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Resumo 

A dinâmica da expressão genética da Escherichia coli é controlada a nível da iniciação da 

transcrição, que tem início quando uma holoenzima de RNA polimerase, constituída pelo 

núcleo da enzima RNA polimerase e o factor σ, reconhece a sequência promotora de um gene. 

Sob diferentes condições, diferentes factores σ são usados. Para além disto, alguns 

promotores requerem um factor σ específico, enquanto outros têm menos especificidade. A 

concentração dos factores σ varia consoante o factor e a fase de crescimento celular. 

Dado que a influência dos factores σ na cinética de iniciação da transcrição é 

desconhecida, pretende-se neste estudo caracterizar a sua dinâmica, em condições de 

crescimento óptimas, por diferentes factores σ sob controlo de dois promotores, PtetA e PBAD, 

nas fases exponencial e estacionária de crescimento celular. São utilizadas células mutantes, 

sem o factor σ54 ou sem o factor σ38, e compara-se a dinâmica da iniciação da transcrição com a 

das células não mutantes, para os promotores nas duas fases de crescimento celular. As 

moléculas de RNA são detectadas logo que produzidas, através do método de marcação MS2-

GFP e são obtidas as distribuições dos intervalos de tempo entre a produção consecutiva de 

moléculas de RNA. 

Dos resultados obtidos conclui-se que: PtetA não é afectado pela composição dos factores σ 

nas duas fases de crescimento celular em análise, enquanto PBAD o é; a dinâmica da iniciação da 

transcrição é influenciada pelo promotor usado; existem 3 passos limitantes na iniciação da 

transcrição sob controlo dos dois promotores para as 3 estirpes durante as fases de 

crescimento em análise; as distribuições dos intervalos obtidos não são do tipo exponencial; a 

produção de RNA é sub-Poissonian; os resultados do modelo estão de acordo com as medidas 

in vivo para PtetA enquanto para PBAD existem algumas diferenças. 

 

Palavras-chave: factor σ, iniciação da transcrição, cinética da produção de RNA, simulação 

estocástica. 
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Abstract 

Gene expression dynamics in Escherichia coli is controlled at the transcription initiation 

stage, which begins when an RNA polymerase holoenzyme, composed of RNA polymerase core 

enzyme and the σ factor, recognizes the promoter sequence of a gene. Under different 

conditions, different σ factors are used. Also, some promoters require a specific σ factor, while 

others have less specificity. The intracellular levels of σ factors vary between σ factors and with 

the cell growth phase. 

It is still unknown whether different σ factors will lead to differing kinetics of transcription 

initiation, thereby, in this study it will be characterized the dynamics of this process by 

different σ factors, under optimal growth conditions and under the control of either of two 

promoters, PtetA and PBAD, during the exponential and stationary growth phases. Mutant cells, 

lacking σ54 or σ38 were used and the dynamics of transcription initiation was compared with 

wild-type cells, for each of the two promoters and during each of the two growth phases. For 

this, RNA molecules are detected as soon as they are produced in each cell, using an MS2-GFP 

tagging method, and the distribution of time intervals between consecutive RNA productions 

are obtained in each condition. 

From the results obtained it is concluded that: PtetA is not affected by the σ factors’ 

population composition during the two growth cellular phases studied, while PBAD it is ; the 

dynamics of transcription initiation is affected by the promoter used; there are 3 rate-limiting 

steps in transcription initiation under control of the two promoters for the 3 strains during the 

phases analyzed; the distribution of the intervals are not exponential-like; RNA production is 

sub-Poissonian; the results of the model developed are in agreement with the observations 

from in vivo measurements under control of PtetA, while for PBAD there are some differences. 

 

 

Keywords: σ factor, transcription initiation, kinetics of RNA production, stochastic simulation. 
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1. Introduction 

Every living organism ensures its survival by following the cell dogma (Crick, 1970), which is 

scripted in the chromosome inherited from its parent(s) and passed down to its children. 

Following this dogma, the pieces of information stored in the chromosome, known as genes, 

specific sequences of nucleotides encoded in the deoxyribonucleic acid (DNA), are expressed 

through two complex processes. The first process, known as transcription, is a crucial step in 

gene expression and its regulation. The second process is translation. In transcription, an 

enzyme called RNA polymerase (RNAp) reads the DNA and makes a complementary messenger 

RNA strand (mRNA). Upon released, mRNA is either modified or immediately translated by 

ribosome to create proteins, which are the functional units in cells (Alberts et al., 2008).  

Gene expression has a stochastic nature, which causes cell to cell variability in the number 

of RNA and protein molecules in cells of a genetically identical population (Süel, Garcia-Ojalvo, 

Liberman, & Elowitz, 2006). Single-cell experiments have shown that there are fluctuations in 

rate of production of RNA and proteins over time (Elowitz, Levine, Siggia, & Swain, 2002).  

The bacterium Escherichia coli (E. coli) has been used as a model organism in studies 

related to transcription. In vitro studies established that transcription initiation is a multi-step 

process (Buc & McClure, 1985) which takes a long time and plays an important role in 

determining the mean and noise in mRNA. The duration of each step vary between promoters 

(Lutz, Lozinski, Ellinger, & Bujard, 2001), also with temperature (Buc & McClure, 1985) and 

with the concentration of Mg2+ and others metabolites (Suh, Leirmo, Record, & Jr., 1992), 

among other reasons. It is known that transcription is a stochastic process (H H McAdams & 

Arkin, 1999) and recent in vivo studies showed that it is a sub-Poissonian process (Kandhavelu 

et al., 2011) under weak and medium induction levels. The same studies revealed that 

transcription initiation in vivo has at least two elementary steps. 

Recent studies also recognized that in transcription, there is a sensoring factor that 

enables specific binding of RNA polymerase to gene promoters. This factor, σ (sigma) factor, is 

a single subunit of the transcription machinery of E. coli that acts as a sensor guiding RNA 

polymerase to specific binding sites on promoters (Gruber & Gross, 2003). It is known that, 

under different conditions, different σ factors are used in transcription. Also, while some 

promoters appear to require a specific σ factor to initiate transcription, others have less σ 

factor specificity (Gruber & Gross, 2003). Additionally, some σ factors transcribe genes 

expressed during the exponential growth phase while others carried out the transcription of 
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genes expressed during stationary growth phase (Loewen & Hengge-aronis, 1994). So far, it 

remains unclear how different σ factors affect the transcription dynamics, particularly the 

kinetics of the multi-step transcription initiation process. Therefore, it would be of interest to 

study how the dynamics of transcription differ between mutant cells (lacking one specific σ 

factor) and wild-type cells (containing all σ factors), when under the same, optimal growth 

conditions. This test will be performed here in two promoters, PtetA and PBAD, in order to infer if 

existing differences in RNA production kinetics between mutant cells are solely σ factor-

dependent or are also promoter-dependent. Because the number of σ factors is cell phase-

dependent, this test will be performed here for two growth phases of E. coli, more specifically 

it will be compared the results from wild-type cells and mutant cells during the exponential 

phase with the ones from the same strains during the stationary phase, for both promoters 

used. 

In order to study the role of σ factors on the dynamics of transcription, a data analysis of 

the measurements was performed and a stochastic model of σ factors was developed. The 

model simulates the biological processes at the single event level using a modified version of 

the Stochastic Simulation Algorithm (SSA) (Gillespie, 1977) that allows delays in reaction 

events and aims at the prediction of the statistics of transcription, which would not be feasible 

using deterministic kinetics. As mentioned before, the transcription by the RNAp takes some 

time, thereby the model developed from a delayed stochastic model of transcription that 

contains time delays in reaction events (A. Ribeiro, Zhu, & Kauffman, 2006). The duration of 

transcription initiation, in this model, is modelled following a Gaussian distribution, to take 

into account the rate-limiting steps inherent to this process (McClure, 1980). The model 

developed also includes explicitly the steps of transcription initiation, as the formation of the 

closed complex and its isomerization, which leads to the open complex formation (Buc & 

McClure, 1985) and the elongation process. It contains also the reactions of the translation 

process, like the formation of proteins and the time needed for that.  

