
  

Ana Lopes Tavares 

Dissertation presented to obtain the Ph.D degree in Biology 
Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa 

Oeiras,  
December 2014 

Community-associated methicillin-resistant 

Staphylococcus aureus (CA-MRSA) in Portugal: 

Origin, epidemiology and virulence 



  

Ana Lopes Tavares 

Dissertation presented to obtain the Ph.D degree in Biology 
Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa 

Oeiras, December, 2014 

Community-associated methicillin-resistant 

Staphylococcus aureus (CA-MRSA) in Portugal: 

Origin, epidemiology and virulence 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Second edition, January 2015 
© Ana Tavares 
ISBN: 978-989-20-5135-2 

 



 

!
!
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!
!
!
!



 

!
!
!

!
!
!
 
 
 

Supervisors: 

Dr. Hermínia de Lencastre 

Dr. Maria Miragaia 

 

Chairman of Examiners: 

Dr. Cecília Arraiano, Full Professor at ITQB 

 

Examiners: 

Dr. Constança Pomba 

Dr. João Paulo Gomes 

Dr. José Melo Cristino 

Dr. Isabel Couto   

 

 

 

Dissertation presented to obtain the PhD degree in 

Biology by Universidade Nova de Lisboa, Instituto de 

Tecnologia Química e Biológica. 



vi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 

ACKNOWLEDGEMENTS 
 

To Dr. Hermínia de Lencastre, Professor and Head of the Laboratory of Molecular Genetics 

(Microbiology of Human Pathogens Unit) at Instituto de Tecnologia Química e Biológica António 

Xavier (ITQB), Universidade Nova de Lisboa (UNL), my supervisor, for accepting me in her 

Laboratory and welcoming me into her group. For her vast scientific knowledge and fascinating 

carrier in the field of staphylococci; she is a worldwide reference concerning the molecular 

epidemiology and resistance mechanisms of Staphylcoccus aureus.  

 

To Dr. Maria Miragaia, Auxiliary Investigator and Head of Laboratory of Bacterial Evolution and 

Molecular Epidemiology (Microbiology of Human Pathogens Unit) at ITQB/UNL, my co-supervisor, 

for guiding me trough the first steps in the molecular characterization of the staphylococci, for 

teaching me how to be critical in science, for her incentive during the not so good moments, and for 

her patience and valuable critical points of view throughout this work and along the years. Thanks 

for her friendship. 

 

To Dr. Henrik Westh, Associate Professor, Senior Consultant Microbiologist, in the Department of 

Clinical Microbiology, Hvidovre Hospital, Copenhagen University Hospital, my co-supervisor for his 

generosity and for welcoming me at the Department of Clinical Microbiology, where part of the work 

included in this Thesis, regarding alpha-hemolysin studies, was performed. Thanks for providing me 

all the resources that I needed for the development of the work, and also for making me feel at 

home. 

 

To Dr. Isabel Couto, Assistant Professor at Instituto de Higiene e Medicina Tropical (IHMT) at UNL, 

who guide me through the first steps of the unbelievable world of S. aureus. For the person she is, 

her scientific knowledge and for the unconditional dedication and recognition of her students. 

Thanks for the friendship and confidence deposited in me, for the interesting discussions we had 

and for the encouraging words and help throughout my master Thesis.  

 

To Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa for providing 

excellent conditions for the development of my PhD studies. 

 



viii 

To Fundação para a Ciência e Tecnologia (FCT) (SFRH/BD/44220/2008), European Union 

(CONCORD-HEALTH-F3-2008/ Project Number 222718/ European Commision) and to Fundação 

Calouste Gulbenkian (037/BI-BI/2012) for the financial support during this PhD. 

 

To all my colleagues and friends at the LGM along all these years, for their friendship and for 

sharing with me the passion for science and, in some cases, the enthusiasm for such peculiar “bug” 

as Staph aureus: Alexandra Simões, Ana Gomes, Bruno Guerra, Céline Coelho, Diana Espadinha, 

Carina Valente, Débora Tavares, Inês Crisóstomo, Inês Grilo, Liliana Curto, Juliana Lamaro, Maria 

Luís Amorim, Nuno Faria, Ons Bouchami, Pedro Arede, Raquel Portela, Rita Sobral, Sonia Nunes, 

Sónia Almeida, Sofia Felix, Susana Gardete, Teresa Conceição, Teresa Figueiredo and Indiara 

Sales. 

 

To my friends Joana Rolo, Catarina Milheiriço and Nelson Frazão for sharing with me so many good 

moments, for the enthusiastic discussions we had and, above all, for their friendship. 

 

To Ana Cristina Paulo, very special thanks, not only for her precious help in finding consistency in 

the alpha-hemolysin data, but also for her friendship and persistence in helping me during the very 

difficult personal moment she was living.  

 

To Cândida Delgado and Helen Accuri for their prompt and unconditional help in the Herculean task 

of searching and rescuing data from the S3DB. 

 

To “Dona Isilda”, for being as a “mother” to all of us, always available to help along all these years. 

For sharing with me the happiness and sadness of life, and for her kindness and friendship.  

 

To “Dona Manuela”, for always taking care of the hardest part of our work (bureaucracy), for her 

help and precious advices through all these years. 

 

To Professor Ana Madalena, although we had not worked together, I thank her for being always 

kind and pleasant to me. 

 



ix 

To Dr. Marta Aires de Sousa and Dr. Raquel Sá-Leão for the knowledge they shared with me in my 

very early times at Laboratory of Molecular Genetics, and also for their kindness. Special thanks to 

Raquel Sá-Leão for her continuous attention to my carrier and personal life. 

 

To Sissel Skovgaard, Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen 

University, the “special” person I was very lucky to meet in Copenhagen. For receiving me and 

providing all the help I needed in the development of the part of the work, regarding growth curves, 

performed at Life University. Thanks for making this part of the work possible; she was always there 

for helping me, with her kindness and smile. Thanks for hosting me, but mostly thanks for the long 

life friendship. 

 

To Kristian Schønning and Jesper Nielsen, Department of Clinical Microbiology, Hvidovre Hospital, 

Copenhagen University, for their enthusiastic and productive discussions about part of Thesis 

studies related with the alpha-hemolysin (hla) expression. For their friendship and persistent 

support. Special thanks to Jesper, a precious help in the bench work, who was always there when I 

needed. 

 

To Kit Boye and Susanne Rohde, Department of Clinical Microbiology, Hvidovre Hospital, 

Copenhagen University, for their friendship and kindness. For their help in particular in the hla 

sequencing. I would have never finished the work without them. 

 

To Mette Hogh, Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen University, for 

her “remote” help in the optimization of RNA extraction and probe design. 

 

To my “old” friends Lidia, Daniela and Sofia for sharing so many good moments, while growing 

together with me. 

 

To my new (kindergarten) friends, Madalena, João, Dudu and Sofia and Mane, Woytek, Helena and 

Bernardo. Having children has many benefits, and meet you was one special “benefit” that Adriana 

gave to me. Thanks for the past, present and future good moments. 

 



x 

To my “new family” Ivone, Helder, Susana, Rui, Beatriz and Madalena for the very good moments 

we have had and for always being ready to help. 

 

To my small and special family for their unconditional support and love, my parents Terezinha and 

Zé, to my sister Cristina and brother in law Ricardo and my nephews Francisco, Gaspar e Emilia. 

To all of them, my apologies for having declined some of our family meetings because of the work 

of the Thesis. “The gift is ready”. 

 

And finally, to Ricardo and Adriana, the joys of my life and to whom this thesis is dedicated. Thank 

you for existing and making my life so special. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

ABSTRACT 

 
Methicillin-resistant Staphylococcus aureus (MRSA), a human pathogen confined to hospitals (HA-

MRSA) for over 30 years have been emerging worldwide in the last two decades as a leading cause 

of severe infections in healthy individuals in the community (CA-MRSA). Despite its clinical 

significance, in the beginning of our studies no information existed on the prevalence, and 

population structure of CA-MRSA in Portugal. Moreover, it remained to be clarified how CA-MRSA 

emerged in our country. In particular, it was not known if CA-MRSA emerged locally by acquisition 

of the staphylococcal cassette chromosome mec (SCCmec) by established methicillin-susceptible 

S. aureus (MSSA) in the community, if they were imported from abroad or have escaped from the 

hospital. 

 

CA-MRSA have specific genetic backgrounds, different from their hospital counterparts, and its 

success as a pathogen in the community has been related with an enhanced virulence potential 

believed to be associated to the presence and differential expression of specific virulence factors 

like Panton-Valentine leukocidin (PVL), alpha-hemolysin (Hla), arginine catabolic mobile element 

(ACME) and phenol soluble modulins (PSMs). Notwithstanding, no extensive study was ever 

performed where expression of virulence genes was compared between CA-MRSA and HA-MRSA 

genetic backgrounds.    

 

In this Thesis we described for the first time the prevalence and population structure of CA-MRSA in 

Portugal, provided clues on the origin of CA-MRSA in our country and produced new data that 

contribute to a better understanding of CA-MRSA pathogenic potential.  

 

To understand the clinical relevance and origin of CA-MRSA in Portugal, a large and representative 

collection of both MSSA and MRSA with community origin was screened for the presence of the 

beta-lactam resistance determinant (mecA) and the virulence genes PVL, and ACME. Moreover, S. 

aureus genetic backgrounds were determined by a combination of state-of-the-art typing 

techniques, including! SCCmec typing, pulsed-field gel electrophoresis (PFGE), spa typing and 

multilocus sequence typing (MLST).  

 



xii 

The results obtained showed a high frequency of MRSA in the community (21.6%). However, only a 

small proportion was represented by typical CA-MRSA clones (11.4%). Surprisingly, the vast 

majority of the MRSA in the community were HA-MRSA clones (88.6%).  

A high genetic diversity among the CA-MRSA was identified, represented by more epidemic 

(USA300, USA400, USA700, Southwest Pacific (SWP), European, and ST398) and less 

disseminated (ST1810) clones. In contrast, among the HA-MRSA mostly only two epidemic clones 

were found, the EMRSA-15 clone (77.2%) and the New York/Japan (NY/JP) (14.9%) – coincidently, 

the two most prevalent clones in Portuguese hospitals. Altogether, these findings indicate that the 

high prevalence of MRSA in the community in Portugal seem to result mainly from dissemination of 

HA-MRSA clones from hospitals. 

 

As expected, the MSSA population in the community was more prevalent (78.4%) and a higher 

genetic diversity was observed when compared to the MRSA. Likewise, we found MSSA related to 

both CA-MRSA (50.8%) and HA-MRSA (49.1%) genetic backgrounds. A considerable proportion of 

MSSA (46.7%) were related with the CA-MRSA epidemic clones USA700 (30.3%), USA400 

(26.3%), USA300 (18.2%), ST398 (14.1%), SWP (8.1%) and Taiwan (3%). Concerning the MSSA 

related with HA-MRSA epidemic clones, the great majority (92.6%) were related to EMRSA-16 

(38.4%), NY/JP (27.6%), Berlin (15.1%), EMRSA-15 (9.7%), and the Pediatric clone (9.2%). These 

results suggest that in the community the MSSA population is highly related to the MRSA 

population, and that in this environment SCCmec can be frequently acquired by MSSA and/or lost 

by MRSA. 

 

To further understand how the emergence of MRSA might have shaped the MSSA population in 

Portugal, we have analyzed the MSSA population dynamics and geographical distribution over 

almost two decades in the community and hospital in Portugal. The molecular characterization of 

MSSA isolates, with community and hospital origin, collected over a 19 year-period  (1992–2011) by 

state-of-the-art molecular typing techniques showed that MSSA were genetically diverse. However, 

one major clone (ST30-t012) was present in the entire study period and all over the country, and 

other clones (ST5-t002, ST8-t008, ST15-t084, ST34-t166, ST72-t148, ST1-t127, ST7-t091 and 

ST398-t571) were intermittently detected over time. Moreover, we found that MSSA isolates with 

genetic backgrounds related to CA-MRSA clones (ST8-t008, ST72-t148 and ST1-t127) appeared 

after the report of the first cases CA-MRSA infections in 1989 only. These results confirm that the 
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changes occurring in MRSA epidemiology might have impact on MSSA epidemiology. 

 

To evaluate the variation in virulence gene expression in CA and HA genetic backgrounds, we 

analyzed one of the most common and clinically relevant virulence factors in S. aureus, the alpha-

hemolysin (Hla). The nucleotide sequences of the hla gene and its promotor and the relative 

expression in a large and representative collection of epidemic and minor MRSA/MSSA of both 

community and hospital origin were analyzed by DNA sequencing and Real-Time PCR (RT-PCR), 

respectively. The results indicated that the hla gene has evolved together with the genetic 

background, but the same could not be observed for the hla promotor region. Although no 

correlations could be established between allotypes and expression profiles, the data obtained 

suggest that CA backgrounds demonstrated, in general, a higher hla expression than HA 

backgrounds. Notwithstanding, a high isolate-to-isolate variation in the level of gene expression was 

detected in highly related isolates. Moreover, a high hla expression was observed in two isolates 

belonging to the EMRSA-15 and NY/JP clones, both nosocomial MRSA clones found to be 

predominant in Portuguese hospitals. These observations highlighted the need of including a 

diverse and representative isolate collection, while evaluating the CA-MRSA pathogenesis, in future 

studies. Moreover, we found that the two most predominant HA-MRSA clones in the hospitals and 

community in Portugal have a high pathogenic potential. 

!
!
!
!
!
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RESUMO 

 
Os Staphylococcus aureus resistentes à meticilina (MRSA), um agente patogénico humano 

confinado aos hospitais (HA-MRSA) durante mais de 30 anos, emergiu nas últimas duas décadas 

em todo o mundo como uma das principais causas de infecções graves em indivíduos saudáveis 

na comunidade (CA-MRSA). Apesar da sua importância clínica, no início dos nossos estudos a 

informação sobre a prevalência e estrutura populacional dos CA-MRSA em Portugal era quase 

inexistente. Adicionalmente, não se conhecia a forma como os CA-MRSA emergiram no nosso 

país. Em particular, desconhecia-se se os CA-MRSA surgiram localmente pela aquisição do 

elemento genético móvel SCCmec (de staphylococcal chromosome cassette mec) que transporta o 

gene mecA, por isolados S. aureus susceptíveis à meticilina (MSSA), ou se, alternativamente, 

foram importados do exterior ou tiveram origem em estirpes disseminados do hospital. 

Os isolados de CA-MRSA pertencem a tipos clonais específicos, que são diferentes daqueles 

encontrados no ambiente hospitalar, e o seu sucesso como agentes patogénicos na comunidade 

tem sido atribuído ao facto destas estirpes terem um maior potencial patogénico. Foi demonstrado 

que a virulência dos CA-MRSA  está associada à presença e à expressão diferencial de 

determinados factores de virulência, nomeadamente a leucocidina Panton-Valentine (PVL), a alfa-

hemolisina (HLA), o elemento ACME (de arginine catabolic mobile element) e as PSMs (de phenol 

soluble modulins). Não obstante, ainda não foi realizado nenhum estudo alargado, onde se tivesse 

comparado a expressão de genes de virulência entre os diferentes tipos clonais de CA-MRSA e 

HA-MRSA. 

 

Neste estudo, descrevemos pela primeira vez a prevalência e a estrutura da população dos CA-

MRSA em Portugal, sugerimos as possíveis origens dos CA-MRSA no nosso país e obtivemos 

novos dados que contribuem para uma melhor compreensão do potencial patogénico dos CA-

MRSA.  

 

Para compreender a relevância clínica e a origem dos CA-MRSA em Portugal, foi estudada a 

presença do determinante de resistência aos beta-lactâmicos (mecA) e dos genes de virulência 

PVL e ACME numa colecção ampla e representativa de isolados MSSA e MRSA com origem na 

comunidade. Determinaram-se os tipos clonais dos isolados de S. aureus utilizando diversas  

técnicas de tipagem, nomeadamente a determinação da estrutura do SCCmec, a electroforese em 
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campo pulsado (PFGE, de pulsed-field gel electrophoresis), a sequenciação nucleotídica de um 

fragmento interno do gene spa e de sete genes nativos (MLST, de multilocus sequence typing). 

Os resultados obtidos mostraram uma elevada frequência de MRSA na comunidade (21,6%). No 

entanto, verificámos que apenas uma pequena proporção dizia respeito a tipos clonais 

característicos da comunidade ou CA-MRSA (11,4%). A vasta maioria dos isolados de MRSA 

existentes na comunidade em Portugal pertenciam a tipos clonais característicos do hospital ou 

HA-MRSA (88,6%). 

Identificámos uma elevada diversidade genética nos isolados pertencentes a tipos clonais 

associados à comunidade (CA-MRSA), incluindo clones considerados epidémicos (USA300, 

USA400, USA700, Sudoeste do Pacífico (SWP), Europeu e ST398) e clones menos epidémicos 

(ST1810). Em contraste, apenas dois clones epidémicos foram encontrados entre os MRSA 

pertencentes a tipos clonais associados ao hospitais (HA-MRSA), em especial o tipo clonal 

EMRSA-15 (77,2%), mas também o tipo clonal Nova Iorque/Japão (NY/JP) (14,9%) - 

coincidentemente, os dois clones com maior prevalência nos hospitais portugueses.   

Em resumo, estes resultados indicam que a elevada prevalência de MRSA na comunidade em 

Portugal parece resultar, principalmente, da disseminação de isolados pertencente a tipos clonais 

tipicamente hospitalares. 

Apesar da elevada frequência de MRSA na comunidade, a grande maioria da população de S. 

aureus encontrada neste ambiente era susceptível aos antibióticos beta-lactâmicos (MSSA) 

(78,4%), apresentando uma maior diversidade genética. Tal como foi descrito para os isolados de 

MRSA, encontrámos MSSA relacionados com tipos clonais característicos de CA-MRSA (50,8%) 

mas também isolados relacionados com tipos clonais característicos de HA-MRSA (49,1%). Uma 

considerável proporção de MSSA (46,7%) estavam relacionados com os tipos clonais epidémicos 

de CA-MRSA, USA700 (30,3%), USA400 (26,3%), USA300 (18,2%), ST398 (14,1%), Southwest 

Pacific (SWP) (8,1%) e Taiwan (3%). Quanto aos MSSA relacionados com tipos clonais epidémicos 

dos hospitais (HA-MRSA), a grande maioria (92,6%) era semelhante ao tipos clonais EMRSA-16 

(38,4%), NY/JP (27,6%), Berlim (15,1%), EMRSA-15 (9,7%) e o clone Pediátrico (9,2%). Estes 

resultados sugerem que na comunidade a população de MSSA está muito relacionada com a 

população de MRSA, e que neste ambiente o SCCmec pode ser frequentemente adquirido pelos 

isolados de MSSA e/ou perdidos pelos MRSA. 
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Para compreendermos o impacto que a emergência dos isolados de MRSA na comunidade em 

Portugal poderá ter  tido na estrutura da população de MSSA, analisámos a dinâmica populacional 

dos MSSA e a distribuição geográfica ao longo de quase duas décadas em Portugal, na 

comunidade e no hospital. 

A caracterização molecular dos isolados de MSSA, com origem na comunidade e hospitalar, 

recolhidos ao longo de um período de 19 anos (1992-2011), pelas técnicas de tipagem actualmente 

usadas para S. aureus, mostraram que os MSSA são genéticamente diversos. No entanto, 

verificou-se haver um clone maioritário (ST30-t012) que esteve presente ao longo de todo o 

período de estudo e em todo o país, em contraste com outros clones (ST5-t002, ST8-t008, ST15-

t084, ST34-t166, ST72-t148, ST1-t127, ST7-t091 e ST398-t571) que foram detectados de forma 

intermitente ao longo do tempo. Adicionalmente, verificámos que os isolados de MSSA 

genéticamente relacionadas com tipos clonais característicos da comunidade (ST8-t008, ST72-t148 

e ST1-t127) apareceram somente depois das primeiras descrições de CA-MRSA no mundo (1989). 

Esses resultados sugerem que as mudanças que ocorrem na epidemiologia de MRSA poderão ter 

impacto sobre a epidemiologia de MSSA. 

 

Para avaliar a variação na expressão dos genes de virulência em tipos clonais característicos da 

comunidade e hospital, analisámos a alfa-hemolisina (Hla), um dos factores de virulência mais 

comuns e clinicamente mais relevantes em S. aureus. As sequências nucleotídicas do gene hla e 

do seu promotor assim como a expressão relativa do gene foi determinada por sequênciação do 

DNA e por PCR em tempo real (RT-PCR), respectivamente, numa colecção vasta e representativa 

de MRSA/MSSA epidémicos e não epidémicos, com origem na comunidade e no hospital. 

Os nossos resultados mostraram que o gene hla evoluiu em paralelo com as linhagens genéticas, 

no entanto, o mesmo não se observou para a região do promotor do hla. Apesar de não se poder 

estabelecer qualquer tipo de correlação entre os diferentes alelos do gene hla e do seu promotor 

com  os perfis de expressão, os dados obtidos sugerem que os isolados pertencentes a tipos 

clonais epidémicos típicos da comunidade demonstraram, em geral, uma maior expressão de hla 

do que os tipos clonais mais frequentemente encontrados nos hospitais. Não obstante, observou-

se uma grande variação no nível de expressão do gene em isolados geneticamente muito 

relacionados. Adicionalmente, observou-se que dois isolados pertencentes aos clones EMRSA-15 

e NY/JP, ambos tipos clonais frequentemente encontrados nos hospitais portugueses, tinham uma 

expressão relativamente elevada. 
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Estes resultados sugerem que estudos futuros focados  na avaliação do potencial patogénico de 

MRSA não deverão cingir-se à análise de apenas um isolado, mas deverão incluir a análise de uma 

colecção de isolados diversificada e representativa. Adicionalmente, os nossos dados mostraram 

que os dois clones de HA-MRSA mais predominantes nos hospitais e na comunidade em Portugal 

têm também um elevado potencial patogénico, o que é particularmente preocupante. 
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THESIS OUTLINE 
 

In Chapter I, General Introduction, a general overview is provided on the current knowledge of the 

S. aureus epidemiology, with particular emphasis on community-associated Staphylococcus aureus 

(CA-MRSA); the genetic basis of methicillin resistance and virulence in S. aureus are also 

introduced.  

 

Chapters II, III and IV include results from three different studies that analyzed the prevalence, 

population structure and origin of CA-MRSA in Portugal, the relatedness of methicillin-resistant and 

methicillin-susceptible S. aureus (MRSA and MSSA) populations, the dynamics of MSSA population 

overtime and the variation in gene expression of one of the most important S. aureus virulence 

factor (alpha-hemolysin).  

 

In Chapter II, the study “High prevalence of hospital-associated methicillin-resistant Staphylococcus 

aureus in the community in Portugal: evidence for the blurring of community–hospital boundaries”, 

was focused on the molecular epidemiology and relatedness of MSSA/MRSA in the community in 

Portugal. S. aureus isolates and epidemiological data were collected from representative hospitals 

in Portugal and analyzed by state-of-the-art typing techniques. We described the prevalence and 

population structure of MSSA and MRSA isolates causing infections in the healthy individuals in the 

community in Portugal. This study reveals a considerable frequency of MRSA in the Portuguese 

community, although the majority of population was composed by MSSA. The data obtained 

showed that the main MRSA clones circulating in the community have a hospital origin (HA-MRSA), 

and only a small proportion was represented by CA-MRSA clones. Moreover, almost all epidemic 

MRSA present in the community were related with contemporary MSSA.  

 

In Chapter III, the study “Population structure of methicillin-susceptible Staphylococcus aureus 

(MSSA) in Portugal over a 19 years period (1992 to 2011)” includes the analysis of MSSA 

population structure overtime in Portugal. MSSA isolates collected over a 19 year-period in Portugal 

were analyzed by state-of-the-art techniques. We defined variations of MSSA population occurring 

over time in Portugal. Moreover, we inferred possible relatedness between MSSA and MRSA. This 

study evidenced that despite genetically diverse, some dominant MSSA clonal types have been 

established and widely disseminated for almost two decades. The study also allowed identifying 
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MSSA genetic backgrounds that could have been recipients of SCCmec, giving rise to local 

emergence of CA-MRSA clones in Portugal. 

 

In Chapter IV, the study “Insights into the evolution and gene expression of alpha-hemolysin (hla) 

among Staphylococcus aureus with hospital and community origin”, aimed to compare the genetic 

diversity and gene expression of alpha-hemolysin, one of the most important virulence factors in S. 

aureus, in different genetic backgrounds of CA-MRSA/MSSA and HA-MRSA/MSSA. A collection of 

well-characterized and representative MRSA isolates with community and hospital origins with 

diverse geographical distribution and clinical origin was gathered. Isolates were analyzed for 

nucleotide diversity of hla gene and promoter gene by sequencing and for gene expression by RT-

PCR. This study demonstrated that the hla genetic diversity is evolving with the species, although 

the promoter gene showed some variation to this pattern. Moreover, we confirmed that, in general, 

isolates belonging to CA clones showed higher levels of hla expression than isolates belonging to 

HA clones. However, we observed high isolate-to-isolate variation in the level of gene expression, 

which was independent of the genetic background. 

 

In Chapter V, Discussion the major findings of this Thesis are highlighted and discussed. 

Integrating all the molecular epidemiological data, we propose a model for the origin of MRSA in the 

community. Moreover, we suggest a new paradigm where virulence features should be considered 

to be isolate-specific and not extrapolated for a group of strains with related genetic backgrounds. 



!
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CHAPTER I 

General Introduction 

1. Staphylococcus aureus 
GENERAL FEATURES 
Staphyloccoccus aureus was first discovered in 1880 in a human abscess pus by the surgeon Sir 

Alexander Ogston, who after the observation of its characteristic grape-like clusters, named them 

Staphylococcus from the Greek expression “staphylé” (a bunch of grapes) (267). Four years later 

(1884), Rosenbach was able to isolate and grow these bacteria also from abscesses and called 

them Staphyloccocus aureus, because of the gold-like pigmentation appearance of the colonies 

(“aureus” from Latin “golden”) (304) in opposition to S. albus (“albus” from Latin “white), nowadays 

known as S. epidermidis. 

 

S. aureus belongs to a distinct monophyletic group within the Firmicutes Phylum, to the class Bacilli, 

order Bacillales, family Staphylococcaceae and genus Staphylococcus (123, 281, 340). Presently, 

the genus Staphylococcus contains 49 species and 26 subspecies 

(http://www.bacterio.net/s/staphylococcus.html accessed on September 2014). S. aureus are a 

Gram-positive cocci, with 0.5 to 1.5 µm diameter, that can contain or not a polysaccharide capsule, 

are non-motile and non-sporeforming, facultative anaerobes, which produce catalase and 

coagulase (266, 393). 

 

GENOME 
The S. aureus genome consists of a circular chromosome of approximately 2,700 to 2,900 Mb, with 

low G+C content (32.8%) (17). There are currently 56 annotated complete whole-genome 

sequences of S. aureus available in the public domain 

(http://www.ncbi.nlm.nih.gov/genome/genomes/154? assessed on September 2014). The genome 

is composed of the core genome and the accessory genome (205).  

 

The core genome encodes genes essential for bacterium cell growth and survival, and includes 

housekeeping genes, genes associated with metabolism, but also virulence genes, as genes coding 

for the capsule, surface associated proteins and toxins. Variations in the sequence of core genome 

is observed – core variable  (CV)  – and may result from single nucleotide polymorphisms (SNPs) to 
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larger regions of DNA diversity (from few nucleotides within a gene to insertion/deletion of several 

kilobase pairs) (205). Core genes are located on the bacterial chromosome and, therefore, are 

typically stable and transferred vertically. 

The accessory genome represents up to 25% of the S. aureus genome and includes 

bacteriophages, plasmids, S. aureus pathogenicity islands (SaPI), transposons and staphylococcal 

cassette chromosome (SCC) elements (107, 204, 205). The accessory genome largely contributes 

to the high genetic and phenotypic plasticity of S. aureus and mainly contains resistance and 

virulence genes. The accessory genes can be transmitted by horizontal transfer to other strains and 

species, but also vertically to the daughter cells (205).  

 
OPPORTUNISTIC PATHOGEN IN THE HOSPITAL AND COMMUNITY  
S. aureus is a remarkable versatile bacterium with a two-faced lifestyle. On one hand, S. aureus 

behaves as a harmless colonizer, on the other hand is one of the most successful human 

pathogens and a worldwide leading cause of infections.  

 

S. aureus can exist as a commensal (251) and colonizer of skin and mucous membranes of 

humans and animals, including, pigs, cattle, rabbits, dogs and cats among others (212, 251). 

Despite being found in multiple human body sites, colonization of the anterior nares is the 

preferential ecological niche (79, 367, 385). Notwithstanding, some studies indicated that the rate of 

throat colonization is higher than colonization of the anterior nares (221, 258).  

 

Studies addressing nasal colonization in healthy individuals showed that about 20% of healthy 

individuals are persistent nasal carriers, while 30% are intermittently colonized, and 50% are non-

carriers (79, 385). The prevalence of S. aureus nasal carriage showed to vary in different 

populations in the community. The colonization rate in children has been reported to be significantly 

higher when compared with adults (385). Moreover, carriage rates were found to vary between 

countries. A recent structured survey studying S aureus nasal carriage in healthy individuals aged 4 

years or older in nine European countries (Austria, Belgium, Croatia, France, Hungary, Spain, 

Sweden, the Netherlands and the UK) showed that great variations in carriage rates in healthy 

patients exist between countries, varying from 12.1% in Hungary to 29.4% in Sweden (80). In 

Portugal, the rate of S. aureus nasopharyngeal carriage was recently reported to be 17.4% among 
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children attending day-care centers (344). Moreover, the authors observed that the carriage rate 

was associated with age, ranging from 6.3% in children less than two years old to up to 27.5% 

among six years old children (344). 

 

Frequent exposure to health care facilities and/or hospitalization are commonly associated with an 

increased rate of S. aureus colonization, most of the time with S. aureus carrying antimicrobial 

resistance determinants. Among hospitalized individuals in the USA, prevalence of S. aureus nasal 

colonization was 28.6% in 2003-2004 (132). Kampf et al. reported that S. aureus carriage among 

hospital staff was approximately 33.8% (174). Moreover, rates of colonization were described to be 

higher among particular patient groups, e.g. HIV patients (257, 327), individuals with S. aureus skin 

infections and skin diseases (153, 390), particular with insulin-dependent diabetes (206), and 

patients undergoing hemodialysis (183, 211, 401) reaching up to 100% in individuals with atopic 

dermatitis (153, 245).  

The carriage status has been associated to an increased risk for the development of staphylococcal 

infection (148, 185, 367, 386). Hospitalized patients are particularly at risk of developing a 

staphylococcal infection not only due to their increased S. aureus colonization rate, but also as a 

consequence of their general compromised immunity, and the use of invasive clinical procedures, 

such as surgery or the introduction of foreign indwelling medical devices, that serve as a port of 

entry of S. aureus into presumably sterile body sites. 

 

The severity of S. aureus infections can range from minor to life-threatening, local to systemic and 

acute to chronic. S. aureus infections are categorized in three general types: 1. local infections - 

superficial lesions such wound infections, skin and soft tissue infections (SSTIs); 2. systemic and 

life-threatening - endocarditis, osteomyelitis, pneumonia, brain abscesses, meningitis, bacteremia 

and septicemia; and 3. toxinoses- toxic shock syndrome (TSS), staphylococcal scalded-skin 

syndrome and food poisoning (65). 

 
Notably, S. aureus is one of the leading causes of nosocomial infections worldwide. A recent 

Europe-wide survey report (2011-2012) showed that among pathogens implicated in nosocomial 

infections, S. aureus (12.3%) come second only after Escherichia coli (15.9%), but before other 

important pathogens such as Enterococcus spp. (9.6%) and Pseudomonas aeruginosa (8.9%) (98). 

Moreover, the prevalence of hospital associated infections (HAI), reported as the percentage of 
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patients with at least one HAI over the total number of patients, ranged from 2.3% in Latvia to the 

highest prevalence registered in Portugal of 10.8% (98). As opposed to the majority of European 

countries, in Portugal, S. aureus takes the lead over E. coli as the most frequent cause of 

nosocomial infections (98).  

 

Besides being one of the most important pathogens in healthcare settings, S. aureus is also an 

important agent of infections in immunocompetent individuals outside hospitals. S. aureus in the 

community have been described to cause mainly skin and soft tissue infections (SSTI), but also 

invasive infections such as bacteremia, necrotizing pneumonia and necrotizing fasciitis (73, 148). 

 

RESERVOIRS AND TRANSMISSION ROUTES  
The Centers for Disease Control and Prevention (CDC) estimated that for every 20 people 

hospitalized in the USA, one will develop a nosocomial infection (98).  As the result of the high 

burden caused by S. aureus in hospitals, staphylococcal infections are the principal focus of 

infection control programs. 

 

As mentioned before, S. aureus carriers are considered at higher risk for the development of 

staphylococcal nosocomial infections. About 15-67% of the nosocomial bacterial infections occur 

through patient-to-patient transmission (139, 383) by direct contact with colonized (or infected) 

patients. On the other hand, these infected or colonized patients can contaminate the surrounding 

environment, where bateria can persist up to a year (115, 315). Indirect contact through 

contaminated surfaces, are potential sources of re-infection of patients and colonization of 

healthcare workers (HCW), other patients or even patient’s visitors. Moreover, healthcare workers 

uniforms should be regarded as an important vehicle of dissemination, since up to 60% of uniforms 

were described to be contaminated with potentially pathogenic bacteria, including drug-resistant 

ones, as reported in a study conducted in 2008 where a total of 135 HCW were enrolled (389). An 

example of this complex network of transmissions was described in a Portuguese neonatal 

intensive care unit NICU where HCWs, plastic folders protecting clinical files and also mothers' 

nipples were identified as potential reservoirs and/or vehicles of dissemination of S. aureus (55). 

Healthcare infection control and prevention programs should be focused on the entire route of 

transmission as a whole, and not addressing each reservoir individually. This should be done by 
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improving active surveillance, mainly by screening patients and HCW, by implementing appropriate 

hand hygiene practices, using personal protective equipment and performing good environmental 

desinfection. Moreover, decolonization of patients and health-care workers has been proved 

efficient in reducing the risk of staphylococcal infection (29, 278, 339).  

 

COST OF INFECTIONS AND INFECTION CONTROL 
Hospital Infections have a substantial cost all over the world. The costs associated with treatment 

and control of S. aureus infections are approximately $14.5 billion per year in the USA (260). In 

2005, the healthcare system of the USA spent an estimated value of $830 million to $9.7 billion with 

S. aureus infections (229). The infections associated with drug resistant S. aureus have an 

increased cost when compared to those susceptible, being a direct cost ($3,000 to $35,000) for the 

treatment  of a single infection episode (62).  

 

The decreasing of S. aureus frequency in invasive disease in many European countries is 

encouraging (97). Many of these countries adopted strict infection control measures, with good 

results. In the UK, since 2001, specific measures were applied in hospitals at the country level with 

an amazing success (89, 284). These included: 1) mandatory reporting of all S. aureus resistant 

bacteraemia, 2) public standardization of incidence rates, 3) guidelines for preventing hospital-

associated infections, 4) establishment of a national hand hygiene campaign, 5) prudent use of 

antibiotics, and 6) the implementation of the so called ’high impact interventions’, i.e. care “bundles” 

focusing on key clinical procedures that, when not appropriately performed, can increase the risk of 

infection. A decreasing trend of MRSA bacteraemia was clear from 2001 to 2009 in the UK, with a 

62% reduction in the incidence of MRSA in blood cultures (158). 

 
In Portugal, the prevalence of nosocomial infections increased from 9.3% in 1993 to 11.5% in 2012 

(88), which parallels the increased burden of S. aureus in invasive disease. In the past, two national 

programs coordinated by Direcção Geral de Saúde (DGS) (www.dgs.pt) aimed to respond to this 

increasing problem, one created in 1998, the “National Program for Infection Control”, and the other 

in 2008, the “National Program of Preventions of Resistance to Antimicrobials”. But very recently 

(2013) the prevention of nosocomial infection was integrated as a national objective in the “National 

Program for the Prevention and Control of Infection and Antimicrobials Resistance” from DGS, 
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audited by the ECDC (European Centre for Disease Prevention and Control) (87). This program 

aims to normalize the mission and structure of the commissions of infection of all hospitals in 

Portugal in what regards to prevention and control of antimicrobial resistance. Moreover, the 

program intends to standardize the procedures in clinical practice through the implementation of an 

hospital “bundle” with the following rules: five moments of hand hygine accordingly to the World 

Health Organization (WHO) guidelines (http://www.who.int/gpsc/tools/Five_moments/en/), correct 

use of gloves, frequent cleaning of touch surfaces, and antimicrobial correct procedures. Finally, 

finantial incentives for good pratices related with infection control, antimicrobials resistance 

prevention and antibiotic consumption were implemented from 2013 on. No results on the impact of 

these measures are available yet. 

 

ANTIMICROBIAL CONSUMPTION 
The excessive use of antimicrobials is one of the main forces driving the development and spread of 

antimicrobial resistance. Antimicrobial resistance became a serious public health concern as the 

result of the emergence and spread of highly resistant bacteria and also due to the limited choice of 

antimicrobial agents to treat these pathogens. 

Different actions to control the use of antimicrobials in the community and hospitals have been 

followed in the different European countries, as demonstrated by the consumption of antimicrobials 

report from the European Surveillance of Antimicrobial Consumption Network (ESAC-Net) published 

by the European Centre for Disease Prevention and Control in 2010 (ECDC) (See Figure 1) (99). 

The consumption of antimicrobial for systemic use (ATC (anatomical therapeutic chemical) group 

J01: beta-lactams, penicillins; other beta-lactam antibacterials; tetracyclines; sulfonamides and 

trimethoprim; macrolides, lincosamides and streptogramins; quinolones; and others) in both 

hospitals and community is defined by number of DDD (defined daily dose) per 1 000 inhabitants 

and per day.  

 

In hospitals, the consumption of antimicrobials for systemic use in 18 countries varied from as low 

as 1.1 to as high as 3.0 DDD per 1 000 inhabitants per days (See Figure 1). Based on this report, a 

low antimicrobial consumption was reported in Portugal (1.4 DDD per 1 000 inhabitants and per 

day) when compared to e.g. Italy, France and Finland (See Figure 1). The most frequent 

antimicrobial agent used in hospitals was penicillin, followed by cephalosporins and other beta-
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lactams, quinolones and macrolides.  

 

Figure 1. Distribution by country of antimicrobial consumption for systemic use in the hospital, in 18 countries 
(2010). DDD: defined daily dose; (a) Finland: data include consumption in remote primary health care centres 
and nursing homes; (b) Portugal: data correspond to public hospitals only [adapted from (99)]. 
 

The extensive consumption of antimicrobials in the clinical setting is not exclusive to hospitals. The 

proportion of antimicrobial consumption for systemic use in the community reported by 26 countries 

(See Figure 2) is even higher than that reported in the hospitals and varied from 11.1 DDD per 1 

000 inhabitants per day, reported in Estonia, to 39.4 DDD per 1 000 inhabitants per day, in Greece 

(99).  
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Figure 2. Distribution by country of antimicrobial consumption for systemic use in the community, in 26 
countries (2010) [adapted from (99)]. 
 

The lowest consumption (< 16.7 DDD per 1 000 inhabitants and per day) was reported in the north 

of Europe, e.g. Scandinavian and Baltic countries and the highest (! 22.4 DDD per 1 000 

inhabitants and per day) in the south of Europe e.g. Greece, Italy and also in Portugal with 22.4. In 

Portugal, the most commonly used antimicrobials were the combinations of penicillins and 

penicillins with extended-spectrum, followed by macrolides and tetracyclines. Portugal was the 

second European countries with the highest consumption of macrolides, just preceded by Italy. 

 
ANTIMICROBIAL RESISTANCE 
The major problem faced presently by clinicians when treating S. aureus infections is the fact that in 

the hospital environment these bacteria are resistant to multiple classes of antimicrobial agents. 

This situation has resulted from a history of 50 years of repeated adaptation of S. aureus to the 
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introduction of different antibiotics into clinical practice. 

 

In the pre-antibiotic era, the mortality rate associated to S. aureus infections was above 80% (328). 

This scenario changed after the occasional discovery by Alexander Fleming in 1928 of penicillin 

(109), later referred to as the first antibiotic of the antibiotic era. With the introdution of penicillin into 

clinical practice, in the early 1940s, an effective treatment was provided in the treatment of bacterial 

infections for the first time in medical history, leading to a dramatic decrease in the mortality and 

morbility associated to S. aureus infections (41, 317). Despite its promising efficiency, ten years 

later, more than 90% (or virtually all) S. aureus became resistant to penicillin (184). Similarly to what 

was observed for penicillin, the development of new antibiotics and its application into clinical 

practice was consecutively followed within just a few years, by the emergence of resistance (See 

Figure 3).  

 

Figure 3. Timeline of antibiotic introduction in the clinical practice and the emergence of antibiotic resistance 
[adapted from (53)].   
 

Antimicrobials target essential bacterial functions as cell wall synthesis (e.g. beta-lactams and 

glycopeptides), protein synthesis (e.g. aminoglycosides, tetracyclines, macrolides, lincosamides, 

chloramphenicol, mupirocin and fusidic acid), nucleic acid synthesis (e.g. quinolones), RNA 

synthesis (e.g. rifampin) and metabolic pathways such as folic acid metabolism (e.g. sulfonamides 

and trimethoprim) (See Table 1). The excessive use of antimicrobials along time usually induces the 
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development of resistance either by the emergence of point mutations or acquisition of foreign 

resistance genes; alteration of the antimicrobial target, degradation of the antimicrobial or redution 

of the antimicrobial concentration inside cell (See Table 1). 
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Table 1. Antimicrobial agent classes, mechanisms of action and resistance [adapted from (8, 348, 395)]. 
 

Antibiotic classes (examples) Mechanism action Resistance type Mechanism of resistance
Beta-lactams Cell wall synthesis: Altered target site Additional  and altered PBPs
(Penicillins, Cephalosporins, 
Carbapenems, Monobactams)

Bind to penicillin-binding proteins (PBPs) and 
inhibit the transpeptidation step in the 
peptidoglycan synthesis stimulate autolysins

Enzymatic degradation Beta-lactamase

Glycopeptides Cell wall synthesis: Altered target site Altered peptidoglycan cross-link target
(Vancomycin, Teicoplanin) Inhibit transglycosylation and

transpeptidation steps in peptidoglycan synthesis - 
bind to D-Ala-D-Ala

Excess of peptidoglycan

Target overproduction
Protein synthesis: Enzymatic modification (AMEs) Phosphotransferase; Adenyltransferase; Acetyltransferase; 

Bifunctional enzyme
Inhibit 30S ribosomal subunits

Inactivation by aminoglycoside – modifying enzymes 
Decreased uptake Changes in outer membrane permeability

Tetracyclines                         
(Tetracycline, Tigecycline)

Protein synthesis: Altered target Production of proteins that bind to the ribosome and alter the 
conformation of the active site 

Inhibit 30S ribosomal subunits

Disrupt bacterial membrane Efflux New membrane transporters
Protein synthesis: Altered target Methylation of ribosomal active site with reduced binding
Inhibit 50S ribosomal subunits

Efflux Mef type pump
Protein synthesis: Enzymatic degradation CAT
Inhibit 50S ribosomal subunits

Efflux New membrane transporters
Mupirocin Protein synthesis: 
(Mupirocin) Inhibit isoleucyl-tRNA synthetase
Fusidic acid Protein synthesis: Altered target Mutation leading to reduced binding to active site(s)
(Fusidic Acid) Inhibit protein synthesis (elongation factor G)

Decreased permeability Chloramphenicol acetyltransferase
Quinolones Nucleic acid synthesis Altered target Mutation leading to reduced binding to active site(s)
(Ciprofloxacin, Norfloxacin, 
Levofloxacin)

Bind DNA gyrase

Efflux New membrane transporters
Rifampin RNA synthesis 
(Rifampicin) Bind to beta-subunit of bacterial RNA polymerase
Sulfonamides/ Trimethoprim 
(Trimethoprim, Trimethoprim-

Metabolic pathways folic acid metabolism Altered target Mutation or recombination of genes encoding DHPS and DHFR

Sulfamethoxazole) Inhibit enzymes responsible for tetrahydrofolate 
production

Acquisition of new low-affinity DHFR genes

Promoter mutation leading to overproduction of DHFR

Altered target Mutations leading to reduced binding to RNA polymerase

Aminoglycosides                   
(Gentamicin, Trobamycin, 
Neomycin, Kanamycin, 
Streptomycin)

Macrolides/Lincosamides 
(Azithromycin, Erythromycin)

Chloramphenicol           
(Chloramphenicol)

Target modification
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Beta-lactam antibiotics: Methicillin 
Among all classes of antibiotics, beta-lactams are considered the gold standard in the treatment of 

S. aureus infections. Beta-lactams act by acylation (inactivating) the active site of the 

transpeptidase of the penicillin-binding proteins (PBPs), preventing cell wall synthesis. 

Resistance to beta-lactam antibiotics was first described for penicillin and was found to be 

associated to the presence of the blaZ gene. This gene can be transported in a plasmid or be 

chromosomally encoded and mediates the production of a beta-lactamase that acts by hydrolyzing 

the beta!lactam ring of penicillin.  

In order to overcome the problem of the penicillin-resistant S. aureus infections, in 1959 a 

semisynthetic antibiotic, resistant to beta-lactamases, was developed - methicillin (originally called 

celbenine) (302). At that time methicillin was believed to be a definitive cure to S. aureus infections. 

However, within only two years (1961), in the UK, the first treatment failure was reported, and 

methicillin-resistant S. aureus (MRSA) emerged (170). Althought currently accumulating resistance 

to other semisynthetic beta-lactams, the designation of MRSA is still extensively used in opposition 

to MSSA (methicillin-susceptible S. aureus). 

The main mechanism associated with methicillin resistance is related with the presence of an extra 

penicillin-binding protein (PBP), named PBP2A (147) with reduced affinity to methicillin and most 

beta-lactams antibiotics. Notwithstanding, other types of resistance to beta-lactams have been 

described in S. aureus, namely the overexpression of the beta-lactamase (118, 227), the presence 

of chromosomal mutations (16, 141, 253) or the overexpression of PBPs (352). 

 

Mechanism of methicillin-resistance 

In the presence of beta-lactams, transpeptidase domain of the four native PBPs (PBP1 to 4) of S. 

aureus is inactivated, and the extra PBP, PBP2A, a peptidoglycan transpeptidase, in cooperation 

with the transglycosylase domain of PBP2, catalyzes the cell wall biosynthesis (147, 333, 357). 

