping applications compatible along
the different environments.

4.3 Change Operations Identified

This section describes change operations identified during interviews. We also
analyze which are the most interesting and useful to provide to developers, and
how they can accomplish those tasks with tools available at the moment. We also
discuss which are the most frequent, costly and risky. Analyzing Figure 4.1, we
can conclude that scenarios usually faced by developers are similar.

Change Foreign Key In the sixth interview, this scenarios was defined as fre-
quent. Changing the foreign key type is a very specific scenario in the context of
Service Studio, but can bring problems related to integrity constraints.

Adding a new constraint It was referred in sixth and fourth interviews that
adding a new constraint to the database model is a very common scenario. The
usual approach is to add the constraint manually in the DBMS, before publishing
the application, in order to avoid integrity errors.

Change attribute type Analyzing the interviews this is a very common sce-
nario. Thus, it is a change pattern that deserves our attention. This operation
consists on changing the type an attribute/column. When changing an attribute
type, the real data in production may not keep compatible. That is an issue we
aim solve with our solution.

Master/Detail table Analyzing only the table 4.1, we realize that this is not a
frequent scenario. However, the respondents referred that besides is not one of
the most frequent scenarios, they face sometimes this kind of refactoring. For
example, consider a table Client with the attributes Id, Name, Address, Phone, Phone
2, and Email. After that, we realized that we want to have more than two phone
numbers. Thus, we need to evolve our model by creating a detail table, possibly
with the name Contacts, to accomplish that requirement. In conclusion, although
interviews statistics we will consider this as a possible operation to support.

33

4. PRELIMINARY ANALYSIS 4.3. Change Operations Identified

In this chapter the approach taken on the early stages of this dissertation was
described. We started by getting familiar with the Agile Platform studying af-
ter that concepts, techniques and solutions that guided our decisions along the
solution model design and implementation phase.

After that we interviewed experienced developers and project managers in
the context of the Agile Platform. With that, we extracted common scenarios faced
by the developers when evolving applications and which scenarios carry higher
risk. This research was aimed to identify and analyze scenarios captured during
interviews and identified in the previous study of the state of the art, in order to
select the most interesting scenarios to support in our work.

In the next chapter we present the solution model to achieve our goals, in the
context of the Agile Platform.

34

5
Model Solution

In this chapter we present our solution to introduce database evolution features
in the Agile Platform. As presented in chapter 1, our goal is to provide a safe and
guided process for developers to change applications data model. We focus on
applications already in the maintenance phase, i.e., applications that were already
deployed to production. The main problem to developers is to evolve those ap-
plications that already deal with real and sensible data which cannot be lost, and
whose migrations cannot be directly tested in development environments. Thus,
our solution allows developers to maintain the synchronization between both
development and production environments. One of the problems that usually
arises when developers are changing the database schema in the development
environment, is that they do not have access to the real data in production envi-
ronment. Thus, is difficult to developers to know what is the impact of changing
the database structure on the application data. Having information about the
state of the real data in production, helps the developers to know the real risk of
their changes in the applications database structure. Figure 5.1 shows the flow
from applications development phase until applications are deployed into pro-
duction. The developer changes the application in Service Studio and publishes
it in the development environment. The system is responsible to deploy the ap-
plication when it is ready. The system deploys the application in the production
environment through LifeTime. In this case, we have two different scenarios: ei-
ther the application is successfully deployed into production or the process is
aborted due to database conflicts between application versions.

35

5. MODEL SOLUTION

Developer

Service Studio

Development
Environment LifeTime

Production
Environment

Publish to Development Deploy

Operator

Figure 5.1: Application Development and Deployment process

The second case when there are problems in the data migration is critical be-
cause the deployment process is postponed and the operator needs to inform the
development team about the errors in the migration script and wait for it to be
fixed. The common approach followed by developers is to write SQL scripts to
fix the database conflicts problems and to also to migrate data if needed.

Developer

Service Studio

Development
Environment LifeTime

Production
Environment

Operator

Migration_n

Pending Migrations

Migration_n
Migration_n

Already applied in Development
Environment

Already applied in Production
Environment

Migration_n
Migration_n

Migration_n

Migration_n
Migration_n

Migration_n

Migrations Pending to apply to
Production environment

Migration_n
Migration_n

Migration_n

Figure 5.2: Migrations within Agile Platform

To overcome these limitations and to provide an easier and safer way to devel-
opers to change and evolve the database model we introduce database migrations

36

5. MODEL SOLUTION 5.1. Migrations Model

in the Agile Platform. Migrations are a mechanism to capture transformations in
a database model and schema in a structured and organized way (we explain
migrations in detail in the next sections). Figure 5.2 depicts how migrations are
integrated. To distinguish the migrations already applied on the different envi-
ronments we divide them into categories according to their application stage:

• Pending migrations - Generated in Service Studio when the developer changes
the database model;

• Already applied in Development Environment - Changes to the database
model already published in the development environment;

• Already applied in Production Environment - Changes to the database
model already deployed into production.