Once the different σ factors in study are included in our model, it is possible to simulate all 

the different strains of E. coli as well as the two different growth phases in study, changing the 

values of parameters like the intracellular level of the holoenzymes and dissociation constants. 

The results of these simulations are compared with the results from the in vivo measurements. 

For the simulations under control of PtetA the results are in agreement with the results of the in 

vivo measurements. On the other hand, for PBAD although the distribution of RNA production 

follows the same trend, the values of the mean production intervals are different from the in 

vivo results. 
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This study is derived from a study conducted in the Laboratory of Biosystem Dynamics 

(LBD), Department of Signal Processing, Tampere University of Technology, Finland. Here, the 

author acquired knowledge about the models of gene expression and σ factors, and became 

familiar with the simulation and data analysis tools. We performed the data analysis from the 

measurements and the author assisted in the development of the first stochastic model of 

transcription that includes σ factors. 

The results should offer insights on the prospective of modifying the array of σ factors in E. 

coli mutants, whether to restrict the environments it can live in, or to expand them to more 

extreme conditions, beneficial to the synthetic biology field or the pharmaceutical industry. 

This thesis contains 5 Chapters besides the first, introductory one. Chapter 2 gives an 

introduction of the main topics of this thesis: gene expression, the role of σ in transcription, 

the models of gene expression dynamics in E. coli and the in vivo measurements of time 

intervals between consecutive RNA productions. In chapter 3 we present all the methodology 

used in this study, such as, the use of fluorescence probes to obtain bright fluorescent spots, 

how we do the measurements with the microscope, how we analyse the images obtained in 

the microscope and how we extract the results. Chapter 4 contains the results and their 

discussion, of the in vivo measurements in wild-type cells, in mutant cells lacking σ54 and in 

mutant cell lacking σ38 during exponential phase and during stationary phase under control of 

PtetA or under control of PBAD. This chapter also contains the results obtained when we fitted 

the model with the empirical results. The discussion of the results of the simulations made for 

the three strains under control of the two promoters during the two growth phases are also 

presented in this chapter. The conclusion of this work is presented in Chapter 5 as well as the 

perspectives on future developments. Finally, Chapter 6 contains all the references used in this 

work.
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2. State of the art 

In this chapter we present a theoretical description of the main concepts needed to 

understand the study performed in this thesis. First, we give insights on gene expression. 

Second, we describe in greater detail the first step of this process, transcription, in E. coli and 

the role of σ factors in this process. Then, we explain how the gene expression dynamics in E. 

coli is modeled and how the in vivo measurements of time intervals between consecutive RNA 

productions are made. These last two subchapters are important since they describe how to 

obtain the results with the analysis performed in the present study.   

 

2.1. Gene expression 

 

All living cells contain their genetic instructions stored in genes, which are specific 

sequences of nucleotides encoded in DNA. These instructions are copied and transmitted from 

mother to daughter cells. The flow of these genetic instructions within a cell is explained by 

the central dogma of molecular biology (Crick, 1970), which states that “DNA 

(Deoxyribonucleic Acid) makes RNA (Ribonucleic Acid) which makes protein”. The molecule of 

DNA contains the genetic code which is inherited from the mother cell. The process by which 

the genetic code is used by cells to direct protein synthesis is denominated by gene expression. 

This process consists of two main steps: transcription and translation.  

Prokaryotes transcription occurs in three phases known as initiation, elongation and 

termination. In transcription initiation, transcription factors bind to RNA polymerase (RNAp) 

allowing the RNAp to be tightly bound in the promoter region in DNA. Once the RNAp is 

attached to the DNA strain, a small portion of the DNA double helix is opened and unwound, in 

order to expose the bases on each DNA strand. Only one strand of DNA is used as a template 

at any one time for the synthesis of a messenger RNA (mRNA) molecule. The nucleotide 

sequence of the RNA chain is determined like in DNA replication, which means determined by 

the complementary base-pairing between incoming nucleotides and the DNA template. The 

incoming ribonucleotides are covalently linked to the growing RNA chain when there is 

complementarity of its bases. When the RNAp binds the terminator region, transcription is 

over and it is released the DNA template and the completed messenger RNA (mRNA) molecule. 

Upon released, mRNA is either modified or immediately translated by ribosome to create 

proteins, which are the functional units in cells (Alberts et al., 2008). 
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2.2. The role of σ factors in transcription 

RNA polymerase (RNAp), the central enzyme of gene expression in bacteria, consists of five 

protein subunits, two α subunits, together with single copies of the two largest (β and β’) and 

the smallest (ω) subunits, and it is responsible for the polymerization or synthesis of RNA. This 

core enzyme (RNAp) is able to copy DNA into RNA but transcription is not initiated at the 

correct site in a gene, which means that it does not recognize the promoter region. It is 

required that the core enzyme binds to the transcription initiation factor, σ factor, which is a 

single regulatory subunit that recognizes the signal on the DNA strand and indicates that the 

RNA polymerase should initiate the synthesis of the RNA. When the σ factor binds the core 

enzyme, it is formed the RNA polymerase holoenzyme (RNApσ) (reaction 2.1), increasing the 

affinity to various promoters and decreasing the affinity of the RNAp for nonspecific DNA. It is 

known that, when reaction 2.1 occurs, the σ factor provides most of the determinants for 

promoter recognition and DNA melting (Gruber & Gross, 2003).  

 

RNAp   σ   RNApσ           (2.1) 

 

Prokaryotes transcription (Figure 2.1) occurs in three phases: initiation, elongation and 

termination. Transcription initiation involves a reversible binding of RNAp holoenzyme to a 

special DNA sequence at the beginning of the gene, known as the promoter region (Pr). This 

step is referred as closed complex formation (Prc) because the DNA is not unwound (reaction 

2.2) (Figure 2.1 – step 1). The closed complex is a relatively weak, unstable formation. 

 

RNApσ    r      rc           (2.2) 

 

The next step is the unwound of approximately 10 bases of DNA around the initiation site 

in order to form an open complex (Figure 2.1 – step 2), much stronger than the closed 

complex, in which one strand of DNA is a template for transcription. When few nucleotides are 

added, the σ factor is released stochastically from the RNA polymerase (Figure 2.1 – step 3), 

which then leaves the promoter and moves along the template strand of DNA to continue the 

elongation of the growing RNA chain (Figure 2.1 – step 4, 5 and 6). It was found that 

sometimes the σ factor remains on RNA polymerase until termination, which can be used as an 

elongation regulator (Mooney, Darst, & Landick, 2005).  

During elongation, the RNAp unwinds the template strand of DNA ahead of it and rewinds 

the DNA behind it, maintaining an unwound region in the region of transcription. The synthesis 
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of the RNA continues until the RNAp encounters a termination signal, at which point 

transcription stops and the messenger RNA (mRNA) is released from the RNAp and this 

enzyme is dissociated from its DNA strand template (reaction 2.3) (Figure 2.1 – step 7).  

 

 rc   r   RNAp   σ   mRNA           (2.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Escherichia coli, there are seven different σ subunits that can participate in the 

transcription of a specific set of genes (Ishihama, 2000). These σ factors, that possess different 

promoter-recognition properties, can be generally divided into two groups: the σ70 family of σ 

factors and the σ54 group. The first group includes σ factors that share structural similarities 

and the ones in the second group have differences in sequence, promoter architecture and 

σ factor 

Initiation 

Elongation 

Termination 

mRNA 

RNA 
RNA 

σ factor 

RNAp 

DNA 

promoter 

Figure 2.1: Scheme of the three phases of transcription in Escherichia coli. The σ factor binds to the 

RNA polymerase, forming the holoenzyme. When this holoenzyme finds and binds the promoter 

region, it initiates transcription (1) and a closed complex is formed. The next step is the formation of 

an open complex (2) where one of the two strands will act as a template for complementary base 

pairing with the incoming ribonucleotides. This reaction proceeds and after about 10 nucleotides of 

RNA synthesis, the RNAp breaks its interaction with the promoter region and the σ factor is 

dissociated (3). This dissociation increases the affinity of RNA for DNA which make RNAp highly 

processive, moving along the DNA strand and synthesizing RNA. This step is called elongation (4,5,6). 