PBP2A is encoded by the mecA gene, which is carried by a heterologous mobile genetic element 

called staphylococcal cassette chromosome mec (SCCmec) (177). More recently, a mecA 

homologue – mecC - was described in a S. aureus strain of animal origin (LGA251) (180); the mecC 

gene has a 69% nucleotide identity with the typical S. aureus mecA. This mecA homologue 

originally named mecALGA251 and later called mecC confers lower levels of resistance to methicillin 

and cefoxitin than mecA, does not amplify with the typical mecA primers, and fails to agglutinate in 
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the PBP slide agglutination tests (119, 320). Since mecC first description, in 2011, several studies 

have reported the presence of this gene in different S. aureus genetic backgrounds of both animal 

and human origin (22, 82, 283), with limited geographic distribution in Europe (22). 

 

SCCmec structure 

SCCmec integrate into the staphylococcal chromosome at a specific site (attB or the integration site 

sequence ISS), within the 3’ end of an open reading frame (orfX) coding for a methyltransferase of 

RlmH type, located near the origin of replication (30, 76, 150).  

SCCmec elements are composed by i) mec gene complex, ii) ccr gene complex and iii) three 

flanking regions, the joining (J) regions. The mec gene complex, besides the mecA gene include 

also intact or truncated mecA regulators, mecI (repressor) and mecR1 (sensor inducer). More 

recently, mecR2 was also identified as a regulator of mecA through binding to the methicillin 

repressor mecI (11). To date five different mec complex classes (A, B, C1, C2 and E) have been 

described in S. aureus according to its structure (See Table 2) (76, 144, 163, 165, 168). The ccr 

complex encodes for recombinases of the invertase resolvase family responsible for mediation of 

site- and orientation-specific integration and excision of SCCmec from the chromosome (168, 177). 

A total of five ccr allotypes have been described: four allotypes containing combinations of ccrA and 

ccrB genes (ccrAB1, ccrAB2, ccrAB3, ccrAB4); and another allotype containing a single gene, ccrC 

(See Table 2). The remaining part of the SCCmec is composed by the very heterogeneous J 

regions (previously called “junkyard” regions) (J1, J2, J3), containing non-essential components and 

genes conferring antibiotic and heavy metal resistance. The J1 region is located between the right 

junction and the ccr complex, the J2 region located between the ccr complex and the mec complex 

and J3 region extends from the mec complex to the orfX.  

SCCmec is classified into types and subtypes. The SCCmec types results from the combination of 

the class of the mec gene complex and the allotype of the ccr gene complex and the variations in 

the J regions are used to define the SCCmec subtypes (237). Currently, eleven different types of 

SCCmec elements (types I-XI) were reported in S. aureus, ranging in size from 20.9 to 66.9 Kb 

(See Table 2). Furthermore, a total of 19 subtypes have been described, namely from SCCmec type 

I (IA), type II (IIa, IIvar, IIb, IIA-E), type III (IIA and IIIB) and from SCCmec type IV (IVa-d, IVg-j) (25, 

51, 163, 167, 192, 215, 237, 272, 404). 
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Table 2. SCCmec types identified in S. aureus (I to XI). 

 

Adapted from http://www.sccmec.org/Pages/SCC_TypesEN.html 

 
In contrast to the SCCmec types IV, V, VI and VII encoding resistance to beta-lactams only, the 

SCCmec types I, II, III and VIII carry additional resistance determinants for other antibiotics and 

heavy metal. This is conferred by the presence of integrating plasmids, like pUB110 encoding for 

resistance to kanamycin, tobramycin and bleomycin, pT181 coding for tetracycline resistance and 

pI258 coding for resistance to mercury; and transposons such as Tn554 carrying the ermA gene, 

which is responsible for inducible macrolide, lincosamide and streptogramin (MLS) resistance (168). 

In a single event the acquisition by S. aureus of these SCCmec types, gives rise to a multidrug 

resistant (MDR) bacteria.  

 
Non beta-lactam antibiotics: Vancomycin 
Throughout the past years, antimicrobials commonly used to treat MRSA infections were 

vancomycin and teicoplanin, tetracyclines, clindamycin, quinolones and fusidic acid, or the more 

recently released antibiotics linezolid, daptomycin, tigecycline, telavancin and ceftaroline. However, 

MRSA have progressively become resistant to a number of antimicrobials, including clindamycin 

and tetracycline (143). Based on antimicrobial resistance surveillance in Europe, in 2012, that 

included 29 countries, a high percentage of resistance to fluoroquinolone (81%) was registered 

among MRSA in invasive disease (97). Resistance was also noticed, although in lower frequency, 

SCCmec 
type

SCCmec 
size (Kb)

ccr gene complex 
(ccr genes)

mec gene 
complexes

Prototype strains

I (1B) 34.3 type 1 (A1B1) B NCTC10442, COL

II (2A) 53.0 type 2 (A2B2) A N315, Mu50, Mu3, MRSA252, JH1, JH9

III (3A) 66.9 type 3 (A3B3) A 85/2082

IV(2B) 20.9-24.3 type 2 (A2B2) B CA05, MW2, 8/6-3P, 81/108, 2314, cm11, 
JCSC4469, M03-68, EMRSA-15, JCSC6668, 
JCSC6670

V (5C1) 28.0 type 5 (C1) C2 WIS(WBG8318), TSGH17, PM1

VI (4B) 20.9 type 4 (A4B4) B HDE288

VII (5C1) 33.3 type 5 (C1) C1 JCSC6082

VIII (4A) 33.7 type 4 (A4B4) A BK20781

IX (1C2) 44.3 type 1 (A1B1) C2 JCSC6943

X (7C1) 51.5 type 7 (A1B6) C1 JCSC6945

XI (8E) 29.4 type 8 (A1B3) E LGA251
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to rifampicin (5.7%) and linezolid (0.2%). 

Historically, glycopeptides, in particular vancomycin, has been considered the antibiotic of last 

resort and the gold standard antimicrobial for the treatment of serious MRSA infections. However, 

the occurrence of intermediate (VISA), and high level of resistance (VRSA) in S. aureus has already 

been reported since the last 1990s and early 2000, respectively. 

The first VISA was reported almost 20 years ago in Japan in 1997, and several other strains were 

described afterwards (149) in the USA (321, 322, 331), China (407), India (133) and Europe, 

including Portugal (120). 

On the other hand, in 2002, the first report of a fully vancomycin-resistant S. aureus was described 

in a renal dialysis patient in Michigan, USA (21). Since then, the dissemination of VRSA has been 

limited, with a total of 15 reported and confirmed cases, namely in the USA (n=13), Brazil (n=1) and 

also in Portugal (n=1) (110, 121, 233, 250, 287, 305, 323, 349, 382, 388). Although not spreading 

significantly worldwide, the increasing reports of VRSA should be seen as a warning. 

The problem of S. aureus developing multiple antimicrobial resistance lead to the limitation of 

treatment options, emphasizing the urgent need for the development of novel therapeutic strategies 

to target this pathogen. 

 
NEW THERAPEUTIC STRATEGIES 
Nowadays, although antibiotic resistance is one of the highest public health concerns, there is a 

disinvestment of pharmaceutical companies in the development of new antimicrobials (113). 

Several approaches to induce a protective immunity against S. aureus have been made (291), 

however vaccine development has repeatedly failed (68). New approaches not based in the 

interference with bacterial cell growth and survival, but rather in virulence mechanisms of S. aureus 

have been developed. Compounds acting against biofilm formation (216) or targeting the alpha-

hemolysin (Hla) and phenol-soluble modulins (PSMs), two important S. aureus virulence factors, are 

being evaluated as possible therapies. Moreover natural compounds, such as honey, has been also 

explored, demonstrating antimicrobial activity against MRSA forming biofilm (235). 

2. Typing methods used to characterize S. aureus 
Numerous phenotypic and genotypic typing methods have been developed in the past 50 years to 

characterize S. aureus. However, along time, phenotypic methods have been gradually replaced by 

molecular typing techniques, which have been shown to have more ability to distinguish the 



Chapter I 
 

 
22 

epidemiological related and unrelated isolates and have been used in long-term and short-term S. 

aureus epidemiological studies. 

Molecular typing methods can be divided in two types: “band-based‘ and “sequence-based”. The 

band-based methods are methods where the variations in nucleotide sequence are detected 

indirectly by primer-binding and/or retriction sites (e.g. Pulsed Field Gel Electrophoresis (PFGE)), in 

contrast to the sequence-based methods where the precise order of nucleotides is determined and 

DNA sequence variations evaluated (e.g. Multilocus Sequence Typing (MLST), S. aureus protein A 

(spa) typing, Amplified Fragment Length Polymorphism (AFLP), Multiple Locus Variable Number of 

Tandem Repeat Analysis (MLVA), Random Amplified Polymorphic DNA (RAPD)). The sequence-

based methods have the advantage over the band-based typing methods of enabling data 

interchangeability and reproducibility in a much easier way (116).  

The choice of the most appropriate typing method is highly dependent on the scientific question that 

needs to be addressed. Usually outbreak situations demand more discriminatory methods and 

global epidemiology less discriminatory methods. An excellent molecular typing method should 

have an adequate discriminatory power, be highly reproducible, easy to perform and to interpret, 

generate interchangeable data, be inexpensive and not time consuming (336, 362).  However, since 

no single method meets all these criteria, a strategy based on the combination of different typing 

methods for the molecular characterization of S. aureus has been established. This includes the 

characterization of isolates by Pulsed-Field Gel Electrophoresis (PFGE), Multilocus Sequence 

Typing (MLST), spa typing and SCCmec typing, in the case of MRSA (4). In addition, high 

throughput whole genome sequencing (WGS) emerged recently as a useful tool to type S. aureus, 

having the highest discriminatory power possible (188, 399). 

 

PULSED-FIELD GEL ELECTROPHORESIS (PFGE) 
Among the band based typing techniques, PFGE has bee considered the "gold standard" method in 

the molecular characterization of S. aureus clones (226). PFGE is based on the restriction of the 

chromosomal DNA by a restriction enzyme that cuts infrequently the DNA; in the case of S. aureus 

the most frequently used enzyme is the SmaI (346). After restriction of total DNA around 10 to 30 

fragments are generated, ranging from 10 to 700 Kb. These fragments are resolved in a special 

electrophoresis apparatus where the orientation and duration of the electric field is changed 

periodically (“pulsed”), rather than submitted to a constant field as in conventional electrophoresis. 
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The interpretation of the resultant band patterns can be performed visually or automatically, using 

diverse software programs able no only to interpret PFGE band pattern but also to perform 

phylogenetic analysis e.g. BioImage (BioImage Corp., Ann Arbor, MI), GelCompar (Applied Maths, 

Sint-Martens-Latem, Belgium) Molecular Analyst Fingerprinting Plus (Bio-Rad, Hercules, California, 

USA) and BioNumerics (Applied Maths Sint-Martens-Latem, Belgium).  

PFGE detects the gain and loss of enzyme recognition sites, which are associated to large size 

variations in the chromosome, namely duplications, deletions and insertions. The high frequency of 

these events renders this technique especially suitable for short-term or local epidemiology 

(outbreak) and not adjusted for long-term molecular evolution (346). 

 In spite of its utility mainly for infection control situations, PFGE is technically demanding and time 

consuming. Moreover, data interpretation is complex, not reproducible, making it difficult to 

standardize and to exchange between laboratories (363). 

 

STAPHYLOCOCCUS AUREUS PROTEIN A (spa) TYPING 
Spa typing, which is based on the sequencing of the polymorphic X region of the S. aureus protein 

A gene was the first sequence-based typing method used in the characterization of S. aureus (114, 

319). The polymorphic region is composed of a variable number of short repeats (24 bp), ranging 

from 1 to 23 repeat units. This diversity in the X region of the gene is attributed to deletions, 

duplications and also point mutations (173, 319).  

Nowadays, the standardized international nomenclature established for spa typing is the RIDOM. 

An online database for spa types deposit was built in SpaServer database 

(http://spaserver.ridom.de), implemented by an European wide-network (SeqNet.org) that includes 

60 laboratories from 29 European countries. The spa sequences are usually analyzed using the 

StaphType software (Ridom GmbH, Wurzburg, Germany), which is synchronized with the 

SpaServer database. To each different 24 bp repeats a number is assigned and a sequence type is 

attributed to each dfferent repeat profile (e.g. the spa type repeats succession 26-30-17-34-17-20-

17-12-17-16 is defined as spa-type t001). Furthermore, the evolutionary relatedness between 

different spa types can be analyzed using the based upon repeat patterns (BURP) algorithm 

implemented in the StaphType software, which defines clusters or clonal complexes (CC). 

Currently, spa typing is the most useful technique in the characterization of S. aureus, since it 

combines cost effectiveness, short time performance, high reproducibility and full portability (116). 
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Moreover, due to the repeat structure of X region, it simultaneously reveal micro- and 

macrovariations, enabling the use of spa typing in both local (outbreaks) and global epidemiological 

studies, in this case usually complementated with other typing methods (187, 270). Nevertheless, 

since spa typing is based on a single locus, it has a relatively low discriminatory power (337).  

 

MULTILOCUS SEQUENCE TYPING (MLST) 
Multilocus sequence typing was proposed for the first time in 1998 as a sequence-based method for 

the identification of clonal relatedness among bacteria (217). Two years later, MLST was described 

for molecular typing of S. aureus isolates by Enright and colleagues based on the sequencing of an 

internal region (450-500 bp) of seven housekeeping genes scattered over the chromosome 

[carbamate kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase (glpF), guanylate 

kinase (gmk), phosphatase acetyltransferase (pta), triosesphonate isomerase (tpi) and acetyl 

coenzyme A acetyltransferase (yqiL)) (102). 

These sequences can then be submitted to a large public database (http://saureus.mlst.net/) where 

to each different gene sequence a distinct allele number is assigned and to each allelic profile, a 

sequence type (ST) is attributed (e.g. MLST profile 3-3-1-1-4-4-3 defined as ST8). The genetic 

relatedness between isolates can be obtained by comparison of allelic profiles using the eBURST 

(based upon related sequence types) algorithm (http://saureus.mlst.net/eburst) (108). The 

eBURST analysis clusters together closely related STs into MLST clonal complexes (MLST-CC), 

where the founder ST is the ST that became the most predominant and has diversified by point 

mutation or recombination producing other related STs, differing in one or up to seven loci. STs 

differing in a single locus are designated as single locus variant (SLV) (108). Nowadays, the third 

version of eBURSTv3 is available and more recently a similar tool, the goeBURST (global optimal 

eBURST) (http://goeburst.phyloviz.net/) was developed as an improvement of eBURST, with 

different display options and containing a different algorithm (Kruskal algorithm) aiming to solve the 

problem of finding the optimal forest based - starting with a forest of singleton trees (each ST is a 

tree), the optimal forest is built by iteratively selecting links connecting STs in different trees and 

with the highest number of SLVs (111). 

MLST provides information about S. aureus lineage or genetic background, and has been used for 

long-term surveillance as well as evolutionary studies (102, 107). Like spa typing, MLST generates 

accurate and reproducible data, a consequence of the internationally standardized nomenclature 
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deposited in a curated and updated database. Notwithstanding, MLST is costly and time consuming 

and has a low discriminatory power resultant from the fact that only housekeeping genes are 

screened, making this technique appropriate for long-term epidemiological studies (337). 

 

STAPHYLOCOCCAL CASSETTE CHROMOSOME MEC (SCCmec) TYPING 
The staphylococcal cassette chromosome mec (SCCmec) typing is essential for MRSA typing, 

since presently clone definition for this microorganism is based on the combination of the genetic 

background as defined by MLST and SCCmec type. 

Since the first description of SCCmec in 1999 (166), a considerable number of strategies have been 

developed along side with the new SCCmec types descriptions, attempting to determine the 

structure of these elements (31, 151, 186, 237, 271, 405). Nearly all strategies rely on multiplex 

PCR strategies, where SCCmec elements are classified into types and subtypes. The SCCmec 

types are defined based on the combination of the type of ccr gene complex and the class of the 

mec gene complex. The SCCmec subtypes are determined based on the polymorphisms found in J 

regions, within the same SCCmec type. 

Oliveira and De Lencastre described the first multiplex PCR strategy developed to detected 

SCCmec types I to IV (271). Five years later, Milheirico et al developed an improved update of 

these multiplex PCR, where SCCmec type I to IV typing scheme was optimized and the detection of 

two additional SCCmec types V and VI was included (237). Almost simultaneously, Zhang et al. 

have described a complex method for SCCmec I to V typing and SCCmec IV subtyping (405) 

however the proposed approach was too laborious since four separate multiplex reactions were 

needed. Other multiplex strategies were developed namely by Hisata et al, Kondo et al and Boye et 

al, however none of these approaches fulfilled all requirements for an optimal typing scheme (31, 

151, 186). 

Nowadays, the multiplex strategy described by Milheirico et al is extensively used in the SCCmec 

typing of MRSA (237). Notwithstanding, this strategy does not include the determination of SCCmec 

types VII to XI, or other variants that may be identified in the future, evidencing the need of constant 

updating of typing schemes.   

The increased importance of SCCmec type IV during the last years due to the emergence of MRSA 

in the community has increased the need for the classification of the variants within this type of 
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cassette. Therefore, a multiplex PCR assay was developed to distinguish between SCCmec types 

IVa to IVh, based on the PCR amplification of six specific loci within the J1 region (237). 

More recently, a nomenclature for SCCmec types was proposed by the IWG-SCC (International 

Working Group on the Staphylococcal Cassette Chromosome elements) (163) 

(http://www.sccmec.org/Pages/SCC_HomeEN.html), based on the type of ccr gene complex and 

class of mec gene complex in alternative to the former Roman numbers (i.e. type I (1B), indicating 

an SCCmec harboring a type 1 ccr gene complex and a class B mec gene complex). 

 

CLONE DEFINITION 
MRSA clone definition, recommended nowadays by HARMONY the International Union of 

Microbiology Societies' European Staphylococcal typing network, a society that was created with 

the aim of normalizing and standardizing S. aureus typing methods, is based on the combination of 

MLST and SCCmec typing as a reference typing system (60). Accordingly, MRSA clones have been 

nowadays commonly defined based on its “original name”, according to the geographic location 

they were firstly isolated, together with the combination of genetic background and SCCmec type 

(MLST-SCCmec) e.g. Brazilian clone (ST239-III) (86, 103, 299). However, in particular cases, the 

inclusion of additional molecular information like the spa type or specific virulence markers, as 

ACME and PVL, may help to facilitate the definition of clones. 

 

WHOLE GENOME SEQUENCING (WGS) 
Conventional typing methods have been successfully used for S. aureus epidemiological studies, 

but they provide a limited discriminatory power. In whole genome sequencing (WGS) analysis the 

complete nucleotide sequence is determined, with maximum resolution, at a single nucleotide level. 

The general workflow of sequencing is based on sample preparation, DNA sequencing, sequence 

assembly and bioinformatics analysis. 

 

First generation sequencing was developed in 1977 by Frederick Sanger and was based on 

capillary electrophoresis. Almost 30 years after (2004), the Sanger sequencing was replaced by 

high-throughput sequencing, the second generation or next generation sequencing (NGS). NGS 

parallels the sequencing process producing thousands or millions of sequences, with much lower 

costs and increasing capacity, when compared to Sanger sequencing. Different sequencing 
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platforms are currently available, namely Illumina, Roche 454 and SOLiD. More recently, the first 

bench sequencers were developed, including Illumina MiSeq, Ion Torrent Personal Genome 

Machine and the GridION mainly for use in the clinical environment. After sequencing, the sequence 

data reads are assembled de novo or assembled against a reference sequence, into contiguous 

DNA sequences (contigs). 

As a research tool, WGS already demonstrated feasibility in staphylococcal studies, providing 

insights into the emergence, spread, evolution and dynamics of S. aureus (135, 224, 252, 290, 373, 

399), showing sufficient discriminatory power to reconstruct intercontinental and local transmission 

of MRSA lineages (146) and also predicting antimicrobial resistance (188) and disease phenotypes 

(223, 399). Moreover, WGS was also used with clinical proposes, in the analysis of MRSA 

outbreaks (146, 188).  

WGS is becoming less expensive, with lower sample preparation time and provides a massive 

amount of data. Although, nowadays specialized bioinformaticians are still necessary for data 

interpretation, friendly software is being developed that will allow to extract information, like ST, spa 

type, SCCmec type and presence of antimicrobial resistance and virulence genes in an almost 

authomatic way. 

 

3. Molecular epidemiology of S. aureus 
3.1. Methicillin-susceptible S. aureus (MSSA)  
MSSA as commensal and pathogen 

Over the years, most of the epidemiological studies in S. aureus have been focused on MRSA 

because of their high pathogenic potential and complexity of clinical treatment. The molecular 

epidemiology of methicillin-susceptible S. aureus (MSSA) has been less studied despite MSSA 

being frequently found as cause of infections both in the healthcare setting (69, 94, 264, 282) and in 

the community (83, 351). 

 

MSSA in hospitals and community  

Until the mid 1990s, MSSA were a common cause of both serious and uncomplicated S. aureus 

infections among healthy individuals in the community, whereas MRSA were confined to the 

hospital setting. The epidemiology of infection changed in the late 1990s when MRSA emerged in 

the community as a causative agent of skin and soft tissue infections (SSTIs) in otherwise healthy 
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individuals, becoming in some cases endemic and more prevalent than MSSA, as observed in the 

USA (112, 181, 248). Of interest, in the USA, in the era of epidemic CA-MRSA, the MSSA played a 

reversed role relative to MRSA, where MSSA assumed the role of a nosocomial pathogen and CA-

MRSA was predominant cause of infections in the community (69). This same discrepancy was 

observed in the USA, in recent study conducted in five academic medical centers, where MSSA in 

invasive disease account for 14.3% of all S. aureus comparing with 10.2% of MRSA (71). 

In Europe, the frequency of MSSA in invasive disease in hospitals increased from 2005 to 2008 

(3.4% per year; 95% CI 3.0–3.7) (74), calling the clinicians attention for the importance of MSSA as 

a pathogen. In a Spanish Hospital, MSSA accounted for over 67.9% of the S. aureus isolates (13).  

 

Relatedness of MSSA from hospital and community 

Evolutionary studies have identified genetic relationships between MSSA with hospital and 

community origin (102, 194). In Portugal, no significant differences were observed in the distribution 

of the MSSA established in the community and in the hospitals, with 16 out of 20 clones found in 

both settings, including the four major clones (CC30, CC45, CC5 and CC8) (3). In agreement with 

this, several genetic backgrounds found in young healthy carriers in the community in Spain were 

also identified in different hospitals (12, 13). In this study, in both environments, CC5 was clearly 

predominant followed by CC30, CC45, CC8 and CC15.  

 
MSSA and PVL 

The prevalence of MSSA carrying Panton Valentine leukocidin (PVL) in invasive disease varies in 

different countries (137)(http://www.spatialepidemiology.net/srl-maps/). An alarming high prevalence 

of PVL (>35%) was described among MSSA clinical isolates in several African countries, like Cape 

Verde Islands, Cameroon, Madagascar, Morocco, Niger, and Senegal (6, 34). The prevalence of 

MSSA carrying PVL in the remaining countries appears to be variable. In a Spanish hospital PVL 

prevalence increased from 0% in 2002 to 36.4% in 2006/2007 (13, 66, 286). In Portugal, MSSA 

carrying PVL showed a high frequency (34.2%) associated with SSTIs in children attending a 

pediatric emergency department of a central hospital in Lisbon (57). But in USA and France, among 

SSTIs, the PVL positive MSSA showed a wide range of prevalence ranging from 12% to 93% (202, 

213, 248, 274).  

MSSA were found to cause mild infections as SSTIs, but also severe forms of necrotizing 
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pneumonia in otherwise healthy children and young adults in the community (124, 202, 350). The 

clinical relevance of MSSA in the community appears to be strongly associated with the presence of 

PVL. But like in the hospital environment, the prevalence of community associated infections 

caused by MSSA carrying PVL can vary widely, raging from 2% to 17% (e.g. USA and China) (159, 

202, 274, 343). 

Concerning MSSA colonization in the community, the prevalence of MSSA carrying PVL was 

relatively low 0.5-1.5% in the USA and China (191, 232) in comparison with the high prevalence 

(>35%) described in Africa, namely Cape Verde (6) and Mali (309) and in Indonesia (16%) (83).  

 

MSSA genetic diversity  

S. aureus population in humans consists of about ten dominant lineages and several minor 

lineages. The dominant human lineages of S. aureus are often referred to by their MLST clonal 

complex (CC). They are CC1, CC5, CC8, CC12, CC15, CC22, CC25, CC30, CC45 and CC51 

(107).  

Although only a limited number of clonal types among the MSSA population gave rise to the 

worldwide epidemic MRSA clones, through SCCmec acquisition, no clear information exist on the 

real frequency of SCCmec acquisition by MSSA (42, 84, 103). It is now established that the 

population structure of MSSA is genetically more diverse than that of MRSA (137), although the 

precise extension of this diversity is uncertain. Few data exist on the population structure of MSSA, 

their relationship with MRSA and associated virulence factors. 

Despite the high genetic diversity of the MSSA, four major clonal complexes seem to be 

predominant in the USA and Europe, although with different significance, namely CC30, CC5, CC8 

and CC45 (3, 12, 13, 236, 296) indicating the presence of pandemic MSSA lineages, described long 

time ago (84, 103, 130). On the other hand, different predominant MSSA lineages were reported in 

Asia (CC45, CC25, CC121, CC59 and CC188)  (45) and Africa  (CC1, CC15, CC30, CC121 and 

CC152) (34).  

In Portugal, only a study focusing in MSSA population was performed; the results showed that for 

almost 15 years (1992 to 2001), the four major MSSA clones were ST30-t012 and ST34-t166 

(CC30), ST5-t002 (CC5) and ST45-t330 (CC45) in both, hospital and community settings (3).  
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Relatedness of MSSA and MRSA  

Due to their epidemiological importance, MSSA has been extensively compared with MRSA. 

Goering and colleagues have shown in a global clinical trial in 10 countries that a considerable 

overlap exist between MSSA and MRSA genetic backgrounds of the 292 isolates obtained from skin 

infections in the community (127). Moreover, David et al demonstrated that the overlap in the MLST 

genotypes of MSSA and MRSA of both community and hospital origin, from patients seeking care 

for infections in the USA, fell into five STs: ST5, ST8, ST1, ST30 and ST59 (69) all common MRSA 

genetic backgrounds in various regions of the world. In the United States, several studies 

addressed the relationship between circulating MRSA and MSSA associated with colonization (40, 

213, 347), SSTIs (213, 240), and infections among children (244). In all studies a considerable 

overlap was observed between MSSA and MRSA populations. As recently demonstrated by Miko et 

al in a study where invasive and SSTIs MSSA isolates from reference laboratories from each USA 

Census region, the two most prevalent MSSA clones (ST5-t002 and ST8-t008) found were related 

with the most two predominant MRSA clones found nowadays in the USA (236). In Portugal, the 

MSSA population recovered from infection and colonization in both community and hospital settings 

(ST30, ST34, ST5, and ST45) was scarcely or not related with the MRSA population found at the 

same time period in the Hospitals (ST239, ST247, ST22, ST5) (3). The same scenario of lack of 

relatedness between MSSA and MRSA was observed in Africa (34). In Cameroon, Madagascar, 

Morocco, Niger and Senegal, 58% of MSSA isolates from infection belonged to five major MSSA 

clones CC121 (ST121-t314), CC15 (ST15-t084), CC1 (ST1851(SLVST1)-t127) and CC152( ST152-

t355) (34), where none was related with the most successful MRSA clones found in the same time 

period, particularly ST239/241-III. Also in Taiwan, most MSSA lineages (ST1, ST6, ST7, ST12, 

ST188, and ST97) have a different genetic background when compared with the local (44, 45, 379) 

and worldwide MRSA (127). The only common genetic background found among MSSA and MRSA 

was ST59, related with an epidemic community-associated MRSA clone found in Taiwan (44, 379). 

 

MSSA and MRSA virulence  

There is a longstanding debate about whether MRSA is more virulent than MSSA.  Some 

epidemiological studies have shown that MRSA are more virulent than MSSA (62, 197). Recently, a 

report on the prevalence of pneumonia among hospitalized children in Hawaii revealed that patients 

infected with MRSA more frequently developed pulmonary complications than MSSA patients (197). 
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Also, longer periods of hospitalization were described in children with osteomyelitis resultant from 

MRSA with community origin, when compared with osteomyelitis caused by MSSA (222). Moreover, 

higher mortality rates were associated with MRSA infections when comparing with MSSA (62, 67, 

387). However, the opposite was also reported, where MSSA was associated to more severe 

infections than MRSA or, on the other hand, where no significant difference in virulence between 

the two was observed. David and colleagues suggested possible “reversal role” of MSSA, where in 

transplant patients from a large academic hospital in the USA, was observed that MSSA more 

frequently was associated with bacteremia, endocarditis, and sepsis than MRSA (69). Also Kaplan 

and colleageous, in a three-year surveillance at the Texas Children’s Hospital, documented a higher 

percentage of MSSA (8.2%) than MRSA (4.4%) in invasive disease (175).  

 
MSSA population structure overtime 

Few studies reported MSSA population structure over time. A structured survey was performed 

where population structure and distribution of PVL positive MSSA and evolutionary history over time 

was assessed. The MSSA isolates were selected from the collection of the French National 

Reference Center for Staphylococci representing five continents (19 countries) over nearly 3 

decades (from 1981 through 2007) (293). In France, the MSSA population changed drastically from 

1981 through 2007. Until 2000, MSSA isolates ST80 were absent, and from 2001–2005 emerged 

and accounted for 15.6% of isolates collected, afterwards during 2006–2007, ST80 became the 

most frequent ST (27.8%). Conversely, ST121 accounted for 56.3% of isolates collected before 

1990 and decreased to 30.8% in 1991–2000, 13.3% in 2001–2005, and to 0% after 2005. In 

another study, Nulens and colleagues reported between 1999 and 2006 the presence of an 

endemic MSSA population (CC5, CC8, CC22, CC30, and CC45) in invasive disease in a Belgium 

Hospital (264). In Portugal only one study addressed the evolutionary history of MSSA along almost 

a decade (1992-2001), where the authors observed a stable predominance of CC30, CC5, CC45, 

and CC8 over time (3). 

 
Continuous surveillance of MSSA is important for the understanding of the dynamics of MSSA 

population, and to anticipate the emergence of MRSA clones, both in the community and in the 

hospital. 
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3.2. Methicillin-resistant S. aureus (MRSA) 
Hospital-associated (HA)-MRSA  
Prevalence and trends  

Healthcare-associated (HA) infections have been defined as infections developed in the hospitals 

(122, 154). Accordingly, HA-MRSA are typically defined as MRSA causing infections in inpatients or 

in individuals that were not colonized or infected with MRSA at hospital admission and that 

developed infection after 48h or more of hospitalization (http://www.cdc.gov/mrsa/). 

Between 1997 and 2003 SENTRY Antimicrobial Surveillance Program reported that the worldwide 

HA-MRSA prevalence varied from as high as 67% in Japan to rates of 36% in the USA, 29% in 

Latin America, 23% in Australia, and 23% in Europe (24, 90, 243). Based on the last report (2012) 

from the European Antimicrobial Resistance Surveillance Network (EARS-Net) (97), the actual 

MRSA prevalence in Europe in invasive disease is about 17.8%. Notably, HA-MRSA prevalence 

varies broadly from country to country, ranging from lower than 5% in northern European countries 

[Sweden (0.7%), Norway, Netherlands and Denmark (1.3% each), Iceland (1.7%) and Finland 

(2.1%)] to 53.8% and 53.9 in Portugal and Romania, respectively.  

The HA-MRSA trends in Europe for the period 2009–2012 indicate that MRSA are decreasing in 

most European countries, as observed in Belgium, Croatia, France, Germany, Hungary, Ireland and 

the UK. However, in other countries such as Portugal, Poland, and Romania MRSA prevalence 

increasead significantly during this period. The decreasing (or stabilizing) tendency is consistent 

with what has been reported in recent years from European national surveillance programmes and 

local reports (74, 172). This positive trend may be seen with caution since the prevalence of MRSA 

is above 25% in almost one third of countries, particularly in Southern and Eastern European 

countries (Romania, Portugal, Malta, Greece, Cyprus, Italy and Poland). 

In Portugal, HA-MRSA prevalence in invasive disease has increased over time, from 31.9% in 2001 

to 53.8% in 2012 (97). Two MRSA decreasing prevalence periods in Portugal were registered, one 

in 2008-2009 from 52.9% to 49.1% and the other, more recently, in 2011-2012 from 54.6% to 

53.8%, however these decreases were not statistically significant. Moreover, a national report from 

Direcção Geral de Saúde (DGS, Portugal) from 2012, including 43 Portuguese hospitals from which 

a subset of isolates were included in the European project EARS-Net/ECDC, denote even higher 

MRSA rates, where among the 243 S. aureus causing hospital associated infections, 73.7% were 
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MRSA (88). 

On the other hand, in the USA, MRSA in invasive infections have also become a serious problem, 

where a continuous increase in prevalence over a 10-year period (1998-2007) from 32.7% to 53.8% 

was reported (234). 

 

MRSA origin and evolution  

The origin and evolution of MRSA has been debated for long. The relationship between the first 

MRSA and successive MRSA clones was first explained based on the “single clone theory”, where 

the authors suggested that the extant MRSA clones have a common MRSA ancestor, resultant from 

single SCCmec introduction event into an MSSA (189). Later, the “multiclone theory” was proposed, 

which is nowadays the most widely accepted, where pandemic MRSA clones were suggested to 

have emerged from the SCCmec introduction into several distinct MSSA precursor lineages (103, 

130, 263). This was clearly shown by Enright and colleagues while analyzing S. aureus recovered in 

20 countries, between 1961 and 1999, where the authors found that different S. aureus clones were 

associated to a specific genetic background-SCCmec element combination (103). This study 

estimated that MRSA has emerged at least 20 times as a result of de novo SCCmec acquisition 

(263, 298).  

MRSA have shown to be higly clonal, represented by a limited number of human-associated 

lineages, the CC1, CC5, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC45 and CC51 (107). 

Among these, five main lineages CC5, CC8, CC22, CC30 and CC45 are the most successful, and 

have become disseminated worldwide in the hospitals settings (103, 273, 298). 

 

Molecular epidemiology of HA-MRSA  

Some authors described the evolutionary history of S. aureus as waves of antimicrobial resistance. 

The first wave occurred in the mid 1940s, with the emergence of penicillin-resistant S. aureus [(20, 

182) cited by (42)]. By the early 1950s, the penicillin-resistant S. aureus, represented by phage type 

80/81 clone, become pandemic causing infections in both hospitals and community [(307) cited by 

(78)]. Pandemic phage type 80/81 largely disappeared nowadays, but the prevalence of the 

penicillinase-producing S. aureus has remained very high.  

The second wave occurred when the first MRSA was isolated in a patient at Colindale Hospital 

(London, UK) in 1961, only two years after the introduction of methicillin, a semisynthetic beta-
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lactamase resistant penicillin developed to treat penicillin-resistant S. aureus infections (170). This 

was a hallmark in S. aureus epidemiology, and the beginning of a major global public health 

concern – the  “MRSA era”. This first hospital-associated (HA-MRSA), was the archetypal COL 

strain, belonging to the so-called Archaic clone (ST250-I) (75, 103) which is part of CC8. The 

Archaic clone was described until the 1970s circulating in hospitals throughout Europe (64), but was 

seen rarely in the rest of the world, and in the 1980s virtually disappeared (138). This event marked 

the end of the second and the beginning of the third wave of antibiotic resistance. 

In the third wave, descendants of the archaic MRSA clone, belonging to CC8 emerged, e.g. the 

Iberian clone (ST247-IA) reported in Spain in 1989 (95), the Brazilian clone (ST239-IIIA) described 

in Brazil in 1992 (64, 345), and the Portuguese clone (ST239-IIIvar) widely spread in Portugal in the 

mid 1980s and early 1990s (5) (See Table 4). The international scenario was dominated by this 

CC8 epidemic HA-MRSA clones until the end of 1990s. 

This was followed by a period where other highly successful MRSA clones belonging to other 

genetic backgrounds emerged, including some of the nowadays most dominant worldwide MRSA 

pandemic clones (see Table 3): i) the New York/Japan clone (NY/JP) (ST5-II) and the Paediatric 

clone (ST5-VI/IV) belonging to CC5, described in USA in 1998 (226) and in Portugal in 1992 (311), 

respectively; ii) the EMRSA-15 clone (ST22-IVh) belonging to CC22, in the UK in 1993 (171) ; iii) 

the EMRSA-16 clone (ST36-II) belonging to CC30, described in the UK in 1993 (171) and iii) the 

Berlin clone (ST45-IV) belonging to CC45, first reported in Germany in 1993 (381, 391). 
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Table 3. Molecular characterization and geographical distribution of the major HA-MRSA [adapted from (38, 85, 86)]. 

 
Africa: Alg- Algeria; Gab- Gabon; SA- South Africa; Uga- Uganda. The Americas: Arg- Argentina; Bra- Brazil; Can- Canada; Chi- Chile; Col- Colombia; Mex- Mexico; Par- Paraguay; Uru- Uruguay. Asia: Arm- Armenia; Chn- China; Est- 
Estonia; Ind- India; Ids- Indonesia; Isr- Israel; Jap- Japan; Jor- Jordan; Kor- Korea; Kuw- Kuwait; Lat- Latvia; Leb- Lebanon; Mon- Mongolia; RoG- Republic of Georgia; Rus- Russia; Saud- Saudi Arabia; Sin- Singapore; Sri- Sri Lanka; Tai- 
Taiwan; Tha- Thailand; Vie- Vietnam; Oceania: Ast- Australia, NZ- New Zealand. Europe: Aus- Austria; Bel- Belgium; Bul- Bulgaria; Cro- Croatia; Cyp- Cyprus; Cze- Czech Republic; Den- Denmark; Fin- Finland; Fra- France; Ger- Germany; 
Gre- Greece; Hun- Hungary; Ice- Iceland; Ire- Ireland; Ita- Italy; Mal- Malta; Net- Netherlands; Nor- Norway; Pol- Poland; Por- Portugal; Rom- Romania; SR- Slovak Republic; Slo- Slovenia; Spa- Spain; Swe- Sweden; Swi- Switzerland. CC: 
clonal complex; HA: hospital acquired; MRSA: methicillin-resistant Staphylococcus aureus; ST: sequence types; SCCmec: Staphylococcal Cassette Chromosome mec. Spa types obtained using the Ridom.  

Epidemic Clones CC ST-SCCmec spa Type Geographical Spread 
COL, Archaic 8 t008, t009, t194 Colindale (UK), Uga, Can, US, Ast, Den, 

Ger, Swi, UK 

Iberian, EMRSA-5, Rome ST247-I t008, t051, t052, t054, t200 US, Isr, Aus, Bel, Cro, Cze, Den, Fin, Fra, 
Ger, Hun, Ita, Net, Nor, Pol, Ger, Slo, Spa, 
Swe, Swi, UK

Brazilian, Hungarian ST239-III(A) t030, t037, t234, t387, t388 Alg, Arg, Bra, Can, Chi, Par, Uru, US, Chn, 
Ind, Ids, Kor, Mon, RoG, Rus, Saud, Sin, Sri, 
Tai, Tha, Vie, Ast, Aus, Cze, Den, Fin, Ger, 
Gre, Hun, Net, Nor, Pol, Ger, Slo, Spa, Swe, 
UK  

New York/Japan (NY/JP) or USA100  ST5-II t001, t002, t003, t010, t045, 
t053, t062, t105, t178, t179, 
t187, t214, t311, t319, t389, 
t443   

Can, Mex, Uru, US, Chn, Isr, Jap, Kor, SA, 
Saud, Sin, Tai, Ast, Bel, Den, Fin, Fra, Ger, 
Hun, Ire, Nor, Ger, Swe, Swi, UK  

Paediatric or USA800 ST5-IV/ V t001, t002, t003, t010, t045, 
t053, t062, t105, t178, t179, 
t187, t214, t311, t319, t389, 
t443   

Arg, Par, Jap, Tai, Den, Ger, Nor, Pol, Ger, 
Slo, UK, Alg, Arg, Bra, Col, Uru, US, Kor, Tai, 
Ast, Aus, Den, Fin, Fra, Ger, Gre, Nor, Pol, 
Ger, Spa, Swe, UK  

 VISA,  hVISA ST5-II VISA/hVISA-II t002 Jap, Chi, Braz, Por

EMRSA-15 22 ST22-IVh t005, t022, t032, t223, t309, 
t310, t417, t420 

Can, Chn, Kuw, Sin, Ast, NZ, Aus, Bel, Cze, 
Den, Fin, Ger, Hun, Ire, Mal, Nor, Ger, Spa, 
Swe, UK

EMRSA-16 or USA200  30 ST36-IV t018, t253, t418, t419 Can, Mex, US, Ast, Aus, Bel, Den, Fin, Ger, 
Gre, Ire, Nor, Ger, Spa, Swe, Swi, UK 

Berlin or USA600 45 ST45-IV t004, t015, t026, t031, t038, 
t050, t065, t204, t230, t390 

Arm, Chn, Isr, US, Ast, Aus, Bel, Den, Fin, 
Ger, Hun, Net, Nor, Spa, Swe, Swi  

H
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Besides the existence of these worldwide globally distributed pandemic HA-MRSA epidemic clones, 

there are descriptions of variants of these epidemic clones or less predominant clones.  

 

Clonal replacement overtime 

The occurrence of clonal replacement of MRSA clones has been reported in many countries. A 

dramatic clonal replacement occurred in Hungary about ten years ago when the NY/JP and South-

German clones almost completely replaced the Hungarian clone (56), which was later gradually 

replaced by EMRSA-15 (157). Another study conducted in Spain demonstrated that between 1998 

and 2002 the Iberian clone was replaced by EMRSA-16 (285). Moreover, a study performed in a 

small geographic region in Switzerland showed that the NY/JP, Berlin, Southern German and 

Iberian clones were present over a period of eight years, however the relative proportion of the four 

clones was different along time and in each hospital (28). Recently, a study performed in Italy by 

Campanile et al observed the clonal replacement of MRSA clones over a 17-years period where the 

Iberian and Brazilian clones were replaced by the Southern German clone that was then displaced 

by the EMRSA-15 (37).  

In Portugal, MRSA clonal replacement in hospitals was also reported (7, 9, 10). The HA-MRSA 

population structure has been extensively characterized, and four successive clonal waves were 

reported (7). Early in 1992/93 the widespread Portuguese clone was replaced by the Iberian clone 

that was displaced by the MDR Brazilian clone (1994/95), that subsequently disseminated all over 

the country (7). In the year 2000, the Brazilian clone was replaced by the epidemic EMRSA-15 

clone, which is still the most predominant clone accounting for 72 to 75% of all HA-MRSA isolates 

(7, 104). Soon after the emergence of EMRSA-15, the NY/JP clone or variant of this clone (ST105-

II) emerged as the second most predominant (7, 104). 

The reasons lying behind the existence of these cycles of HA-MRSA clones that emerge, spread 

and then decline in the hospital settings are still unclear. The antibiotic selective pressure probably 

is one of the most important factors in the modulation of the HA-MRSA dynamics. In particular the 

emergence of ciprofloxacin (fluoroquinolone) resistance, was demonstrated to be key for the 

replacement of the Hungarian clone by the EMRSA-15 and the perpetuation of this clone in the 

Hungarian Hospitals (157).  
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HA-MRSA outside hospitals 

In addition, several reports of HA-MRSA clones causing infections outside hospitals have been 

published. The EMRSA-15 clone considered one of most successful hospital-associated clones, is 

also seen frequently disseminated in the community. Moreover, EMRSA-15 has been found to 

adapt easily to different hosts, being found also in companion animals and wild animals (54, 70, 

210). EMRSA-15 was found in colonization and infection in the community in different geographic 

regions, namely in Italy (219), Belgium (368) and UK (156). In Portugal, EMRSA-15 was found 

colonizing dogs (54) and also as a contaminant of the handrails of public buses in Oporto (26% of 

the sampled buses with MRSA) (324) and Lisbon (36.2% of the sampled buses with MRSA) (58). 

Moreover, in Japan, the NY/JP clone was reported in the community among healthy children and 

pediatric outpatients, in episodes of necrotizing pneumonia (280). In East Asia, HA-MRSA ST239-III 

and ST5-II clones have spread from the hospitals into the community (332). Moreover, cases of 

community-associated necrotizing pneumonia have been also found associated with a variant of the 

HA-MRSA ST5-II (179), and this clone was also found in public transports in Japan (179). Curiously, 

the imposed biological cost associated with larger size cassettes, SCCmec type II and SCCmec 

type III, did not restricted these HA-MRSA clones from spreading into the community, where 

probably much lower antimicrobials exist. 

 

Community-associated (CA)-MRSA    

The perception of MRSA regarded as a strictly nosocomial pathogen changed greatly during the last 

two decades. Although the majority of the MRSA infections are still registered in the hospitals, since 

the beginning of the 90s, MRSA has been increasingly recognized as a cause of infections also in 

the community (CA-MRSA) (131, 148, 355). 

 
CA-MRSA definition 

CA-MRSA infections are defined by the Centers for Diseases Control and Prevention (CDC) by a 

set of epidemiological criteria (http://www.cdc.gov/): individuals likely to have a CA-MRSA infection 

if MRSA is isolated in an outpatient or inpatient within 48 hours after hospital admission; moreover 

individuals should not have a medical history of MRSA infection or colonization in the past year and 

no history of admission to a nursing home, nursing facility, or hospice, dialysis, surgery, permanent 

indwelling catheters or foreign medical devices within this same period.  

Although the CDC epidemiological definition is widely accepted, it is only based on the patient’s 
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epidemiological data and bacteria’s phenotypic and genotypic data are not taken into account. 

Phenotypic and genotypic features that characterize CA-MRSA include non–multidrug resistance 

profile (resistance to less than 3 classes of antibiotics besides beta-lactams), lower MIC values for 

oxacillin (around 32 lg/ml or less) or imipenem (around 1 lg/ ml or less) when compared with HA-

MRSA (oxacillin: 128 lg/ml or imipenem: 32 lg/ml), specific genetic backgrounds, carriage of the 

small size cassette SCCmec IV/V and PVL (265, 341, 371).  

If in the beginning of the 1990s CA-MRSA were completely distinct from HA-MRSA based on 

epidemiological, phenotypic and genotypic features, presently this is no longer valid (72). CA-MRSA 

have conquered the hospital environment in some countries, such as USA, where they have 

acquired resistance to multiple antibiotics (169, 316). Moreover, traditional HA-MRSA clones like 

NY/JP and EMRSA-15 have already been described in the community (155, 179, 219). Due to 

these changes in MRSA epidemiology, probably the best definition is the one based in a 

combination of epidemiological, phenotypic and genotypic data, as already suggested (238, 276). 