Whenever developers change the database model or schema, a new migra-
tion is generated and stays pending until it is published to the development en-
vironment. The generated migrations contain information about who changed,
when and what was changed. After that, the development environment contacts
LifeTime that communicates with the production environment to get information
about the impact of the migration in the database data already in production. This
is possible because the LifeTime allows developers to have information about the
version of each application running in development and production environment
and also to access to an instant snapshot of any applications inconsistencies be-
tween environments. Thus, after developers change the database model in the
Service Studio, the system analyzes on demand the impact of those changes in
the data model already in production. As the production data analysis may take
some time to complete, developers continue changing and evolving their appli-
cations while the system is analysing the impact of their transformations in the
database model in production. After a while, the developer receives a warning
that requires a migration rule to fix the incompatible data in production.

Thus, developers have on demand what is the impact on the database model
in production, of the changes they made in the development environment. In the
next sections we present the migrations model in more detail.

5.1 Migrations Model

As we presented before, our solution is based in the concept of migrations. Mi-
grations are a mechanism to capture transformations in a database model and

37

5. MODEL SOLUTION 5.1. Migrations Model

AbstractMigration

Developer : Integer
Version : Date
Timestamp : Date
AttributeName : Text

CreateAttribute

Type : AbstractType
IsAutoNumber : Boolean
Label : Text
Length : Integer
IsMandatory : Boolean
DefaultValue : DefaultValue

DropAttribute RenameAttribute

NewAttributeName : Text

UpdateAttribute

NewAttributeValue : Text

ChangeAttribute

AttribtuePropertyNewValue : Text
DefaultValue : DefaultValue
AttributePropertyName : Text

Entity

Figure 5.3: Class Diagram.

schema in a structured and organized way. We describe the implementation of
migrations within Service Studio in the next chapter. It is important to refer that
migrations are not editable by the developer, except the ones requiring updates.
Migrations represent operations made by the developer to the database model
to evolve it. So, the developer modifies the database structure and migrations
are generated automatically creating a sequence of operations. Then, they are
applied to the database model according to their order. To represent the mod-
ifications made by the developers in the database model, we have defined the
following kinds of operations, represented in the Figure 5.3:

• Create Attribute : captures the creation of an entity attribute;

• Drop Attribute : captures the dropping of an entity attribute;

• Rename Attribute : captures the renaming of an entity attribute;

• Change Attribute : captures a change in a property of an entity attribute;

• Update Attribute : defines a new value for the entity attribute.

The presented operations capture the transformations on the database model
and represent specific kinds of migrations extending the generic migration class
(Figure 5.3). In our model a generic migration has the following properties:

• Developer: captures who changed the database model;

38

5. MODEL SOLUTION 5.1. Migrations Model

• Version: A version of a migration is a value based on the version of the
migration being created and an instant. Versions have an absolute order.
With that we distinguish which are the migrations already applied in de-
velopment and in production. Also we know which ones are pending to
publish. The development and production versions of the application are
both stored in the server. The development server version is captured at
the time of publication of the application in the development environment.
The production server version is captured when the application is deployed
into production.

• Timestamp: when the migration was defined;

• Attribute Name: represents the name of the attribute related to the migra-
tion.

Migrations intend to capture the common changes in the database model such
as adding or deleting an attribute, renaming and changing a specific property of
an attribute. The classes extending the generic migration and that represent each
kind of operations are described in the next paragraphs.

Create Attribute The operation of creating an attribute is captured by this kind
of migration and that includes all the underlying attribute properties, namely:

• Type: The data type of the attribute. Ex: Text, Integer, Decimal, Boolean,
Date, etc;

• IsAutoNumber: Boolean property of an attribute. If set to True the number
is automatically generated and set at runtime;

• Label: The text used when the attribute is displayed in the widgets;

• Length: Integer specifying the size of the attribute;

• IsMandatory: Boolean property that if set to True, the element must have a
value specified;

• DefaultValue: The attribute default value. Must be the same data type
specified in the property Type

These properties represent an attribute within Service Studio and that is the rea-
son why they are cloned to the migration. When the attribute is created this kind

39

5. MODEL SOLUTION 5.1. Migrations Model

of migration is generated and the property value cloned into the object. The de-
veloper also can write upgrade rules in order to define which value the attribute
should have after it was created. Upgrade Rules details are explained later on
this chapter.

Drop Attribute When an attribute is dropped a migration of this type is gener-
ated in order to capture that action.

Rename Attribute This operation captures the renaming of an attribute. It has
associated the new name of the attribute.

Change Attribute This operation is generated when the developer changes an
attribute property. In the Create Attribute operation we capture all the properties
related to the attribute but here we just capture the property that was changed
and its new value because we only need that information to perform the mod-
ifications in the database. Also for a question of traceability to know what was
changed The additional information associated to this property is:

• Property Name : The attribute property changed,

• New Property value: The new assigned value,

• Old Property value: The old value associated to the property.

The real data in production may not continue compatible with the database
model in the development environment after developers alter it. Thus, devel-
opers also can write upgrade rules when changing an attribute. For example,
change the IsMandatory property to Yes may not be compatible with the data in
the database in the production environment. To solve that, the developer writes
a value or an expression that incompatible rows (on this case, rows having the
NULL value) should have. As previously referred, upgrade rules are described
later on this chapter.

Update Attribute This operation allows developers to update the value of an
attribute. It includes as a property the new value for the attribute. It can be an
expression as we explain later in this chapter or just a default value. This kind of
operation is useful when developers want to migrate just data from an existing
attribute to another one.

