
Hélder Filipe Gouveia Gregório

Licenciado em Engenharia Informática

ClearPhoto - Augmented Photography

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Nuno Manuel Robalo Correia,
Prof. Catedrático, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor Luís Manuel Marques da Costa Caires

Arguente: Prof. Doutor Maria Teresa Caeiro Chambel

Vogal: Prof. Doutor Nuno Manuel Robalo Correia

Setembro, 2014

iii

ClearPhoto - Augmented Photography

Copyright c© Hélder Filipe Gouveia Gregório, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Aos meus pais e namorada

vi

Acknowledgements

The contributions of several people and entities have made this thesis possible and I
would like to extend my appreciation especially to the following.

First and foremost, I would like to express my gratitude to my advisor Prof. Nuno
Correia for the opportunity of letting me work and explore this project, and for his guid-
ance and support.

Furthermore, I would like to thank the Departamento de Informática da Faculdade
de Ciências e Tecnologia da Universidade Nova de Lisboa (DI - FCT/UNL) for being
my second home during these five years and financially support me during the second
semester and giving me the opportunity to gain experience as a teaching assistant.

Special thanks to my family, who have supported me through this hard path, in partic-
ular my parents and girlfriend, for their immense patience, encouragement and endless
love.

To my colleagues, with who I shared the same space, adversities and laughs, day in
and day out through these years, and who I am thankful for taking some time off to be
my test subjects and answer my survey for evaluating this thesis.

vii

viii

Abstract

The widespread use of mobile devices has made known to the general public new areas
that were hitherto confined to specialized devices. In general, the smartphone came to
give all users the ability to execute multiple tasks, and among them, take photographs
using the integrated cameras.

Although these devices are continuously receiving improved cameras, their manu-
facturers do not take advantage of their full potential, since the operating systems nor-
mally offer simple APIs and applications for shooting. Therefore, taking advantage of
this environment for mobile devices, we find ourselves in the best scenario to develop
applications that help the user obtaining a good result when shooting.

In an attempt to provide a set of techniques and tools more applied to the task, this
dissertation presents, as a contribution, a set of tools for mobile devices that provides
information in real-time on the composition of the scene before capturing an image.

Thus, the proposed solution gives support to a user while capturing a scene with a
mobile device. The user will be able to receive multiple suggestions on the composi-
tion of the scene, which will be based on rules of photography or other useful tools for
photographers. The tools include horizon detection and graphical visualization of the
color palette presented on the scenario being photographed. These tools were evaluated
regarding the mobile device implementation and how users assess their usefulness.

Keywords: Photography, cameras, computational aesthetics, image capture, image qual-
ity, mobile devices.

ix

x

Resumo

A massificação de dispositivos móveis, deu a conhecer ao público em geral novas áreas
que estavam confinadas a dispositivos especializados. De uma forma geral, o smartphone
veio dar a todos os seus utilizadores a capacidade de realizar múltiplas tarefas, e entre
elas, fotografar com recurso a câmaras integradas.

Embora estes dispositivos venham com câmaras cada vez melhores, o seu potencial
não é totalmente aproveitado uma vez que os sistemas operativos oferecem APIs sim-
plificadas e aplicações fotográficas com capacidades reduzidas ao utilizador. Aprovei-
tando este ambiente propício ao crescimento do computador de bolso, encontramo-nos
no melhor cenário para desenvolver aplicações que ajudem o utilizador a obter um bom
resultado.

Com o objectivo de fornecer um conjunto de técnicas e ferramentas aplicadas à tarefa
em questão, surge esta dissertação, que apresenta como contribuição um conjunto de
técnicas para dispositivos móveis capaz de fornecer informações em tempo real sobre o
cenário a ser capturado.

Assim, a solução proposta visa o desenvolvimento de uma ferramenta que dá suporte
a um utilizador durante a captura de uma cena com um dispositivo móvel. O utilizador
será capaz de receber várias sugestões sobre a composição da cena, baseadas em regras
de fotografia ou outras ferramentas úteis para os fotógrafos. Esta ferramenta inclui de-
tecção do horizonte e visualização gráfica de uma paleta de cores presentes no cenário. A
avaliação foi feita sobre a implementação num dispositivo móvel e sobre a forma como
os utilizadores avaliam a sua utilidade.

Palavras-chave: Fotografia, câmaras, estética, captura de imagem, qualidade de ima-
gem, dispositivos móveis.

xi

xii

Contents

1 Introduction 1

1.1 Problem Description and Objectives . 2

1.2 Presented Solution . 2

1.3 Contributions . 3

1.4 Document Organization . 3

2 Related Work 5

2.1 Fundamental Concepts of Photography . 5

2.1.1 Light . 5

2.1.2 Exposure . 6

2.1.3 Shutter . 6

2.1.4 Aperture . 6

2.1.5 Depth of Field . 7

2.1.6 ISO . 7

2.1.7 White Balance . 7

2.2 Processing Techniques for Photography . 8

2.2.1 Long-Exposure Photography . 8

2.2.2 High Dynamic Range Imaging . 9

2.2.3 Panoramic Photography . 10

2.3 Image Capture and Processing Applications 12

2.3.1 Image Capture Applications . 12

2.3.2 Image Processing Applications . 16

2.4 Image Evaluation . 18

2.4.1 Composition Rules . 19

2.4.2 Evaluation of Aesthetic Features . 23

2.4.3 Practical Application of Aesthetic Evaluation Systems 24

2.5 Computer Vision Algorithms . 25

2.5.1 Keypoint Detection . 27

xiii

xiv CONTENTS

2.5.2 Colour Features . 28
2.5.3 Texture Features . 28
2.5.4 Discussion . 28

3 System Description and Features 31
3.1 System Description . 31

3.1.1 Concept . 31
3.1.2 Architecture . 32

3.2 Features . 34
3.2.1 Colour Histograms and Average Saturation 34
3.2.2 Colour Templates and Hue Counting 39
3.2.3 Face Detection and Composition Guidelines 42
3.2.4 Object Segmentation . 46
3.2.5 Image Simplicity . 49
3.2.6 Main Line Detection . 53
3.2.7 Horizon Detection . 57
3.2.8 Image Balance . 61

3.3 Discussion . 67

4 Results and Evaluation 69
4.1 Algorithm Comparison . 69
4.2 Algorithm Execution Time . 70

4.2.1 Testing tool . 71
4.2.2 Results . 72

4.3 Users Testing . 73
4.3.1 Participants . 73
4.3.2 Questionnaire . 73

5 Conclusions and Future Work 77
5.1 Conclusion . 77
5.2 Future Work . 78

A Algorithms Execution Times 85

B Object Segmentation Results Comparison 91

C Colour Template Detection Results Comparison 95

D Horizon Detection Results 97

E Users Questionnaires 99

F Users Questionnaire Results 103

List of Figures

2.1 Difference between a shallow depth of field (a) and a wider depth of field
(b) [Kam12]. 7

2.2 Difference between an image with ISO value of 200 (a) and 3200 (b). 8

2.3 Three examples of white balance applied to a photograph [Kam12]. 8

2.4 Examples of Long-Exposure Photography [Kam12]. 9

2.5 Example of a picture taken with (a) Standard Dynamic Range versus (b)
the same picture with High Dynamic Range. 10

2.6 Image of attachable lens for iPhone, GoPano micro (a), and panorama
made by the second algorithm described at Szeliski and Shum [SS97] with
distortion at the north pole. 11

2.7 Camera FV5 interface (a) and indicators (b) of aperture, exposure time,
ISO, etc [Vaz]. 14

2.8 Screenshot of Camera51 interface showing the best framing suggestion. . 15

2.9 Image (a) before and (b) after applying the auto enhancing tool. It is possi-
ble to see that the red-eye remover only darkens the red area and does not
take in account the real colour of the eye. 17

2.10 Image of two complementary colours balanced in a frame [San10]. 19

2.11 Guidelines formed from dividing the (a) golden section in 1.6 to 1 parts
and from (b) the golden spiral. 20

2.12 Guidelines of the rule of thirds with nine equal rectangles and respective
power points at the intersection between horizontal an vertical guidelines. 21

2.13 Guidelines obtained by the golden triangles rule. 21

2.14 Examples of a curved line (a) that redirects the viewer’s eye to the maple
tree, and vertical lines (b) that redirects to the subject in the photo. 22

xv

xvi LIST OF FIGURES

2.15 Example images of element balancing and corresponding schematic. (a-d)
Static balance normally associated with symmetry. (b-e) Dynamic balance
where the left side has a larger subject that is being balanced by a smaller
but brighter subject on the right side. (c-f) Unbalanced picture where the
subject is positioned on the left side, leaving the right side with a negative
space. 23

2.16 Spatial composition template used in [KV12]. 24

2.17 (a) The frontpage of the ACQUINE system, where the users could upload
photos. The list of top users on the right side and photos with high AC-
QUINE aesthetics scores randomly selected at the bottom. (b) Screenshot
of the ratings page after a photo upload. [DW10] 26

2.18 (a) Re-ranking photographs by adjusting the feature weighting and (b) by
selecting a few photographs as example [Yeh+10]. 27

3.1 Architecture of the system. 33

3.2 Class diagram of the Presentation stage in Figure 3.1. 33

3.3 Menu to select each feature. 33

3.4 "Fishing in Spring, the Pont de Clichy" by Vincent van Gogh (a) and the
corresponding labelled linear histogram representation. 35

3.5 Linear histograms representations of “The Funeral of the Anarchist Galli”
by Carlo Carrà (top) and “Speed+Sound” by Giacomo Balla (bottom) (a)
with a labelled stacked line graph representation comparing the amount
of each colour in both paintings (b) [HLC11]. 35

3.6 Visual cue chosen for the first implementation of the histogram being ap-
plied to a real-time scenario (a) and a reconstruction of the histogram made
for the green channel that indicates de colour range in use and the amount
of pixels near the limits (b). 37

3.7 Visual cue chosen for the second implementation of the histogram being
applied to a real-time scenario (a) and the resulting histogram isolated (b). 37

3.8 Frame detected as containing low saturation. Indicator is shown on the
bottom right corner, which is the input frame converted into grayscale and
in a reduced scale. 38

3.9 Illustrative figure of the problem found in our histogram representation
(b) compared to the corresponding regular histogram (a). 39

3.10 Harmonic templates on the hue wheel. Colours that fall into gray areas are
considered to be harmonic. Size and rotation of the gray areas may vary. . 41

3.11 Type of convolution kernels used to extract features [Its]. 44

3.12 Multiple visual cues used to implement these features, such as helping
grid (a,b), face detection (c,d) and a mixture of both (e,f), tested when de-
tecting one or three faces. 45

LIST OF FIGURES xvii

3.13 Example of object segmentation interface. The resulting mask of the algo-
rithm is then displayed as a green overlay in the camera live feed. 48

3.14 Steps taken when segmenting an object. a) Input image. b) Saliency map
generated by the algorithm in [Che+11]. c) Binary mask. d) Probable back-
ground pixels. e) Probable foreground pixels. f) Bounding rectangle and
center of mass point. g) Cropped mask containing the probable foreground
area filled in with probable background pixels. h) Segmentation applied to
the input image. 49

3.15 Examples of visual cues given to the user. We experimented showing the
results of the three implemented methods (a, b), versus using a graphical
representation such as a fixed scale with an indicator showing the current
score (c, d). 52

3.16 a) Sinusoid formed by family of lines that pass through x0 = 8 and y0 = 6

in plane θr b) Plot of three sinusoids that pass through the points x0 =

8, y0 = 6, x1 = 9, y1 = 4, x2 = 12, y2 = 3 with an intersection point in
(0.925.9.6). This intersection point with parameters (θ, ρ) defines the line
in which (x0, y0), (x1, y1) and (x2, y2) lay [Its]. 54

3.17 a) Source image. b) Canny edge detection method applied to the source
image. c) Visual representation of the accumulator. Darker areas represent
a larger number of intersections in those (θ, ρ) coordinates. d) Lines drawn
in red that represent the main lines detected in the source image. 55

3.18 Main lines detection interface with threshold of 130 (a), 60 (b) and 65 (c). . 56

3.19 Main line detection with regular Hough Transform (a) and with progres-
sive probabilistic Hough Transform (b). 57

3.20 a) Input image. b) Smoothed image. c) Binary segmentation. d) Result
from erosion and dilation. e) Border between sky and non-sky areas. f)
Horizon and obstacle found. 58

3.21 Exemple of horizon detection where the green and blue line are the result
of the edge and color detector respectively. The red line represents the
result of combining both methods. 61

3.22 Angles used in weight calculations. Arrows represent the image gradient
direction at the edge pixels. [LK06] . 64

3.23 Example of the visual cue to inform the user about the scenario balance. . 65

3.24 Examples of an image obviously unbalanced that is considered as balanced
due to the symmetry line calculated (a) and the averaging of two symmetry
lines detected on two different objects (b). The blue and red lines represent
two of the peaks found in the Hough map and the yellow line the resulting
of averaging them both. 66

3.25 Examples of an unbalanced image with objects of different sizes where one
is classified as unbalanced (a) and the other as balanced (b), as a result of
the calculated symmetry axis. 66

xviii LIST OF FIGURES

4.1 Graphical diagram generated from a trace log file. 71

B.1 Example of correct object segmentation of the implemented algorithm (c)
only using the pixels considered as foreground in comparison to the origi-
nal algorithm (b) [Che+11]. 92

B.2 Example of failed object segmentation of the implemented algorithm (c)
only using the pixels considered as foreground in comparison to the origi-
nal algorithm (b) [Che+11]. 93

B.3 Example of correct object segmentation of the implemented algorithm (c)
using the pixels considered as foreground and background in comparison
to the original algorithm (b) [Che+11]. 94

C.1 Source images (a, d, g, j) and templates detected by the original algorithm
implemented by Cohen-Or et al. [CO+06] (b, e, h, k) in comparison to the
templates detected by our algorithm (c, f, i, l). 96

F.1 Results to the question Q6. 104
F.2 Results to the question Q7 (a), Q8 (b), Q9 (c), Q10 (d). 105
F.3 Results to the question Q11 (a), Q12 (b), Q13 (c), Q14 (d). 106
F.4 Results to the question Q15 (a), Q16 (b). 107
F.5 Results to the question Q17 (a), Q18 (b), Q19 (c), Q20 (d). 108
F.6 Results to the question Q21 (a), Q22 (b), Q23 (c), Q24 (d). 109
F.7 Results to the question Q25 (a), Q26 (b), Q27 (c), Q28 (d), Q29 (e), Q30 (f). . 110
F.8 Results to the question Q31 (a), Q32 (b), Q33 (c). 111
F.9 Results to the question Q34 (a), Q35 (b), Q36 (c). 111
F.10 Results to the question Q37 (a), Q38 (b). 112
F.11 Results to the question Q39 (a), Q40 (b), Q41 (c), Q42 (d), Q43 (e), Q44 (f). . 113
F.12 Results to the question Q45 (a), Q46 (b), Q47 (c). 114

List of Tables

A.1 Total time spent processing a frame and displaying the result, and execu-
tion times of the saturation detection algorithm in cases where the scenario
is/isn’t saturated. 85

A.2 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the colour histograms using the RGB channels and
grayscale. 86

A.3 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the histograms using the hue channel. 86

A.4 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the colour templates. 87

A.5 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the score based on the number of colours being
used from the Hue channel. 87

A.6 Total time spent processing a frame and displaying the result, and execu-
tion time of finding one or three faces while using or not the composition
rules. 88

A.7 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the saliency map and segmenting the object. 88

A.8 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the simplicity with each one of the tested methods. 89

A.9 Total time spent processing a frame and displaying the result, and exe-
cution time of finding the most relevant lines in a scenario with different
thresholds (T). 89

A.10 Total time spent processing a frame and displaying the result, and execu-
tion time of finding the horizon line. 90

A.11 Total time spent processing a frame and displaying the result, and execu-
tion time of calculating the image balance. 90

xix

xx LIST OF TABLES

D.1 Detection results of the implemented algorithm for each of the test images
labelled as landscape. Absolute error indicates the absolute difference be-
tween each parameter and the manually-annotated horizon line. Relative
error is the absolute error normalized to the corresponding parameter of
the manually-annotated horizon line. 97

D.2 Detection results of the implemented algorithm for each of the test im-
ages labelled as seacape. Absolute error indicates the absolute difference
between each parameter and the manually-annotated horizon line. Rela-
tive error is the absolute error normalized to the corresponding parameter
of the manually-annotated horizon line. 98

D.3 Detection results of the implemented algorithm for each of the test images
labelled as horizon. Absolute error indicates the absolute difference be-
tween each parameter and the manually-annotated horizon line. Relative
error is the absolute error normalized to the corresponding parameter of
the manually-annotated horizon line. 98

1
Introduction

Decades before photography was created La Roche (1729 - 1778) described, in his imagi-
nary tale Giphantie the possibility to permanently capture images from nature, on a can-
vas which had been coated with a sticky substance. Following La Roche prediction,
Thomas Wedgwood succeeded in capturing the first silhouettes temporarily, culminat-
ing in the first successful picture by Joseph Niépce in 1826 [LR87].

Since that time, photography has evolved from revealing pictures in photographic
paper to its digitization. The development of digital cameras and its commercialization
through the last 20 years enabled photographers to explore and master new techniques.
Aided by the invention of photo editing software and the evolution of the industry, there
was a mass popularization of multi-function mobile systems with the capability of taking
high quality photos. Taking advantage of these systems and creating software that can
facilitate a photographer’s job or improve the learning conditions of such a task, is the
next logical step to take.

It was predicted that by the end of 2013, 1.4 billion smartphones would be in use,
where one in every five people in a world population of 7 billion would own one [Leo13].
While these handheld devices might not have cameras so powerful as the latest digital
single-lens reflex (DSLR) cameras, manufacturers are taking a different approach by cre-
ating lenses for these devices [Bol13], making them a reliable tool for high quality pho-
tography.

This is the perfect scenario for developing applications that explore the world of pho-
tography with smartphones and take full advantage of these devices, in an attempt to
reduce the gap between amateur photography and professional photography.

1

1. INTRODUCTION 1.1. Problem Description and Objectives

1.1 Problem Description and Objectives

Digital photography is tightly related to computational photography. Although the con-
cept is increasingly being adopted, it refers broadly to sensing strategies and algorithmic
techniques that enhance or extend the capabilities of digital photography [Sze12], creat-
ing a new kind of images that cannot be captured with a traditional camera [Pul+09].

Taking full advantage of multi purpose handheld devices, applications centred in ob-
taining the best aesthetic results, is something that is not yet well explored. Of the many
devices that make part of our daily life, the smartphone might be the most widely dis-
seminated one. Although, for many professionals it might not replace high-end cameras,
we can not deny the fact that many smartphone owners use the embedded camera and
have taken photography in a different perspective since the device popularization. A
major problem is that the manufacturers do not take advantage of the embedded camera
capabilities on their default mobile operating systems, due to the lack of control offered
through their APIs.

There is a lot of work done in terms of improving a photo by using editing software
(e.g, Adobe Photoshop), but the main purpose of these tools is to edit the result after a
photo session. For instance, if we imagine that a photographer is trying to take a photo of
a mountain scenery. Unless the individual is experienced and takes many photographs of
the same scenery in different angles and different focal lengths, for an amateur, the more
common option will be to photograph with the mountain centred in the viewfinder, since
this is the subject. Completely unaware of the aesthetic difference between a mountain
centred and a dislocated one, this kind of photograph would be impossible to edit with-
out reducing its size, or relocate the subject including some degree of distortion.

Even though the APIs lack of support, using this type of systems to reduce the gap
in knowledge between professional and amateur photographers, and enriching the users
experience by offering options beyond the standard ones is the approach considered in
this dissertation.

Therefore, the objective of this thesis is to present a set of tools and techniques where
the user can get a better understanding of the scenery and provide ways to obtain a
photograph with a better aesthetic result.

1.2 Presented Solution

The aim is to provide a more enriching experience for the smartphone owner that uses
the camera application frequently. The final purpose is to obtain the best aesthetic results
by offering a capture system able to interpret a scene, in a semi-automatic way.

Before capturing an image, the user will be able to access a set of tools that show
information about the scenery through simple visual cues.

This application includes a set of tools to draw grids and suggestions that will aid
when taking a photo. While the grids will help in the correct placement of the subject that

2

1. INTRODUCTION 1.3. Contributions

is being photographed, the suggestions will consist in a visual cue or a rating calculated
from the scene that is being captured. Being colour an important part of an image, some
of these suggestions are related to the colourfulness of the scenery, where the user can get
a better understanding of the colours being used and which colours are complementary
through simplified histograms or color wheels.

Another type of suggestions are related to composition of the image. Some features
have been implemented to help a user understand what is the subject in the scenery
through object segmentation, the detection of prominent lines and detection of the hori-
zon line for sceneries of landscape or seascape.

The technology used to develop this solution is a smartphone with an Android op-
erating system. Currently we are using the Samsung Galaxy Note with Android 4.1.
The system was developed in Java and C++ using both Software Development Kit (SDK)
[Goob] and Native Development Kit (NDK) [Gooa] available for Android. Along with
the NDK, the OpenCV (Open Source Computer Vision) [Its] library was used for image
processing.

1.3 Contributions

The main contributions of this thesis are:

1. Photography tool for mobile devices: Introduces a novel approach, incorporating
the knowledge of how to obtain pleasant aesthetic results. Since not all users with
mobile devices have enough know-how when taking photographs, the main objec-
tive of this dissertation is to make functionalities and knowledge in photo com-
position available to the most casual photographer. This results in a thinner gap
between amateur and professional photographers;

2. Library for image processing: Contribute with a modular library with a set of calls
for later use in other applications;

3. Guidelines for computational photography analysis: The application will provide
guidelines to create the computational equivalent to some of the techniques used
in photography, exploring the technological advancements of image processing in
mobile devices. The purpose is not to just make them computationally possible
but also inspire the implementation of new and improved methods for the field of
computational photography in this type of devices.