 

Populations at risk  

MRSA have been emerging worldwide as a leading cause of severe infections in particular closed 

and crowded populations with privileged close contact. This includes children in day care centers 

(242), athletes (268, 294), prisoners (220), military personnel (101, 408) intravenous drug users 

(275) and men who have sex with men (91) with median ages of 23 years old (254). 

 

CA-MRSA colonization rates 

CA-MRSA nasal and skin colonization constitutes a predisposing factor for infection in healthy 

individuals, and increase dissemination through skin-to-skin contact. Although few large-scale 

studies exist about CA-MRSA colonization, dispersed reports demonstrated that the CA-MRSA 

colonization rates varied among different populations, geographic locations and between different 

body sites. A wide range of CA-MRSA nasal colonization rates is usually observed in high-risk 

populations: in the general pediatric population ranged from 0.4%-9.2% (63, 117, 162, 255) in 

children attending daycare centers from 3-24% (1), in athletes from 1-25% (136); and men who 

have sex with men from 2.2-25.7% (91). However, in the remaining population the carriage rate are 

generally low. In the USA where CA-MRSA infections are now epidemic, a large study performed 

between 2001 and 2004 revealed a low prevalence of CA-MRSA nasal carriage in the healthy 
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population (1.5%) (132). Low rates of CA-MRSA nasal carriage were also reported in the UK (less 

than 1%)(140), in Japan (3.7-4.3%) (151, 280) and in Taiwan (1.9-11.6%) (160, 208). In the same 

way, early studies performed in Portugal indicated an extremely low prevalence of CA-MRSA 

carriage (<1 %) in the nasopharynx of young children attending daycare centers (1999, 2009) (310, 

344) and in the anterior nares of military draftees, nonmedical university students, and high-school 

students (1999) (310). 

Although CA-MRSA nasal carriage rate is generally low, other body sites appear to have higher 

colonization rates. Among patients with CA-MRSA SSTI, different patterns of body colonization was 

observed with 25% of patients colonized in the nares followed by 17% of patients colonized in the 

inguinal area, 13% in the rectal area and only 6% in the axilla (397). These observations suggest 

that other not yet explored reservoirs of CA-MRSA might exist and should be screened in 

surveillance studies. 

 
CA-MRSA prevalence of infections 

The most common infections caused by CA-MRSA are skin and soft-tissue infections (SSTIs) (70–

90%), although more serious invasive infections, such as necrotizing pneumonia, necrotizing 

fasciitis, bacteremia and septic shock or even death have been reported (193, 202, 207). The 

burden of SSTIs varies geographically, in France from 2000 to 2003 only 1–3% of all SSTIs were 

caused by CA-MRSA (77, 297) whereas in Portugal CA-MRSA was associated with 7.9% of 

children’s with SSTIs attending the pediatric emergency (57). On the other hand, a study conducted 

in the emergency departments, in USA, during one month of sampling (2004), showed that 

approximately 60% of SSTIs were caused by CA-MRSA (249). 

Regarding other type of infections, CA-MRSA accounted for 2.4% of severe pneumonia in adults 

hospitalized in 12 university emergency departments during the winter-spring of 2006 and 2007 

(247), and to severe pneumonia with a high mortality (30%), in the case of co-infection with 

influenza (142, 292, 308). Cases of fatal pediatric necrotizing pneumonia were reported e.g. in the 

USA, Japan and France (39, 124, 164). Also, cases of severe necrotizing fasciitis caused by CA-

MRSA have been described as well in the USA from 2003-2004 (241). 

 



Chapter I 
 

 
40 

CA-MRSA origin and evolution  

The origin of CA-MRSA was somehow a controversial issue in the beginning of the CA-MRSA era. 

If by one hand some authors suggested that CA-MRSA may have originated from nosocomial 

MRSA that escaped to the community (2), on the other hand, other authors suggested that the small 

size SCCmec (SCCmec IV or V) was acquired by different MSSA epidemic clones in the community 

(CC1, CC8, CC30, CC59 and CC80) (32, 269, 353). In the beginning of CA-MRSA period, five 

major CA-MRSA clones carrying PVL were recognized (See Table 4).  
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Table 4. Molecular characterization and geographical distribution of the major CA-MRSA and LA-MRSA clones [adapted from (38, 85, 86)].  
 

Africa: Alg- Algeria; Gab- Gabon; SA- South Africa; Uga- Uganda. The Americas: Arg- Argentina; Bra- Brazil; Can- Canada; Chi- Chile; Col- Colombia; Mex- Mexico; Par- Paraguay; Uru- Uruguay. Asia: Arm- Armenia; Chn- China; Est- 
Estonia; Ind- India; Ids- Indonesia; Isr- Israel; Jap- Japan; Jor- Jordan; Kor- Korea; Kuw- Kuwait; Lat- Latvia; Leb- Lebanon; Mon- Mongolia; RoG- Republic of Georgia; Rus- Russia; Saud- Saudi Arabia; Sin- Singapore; Sri- Sri Lanka; Tai- 
Taiwan; Tha- Thailand; Vie- Vietnam; Oceania: Ast- Australia, NZ- New Zealand. Europe: Aus- Austria; Bel- Belgium; Bul- Bulgaria; Cro- Croatia; Cyp- Cyprus; Cze- Czech Republic; Den- Denmark; Fin- Finland; Fra- France; Ger- Germany; 
Gre- Greece; Hun- Hungary; Ice- Iceland; Ire- Ireland; Ita- Italy; Mal- Malta; Net- Netherlands; Nor- Norway; Pol- Poland; Por- Portugal; Rom- Romania; SR- Slovak Republic; Slo- Slovenia; Spa- Spain; Swe- Sweden; Swi- Switzerland. CA: 
community associated; LA: livestock-associated; CC: clonal complex; MRSA: methicillin-resistant Staphylococcus aureus; ST: sequence types; SCCmec: staphylococcal cassette chromosome mec. Spa types obtained using the Ridom 

Epidemic Clones CC ST-SCCmec spa Type Geographical Spread 

USA300 pvl+/ACME+  8 ST8-IVa t008, t024, t064, t190, t206, 
t211 

SA, Gab, Can, US, Est, Ind, Isr, Jap, Jor, 
Leb, NZ, Aus, Bel, Bul, Cro, Cze, Den, Fin, 
Fra, Ger, Hun, Ice, Ita, Net, Nor, Pol, SR, 
Spa, Swe, Swi, UK   

USA400 pvl+ 1 ST1-IVa t127, t128, t174, t175, t176, 
t386, t558 

SA, US, Chn, Ids, Lat, Leb, Tai, NZ, Aus, Bel, 
Cro, Cyp, Den, Fin, Fra, Ger, Ice, Net, Nor, 
Pol, Rom, Spa, Swe, Swi, UK  

Southwest Pacific pvl+ or USA1100 30 ST30-IVc t012, t018, t019, t021, t138, 
t268, t276, t318, t338, t391  

SA, Can, US, Jor, Lat, Leb, NZ, Aus, Bel, 
Cyp, Cze, Den, Fin, Fra, Ger, Ice, Ita, Net, 
Nor, Pol, Spa, Swe, Swi, UK   

Taiwan pvl+ or USA1000 59 ST59-IVa/V/VII t199, t216, t444 US, NZ, Aus, Bel, Cze, Den, Fra, Ger, Ice, 
Net, Nor, Pol, Spa, Swe, Swi, UK  

European pvl+ 80 ST80-IVc t044, t131, t376, t416, t436, 
t455, t1109 

Jor, Leb, Aus, Bel, Bul, Cro, Cyp, Cze, Den, 
Fin, Fra, Ger, Hun, Ice, Ita, Net, Nor, Spa, 
Swe, Swi, UK 

ST398 pvl+(LA-MRSA) 398 ST398-IVa/V/VII like t011, t034, t108 Bel, Chi, Den, Ger, Hong Kong, Ita, Net, Aus, 
Bel, Can,  Nor, Por, Spa
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These clones were described as having emerged in different geographic areas (79, 371). The first 

CA-MRSA infections were reported in Western Australia in 1993 among Pacific Islander population 

without predisposing risk factors for healthcare contacts, from remote areas. These isolates 

belonged to the so-called Southwest Pacific clone (SWP) (ST30-IVc, PVL) (61), which is a modern 

descendent of the early CC30 phage type 80/81 clone (MSSA, PVL positive, penicillin resistant) and 

is nowadays disseminated worldwide (300). 

Nearly after (1997/1999), in the USA, four pediatric deaths caused by sepsis or necrotizing 

pneumonia called the attention of the medical community to CA-MRSA. These deaths were 

associated to isolates belonging to the clone, later known as USA400 (ST1-IVa, PVL), belonging to 

the CC1 (18, 39). Afterwards a new CA-MRSA clone was identified in the USA, the USA300 (ST8-

IVa, PVL) belonging to CC8, that completely replaced the USA400 clone (72, 248). USA300 is 

nowadays the leading cause of SSTIs in the community in the USA where it became endemic (239, 

403), and has invaded the hospitals, displacing the classical HA-MRSA clones, being considered a 

major public heath concern (169, 316). Subsequently, USA300 clone spread worldwide and has 

been described in virtually all countries (259, 303).  

In Europe, the first CA-MRSA outbreaks were reported in Greece, being caused by isolates 

belonging to a different clonal type, the so-called European clone (ST80-IVc/V), that was first 

described in 2003 by Aires-de-Sousa et al, corresponding to strains dated back to 1993 and 1998 to 

2000 (2). This clone is thought to have emerged originally in the Mediterranean, Middle East, or 

North Africa, since the first patients infected in Europe were described to have recently travelled to 

these regions (81, 196, 218). Moreover, particularly in some of these regions (sub-Saharan Africa), 

MSSA strains belonging to ST80 were found (59, 293, 318), raising the question about the origin of 

the European clone. Fusidic acid resistance mediated by fusA, fusB, or fusC genes, is a 

characteristic of this clone (195, 371). Since the first description, several reports of infection 

associated with the European clone were registered in many European countries, namely in France 

and Switzerland (371), Belgium (81), Germany ((392), Austria (190), The Netherlands (334, 380), 

Norway (145), Finland (176), Denmark (106), Sweden (105) but also in North Africa (Algeria) (23) 

and the Middle East (355). In contrast to the recognizable spread of USA300 clone into the USA 

hospitals, in Europe, nosocomial outbreaks due to the European clone have only been sporadically 

reported (2, 50, 203). These may indicate that the European clone seem less well adapted to persist 

in hospital compared with USA300 (277, 358). 
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In Asia, another CA-MRSA clone was decribed more or less simultaneously - the Taiwan clone 

(ST59-IVa/VT, PVL) (33, 377). The Taiwan clone was described in the beginning to carry a unique 

SCCmec structure, SCCmec V (initially designated as SCCmec VII) (342). Since the first 

identification, the Taiwan clone was immediately described as MDR (including resistance to 

tetracycline, erythromycin, clindamycin, streptomycin, kanamycin and chloramphenicol), in contrast 

to the typical CA-MRSA antimicrobial susceptibility profile (33, 342). Nowadays, this clone is still the 

most predominant in Taiwan (160) and has also been isolated in Hong Kong (152) and in the USA 

(USA1000) (348). 

In the early 2000, in Europe, a livestock-associated (LA)-MRSA lineage assigned to CC398 was 

described causing infections mainly in individuals in contact with animals, in France and The 

Netherlands (14, 374) (See Table 4). The ST398 clone (ST398-IVa, V and VII-like) was first 

identified in colonization of livestock and pig farmers with close livestock contact (14), however 

descriptions of infections in individuals without risk factors for livestock contacts were also reported 

(372, 394). Since the early reports, ST398 clone has been especially described in the northern 

European countries, and particularly associated with livestock (209). In some parts of The 

Netherlands ST398 clone accounted for up to 25% of the total MRSA (364), but ST398 was also 

described in Germany, Belgium, Italy, Austria, Spain, the United States, Canada and Australia (129, 

329, 364, 394). ST398 MRSA isolates are mainly associated to pigs, but they were already isolated 

in other animal species such as dogs, horses, cattle, and poultry (330, 394). Colonization and 

transmission is believed to primarily occur between animals, however, pigs were also described as 

important reservoirs for human colonization and infection (361). The secondary human-to-human 

transmission seems infrequent and with lower disease burden (100, 361, 398). A human adapted 

variant of ST398 clone (ST398-t571) was recently reported as a major agent of severe infections in 

the USA (New York City), Canada, France, Dominican Republic and Belgium (290, 356, 365, 369). 

This ST398 human-associated lineage form the most ancestral ST398 clade, showed a high 

transmissibility capacity between humans, contrasting with the limited transmissibility of LA ST398 

(290, 356). An additional signal of adaptation of this clone to humans is the acquisition of ST398 

isolates of PVL, already reported in The Netherlands, Sweden, UK and China (335, 361, 384, 400). 

 

Several lines of evidence suggest that the epidemiology of CA-MRSA have changed during the past 

15 years, where besides the extensive worldwide distribution of the five main CA-MRSA epidemic 
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clones (259, 303), the entry into the hospitals already took place resulting in the emergence of 

multidrug resistant CA-MRSA (332) and the descriptions of variants of the prototypes clones or to 

the emergence of new and less epidemic clones have been reported (303). 

 

In Portugal, no structured survey was ever performed, and based on dispersed reports, different 

CA-MRSA genetic backgrounds were found. Isolates belonging to CA-MRSA genetic backgrounds 

were sporadically reported in the hospital settings including ST121-IV (10), ST8-IV, ST1-IV, ST82-

IV, ST88-IV and ST82-IV (7), European clone (ST80-IV) (57) and USA300 clone (256). Moreover, 

the less epidemic clones ST82-IV, ST939-IV (SLV ST72) and ST931-IV (SLV ST8) were found 

colonizing the nasopharynx of young children attending daycare centers (310, 344). Also, MRSA 

belonging to ST398 clone was isolated in pigs and in a nasal swab from a veterinarian (288, 289). 

 

CA-MRSA virulence 

CA-MRSA has been associated with an enhanced virulence, when compared to HA-MRSA. The 

higher pathogenic potential of CA-MRSA is believed to be due to the presence of CA-MRSA specific 

virulence factors, but also to the higher expression of the traditional MRSA virulence factors (36, 

92). One of the factors that has been epidemiologically linked to CA-MRSA virulence is the PVL, a 

two-component leukocidin (LukS and LukF) that targets the immune system cells, such as 

polymorphonuclear neutrophils (PMNs), monocytes, and macrophages (92, 338). However, PVL is 

absent in many CA-MRSA isolates, leading to the recognition that PVL alone is not responsible for 

the enhanced CA-MRSA virulence, and also that PVL is a poor genetic marker for CA-MRSA (306, 

406). 

Another element that has been associated to an increased epidemicity of CA-MRSA, particularly in 

USA300 clone, is the the arginine catabolic mobile element (ACME), a pseudo-SCC like element, 

that contains two characteristic gene clusters, the arc operon that encodes several enzymes 

involved in the arginine deiminase catabolic pathway, and the opp3 operon that encodes an 

oligopeptide permease system, which is believed to promote CA-MRSA higher transmissibility and 

survival (93). 

Also, CA-MRSA virulence has been largerly associated with enhanced expression of the peptides 

phenol soluble modulins (PSMs) and the alpha-hemolysin both with cytolytic activity (92, 198, 279, 

378). 
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4. Virulence factors in S. aureus 
Besides the extraordinary capability to accumulate antibiomicrobial resistance determinants, S. 

aureus possess an enormous arsenal of virulence factors showing a unique ability to evade the host 

immune defenses. The ability of S. aureus to cause disease depends on multiple strategies and on 

the redundance of virulence factors. 

 
4.1 Host-pathogen infection process 
The pathogenicity of S. aureus results from a multitude of virulence strategies that allows an 

effective colonization, invasion and evasion of the host innate immune system (See Table 5). 

 

Colonization 

S. aureus is potentially adhesive, and this attachment capability is mediated by the interactions of 

the adhesins with host cells (skin, mucosa, endothelial cell surface), extracellular cellular matrix 

(collagen, fibronectin and fibrinogen) and plasma proteins, allowing an efficient colonization (43). S. 

aureus adhesins are cell wall anchored proteins belonging to a single family designated 

MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) (52) which 

interact with host proteins in the extracellular matrix such as fibrinogen(225), collagen, fibronectin, 

vitronectin and elastin (52). MSCRAMMs most commonly found among S. aureus are elastin-

binding protein S (EbpS), collagen-binding protein (Coa), fibronectin-binding proteins A and B 

(FnBPA, FnBPB), fibrinogen-binding proteins C, D and E (SdrC, SdrD, and SdrE) and the clumping 

factors A and B (ClfA, ClfB) [(43) cited by (360)]. MSCRAMMs besides being key for cell structural 

metabolism and host cell binding have been implicated in host cell internalization, host immune 

evasion, bacterial aggregation and biofilm formation (199, 326). Most of MSCRAMMs are encoded 

in the core genome, therefore are characteristically stable and inherited by vertical transfer. For this 

reason, the success of MRSA clones has not been in general linked to a specific MSCRAMM. The 

unique exception is the recently described adhesin, SasX, associated with the exceptional 

colonization and infection ability of MRSA ST239 clone, though sasX is encoded on a MGE (199). 
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Table 5. S. aureus virulence factors involved in the host infection process [adapted from (402)]. 

 

 

 

 

 

 

 

 

 

Name Abbreviation Function

Fibronectin binding proteins A and B FnBPA, B Adhesins for fibrinogen (FnBPA only), fibronectin and elastin
Collagen-binding adhesin Cna Adhesin for collagen (type I and IV)
Serin-aspartate repeat proteins C, D and E Sdrs Adhesins
Bone sialo protein-binding protein Bbp Adhesin for bone sialoprotein (SdrE allelic variant), binds fibrinogen
Elastin-binding protein EbpS Transmembrane adhesin for elastin and tropoelastin
Polysaccharide intercellular adhesin PIA Adhesin for aggregation; involved in biofilm formation
Iron-regulated surface determinant A IsdA Binds fibronectin, fibrinogen, transferrin, hemoglobin, hemin and fetuin
Iron-regulated surface determinant B IsdB Binds hemoglobin and hemin
Iron-regulated surface determinant C IsdC Binds hemin
Iron-regulated surface determinant H IsdH Binds haptoglobulin and haptoglobulin–hemoglobin complex
S. aureus surface proteins Sass Bind to the extracellular matrix
S. aureus surface proteinG SasG Binds to the extracellular matrix; involved in biofilm formation
Serine-rich surface protein SraP Binds platelets
Extracellular matrix protein-binding protein Emp Binds extracellular matrix of host cells;involved in biofilm formation
Extracellular adherence protein Eap/Map Impairs angiogenesis and wound healing; stimulates production of TNF alpha; and IL-6
Emp homologue Ebh Binds extracellular matrix of host cells
Plasmin-sensitive protein Pls Binds lipids of host cells; adhesion to nasal epithelial cells
Second immunoglobulin-binding protein Sbi Binds Fc domain of immunoglobulin; binds complement protein C3 and promotes C3-C3b conversion
Von Wille brand factor binding protein vWbp Binds and activates prothrombin; binds fibrinogen and vWfactor
Extracellular adherence protein Eap/Map MHC-II analog protein; adhesion to S.aureus cells and host cells; involved in biofilm formation

beta-toxin Hlb Sphingomyelinase with cytolytic activity

alpha-toxin Hla Cytolytic pore-forming toxin

Leukocidins D, E and M LukD/E/M Kill leukocytes; bi-component pore-forming leukotoxins

Phenol Soluble Modulins PSMs Pore-forming toxins or detergent activity

Exfoliative toxins A, B and D ETA/B/D Exotoxins with superantigen activity; gluamate-specific serine proteases that digest desmoglein 1

Enterotoxins SEs Gastroenteric toxicity; immunomodulation via superantigen activity

Toxic shock syndrome toxin-1 TSST1 Endothelial toxicity (direct and cytokine-mediated); superantigen activity

Coagulase Coa Binds and activates prothrombin; promotes conversion of fibrinogen to fibrin

V8 protease – Serine protease

Glycerol este rhydrolases lip,geh,beh, Triacyl glycerols degradation

Fatty acid-modifying enzyme FAME Fatty acids modification

O-acetyltransferase OatA Peptidoglycan O-acetylation

Ptd Ins-phospholipase C Plc Phosphotidyl inositol-specific lipase activity

Enolase Eno Catalyzes phosphor-glycerate to phosphoenol-pyruvate; binds to laminin

Arginine Catabolic Mobile Element (3types) ACMEI/-II/-III Unclear role (aids colonization); seems to contain several enzyme and proteins (arginine deaminase system, 
oligopeptide permease, zinc-containing alcohol

FPR-like 1 inhibitory protein FLIPr Binds formyl peptide receptor

Staphylococcal superantigen-like 5 SSL5 Specific binding to P-selecting lycoprotein ligand-1 blocking PMN rolling

Staphylococcal superantigen-like 11 SSL11 Binds to chemokine receptors

Staphylococcal superantigen-like 1 SSL10 Binds to chemokine receptors

Chemotaxis inhibitory protein CHIPS Blocks C5 a receptor and formyl peptide receptors

Staphylococcal superantigen-like 7 SSL7 Binds to the Fc region of IgA and block recognition by neutrophils

gama-toxin Hlg Bicomponent leukocidin; hemolysis

delta-toxin Hld Cytolytic toxin; binds neutrophils and monocytes

Panton-Valentine leukocidin PVL Bicomponent leukocidin; pore-forming toxin; kills leukocytes

Leukocidins A and B (other name H and G) LukAB/-HG Bi-component pore-forming leukotoxin that kills PMNs
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Invasion (intracellular life style) 

Only recently, S. aureus was recognized as a facultative intracellular pathogen (314, 325). This 

capacity enables S. aureus to be protected against the attack from extracellular host defense. S. 

aureus can persist in a semi-dormant state known as small colony variants (SCV), where virulence 

expression is shutdown, which renders S. aureus intrinsically resistant to host attack and antibiotic 

therapy (314). The fibronectin-binding proteins (FnBPs) promote S. aureus attachment to the host-

cell surface, and subsequent internalization to professional and nonprofessional phagocytes (325, 

375). The exact mechanism of how and when SCV decide for the intracellular lifestyle remains to be 

determined. 

 

4.2 Global regulators  
The S. aureus pathogenesis process involves an array of surface and secreted proteins that are 

coordinately expressed at an appropriate time during the different stages of infection. Virulence 

expression is regulated in a growth phase dependent manner. Surface proteins are expressed in 

the exponential phase of growth, enabling the bacteria to attach to host cells, and the secreted 

proteins expressed in the late exponetial/stationary phase, allowing S. aureus to evade host in an 

efficient fashion (212). 

The coordinated expression of these virulence factors is controlled by global regulatory elements, 

including: 1) two component regulatory systems (TCRs) where the accessory gene regulator (Agr) 

and the S. aureus exoprotein (SaeRS) are the most relevant (15, 46, 125, 261); and 2) 

transcriptional global regulators such as the staphylococcal accessory regulator (SarA) (48) and 

SarA homologues such as Rot (231, 312) but also SarT SarS, SarR, SarU, SarV, SarX, SarZ MgrA 

and TeaR (15, 214, 301). 

The extensive range of S. aureus diseases results from the activation of this intricate regulatory 

network created by the activation of these regulators, in order to respond to environmental stimulus. 

 
4.3 Alpha-hemolysin 
Although S. aureus makes use of a myriad of toxins in the process of pathogenesis, only a small 

number have been associated with enhanced virulence. Among these, S. aureus alpha-haemolysin 

also known as alpha-toxin (Hla) is certainly the most relevant and intensively studied virulence 

factor. The alpha-hemolysin was initially named based on its lytic properties of red blood cells, but 
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several studies suggested a greater complexity of alpha-hemolysin action.   

 

Alpha-hemolysin and disease mechanism 

Alpha-hemolysin is a cytolytic and cytotoxic toxin implicated in severe skin infections, pneumonia 

and sepsis (26). Moreover, there are evidences that alpha-haemolysin is involved in intracellular 

survival, through the induction of endosomal escaping following phagocytosis . 

Hla main target are the erythrocytes, altthough Hla was proven to target other human cells, 

including epithelial cells, endothelial cells, and an array of other hematopoietic-lineage cells 

including lymphocytes, monocytes and macrophages (26). 

  

Alpha-hemolysin structure 

The gene coding for alpha-haemolysin was discovered in the early 1980s (134, 178) and is present 

in the S. aureus genome in a single copy. The hla locus encodes Hla as a water-soluble monomer 

of 33.2 kDa, containing 293 amino acids (134, 354). This monomer forms heptameric units on the 

cellular membrane, as a beta-barrel transmembrane pore, with an internal diameter of about 1-2 nm 

(134, 354, 376) and a mushroom like shape, consisting of three domains (See Figure 4): A. cap: 

important for oligomerization and pore formation, is an hydrophilic domain composed by beta-

sandwich structures, held together by the seven amino latches from seven monomers; B. rim: 

involved in membrane binding, works as membrane anchor to membrane bilayer and forms a three-

strand beta-sheet under the cap domain. The aromatic and cationic aminoacid rich residues present 

between the cap and rim domains are involved in interactions with phospholipid head groups of 

target cell membranes; C. stem: composed of a 14 anti-parallel beta-barrel strands, forming the 

effective transmembrane channel (246, 376).  
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Figure 4. Crystal structure of S. aureus alpha-hemolysin derived from the RCSB Protein Data Bank (PDB, 
7AHL) and modeled using PyMOL v.1.6. Cap: hydrophilic domain; Rim: membrane interface region; Stem: 
transmembrane channel 
 

The toxicity of Hla results from the formation of the heptameric pore, leading to the alterations in ion 

gradients, loss of cytoplasmatic contents and activation of stress-signaling pathways resulting in cell 

lysis  (27). The process of pore formation includes three steps: 1. binding of alpha-hemolysin 

monomers to membrane receptor (if is the case) of the susceptible (or non-susceptible) cells, 

followed by 2. heptamerization of the monomers into a prepore complex and, finally, 

3.conformational changes of the prepore into a functional and mature transmembrane pore (359).   

 

The hla locus is believed to be higly conserved across S. aureus, although genetic diversity was 

already described, where a non-synonymous SNP resulted in a premature stop codon in the hla 

among the hospital-associated EMRSA-16 clone. This mutation distinguishes the EMRSA-16 clone 

carrying the truncated Hla from the CA-MRSA South West Pacific clone and the phage type 80/81, 

all belonging to the CC30 (78). The evolutionary analysis of CC30 showed that the EMRSA-16 

clone has evolved along time toward a niche-adaptation (hospital settings) to favor the colonization 

capacity in detriment of virulence, and the loss of Hla function might be related to this evolutionary 

trend (228). 

Hla regulation  

Similar to what is observed for most of the other S. aureus secreted proteins, alpha-hemolysin is not 

expressed constitutively. The hla expression is activated during the post-exponential-early 

stationary phase of growth, and toxin production is coordinately controlled by several regulators, 
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including the Agr, SaeRS, SarA, ArlS and SarZ (19, 126, 128, 201, 370). On the other way, alpha-

hemolysin is downregulated by SarA homologues as Rot and SarT (230, 231, 313).  

 

The primary and main regulation of hla is made by the Agr TCS, in particular by the RNAIII (See 

Figure 5). The RNAIII is the main effector molecule of the agr system containing the dual function of 

upregulation of secreted virulence factors as alpha-hemolysins (35, 96, 262) and downregulation of 

surface proteins (96, 161, 370). The RNAIII regulatory function is made through direct binding to the 

hla mRNA and indirectly through regulation of other regulators targeting virulence toxins, mainly at 

transcription but also translation level (47, 262, 295, 396) (See Figure 5).  

On the other hand, alpha-hemolysin can have an Agr independent regulation, through e.g. the 

SaeRS, where the expression of hla result directly from the response regulator SaeR, one of the 

two-component systems encoded by SaeRS (125, 126, 301, 396). Besides the SaeRS, the SarA 

also positively affects the hla expression by either agr-dependent or agr-independent pathways, 

through SarT repression (49, 128, 313) (See Figure 5).  

 

 

Figure 5. Schematic overview of the most probable regulatory interactions involved in the hla expression. The 
arrows indicate stimulation and the bars indicate repression. (?) unknown repressor of SaeRS system. 
 

Conversely, the hla repression was described to result from Rot action through agr-independent 

pathway by saeRS repression and by sarT (230, 312, 313). Additional complexity in hla expression 
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regulation can be also provided by variation in the hla promoter region. This was already observed 

to occur in the hla promoter region of S. aureus isolates of bovine origin (RF122) (200), where 

SNPs in the promoter (-376, -483, and -484 from the start codon) seem to contribute to a higher 

binding affinity of the transcription regulator SarZ that result in the hyperproduction of Hla. 

The complexity of hla regulation makes difficult to interpret differences in hla gene expression. In 

particular, the difference in hla expression observed between CA-MRSA and HA-MRSA is not 

completely understood. Also, how in vivo regulation occurs, remains to be defined, since in vitro 

expression do not mirror completely the in vivo expression profiles (46, 366, 396). 



Chapter I 
 

 
52 

5. REFERENCES  
1. Adcock, P. M., P. Pastor, F. Medley, J. E. Patterson, and T. V. Murphy. 1998. Methicillin-

resistant Staphylococcus aureus in two child care centers. J Infect Dis 178:577-80. 
2. Aires de Sousa, M., C. Bartzavali, I. Spiliopoulou, I. S. Sanches, M. I. Crisostomo, and H. de 

Lencastre. 2003. Two international methicillin-resistant Staphylococcus aureus clones endemic in a 
university hospital in Patras, Greece. J Clin Microbiol 41:2027-32. 

3. Aires de Sousa, M., T. Conceicao, C. Simas, and H. de Lencastre. 2005. Comparison of genetic 
backgrounds of methicillin-resistant and -susceptible Staphylococcus aureus isolates from 
Portuguese hospitals and the community. J Clin Microbiol 43:5150-7. 

4. Aires de Sousa, M., and H. de Lencastre. 2004. Bridges from hospitals to the laboratory: genetic 
portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol Med Microbiol 
40:101-11. 

5. Aires de Sousa, M., I. S. Sanches, M. L. Ferro, M. J. Vaz, Z. Saraiva, T. Tendeiro, J. Serra, and 
H. de Lencastre. 1998. Intercontinental spread of a multidrug-resistant methicillin-resistant 
Staphylococcus aureus clone. J Clin Microbiol 36:2590-6. 

6. Aires-de-Sousa, M., T. Conceicao, and H. de Lencastre. 2006. Unusually high prevalence of 
nosocomial Panton-Valentine leukocidin-positive Staphylococcus aureus isolates in Cape Verde 
Islands. J Clin Microbiol 44:3790-3. 

7. Aires-de-Sousa, M., B. Correia, and H. de Lencastre. 2008. Changing patterns in frequency of 
recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: 
surveillance over a 16-year period. J Clin Microbiol 46:2912-7. 

8. Alekshun, M. N., and S. B. Levy. 2007. Molecular mechanisms of antibacterial multidrug 
resistance. Cell 128:1037-50. 

9. Amorim, M. L., M. Aires de Sousa, I. S. Sanches, R. Sa-Leao, J. M. Cabeda, J. M. Amorim, and 
H. de Lencastre. 2002. Clonal and antibiotic resistance profiles of methicillin-resistant 
Staphylococcus aureus (MRSA) from a Portuguese hospital over time. Microb Drug Resist 8:301-9. 

10. Amorim, M. L., N. A. Faria, D. C. Oliveira, C. Vasconcelos, J. C. Cabeda, A. C. Mendes, E. 
Calado, A. P. Castro, M. H. Ramos, J. M. Amorim, and H. de Lencastre. 2007. Changes in the 
clonal nature and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus 
isolates associated with spread of the EMRSA-15 clone in a tertiary care Portuguese hospital. J Clin 
Microbiol 45:2881-8. 

11. Arede, P., T. Botelho, T. Guevara, I. Uson, D. C. Oliveira, and F. X. Gomis-Ruth. 2013. 
Structure-function studies of the staphylococcal methicillin resistance antirepressor MecR2. J Biol 
Chem 288:21267-78. 

12. Argudin, M. A., V. Argumosa, M. C. Mendoza, B. Guerra, and M. R. Rodicio. 2013. Population 
structure and exotoxin gene content of methicillin-susceptible Staphylococcus aureus from Spanish 
healthy carriers. Microb Pathog 54:26-33. 

13. Argudin, M. A., M. C. Mendoza, F. J. Mendez, M. C. Martin, B. Guerra, and M. R. Rodicio. 2009. 
Clonal complexes and diversity of exotoxin gene profiles in methicillin-resistant and methicillin-
susceptible Staphylococcus aureus isolates from patients in a Spanish hospital. J Clin Microbiol 
47:2097-105. 

14. Armand-Lefevre, L., R. Ruimy, and A. Andremont. 2005. Clonal comparison of Staphylococcus 
aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11:711-4. 

15. Arvidson, S., and K. Tegmark. 2001. Regulation of virulence determinants in Staphylococcus 
aureus. Int J Med Microbiol 291:159-70. 

16. Ba, X., E. M. Harrison, G. F. Edwards, M. T. Holden, A. R. Larsen, A. Petersen, R. L. Skov, S. J. 
Peacock, J. Parkhill, G. K. Paterson, and M. A. Holmes. 2014. Novel mutations in penicillin-
binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on 
susceptibility testing, but lack the mec gene. J Antimicrob Chemother 69:594-7. 



General Introduction 
 

 
53 

17. Baba, T., T. Bae, O. Schneewind, F. Takeuchi, and K. Hiramatsu. 2008. Genome sequence of 
Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: 
polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300-10. 

18. Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K. 
Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, and K. Hiramatsu. 2002. Genome and 
virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819-27. 

19. Ballal, A., B. Ray, and A. C. Manna. 2009. sarZ, a sarA family gene, is transcriptionally activated 
by MgrA and is involved in the regulation of genes encoding exoproteins in Staphylococcus aureus. 
J Bacteriol 191:1656-65. 

20. Barber, M., and M. Rozwadowska-Dowzenko. 1948. Infection by penicillin-resistant staphylococci. 
Lancet 2:641-4. 

21. Bartley, J. 2002. First case of VRSA identified in Michigan. Infect Control Hosp Epidemiol 23:480. 
22. Becker, K., B. Ballhausen, R. Kock, and A. Kriegeskorte. 2014. Methicillin resistance in 

Staphylococcus isolates: The "mec alphabet" with specific consideration of mecC, a mec homolog 
associated with zoonotic S. aureus lineages. Int J Med Microbiol. 

23. Bekkhoucha, S. N., A. Cady, P. Gautier, F. Itim, and P. Y. Donnio. 2009. A portrait of 
Staphylococcus aureus from the other side of the Mediterranean Sea: molecular characteristics of 
isolates from Western Algeria. Eur J Clin Microbiol Infect Dis 28:553-5. 

24. Bell, J. M., J. D. Turnidge, and A. Sentry. 2002. High prevalence of oxacillin-resistant 
Staphylococcus aureus isolates from hospitalized patients in Asia-Pacific and South Africa: results 
from SENTRY antimicrobial surveillance program, 1998-1999. Antimicrob Agents Chemother 
46:879-81. 

25. Berglund, C., T. Ito, M. Ikeda, X. X. Ma, B. Soderquist, and K. Hiramatsu. 2008. Novel type of 
staphylococcal cassette chromosome mec in a methicillin-resistant Staphylococcus aureus strain 
isolated in Sweden. Antimicrob Agents Chemother 52:3512-6. 

26. Berube, B. J., and J. Bubeck Wardenburg. 2013. Staphylococcus aureus alpha-toxin: nearly a 
century of intrigue. Toxins (Basel) 5:1140-66. 

27. Bhakdi, S., and J. Tranum-Jensen. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol Rev 
55:733-51. 

28. Blanc, D. S., C. Petignat, A. Wenger, G. Kuhn, Y. Vallet, D. Fracheboud, S. Trachsel, M. 
Reymond, N. Troillet, H. H. Siegrist, S. Oeuvray, M. Bes, J. Etienne, J. Bille, P. Francioli, and 
G. Zanetti. 2007. Changing molecular epidemiology of methicillin-resistant Staphylococcus aureus 
in a small geographic area over an eight-year period. J Clin Microbiol 45:3729-36. 

29. Bode, L. G., J. A. Kluytmans, H. F. Wertheim, D. Bogaers, C. M. Vandenbroucke-Grauls, R. 
Roosendaal, A. Troelstra, A. T. Box, A. Voss, I. van der Tweel, A. van Belkum, H. A. Verbrugh, 
and M. C. Vos. 2010. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. 
N Engl J Med 362:9-17. 

30. Boundy, S., M. K. Safo, L. Wang, F. N. Musayev, H. C. O'Farrell, J. P. Rife, and G. L. Archer. 
2013. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the 
gene containing the staphylococcal chromosome Cassette mec (SCCmec) insertion site. J Biol 
Chem 288:132-40. 

31. Boye, K., M. D. Bartels, I. S. Andersen, J. A. Moller, and H. Westh. 2007. A new multiplex PCR 
for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol 
Infect 13:725-7. 

32. Boyle-Vavra, S., and R. S. Daum. 2007. Community-acquired methicillin-resistant Staphylococcus 
aureus: the role of Panton-Valentine leukocidin. Lab Invest 87:3-9. 

33. Boyle-Vavra, S., B. Ereshefsky, C. C. Wang, and R. S. Daum. 2005. Successful multiresistant 
community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that 
carries either the novel Staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec 
type IV. J Clin Microbiol 43:4719-30. 



Chapter I 
 

 
54 

34. Breurec, S., C. Fall, R. Pouillot, P. Boisier, S. Brisse, F. Diene-Sarr, S. Djibo, J. Etienne, M. C. 
Fonkoua, J. D. Perrier-Gros-Claude, C. E. Ramarokoto, F. Randrianirina, J. M. Thiberge, S. B. 
Zriouil, B. Garin, and F. Laurent. 2011. Epidemiology of methicillin-susceptible Staphylococcus 
aureus lineages in five major African towns: high prevalence of Panton-Valentine leukocidin genes. 
Clin Microbiol Infect 17:633-9. 

35. Bronner, S., P. Stoessel, A. Gravet, H. Monteil, and G. Prevost. 2000. Variable expressions of 
Staphylococcus aureus bicomponent leucotoxins semiquantified by competitive reverse 
transcription-PCR. Appl Environ Microbiol 66:3931-8. 

36. Bubeck Wardenburg, J., T. Bae, M. Otto, F. R. Deleo, and O. Schneewind. 2007. Poring over 
pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat 
Med 13:1405-6. 

37. Campanile, F., D. Bongiorno, S. Borbone, and S. Stefani. 2009. Hospital-associated methicillin-
resistant Staphylococcus aureus (HA-MRSA) in Italy. Ann Clin Microbiol Antimicrob 8:22. 

38. Campanile, F., Bongiorno, D., Borbone, S., and S. Stefani. 2010. Methicillin-resistant 
Staphylococcus aureus Evolution – The Multiple Facets of an Old Pathogen. European Infectious 
Disease 4(1). 

39. CDC. 1999. Centers for Disease, Control Prevention. Four pediatric deaths from community-
acquired methicillin-resistant Staphylococcus aureus - Minnesota and North Dakota, 1997-1999. 
MMWR Morb Mortal Wkly Rep 48:707-10. 

40. Cespedes, C., B. Said-Salim, M. Miller, S. H. Lo, B. N. Kreiswirth, R. J. Gordon, P. Vavagiakis, 
R. S. Klein, and F. D. Lowy. 2005. The clonality of Staphylococcus aureus nasal carriage. J Infect 
Dis 191:444-52. 

41. Chain, E., H. W. Florey, A. D. Gardner, N. G. Heatley, M. A. Jennings, J. Orr-Ewing, and A. G. 
Sanders. 1940. Penicillin as a Chemotherapeutic Agent. Lancet:226-228. 

42. Chambers, H. F., and F. R. Deleo. 2009. Waves of resistance: Staphylococcus aureus in the 
antibiotic era. Nat Rev Microbiol 7:629-41. 

43. Chavakis, T., K. Wiechmann, K. T. Preissner, and M. Herrmann. 2005. Staphylococcus aureus 
interactions with the endothelium: the role of bacterial "secretable expanded repertoire adhesive 
molecules" (SERAM) in disturbing host defense systems. Thromb Haemost 94:278-85. 

44. Chen, F. J., T. L. Lauderdale, I. W. Huang, H. J. Lo, J. F. Lai, H. Y. Wang, Y. R. Shiau, P. C. 
Chen, T. Ito, and K. Hiramatsu. 2005. Methicillin-resistant Staphylococcus aureus in Taiwan. 
Emerg Infect Dis 11:1760-3. 

45. Chen, F. J., L. K. Siu, J. C. Lin, C. H. Wang, and P. L. Lu. 2012. Molecular typing and 
characterization of nasal carriage and community-onset infection methicillin-susceptible 
Staphylococcus aureus isolates in two Taiwan medical centers. BMC Infect Dis 12:343. 

46. Cheung, A. L., A. S. Bayer, G. Zhang, H. Gresham, and Y. Q. Xiong. 2004. Regulation of 
virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 
40:1-9. 

47. Cheung, A. L., Y. T. Chien, and A. S. Bayer. 1999. Hyperproduction of alpha-hemolysin in a sigB 
mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect Immun 
67:1331-7. 

48. Cheung, A. L., J. M. Koomey, C. A. Butler, S. J. Projan, and V. A. Fischetti. 1992. Regulation of 
exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad 
Sci U S A 89:6462-6. 

49. Cheung, A. L., M. R. Yeaman, P. M. Sullam, M. D. Witt, and A. S. Bayer. 1994. Role of the sar 
locus of Staphylococcus aureus in induction of endocarditis in rabbits. Infect Immun 62:1719-25. 

50. Chini, V., E. Petinaki, A. Foka, S. Paratiras, G. Dimitracopoulos, and I. Spiliopoulou. 2006. 
Spread of Staphylococcus aureus clinical isolates carrying Panton-Valentine leukocidin genes 
during a 3-year period in Greece. Clin Microbiol Infect 12:29-34. 

51. Chongtrakool, P., T. Ito, X. X. Ma, Y. Kondo, S. Trakulsomboon, C. Tiensasitorn, M. Jamklang, 
T. Chavalit, J. H. Song, and K. Hiramatsu. 2006. Staphylococcal cassette chromosome mec 



General Introduction 
 

 
55 

(SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian 
countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 
50:1001-12. 

52. Clarke, S. R., and S. J. Foster. 2006. Surface adhesins of Staphylococcus aureus. Adv Microb 
Physiol 51:187-224. 

53. Clatworthy, A. E., E. Pierson, and D. T. Hung. 2007. Targeting virulence: a new paradigm for 
antimicrobial therapy. Nat Chem Biol 3:541-8. 

54. Coelho, C., C. Torres, H. Radhouani, L. Pinto, C. Lozano, E. Gomez-Sanz, M. Zaragaza, G. 
Igrejas, and P. Poeta. 2011. Molecular detection and characterization of methicillin-resistant 
Staphylococcus aureus (MRSA) isolates from dogs in Portugal. Microb Drug Resist 17:333-7. 

55. Conceicao, T., M. Aires de Sousa, M. Miragaia, E. Paulino, R. Barroso, M. J. Brito, T. 
Sardinha, L. Sancho, H. Carreiro, G. de Sousa, C. Machado Mdo, and H. de Lencastre. 2012. 
Staphylococcus aureus reservoirs and transmission routes in a Portuguese Neonatal Intensive Care 
Unit: a 30-month surveillance study. Microb Drug Resist 18:116-24. 

56. Conceicao, T., M. Aires-de-Sousa, M. Fuzi, A. Toth, J. Paszti, E. Ungvari, W. B. van Leeuwen, 
A. van Belkum, H. Grundmann, and H. de Lencastre. 2007. Replacement of methicillin-resistant 
Staphylococcus aureus clones in Hungary over time: a 10-year surveillance study. Clin Microbiol 
Infect 13:971-9. 

57. Conceicao, T., M. Aires-de-Sousa, N. Pona, M. J. Brito, C. Barradas, R. Coelho, T. Sardinha, L. 
Sancho, G. de Sousa, C. Machado Mdo, and H. de Lencastre. 2011. High prevalence of ST121 
in community-associated methicillin-susceptible Staphylococcus aureus lineages responsible for 
skin and soft tissue infections in Portuguese children. Eur J Clin Microbiol Infect Dis 30:293-7. 

58. Conceicao, T., F. Diamantino, C. Coelho, H. de Lencastre, and M. Aires-de-Sousa. 2013. 
Contamination of public buses with MRSA in Lisbon, Portugal: a possible transmission route of 
major MRSA clones within the community. PLoS One 8:e77812. 

59. Conceicao, T., I. Santos Silva, H. de Lencastre, and M. Aires-de-Sousa. 2014. Staphylococcus 
aureus nasal carriage among patients and health care workers in Sao Tome and Principe. Microb 
Drug Resist 20:57-66. 

60. Cookson, B. D., D. A. Robinson, A. B. Monk, S. Murchan, A. Deplano, R. de Ryck, M. J. 
Struelens, C. Scheel, V. Fussing, S. Salmenlinna, J. Vuopio-Varkila, C. Cuny, W. Witte, P. T. 
Tassios, N. J. Legakis, W. van Leeuwen, A. van Belkum, A. Vindel, J. Garaizar, S. Haeggman, 
B. Olsson-Liljequist, U. Ransjo, M. Muller-Premru, W. Hryniewicz, A. Rossney, B. O'Connell, 
B. D. Short, J. Thomas, S. O'Hanlon, and M. C. Enright. 2007. Evaluation of molecular typing 
methods in characterizing a European collection of epidemic methicillin-resistant Staphylococcus 
aureus strains: the HARMONY collection. J Clin Microbiol 45:1830-7. 

61. Coombs, G. W., J. C. Pearson, F. G. O'Brien, R. J. Murray, W. B. Grubb, and K. J. 
Christiansen. 2006. Methicillin-resistant Staphylococcus aureus clones, Western Australia. Emerg 
Infect Dis 12:241-7. 

62. Cosgrove, S. E., G. Sakoulas, E. N. Perencevich, M. J. Schwaber, A. W. Karchmer, and Y. 
Carmeli. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-
susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:53-9. 

63. Creech, C. B., 2nd, D. S. Kernodle, A. Alsentzer, C. Wilson, and K. M. Edwards. 2005. 
Increasing rates of nasal carriage of methicillin-resistant Staphylococcus aureus in healthy children. 
Pediatr Infect Dis J 24:617-21. 