This representation intends to capture who is responsible for the modification
in the database model and when the changes happened. Also intends to separate

40

5. MODEL SOLUTION 5.1. Migrations Model

Figure 5.4: Property IsMandatory changed from No to Yes.

41

5. MODEL SOLUTION 5.1. Migrations Model

the migrations by version, i.e., if the migrations are aggregated to a specific ver-
sion of the application, they are then separated by migrations already applied in
the development version and migrations already applied in the production ver-
sion. The advantage to this approach is to help the developers and also the oper-
ators to know which changes were made and in which version and environment.
Figure 5.4 shows the attributes tab for an entity Client inside Service Studio. The
developer wants to change the property IsMandatory of the SSN attribute show in
figure 5.4. Changing the property value to Yes (meaning that the attribute cannot
have NULL values) a migration is automatically generated. Changing to the tab
Migrations in the Entity editor we see the generated migration and all its infor-
mation. Figure 5.5 shows the migrations generated for the entity Client.

Figure 5.5: Generated Migration after the property was changed.

42

5. MODEL SOLUTION 5.1. Migrations Model

5.1.1 Merging Migrations

To reduce the number of pending migrations, merge migrations whenever is pos-
sible for each change made by the developer by merging them. We also increase
applications performance by not having unnecessary operations updating and
changing the database schema [SBB04]. Merging two migrations means com-
paring two consecutive migrations related to the same entity attribute and if the
conditions to merge are valid we have two scenarios: a) One migration is gener-
ated having the properties of both migrations; b) Both migrations are removed.
We now illustrate the merging of migrations by means of examples. Figure 5.6
depicts the first scenario. The attribute PhoneNumber was created and after that
its type was set to integer. This generates two migrations that are compared after
the second migration is generated. If the conditions related to the merge opera-
tion are valid, a new migration replaces the first one in the model with the new
value of the type property , in this case Integer.

CreateAttribute(PhoneNumber)

ChangeAttribute(PhoneNumber,Type,Integer)

DropAttribute(PhoneNumber)

CreateAttribute(PhoneNumber)
Merge Conditions are true

CreateAttribute(PhoneNumber)

Merge Conditions are true []

Figure 5.6: Merge Example

Figure 5.7 depicts the second scenario where both migrations are removed. As
we see, the PhoneNumber attribute is created and later removed from the database
model. Assuming that the conditions to merge are valid, after dropping the at-
tribute PhoneNumber the migrations are compared. Because the attribute does not
exist anymore in the database both migrations are removed from the model since
they are no longer necessary.

Figure 5.8 represents what happens if two consecutive kinds of operations
related to the same entity attribute are compared. According to the matrix the
operations in the left column come at first, followed by an operation of a different
kind on the top of the matrix.

Merge Conditions In order to merge migrations we take into account the de-
veloper currently modifying the database, a time interval with the duration of 1

43

5. MODEL SOLUTION 5.1. Migrations Model

CreateAttribute(PhoneNumber)

ChangeAttribute(PhoneNumber,Type,Integer)

DropAttribute(PhoneNumber)

CreateAttribute(PhoneNumber)
Merge Conditions are true

CreateAttribute(PhoneNumber)

Merge Conditions are true []

Figure 5.7: Merge Example

CreateAttribute DropAttribute RenameAttribute ChangeAttribute UpdateAttribute

CreateAttribute - CreateAtribute CreateAtribute CreateAtribute Not Merge

DropAttribute Imp - Imp Imp Imp

RenameAttribute Imp None - Not Merge Not Merge

ChangeAttribute Imp None ChangeAttribute - Not Merge

UpdateAttribute Not Merge Possible Not merge Possible -

Imp - Impossible to merge the kind of migrations

Possible - It is possible to merge if the attribute related to
migrations is not used in a previously upgrade rule.

1st
2nd

➡The other cells contain the remaining migrations after the merge
process.

Figure 5.8: Merge between two consecutive migrations.

44

5. MODEL SOLUTION 5.1. Migrations Model

CreateAttribute(Name)

ChangeAttribute(Name, lsMandatory,True)

If:
• Migrations are related to the same developer
• Time interval between migrations is less than 1 hour
• CreateAttribute(Name) is not published

CreateAttribute(Name)

• 10 Nov 16h15m

• 10 Nov 16h35m

Figure 5.9: Merge Conditions Example

hour and if the migration that could possibly merge with the new change is pub-
lished in the development environment or not. Also only migrations related to
the same attribute are merged.

For a question of traceability we decided not to merge migrations when dif-
ferent developers are involved. If some problems occur after the database model
was changed we know who and when changed the database model and to which
attribute are related the transformations. Merging migrations related to different
developers could also be a possible approach. However, it would not be possible
to track the responsible for each migration, because we do not know who was
responsible for the modification.

Another parameter involved in the merging of migrations is the time interval
between the new operation in the database model and the older one that could
possibly merge. Taking into account the time interval, avoids the generation of
migrations for each change that developers do every minute for the database
schema. For example, considering a CreateAttribute operation followed in a short
time interval by some ChangeAttribute migrations related to the same attribute.
Because migrations were generated in a short time interval, instead of creating
the attribute and then to change it, the attribute can be created with the value of
the properties changed afterwards. Thus, we defined that one hour would be a
fair time interval on which migrations could merge. For instance in the scenario
that the developer created a new attribute and 20 minutes after he decides to

45

5. MODEL SOLUTION 5.1. Migrations Model

drop it. In this case would be generated two migrations, one when creating the
attribute and the other one when dropping the same attribute. With our approach
both migrations are deleted from the data model, thus avoiding two unnecessary
operations in the database.