1.4 Document Organization

This document is structured in five chapters: introduction, related work, system descrip-
tion and functionalities, results and evaluation, and conclusions and future work. The
first chapter, Introduction, presents an overview of the dissertation, where several issues

3

1. INTRODUCTION 1.4. Document Organization

are addressed such as context, problem description, proposed solution and the expected
contributions. The second chapter, Related Work, is dedicated to systems related to this
thesis whose features or techniques are relevant to our solution. This chapter focuses on
fundamental concepts and processing techniques related to photography, applications
for image capturing and processing, systems relevant for aesthetic assessment and com-
puter vision algorithms. The third chapter, System Description and Functionalities,
describes the implemented solution, first by defining the concept and architecture, and
then presenting the functionalities in detail, as well as the technologies used. The fourth
chapter, Results and Evaluation, describes our testing methods and analyses the results
obtained from evaluating our solution. The last chapter, Conclusions and Future Work,
critiques and comments the work developed in this thesis and possible improvements
outlined as future work.

4

2
Related Work

This chapter will describe concepts, systems, techniques and algorithms related to the
theme proposed by this thesis. This chapter is divided into five sections. In the first sec-
tion we explain some of the fundamental concepts that are directly related to the camera
and its properties. In the second section, we enumerate techniques used to produce high
quality images obtained from photography. Since there are many mobile applications
related to image capturing and processing, the third section presents a summary of some
of those applications during and after the capture. The fourth section, refers to the state
of the art related to computational aesthetics and applications of related concepts for im-
age evaluation and classification. The last chapter, describes algorithms for extraction of
features in an image.

2.1 Fundamental Concepts of Photography

In the world of photography, there are many technical concepts and properties that are
fundamental. It is the photographer’s job to use those concepts and properties in order
to explore creativity and capture the moment with the best possible result. For a better
understanding of this proposal, a brief description of some concepts and properties are
enumerated in the following sections.

2.1.1 Light

Probably the most fundamental element in photography, capturing the light reflected
by the objects is the core in photography. The various colours of the light spectrum are
reflected and recorded by the camera sensor, defining an image in a raw format with all

5

2. RELATED WORK 2.1. Fundamental Concepts of Photography

the chrominance information.

In photography, it is necessary to understand light, since there are multiple types of
light [San10]. Natural light is easily interpreted as something that emits its own light,
and not just reflects it (e.g., the Sun). This light can vary with the seasons, weather con-
ditions and through out the day. Although the source is the same, depending on the
season and the time of day, the angle at which the light falls on the subject may vary. An-
other aspect is the amount of light available that can also vary with the time of day and
weather conditions. Another type of light, is the artificial light, which can be generated
by the photographer. It can be manipulated at free will including the number of sources,
direction and colour of the light.

2.1.2 Exposure

Exposure is the amount of light that reaches the camera sensor and is controlled by choos-
ing the shutter-speed, aperture of the lens and ISO value, although ISO doesn’t necessar-
ily affect the amount of light that goes through [Kam12; San10]. All of these variables are
independent and the same result can be obtained by different permutations. The correct
combination can have an important part on the end result. Each of these variables will
be described later.

2.1.3 Shutter

Shutter is a mechanic or electronic component that allows the light to pass for deter-
mined period of time, and reach the light-sensitive electronic sensor to capture a perma-
nent image of the scene. The velocity the shutter takes to perform an action is called
shutter-speed and can vary from milliseconds to seconds, depending on the technique
the photographer intends to use to capture the scenery. Lower shutter-speeds allow to
create long exposure images, while faster shutter-speeds tend to avoid shaken or blurred
images, allowing perfectly sharp images of objects or people in movement [San10].

2.1.4 Aperture

Aperture is the hole that controls the amount of light that passes and reaches the sensor
[Kam12; San10]. It appears represented in a value of f/, which represent a ratio between
the aperture and the focal length, and can be called of f-stop. The higher the value, the
smaller the aperture value is, and this value will depend on what the subject is and what
the photographer wants to maintain sharp in the photo. For example, if the aperture is
wide open, then the f/ will be smaller and will result in an image sharpen around what
the lens is focusing on and blurred on everything else affecting the depth of field.

6

2. RELATED WORK 2.1. Fundamental Concepts of Photography

2.1.5 Depth of Field

Depth of field represents the portion of the image in front of and behind the focused plan
that comes with obvious clarity [Kam12; San10]. This effect can vary with the lens aper-
ture (Section 2.1.4). The larger the lens aperture, the smaller the depth of field which will
result in a larger f/ value and a greater amount of light that passes through. The differ-
ence between a shallow depth of field and a wider depth of field can be viewed in Figure
2.1. The depth of field can be used in a creative manner, leaving to the photographer’s
criteria, the amount of sharpness she wants from the nearest object to the farthest object.

(a) (b)

Figure 2.1: Difference between a shallow depth of field (a) and a wider depth of field (b)
[Kam12].

2.1.6 ISO

This is the measure that defines the camera sensor sensitivity to the light [Kam12]. Digital
cameras tend to behave better in low light conditions with higher ISO values, which
means that for higher ISO values, the camera’s sensor becomes more sensible to light
rays. In digital cameras and mobile devices, the sensitivity can be adjusted if necessary.
However, increasing the camera’s sensitivity to the light might ruin a photograph by
introducing some digital noise in the image, as shown in Figure 2.21. To reduce this
negative effect on the image, the use of high ISO values can be compensated with fast
shutter speeds and low aperture values.

2.1.7 White Balance

It is a known fact that the human eye is more sensible to light variations than colour
variations, therefore, when we see an object reflecting light, our brain instantly interprets
the colour. This means that in areas of different brightness, our eyes adapt and interpret
the same colour, although, to the camera they are not equal. Since cameras are not capable
of simulating the human brain, that is why white balance is used in photography, in order
to match the captured ambience light to what our brain would read [Kam12]. Figure

1http://photographylife.com/what-is-iso-in-photography

7

http://photographylife.com/what-is-iso-in-photography

2. RELATED WORK 2.2. Processing Techniques for Photography

(a) (b)

Figure 2.2: Difference between an image with ISO value of 200 (a) and 3200 (b).

2.3 illustrates various examples of the same image with different tonalities that can be
corrected adjusting the white balance.

(a) Too cold (b) Well balanced (c) Too warm

Figure 2.3: Three examples of white balance applied to a photograph [Kam12].

2.2 Processing Techniques for Photography

To render seascapes showing both the sky and the sea it was a hard task before digital
photography, due to luminosity range being too extreme. Photographers overcame these
difficulties by exploring concepts such as the ones described in Section 2.1. Exploring
such concepts led to a development of new techniques, resulting in photographies with
different properties. This chapter will describe some of these techniques and how they
can be achieved.

2.2.1 Long-Exposure Photography

Long-exposure (or time-exposure) photography exists since the popularization of pho-
tography. In the beginning, a person was obligated to stand completely still in front
of a camera so that the final result would be as sharp as possible. With this premise,
long-exposure photography is a technique which involves taking a picture with a long
shutter-speed [Kam12]. This way the camera sensor will record more light while the

8

2. RELATED WORK 2.2. Processing Techniques for Photography

shutter is open. With such long speeds the sensor cannot record moving objects, result-
ing in perfectly sharp capture of stationary objects and blurring or obscuring of moving
elements. This technique is more successful under low light conditions due to the time
that the sensor is exposed to light, but this can be suppressed by using special filters for
the lenses. By taking so long to close the shutter, the sensor keeps absorbing light creating
a brighter photograph, producing a near daytime effect. This technique made easier for
professionals to photograph at night, and gave form to new types of photography such
as light painting, where a person with a light source can draw paths in the air. Being
more sensitive to light, while the shutter is open, the sensor records all the paths drawn
resulting in an image where the paths form a continuous line and the person or object
moving the light source is obscured, as shown in Figure 2.42. Long-exposure can also be
simulated by manually blurring specific areas of a photo, using image editing software.

(a) (b)

Figure 2.4: Examples of Long-Exposure Photography [Kam12].

2.2.2 High Dynamic Range Imaging

Although there is a big improvement in the technologies related to photography, cameras
still have a problem of not being able to perceive colours the same way as the human
eye. Due to the inability of digital cameras to correctly perceive a scene luminosity, it
is possible to incorrectly record colours and lose information in lighter or darker areas
accordingly to the exposure. High Dynamic Range Imaging is based on a capture that can
represent more accurately a range of intensity levels found in scenes, compensating this
problem. In photography, this technique can be achieved by taking multiple Standard
Dynamic Range (SDR) photographs of the same scenario with different exposure values
that can vary depending on the device. After taking all the samples, the process consists
in combining all the raw data of over-exposed and under-exposed areas in one image. By
doing this, the image will result in a photograph with a broader tonal range, as shown in
Figure 2.53.

2Source: (a) http://www.hongkiat.com/blog/light-painting-artworks/, (b) http://www.
flickr.com/photos/awfulsara/35403447

3Source: http://www.flickr.com/photos/wetworkphotography/7437783578

9

http://www.hongkiat.com/blog/light-painting-artworks/
http://www.flickr.com/photos/awfulsara/35403447
http://www.flickr.com/photos/awfulsara/35403447
http://www.flickr.com/photos/wetworkphotography/7437783578

2. RELATED WORK 2.2. Processing Techniques for Photography

Although cameras already have enough computational power to perform these tech-
niques, Debevec and Malik [DM08] also proposed a method of recovering high dynamic
range radiance in photographs taken with conventional image equipment. As expected,
multiple photographs are taken with different values of exposure. Using these pho-
tographs as samples, they recover the response function of the imaging process using
the assumption of reciprocity, which can be defined by a sensor response to the total ex-
posure (i.e. itensity × time controlled by the aperture and shutter-speed (Section 2.1)).
Having obtained a response function, the luminosity value of each pixel is computed us-
ing all the available exposures, in which its value is closer to the middle of the response
function.

Another approach [VJ11] involves three cameras, side by side, in the same optical
axis. Each of these cameras takes a photograph with different exposure values, taking
a first picture underexposed, a second picture with the normal exposure, and a third
picture overexposed. These three images are overlapped and merged, reconstructing
information lost in overexposed and underexposed areas.

(a) Non HDR (b) HDR

Figure 2.5: Example of a picture taken with (a) Standard Dynamic Range versus (b) the
same picture with High Dynamic Range.

2.2.3 Panoramic Photography

Panoramic photography is a technique that creates an image with an enlarged field of
view which approximates or exceeds the human eye (160o by 75o). Among specialized
methods and devices, one of interest is the use of Catadioptric cameras and lenses. These
cameras are based on a system of lenses and curved mirrors that allow a field of view
of 360o over a single viewpoint, bypassing the need of horizontal panning as it occurs
with other methods. Since it uses mirrors and lenses, the light rays bend preventing any
kind of distortion or chromatic aberration. Without the need of computation, another
advantage is the use of these cameras for video shooting of 360o panoramas. There are
on the market some add-on lenses for mobiles devices that make this technique possible,
such as GoPano micro (Figure 2.6(a)).

10

2. RELATED WORK 2.2. Processing Techniques for Photography

There are also methods to generate panoramas by stitching multiple horizontal im-
ages through software. Brown and Lowe [BL07] described an algorithm that would gen-
erate a graph to recognize individual panoramas by finding all pairwise image overlaps
using feature-based methods. After finding all images with matching features, it would
readjust the rotation of the images to generate a panoramic image. This method would
be insensitive to the ordering, orientation, scale and illumination of the input images.

Szeliski and Shum [SS97] describe methods to create full view panoramic mosaics.
First they describe a method of generation of cylindrical panoramas with a sequence of
images taken by a camera mounted on a levelled tripod. This algorithm consists in es-
timating consecutive horizontal and vertical translations for each image. To recover the
translational motion, the incremental translation is estimated by maximizing the corre-
sponding points between them. It would be possible to convert an image to 2D spherical
or cylindrical coordinates for a known tilting angle but it would not minimize the er-
ror between two images, therefore, this method can only handle the simple case of pure
panning motion.

Secondly, Szeliski and Shum [SS97] introduced an algorithm that does not need a set
of pure horizontal images. Instead, as long as there is no strong motion between sampled
images, there are no constraints on how images are taken. This makes photographs taken
by handheld devices without a tripod a reliable source for creating panoramas. Accord-
ing to Szeliski and Shum, the center point of the sampled images can be described in 3D
by a set of matrices which correspond to the image plane translation, the focal length scal-
ing and a 3D rotation matrix. After estimating the mean focal length of the images and
rotation matrix, they can stitch the images in a 3D dimensional space. Since it is made by
stitching multiple images, the final product presents distortions at the north pole. This is
because of a necessary warp to cylindrical or spherical coordinates (Figure 2.6(b)) to have
a full view of the panorama without using a specialized viewer.

(a) (b)

Figure 2.6: Image of attachable lens for iPhone, GoPano micro (a), and panorama made
by the second algorithm described at Szeliski and Shum [SS97] with distortion at the
north pole.

11

2. RELATED WORK 2.3. Image Capture and Processing Applications

2.3 Image Capture and Processing Applications

Since the first attempts to capture a scenery, to its popularization in the XIX century, the
world of photography has suffered improvements, that still shock many professionals in
the business. Since the upgrade of analogue cameras to the digital world, the use of neg-
atives and dark rooms to new techniques like HDR (High Dynamic Range) imaging, the
current market has been increasingly overwhelmed by mobile devices and their ability
to easily dethrone today’s digital cameras. Proof of this fact is the wide range of appli-
cations related to photography available in mobile devices application stores like Play
Store and App Store, some with a more professional objective than others. Throughout
this chapter it will be discussed some of those applications for image capturing and pro-
cessing. Along with these applications, research that has been done in this field will also
be discussed.

2.3.1 Image Capture Applications

The advancements in mobile devices created a new type of market. Due to this virtual
markets available for any Android or iOS user, the number of mobile applications are
constantly increasing. Camera related applications are no exception to this rule. In both
markets there are many applications fully capable of capturing images that were de-
signed for social networks or include special features. We will start by presenting the
default applications in both Android and iOS systems, and other applications found on
both of those markets, ending with a discussion comparing all of them.

2.3.1.1 Android and iOS Native Applications

By default, the newest mobile operating systems already have an incorporated applica-
tion to take photos. For example, on iOS the default application is rather simple. It has
very few customization options for a user that has more knowledge in the area, although
it is possible to record videos and choose between full screen photos or photos with a
squared format, using one of the two cameras available, with or without flash. Besides
these, the iOS native application offers a shortcut to access the device’s gallery.

On the other hand, Android’s native application is a flexible alternative. It offers ac-
cess to more advanced functionalities in the likeness of today’s digital cameras. Some of
these options include changing ISO and exposure values, white-balancing, contrasts, and
choose the resolution of the final product. It also enables the user to choose the correct
capture mode for the moment, e.g., sports mode, indoor or portrait. Android’s appli-
cation adds meta-data tags to the image which may include GPS location and renames
the file according to that location. It becomes more user friendly, when it displays a grid
on the screen. This grid serves as a guiledine so the user can position the object in the
frame. Despite all the options, one of the most useful features is the anti-shake system
that applies corrections onto an image to compensate the user’s movements.

12

2. RELATED WORK 2.3. Image Capture and Processing Applications

2.3.1.2 Photoshop Express (iOS)

The tool developed by Adobe [Ado] has a shooting mode with some extra features in
comparison with the native application. Having a preview of the image taken is an inter-
esting feature to be used in a more professional context, allowing the user to decide if it
is a usable photo before saving it in the gallery. Although in most of the available appli-
cations the zoom feature is already a given, in Photoshop Express it can be controlled by
an horizontal slider. The fact that it is always visible, the user understands how to make
zoom more easily compared with default applications, where the zoom can be done by
performing a pinching action on the screen. The pinching action might not be very clear
for someone using the application for the first time, therefore, an horizontal slider as the
one presented in Photoshop Express might be a good alternative.

2.3.1.3 Photosynth (iOS)

Photosynth, developed by Microsoft [Mic], was created to support a social network cen-
tred in creating and sharing panoramic photos. The social features will not be described
since they are not the main topic of this thesis. Regarding the image capturing abili-
ties, this application allows the user to create a software generated panoramic image.
The device displays a 3-dimensional spherical space that rotates with the user’s move-
ment. As soon as the capture starts, Photosynth automatically captures the initial scene
and all the adjacent scenes while the user is rotating. After the capture, this application
identifies specific features in one photograph and matches them with others previously
taken. Photographs are then paired by analysing the position of their matching features.
To visualize the panoramic image, the stitched images are displayed in a 3-dimensional
spherical space similar to the one presented on the capture display, with the particularity
that the user must scroll to see the final result. Outside the application, when previewing
the image in the gallery, it presents some deformations due to spherical transformations
applied to the sampled photos.

2.3.1.4 Camera FV-5 (Android)

Camera FV-5 [Vaz] is one of the most complete applications for photography in the Play
Store. Although it has a screen with many options and information, it is what most re-
sembles to a digital camera display. It offers full control over exposure, ISO and white
balance. Exposure can be manually selected by the user or, alternatively, she can choose
between modes that automatically determine exposure values based on specific regions
of the image displayed in viewfinder. Multiple focusing modes are available, that allow
macros, setting the focus to infinity or tapping the display and selecting the object to fo-
cus. More related to camera utilities, multiple flash modes are available including a flash
mode that fixes red eyes on photos, and other shooting utilities that include a shooting
timer, image stabilization and burst mode. For a more inexperienced user, default pro-
grams with pre-defined exposure settings can be used. The most interesting trait are

13

2. RELATED WORK 2.3. Image Capture and Processing Applications

the indicators in the viewfinder that display values of exposure time, aperture, ISO, bat-
tery remaining and how many photos are in buffer (Figure 2.7(b)). Camera FV-5 allows
control over the available parameters, recreating some photographic techniques. Due to
hardware issues, these recreations are the result of software emulation and not from lens
adjustments thus reflecting in the quality of image taken.

(a) (b)

Figure 2.7: Camera FV5 interface (a) and indicators (b) of aperture, exposure time, ISO,
etc [Vaz].

2.3.1.5 SketchCam

SketchCam [LM07] is a research project that uses a different approach towards mobile
devices in photography. With a touch screen, it enables children to capture images by
sketching the area of interest on the display. Using this approach, it allows the user to
become more selective towards the scenario in front of her. It enables creativity in a way
that the user may be able to create different frames for the picture that is being taken.
After selecting the point of interest in the view display, it creates an object that can be
used for future collages. This may help teaching the basic concepts of composition and
photo editing by using a different display.

2.3.1.6 Frankencamera

Although there are many mobile devices with capabilities to take photos, most of them
do not take full advantage of the imaging hardware and offer a highly simplified API.
The programmer cannot control the camera exposure time or retrieval of raw sensor
data. Motivated by these problems, Frankencamera [Ada+10] is an open-source archi-
tecture with a custom-built camera based on Linux and gives full control of the hardware
to the programmer through C++ language. This architecture consists in an application
processor, a set of photographic devices such as flashes and lenses, and one or more im-
age sensors, each with a specialized image processor, forming a tightly coupled pipeline
to coordinate all elements. All sensors, devices and parameters that describe the cap-
ture and post-processing of a single output image, can be programmed through its API
allowing a mechanism to precisely manipulate the hardware state over time.

Being a custom made platform, it brings some advantages towards closed platforms.
One of these advantages is the ability to take long-exposure photos without a tripod.

14

2. RELATED WORK 2.3. Image Capture and Processing Applications

Using an embedded gyroscope, the camera will stream full-resolution raw frames that
will be stored, only if their gyroscope tags indicate low motion when the frame was
taken. Another useful application is the creation of panoramic photos with extended
dynamic range. In most devices, the user has to take various individual photographs
and stitch them together on a computer, but with this system it is possible to individually
set the exposure time of each shot creating a panorama with extended dynamic range
and previewing the result instantly.

2.3.1.7 Camera51

Camera51 is another recent application for the Android operating system which does not
only set exposure and white balance automatically, but also aims to help optimize how
a shot is framed which has similarities with the objective of this thesis. This application
analyzes the scene looking for objects, faces, shapes, lines and other criteria, and suggests
the best framing based on composition rules, such as the “Rule of Thirds”. It also pro-
vides the option to manually select up to three objects in the scene by tapping on them,
which will also be used to determine the best framing, focus and exposure. Since all
the suggestions are calculated automatically the application has a simple interface (Fig-
ure 2.8) which only allows to change between the rear and frontal camera, and change
the flash options. It is not clear what kind of algorithms are being used to calculate the
best placement. Besides the final result, there is not any kind of visual hint if the best
placement is being calculated based on the scenarios composition or colour information.

Figure 2.8: Screenshot of Camera51 interface showing the best framing suggestion.

15

2. RELATED WORK 2.3. Image Capture and Processing Applications

2.3.1.8 Discussion

All commercial applications and research projects share the most basic features that should
come embedded in any system capable of taking photos. These features include access
to a gallery, control over flash, control between frontal or rear camera, an auxiliary grid
and control over zoom. Android applications, comparatively to iOS, offer more control
over the device’s hardware, such as shooting mode, resolution and image quality, aper-
ture and ISO values. Allowing almost full control of the hardware to the user, is a very
important feature that must be taken in consideration when developing an application
to take photos. Given this fact, Android became a more reliable platform for users that
want to use their mobile device for something more than casual photos.

With some interesting features, Camera FV5 is one of those applications for amateur
photographers that presents a similar interface to a digital camera. It enables the possibil-
ity of adjusting some photographic parameters and introduces the emulation of photog-
raphy techniques. Interesting features that should be noted on Photosynth is the way the
application handles the creation and preview of panoramas, where it detects and stitches
in real-time, a sequence of consecutive photos by matching features on a 3-dimensional
spherical space.

As research projects, SketchCam and FrankenCamera can go beyond what is available
on standard systems. Although designed for kids, Sketchcam presents a system with
a very different way to interact with the user in how she takes a photo. Selecting the
point of interest by sketching a continuous path and giving form to different shapes of
frames in a display with a live video feed, can be handy when a user only wants to
emphasize a region or object in the viewfinder. Frankencamera allows computational
photography to go a step further. It is the perfect example of what is possible by taking
full advantage of a device capabilities. It allows to take long-exposure photos using the
available gyroscope proving that better photos can be taken using available information
from multiple sensors.

2.3.2 Image Processing Applications

Image processing encompasses the task of altering images, whether they are digital pho-
tographs, traditional photochemical photographs, or illustrations. During recent years,
image retouching of photographs has gained an important role in the industry and more
recently, image editing has became available to anyone. Chosen by some as primary
cameras, mobile devices with embedded cameras also have a role to play on this subject.
Research has shown that users often do little editing of photos after the shot has been
taken [Bre+12], and for that reason mobile devices now offer applications for both cap-
turing and editing images. This section will describe some applications that apply some
image editing principles and tools.