64. Crisostomo, M. I., H. Westh, A. Tomasz, M. Chung, D. C. Oliveira, and H. de Lencastre. 2001. 
The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds 
in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. 
Proc Natl Acad Sci U S A 98:9865-70. 

65. Crossley, K. B., and G. L. Archer. 1997. The staphylococci in human disease, 1st edition. 
Churchill Livingstone Inc., New York. 



Chapter I 
 

 
56 

66. Cuevas, O., E. Cercenado, E. Bouza, C. Castellares, P. Trincado, R. Cabrera, A. Vindel, and S. 
Spanish Group for the Study of. 2007. Molecular epidemiology of methicillin-resistant 
Staphylococcus aureus in Spain: a multicentre prevalence study (2002). Clin Microbiol Infect 
13:250-6. 

67. Daskalaki, M., J. R. Otero, F. Sanz, and F. Chaves. 2007. Bacteremia due to clonally derived 
methicillin-resistant, gentamicin-susceptible isolates and methicillin-susceptible, gentamicin-
resistant isolates of Staphylococcus aureus. J Clin Microbiol 45:3446-8. 

68. Daum, R. S., and B. Spellberg. 2012. Progress toward a Staphylococcus aureus vaccine. Clin 
Infect Dis 54:560-7. 

69. David, M. Z., S. Boyle-Vavra, D. L. Zychowski, and R. S. Daum. 2011. Methicillin-susceptible 
Staphylococcus aureus as a predominantly healthcare-associated pathogen: a possible reversal of 
roles? PLoS One 6:e18217. 

70. David, M. Z., and R. S. Daum. 2010. Community-associated methicillin-resistant Staphylococcus 
aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 
23:616-87. 

71. David, M. Z., R. S. Daum, A. S. Bayer, H. F. Chambers, V. G. Fowler, Jr., L. G. Miller, B. 
Ostrowsky, A. Baesa, S. Boyle-Vavra, S. J. Eells, S. Garcia-Houchins, P. Gialanella, R. 
Macias-Gil, T. H. Rude, F. Ruffin, J. J. Sieth, J. Volinski, and B. Spellberg. 2014. 
Staphylococcus aureus Bacteremia at 5 US Academic Medical Centers, 2008-2011: Significant 
Geographic Variation in Community-Onset Infections. Clin Infect Dis 59:798-807. 

72. David, M. Z., J. D. Siegel, H. F. Chambers, and R. S. Daum. 2008. Determining whether 
methicillin-resistant Staphylococcus aureus is associated with health care. JAMA 299:519; author 
reply 519-20. 

73. Davis, S. L., M. B. Perri, S. M. Donabedian, C. Manierski, A. Singh, D. Vager, N. Z. Haque, K. 
Speirs, R. R. Muder, B. Robinson-Dunn, M. K. Hayden, and M. J. Zervos. 2007. Epidemiology 
and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J Clin 
Microbiol 45:1705-11. 

74. de Kraker, M. E., P. G. Davey, H. Grundmann, and B. s. group. 2011. Mortality and hospital stay 
associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the 
burden of antibiotic resistance in Europe. PLoS Med 8:e1001104. 

75. de Lencastre, H., M. Chung, and H. Westh. 2000. Archaic strains of methicillin-resistant 
Staphylococcus aureus: molecular and microbiological properties of isolates from the 1960s in 
Denmark. Microb Drug Resist 6:1-10. 

76. de Lencastre, H., D. Oliveira, and A. Tomasz. 2007. Antibiotic resistant Staphylococcus aureus: a 
paradigm of adaptive power. Curr Opin Microbiol 10:428-35. 

77. Del Giudice, P., V. Blanc, F. Durupt, M. Bes, J. P. Martinez, E. Counillon, G. Lina, F. 
Vandenesch, and J. Etienne. 2006. Emergence of two populations of methicillin-resistant 
Staphylococcus aureus with distinct epidemiological, clinical and biological features, isolated from 
patients with community-acquired skin infections. Br J Dermatol 154:118-24. 

78. DeLeo, F. R., A. D. Kennedy, L. Chen, J. Bubeck Wardenburg, S. D. Kobayashi, B. Mathema, 
K. R. Braughton, A. R. Whitney, A. E. Villaruz, C. A. Martens, S. F. Porcella, M. J. McGavin, M. 
Otto, J. M. Musser, and B. N. Kreiswirth. 2011. Molecular differentiation of historic phage-type 
80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci U S A 108:18091-6. 

79. DeLeo, F. R., M. Otto, B. N. Kreiswirth, and H. F. Chambers. 2010. Community-associated 
meticillin-resistant Staphylococcus aureus. Lancet 375:1557-68. 

80. den Heijer, C. D. J., E. M. E. van Bijnen, W. J. Paget, M. Pringle, H. Goossens, C. A. 
Bruggeman, F. G. Schellevis, and E. E. Stobberingh. 2013. Prevalence and resistance of 
commensal Staphylococcus aureus, including meticillin-resistant S aureus, in nine European 
countries: a cross-sectional study. The Lancet Infectious Diseases 13:409-415. 

81. Denis, O., A. Deplano, H. De Beenhouwer, M. Hallin, G. Huysmans, M. G. Garrino, Y. 
Glupczynski, X. Malaviolle, A. Vergison, and M. J. Struelens. 2005. Polyclonal emergence and 



General Introduction 
 

 
57 

importation of community-acquired methicillin-resistant Staphylococcus aureus strains harbouring 
Panton-Valentine leucocidin genes in Belgium. J Antimicrob Chemother 56:1103-6. 

82. Deplano, A., S. Vandendriessche, C. Nonhoff, and O. Denis. 2014. Genetic diversity among 
methicillin-resistant Staphylococcus aureus isolates carrying the mecC gene in Belgium. J 
Antimicrob Chemother 69:1457-60. 

83. Deurenberg, R. H., P. S. Beisser, M. J. Visschers, C. Driessen, and E. E. Stobberingh. 2010. 
Molecular typing of methicillin-susceptible Staphylococcus aureus isolates collected in the 
Yogyakarta area in Indonesia, 2006. Clin Microbiol Infect 16:92-4. 

84. Deurenberg, R. H., and E. E. Stobberingh. 2008. The evolution of Staphylococcus aureus. Infect 
Genet Evol 8:747-63. 

85. Deurenberg, R. H., and E. E. Stobberingh. 2009. The molecular evolution of hospital- and 
community-associated methicillin-resistant Staphylococcus aureus. Curr Mol Med 9:100-15. 

86. Deurenberg, R. H., C. Vink, S. Kalenic, A. W. Friedrich, C. A. Bruggeman, and E. E. 
Stobberingh. 2007. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin 
Microbiol Infect 13:222-35. 

87. DGS. 2013. Direção-Geral da Saúde, Departamento da Qualidade na Saúde. Portugal - Controlo da 
Infeção e Resistência aos Antimicrobianos em números - 2013.  Portugal:DGS. www.dgs.pt [On 
line]. 

88. DGS. 2012. Direção-Geral da Saúde, Departamento da Qualidade na Saúde. Prevalência de 
Infeção Adquirida no Hospital e do Uso de Antimicrobianos nos Hospitais Portugueses, Inquérito 
2012. Portugal:DGS. www.dgs.pt [On line]. 

89. DH. Department of Health. London. [Accessed September 2014].  http://www.dh.gov.uk [On line]. 
90. Diekema, D. J., M. A. Pfaller, F. J. Schmitz, J. Smayevsky, J. Bell, R. N. Jones, M. Beach, and 

S. P. Group. 2001. Survey of infections due to Staphylococcus species: frequency of occurrence 
and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, 
Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-
1999. Clin Infect Dis 32 Suppl 2:S114-32. 

91. Diep, B. A., H. F. Chambers, C. J. Graber, J. D. Szumowski, L. G. Miller, L. L. Han, J. H. Chen, 
F. Lin, J. Lin, T. H. Phan, H. A. Carleton, L. K. McDougal, F. C. Tenover, D. E. Cohen, K. H. 
Mayer, G. F. Sensabaugh, and F. Perdreau-Remington. 2008. Emergence of multidrug-resistant, 
community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have 
sex with men. Ann Intern Med 148:249-57. 

92. Diep, B. A., L. Chan, P. Tattevin, O. Kajikawa, T. R. Martin, L. Basuino, T. T. Mai, H. Marbach, 
K. R. Braughton, A. R. Whitney, D. J. Gardner, X. Fan, C. W. Tseng, G. Y. Liu, C. Badiou, J. 
Etienne, G. Lina, M. A. Matthay, F. R. DeLeo, and H. F. Chambers. 2010. Polymorphonuclear 
leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation 
and injury. Proc Natl Acad Sci U S A 107:5587-92. 

93. Diep, B. A., G. G. Stone, L. Basuino, C. J. Graber, A. Miller, S. A. des Etages, A. Jones, A. M. 
Palazzolo-Ballance, F. Perdreau-Remington, G. F. Sensabaugh, F. R. DeLeo, and H. F. 
Chambers. 2008. The arginine catabolic mobile element and staphylococcal chromosomal cassette 
mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant 
Staphylococcus aureus. J Infect Dis 197:1523-30. 

94. Dohin, B., Y. Gillet, R. Kohler, G. Lina, F. Vandenesch, P. Vanhems, D. Floret, and J. Etienne. 
2007. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive 
Staphylococcus aureus. Pediatr Infect Dis J 26:1042-8. 

95. Dominguez, M. A., H. de Lencastre, J. Linares, and A. Tomasz. 1994. Spread and maintenance 
of a dominant methicillin-resistant Staphylococcus aureus (MRSA) clone during an outbreak of 
MRSA disease in a Spanish hospital. J Clin Microbiol 32:2081-7. 

96. Dunman, P. M., E. Murphy, S. Haney, D. Palacios, G. Tucker-Kellogg, S. Wu, E. L. Brown, R. J. 
Zagursky, D. Shlaes, and S. J. Projan. 2001. Transcription profiling-based identification of 
Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341-53. 



Chapter I 
 

 
58 

97. ECDC. 2012. European Centre for Disease Prevention and Control. Antimicrobial resistance 
surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance 
Network (EARS-Net). Stockholm. http://www.ecdc.europa.eu/. [Online]. 

98. ECDC. 2013. European Centre for Disease Prevention and Control. Point prevalence survey of 
healthcare associated infections and antimicrobial use in European acute care hospitals. Stockholm. 
July 2013 http://www.ecdc.europa.eu/. [Online]. 

99. ECDC. 2010. European Centre for Disease Prevention and Control. Surveillance of antimicrobial 
consumption in Europe, 2010. Stockholm, March 2013. http://www.ecdc.europa.eu/ [Online]. 

100. Ekkelenkamp, M. B., M. Sekkat, N. Carpaij, A. Troelstra, and M. J. Bonten. 2006. [Endocarditis 
due to meticillin-resistant Staphylococcus aureus originating from pigs]. Ned Tijdschr Geneeskd 
150:2442-7. 

101. Ellis, M. W., D. R. Hospenthal, D. P. Dooley, P. J. Gray, and C. K. Murray. 2004. Natural history 
of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in 
soldiers. Clin Infect Dis 39:971-9. 

102. Enright, M. C., N. P. Day, C. E. Davies, S. J. Peacock, and B. G. Spratt. 2000. Multilocus 
sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of 
Staphylococcus aureus. J Clin Microbiol 38:1008-15. 

103. Enright, M. C., D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, and B. G. Spratt. 2002. 
The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci 
U S A 99:7687-92. 

104. Espadinha, D., N. A. Faria, M. Miragaia, L. M. Lito, J. Melo-Cristino, and H. de Lencastre. 2013. 
Extensive Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) between the 
Hospital and the Community in a Country with a High Prevalence of Nosocomial MRSA. PLoS One 
8:e59960. 

105. Fang, H., G. Hedin, G. Li, and C. E. Nord. 2008. Genetic diversity of community-associated 
methicillin-resistant Staphylococcus aureus in southern Stockholm, 2000-2005. Clin Microbiol Infect 
14:370-6. 

106. Faria, N. A., D. C. Oliveira, H. Westh, D. L. Monnet, A. R. Larsen, R. Skov, and H. de 
Lencastre. 2005. Epidemiology of emerging methicillin-resistant Staphylococcus aureus (MRSA) in 
Denmark: a nationwide study in a country with low prevalence of MRSA infection. J Clin Microbiol 
43:1836-42. 

107. Feil, E. J., J. E. Cooper, H. Grundmann, D. A. Robinson, M. C. Enright, T. Berendt, S. J. 
Peacock, J. M. Smith, M. Murphy, B. G. Spratt, C. E. Moore, and N. P. Day. 2003. How clonal is 
Staphylococcus aureus? J Bacteriol 185:3307-16. 

108. Feil, E. J., B. C. Li, D. M. Aanensen, W. P. Hanage, and B. G. Spratt. 2004. eBURST: inferring 
patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus 
sequence typing data. J Bacteriol 186:1518-30. 

109. Fleming, A. 1929. On the antibacterial action of cultures of a penicillium, with special reference to 
their use in the isolation of Bacillus infleunzae. British ]ournal of Experimental Pathology 10:226-
236. 

110. Foucault, M. L., P. Courvalin, and C. Grillot-Courvalin. 2009. Fitness cost of VanA-type 
vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents 
Chemother 53:2354-9. 

111. Francisco, A. P., M. Bugalho, M. Ramirez, and J. A. Carrico. 2009. Global optimal eBURST 
analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 10:152. 

112. Frazee, B. W., J. Lynn, E. D. Charlebois, L. Lambert, D. Lowery, and F. Perdreau-Remington. 
2005. High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin 
and soft tissue infections. Ann Emerg Med 45:311-20. 

113. Freire-Moran, L., B. Aronsson, C. Manz, I. C. Gyssens, A. D. So, D. L. Monnet, O. Cars, and E.-
E. W. Group. 2011. Critical shortage of new antibiotics in development against multidrug-resistant 
bacteria-Time to react is now. Drug Resist Updat 14:118-24. 



General Introduction 
 

 
59 

114. Frenay, H. M., A. E. Bunschoten, L. M. Schouls, W. J. van Leeuwen, C. M. Vandenbroucke-
Grauls, J. Verhoef, and F. R. Mooi. 1996. Molecular typing of methicillin-resistant Staphylococcus 
aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis 15:60-4. 

115. French, G. L., J. A. Otter, K. P. Shannon, N. M. Adams, D. Watling, and M. J. Parks. 2004. 
Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus 
(MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour 
decontamination. J Hosp Infect 57:31-7. 

116. Friedrich, A. W., W. Witte, H. de Lencastre, W. Hryniewicz, J. Scheres, H. Westh, and p. 
SeqNet.org. 2008. A European laboratory network for sequence-based typing of methicillin-
resistant Staphylococcus aureus (MRSA) as a communication platform between human and 
veterinary medicine--an update on SeqNet.org. Euro Surveill 13. 

117. Fritz, S. A., J. Garbutt, A. Elward, W. Shannon, and G. A. Storch. 2008. Prevalence of and risk 
factors for community-acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus 
colonization in children seen in a practice-based research network. Pediatrics 121:1090-8. 

118. Gal, Z., P. Kovacs, F. Hernadi, G. Barabas, L. Kiss, A. Igloi, and I. Szabo. 2001. Investigation of 
oxacillin-hydrolyzing beta-lactamase in borderline methicillin-resistant clinical isolates of 
Staphylococcus aureus. Chemotherapy 47:233-8. 

119. Garcia-Alvarez, L., M. T. Holden, H. Lindsay, C. R. Webb, D. F. Brown, M. D. Curran, E. 
Walpole, K. Brooks, D. J. Pickard, C. Teale, J. Parkhill, S. D. Bentley, G. F. Edwards, E. K. 
Girvan, A. M. Kearns, B. Pichon, R. L. Hill, A. R. Larsen, R. L. Skov, S. J. Peacock, D. J. 
Maskell, and M. A. Holmes. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA 
homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet 
Infect Dis 11:595-603. 

120. Gardete, S., M. Aires-De-Sousa, A. Faustino, A. M. Ludovice, and H. de Lencastre. 2008. 
Identification of the first vancomycin intermediate-resistant Staphylococcus aureus (VISA) isolate 
from a hospital in Portugal. Microb Drug Resist 14:1-6. 

121. Gardete, S., and A. Tomasz. 2014. Mechanisms of vancomycin resistance in Staphylococcus 
aureus. J Clin Invest 124:2836-40. 

122. Garner, J. S., W. R. Jarvis, T. G. Emori, T. C. Horan, and J. M. Hughes. 1988. CDC definitions 
for nosocomial infections, 1988. Am J Infect Control 16:128-40. 

123. Ghebremedhin, B., F. Layer, W. Konig, and B. Konig. 2008. Genetic classification and 
distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, 
sodA, and tuf gene sequences. J Clin Microbiol 46:1019-25. 

124. Gillet, Y., B. Issartel, P. Vanhems, J. C. Fournet, G. Lina, M. Bes, F. Vandenesch, Y. Piemont, 
N. Brousse, D. Floret, and J. Etienne. 2002. Association between Staphylococcus aureus strains 
carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young 
immunocompetent patients. Lancet 359:753-9. 

125. Giraudo, A. T., A. Calzolari, A. A. Cataldi, C. Bogni, and R. Nagel. 1999. The sae locus of 
Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett 177:15-
22. 

126. Giraudo, A. T., A. L. Cheung, and R. Nagel. 1997. The sae locus of Staphylococcus aureus 
controls exoprotein synthesis at the transcriptional level. Arch Microbiol 168:53-8. 

127. Goering, R. V., R. M. Shawar, N. E. Scangarella, F. P. O'Hara, H. Amrine-Madsen, J. M. West, 
M. Dalessandro, J. A. Becker, S. L. Walsh, L. A. Miller, S. F. van Horn, E. S. Thomas, and M. E. 
Twynholm. 2008. Molecular epidemiology of methicillin-resistant and methicillin-susceptible 
Staphylococcus aureus isolates from global clinical trials. J Clin Microbiol 46:2842-7. 

128. Goerke, C., U. Fluckiger, A. Steinhuber, W. Zimmerli, and C. Wolz. 2001. Impact of the 
regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during 
device-related infection resolved by direct quantitative transcript analysis. Mol Microbiol 40:1439-47. 

129. Golding, G. R., L. Bryden, P. N. Levett, R. R. McDonald, A. Wong, J. Wylie, M. R. Graham, S. 
Tyler, G. Van Domselaar, A. E. Simor, D. Gravel, and M. R. Mulvey. 2010. Livestock-associated 



Chapter I 
 

 
60 

methicillin-resistant Staphylococcus aureus sequence type 398 in humans, Canada. Emerg Infect 
Dis 16:587-94. 

130. Gomes, A. R., H. Westh, and H. de Lencastre. 2006. Origins and evolution of methicillin-resistant 
Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother 50:3237-44. 

131. Gorak, E. J., S. M. Yamada, and J. D. Brown. 1999. Community-acquired methicillin-resistant 
Staphylococcus aureus in hospitalized adults and children without known risk factors. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of America 29:797-
800. 

132. Gorwitz, R. J., D. Kruszon-Moran, S. K. McAllister, G. McQuillan, L. K. McDougal, G. E. 
Fosheim, B. J. Jensen, G. Killgore, F. C. Tenover, and M. J. Kuehnert. 2008. Changes in the 
prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. J 
Infect Dis 197:1226-34. 

133. Gowrishankar, S., R. Thenmozhi, K. Balaji, and S. K. Pandian. 2013. Emergence of methicillin-
resistant, vancomycin-intermediate Staphylococcus aureus among patients associated with group A 
Streptococcal pharyngitis infection in southern India. Infect Genet Evol 14:383-9. 

134. Gray, G. S., and M. Kehoe. 1984. Primary sequence of the alpha-toxin gene from Staphylococcus 
aureus wood 46. Infect Immun 46:615-8. 

135. Gray, R. R., A. J. Tatem, J. A. Johnson, A. V. Alekseyenko, O. G. Pybus, M. A. Suchard, and 
M. Salemi. 2011. Testing spatiotemporal hypothesis of bacterial evolution using methicillin-resistant 
Staphylococcus aureus ST239 genome-wide data within a bayesian framework. Mol Biol Evol 
28:1593-603. 

136. Grindstaff, T. L., S. A. Saliba, D. J. Mistry, and J. M. Macknight. 2007. Community-associated 
methicillin-resistant Staphylococcus aureus. N Am J Sports Phys Ther 2:138-46. 

137. Grundmann, H., D. M. Aanensen, C. C. van den Wijngaard, B. G. Spratt, D. Harmsen, and A. 
W. Friedrich. 2010. Geographic distribution of Staphylococcus aureus causing invasive infections in 
Europe: a molecular-epidemiological analysis. PLoS Med 7:e1000215. 

138. Grundmann, H., M. Aires-de-Sousa, J. Boyce, and E. Tiemersma. 2006. Emergence and 
resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874-
85. 

139. Grundmann, H., S. Barwolff, A. Tami, M. Behnke, F. Schwab, C. Geffers, E. Halle, U. B. Gobel, 
R. Schiller, D. Jonas, I. Klare, K. Weist, W. Witte, K. Beck-Beilecke, M. Schumacher, H. Ruden, 
and P. Gastmeier. 2005. How many infections are caused by patient-to-patient transmission in 
intensive care units? Crit Care Med 33:946-51. 

140. Grundmann, H., A. Tami, S. Hori, M. Halwani, and R. Slack. 2002. Nottingham Staphylococcus 
aureus population study: prevalence of MRSA among elderly people in the community. BMJ 
324:1365-6. 

141. Hackbarth, C. J., T. Kocagoz, S. Kocagoz, and H. F. Chambers. 1995. Point mutations in 
Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with 
resistance. Antimicrob Agents Chemother 39:103-6. 

142. Hageman, J. C., T. M. Uyeki, J. S. Francis, D. B. Jernigan, J. G. Wheeler, C. B. Bridges, S. J. 
Barenkamp, D. M. Sievert, A. Srinivasan, M. C. Doherty, L. K. McDougal, G. E. Killgore, U. A. 
Lopatin, R. Coffman, J. K. MacDonald, S. K. McAllister, G. E. Fosheim, J. B. Patel, and L. C. 
McDonald. 2006. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003-04 
influenza season. Emerg Infect Dis 12:894-9. 

143. Han, L. L., L. K. McDougal, R. J. Gorwitz, K. H. Mayer, J. B. Patel, J. M. Sennott, and J. L. 
Fontana. 2007. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant 
Staphylococcus aureus pulsed-field type USA300 isolates collected at a Boston ambulatory health 
center. J Clin Microbiol 45:1350-2. 

144. Hanssen, A. M., and J. U. Ericson Sollid. 2006. SCCmec in staphylococci: genes on the move. 
FEMS Immunol Med Microbiol 46:8-20. 



General Introduction 
 

 
61 

145. Hanssen, A. M., A. Fossum, J. Mikalsen, D. S. Halvorsen, G. Bukholm, and J. U. Sollid. 2005. 
Dissemination of community-acquired methicillin-resistant Staphylococcus aureus clones in northern 
Norway: sequence types 8 and 80 predominate. J Clin Microbiol 43:2118-24. 

146. Harris, S. R., E. J. Feil, M. T. Holden, M. A. Quail, E. K. Nickerson, N. Chantratita, S. Gardete, 
A. Tavares, N. Day, J. A. Lindsay, J. D. Edgeworth, H. de Lencastre, J. Parkhill, S. J. Peacock, 
and S. D. Bentley. Evolution of MRSA during hospital transmission and intercontinental spread. 
Science 327:469-74. 

147. Hartman, B. J., and A. Tomasz. 1984. Low-affinity penicillin-binding protein associated with beta-
lactam resistance in Staphylococcus aureus. J Bacteriol 158:513-6. 

148. Herold, B. C., L. C. Immergluck, M. C. Maranan, D. S. Lauderdale, R. E. Gaskin, S. Boyle-
Vavra, C. D. Leitch, and R. S. Daum. 1998. Community-acquired methicillin-resistant 
Staphylococcus aureus in children with no identified predisposing risk. JAMA 279:593-8. 

149. Hiramatsu, K., N. Aritaka, H. Hanaki, S. Kawasaki, Y. Hosoda, S. Hori, Y. Fukuchi, and I. 
Kobayashi. 1997. Dissemination in Japanese hospitals of strains of Staphylococcus aureus 
heterogeneously resistant to vancomycin. Lancet 350:1670-3. 

150. Hiramatsu, K., K. Asada, E. Suzuki, K. Okonogi, and T. Yokota. 1992. Molecular cloning and 
nucleotide sequence determination of the regulator region of mecA gene in methicillin-resistant 
Staphylococcus aureus (MRSA). FEBS Lett 298:133-6. 

151. Hisata, K., K. Kuwahara-Arai, M. Yamanoto, T. Ito, Y. Nakatomi, L. Cui, T. Baba, M. Terasawa, 
C. Sotozono, S. Kinoshita, Y. Yamashiro, and K. Hiramatsu. 2005. Dissemination of methicillin-
resistant staphylococci among healthy Japanese children. J Clin Microbiol 43:3364-72. 

152. Ho, P. L., C. Cheung, G. C. Mak, C. W. Tse, T. K. Ng, C. H. Cheung, T. L. Que, R. Lam, R. W. 
Lai, R. W. Yung, and K. Y. Yuen. 2007. Molecular epidemiology and household transmission of 
community-associated methicillin-resistant Staphylococcus aureus in Hong Kong. Diagn Microbiol 
Infect Dis 57:145-51. 

153. Hoeger, P. H., W. Lenz, A. Boutonnier, and J. M. Fournier. 1992. Staphylococcal skin 
colonization in children with atopic dermatitis: prevalence, persistence, and transmission of toxigenic 
and nontoxigenic strains. J Infect Dis 165:1064-8. 

154. Horan, T. C., M. Andrus, and M. A. Dudeck. 2008. CDC/NHSN surveillance definition of health 
care-associated infection and criteria for specific types of infections in the acute care setting. Am J 
Infect Control 36:309-32. 

155. Horner, C., P. Parnell, D. Hall, A. Kearns, J. Heritage, and M. Wilcox. 2013. Meticillin-resistant 
Staphylococcus aureus in elderly residents of care homes: colonization rates and molecular 
epidemiology. J Hosp Infect. 

156. Horner, C., P. Parnell, D. Hall, A. Kearns, J. Heritage, and M. Wilcox. 2013. Meticillin-resistant 
Staphylococcus aureus in elderly residents of care homes: colonization rates and molecular 
epidemiology. J Hosp Infect 83:212-8. 

157. Horvath, A., O. Dobay, S. Kardos, A. Ghidan, A. Toth, J. Paszti, E. Ungvari, P. Horvath, K. 
Nagy, S. Zissman, and M. Fuzi. 2012. Varying fitness cost associated with resistance to 
fluoroquinolones governs clonal dynamic of methicillin-resistant Staphylococcus aureus. Eur J Clin 
Microbiol Infect Dis 31:2029-36. 

158. HPA. 2009. Health Protection Agency. Healthcare-associated Infections in England: 2008-2009 
Report. London:HPA. Sept 2009. 
http://www.hpa.org.uk/web/HPAwebFile/HPAwebC/1252326222452 [Online]. 

159. Hsu, L. Y., T. H. Koh, K. Singh, M. L. Kang, A. Kurup, and B. H. Tan. 2005. Dissemination of 
multisusceptible methicillin-resistant Staphylococcus aureus in Singapore. J Clin Microbiol 43:2923-
5. 

160. Huang, Y. C., and C. J. Chen. 2011. Community-associated meticillin-resistant Staphylococcus 
aureus in children in Taiwan, 2000s. Int J Antimicrob Agents 38:2-8. 

161. Huntzinger, E., S. Boisset, C. Saveanu, Y. Benito, T. Geissmann, A. Namane, G. Lina, J. 
Etienne, B. Ehresmann, C. Ehresmann, A. Jacquier, F. Vandenesch, and P. Romby. 2005. 



Chapter I 
 

 
62 

Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene 
expression. EMBO J 24:824-35. 

162. Hussain, F. M., S. Boyle-Vavra, and R. S. Daum. 2001. Community-acquired methicillin-resistant 
Staphylococcus aureus colonization in healthy children attending an outpatient pediatric clinic. 
Pediatr Infect Dis J 20:763-7. 

163. International Working Group on the Classification of Staphylococcal Cassette Chromosome, 
E. 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for 
reporting novel SCCmec elements. Antimicrob Agents Chemother 53:4961-7. 

164. Ito, T., M. Iijima, T. Fukushima, M. Nonoyama, M. Ishii, T. Baranovich, T. Otsuka, T. Takano, 
and T. Yamamoto. 2008. Pediatric pneumonia death caused by community-acquired methicillin-
resistant Staphylococcus aureus, Japan. Emerg Infect Dis 14:1312-4. 

165. Ito, T., Y. Katayama, K. Asada, N. Mori, K. Tsutsumimoto, C. Tiensasitorn, and K. Hiramatsu. 
2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated 
in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 
45:1323-36. 

166. Ito, T., Y. Katayama, and K. Hiramatsu. 1999. Cloning and nucleotide sequence determination of 
the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents 
Chemother 43:1449-58. 

167. Ito, T., X. X. Ma, F. Takeuchi, K. Okuma, H. Yuzawa, and K. Hiramatsu. 2004. Novel type V 
staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, 
ccrC. Antimicrob Agents Chemother 48:2637-51. 

168. Ito, T., K. Okuma, X. X. Ma, H. Yuzawa, and K. Hiramatsu. 2003. Insights on antibiotic resistance 
of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat 6:41-52. 

169. Jenkins, T. C., B. D. McCollister, R. Sharma, K. K. McFann, N. E. Madinger, M. Barron, M. 
Bessesen, C. S. Price, and W. J. Burman. 2009. Epidemiology of healthcare-associated 
bloodstream infection caused by USA300 strains of methicillin-resistant Staphylococcus aureus in 3 
affiliated hospitals. Infect Control Hosp Epidemiol 30:233-41. 

170. Jevons, M. P. 1961. "Celbenin"!resistant staphylococci. British Medical Journal 1:124. 
171. Johnson, A. P., H. M. Aucken, S. Cavendish, M. Ganner, M. C. Wale, M. Warner, D. M. 

Livermore, and B. D. Cookson. 2001. Dominance of EMRSA-15 and -16 among MRSA causing 
nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance 
Surveillance System (EARSS). J Antimicrob Chemother 48:143-4. 

172. Johnson, A. P., J. Davies, R. Guy, J. Abernethy, E. Sheridan, A. Pearson, and G. Duckworth. 
2012. Mandatory surveillance of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in 
England: the first 10 years. J Antimicrob Chemother 67:802-9. 

173. Kahl, B. C., A. Mellmann, S. Deiwick, G. Peters, and D. Harmsen. 2005. Variation of the 
polymorphic region X of the protein A gene during persistent airway infection of cystic fibrosis 
patients reflects two independent mechanisms of genetic change in Staphylococcus aureus. J Clin 
Microbiol 43:502-5. 

174. Kampf, G., and A. Kramer. 2004. Epidemiologic background of hand hygiene and evaluation of the 
most important agents for scrubs and rubs. Clin Microbiol Rev 17:863-93, table of contents. 

175. Kaplan, S. L., K. G. Hulten, B. E. Gonzalez, W. A. Hammerman, L. Lamberth, J. Versalovic, 
and E. O. Mason, Jr. 2005. Three-year surveillance of community-acquired Staphylococcus aureus 
infections in children. Clin Infect Dis 40:1785-91. 

176. Karden-Lilja, M., S. Ibrahem, J. Vuopio-Varkila, S. Salmenlinna, O. Lyytikainen, L. Siira, and 
A. Virolainen. 2007. Panton-Valentine leukocidin genes and staphylococcal chromosomal cassette 
mec types amongst Finnish community-acquired methicillin-resistant Staphylococcus aureus 
strains, 1997-1999. Eur J Clin Microbiol Infect Dis 26:729-33. 

177. Katayama, Y., T. Ito, and K. Hiramatsu. 2000. A new class of genetic element, staphylococcus 
cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob 
Agents Chemother 44:1549-55. 



General Introduction 
 

 
63 

178. Kehoe, M., J. Duncan, T. Foster, N. Fairweather, and G. Dougan. 1983. Cloning, expression, and 
mapping of the Staphylococcus aureus alpha-hemolysin determinant in Escherichia coli K-12. Infect 
Immun 41:1105-11. 

179. Khokhlova, O., Y. Tomita, W. C. Hung, T. Takano, Y. Iwao, W. Higuchi, A. Nishiyama, I. Reva, 
and T. Yamamoto. 2012. Elderly infection in the community due to ST5/SCCmecII methicillin-
resistant Staphylococcus aureus (the New York/Japan clone) in Japan: Panton-Valentine 
leukocidin-negative necrotizing pneumonia. J Microbiol Immunol Infect. 

180. Kim, C., C. Milheirico, S. Gardete, M. A. Holmes, M. T. Holden, H. de Lencastre, and A. 
Tomasz. 2012. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain 
LGA251 and its contribution to the beta-lactam-resistant phenotype. J Biol Chem 287:36854-63. 

181. King, M. D., B. J. Humphrey, Y. F. Wang, E. V. Kourbatova, S. M. Ray, and H. M. Blumberg. 
2006. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 
clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309-17. 

182. Kirby, W. M. 1944. Extraction of a Highly Potent Penicillin Inactivator from Penicillin Resistant 
Staphylococci. Science 99:452-3. 

183. Kirmani, N., C. U. Tuazon, H. W. Murray, A. E. Parrish, and J. N. Sheagren. 1978. 
Staphylococcus aureus carriage rate of patients receiving long-term hemodialysis. Arch Intern Med 
138:1657-9. 

184. Kloos, W. E. 1998. Staphylococcus, pp. 577-632. In: Collier, L., Balows, A., Sussman, M., (eds), 
Topley and Wilson's Microbiology and Microbial Infections. Volume 2: Systematic Bacteriology. 9th 
Ed. Edward Arnold, London. 

185. Kluytmans, J., A. van Belkum, and H. Verbrugh. 1997. Nasal carriage of Staphylococcus aureus: 
epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505-20. 

186. Kondo, Y., T. Ito, X. X. Ma, S. Watanabe, B. N. Kreiswirth, J. Etienne, and K. Hiramatsu. 2007. 
Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: 
rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob 
Agents Chemother 51:264-74. 

187. Koreen, L., S. V. Ramaswamy, E. A. Graviss, S. Naidich, J. M. Musser, and B. N. Kreiswirth. 
2004. spa typing method for discriminating among Staphylococcus aureus isolates: implications for 
use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792-9. 

188. Koser, C. U., M. T. Holden, M. J. Ellington, E. J. Cartwright, N. M. Brown, A. L. Ogilvy-Stuart, 
L. Y. Hsu, C. Chewapreecha, N. J. Croucher, S. R. Harris, M. Sanders, M. C. Enright, G. 
Dougan, S. D. Bentley, J. Parkhill, L. J. Fraser, J. R. Betley, O. B. Schulz-Trieglaff, G. P. 
Smith, and S. J. Peacock. 2012. Rapid whole-genome sequencing for investigation of a neonatal 
MRSA outbreak. N Engl J Med 366:2267-75. 

189. Kreiswirth, B., J. Kornblum, R. D. Arbeit, W. Eisner, J. N. Maslow, A. McGeer, D. E. Low, and 
R. P. Novick. 1993. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. 
Science 259:227-30. 

190. Krziwanek, K., C. Luger, B. Sammer, S. Stumvoll, M. Stammler, U. Sagel, W. Witte, and H. 
Mittermayer. 2008. MRSA in Austria--an overview. Clin Microbiol Infect 14:250-9. 

191. Kuehnert, M. J., D. Kruszon-Moran, H. A. Hill, G. McQuillan, S. K. McAllister, G. Fosheim, L. K. 
McDougal, J. Chaitram, B. Jensen, S. K. Fridkin, G. Killgore, and F. C. Tenover. 2006. 
Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001-2002. J Infect 
Dis 193:172-9. 

192. Kwon, N. H., K. T. Park, J. S. Moon, W. K. Jung, S. H. Kim, J. M. Kim, S. K. Hong, H. C. Koo, Y. 
S. Joo, and Y. H. Park. 2005. Staphylococcal cassette chromosome mec (SCCmec) 
characterization and molecular analysis for methicillin-resistant Staphylococcus aureus and novel 
SCCmec subtype IVg isolated from bovine milk in Korea. J Antimicrob Chemother 56:624-32. 

193. Labandeira-Rey, M., F. Couzon, S. Boisset, E. L. Brown, M. Bes, Y. Benito, E. M. Barbu, V. 
Vazquez, M. Hook, J. Etienne, F. Vandenesch, and M. G. Bowden. 2007. Staphylococcus aureus 
Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315:1130-3. 



Chapter I 
 

 
64 

194. Lamers, R. P., J. W. Stinnett, G. Muthukrishnan, C. L. Parkinson, and A. M. Cole. 2011. 
Evolutionary analyses of Staphylococcus aureus identify genetic relationships between nasal 
carriage and clinical isolates. PLoS One 6:e16426. 

195. Lannergard, J., T. Norstrom, and D. Hughes. 2009. Genetic determinants of resistance to fusidic 
acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother 
53:2059-65. 

196. Larsen, A. R., S. Bocher, M. Stegger, R. Goering, L. V. Pallesen, and R. Skov. 2008. 
Epidemiology of European community-associated methicillin-resistant Staphylococcus aureus clonal 
complex 80 type IV strains isolated in Denmark from 1993 to 2004. J Clin Microbiol 46:62-8. 

197. Len, K. A., L. Bergert, S. Patel, M. Melish, C. Kimata, and G. Erdem. 2010. Community-acquired 
Staphylococcus aureus pneumonia among hospitalized children in Hawaii. Pediatr Pulmonol 
45:898-905. 

198. Li, M., B. A. Diep, A. E. Villaruz, K. R. Braughton, X. Jiang, F. R. DeLeo, H. F. Chambers, Y. Lu, 
and M. Otto. 2009. Evolution of virulence in epidemic community-associated methicillin-resistant 
Staphylococcus aureus. Proc Natl Acad Sci U S A 106:5883-8. 

199. Li, M., X. Du, A. E. Villaruz, B. A. Diep, D. Wang, Y. Song, Y. Tian, J. Hu, F. Yu, Y. Lu, and M. 
Otto. 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. 
Nat Med 18:816-9. 

200. Liang, X., J. W. Hall, J. Yang, M. Yan, K. Doll, R. Bey, and Y. Ji. 2011. Identification of single 
nucleotide polymorphisms associated with hyperproduction of alpha-toxin in Staphylococcus 
aureus. PLoS One 6:e18428. 

201. Liang, X., L. Zheng, C. Landwehr, D. Lunsford, D. Holmes, and Y. Ji. 2005. Global regulation of 
gene expression by ArlRS, a two-component signal transduction regulatory system of 
Staphylococcus aureus. J Bacteriol 187:5486-92. 

202. Lina, G., Y. Piemont, F. Godail-Gamot, M. Bes, M. O. Peter, V. Gauduchon, F. Vandenesch, 
and J. Etienne. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus 
aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128-32. 

203. Linde, H., F. Wagenlehner, B. Strommenger, I. Drubel, J. Tanzer, U. Reischl, U. Raab, C. 
Holler, K. G. Naber, W. Witte, F. Hanses, B. Salzberger, and N. Lehn. 2005. Healthcare-
associated outbreaks and community-acquired infections due to MRSA carrying the Panton-
Valentine leucocidin gene in southeastern Germany. Eur J Clin Microbiol Infect Dis 24:419-22. 

204. Lindsay, J. A. 2010. Genomic variation and evolution of Staphylococcus aureus. Int J Med 
Microbiol 300:98-103. 

205. Lindsay, J. A., and M. T. Holden. 2006. Understanding the rise of the superbug: investigation of 
the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186-201. 

206. Lipsky, B. A., R. E. Pecoraro, M. S. Chen, and T. D. Koepsell. 1987. Factors affecting 
staphylococcal colonization among NIDDM outpatients. Diabetes Care 10:483-6. 

207. Liu, C., C. J. Graber, M. Karr, B. A. Diep, L. Basuino, B. S. Schwartz, M. C. Enright, S. J. 
O'Hanlon, J. C. Thomas, F. Perdreau-Remington, S. Gordon, H. Gunthorpe, R. Jacobs, P. 
Jensen, G. Leoung, J. S. Rumack, and H. F. Chambers. 2008. A population-based study of the 
incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San 
Francisco, 2004-2005. Clin Infect Dis 46:1637-46. 

208. Lo, W. T., C. C. Wang, W. J. Lin, S. R. Wang, C. S. Teng, C. F. Huang, and S. J. Chen. 2010. 
Changes in the nasal colonization with methicillin-resistant Staphylococcus aureus in children: 
2004-2009. PLoS One 5:e15791. 

209. Loeffler, A., A. M. Kearns, M. J. Ellington, L. J. Smith, V. E. Unt, J. A. Lindsay, D. U. Pfeiffer, 
and D. H. Lloyd. 2009. First isolation of MRSA ST398 from UK animals: a new challenge for 
infection control teams? J Hosp Infect 72:269-71. 

210. Loeffler, A., D. U. Pfeiffer, D. H. Lloyd, H. Smith, R. Soares-Magalhaes, and J. A. Lindsay. 
2010. Meticillin-resistant Staphylococcus aureus carriage in UK veterinary staff and owners of 
infected pets: new risk groups. J Hosp Infect 74:282-8. 



General Introduction 
 

 
65 

211. Lowy, F. D. 2011. How Staphylococcus aureus adapts to its host. N Engl J Med 364:1987-90. 
212. Lowy, F. D. 1998. Staphylococcus aureus infections. N Engl J Med 339:520-32. 
213. Lowy, F. D., A. E. Aiello, M. Bhat, V. D. Johnson-Lawrence, M. H. Lee, E. Burrell, L. N. Wright, 

G. Vasquez, and E. L. Larson. 2007. Staphylococcus aureus colonization and infection in New 
York State prisons. J Infect Dis 196:911-8. 

214. Luong, T. T., S. W. Newell, and C. Y. Lee. 2003. Mgr, a novel global regulator in Staphylococcus 
aureus. J Bacteriol 185:3703-10. 

215. Ma, X. X., T. Ito, C. Tiensasitorn, M. Jamklang, P. Chongtrakool, S. Boyle-Vavra, R. S. Daum, 
and K. Hiramatsu. 2002. Novel type of staphylococcal cassette chromosome mec identified in 
community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents 
Chemother 46:1147-52. 

216. Ma, Y., Y. Xu, B. D. Yestrepsky, R. J. Sorenson, M. Chen, S. D. Larsen, and H. Sun. 2012. 
Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS 
One 7:e47255. 

217. Maiden, M. C., J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin, Q. Zhang, J. Zhou, K. 
Zurth, D. A. Caugant, I. M. Feavers, M. Achtman, and B. G. Spratt. 1998. Multilocus sequence 
typing: a portable approach to the identification of clones within populations of pathogenic 
microorganisms. Proc Natl Acad Sci U S A 95:3140-5. 

218. Maier, J., H. Melzl, U. Reischl, I. Drubel, W. Witte, N. Lehn, and H. Linde. 2005. Panton-
Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Germany associated 
with travel or foreign family origin. Eur J Clin Microbiol Infect Dis 24:637-9. 

219. Marchese, A., L. Gualco, E. Maioli, and E. Debbia. 2009. Molecular analysis and susceptibility 
patterns of meticillin-resistant Staphylococcus aureus (MRSA) strains circulating in the community in 
the Ligurian area, a northern region of Italy: emergence of USA300 and EMRSA-15 clones. Int J 
Antimicrob Agents 34:424-8. 

220. Maree, C. L., S. J. Eells, J. Tan, E. A. Bancroft, M. Malek, N. T. Harawa, M. J. Lewis, E. 
Santana, and L. G. Miller. 2010. Risk factors for infection and colonization with community-
associated methicillin-resistant Staphylococcus aureus in the Los Angeles County jail: a case-
control study. Clin Infect Dis 51:1248-57. 

221. Marshall, C., and D. Spelman. 2007. Re: is throat screening necessary to detect methicillin-
resistant Staphylococcus aureus colonization in patients upon admission to an intensive care unit? J 
Clin Microbiol 45:3855. 

222. Martinez-Aguilar, G., A. Avalos-Mishaan, K. Hulten, W. Hammerman, E. O. Mason, Jr., and S. 
L. Kaplan. 2004. Community-acquired, methicillin-resistant and methicillin-susceptible 
Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J 23:701-6. 

223. McAdam, P. R., A. Holmes, K. E. Templeton, and J. R. Fitzgerald. 2011. Adaptive evolution of 
Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. PLoS One 
6:e24301. 

224. McAdam, P. R., K. E. Templeton, G. F. Edwards, M. T. Holden, E. J. Feil, D. M. Aanensen, H. J. 
Bargawi, B. G. Spratt, S. D. Bentley, J. Parkhill, M. C. Enright, A. Holmes, E. K. Girvan, P. A. 
Godfrey, M. Feldgarden, A. M. Kearns, A. Rambaut, D. A. Robinson, and J. R. Fitzgerald. 
2012. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated 
methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 109:9107-12. 

225. McDevitt, D., P. Francois, P. Vaudaux, and T. J. Foster. 1994. Molecular characterization of the 
clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237-48. 

226. McDougal, L. K., C. D. Steward, G. E. Killgore, J. M. Chaitram, S. K. McAllister, and F. C. 
Tenover. 2003. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus 
isolates from the United States: establishing a national database. J Clin Microbiol 41:5113-20. 

227. McDougal, L. K., and C. Thornsberry. 1986. The role of beta-lactamase in staphylococcal 
resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 23:832-9. 



Chapter I 
 

 
66 

228. McGavin, M. J., B. Arsic, and N. N. Nickerson. 2012. Evolutionary blueprint for host- and niche-
adaptation in Staphylococcus aureus clonal complex CC30. Front Cell Infect Microbiol 2:48. 

229. McHugh, C. G., and L. W. Riley. 2004. Risk factors and costs associated with methicillin-resistant 
Staphylococcus aureus bloodstream infections. Infect Control Hosp Epidemiol 25:425-30. 

230. McNamara, P. J., and A. S. Bayer. 2005. A rot mutation restores parental virulence to an agr-null 
Staphylococcus aureus strain in a rabbit model of endocarditis. Infect Immun 73:3806-9. 

231. McNamara, P. J., K. C. Milligan-Monroe, S. Khalili, and R. A. Proctor. 2000. Identification, 
cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression 
in Staphylococcus aureus. J Bacteriol 182:3197-203. 