Taking the same scenario of the last paragraph, when the developer drops
the attribute and the time interval since the creation of the same attribute is less
than one hour, if the migration representing the creation of the attribute was al-
ready published on a different environment (Development or Production) it is
not possible to perform the merge and we keep both migrations. The next time
the application will be published the attribute is deleted. Thus, is not possible to
merge migrations belonging to different environments because the changes were
before applied to the database. Also, for a question of traceability to know which
changes are applied in the different environments.

5.1.2 Commutativity of migrations

We also explore in the merge of migrations the commutativity of the operations.
Two migrations are commutative if independently of their order, they will pro-
duce the same result. The commutativity of migrations is useful for the merge
process in order to know if the previous operations are suitable to merge. The
next two examples exemplify how the commutativity of migrations works. On
the first one, are created the attributes Name, PhoneNumber and Email. After that,
the Email attribute is updated with the value that it should contain and finally
the attribute PhoneNumber is dropped. The DropAttribute(PhoneNumber) is com-
pared with all the previous operations until it can merge with other migration
or until it can not commutate with a previous operation. In this case, the Cre-
ateAttribute(PhoneNumber) and DropAttribute(PhoneNumber) are merged and both
removed from the model.

CreateAttribute(Name);

CreateAttribute(Email);

CreateAttribute(PhoneNumber);

UpdateAttribute(Email,Name+ ”@outsystems.com”);

DropAttribute(PhoneNumber)

In the second scenario two attributes are created: FirstName and LastName.
Then, an expression is defined to update the value of both attributes, using an
existing attribute Name, and later we drop the attribute Name. Below we see the
sequence of the operations:

46

5. MODEL SOLUTION 5.1. Migrations Model

CreateAttribute(FirstName);

CreateAttribute(LastName);

UpdateAttribute(FirstName, split(Name)[0]);

UpdateAttribute(LastName, split(Name)[1]);

DropAttribute(Name)

On this case, the DropAttribute(Name) operation is not commutative with the
previous operation because the Name attribute needs to exist in the database
model, due to the fact that is used in the expression of the UpdateAttribute op-
eration immediately before. So, the operations are only commutative if does not
exist any previous migration using the same attribute in some expression. On this
specific example two expressions are using the attribute Name, thus, the attribute
needs to exist in the time interval before it is dropped.

5.1.3 Impact Analysis on Production Environment

As we referred before, one of the problems we want to solve with our solution is
the feedback that the user has about the database model and its data already in
production. The analysis is intended to be on demand, i.e., the developer changes
the model in Service Studio and the platform performs the impact analysis in the
production environment, in order to give the feedback about the impact of such
change in the existent model in the production environment. While the system
is analysing the model in the production environment the developer continues
to work and to change the application as he wants. After that and if the changes
that he made have impact on the real data in production, the developer receives
a warning explaining the conflicts between the new version of the model and the
one in production.

Figure 5.10 shows the relevant component of the Agile Platform involved on
this process. It also shows the flow of the impact analysis process.

Development Environment - After the developer changes the model, the Ser-
vice Studio contacts de Service Center of the development environment in order to
get the impact of the change in the production environment. If the relevant infor-
mation is cached in the Service Center it will be returned to the Service Studio and
if that is the case a warning is presented to the developer. If the information is not
cached the Service Center contacts the LifeTime component to get the information
about what is in production.

47

5. MODEL SOLUTION 5.1. Migrations Model

Developer

Service Studio

Development Environment

Service center

Production Environment

Service center

Front End Server

Database

lifeTime

Cache

Web App
(2.0+ version)

Web App
(2.5 version)

Figure 5.10: Relevant architecture components for Impact Analysis

LifeTime - Receives the information from the development environment Ser-
vice Center and after that contacts the production environment Service Center in
order to get impact analysis about the database model in production. After re-
ceiving the answer from the Service Center in the production environment, this
component returns that to the Service Center in the development environment.

Production Environment - The Service Center of the production environment
receives the information from LifeTime about the changes made by developer in
Service Studio. Then, the database is analysed in order to know the impact of
the change. For example, if the developer changed the property IsMandatory of
an attribute, the relevant information that LifeTime gets is if exist NULL values
associated to that attribute. If the developer changed the type of an attribute
from Text to Integer, and if exist values not compatible with the Integer type,
is returned to LifeTime that exist values related to the attribute involved in the
change that are not compatible with the new type of the attribute.

Production Warnings After changing the database model and the impact analy-
sis of the changes in the read data in production is finished, the developer may or
may not receive a warning to fix incompatible data existent in the model in pro-
duction. Figure 5.11 shows a Service Studio screen before the developer changes

48

5. MODEL SOLUTION 5.1. Migrations Model

the database model. For example, if in Figure 5.11 the developer changes the
property IsMandatory of the SSN attribute, the system begins the impact analysis
process that we explained before. If the change does not affect any data in the
production environment the state of the eSpace continues valid. In this case if
does not exist any NULL values related to the SSN attribute no warning is pre-
sented to the developer. On the other hand, if exist NULL values associated to
the attribute SSN, a Production Warning is generated. Figure 5.12 shows the case
when the developer gets that type of warning.

