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Abstract 

It is important to have better evaluation and understanding of the motor neuron physiology, with the goal to 

early and objectively diagnose and treat patients with neurodegenerative pathologies. The Compound 

Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for neurodegenerative 

pathologies, such as ALS, and enables a quick analysis of the muscle action potentials in response to 

motor nerve stimulation. This work aims to study the influence of different pulse modulated waveforms in 

peripheral nerve excitability by CMAP scan technique on healthy subjects. 

A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium 

nerve on the right wrist and electromyography signal collected on the Abductor Pollicis Brevis (APB) 

muscle surface on the right thumb. Stimulation was performed with an increasing intensities range from 4 

to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per subject, each 

repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, 

monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on 

each current intensity step. The square pulse needs less current intensity to generate the same response 

amplitude regarding the other waves and presents a more steep curve slope and this effect is gradually 

decreasing for the triangular and quadratic pulse, respectively, being the difference even more evident 

regarding the biphasic pulse. The control of the waveform stimulation pulse allows varying the stimulus-

response curve slope. 

 

Keywords: Compound Muscle Action Potential scan, Peripheral Nerve Stimulation, surface 

Electromyography, Amyotrophic Lateral Sclerosis. 

 

 

 

 





 

 

 

Resumo 

É importante haver uma melhor avaliação e compreensão da fisiologia neuromotora, com o objectivo de 

diagnosticar precocemente e objectivamente pacientes com doenças neurodegenerativas. O CMAP Scan 

é uma técnica de diagnóstico não-invasiva para doenças neurodegenerativas, como a ELA, e permite uma 

análise rápida dos potenciais de acção do músculo em resposta à estimulação neuromotora. Este trabalho 

pretende estudar a influência de diferentes tipos de onda com pulso de corrente modelado na 

excitabilidade do nervo periférico através da técnica de CMAP scan. 

No estudo efectuado em pessoas saudáveis, um total de 13 sujeitos foram submetidos ao mesmo teste. 

Os estímulos foram aplicados no nervo mediano do pulso direito e o sinal de electromiografia recolhido na 

superfície muscular do APB do polegar. A estimulação foi efectuada com um intervalo crescente de 

intensidades dos 4 aos 30 mA, distribuídos em vários passos, 3 estímulos aplicados por passo. O 

procedimento foi repetido 4 vezes por sujeito, cada repetição efectuada usando um tipo diferente de pulso 

de onda: formas de onda quadrada, triangular e quadráticas monofásicas e uma forma de onda quadrada 

mas bifásica. Os resultados foram recolhidos efectuando a media de todos os estímulos em cada 

incremento de corrente. A onda quadrada monofásica necessita de menor intensidade de corrente do 

estímulo para gerar a mesma amplitude de resposta em relação às outras ondas e apresenta um declive 

da curva mais acentuado e este efeito é gradualmente decrescente para as ondas triangular e quadrática, 

respectivamente, sendo a diferença ainda mais evidente comparativamente à onda bifásica. O controlo da 

forma do pulso de onda permite variar a inclinação da curva representativa da resposta-estímulo. 

 

Palavras-chave: CMAP scan, PNS, sEMG, ALS. 
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1. Introduction 

 

1.1. Motivation 

 

In the last years, there is a growing scientific and clinical interest on objective evaluation of the 

motor capability and better understanding of the motor neuron physiology, with the goal to early 

and objectively diagnose and treat patients with neurodegenerative pathologies. 

Amyotrophic Lateral Sclerosis (ALS), also known as Motor Neuron Disease or commonly Lou 

Gehrig’s disease, is one of the major neurodegenerative diseases, characterized by being a 

progressive incurable motor neuron disorder and also fatal. Population-based studies in Europe 

estimate that the occurrence of ALS is 2-16 per 100 000 person-year. Patients with ALS are 

diagnosed when there is already extensive motor neuron degeneration, since no definitive 

diagnostic test or biomarker for ALS is available at the moment, and neurologists only rely on 

clinical indicators for diagnosis [1]. 

The Compound Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for 

neurodegenerative pathologies, such as ALS. It enables a quick analysis of the muscle action 

potentials in response to motor nerve stimulation, by electrical stimulation applied on the surface 

of the motor nerve and response evaluation by surface EMG at muscle level. It can be used as a 

tool for a better understanding of the neuromuscular excitability, allowing the study and 

development of diagnosis protocols for patients with neurodegenerative disorders [3]. 

This work aims to study the influence of pulse modulated waveforms in peripheral nerve 

stimulation, through CMAP scan technique. 

1 
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1.2. State of the Art 

 

Electrical Stimulation (ES) is the activation of the nerve/muscle, applying artificial stimulation 

through an electronic device directly on the nerve or muscle. Nerve response is evaluated 

through EMG, with electrodes placed on the surface of the muscle on study. Varying the 

intensity of the stimuli applied, it is possible to obtain a graphical representation of the evoked 

action potential of the muscle, in a sigmoid graphic form, that corresponds to the stimulus-

response curve and composes the CMAP scan [9]. 

The CMAP scan technique has been studied as a non-invasive diagnostic and monitoring tool to 

neurodegenerative disorders, since it gives information about reinnervation processes, number 

of functional motor units and neuromuscular activity. To be used as a clinical tool, stimulation 

parameters must be standardized and quantified to enable uniform collection and comparison of 

data [4]. 

Several studies have been made recently, in order to verify the potentiality of this technique, 

investigating the influence of different parameters in the quality of the CMAP scan.  

Maathuis et al.[4] studied its reproducibility on healthy patients in several parameters, like the 

maximum CMAP, S5 (the stimulus intensity that elicited 5% of the maximum CMAP), S50 

(stimulus intensity that elicited 50% of the maximum CMAP), S95 (stimulus intensity that elicited 

95% of the maximum CMAP), SI range (S95 – S5) and step percentage (steps are clear visible 

jumps in CMAP amplitude within consecutive stimuli). It was concluded that both inter-observer 

reproducibility and different-day reproducibility were good for all tested parameters, with 

evidence that this technique is suitable to detect physiological alterations in the considered 

parameters [4]. 

Henderson et al.[9] examined the differences of the stimulus-intensity curve and the variability of 

the CMAP scan between healthy and ALS subjects. It was showed that there is a significant 

difference on the CMAP scan, regarding CMAP variability and step number and size, as ALS 

patients present more and larger steps on the stimulus-response curve than healthy controls, as 

it is sown in figure 1. The presence of several steps indicates loss of motor units and 

reinnervation. A CMAP decrement was defined as difference greater than 10% between the first 

and fifth CMAP negative peak amplitude [9]. 

The influence of stimulus duration on nerve excitability is well known, and shorter stimulus 

duration results in higher stimulus intensity needed to elicit the same CMAP amplitude. The 

effect of other parameters on the properties of the CMAP scan, such as stimulus frequency and 

total number of stimuli, are not yet fully known, especially on the number and size of steps. 

Maathuis et al.[3] pretended to define the optimal stimulus protocol settings for frequency, pulse 

duration and stimuli number, taking into consideration subject discomfort, movement artefacts 

and recording duration. Obtained results showed that stimulus duration and number of stimuli 

required further standardization, in order to guarantee that data from different studies can be 

compared. Optimal value for stimulus duration, despite its influence on the excitable variables, is 

yet arbitrary for the CMAP scan, but shorter stimulus duration will increase the resolution of the 

curve. Based on practical issues, stimulation pulse duration of 0.1ms is recommended. Stimulus 
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frequency has no influence on the CMAP variables in healthy controls, although high frequency 

augments the chance of decrements on the CMAP, so low frequency stimulation is advised. On 

the referred study, 2 Hz stimulation appeared to present better results concerning recording time 

and reducing movement artefacts and decrements. Experiments regarding stimuli number 

recommended that around 500 stimuli give enough detail in the stimulus-response curve, without 

excessive recording time (which increases movement risk and patient discomfort) [3]. 

A study has shown that decrement in motor response, due to repetitive nerve stimulation, in ALS 

patients is different between median and ulnar nerves, as muscle wasting preferentially affects 

the thenar muscles rather than the hypothenar muscles in these patients. The greater CMAP 

decrement in the median nerve was related to preferential involvement of the Abductor Pollicis 

Brevis (APB) in the pathophysiology of ALS [10]. 

During another work, Maathuis[3] also noticed that downwards recording direction was better 

tolerated by patients. Fixation of the thumb is highly advised, since it shortens the decrement 

size and limits the change in muscle fibre conduction velocity, enhancing the CMAP scan [3]. 

Mamede de Carvalho et al.[11] evaluated clinical neurophysiological methods of diagnosis to 

measure disease progress in ALS. Review of the CMAP technique acknowledged that CMAP 

amplitude showed the combined effects of denervation, muscle atrophy, compensatory 

reinnervation and also constitutes an indirect measure of the number of innervated fibres. CMAP 

amplitude has significant correlation with muscle strength, motor unit number estimation (MUNE) 

and functional disability in ALS. It was concluded that MUNE, M-Wave amplitude and 

Neurophysiological Index are reliable and sensitive to be used in clinical trials in ALS patients 

[11]. 