16

2. RELATED WORK 2.3. Image Capture and Processing Applications

2.3.2.1 Android and iOS Native Applications

iOS already brings functionalities for image editing and since it is a system supported
by all Apple devices, automatically all these devices have the same basic tools that can
be used in photographs. These basic tools include image rotating and image cropping
where a user can define which part to crop and select the proportion of the rectangle
where the crop will be applied. Since iOS does not have an option to remove the red-eye
effect while shooting, a user can later remove it by editing the photo and selecting the eye
affected. More related to image effects, iOS offers a set of filters that can be applied to a
photo including an option of auto enhance, where it readjusts the images white balance
and automatically detects and removes the red-eye effect (Figure 2.94).

Android, on the other hand, comparing with previous versions, has a full set of tools
available for image processing. Besides sharing the same options as iOS, it has a a group
of advanced adjustments that can be applied to a photo [Sha13]. With these, a user can
readjust exposure levels, contrast, hue, etc. In cases where only a specific part of a photo
needs to be adjusted, Android allows local fine-tuning where a user applies corrections
to multiple selected areas. At any point within the editor, a user can drag down from the
top to view the original photo and save the edited image specifying the desired size and
quality.

(a) (b)

Figure 2.9: Image (a) before and (b) after applying the auto enhancing tool. It is possible
to see that the red-eye remover only darkens the red area and does not take in account
the real colour of the eye.

2.3.2.2 PixelNote

PixelNote [Lin+13] is an iPad application for photo editing that works through a mul-
timodal interface combining voice recognition and direct user interaction to manipulate
images. It uses natural language to express how to modify an image and sketching to

4Source: http://www.shortcourses.com/images/b4ch6/eerie.jpg

17

http://www.shortcourses.com/images/b4ch6/eerie.jpg

2. RELATED WORK 2.4. Image Evaluation

localize these changes to specific regions. Using the two inputs, a user can select and tag
an object with a voice command that can be used for future identification through voice
recognition.

The speech recognition technology converts the voice into character strings that Pix-
elNote can process. First the strings pass through a local speech recognition engine that is
trained for a specific set of words selected from a user study. When the system encounters
words out of the expected vocabulary, the recorded voice data is sent to a remote speech
recognition server. When all else fails, PixelNote shows a gallery with options that may
be appropriate . Thus, this fallback system allows the user to also learn the vocabulary of
the system while editing the image successfully.

2.3.2.3 Discussion

iOS and Android default applications represent two extremes of what is possible in terms
of image editing on a mobile device. Other applications such as Photoshop Express (An-
droid and iOS), Photo Editor (Android) or Camera Awesome (iOS) have similar func-
tionalities as Android’s default application. Being relatively advanced in photo editing,
Android introduces the notion of local fine-tuning to an image where a user can apply
different corrections to localized areas of an image. As a research project, PixelNote ex-
plores different ways of interacting with mobile devices. Using voice recognition with
sketching on localized areas, PixelNote enables object selection and tagging, and correc-
tion of specific areas in an image by recognizing specific voice commands. This project
shows that is possible to extend an application capabilities for photo editing, exploring
different types of interaction and reducing the difficulties of such a task on a small and
portable screen.

Both multimodal interfaces and localized corrections, are features that should be
taken in consideration when thinking of how to apply effects and interact with small
screens as the ones in mobile devices.

2.4 Image Evaluation

To understand aesthetic problems, Hoenig [Hoe05]1 described and formalized a set of
theorems and components that could provide a measurable basis for aesthetics. Accord-
ing to the author, in 1933, George David Birkhoff came up with a formula that encap-
sulated his insights into a aesthetic value, described by M = Order/Complexity. This
represents the reward one gets, by experiencing orderliness while putting effort in focus-
ing details, giving higher aesthetic value to beauty over complexity. Birkhoff’s concept
sparked interest of computer scientists in aesthetics, creating the term computational aes-
thetics. This term is described as a set of computational methods that can make applicable
aesthetic decisions in a similar fashion as humans can.

18

2. RELATED WORK 2.4. Image Evaluation

2.4.1 Composition Rules

To obtain aesthetic results, photographers follow certain rules of composition that are the
result of past artistic development. These rules are now considered as rules of thumb
and serve as guidelines. Following these guidelines helps obtaining pleasant results but
they are not absolute. Professional photographers also criticize them and defend that one
must know when to break them. Being such a subjective topic, there is no recipe for a
good composition and photographers always have the final call when taking a photo.
This section describes some of the rules that capture the viewers attention and can be
used in computational aesthetics.

2.4.1.1 Colour Balance

Although a good photograph is dependent on the subject that is being captured, colour
has a major impact in creating a certain mood and empathy with the viewer.

It is rare for a colour to be isolated in a photo shoot, and depending on the colour
palette, a different relation between them will be established. These relations can cre-
ate similar or different emotions that can be explored in a composition [San10]. A re-
lation created by two complementary colours gives a sensation of balance, but if both
colours have different luminosity values, the less luminous colour must be present in a
greater amount comparing to its complement (Figure 2.10). To evoke a mood and arouse
emotions, each colour has its own meaning that can be interpreted in different ways by
different cultures. For the western civilization, yellow symbolizes cheerfulness, joy and
optimism, but for the eastern civilization, it is related to the imperial kingdom and sym-
bolizes something sacred. On the other hand, in Egypt, it is a colour for mourning.

Figure 2.10: Image of two complementary colours balanced in a frame [San10].

19

2. RELATED WORK 2.4. Image Evaluation

2.4.1.2 Rule of the Golden Section and Golden Spiral

There are rules used by many photographers, artists, and architects, considered to ob-
tain very appealing results. The golden section rule is based on the golden ratio. This
value can be achieved from a division between two consecutive numbers in a Fibonacci
sequence. For example, defining the sequence [8,13,21] as a subsequence of the original
Fibonacci, dividing 13 by 8, and 21 by 13 will result in a ratio, that in the limit will be
equal to the golden number (i.e. ≈ 1.6180339). This golden number is what defines a
golden section [San10].

This section, which is believed to be aesthetically pleasing, consists of a group of
rectangles in which the ratio of the longer side to the shorter is equal to the golden ratio.
It is possible to draw a logarithmic spiral whose growth factor is equal to this ratio, called
the golden spiral, which converges to the smallest rectangle in the section.

Using this golden ratio, one can form a grid dividing the golden section in 1.6 to 1
parts. Applying this division to a golden section, we obtain a grid as in Figure 2.11(a),
where the intersection of the lines indicate imaginary points where the main subject
should be located. From this point onward, these imaginary points will be treated as
power points.

(a) (b)

Figure 2.11: Guidelines formed from dividing the (a) golden section in 1.6 to 1 parts and
from (b) the golden spiral.

2.4.1.3 Rule of Thirds

The rule of thirds is based on the golden section [San10]. The rule of thirds consists in
dividing the rectangle in nine equal parts. The scene is divided in thirds both horizontally
and vertically with power points at the intersections. Being a derivation of the golden
section, the fundamental concept of where the object should be, remains the same. The
main subject should be positioned in one of the power points and along the the lines, as
shown in Figure 2.12.

20

2. RELATED WORK 2.4. Image Evaluation

Figure 2.12: Guidelines of the rule of thirds with nine equal rectangles and respective
power points at the intersection between horizontal an vertical guidelines.

2.4.1.4 Triangles and Golden Triangles Rule

The most common shape of composition in a portrait is that of a triangle, imagining a
portrait with the head being the peak and the width of the body being the base [Cle04].
This enhances the subject and boosts the composition.

The golden triangles rule uses a group of triangles that follow the proportions de-
scribed by the golden section. Using a golden section, we draw a diagonal line between
two corners of the rectangle and connect a perpendicular line to each of the remaining
corners. In some cases, this can be simplified to only one perpendicular, having only
one power point in the intersection with the diagonal line and a suggestive region in the
frame to place the elements [San10].

Figure 2.13: Guidelines obtained by the golden triangles rule.

2.4.1.5 Usage of leading lines

Lines can be used implicitly by creating an imaginary line between two subjects in a
picture, or explicitly, like the edges of a building. In the perspective of Kamps [Kam12]
vertical, horizontal, diagonal or curved lines can be formed of just about anything and
have the purpose of leading the viewer to a specific area, giving emphasis to the subject
being photographed (Figure 2.145).

Horizontal lines are easier to interpret and give a sensation of stability and safety.

5Source: http://goo.gl/7m0mSS

21

http://goo.gl/7m0mSS

2. RELATED WORK 2.4. Image Evaluation

Vertical lines can delimit the begin and the end of a scene, and work as an enforcement
for horizontal lines. Diagonal lines are responsible for creating perspective in a photo. If
the photo does not have a specific subject to photograph, diagonals can direct a viewer
to outside of the frame, but on the other hand, the viewer eyes can be imprisoned by
using straight angles. Curved lines can have a number of curves, and for that reason,
they can give a sensation of movement. Although, depending on the subject and depth
of field, the same curves might have different results. It is important to refer that these
interpretations can depend on the viewer.

(a) (b)

Figure 2.14: Examples of a curved line (a) that redirects the viewer’s eye to the maple
tree, and vertical lines (b) that redirects to the subject in the photo.

2.4.1.6 Balance of elements

Unconsciously, the human mind evaluates a photo and checks if there exists any balance
or unbalance between the elements [San10]. To judge the balance between the elements
of a composition, we must imagine a frame divided by two and a scale that will measure
the weight of the left side with the right side (Figure 2.156). When the scale is perfectly
balanced which is very common in symmetrical images, it means that both sides have
the same weight visually, creating what is called static balance. In dynamic balance, it
is possible to create a balance in the image between two imbalanced sides. This can be
achieved if one of the sides has a larger element and the remaining side has a smaller but
brighter object. The scale does not have to be perfectly balanced and a strong composition
can be created with unbalanced sceneries. This way, the viewers attention will lie over
the same side, empowering the subject in the frame.

6Source: (a) http://joelsantos.net/, (b) http://www.flickr.com/photos/
victoriagracia/3869143989/sizes/o/, (c) http://photographyjunction.wordpress.
com/2012/07/19/balancing/

22

http://joelsantos.net/
http://www.flickr.com/photos/victoriagracia/3869143989/sizes/o/
http://www.flickr.com/photos/victoriagracia/3869143989/sizes/o/
http://photographyjunction.wordpress.com/2012/07/19/balancing/
http://photographyjunction.wordpress.com/2012/07/19/balancing/

2. RELATED WORK 2.4. Image Evaluation

(a) (b) (c)

(d) (e) (f)

Figure 2.15: Example images of element balancing and corresponding schematic. (a-
d) Static balance normally associated with symmetry. (b-e) Dynamic balance where the
left side has a larger subject that is being balanced by a smaller but brighter subject on
the right side. (c-f) Unbalanced picture where the subject is positioned on the left side,
leaving the right side with a negative space.

2.4.2 Evaluation of Aesthetic Features

Some authors have used some of the rules described in Section 2.4 as a basis for classifier
training or score attribution on extracted features. Rules like Rule of Thirds (Section
2.4.1.3) and spatial distribution of a subject have already been topics of research.

Bhattacharya, Sukthankar, and Shah [BSS10] attempted to associate a users’ notions of
aesthetics by formulating photographic quality assessment measures in a machine learn-
ing context. One of these measures consists in the relative foreground position which is
defined as the normalized Euclidean distance between the foregrounds center of mass
and one of the four power-points, that although it works for images with single-subject
compositions, it is not viable for landscape or seascape scenarios.

Liu et al. [Liu+10] use a similar approach to generate a score. Instead of just using
the Rule of Thirds, the authors also use a saliency map and the prominent lines in a
photo. The final score is calculated by Eq. 2.1, where Epoint represents the sum of the
mass of each salient region multiplied by its minimum distance to a power-point in the
rule of thirds, and Eline represents the sum of each saliency of value of a prominent line
multiplied by the minimum distance to a rule of thirds line. γpoint and γline are weights
given to each of the components. The author that defined the line based in the Rule of
Thirds is a better predictor than its point-based counter part, so the weights in Eq. 2.1 are
γpoint = 1/3 and γline = 2/3.

SRT = γpoint ∗ Epoint + γline ∗ Eline (2.1)

23

2. RELATED WORK 2.4. Image Evaluation

Although it is more oriented for assessing human portraits, Khan and Vogel [KV12]
present an approach that explores a photos’ spatial composition, by computing a score
given the location of a face centroid in a specific template (Figure 2.16). This template
gives higher scores on lighter areas, and good scores on blur locations around those
lighter areas.

Figure 2.16: Spatial composition template used in [KV12].

Extracting features related to colour have also been explored when trying to identify
a photograph with a good aesthetic score.

Khan and Vogel [KV12] proposes a set of features extracted from an area where a face
is recognized. This set of features include the illumination of a face by calculating the
absolute difference between mean Value (in HSV) of left and right side of face bounding
box; the background contrast, calculating absolute difference between mean value of face
bounding box and image without face bounding box; and brightness of an image by
calculating its mean value.

Other more elaborated methods were presented by Luo, Wang, and Tang [LWT11]
exploring the lightning and color arrangement in a photograph. After identifying the
subject area, the author explores the colourfulness, clarity contrast and lightning contrast
between the subject area and the background.

2.4.3 Practical Application of Aesthetic Evaluation Systems

As mentioned in Section 2.4, computational aesthetics can be described as aesthetic deci-
sions made by computational methods. Increasing aesthetic awareness, researchers de-
veloped systems and algorithms that extract and evaluate features of an image based in
rules such as the ones described in Section 2.4.1.

Defining aesthetics as a "concern with beauty and art and understanding of beautiful
thing", Datta et al. [Dat+06] described a system capable of extracting visual properties
and automatically tell the difference between aesthetically pleasing and displeasing im-
ages. Based on data extracted from an on-line photo sharing community, a set of images
and associated aesthetic ratings given by the community were used to train a classifier.

From all image samples, two-dimensional matrices for each of the color components

24

2. RELATED WORK 2.5. Computer Vision Algorithms

are obtained. A total of 56 candidate features related to the image properties (e.g. ex-
posure, hue, saturation, size and aspect ratio) and composition (e.g. rule of thirds, use
of texture and shape convexity) are extracted from those matrices. These features were
chosen to study patterns that could lead to higher or lower aesthetic ratings. By using
a segmentation method based on clustering, information relevant to some features was
extracted from objects within the photographs. From all the candidate features, 15 vi-
sual features were selected and establishing a significant correlation between the visual
properties of photographic images and their aesthetics ratings given by the community.
The selected features would later be used by the classifier to attribute a rating to an im-
age. Later, a publicly accessible system called ACQUINE [DW10] was developed. A user
could upload their photographs and have them rated automatically for aesthetic quality.
Compromising on a subset of the features previously presented, ACQUINE was able to
generate quick responses through a simple interface (Figure 2.17(a)) that kept the under-
lying classifier hidden. A user would then submit an image and wait for the classifiers
prediction of aesthetic value. The user could also give a rating on a 7-star scale (Figure
2.17(b)) (similar to Photo.net’s rating scale) that would be stored for future validation and
improvements on the classifier.

Following the same methodology, Yeh et al. [Yeh+10] described a ranking system.
This system listed 1000 ranked photographs ordered from the highest rank to the lowest.
The score of each photograph was considered as a linear combination of each feature and
its corresponding optimal weighting factor, that was found after the extraction of fea-
tures. However, since the optimal weights might not combine with the users preferences,
it allows them to combine personal taste with a trained model, and rearrange the ordered
list of ranked photographs. The weighting adjustments can be feature-based where the
user can personally select the weight of each feature (Figure 2.18(a)), or an example-based
approach (Figure 2.18(b)), where the user selects a photograph of their liking and the sys-
tem updates the weighting based on the example chosen. The features chosen to extract
are quite similar to the ones used in [Dat+06], but introduce an interesting composition
rule. They extract the subject region and assess the simplicity of a photograph by the
colour distribution of the remaining region that corresponds to the background.

2.5 Computer Vision Algorithms

Feature detection and matching are an essential component of many computer vision
applications. Feature detection refers to information extraction from an interesting part
of the image that can be later used for matching and finding a correlation between other
images. In this chapter we will describe different types of features that can be used to
determine different relations between images.

25

2. RELATED WORK 2.5. Computer Vision Algorithms

(a)

(b)

Figure 2.17: (a) The frontpage of the ACQUINE system, where the users could upload
photos. The list of top users on the right side and photos with high ACQUINE aesthetics
scores randomly selected at the bottom. (b) Screenshot of the ratings page after a photo
upload. [DW10]

26

2. RELATED WORK 2.5. Computer Vision Algorithms

(a) (b)

Figure 2.18: (a) Re-ranking photographs by adjusting the feature weighting and (b) by
selecting a few photographs as example [Yeh+10].

2.5.1 Keypoint Detection

Keypoint detection is based on specific locations in the images that can be easily distin-
guished. These local features are often described by the appearance of patches of pixels
surrounding the point location [Sze11]. There are several feature detectors of this type.
In this section, we will describe three: SIFT [Low99], SURF [BTVG06], and FAST [RD06].

2.5.1.1 SIFT

Scale Invariant Feature Transform (SIFT) [Low99], is an algorithm used for object recogni-
tion. This algorithm uses a set of features that are invariant to image scaling, translation,
and rotation, and partially invariant to illumination changes, noise and minor variations
in the viewpoint. The algorithm starts by identifying stable points that remain invariant
to scale transformations. After extracting the first keypoints, it eliminates the ones that
have low contrast and are badly localized alongside an edge, narrowing the total number
of keypoints, ensuring that the keypoints are more stable for matching and recognition.
Dominant orientations are assigned to each keypoint based on local image gradient di-
rection. A descriptor vector for each of the remaining keypoints is computed in the final
stage.

2.5.1.2 SURF

Speeded Up Robust Features (SURF) [BTVG06] is an algorithm that detects points of in-
terest that are scale and rotation invariant while claiming to be faster and more robust
than SIFT (Section 2.5.1.1). This algorithm uses a Hessian matrix with the convolution
of Gaussian functions for feature detection. The SURF descriptor reproduces the orienta-
tion based on a circular region around a point of interest and constructs a square region
aligned to the selected orientation extracting the descriptor from it.

27

2. RELATED WORK 2.5. Computer Vision Algorithms

2.5.1.3 FAST

Features from Accelerated Segment Test (FAST) [RD06] is a fast algorithm capable of
detecting feature points in real-time frame-rate applications. FAST is a corner detector
algorithm that detects a candidate point and tests if it is a corner through its adjacent
points inside a perimeter of 16 pixels. Although it is faster than both SIFT (Section 2.5.1.1)
and SURF (Section 2.5.1.2), FAST is not as robust. The reduced ability to average out noise
is why the results are not as good as the other algorithms, but can be used to process
image features in real-time.

2.5.2 Colour Features

Colour also provides valuable information for object description and matching. How-
ever, there can be large variations in lighting and viewing conditions, complicating the
description of images. Therefore, the properties of colour features extracted must be in-
variant. SIFT (Section 2.5.1.1) has proven to be a very robust and precise feature descrip-
tor, but properties such as light color changes have no effect because the image is con-
verted to gray-scale [SGS08]. Abdel-Hakim and Farag [AHF06] extends this algorithm
by proposing Coloured SIFT (CSIFT), building the SIFT descriptor in a colour invariant
space.

2.5.3 Texture Features

Texture is considered an important component of human visual perception. Texture can
be defined by its coarseness, contrast and direction, and has properties such as periodic-
ity and scale [HR04]. Manjunath and Ma [MM96] presented a method for extraction of
texture information for browsing and retrieval of large image data. This method uses a
Gabor function that results in the mathematical representation of a sinusoidal wave. This
function is then applied multiple times over the image with different parameters, chang-
ing both the scale and orientation of the sinusoidal. Working as a filter, the remaining
pixels are then eligible as candidate features. The values of scale and orientation ap-
plied on the Gabor function to obtain each candidate feature are then used as its feature
descriptors.

2.5.4 Discussion

Of the three algorithms described for keypoint feature detection, SIFT is the most robust
one. SIFT provides better results and SURF and FAST are faster, sacrificing its robustness.
For the context of this dissertation, FAST might be the most appropriate as it claims to be
able of detecting features on real-time frame-rate applications.

Because color features are often computed around specific salient points, they cannot
be evaluated independently. For a more discriminative power, one must have in consid-
eration the invariance properties of color features. In this section we described methods

28

2. RELATED WORK 2.5. Computer Vision Algorithms

that use different color spaces to explore such invariances.
Texture can be defined by its coarseness, contrast and direction, and has properties

such as periodicity and scale. In this section we mentioned Gabor functions as one of the
methods used to extract texture information from an image.

29

2. RELATED WORK 2.5. Computer Vision Algorithms

30

3
System Description and Features

This chapter describes the most relevant aspects related to the development of the system
such as the concept behind the application, the architecture and general structure. It
includes a detailed explanation about the functionalities implemented with the proposed
technologies and the preliminary user interfaces.

3.1 System Description

Photo aesthetic quality assessment aims to classify the photographs into high or low qual-
ity automatically. Tong et al. [Ton+05] attempted to classify photographs taken by profes-
sionals or casual users using low-level features derived from computer vision techniques.
As already mentioned in Section 2.4.2, techniques for training classifiers to automatically
assess the quality of an image, have already been devised. Since mobile devices are con-
stantly used in photography nowadays, it is only logical that improving photography in
such devices is the next step to take.

3.1.1 Concept

The development of this set of features started by thinking of useful information that
could be extracted from a real-time camera feed. The purpose of extracting this informa-
tion is to give a user a different insight of the photo that is being taken and help to attain
better results without resorting to any photo manipulation techniques or tools. It results
in an application that demonstrates a set of tools and techniques that process real-time
images and responds with visual cues overlaid on the processed data.

These visual cues have as an objective, to identify key elements in an image, such as

31

3. SYSTEM DESCRIPTION AND FEATURES 3.1. System Description

colour information. Colours have already been identified as an important factor in a pho-
tograph (Section 2.4.1.1). Therefore, understanding the colour composition and pureness
of the colours is useful for a user to study the composition and rearrange the colours be-
fore even taking the photo. The same applies when talking about the composition of the
elements. As an example, identifying the main object or detecting faces may be useful for
testing various compositions in an attempt to find the best one.