When the RNAp finds the termination site, the newly formed messenger RNA molecule and the 

RNAp dissociate (7). This phase, known as termination, allows the mRNA release.[1] 
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function from the σ70 family (Wösten, 1998). Despite the overall similarity in their structures, 

the σ70 family can recognize different classes of promoters (Gruber & Gross, 2003). Some 

promoters can only be activated by a specific σ factor, while others can be activated by any σ 

factor.  imilarly, some σ factors appear to become activated at specific temperature ranges. 

There is also anti-σ factors that inhibit the function of the σ factors (Ishihama, 2000). Under 

stress, its repertoire of σ factor is altered along with the cells’ transcriptional program (Gruber 

& Gross, 2003). It is known that in response to growth transitions and environmental 

conditions there is changes in the intracellular levels of each individual σ factor (Jishage, Iwata, 

Ueda, & Ishihama, 1996). 

E. coli contains six σ factors of the σ70 family, σ70 (encoded by RpoD), σ38 (RpoS), σ32 (RpoH), 

σ28 (RpoF), σ24 (RpoE) and σFecI, each participating in the transcription of a specific set of genes 

(Ishihama, 2000). σ70 is the house-keeping σ factor that can transcribe most genes expressed 

during the exponential phase. The intracellular concentration of σ70 subunit remains at a 

constant level in the transition from the exponential growth phase to the stationary phase, 

although the levels of core enzyme subunits decrease concomitantly with the stopping of cell 

growth. σ38 is the master regulator of the general stress response, transcribing more than 70 

genes that confer resistance against such diverse insults as oxidative stress, UV-radiation, heat 

shock, hyperosmolarity, acidic pH and ethanol. Due to the generality of the response, σ38 plays 

both a preventative and a combative role (Gruber & Gross, 2003). The level of σ38 increases 

when the cell enters the stationary growth phase and plays an important role in the stress 

response during these translation to that phase (Jishage & Ishihama, 1995). σ32 and σ24can 

transcribe the heat shock genes. σ28 is involved in transcription of flagellar formation and 

chemotaxis genes. σFecI  is used in the ferric citrate transport system and has extracytoplasmic 

functions.  

σ54 transcribe genes which are activated by a deficiency of nitrogen (Merrick, 1993) and 

some other stress response genes (Shingler, 1996). It is known that the amount of σ54 present 

in the cell is approximately one tenth of the amount of σ70, during exponential and stationary 

phase growth (Jishage et al., 1996).  ome differences between this group of σ factors and the 

σ70 family are: σ54 is able to bind promoter DNA even in the absence of core RNA polymerase 

and σ54 requires an additional ATP-dependent activation event provided by transcriptional 

activators before they initiate transcription. 
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2.3. Models of gene expression dynamics in E. coli 

The dynamics of the two main steps of gene expression, transcription and translation, has 

two main properties. First, these are both stochastic processes (H H McAdams & Arkin, 1999). 

Second, both of these processes are multi-stepped (Buc & McClure, 1985). That is, they 

possess more than one event that is ‘rate-limiting’ and thereby affects the durations of the 

intervals between consecutive productions of the product molecules. The modelling strategy 

here presented was first proposed in (A. Ribeiro et al., 2006), and aims to capture both of 

these features. For that, the simulation of these models is performed using the ‘ tochastic 

 imulation Algorithm’ (SSA) (Gillespie, 1977) which is a Monte Carlo method that simulates 

numerically the time evolution of well stirred reaction systems. The time goes forward in 

discrete steps. A reaction is explicitly executed in each step and the effect on the number of 

each molecule is settled. Since these models do not explicitly include σ factors and due to the 

aim of this thesis, it is required the development of a new model containing the σ factors in 

study of E. coli. With that, it is possible to study its influence on the kinetics of RNA production. 

The model of σ factors developed in this thesis as well as its results, are presented in chapter 

4, in section 4.3.. 

Transcription is usually modelled as a 2-step process (reaction 2.4). The first step is named 

closed complex formation and consists on the finding of the transcription start site by an RNA 

polymerase (here modelled with constant rate kcc)(Figure 2.1). The second step is named open 

complex formation and consists on the formation of the open complex between the RNA 

polymerase and the DNA (here modelled with rate constant koc)(Figure 2.1). Since these are 

the two major rate-limiting steps of transcription under optimal conditions (Buc & McClure, 

1985), in general, the outcome of this step includes not only a free promoter region and RNAp 

but also a complete messenger RNA molecule (Figure 2.1): 

 

 r   RNAp  
kcc
→  rRNAp  

koc 
→   r   RNAp   mRNA           (2.4) 

 

As the gene exists at single-copy level, each transcription event only produces one 

molecule of messenger RNA. 

 

mRNA   r 
k 
→   mRNA   r               (2. ) 
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Reaction 2.5 is used to model, as a single-step process, the translation of mRNA by 

ribosomes (r) in order to produce proteins (P), where kp is the translation rate constant. The 

values of the reaction rates vary between promoters and determine the dynamics of RNA 

production.  

Studies have shown that the lifespan of mRNA is usually limited to minutes, while proteins 

have a much longer half-life (from several minutes to hours). The lifespan of mRNA can be 

fitted with an exponential distribution (Bernstein, Khodursky, Lin, Lin-Chao, & Cohen, 2002). 

The concentration of the proteins decreases due to cell elongation and division. The decaying 

process of these molecules can be modelled by the first order reactions listed below (reactions 

2.6 and 2.7) (Greive & von Hippel, 2005). 

  

mRNA 
dM
→              (2. ) 

  
d 
→              (2. ) 

 

2.4. In vivo measurements of time intervals between consecutive RNA 

productions 

 

Due to the development of new techniques for tagging RNA molecules with MS2 coat 

protein fused with Green Fluorescence Protein (GFP), MS2-GFP proteins (Peabody, 

1993)(Peabody, 1997) (Fusco et al., 2003)(Golding & Cox, 2004) and using time-lapse 

fluorescence microscopy, it is possible to detect RNA molecules soon after completion or even 

while elongating (Golding & Cox, 2004), once the GFP produces a green light when a source of 

UV hits the protein and a green spot appears when a molecule of RNA is formed.  

Before these new techniques appeared, the knowledge of RNA transcription and its 

dynamics came from population studies or in vitro studies with purified components ((Harada 

et al., 1999) (Shaevitz, Abbondanzieri, Landick, & Block, 2003)(Skinner, Baumann, Quinn, 

Molloy, & Hoggett, 2004)). However, once these studies were not a cell-to-cell study, it was 

difficult to understand some processes which occurs at a single cell level. Thus, in our study the 

technique developed by Golding et al. (Golding, Paulsson, Zawilski, & Cox, 2005) will be used. 

With this technique, the cell-to-cell diversity in RNA numbers of a population at a given 

moment in time was firstly quantified (Golding et al., 2005).  

The in vivo kinetics of RNA production at single cell level can also be measured with this 

technique. Once each RNA molecule is tagged during the elongation process or shortly after 
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(Golding et al., 2005) if the time when the first RNA molecules appear is registered, it is 

possible to measure the time interval between consecutive transcription events and calculate 

the mean duration as well as the variability of these intervals (Kandhavelu et al., 2011, 2012; 

Muthukrishnan et al., 2012). It is suspected that the cell-to-cell diversity in RNA and protein 

numbers in populations of sister cells (Kandhavelu et al., 2011; Paulsson, 2004; A. Ribeiro et 

al., 2006) comes from the expected noise of the underlying chemical processes in gene 

expression (Peccoud & Ycart, 1995). If the noise in transcription is estimated by measuring the 

intervals between transcription events (Kandhavelu et al., 2011) instead of by measuring cell-

to-cell diversity in RNA numbers, the results are more reliable once that in the latter method 

the noise is influenced by several phenomena other than transcription, like errors in RNA 

partitioning in cell division or noise in RNA degradation (Huh & Paulsson, 2011a, 2011b; Lloyd-

Price, Gupta, & Ribeiro, 2012). 
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3. Methods and Materials 

In this chapter the methodology used in our experiments is explained. First the laboratory 

procedure will be introduced, explaining how the fluorescent cells are obtained and how the 

microscope is set to allow obtaining the images for analysis using custom software written in 

Matlab. The results of this analysis will be compared with the ones from the model developed 

in the aim of this study. The modeling and the simulating strategies used for the model here 

developed are explained in the last two subchapters of this chapter.  