Maathuis et al.[21] refers that LMN disease progression electrophysiological features should be 

evaluated considering three pathophysiological aspects of the disease progression (axonal/MU 

loss, reinnervation and remaining number of functioning muscle fibres). All these aspects can be 

assessed in the CMAP scan [21]. 

Since denervation and reinnervation may be present at the same time in a single muscle 

affected by MND, these phenomenon need to be evaluated in combination in order to assess 

their effect on the remaining number of functioning muscle fibres, which the CMAP scan is suited 

for. When collateral reinnervation increases MU size, it is visible in new or larger steps in the 

CMAP scan and it also results in an increased step percentage and mean step size. The 

maximum amplitude gives essential information about the remaining functional muscle fibres, 

since it is a measure of the total number of muscle fibres that respond to the stimulus. Studies 

have found evidence that MUs are not subject to reinnervation the same way, but without 

assessing all MUs in the muscle. Maathuis et al.[21], using CMAP scan technique (first 

technique that can provide indication of the Motor Unit potential of all large and also reinnervated 

MUs, without the disadvantage of sampling bias), confirmed that some MUs are influenced by 

reinnervation much more than others. Different effects of reinnervation and motor unit loss are 

not limited to a specific muscle [21]. 
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Figure1.1A: CMAP scan of a healthy individual, with the stimulus-response curve obtained with 500 stimuli. 

The horizontal line indicates the CMAP maximum amplitude while the vertical lines refer to S5,S50 and 

S95. These indicators correspond to the stimulus intensity that elicited 5%, 50% and 95% of the maximum 

CMAP, respectively. Figure 1.1B: CMAP scan of an ALS patient with 76 years old, six months after being 

diagnosed. Differences in the CMAP scan between the healthy and the ALS patient are visible because of 

several steps observed in the ALS CMAP scan and also the decrement in maximum amplitude. Adapted 

from [3]. 

 

1.3. Objective 

 

The main goal of this work was to study the influence of modulated waveforms in the excitability 

of the peripheral nerve, through the CMAP scan technique. 

An electrical stimulation protocol was developed, and biosignals from subjects were acquired, 

analysed and processed, in order to extract features that allowed the analysis of the influence of 

different waveforms in the stimulation of the peripheral nerve. 
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1.4. Thesis overview  

 

To begin the preparation of the thesis, an introductory study to biosignals acquisition tools and 

processing was necessary. In order to process the acquired signals and compute the CMAP 

scans, Python language was used. An extensive research was conducted regarding the state of 

the art on the used methodologies and also literature revision concerning the main theoretical 

concepts.  

An electrical stimulation protocol was defined, evaluating the parameters for optimal stimulation, 

and using different waveforms to study its influence on reflex response of the nervous system. 

Electrical stimulation using different types of waveforms was applied in the median nerve on the 

wrist and muscular response on the APB muscle of the thumb evaluated. Acquisition of 

biosignals was performed, as subjects electromyography signals were recorded, while being 

submitted to electrostimulation. 

In order to extract the desired features and enable the proposed study, data processing 

algorithms were designed and developed in Python. Obtained results were analysed and 

influence of the parameters in study discussed. Writing of a scientific paper for a conference was 

effectuated.  

The following figure presents a schematic of the work plan executed for this thesis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic thesis overview, where it is shown the organization of the different chapters 
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2. Theoretical Background 

 

In this chapter an exposition of the main theoretical concepts will be presented. Surface EMG, 

electrical nerve stimulation and the CMAP scan technique will be approached. A brief description 

of the peripheral nervous system, motor units, concepts of electrical stimulation and amyotrophic 

lateral sclerosis will also be discussed. 

2.1. Eletromyography (EMG) 

EMG stands for Electromyography, which is the recording of the electrical activity created on the 

muscle excitable cell membrane during muscular contraction. The obtained signal is the spatial 

and temporal algebraic sum of all the detected signals within a certain area and represents 

voltage as a function of time. It is an important method to analyse muscular functioning, 

expressing in real time, muscular activation during movement and its intensity and duration [22]. 

It reflects neuromuscular activity and propagation of action potentials along muscle fibres, as the 

nervous system controls muscle activity. Besides that, it depends of the muscle anatomical and 

physiological properties and also acquires noise travelling through different tissues, making it a 

complicated signal to analyse. The signals can be analysed to detect clinical abnormalities, 

activation level, recruitment order or to analyse the movement biomechanics. From EMG it is 

possible to determine whether a particular muscle is responding appropriately to stimulation and 

whether a muscle remains inactive when not stimulated. One of the reasons for the interest in 

EMG signal analysis is in clinical diagnosis for neurodegenerative pathologies and biomedical 

applications as rehabilitation of motor disability [12]. 
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The signals can be acquired attaching surface electrodes to the skin over the target muscle or 

by needle electrodes inserted invasively into the muscles tissue. Surface EMG measures overall 

action potentials of the muscle fibres under the skin along the entire recorded area underneath 

the electrodes, while needle electrodes measure action potentials from a small number of fibres 

and may not be representative of the entire muscle involved.  In surface EMG two electrodes are 

placed on the skin over the muscle region to be analysed and the difference of potential between 

them is acquired and amplified [14]. 

In this work surface EMG, which is a non-invasive EMG technique, will be used. It will enable the 

analysis of motor unit properties that are difficult to measure with invasive technology, like 

muscle fibre conduction velocity, and provides more information related to the number of 

detectable motor units (which is a limitation of invasive methods). The sEMG signal can be 

spread into motor unit action potentials and gives information about neuromuscular activity and 

membrane fibre properties [13]. On the following figure it is shown an example of an EMG 

signal. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Representation of an EMG signal 

 

Electrodes placement is important in order to acquire EMG signal, since it can occur interference 

due to neighbour muscles electrical activity, also referred as cross-talk. Other properties like the 

signal-to-noise ratio and the common mode rejection ratio can influence the quality of the EMG 

signal, as higher ratios correspond to better signal quality [14]. 

Sampling frequency is very important to correctly acquire EMG digital signal and therefore, 

according to Nyqüist Theorem, at least the double of the highest frequency in EMG signal should 

be used as the sampling frequency. sEMG may have frequencies of up to 500 Hz (these values 

are affected by motor unit and contraction, electrodes sizes and distance between them) and the 

minimum sampling rate value should be 1 KHz [23]. 
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2.2 Electrical Nerve Stimulation 

Peripheral Nerve Stimulation (PNS) consists in stimulating the peripheral nervous system, 

applying electrical current to activate a specific nerve. Electrical Stimulation (ES) on the selected 

nerve can be performed transcutaneously (transcutaneous electrical nerve stimulation – TENS), 

percutaneously with temporary electrodes (percutaneous electrical nerve stimulation - PENS) 

and with surgically or percutaneously implanted electrode [8]. 

TENS is an external neuromodulation modality, in which electrical current is delivered through 

intact skin along the path of the underlying chosen nerve. Usually, it is utilised as a non-invasive 

neuromodulation approach together with other physical therapy modalities and constitutes an 

alternative to more invasive methods. In contemporary medical practice, it is considered the 

most common application of peripheral neuromodulation. Electrical stimulation of peripheral 

nerve is an established modality in treatment of chronic pain and there have been recent reviews 

showing evidence in application of TENS for treatment of neuropathic and cancer pain [8]. 

Activation of neuromuscular tissue by electrical stimulation requires a minimum of two electrodes 

in order to produce a current flow. Electrodes are normally arranged in a monopolar or bipolar 

configuration. On bipolar configuration an electrode, usually named the active electrode, is 

placed near the peripheral nerve to be stimulated [15]. 

Stimulation is delivered as a waveform of electrical current pulses, which is characterized by 

pulse frequency, amplitude and duration. Suitable electrical stimuli can elicit action potentials in 

the innervating axons of the nerve, and the strength of the resultant muscle contraction can be 

controlled by modulating the stimulus parameters [15]. 

Also referred as transcutaneous systems, surface systems use electrodes that are connected 

with flexible leads to a stimulator. These electrodes are placed on the skin over the nerve or over 

the “motor points” of muscle to be activated. Advantages of surface systems are non-invasive 

and simple technologically, making them easily applied, reversible, relatively inexpensive, and 

good for utilisation in clinical and therapeutic applications [15]. 

The waveform is a graphical representation over time of a signal, as it reflects its shape. In 

electrical stimulation, the waveform represents the variation over time of the applied current or 

voltage on the muscle or nerve. It can be monophasic or biphasic, and also have different 

shapes like sine, square, among others, like it is shown on figure 2.2. In this study it is intended 

to evaluate the influence of different waveforms and therefore monophasic and biphasic as also 

different shaped waveforms like square, triangular and quadratic will be used. 

 

 

 

 

 



 

 10 

 

 

 

 

 

 

 

 

Figure 2.2: Examples of different types of waveforms. The monophasic square and the biphasic square 

types are some of the waveforms used in this work and are represented on the left. 

 

 

2.3 Peripheral Nervous System, Motor Unit and Action 
Potential 

The nervous system can be divided into Central Nervous System (CNS) and Peripheral Nervous 

System (PeNS).  