With this idea in mind, we gathered a number of features that we thought to give
useful information when taking a photograph. Some of these features are related to the
colours being displayed. We devised a couple of histograms to visualize the distribution
amount of each colour, as well as a saturation detector for detecting when the scenario
has colours with a low level of pureness. Other features more related to the composition
of the photo were implemented, such as face detection and object detection through seg-
mentation, detection of the horizon line when photographing a seascape or landscape,
detection of main lines which have an important role when guiding the viewer in a
photo, detection of the line of symmetry and testing the balance between the elements
in an image. With the main purpose of obtaining the best aesthetic results without any
image editing, we also implemented a couple of metrics regarding the simplicity of an
image and number of colours used. Later, these features will be described in detail and
discussed regarding the way the result is displayed and the general behaviour of the
algorithms.

3.1.2 Architecture

Figure 3.1 illustrates the architecture chosen for this project which is based on mech-
anisms offered by the Android operating system. The system starts by receiving data
from the device’s camera, and pass it to the CameraViewer. This object, besides controlling
which feature is enabled, also controls the camera and serves as a gate since it receives all
input data and reliably redistributes to the objects controlling each enabled feature. At
this stage, it passes through various wrapper objects. Each object is responsible for wrap-
ping the data and send them to the Java Native Interface (JNI) where all algorithms are
run with the help of OpenCV. All the results are then sent back to the object responsible
for each feature. The last stage is the Presentation stage where all results of the algorithms
are post-processed and the visual information is updated and shown to the user through
the viewfinder.

Each feature has its wrapper as well as presentation stage. The Presentation stage was
implemented only in Android and all the visual cues work as an overlay over the current
camera’s live-feed, so that the user can have an immediate response to what she is seeing.
Figure 3.2 illustrates a class diagram with the dependencies of each feature, were all that
is drawn is an overlay and has its own implementation. Each feature must extend the
Overlay class, therefore it can be drawn in the viewfinder since the Overlay itself extends
the default Android class View.

32

3. SYSTEM DESCRIPTION AND FEATURES 3.1. System Description

Figure 3.1: Architecture of the system.

Figure 3.2: Class diagram of the Presentation stage in Figure 3.1.

Still in the presentation stage, to alternate between features we devised a simple in-
terface coupling similar features. Figure 3.3 shows the interface, which consists of a list
of the implemented features. To use a feature, the user simply has to tap on a checkbox to
start the algorithm. This interface also allows to use multiple features at the same time.
Such a simple interface was chosen to keep the viewfinder cleaner and due to the lack of
icons that accurately represent what each feature is supposed to do.

Figure 3.3: Menu to select each feature.

The JNI stage is composed by all the algorithms implemented. This stage is where
the Android’s Java Virtual Machine calls native applications which can be programmed

33

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

for the hardware, or libraries that were written in other languages such as C or C++.
In the context of this thesis, we created our own native library in C++ complemented
by the library OpenCV which, by itself, already includes several hundreds of computer
vision algorithms. To avoid management of memory addresses between the JNI stage
and Android code we used static classes instead of objects. Therefore our native library
has a static class for each feature, in resemblance to the class diagram in Figure 3.2.

3.2 Features

This section describes in detail the functionalities and experiments implemented in the
proposed system. The set of functionalities implemented were considered to be more
interesting to explore in a real-time environment than the usual set of features already
presented in regular camera applications or digital cameras.

3.2.1 Colour Histograms and Average Saturation

Colour histograms have been used for a long time in image processing and photography
to measure the distribution of colours. A colour histogram represents the number of
pixels in each of a fixed list of colour ranges, that span the image’s colour space, the set
of all possible colours.

These can be built in any kind of colour space and have multiple dimensions depend-
ing on the number of measurements taken, although it is normally used to count the
number of pixels for three-dimensional colour spaces.

The visualization of such information becomes really important when colour is one
of the elements in which photography is most focused on. Bertin [Ber83] stated that
in the field of information visualization, colour has historically been used as one of the
primary visual variables being considered as one of the fundamental building blocks of
visualizations today.

Exploring the importance of colour, Haber, Lynch, and Carpendale [HLC11] pre-
sented a method where colour information is interpreted with a variation of a stacked
line graph, which give the viewer a sense of the colours and the amount of each colour
that make up either an image, or a series of images. The author uses mainly the hue
channel in the HSB colour space. When using one image, it uses a six-colour labelled his-
togram to define an image as shown in Figure 3.4. However, even though the histogram
is simplified to a six colour range, it is difficult to compare the histograms generated by
two different images. Figure 3.5 shows the application of a labelled stack line graph when
comparing two images.

Another important property is colour saturation which is the pureness of a colour
relative to its own brightness. The saturation of a colour is determined by a combination
of light intensity and how much it is distributed across the spectrum of different wave-
lengths. The purest (most saturated) colour is achieved by using just one wavelength at a

34

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

(a) (b)

Figure 3.4: "Fishing in Spring, the Pont de Clichy" by Vincent van Gogh (a) and the cor-
responding labelled linear histogram representation.

(a) (b)

Figure 3.5: Linear histograms representations of “The Funeral of the Anarchist Galli”
by Carlo Carrà (top) and “Speed+Sound” by Giacomo Balla (bottom) (a) with a labelled
stacked line graph representation comparing the amount of each colour in both paintings
(b) [HLC11].

high intensity, such as in laser light. If the intensity drops, then as a result the saturation
drops.

Colour saturation influences the vividness of an image as a desaturated image is said
to be dull, less colourful or washed out but can also make the impression of being softer.

3.2.1.1 Algorithm Description

As described previously, colour is obviously a very important part in an image. With that
being said, we implemented some simple algorithms that compute the amount of colour
and saturation that exists in an image.

It was already said that an histogram is an important way to visualize the amount of
each colour represented on the scenario. We also computed histograms to give this in-
formation. For our first implementation, we generated four histograms for each channel

35

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

of the RGB colour space and a grayscale version of the input image. Each frame to be
processed comes in a packed format and is then converted to a gray image and to a RGB
image. We then create a full-range histogram for each of the channels.

Knowing the amount of each colour in each one of the channels we can then obtain an
interval that contains all the relevant colours. We considered as relevant colours, colours
that have an amount of at least 5% of the maximum amount found in the histogram.
Given the colour range for each channel, we also calculate the amount of pixels that are
near the limits. This amount is calculated by applying a Gaussian function where the
peak is the limit in the colour range. This can be expressed by the equation

i∑
i∈[0,50]

hist(i) + hist(i) ∗ 1

0.7
√

2π
e−i, (3.1)

j∑
j∈[205,255]

hist(j) + hist(j) ∗ 1

0.7
√

2π
e−j (3.2)

where the Gaussian function has the parameters σ = 0.7, σ2 = 0.5 and µ = 0. i and
j are the colour value in the histogram and hist(i)/hist(j) is the amount of colour on
the frame. The result from equations 3.1 and 3.2 are then used to represent visually the
amount of pixels near each limit.

In our second implementation we created another histogram but in this case we con-
verted the input image to the HSV colour space and performed an histogram over the
Hue channel. Due to the chosen method to visualize, the Hue spectrum was quantized
into six bins, which correspond to the primary colours red, green and blue, and its conse-
quent secondary colours. When processing the input image, a vector with a total length
equal to the number of bins will maintain the amount of pixels belonging to it. Each bin
covered a total of thirty colours in the Hue spectrum. The amount percentage for each
bin is then calculated and displayed to the user.

As mentioned in the previous section, the colourfulness of a scenario is always im-
portant considering that it is what makes an image more vivid. Due to that fact, we also
implemented a low saturation detector. This detector works by averaging the Saturation
channel in the HSV colour space and compare its value to a threshold. If the value of sat-
uration of an image is below a threshold of 50, then a suggestion is shown meaning that
the use of a monochromatic filter might be useful in that situation. This threshold was
defined by comparing the average saturation of 1000 images labelled as low-saturation
images by the Flickr community.

3.2.1.2 Interface Display

In the previous section we described the algorithms for a saturation detector and two
ways to calculate the colours presented in an image. For the later, it becomes even more
important to correctly visualize that information.

36

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

For our first implementation which involved the calculation of three histograms based
in the RGB colour space and one with the image converted to gray scale, we tried to rep-
resent this information by using less space than a conventional histogram and slightly
simplifying the amount of information. As shown in Figure 3.6, our histograms are vi-
sualized by a bar with a dynamic size within certain limits which define the total range
of colours within each channel. The purpose of this representation is for the user to have
a perception of the range of colours being used in each channel. The size of the bar is
dynamic since it is defined by the first and last relevant colours found in a channel.

As mentioned before, this representation also shows the amount of pixels found near
the boundaries of the colour range of each channel. This is represented by a line that
grows vertically depending on the amount calculated by the equations 3.1 and 3.2.

(a) (b)

Figure 3.6: Visual cue chosen for the first implementation of the histogram being applied
to a real-time scenario (a) and a reconstruction of the histogram made for the green chan-
nel that indicates de colour range in use and the amount of pixels near the limits (b).

For the second implementation of the histogram, we chose to represent the Hue con-
centration of each bin through a hexagon that resembles a colour wheel divided into six
colours. Each section of the hexagon is filled with the percentage amount of the respec-
tive colour presented in the input image, as shown in the Figure 3.7.

(a) (b)

Figure 3.7: Visual cue chosen for the second implementation of the histogram being ap-
plied to a real-time scenario (a) and the resulting histogram isolated (b).

37

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

For the saturation detection, we display a thumbnail with the real-time image con-
verted into grayscale on the bottom-right corner of the viewfinder. This is an indicator
that the usage of a monochromatic filter might be useful in that situation (Figure 3.8).

Figure 3.8: Frame detected as containing low saturation. Indicator is shown on the bot-
tom right corner, which is the input frame converted into grayscale and in a reduced
scale.

3.2.1.3 Discussion

After implementing these features, we could conclude a couple of things. Starting by
our first implementation of a histogram, the first noticeable problem is the fact that the
histogram is made for the RGB colour space. Although it is the most used colour space in
image manipulation applications and photography systems, the conversion of real-world
colours to RGB is not direct.

With the representation we created a one-dimensional histogram that omitted the
amount of each colour and showed the range of colours being used in the image. This
range is determined by the first and last colours found as relevant with the purpose to
show the spread of tones across a channel. As a general rule, in most cases, a well bal-
anced shot has a nice spread of tones which peak somewhere around the middle and ta-
per off around the edges. Ignoring the peak around the middle and stabilization around
the edges, we think this representation successfully serves the purpose giving an idea
of the colours being used. The problem with this representation is that it does not con-
template any flaws in the middle of the histogram. This means that if it shows that a
range of colours is being used, within that range, there is a possibility that some of the
colours were not found in the image. Figure 3.9 illustrates this example. Considering
that the blue channel of an image as the histogram shown in Figure 3.9(a), there is a val-
ley between two peaks that contains colours that were not used. Figure 3.9(b) displays
our representation based on that histogram, where we can see that the concavity in the
original histogram and the colours that were not used in that concavity, are shown as a
part of the range of colours detected.

Our second implementation uses an hexagon in resemblance of a colour wheel, it
is easier to convert real-world colours to the HSV colour space. Although it is easier to
perceive the colours being used, it does not have into account the saturation or brightness

38

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

(a) (b)

Figure 3.9: Illustrative figure of the problem found in our histogram representation (b)
compared to the corresponding regular histogram (a).

of each colour. The main problem in this representation is the amount of percentages
displayed. As it is, each part of the hexagon will be fully filled when all the Hue values in
the converted image are within the same range, which results in a scaling problem as this
rarely happens. Each processed frame normally contains at least a small portion of all
the colours presented in the wheel, meaning that with the representation chosen, small
amounts of each section will be filled making them almost irrelevant. Even with this
problem, the main purpose of this representation is to visualize the colours that have a
higher presence in a scenario and what complementary colour should be used to provide
a colour balance (Section 2.4.1.1).

As for our saturation detection method, it is not very complex, however the threshold
chosen to classify an input frame as low saturated or not, was selected by averaging
the saturation of 1000 images labelled as low saturation by the Flickr’s community. This
being said the threshold was calculated over a set of static images which may have been
digitally manipulated. This means that in a real-time scenario this threshold might not
be the most appropriate as it is difficult to find scenarios to test and calculate a more
adequate threshold. It would be necessary to find a large amount of real scenarios with
low saturated colours and manually filter them.

3.2.2 Colour Templates and Hue Counting

As said before, much of what viewers perceive and feel from a photo is through colours
(Section 2.4.1.1). Although colour perception is culture-related and depends on the con-
text, colour science studies show that the influence on human emotions from a cer-
tain color or color combination is usually stable under different cultural backgrounds
[Man07]. Professionals follow certain rules of color composition and scene composition
to produce aesthetically pleasing photographs. For example, photographers focus on
artistic color combination and properly put colour accents to create unique compositions
and to invoke certain feelings among the viewers of their artworks.

Luo and Tang explored the relation between colours [LT08] in a feature to measure

39

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

the color harmony of a photo in terms of learning the color combinations (coexistence
of two colours in the photo) from a training dataset, to later determine if a photo has a
high or low quality. For each photo in the dataset, a 50-bin histogram is generated for
each channel in the HSV colour space. The value of the color combination between hue
i and hue j is defined as Hhue(i) + Hhue(j), with a similar definition for the saturation
and value channel. A histogram of high (low) quality training photos is generated by the
formulas

Hhigh,hue(i, j) = Avg(Hhigh,hue(i) +Hhigh,hue(j)), (3.3)

Hlow,hue(i, j) = Avg(Hlow,hue(i) +Hlow,hue(j)), (3.4)

with a similar process for combinations of Hhigh,sat(i, j), Hlow,sat(i, j), Hhigh,sat(i, j) and
Hlow,sat(i, j). To measure whether a photo is high or low quality based on the its colour
combinations, the classifier is trained with the formula

fh = Hues ∗ Sats ∗Bris, (3.5)

where Hues =
Huehigh
Huelow

, Sats =
Sathigh
Satlow

and V als =
V alhigh
V allow

. Although in [LT08], the pur-
pose of this feature is to train a classifier to identify the quality of a photo, it can also be
used to query a database and obtain a set of images similar to the one being evaluated.
Since our purpose with this thesis is to give useful information in real-time to the pho-
tographer, we explored the colour harmonization using the Hue channel. Although we
opted to not use any classifiers, we also implemented a score to each frame based on its
hue count.

3.2.2.1 Algorithm Description

As mentioned before, we implemented a simple scoring system for each input frame and
an algorithm that detects the harmonic colour template being used on an input frame.

As for our scoring method, we implemented a feature described by Ke, Tang, and
Jing [KTJ06], where the purpose is to measure the colour simplicity. One of the main dif-
ferences between professional photos and snapshots is that photos taken professionally
are more colourful and vibrant depending on its brightness and saturation levels, while
using a less number of unique hues. The first step in hue count is the conversion of the
input frame to the HSV colour space. After the colour space conversion, the Hue channel
is filtered by selecting pixels that have a brightness value in the range [0.15, 0.85] and sat-
uration higher than 0.2 because the hue calculation would be inaccurate if otherwise. The
next step is to calculate a 20-bin histogram H with the hue values that passed the filter.
After computing the histogram we select the number of bins N that satisfy the equation

N = {i|H(i) > αm}, (3.6)

40

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

where m is the maximum value of the histogram and α controls the noise sensitivity of
the hue count. The author used α = 0.05 as it produced good results for their training
set. The final score is calculated by the equation

score = 20−N. (3.7)

Our harmonic colour template detector is based in a method described in [CO+06]. In
the original article, the author uses a predetermined set of templates such as the ones in
Figure 3.10, which can also be perceived as the colour distribution of the input image. The
harmonic templates may consist of shades of the same colour (type i, V, T), complemen-
tary colours (type I, Y,X) or more complex combinations (type L). Although not used,
the N -type template is applied to grayscale images. In our implementation we focused
on templates for slight variations of the same colour and for complementary colours.

Figure 3.10: Harmonic templates on the hue wheel. Colours that fall into gray areas are
considered to be harmonic. Size and rotation of the gray areas may vary.

The original article uses a hue histogram and tries to match the histogram with each
of the templates in its various rotations. This method would prove to be computationally
heavy on a mobile device in a real-time scenario, therefore, we opted to simplify the
histogram and the template calculation.

We started by converting the input image into the HSV colour space and manipulate
the Hue channel. For our implementation, we used a wheel divided into twelve regions
instead of using a full-colour wheel which enabled us to create a 12-bin histogram of
quantized hues ordered by amount. The purpose of having an ordered histogram, is to
obtain the first two main hues present in the image. Knowing the two main colours and
its bins, we can map each bin into one region of the 360 degree wheel. This mapping
is what will allow us to determine if a image fits into a monochromatic template or a
complementary template, by calculating the degree difference between the bins of the
two main colours. If the difference between the two main colours is between 0o and
90o we classified the frame as monochromatic, or as complementary if the difference is
between 150o and 210o.

After classifying an image as having a monochromatic or complementary template,

41

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

starting in the most relevant bins, we verify if the adjacent bins have an occupation per-
centage in the image of at least 40% of the starting bin. This will allow us to know the size
of the template. Starting in a bin which is mapped into one region in the twelve-region
colour wheel, we defined that the maximum size for a monochromatic template or one
of the colours in a complementary template, is of three regions.

Since the scoring described before is based on a 20-bin histogram, we decided to mod-
ify it and perform the scoring based on a 12-bin histogram. This way, both the scoring
and the template detection are in accordance with one another.

3.2.2.2 Interface Display

For this feature, we chose to show the colour wheel divided into twelve regions. This
would prove to simplify both the implementation of the algorithm and display of the
templates. Similarly to the original templates (Figure 3.10) the gray areas indicate the
main colours present in the image and its neighbours that were considered relevant. As
for the scoring method, we took the most simple approach and decided to show the
scoring result since both these methods are in accordance with one another.

3.2.2.3 Discussion

There are no major problems with each of these methods. However the most relevant is-
sue, might be the size of templates. As mentioned before, starting in a bin we verify if the
adjacent bins occupy a region that is at least larger than 40% of the starting point, where
the threshold was chosen experimentally with a dataset of static photographic images.
The problem with choosing a threshold with a given dataset, is that the threshold might
not work perfectly in a real-time scenario since the chance of getting snapshots while
receiving real-time information is way higher then getting a frame that is considered to
have aesthetic value.

3.2.3 Face Detection and Composition Guidelines

Since long, the detection and recognition of faces are areas of interest in the domain
of computer vision. Such technology has been used in biometric identification, video-
conferences and query systems. Mobile devices are also able to find and recognize a face.
Android provides a simple way to identify the faces in a bitmap image, with each face
containing all the basic location information. Besides faces, current Android cameras
already offer an API for detection of eyes, mouth and most recent versions are able to
recognize faces to unlock such devices.

The fact that we can easily detect faces, enables us to explore some rules used in
photography. One of these rules is the Rule of Thirds explained in Section 2.4.1.3 which
states that for an image to be visually interesting, the main focus of the image needs to
lie along one of the lines marked in thirds, or the intersection points between those lines
[Kam12].

42

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

Other rule is the Rule of Odds which states that images are more visually appealing
when there is an odd number of subjects. For example, if we are going to place more than
one person in a photograph, we should use 3 or 5 or 7 [Kam12]. Studies have shown that
people are actually more at ease when viewing images with an odd number of subjects.
This rule can also be boosted by using triangles, since a triangle is one of the strongest
compositional shapes, as it can add a sense of visual unity. In essence, a triangle is a
closed curve incorporating at least one diagonal. Since the curve is closed, it won’t lead
the eye outside of the frame. A single triangle in the middle of the frame can lead to a
somewhat static composition, but triangular composition can be found in many famous
works of art.

By combining these rules with a facial detection system, we devised a feature that
could be helpful in respecting these essential guidelines in photography composition.

3.2.3.1 Algorithm Description

For this feature, we tried to mix the rules previously stated with face detection in a real-
time environment. Although it can be used separately, we implemented the two simple
grids that follow the Rule of Thirds (Section 2.4.1.3) and the Rule of the Golden Section
(Section 2.4.1.2) that uses the golden ratio.

As far as implementing these grids, there was no difficulty since it was only needed
to obtain the device screen size and generate four lines for each rule, where these lines
would divide the screen in 9 equal parts for the Rule of Thirds or in sections with a
proportion of 1.6:1 as shown in Figure 2.11(a).

These guidelines would then be useful to test different compositions with faces de-
tected. As for detection of faces, we opted by using the mechanisms available in OpenCV
instead of using the ones available in the Android API. This is due to the fact that our
objective was of creating a library to run only in JNI. If we opted by using the Android
API, then it would become specific of the application instead of being portable code for
other applications. With the OpenCV library we used the Haar feature-based classifier to
detect faces [VJ01]. This method needs a large set of positive and negative images to train
the classifier. This train is based on the extraction of Haar features, as the ones shown in
Figure 3.11. After training a classifier, the implemented algorithm uses the concept of
Cascade of Classifiers where a total of 6000 features are divided by groups of features,
and for a small window in an image the first group is tested. If that region is a non-face
region, it is forever discarded and passes to the next group of features that can then con-
centrate on testing the remaining regions where there is a probability of finding a face.
The regions where the faces are found, are then returned and used by us.

Having detected the faces position and the lines for the grids, we can then calculate
the distance between the center of a face region and the nearest intersection line. The
intersection with the smallest distance, is the most viable placement for the subject in
accordance to the Rule of Thirds.

43

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

Figure 3.11: Type of convolution kernels used to extract features [Its].

3.2.3.2 Interface Display

We started by describing the Rule of Thirds and Rule of Golden Section that are viewed
as a simple grid over the viewfinder. We respected the proportions established by both
rules, as illustrated by Figure 3.12(a) and Figure 3.12(b). As for the detection of faces, we
took the most common approach. Since we know the position of the regions that contain
faces, we opted to draw a bounding rectangle around that regions (Figure 3.12(c), 3.12(c)).

After detecting faces we test to see if there are three faces detected. This is so that
we can apply the concept of the Rule of Odds with the detected faces. If there are three
faces then we can also try and boost the composition by linking their positions and form
a triangle. We display the connection between the faces by drawing lines between them.