232. Melles, D. C., W. B. van Leeuwen, H. A. Boelens, J. K. Peeters, H. A. Verbrugh, and A. van 
Belkum. 2006. Panton-Valentine leukocidin genes in Staphylococcus aureus. Emerg Infect Dis 
12:1174-5. 

233. Melo-Cristino, J., C. Resina, V. Manuel, L. Lito, and M. Ramirez. 2013. First case of infection 
with vancomycin-resistant Staphylococcus aureus in Europe. Lancet 382:205. 

234. Mera, R. M., J. A. Suaya, H. Amrine-Madsen, C. S. Hogea, L. A. Miller, E. P. Lu, D. F. Sahm, P. 
O'Hara, and C. J. Acosta. 2011. Increasing role of Staphylococcus aureus and community-
acquired methicillin-resistant Staphylococcus aureus infections in the United States: a 10-year trend 
of replacement and expansion. Microb Drug Resist 17:321-8. 

235. Merckoll, P., T. O. Jonassen, M. E. Vad, S. L. Jeansson, and K. K. Melby. 2009. Bacteria, biofilm 
and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound 
bacteria. Scand J Infect Dis 41:341-7. 

236. Miko, B. A., C. A. Hafer, C. J. Lee, S. B. Sullivan, M. A. Hackel, B. M. Johnson, S. Whittier, P. 
Della-Latta, A. C. Uhlemann, and F. D. Lowy. 2013. Molecular characterization of methicillin-
susceptible Staphylococcus aureus clinical isolates in the United States, 2004 to 2010. J Clin 
Microbiol 51:874-9. 

237. Milheirico, C., D. C. Oliveira, and H. de Lencastre. 2007. Update to the multiplex PCR strategy for 
assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother 
51:3374-7. 

238. Millar, B. C., A. Loughrey, J. S. Elborn, and J. E. Moore. 2007. Proposed definitions of 
community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA). J Hosp Infect 
67:109-13. 

239. Miller, L. G., S. J. Eells, A. R. Taylor, M. Z. David, N. Ortiz, D. Zychowski, N. Kumar, D. Cruz, S. 
Boyle-Vavra, and R. S. Daum. 2012. Staphylococcus aureus colonization among household 
contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin 
Infect Dis 54:1523-35. 

240. Miller, L. G., F. Perdreau-Remington, A. S. Bayer, B. Diep, N. Tan, K. Bharadwa, J. Tsui, J. 
Perlroth, A. Shay, G. Tagudar, U. Ibebuogu, and B. Spellberg. 2007. Clinical and epidemiologic 
characteristics cannot distinguish community-associated methicillin-resistant Staphylococcus aureus 
infection from methicillin-susceptible S. aureus infection: a prospective investigation. Clin Infect Dis 
44:471-82. 

241. Miller, L. G., F. Perdreau-Remington, G. Rieg, S. Mehdi, J. Perlroth, A. S. Bayer, A. W. Tang, T. 
O. Phung, and B. Spellberg. 2005. Necrotizing fasciitis caused by community-associated 
methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 352:1445-53. 

242. Miller, M. B., D. J. Weber, J. S. Goodrich, E. B. Popowitch, M. D. Poe, V. Nyugen, T. R. Shope, 
D. T. Foster, J. R. Miller, and J. Kotch. 2011. Prevalence and risk factor analysis for methicillin-
resistant Staphylococcus aureus nasal colonization in children attending child care centers. J Clin 
Microbiol 49:1041-7. 

243. Moet, G. J., R. N. Jones, D. J. Biedenbach, M. G. Stilwell, and T. R. Fritsche. 2007. 
Contemporary causes of skin and soft tissue infections in North America, Latin America, and 
Europe: report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diagn Microbiol 
Infect Dis 57:7-13. 



General Introduction 
 

 
67 

244. Mongkolrattanothai, K., J. C. Aldag, P. Mankin, and B. M. Gray. 2009. Epidemiology of 
community-onset Staphylococcus aureus infections in pediatric patients: an experience at a 
Children's Hospital in central Illinois. BMC Infect Dis 9:112. 

245. Monti, G., P. Tonetto, M. Mostert, and R. Oggero. 1996. Staphylococcus aureus skin colonization 
in infants with atopic dermatitis. Dermatology 193:83-7. 

246. Montoya, M., and E. Gouaux. 2003. Beta-barrel membrane protein folding and structure viewed 
through the lens of alpha-hemolysin. Biochim Biophys Acta 1609:19-27. 

247. Moran, G. J., A. Krishnadasan, R. J. Gorwitz, G. E. Fosheim, V. Albrecht, B. Limbago, D. A. 
Talan, and E. M. I. N. S. Group. 2012. Prevalence of methicillin-resistant Staphylococcus aureus 
as an etiology of community-acquired pneumonia. Clin Infect Dis 54:1126-33. 

248. Moran, G. J., A. Krishnadasan, R. J. Gorwitz, G. E. Fosheim, L. K. McDougal, R. B. Carey, and 
D. A. Talan. 2006. Methicillin-resistant S. aureus infections among patients in the emergency 
department. N Engl J Med 355:666-74. 

249. Moran, G. J., A. Krishnadasan, R. J. Gorwitz, G. E. Fosheim, L. K. McDougal, R. B. Carey, D. 
A. Talan, and E. M. I. N. S. Group. 2006. Methicillin-resistant S. aureus infections among patients 
in the emergency department. N Engl J Med 355:666-74. 

250. Moravvej, Z., F. Estaji, E. Askari, K. Solhjou, M. Naderi Nasab, and S. Saadat. 2013. Update on 
the global number of vancomycin-resistant Staphylococcus aureus (VRSA) strains. Int J Antimicrob 
Agents 42:370-1. 

251. Morgan, M. 2008. Methicillin-resistant Staphylococcus aureus and animals: zoonosis or 
humanosis? J Antimicrob Chemother 62:1181-7. 

252. Mwangi, M. M., S. W. Wu, Y. Zhou, K. Sieradzki, H. de Lencastre, P. Richardson, D. Bruce, E. 
Rubin, E. Myers, E. D. Siggia, and A. Tomasz. 2007. Tracking the in vivo evolution of multidrug 
resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 
104:9451-6. 

253. Nadarajah, J., M. J. Lee, L. Louie, L. Jacob, A. E. Simor, M. Louie, and M. J. McGavin. 2006. 
Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding 
protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus 
isolates. J Med Microbiol 55:1675-83. 

254. Naimi, T. S., K. H. LeDell, K. Como-Sabetti, S. M. Borchardt, D. J. Boxrud, J. Etienne, S. K. 
Johnson, F. Vandenesch, S. Fridkin, C. O'Boyle, R. N. Danila, and R. Lynfield. 2003. 
Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus 
infection. Jama 290:2976-84. 

255. Nakamura, M. M., K. L. Rohling, M. Shashaty, H. Lu, Y. W. Tang, and K. M. Edwards. 2002. 
Prevalence of methicillin-resistant Staphylococcus aureus nasal carriage in the community pediatric 
population. Pediatr Infect Dis J 21:917-22. 

256. Nazareth, R., J. Goncalves-Pereira, A. Tavares, M. Miragaia, H. de Lencastre, J. Silvestre, P. 
Freitas, E. Goncalves, F. Martins, V. Mendes, C. Tapadinhas, and P. Povoa. 2012. Community-
associated methicillin-resistant Staphylococcus aureus infection in Portugal. Rev Port Pneumol 
18:34-8. 

257. Nguyen, M. H., C. A. Kauffman, R. P. Goodman, C. Squier, R. D. Arbeit, N. Singh, M. M. 
Wagener, and V. L. Yu. 1999. Nasal carriage of and infection with Staphylococcus aureus in HIV-
infected patients. Ann Intern Med 130:221-5. 

258. Nilsson, P., and T. Ripa. 2006. Staphylococcus aureus throat colonization is more frequent than 
colonization in the anterior nares. J Clin Microbiol 44:3334-9. 

259. Nimmo, G. R. 2012. USA300 abroad: global spread of a virulent strain of community-associated 
methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 18:725-34. 

260. Noskin, G. A., R. J. Rubin, J. J. Schentag, J. Kluytmans, E. C. Hedblom, C. Jacobson, M. 
Smulders, E. Gemmen, and M. Bharmal. 2007. National trends in Staphylococcus aureus 
infection rates: impact on economic burden and mortality over a 6-year period (1998-2003). Clin 
Infect Dis 45:1132-40. 



Chapter I 
 

 
68 

261. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal 
virulence. Mol Microbiol 48:1429-49. 

262. Novick, R. P., H. F. Ross, S. J. Projan, J. Kornblum, B. Kreiswirth, and S. Moghazeh. 1993. 
Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 
12:3967-75. 

263. Nubel, U., P. Roumagnac, M. Feldkamp, J. H. Song, K. S. Ko, Y. C. Huang, G. Coombs, M. Ip, 
H. Westh, R. Skov, M. J. Struelens, R. V. Goering, B. Strommenger, A. Weller, W. Witte, and 
M. Achtman. 2008. Frequent emergence and limited geographic dispersal of methicillin-resistant 
Staphylococcus aureus. Proc Natl Acad Sci U S A 105:14130-5. 

264. Nulens, E., E. E. Stobberingh, H. van Dessel, S. Sebastian, F. H. van Tiel, P. S. Beisser, and R. 
H. Deurenberg. 2008. Molecular characterization of Staphylococcus aureus bloodstream isolates 
collected in a Dutch University Hospital between 1999 and 2006. J Clin Microbiol 46:2438-41. 

265. O'Brien, F. G., T. T. Lim, F. N. Chong, G. W. Coombs, M. C. Enright, D. A. Robinson, A. Monk, 
B. Said-Salim, B. N. Kreiswirth, and W. B. Grubb. 2004. Diversity among community isolates of 
methicillin-resistant Staphylococcus aureus in Australia. J Clin Microbiol 42:3185-90. 

266. O'Riordan, K., and J. C. Lee. 2004. Staphylococcus aureus capsular polysaccharides. Clin 
Microbiol Rev 17:218-34. 

267. Ogston, A. 1882. Micrococcus Poisoning. J Anat Physiol 17:24-58. 
268. Okubo, T., S. Yabe, T. Otsuka, Y. Takizawa, T. Takano, S. Dohmae, W. Higuchi, H. Tsukada, F. 

Gejyo, M. Uchiyama, and T. Yamamoto. 2008. Multifocal pelvic abscesses and osteomyelitis from 
community-acquired methicillin-resistant Staphylococcus aureus in a 17-year-old basketball player. 
Diagn Microbiol Infect Dis 60:313-8. 

269. Okuma, K., K. Iwakawa, J. D. Turnidge, W. B. Grubb, J. M. Bell, F. G. O'Brien, G. W. Coombs, 
J. W. Pearman, F. C. Tenover, M. Kapi, C. Tiensasitorn, T. Ito, and K. Hiramatsu. 2002. 
Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin 
Microbiol 40:4289-94. 

270. Oliveira, D. C., I. Crisostomo, I. Santos-Sanches, P. Major, C. R. Alves, M. Aires-de-Sousa, M. 
K. Thege, and H. de Lencastre. 2001. Comparison of DNA sequencing of the protein A gene 
polymorphic region with other molecular typing techniques for typing two epidemiologically diverse 
collections of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 39:574-80. 

271. Oliveira, D. C., and H. de Lencastre. 2002. Multiplex PCR strategy for rapid identification of 
structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. 
Antimicrob Agents Chemother 46:2155-61. 

272. Oliveira, D. C., C. Milheirico, and H. de Lencastre. 2006. Redefining a structural variant of 
staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother 
50:3457-9. 

273. Oliveira, D. C., A. Tomasz, and H. de Lencastre. 2001. The evolution of pandemic clones of 
methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and 
the associated mec elements. Microb Drug Resist 7:349-61. 

274. Orscheln, R. C., D. A. Hunstad, S. A. Fritz, J. A. Loughman, K. Mitchell, E. K. Storch, M. 
Gaudreault, P. L. Sellenriek, J. R. Armstrong, E. R. Mardis, and G. A. Storch. 2009. contribution 
of genetically restricted, methicillin-susceptible strains to the ongoing epidemic of community-
acquired Staphylococcus aureus infections. Clin Infect Dis 49:536-42. 

275. Otter, J. A., and G. L. French. 2008. Community-associated meticillin-resistant Staphylococcus 
aureus in injecting drug users and the homeless in south London. J Hosp Infect 69:198-200. 

276. Otter, J. A., and G. L. French. 2012. Community-associated meticillin-resistant Staphylococcus 
aureus: the case for a genotypic definition. J Hosp Infect 81:143-8. 

277. Otter, J. A., and G. L. French. 2008. The emergence of community-associated methicillin-resistant 
Staphylococcus aureus at a London teaching hospital, 2000-2006. Clin Microbiol Infect 14:670-6. 

278. Otter, J. A., S. Yezli, and G. L. French. 2011. The role played by contaminated surfaces in the 
transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 32:687-99. 



General Introduction 
 

 
69 

279. Otto, M. 2010. Basis of virulence in community-associated methicillin-resistant Staphylococcus 
aureus. Annu Rev Microbiol 64:143-62. 

280. Ozaki, K., M. Takano, W. Higuchi, T. Takano, S. Yabe, Y. Nitahara, A. Nishiyama, and T. 
Yamamoto. 2009. Genotypes, intrafamilial transmission, and virulence potential of nasal methicillin-
resistant Staphylococcus aureus from children in the community. J Infect Chemother 15:84-91. 

281. Pantucek, R., P. Svec, J. J. Dajcs, I. Machova, J. Cernohlavkova, O. Sedo, T. Gelbicova, I. 
Maslanova, J. Doskar, Z. Zdrahal, V. Ruzickova, and I. Sedlacek. 2013. Staphylococcus petrasii 
sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. 
nov., isolated from human clinical specimens and human ear infections. Syst Appl Microbiol 36:90-
5. 

282. Patel, N. C., I. C. Hanson, and L. M. Noroski. 2008. Methicillin-susceptible Staphylococcus aureus 
brain abscess in common variable immunodeficiency after an 8-month gap in return to the 
immunologist. J Allergy Clin Immunol 122:1036-7; author reply 1037. 

283. Paterson, G. K., E. M. Harrison, and M. A. Holmes. 2014. The emergence of mecC methicillin-
resistant Staphylococcus aureus. Trends Microbiol 22:42-7. 

284. Pearson, A., A. Chronias, and M. Murray. 2009. Voluntary and mandatory surveillance for 
methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) 
bacteraemia in England. J Antimicrob Chemother 64 Suppl 1:i11-7. 

285. Perez-Roth, E., F. Lorenzo-Diaz, N. Batista, A. Moreno, and S. Mendez-Alvarez. 2004. Tracking 
methicillin-resistant Staphylococcus aureus clones during a 5-year period (1998 to 2002) in a 
Spanish hospital. J Clin Microbiol 42:4649-56. 

286. Perez-Vazquez, M., A. Vindel, C. Marcos, J. Oteo, O. Cuevas, P. Trincado, V. Bautista, H. 
Grundmann, J. Campos, and E. S. s.-t. Group. 2009. Spread of invasive Spanish Staphylococcus 
aureus spa-type t067 associated with a high prevalence of the aminoglycoside-modifying enzyme 
gene ant(4')-Ia and the efflux pump genes msrA/msrB. J Antimicrob Chemother 63:21-31. 

287. Perichon, B., and P. Courvalin. 2009. VanA-type vancomycin-resistant Staphylococcus aureus. 
Antimicrob Agents Chemother 53:4580-7. 

288. Pomba, C., F. M. Baptista, N. Couto, F. Loucao, and H. Hasman. 2010. Methicillin-resistant 
Staphylococcus aureus CC398 isolates with indistinguishable ApaI restriction patterns in colonized 
and infected pigs and humans. J Antimicrob Chemother 65:2479-81. 

289. Pomba, C., H. Hasman, L. M. Cavaco, J. D. da Fonseca, and F. M. Aarestrup. 2009. First 
description of meticillin-resistant Staphylococcus aureus (MRSA) CC30 and CC398 from swine in 
Portugal. Int J Antimicrob Agents 34:193-4. 

290. Price, L. B., M. Stegger, H. Hasman, M. Aziz, J. Larsen, P. S. Andersen, T. Pearson, A. E. 
Waters, J. T. Foster, J. Schupp, J. Gillece, E. Driebe, C. M. Liu, B. Springer, I. Zdovc, A. 
Battisti, A. Franco, J. Zmudzki, S. Schwarz, P. Butaye, E. Jouy, C. Pomba, M. C. Porrero, R. 
Ruimy, T. C. Smith, D. A. Robinson, J. S. Weese, C. S. Arriola, F. Yu, F. Laurent, P. Keim, R. 
Skov, and F. M. Aarestrup. 2012. Staphylococcus aureus CC398: host adaptation and emergence 
of methicillin resistance in livestock. MBio 3. 

291. Proctor, R. A. 2012. Is there a future for a Staphylococcus aureus vaccine? Vaccine 30:2921-7. 
292. Randolph, A. G., F. Vaughn, R. Sullivan, L. Rubinson, B. T. Thompson, G. Yoon, E. Smoot, T. 

W. Rice, L. L. Loftis, M. Helfaer, A. Doctor, M. Paden, H. Flori, C. Babbitt, A. L. Graciano, R. 
Gedeit, R. C. Sanders, J. S. Giuliano, J. Zimmerman, T. M. Uyeki, I. Pediatric Acute Lung, N. 
Sepsis Investigator's, L. the National Heart, and A. C. T. N. Blood Institute. 2011. Critically ill 
children during the 2009-2010 influenza pandemic in the United States. Pediatrics 128:e1450-8. 

293. Rasigade, J. P., F. Laurent, G. Lina, H. Meugnier, M. Bes, F. Vandenesch, J. Etienne, and A. 
Tristan. 2010. Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-
susceptible Staphylococcus aureus, 1981-2007. J Infect Dis 201:1589-97. 

294. Redziniak, D. E., D. R. Diduch, K. Turman, J. Hart, T. L. Grindstaff, J. M. MacKnight, and D. J. 
Mistry. 2009. Methicillin-resistant Staphylococcus aureus (MRSA) in the Athlete. Int J Sports Med 
30:557-62. 



Chapter I 
 

 
70 

295. Reyes, D., D. O. Andrey, A. Monod, W. L. Kelley, G. Zhang, and A. L. Cheung. 2011. 
Coordinated regulation by AgrA, SarA, and SarR to control agr expression in Staphylococcus 
aureus. J Bacteriol 193:6020-31. 

296. Rijnders, M. I., R. H. Deurenberg, M. L. Boumans, J. A. Hoogkamp-Korstanje, P. S. Beisser, 
and E. E. Stobberingh. 2009. Population structure of Staphylococcus aureus strains isolated from 
intensive care unit patients in the netherlands over an 11-year period (1996 to 2006). J Clin 
Microbiol 47:4090-5. 

297. Robert, J., J. Etienne, X. Bertrand, and Onerba. 2005. Methicillin-resistant Staphylococcus 
aureus producing Panton-Valentine leukocidin in a retrospective case series from 12 French 
hospital laboratories, 2000-2003. Clin Microbiol Infect 11:585-7. 

298. Robinson, D. A., and M. C. Enright. 2003. Evolutionary models of the emergence of methicillin-
resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:3926-34. 

299. Robinson, D. A., and M. C. Enright. 2004. Multilocus sequence typing and the evolution of 
methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 10:92-7. 

300. Robinson, D. A., A. M. Kearns, A. Holmes, D. Morrison, H. Grundmann, G. Edwards, F. G. 
O'Brien, F. C. Tenover, L. K. McDougal, A. B. Monk, and M. C. Enright. 2005. Re-emergence of 
early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet 
365:1256-8. 

301. Rogasch, K., V. Ruhmling, J. Pane-Farre, D. Hoper, C. Weinberg, S. Fuchs, M. Schmudde, B. 
M. Broker, C. Wolz, M. Hecker, and S. Engelmann. 2006. Influence of the two-component system 
SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 
188:7742-58. 

302. Rolinson, G. N., F. R. Batchelor, D. Butterworth, J. Cameron-Wood, M. Cole, G. C. Eustace, M. 
V. Hart, M. Richards, and E. B. Chain. 1960. Formation of 6-aminopenicillanic acid from penicillin 
by enzymatic hydrolysis. Nature 187:236-7. 

303. Rolo, J., M. Miragaia, A. Turlej-Rogacka, J. Empel, O. Bouchami, N. A. Faria, A. Tavares, W. 
Hryniewicz, A. C. Fluit, H. de Lencastre, and C. W. Group. 2012. High genetic diversity among 
community-associated Staphylococcus aureus in Europe: results from a multicenter study. PLoS 
One 7:e34768. 

304. Rosenbach, F. 1884. Microorganismen bei den Wund-Infections-Krankheiten des Menschen. J.F. 
Bergmann, Wiesbaden, pp. 1-122. 

305. Rossi, F., L. Diaz, A. Wollam, D. Panesso, Y. Zhou, S. Rincon, A. Narechania, G. Xing, T. S. Di 
Gioia, A. Doi, T. T. Tran, J. Reyes, J. M. Munita, L. P. Carvajal, A. Hernandez-Roldan, D. 
Brandao, I. M. van der Heijden, B. E. Murray, P. J. Planet, G. M. Weinstock, and C. A. Arias. 
2014. Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med 
370:1524-31. 

306. Rossney, A. S., A. C. Shore, P. M. Morgan, M. M. Fitzgibbon, B. O'Connell, and D. C. Coleman. 
2007. The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus 
aureus (MRSA) harboring the Panton-Valentine leukocidin gene (pvl) reveal that pvl is a poor 
marker for community-acquired MRSA strains in Ireland. J Clin Microbiol 45:2554-63. 

307. Roundtree, P. M., and  M. A. Beard. 1958. Further observations on infections with phage type 80 
staphylococci in Australia. Med J Aust 2:789–795. 

308. Rubinstein, E., M. H. Kollef, and D. Nathwani. 2008. Pneumonia caused by methicillin-resistant 
Staphylococcus aureus. Clin Infect Dis 46 Suppl 5:S378-85. 

309. Ruimy, R., A. Maiga, L. Armand-Lefevre, I. Maiga, A. Diallo, A. K. Koumare, K. Ouattara, S. 
Soumare, K. Gaillard, J. C. Lucet, A. Andremont, and E. J. Feil. 2008. The carriage population of 
Staphylococcus aureus from Mali is composed of a combination of pandemic clones and the 
divergent Panton-Valentine leukocidin-positive genotype ST152. J Bacteriol 190:3962-8. 

310. Sa-Leao, R., I. S. Sanches, I. Couto, C. R. Alves, and H. de Lencastre. 2001. Low prevalence of 
methicillin-resistant strains among Staphylococcus aureus colonizing young and healthy members 
of the community in Portugal. Microb Drug Resist 7:237-45. 



General Introduction 
 

 
71 

311. Sa-Leao, R., I. Santos Sanches, D. Dias, I. Peres, R. M. Barros, and H. de Lencastre. 1999. 
Detection of an archaic clone of Staphylococcus aureus with low-level resistance to methicillin in a 
pediatric hospital in Portugal and in international samples: relics of a formerly widely disseminated 
strain? J Clin Microbiol 37:1913-20. 

312. Said-Salim, B., P. M. Dunman, F. M. McAleese, D. Macapagal, E. Murphy, P. J. McNamara, S. 
Arvidson, T. J. Foster, S. J. Projan, and B. N. Kreiswirth. 2003. Global regulation of 
Staphylococcus aureus genes by Rot. J Bacteriol 185:610-9. 

313. Schmidt, K. A., A. C. Manna, S. Gill, and A. L. Cheung. 2001. SarT, a repressor of alpha-
hemolysin in Staphylococcus aureus. Infect Immun 69:4749-58. 

314. Sendi, P., and R. A. Proctor. 2009. Staphylococcus aureus as an intracellular pathogen: the role of 
small colony variants. Trends Microbiol 17:54-8. 

315. Sexton, T., P. Clarke, E. O'Neill, T. Dillane, and H. Humphreys. 2006. Environmental reservoirs 
of methicillin-resistant Staphylococcus aureus in isolation rooms: correlation with patient isolates 
and implications for hospital hygiene. J Hosp Infect 62:187-94. 

316. Seybold, U., E. V. Kourbatova, J. G. Johnson, S. J. Halvosa, Y. F. Wang, M. D. King, S. M. Ray, 
and H. M. Blumberg. 2006. Emergence of community-associated methicillin-resistant 
Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream 
infections. Clin Infect Dis 42:647-56. 

317. Shanson, D. C. 1992. Antibiotic resistance in Staphylococcus aureus, p. 11-20. In M. T. Cafferkey 
(ed.), Methicillin-resistant Staphylococcus aureus: clinical management and laboratory aspects, 1st 
edition. Informa Health Care, New York. 

318. Shittu, A. O., K. Okon, S. Adesida, O. Oyedara, W. Witte, B. Strommenger, F. Layer, and U. 
Nubel. 2011. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. 
BMC Microbiol 11:92. 

319. Shopsin, B., M. Gomez, S. O. Montgomery, D. H. Smith, M. Waddington, D. E. Dodge, D. A. 
Bost, M. Riehman, S. Naidich, and B. N. Kreiswirth. 1999. Evaluation of protein A gene 
polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 
37:3556-63. 

320. Shore, A. C., E. C. Deasy, P. Slickers, G. Brennan, B. O'Connell, S. Monecke, R. Ehricht, and 
D. C. Coleman. 2011. Detection of staphylococcal cassette chromosome mec type XI carrying 
highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal 
complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:3765-
73. 

321. Sieradzki, K., T. Leski, J. Dick, L. Borio, and A. Tomasz. 2003. Evolution of a vancomycin-
intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance 
phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics 
administered for chemotherapy. J Clin Microbiol 41:1687-93. 

322. Sieradzki, K., R. B. Roberts, S. W. Haber, and A. Tomasz. 1999. The development of vancomycin 
resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med 
340:517-23. 

323. Sievert, D. M., J. T. Rudrik, J. B. Patel, L. C. McDonald, M. J. Wilkins, and J. C. Hageman. 
2008. Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin Infect Dis 
46:668-74. 

324. Simoes, R. R., M. Aires-de-Sousa, T. Conceicao, F. Antunes, P. M. da Costa, and H. de 
Lencastre. 2011. High prevalence of EMRSA-15 in Portuguese public buses: a worrisome finding. 
PLoS One 6:e17630. 

325. Sinha, B., P. P. Francois, O. Nusse, M. Foti, O. M. Hartford, P. Vaudaux, T. J. Foster, D. P. 
Lew, M. Herrmann, and K. H. Krause. 1999. Fibronectin-binding protein acts as Staphylococcus 
aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1:101-17. 

326. Sinha, B., and M. Fraunholz. 2010. Staphylococcus aureus host cell invasion and post-invasion 
events. Int J Med Microbiol 300:170-5. 



Chapter I 
 

 
72 

327. Sissolak, D., A. Geusau, G. Heinze, W. Witte, and M. L. Rotter. 2002. Risk factors for nasal 
carriage of Staphylococcus aureus in infectious disease patients, including patients infected with 
HIV, and molecular typing of colonizing strains. Eur J Clin Microbiol Infect Dis 21:88-96. 

328. Skinner, D., and C. S. Keefer. . 1941. Significance of bacteremia caused by Staphylococcus 
aureus. Arch. Intern. Med 68:851-875. 

329. Smith, T. C., M. J. Male, A. L. Harper, J. S. Kroeger, G. P. Tinkler, E. D. Moritz, A. W. Capuano, 
L. A. Herwaldt, and D. J. Diekema. 2009. Methicillin-resistant Staphylococcus aureus (MRSA) 
strain ST398 is present in midwestern U.S. swine and swine workers. PLoS One 4:e4258. 

330. Smith, T. C., and N. Pearson. 2011. The emergence of Staphylococcus aureus ST398. Vector 
Borne Zoonotic Dis 11:327-39. 

331. Smith, T. L., M. L. Pearson, K. R. Wilcox, C. Cruz, M. V. Lancaster, B. Robinson-Dunn, F. C. 
Tenover, M. J. Zervos, J. D. Band, E. White, and W. R. Jarvis. 1999. Emergence of vancomycin 
resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working 
Group. N Engl J Med 340:493-501. 

332. Song, J. H., P. R. Hsueh, D. R. Chung, K. S. Ko, C. I. Kang, K. R. Peck, J. S. Yeom, S. W. Kim, 
H. H. Chang, Y. S. Kim, S. I. Jung, J. S. Son, T. M. So, M. K. Lalitha, Y. Yang, S. G. Huang, H. 
Wang, Q. Lu, C. C. Carlos, J. A. Perera, C. H. Chiu, J. W. Liu, A. Chongthaleong, V. 
Thamlikitkul, P. H. Van, and A. S. Group. 2011. Spread of methicillin-resistant Staphylococcus 
aureus between the community and the hospitals in Asian countries: an ANSORP study. J 
Antimicrob Chemother 66:1061-9. 

333. Song, M. D., M. Wachi, M. Doi, F. Ishino, and M. Matsuhashi. 1987. Evolution of an inducible 
penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 
221:167-71. 

334. Stam-Bolink, E. M., D. Mithoe, W. H. Baas, J. P. Arends, and A. V. Moller. 2007. Spread of a 
methicillin-resistant Staphylococcus aureus ST80 strain in the community of the northern 
Netherlands. Eur J Clin Microbiol Infect Dis 26:723-7. 

335. Stegger, M., J. A. Lindsay, M. Sorum, K. A. Gould, and R. Skov. 2010. Genetic diversity in 
CC398 methicillin-resistant Staphylococcus aureus isolates of different geographical origin. Clin 
Microbiol Infect 16:1017-9. 

336. Struelens, M. J. 1996. Consensus guidelines for appropriate use and evaluation of microbial 
epidemiologic typing systems. Clinical Microbiology and Infection 2: 2–11. 

337. Struelens, M. J., P. M. Hawkey, G. L. French, W. Witte, and E. Tacconelli. 2009. Laboratory 
tools and strategies for methicillin-resistant Staphylococcus aureus screening, surveillance and 
typing: state of the art and unmet needs. Clin Microbiol Infect 15:112-9. 

338. Szmigielski, S., E. Sobiczewska, G. Prevost, H. Monteil, D. A. Colin, and J. Jeljaszewicz. 1998. 
Effect of purified staphylococcal leukocidal toxins on isolated blood polymorphonuclear leukocytes 
and peritoneal macrophages in vitro. Zentralbl Bakteriol 288:383-94. 

339. Tacconelli, E., Y. Carmeli, A. Aizer, G. Ferreira, M. G. Foreman, and E. M. D'Agata. 2003. 
Mupirocin prophylaxis to prevent Staphylococcus aureus infection in patients undergoing dialysis: a 
meta-analysis. Clin Infect Dis 37:1629-38. 

340. Takahashi, T., I. Satoh, and N. Kikuchi. 1999. Phylogenetic relationships of 38 taxa of the genus 
Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 49 Pt 2:725-8. 

341. Takano, T., W. Higuchi, and T. Yamamoto. 2009. Superior in vitro activity of carbapenems over 
anti-methicillin-resistant Staphylococcus aureus (MRSA) and some related antimicrobial agents for 
community-acquired MRSA but not for hospital-acquired MRSA. J Infect Chemother 15:54-7. 

342. Takano, T., W. Higuchi, H. Zaraket, T. Otsuka, T. Baranovich, S. Enany, K. Saito, H. Isobe, S. 
Dohmae, K. Ozaki, M. Takano, Y. Iwao, M. Shibuya, T. Okubo, S. Yabe, D. Shi, I. Reva, L. J. 
Teng, and T. Yamamoto. 2008. Novel characteristics of community-acquired methicillin-resistant 
Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob 
Agents Chemother 52:837-45. 



General Introduction 
 

 
73 

343. Tan, Y. K., K. L. Khoo, S. P. Chin, and Y. Y. Ong. 1998. Aetiology and outcome of severe 
community-acquired pneumonia in Singapore. Eur Respir J 12:113-5. 

344. Tavares, D. A., R. Sa-Leao, M. Miragaia, and H. de Lencastre. 2010. Large screening of CA-
MRSA among Staphylococcus aureus colonizing healthy young children living in two areas (urban 
and rural) of Portugal. BMC Infect Dis 10:110. 

345. Teixeira, L. A., C. A. Resende, L. R. Ormonde, R. Rosenbaum, A. M. Figueiredo, H. de 
Lencastre, and A. Tomasz. 1995. Geographic spread of epidemic multiresistant Staphylococcus 
aureus clone in Brazil. J Clin Microbiol 33:2400-4. 

346. Tenover, F. C., R. D. Arbeit, and R. V. Goering. 1997. How to select and interpret molecular strain 
typing methods for epidemiological studies of bacterial infections: a review for healthcare 
epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of 
America. Infect Control Hosp Epidemiol 18:426-39. 

347. Tenover, F. C., S. McAllister, G. Fosheim, L. K. McDougal, R. B. Carey, B. Limbago, D. 
Lonsway, J. B. Patel, M. J. Kuehnert, and R. Gorwitz. 2008. Characterization of Staphylococcus 
aureus isolates from nasal cultures collected from individuals in the United States in 2001 to 2004. J 
Clin Microbiol 46:2837-41. 

348. Tenover, F. C., L. K. McDougal, R. V. Goering, G. Killgore, S. J. Projan, J. B. Patel, and P. M. 
Dunman. 2006. Characterization of a strain of community-associated methicillin-resistant 
Staphylococcus aureus widely disseminated in the United States. J Clin Microbiol 44:108-18. 

349. Tenover, F. C., L. M. Weigel, P. C. Appelbaum, L. K. McDougal, J. Chaitram, S. McAllister, N. 
Clark, G. Killgore, C. M. O'Hara, L. Jevitt, J. B. Patel, and B. Bozdogan. 2004. Vancomycin-
resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents 
Chemother 48:275-80. 

350. Thomas, B., A. Pugalenthi, and M. Chilvers. 2009. Pleuropulmonary complications of PVL-
positive Staphylococcus aureus infection in children. Acta Paediatr 98:1372-5. 

351. Tinelli, M., M. Monaco, M. Vimercati, A. Ceraminiello, and A. Pantosti. 2009. Methicillin-
susceptible Staphylococcus aureus in skin and soft tissue infections, Northern Italy. Emerg Infect 
Dis 15:250-7. 

352. Tomasz, A., H. B. Drugeon, H. M. de Lencastre, D. Jabes, L. McDougall, and J. Bille. 1989. 
New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the 
PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. 
Antimicrob Agents Chemother 33:1869-74. 

353. Tristan, A., M. Bes, H. Meugnier, G. Lina, B. Bozdogan, P. Courvalin, M. E. Reverdy, M. C. 
Enright, F. Vandenesch, and J. Etienne. 2007. Global distribution of Panton-Valentine leukocidin--
positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 13:594-600. 

354. Tweten, R. K., K. K. Christianson, and J. J. Iandolo. 1983. Transport and processing of 
staphylococcal alpha-toxin. J Bacteriol 156:524-8. 

355. Udo, E. E., J. W. Pearman, and W. B. Grubb. 1993. Genetic analysis of community isolates of 
methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect 25:97-108. 

356. Uhlemann, A. C., S. F. Porcella, S. Trivedi, S. B. Sullivan, C. Hafer, A. D. Kennedy, K. D. 
Barbian, A. J. McCarthy, C. Street, D. L. Hirschberg, W. I. Lipkin, J. A. Lindsay, F. R. DeLeo, 
and F. D. Lowy. 2012. Identification of a highly transmissible animal-independent Staphylococcus 
aureus ST398 clone with distinct genomic and cell adhesion properties. MBio 3. 

357. Utsui, Y., and T. Yokota. 1985. Role of an altered penicillin-binding protein in methicillin- and 
cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28:397-403. 

358. Valentini, P., G. Parisi, M. Monaco, F. Crea, T. Spanu, O. Ranno, M. Tronci, and A. Pantosti. 
2008. An uncommon presentation for a severe invasive infection due to methicillin-resistant 
Staphylococcus aureus clone USA300 in Italy: a case report. Ann Clin Microbiol Antimicrob 7:11. 

359. Valeva, A., M. Palmer, and S. Bhakdi. 1997. Staphylococcal alpha-toxin: formation of the 
heptameric pore is partially cooperative and proceeds through multiple intermediate stages. 
Biochemistry 36:13298-304. 



Chapter I 
 

 
74 

360. van Belkum, A., D. C. Melles, J. Nouwen, W. B. van Leeuwen, W. van Wamel, M. C. Vos, H. F. 
Wertheim, and H. A. Verbrugh. 2009. Co-evolutionary aspects of human colonisation and infection 
by Staphylococcus aureus. Infect Genet Evol 9:32-47. 

361. van Belkum, A., D. C. Melles, J. K. Peeters, W. B. van Leeuwen, E. van Duijkeren, X. W. 
Huijsdens, E. Spalburg, A. J. de Neeling, and H. A. Verbrugh. 2008. Methicillin-resistant and -
susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg Infect Dis 
14:479-83. 

362. van Belkum, A., H. G. Niesters, W. G. MacKay, and W. B. van Leeuwen. 2007. Quality control of 
direct molecular diagnostics for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 
45:2698-700. 

363. van Belkum, A., W. van Leeuwen, M. E. Kaufmann, B. Cookson, F. Forey, J. Etienne, R. 
Goering, F. Tenover, C. Steward, F. O'Brien, W. Grubb, P. Tassios, N. Legakis, A. Morvan, N. 
El Solh, R. de Ryck, M. Struelens, S. Salmenlinna, J. Vuopio-Varkila, M. Kooistra, A. Talens, 
W. Witte, and H. Verbrugh. 1998. Assessment of resolution and intercenter reproducibility of 
results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI 
macrorestriction fragments: a multicenter study. J Clin Microbiol 36:1653-9. 

364. van Cleef, B. A., D. L. Monnet, A. Voss, K. Krziwanek, F. Allerberger, M. Struelens, H. 
Zemlickova, R. L. Skov, J. Vuopio-Varkila, C. Cuny, A. W. Friedrich, I. Spiliopoulou, J. Paszti, 
H. Hardardottir, A. Rossney, A. Pan, A. Pantosti, M. Borg, H. Grundmann, M. Mueller-Premru, 
B. Olsson-Liljequist, A. Widmer, S. Harbarth, A. Schweiger, S. Unal, and J. A. Kluytmans. 
2011. Livestock-associated methicillin-resistant Staphylococcus aureus in humans, Europe. Emerg 
Infect Dis 17:502-5. 

365. van der Mee-Marquet, N., D. Hernandez, X. Bertrand, R. Quentin, A. R. Corvaglia, and P. 
Francois. 2013. Whole-Genome Sequence of the Ancestral Animal-Borne ST398 Staphylococcus 
aureus Strain S123. Genome Announc 1. 

366. van Wamel, W., Y. Q. Xiong, A. S. Bayer, M. R. Yeaman, C. C. Nast, and A. L. Cheung. 2002. 
Regulation of Staphylococcus aureus type 5 capsular polysaccharides by agr and sarA in vitro and 
in an experimental endocarditis model. Microb Pathog 33:73-9. 

367. Vandenbergh, M. F., and H. A. Verbrugh. 1999. Carriage of Staphylococcus aureus: epidemiology 
and clinical relevance. J Lab Clin Med 133:525-34. 

368. Vandendriessche, S., M. Hallin, B. Catry, B. Jans, A. Deplano, C. Nonhoff, S. Roisin, R. De 
Mendonca, M. J. Struelens, and O. Denis. 2012. Previous healthcare exposure is the main 
antecedent for methicillin-resistant Staphylococcus aureus carriage on hospital admission in 
Belgium. Eur J Clin Microbiol Infect Dis 31:2283-92. 

369. Vandendriessche, S., K. Kadlec, S. Schwarz, and O. Denis. 2011. Methicillin-susceptible 
Staphylococcus aureus ST398-t571 harbouring the macrolide-lincosamide-streptogramin B 
resistance gene erm(T) in Belgian hospitals. J Antimicrob Chemother 66:2455-9. 

370. Vandenesch, F., J. Kornblum, and R. P. Novick. 1991. A temporal signal, independent of agr, is 
required for hla but not spa transcription in Staphylococcus aureus. J Bacteriol 173:6313-20. 

371. Vandenesch, F., T. Naimi, M. C. Enright, G. Lina, G. R. Nimmo, H. Heffernan, N. Liassine, M. 
Bes, T. Greenland, M. E. Reverdy, and J. Etienne. 2003. Community-acquired methicillin-resistant 
Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg 
Infect Dis 9:978-84. 

372. Verkade, E., T. Bosch, Y. Hendriks, and J. Kluytmans. 2012. Outbreak of methicillin-resistant 
Staphylococcus aureus ST398 in a Dutch nursing home. Infect Control Hosp Epidemiol 33:624-6. 

373. Vogel, V., L. Falquet, S. P. Calderon-Copete, P. Basset, and D. S. Blanc. 2012. Short term 
evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228) in a 
tertiary care hospital. PLoS One 7:e38969. 

374. Voss, A., F. Loeffen, J. Bakker, C. Klaassen, and M. Wulf. 2005. Methicillin-resistant 
Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965-6. 



General Introduction 
 

 
75 

375. Voyich, J. M., K. R. Braughton, D. E. Sturdevant, A. R. Whitney, B. Said-Salim, S. F. Porcella, 
R. D. Long, D. W. Dorward, D. J. Gardner, B. N. Kreiswirth, J. M. Musser, and F. R. DeLeo. 
2005. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human 
neutrophils. J Immunol 175:3907-19. 

376. Walker, B., and H. Bayley. 1995. Key residues for membrane binding, oligomerization, and pore 
forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and 
targeted chemical modification. J Biol Chem 270:23065-71. 

377. Wang, C. C., W. T. Lo, M. L. Chu, and L. K. Siu. 2004. Epidemiological typing of community-
acquired methicillin-resistant Staphylococcus aureus isolates from children in Taiwan. Clin Infect Dis 
39:481-7. 

378. Wang, R., K. R. Braughton, D. Kretschmer, T. H. Bach, S. Y. Queck, M. Li, A. D. Kennedy, D. 
W. Dorward, S. J. Klebanoff, A. Peschel, F. R. DeLeo, and M. Otto. 2007. Identification of novel 
cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 
13:1510-4. 

379. Wang, W. Y., T. S. Chiueh, J. R. Sun, S. M. Tsao, and J. J. Lu. 2012. Molecular typing and 
phenotype characterization of methicillin-resistant Staphylococcus aureus isolates from blood in 
Taiwan. PLoS One 7:e30394. 

380. Wannet, W. J., E. Spalburg, M. E. Heck, G. N. Pluister, E. Tiemersma, R. J. Willems, X. W. 
Huijsdens, A. J. de Neeling, and J. Etienne. 2005. Emergence of virulent methicillin-resistant 
Staphylococcus aureus strains carrying Panton-Valentine leucocidin genes in The Netherlands. J 
Clin Microbiol 43:3341-5. 

381. Wannet, W. J., E. Spalburg, M. E. Heck, G. N. Pluister, R. J. Willems, and A. J. De Neeling. 
2004. Widespread dissemination in The Netherlands of the epidemic berlin methicillin-resistant 
Staphylococcus aureus clone with low-level resistance to oxacillin. J Clin Microbiol 42:3077-82. 

382. Weigel, L. M., R. M. Donlan, D. H. Shin, B. Jensen, N. C. Clark, L. K. McDougal, W. Zhu, K. A. 
Musser, J. Thompson, D. Kohlerschmidt, N. Dumas, R. J. Limberger, and J. B. Patel. 2007. 
High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial 
biofilm. Antimicrob Agents Chemother 51:231-8. 

383. Weist, K., K. Pollege, I. Schulz, H. Ruden, and P. Gastmeier. 2002. How many nosocomial 
infections are associated with cross-transmission? A prospective cohort study in a surgical intensive 
care unit. Infect Control Hosp Epidemiol 23:127-32. 

384. Welinder-Olsson, C., K. Floren-Johansson, L. Larsson, S. Oberg, L. Karlsson, and C. Ahren. 
2008. Infection with Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus 
aureus t034. Emerg Infect Dis 14:1271-2. 

385. Wertheim, H. F., D. C. Melles, M. C. Vos, W. van Leeuwen, A. van Belkum, H. A. Verbrugh, and 
J. L. Nouwen. 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect 
Dis 5:751-62. 

386. Wertheim, H. F., M. C. Vos, A. Ott, A. van Belkum, A. Voss, J. A. Kluytmans, P. H. van Keulen, 
C. M. Vandenbroucke-Grauls, M. H. Meester, and H. A. Verbrugh. 2004. Risk and outcome of 
nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 
364:703-5. 

387. Whitby, M., M. L. McLaws, and G. Berry. 2001. Risk of death from methicillin-resistant 
Staphylococcus aureus bacteraemia: a meta-analysis. Med J Aust 175:264-7. 

388. Whitener, C. J., S. Y. Park, F. A. Browne, L. J. Parent, K. Julian, B. Bozdogan, P. C. 
Appelbaum, J. Chaitram, L. M. Weigel, J. Jernigan, L. K. McDougal, F. C. Tenover, and S. K. 
Fridkin. 2004. Vancomycin-resistant Staphylococcus aureus in the absence of vancomycin 
exposure. Clin Infect Dis 38:1049-55. 

389. Wiener-Well, Y., M. Galuty, B. Rudensky, Y. Schlesinger, D. Attias, and A. M. Yinnon. 2011. 
Nursing and physician attire as possible source of nosocomial infections. Am J Infect Control 
39:555-9. 



Chapter I 
 

 
76 

390. Williams, J. V., B. R. Vowels, P. J. Honig, and J. J. Leyden. 1998. S. aureus isolation from the 
lesions, the hands, and the anterior nares of patients with atopic dermatitis. Pediatr Dermatol 
15:194-8. 

391. Witte, W., M. Kresken, C. Braulke, and C. Cuny. 1997. Increasing incidence and widespread 
dissemination of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in central Europe, 
with special reference to German hospitals. Clin Microbiol Infect 3:414-422. 

392. Witte, W., B. Strommenger, C. Cuny, D. Heuck, and U. Nuebel. 2007. Methicillin-resistant 
Staphylococcus aureus containing the Panton-Valentine leucocidin gene in Germany in 2005 and 
2006. J Antimicrob Chemother 60:1258-63. 

393. Witte, W., B. Strommenger, I. Klare, and G. Werner. 2004. [Antibiotic-resistant nosocomial 
pathogens. Part I: diagnostic and typing methods]. Bundesgesundheitsblatt Gesundheitsforschung 
Gesundheitsschutz 47:352-62. 