Central components are nerves entirely contained within the brain and spinal cord. Central 

nervous system influences muscle activity through two sets of neurons: Upper Motor Neuron 

(UMN) and Lower Motor Neuron (LMN). They can be classified according to the muscle fibre 

type they innervate: alpha motor neurons, which innervate extrafusal muscle fibres and are 

responsible for muscle contraction, and gamma motor neurons, which innervate intrafusal 

muscle fibres. Peripheral components are nerves originated in the brain or spinal cord and 

ended peripherally, as well as cranial and spinal nerves. The Peripheral Nervous System 

includes motor, sensory, sympathetic and parasympathetic neurons, with the majority of nerves 

comprising a mixture of these types of neurons. Motor nerves are originated in the anterior horn 

of the spinal cord [6,7]. 

Efferent pathways, responsible for sending messages from the centre to the periphery, include 

somatic motor nerves that innervate skeletal muscles and the autonomic nervous system, with 

sympathetic and parasympathetic divisions that coordinate smooth muscle, cardiac muscle and 

glandular activity. Afferent pathways, which send messages from the periphery towards the 

centre, are responsible for a set of sensory modalities such as touch, position, vibration and 

pain. Motor neurons are efferent nerves which carry signals from the spinal cord to the muscle to 

produce movement. They can be classified in Upper Motor Neurons (UMN) and Lower Motor 

Neurons (LMN). UMNs carry impulses for voluntary muscle activity from the motor cortex or 
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brainstem to a specific nerve while LMNs carry the information from UMNs to muscle fibres. The 

alpha-motor neurons are the largest neurons in the spinal cord, with myelinated axons that exit 

the spinal cord through the ventral roots and travel in peripheral nerves to innervate muscles. 

Each muscle fibre is innervated by only one motor neuron but one motor neuron innervates 

many muscle fibres, all of the same fibre type, as its axon branches in the muscle. One motor 

neuron along with all the skeletal muscle fibres it innervates is named Motor Unit (MU), like it is 

shown on figure 2.3.  Muscle fibres in different muscles are grouped into basic types specialised 

for different functions and there are two major types of muscle fibres: Type I - high level of 

vascularization, slow contraction and high fatigue resistance; Type II – low level of 

vascularization, rapid and strong contraction. As physiological properties of motor neurons and 

the muscle fibres they innervate are related, Motor Units cluster into basic types based on 

properties of twitch speed, amount of force produced and fatigability. For most movements, MUs 

are recruited in orderly sequence, based on the size of the motor neuron. According to this, MUs 

that produce the smallest amount of force will be the first to begin firing, and MUs that produce 

greater force will be progressively recruited, as the muscle makes progressively stronger 

contractions. Motor neurons innervating different muscles can be activated with great precision 

by different sources that together determine the degree of activation and the timing of the motor 

neurons of a given muscle [6,7]. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Motor Unit schematic. A Motor Unit is composed by a motor neuron from the spinal cord that 

innervates the neuromuscular junctions of different muscle fibres. 

 

Motor Units are the basic component of muscular strength and contraction. To initiate the 

generation of muscle contraction, the CNS sends an electrical signal to a motor neuron, which 

spreads along muscle fibres, initiating a cascade of electrophysiological and electrochemical 

processes, giving rise to de-polarization and re-polarization events known as action potentials or 

nervous impulses, which can be electrically measurable. On figure 2.4 it is show the cell 

membrane potential variation that occurs during an action potential. Transmitting information via 

the nervous system is based on the propagation of action potentials along a nervous fibre, by 

means of diffusion, and the intensity of muscle contraction is controlled by the regularity of action 
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potentials. When a motor neuron receives an excitable signal, an action potential reaches 

muscles fibres innervated by it through one terminal branch of the axon. The combination of 

these APs along all the muscle fibres of a single MU is called the Motor Unit Action Potential 

(MUAP). If the nerve impulse arrives more often, the intensity of muscle contraction is greater. 

Muscle strength is associated to mechanical summation: as a result of higher stimulation 

regularity, the generated muscle force increases [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Cell membrane potential variation occurred during an action potential. The variation is due to 

the ionic flux of sodium and potassium through the membrane cell, which is different when the cell is 

resting (a), when occurs the depolarization (b), and at peak potential (c), which is followed by a period of 

hyperpolarization. 

 

The potential is influenced by the ionic concentration gradients and the permeability of the cell 

membrane to certain ionic compounds. Cellular environment has high concentration of 

potassium (K+) and low concentration of sodium (Na+), and in resting position, will balance this 
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difference by being more permeable to the flux of potassium, which passes through the 

membrane to the cell exterior, in favour of the concentration gradient, generating a negative cell 

electrical potential. For the nerves and fibres of the smooth muscle, the value of the resting 

potential is about -70mV.  The action potential translates on an electrical potential wave that 

goes through the membrane and revert its potential from -70 to +30 mV, in approximately 1ms. 

The membrane action potential value which generates an action potential is known as 

excitability threshold. The nervous impulse is initiated by the membrane depolarization due to 

chemical unbalance or by a perturbation like an electrical impulse. Depolarization above 

excitability threshold provokes the activation of the sodium channels in the cell membrane, which 

allows passing of sodium by diffusion to the cell interior, in favour of the concentration gradient, 

which rapidly revert the cell membrane negative polarity. It also provokes consequent activation 

of the potassium channels (and inactivation of the sodium channels), which allows the influx of 

potassium ions, and the potential inside the cell decreases [29]. After this phase, there is a 

hyperpolarization period, which is a change in a cell’s membrane potential that makes it more 

negative and inhibits action potentials by increasing the stimulus required to move the 

membrane potential to the action potential threshold. Hyperpolarization is important in the 

transmission of information as it assures the signal is propagated in one direction, since it 

prevents any stimulus already sent up an axon from triggering another action potential in the 

opposite direction [30].  

Functional Electrical Stimulation (FES) applications for motor function operate under the 

principle that electrical stimulation generally activates nerve rather than muscle, because the 

threshold charge for producing muscle fibre action potentials is much greater that the threshold 

for producing neurons action potentials. Electrical current pulses applied to nerves are able to 

produce Action Potentials (AP). The active electrode creates a localized electric field that 

depolarizes cell membranes of neighbour neurons. When the depolarization achieves a certain 

threshold, produces an action potential which is propagated in both directions away from the 

stimulus region. APs propagating proximally in the peripheral nerves axons will be annihilated at 

the cell body, and APs propagating distally will be transmitted across the neuromuscular junction 

causing the contraction of muscle fibres. A single motor unit, with sufficient stimulus, will induce 

all the skeletal muscle fibres it innervates to contract [16]. 

Information transmission on the nervous system is due to the propagation of the action 

potentials over the length of the nervous fibre. According to the propagation on different nervous 

fibres, the velocity of the nervous impulse varies also and normally the propagation velocity is 

proportional to the diameter of the nervous fibre. The higher the propagation velocity, the higher 

the length of the nervous fibre depolarized in each period [31]. 

The median nerve is a major peripheral nerve of the upper limb. It innervates flexor muscles in 

the anterior compartment of the forearm and also innervates some of the muscles in the hand 

via two branches. The recurrent branch of the median nerve innervates the thenar muscles – 

muscles associated with movements of the thumb. The palmar digital branch innervates the 

lateral two lumbricals – perform flexion at the metacarpophalangeal joints of the index and 

middle fingers. The abductor pollicis brevis is a thenar muscle in the hand responsible for the 

abduction function of the thumb [17]. 
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2.4 Compound Muscle Action Potential Scan Technique 

 

The Compound Muscle Action Potential (CMAP) scan can be used as a diagnostic and 

monitoring tool for neurodegenerative disorders, as it permits visualization and quantification of 

disease progression in a muscle with Motor Neuron Disease, such as ALS, like referred by 

Maathuis et al. [21]. The CMAP scan is a non-invasive electrodiagnostic technique, which 

records the electrical activity of a muscle in response to repetitive transcutaneous stimuli of 

motor nerve. Stimulus is applied by an electrostimulator positioned on the surface of the motor 

nerve in analysis and his response evaluated by surface EMG at the muscle to observe. Each 

Motor Unit (MU) of muscles has a different Stimulus Intensity (SI) at which it is activated, which 

means that MUs have different thresholds. If stimulus intensity is gradually increased, from 

subthreshold to supramaximal values, it will successively activate all of the MUs in the muscle. 

Making the plot of the CMAP amplitudes versus the stimuli intensities, results in a stimulus-

response sigmoid curve, thus obtaining the CMAP scan [32]. 

The CMAP is recorded using a differential amplifier. The three electrodes connected to the 

amplifier are usually called active, reference, and ground electrodes. For CMAP recordings the 

active electrode is placed over the muscle belly, whereas the reference electrode is at the 

tendon or at other locations off the muscle. Conversely, it is also assumed that the CMAP is 

composed of signal recorded by the active electrode, as a nearfield potential, generated by 

muscle fibres that are immediately under the electrode [24]. 

If made with enough stimuli and therefore a high resolution, the stimulus-response curve 

provides information not available through conventional methods. For instance, it enables 

identification and quantification of steps, which are clearly visible size differences in the CMAP 

amplitudes between consecutive stimuli. These amplitude differences increase with stimulus 

intensity, which are originated by the firing of large and newly recruited motor units. Henderson 

et al. showed that patients with ALS had significant differences in the steps and CMAP variability 

in comparison with healthy controls [9]. 