Figure 3.12(d) illustrates this triangle formed by the detected faces as well as the sug-
gestions. Each of the intersection points on both grids highlights when it is a suggested
point for a face. To complement the triangle composition when three faces are detected,
we also suggest a triangular composition with the nearest intersection points of the grid
in cyan blue as shown in Figure 3.12(e) and Figure 3.12(f).

3.2.3.3 Discussion

Due to the simple implementation, there are not any particular problems. The face detec-
tion might be the most prone to problems part. As referred before, the face detection uses
a trained classifier and we used a default classifier for frontal face recognition provided
by the OpenCV library. Therefore, this classifier will not detect faces in profile.

Although the user can choose which feature to display at a time, when they are all
activated, this many visual cues are quite distracting and occupy a lot of space in the
interface.

However, as a proof of concept these visual cues do work but it is important to keep
in mind that the positions suggested, are simple suggestions, as it is not a recipe for
obtaining aesthetic results. The user must always have the final word for the placement
of the detected faces, on the importance of having odd number of elements and on the

44

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Multiple visual cues used to implement these features, such as helping grid
(a,b), face detection (c,d) and a mixture of both (e,f), tested when detecting one or three
faces.

45

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

exploration of triangular compositions.

3.2.4 Object Segmentation

Unless it is a photography of a seascape or a landscape, it is normal for a photo to have a
relevant subject. With this in mind, segmentation of a subject in multiple scenarios might
be useful to attain a better composition.

Segmentation of an object in a photo, is a topic that has already been widely re-
searched. One of the simplest ways of extracting information about the object in a real-
time scenario is to have information about its background beforehand and subtract it.

Yang et al. [Yan+04] describe a system for security cameras, able to recognize and
track a moving object. This is possible once the system is collecting information about the
background as time passes. Using this information, the system can subtract any object
that is considered strange, and start the tracking. This method has the advantage of being
fast and discards the possibility of training a classifier for object identification. Butler,
Sridharan, and Bove Jr describes a similar approach [BSBJ03], where the key is to learn
the background and generate a model of it by representing each pixel in the frame by
a group of clusters, where these clusters are ordered by the likelihood of modelling the
background. Incoming pixels are matched against the corresponding cluster group and
classified as part of the background. In our case, these methods have an obvious problem.
Normally, the subject is already placed when the user wants to take a photo, therefore,
the subject would be confused as a background. The user would have to point the camera
before placing the subject to initiate a process of extracting information and learn what is
the background. When talking about a camera in a mobile device or any digital camera,
this method is nearly impractical, as the regular user tends to move the arms quite easily
ruining the learning process started before. Thus, being an unreliable method for object
segmentation.

For our use case, we envision a method for generic object segmentation that could
be used in real-time. Since it is designed to be generic, we could not train a classifier to
recognize multiple objects, or use edges information for comparison, as it would need
multiple photos for data collection, and the segmentation would be limited to a few ob-
jects.

3.2.4.1 Algorithm Description

Colour is a very important feature in a photo [Kam12; San10]. With this in mind, when
photographing, the main subject should cause visual impact due to its contrast relative
to the background or other elements in the scenery. For this, we used a slightly simplified
version of the Histogram Based Contrast (HC) method described by Cheng et al. [Che+11]
for extraction of salient regions in a photo that evaluates global contrast differences, cal-
culating saliency values for image pixels using colour statistics. The saliency of a pixel is

46

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

defined using its colour contrast to all other pixels in the image. This can be described as,

S(Ik) =
∑
∀Ii∈I

D(Ik, Ii), (3.8)

where D(Ik, Ii) is the colour distance between saliency value Ik and pixel value Ii
in the input image in the L*a*b* colour space. Since this is computationally expensive,
Cheng et al., reduces the number of colours needed to consider, by quantizing each colour
channel to have 12 different values, reducing the number of colours to 123 = 1728. Since
a natural image covers only a small portion of the full colour space, the less occurring
colours are ignored, ensuring that the most occurring ones, cover at least 95% of the im-
age pixels. The remaining 5% are replaced by the closest colours in the histogram. Since
this quantization might introduce artifacts, the author performs a smoothing procedure
over each saliency value. Each saliency value is replaced by the weighted average of the
n/4 neighbours where n is the number of colours that fill 95% of the image pixels.

After obtaining a saliency map, the map is turned into a binary segmentation mask
using a fixed threshold. Finally GrabCut [RKB04] will be used repeatedly to refine the
segmentation result initially obtained by the binary segmentation mask.

3.2.4.2 Implementation Details

To use this algorithm in a real-time scenario in a mobile device, our implementation had
to be simplified. GrabCut is too heavy to run smoothly on a mobile device, and for that
reason, we had to discard its usage sacrificing the refinement of the segmentation for
speed. After obtaining the saliency map described in [Che+11], we give a label to each
pixel depending on its value. These labels would be used in GrabCut to define which
pixels are considered foreground, probable foreground, background, or probable back-
ground. In our case, we used the labels to create masks with the areas defined as probable
foreground and probable background. A pixel is classified as probable foreground if its
saliency value was larger or equal to 200 and probable background if it was between 20
and 200. We defined experimentally the thresholds using images from the dataset used
to test the original algorithm.

After obtaining a mask with each pixel labelled, we created a mask with all pixels
that were considered as probable foreground and calculated the center of mass for the
resulting mask. To remove artifacts that might exist from using an incorrect threshold
value, we generate a bounding rectangle that starts at the calculated center of mass and
expands in every direction. Each edge will continue expanding while each row or column
that passes has at least a count of 25 pixels belonging to the segmentation mask, and stops
when 50 rows or columns have been covered with a count of pixels below the previously
stated. These thresholds were found experimentally and seemed reasonable for the test
images.

47

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

The obtained bounding rectangle and mask with areas considered probable fore-
ground is a good estimate of what was the main object in the scenario. The result of
the segmentation was a section of the mask containing the probable foreground pixels,
cropped in the area defined by the bounding rectangle. To fill in the gaps in the segmen-
tation mask, we merged the probable foreground pixels with the probable background
ones and cropped with the bounding rectangle.

3.2.4.3 Interface Display

After generating the mask we chose to simply show a semi-transparent mask over the live
feed obtained from the camera, as shown in Figure 3.13. This would be a good indicator
of what is the subject in the scenario and if it had any colour striking features relatively
to the rest of the elements.

Figure 3.13: Example of object segmentation interface. The resulting mask of the algo-
rithm is then displayed as a green overlay in the camera live feed.

This could also be used together with a guideline such as Rule of Thirds, described in
Section 3.2.3, to reposition the object and change the composition.

3.2.4.4 Discussion

Being a simplified version of the original algorithm, it does not work perfectly. Since it
depends on the global contrast of a subjects colours, this segmentation might not work
if the background is not plain or simple. Figure 3.14 show the multiple stages taken to
segment an object in an image and its final result. As it is possible to observe in this
figure, the input image shows a singular object in a plain background with a successful
segmentation. In the second image, it is possible to confirm that, although the object is
detected, the foreground threshold is not sensitive to lightning changes, as the darkest
side in the can is considered as being a probable background.

This algorithm also might not work when trying to segment two objects. Example of
this is the third input image in Figure 3.14, where we can verify by the saliency map, that

48

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

a) b) c) d) e) f) g) h)

Figure 3.14: Steps taken when segmenting an object. a) Input image. b) Saliency map gen-
erated by the algorithm in [Che+11]. c) Binary mask. d) Probable background pixels. e)
Probable foreground pixels. f) Bounding rectangle and center of mass point. g) Cropped
mask containing the probable foreground area filled in with probable background pixels.
h) Segmentation applied to the input image.

the can is obviously more salient than the other object, therefore the second object is clas-
sified as probable background. Another example of this is the fourth image. With a plain
background and two objects, the object with more vivid colours is the one considered as
foreground, leaving the remaining object as part of the foreground.

The fifth image shows an example were the lightning affects the outcome of the al-
gorithm. In this case, the can and a part of the wall are considered as foreground. The
solution to this would be to use a higher threshold when defining the foreground pixels,
as the wall is visibly less salient than the can in the saliency map. Since it is detecting the
wall as a part of the foreground, it causes the center of mass to be slightly dislocated and
generates a larger bounding rectangle. When merging the probable foreground pixels
with the probable background ones and cropping with the bounding rectangle, it seg-
ments a big portion of the image that its not relevant.

This object segmentation method was also used in other features implemented for
this thesis.

3.2.5 Image Simplicity

To reduce the distraction caused by the objects in the background, photographers usually
try to use a simple background. With that perspective in mind, the simplicity of a photo

49

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

was considered a good feature to analyse. The easiest form to obtain simplicity is to place
the subject against a neutral background like a scenery or the sky. Backgrounds can be
entirely neutral, like a solid backdrop or a cloudless sky; or they can complement the
image, like a starfish on the sand.

Since snapshots often have cluttered backgrounds, it is expected to have edges uni-
formly distributed in the image. On the other hand, in many professional photos the
subject is well defined, in focus, and high frequency edges are found confined to certain
regions in the image.

3.2.5.1 Algorithm Description

We experimented three algorithms to deal with this problem. The first algorithm that we
tested was presented by Luo and Tang in [LT08], where the author explored the simplicity
of a photo through its colour distribution. For a photo, we quantize each channel in
the RGB colour space into 16 values, creating a histogram with 4096 bins, which gives
the counts of quantized colours present in the image. After creating the histogram, we
calculate the maximum count (hmax) in the histogram. The simplicity of a photograph is
then defined as:

Simplicity =

(
‖S‖
4096

)
∗ 100 (3.9)

where S is the number of bins in the histogram that have a pixel count equal or above
γhmax. γ is 0.01 as chosen by the author in the original article. As described in [LT08],
the simplicity factor for high quality photos falls in [0%, 1.5%], and low quality photos in
[0.5%, 5%].

For our second experiment, we implemented an algorithm described by Kao, Wu,
and Liu [KWL]. Although very simple, the intuition behind this algorithm is that a very
complex image is likely to contain a large amount of edges. This feature is described as:

Bcomplexity =
ne
nT

, (3.10)

where ne is the number of pixels that are edge and nT is the total number of pixels in the
image.

In our third experiment we implemented an algorithm described by Ke, Tang, and
Jing [KTJ06], where the idea was to compute the spatial distribution of the high fre-
quency edges. In professional photographs, the subject is normally well defined and
in focus, meaning that high frequency edges will be placed in a smaller area. We started
by implementing a 3× 3 Laplacian matrix with α = 0.2 as follows:0.2 0.8 0.2

0.8 −4 0.8

0.2 0.8 0.8

 . (3.11)

This matrix is then applied to the image and we take its absolute value to ignore

50

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

the direction of the gradients. Since this algorithm is to be applied on coloured images
in real-time, we split the channels of each frame and perform this computation on each
channel, taking the mean across all the channels in the end. This will create a Laplacian
image that will be resized to 100 × 100 and normalized to values between 0 and 1. This
will help when calculating the amount of area the edges occupy. It is expected for well
defined objects as the ones used in high quality photos to produce a smaller bounding
box, on the other hand cluttered images, are expected to have the opposite effect. The
area of the bounding box is calculated by projecting the Laplacian image L onto the x
and y axis independently so that:

Px(i) =
∑
y

L(i, y), (3.12)

Py(j) =
∑
x

L(x, j). (3.13)

This results in two vectors, one for the x axis and another one for the y, that will have
a length correspondent to the image width and height, were each position in the vector
will have the amount of pixels considered as an edge in that column or row.

After the projection of the Laplacian image onto the x and y axis, we find the position
with the largest count of edges for each vector. The position with the maximum count
will be considered the peak and we calculate the width wx and wy for each vector, that
contains 98% of the mass of the projections Px and Py from that peak. The area of the
bounding box containing a high density of pixels is then defined by wxwy and the quality
measure for the image is then 1− wxwy.

3.2.5.2 Interface Display

In our application we tried to understand how these three algorithms would perform
under a scenario where this feature would be used in real-time. For that we displayed
on the screen the scores obtained from each method (Figure 3.15(a), 3.15(b)) where, for
the first algorithm [KWL] and the third algorithm [KTJ06], the score is between 0 and 1,
and greater values indicate a simplicity in the scenario. For the algorithm presented in
[LT08], we can obtain any value between 0% and 100% but the author defined two ranges
of values where we could fit images considered simple and complex. For input frames
that fit into [0%, 1.5%] and [0.5%, 5%] are considered as simple and complex, respectively.
However, there is a range between [0.5%, 1.5%] where it can be either one.

Alternatively, these scores could be replaced by a bar that represents the full scale of
each algorithm with a marker indicating the current score of the frame (Figure 3.15(c),
3.15(b)). In the case of the first method [LT08] we have three ranges, that were used to
divide the bar into three parts equally proportional to each range. They are then differ-
entiated with a simple colouring label. If the indicator is in the green or red area, the

51

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

scenario is considered simple or complex, respectively. If it is a case where it can be con-
sidered both, it is represented by the yellow area as seen in Figure 3.15(c). This bar does
not represent the full scale, as it only goes to 5% since it is the highest value considered
in the authors range.

3.2.5.3 Discussion

Between the three methods implemented to detect the simplicity of an image, the method
described by Ke, Tang, and Jing [KTJ06] has proven to be the most effective as shown
in Figure 3.15. We cannot really compare with the method described by Luo and Tang
[LT08], since it uses colour informations instead of edges. However it shows good results
when comparing the scores obtained from a frame with a single object (Figure 3.15(c))
with a frame that has more objects and is, therefore, more complex (Figure 3.15(b)).

For the two remaining methods, the third method described by Ke, Tang, and Jing
[KTJ06] presents better results. Both are based on the number of edges in the image,
however the method described in [KTJ06] has into account the spatial distribution of the
edges, which make it more sensible when new elements are added to the image. There-
fore, it presents more reliable results. The scores obtained by the method described by
Kao, Wu, and Liu [KWL] did not vary much regardless of the simplicity of the scenario.

(a) (b)

(c) (d)

Figure 3.15: Examples of visual cues given to the user. We experimented showing the
results of the three implemented methods (a, b), versus using a graphical representation
such as a fixed scale with an indicator showing the current score (c, d).

Although not implemented, a slight variation of this algorithm would be to segment

52

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

the subjects in the scenario and perform the simplicity calculation over the background,
since professional photographers also suggest to use plain backgrounds [San10]. Snap-
shots are considered to have a more cluttered background comparing to professional
photos, performing this computation only on segmented backgrounds would result in
more accurate scores for the second and third method since the edges of the main sub-
jects would be ignored, and therefore, it would be easier to detects edges on the back-
ground. This would also improve the score of the first method since it would then be
possible to ignore the colours of the object. Ignoring the colours of the object, we could
then obtain a more precise score by calculating the histogram over the background since
cluttered background are likely to have more colours than simple background chosen by
professionals.

3.2.6 Main Line Detection

Lines can have an important role in a photograph, as described in Section 2.4.1.5. These
lines can have multiple interpretations, depending if they are horizontal, vertical, diago-
nal or curved. They can give a sensation of stability and safety, movement or delimit the
begin and the end of a scene.

A popular method for edge detection is the use of Canny Edge Detector [Can86].
This method applies several convolution filters to each pixel with the goal of finding the
pixels where the intensity variation is high [Nób13]. The algorithm starts by applying a
Gaussian filter which will blur the image reducing the noise and extra edges that might
be detected. After the Gaussian filter, it applies two Sobel kernels to find gradients in the
horizontal and vertical direction such as:

Sx =

−1 0 1

−2 0 2

−1 0 1

 , Sy =

−1 −2 −1

0 0 0

1 2 1

 . (3.14)

Finally the gradient of a pixel is calculated by

Sp =
√
S2
x + S2

y , (3.15)

and the pixel will be accepted as an edge if it is above an upper threshold, or between the
upper and lower threshold but connected to a pixel that is above the upper threshold.

Another method of line detection used is the Hough Transformation [IK88]. Lines can
be represented in the Cartesian space by the equation

y = mx+ b. (3.16)

Any line can be represented by the equation 3.16 and therefore, it can be manipulated

53

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

to other coordinates such as Polar Coordinates, where its general equation would be

y =

(
−cosθ
sinθ

)
x+

(ρ

sinθ

)
, (3.17)

and each point on a plane is determined by a distance r from a fixed point and an angle θ
from a fixed direction. The Hough Transform consists in a two-dimensional space where
each line is represented by a tuple (θ, ρ) and therefore all lines that pass through a point
(x0, y0) can be represented in the Hough Space by the equation

ρ = x0cosθ + y0sinθ. (3.18)

In Figure 3.16(a) we can observe the sinusoid obtained by plotting the family of lines
that goes through a point (x0, y0), in the plane θρ. By generating the same plot with a
family of lines that pass through a point (x, y) we can find a line by finding the number of
intersections between the sinusoid curves has shown in Figure 3.16(b). The more curves
intersecting means that the line represented by that intersection has more points [Its].

(a) (b)

Figure 3.16: a) Sinusoid formed by family of lines that pass through x0 = 8 and y0 = 6
in plane θr b) Plot of three sinusoids that pass through the points x0 = 8, y0 = 6, x1 =
9, y1 = 4, x2 = 12, y2 = 3 with an intersection point in (0.925.9.6). This intersection point
with parameters (θ, ρ) defines the line in which (x0, y0), (x1, y1) and (x2, y2) lay [Its].

The combination of the Canny Edge detector and the representation of a line in the
Hough Space will be useful in the implementation of this functionality.

3.2.6.1 Algorithm Description

In our algorithm we start by applying the Canny Edge detector to each frame. This will
result in a binary image with only the edges Be of the frame. In order to get the coor-
dinates with a large count of intersections, we must first create an accumulator with a
length equal to the Hough space were the coordinates will be represented. This length
will correspond to 180 ∗ 2ρ, where θ will have values between [0, 180] and ρ will be be-
tween [−ρ, ρ].

54

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

After the initialization of the accumulator, we scan each pixel of Be searching for a
pixel that is edge. When found, the coordinates for this pixel will be used to generate
a family of lines in the Polar Coordinates system through the equation 3.18. By varying
the θ value in this equation, we obtain its corresponding ρ and increment the count of
intersections in the coordinates (θ, ρ).

After filling the accumulator, we select the pairs of (θ, ρ) with a number of intersec-
tions above a given dynamic threshold. To be selected as a line candidate, each pair (θ, ρ)

has to have a number of intersections above the threshold and be a local maximum. This
is verified by comparing its value with the value of its neighbours in a range of 9× 9.

When a line is selected as a main line we convert its coordinates (θ, ρ) to the Cartesian
Coordinate system. This will result in vector with pairs of points that will later be used
to draw a line in the interface, considered as an important line. The steps taken through
this algorithm can be visualized in Figure 3.17.

(a)

(b)

(d) (c)

Figure 3.17: a) Source image. b) Canny edge detection method applied to the source im-
age. c) Visual representation of the accumulator. Darker areas represent a larger number
of intersections in those (θ, ρ) coordinates. d) Lines drawn in red that represent the main
lines detected in the source image.

3.2.6.2 Interface Display

For its interface, we choose to simply draw the lines over the real feed of the camera. The
photographer can then use the main lines detected to choose a better angle or rearrange
the composition, so that the final viewer has a guidance when looking at the final product.

55

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

Figure 3.18 demonstrates the result of main lines detection applied in a real-time sce-
nario, drawing the prominent lines directly in the viewfinder. In this feature we added
controls to increase or decrease the threshold value, that is also shown on the lower left
corner.

(a)

(b) (c)

Figure 3.18: Main lines detection interface with threshold of 130 (a), 60 (b) and 65 (c).

Since a photo can be highly textured, adding control over the number of lines that
appear on screen, decreases the probability of having too many lines drawn and can
improve the frame-per-second rate at which those lines are shown.

3.2.6.3 Discussion

This algorithm can be quite slow and ineffective if the source image has too many details
or textures. A solution to obtain a speed increase in the algorithm, was to establish a limit
of a maximum of 15 lines that can be detected at any time for any threshold.

As previously mentioned, this algorithm draws lines across the viewfinder which is
a problem of the method used. As an alternative, the method we implemented could be
replaced by a line detection method using the progressive probabilistic Hough Transform
[MGK00], as this presents line segments instead of lines that go across the full height
or width of the frame. Although it claims to be faster, it was not chosen as it would
be necessary to define even more thresholds that could not be easily controlled by the
user. In this case we would have to define the minimum line length and the maximum
line gap between points of the same line, which would be very difficult to determine
experimentally and hard to control in a mobile device.

56

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

In Figure 3.19 we can verify the difference between both methods on the same input
image with the same parameters (minimum line length and maximum line gap set to
default). In Figure 3.19(a) we can verify that it can give the photographer a a more reliable
insight of were the lines converge. On the contrary, Hough Transform with progressive
probabilistic detection in Figure 3.19(b) only shows small scattered segments that make
it hard to understand the point of convergence. A solution could be to try and create
a more relevant line by joining multiple segments but it would only add computational
effort to a device that already struggles dealing with real-time image processing.

(a) (b)

Figure 3.19: Main line detection with regular Hough Transform (a) and with progressive
probabilistic Hough Transform (b).

3.2.7 Horizon Detection

Horizon detection in still images or video sequences contributes to applications like au-
tomatic correction of image tilt and image quality enhancement. In seascapes and land-
scapes, which are genres of photography, a feature that detects the horizon line in real-
time is useful for a correct placement of the line and indicate a tilt correction on the mobile
device. At the pixel level, sky detection can be used for content-based image manipula-
tion, like picture quality improvement using colour enhancement and noise reduction, or
as background detection for 3D depth-map generation [Zaf+06].

Sky detection research has also proven useful for object detection for small unmanned
vehicles [MSH05]. McGee, Sengupta, and Hedrick [MSH05] presented a system for sky
segmentation and horizon detection based on an image colour and texture properties.
For sky segmentation the author used a support vector machine (SVM) for classification
of sky and non-sky pixels in the colour space YCrCb, after smoothing the image with a
Gaussian filter to reduce the effects of noise. After the SVM divides the sky from non-sky
pixels (Figure 3.20(c)), a binary image will be generated that will then suffer successive
erosions and dilations to remove unwanted pixels that were considered sky pixels, as

57

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

shown in Figure 3.20(d). After removing small sections of misclassified pixels, to find the
borders between sky and non-sky regions, it smooths the binary image and classifies all
pixels with value near 0.5 as boundary pixels. After performing the edge detection, the
horizon detection is then applied using the Hough Transformation method as explained
in Section 3.2.6. With the the horizon line, any areas considered as non-sky regions are
then considered as an obstacle. Figure 3.20 shows all the steps taken in this algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 3.20: a) Input image. b) Smoothed image. c) Binary segmentation. d) Result from
erosion and dilation. e) Border between sky and non-sky areas. f) Horizon and obstacle
found.