394. Witte, W., B. Strommenger, C. Stanek, and C. Cuny. 2007. Methicillin-resistant Staphylococcus 
aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 13:255-8. 

395. Wright, G. D. 2005. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv 
Drug Deliv Rev 57:1451-70. 

396. Xiong, Y. Q., J. Willard, M. R. Yeaman, A. L. Cheung, and A. S. Bayer. 2006. Regulation of 
Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in 
experimental infective endocarditis. J Infect Dis 194:1267-75. 

397. Yang, E. S., J. Tan, S. Eells, G. Rieg, G. Tagudar, and L. G. Miller. 2010. Body site colonization 
in patients with community-associated methicillin-resistant Staphylococcus aureus and other types 
of S. aureus skin infections. Clin Microbiol Infect 16:425-31. 

398. Yao, D., F. Y. Yu, Z. Q. Qin, C. Chen, S. S. He, Z. Q. Chen, X. Q. Zhang, and L. X. Wang. 2010. 
Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections 
(SSTIs). BMC Infect Dis 10:133. 

399. Young, B. C., T. Golubchik, E. M. Batty, R. Fung, H. Larner-Svensson, A. A. Votintseva, R. R. 
Miller, H. Godwin, K. Knox, R. G. Everitt, Z. Iqbal, A. J. Rimmer, M. Cule, C. L. Ip, X. Didelot, R. 
M. Harding, P. Donnelly, T. E. Peto, D. W. Crook, R. Bowden, and D. J. Wilson. 2012. 
Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc 
Natl Acad Sci U S A 109:4550-5. 

400. Yu, F., Z. Chen, C. Liu, X. Zhang, X. Lin, S. Chi, T. Zhou, Z. Chen, and X. Chen. 2008. 
Prevalence of Staphylococcus aureus carrying Panton-Valentine leukocidin genes among isolates 
from hospitalised patients in China. Clin Microbiol Infect 14:381-4. 

401. Yu, V. L., A. Goetz, M. Wagener, P. B. Smith, J. D. Rihs, J. Hanchett, and J. J. Zuravleff. 1986. 
Staphylococcus aureus nasal carriage and infection in patients on hemodialysis. Efficacy of 
antibiotic prophylaxis. N Engl J Med 315:91-6. 

402. Zecconi, A., and F. Scali. 2013. Staphylococcus aureus virulence factors in evasion from innate 
immune defenses in human and animal diseases. Immunol Lett 150:12-22. 

403. Zetola, N., J. S. Francis, E. L. Nuermberger, and W. R. Bishai. 2005. Community-acquired 
meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 5:275-86. 

404. Zhang, K., J. A. McClure, S. Elsayed, and J. M. Conly. 2009. Novel staphylococcal cassette 
chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene 
complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob 
Agents Chemother 53:531-40. 

405. Zhang, K., J. A. McClure, S. Elsayed, T. Louie, and J. M. Conly. 2005. Novel multiplex PCR 
assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec 
types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5026-33. 

406. Zhang, K., J. A. McClure, S. Elsayed, J. Tan, and J. M. Conly. 2008. Coexistence of Panton-
Valentine leukocidin-positive and -negative community-associated methicillin-resistant 
Staphylococcus aureus USA400 sibling strains in a large Canadian health-care region. J Infect Dis 
197:195-204. 



General Introduction 
 

 
77 

407. Zhang, X., Q. Hu, W. Yuan, W. Shang, H. Cheng, J. Yuan, J. Zhu, Z. Hu, S. Li, W. Chen, X. Hu, 
and X. Rao. 2013. First report of a sequence type 239 vancomycin-intermediate Staphylococcus 
aureus isolate in Mainland China. Diagn Microbiol Infect Dis 77:64-8. 

408. Zinderman, C. E., B. Conner, M. A. Malakooti, J. E. LaMar, A. Armstrong, and B. K. Bohnker. 
2004. Community-acquired methicillin-resistant Staphylococcus aureus among military recruits. 
Emerg Infect Dis 10:941-4. 

 

 



Chapter I 
 

 
78 

 

 



 

 

CHAPTER II 
High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus 

(HA-MRSA) in the community in Portugal:  
evidence for the blurring of community-hospital boundaries 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

THIS CHAPTER WAS PUBLISHED IN: 

Tavares, A., M. Miragaia, J. Rolo, C.Coelho, H. de Lencastre and CA-MRSA/MSSA working 
group. 2013. High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus 

(HA-MRSA) in the community in Portugal: evidence for the blurring of community hospital 

boundaries. Eur. J. Clin. Microbiol. Infect. Dis. 32:1269-83. 

 



"

"

 
 



MRSA in the community 
 

 
81 

ABSTRACT 
Background 

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of infection in the community 

(CA-MRSA), but in spite of its relevance, no data exist concerning its epidemiology in Portugal. In 

this study, we aimed to evaluate the prevalence, population structure, and origin of MRSA in the 

Portuguese community. 

Methods  

A total of 527 isolates, both methicillin-susceptible S. aureus (MSSA) and MRSA, were collected 

from individuals with no healthcare related risk factors attending 16 healthcare institutions in 

Portugal. Isolates were characterized for the presence of mecA, Panton–Valentine leukocidin (PVL), 

and arginine catabolic mobile element (ACME), and by staphylococcal cassette chromosome mec 

(SCCmec) typing, pulsed-field gel electrophoresis (PFGE), spa, and multilocus sequence typing 

(MLST). Susceptibility to a panel of 13 antibiotics was tested. Isolates relatedness was analyzed by 

goeBURST and BURP. 

Results  

We found a high frequency (21.6%) of MRSA in the community. However, only 11.4% of the 

isolates belonged to typical CA-MRSA epidemic clones (USA300, USA400, USA700, Southwest 

Pacific, European, and ST398). The remaining isolates, which constituted the great majority 

(88.6%), belonged to hospital-associated MRSA (HA-MRSA) epidemic clones, namely, to the 

EMRSA-15 clone (77.2%). PVL was rare and carried by 17 isolates only (five MRSA and 12 MSSA). 

In the whole collection, some MRSA and MSSA were highly related. 

Conclusion 

The high frequency of MRSA in the community in Portugal seems to result mainly from 

dissemination from the hospital. They might also have emerged from an extant MSSA population, 

by SCCmec acquisition, or MRSA clonal introduction from abroad. 
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INTRODUCTION 
Although methicillin-resistant Staphylococcus aureus (MRSA) continues to be considered one of the 

major hospital-associated pathogens (HA-MRSA), in recent years, MRSA has been increasingly 

reported worldwide as a causative agent of infections in healthy individuals in the community (CA-

MRSA).  
CA-MRSA first emerged in five main genetic backgrounds (e.g., ST1, ST8, ST30, ST72, ST80), 

which were different from those found in the hospital. CA-MRSA has been recognized as more 

susceptible to antibiotics other than betalactams, to carry smaller size staphylococcal cassette 

chromosome mec (SCCmec) (types IV and V), and to be frequently associated with the presence of 

the Panton–Valentine leukocidin (PVL) (20). Moreover, CA-MRSA has been described to have an 

improved virulence capacity, which is believed to be associated to the presence and differential 

expression of specific virulence factors, e.g., PVL, arginine catabolic mobile element (ACME), !-

hemolysin (Hla), and !-phenol soluble modulins (PSMs) (13, 53, 76, 77). 

The main CA-MRSA genetic backgrounds emerged and developed differently in separate 

geographical areas. The first CA-MRSA episodes were described in 1993 in remote communities in 

Western Australia (73), associated to the Southwest Pacific clone (SWP) (ST30-IVc) (18). Six years 

later, in the 

USA, the death of four children was reported to be caused by isolates belonging to the USA400 

clone (ST1-IVa) (5). Nevertheless, since then, outbreaks of infections in the USA were mainly 

associated to a different clone, the USA300 clone (ST8-IVa) (39), that quickly overcame the 

USA400 clone. On the other hand, in Europe, the so-called European clone (ST80-IVc) emerged, 

with the first outbreaks of CA-MRSA being reported in Greece (7). Later, in Europe, MRSA emerged 

also in livestock. This corresponded mainly to a single clonal type (ST398-IV/V), associated to 

colonization in pigs. The first descriptions were reported in France (11), but, nowadays, the ST398 

clone is disseminated worldwide, not only in animals but also in humans (24, 38, 74).  

 

Presently, more than 20 distinct genetic lineages of CA-MRSA are known (47), but their epidemicity 

varies from clone to clone. One of the most epidemic CA-MRSA clones is USA300, which has 

already been reported in as many as 50 different countries (56, 65). However, it has much higher 

clinical impact in the USA than in Europe (e.g., the UK, Spain, Switzerland, France), Asia (Japan, 

Hong Kong), and Australia, where this clone is seen only sporadically (52). The most relevant clone 
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in Europe remains the European clone, having been isolated in every European country sampled to 

date (65), although particular clinical problems were registered predominantly in Greece, but also in 

Denmark and the Netherlands (52). In recent years, the European clone was reported in the Middle 

East (Kuwait, Lebanon, Israel, Egypt, Algeria, Tunisia) and also in Australia (47, 52), showing some 

transcontinental spread. Another clone that has a high epidemicity is the SWP clone that was found 

in Germany, UK, Switzerland, Scandinavia, Hong Kong, Taiwan, Ireland, Kuwait, and USA (47, 52). 

Finally, ST398 initially found in the northern European countries, Denmark and Netherlands, was 

reported later in several other European countries, Canada and Australia, in pigs and humans, and, 

more recently, in a broader range of animals (cattle, horses, dogs, poultries, chickens, turkeys) (14, 

40).  

 

In general, there is an asymmetry in the CA-MRSA epidemiology between the USA and the rest of 

the world. Whereas in the USA, the prevalence of community-associated MRSA infections is very 

high, reaching 59% (54), and a single clone (USA300) was found, in Europe, the prevalence of CA-

MRSA continues to be relatively low, ranging from 1 to 29% (42, 44, 45, 79), and its population 

structure is composed by several different CA-MRSA epidemic clones and variants of these clones 

(65).  

 

In Portugal, the European country with the highest rate of MRSA in nosocomial infections, national 

surveillance has been conducted over the years exclusively in hospitals (8). In spite of the clinical 

relevance of CA-MRSA, little information exists on MRSA epidemiology outside the nosocomial 

setting. The previous screening of MRSA in the nasopharynx of young children attending daycare 

centers (66, 71) and in the anterior nares of military draftees, nonmedical university students, and 

high-school students (66) indicated an extremely low prevalence of MRSA carriage (<1%), 

associated to the ST82 and USA700 clone. Moreover, four infection episodes were described to be 

caused by isolates belonging to the European (17), USA300 (55) and ST398 (63) clones. 

 

In this study we developed a structured survey with the aim of evaluating the prevalence, origin and 

main clones of MRSA circulating in the community in Portugal. 
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MATERIAL AND METHODS 
Ethical Statement 
Isolates were obtained as part of a project that aims to monitor the relevance of the CA-MRSA 

causing infections in the Portuguese community. All data were collected in accordance with the 

European Parliament and Council decision for the epidemiological surveillance and control of 

communicable disease in the European community (2, 3) where personnel ethical approval and 

informed consent is not required. 
 

Study design 
Between January 2009 and September 2010, a total of 1,487 S. aureus isolates were collected from 

infection and colonization, from single patients attending 16 Portuguese healthcare institutions (14 

hospitals, one clinical laboratory, and one healthcare center) located in different geographic regions 

of Portugal, covering the North, Center, and South. All collaborating institutions were asked to fill in 

a questionnaire for each isolate collected. The great majority of isolates (85%, 1,267 out of 1,487) 

were accompanied by the respective questionnaires. Questionnaires data were introduced into a 

dedicated database in the research laboratory [Laboratory of Molecular Genetics, Instituto de 

Tecnologia Química e Biológica (ITQB)]. From the 1,267 isolates, 527 (41.6%) were defined as 

having a community origin and were included in this study (see the next section). The remaining 

740 (58.4%) isolates were classified as having an hospital origin, since they were collected after 48 

h of hospitalization and/or from individuals with at least one risk factor for MRSA infection or 

colonization. These 740 isolates were not characterized further in this work. 

 
Questionnaires structure and community-associated MRSA definition 
Questionnaires were designed based on the Centers for Disease Control and Prevention (CDC) 

epidemiological definition used to distinguish CA-MRSA from HA-MRSA infections 

(http://www.cdc.gov/). In addition questions were included addressing patient demographic 

information (age, gender) and general clinical and microbiological data (biological specimens, 

clinical relevance, clinical diagnosis and antibiotic susceptibility profile data).  
Isolates were considered to be CA-MRSA if they were collected from outpatients (patients attending 

healthcare centers and clinical laboratories) or from inpatients (within 48 h of hospital admission) 

and did not have risk factors for HA-MRSA acquisition, namely, recent hospitalization, surgery, 
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dialysis, presence of indwelling devices, history of MRSA infection or colonization in the past year, 

and a regular contact with a geriatric daycare center. 

 
Antimicrobial susceptibility testing 
The antimicrobial susceptibility was tested in the collaborating institutions using the Vitek 2 system 

(bioMérieux, Inc., Durham, NC) for a panel of 13 antibiotics: penicillin (PEN), oxacillin (OXA), 

vancomycin (VAN), linezolid (LNZ), gentamicin (GEN), ciprofloxacin (CIP), erythromycin (ERY), 
clindamycin (CLI), quinupristin/dalfopristin (QDA), tetracycline (TET), rifampicin (RIF), fusidic acid 

(FUS), and trimethoprim–sulfamethoxazole (SXT). Information on susceptibility to some 

antimicrobial agents was not provided by all healthcare institutions for several isolates. In the case 

of OXA-resistant isolates (112 out of 527), the missing antimicrobial susceptibility data were 

completed by performing disk diffusion tests according to the Clinical and Laboratory Standards 

Institute (CLSI) guidelines (1). Isolates that presented resistance to more than three classes of 

antibiotics were classified as having a multidrug resistance profile. For OXA-susceptible isolates 

(415 out of 527), only 73 isolates (17.6%) were tested against all antibiotics by the healthcare 

institutions. 

 

Detection of mecA and PVL 
The presence of mecA and PVL genes (lukS-PV/ lukF-PV) was detected by polymerase chain 

reaction (PCR) amplification in all isolates, as previously described (43, 58). Isolates were 

considered as MRSA when they carried mecA and as MSSA when mecA was absent. 
 

Determination of type of SCCmec 
For MRSA isolates, the structure of the SCCmec was determined by a multiplex PCR using specific 

primers to each SCCmec type (51). If isolates were non-typeable by this method, SCCmec typing 

was performed based on the amplification of the mec and ccr complexes by PCR (35, 57, 59). The 

subtype of SCCmec IV was determined by multiplex PCR developed by Milheiriço et al. (50).  
 

PFGE  

Pulsed-field gel electrophoresis (PFGE) was performed for all isolates, as previously described (15). 

The SmaI restriction bands patterns were compared with band patterns of reference CA- and HA-
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MRSA epidemic control strains by using the BioNumerics software version 4.61 (Applied Maths, 

Saint-Martens-Latem, Belgium) with previously defined settings (optimization: 0.5%, tolerance: 

1.3%, cut-off: 80%) (25). All isolates that clustered with more than 80% similarity (PFGE type) with 

the PFGE band pattern profile of CA and HA-MRSA epidemic control strains were not further 

characterized at molecular level. In this case, the final clonal classification was based on the 

association of PFGE type and SCCmec data for MRSA and only PFGE type for MSSA. 

The isolates that were resistant to digestion with SmaI were classified as a putative livestock-

associated clone ST398, since this characteristic is specific of this clone (12).  

 

spa typing  

spa typing was performed by a PCR amplification and sequencing of a polymorphic region of the S. 

aureus protein A gene (spa gene) (67) for isolates containing a similarity below 80% with the 

restriction band pattern of CA or HA-MRSA epidemic control strains and isolates resistant to 

digestion with SmaI. The spa types were assigned using the RIDOM web server 

(http://spaserver.ridom.de). The BURP algorithm was used in order to cluster groups of related spa 

types (48). 

 

MLST  

The sequence type (ST) was inferred using spa server (http://spaserver.ridom.de) and/or data 

obtained from the literature. In the case the STs could not be predicted based on the spa type, 

multilocus sequence typing (MLST) was performed as previously described (23). The alleles for 

each gene and the ST for each allelic profile were attributed according to the MLST database 

(http://www.mlst.net/). To evaluate the population structure and patterns of evolution, the algorithm 

goeBURST (http://goeburst.phyloviz.net/) was used. 

 

Detection of ACME 
Arginine catabolic mobile element (ACME) allotypes (type I to III) were defined based on multiplex 

PCR amplification using primers specific to the loci arc and opp3, as previously described (22). The 

presence of ACME was tested exclusively in the MRSA isolates belonging to the USA300 clone (21, 

22). 
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Clone definition: epidemic, epidemic-related, and minor clone 
Clones were defined based on the genotypic features found for each isolate. Isolates were defined 

as belonging to an epidemic clone if they contained the same genetic background by PFGE type 

and carried the same SCCmec as the reference epidemic control strains. Isolates were considered 

to be related to an epidemic clone if they contained at least the PFGE type or the spa type similar 

to the prototype strain. Isolates were considered as minor clones if they were not related neither by 

PFGE type nor by spa type to the reference epidemic clones. 

 
Statistical analysis 

The comparison of groups of categorical data was analyzed using the #2 test with a level of 

significance set at 0.05. The degree of genetic diversity was estimated for MRSA/MSSA by the 

Simpsons’s index of diversity (SID) using the confidence interval of 95% and defining as groups the 

combination of spa type and ST (70). 
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RESULTS 
Definition of S. aureus isolates origin   
From the 527 isolates included in this study, 141 (26.8%) followed strictly the CDC epidemiological 

definition of isolates with community origin (community isolates); the other 386 (73.2%) were 

collected from people with no risk factors for healthcare contact, but since not all information 

requested in the questionnaires was available, possible risk factors for MRSA infection/colonization 

could not be ruled out (community-onset). 
The results obtained by the combination of all typing methods showed that no significant difference 

was observed in the distribution of HA and CA genetic backgrounds between these two groups 

[community: HA backgrounds, 63.1% (89 isolates)/CA backgrounds, 36.9% (52 isolates); 
community-onset: HA, 55.7% (215 isolates)/CA, 44.3% (171 isolates)] (p=0.13). For this reason, all 

527 isolates were considered as having a community-onset origin. 
 
Frequency and population structure of MRSA in the community 
Among the 527 isolates with a community origin, a significant proportion was MRSA (21.6%, 

n=114). However, contrarily to what was expected, the great majority (88.6%, n=101) belonged or 

was related to typical HA-MRSA epidemic clones and only a small fraction (11.4%, n=13) belonged 

to CA-MRSA epidemic clones (Table 1). PVL was rarely found in MRSA backgrounds (29.4%, n=5) 

and was present exclusively in isolates belonging to the USA300 clone. 

 
Among the 101 isolates related or belonging to HA genetic backgrounds, the great majority 

belonged to EMRSA-15 or related clones (ST22-IVh, ST1806-IVh, t032, t020, t3212, t670, t036, 

t7980, t747) (77.2%, n=78) and New York/Japan (NY/JP) or related clones (ST5-II, ST105-II, t005) 

(14.9%, n=15). The remaining isolates belonged to the Pediatric clone (ST5-IVc/VI, t311, t179, t002) 
(5.9%, n=6), EMRSA-16 clone (ST36-II, t018) (1%, n=1), and Brazilian clone, represented by a 

single locus variant (SLV) of ST239 (ST2246–III, t037) (1%, n=1).  
A high genetic diversity was observed among the 13 CAMRSA isolates: five isolates belonged or 

were related to the USA300 clone [ST8-IVa, t008, PVL (5), ACME I (4), ACME II (1)], two isolates 

belonged to ST398 (ST398-IVa, t011, t1451), two isolates to the SWP clone (ST30-IVa, t012), and 
the remaining four isolates to the USA700 (ST72-IVg, t148), European (ST80-IVNT, t044), USA400 

(ST1-IVa, t127), and a SLV of ST72 (ST1810-IVa, t1346) (one isolate each). 
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Among all 114 MRSA isolates characterized in this study, we found a total of 20 different spa types 

and 13 STs (Table 1) clustered in 11 clonal complexes (CCs) (data not shown). The most frequent 

SCCmec was SCCmec IV (84.2%, n=96), followed by SCCmec II (14%, n=16), SCCmec VI (0.9%, 
n=1), and SCCmec III (0.9%, n=1). The most predominant SCCmec IV subtype was SCCmec IVh 

(54.2%, n=52), followed by IVa (10.4%, n=10), IVc (7.3%, n=7), IVg (1%, n=1), and for 26 isolates 

(27.1%), the subtypes of SCCmec IV were non-typeable by the multiplex strategy used.  

Table 1.  Molecular characterization of the 114 MRSA isolates analyzed in this study. 

 (I) Intermediate Resistance; (M) Multidrug-resistance profile: resistant to more than three classes of antibiotics, other than 
beta-lactams; CIP– ciprofloxacin; CLI – clindamycin; ERY – erythromycin; GEN – gentamicin; TET – tetracycline; RIF – 
rifampicin. 

 
 
 

!

Clonal type (no isolates) MLST SCCmec 
type/ 
SCCmec 
IV subtype 

spa type Relatedness 
with clone 
(PFGE)  
(no isolates) 

PVL Antibiotic resistance profile 
 (no isolates) 

HA-MRSA background  
(101 isolates) 

EMRSA-15/ EMRSA-15 
related (78) 

ST22; 
ST1806 
(TLV ST22) 

IVh 

t032, t020; 
t3212; t670; 
t036; t7980; 
t747 

EMRSA-15 
(69); Minor (9) negative  

CIP-ERY-CLI (39)M; CIP (19); CIP-
ERY-CLII(6)M; CIP-ERY (4); CIP-ERY-
CLII- RIF (1); CIP-ERY-RIF (1); GEN-
CIP (1);  CIP-ERY-TET (1);  CIP-RIF 
(1); CIP-ERY-CLI-GEN-RIF-TETI (1)M 

NY/JP/ NY/JP related (15) 
ST5; 
ST105 
(SLV ST5) 

II t002  
NY/JP (13); 
Minor (2) 

negative  

CIP-ERY-CLI (7)M; CIP-ERY-CLI-RIF 
(1)M; CIP-ERY-CLI-TET-RIF (1)M; CIP-
ERY (4); CIP-ERY-CLI-FUSi (1)M; CIP-
ERY-CLI-TET-RIFi-FUSI (1)M 

Pediatric/ Pediatric related (6) ST5 IVc/ VI 
t311; t179; 
t002 

Pediatric (2); 
Minor (4) negative 

CIP-ERY-CLI-GEN (1)M; CIP-ERY-CLI 
(1)M; CIP (1); FUSI (1) 

EMRSA-16 (1) ST36 II t018 EMRSA-16 (1) negative  CIP-ERY-CLI (1) 

Brazilian related (1) ST2246 
(SLV ST239) 

III t037 Minor (1) negative CIP-ERY-CLI-GEN-TET-RIF-SXT (1)M 

CA-MRSA background  
(13 isolates) 

USA300/ USA300 related (5) ST8 IVa t008 
USA300 (4); 
Minor (1) positive  CIP-ERY (4); CIP-ERY-CLI (1)M 

ST398 (2) ST398 IVa t011; t1451 
no SmaI 
resctriction negative   GEN-TET (1); GEN-TET-CLIi(1)M 

SWP/ SWP related (2) ST30 IVa t012 
SWP (1); 
Minor (1) negative   CIPI(1) 

USA700 (1) ST72 IVg t148 USA700 (2) negative   - 

European (1) ST80 IV NT t044 European negative  TET (1) 

USA400 (1) ST1 IVa t127 USA400 negative  ERY-CLI (1) 

ST1810-IVa (1) ST1810 
(SLV 72) IVa t1346 USA700   negative  - 
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Characteristics of the population and biological specimens from which MRSA were isolated 
The population from which MRSA was isolated was composed of 59 males and 54 females. For one 

individual, no information was available regarding the gender. MRSA was found in a total of 13 

children (0–18 years old), 44 adults (19–64 years old), and 56 elderly (>65 years old); no 

information was available regarding the age for one individual.  
Isolates were recovered from patients attending hospital medical care as outpatients (n=33) or 

inpatients (<48 h) (n=30), in the emergency room (n=28), and also from patients attending a clinical 

laboratory (n=21) and a healthcare center (n=2). Most of the isolates were from infection samples 

(87.7%, n=100), and few were from colonization (10.5%, n=12). For the remaining two isolates 

(1.8%), no information was available regarding the clinical significance of the specimen.  

MRSA were collected mainly from purulent exudates (47.4%, n=54) and respiratory secretions 

(14%, n=16), but also from blood (3.5%, n=4), urine (2.6%, n=3), and others (23.7%, n=27). In 10 

isolates (8.8%), in which the information on the type of clinical product was not available, four 

isolates were from infection and five isolates were from colonization. For a single isolate, neither 

information on the clinical product nor on clinical significance was available. 

CA-MRSA more likely caused general bloodstream infections (15.4%) than HA-MRSA (2.6%) 

(p=0.01). No other significant difference was registered between CA-MRSA versus HA-MRSA 

backgrounds (Supplemental Table S1). 

 
MRSA antimicrobial resistance profiles 
A high percentage of isolates belonging to HA-MRSA clones showed a multidrug resistance profile 

(64.4%, 65 out of 101). The most predominant resistance profile included resistance to PEN, OXA, 

CIP, ERY, and CLI (48.5%, 49 out of 101), and was mainly observed in isolates belonging or related 

to EMRSA-15 (85.7%, 42 out of 49), but also to the NY/JP clone (14.3%, 7 out of 49). 
As expected, isolates belonging to CA-MRSA clones were shown to be highly susceptible, although 

two out of the 13 isolates found were multidrug-resistant. These isolates belonged to USA300 and 

ST398 and were resistant to PEN, OXA, CIP, ERY, CLI and resistant to PEN, OXA, GEN, TET, 
CLIInt, respectively. 
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Geographic distribution of MRSA clones  

The highest MRSA prevalence was found in the district of Oporto, with a frequency of 25%, followed 

by Lisbon and Braga, both with a prevalence of 21%, and Coimbra and Algarve, with prevalences of 

19% and 5%, respectively (Figure 1, b). 

There was a high genetic diversity in the MRSA clonal types found in each geographic region 

(Figure 1, b). In the northern region, represented by Braga and Oporto, we observed that the 

dominant clone in the community was EMRSA-15 (78.3% and 83.6%, respectively). Less than 10% 

of the MRSA population belonged to several different CA epidemic clones in this region. The only 

exception was the MRSA ST398 clone that was associated exclusively to individuals living in a rural 

area near Oporto (Santo Tirso). In the center region of Portugal, Coimbra, the HA clones present in 

the community were equally represented by the EMRSA-15 (40%) and NY/JP clones (40%), and no 

CA clones were found. In Lisbon, a different scenario was observed. In contrast to the other 

regions, the proportion of NY/JP (36.8%) clones was slightly higher than EMRSA-15 (21.1%). 

Moreover, the CA clones were well represented (31.6%), mostly by USA300 (83.3%) and USA700 

related clones (16.7%). Finally, in the Southern region, Algarve, only one isolate (belonging to the 

USA700 clone) was recovered. 
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Figure. 1 Geographic distribution and prevalence of the representative community-acquired (CA) and hospital-associated 
methicillin-resistant Staphylococcus aureus (HA-MRSA) clones found in this study (2009/10) in comparison with HA-
MRSA clones found in hospitals in 2006 (in the same geographic area) (8). *MRSA prevalence in the hospitals in 2009 
(data provided); +MRSA prevalence in the community in 2009/10 (our study). 
 



MRSA in the community 
 

 
93 

Population structure of MSSA 
The MSSA population was represented by 413 isolates, and as expected showed a higher genetic 

diversity when compared to MRSA [SID=0.988 (0.984-0.993), SID=0.255 (0.174-0.335)]. A high 

number of spa types (76) and STs (58), represented by 29 CC, were detected. PVL was 

predominantly found in MSSA backgrounds (70.6%, n=12), namely, in isolates belonging to ST121 

(n=6), ST8 (n=1), ST1 (n=1), ST2290 (n=1), ST36 (n=2), and ST5 (n=1). 

The 413 MSSA isolates were divided into 210 isolates related to CA backgrounds and 203 isolates 

related to HA backgrounds.  

Almost half of the MSSA isolates belonging to CA genetic backgrounds (46.7%, 98 out of 210 

isolates) were related to epidemic clones, namely, USA700 (ST72-t126, t148) (30.3%, n=30), 

USA400 [ST1-t127, PVL (1)] (26.3%, n=26), USA300 [ST8-t008, t024, t064, PVL (1)] (18.2%, n=18), 

ST398 (ST398-t571, t1451, t034, t9865) (14.1%, n=14), SWP (ST30-t012, t021) (8.1%, n=8), and 

Taiwan (ST59-t216, t316) (3%, n=3). The remaining 112 isolates (53.3%) were represented by a 

wide diversity of STs (51) and spa types (86), including ST121, ST15, and ST25 clones that, 

nowadays, are considered epidemic. 

A great proportion of the MSSA isolates that belonged to the HA genetic backgrounds (92.6%, 188 

out of 203) were related to HA-MRSA epidemic clones and contained all the molecular features of 

the epidemic clones, except for the presence of SCCmec: EMRSA-16 (ST36, t018) (38.4%, n=71), 

NY/J  (ST5, t002, t005, t071) (27.6%, n=54), Berlin (ST45, t015, t230, t050, t10942) (15.1%, n=28), 

EMRSA-15 (ST22, t005, t310) (9.7%, n=18), and Pediatric (ST5, t045) (9.2%, n=17). 

The remaining 15 isolates belonged to HA genetic backgrounds, but the spa types found were not 

characteristic of epidemic clones, namely, 12 isolates belonging to ST45 (t1523, t1826, t2429, t330, 

t350, t550, t576), two isolates with ST2285 (SLV of ST45) (t1268), and one isolate with ST22 (t819). 

 

Origin of contemporary MRSA in the community 
Evidence for the emergence from an established MSSA population  

In order to understand the possible origin of the MRSA clones found in the community in Portugal, 

the MRSA and MSSA populations were analyzed based on a comparison of the genetic 

backgrounds. The application of the goeBURST algorithm to MLST data showed that both MRSA 

lineages associated to the hospital (ST5, ST22, ST36, SLV ST239) and lineages associated to the 
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community (ST8, ST1, ST72, ST30, ST398) were related to the MSSA genetic backgrounds also 

established in our country, in the same time period (Figure 2).  

 

 
Figure 2. Analysis of the relationship between the MRSA and methicillin-susceptible S. aureus (MSSA) populations using 
multilocus sequence typing (MLST) data (goeBURST). The arrows indicate the sequence type (ST) present in both MRSA 
and MSSA populations. The analysis was performed with 527 isolates, where, for 155, the ST was determined and, for 
372, the STwas inferred [pulsed-field gel electrophoresis (PFGE) and spa types]. 

 

The only exception was ST80, which we found only as MRSA. To better understand the degree of 

the relationship between MSSA and MRSA isolates, BURP analysis based on the spa types was 

performed. This analysis showed that MRSA and MSSA isolates belonging to ST5 (CC-t002, t179, 

t311), ST8 (CC-t008), ST30 (CC-t012), and ST398 (CC-t1451) shared the same or related spa 

types (Figure 3).  
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Figure 3. Analysis of the relationship between the MRSA and MSSA populations using spa type data (BURP). The 
highlighted numbers indicate related spa types in the MRSA and MSSA populations. The analysis was performed with 224 
spa-typed isolates 

 

For isolates for which the spa type was not determined, the relatedness was confirmed based on 

PFGE pattern comparison. This analysis showed that a set of 126 MRSA and MSSA isolates 

representative of each genetic background identified in our study were congruently clustered 

together and with more than 80% similarity with the reference CA- and HA-MRSA epidemic control 

strains, suggesting that they are related. 

 

Evidence for MRSA dissemination from the hospital to the community 

Interestingly, the distribution of MRSA clonal types by geographic region found in this study in the 

community was very similar to the MRSA distribution inside the Hospitals described in 2006 by 

Aires-de-Sousa (8) (Figure 1, a.). In Braga and Oporto hospitals, in 2006, the most predominant 

HA-MRSA clone was EMRSA-15 (82% and 72.4%, respectively) and we observed the same 

scenario in the community in the same region in 2009/10. While moving from the north to the south 
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of Portugal, the predominance of EMRSA-15 in the hospitals gradually decreased to 66.7% in 

Coimbra and 31.3% in Lisbon. The same north to south decreasing trend of EMRSA-15 frequency 

was observed in the community in this study. Additionally, in Lisbon, in both community and hospital 

settings, the NY/JP clone was more commonly represented than in other regions. The only 

exception to this parallelism between the population structure in the hospital and the community 

was observed in the Algarve region, where no HA clones were found in the community. Altogether, 

these observations suggest that most of the MRSA found in the community in Portugal came from 

hospitals. 
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DISCUSSION 

During the last 20 years, we have been attending to an increase in the number of infection episodes 

in healthy individuals in the community. Despite the global concern about the burden of disease 

caused by CA-MRSA, in Portugal, only isolated studies describing MRSA with typical CA 

backgrounds were reported (17, 55, 63, 66, 71), and no structured surveillance was ever conducted. 

In this study, we report, for the first time, the prevalence, population structure, and epidemiology of 

MRSA that are causing infections in the community in Portugal. 

 

We found a very high prevalence of MRSA (21.6%) circulating in the community in the country. This 

observation contrasts sharply with previous studies that reported much lower frequencies of CA-

MRSA, both in colonization in children (<1%), outpatients (5.1%), and healthcare workers (4.8%), 

and in skin and soft tissue infections (SSTIs) (7.9%) (10, 17, 66, 71). The high rate of MRSA in the 

community was unexpected, and, to our knowledge, in Europe, only in Greece were such high 

frequencies seen (30%) (75). Other countries reporting in the last several years considerably high 

rates of MRSA in the community include France (18%), Spain (13%), and Italy (6.4%) (19, 45, 72). 

However, the great majority of MRSA found in the community belonged to clones typically found in 

the hospitals, in particular, the EMRSA-15 clone (77.2%). Additionally, the population structure of 

MRSA in the community in each geographic region appears to mimic that observed in hospitals. 

These data strongly suggest that HA-MRSA clones are escaping from hospitals into the community. 

Although not frequent, the phenomenon of dissemination of hospital MRSA in the community was 

previously reported in other European countries. In particular, in France, it was observed that the 

Lyon clone, the main clone found in the hospitals, corresponded to 80.6% of MRSA isolates found 

in the community (46) and the ST125-IV, the most widespread clone in the hospitals in Spain, 

corresponded to 58.6% of MRSA isolates found in the community (27). Moreover, dispersed reports 

of EMRSA-15 causing infection in the community were also described in Italy and England (31, 45). 

 

The reasons lying behind the dissemination of HAMRSA from the hospital into the community are 

not clear. The fact that both Portugal and France have high frequencies of MRSA in hospitals might 

contribute to the invasion of the community with HA-MRSA, as previously observed for penicillin-

resistant isolates in the 1950s. On the other hand, both the Lyon and the EMRSA-15 clones carry 

the smallest SCCmec cassette (SCCmec IV) and contain a few antimicrobial resistance 
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determinants only. Since the presence of SCCmec IV does not cause a significant fitness cost for 

the bacteria, EMRSA-15 seems to have high survival capacity (replicate, establish, and spread) in 

the community environment. Moreover, the EMRSA-15 clone has been reported to be able to 

accumulate typical CA-MRSA genetic features, namely, the presence of PVL, ACME, and a high 

expression of virulence genes, which might have increased its capacity to adapt to the community 

environment (13, 68).   

 

It is widely accepted that the EMRSA-15 clone emerged in the English Midlands in the 1980s, and 

that, afterwards, has spread within and between the healthcare institutions, becoming endemic and 

is, nowadays, the most dominant clone in UK hospitals (36, 37, 64). Subsequently, global 

dissemination of the EMRSA-15 clone was observed to other geographic regions, including 

Portugal, Germany, the Netherlands, Denmark, Ireland, Sweden, the Czech Republic, Spain, 

Singapore, Australia, and New Zealand (8, 9, 26, 28, 33, 49, 61, 62, 78). In Portugal, in particular, 

EMRSA-15 clone was first described in 1997, in a Portuguese hospital located in Oporto (9), and, 

since then, has spread and established itself as the most predominant clone in virtually all major 

hospitals in this country (8). Moreover, the signs of spreading of EMRSA-15 into the community 

have already been found in the country, such as the heavy colonization of handrails on public buses 

(26% buses with 91% of the EMRSA-15 clone) and the colonization of dogs (30% of EMRSA-15 

colonization) (16, 69).  

 

The emergence of EMRSA-15 in the UK coincided with the introduction of ciprofloxacin 

(fluoroquinolone) into clinical practice in this country, which is believed to have triggered the 

development of ciprofloxacin resistance in strains of the EMRSA-15 clone (30). Horváth et al. 

recently described the impact of quinolone resistance on MRSA population dynamics in the 

Hungarian hospitals (32). In this study, the authors showed that ciprofloxacin resistance, conferred 

by two nonsynonymous mutations in gyrA and grlA, had a much lower fitness cost in the EMRSA-15 

clone than in other HA-MRSA clones like NY/JP, South-German, Hungarian/Brazilian, or even the 

CA-MRSA ciprofloxacin derivatives mutants ST8- IV, ST80-IV, and ST30-IV. This “quinolone fitness 

competitive advantage” of EMRSA-15 may have contributed to the success of EMRSA-15 

worldwide, especially in countries wherein the consumption of quinolones is high. In Portugal, in the 

last decade, quinolones have been extensively used both in the hospital (9) and in the community 
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(4). In fact, a recent national surveillance, performed in 2010 on the prevalence of nosocomial 

infection in Portugal, reported that quinolones (15%) was the second most often used class of 

antibiotics following penicillins and cephalosporins (46%) in the hospital setting (6), and similar rates 

of consumption have been observed in the community among ambulatory patients (4).  

 

The actual national antimicrobial prescribing habits act as a selective pressure for keeping the 

EMRSA-15 clone in Portugal. Some studies have shown that the implementation of a 

fluoroquinolone control program can significantly decrease the MRSA rates in the hospital setting 

(41, 60). Similarly, the implementation of such a program might help to decrease the rates of MRSA 

in Portugal.  

Additionally to the EMRSA-15 clone, also, the NY/JP clone, another clone associated to the 

hospital, was present in the community in Portugal. This clone, originally found in Japan in 1982 

(34), was first described in 2005 in a Portuguese hospital located in Oporto (9) and was observed 

lately as the second most predominant clone in hospitals in the country (8). The presence of the 

NY/Japan clone outside the hospitals in Portugal, similarly to the EMRSA-15 clone, is probably 

related to the existent ciprofloxacin selective pressure (32), since most of the isolates from this 

clone show also resistance to ciprofloxacin. 

 

The fraction of the MRSA found in the community that belongs to typical CA-MRSA epidemic clones 

is relatively low (2.5%). This seems to be a characteristic of several European countries such as 

Spain, Italy, Ireland, Switzerland, Germany, and England (40), and is in clear contrast to what is 

observed in the USA (54).  Also, we found that MRSA belong to as many as six different CA-MRSA 

epidemic clones, which is in accordance to the type of population structure of CA-MRSA found in 

the 16 most populous European countries (65).  

 

The few MRSA strains of CA-MRSA epidemic clones belong to USA300 (the most frequent), 

ST398, ST30, ST72, ST80, and ST1. The comparison of contemporary MSSA and MRSA 

populations allowed us to verify that, with the exception of ST80, all of these CA-MRSA genetic 

backgrounds exist in Portugal as MSSA. The results suggest that all of the MRSA isolates related to 

epidemic CA-MRSA clones could have emerged in Portugal by the acquisition of SCCmec by 
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established MSSA strains. However, this hypothesis still has to be proved by performing, for 

example, comparative genome analysis using whole genome sequencing (WGS).  

 

Moreover, we cannot disregard the possibility that these CAMRSA clones were introduced in 

Portugal from abroad. In particular, the presence in Portugal of the prototype USA300 clone with 

multidrug resistance profile suggests that this clone could have been originated in the USA, where 

the predominance of multidrug-resistant USA300 has been extensively reported. Furthermore, one 

of the USA300 isolates contains type II ACME, which was only described in USA300 isolates 

originated in the USA (29), further reinforcing this hypothesis.  

 

Moreover, the prototype ST398 (ST398-IVa, t001) was exclusively found in a particular rural area of 

Portugal among elderly women with SSTI. This livestock-associated MRSA genetic background had 

already been identified among pigs in Portugal (63), which probably results from the frequent pig 

commercial trade between Portugal, Spain, and Denmark, countries in which ST398 is frequent. 

Since the cases of infection with ST398 isolates were only found in this rural area, where pig farms 

are frequent, it is tempting to speculate that they could have resulted from the contact with pigs.  

 

Some of the limitations of our study are in regard to the geographic area that was covered. Most of 

the hospitals included in this study were located in urban regions of the north and center of 

Portugal, whereas the south of Portugal and the rural areas were less represented. Although the 

study covers the great majority of the Portuguese population that lives mainly in the urban regions 

of the north and center of Portugal, important information may have been missed. Another limitation 

associated to the study was the lack of information in some of the questionnaires, which may imply 

that some of the isolates included in the study were collected from individuals that could have had 

risk factors for hospital contact. Also, the inclusion of additional questions in the questionnaire 

regarding travel and individuals’ nationalities could have helped in the clarification of the origin of 

CA-MRSA epidemic clones found in Portugal. Irrespective of their origin, the high frequencies of 

MRSA in the community found in Portugal is worrisome and should be seen as a warning to the 

public health providers. Unless strict infection control measures and new antimicrobial prescription 

habits are adopted, the spreading of MRSA from the hospital into the community will continue. The 
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continuation of this type of surveillance study is, though, crucial in order to be aware of the 

standpoint of MRSA burden in Portugal and take appropriate action, particularly in prevention. 
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SUPPLEMENTARY MATERIAL 
Table S1. Distribution of demographic and clinical data among CA-MRSA and HA-MRSA clonal types. 
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ABSTRACT 

Background 

Despite their clinical relevance, few studies have addressed the epidemiology of methicillin-

susceptible S. aureus (MSSA). In particular, it is not clear how MSSA population structure has 

evolved over time and how it might have been shaped by the emergence of MRSA in the 

community. In the present study we have evaluated the MSSA population structure overtime, its 

geographical distribution and relatedness with MRSA in Portugal.  

Methods  

A total of 465 MSSA from infection and colonization, collected over a 19 years period (1992-2011) 

in the North, Center and South of Portugal were analyzed. Isolates were characterized by spa 

typing and multilocus-sequence typing (MLST). Isolates with predominant spa types were 

characterized by pulsed-field gel electrophoresis (PFGE). Isolates relatedness was analyzed by 

goeBURST and BURP. 

Results  

The total of 172 spa types found among the 465 MSSA were grouped into 18 spa-CC (clonal 

complexes). Ten clonal-types were more prevalent (40%): one major clone (ST30-t012) was 

present in the entire study period and all over the country; the other nine were intermittently 

detected over time (ST5-t002, ST8-t008, ST15-t084, ST34-t166, ST72-t148, ST1-t127, ST7-t091, 

ST398-t571 and ST34-t136). Interestingly, three MSSA clonal types observed only after 1996 were 

closely related with CA-MRSA epidemic strains (ST8-t008, ST72-t148 and ST1-t127) found 

currently in Portugal. 

Conclusion 

The MSSA population in Portugal is genetically diverse; however some dominant clonal types have 

been established and widely disseminated for almost two decades. We identified MSSA isolates 

that were related with emergent CA-MRSA clones found in Portugal.  
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INTRODUCTION 

The acquisition of the staphylococcal cassette chromosome mec (SCCmec), carrying the 

determinant of resistance to methicillin and to the entire class of beta-lactams (mecA) by methicillin-

susceptible S. aureus (MSSA) was a hallmark in the history of S. aureus as a human pathogen. 

Nowadays, methicillin-resistant S. aureus (MRSA) are one of the most important nosocomial 

pathogens worldwide (31, 32). 
 
According to EARS-Net report from 2011 (12), Portugal is the European country with the highest 

rate of MRSA in invasive disease (54.6%). The nosocomial MRSA population structure in Portugal 

has been extensively characterized and four successive clonal waves have been described (3). 

First in early 1992/93, the widespread Portuguese clone (ST239-III variant) was replaced by the 

Iberian clone (ST247-I), followed by the emergence in 1994/95 of the multiresistant Brazilian clone 

(ST239-IIIA), with rapid dissemination all over the country. Afterwards, there was a massive 

replacement of the Brazilian clone by the epidemic EMRSA-15 (ST22-IV), currently the most 

predominant clone in Portuguese Hospitals, accounting for 72% of all MRSA isolates (2, 3, 14). 

Nearly after the emergence of EMRSA-15, a variant of the New York/Japan (NY/JP) (ST105-II) 

appeared as the second most predominant clone in Portuguese hospitals. Recently, a high 

percentage of MRSA (21.6%) was found also in community in Portugal, where the EMRSA-15 or 

related clones were the predominant clones (77.2%), followed by NY/JP or related clones (14.9%) 

(30). 
 
As the result of the complexity of the treatment and associated burden, MRSA have been given 

much more attention than MSSA. In fact, although MSSA have been also frequently associated to 

acute infections (10), their epidemiology is largely unexplored. The few studies available showed 

that MSSA have a higher degree of genetic diversity and a wider geographic distribution, in 

opposition to the clonality and geographic clustering found in MRSA (18, 20). Regarding the 

relatedness between MSSA and MRSA, results obtained so far indicated that MSSA and MRSA 

belonging to specific genetic backgrounds can co-exist in the same geographic location and time 

period, but the frequency of such phenomena varies with the geographic region analyzed (1, 10, 18, 

20).  
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A previous study analyzing the population structure of MSSA in Portugal showed that ST30, ST34, 

ST5, and ST45 were the most predominant clonal types found between 1992 and 2001 in the 

community and hospital. Moreover, this same study showed that the genetic backgrounds of 

dominant nosocomial MRSA clones found over a 15 year-period (Iberian, Brazilian, and EMRSA-15) 

were scarcely or not found among MSSA. (1), suggesting that acquisition of SCCmec by resident 

epidemic MSSA backgrounds was not frequent in the country. 
 