In the following figure we can observe the stimulus-response graphics. Through the amplitude of 

the responses, originated by each stimulus (example on figure 2.5.A with stimulus of 8mA), it is 

possible to compose the CMAP scan. On figure 2.5.B we can see a CMAP scan obtained with 

current modulated stimulus with a monophasic waveform. The graphical representation of the 

different stimuli-responses amplitudes will result in a sigmoid stimulus-response curve. 
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Figure 2.5.A: Response with stimulus of 8mA. The electrical stimulus marked at 0ms provokes the 

contraction of the thumb, whose response amplitude is above represented, with a stimulation intensity of 

8mA. Figure 2.5.B: Representation of a CMAP scan. When stimulus intensity is gradually increased from 

subthreshold to supramaximal values, all the MUs in the muscle are recruited and the plot of the CMAP 

amplitude versus stimulus intensity results in the CMAP scan. 

 

The CMAP scan also provides information on nerve excitability since an increase in SI 

corresponds to an increase in the recorded CMAP, depending on the excitability of individual 

Motor Units. The excitability parameters of the CMAP scan are the stimulus intensity that elicits 

5%, 50% and 95% of the maximum CMAP - S5, S50 and S95 - and the range between S5 and 

S95 [33]. 

In Lower Motor Neuron degeneration, as in amyotrophic lateral sclerosis, occurs loss of Motor 

Units, subsequent reinnervation and, eventually, muscle fibre loss. Because of collateral 

reinnervation, the symptoms of motor neuron diseases (MND) like muscle weakness develop  

late during the disease and are not aligned with the actual disease progression measured 

considering loss of motor neurons. Before muscle strength decreasing is noticed, up to half of 

the MUs may be lost [21]. 

Maathuis refers that LMN disease progression electrophysiological features should be evaluated 

considering three pathophysiological aspects of the disease progression - axonal/MU loss, 

reinnervation and remaining number of functioning muscle fibres. All these aspects can be 

assessed in the CMAP scan [21]. 

Hence, various properties of the curve may provide clinically relevant information concerning 

reinnervation processes, MU number, MU size and stability, and axonal excitability, which can 

be available through quick and visual assessment of MU potentials. Therefore, this technique 

can be a valuable tool for monitoring disease progression or the speed and quality of nerve 

recovery in motor neuron disease and demyelinating diseases. To be established as a clinical 
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tool, the effect of the stimulus settings on the CMAP scan and its quantification must be defined, 

to enable standardized collection and comparison of CMAP scan data [3,4]. 

 

2.5 Amyotrophic Lateral Sclerosis 

 

ALS is a fatal neurodegenerative disease of the human motor system. Its clinical features 

indicate degeneration of motor neurons at all levels, with destruction of layer V pyramidal 

neurons from the motor cortex to the anterior horn of the spinal cord. Those features include 

both Upper Motor Neuron and Lower Motor Neuron physical degeneration signs in multiple 

neuronal regions: bulbar, cervical, thoracic and lumbar [2]. 

ALS is a devastating disorder with yet uncertain pathogenesis, rapid progression and fatal, as 

50% of the patients die in less than 3 years of symptom onset and about 20% survives 5 to 10 

years after symptom onset. Survival in patients with ALS is dependent on several factors, which 

comprise clinical presentation (phenotype), rate of disease progression, early presence of 

respiratory failure and nutritional status of the patients [1,2]. 

Many causal and pathogenic theories have been proposed for ALS over the years, but it still 

remains poorly understood in terms of causal hypothesis. Some factors can increase the risk of 

developing ALS such as environmental factors, toxic risk factors, family history, tabacco, 

neurotoxins, consanguinity and genetic mutations with the copper/zinc superoxide dismutase 

considered the major one. Recent studies also targeted glutamate-induced excitoxicity, 

dysregulation of intracellular calcium, autophagy, structural abnormalities of mitochondria, 

dysfunction of the sodium/potassium ion pump, axonal transport defects and protein aggregation 

as other additional pathogenic hypotheses [1,2]. 

There are some prognostic indicators, such as increased age of onset, bulbar onset, low forced 

vital capacity and short time from first symptom to presentation of disease. The symptoms can 

be different concerning the neurological regions affected but some common features observed 

are rapidly progressive weakness, muscle atrophy and spasticity, difficulties in breathing 

(dyspnea), swallowing (dysphagia) and speaking (dysarthria). All these can greatly diminish the 

life quality of patients, as they tend to lose the ability to control voluntary movements [1]. 

Several functional rating scales have been developed in the last years, being ALS Functional 

Rating Scale the most used in clinical trials at present. The variability in clinical findings early in 

the course of the disorder and the lack of a biological marker make absolute diagnosis of ALS 

very difficult. One of the most important criteria for the diagnosis of ALS is the El Escorial 

criteria, which has been widely accepted and revised, and provides a structured approach to the 

assessment of people suspected of having the disease. ALS is diagnosed based on clinical and 

electromyographic data and also by excluding other possible diseases with similar physiological 

signs, since there are no specific tests or biological markers to have a sure confirmation. To 

make the diagnosis of ALS it is necessary: i) evidence of LMN degeneration, ii) evidence of 
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UMN degeneration, iii) progressive spread of symptoms within a region or to other regions; 

along with: iv) absence of electrophysiological or pathological evidence of other disease 

processes, v) absence of neuroimaging evidence of other diseases. When ALS is considered, 

patients should have electrophysiological studies performed to confirm LMN dysfunction in 

clinically uninvolved regions and exclude other pathophysiological processes [5]. 

In terms of medicine, just an inhibitor of glutamate neurotransmitter (Riluzole) has been licensed 

as disease-modifying for ALS, which extends the life of the patients by 3 to 6 months. Since this 

disorder is incurable, patients are administered with drugs that can relieve some symptoms and 

help cope with pain [2]. 

 

 

2.7 Electrostimulation concepts 

 

Current is applied through the use of stimulation electrodes and the selection of the electrode 

depends of the application desired. This selection has to consider the electrode type, its 

dimensions and the anatomical positioning required. The electrodes can be self-adhesive, metal 

or conductive rubber. The self-adhesive electrodes were the ones used in this work, since they 

are easy to apply and don’t need fixation, while ensuring good electrical contact along all contact 

surface of the electrode. The type and location of the electrodes influence the dimensions of the 

selected electrodes and larger electrodes result in a lower current density by area. The electrode 

positioning defines the larger current density local and the specific positions depend on the 

stimulation objective. For instance, if it is intended to stimulate an innervated muscle, the 

electrode positioning must assure that the nerve responsible for the muscle contraction is on the 

current pathway (over the nervous trunk or the motor point of the muscle or on a muscle 

termination). One of the most common electrode configurations used is the bipolar configuration, 

in which the current floats alternatively on both ways and uses two equal sized electrodes 

positioned over each of the terminations of the nerve or muscle to stimulate [26,27]. 

Electric current is defined as the quantity of electrical charges that flow across a conductive 

surface on a certain period of time. There are two kinds of current: continuous or alternate and 

pulsed or constant. The pulsed current is not continuous through time and allows defining a 

frequency and a pulse width associated. Usually, the pulsed current utilizes 1ms duration pulse 

or less, applied to frequencies that could reach 100 Hz. An action potential is provoked by each 

current pulse, if intensity stimulus is above the excitability threshold.  Current pulses with shorter 

stimulus duration are less uncomfortable and have higher discrimination between sensorial and 

motor stimulation.  The electric current polarity is due to charge unbalance. The current flux can 

be unidirectional (constant polarity/continuous current) or bidirectional (alternate 

polarity/alternate current). The stimulation intensity amplitude can be presented in miliAmpere 
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(mA) or Volts (V), which expresses the stimulation intensity that activates the fibres and the 

consequent response amplitude.[26]  

The pulse duration or pulse width is the duration of the output waveform pulse at 50% of 

maximum amplitude (usually represented in microseconds (µs)). This parameter is important as 

it influences the current amplitude necessary to originate an action potential. If the stimulation 

time is higher than a few hundreds of microseconds there is an event of accommodation to the 

pulse waveform, which implies that higher current intensity is needed to elicit the action 

potential. The pulse time instant is also to consider as during the refractory period pulses will not 

elicit an action potential, unless with high intensity stimulus [25]. 

As referred, MUs are constituted by a motor neuron and all the muscle fibres it innervates. The 

number of muscle fibres a motor neuron can activate depends on the muscle specificity. For a 

small muscle, which requires more accurate movement control, a motor neuron activates a small 

number of muscle fibres, while on a larger muscle, a motor neuron can be associated with more 

than a thousand muscle fibres. On voluntary muscle contraction, motor neuron activation is 

triggered in an asynchronous way and contraction force is generated by the number of recruited 

motor units and the frequency of the nervous impulses action potentials, which means fibre force 

varies with stimulus frequency for intensities above motor threshold. The electrical stimulation 

mimics the events that originate muscle voluntary contraction. However, the muscle activation 

pattern in electric stimulus induced contraction is different from muscle activation in the voluntary 

contraction: electrical stimulation activates various neuron motors simultaneously while in 

voluntary activation they are triggered asynchronously, electrical stimulation does not activate 

the motor neurons by the same recruiting order as in voluntary contraction and in neuromuscular 

stimulation sensorial nerves are necessarily stimulated [28]. 
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3. Methods 

 

In this chapter it will be explained the biosignals collection from the group of subjects, the 

acquisition protocol and its optimization. It will also be exposed the signal processing applied to 

analyse the data acquired to evaluate the influence of the parameters in study. 