Figure 5.11: Before changing the attribute

Upgrade Rules When the developer gets a Production Warning means that
something in the database needs to be fixed. In our solution the developer can
write an expression or define a value that is used to fix the incompatible data by

49

5. MODEL SOLUTION 5.1. Migrations Model

Figure 5.12: Production Warning Example

50

5. MODEL SOLUTION 5.2. Deploy into Production

default. In figure 5.12 is depicted an example where the developer specified a de-
fault value to fix the rows where the attribute value is NULL, since the developer
changes the IsMandatory property of the attribute SSN to Yes and exist NULL
values in the production environment database for that field. The developer has
also the possibility to write an expression using values from other attributes or
some function available in Service Studio expressions. The environment of those
expressions are:

• The same elements available to a Simple query scope, i.e. , local variables,
Entities used in a query and built-in functions;

• Attributes created and available by previous migrations until the moment
where the developer specifies the upgrade rule.

5.2 Deploy into Production

When the applications are ready to be deployed into production, an operator is
responsible for that task. With our solution, before deploying the application the
developer has available a list with all the database model changes made by the
developers. The visible migrations are the migrations in the version to be de-
ployed that are older than the version in production, so the operator cannot see
the pending migrations. This information is helpful for the operator because in
the case that something goes wrong with the database model in the deployment
process, the operator sees who is responsible for that and also knows which mi-
gration failed. The operator is not from Outsystems and is important to know who
was responsible for the database modification because if something goes wrong
during the deployment process the operator can easily understand who and why
the changed was made. In Figure 5.13 are depicted the Agile Platform components
involved on this process. The operator in LifeTime deploys the applications into
production. Then, is contacted the Service Center of the production environment.
This component is responsible to communicate with the Deployment Controller
Service, that on its turn starts the compilation process and updates the database.

5.3 Deprecated Data

With our solution the data is not permanently deleted from the database, because
data may be later necessary to recover the application and usually enterprises
need to keep the data for a given time interval. When an attribute is dropped from

51

5. MODEL SOLUTION 5.3. Deprecated Data

Operator

Production Environment

Service
center

Front End Server

Database

Deployment
Controller

Service

OutSystems
Compiler

Metadata&
Database&

lifeTime

Figure 5.13: Relevant Architecture component to deploy the application into pro-
duction

the database, instead of deleting the data related to the attribute, it is marked as
deprecated data and saved for a time interval defined in the server. For example,
a Name attribute is deleted from an Entity Client, as depicted in figure 5.14, a new
table is created in the database containing the attribute value and the reference to
the entity Client.

www.outsystems.com

Page 22 © 2012 outsystems – all rights reserved

•  Deprecated data will be stored for a specified period
–  Scenario: Dropping an attribute from an Entity

Notes

Figure 5.14: Deprecated Data

52

6
Implementation

In this chapter, we describe the design and implementation of a prototype in Ser-
vice Studio for the solution model previously presented. At first, is described how
migrations are integrated in the application model. After that, is explained how
migrations are generated and migrations are applied throughout the different en-
vironments, i.e., the development and production environments. Then, it is de-
scribed how the merging process is implemented within Service Studio and after
that, how production warnings are presented to developers and what they can
do to fix it.

When a web application is created with Service Studio it generates Microsoft
.NET [Mic13] or JAVA [Sun13] code, depending on the target application server.
In this work, we defined changes in the generation of .NET code. Our approach
can also be adapted to the JAVA language.

6.1 Migrations Object Model

In order to capture the transformations made by developers to the database schema,
the objects definition of the platform was extended to support migrations. List-
ing 6.1 shows how objects are defined. A migration is a child of an Entity. An
AbstractMigration represents a generic kind of migration with properties shared
by all the sub migrations extending the generic one. The objects are defined in
XML, being then generated to C# [HWG03, HTWG10] classes representing them.

53

6. IMPLEMENTATION 6.1. Migrations Object Model

To represent operations referred in Chapter 5 four kinds of objects were defined,
extending the AbstractMigration: CreateAttribute captures the creation of an en-
tity attribute. The values of its properties are cloned from the entity attribute
itself and whenever the attribute is changed, the migration properties are also
updated. Here we may have two situations: a) If the attribute is changed and
the conditions to merge the generated migrations are valid, the properties in the
CreateAttribute migration are updated with the new attribute properties values; b)
On the other hand, if the conditions to merge are not valid, a ChangeAttribute mi-
gration is generated. This kind of migration saves the attribute property that was
set, its value and also allows the developer to specify an upgrade rule to fix bad
data, if that is the case. This option is also available when creating the attribute.
To capture the renaming of an entity attribute is defined the RenameAttribute
migration and this kind of migration saves the attribute new name. With the Up-
dateAttribute object we allow the developer to specify an upgrade rule (explain
later on this Chapter) for a certain attribute. Finally, the DropAttribute object cap-
tures the action of dropping an entity attribute. In the next section is shown how
migrations are generated in Service Studio.

Listing 6.1: Migrations Object Model Example
1 <AbstractReferenceableEntity name="Entity" ...>

2 ...