 

3.1. Use of fluorescent probes 

 

The mRNA detection system contains two elements: a reporter gene on a medium copy 

plasmid and a target gene on a single-copy-F-plasmid. In figure 3.1 the mRNA detection system 

used in our study is described. The reporter gene (PLac) codes for a fluorescence protein, GFP, 

fused to a dimmer of the RNA bacteriophage MS2 coat protein (MS2d). The target gene codes 

for the target RNA, which contains several MS2-binding sites (Golding et al., 2005). As 

mentioned before, we will used different promoters to analyse its influence in RNA production 

and due to this, we represent the promoter in Figure 3.1 with PX, where X can be tetA or BAD.  

 

 

Figure 3.1: Measurement system. Components of the detection system. The reporter gene (PLac) 

controls the expression of the tagging protein (MS2d-GFP) and is inducible by Lac. The target construct is 

on a single-copy F-plasmid and its expression is controlled by the promoter PX whose activity is 

regulated by specific inducer (IX). The spots (represented with ‘g’ in the figure) appear when M 2d-GFP 

bind to a newly transcribed RNA (Mäkelä et al., 2013). 
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A bright fluorescent spot (Figure 3.1, represented by ‘g’) appears in the cell when multiple 

MS2d-GFP fusion proteins bind to a newly transcribed RNA. 

For our measurements, cells with both MS2d-GFP and transcript target plasmids will be 

grown overnight in Miller LB medium at 37°C with aeration, diluted into fresh medium to 

maintain exponential growth until reaching an optical density of OD    ≈  .  for both 

promoters during exponential phase and an optical density of OD    ≈  .4 for both promoters 

during stationary phase and supplemented by antibiotics according to the specific plasmids. 

The reporter plasmids will be induced with IPTG (1.0 mM%) during 45 minutes at 37 °C. The 

target Ptet, single-copy-F-plasmid, will be induced with anhydrotetracycline (aTc) (15 ng) during 

5 minutes at the same temperature (37 °C). The target PBAD, also a single-copy-F-plasmid, will 

be induced with arabinose (Ara) (0.2%) during 5 minutes at 37 °C. 

 

3.2. Microscopy measurements  

 
Microscopy measurements are done as in (Kandhavelu et al., 2011). After the induction of 

target RNA, the cells are placed on a microscopic slide between a cover slip and 3% LB-agarose 

gel pad set, and visualized by fluorescence microscopy, using a Nikon Eclipse inverted C1 

confocal laser-scanning system with a 100x Apo TIRF objective.   

 

Figure 3.2: Nikon Eclipse (Ti-E, Nikon, Japan) inverted microscope with a 100x Apo TIRF objective 

(1.49 NA, oil). MS2-GFP fluorescence was measured with this microscope by a C2 confocal laser-

scanning system with a 488 nm laser (Melles-Griot) and a  1 /3  nm detection filter, using a pixel dwell 

of 2.4 μs and a resolution of 1 24x1 24 pixels.  hase contrast images are captured with a 2560x1920 

pixel resolution CCD camera (DS-Fi2, Nikon, Tokyo, Japan). The software used for image acquisition is 

Nikon NIS-Elements. 
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In order to measure GFP fluorescence, we use a C2 confocal laser-scanning system with 488 

nm laser and a 515/30 nm detection filter. For each slide, images of cells are captured using C1 

with Nikon software EZ-C2 (Figure 3.2), approximately 5 min after induction, one image each 

30 seconds, for approximately 2 hours. Microscopy will be performed in a temperature 

chamber to maintain the temperature constant. 

3.3. Image analysis 

 

Once the images of the cells are acquired by confocal microscopy (Figure 3.3), we will 

perform their analysis as in (Kandhavelu et al., 2012). In particular, the image analysis will be 

done semi-automatically using custom software written in Matlab. 

The methods used follow (Kandhavelu et al., 2011). However, although all the similarities 

with the methods used in (Kandhavelu et al., 2011), the masking process is different. Each 

image is divided in three classes: background, cell border and cell region. Clumped cells are 

identified based on their size and edge information using an iterative cell segmentation 

process.  A threshold is defined based on cell size and cells whose size goes beyond this 

threshold are discarded. RNA spots are segmented using a Kernel Density Estimation method 

(Ruusuvuori et al., 2010).  

Figure 3.3 represents an example of the three stages of the processing. It is chosen one 

region of one original image (Figure 3.3 – A) taken with the microscope of our laboratory 

(Figure 3.2) and it is shown this region during the masking process (Figure 3.3 – B) and during 

the spot detection (Figure 3.3 – C). During the masking process (Figure 3.3 – B) it is necessary 

to do manual corrections of the masking made automatically. Only when all the frames of the 

time series are well masked, the spot detection is made (Figure 3.3 – C). After this processing, 

the individual cells are shown in blue and the spots are shown in green. Then, the number of 

RNA molecules in each spot is quantified by normalizing the MS2d-GFP-RNA spot intensity 

distribution, which means, dividing a spot’s intensity by the intensity of the first peak in the 

histogram of spot intensities (Golding et al., 2005).  
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The masking process (Figure 3.3) is made for each individual image independently, for a 

time-series measurement. The overall distribution of spot intensity is generated and obtained 

from all cells at each time point. This allows obtaining the number of RNA molecules in each 

cell at each time point. It is possible to determine when a new RNA appears and the time 

between the appearance of consecutive RNA molecules in individual cells when counting the 

number of RNAs in each cell at each moment. From that, the distributions of intervals between 

consecutive transcription events in a cell population subject to the same level of induction and 

temperature can be generated (Kandhavelu et al., 2011). 

 

A B 

C 

Figure 3.3: Part of an image taken by confocal microscope of MS2-GFP tagged molecules in E. coli cells 
at different stages of its processing. (A) Original image of some cells. (B) The same cells during the 
masking process. (C) After the masking, the result of the spot detection. Here the spots are circled with a 
red line and appear green in the blue cells.  
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3.4. Modelling strategies 

The chemical reactions used to represent elementary biological processes in cells could be 

mathematically described using models, enabling the simulation and inspection of the 

chemical system dynamics. These models can be either deterministic or stochastic.  

The deterministic model is particularly useful when assessing processes with a population 

approach. However, it does not work properly when modelling gene expression due to the low 

copy number of RNA molecules (Taniguchi et al., 2010) and the stochastic nature of chemical 

reactions (Harley H. McAdams & Arkin, 1999) involved in this process. In this way, we employ a 

stochastic model of gene expression. Stochasticity in gene expression affects the functioning of 

cells and organisms and contributes to the phenotypic diversity in a genetically homogeneous 

population (Harley H. McAdams & Arkin, 1997; Ozbudak, Thattai, Kurtser, Grossman, & van 

Oudenaarden, 2002; Samoilov, Arkin, & Ross, 2002). 

The kinetics of molecules in a solution is studied under the following assumptions: 

 the system is well-stirred and of constant volume V, which requires that the 

spatial distribution of all species’ molecules is uniform within the volume V and 

the position of molecules is independent of each other; 

 the system is in thermal equilibrium at constant temperature T, which means that 

every molecule in the solution moves independently;  

 reactions occur only when two or more molecules collide, while most collisions do 

not lead to reactions. 