 

 

3.1 Protocol optimization 

 

The protocol optimization had several stages and the first one was the conception of the 

different types of waveforms to be used. On a first approach, 8 waveforms were generated and 

tested with different number of stimuli per current step, with varied current incremental steps and 

stimulation intensity range. Several tests were made with each waveform, varying the referred 

parameters, in order to obtain a protocol test that would allow obtaining a graphic with enough 

resolution of the stimuli-response curve but without excessive test duration, in order to avoid 

making the test uncomfortable for the subjects. Some waveforms, like the exponential, were 

removed due to reduction of time and stimulation intensity range (given this type of waveform 

required more stimuli intensity to generate the same response comparatively to the other 

waveforms) and also due to charge equalization issues (discussed in the charge equalization 

section). Also other biphasic waveforms were tested like triangular, quadratic or exponential but 

were not included on the test because of test duration issues, stimulation intensity required and 

also due to the inability in acquisition of an analysable signal elicited by these types of stimuli on 

3 
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some subjects. Number of stimuli, incremental steps and stimulation intensity range were tested 

and reduced to prevent excessive test duration but at the same time to allow obtaining a graphic 

with enough resolution of the stimuli-response curve for the study. 

Electrode positioning was also subject to testing, with different positioning of stimulation 

electrodes and acquisition electrodes experimented, in order to allow collecting a good signal 

with high stimulus-response amplitude and definition of the CMAP scan curve. A short protocol 

was developed in order to test the response obtained with the different positioning, without 

having to perform the whole test, making it simpler for tests regarding the optimal positioning. 

Besides the acquisition and processing scripts, another script was made, which had the 

functions that generated the different types of waveforms according to determined amplitude and 

regarding the pulse-width time. It encompassed also the function responsible for the charge 

equalization between all waveforms, which calculated the pulse-width time necessary for a 

determined waveform to generate the same amplitude of the other waveforms, in order to 

equalize the charge.  

The current charge difference from each waveform was taken into account in the data analysis. 

The stimulation charge was computed accordingly to the stimulation intensity and waveform, 

based on the following formula: 

(1) Q= ∫
t1

t2
I dt  

Where Q represents the charge value, I represent the current intensity and the range from t1 to 

t2 is the stimulus time interval. 

Given as reference the pulse-width time of the monophasic square waveform, which is the 

common waveform used, and according to a given amplitude range, the function calculates the 

value of the pulse-width time of the other waveforms in a way that elicits the same response 

amplitude of the reference waveform, maintaining the charge value. One issue with some 

waveforms, like the exponential, given the area differences between the reference waveform, 

was that would need to reduce the reference pulse-width and his own be longer than supposed, 

in order to be comparable and to accomplish charge equalization. Illustrative graphics of the 

selected waveforms to perform the study with the equalized charge are shown next on figure 

3.1, which allow to compare the different waveforms pulse-width, which are generated on a 

window with the same number of points. 
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Figure 3.1: Charge equalization A- Monophasic Square B -Biphasic square C- Monophasic Triangular D- 

Monophasic Quadratic. In this figure it is shown the differences in pulse-width time regarding the different 

waveform types needed for the charge value to be equal among them, maintaining the same response 

amplitude. 

 

3.2 Subjects 

 

To perform the study of the different waveforms influence on the motor neuron excitability, a total 

of 13 healthy subjects were submitted to the same test and evaluated. This group was 

composed of 7 males and 6 females, with a mean age of 26 years (standard deviation of 3.63), 

ages comprehended between 20 to 36 years old. None of the subjects that performed this test 

had any clinical history on neurologic disorders. 

Other subjects were tested but on some of them the valid acquisition of the electromyography 

signal was not successful given the non-invasive nature of the stimulation and acquisition 

method, which made more difficult the correct positioning of the stimulation electrodes over the 
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nerve and also of signal acquisition. On some other patients it was not possible to obtain the 

stimulus-response curve of the biphasic waves, since stimulation with this pulse did not elicit any 

response. 

During the execution of the test, the subjects were straight seated, motionless, relaxed and with 

the right forearm in supination position with the palm of the hand facing posteriorly and making a 

45 degree angle with the forearm. Thumb fixation was necessary in order to minimize movement 

artefacts and also limit the change in muscle fibre conduction velocity. For this purpose, a 

fixation support for the hand, elastic bands and a glove with lateral supporting bars along the 

thumb were used, as shown in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Hand fixation schematic. In order to avoid thumb movement during the test, the hand was 

fixated with elastic bands to a support. It was also used a glove with lateral support bars along the thumb. 

 

3.3 Stimulation and acquisition 

 

The test consisted on applying electrical stimulation on the medium nerve located on the wrist 

and surface electromyography signal acquisition of the stimuli-response collected on the 

Abductor Pollicis Brevis (APB) muscle surface of the thumb. The stimulation electrodes were 

placed on the median nerve on the wrist area (with the positive electrode on bottom and 

negative on top) of the right hand. The acquisition electrodes were placed on the muscle surface 

of the APB and on the proximal phalange of the right thumb, according to SENIAM standards 

[18], and the ground electrode was placed on the opposite wrist ulnar styloid process, as 

represented in figure 3.3. 
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Figure 3.3: Electrode positioning. Stimulation electrodes are placed on the right wrist (anode on top). 
Ground electrode is placed on the opposite wrist. Acquisition electrodes are placed on the muscle surface 
of the thumb. 
 
 
 

The EMG signal was acquired with a 3000Hz sampling frequency, 12bits of resolution and 

amplified with a gain of 201. For EMG acquisition, a combined wireless, miniaturized and 

synchronized unit was used [19]. This device has eight analog input channels with 12-bit of 

resolution, sampling frequency until 5 KHz, an external channel to be used as reference ground 

electrode for electrophysiology measures and a digital port for external synchronism, which 

connects with the electrostimulation unit by a synchronization cable. The electrostimulation 

device allows a stimulation intensity range up to 100mA [20]. The equipment used in this work 

was developed by PLUX [19,20] and shown on figure 3.4. Self-adhesive pre-gelled Ag/AgCl 

electrodes were used for EMG acquisition and peripheral nerve stimulation. 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.4: Electrostimulator and EMG acquisition units. The electrostimulation unit on top connected with 
the acquisition device with the EMG sensor on bottom. 
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The signal acquisition method is illustrated in the following flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Illustrative flowchart of the steps of the stimulation protocol used in the biosignals 

acquisition. 

 

The stimulation protocol was performed with increasing intensities, which ranged from 4 to 30 

mA, with varying current increment steps and several stimuli by step. The procedure was 

repeated 4 times per subject, each repetition using a different single pulse stimulation waveform. 

A standard square waveform pulse was applied in test 1, a triangular waveform pulse in test 2 

and a quadratic waveform pulse in test 3. In all these 3 protocols, monophasic single pulses 

were used with the same intensities. A 4
th
 protocol was tested with a biphasic single pulse 

square waveform, with the same intensities of the other tests using monophasic waveforms.  
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3.4 Processing 

 

After acquisition step, the collected biosignals were processed and several features were 

gathered, in order to evaluate the obtained response. To achieve that, processing scripts were 

developed using Python, for the data analysis of the acquired signals and automated extraction 

of the selected features. An illustrative schematic is presented in figure 3.6, and main steps 

described: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Diagram of the different steps of the processing 

 

 

The processing comprehended the following steps: 

1. Detection of the peak-to-peak amplitude of the stimulus response M-wave 

2. CMAP scan composition 

3. Interpolation and plotting of the CMAP scan 

4. Extraction of S5, S50, S95 and stimulus-response amplitude elicited by these 
parameters 

5. Detection of the beginning, final and slope of the resulting sigmoid 

6. Analysis of the differences in the computed parameters regarding each waveform 

7. Calculus of the mean and standard deviation of the computed parameters 
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1-Peak-to-peak detection 

Detection of the response after stimuli application, through derivate and arithmetic signal 

changes. It is evaluated if a stimulus generates a disproportionate response or if there is an 

abnormal movement or event on the stimulation moment and these exceptional transitions are 

removed from the signal. This procedure is effectuated for all the stimuli and each subject and 

visually validated. The maximum and amplitude of the peaks are detected (example on figure 

3.7). 

 

 

 

 

 

 

Figure 3.7: Detection of absolute amplitudes of the response generated 

 

2- CMAP scan 

Movement artefact removals were made through considering the mean baseline of the signal 

before stimulation and recalculating the signal between the stimulation point and the actual 

contraction of the thumb. After signal conversion and unwanted stimuli transitions and artefacts 

removed, the stimuli signal averaging of each current step is done. Values of maximum, 

minimum and absolute amplitude of the peaks for each current increment are collected in order 

to plot the CMAP scan graphic (example on figure 3.8). 

 

 

 

 

 

 

 

Figure 3.8: Collection of the points necessary to generate the CMAP scan 
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3- Interpolation & plot 

Given the reduction of the number of stimuli applied in order to maintain an acceptable test 

duration (since the test was made with four different types of waveforms instead of just one) an 

interpolation was made to better fit the graphic curve to the given points and enhance the CMAP 

scan obtained. After that, the final CMAP scan plot with each stimulus, for all amperage range, is 

generated (example on figure 3.9). 