3 <Children>

4 <Child type="AbstractMigration" ... />

5 </Children>

6 </AbstractReferenceableEntity>

7

8 <AbstractObject name="AbstractMigration" isAbstract="true" >

9 <Properties>

10 <Property name="Developer" ... />

11 <Property name="Version" ... />

12 <Property name="Timestamp" ... />

13 <Property name="HiddenTimestamp" ... />

14 <Property name="AttributeName" ... />

15 </Properties>

16 </AbstractObject>

17

18 <AbstractMigration name="CreateAttribute" >

19 ...

20 <Properties>

21 <Property name="Type" ... />

22 <Property name="IsAutoNumber" ... />

23 <Property name="Label" ... />

54

6. IMPLEMENTATION 6.2. Generating Migrations

24 <Property name="Length" ... />

25 <Property name="IsMandatory" ... />

26 <Property name="DefaultValue" ... />

27 </Properties>

28 </AbstractMigration>

29

30 <AbstractMigration name="RenameAttribute">

31 <Properties>

32 <Property name="NewAttributeName" />

33 </Properties>

34 </AbstractMigration>

35

36 <AbstractMigration name="DropAttribute">

37 ...

38 </AbstractMigration>

39

40 <AbstractMigration name="UpdateAttribute" >

41 <Properties>

42 <Property name="NewAttributeValue" />

43 </Properties>

44 </AbstractMigration>

45

46 <AbstractMigration name="ChangeAttribute">

47 <Properties>

48 <Property name="AttributePropertyNewValue" />

49 <Property name="DefaultValue" />

50 </Properties>

51 </AbstractMigration>

6.2 Generating Migrations

As referred before in Chapter 5, when developers change the database model,
migrations are automatically generated in order to represent those changes. In
this section is shown by mean of examples how the developer sees generated
migrations while changing the database model. In Service Studio, is available an
entity editor where developers can edit the existing entities in the model. To show
the developers interactivity with Service Studio we use the database model created
during the first stages of the thesis (Chapter 4) and already published. Figure 6.1
depicts Service Studio interface with the entity editor open. As we can see, the
developer can add, delete, and edit each attribute properties. The figure shows
the existing attributes for an entity Client, and we want to add the new attributes,

55

6. IMPLEMENTATION 6.3. Migrations through different environments

PhoneNumber and Email, to it. Those changes are represented in the second Service
Studio screen in Figure 6.1

After that, the developer decided that the attribute Notes is no longer needed
and drops it. Also the attribute CardNumber IsMandatory property was set to Yes
meaning that the attribute cannot allow NULL values and for simplicity in this
case, defined a default value "123456789" for the NULL rows in the database. Fig-
ure 6.2 depicts the final state of entity Client after the developer transformations.
Thus, on this case four migrations are generated to represent the changes made
by the developer to the entity Client.

Figure 6.3 represents the entity Client editor in migrations tab. As depicted,
the last migrations generated represent the most recent entity changes and they
are in the top of the list as pending to publish to the development environment.
The most relevant aspect to retain on this section is that changes to each entity
generate automatically migrations and those migrations are set to pending until
they are published. The next section shows and explains how migrations are
separated by the different environment, i.e., the development and production
environments.

6.3 Migrations through different environments

After migrations are generated its state is pending to publish. While they are
not published, the database remains with the same state. Migration have three
possible states:

• Pending;

• Already applied in development;

• Already applied in production.

As we see in Figure 6.3, the last changes made by the developer to the entity
Client stay as pending until they are published in the development environment.
In this case, the entity Client was already published at least one time, since ex-
isting migrations applied in the development environment as depicted in Figure
6.3. With this kind of separation, developers control what is already applied in
the different environments and what is changed and pending to publish to the
development environment. It is important to refer that when published, migra-
tions next state is "Already applied in development" and after that when deployed
into production its state change to "Already applied in production". This represent

56

6. IMPLEMENTATION 6.3. Migrations through different environments

Figure 6.1: Service Studio: Entity Editor.

57

6. IMPLEMENTATION 6.3. Migrations through different environments

Figure 6.2: Service Studio: Entity Editor with final state of entity Client.

58

6. IMPLEMENTATION 6.3. Migrations through different environments

Figure 6.3: Service Studio: Generated migration for the changes on entity Client.

59

6. IMPLEMENTATION 6.4. Merging Migrations

the flow of an application between the different environments. In order to know
for each application stored in the server which are the running development and
production versions of the application was created a Dictionary in the server class
that stores for each ESpace published in Service Center the respective development
and production versions.

6.4 Merging Migrations

After a migration is generated in Service Studio, we always check if it is possible to
merge with other migrations associated to the same entity. This process follows
the proposed approach on the model solution. When the developer changes an
entity attribute and before adding the migration to the model, the system checks
if the condition to merge are valid. Listing 6.2 presents a pseudo code showing
the merge algorithm. The algorithm searches in the list of migration associated
to an entity, if some previously created migration is related to the same attribute
than the new one generated. In that case, the algorithm checks if the conditions
to merge are valid:

• If both migrations are generated in the time interval of one hour (as ex-
plained in Chapter 5 we defined this time interval. The code can be adapted
if we define another time interval as acceptable);

• If the developer that changed the attribute is the same for both migrations;

• And if the oldest migration is not yet published in the development envi-
ronment.