In the present study we aimed to further contribute to the knowledge of MSSA epidemiology by 

assessing MSSA population dynamics and geographical distribution over a 19 years period, in a 

country with a high MRSA prevalence. Moreover, we intended to understand how the emergence of 

CA-MRSA in Portugal might have shaped the MSSA population structure.  
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MATERIAL AND METHODS 
Isolates collection 
The 465 MSSA isolates from this study included 333 community-onset isolates, 123 hospital-

associated isolates, and nine of unknown epidemiological origin; the isolates were recovered in 

Portugal between 1992 to 2011 from different populations.  
 
Isolates were considered as community-onset (CO) when collected from outpatients and from 

individuals within 48 hours after hospital admission or after clinical symptoms developed, and as 

hospital-associated  (HA) when collected from inpatients (!48 hours of hospitalization or clinical 

symptoms developed).  
The 333 CO-MSSA isolates were recovered in different studies: 1) nasopharyngeal colonization 

from children (0-5 years old) attending 16 day care centers (DCC) located in Lisbon (1996, 1997) 

(n=60) (28); 2) nasal colonization of military draftees (DFT) originally from Lisbon and Oporto 

(1996/97) (n=12) (28); and 3) infection and colonization from individuals attending 12 hospitals 

(within 48 hours of hospitalization), a clinical laboratory and a health care centre, covering the North 

(n=141), Center (n=28), Lisbon (n=37), and South (n=11) of Portugal (2009/10) (30) and 4) 44 

isolates that were recovered from invasive disease of individuals where symptoms were developed 

within the 48 hours after Hospital admission in nine Portuguese Hospitals (North, n=20; Center, 

n=2; Lisbon, n=15; South, n=7) (2011) (Faria et al. in preparation).   
The 123 HA-MSSA isolates were collected in ten hospitals: 1) 89 isolates from infection and 

colonization from two hospitals located in the North of Portugal (Oporto) (1992/1993, 2001) (n=85) 

and Lisbon (1995/96) (n=4) (1) and 2) 34 isolates from patients with invasive disease developed 

more than 48 hours after admission in ten Portuguese Hospitals (North, n=7; Center, n=7; Lisbon, 

n=17; South, n=3) (2011) (Faria et al. in preparation).  Moreover, nine isolates where included, 

recovered in a Hospital located in Lisbon (2011), where no epidemiological context information was 

available (16). 
For each isolate, information was collected regarding patient demographic information (age and 

gender) and general clinical and microbiological data, namely biological specimens, clinical 

relevance, clinical diagnosis and information on susceptibility to oxacillin (OXA) (n=378) or cefoxitin 

(FOX) (n=87). 
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Isolates demographics 
Among the 465 isolates included in this study, about half (53.3%, n=248 isolates) were collected 

from males and 35.5 % (n=165) from females. For 11.2% of isolates  (n=52), no data was available 

concerning the gender.  The isolates were recovered mainly from adults (18-64 years) (43.4%, 

n=202), but also from the elderly (>65)(32.7%, n=152) and children (0–18) (21.7%, n=101). No 

information was available for 10 isolates (2.2%). 
 

Isolates clinical relevance and sources 
More than half of the isolates (61%, n=285) were from infection and 27% (n=124) from colonization. 

For 12% of the isolates (n=56) no data was available regarding their clinical relevance. A 

considerable part of community-onset isolates were from infections (69.4%, n=231), predominantly 

skin and soft tissue infections (43.1%, n=100), but also blood stream infections (22.8%, n=53), 

pneumonia and respiratory infections (9.5%, n=22) and other types of infections (20.7%, n=48). For 

eight isolates (3.4%), no data was available. Considering the nosocomial isolates, no information 

was available regarding clinical relevance for more than one third of isolates (35%, n=43). The 

remaining isolates were from infections (37%, n=45), mainly from blood stream infections (77.8%, 

n=35), and from colonization (28%, n= 35).  
 
Molecular characterization 
Detection of mecA    
The presence of mecA was determined by PCR amplification (22, 26). Isolates were considered to 

be MSSA when mecA was absent, irrespective of their susceptibility to oxacillin and cefoxitin.  
 

S. aureus protein A (spa) typing   
For all isolates, the spa type was determined as previously described (29). The spa types were 

assigned using Ridom-Staph software updated with RIDOM database (http://spaserver.ridom.de). 

Using the integrated BURP (Based Upon Repeat Patterns) algorithm, spa types were clustered into 

spa clonal complexes (spa-CC) according to the following settings: spa types clustered if cost were 

less than 4, and repeats were excluded if shorter than five (23).  
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Pulsed-field gel electrophoresis (PFGE)  
For 77% (142 out of 185) isolates representative of the 10 most predominant spa types found (see 

Figure 1), PFGE was performed as previously described (8). The resultant SmaI band pattern 

profiles of isolates were compared with PFGE of reference CA and HA-MRSA epidemic control 

strains by using the BioNumerics software version 6.6 (Applied Maths, Saint-Martens-Latem, 

Belgium) with previously defined settings (optimization: 0.5%, tolerance: 1.3%, cut-off: 80%) (15). 

The isolates resistant to digestion with SmaI were classified as putative livestock-associated clone 

ST398, since this characteristic is specific of this clone (5). 

 

Multilocus sequence typing (MLST)  
The sequence type (ST) was determined for 182 isolates, including representative isolates of the 

most predominant spa types and less disseminated spa types. The MLST was performed as 

previously described (13). STs were attributed according to the MLST database 

(http://www.mlst.net/). For the remaining 283 isolates, the STs were inferred based on PFGE 

similarity with reference epidemic clones, spa server data (http://spaserver.ridom.de) or data 

obtained from the literature. To evaluate population structure and patterns of evolution, the eBURST 

algorithm (17) was used in order to assign MLST clonal complexes (MLST-CC) 

(http://saureus.mlst.net/sql/burst_all.asp, eBURST v.3). Additionally, MLST clonal complexes were 

restricted to single and double locus variants (SLV and DLV, respectively) from the respective 

founder or sub founders, within each clonal group. The only exception was CC6, which despite 

having as founder ST6, is a DLV from ST5. In this case and since ST6 has its own SLV 

descendants, and is characterized by a different spa type, its was considered as an independent 

CC. This analysis was performed on June 20, 2013. 

 

Statistical analysis 

Significant statistical differences were determined using the #2. A p-value "0.05 was considered to 

be significantly different. 
The degree of genetic diversity was calculated using Simpson’s Index of Diversity (SID) with 95% 

confidence interval (http://darwin.phyloviz.net/). The SID was estimated using a spa type as a unit. 
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RESULTS 
MSSA population structure 
Among the 465 MSSA isolates, a total of 172 spa types and 69 STs were identified. Population 

structure analysis based on eBURST showed that the 69 STs were clustered in 24 MLST-CC and 8 

singletons (see Table 1) The most predominant MLST-CC were CC30 (22.4%, n=104) including 

ST30 and ST34, followed by CC5 (10.6%, n=49), CC8 (8.6%, n=40), CC15 (8.6%, n=38), CC45 

(8.6%, n=40), CC121 (5.8%, n=27), CC72 (5.8%, n=26), CC398 (3.9%, n=18), CC1 (3.6%, n=17), 

CC25 (3.6%, n=17), CC9 (3%, n=14), CC22 (2.6%, n=12), and CC7 (2.4%, n=11). The remaining 

eleven CCs and 8 singletons included approximately 11% of the isolates (10.9%, n=51). 

 

The most dominant STs were ST30 (12.5%, n=58), ST5 (10.3%, n=48), ST34 (9.9%, n=46), ST15 

(7.5%, n=35), ST8 (7.3%, n=34), ST45 (6.5%, n=30), ST121 (6.0%, n=28) and in a less extent ST72 

(4.9%, n=23), ST398 (3.7%, n=17), ST25 (3.4%, n=16), ST1 (3.4%, n=16), ST7 (2.4%, n=11) and 

ST9 (2.2%, n=10). The remaining 20% of isolates (n=93) included 56 different STs.  

 

Population structure analysis based on BURP showed that the 172 spa types were clustered in 18 

spa-CCs, including three spa-CCs with no founder, and 19 singletons (See Figure 1). A total of 15 

spa types were excluded from the analysis because the spa region was less than four repeats in 

length. The most predominant spa-CC found was spa-CC012, representing 12.9% of the isolates 

(n=60), followed by spa-CC002 (10.3%, n=48), spa-CC015 (9.9%, n=46) and spa-CC084 (9.9%, 

n=46), spa-CC008 (9.0%, n=42), spa-CC166 (8.4%, n=39), and spa-CC284 (5.0%, n=23). The 

remaining spa-CC contained less than 5% of the isolates each (See Table 1 and Figure 1). These 

spa-CCs were associated with genetic lineages commonly found among epidemic MRSA clones but 

also less disseminated clones, e.g. spa-CC012-ST30, spa-CC002–ST5, spa-CC008-ST8, spa-

CC166-ST34, spa-CC005-ST22, spa-CC015/065-ST45, spa-CC015-ST398, spa-CC1346-ST72, 

spa-CC127-ST1, spa-CC216-ST59, spa-CC284–ST121, spa-CC078/280-ST25, spa-CC084-

ST15/ST7 and spa-CC359-ST97 (See Table 1). 



!

!

  

Figure 1. Analysis of spa typing data using BURP algorithm. Each number indicate a spa type, related spa types are linked with lines and resultant spa clonal 
complexes (spa-CC) delimited by line boxes. The predicted founder of each spa-CC is indicated in blue and named, and sub founders inside the spa-CC are 
indicated in yellow, respectively. The size of the circles is proportional to the frequency of the spa type. 
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Table 1. Distribution of MSSA isolates by spa-CC and the three most predominant spa types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

(1) spa-CC: spa clonal complex; (2) SID- Simpson's Index of Diversity; CI- Confidence Interval; (3) MLST-CC: MLST clonal complex.
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In terms of diversity, the spa-CCs showed heterogeneity, comprising from 2 to 17 different spa 

types (See Table 1). The most diverse clonal complexes were spa-CC015 [SID=0.881(0.832-

0.930)], spa-CC084 [SID=0.819(0.760-0.877)], spa-CC002 [SID=0.805(0.728-0.881)], spa-CC008 

[SID=0.774(0.700-0.848)] and spa-CC166 [SID=0.774(0.718-0.830)].  

 

Among all isolates, the most predominant clonal types were ST30-t012 (8.2%, n=38), ST5-t002 

(4.9%, n=23), ST8-t008 (4.7%, n=22), ST15-t084 (4.1%, n=19), ST72-t148 (3.9%, n=18), ST34-

ST136 (3.2%, n=15), ST398-t571 (3%, n=14), ST34-t166 (2.8%, n=13), ST1-t127 (2.6%, n=12) and 

ST7-t091 (2.4%, n=11) (See Table 1 and Figure 2).  

 

MSSA distribution in community and hospital 

The six most common STs in the community and in the hospital were the same, including ST34, 

ST30, ST5, ST8, ST15 and ST45. However they showed different proportions in the two settings. 

The CO isolates were distributed as follows: ST34 (11.7%, n=39), ST30 (9%, n=30), ST5 (9%, 

n=30), ST8 (7.2%, n=24), ST15 (6.3%, n=21), ST45 (6%, n=20), ST121 (n=5.4%, n=18), ST72 

(5.1%, n=17), ST398 (4.8%, n=16), ST25 (3.6%, n=12), ST1 (3%, n=10), ST22 (2.4%, n=8), ST9 

(2.4%, n=8), ST7 (2.1%, n=7) and the remaining 21.9% isolates included 52 different STs. On the 

other hand, the HA isolates were represented by the ST30 (22%, n=27), ST5 (13%, n=16), ST15 

(9.8%, n=12), ST45  (8.1%, n=10), ST8  (7.3%, n=9), ST34  (5.7%, n=7), ST121  (5.7%, n=7), ST72 

(4.9%, n=6), ST1 (4.1%, n=5), ST7 (3.3%, n=4), ST25 (3.3%, n=4), ST97 (2.4%, n=3), ST188 

(2.4%, n=3), ST9 (1.6%, n=2) with the remaining 6.5% isolates represented by seven STs. Although 

the proportion of the dominant STs shared by isolates from the hospital and community varied, only 

ST30 showed to be particularly associated to a specific environment, being significantly more 

represented in the hospital (p<0.001) than in the community. Moreover, the three STs ST398, ST59 

and ST22 typically associated with epidemic CA and HA-MRSA clones, respectively, were only 

observed has belonging to the community (p=0.01, p=0.17 and p=0.08 respectively). 

Considering the spa-CCs clustering analysis, we observed that most spa-CC were equally 

represented by hospital and community isolates, however, spa-CC012 included more HA isolates 

(p<0.001) and spa-CC166 and spa-CC005 included more (p=0.01) or exclusively CO isolates 

(p=0.03), respectively.  



!

!

 
Figure 2. Temporal and geographical distribution of the ten most predominant spa types. 
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Overall, the distribution of predominant clonal types varied in the CA and HA isolates. Whereas in the 

community the most frequent clonal type was ST8-t008 (3%, n=10), followed by ST398-t571 (3%, 

n=10), ST15-t084 (2%, n=7), ST30-t012 (2%, n=7) and ST7-t091 (2%, n=7); in the hospital the most 

frequent clonal types were ST30-t012 (15%, n=19), ST5-t002  (6%, n=8), ST15-t084 (5%, n=6), ST72-

t148 (4%, n=5) and ST8-t008 (4%, n=5). The clonal type ST398-t571 was significantly associated to 

the community (p=0.05), whereas ST5-t002 was associated to the hospital (p=0.01). 

 

MSSA predominant clonal types: dynamics overtime and geography 
Regarding the dynamics of the MSSA population we observed the occurrence of three different 

patterns overtime: clonal types that were endemic in Portugal during the 19 years of the study; clonal 

types that were detected intermittently over the 19 years; and clonal types that appeared more recently 

only and were detected intermittently after their emergence (Figure 2).    

 
The only clonal type that was endemic during the 19 years was clonal type ST30-t012. Other clonal 

were found intermittently; for example the clonal types ST5-t002 and ST15-t084 were sampled in all 

except one year (2009 and 2001 respectively) and ST34-t166 was absent in four sampling periods 

(1993, 2001, 2009, 2011); on the other hand, clonal type ST34-t136 was sampled only in two 

consecutives years (1996/97). 
 
From 1996 on, five new MSSA clonal types were detected, the ST8-t008, ST72-t148, ST1-t127, 

ST398-t571 and ST7-t091 related to the CA-MRSA epidemic clones USA300, USA700, USA400, 

ST398-V and a minor CA clone, respectively. Altogether, these MSSA clonal types constitute 

nowadays 23% of the entire MSSA population, and, individually, comprise currently the most 

predominant clonal types, together with ST15-t084, ST5-t002 and ST30-t012.  

 
Overall, a higher genetic diversity was observed in 2009/2011 [SID= 0.982 (0.977-0.987)] comparing to 

the early period 1992-2001 [SID= 0.956 (0.939-0.972)].  

 
In what respects to the geographic distribution of MSSA in Portugal, we observed that, with the 

exception of ST34-t136, found exclusively in Lisbon, the remaining predominant spa types were 

disseminated all over the country (See Figure 2). Noteworthy, from the broadly dispersed clonal types, 
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the ST34-t166 (p=0.003) and ST72-t148 (p=0.016) were more predominant in Lisbon and ST30-t012 

(p=0.0325), ST398-t571 (p=0.005) in the Northern region.  

 
Relatedness of MSSA with locally established MRSA  
The analysis of the isolates with predominant spa types for which PFGE was performed (n=142) (see 

Figure 1) revealed that 33.8% of these isolates (n=48) had more than 80% of similarity with prototype 

strains belonging to CA and HA-MRSA reference clones, namely: 68.4% (26 out of 38) of isolates with 

spa type t012 were similar to the Southwest Pacific (SWP) clone; 65.2% (15 out of 23) of isolates with 

t002 were similar to NY/JP and Pediatric clones; 33.3% (4 out of 12) of isolates t127 were similar to 

USA400 clone; 11.1% (2 out of 18) of isolates with t148 were similar to USA700 clone and 4.5% (1 out 

of 22) of isolates with t008 were similar to USA300 clone (See Figure 2).  
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DISCUSSION 
In the present study, we attempted to contribute to the understanding of MSSA epidemiology, by 

analyzing the evolution of MSSA population along 19 years in Portugal. Moreover, we compared the 

relatedness of the established MSSA population with hospital and community-associated MRSA in 

the country.  
We found that, despite the wide genetic diversity observed among the MSSA, a great proportion of 

the population belonged to ten major clonal types (40%), namely ST30-t012 (8.2%), ST5-t002 

(4.9%), ST8-t008 (4.7%), ST15-t084 (4.1%), ST72-t148 (3.9%), ST34-t166 (3.2%), ST398-t571 

(3%), ST34-t136 (3%), ST1-t127 (2.6%) and ST7-t091 (2.4%). Except for ST72-t148 and ST398-

t571, all these clonal types were previously identified among MSSA recovered in Portugal between 

1992 and 2001, although in different proportions (1). Interestingly, with exception of ST7-t091, 

ST398-t571 and ST34-t136, these same clonal types, were also frequently found in other European 

countries such as Spain (4) Belgium (21), The Netherlands (27), Germany (25) and in the USA (24) 

when analyzing MSSA isolates from different time periods. These results may suggest the existence 

of specific MSSA clones with increased endemicity and epidemicity.  

 

On the other hand, in other countries like Taiwan, in Asia, and Cameroon, Madagascar, Morocco, 

Niger and Senegal in Africa, the MSSA population from carriage and infection in the community was 

different from that found in Portugal. In Taiwan ST508 (SLVST45)-t015, ST25-t340, ST121-t645, 

ST59-t437 and ST188-t189 were predominant (7) whereas in five major African cities in Cameroon, 

Madagascar, Morocco, Niger and Senegal, 58% of MSSA isolates from infection belonged to clones 

ST121-t314, ST15-t084, ST1851(SLV of ST1)-t127 and ST152-t355 (6). The reasons lying behind 

the variation in MSSA population structure between the different countries are poorly understood.  

 

When analyzing the MSSA population structure over time we found that one of the most 

predominant clonal types, ST30-t012 was detected over the entire 19 years study period, whereas 

others were intermittently detected.  The clone (ST30-t012) was detected for the first time more than 

60 years ago, in the form of the penicillin-resistant phage-type 80/81 clone, and was shown to be 

highly epidemic and virulent. Finally more recently, has emerged also as contemporary CA-MRSA 

epidemic Southwest clone (ST30-IV, t012) (11).  
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In addition to ST30-t012, clonal types ST5-t002, ST8-t008, ST1-t127 were also already present in 

1957, among the genetic backgrounds of the historically early MSSA (9, 19), collected in the UK 

and Denmark, suggesting they have been successful human clones for a long time. 

 

We observed that clones like ST8-t008, ST30-t012, ST72-t148, ST1-t127 are highly related with the 

CA-MRSA epidemic clones recently described in Portugal, namely USA300 (ST8-IVa, t008), SWP 

(ST30-IVa, t012) USA700 (ST72-IVg, t127), USA400 (ST1-IVa, t148), respectively (30). With the 

exception of ST30-t012, these clonal types were all detected only after 1996 in our study. This time 

period coincides exactly with the worldwide emergence of CA-MRSA epidemic, which suggest that 

the MRSA belonging to these clonal types may have arisen from the local SCCmec IV acquisition 

giving rise to the country emergence of the CA-MRSA clones. Alternatively, they might result from 

the loss of SCCmec IV from CA-MRSA imported from abroad. The relatedness of contemporary 

MRSA and MSSA strains belonging to these clonal types was further confirmed by the high 

similarity of their SmaI PFGE macrorestriction profiles. This relatedness of contemporary MSSA and 

MRSA strains was previously observed in other countries (25). In particular, in the USA, where CA-

MRSA are epidemic in both hospitals and community, the dominant MSSA clonal types found (ST5-

t002 and ST8-t008) were analogous to the predominant MRSA clones (NY/JP and USA300 clones) 

(24). These results suggest that emergence of CA-MRSA might have contributed to a change both 

in MRSA and MSSA epidemiology.  

 

Despite of the characteristic genetic diversity found among the MSSA population, dominant lineages 

seems to be established for more than 19 years and widely distributed in Portugal. The emergence 

of CA-MRSA might have had impact on the recent MSSA epidemiology in this country. More 

detailed studies are needed, namely through the application of WGS, to understand the level of 

relatedness of contemporary MSSA and CA-MRSA. 
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CHAPTER IV 
Insights into alpha-hemolysin (Hla) evolution and expression among Staphylococcus 

aureus clones with hospital and community origin 
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ABSTRACT 
Background 

Alpha-hemolysin (Hla) is a major virulence factor in the pathogenesis of Staphylococcus aureus 

infection, being active against a wide range of host cells. Although hla is ubiquitous in S. aureus, its 

genetic diversity and variation in expression in different genetic backgrounds is not known. We 

evaluated nucleotide sequence variation and gene expression profiles of hla among representatives of 

hospital (HA) and community-associated (CA) S. aureus clones. 

Methods  

51 methicillin-resistant S. aureus and 22 methicillin-susceptible S. aureus were characterized by 

PFGE, spa typing, MLST and SCCmec typing. The internal regions of hla and the hla promoter were 

sequenced and gene expression was assessed by RT-PCR.  

Results  

Alpha-hemolysin encoding- and promoter sequences were diverse, with 12 and 23 different alleles, 

respectively. Based on phylogenetic analysis, we suggest that hla may have evolved together with the 

S. aureus genetic background, except for ST22, ST121, ST59 and ST93. Conversely, the promoter 

region showed lack of co-evolution with the genetic backgrounds. Four non-synonymous amino acid 

changes were identified close to important regions of hla activity. Amino acid changes in the RNAIII 

binding site were not associated to hla expression. Although expression rates of hla were in general 

strain-specific, we observed that CA clones showed significantly higher hla expression (p=0.003) when 

compared with HA clones.  

Conclusion 

We propose that the hla gene has evolved together with the genetic background. Overall, CA genetic 

backgrounds showed higher levels of hla expression than HA, and a high strain-to-strain variation of 

gene expression was detected in closely related strains.   
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INTRODUCTION 
Staphylococcus aureus is a human opportunistic pathogen responsible for a wide range of infections 

that can vary in its clinical presentation and severity. Methicillin-resistant S. aureus (MRSA) emerged in 

1960 in the United Kingdom and has been a major problem in hospitals (HA-MRSA) worldwide during 

the last 40 years; however since the late 1990s, MRSA has been emerging as a leading cause of 

severe infection also in the community, in individuals without recent health-care contact (CA-MRSA) 

(12, 16) 

 

CA-MRSA present distinct genetic backgrounds from their hospital counterparts, are more susceptible 

to antibiotics other than beta-lactams, carry the smallest staphylococcal cassette chromosome mec 

types (SCCmec IV or V), and have higher virulence capacity (12, 16, 35). The underlying reasons 

behind the enhanced virulence of CA-MRSA appear to be multiple including a different capacity to 

overcome host cell response (20), different distribution of mobile genetic elements carrying virulence 

determinants (3), allelic variation in virulence determinants located in the core genome and in mobile 

genetic elements (17), and different levels of expression and protein production of virulence 

determinants (alpha-hemolysin, collagen adhesin, staphylokinase, coagulase, lipase, enterotoxins C3 

and Q, V8 protease and cysteine protease) (8, 22, 26).  

 

The alpha-hemolysin or "-toxin (Hla), is one of the major virulence determinants implicated in the 

pathogenesis of S. aureus, associated to severe skin and soft tissue infections (SSTI), necrotizing 

pneumonia and even sepsis (5). Hla is the most prominent S. aureus cytotoxin that can act against a 

wide range of host cells including erythrocytes, epithelial cells, endothelial cells, T cells, monocytes 

and macrophages (5, 42, 46). The gene encoding Hla is located in the core genome and is expressed 

as a water-soluble monomer (33.2 kD) that assembles to form a membrane-bound heptameric #-barrel 

pore (232.4 kD) on susceptible cells leading to cell death and lysis (42). The overall structure is 

mushroom-like, divided into three domains: 1) Cap domain: largely hydrophobic, defining the entry of 

the pore; 2) Rim domain: underside of the Cap, in close proximity to membrane bilayer; 3) Stem 

domain: part of the transmembrane channel, forming the membrane-perforating #-barrel pore (Figure 

1) (5, 42).  
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Hla expression is mainly controlled by the global toxin accessory gene regulator (agr), via the 

regulatory effector molecule RNAIII (32). While agr provides the first and most important mechanism of 

up-regulation of hla, expression can also be modulated by other regulators, such as SaeR, SarZ, ArlS 

(4, 24, 25) (up-regulators) and Rot, SarT (41)(down-regulators).  

Although polymorphisms in the hla promoter region have been described (23), the range of genetic 

diversity and evolution of this toxin has never been assessed in a large representative S. aureus 

collection. Furthermore, although differences in hla expression have been described between 

community- and hospital-associated MRSA, these studies have been performed with a limited number 

of CA-MRSA epidemic clones (22), or almost exclusively with representatives of the USA300 clone (6, 

7, 19). To better understand the evolutionary history of hla and its importance as a virulence factor for 

CA-MRSA, in this study we compared the hla nucleotide sequence and expression among the major 

epidemic and minor CA and HA clones, including both MRSA and MSSA strains.  
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MATERIALS AND METHODS 
Ethics Statement 
Isolates were obtained from routine diagnostic and were analyzed anonymously and only the isolates, 

not humans, were studied. All data was collected according to the European Parliament and Council 

decision for the epidemiological surveillance and control of communicable disease in the European 

community. Ethical approval and informed consent were for that reason not required. 
 
Bacterial collection  
A total of 73 S. aureus, including 51 MRSA and 22 MSSA were analyzed in this study. Strains were 

collected in 13 different countries (Belgium, Bulgaria, Czech Republic, Denmark, Greece, Netherlands, 

Portugal, Romania, Spain, Sweden, United Kingdom, USA and Brazil), between 1961 and 2009 from 

both community (n=46) and hospital (n=27). The strains comprised a total of 52 spa types and 23 

sequence types (STs) (see Table S1). 

Strains were defined as belonging to CA or HA clones if they contained the same or related genetic 

backgrounds as the reference CA-MRSA and HA-MRSA epidemic control strains, based on ST, spa 

type and SCCmec (in case of MRSA). 

 

Media and bacterial growth conditions  
Before RT-PCR analysis, strains were grown overnight at 37°C on tryptic soy agar plates (TSA). 

Bacterial growth experiments were performed by growing bacteria in tryptic Soy Broth (TSB) at 37°C 

with shake and measuring OD (600 nm) each hour in the follow up automatic incubator Bioscreen C 

(Oy Growth Curves AB, Helsinki, Finland). Plates of 100-well honeycomb (Oy Growth Curves AB, 

Helsinki, Finland) were filled with 300$l/well of overnight culture diluted to OD600=0.05 in TSB growth 

medium. Three individual growth experiments (SetC, SetD and SetE) were performed for each strain 

and named accordingly e.g. HLZ6C, HLZ6D and HLZ6E (see Figure S2.I to III).  

 

Nucleotide sequence of hla and promoter region 
Chromosomal DNA was extracted from overnight cultures, using the boiling method (100°C for 10 min 

followed by centrifuged at 13.000g for 5 minutes). Two sets of primers were designed to span the most 

polymorphic regions within the hla gene and hla promoter (considered as the region located -600 bp 

from hla starting codon), after alignment of sequences available on NCBI for S. aureus. One set of 
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primers (Forward: hla-F_CGAAAGGTACCATTGCTGGT; Reverse: hla-

R_CCAATCGATTTTATATCTTTC) amplified an internal fragment of the hla gene (nt 1170419-

1170982, CP000730.1) and the other set (Forward: hlaPro-F_CACTATATTAAAAATACATAC; 

Reverse: hlaPro-R_GTTGTTACTGAGCTGAC) amplified an internal fragment of the hla promoter 

region (nt 1171289-1171773, CP000730.1) (Figure S3). PCR products were sequenced (Macrogen 

Europe, Amsterdam, The Netherlands) and sequences were analyzed using SeqMan (DNAstar, 

Lasergene v9, Madison, WI, USA). To each unique hla promoter (P) and gene sequence (hla) - 

allotype - a single Arabic number was attributed (e.g. P1, P2; hla1, hla2). Gene and promoter 

sequences were deposited in GenBank (accession numbers KM019547-KM019606; KM019607-

KM019674). 

 
Phylogenetic analysis 
Phylogenetic relatedness was analyzed using the MEGA5 v5.05 software 

(http://www.megasoftware.net/) for gene, promoter region and concatenated sequences obtained from 

1) gene with promoter region and 2) seven MLST alleles from the 23 representative STs within the 

collection. Phylogenetic trees were constructed using the Neighbor-Joining clustering method, and 

1000 bootstrap replicates, which assigns confidence values for the groupings in the tree. 

Moreover, nucleotide diversity (ND) between the two clusters was calculated based on the estimation 

of the average evolutionary divergence over sequence pairs within the two groups, where the number 

of base substitutions per site from averaging over all sequence pairs within each group are compared 

using the maximum composite likelihood model (43). 

 

Detection of recombination 
Alignments from the hla gene, hla promoter and internal fragments of each of the seven MLST gene 

were screened for the occurrence of putative recombination events using Recombination Detection 

Program version 4 (RDP4)  (http://web.cbio.uct.ac.za/) with the default settings (with highest 

acceptable probability value of 0.05). Identification of recombinant sequences recombination 

breakpoints and major parent was determined using simultaneously nine recombination detection 

methods (RDP, BOOTSCAN, GENECONV, MAXCHI, CHIMAERA, SISCAN, PhylPro, LARD and 

3SEQ. The “minor parent” is considered a sequence closely related to that from which sequences in 

the proposed recombinant region may have been derived (the presumed donor). The “major parent” 
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was considered as a sequence closely related to that from which the greater part of the recombinant’s 

sequence may have been derived.  

 

RT-PCR analysis 
Culture growth was stopped at late exponential phase, when alpha-toxin is described to have maximal 

activity (47), corresponding to the time-points 1) 3 hours 30 min in one group (65 strains) and 2) 4 

hours 30 min in another (8 strains). Total RNA was extracted from three biological replicates. Cells 

were mechanically disrupted with FastPrep-24 Instrument (MP Biomedicals, Solon, OH, USA) and 

RNA was protected using RNA Protect (Qiagen, Valencia, USA). RNA was extracted automatically 

using the QIAsymphony platforms (Qiagen, Valencia, USA) with QIAsymphony RNA kit (Qiagen, 

Valencia, USA).  

The RT-PCR assay was performed on a 7500 Real-Time PCR System (Applied Biosystems, Foster 

City, CA) using the following primers and TaqMan probes: Hla RT_F: 

TAATGAATCCTGTCGCTAATGCC; HlaRT_R: CACCTGTTTTTACTGTAGTATTGCTTCC; Hla RT 

Probe: 6FAM-AAACCGGTACTACAGATAT-MGBNFQ. The RT-PCR reaction was performed using the 

EZ RT-PCR Core Reagents (Applied Biosystems, Foster City, USA), in which RNA is reverse 

transcribed and amplified in a single reaction. The following PCR protocol was used: 50°C for 2 min, 

60°C for 30 min, 95°C for 5 min, followed by 42 cycles of 95°C for 20 sec and 62°C for 1 min. The 16S 

gene was used as internal or reference control. The primers used for 16S RNA amplification were 

those previously described (50).  

 

RT-PCR data analysis 
The relative hla gene expression was calculated based on the Ct (RT-PCR output) of the gene of 

interest (Ct hla) as compared to the Ct of the internal control (Ct 16S) as follows: Delta Ct = Ct hla- Ct 

16S.  The lower the Delta Ct the higher is the amount of hla mRNA and the more the gene is 

expressed. The reproducibility of the assay was evaluated by the calculation of the arithmetic mean of 

the relative expression of the three biological replicates (Mean Delta Ct1-3= Average (Delta Ct1; Delta 

Ct2; Delta Ct3). The reproducibility of RT-PCR reaction was evaluated by the calculation of the standard 

deviation (STDEV) of Delta Ct obtained for each biological replica (Delta Ct1; Delta Ct2; Delta Ct3). 

Values were considered valid when at least two Ct readings exist with STDEV<2. 
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Protein structure visualization (pyMOL) 
The protein structure was modeled using PyMOL v.1.6 (http://www.pymol.org/) if a nucleotide mutation 

gave rise to a stop codon. 

 
Statistical analysis 
The statistical analysis was performed using the Graphpad Prism 6 

(http://www.graphpad.com/scientific-software/prism/), with the two-tailed Student’s t-test to determine 

whether the differences of mean expression rates (MSSA versus MSSA; HA backgrounds versus CA 

backgrounds) were statistically significant (p!0.05).  

Regression tree analysis was used to explore which variables could be related with the hla expression 

(14). Trees explain the variation of a single response variable (in this study the hla mRNA expression) 

by repeatedly splitting the data into more homogeneous groups, using combinations of explanatory 

variables (in our case, the ST, spa type, MRSA, MSSA and the type of SCCmec). 
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RESULTS 

Analysis of polymorphisms in the hla gene and hla promoter 
The sequence analysis of the internal region of hla and the hla promoter region among the 73 strains 

identified a total of 13 hla and 23 promoter region different sequences (allotypes) (Table 1).  We 

obtained no amplification products for hla and hla promoter region in one and 13 strains, respectively, 

which probably result from misparing of the primers used. 

 

From the 13 hla (hla1-13), we observed that only a single hla-allotype was found among 

representatives of a specific ST, except for ST22 (hla12; hla13) and ST30 (hla8; hla9) where two 

different alleles were identified. On the other hand, the most frequent alleles, hla1 (33.3%, n=24) and 

hla4 (20.8%, n=15), were identified in more than one ST. 

 

Regarding the nucleotide changes identified in the hla, some correspond to non-synonymous 

mutations (E208, T239 and S243) and, in one particular case, to a stop codon (Table 1 and 2). The 

substitutions observed did not correspond to any difference in the charge or polarity of the amino acid 

(aa). However, changes in molecular weight were observed: i) changes from aa D208 to aa E208 

(D208E) and from aa S239 to T239 (S239T) gave rise to a higher molecular weight aa; and ii) change 

from aa T243 to S243 (T243S) resulted in a lower molecular weight aa; of note all changes occurred in 

the Rim and Cap domain of the protein. In a particular case, the aa change gave rise to a stop codon 

located in the Cap domain, in strains of ST36 and one ST30. Protein structure modeling showed that a 

protein of about one third of its real size is produced, truncated at the Gln87 (Figure 1, A and B). The 

truncation is in the outside part of the domain, suggesting that this will affect the capacity of the Hla to 

form cell wall pores, and ultimately to induce hemolysis.  
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Table 1. Summary of molecular characterization, sequence variation and relative expression rates of S. aureus 
strains collection. 

     
(1) H: High polymorphism; L: Low polymorphism (2) Mean Delta Ct1-3= Average (Delta Ct1; Delta Ct2; Delta Ct3), Delta Ct=Ct hla-Ct 16S; Not valid: only one Ct 
reading; (3) * low reproducibility between three CT values (Stddv!2). nt: non typable; Stddv: standard deviation 

Nº Isolate ID SCCmec spa 
type

MLST Branch1 Promotor 
Allotype

Gene 
Allotype

Nonsynonymous Mutation Hla Expression 
(Mean Delta Ct)

2
Stddev Delta Ct

3 Expression 
(High/Low)

1 HLZ6 II t002 ST5 L P4 hla1 D208E 8.69 2* Low
2 BK2464 II t002 ST5 L nt hla1 D208E 5.37 1 High
3 HBR73 II t067 ST5 L P5 hla1 D208E 8.75 1 Low
4 C013 VI t002 ST5 L P3 hla1 D208E 6.84 1 Low
5 HDES26 VI t062 ST5 L P3 hla1 D208E 8.01 1 Low
6 HDE288 VI t311 ST5 L P3 hla1 D208E 6.67 1 Low
7 HSA29 - t002 ST5 L P3 hla1 D208E Not Valid - Not Valid
8 HDE461 IV t022 ST22 H P10 hla12 S239T; T243S 6.60 1 Low
9 HAR22 IV t022 ST22 H P11 hla13 S239T; T243S 6.43 1 Low

10 HSMB280 IV t032 ST22 H P10 hla12 S239T; T243S 4.71 1 High
11 LBM12 IV t747 ST1806 H nt hla12 S239T; T243S 9.28 1 Low
12 HSMB184 - t5951 ST1806 H P10 hla12 S239T; T243S 6.74 1 Low
13 HPH2 II t018 ST36 H P7 hla8 D208E; S239T; stop codon 8.02 2* Low
14 HAR24 II t018 ST36 H nt hla8 D208E; S239T; stop codon 9.62 2* Low
15 DEN4415 II t021 ST36 H P7 hla8 D208E; S239T; stop codon 8.95 2* Low
16 C563 IV t015 ST45 H nt hla10 S239T 7.02 1 Low
17 C036 V t015 ST45 H nt hla10 S239T 6.24 0 Low
18 HAR38 IV t004 ST45 H P7 hla10 S239T 10.38 1 Low
19 HFX77 III t037 ST239 L P1 hla4 - 8.74 2* Low
20 HUC343 IIIA t037 ST239 L P1 hla4 - 8.27 0 Low
21 HU25 IIIA t138 ST239 L P1 hla4 - 8.17 1 Low
22 BK1953 IA t051 ST247 L P1 hla4 - 7.71 1 Low
23 HPV107 IA t051 ST247 L P1 hla4 - 7.56 0 Low
24 HSJ419 IA t725 ST247 L P1 hla4 - 8.23 1 Low
27 E2125 I t051 ST247 L P1 hla4 - 7.29 0 Low
25 10395 I t008 ST250 L P2 hla4 - 8.15 1 Low
26 COL I t008 ST250 L P1 hla4 - 8.01 1 Low
28 HFX74 IV t008 ST8 L P1 hla4 - 6.46 1 Low
29 USA300 IV t008 ST8 L P1 hla4 - 6.19 3* Low
30 C438 IV t024 ST8 L P1 hla4 - 6.07 1 Low
31 C574B IV t1257 ST612 L P1 hla4 - Not Valid - Not Valid
32 LBM27 - t024 ST8 L P1 hla4 - 8.12 0 Low
33 LBM74 - t008 ST8 L P1 hla4 - 5.87 1 Low
34 C270 IV t1381 ST1 L P17 hla2 - 8.81 1 Low
35 USA400 IV t127 ST1 L P17 hla2 - 6.01 2* Low
36 LBM36 - t127 ST1 L P18 hla2 - 11.09 1 Low
37 C577 IV t216 ST59 L P20 hla5 - 5.35 0 High
38 C583 IV t437 ST59 L P19 hla5 - 5.31 1 High
39 C434 V t437 ST59 L P19 hla5 - 9.14 1 Low
40 C018 IV t1819 ST93 L nt hla7 - 5.16 1 High
41 C491 IV t202 ST93 L P21 hla7 - 5.45 0 High
42 LBM54 IV t011 ST398 H P12 hla11 - 4.46 2* High
43 C482 IV t011 ST398 H P13 hla11 - 3.25 1 High
44 C496 VII t108 ST398 H nt hla11 - 2.85 1 High
45 LBM40 - t034 ST398 H P12 hla11 - 5.37 1 High
46 C017 IV t019 ST30 H nt hla9 D208E; S239T 4.53 0 High
47 C385 IV t019 ST30 H P7 hla9 D208E; S239T 7.25 1 Low
48 C479 IV t019 ST30 H nt hla9 D208E; S239T 8.10 1 Low
71 HUC585 - t342 ST30 H P7 hla9 D208E; S239T 5.14 1 High
69 HFF204 - t318 ST30 H P9 hla9 D208E; S239T 6.23 1 Low
70 HFA30 - t012 ST30 H P8 hla8 D208E; S239T; stop codon 7.94 1 Low
49 HSJO7 IV t148 ST72 L P14 hla1 D208E 6.56 1 Low
50 USA700 IV t148 ST72 L P14 hla1 D208E 5.76 0 Low
51 COO3 IV t791 ST72 L P15 hla1 D208E 6.28 1 Low
52 SAMS1024 IV t1346 ST1810 L P14 hla1 D208E 4.78 1 High
53 HUC594 - t148 ST72 L P14 hla1 D208E 8.36 1 Low
54 HFA28 - t126 ST72 L P14 hla1 D208E 4.56 2* High
55 C238 - t3682 ST72 L P14 hla1 D208E 4.64 1 High
56 C168 IV t044 ST80 L P16 hla1 D208E 8.20 0 Low
57 C485 IV t044 ST80 L P16 hla1 D208E 5.72 1 High
58 C014 IV t131 ST80 L P16 hla1 D208E 4.87 0 High
59 LBM25 - t1509 ST15 L P2 hla1 D208E 6.69 0 Low
60 C157 - t084 ST15 L P2 hla1 D208E 4.86 1 High
61 C230 - t346 ST15 L P2 hla1 D208E 9.03 2* Low
62 HBA33 - t258 ST25 L P6 hla1 D208E 5.73 1 High
63 C095 - t2909 ST25 L P6 hla1 D208E 4.16 1 High
64 C141 - t081 ST25 L P6 hla1 D208E 4.50 2* High
65 HBA34 IV t308 ST121 L nt hla6 - 5.62 1 High
66 HUC574 - t435 ST121 L P1 hla6 - 5.19 1 High
67 HUC587 - t159 ST121 L P2 hla6 - 5.09 1 High
68 HUC578 - t284 ST121 L P1 hla6 - 7.10 2* Low
72 LBM23 - t100 ST9 L P22 hla1 D208E 5.48 2* High
73 HFX84 - t267 ST97 L P23 hla3 - 9.03 1 Low
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Figure 1. HLA protein structure.  A) wildtype (highlighted the non-synonymous mutations Gln87, Glu208, Thr239 and Ser243) 
and B) truncated protein due to a stop codon at Gln87. Structure generated by the program PyMOL v.1.6.  

 

A high number of sequence variations were identified in the hla promoter region, (n=23) (P1-23) (Table 

1 and 2). Although we found that some STs were associated to a specific promoter allotype, and some 

promoters were identified in a single ST, we also identified cases where single STs were associated to 

different promoters (8 out of 23) and examples in which a single promoter allotype was associated to 

different STs (5 out of 23). This is the case of the most frequent promoter (P1) that was found in about 

one third of the strains analyzed (25.4%, n=16), including several different STs. 

A particular highly polymorphic region corresponding to nt -22 to -24 from the start codon, was found in 

the majority (16 out of 23) of the promoter allotypes (exceptions P1, P6, P13, P14, P15, P18 and P23). 

These polymorphisms are located in the vicinity of RNAIII binding site (30); however, we could not find 

a direct correlation between a particular nucleotide sequence and a specific expression pattern (high or 

low expression). For example, the sequence TTT, observed in two strains belonging to ST398 that 

have a high level expression, was also observed in strains with low expression belonging to other 

genetic backgrounds (ST8, ST239, ST247, ST250, ST36, ST45 and ST22). 

 

Alpha-hemolysin evolutionary history 
In order to better understand the evolution of hla gene within the S. aureus population, we constructed 

phylogenetic trees from the hla and hla promoter sequences (Figure 2, A and Figure S2) and 
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compared it with the tree constructed from the concatenated sequences of the seven housekeeping 

genes used in MLST, including all the STs represented in the strain collection described here (Figure 

2, B).  

 

The phylogenetic tree constructed for the hla gene showed two distinct major clusters with different 

evolutionary clocks that differed in their nucleotide diversity (ND, see Materials and Methods): cluster 

(L) with lower diversity (ND=0.005), and cluster H with higher diversity (ND=0.019). Cluster L included 

more than 70% of strains (71.2%, n=52), and five sub-clusters; Cluster H contained about 29% of the 

strains (28.8%, n=21), and comprised four minor sub-clusters including hla8-hla12 alleles, which were 

found in strains of ST30, ST36, ST45, ST398 and ST22. 

 

As opposed to the phylogenetic tree constructed from hla gene, the one constructed from the promoter 

region did not show two distinct evolutionary branches (Figure S1). Moreover, dissimilar subgroup 

clustering was noticed in the tree constructed from the promoter gene sequence. For example, ST45, 

ST30 and ST36 backgrounds were clustered together in the promoter sequence-based tree whereas in 

the hla sequence-based tree ST45 was placed separately from ST30 and ST36 cluster (branch H). 

The same type of observations can be drawn for most of STs. Overall the promoter region showed to 

be more diverse than the hla gene sequence among the different backgrounds. 

 

On the other hand, when we compared the phylogenetic tree constructed with the hla gene with that 

constructed from MLST concatenated genes, the same type of division into two distinct main clusters 

was observed (Figure 2). Moreover, the majority of STs were equally distributed between the two 

clusters in the two trees. The only exceptions were ST22, ST121, ST59 and ST93 that in the two trees 

have exchanged their positions from one cluster to the other (Figure 2, B-blue arrows). 
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Figure 2. Phylogenetic trees of hla gene (A) and concatenated sequences of MLST alleles (B) from 23 STs 
representatives of the strains collection. The tree was constructed using MEGA 5 with Neighbour-joining method 
and bootstrap values provided as percents over 1000 replications. Branch length values are indicated and the 
percentage of replicate trees (bootstrap test) are shown next to the branches. The dashed line indicates the 
separation of the two evolutionary branches. 
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Detection of recombination in hla gene, hla promoter and MLST genes 
To understand if recombination could explain the incongruence found between the trees constructed 

from hla and MLST concatenated genes, we screened the hla gene, hla promoter and each MLST 

gene for recombination events using the RDP4 software.  

 

The SiScan and 3Seq methods detected one recombination event in the hla gene. This event 

corresponded to a fragment ending in positions 385-410 of the hla alignment, however the beginning 

breakpoint was not possible to determine. In the collection analyzed, this event was detected in five 

isolates belonging to ST22 or related STs (HSMB280, HDE461, HAR22 and LBM12 (TLV ST22) and 

HSMB184 (TLV ST22)) and four isolates of ST398 (LBM54, LBM40, C496, C482_ST398). The ST30 

HFF204 strain was identified as the minor parent (97.8% identity with ST22 strains and 99.3% identity 

with ST398 strains) and ST121 strain HUC587 was identified as the major parent (with 100% identity 

to ST398 strains and 93.5-95.2% identity with ST22 strains) of the recombining fragment. A trace 

signal of recombination of this same event was also identified among ST45 isolates; however this 

signal was not statistically significant. Interestingly all the recombination events were detected in 

strains belonging to the high genetic diversity cluster in the tree constructed from hla gene. In the hla 

promoter region no recombination events were detected. 

We have performed the same type of analysis using the internal sequences of each of the seven 

housekeeping used in MLST scheme, including the alleles present in all STs identified in this study, 

however no recombination events were detected in any of the genes.  