 

 

 

 

 

 

Figure 3.9: Interpolation effectuated to generate the CMAP scan 

 

4- Parameters extraction 

Maximum CMAP amplitude is obtained by averaging of the stabilization threshold after reaching 

the maximum stimulation amplitude on the sigmoid curve. A normalization step is effectuated in 

order to extract the values of the stimulation parameters that elicit 5%, 50% and 95% of the 

maximum response amplitude (S5, S50 and S95) as well as the response amplitude 

correspondent to these parameters (example on figure 3.10). 

 

 

 

 

 

 

Figure 3.10: Detection of the excitability parameters S5, S50 and S95 
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5- Sigmoid evaluation 

The variations on the steepness of the sigmoid curve for the different types of waveform are also 

calculated, as the beginning and final of the curve are detected and slope of the sigmoid 

calculated. All these parameters and values are saved on a file, as all the points that constitute 

the CMAP scan. 

6- Difference analysis 

The analysis of the differences in the computed parameters regarding each waveform is done. 

The intensity differences values between each waveform to produce the same event and 

steepness relations are computed. 

7- Mean & SD 

For all the parameters and values computed, the median and standard deviation values were 

calculated and saved on file for posterior analysis.  

 

The processing routine generates the plot of the different CMAPs and the CMAP scan and 

calculates the parameters of interest like the excitability parameters, their response amplitude 

and characteristics of the sigmoid curve, saving them on a file. These steps are repeated for the 

different types of waveforms. A CMAP Scan generated with a monophasic triangular waveform 

with the excitability parameters identified can be seen on figure 3.11. 

This procedure was repeated for all subjects and all data had posterior visual validation by two 

M.D. specialists. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11: CMAP scan representation. This CMAP scan was obtained with the monophasic triangular 
pulse and the excitability parameters (S5, S50, S95) are signalled on the sigmoid. 

 



 

 29 

 

 

 

4. Results 

Peripheral nerve stimulation is influenced by external variables that are hard to control, like the 

adipose tissue layer that the electrical current has to pass, the distance between the stimulation 

electrodes and the nerve to be stimulated, among others. Taking this into consideration, the 

chosen analysis parameters were the ones that allowed a more objective assessment of the 

considered effects inter subjects. 

Each subject was analysed regarding the CMAP amplitudes, excitability parameters (S5, S50, 

S95 - regarding stimulus current intensity (mA) and absolute response amplitude (mV)), sigmoid 

slope and current intensity differences of the CMAP scan between each different waveform. 

Given certain stimulation intensity it is noticeable the differences in the response amplitude 

generated by the different kind of waveforms tested. In figure 4.1 it is observable the differences 

in the response amplitude in the CMAP elicited by the same current intensity, which in this case 

is 10,5mA, between the different waveform types. The monophasic square waveform reaches 

almost the maximum amplitude for this intensity stimulus, and the response elicited by the same 

stimulus is lower to the monophasic triangular waveform and the lowest to the monophasic 

quadratic waveform, which would need a higher stimulus intensity to reach the same amplitude. 

The difference is even higher regarding the biphasic square waveform, since this current 

intensity value does not even provoke a response to the stimulus generated using this type of 

pulse. 
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Figure 4.1: CMAP acquired in a fixed intensity step for each waveform (10.5mA), where it is observable the 

differences in the waves’ response amplitude, generated with the same intensity stimulation. 

 

In figure 4.2 we can observe the CMAP scan originated by stimulation intensity values from 

subthreshold to supramaximal threshold, which means the recruitment of all motor units of the 

muscle fibres. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: CMAP scan, where it can be seen the sigmoid generated by all the stimulation thresholds 
regarding all the waveforms. It should be noted the differences between the waveforms in the current 
intensity stimulation to generate the same response amplitude to the stimulus. 
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The CMAP scan of all the waveform types used in the study are represented and it is observable 

the differences in the stimulation intensity range needed to provoke the same stimulus response 

amplitude, regarding the different pulses, with very significant differences to the biphasic 

waveform in comparison with the monophasic pulses. Also to be noted the differences in the 

beginning and final of the sigmoid as well as in the steepness of the curve when comparing the 

different kinds of waveform. 

Table 1 presents the CMAP scan S95´s stimulus-response amplitude (the amplitude of the 

response of the stimulus that elicited 95% of the maximum CMAP amplitude) of the different 

subjects evaluated. 

 

 

 

 

 

 

 

 

 

 

Table 1 – S95 response amplitudes. Wave 1 corresponds to the monophasic square pulse, wave 2 to 
monophasic triangular pulse, wave 3 to monophasic quadratic pulse and wave 4 to the biphasic square 
pulse. 
 
 

This table presents the value of the amplitude elicited by the excitability parameter S95, which 

corresponds to the amplitude of the response caused by a stimulus intensity that would generate 

95% of the maximum CMAP amplitude value. Although it presents stimulus response amplitude 

variations inter subjects, the amplitude value obtained for a given subject, regarding the different 

waveform types, remains approximately constant. 

Table 2 presents the mean CMAP scan sigmoid slope differences between the different types of 

waveforms used in the subjects’ stimulation, using the monophasic square waveform as 

reference. 

 

 

 

 

Table 2 – Waveforms slope differences 
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As it could be observed on figure 5 one of the differences regarding the different kinds of 

waveforms is the steepness of the sigmoid curve generated. The monophasic square waveform 

will be used as reference in the comparisons made with the other types of pulses as it is the 

standard waveform type used in these studies and it presents the lower stimulation intensity 

range needed to achieve the maximum CMAP amplitude and also the curve with the higher 

steepness. The monophasic triangular waveform presents a slope approximately of 4/5 in 

comparison with the monophasic square waveform and this value is reduced to 2/3 relatively to 

the monophasic quadratic waveform. This difference is again more significant when comparing 

the monophasic and biphasic square waveforms, as the biphasic pulse presents approximately 

half of the sigmoid slope regarding the monophasic pulse. 

Table 3 and 4 present the waveforms current intensity differences and the data shown allows a 

better assessment of the current intensity differences between each type of pulse. 

 In table 3 it is shown the current intensity values of the excitability parameter S5, stimulus 

intensity that elicited response amplitude that corresponds to 5% of the maximum CMAP 

amplitude, for the different waveforms and all subjects. 

 

 

 

 

 

 

 

 

 

 

Table 3 – S5 current intensities. Wave 1 corresponds to the monophasic square pulse, wave 2 to 
monophasic triangular pulse, wave 3 to monophasic quadratic pulse and wave 4 to the biphasic square 
pulse. 
 
 

As referred and as we can see by table 3, the monophasic square waveform needs the lowest 

current intensity value to reach the excitability parameters and obtain determined response 

amplitude. This value increases for the monophasic triangular and quadratic waveforms, 

respectively. The increase in the stimulation threshold to provoke the same event for the 

biphasic square waveform is very significant in comparison with the monophasic waveforms. 
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In table 4 it is shown the mean arithmetic differences in the stimulation current intensity values 

for each excitability parameter (S5, S50, S95) between each type of waveform. 

 

 

 

 

 

 Table 4 – Waveforms current intensity differences 

Taking into reference the monophasic square waveform, we can analyse on table 4 the 

differences in the stimulation intensities for the different excitability parameters and between the 

different waveform types. Once again, there is an increase in the stimulation intensity from the 

monophasic square waveform to the monophasic triangular waveform, which is higher when 

comparing the monophasic quadratic waveform with the monophasic square pulse. The increase 

in the stimulation threshold to reach the same response for the different excitability parameters 

relatively to the biphasic square waveform is very significant in comparison with the monophasic 

waveforms. 

In table 5 it is shown again data that allow once more observing differences regarding the 

excitability thresholds of the different waveform pulses type. It is observable through this table 

the differences between the different kinds of waveforms regarding moment of maximum 

amplitude, stimulus intensity and response amplitude. 

 

 

 

 

 

 

 

 

 

 

Table 5 – S50 expressed in current intensity and response amplitude. Wave 1 corresponds to the 

monophasic square pulse, wave 2 to monophasic triangular pulse, wave 3 to monophasic quadratic pulse 

and wave 4 to the biphasic square pulse. 



 

 34 

Next it is presented, as an example, a CMAP scan graphic with waveforms in a medium phase 

of testing, which still has implemented three biphasic waveforms.  

 

 

 

 

 

 

 

Figure 4.3: CMAP scan representation with 3 types of monophasic and biphasic waveforms. It is 

particularly visible the differences in stimulation intensity between monophasic and biphasic waveform 

types and it is noted an order of appearance in the graphic of the waveforms regarding the type. 

 

On the next figure is illustrated an example of a subject which did not present response to the 

biphasic waveform stimulation. 

 

 

 

 

 

 

 

 
Figure 4.4: CMAP scan representation with invalid acquisition of the biphasic waveform. As it is observable, 
the biphasic pulse does not elicit any response on this subject in all intensity range. 
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5. Discussion 

In this chapter it will be analysed and discussed the obtained results in the study with the healthy 

patients and the application to the diagnosis and monitoring of neurodegenerative pathologies.  