If the conditions are valid the old migration is returned and after that its proper-
ties updated according to newest change.

Listing 6.2: Merge Algorithm
1

2 if (entity.Migrations.Count > 0) {

3

4 foreach (AbstractMigration m in Migrations) {

5

6 if (m.AttributeName == entityAttribute.Name) {

7

8 if (

9

10 (DateTime.Now.Month==Convert.ToDateTime(m.HiddenTimestamp).Month)

60

6. IMPLEMENTATION 6.5. Production Warnings

11 && m.Developer == entityAttribute.LastModifiedBy &&

12 (DateTime.Now.Day==Convert.ToDateTime(m.HiddenTimestamp).Day) &&

13 (DateTime.Now.TimeOfDay.Subtract(m.Timestamp).TimeOfDay)).Hour< 1

14 && !m.IsPublished) {

15

16 mig = m;

17 }

18 }

19 }

20 }

21 return mig;

6.5 Production Warnings

Due to access limitations to the real data in a production environment, on this
prototype we simulate the behaviour of the application when changes made by
the developer to the database model have impact on the real data. Thus, the
prototype focus on the developer experience rather than the connection to the
production environment. Figure 6.4 depicts Service Studio after the developer
changed an entity Client and change the IsMandatory property of the field SNN
to Yes. After that, and because that kind of transformation has impact on the data
in production, a Production Warning is generated immediately. The description of
the warning contain the information about what is the type of warning, to which
entity and entity attribute is related. It is important to refer that developers can
publish applications even if they have warnings. The warning just advises the
developer to fix something than will create incompatibilities. Developers are free
to keep applications with warning in early stages of the development process and
later to fix the warnings.

Upgrade Rules To fix the Production Warnings developers can write expressions
that we call upgrade rules. When creating, changing or updating an entity at-
tribute developers have the possibility to write those rules. In Chapter 5 we re-
ferred what the environment when writing an upgrade rule contains and here
we show an example how developers write upgrade rules within Service Stu-
dio. Upgrade rules are not only useful to fix bad data, once developers can
write expressions to move data from a specific column to another. Figure 6.5
depicts the scenario where the developer creates a new attribute Name and ex-
isting in the model are the attributes FirstName and LastName. The developer
wants to migrate the data from those attribute and to have in the future only the

61

6. IMPLEMENTATION 6.5. Production Warnings

Figure 6.4: Service Studio: Production Warning.

62

6. IMPLEMENTATION 6.5. Production Warnings

attribute Name. To accomplish that the developer specifies the following rule :
FirstName + ”” + LastName. Figure 6.5 shows a warning in the TrueChangetm

tab. To solve that the developer just needs to also specify an upgrade rule to fix
the bad data related to the SSN attribute in the production environment.

Figure 6.5: Service Studio: Specifying upgrade rule for an entity attribute

63

6. IMPLEMENTATION 6.5. Production Warnings

64

7
Final Remarks

This thesis is integrated in the Research and Development (R & D) team of the
OutSystems company. The thesis was divided in two different phases.

The early stages of the project were dedicated to learn about the OutSystems
product, the Agile Platform. Our focus was to know and understand difficulties,
problems and scenarios faced by developers when evolving web applications in
the context of the Agile Platform. After that, we interviewed experienced develop-
ers and project managers in order to capture frequent database change patterns
and to know the most common scenarios when developers are evolving appli-
cations database model. After that, we studied and researched about database
refactoring, database migrations, database change patterns and also tools or pro-
gramming languages implementing these concepts.

The first phase occupied 40% of the time available and was already in collab-
oration with the company and also with the support from the University.

After studying methods and solutions related to our problem, the second
stage of the project consisted on designing a solution model based in the concept
of migrations and implementing a prototype in Service Studio. Both project stages
followed the OutSystems agile methodology based on SCRUM agile methodolo-
gies, for control and organisation of projects.

In the second phase, we started by designing iteratively the solution model.
At first, we focused on the developer experience, in order to define how to inte-
grate migrations in the development of applications with Service Studio, without

65

7. FINAL REMARKS

compromising the simplicity of using the tool. Then, we defined the other com-
ponents and features of the solution model, such as the object model, properties
for each kind of migration, the merge process, migrations commutativity and
also how the impact analysis of the real data in production should be done. After
that, we built a prototype in Service Studio, following the concepts of the solution
model.

The Agile Platform is formed by a set of more than 70 projects developed in
Microsoft Visual Studio with a code base of more than 1 million lines. Due to the
platform complexity, dependencies and time constraints, we focused on defin-
ing the solution model and to implement a prototype focusing in the developer
experience. Thus, not all the features composing the solution model were imple-
mented through all the components of the Agile Platform. So, in order to be fully
integrated with the Agile Platform the prototype needs more work time and iter-
ations. Nevertheless, the implemented prototype reproduces the key features of
the solution model, such as the object model, migrations generation, merging pro-
cess and we also simulate the impact analysis by producing the warning accord-
ing to the changes in the database model and allowing the developer to write the
upgrade rules to fix those warnings. The prototype helps the OutSystems product
management to have a concrete vision of our solution usability and functionality,
reducing the integration risk through all the Agile Platform components. To fully
implement our solution throughout the Agile Platform components, would cost
about three months work and require an experienced team in the Agile Platform.