 

Altogether the data gathered suggest that for the majority of strains hla gene evolved together with the 

genetic background. The different clustering of ST22 and ST121 strains, in the trees constructed from 

MLST concatenated genes and hla gene, may derive from recombination events occurring in the hla 

gene. Similarly these type of events might explain the genetic diversity observed in cluster H in the hla 

tree in strains belonging to ST22, ST398, ST45, ST30 and ST36 (H cluster of hla tree).  

 

Expression of alpha-hemolysin 
The expression of alpha-hemolysin in the 73 strains was assessed by RT-PCR, in three biological 

replicates. Fifteen of the 73 strains (20.5%) were excluded from the final analysis, either because a 
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single valid determination for Delta Ct (N=2) was obtained or because Ct obtained from the different 

biological replicates were not reproducible  (N=13).  

 

The analysis of the regression tree split the response variable into two distinct groups, according to the 

spa type of the strains. There was a group of strains with mean Delta Ct1-3 ! 5.73, that was classified 

as a high expression group and a second group with a mean Delta Ct1-3> 5.73 classified as a low 

expression group (Table 1, Table 2 and Figure 3). Overall the regression tree explained 60% of the 

variance in the data. This is mostly because there were strains expressing a low or high mean Delta Ct 

that were classified in the same spa type; those were the cases of spa types t002, t019, t044 and t437.  

 

 

 
Figure 3. HA and CA strains relative expression distribution. Mean of expression rates from three biological 
replicates. Dashed line corresponding to the mean Ct value 5.73 results from the regression tree analysis which 
split strains in two distinct groups, at spa type level: a) high expression group - corresponding to strains with 
Mean Delta Ct! 5.73 and b) low expression group- corresponding to strains with Mean Delta Ct> 5.73). 
Highlighted in red are the high expressing strains.  
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Table 2. Strains data distribution based on promoter allotypes.

 
 (*)(**) relative expression values not valid (SDV!2 or only one Ct reading)  

Promotor allotype Gene allotype Non Synonymous Mutation Isolates Molecular 
Characterization

Expression Category

ST398 P13 hla11 - ST398-IV, t011 High expression
P12 ST398, t034 High expression
NT ST398-VII, t108 High expression
P12 ST398-IV, t011 High expression*

ST25 P6 hla1 D208E ST25, t258 High expression
ST25, t081 High expression*
ST25, t2909 High expression

ST9 P22 hla1 D208E ST9, t100 High expression*
ST93 P21 hla7 - ST93-IV, t202 High expression

NT ST93-IV, t1819 High expression
ST121 P2 hla6 - ST121, t159 High expression

P1 ST121, t435 High expression
NT ST121-IV, t308 High expression
P1 ST121, t284 Low expression*

ST72 P14 hla1 D208E ST72-IV, t148 High expression
P14 ST72, t3682 High expression
P14 ST1810-IV, t1346 High expression
P14 ST72, t126 High expression*
P15 ST72-IV, t791 Low expression
P14 ST72-IV, t148 Low expression
P14 ST72, t148 Low expression

ST80 P16 hla1 D208E ST80-IcV, t131 High expression
ST80-IV, t044 High expression
ST80-IV, t044 Low expression

ST30 P7 hla9 D208E; S239T ST30, t342 High expression
NT ST30-IV, t019 High expression
P7 ST30-IV, t019 Low expression
P9 ST30, t318 Low expression
NT ST30-IV, t019 Low expression
P8 hla8 D208E; S239T; stop codon ST30, t012 Low expression

ST15 P2 hla1 D208E ST15, t084 High expression
ST15, t346 Low expression*
ST15, t1509 Low expression

ST59 P20 hla5 - ST59-IV, t216 High expression
P19 ST59-IV, t437 High expression
P19 ST59-V, t437 Low expression

ST1 P17 hla2 - ST1-IV, t1381 Low expression
P17 ST1-IV, t127 Low expression*
P18 ST1, t127 Low expression

ST8 P1 hla4 - ST8-IV, t008 Low expression
ST8-IV, t024 Low expression
ST8-IV, t008 Low expression*
ST8, t008 Low expression
ST612-IV, t1257 Not valid**
ST8, t024 Low expression

ST97 P23 hla3 - ST97, t267 Low expression
ST22 P10 hla13 S239T; T243S ST22-IV, t032 High expression

P10 hla12 ST22-IV, t022 Low expression
P11 ST22-IV, t022 Low expression
P10 ST1806, t5951 Low expression
NT ST1806-IV, t747 Low expression

ST5 NT hla1 D208E ST5-II, t002 High expression
P3 ST5-VI, t002 Low expression
P3 ST5-VI, t062 Low expression
P3 ST5-VI, t311 Low expression
P4 ST5-II, t002 Low expression*
P3 ST5, t002, Not valid**
P5 ST5-II, t067 Low expression

ST36 P7 hla8 D208E; S239T; stop codon ST36-II, t018 Low expression*
P7 ST36-II, t021 Low expression*
NT ST36-II, t01 Low expression*

ST45 NT hla10 S239T ST45-IV, t015 Low expression
NT ST45-V, t015 Low expression
P7 ST45-IV, t004 Low expression

ST239 P1 hla4 - ST239-IIIA, t037 Low expression
ST239-III, t037 Low expression*

- ST239-IIIA, t138 Low expression
ST247 P1 hla4 - ST247-I, t051 Low expression

ST247-IA, 051 Low expression
ST247-IA, t051 Low expression
ST247-IA, t725 Low expression

ST250 P1 hla4 - ST250-I, t008 Low expression
P2 ST250-I, t008 Low expression
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Furthermore, we explored in each of the spa types what other explanatory variables (ST, MRSA, 

MSSA and type of SCCmec) could differentiate the inclusion of some strains in the low or high 

expression group, but we found no associations with the variables we measured in the study. 

We observed that the hla expression level varied within strains of the same ST (Figure 3; Table 1 and 

2). In fact, in some cases the same ST comprised strains with both high and low levels of expression 

(ST5, ST15, ST22, ST30, ST59, ST72 and ST80). Moreover, we found that the expression rates did 

not differ significantly (P=0.665) between MRSA and MSSA strains. However, we did find a correlation 

between the hla expression and the origin of the genetic backgrounds. Actually, strains of CA genetic 

backgrounds showed, in general, higher mean expression rates than strains of HA backgrounds 

(p=0.003) (Figure 4). Among the 22 strains (37.9%, 22 out of 58) with high expression level, only two 

(9.5%) belonged to HA backgrounds (ST22-IVh, t032 and ST5-II, t002) whereas the majority (90.5%, 

n=19) were represented by CA backgrounds (Table 1 and Table 2). Moreover, two additional CA 

strains, ST72-IVa-t148 and ST8-MSSA-t008, showed expression rates near the cutoff value (5.73), 

with 5.76 and 5.87, respectively. These were considered as belonging to the low-level expression 

group.  

The three strains with the highest expression rate were ST398-VII-t108 (2.85), ST398-IVa-t011 (3.25) 

and ST25-MSSA-t2909 (4.16) and strains with the lowest rate were ST1806 (TLV ST22)-IVh-t747 

(9.28), ST45-IVa-t004 (10.38) and ST1-MSSA-t127 (11.09).  

 

 

Figure 4. Distribution of the relative hla expression. Mean of relative expression of three independent readings. 
Expression comparison between a) MRSA and MSSA and b) HA and CA backgrounds using the Two-tailed 
Student’s t-test. Statistically significance (p!0.05) (**).  
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We observed that some promoters and gene alleles (P6, P12/P13, P21; and hla7, hla9, hla11) were 

exclusively associated to a high expression level profile, while others (P3/P4/P5, P7, P8/P9, P11, P15, 

P17/P18, P23; and hla4, hla8, hla10) were exclusively associated to a low expression level (Table 1 

and 2). But we also found promoter and gene allotypes that were associated to both high and low 

expression levels.   
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DISCUSSION  
Although Hla is one of the most important S. aureus virulence factors (5), to the best of our knowledge, 

this is the first study in which the variation in hla nucleotide sequence and gene expression was 

assessed in such a large and representative collection. 

 

We found that the nucleotide sequence of hla was highly diverse. The high degree of diversity found 

within hla is in accordance to results obtained for other exotoxins, which are generally highly 

polymorphic (49). Four non-synonymous substitutions (Q87 stop codon, D208E, S239T and T243S) 

were identified, that are located in two structural protein domains which are essential for Hla 

oligomerization and pore formation (Rim and Cap)(29, 42, 48). The impact of these amino acid (aa) 

changes on hla activity is uncertain. If by one hand, the aa changes described implicate differences in 

the molecular weight of the aa, that can have influence in the three dimensional structure stability and 

activity of the protein; on the other hand these aa changes did not match any of the aa previously 

described to be essential for Hla pore formation.  

 

Furthermore, Walker and Bayley showed that multiple mutations in this same region (residues 

spanning Hla235-250) did not alter Hla activity in terms of binding, oligomerization or lysis. Thus, it 

would not be expected that S239T or T243S had significant biological impact in terms of toxin function. 

The unique mutation with an identified role in Hla function is the stop codon found in the ST36 and 

ST30 strains that was previously described by DeLeo and co-authors (15) to hinder toxin production 

and to originate a less virulent strain in a murine infection model. The true effect of the non-

synonymous substitutions identified in our study in the activity of the protein would have to be tested by 

the construction of site directed mutagenesis mutants and by performing binding, oligomerization, 

hemolysis and in vivo models assays. 

The construction of phylogenetic trees from the hla defined the existence of two clusters with different 

levels of genetic diversity suggesting that hla is evolving at different rates in different genetic 

backgrounds. Interestingly, the most diverse cluster included the clonal types which are presently more 

disseminated or that emerged recently (like ST398). This might be related to the fact that these clones 

still need to evolve to evade the human immune system and not enough time as elapsed for the most 

adapted allele to have been selected (9). On the other hand the recombination events detected in the 
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hla gene in this study were all in strains belonging to the high genetic diversity cluster, suggesting that 

this mechanism might have been important in the most recent hla evolution and diversification.  

 

Interestingly, the phylogenetic tree constructed from the hla gene was similar to that constructed from 

MLST genes, in the sense that both trees distributed the different STs similarly in two main clusters. 

This observation suggests that hla gene has evolved together with the S. aureus genetic background. 

A similar type of correlation with the genetic background was previously described for adhesins, either 

located in the core genome (clfA, clfB, fnbA, map, sdrC, and spa) or accessory genome (ebpS, fnbB, 

sdrD, and sdrE) (21). Although this was the case for the great majority of STs, we observed that four 

STs (ST22, ST121, ST59, ST93) were located in different clusters in the hla and MLST trees. Our 

results suggest that recombination occurring at the hla level, might explain the different clustering of 

strains belonging to ST22 and ST121. No recombination events were, however, detected in MLST 

genes or hla sequences of strains belonging to ST59 and ST93, suggesting that their displacement in 

the two trees could derive from different phenomena, like random mutation.  

 

It was previously suggested that CA-MRSA expressed more hla than HA-MRSA (22). Results from our 

study allowed us to extend this conclusion to virtually all epidemic CA, but also in two particular cases 

of HA genetic backgrounds. The CA strains belonging to ST398, ST25, ST121 and ST93 showed 

uniformly high relative expression rates and strains belonging to ST36, ST45, ST239, ST247 and 

ST250 showed uniformly low expression rates. To understand if in fact these patterns of expression 

are characteristic of these clones, more strains within each clone should be studied for hla expression. 

Nevertheless, we could not correlate the hla expression rate with any particular polymorphism within 

the promoter or any aa substitution in the hla gene. The results suggest that hla regulation is probably 

a result of combination of factors which are redundant, rather than associated to a single genetic 

event. In fact, it has been demonstrated by several authors that alpha-hemolysin is part of a complex 

regulatory network, that includes the main two-component systems (TCS) – Agr – that in turn is 

controlled by a diverse pool of regulatory networks that coordinately interact in response to external 

stimulus and cell signals, namely others TCS (SaeRS, ArlRS and SrrAB), alternative sigma factors 

(%B), and transcription factors (e.g. SarS, SarT, Rot, SarA, SarZ) (31, 45).  

 

We showed that hla evolved together with the genetic background. Moreover, the most epidemic CA-
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MRSA genetic backgrounds express more hla than the most epidemic HA-MRSA genetic 

backgrounds. However, the finding of frequent strain-to-strain variation in the expression level of hla 

within strains of the same clonal types suggests that hla polymorphisms cannot be used as genetic 

markers of virulence and investigators should remain cautious when inferring conclusions for the entire 

MRSA population from studies performed with a limited number of strains.  
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SUPPLEMENTARY DATA 
Table S1. Molecular characterization of the 73 MRSA and MSSA strains included in this study. (1, 2, 10, 11, 13, 18, 27, 28, 33, 34, 36-40, 44).  

!

n.a. not apply; n.d. not determined; Y yes; N no; NT non typable; MSSA methicillin-susceptible S. aureus; MRSA methicillin-resistant S. aureus; (-) 
negative; (+) positive; TLV triple locus variant. 

!
Nº Isolate ID Year Country (origin) MRSA/ 

MSSA 
SCCmec 
type 

SCCmec IV 
subtype 

PVL spa 
type 

 ST  Clone final 
classification  

Reference 

1 HLZ6 2009 Portugal MRSA II n.a. - t002 5 ST5 44 
2 BK2464 1990 United Kindom MRSA II n.a. n.d. t002 5 NY/JP  34, 37 
3 HBR73 2006 Portugal MRSA II n.a. - t067 5 NY/JP  1 
4 C013 2002 Czech Republic MRSA VI n.a. + t002 5 Pediatric 38 
5 HDES26 2007-2008 Azores (PT) MRSA VI n.a. + t062 5 Pediatric 10 
6 HDE288 1996 Portugal MRSA VI n.a. - t311 5 Pediatric 39 
7 HSA29 1992-1993 Portugal MSSA n.a. n.a. n.d. t002 5 ST5 2 
8 HDE461 2006 Portugal MRSA IV n.d. - t022 22 EMRSA15 1 
9 HAR22  1991 United Kindom MRSA IV IVh  - t022 22 EMRSA15 28, 36 
10 HSMB280 2009 Portugal MRSA IV IVh  - t032 22 EMRSA15 44 
11 LBM12 2009 Portugal MRSA IV IVh - t747 1806 ST1806 (TLV ST22) 44 
12 HSMB184 2009 Portugal MRSA n.a. n.a. - t5951 1806 ST1806 (TLV ST22) 44 
13 HPH2 2006 Portugal MRSA II n.a. - t018 36 EMRSA16 1 
14 HAR24 1993 United Kindom MRSA II n.a. n.d. t018 36 EMRSA16 33 
15 DEN4415 2001 Denmark MRSA II n.a. n.d. t021 36 EMRSA16 18 
16 C563 2009 Denmark MRSA IV IVNT - t015 45 Berlin 38 
17 C036 2004 Czech Republic MRSA V NA - t015 45 Berlin 38 
18 HAR38 1995 Belgium MRSA IV IVa - t004 45 Berlin 33, 34 
19 HFX77 2009 Portugal MRSA III n.a. - t037 239 Brazilian 44 
20 HUC343 2006 Portugal MRSA IIIA n.a. - t037 239 Brazilian 1 
21 HU25 1993 Brazil MRSA IIIA n.a. - t138 239 Brazilian 34 
22 BK1953 1995 United Kindom MRSA IA n.a. n.d. t051 247 Iberian 33,37 
23 HPV107 1992 Portugal MRSA IA n.a. n.d. t051 247 Iberian 40 
24 HSJ419 2006 Portugal MRSA IA n.a. - t725 247 Iberian 1 
25 E2125 1964 Denmark MRSA I n.a. n.d. t051 247 Archaic 13 
26 10395 1961 United Kindom MRSA I n.a. n.d. t008 250 Archaic 11 
27 COL 1965 United Kindom MRSA I n.a. n.d. t008 250 Archaic 34 
28 HFX74 2009 Portugal MRSA IV IVa + t008 8 USA300 44 
29 USA300 1995-2003 United States MRSA IV IVa + t008 8 USA300 27 
30 C438 2008 Sweden MRSA IV IVc + t024 8 USA300 38 
31 C574B 2009 Denmark MRSA IV IVd - t1257 612 DLV ST8 38 
32 LBM27 2009 Portugal MSSA n.a. n.a. - t024 8 USA300 like 44 
33 LBM74 2009 Portugal MSSA n.a. n.a. - t008 8 ST8 44 
34 C270 2009 Romania MRSA IV IVa - t1381 1 USA400 like 38 
35 USA400 1995-2003 United States MRSA IV IVa + t127 1 USA400 27 
36 LBM36 2009 Portugal MSSA n.a. n.a. - t127 1 USA400 like 44 
37 C577 2009 Denmark MRSA IV IVa + t216 59 Taiwan 38 
38 C583 2009 Denmark MRSA IV IVa - t437 59 Taiwan 38 
39 C434 2009 Sweden MRSA V n.a. + t437 59 Taiwan 38 
40 C018 2002 Czech Republic MRSA IV IVa + t1819 93 Queensland 38 
41 C491 no data Netherlands MRSA IV IVa + t202 93 Queensland 38 
42 LBM54 2009 Portugal MRSA IV n.d. - t011 398 ST398 44 
43 C482 no data Netherlands MRSA IV IVa - t011 398 ST398 38 
44 C496 no data Netherlands MRSA VII n.a. - t108 398 ST398 38 
45 LBM40 2009 Portugal MSSA n.a. n.a. - t034 398 ST398 44 
46 C017 2004 Czech Republic MRSA IV IVc + t019 30 Southwesth Pacific 38 
47 C385 2005 Spain MRSA IV IVc + t019 30 Southwesth Pacific 38 
48 C479 2005 Netherlands MRSA IV IVc + t019 30 Southwesth Pacific 38 
49 HSJO7 2009 Portugal MRSA IV n.d. - t148 72 USA700 44 
50 USA700 1995-2003 United States MRSA IV IVa + t148 72 USA700 27 
51 C003 2003 Czech Republic MRSA IV IVa + t791 72 USA700 38 
52 SAMS1024 2009 Portugal MRSA IV IVa - t1346 1810 ST1810 (SLV ST72) 44 
53 HUC594 2009 Portugal MSSA n.a. n.a. - t148 72 ST72 44 
54 HFA28 2009 Portugal MSSA n.a. n.a. - t126 72 ST72 44 
55 C238 2008 Czech Republic MSSA n.a. n.a. - t3682 72 ST72  38 
56 C168 2005 Greece MRSA IV IVc + t044 80 European 38 
57 C485 no data Netherlands MRSA IV IVc + t044 80 European 38 
58 C014 2002 Czech Republic MRSA IV IVc + t131 80 European 38 
59 LBM25 2009 Portugal MSSA n.a. n.a. - t1509 15 ST15 44 
60 C157 2009 United Kindom MSSA n.a. n.a. - t084 15 ST15 38 
61 C230 2009 Czech Republic MSSA n.a. n.a. - t346 15 ST15 38 
62 HBA33 2009 Portugal MSSA n.a. n.a. - t258 25 ST25 44 
63 C095 2005 Bulgaria MSSA n.a. n.a. + t2909 25 ST25 38 
64 C141 2009 United Kindom MSSA n.a. n.a. - t081 25 ST25 38 
65 HBA34 2009 Portugal MRSA IV IVNT - t308 121 ST121 44 
66 HUC574 2009 Portugal MSSA n.a. n.a. + t435 121 ST121 44 
67 HUC587 2009 Portugal MSSA n.a. n.a. - t159 121 ST121 44 
68 HUC578 2009 Portugal MSSA n.a. n.a. + t284 121 ST121 44 
69 HFF204 2005-2006 Portugal MSSA n.a. n.a. + t318 30 ST30 1 
70 HFA30 2009 Portugal MSSA n.a. n.a. - t012 30 ST30 44 
71 HUC585 2009 Portugal MSSA n.a. n.a. - t342 30 ST30 44 
72 LBM23 2009 Portugal MSSA n.a. n.a. - t100 9 ST9 44 
73 HFX84 2009 Portugal MSSA n.a. n.a. - t267 97 ST97 44 
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Figure S1. Phylogenetic trees of the hla gene and promoter gene. The tree was constructed using MEGA 5 with 
Neighbour-joining method and bootstrap values provided as percents over 1000 replications. Branch length values are 
indicated and the percentage of replicate trees (bootstrap test) are shown next to the branches. 
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Figure S2.I. Growth curves for triplicates of each S. aureus  strain – Set C  
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Figure S2.II. Growth curves for triplicates of each S. aureus  strain – Set D. 
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Figure S2.III. Growth curves for triplicates of each S. aureus  strain – Set E. 
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Figure S3. Internal sequences of hla promoter (highlighted blue) and hla gene (highlighted orange) used for analysis in this study. Primers used are highlighted. The sequence shown 
corresponds to the promoter and hla regions of USA300 strain from our collection blasted against USA300_TCH1516.  
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CHAPTER V 

Concluding Remarks 

Methicillin-resistant Staphylococcus aureus (MRSA) has been for over 30 years one of the most 

successful opportunistic pathogens in hospitals; however in the last two decades there has been an 

increasing recognition of MRSA as an agent of severe infection in the community. The success of 

MRSA is associated with its virulence and remarkable capacity to accumulate antimicrobial 

resistance determinants.  

 

According to EARS-Net, Portugal has been placed for several years in the ranking of the European 

countries with the highest MRSA prevalence in hospitals (HA-MRSA) and in 2012, Portugal was the 

European country with the second highest MRSA prevalence in nosocomial invasive infections, 

reaching 53.8%. Due to the huge burden of MRSA infections in hospitals, the national MRSA 

surveillance performed so far had been mostly limited to MRSA, and to the hospital setting with little 

coverage of MSSA and MRSA with community origin (CA-MRSA).  

 

Despite the increasing number of reports of CA-MRSA infections worldwide, in Portugal, only 

sporadic descriptions of infections episodes caused by CA-MRSA have appeared in the literature 

(10, 44, 49). In this Thesis we shed light on the clinical relevance of CA-MRSA in Portugal, 

elucidating for the first time the CA-MRSA prevalence and population structure. 

  

To understand the possible origin of MRSA found in the community in Portugal, and how the 

emergence of MRSA in the community might have shaped the MSSA population, we analyzed the 

MSSA population dynamics and geographical distribution over almost two decades in the 

community and hospital.  

  

Moreover, to understand if the enhanced virulence of CA-MRSA is correlated with particular alpha-

hemolysin (hla) alleles or patterns of expression, we evaluated nucleotide sequence variation and 

gene expression profiles in a representative collection. The results obtained contributed to the 

elucidation of the alpha-hemolysin evolutionary history and the understanding of expression 

patterns among both CA and HA-MRSA. 
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MRSA in the community in Portugal: low prevalence of CA-MRSA and dominance of HA-

MRSA clones 

Several lines of evidence suggest that CA-MRSA are emergent pathogens in Europe. The data 

described in Chapter II provides the first insights into the prevalence, population structure and origin 

of CA-MRSA in the whole Portugal, resulting from the molecular characterization of MRSA and 

MSSA with community origin, mainly from infection (different clinical products).  

Our data indicates that MRSA is present in a high frequency in the community (21.6%). This value 

is much higher than what was found in past studies among nasopharynx colonization in children 

and nasal colonization in draftees (<1%) (54, 59), among colonization in outpatients (5.1%) (3), 

healthcare workers (4.8%) (3) and in pediatric SSTIs (7.9%) (10). Such differences in frequency, 

between our study and the previous studies, probably reflect differences in the populations enrolled 

and screened and the type of samples analyzed. 

Unexpectedly, among the MRSA found in the community in Portugal, only a small proportion was 

represented by CA-MRSA genetic backgrounds (11.4%). The prevalence of CA-MRSA in infections 

vary in different European countries with CA-MRSA being more relevant in the northern European 

countries as Denmark (29%) and Sweden (56%) (18, 36), in opposition to relatively low frequencies 

observed in the other European countries, such as Spain (1.5%) (38), Italy (6%) (39), Germany 

(14%) (29), France (18%) (62) and Greece (30%) (65). Moreover, this scenario is in clear contrast 

to what is observed in the USA (>50%) (43) and the United Arabic Emirates (73.1%) (58) where CA-

MRSA is a significant cause of infections in the community. The variation of CA-MRSA population 

structures in different countries probably results from different social-cultural habits, healthcare 

policies, migratory fluxes, tourist and business travels that may influence the dynamics of clone 

dissemination. 

Notably, the CA-MRSA population in Portugal was represented by diverse genetic backgrounds, 

including the pandemic clones USA300, USA400, USA700, European, Southwest Pacific (SWP), 

ST398 and the less disseminated ST1810 (SLV of ST72).  

Some of these and other CA-MRSA genetic backgrounds were previously reported in Portugal, in a 

few studies in the community (56) but also in hospitals (1). 

This high genetic diversity found in Portugal seems to be common to what was shown in other 

European countries (53). The exact reason for this scenario in opposition to the monoclonal 

predominance of USA300 observed in the USA is still a lively debate. The extraordinary 
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evolutionary success of USA300 clone found in the USA, has been attributed to the presence of 

specific virulence factors such as presence of arginine catabolic mobile element (ACME), the 

spermidine acetyltransferase (sepG), Panton-Valentine leukocidin (PVL) and higher expression of 

virulence factors, providing USA300 clone with a major selective advantage during colonization and 

infection (30, 48, 60). The USA300 clone found in our studies, and all over Europe, do not carry all 

the characteristic features of the USA300 prototype clone (53), which might explain its lack of 

selective advantage and success in the community, and also in hospitals. Moreover, the finding in 

the community of clonal types of the same genetic background as MSSA and MRSA with and 

without PVL may suggest local emergence of CA-MRSA clones.  

An unexpected finding of our studies was the observation that a high proportion of the MRSA 

present in the community belonged to typical HA-MRSA epidemic clones (88.6%), in particular to 

the most prevalent clone found nowadays in Portuguese hospitals, the EMRSA-15 (77.2%), but also 

the NY/JP clone (14.9%). This is worrisome, since it shows the extensive dissemination of isolates 

from the hospital into the community. The same scenario has been reported in other countries, 

where the major nosocomial MRSA were described in the community. In particular, in France, the 

main clone found in the hospitals, the Lyon clone, corresponded to 80.6% of MRSA isolates found 

in the community (40). Also, in Spain, the most widespread clone in the hospitals, the ST125-IV, 

corresponded to 58.6% of MRSA isolates found in the community (23). The spread of the HA-MRSA 

clones ST5-II, t002 and ST239-III, t037 into the community was also observed in some Asian 

countries including Korea, Taiwan, Thailand, Vietnam and Sri Lanka (57). Several reports of 

EMRSA-15 in the community were registered in Italy (39) and England (27). Notwithstanding, this 

behavior seems to be specific of certain MRSA clones, which have the ability to survive and spread 

in both environments, as reviewed in Chapter II. 

 

The EMRSA-15 clone has been reported by others to accumulate typical CA-MRSA genetic 

features, namely the presence of PVL (14), ACME (55) and high virulence gene expression (8), 

which allows this clone to become very well adapted to the community. In addition, the carriage of 

the small cassette SCCmec IV, associated to a lower fitness cost, has been described to be key to 

the success of EMRSA-15 in the community (28, 31, 32). Although it has been speculated that the 

SCCmec IV element in EMRSA-15 is less burdensome than larger size cassettes, recently Knight 

and colleagues found no evidence of a fitness cost attributed to the carriage of SCCmec II in CC30 
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in comparison to carriage to SCCmec IV in CC22 (31). The authors found that lineage rather than 

the size of SCCmec was the most important determinant of fitness. We may speculate that what we 

are observing in the community in Portugal (and other countries) may reflect this “lineage 

background theory”, where not only EMRSA-15, but also the NY/JP clone, after hospital escape, 

seem to be well adapted to the community, in coexistence and for a long time.  

In the future, it would be interesting to perform competition assays between MRSA strains belonging 

to these clones, and their MSSA counterparts, in order to understand possible differences in fitness, 

and their correlation with background or SCCmec size cassettes. 

 

The clear evidence of blurring of hospital-community boundaries, strongly emphasize the imperative 

need to apply strict infection control measures in Portuguese hospitals.  We think that “search and 

destroy” policies against MRSA as the ones implemented in the Northern European countries (33, 

63) may not be possible to apply in Portugal, since we have, in opposition to these countries, high 

prevalence of MRSA in hospitals, and highly endemic clones, rendering this approach not 

sustainable. In our opinion, hospital infection control measures should focus first in the 

implementation of antimicrobial prescription policies (also in healthcare centers) directed to the 

predominant EMRSA-15 clone.  

The emergence of EMRSA-15 in the UK has occurred at the same time as the introduction of 

ciprofloxacin (fluoroquinolone) into clinical practice in this country, which is believed to have 

triggered the dissemination of ciprofloxacin resistant EMRSA-15 clone in detriment of other clones 

(26). Data suggests that the EMRSA-15 clone probably found the ideal conditions to spread in 

Portugal, where fluoroquinolones are the second most used class of antibiotics (10.1%) (13). The 

extensive use of the quinolones in clinical practice in Portugal is not exclusive to hospitals but is 

also observed in the outpatient setting, as reported by the European Surveillance of Antimicrobial 

Consumption Network (ESAC-Net) (15). In 2008, Portugal showed, in the ambulatory care, high 

rates of use of penicillins and cephalosporin (51%), followed by macrolides, lincosamides and 

streptogramins (17%) and quinolones (14%)(50). Among the quinolones, ciprofloxacin and 

levofloxacin were the most frequently used antibiotics in the community.  

We believe that by following the actual national antimicrobial policies, we are perpetuating the long 

stay of the EMRSA-15 clone in Portugal both in the hospital and in the community. Some studies 

have shown that the implementation of a fluoroquinolone control program decrease significantly the 
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MRSA rates in the hospital setting. In a tertiary university hospital located in France, a study was 

undertaken to determine whether a hospital wide increase in fluoroquinolone use would be followed 

by an increase in MRSA (47). With that propose, a 10-years interrupted time-series analysis was 

implemented, accordingly: i) one-year period of 90% restriction on the use of all fluoroquinolones 

(January 2001 to January 2002) ii) two years of fluoroquinolones reintroduction increased up to 

prerestriction levels (January 2002 to December 2004) and iii) no intervention on fluoroquinolone 

use (an observational period) (January 2005 to June 2009). The authors observed a temporal 

association between fluoroquinolone use and MRSA trends, with a significant increase in MRSA 

after the reintroduction of fluoroquinolone. Moreover, the implementation of a fluoroquinolone 

control programme in the Hospital Saint-Louis (Paris, France) significantly decreased the MRSA 

rates from 27% to 21%, over a 4 year-period (35). Similarly, the implementation of such a program 

might help to decrease the rates of MRSA, in particular the EMRSA-15, in the hospitals in Portugal, 

and consequently in the community. Finally, we think that, the continuous follow-up of how EMRSA-

15 resistance develops is also an important strategy of infection control that can help to adjust 

antimicrobial prescription policies.  

The overwhelming representation of HA-MRSA clones in the community indicates that these clones 

are escaping from hospitals. We believe that the second control strategy should be focused on 

controlling the spread between these two environments. The most probable MRSA means of 

dissemination from hospitals into the community is hand-to-hand and hand-environment contact. 

For this reason, the improvement of hospital hygiene measures would certainly contribute to the 

decrease of the nosocomial MRSA prevalence, and the subsequent spread into the community. 

This include hand hygiene, of health-care workers, patients, visitors, as well as surfaces cleaning, 

restriction in the use of healthcare workers clothing and decolonization of colonized 

patients/healthcare workers. Information campaigns about the importance of the adequate hand 

hygiene should also be implemented in entrance-exit of hospitals and health care facilities, through 

advertisement divulgation, complemented with the broad distribution of hand-wash containers. 

Following good hospital practices, the MRSA burden in the community may decrease from 21.6% 

(including both HA-MRSA and CA-MRSA backgrounds) to 2.6% (associated exclusively to CA-

MRSA backgrounds). We believe that the continuation of this type of surveillance studies is crucial 

to follow up of the evolution of MRSA. 
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Moreover, campaigns on the community alerting for the “Portuguese MRSA reality” and focused on 

the awareness for the importance of individual hand hygiene, complemented with the broad 

distribution (and maintenance) of hand washing devices (similar to what was done in the avian 

influenza H5N1 pandemic campaign), e.g. healthcare intitutions, nursing home, schools, public 

transports, public services, could help to control MRSA in the community. Moreover, the 

establishment of standard protocols for environmental decontamination in public services should 

take place. 

 

MSSA population structure in the community in Portugal 

Despite the presence of MRSA in the community, MSSA showed higher prevalence (78.4%) and a 

higher genetic diversity when compared to MRSA.  Similarly to MRSA, MSSA were represented by 

both isolates related with CA (50.8%) and HA genetic backgrounds (49.2%). Almost half of CA-

MSSA (46.7%) was related with the CA-MRSA epidemic clones, namely USA700, USA400, 

USA300, ST398, SWP and Taiwan clones. Concerning HA-MSSA the great majority (92.6%) were 

related with HA-MRSA epidemic clones, namely EMRSA-16, New/York (NY/JP), Berlin, EMRSA-15, 

and the Pediatric clone. The results obtained suggest that the MSSA and MRSA populations in the 

community are highly similar, suggesting that, in this environment, SCCmec can be frequently 

acquired by MSSA and/or lost by MRSA. 

 

Identification of an endemic MSSA clone  

Due to its clinical relevance, much more attention has been given to MRSA than to MSSA. Although 

MSSA have been also frequently associated with acute infections, not only in the community but 

also in hospitals, their epidemiology is largely unexplored. We have contributed in Chapter III to a 

deeper knowledge of the MSSA population structure, and their geographic distribution and 

dynamics over almost two decades in Portugal. 

MSSA isolates mainly from infection but also colonization, with both hospital and community origin, 

collected for over 19 years (1992–2011), covering North, Center and South of Portugal were 

analyzed. Taking all data into consideration, we observed that the MSSA population is genetically 

very diverse, with no particular geographical distribution. Interestingly, although the MSSA 

population was widely heterogeneous, only a limited number (ten) of epidemic clonal types were 

present for almost two decades, including ST30-t012, ST5-t002, ST8-t008, ST15-t084, ST34-t166, 
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ST72-t148, ST1-t127, ST7-t091, ST398-t571 and ST34-t136. The genetic diversity found among 

MSSA population in Portugal, was already described as a characteristic feature associated with 

MSSA (21, 24). Moreover, the MSSA clonal types we found in Portugal have been already 

described in other European countries (4, 25, 45, 52) and in the United States (42), although in 

different proportions. However, a different MSSA population structure was observed in Asian and 

African countries. In Taiwan ST508 (SLVST45)-t015, ST25-t340, ST121-t645, ST59-t437 and 

ST188-t189 (9) were the most predominant MSSA clones. In Cameroon, Madagascar, Morocco, 

Niger and Senegal, 58% of MSSA isolates from infection belonged to clonal types ST121-t314, 

ST15-t084, ST1851(SLV of ST1)-t127 and ST152-t355 (6). However the explanation for this 

variation in MSSA population structure between the different countries are poorly explored and 

understood.  

 

We observed that the ST30-t012 was the most epidemic clone, being present in the entire period 

and all over the country, whereas the other nine clones were intermittently detected over time. The 

clone (ST30-t012) was detected for the first time in the 1950s, initially reported in the hospitals, in 

Australia, Great Britain, Canada, and the USA, in the form of the penicillin-resistant phage-type 

80/81 clone (MSSA) [revised in (12)]. Finally, more recently, it has emerged also as the 

contemporary CA-MRSA epidemic Southwest Pacific clone (SWP) (ST30-IV, t012) (12). The 

evolution of ST30 (and CC30) has been extensively studied (12, 41). Collectively, the authors found 

that the phage-type 80/81 and SWP clone evolved towards an enhanced virulence capacity, when 

compared to the vast majority of healthcare-associated CC30, in particular the EMRSA-16 (ST36-

II), a clone exclusively associated to the hospitals, where non-synonymous single nucleotide 

polymorphisms (SNPs) occurred in the alpha-hemolysin (hla), accessory gene regulator C (agrC) 

and crtM (gene encoding squalene desaturase), resulting in non-functional genes that impact on 

virulence capacity of this clone. Accordingly, the most epidemic MSSA clonal type found in Portugal 

may be also a descendent of phage type 80/81, where particular genetic features may be 

responsible for its higher capacity of colonization and invasion. In this context, it would be 

interesting to identify putative genetic factors responsible for the wide dissemination ability of these 

clones through the construction of a transposon mutant library for factors involved in adhesion, 

virulence and invasion.  
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Interestingly, the three epidemic MSSA clonal types ST8-t008, ST72-t148 and ST1-t127 are 

genetically related with the worldwide CA-MRSA epidemic clones were isolated in Portugal nearly 

the beginning of the CA-MRSA era, in 1996. We may speculate that these MSSA resulted from 

SCCmec loss from correspondent CA-MRSA backgrounds previously introduced in Portugal (ST8-

IV, ST72-IV, ST1-IV) (1, 10, 16, 54, 59). Although, introduction of these MSSA from abroad in 1996 

could not be excluded, since the first reports of strains belonging to these CA-MRSA epidemic 

clones in Portugal were only registered after 2006 (1). Comparative whole genome sequencing of 

MSSA and MRSA strains belonging to ST8, ST72 and ST1 could help to understand how related 

they are in fact. 

!
Other less minor clonal types ST121, ST15 and ST25 persist in the Portuguese community for as 

long as 20 years, showing a considerable epidemicity. The first descriptions of these clones date 

back to 1950s in Denmark (22). But nowadays, these clones have a worldwide geographical 

distribution, particularly in Europe (10, 24, 51, 64). In Portugal, ST121 was first reported as MRSA, 

in a hospital survey between 2003-2006 (ST121-IV) (2), and only more recently as MSSA carrying 

PVL and causing SSTIs (19 out of the 35 MSSA) in children attending a pediatric emergency 

department of a central hospital in Lisbon (10).  

 
MRSA relatedness with MSSA  

MRSA emerged a limited number of times by the introduction of SCCmec in a few MSSA epidemic 

lineages. Therefore, the evaluation of MSSA population and the genetic relatedness with MRSA is 

essential to understand possible origins and dynamics of the MRSA clones. One of the aspects we 

wanted to clarify was whether the CA-MRSA had emerged from an established MSSA population or 

otherwise has been imported from other countries. For this purpose, the MSSA population found in 

the community, but also in hospitals, was compared with the MRSA included in our studies.  

Altogether, data showed that the MSSA with genetic backgrounds similar to the emergent CA-

MRSA epidemic clones were found nowadays in Portugal (See Figure 1), suggesting that CA-

MRSA could have emerged locally from this established MSSA population, although introduction 

from abroad resultant from immigration/emigration fluxes from different countries cannot be 

excluded. Of note, the presence of the European clone in Portugal might result from introduction 

from abroad, since no MSSA counterpart was found circulating in the community and was ever 
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described in the past in Portugal. Its origin could have been the African countries, wherein MSSA 

strains belonging to ST80 were described to exist (20).  

Alternatively, the hypothesis of SCCmec loss from MRSA should be also equated, not only from 

CA-MRSA clones, but also from HA-MRSA clones such as EMRSA-15 and NY/JP found in the 

community, in which SCCmec carriage may constitute a fitness cost. The case of ERMSA-15 is 

illustrative of this hypothesis. This clone was presumptively introduced in Portugal almost a decade 

ago (2), with a wide distribution in many Portuguese hospitals (1, 16, 19). However, recently we are 

observing simultaneously, the emergence of EMRSA-15 and ST22-MSSA in the community. These 

observations suggest that when EMRSA-15 was displaced to the community, might have lost 

SCCmec probably due to lack (high) of antibiotic pressure. However, this is debatable since some 

authors reported that antimicrobials reduction probably is not sufficient to encourage the loss of 

SCCmec from EMRSA-15 (ST22-IV), where the carriage of the respective cassette may not 

constituted a fitness disadvantage (31).  

 

 

Figure 1. Genetic relatedness between MRSA and MSSA epidemic clones found in the community in 
Portugal (2009/2011) (dashed line - indicates not so close relatedness, MSSA and MRSA ST398 clone with 
different spa types). 
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In this context, we believe that MSSA should be included in future epidemiological surveys, not only 

because they were already identified as potential pathogens in Portugal, but also because they can 

give rise to MRSA, a major worldwide public health concern. Given the pattern of MSSA variation 

observed in our study (19 years period), we believe that the screening of out(in)patients, with 

intervals of 5 years, should be sufficient to evaluate the MSSA population structure and temporal 

dynamics in order to control possible emergent MSSA reservoirs. 

 

Insights into alpha-hemolysin: heterogeneous expression profiles 

Several studies emphasized the importance of alpha-hemolysin (Hla) as the major virulence 

determinant implicated in S. aureus pathogenesis, but the breadth of genetic diversity, evolution and 

its importance in virulence of CA-MRSA was only poorly explored. Although CA-MRSA were 

described to express more hla than HA-MRSA, the impact of hla was never assessed in a large and 

representative S. aureus collection, and has been restricted almost exclusively to the USA300 clone 

(7).  

 

In order to answer to these questions, in Chapter IV we evaluated hla nucleotide sequence variation 

and gene expression among the main epidemic and minor (HA)CA-MRSA/MSSA clones. We 

described for the first time evidences that the Hla evolved together with the genetic background. 

This was previously shown to occur for other virulence genes in S. aureus such as adhesins (clfA, 

clfB, fnbA, map, sdrC, spa, ebpS, fnbB, sdrD, and sdrE) (34), suggesting that the virulence genes 

are very important for S. aureus survival and evolution. However, the promoter gene had a 

dissimilar evolutionary pathway, probably in response to different environmental stresses that 

demanded for different levels of gene expression.  

The data obtained confirmed the general assumption that CA-MRSA are more virulent than HA-

MRSA clones (5, 8, 37, 46), since CA backgrounds showed a higher levels of hla expression than 

the HA backgrounds. Moreover, no significant differences in expression rates were oberved 

between MRSA and MSSA. The most striking finding regards to the fact that the hla expression 

within the (HA)CA-MRSA clones were not uniform, but rather heterogeneous – a high strain-to-

strain variation in the level of gene expression was detected in highly related isolates. On the other 

hand, we observed that two isolates, representative of the two most common clones found in the 

hospitals in Portugal (EMRSA-15 and NY/JP), had a high hla expression level. Interestingly, these 
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are the two main clones also present in the community in Portugal. We may speculate that the 

increased expression of hla can result from an adaptation of these two clones to the community 

environment.  

The results obtained alerted us to the fact that in what concerns to virulence potential in S. aureus, 

conclusions taken for one or very few strains cannot be generalized to the entire population, or even 

for a group of related strains. We believe that this major conclusion can be extrapolated to all 

remaining S. aureus virulence factors. However, it remains unanswered to what extent this 

heterogeneous expression profiles impact on phenotypic activity, protein production and virulence. 

This could be achieved doing additional assays, namely by performing hemolysis assays 

immunoblotting, and by using in vivo animal infection models. 

 

Model for the origin of MRSA in the community in Portugal 

Considering the data obtained in this Thesis (Chapter II and III), together with data available from 

other national HA-MRSA and MSSA surveillance studies, we draw the model depicted in Figure 2. 

In this model we illustrate the main MRSA and MSSA clones in hospitals and community in 

Portugal. Moreover, we speculated on the possible origins, and dynamics, of the MRSA clones 

present nowadays in the community. 

 

The model proposed considers that the MRSA present nowadays in the community result from: i. 

dissemination of nosocomial MRSA, ii) SCCmec acquisition by the established MSSA and iii) MRSA 

introduction from abroad. 

Based on the successive waves of clonal replacement reported in Portuguese hospitals along 16 

years (1) in combination with actual HA-MRSA clonal predominance (17, 19), we may consider two 

periods (Figure 2): (i). first period (1990-2001) - where the clonal replacement process occurred in a 

relatively short time and where the emergent clone completely replaced the precedent one; in this 

period the prevalent clones were the early multidrug resistant clones, carrying the largest SCCmec 

cassettes (SCCmec I and III); (ii) second period (2001 to 2011) - a major change in the HA-MRSA 

epidemiology occurred with the emergence of the EMRSA-15 clone in 2001, followed by the 

emergence of the NY/JP clone in 2006, however, this time, clonal replacement did not occurred and 

rather co-existence of these two clones is observed until our days; these two clones carry smaller 
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SCCmec cassettes, type IV and II, and particularly type IV characteristically do not accumulate 

multidrug resistance. 

 

If in the former period, the influence of the dominant nosocomial clones in the MRSA community 

dynamics was not observed, since Portuguese (ST239-IIIvar), Iberian (ST247-IIA) and Brazilian 

(ST238-III) clones were not fit to survive in the community, the same cannot be assumed after 2001 

with the EMRSA-15 clone, and also NY/JP, since these clones have already demonstrated to have 

the ability to survive and disseminate in the community (27, 39). Our data and model are in 

accordance with this, since a great proportion of MRSA present in the community belonged to the 

EMRSA-15 clone (and NY/JP also), clearly indicating the blurring of the boundaries between the 

hospital and the community in Portugal.  

 

In fact, public buses were already described as main reservoirs and vehicle of dissemination of the 

EMRSA-15 and also NY/JP clones between these two environments, particularly the buses 

circulating close to hospitals (11, 56). Contaminated hands of passengers (11) may also work as 

possible vehicle of dissemination of the HA-MRSA clones in the Portuguese community. In addition, 

if the boundaries in fact are blurred, then the introduction of CA-MRSA isolates into the hospital 

might also be occurring, a hypothesis not far from the reality since USA300 related background was 

already described in the hospital setting in Portugal (1, 16). This entry may in the future lead to the 

accumulation of antimicrobial resistance in already highly virulent clones, resulting in the local 

emergence of superbug that convey, simultaneously, multiple antimicrobial resistance and 

virulence, which is already a reality in the USA (61) 

The other two hypotheses proposed for MRSA origin in the community (ii and iii), particularly 

addresses the CA-MRSA clones. The introduction of CA-MRSA from abroad is a possibility, since in 

our studies we observed the existence of USA700 and USA300 prototype clones with multidrug 

resistance profiles, carrying ACME and PVL, that could have been originated from Asia and USA 

respectively, and spread into the Portuguese community. However the entry of these clones into the 

hospitals, followed by escaping into the community after accumulation of antimicrobial resistance 

cannot be excluded. On the other hand, acquisition of SCCmec by the established MSSA 

population or the introduction of MSSA genetic background related with CA-MRSA from abroad 

followed by SCCmec acquisition should be also considered.  



!
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Figure 2. Model for the origin of MRSA in the community in Portugal. MRSA population structure in the hospitals (1990-2011) and in the community (our studies) 
(2009/2011). 
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