The dynamics of a solution with N species from X1 to XN and M reactions can be inspected 

by the analysis of the jth reaction, described as follow: 

∑      
  
→ ∑                     

 

   

 

   

 

In this reaction, the reaction constant cj is the “reaction probability per time unit” and 

indicates how likely the reaction jth is to happen given the reactants' molecule number at a 

given time. sij and rij indicates how many molecules of the substance Xi are 

consumed/produced via the jth reaction. For stochastic models there is the propensity function 

(equation 3.2) which is equivalent to the rate equation of the deterministic models.  

                              

aj(x) dt specifies the probability for the jth reaction to occur in the infinitesimal time 

window [t, t + dt). h(x) indicates the number of possible reactant combinations of a reaction at 

a given time, with x the reactants' molecule number vector. Once the propensity function at a 
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specific time depends only on the current state, the system dynamics can be considered as a 

Markov process, where each reaction marks a change in state. Using the stochastic model, we 

can calculate the time for the change in the state to occur and the possible next state. 

3.5. Simulating strategies  

In order to find the solution for the stochastic models, the first order Chemical Master 

Equation (CME) (Gillespie, 1977), a mathematical method used to describe the time-evolution 

of probability density at fixed rates was originally employed. The most serious issues of CME 

are when it is applied to complex systems involving a large number of substances and when 

the probability densities are calculated on the continuous time scale. In those cases, the 

solutions are usually intractable. To address these problems, the Stochastic Simulation 

Algorithm (SSA) (Gillespie, 1977) was developed. The SSA is a Monte Carlo method that 

simulates numerically the time evolution of well stirred reaction systems. Time goes forward in 

each discrete step where a reaction is explicitly executed and the effect on the number of each 

molecule is settled. The time of the next reaction is determined using probability distributions. 

SSA takes into account the fact that the time evolution of a spatially homogeneous chemical 

system is a stochastic process. This algorithm numerically simulates the Markov process using 

random sampling. 

Equation (3.3) is the basis for the realization of SSA. 

 

                
                                    

 

In equation (3.3)  is the normalized flux of the reaction, jth and indicates how likely 

the reaction is to occur and  represents the exponential distribution of the 

probability of one reaction occurs at time t τ. The time τ for the next reaction to occur can be 

calculated for any state x in the system’s state space, if the distribution  is 

inverted as in equation (3.4). Two uniform random numbers r1 and r2 are used to do the 

inverse transformation. j can be obtained from equation (3.5). 

 

                                   

 

     such that  
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∑   
         ∑  

 

  

   

   

    

   

                 

 

SSA consists of the following steps:  

1. Initialize the step n=0 with time       and state      ; 

2. Calculate        and       from the current state     ; 

3. Generate r1 and r2 from a uniform distribution [0,1); 

4. Calculate τ from equation (3.4) and   from equation (3.5); 

5. Perform reaction Rj with the update of tn+1 = tn + τ and xn+1 = xn + Sj, where Sj is the 

stoichiometric vector indicating the changes in molecule numbers after one reaction jth 

occurs; 

6. Set n=n+1 and return to step 2. 

 

SSA is implemented in SGNSim (A. S. Ribeiro & Lloyd-Price, 2007). SGNSim models a wide 

range of systems of chemically interacting elements. The extended version of SGNSim, SGNS2 

(Lloyd-Price et al., 2012) was the first simulator to include multi-delayed events, dynamic 

compartments and molecule partitioning schemes in division. Thereby, in our study, the SGNS2 

simulator will be used.  
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4. Results and Discussion 

This chapter contains the results obtained in our study of potential differences in dynamics 

of transcription between mutant cells and wild-type cells under the same, optimal growth 

conditions. This study was performed under control of PtetA and PBAD, to determine if existing 

differences in RNA production kinetics between mutant cells are solely σ factor-dependent or 

are also promoter-dependent.  

 Firstly, we present the results of the in vivo measurements of tagged RNA molecules made 

in wild-type cells and in mutant cells lacking σ38 or lacking σ54. As mentioned before, these 

experiments were done under control of two different promoters during exponential growth 

phase and stationary growth phase. For all the experiments, assuming that transcription 

initiation consists of a sequence of exponentially distributed steps, it is inferred the number of 

steps as well as the duration of the underlying rate-limiting steps. The modeling strategy used 

to model the dynamics of transcription and the results of its simulations to explore the 

dynamics of gene expression under stress conditions are presented below. The discussion of 

the results obtained is done for all the measurements. 

 

4.1. In vivo measurements of tagged RNA molecules in wild-type cells, in 

mutant cells lacking σ38 and in mutant cells lacking σ54  

 

When a bacterium is inoculated in a medium, it passes through four growth phases. The 

first growth phase is known as lag phase and corresponds to the time required for the 

adaptation to the new environment. In this phase its growth rate is 0. The second growth 

phase is the exponential phase, where the mass of the cell increases in an exponential manner. 

When the nutrients became exhaust or when the toxic metabolic products accumulate or 

inhibit growth, the cell enters in another phase, known as stationary phase. At this point, the 

growth ceases completely and the death of the bacteria starts. The last phase, denominated by 

death phase, is where there is a progressive death of the cell. Our measurements were done 

during the exponential and stationary phase, because there are σ factors responsible for 

transcribing genes expressed during exponential phase and other σ factors responsible for 

transcribing genes expressed during the stationary phase (Jishage et al., 1996). The results and 

the discussion of these experiments are presented below. 
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4.1.1. Measurements under control of PtetA 

 

These in vivo studies of the kinetics of transcription initiation were performed under 

control of PtetA for three different E. coli strains. For the in vivo measurements of wild-type 

cells, which means containing all the σ factors presents in E. coli, it is used the E. coli strain 

BW25113 (Baba et al., 2006). The E. coli strain JW5437 (Baba et al., 2006) is used in in vivo 

measurements of mutant cells lacking σ38 and the E. coli strain JW3169 (Baba et al., 2006) is 

used in mutant cells lacking σ54. 

Once the sequence of the target gene contains 96 binding sites for the MS2 coat protein, 

the reporter proteins (MS2-GFP) can bind to the target RNA and a fluorescent spot is formed. 

These fluorescent spots can be observed in fluorescence microscopy images. The cells are 

placed under the confocal microscope during 2 hours with a measurement done at each 30 

seconds. Analysis of these images is performed by a semi-automatic method (Kandhavelu et 

al., 2011) which does the detection and the masking of the cells from the images obtained 

(Figure 3.3).  

As mentioned before, the experiments are made during the exponential and the stationary 

growth phases. Bellow, the results for the measurements made during these two phases, as 

well as, its discussion is addressed. 

 

4.1.1.1. Measurements during exponential phase 

 

From the images we extracted the number of cells as well as the number of intervals 

between productions of consecutive RNA molecules detected in individual cells (Number of 

samples). Table 4.1 shows these values for the three strains of E. coli analysed during the 

exponential growth phase, as well as the mean duration to complete a transcription initiation 

event once initiated (µ(s)), the standard deviation (σ(s)) of this interval duration. Both values 

are represented in seconds, and the variance over mean square value (CVS) obtained per each 

experiment. The CVS value is an important value once it indicates how spread the probability 

density of the protein number it is and how noisy the regulation of one gene to another it is. 

However, this value will be discussed later on the sub-chapter of the inference of step in 

transcription initiation.  

 tudies have shown that some σ factors are responsible for the transcription of genes that 

are expressed during the exponential growth phase while others are responsible to transcribe 
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genes that are expressed during the stationary phase (Jishage et al., 1996). It is also known 

that the intracellular concentration of σ70 as well as of σ54 is the same in the exponential 

growth phase and in the stationary phase, when analysing one strain of E. coli (Table 4.2) 

(Jishage et al., 1996). On the other hand, the intracellular concentration of σ38 is approximately 

zero during the exponential growth phase, but it increases significantly in the stationary phase 

(Table 4.2) (Jishage et al., 1996).     