 

5.1 Results analysis 

 

The stimulus-response peak-to-peak maximum amplitude remained constant between different 

waveforms (Table 1). This fact is common to every subject, as expected given the charge 

equalization effectuated. However, there were significant differences among the subject’s 

maximum amplitude absolute. This behaviour was expected because, as it was mentioned 

before, nerve stimulation is affected by external variables, like the adipose tissue layer, among 

others, that are intrinsic to each subject. 

The results show that the square pulse needs less current intensity to generate the same 

response amplitude as the other waves (Table 1 and Figure 5), and it is also the one that 

presents a more steep curve slope (Table 2). This means that, for the square wave, the time 

interval between the beginning and final of the stimulation is shorter than for the other waves 

and the stimulation threshold is lower. As we can verify by the tables, this effect is gradually 

decreasing for the triangular and quadratic pulse, respectively.  

The quadratic wave, among the monophasic waves group, represents the stimulation pulse that 

needs a larger current intensity value and range to elicit the same response amplitude in 

comparison with the other waves. This fact consequently translates on an inferior sigmoid slope. 

5 
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This is due to the nervous fibre sensibility to charge transfer rate, since in the used setup all 

waves have charge equalization, meaning that the variable cause is only the waveform, which 

has different charge transfer rates. 

Concerning the biphasic square pulse it is possible to verify that it has a very distinct behaviour 

from the monophasic pulses, with activation intensities of the response levels S5 and S95 quite 

superior, with higher stimulation current intensities needed and higher time to reach from 

subthreshold to supramaximal stimulation value and consequently a rather inferior sigmoid 

slope. This fact indicates that, possibly, only one of the flanks of the biphasic waveform is 

activating the nerve fibres (corroborated by comparing to the same waveform but monophasic 

pulse, since the slope is approximately half and stimulation intensity needed to provoke the 

same response approximately double).  

The monophasic waveforms have a more linear behaviour, while the biphasic waveform 

presents a more unstable behaviour with greater variations.  

The analysis of the effect of the waveform on the peripheral nerve stimulation permits to reveal 

new effects in the context of the nerves’ excitability. Also the control of this parameter allows 

varying the stimulus-response curve slope. These facts can open new doors on the context of 

the CMAP scan applied to ALS diagnosis or other neurodegenerative disorders. 

 

 

5.2 Application on the diagnostic of neurodegenerative 
pathologies like ALS 

 

Given the results observed on the previous study effectuated with healthy subjects, it was 

intended to make the correlation with neurodegenerative pathologies, verifying if the variations 

observed when performing the stimulation with different waveform types showed the same 

results relatively to patients with ALS. 

To accomplish that, acquisitions in patients with ALS and other neurodegenerative pathologies 

were made in Hospital Santa Maria (Lisbon, Portugal), with the collaboration of Professor 

Mamede de Carvalho (Department of Neurology of Hospital de Santa Maria and Laboratory of 

Electromyography, Centro de Estudos Egas Moniz, Faculty of Medicine, Institute of Molecular 

Medicine, Lisbon, Portugal). Due to technical issues, constraints with the patients and also their 

availability, to the moment of the elaboration of this document, only 2 valid acquisitions on 

patients with ALS were available to discuss. Due to the advanced condition of the 

neurodegenerative disease of the patients in question, it was not observable a response elicited 

by the stimuli, since they presented very reduced response amplitude, and after raw data 

analysis it was concluded that the none of the waveforms elicited a valid CMAP. Next is 

presented a stimulus-response representation of a control and one of the patients with ALS, with 
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30 mA intensity stimulus, where it is visible the response to the stimulus presented by the control 

and the simple electrical artefact, given by the negative spike presented by the patient. 

 

 

 

 

 

 

 

 

 

Figure 6.1: A – Amplitude elicited by a stimulus of 20 mA on control subject. B – Amplitude elicited by the 

same stimulus on ALS patient. Due to progressive state of disease there is no response amplitude to the 

stimulus, being only visible electrical artefact on the stimulus moment (sample number 500) contrary to the 

control patient that presents a visible response after the stimulus moment. 

 

To test other pathologies like Progressive Muscular Atrophy and demyelinated pathologies, the 

stimulation protocol was altered, with different stimuli intensity range and current increment 

steps.  

Given the results observed on the previous study effectuated with healthy subjects relatively to 

the biphasic square waveform and discussed before, the acquisition protocol used on the 

patients only contemplated the monophasic pulse types. 

Due to patients’ sensibility and motor limitations, the stimulation protocol had small alterations 

and fixation support was not used, just the glove with lateral support, optimizing the protocol 

application time. 

To further investigate the effects of modulated current on neuron motor excitability and assess 

its effects in patients, more acquisitions on patients of Hospital Santa Maria with ALS, and other 

neurodegenerative pathologies like Progressive Muscular Atrophy and demyelinated pathologies 

are being made and respective results will be assessed in the future (it is intended to see if the 

parameters in study present a similar behaviour on the patients regarding the observed on the 

healthy subjects and if some of the waveform types will allow a better assessment of the 

patients’ obtained data. 
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Appendix 

 

Here will be presented a publication made on the following of the work accomplished during this 

master thesis and accepted in conference BIOSIGNALS - BIOSTEC 2015. 
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Abstract  
This work aims to study the influence of different pulse modulated waveforms in peripheral nerve excitability by CMAP 

scan technique on healthy subjects. 

A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium nerve on the right 

wrist and electromyography signal collected on the muscle surface on the right thumb. Stimulation was performed with an 

increasing intensities range from 4 to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per 

subject, each repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, 

monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on each current 

intensity step. 

The square pulse needs less current intensity to generate the same response amplitude regarding the other waves and 

presents a more steep curve slope and this effect is gradually decreasing for the triangular and quadratic pulse, respectively, 

being the difference even more evident regarding the biphasic pulse. The control of the waveform stimulation pulse allows 

varying the stimulus-response curve slope. 

 

 

 

 

1 INTRODUCTION 

The Compound Muscle Action Potential 
(CMAP) scan is a non-invasive diagnosis technique 
for neurodegenerative pathologies, such as 
Amyotrophic Lateral Sclerosis (ALS). It allows a 
quick analysis of the muscle action potentials in 
response to motor nerve stimulation, by electrical 
stimulation applied on the surface of the motor nerve 
and stimulus response evaluation by surface 
Electromyography (sEMG) at muscle level. Each 
Motor Unit (MU) of muscles has a different 
Stimulus Intensity (SI) at which it is activated, 
meaning that MUs have different thresholds. 
Varying the intensity of the stimuli applied, 
gradually increasing from subthreshold to 
supramaximal values, will sequentially activate all 
MUs in the muscle. This way, it is possible to obtain 
a graphical representation of the evoked action 
potentials amplitude in the muscle versus the 
stimulation intensity. This record will show a 
sigmoid tendency which is called the CMAP scan. 
(Maathuis et al. 2011,2012). 

Henderson et al. (2006) examined the variability 
of the CMAP scan between healthy and ALS 
subjects and it showed there is a significant 
difference in relation to CMAP scan evolution, 
number of steps and size, since ALS patients present 
more and larger steps on the stimulus-response curve 
than healthy controls (steps are clear visible jumps 
in CMAP amplitude within consecutive stimuli), as 
it can be seen in figure 1. 

The CMAP scan can be used as a monitoring 
tool for neurodegenerative disorders, as it permits 
visualization and quantification of disease 
progression in a muscle with Motor Neuron Disease, 
such as ALS, as referred by Maathuis et al. (2012). 
Several studies have been made, investigating the 
influence of different parameters in the quality of the 
CMAP scan. Maathuis et al. (2011) studied CMAP 
scan reproducibility on healthy patients in several 
excitability parameters, like the maximum CMAP, 
S5, S50, S95 (the stimulus intensity that elicited 5%, 
50% and 95% of the maximum CMAP, 
respectively), SI range (the difference between S95 
and S5) and results were good for tested parameters. 



 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1A: CMAP scan from healthy individual, with the 

stimulus-response curve obtained with 500 stimuli. The 

horizontal line indicates the CMAP maximum amplitude 

while the vertical lines refer to S5, S50 and S95 (that 

correspond to the stimulus intensity that elicited 5%, 50% 

and 95% of the maximum CMAP, respectively). Figure 

1B: CMAP scan of an ALS patient. Differences in the 

CMAP scan between the healthy and the ALS patient are 

visible because of steps observed in the ALS CMAP scan 

and the decrement in maximum amplitude. Adapted from 

Maathuis et al. (2012). 

 
Shorter stimulus duration implicates higher 

stimulus intensity required to elicit the same CMAP 
amplitude. The effect of other parameters on the 
CMAP scan, like stimulus frequency and total 
number of stimuli, are not yet fully established.  
Maathuis et al. (2012) attempted to define optimal 
stimulus protocol settings for these parameters, 
considering subject discomfort, movement artefacts 
and recording duration. Optimal value for stimulus 
duration is yet arbitrary, but shorter stimulus 
duration will increase the resolution of the curve. 
Stimulus frequency has no influence on the CMAP 
variables in healthy controls, although high 
frequency augments the chance of decrements on the 
CMAP, so low frequency stimulation is advised. 
Experiences regarding stimuli number recommended 
that around 500 stimuli give enough detail in the 
stimulus-intensity response curve, without excessive 
duration time. Fixation of the thumb is highly 
advised, since it shortens the decrement size and 
limits muscle fibre conduction velocity changes, 
improving the CMAP scan. 