3.2.7.1 Algorithm Description

For our application, we adapted part of an algorithm described by Zafarifar, Weda, et al.
[ZW+08] that uses both colour and edge features to detect the horizon lines. This algo-
rithm explores the physical phenomenon of colour de-saturation and brightness increase
along zenith-to-horizon direction to calculate the position and angle of the horizon, that
are then refined using edge detection techniques.

This implementation starts by calculating a sky probability map that represents the
probability of each pixel belonging to the sky. This probability assumes that clear sky has
some properties:

1. Pixels in the top area of the image, have a higher probability of being sky-pixels,

2. They have a certain range of colour, when limited to day-light condition,

3. Pixels that represent sky, contain low texture,

4. The speed of change in colour values in horizontal and vertical directions is limited,

5. There is a luminance increase and chrominance decrease along the zenith-to-horizon
direction.

58

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

Taking into account these properties, the probability of a pixel being a sky-pixel (Psky),
can be calculated through a pixel colour, texture, position and gradient features by the
expression

Psky = Pcolour ∗ Ptexture ∗ Pposition ∗ Pgradient. (3.19)

In our implementation we simplified the algorithm by ignoring the gradient information
and consequently the sky luminance and chrominance variations, which resulted in the
expression

Psky = Pcolour ∗ Ptexture ∗ Pposition, (3.20)

described by Herman and Bellers [HB03]. As previously stated, the areas that have a
higher probability of being related to the sky are conventionally at the top of the image.
With that in mind, the probability Pposition can be calculated as

Pposition = e
−
(

L
#lines

)2

, (3.21)

where L is y for a pixel in the position (x, y), and #lines is the total height of the image.
The colour probability distribution, is calculated to each one of the channels in YUV

colour space with the expression

Pcolour = e
−
[(

y−y0
σy

)2
+
(
u−u0
σu

)2
+
(
v−v0
σv

)2
]
, (3.22)

where y,u and v are the values in each channel of the pixel being processed. The rest of
the parameters are determined empirically by the author, as:

y0 = 210, σy = 130;u0 = 150, σu = 40; v0 = 100, σv = 40. (3.23)

The probability function for texture of a pixel is calculated as

Ptexture = e−0.2∗(tt)2 , (3.24)

where tt is the absolute difference of luminance values of a current pixel and the follow-
ing one in the same line.

After calculating the probability of each pixel with the equation 3.21, we can then seg-
ment the probability map and create a binary image using a threshold set as 60, meaning
if the pixel has a probability greater than 60% then it is considered as sky in the binary
image.

After segmenting the sky, we apply the Hough Transform to the resulting mask and
store the values of (ρ, θ). These values will be used on the second part of the algorithm
that uses edge detection methods.

The second part of the algorithm is where we mix both colour and edge detection
methods to find the horizon line. From the first part we stored the (ρCD, θCD) values

59

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

obtained by applying the Hough Transformation to the binary image containing the areas
that were considered sky. The purpose of this is to use these parameters that indicate the
position and angle of a probable horizon line.

For the detection using edges, we start by applying the Canny edge detection method
to the luminance component of the image, and since we are only interested in the most
prominent straight edges, we choose a large value for the low pass filter. This will smooth
the detailed edges yielding in a binary image that contains the significant edges. We
then apply the Hough Transformation to the edge map which will result in a matrix
representing all the lines in the Hough Space similar to Figure 3.17(c).

Since we previously stored the position and angle of the horizon line calculated by
the colour edge detection method, we proceed to multiply a weighting factor in the form
of a 2D Gaussian function to the result of the Hough Transform in the edge detector with
the parameters (ρCD, θCD) obtained previously, as its center and find the pair (ρED, θED)

with the highest value in the post-processed Hough map.

Now with the pairs (ρCD, θCD) and (ρED, θED) that represent a probable horizon line
in each of the methods, we define the horizon line as an average of the ones obtained
from the previous methods.

3.2.7.2 Interface Display

For this feature we chose the simplest way to draw a horizon line which was to draw
the line in the viewfinder. To eliminate the chance of displaying erroneous results, we
took advantage of the Android sensors. Using information given by the mobile device
relative to its accelerometer and magnetic field we were able to filter the results. With this
information we can detect the orientation of the mobile device and compare it with the
line slope. If the slope of the line is vertical/horizontal and the orientation of the mobile
device is horizontal/vertical, the line is then excluded and not drawn. Figure 3.21 has
an illustrative example of the horizon line based on the edge detector and color detector
previously described, as well as the result obtain by merging the two.

3.2.7.3 Discussion

Although this method can perform under the right conditions, it has a high fail rate in
detecting the correct horizon line. Previously we stated that the colour detector was not
fully implemented. Originally the algorithm has into account the physical phenomenon
of colour de-saturation and brightness increase along zenith-to-horizon direction, which
involved extracting the gradient features as expressed in equation 3.19. This was ignored
in an attempt to minimize the computational load on the mobile device. The extraction
of gradient features would also give useful information about the angle and position of
the horizon along with a confidence metric on these parameters. We obtained an angle
and position for the horizon line on the colour detector, however we cannot obtain the

60

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

Figure 3.21: Exemple of horizon detection where the green and blue line are the result of
the edge and color detector respectively. The red line represents the result of combining
both methods.

confidence metric. Without this confidence metric, the edge detector has a high proba-
bility of failure in cases where the image as an object with well defined edges, therefore,
vertical objects might ruin the horizon detection in images with obstructed horizons.

The algorithm has an overall poor performance which is aggravated by the fact that
it is used in real-time. Being used in real-time the mobile device is susceptible to minor
shakes by the users movement. Since it is slow, while the frame is being processed, the
image has already changed and the results displayed belong to frames from the past.
This could be surpassed with mobile devices with higher computational capabilities or
even processing. For this feature, we believe that using external processing server-based
would be advantageous as it could reduce the detection time by at least half of the time
that it currently takes.

Another problem in this algorithm is the fact that it was made to work with images
that have a clear blue sky with a certain tone to fit in the thresholds defined. To detect
other skies, we would have to detect the average sky colour in real-time, and redefine the
threshold based on that information, although this would not be necessarily easy since
the thresholds were determined based on a series of images.

3.2.8 Image Balance

Many of the photography rules of composition relate to the idea of balance. Ideally, we
want our images to be balanced. By "balanced", we mean that no single area of the im-
age draws our eye so much that we get stuck there. A balanced image feels pleasing to
the eye, and not asymmetric in any way or has multiple elements with its visual weight
evenly distributed. Every element in the composition carries a certain amount of visual
weight. To keep the image balanced, it is necessary to compensate for each element with

61

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

a counter-weight through colours, different levels of contrast, or different subject posi-
tions. As described in Section 2.4.1.6, we can easily perceive the balance of an image by
imagining a dividing line through the middle and compare the weight of both sides as it
can be balanced, unbalanced or have any kind of visual tension between the elements.

3.2.8.1 Algorithm Description

We did not follow any previous algorithm as we experimented multiple ways of trying
to find the elements in a picture and explore its size. We explain the algorithm for our
experiments and the algorithm chosen for this feature.

First experiment
For our first experiment we tried to take a simple approach. The first step was to
obtain the left and right part of an image creating two independent regions. Since
we were starting by experimenting a way of detecting symmetry, an easy way to
achieve that would be by finding the edges of both regions using a Laplacian kernel,
and calculate its center of mass. For the center of mass to be close of one another
in both regions, one of the sides had to be flipped in the horizontal. After finding
the centers of mass we tried to see if the image was symmetric by calculating the
Euclidean Distance between both centers of mass.

For a second attempt, instead of just dividing the image in left and right side, we
divided each of the areas into six sub-areas and calculated the center of mass of
each one of those sub-areas. To see if an image was symmetric we opted to count
the number of edges for each subregion and sum the absolute difference between
the edge count of overlapping subregions on both left and right side of the image.

Second experiment
At this point we started to understand that it was important to properly get the
symmetry axis in an image. In this attempt we started by converting the input
frame to the HSV colour space and use the hue channel to perform colour cluster-
ing. We used the implementation of kmeans in OpenCV [Its] to segment the image
into two clusters in a naive attempt to segment the object in the image. After the
clustering, we find the center of mass of each cluster. We then assume that the
perpendicular line between the line segment formed with those two points, is the
symmetry axis in the input frame. After finding the symmetry axis we calculate the
amount of each cluster on each side of the symmetry line. We tried to understand
if a image was symmetric by comparing the amounts of each cluster in both sides
of the symmetry line.

Final algorithm
In the final algorithm, we used a simplified implementation of a method used for
real-time object tracking symmetry [LK06], as this would give us our symmetry
line. To find the symmetry, it starts by converting the input image into an edge

62

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

image using Canny edge filter with a lower threshold of 182 and upper threshold
of 350, where the pixel is accepted as an edge if the gradient value is higher than
the upper threshold, it is rejected if the pixel gradient is below the lower threshold
or it is accepted if the gradient value is between both thresholds and is connected
to a pixel that is above the upper threshold. These threshold values nearly satisfy
the recommendation of a upper:lower ratio of 2:1 [Its]. Each pair of edge pixels, i
and j, votes for a particular ρ and θ in the Hough transform accumulator. In order
to reject noisy edge pixels and to favour votes made by edge pixels with symmetric
image gradients, a Gaussian weight function is used so that the weight of any pixel
(i, j) with the parameters (ρ, θ) in the Hough space, is maximized when gradient
orientations are symmetric about their mid point. This means that for each pair of
(ρ, θ) in the Hough map, its value will be voted by the following equation:

H(ρ, θ) =
∑

i,j∈Γ(ρ,θ)

W (i, j), (3.25)

where Γ(ρ, θ) = {(i, j)|ρ(i, j) = ρ, θ(i, j) = θ}. This means that for a pair (ρ, θ), its
value will be the sum of the weighting function of all pixels (i, j) with the same
parameters (ρ, θ) in the Hough space. The weighting function is described as:

W (i, j) =
1

σ
√

2π
e

−(ψi−ψj)
2

2σ2 , (3.26)

where ψi and ψj are the image gradient angles and σ defines the strictness of the
gradient symmetry criteria. The relation between the image gradient angles and the
level of symmetry is illustrated in Figure 3.22. Horizontal and vertical Sobel filters
are applied to determine the image gradients and using the absolute magnitude of
angles we verify that |ψi − ψj | = 0 which means that there is a symmetry. On the
other end, if |ψi − ψj | ≈ π

2 means that there is no symmetry and therefore, it will
receive a very low weight by the equation 3.26. Figures 3.22(a) and 3.22(b) illustrate
these statements.

After the voting process, a total of three peaks in the Hough map are selected. The
peaks in the Hough accumulator are identified using the Non-Maxima suppression,
which locates the highest value above a threshold in the Hough map, selects it as
its peak and suppresses all its neighbours to zero. In our case, the suppression
neighbourhood of each peak is 1

20ρmax and 1
20θmax. To obtain the lines formed from

the three peaks selected, we average the median point of each line segment and
slopes. The median point will give us a point in the frame that we know for sure
that belongs to the symmetry line and together with the slope, we can calculate
which of the frame borders are intersected by the symmetry line.

The next step to take after understanding where is the symmetry line in the input
frame, is to calculate the weight of the main elements on each side of the symmetry

63

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

(a) (b)

Figure 3.22: Angles used in weight calculations. Arrows represent the image gradient
direction at the edge pixels. [LK06]

line. Knowing the symmetry line we then create two masks that will be used to
differentiate the left from the right side of the line. We combine these masks with
the object segmentation method (Section 3.2.4) obtaining the most salient elements
in each one of the sides.

The final step is to calculate the percentage of amount occupied by the elements
on each side of the symmetry line. By calculating the difference between the oc-
cupation amount on each side we can then classify as balanced if this difference is
more or equal to 70% or unbalanced if the difference is less or equal to 30%. If the
difference does not contemplate any of these cases, it is considered that the image
has a kind of visual tension.

3.2.8.2 Interface Display

Since the purpose of this application is to have simple visual cues, we choose to show
the user the line of symmetry being detected at the current frame and in which of the
categories it belongs, considering the balance detected. As shown in Figure 3.23, on the
upper-left corner, there is a list with the three categories of balance. Given difference per-
centage of occupation amount between the two sides of the symmetry line, one of this
categories is highlighted informing the user if the current scenario is balanced, unbal-
anced or has any kind of visual tension.

3.2.8.3 Discussion

Although it can give an approximate result from what is expected, this feature has some
problems regarding the chosen algorithms. Originally the algorithm described by Li and

64

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

Figure 3.23: Example of the visual cue to inform the user about the scenario balance.

Kleeman [LK06] was intended to detect and track objects in real-time based on its sym-
metric features. Thus, if we imagine a plain background with a simple object, the symme-
try line will be calculated according to its edges, so the line will go across the object. This
proves that even if the scenario is completely one-sided, it can be considered as balanced.
This would depend on the symmetry axis idealized by the user, which is not the case.
This can also raise problems when there is more than one object in the frame, since the
lines formed by the chosen peaks, can all be related to the same object. We then added
a threshold that gradually increases on each iteration when finding the peaks ensuring
that the maximum threshold when finding a peak is

maxthreshold = maxthreshold − (maxthreshold ∗ (0.25 ∗ npeaks)), (3.27)

where maxthreshold starts with the maximum value found on the Hough map and gradu-
ally decreases with the number of peaks found (npeaks).

Figure 3.24 illustrates the problem stated. In Figure 3.24(a) is visible the first problem
discussed, where the image is obviously unbalanced to anyone who sees the picture but
since there are no edges on the right side, the symmetry axis is calculated only with the
edges found on the left side. In this case the result is acceptable as it is possible to also
draw a horizontal symmetry axis making it perfectly balanced but its counterintuitive.

In a scenario with two objects, it becomes possible to select a symmetry axis for each
object and calculate an averaged symmetry line with the two previously found. Figure
3.24(b) illustrates the solution we opted for the second problem. Using a dynamic maxi-
mum threshold (maxthreshold), we were able to select a symmetry axis for each object and
average them, calculating a correct symmetry axis.

However, this solution has some difficulty in classifying unbalanced scenarios with
two objects were one is obviously larger than the other. Figure 3.25 illustrates an example
were the same scenario with two objects of different sizes, are classified differently. This
is due to the fact that if one object is obviously larger than the other, the symmetry axis
is defined based on the larger object most relevant edges, therefore, the edges from the
smallest object are not taken into account.

65

3. SYSTEM DESCRIPTION AND FEATURES 3.2. Features

(a) (b)

Figure 3.24: Examples of an image obviously unbalanced that is considered as balanced
due to the symmetry line calculated (a) and the averaging of two symmetry lines detected
on two different objects (b). The blue and red lines represent two of the peaks found in
the Hough map and the yellow line the resulting of averaging them both.

(a) (b)

Figure 3.25: Examples of an unbalanced image with objects of different sizes where one
is classified as unbalanced (a) and the other as balanced (b), as a result of the calculated
symmetry axis.

66

3. SYSTEM DESCRIPTION AND FEATURES 3.3. Discussion

Besides the problem in the discovery of the symmetry axis, the object segmentation
also has the problems that were discussed in Section 3.2.4.4 where what we consider
an object in the scenario, might not have enough colour contrast relatively to the back-
ground.

The thresholds used in this algorithm were chosen experimentally with samples of
images considered symmetric or unbalanced, which means that the values might not
perform well on various compositions in a real-time case scenario.

3.3 Discussion

Through out this section we described the functionalities and the algorithm implemented
for each one, how we show the information to the user and discuss problems and advan-
tages that they might have.

Since colour is an important part of an image, we described some features that are
related to the colour properties of an input frame. These features include two different
representations of an histogram, one with a bar for each channel and grayscale image
that indicate de range of colours being used as well as the indication of quantity of pixels
near the edges of the scale, and the other with a representation similar to a colour wheel
that indicates the amount of each primary and secondary colour in the Hue spectrum.
Still related to colour properties, since highly colourful images affect the viewer and grab
their attention, we implemented a saturation detector. When the colours of a scenario are
low on saturation it displays a suggestion indicating that a monochromatic filter might
be useful.

A rule followed by professional photographers is to use a small number of colours
and combine them wisely to trigger an emotion in the viewer. With that in mind we
implemented a scoring system that is given to the input frame, based on the number of
colours detected and a display of the template being used, as it can be a monochromatic
or complementary template [CO+06].

More related to the composition of a photography, we also implemented features
based in detecting elements from a real-time feed. The most common detector when
talking about photography is the face detector [Its]. Implemented in a wide variety of
systems now available, we took a little step further in mixing this concept with rules
related to photography, such as the Rule of Thirds (Section 2.4.1.3) and triangular com-
positions [San10]. Although not implemented, these rules could also be used with our
implementation of object segmentation based on saliency maps [Che+11]. The object seg-
mentation, even if dependent on the colour contrast of the object in comparison to the rest
of the background, gives quite accurate results with simple backgrounds.

Besides the simplicity of the background, in photography, simpler photos are consid-
ered to have good aesthetic properties [Kam12]. Therefore, we experimented a couple of
metrics that rate the simplicity of a scenario based on the edges detected. We obtained
the best result with the our third metric that is not only based on the number of edges

67

3. SYSTEM DESCRIPTION AND FEATURES 3.3. Discussion

detected, but also as into account the spatial distribution of those edges [KTJ06].
Still related to the composition, the balance of an image (Section 2.4.1.6) has an im-

portant role on the visual impact onto the viewer. With that in mind we implemented a
feature to evaluate the balance in the scenario. This is based on a detected symmetry line
and the weight of the objects on each side of the symmetry.

The lines that can be found in images are very powerful elements that with a little
practice can add dynamic impact to a photograph in terms of mood as well as how they
guide a viewer in a photo (Section 2.4.1.5). Varying between vertical, horizontal, diagonal
or curved lines, we focused on detecting dominant straight lines without taking into
account their inclination, to help the user find and work with of those important lines.
Still related with lines, the horizon line is is usually the most important when taking a
photography of a seascape of landscape. Although not perfect, our implementation of a
horizon detector [ZW+08] can still be useful when repositioning this line according to the
Rule of Thirds (Section 2.4.1.3).

68

4
Results and Evaluation

To assess the results of our tools, we took various approaches as for testing. In this chap-
ter we describe the methods, results of the tests and inquiries on a group of users.

4.1 Algorithm Comparison

Since we decided to use a modified version of some algorithms to apply them in a real-
time environment, it made sense to compare our results with the ones obtained from the
original algorithms.

One the algorithms we used that was partially implemented, was the object segmen-
tation (Section 3.2.4). For this algorithm we opted for not using Grabcut [RKB04] to refine
the results since the saliency map already gave a good indication of what was the object
in a scenario. To compare with the original algorithm, we used the same dataset as the
author and compared the resulting segmentation masks.

From a subset of 500 images, we ran our implementation and could conclude that
for almost all the images, a significant part of the main subject in the photo was always
detected. Since we decided not to use Grabcut, our results could not be refined and there-
fore our segmentation masks would have a lot of unfilled areas that were still considered
as part of the subject. In other cases, the saliency map that we implemented completely
failed. Some of the reasons for this to fail was the lack of contrast of the subject in com-
parison to the background, as the background might have a higher contrast comparing
to the rest of the image. We could also verify that another thing that highly influences
the results is the brightness, as bright areas were more likely to be chosen as part of the
subject.

As referred in Section 3.2.4, our segmentation mask was based on pixels that were

69

4. RESULTS AND EVALUATION 4.2. Algorithm Execution Time

considered as foreground while all other were background. In an attempt to fill the areas
that were not considered foreground and still belonged to the subject, we considered all
pixels as foreground since they were inside of a bounding area. We also did a comparison
of this method with the original algorithm using the same subset of images. For the tested
images, it fulfilled its purpose. However, in most images it ruins the results because many
background elements are then added to the mask. Some of the results for the methods
tested can be seen and compared in Annex B.

Another algorithm we tested, was the colour template detection. For this feature
we implemented a simpler algorithm instead of simplifying the original one. However,
Cohen-Or et al. [CO+06] did not describe any methods of evaluation for this algorithm.
We then used a couple of images that showed results and compared the results of our
own algorithm. In Annex C it is possible to observe some images used by the author and
compare the results obtained from the original algorithm with our results. From what
we could conclude, our results were not too far off from what was expected and still give
a good indication if the scenario is using a monochromatic or complementary template,
and what are the most salient colours.

The last algorithm we compared was the horizon detection algorithm. We gathered
32 images from Flickr that were labelled with the tags seascape, landscape and horizon,
as these were likely to have a clear horizon line and include some with an obstructed
horizon. The result was evaluated by comparing the position and angle of the detected
horizon line with a manually-annotated horizon line. For each image, the position of the
horizon line was calculated by averaging the vertical position of the two points forming
the line, and used the same two points to calculate its slope then converted to an angle.
In Annex D are the results obtained from the images tested. We could verify that in
the images labelled as seascape and landscape the deviation of the horizon position was
relatively low with only an average relative error of 9.5% and 8.2%, respectively. On the
contrary, images labelled as horizon, had an average relative error of 55%, due to being
images more prominent to edges. However, for the angles, there is a high deviation in
most of the values. This is because the values of the angles are very close to zero, thus
the difference between the calculated value and the original one is almost neglectible but
has high impact in the relative error for being a division of two very small numbers. In
most cases, the angle difference between the real horizon line and the detected horizon
line is small and does not really affect the judgement of where the horizon line is.

4.2 Algorithm Execution Time

Having the purpose of displaying information in real-time, we considered that the execu-
tion times of each algorithm should be taken into account. Slow algorithms are less likely
to be useful in a real-time scenario and might even ruin the experience of the user. With
that in mind, we did performance tests over each feature to understand its reliability in
real-time processing.