Table 4.1: Statistics on the time intervals between consecutive transcription events in individual cells 

under control of PtetA during exponential phase. Number of cells analyzed, number of intervals between 

production of consecutive RNA molecules detected in individual cells (Number of samples), mean 

duration of production intervals in seconds (µ(s)), the standard deviation (σ(s)) and the square of the 

coefficient of variation (CVS) of the interval duration obtained in our experiment with wild-type cells and 

with mutant cells lacking σ38 and σ54 during exponential phase under control of PtetA.  

Strains Wild-type cells 
Mutant cells 

(lacking σ38) 

Mutant cells 

(lacking σ54) 

Number of cells 306 545 800 

Number of samples 268 351 177 

µ (s) 1024 960 976 

σ (s) 772 881 627 

CVS 0.57 0.84 0.41 

 

Table 4.2: Intracellular levels of σ
70

, σ
54

 and σ
38

 subunits in E.coli W3110 and MC4100. This information 
is obtained from (Jishage et al., 1996). 

σ 

subunit 

Level (fmol/µg) of σ subunit in strain: 

W3110 MC4100 

Exponential 

phase 

Stationary 

phase 

Exponential 

phase 

Stationary 

phase 

σ70 150-170 150-170 50-80 50-80 

σ54 20-30 20-30 3-5 3-5 

σ38 0 40-60 0 20-30 
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From the data in Table 4.1, we observe that the time needed to complete a transcription 

initiation event once initiated is approximately the same for all the three strains analysed. 

From Table 4.2 it is possible to observe that the intracellular level of σ54 is not negligible 

(around one tenth of the intracellular level of the total amount of σ70 ((Jishage et al., 1996)) ) 

during exponential phase. Thus, it was expected a difference between kinetics of transcription 

initiation of wild-type cells and of mutant cells lacking this σ factors. Once this difference is not 

verified, it is possible to conclude that PtetA does not contain any consensus for σ54 binding. 

For the mean production interval of mutant cells lacking σ38 comparing with wild-type 

results was not expected any difference, since during exponential phase the intracellular level 

of this σ factor is null (Table 4.2). From these results, it is possible to conclude that PtetA is not 

affected by σ factor composition during the exponential phase.   

 

4.1.1.2. Measurements during stationary phase 

 

Since during stationary phase the intracellular level of σ38 is not negligible, it was important 

to evaluate the dynamics of transcription initiation when this σ factor is lacking when 

compared with the dynamics of transcription of wild-type cells.  

 

Table 4.3: Statistics on the time intervals between consecutive transcription events in individual cells 

under control of PtetA during stationary phase.  Number of cells analyzed, number of intervals between 

production of consecutive RNA molecules detected in individual cells (Number of samples), mean 

duration of production intervals in seconds (µ(s)), the standard deviation (σ(s)) and the square of the 

coefficient of variation (CVS) of the interval duration obtained in our experiment with wild-type cells and 

with mutant cells lacking σ38 and σ54 during stationary growth phase under control of PtetA.  

 

Strains Wild-type cells 
Mutant cells 

(lacking σ38) 

Mutant cell 

(lacking σ54) 

Number of cells 177 191 272 

Number of samples 267 94 506 

µ (s) 1105 1086 1207 

σ (s) 852 972 873 

CVS 0.60 0.80 0.52 
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Thereby the measurements during the stationary growth phase are made using the same 

strains and procedure of the measurements during exponential growth phase. Further, the 

same parameters are extracted for the three strains analysed, as the number of cells analysed, 

the number of samples, the mean duration of production intervals, the standard deviation and 

the CVS of the interval duration. These values are represented in Table 4.3.  

Comparing between strains and from Table 4.3, it is possible to observe that the time 

needed to complete a transcription initiation event in wild-type cells is approximately the 

same than for the measurements made during exponential phase (Table 4.1). The transcription 

time for mutant cells lacking σ38 becomes longer, indicating an increase in the proportion of σ38 

in wild-type strain (Table4.2). On the other hand, the mean production interval of mutant 

lacking σ54 is higher when comparing with the same measurements during exponential phase. 

 

 

With the data from Tables 4.1 and 4.3 it is possible to infer that the transcription kinetics 

under control of PtetA, during exponential and stationary phases, is not affected by σ factor 

composition, due the dynamics of transcription almost does not change between strains 

during exponential and stationary growth phase.  

 

4.1.2. Measurements under control of PBAD 

 

The measurements under control of PBAD were made following the same procedure used 

for PtetA, differing only on the inducer used to induce the target. In these measurements, the E. 

coli strains under study are the same than the strains used under control of PtetA. This sub-

chapter contains the results and the discussion of the results of these measurements during 

exponential phase and stationary phase, similar to the previous. 

 

4.1.2.1. Measurements during exponential phase 

 

Likewise as the analysis made for the measurements under control of PtetA, Table 4.4 

presents the values obtained for the experiments made during exponential phase under 

control of PBAD. As mentioned before and from Table 4.2, it is known that the intracellular level 

of σ38 during exponential phase is not significant. Therefore, it was not expected a marked 

difference in RNA production rates between wild-type cells and mutant cells lacking this σ 
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factor, which can be confirmed by µ(s) represented in Table 4.4. However, as the intracellular 

level of σ54 cannot be neglected during exponential phase (Table 4.2), it was expected a 

difference in RNA production rates between wild-type cells and mutant cells lacking σ54. From 

Table 4.4, it is possible to observe that mutant cells lacking σ54 need less time to complete a 

transcription initiation event once initiated than wild-type cells. Therefore, it is possible to 

conclude that PBAD is preferentially transcribed by σ70 than by σ54. 

  

Table 4.4: Statistics on the time intervals between consecutive transcription events in individual cells 

under control of PBAD during exponential phase. Number of cells analyzed, number of intervals between 

production of consecutive RNA molecules detected in individual cells (Number of samples), mean 

duration of production intervals in seconds (µ(s)), the standard deviation (σ(s)) and the square of the 

coefficient of variation (CVS) of the interval duration obtained in our experiment with wild-type cells and 

with mutant cells lacking σ38 and σ54 during exponential growth phase under control of PBAD.  

Strains Wild-type cells 
Mutant cells 

(lacking σ38) 

Mutant cell 

(lacking σ54) 

Number of cells 611 832 680 

Number of samples 482 281 395 

µ (s) 733 645 441 

σ (s) 623 580 399 

CVS 0.72 0.80 0.82 

 

In the exponential phase, there is a difference in the dynamics of RNA production 

between mutant cells lacking σ54 and the wild-type strain but no significant difference between 

wild-type and mutant cells lacking σ38. These results are in agreement with the measurements 

of the intracellular levels (Table 4.2) of σ54 and σ38 in cells under optimal conditions during the 

exponential phase. We conclude that the number of σ54 is a rate-limiting factor of transcription 

of the PBAD under optimal conditions during the exponential phase, while σ38 is not. 

4.1.2.2. Measurements during stationary phase 

 

These measurements follow the procedure described before for the experiments during 

the exponential phase. From Table 4.5 it is possible to observe that the difference in time 

needed to complete a transcription initiation event once initiated between wild-type cells and 

mutant cells lacking σ38 becomes greater when comparing with the results of the 
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measurements during the exponential phase. This might indicate an increase in the proportion 

of σ38 in the wild-type strain. On the other hand, the difference between wild-type cells and 

mutant lacking σ54 is smaller (Table 4.5), indicating a decrease in the proportion of σ54 in the 

wild-type strain. Since σ54 quantity is not reported to be affected by the growth phase (Table 

4.2), we suggest that σ70 is not much affected by the growth phase as well. 

 

Table 4.5: Statistics on the time intervals between consecutive transcription events in individual cells 

under control of PBAD during stationary phase. Number of cells analyzed, number of intervals between 

production of consecutive RNA molecules detected in individual cells (Number of samples), mean 

duration of production intervals in seconds (µ(s)), the standard deviation (σ(s)) and the square of the 

coefficient of variation (CVS) of the interval duration obtained in our experiment with wild-type cells and 

with mutant cells lacking σ38 and σ54 during stationary growth phase under control of PBAD.  