An untested parameter of the CMAP scan is 
the waveform of the pulse used in the electrical 
stimulation of the nerve.  In electrical stimulation, 
the waveform represents the variation over time of 
the applied current or voltage on the muscle or 
nerve. This work aims to study the influence of 
different pulse modulated waveforms in peripheral 
nerve excitability, by CMAP scan technique, on 
healthy subjects. The different types of waveforms 
tested were monophasic square, triangular and 
quadratic waves and also a biphasic square wave. 

 

2 METHODS 

2.1 Subjects 
 
In this study a total of 13 healthy subjects were 

submitted to the same test. This group was 

composed of 7 males and 6 females, mean age of 

26.00 (3.63) years, range from 20 to 36 years, 

without clinical history on neurologic disorders. 

The stimuli were applied in the medium nerve on 

the right wrist and electromyography signal 

collected on the Abductor Pollicis Brevis (APB) 

muscle surface on the right thumb. The acquisition 

electrodes were placed according to SENIAM 

standards and the ground electrode was placed on 

the left wrist ulnar styloid process. During the test, 

the subjects were seated, motionless and relaxed, 

with thumb fixation to minimize movement artefacts 

(figure 2C).  

 
2.2 Stimulation and acquisition 
 

Stimulation was performed with increasing 

intensities range from 4 to 30 mA. Different number 

of stimuli and current increment steps were tested in 

order to have a stimulation protocol that would 

allow obtaining a curve with enough resolution and 

not excessive test duration. The acquisition protocol 

is illustrated in the flowchart (figure 3).  

The procedure was repeated 4 times per subject, 

each repetition using a different single pulse 

stimulation waveform. A monophasic square wave 

was applied in test 1, a triangular wave in test 2 and 

a quadratic wave in test 3. In all these 3 protocols, 

monophasic single pulses were used with the same 

intensities. A 4
th

 protocol was tested with a biphasic 

single pulse square wave, with the same intensities 

of the other tests.  

The current charge difference from each 

waveform was taken into consideration. The 

stimulation charge was computed accordingly to the 

stimulation intensity and waveform, based on the 

following formula: 

 

(1) Q= ∫
t1

t2
I dt  

Where I represent the current intensity and t1 to 
t2 is the stimulus time range. In each current 
intensity step, the charge of the different waveform 
types have been equalized, maintaining the 
amplitude and varying the pulse-width time. Given a 
reference pulse-width time of the monophasic square 
waveform (the commonly used waveform), and 



 

 
 
 
 
 
 

 
 
 
 
 

 

 
 
 

 

 
 
 
 
 
 
 
 

 

 

 

 
according to the current amplitude, it is calculated 
the value of the pulse-width necessary for the other 
waveforms to elicit the response amplitude of the 
reference waveform, in order to equalize the charge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Illustrative flowchart of the steps of the 

stimulation protocol used in the biosignals acquisition 

 

 
 
 
 
The EMG signal was acquired with a 3000Hz 

sampling frequency, amplified with a gain of 201 
and 12bits of resolution. A combined wireless, 
miniaturized and synchronized units were used for 
EMG acquisition and nerve stimulation (figure 2A), 
developed by PLUX (2014). Self-adhesive pre-
gelled Ag/AgCl electrodes were used for EMG 
acquisition and peripheral nerve stimulation (figure 
2B).  

 
 
2.3 Processing 
 

After acquisition, the collected biosignals were 

processed and features were extracted, according to 

the following steps: 
 

1. Detection of the peak-to-peak amplitude of 

the stimulus response M-wave 

2. CMAP scan composition via interpolation 

3. Extraction of S5, S50, S95, SI range and 

stimulus-response amplitude elicited by 

these parameters 

4. Detection of the beginning, final and slope 

of the resulting sigmoid 

5. Calculus of the mean and standard 

deviation of the computed parameters 

6. Analysis of the differences in the computed 

parameters regarding each waveform 

 

These steps were repeated for each waveform 

type and all subjects. For the data analysis of the 

acquired signals, processing scripts were developed 

utilising Python. All data had posterior visual 

validation by two M.D. specialists. 

Figure 2: A. The electrostimulator and the unit for EMG acquisition. B. The electrodes placement: stimulation electrodes 

on the median nerve, sEMG sensor on the thumb and ground electrode on the wrist. C. Hand fixation for the test. 



 
 

3 RESULTS 

Peripheral nerve stimulation is influenciated by 
external variables that are hard to control, like the 
adipose tissue layer that electrical current has to 
pass, the distance between the stimulation electrodes 
and the nerve to be stimulated, among others. 
Taking this into consideration, the chosen analysis 
parameters were the ones that allowed a more 
objective assessment of the considered effects inter 
subjects.  
Each subject was analysed regarding the amplitudes, 
excitability parameters (S5, S50, S95 - regarding 
stimulus current intensity (mA) and absolute 
response amplitude (mV)), sigmoid slope and 
current intensity differences of the CMAP scan 
between each different waveform. 

 
 

 
 
 
 
 
 

 

 

 

 

 

 
 

Figure 4: CMAP acquired in a fixed intensity step for each 

waveform (10.5mA), where we can observe the 

differences in the waves’ amplitude, with the same 

intensity stimulation.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: CMAP scan, where it can be seen the sigmoid 

generated by all the stimulation thresholds regarding all 

the waveforms. It should be noted the differences between 

the waveforms in the current intensities stimulation to 

generate the same response amplitude to the stimulus.  

 Table 1 presents the CMAP scan S95´s 
stimulus-response amplitude (the amplitude of the 
response of the stimulus that elicited 95% of the 
maximum CMAP amplitude) of the different 
subjects evaluated.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 – S95 response amplitudes. Wave 1 corresponds 

to the monophasic square pulse, wave 2 to monophasic 

triangular pulse, wave 3 to monophasic quadratic pulse 

and wave 4 to the biphasic square pulse. 
 

Table 2 presents the mean CMAP scan sigmoid 

slope differences between the different types of 

waveforms used in the subjects’ stimulation.  

 
 

 

 

 

 

Table 2 – Waveforms slope differences 

 

Table 3 and 4 present the waveforms current 

intensity differences. In Table 3 it is shown the mean 

intensity differences regarding the stimulation 

parameters S5, S50 and S95 between each type of 

waveform. In Table 4 it is shown the stimulation 

threshold for S5 (the current intensity stimulation 

that elicited 5% of the CMAP scan maximum 

amplitude) for the different subjects and waveforms.  

 

 
 

 

 

 

 

 

 

 

 

 

Table 3 – Waveforms current intensity differences 



 

 

 

 

 

 

 

 

Table 4 – S5 current intensities. Wave 1 corresponds to 

the monophasic square pulse, wave 2 to monophasic 

triangular pulse, wave 3 to monophasic quadratic pulse 

and wave 4 to the biphasic square pulse. 

 

4 DISCUSSION 

The results show that the square pulse, besides 
needing less current intensity to generate the same 
response amplitude as the other waves (tables 1 and 
3 and figures 4 and 5), it is also the one that presents 
a more steep curve slope (Table 2). This means that, 
for the square wave, the time interval between the 
beginning and final of the stimulation is shorter than 
for the other waves and the stimulation threshold is 
lower. As we can verify by the tables (1-4), this 
effect is gradually decreasing for the triangular and 
quadratic pulse, respectively.  

The quadratic wave, among the monophasic 
waves group, represents the stimulation pulse that 
needs a larger current intensity value and range to 
elicit the same response amplitude in comparison 
with the other waves (tables 1, 3 and 4 and figures 3 
and 4). This fact consequently translates on an 
inferior sigmoid slope (table 2). 

This is due to the nervous fibre sensibility to 
charge transfer rate, since in the used setup all waves 
have charge equalization, meaning that the variable 
cause is only the waveform, which has different 
charge transfer rates. 

Concerning the biphasic square pulse it is 
possible to verify that it has a very distinct behaviour 
from the monophasic pulses, with activation 
intensities of the response levels S5 and S95 quite 
superior, with higher stimulation current intensities 
needed and higher time to reach from subthreshold 
to supramaximal stimulation values, and 
consequently a rather inferior sigmoid slope. This 

fact indicates that, possibly, only one of the flanks of 
the biphasic waveform is activating the nerve fibres 
(comparing the same waveform but monophasic 
pulse, since the slope is approximately half and 
stimulation intensity needed approximately double).  

The monophasic waveforms have a more linear 
behaviour, while the biphasic waveform presents a 
more unstable behaviour with greater variations.  

The analysis of the effect of the waveform on the 
peripheral nerve stimulation permits to reveal new 
effects in the context of the nerves’ excitability. Also 
the control of this parameter allows varying the 
stimulus-response curve slope.  

To further investigate the effects of modulated 
current on motor neuron excitability, acquisitions on 
patients with ALS and other neurodegenerative 
pathologies are going to be made to see the effects 
of different waveforms on the context of the CMAP 
scan applied to motor neuron disease diagnosis. 
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