7.1 Future Work

As for the future, we aim to solve limitations and improve our solution. To im-
prove our solution expressiveness could be defined more kinds of migrations
capturing modifications to the database model and schema. The merge process
could be addressed differently, i.e., the conditions and the constraints to merge
migrations could be different. For example, merging migrations created by dif-
ferent developers or migrations belonging to different environments. Also for
future work, our prototype could be extended in order to fully integrate our so-
lution in the Agile Platform. For example, translating migrations to SQL queries,
implementing the impact analyzis mechanisms to connect the development envi-
ronment to LifeTime and the production environment and also implementing the
cache mechanism, are features to be implemented in the future of this work.

66

Bibliography

[AS06] Scott W. Ambler and Pramodkumar J. Sadalage. Refactoring
Databases: Evolutionary Database Design. Addison-Wesley Profes-
sional, 2006.

[Che76] Peter Pin-Shan Chen. The entity-relationship model toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, March 1976.

[CMDZ10] Carlo A. Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo.
Update rewriting and integrity constraint maintenance in a schema
evolution support system: Prism++. Proc. VLDB Endow., 4(2):117–
128, November 2010.

[CMZ08] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful
database schema evolution: the prism workbench. Proc. VLDB En-
dow., 1(1):761–772, August 2008.

[DNR08] Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited.
In Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’08, pages 149–158,
New York, NY, USA, 2008. ACM.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1 edition, July 1999.

[GHKV08] Danny M. Groenewegen, Zef Hemel, Lennart C.L. Kats, and Eelco
Visser. Webdsl: a domain-specific language for dynamic web ap-
plications. In Companion to the 23rd ACM SIGPLAN conference on

67

BIBLIOGRAPHY

Object-oriented programming systems languages and applications, OOP-
SLA Companion ’08, pages 779–780, New York, NY, USA, 2008.
ACM.

[HTWG10] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter
Golde. C# Programming Language. Addison-Wesley Professional, 4th
edition, 2010.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language
Specification. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[Mic13] Microsoft. Msdn .net development website.
http://msdn.microsoft.com, 2013.

[SBB04] Dennis Shasha, Philippe Bonnet, and Nancy Hartline Bercich.
Database tuning principles, experiments, and troubleshooting tech-
niques. SIGMOD Rec., 33(2):115–116, June 2004.

[Sjo93] D Sjoberg. Quantifying schema evolution. Information and Software
Technology, 35(1):35 – 44, 1993.

[SKS10] A. Silberschatz, H.F. Korth, and S. Sudar-
shan. Database System Concepts. McGraw-Hill,
http://books.google.pt/books?id=re4YQAAACAAJ, 2010.

[Sun13] Sun. Java 2ee. java.sun.com/javaee, 2013.

[VWV11] Sander Daniël Vermolen, Guido Wachsmuth, and Eelco Visser. Gen-
erating database migrations for evolving web applications. SIGPLAN
Not., 47(3):83–92, October 2011.

68

8
Appendix

Table 8.1: Structural Refactorings

Database Refactorings

Drop Column
Drop Table
Drop View
Introduce Calculated Column
Introduce Surrogate Key
Merge Columns
Merge Tables
Move Column
Rename Column
Rename Table
Rename View
Replace LOB With Table
Replace Column
Replace One-to-Many With Associative Table
Replace Surrogate Key with Natural Key
Split Column
Split Table

69

8. APPENDIX

Table 8.2: Data Quality Refactorings

Add Lookup Table
Apply Standard Codes
Apply Standard Type
Consolidate Key Strategy
Drop Column Constraint
Drop Default Value
Drop Non-Nullable Constraint
Introduce Column Constraint
Introduce Common Format
Introduce Default Value
Make Column Non-Nullable
Move Data
Replace Type Code With Property Flags

Table 8.3: Referential Integrity Refactorings

Add Foreign Key Constraint
Add Trigger for Calculated Column
Drop Foreign Key Constraint
Introduce Cascading Delete
Introduce Hard Delete
Introduce Soft Delete
Introduce Trigger for History

Table 8.4: Architectural Refactorings

Add CRUD Methods
Add Mirror Table
Add Read Method
Encapsulate Table With View
Introduce Calculation Method
Introduce Index
Introduce Read Only Table
Migrate Method From Database
Migrate Method to Database
Replace Method(s) With View
Replace View With Method(s)
Use Official Data Source

70

	Introduction
	Problem and Goals
	Approach
	Outline

	The Agile Platform
	Service Studio
	Data Model

	Programming language
	Applications Lifecycle
	Deploying an application

	Related Work
	Background
	Database Refactoring
	Database Smells
	Process of Database Refactoring
	Database Refactoring Strategies
	Database Refactoring Categories

	Schema Modification Language
	SMO Invertibility

	Data Migration
	Access Program Adaptation
	Change Patterns

	Preliminary Analysis
	Interviews Structure
	First Part
	Second part

	Interviews Notes
	Change Operations Identified

	Model Solution
	Migrations Model
	Merging Migrations
	Commutativity of migrations
	Impact Analysis on Production Environment

	Deploy into Production
	Deprecated Data

	Implementation
	Migrations Object Model
	Generating Migrations
	Migrations through different environments
	Merging Migrations
	Production Warnings

	Final Remarks
	Future Work

	Appendix