70

4. RESULTS AND EVALUATION 4.2. Algorithm Execution Time

4.2.1 Testing tool

These times were taken by generating log files that contain trace information to analyse.
We used the Android’s Debug class to call the methods startMethodTracing() and stop-
MethodTracing(), which start and stop logging of trace information to disk. This option is
very precise since we can specify blocks of code from where we want to generate tracing
data. For all tests we started logging in the moment that the application receives a frame
from the device’s camera, until the processing is done and the view from the current
feature is refreshed [Goob].

After generating the log files, we used a tool called dmtracedump to generate a graphi-
cal call-stack diagram. Figure 4.1 illustrates an example of the generated diagram from a
trace file. In this tree diagram each call is represented as a node, and shows the call flow
(from parent node to child node) using arrows. For each node, dmtracedump shows <ref>
callname (<inc-ms>, <exc-ms>,<numcalls>), where

• <ref> - Call reference number, as used in trace logs,

• <inc-ms> - Inclusive elapsed time (milliseconds spent in method, including all child
methods),

• <exc-ms> - Exclusive elapsed time (milliseconds spent in method, not including any
child methods),

• <numcalls> - Number of calls.

Figure 4.1: Graphical diagram generated from a trace log file.

Using these diagrams, we were able to get the amount of milliseconds spent in a
method (<exc-ms>) and any method called by it (<inc-ms>). With the trace log file we can
obtain the total time it took to perform the computation from the start to finish. For each
feature we took 10 samples and calculated the average time and standard deviation for
the total amount of time it took to perform the trace and the time spent in the method

71

4. RESULTS AND EVALUATION 4.2. Algorithm Execution Time

that processed the data, ignoring the lowest and highest value. This way we expect to
obtain relevant information about the time spent processing the frame and refreshing the
view of each feature.

4.2.2 Results

All the times taken are in Annex A represented by a table with the time spent processing
and the average of total time spent for each sample. Some of these features were tested
under different conditions or parameters to understand the difference in performance.
For example, the saturation detection (Table A.1) was tested in scenarios where the de-
tector successfully indicated low saturation and in scenarios where it failed. We could
conclude by the samples taken that the detector performs better when it fails to detect a
low saturation environment. This is due to the extra computational effort that the device
has to make to convert the frame into grayscale and display it on the viewfinder. How-
ever the algorithm is not that slow and it still performs quite well, disregarding the visual
cue that can easily be replaced by a more appropriate one.

Another feature that we experimented in different scenarios was the face detection
(Table A.6). We experimented detecting one or three faces as well as using the sugges-
tions for improving the composition. As we can conclude from the results, there were
not any significant changes from each one the scenarios. As expected, the most costly
computation was the detection of a face in a frame. In comparison, the calculation of the
suggestion to improve the composition is neglectable.

The detection of main lines is dependent of a threshold, therefore we sampled the
algorithm with different thresholds. The threshold values tested were 160, 100 and 40 as
lower thresholds detect more lines. As we can conclude from Table A.9, for all thresholds
the computational effort was similar regardless of the value.

We also implemented three algorithms to calculate the simplicity on an image, there-
fore, the performance of each one was tested individually (Table A.8). We could conclude
that the fastest method was the second method described by Kao, Wu, and Liu [KWL].
However, as discussed in Section 3.2.5.3, this is the least reliable method comparing to
the other two. On the other hand, the first method [LT08] and the third method [KTJ06]
tested are approximately 50ms slower, which makes it a good option.

From the remaining features, the ones that performed better were the histograms cal-
culation, detection of templates and scoring based on the Hue channel. For the sampled
tests, all these features performed in 50-150ms which can be translated into 6-20 frames-
per-second, where the colour histogram in the Hue channel and colour template detection
had the slowest times.

On the other hand, the slowest features were the object segmentation, the image bal-
ance and the detection of the horizon line, with average times of approximately 240ms,
600ms and 2700ms, respectively. Being more complex algorithms, these results were ex-
pected, however, detecting the image balance and the horizon line, are algorithms too

72

4. RESULTS AND EVALUATION 4.3. Users Testing

demanding to be used in a real-time scenario. Object segmentation and the horizon line
detection are algorithms that give important visual feedback since they work as an over-
lay over the real frame, however, both algorithms perform poorly.

These tests were performed in a Samsung Galaxy Note with Android 4.1. We made
sure that each feature was doing what was expected of it for at least 30 seconds, so that
the results would be the most reliable possible. After that, we extracted the log files from
the mobile device and extracted the execution time from a total of 10 runs for each feature.

4.3 Users Testing

The evaluation of this proof-of-concept tool was made by conducting tests with 11 users.
The test was composed of a set of basic tasks and a questionnaire. In some cases, it led to
a discussion with more experienced test subjects. The tasks were focused on getting an
assessment about the utility and overall satisfaction on the functionalities implemented
and tried to understand if they are useful in a real-time scenario. The questionnaires
consisted in a total of 47 questions using the Likert scale (1-strongly disagree to 5-strongly
agree) and an area for suggestions and comments about what was experienced. During
the evaluation tests, a Samsung Galaxy Note was used for the application.

4.3.1 Participants

As mentioned before, we did tests to a total of 11 subjects of both genders, with 64% males
and 36% females. The ages varied through 22 and 24, being the predominant age 23 with
50% of the users. To understand what kind of background the users had, we realized
a couple of questions to assess their knowledge in photography. We could conclude
that 10 (91%) of the test subjects take photographs, but 7 (64%) claimed to have some
knowledge in the area and classified their level of knowledge as amateur. When asked
about what kind of devices they use to take photographs, the majority answered camera
phones (75%). Some still admitted to use still cameras (27%), instant cameras (18%) and
DSLR cameras (18%). The frequency of use of each device can be seen in Figure F.1
(Annex F).

4.3.2 Questionnaire

For the questionnaires, we asked the users to test all the functionalities and answer a total
of 47 questions using the Likert scale. The users started by experimenting the features
related to colour information.

When asked about the RGB histogram, we could conclude that the tests subjects con-
sidered the feature useful (Figure F.2(d)). When asked if it gave a good idea of the range
of colours being used and if the purpose of the dynamic bar was clear, we obtained a
positive feedback (Figure F.2(a) and F.2(c)). However, we observed during the tests that

73

4. RESULTS AND EVALUATION 4.3. Users Testing

the purpose of the line indicating the amount of pixels near the boundaries was not well
understood and that could be verified by the results (Mo = 3) in Figure F.2(b).

Regarding to the histogram implementation using the Hue channel, the results were
positive. The users strongly agreed that the number of colours in the spectrum was ade-
quate (Figure F.3(a)) and that in this representation, it would be easy to see the most used
colours and its complementary to balance the image (Figure F.3(b)). However, when
asked about its usefulness and if it gave a good idea of the colours being used, the aver-
age of responses was agree (Figure F.3(c) and F.3(d)). We were expecting strongly agree, as
we though it would be much useful in comparison to regular histograms.

We could observe that many test subjects had difficulty in understand the saturation
detection. Although they mostly answered agree when asked if it indicated the usage of
a monochromatic filter and if the feature was useful (Figure F.4(a) and F.4(b)), we could
detect that there were difficulties in understanding the concept of the feature and how to
try it out. We already discussed in Section 3.2.1.3 that it would be difficult to find real-
world scenarios to test this feature, and that could be verified during the testing stage.

About the colour template detector, the average of votes went to agree when asked
about its usefulness and if the difference between scenarios with a monochromatic or
complementary colour schemes was easy to understand (Figure F.5(c) and F.5(d)). How-
ever, we had low results when we asked if the colour scale was adequate, with many of
the users answering neutral (Figure F.5(a)).

When asked about if the hue scoring feature combined well with the colour template
detector and if it would reflect the simplicity of the scenario (Figure F.6(b) and F.6(c)),
users almost unanimously answered agree. Since it was considered to reflect the simplic-
ity, the users also agreed that it was useful (Figure F.6(d)) which was the main concern in
this feature. However, most of the test subjects responded neutral when asked if the scale
used was adequate (Figure F.6(a)).

Face detection is something that is already implemented in multiple photographing
devices nowadays. We obtained very positive answers when we asked about the useful-
ness of using face detection with grids, exploring the triangular composition and the rule
of odds (Figure F.7(a), F.7(b), F.7(c) and F.7(d)). Overall, the test subjects mostly choose
strongly agree when asked if this feature was useful (Figure F.7(f)). We considered this
feature to have the problem of showing too much information, however, many of the test
subjects disagree as we can see in Figure F.7(e).

For the horizon detection, most users agreed that the detector gave the correct result
and it was useful (Figure F.8(a) and F.8(c)). Being used in a real-time environment, we
considered the performance to be an important part of these set of tools. When asked
about if it performed well in real-time, the test subjects confirmed that this feature has
poor performance and is to slow to be used in this conditions (Figure F.8(b)).

When asked about the detection of prominent lines, the results were pretty average.
The test subjects agreed to be useful, the resulting lines corresponded to the leading lines
in the scenario and that the visual cue would facilitate its usage in a composition (Figure

74

4. RESULTS AND EVALUATION 4.3. Users Testing

F.9).
Compared to all the other features, the object segmentation received the lowest scores.

The test subjects responded neutral, when asked about its usefulness and if the result was
accurate (Figure F.10(a) and F.10(b)). These answers were somewhat expected since the
algorithm would need specific conditions to work well, such as having an object with a
salient colour over a a simple background.

For the image simplicity feature, the test subjects gave the same scoring as the other
features regarding its usefulness (Figure F.11(f)). When asked if bars or numbers were
a good visual indicator, the users considered the bars to be better (Figure F.11(a) and
F.11(b)). Since we implemented three different algorithms, we also asked about its results.
The users considered the first implementation [LT08] to have the most accurate results
(Figure F.11(c)). The other two algorithms [KWL; KTJ06] received the same score even
though we considered the algorithm by Ke, Tang, and Jing [KTJ06] had the best results of
all three implementations (Figure F.11(d) and F.11(e)).

In the end the user had to test the image balance feature. We had to explain to some
test subjects what consisted this feature, as it was not obvious to everyone. The ques-
tionnaires results show that the users mostly agreed when asked if the symmetry axis was
accurate, if the result was the expected and if it was useful (Figure F.12).

Overall we received positive feedback in most of the features. Although not perfect,
some tests subjects considered the tools useful, specially the detector of prominent lines,
the image simplicity detector and the histogram using the Hue channel. We also received
a couple of critiques. Although, the interface was not our main concern, some users
suggested that it should give more hints on what each feature actually does. For someone
who does not have enough knowledge in photography, they might not take much benefit
of these tools, and for that to happen it would be needed to implement an interface able
to give useful hints about each one. The algorithms were considered to be too slow which
caused the users to be impatient. Many of the times, we could verify that the user did
not know if it had to wait for a result. It was also suggested to give a feedback while the
algorithm is being run. One of the users suggested to use this features after the photo
was taken to analyse and improve the photo, becoming useful in the learning of how to
take photographs.

75

4. RESULTS AND EVALUATION 4.3. Users Testing

76

5
Conclusions and Future Work

The following chapter presents a brief analysis concerning the work accomplished with
this dissertation, as well as what we intend to improve and implement in future applica-
tions.

5.1 Conclusion

This dissertation introduces a set a features based on rules used by professional photog-
raphers, applied in a real-time scenario when photographing. This was developed as a
proof-of-concept for a smartphone.

After a thorough research, we could conclude that colour and composition were im-
portant properties to attain a better aesthetic result in photography. This solution pro-
vides means for gathering information about the scenario being photographed using
these properties. Using these tools, the user is now able to understand what are the most
used colours, if the scenario is using monochromatic or complementary tones, and the
pureness of the colours being used. With this, the user can try and balance the colours.

The same goes for composition, as this thesis offers tools to detect important elements
such as the horizon line, the subject of a scenario and detect its simplicity. As a helping
tool to obtain an aesthetic result, the user can then take advantage of the suggestions and
reorganize the composition of the scenario.

In our testing stage, we compared our modified versions of algorithms with the origi-
nal ones, we tested the performance of each feature and realized user evaluation to assess
its usefulness and accuracy. From the tests realized, we could conclude that these algo-
rithms can be useful but there is still much room for improvement. A more user oriented
interface, faster algorithms and better devices, would be needed.

77

5. CONCLUSIONS AND FUTURE WORK

It is important to refer that the final decision about the composition and colours is
always of the final user. Although these features try to give a suggestion based on a set of
rules that are considered to give aesthetic results, it is important to know when to ignore
the suggestions and break the rules.

A limitation of this tool is the device in which it runs. Some of the features imple-
mented are computationally heavy which makes them not perfect to be used in a real-
time scenario and loses accuracy. This was confirmed by the performance tests that we
realized.

There are still many improvements and functionalities that could be implemented,
which is the subject of the following section.

5.2 Future Work

In the future, some of the features in our solution must be improved since running these
algorithms in real-time is a heavy task for a mobile device. Including an external process-
ing unit to the architecture, should be an option to take into consideration, as it could be
a way to reduce the processing times.

Since the purpose of this thesis is to give some type of information about the aesthetics
of a photo, in the future, we plan to implement a classification system to rate the photo
after it was taken as it would encourage the user to try and understand the flaws in the
scenario and correct them.

In the end, this set of tools would be fully integrated in a photographic application
along with the a set of utilities for photo manipulation to be used after the capture. This
utilities would include tools such as rotate, crop, apply a set of available filters, and auto
white-balance that could be applied to specific parts of the image. If a more capable
manipulation software was needed, after the capture, the user could annotate directly
on the photo which areas should be corrected and what correction to apply. In this case,
a subset of handwritten words that related to image corrections could be detected and
applied directly. A more user oriented interface with hints explaining each feature would
also be necessary to give the final user an idea of what to expect from it.

Finally, we believe that our solution contributed to this field and could be further
improved and so the writing of a paper, or papers, would follow the delivery of this
document.

78

Bibliography

[AHF06] A. E. Abdel-Hakim and A. A. Farag. “CSIFT: A SIFT descriptor with color
invariant characteristics”. In: Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on. Vol. 2. IEEE. 2006, pp. 1978–1983.

[Ada+10] A. Adams et al. “The Frankencamera: An Experimental Platform for Com-
putational Photography”. In: ACM Trans. Graph. 29.4 (July 2010), 29:1–29:12.

[Ado] Adobe. Adobe Photoshop Express. Accessed: January 2014. URL: http://www.
adoberevel.com/apps/photoshopexpress.

[BTVG06] H. Bay, T. Tuytelaars, and L. Van Gool. “Surf: Speeded up robust features”.
In: Computer Vision–ECCV 2006. Springer, 2006, pp. 404–417.

[Ber83] J. Bertin. “Semiology of graphics: Diagrams, networks, maps (WJ Berg, Trans.)”
In: Madison, WI: The University of Wisconsin Press, Ltd (1983).

[BSS10] S. Bhattacharya, R. Sukthankar, and M. Shah. “A framework for photo-quality
assessment and enhancement based on visual aesthetics”. In: Proceedings of
the international conference on Multimedia. ACM. 2010, pp. 271–280.

[Bol13] S. Bolton. Is your smartphone replacing your camera? Accessed: January 2014.
2013. URL: http://www.torontosun.com/2013/10/25/is-your-
smartphone-replacing-your-camera.

[Bre+12] S. Brewster et al. “Rethinking camera user interfaces”. In: Digital Photography
VIII 8299 (2012).

[BL07] M. Brown and D. G. Lowe. “Automatic panoramic image stitching using
invariant features”. In: International Journal of Computer Vision 74.1 (2007),
pp. 59–73.

[BSBJ03] D. Butler, S. Sridharan, and V. M. Bove Jr. “Real-time adaptive background
segmentation”. In: Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).
2003 IEEE International Conference on. Vol. 3. IEEE. 2003, pp. III–349.

[Can86] J. Canny. “A computational approach to edge detection”. In: Pattern Analysis
and Machine Intelligence, IEEE Transactions on 6 (1986), pp. 679–698.

79

http://www.adoberevel.com/apps/photoshopexpress
http://www.adoberevel.com/apps/photoshopexpress
http://www.torontosun.com/2013/10/25/is-your-smartphone-replacing-your-camera
http://www.torontosun.com/2013/10/25/is-your-smartphone-replacing-your-camera

BIBLIOGRAPHY

[Che+11] M.-M. Cheng et al. “Global contrast based salient region detection”. In: Com-
puter Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE.
2011, pp. 409–416.

[Cle04] M. Cleghorn. Portrait Photography: Secrets of Posing & Lighting. Lark Books,
2004.

[CO+06] D. Cohen-Or et al. “Color harmonization”. In: ACM Transactions on Graphics
(TOG) 25.3 (2006), pp. 624–630.

[DW10] R. Datta and J. Z. Wang. “ACQUINE: aesthetic quality inference engine-real-
time automatic rating of photo aesthetics”. In: Proceedings of the international
conference on Multimedia information retrieval. ACM. 2010, pp. 421–424.

[Dat+06] R. Datta et al. “Studying aesthetics in photographic images using a compu-
tational approach”. In: Computer Vision–ECCV 2006. Springer, 2006, pp. 288–
301.

[DM08] P. E. Debevec and J. Malik. “Recovering high dynamic range radiance maps
from photographs”. In: ACM SIGGRAPH 2008 classes. ACM. 2008, p. 31.

[Gooa] Google. Android NDK Documentation. Accessed: January 2014. URL: http:
//developer.android.com/tools/sdk/ndk/index.html.

[Goob] Google. Android SDK Documentation. Accessed: January 2014. URL: http:
//developer.android.com/sdk/index.html.

[HLC11] J. Haber, S. Lynch, and S. Carpendale. “ColourVis: Exploring colour usage in
paintings over time”. In: Proceedings of the International Symposium on Compu-
tational Aesthetics in Graphics, Visualization, and Imaging. ACM. 2011, pp. 105–
112.

[HB03] S. Herman and E. Bellers. Adaptive segmentation of television images. US Patent
App. 10/538,338. 2003.

[Hoe05] F. Hoenig. “Defining computational aesthetics”. In: Proceedings of the First Eu-
rographics conference on Computational Aesthetics in Graphics, Visualization and
Imaging. Eurographics Association. 2005, pp. 13–18.

[HR04] P. Howarth and S. Rüger. “Evaluation of texture features for content-based
image retrieval”. In: Image and Video Retrieval. Springer, 2004, pp. 326–334.

[IK88] J. Illingworth and J. Kittler. “A survey of the Hough transform”. In: Computer
vision, graphics, and image processing 44.1 (1988), pp. 87–116.

[Its] Itseez. OpenCV. Accessed: January 2014. URL: http://opencv.org/.

[Kam12] H. J. Kamps. The Rules of Photography and When to Break Them. CRC Press,
2012.

[KWL] C.-T. Kao, H.-F. Wu, and Y.-T. Liu. “Automatic Aesthetic Photo-Rating Sys-
tem”. In: ().

80

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://opencv.org/

BIBLIOGRAPHY

[KTJ06] Y. Ke, X. Tang, and F. Jing. “The design of high-level features for photo qual-
ity assessment”. In: Computer Vision and Pattern Recognition, 2006 IEEE Com-
puter Society Conference on. Vol. 1. IEEE. 2006, pp. 419–426.

[KV12] S. S. Khan and D. Vogel. “Evaluating visual aesthetics in photographic por-
traiture”. In: Proceedings of the Eighth Annual Symposium on Computational Aes-
thetics in Graphics, Visualization, and Imaging. Eurographics Association. 2012,
pp. 55–62.

[LM07] J.-B. Labrune and W. Mackay. “Sketchcam: creative photography for chil-
dren”. In: Proceedings of the 6th international conference on Interaction design and
children. ACM. 2007, pp. 153–156.

[LR87] J.-C. Lemagny and A. Rouillé. A History of Photography. Vol. 11. Cambridge
University Press New York, 1987.

[Leo13] H. Leonard. There Will Soon Be One Smartphone For Every Five People In The
World. Accessed: January 2014. 2013. URL: http://www.businessinsider.
com/15-billion-smartphones-in-the-world-22013-2.

[LK06] W. H. Li and L. Kleeman. “Real time object tracking using reflectional sym-
metry and motion”. In: Intelligent Robots and Systems, 2006 IEEE/RSJ Interna-
tional Conference on. IEEE. 2006, pp. 2798–2803.

[Lin+13] J. Linder et al. “PixelTone: a multimodal interface for image editing”. In:
CHI’13 Extended Abstracts on Human Factors in Computing Systems. ACM. 2013,
pp. 2829–2830.

[Liu+10] L. Liu et al. “Optimizing photo composition”. In: Computer Graphics Forum.
Vol. 29. 2. Wiley Online Library. 2010, pp. 469–478.

[Low99] D. G. Lowe. “Object recognition from local scale-invariant features”. In: Com-
puter vision, 1999. The proceedings of the seventh IEEE international conference on.
Vol. 2. Ieee. 1999, pp. 1150–1157.

[LWT11] W. Luo, X. Wang, and X. Tang. “Content-based photo quality assessment”.
In: Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE. 2011,
pp. 2206–2213.

[LT08] Y. Luo and X. Tang. “Photo and video quality evaluation: Focusing on the
subject”. In: Computer Vision–ECCV 2008. Springer, 2008, pp. 386–399.

[Man07] B. Manav. “Color-emotion associations and color preferences: A case study
for residences”. In: Color Research & Application 32.2 (2007), pp. 144–150.

[MM96] B. S. Manjunath and W.-Y. Ma. “Texture features for browsing and retrieval
of image data”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 18.8 (1996), pp. 837–842.

81

http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2
http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2

BIBLIOGRAPHY

[MGK00] J. Matas, C. Galambos, and J. Kittler. “Robust detection of lines using the pro-
gressive probabilistic hough transform”. In: Computer Vision and Image Under-
standing 78.1 (2000), pp. 119–137.

[MSH05] T. G. McGee, R. Sengupta, and K. Hedrick. “Obstacle detection for small au-
tonomous aircraft using sky segmentation”. In: Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE. 2005,
pp. 4679–4684.

[Mic] Microsoft. Microsoft Photosynth. Accessed: January 2014. URL: http://photosynth.
net/.

[Nób13] R. P. d. S. Nóbrega. “Interactive acquisition of spatial information from im-
ages for multimedia applications”. MA thesis. Faculdade de Ciências e Tec-
nologia, 2013.