Strains Wild-type cells 
Mutant cells 

(lacking σ38) 

Mutant cell 

(lacking σ54) 

Number of cells 174 445 588 

Number of samples 218 47 1215 

µ (s) 1657 970 1156 

σ (s) 1342 629 848 

CVS 0.66 0.42 0.54 

 

 

 

 

Analysing the data from Tables 4.4 and 4.5 it is possible to conclude that the dynamics of 

transcription initiation under control of PBAD, during both cellular growth phases, is affected by 

the σ factor composition, due the significant differences of the mean production intervals 

between strains during exponential and stationary growth phases. Further, as there are 

significant differences in RNA production kinetics between wild-type cells and mutant cells 

under control of PBAD, and under control of PtetA, the dynamics of transcription initiation is 

promoter-dependent.  
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4.2. Inference of steps in transcription initiation 

 

The number and duration of the sequential steps in transcription initiation can be inferred 

by maximum-likelihood from the distribution of intervals between productions of consecutive 

RNA molecules (Kandhavelu et al., 2011). Following the method used in (Kandhavelu et al., 

2011), it is possible to fit the measured distribution using a small number of steps, here 

represented by d, which is in agreement with the number of steps believed to be rate-limiting 

from in vitro studies (Buc & McClure, 1985; Lutz et al., 2001). Using this method only the 

number of sequential steps inferred can be assessed, being impossible to determine their 

temporal order.   

The distribution of intervals between productions of consecutive RNA molecules per each 

experiment is represented in Figure 4.1, for the measurements under control of PtetA during 

the exponential growth phase, in Figure 4.2, for the same promoter during the stationary 

growth phase, in Figure 4.3 for the experiments under control of PBAD during exponential phase 

and in Figure 4.4 for the ones under the same promoter during stationary phase. In these 

figures are also shown the curves that best fit their distribution, for a number of steps (d) 

varying from 1 to 3. From these figures it is possible to observe that for all the strains under 

control of the two promoters during the two cellular growth phases, the shape of the 

distributions of intervals are not exponential-like, which it is consistent with (Mäkelä et al., 

2013; Muthukrishnan et al., 2012). These studies show that the process of RNA production 

under the control of PtetA (Muthukrishnan et al., 2012) or PBAD (Mäkelä et al., 2013) is not 

Poissonian. Namely, since the value of CVS (Table 4.1 and Table 4.3 to Table 4.5), for all the 

experiments made, is below 1, it is possible to affirm that this process is sub-Poissonian, in 

agreement with (Mäkelä et al., 2013; Muthukrishnan et al., 2012). The differences in CVS value 

between strains and cellular growth phases are due to changes in shape of the distributions 

(Figure 4.1 to Figure 4.4).  

In Tables 4.6 and 4.8, the log-likelihood values are shown and the duration of the inferred 

steps for d ranging from 1 step to 4 steps models for the three strains under control of PtetA 

during exponential phase and during stationary phase, respectively. These results are 

compared with the likelihood-ratio values test between pairs of models for the measurements 

in exponential phase and stationary phase represented in Tables 4.7 and 4.9, respectively. The 

inference of the number of steps can be made selecting a higher-degree model in detriment of 

a lower-degree model. Tables 4.10 and 4.12 represent the log-likelihood values for the 

measurements in exponential phase and stationary phase, respectively, under control of PBAD.  
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Figure 4.1: Histogram of the measured intervals between consecutive transcription events under 
control of PtetA during exponential phase. The distribution of intervals between consecutive 
productions of transcripts events represented is obtained for wild-type cells (A), mutant cells lacking σ38 
(B) and mutant cells lacking σ54 (C) under full induction and under control of PtetA during exponential 
phase. Each bar represents 60 seconds and the measurement time is 2 hours (measured every 30 
seconds). The histogram of measured intervals is superimposed with probability density functions of 
models with 1 step (dotted line), 2 steps (solid line) and 3 steps (dashed line) that best fit the data. 
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The inference of the number of steps is made comparing these results with the ones from 

Tables 4.11 and 4.13, selecting a higher-degree model in detriment of a lower-degree model, 

likewise as the analysis made with the measurements under control of PtetA. 

 

Table 4.6: Log-likelihood and duration of the steps of the models with d equal to 1 to 4 steps for three 

strains under control of PtetA during exponential growth phase.  

 Wild-type cells 

d 
Log-

likelihood 
Duration of steps (s) 

1 -2126 1025    

2 -2088 354 670   

3 -2082 156 156 712  

4 -2081 98 98 98 731 

 

 Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

d 
Log-

likelihood 
Duration of steps (s) 

Log-

likelihood 
Duration of steps (s) 

1 -2761 960    -1411 977    

2 -2741 133 827   -1382 487 489   

3 -2740 58 58 844  -1381 60 458 458  

4 -2740 70 21 21 847 -1381 18 33 463 463 

 

Table 4.7: Likelihood-ratio tests. P values between pairs of models for the three strains under control 
of PtetA during exponential phase. dx represents the null model and can have values from 1 to 3, while 
dx+1 can vary between 2 to 4 and represents the alternative model. 

(dx,dx+1) Wild-type cells Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

(1,2) 0 0 0 

(2,3) 0.001 0.081 0.095 

(3,4) 0.123 0.629 0.789 
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Figure 4.2: : Histogram of the measured intervals between consecutive transcription events under 
control of PtetA during stationary phase. The distribution of intervals between consecutive 
productions of transcripts events represented is obtained for wild-type cells (A), mutant cells lacking 
σ38 (B) and mutant cells lacking σ54 (C) under full induction and under control of PtetA. Each bar 
represents 60 seconds and the measurement time is 2 hours (measured every 30 seconds). The 
histogram of measured intervals is superimposed with probability density functions of models with 1 
step (dotted line), 2 steps (solid line) and 3 steps (dashed line) that best fit the data. 
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Table 4.8: Log-likelihood and duration of the steps of the models with d equal to 1 to 4 steps for three 

strains under control of PtetA during stationary growth phase.  

 Wild-type cells 

d 
Log-

likelihood 
Duration of steps (s) 

1 -2138 1105    

2 -2109 318 788   

3 -2107 133 133 839  

4 -2107 132 2 132 840 

 

 Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

d 
Log-

likelihood 
Duration of steps (s) 

Log-

likelihood 
Duration of steps (s) 

1 -751 1086    -4097 1207    

2 -743 196 889   -4037 459 748   

3 -742 97 97 892  -4036 52 839 316  

4 -742 94 94 5 893 -4035 23 23 327 834 

 

Table 4.9: Likelihood-ratio tests. P values between pairs of models for the three strains under control 
of PtetA during stationary phase. dx represents the null model and can have values from 1 to 3, while dx+1 

can vary between 2 to 4 and represents the alternative model. 

(dx,dx+1) Wild-type cells Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

(1,2) 0 0 0 

(2,3) 0.037 0.167 0.062 

(3,4) 0.932 0.890 0.500 
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Figure 4.3: : Histogram of the measured intervals between consecutive transcription events under 
control of PBAD during exponential phase. The distribution of intervals between consecutive 
production of trancript events represented is obtained for wild-type cells (A), mutant cells lacking σ38 
(B) and mutant cells lacking σ54 (C) under full induction and under control of PBAD . Each bar represents 
60 seconds and the measuremet time is 2h (measured every 30 seconds). The histogram of measured 
intervals is superimposed with probability density functions of models with 1 step (dotted line), 2 
steps (solid line) and 3 steps (dashed line) that best fit the data.  
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Table 4.10: Log-likelihood and duration of the steps of the models with d equal to 1 to 4 steps for 

three strains under control of PBAD during exponential growth phase. 

 Wild-type cells 

d 
Log-

likelihood 
Duration of steps (s) 

1 -3662 733    

2 -3632 145 618   

3 -3631 88 19 625  

4 -3631 95 7 7 624 

 

 

 Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

d 
Log-

likelihood 
Duration of steps (s) 

Log-

likelihood 
Duration of steps (s) 

1 -2100 647    -2800 441    

2 -2073 129 518   -2761 93 347   

3 -2068 64 64 519  -2754 46 46 349  

4 -2066 41 41 41 523 -2753 20 29 29 353 

 

Table 4.11: Likelihood-ratio tests. P values between pairs of models for the three strains under control 
of PBAD during exponential phase. dx represents the null model and can have values from 1 to 3, while 
dx+1 can vary between 2 to 4 and represents the alternative model. 