[Pul+09] K. Pulli et al. “Mobile visual computing”. In: Ubiquitous Virtual Reality, 2009.
ISUVR’09. International Symposium on. IEEE. 2009, pp. 3–6.

[RD06] E. Rosten and T. Drummond. “Machine learning for high-speed corner de-
tection”. In: Computer Vision–ECCV 2006. Springer, 2006, pp. 430–443.

[RKB04] C. Rother, V. Kolmogorov, and A. Blake. “Grabcut: Interactive foreground ex-
traction using iterated graph cuts”. In: ACM Transactions on Graphics (TOG).
Vol. 23. 3. ACM. 2004, pp. 309–314.

[SGS08] K. E. van de Sande, T. Gevers, and C. G. Snoek. “A comparison of color fea-
tures for visual concept classification”. In: Proceedings of the 2008 international
conference on Content-based image and video retrieval. ACM. 2008, pp. 141–150.

[San10] J. Santos. Fotografia: Luz, Exposição, Composição, Equipamento. Edições Centro
Atlântico, 2010.

[Sha13] V. Sharon. Get started with Android 4.4 KitKat’s advanced photo editor. Accessed:
January 2014. 2013. URL: http://howto.cnet.com/8301- 11310_
39-57611362-285/get-started-with-android-4.4-kitkats-

advanced-photo-editor/.

[Sze11] R. Szeliski. Computer vision: algorithms and applications. Springer, 2011.

[Sze12] R. Szeliski. “Open platforms for computational photography: technical per-
spective.” In: Commun. ACM 55.11 (2012), p. 89. URL: http://dblp.uni-
trier.de/db/journals/cacm/cacm55.html#Szeliski12.

[SS97] R. Szeliski and H.-Y. Shum. “Creating full view panoramic image mosaics
and environment maps”. In: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques. ACM Press/Addison-Wesley Publish-
ing Co. 1997, pp. 251–258.

82

http://photosynth.net/
http://photosynth.net/
http://howto.cnet.com/8301-11310_39-57611362-285/get-started-with-android-4.4-kitkats-advanced-photo-editor/
http://howto.cnet.com/8301-11310_39-57611362-285/get-started-with-android-4.4-kitkats-advanced-photo-editor/
http://howto.cnet.com/8301-11310_39-57611362-285/get-started-with-android-4.4-kitkats-advanced-photo-editor/
http://dblp.uni-trier.de/db/journals/cacm/cacm55.html#Szeliski12
http://dblp.uni-trier.de/db/journals/cacm/cacm55.html#Szeliski12

BIBLIOGRAPHY

[Ton+05] H. Tong et al. “Classification of digital photos taken by photographers or
home users”. In: Advances in Multimedia Information Processing-PCM 2004.
Springer, 2005, pp. 198–205.

[VJ11] A Vavilin and K.-H. Jo. “Fast HDR image generation from multi-exposed
multiple-view LDR images”. In: Visual Information Processing (EUVIP), 2011
3rd European Workshop on. IEEE. 2011, pp. 105–110.

[Vaz] F. G. Vazquez. Camera FV-5. Accessed: January 2014. URL: http://www.
camerafv5.com.

[VJ01] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of sim-
ple features”. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE. 2001,
pp. I–511.

[Yan+04] T. Yang et al. “Real-time and accurate segmentation of moving objects in dy-
namic scene”. In: Proceedings of the ACM 2nd international workshop on Video
surveillance & sensor networks. ACM. 2004, pp. 136–143.

[Yeh+10] C.-H. Yeh et al. “Personalized photograph ranking and selection system”. In:
Proceedings of the international conference on Multimedia. ACM. 2010, pp. 211–
220.

[ZW+08] B. Zafarifar, H. Weda, et al. “Horizon detection based on sky-color and edge
features”. In: Electronic Imaging 2008. International Society for Optics and
Photonics. 2008, pp. 682220–682220.

[Zaf+06] B. Zafarifar et al. “Blue sky detection for picture quality enhancement”. In:
Advanced Concepts for Intelligent Vision Systems. Springer. 2006, pp. 522–532.

83

http://www.camerafv5.com
http://www.camerafv5.com

BIBLIOGRAPHY

84

A
Algorithms Execution Times

Execution Time (ms)
Success Fail
1 52 117
2 30 105
3 35 115
4 31 139
5 40 119
6 58 111
7 50 116
8 30 115
9 16 117

10 32 178
Average (ms) 37.40 118.63

Standard deviation (ms) 8.98 8.55
Total Time (ms)

Average 75.92 147.77
Standard deviation 16.55 29.78

Table A.1: Total time spent processing a frame and displaying the result, and execution
times of the saturation detection algorithm in cases where the scenario is/isn’t saturated.

85

A. ALGORITHMS EXECUTION TIMES

Execution Time (ms)
1 21
2 46
3 32
4 43
5 64
6 42
7 28
8 31
9 65

10 37
Average (ms) 40.38

Standard deviation (ms) 11.48
Total Time (ms)

Average 85.60
Standard deviation 27.84

Table A.2: Total time spent processing a frame and displaying the result, and execution
time of calculating the colour histograms using the RGB channels and grayscale.

Execution Time (ms)
1 68
2 109
3 147
4 95
5 71
6 83
7 60
8 114
9 77
10 106

Average (ms) 98.13
Standard deviation (ms) 27.38

Total Time (ms)
Average 152.17

Standard deviation 20.63

Table A.3: Total time spent processing a frame and displaying the result, and execution
time of calculating the histograms using the hue channel.

86

A. ALGORITHMS EXECUTION TIMES

Execution Time (ms)
1 67
2 117
3 100
4 76
5 60
6 86
7 61
8 54
9 74

10 109
Average (ms) 77.63

Standard deviation (ms) 21.98
Total Time (ms)

Average 128.28
Standard deviation 24.26

Table A.4: Total time spent processing a frame and displaying the result, and execution
time of calculating the colour templates.

Execution Time (ms)
1 66
2 55
3 41
4 67
5 54
6 67
7 57
8 41
9 53

10 61
Average (ms) 55.38

Standard deviation (ms) 10.14
Total Time (ms)

Average 56.75
Standard deviation 8.29

Table A.5: Total time spent processing a frame and displaying the result, and execution
time of calculating the score based on the number of colours being used from the Hue
channel.

87

A. ALGORITHMS EXECUTION TIMES

Execution Time (ms)
1 Face 3 Faces 1 Face w/ Comp. 3 Faces w/ Comp.
1 72 48 52 63
2 64 88 34 99
3 41 30 55 50
4 72 212 33 53
5 47 89 39 59
6 41 30 54 52
7 73 33 50 40
8 63 33 31 66
9 70 31 60 56

10 52 67 60 42
Average (ms) 60.13 52.38 47.13 55.13

Standard deviation (ms) 11.99 25.50 10.32 7.64
Total Time (ms)

Average 93.24 85.99 78.60 92.99
Standard deviation 14.78 31.23 9.79 11.95

Table A.6: Total time spent processing a frame and displaying the result, and execution
time of finding one or three faces while using or not the composition rules.

Execution Time (ms)
1 193
2 187
3 257
4 209
5 198
6 191
7 184
8 197
9 193

10 109
Average (ms) 194

Standard deviation (ms) 7.65
Total Time (ms)

Average 239.52
Standard deviation 8.18

Table A.7: Total time spent processing a frame and displaying the result, and execution
time of calculating the saliency map and segmenting the object.

88

A. ALGORITHMS EXECUTION TIMES

Execution Time (ms)
Method 1 [LT08] Method 2 [KWL] Method 3 [KTJ06]
1 125 139 250
2 110 82 191
3 168 113 216
4 95 83 175
5 118 108 162
6 144 79 148
7 94 102 147
8 116 142 167
9 154 104 148
10 174 119 139

Average (ms) 128.75 106.25 169.25
Standard deviation (ms) 24.48 18.65 24.34

Total Time (ms)
Average 172.29 143.14 221.28

Standard deviation 33.59 32.33 37.62

Table A.8: Total time spent processing a frame and displaying the result, and execution
time of calculating the simplicity with each one of the tested methods.

Execution Time (ms)
T = 40 T = 100 T = 160
1 354 283 489
2 374 313 384
3 478 314 382
4 387 406 376
5 381 321 472
6 366 299 389
7 349 303 404
8 373 281 411
9 412 332 432

10 380 320 363
Average (ms) 378.38 310.63 406.25

Standard deviation (ms) 16.94 15.24 32.31
Total Time (ms)

Average 434.18 356.56 455.28
Standard deviation 50.29 25.10 43.41

Table A.9: Total time spent processing a frame and displaying the result, and execution
time of finding the most relevant lines in a scenario with different thresholds (T).

89

A. ALGORITHMS EXECUTION TIMES

Execution Time (ms)
1 1721
2 2848
3 2874
4 2983
5 2897
6 2731
7 2562
8 1704
9 1707

10 1729
Average (ms) 2383.63

Standard deviation (ms) 560.30
Total Time (ms)

Average 2659.29
Standard deviation 485.30

Table A.10: Total time spent processing a frame and displaying the result, and execution
time of finding the horizon line.

Execution Time (ms)
1 361
2 332
3 336
4 357
5 327
6 331
7 296
8 349
9 364

10 296
Average (ms) 336.13

Standard deviation (ms) 20.55
Total Time (ms)

Average 593.68
Standard deviation 111.35

Table A.11: Total time spent processing a frame and displaying the result, and execution
time of calculating the image balance.

90

B
Object Segmentation Results

Comparison

91

B. OBJECT SEGMENTATION RESULTS COMPARISON

(a) (b) (c)

Figure B.1: Example of correct object segmentation of the implemented algorithm (c)
only using the pixels considered as foreground in comparison to the original algorithm
(b) [Che+11].

92

B. OBJECT SEGMENTATION RESULTS COMPARISON

(a) (b) (c)

Figure B.2: Example of failed object segmentation of the implemented algorithm (c) only
using the pixels considered as foreground in comparison to the original algorithm (b)
[Che+11]. 93

B. OBJECT SEGMENTATION RESULTS COMPARISON

(a) (b) (c)

Figure B.3: Example of correct object segmentation of the implemented algorithm (c)
using the pixels considered as foreground and background in comparison to the original
algorithm (b) [Che+11].

94

C
Colour Template Detection Results

Comparison

95

C. COLOUR TEMPLATE DETECTION RESULTS COMPARISON

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure C.1: Source images (a, d, g, j) and templates detected by the original algorithm
implemented by Cohen-Or et al. [CO+06] (b, e, h, k) in comparison to the templates
detected by our algorithm (c, f, i, l). 96

D
Horizon Detection Results

LANDSCAPe Real Algorithm Absolute Error Relative Error
Position Angle Position Angle Position Angle Position Angle

#1 336.5 0.00098 309 -0.00781 27.5 0.00879 8.17% 899.98%
#2 305.5 0.03222 283 0.14258 22.5 0.11037 7.36% 342.59%
#3 151.5 -0.01269 151 -0.03417 0.5 0.02147 0.33% 169.14%
#4 152.5 0.00488 155 -0.05317 2.5 0.05806 1.64% 1188.98%
#5 169.5 0.00488 165 0.00098 4.5 0.00391 2.65% 80.00%
#6 726 0.07858 853 0.00130 127 0.07728 17.49% 98.34%
#7 170.5 0.00293 165 -0.06923 5.5 0.07215 3.23% 2462.89%
#8 220.5 -0.06728 233 -0.07991 12.5 0.01263 5.67% 18.77%
#9 166.5 0.00684 155 0.00879 11.5 0.00195 6.91% 28.57%

#10 168.5 0.02246 168 0.00879 0.5 0.01367 0.30% 60.86%
#11 263 -0.00195 236 -0.01660 27 0.01465 10.27% 749.92%
#12 337.5 0.01465 331 0.00879 6.5 0.00586 1.93% 40.00%
#13 440 -0.00195 325 -0.91620 115 0.91424 26.14% 46809.28%
#14 361 0.02343 449 0.50979 88 0.48636 24.38% 2075.50%
#15 161.5 0.03612 204 0.03514 42.5 0.00098 26.32% 2.70%

Average 9.52% 3668.50%

Table D.1: Detection results of the implemented algorithm for each of the test images
labelled as landscape. Absolute error indicates the absolute difference between each pa-
rameter and the manually-annotated horizon line. Relative error is the absolute error
normalized to the corresponding parameter of the manually-annotated horizon line.

97

D. HORIZON DETECTION RESULTS

SEASCAPE Real Algorithm Absolute Error Relative Error
Position Angle Position Angle Position Angle Position Angle

#1 313.5 0.00488 323 0.01758 9.5 0.01269 3.03% 259.97%
#2 210.5 0.06534 231 0.00098 20.5 0.06436 9.74% 98.51%
#3 354.5 0.01660 371 0.02636 16.5 0.00976 4.65% 58.80%
#4 429.5 0.02441 295 0.03563 134.5 0.01122 31.32% 45.97%
#5 165 0.03332 167 0.06048 2 0.02716 1.21% 81.51%
#6 276 0.02343 286 0.00879 10 0.01464 3.62% 62.49%
#7 173 0.02148 167 0.06048 6 0.03900 3.47% 181.56%
#8 258.5 0.00098 236 -0.01660 22.5 0.01758 8.70% 1799.85%

Average: 8.22% 323.58%

Table D.2: Detection results of the implemented algorithm for each of the test images la-
belled as seacape. Absolute error indicates the absolute difference between each parameter
and the manually-annotated horizon line. Relative error is the absolute error normalized
to the corresponding parameter of the manually-annotated horizon line.

HORIZON Real Algorithm Absolute Error Relative Error
Position Angle Position Angle Position Angle Position Angle

#1 465.5 -0.00684 209 0.03514 256.5 0.04198 55.10% 614.08%
#2 563.5 -0.02636 427 -0.01660 136.5 0.00976 24.22% 37.03%
#3 156.5 -0.00488 472 0.08718 315.5 0.09206 201.60% 1885.48%
#4 427 0.02343 184 0.03563 243 0.01220 56.91% 52.05%
#5 171.5 0.00098 373 0.21955 201.5 0.21857 117.49% 22381.74%
#6 304 -0.00586 254 0.46365 50 0.46951 16.45% 8013.01%
#7 464 0.00391 437 -0.03465 27 0.03856 5.82% 987.15%
#8 451 0.00596 452 0.02683 1 0.02087 0.22% 349.90%
#9 147 0.00977 222 0.00098 75 0.00879 51.02% 90.00%

Average: 59.22% 4224.54%

Table D.3: Detection results of the implemented algorithm for each of the test images
labelled as horizon. Absolute error indicates the absolute difference between each pa-
rameter and the manually-annotated horizon line. Relative error is the absolute error
normalized to the corresponding parameter of the manually-annotated horizon line.

98

E
Users Questionnaires

99

ClearPhoto - Questionnaire 1

User Data

1. Gender? M 2 F 2
2. Age?

User’s Past Experience

3. Do you take photographs? Yes 2 No 2
4. Do you have any knowledge in photography? Yes 2 No 2
5. If yes, how do you classify your knowledge in photography? Professional 2 Amateur 2
6. If yes, what kind of device do you normally use to take photographs?

2 Still cameras Never 2—2—2—2—2 Regularly

2 Instant cameras Never 2—2—2—2—2 Regularly

2 DSLR cameras Never 2—2—2—2—2 Regularly

2 Camera phone Never 2—2—2—2—2 Regularly

2 Other: Never 2—2—2—2—2 Regularly

About this questionnaire

RGB Histograms

7. The purpose of the dynamic bar is clear

Strongly disagree 2—2—2—2—2 Strongly agree

8. The purpose of the growing line is clear

Strongly disagree 2—2—2—2—2 Strongly agree

9. Gives a good idea of the range of colours being used

Strongly disagree 2—2—2—2—2 Strongly agree

10. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Hue Colour Histogram

11. The number of colours in the spectrum is adequate

Strongly disagree 2—2—2—2—2 Strongly agree

12. Can easily see the most used colour and which complementary colour should be used to
balance the image

Strongly disagree 2—2—2—2—2 Strongly agree

13. Gives a good idea of the range of colours being used

Strongly disagree 2—2—2—2—2 Strongly agree

14. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Saturation Detection

15. The visual cue for this feature encourages the usage of a monochromatic filter

Strongly disagree 2—2—2—2—2 Strongly agree

16. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Colour Template Detector

17. The colour scale is adequate

ClearPhoto - Questionnaire 2

Strongly disagree 2—2—2—2—2 Strongly agree

18. This feature foes along well with the hue scoring feature

Strongly disagree 2—2—2—2—2 Strongly agree

19. It is easy to understand the difference between scenarios with a monochromatic or comple-
mentary colour schemes

Strongly disagree 2—2—2—2—2 Strongly agree

20. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Hue Count Score

21. The scoring scale is adequate

Strongly disagree 2—2—2—2—2 Strongly agree

22. This feature goes along well with the colour template detection

Strongly disagree 2—2—2—2—2 Strongly agree

23. The scoring can reflect the simplicity of a scenario

Strongly disagree 2—2—2—2—2 Strongly agree

24. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Face Detection

25. This feature is useful when used with rule of thirds or golden rule of thirds

Strongly disagree 2—2—2—2—2 Strongly agree

26. The connection between three faces is useful to explore the rule of odds

Strongly disagree 2—2—2—2—2 Strongly agree

27. The connections between three faces is useful to explore the triangular composition

Strongly disagree 2—2—2—2—2 Strongly agree

28. The suggestive placements are useful

Strongly disagree 2—2—2—2—2 Strongly agree

29. When used with a grid, it is too much visual information

Strongly disagree 2—2—2—2—2 Strongly agree

30. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Horizon Detection

31. The resulting line gives the expected horizon line

Strongly disagree 2—2—2—2—2 Strongly agree

32. This feature performs well in real-time

Strongly disagree 2—2—2—2—2 Strongly agree

33. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Main Lines Detection

34. The resulting lines correspond to the leading lines in the scenario

Strongly disagree 2—2—2—2—2 Strongly agree

35. The visual cue facilitates the usage of leading lines in a composition

Strongly disagree 2—2—2—2—2 Strongly agree

36. This tool is useful in a real scenario

ClearPhoto - Questionnaire 3

Strongly disagree 2—2—2—2—2 Strongly agree

Generic Object Segmentation

37. The object segmentation is accurate

Strongly disagree 2—2—2—2—2 Strongly agree

38. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Image Simplicity Detection

39. Bars are a good visual indicator for this feature

Strongly disagree 2—2—2—2—2 Strongly agree

40. Numbers are a good visual indicator for this feature

Strongly disagree 2—2—2—2—2 Strongly agree

41. The first method displays a good result for simplicity of the scenario

Strongly disagree 2—2—2—2—2 Strongly agree

42. The second method displays a good result for simplicity of the scenario

Strongly disagree 2—2—2—2—2 Strongly agree

43. The third method displays a good result for simplicity of the scenario

Strongly disagree 2—2—2—2—2 Strongly agree

44. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Image Balance Detection

45. The symmetry axis is accurate

Strongly disagree 2—2—2—2—2 Strongly agree

46. The visual cue displays a correct result from what was expected

Strongly disagree 2—2—2—2—2 Strongly agree

47. This tool is useful in a real scenario

Strongly disagree 2—2—2—2—2 Strongly agree

Suggestions and Comments

48. Any comments and suggestions are appreciated.

F
Users Questionnaire Results

103

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d) (e) (f)

Figure F.1: Results to the question Q6.

104

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d)

Figure F.2: Results to the question Q7 (a), Q8 (b), Q9 (c), Q10 (d).

105

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d)

Figure F.3: Results to the question Q11 (a), Q12 (b), Q13 (c), Q14 (d).

106

F. USERS QUESTIONNAIRE RESULTS

(a) (b)

Figure F.4: Results to the question Q15 (a), Q16 (b).

107

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d)

Figure F.5: Results to the question Q17 (a), Q18 (b), Q19 (c), Q20 (d).

108

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d)

Figure F.6: Results to the question Q21 (a), Q22 (b), Q23 (c), Q24 (d).

109

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d) (e) (f)

Figure F.7: Results to the question Q25 (a), Q26 (b), Q27 (c), Q28 (d), Q29 (e), Q30 (f).

110

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

Figure F.8: Results to the question Q31 (a), Q32 (b), Q33 (c).

(a) (b) (c)

Figure F.9: Results to the question Q34 (a), Q35 (b), Q36 (c).

111

F. USERS QUESTIONNAIRE RESULTS

(a) (b)

Figure F.10: Results to the question Q37 (a), Q38 (b).

112

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

(d) (e) (f)

Figure F.11: Results to the question Q39 (a), Q40 (b), Q41 (c), Q42 (d), Q43 (e), Q44 (f).

113

F. USERS QUESTIONNAIRE RESULTS

(a) (b) (c)

Figure F.12: Results to the question Q45 (a), Q46 (b), Q47 (c).

114

	Introduction
	Problem Description and Objectives
	Presented Solution
	Contributions
	Document Organization

	Related Work
	Fundamental Concepts of Photography
	Light
	Exposure
	Shutter
	Aperture
	Depth of Field
	ISO
	White Balance

	Processing Techniques for Photography
	Long-Exposure Photography
	High Dynamic Range Imaging
	Panoramic Photography

	Image Capture and Processing Applications
	Image Capture Applications
	Image Processing Applications

	Image Evaluation
	Composition Rules
	Evaluation of Aesthetic Features
	Practical Application of Aesthetic Evaluation Systems

	Computer Vision Algorithms
	Keypoint Detection
	Colour Features
	Texture Features
	Discussion

	System Description and Features
	System Description
	Concept
	Architecture

	Features
	Colour Histograms and Average Saturation
	Colour Templates and Hue Counting
	Face Detection and Composition Guidelines
	Object Segmentation
	Image Simplicity
	Main Line Detection
	Horizon Detection
	Image Balance

	Discussion

	Results and Evaluation
	Algorithm Comparison
	Algorithm Execution Time
	Testing tool
	Results

	Users Testing
	Participants
	Questionnaire

	Conclusions and Future Work
	Conclusion
	Future Work

	Algorithms Execution Times
	Object Segmentation Results Comparison
	Colour Template Detection Results Comparison
	Horizon Detection Results
	Users Questionnaires
	Users Questionnaire Results