(dx,dx+1) Wild-type cells Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

(1,2) 0 0 0 

(2,3) 0.167 0.002 0 

(3,4) 0.789 0.067 0.066 
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Figure 4.4: : Histogram of the measured intervals between consecutive transcription events under 
control of PBAD during stationary phase.  The distribution of intervals between consecutive production 
of trancript events represented is obtained for wild-type cells (A), mutant cells lacking σ38 (B) and 
mutant cells lacking σ54 (C) under full induction and under control of PBAD . Each bar represents 60 
seconds and the measuremet time is 2h (measured every 30 seconds). The histogram of measured 
intervals is superimposed with probability density functions of models with 1 step (dotted line), 2 steps 
(solid line) and 3 steps (dashed line) that best fit the data. 
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Table 4.12: Log-likelihood and duration of the steps of the models with d equal to 1 to 4 steps for 

three strains under control of PBAD during stationary growth phase. 

 Wild-type cells 

d 
Log-

likelihood 
Duration of steps (s) 

1 -1834 1657    

2 -1825 180 1477   

3 -1825 17 1491 149  

4 -1825 9 9 145 1493 

 

 Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

d 
Log-

likelihood 
Duration of steps (s) 

Log-

likelihood 
Duration of steps (s) 

1 -370 970    -9784 1156    

2 -360 485 485   -9629 420 737   

3 -358 212 212 545  -9618 161 161 834  

4 -356 133 133 133 571 -9618 213 13 99 831 

 

Table 4.13: Likelihood-ratio tests. P values between pairs of models for the three strains under control 
of PBAD during stationary phase. dx represents the null model and can have values from 1 to 3, while dx+1 

can vary between 2 to 4 and represents the alternative model. 

(dx,dx+1) Wild-type cells Mutant cells (lacking σ38) Mutant cells (lacking σ54) 

(1,2) 0 0 0 

(2,3) 0.554 0.023 0 

(3,4) 0.760 0.113 0.506 

 

From Tables 4.7, 4.9, 4.11 and 4.13, we can infer that the single step model is insufficient 

to explain the measurements when comparing to the multi-step models, once the p-value is 
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equal to 0 for all the strains under control of the two promoters during the two cellular growth 

phases. On the other hand, the 2 steps as well as the 3 steps models fits the measurements in 

agreement with previous studies (Buc & McClure, 1985; Lutz et al., 2001) where it is concluded 

that both closed and open complex formation are rate-limiting. We find, by comparing the log-

likelihood values for d equal to 3 and for d equal 4 (Table 4.6, 4.8, 4.10 and 4.12),  that 

increasing the number of steps beyond two does not result in significantly better fit of the 

model to the data. Therefore, we conclude that there are three rate-limiting steps in 

transcription initiation by PtetA and by PBAD for all the strains during exponential and stationary 

phase.  

4.3. Model of σ factors 

As mentioned before, the goal of this thesis is to study how the dynamics of transcription 

differ between mutant cells (lacking σ38 or σ54) and wild-type cells (containing all σ factors), 

under the same optimal growth conditions. It was also mentioned that σ factor is the 

transcription initiation factor and its number varies from bacteria to bacteria. In case of E. coli 

it is known that it contains seven different σ factors each transcribing specific sets of genes 

(Ishihama, 2000). Further, some σ factors transcribe genes expressed during exponential phase 

while others are responsible for the transcription of genes expressed during stationary phase 

(Jishage et al., 1996). The proposed study is focused in three of them: the housekeeping σ70, 

the master regulator of the general stress response σ38, and the one responsible for expression 

of genes which are activated by a deficience of nitrogen or other stress response  σ54.  

The modeling strategy used to model the dynamics of transcription was the development 

of a deterministic model of RNAp dynamics coupled with stochastic gene expression (Buc & 

McClure, 1985). The model developed is based in the model proposed in (Grigorova, Phleger, 

Mutalik, & Gross, 2006). However, in our model the target promoter (PtetA or PBAD) is a single 

copy promoter. In order to simulate all the in vivo measurements previously made during 

exponential and stationary phases, and assert some conclusions of the influence of changing 

some parameters, we adjust some values like the intracellular concentration of the σ factors, 

which vary between strains of E. coli and cellular growth phase and the value of the 

disassociation constants, which vary between target promoter.  

In our study we use an equilibrium model of RNAp binding to σ factors to explore the 

influence of some parameters of this model in the dynamics of transcription initiation in E. coli 

(Figure 4.5). The reactions used in our model, as well as the parameters and its values, are 

presented below. 
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As only one σ factor can bind to the free RNAp at a specific moment, we represent generic 

reactions using the letter ‘ ’ to represent the σ factor. If X is equal to 70, 38 or 54, it is 

respectively σ70, σ38 or σ54 that is in study. Note that the value of X does not change from 

reaction to reaction during transcription, which means that if X is defined as 70 in the first 

reaction (4.1) in the last one (4.4) X is still 70. We adopt this methodology to simply the 

understanding of our model (Figure 4.5). However, in the model developed in custom 

software, it is taking into account all the reactions per each σ factor. 

 

 

Figure 4.5: Scheme of the model used in our study. Here only one σ factor is represented, to simplify 

the representation of the reactions. In this figure, X can be 70, 54 or 38, in order to represent the three 

σ factors used, respectively σ70, σ54 or σ38, as well as the rates associated. The σX factor can bind 

specifically to the free RNAp, forming the holoenzyme (RNApσx) with a disassociation constant of KX. On 

the other hand, the free RNAp can bind non-specifically to the DNA chain with a rate, represented by 

KNS. The holoenzyme formed can bind specifically the promoter (Pr) with a dissociation rate of KSX and 

start the transcription of a molecule of messenger RNA which is release as soon as the termination site 

is reached. However the holoenzyme can also bind non-specifically the DNA chain with a disassociation 

rate here represented by KNSX.  

 

As mentioned before, in order to initiate transcription, it is necessary that the RNAp 

holoenzyme (RNApσX) (Figure 4.5) is formed. This reaction is represented in 4.1 where KX is the 

disassociation constant between RNAp core enzyme and σX.  

 

RNAp   σ  
  
↔  RNApσ            (4.1) 
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This holoenzyme can find the specific gene for each σ factor (reactions 4.2) and bind the 

promoter Pr with a disassociation constant represented by      (Figure 4.5).  

RNApσ    r  
   
↔   r             (4.2) 

 

The promoter specifically bound by the specific holoenzyme (PrX) takes an interval of time 

until forming a closed complex ( rc ) (reaction 4.3). This interval is also known as the 

dissociation constant, here represented by kc . This step is not represented in Figure 4.5 but 

can be observed in Figure 2.1.  

 

 r  
kc 
→   rc             (4.3) 

 

The closed complex isomerizes to form an open complex  ro , (reactions 4.4) with the 

transcription bubble (Figure 2.1). In this reaction, ko  represents the rate constant of formation 

of the open complex. This open complex allows that after transcription of some nucleotides, 

RNAp leaves the promoter and starts to elongate the RNA chain (Figure 4.5) until it finds the 

termination signal, at which point transcription stops and the molecule of messenger RNA is 

released. This molecule of mRNA will be translated by ribosomes in order to produce proteins. 

 

 rc 
ko 
→   ro      RNA            (4.4) 

 

Note that although the σ factors are released after transcription of a few nucleotides, as 

mentioned in the chapter of state of the art, it is known that this does not affect the amount of 

σ factors in general. Thereby this step is not modeled and is not represented in Figure 4.5. 

Since most RNAp binds to DNA (Grigorova et al., 2006; Shepherd, Dennis, & Bremer, 2001), 

the proportion of the holoenzymes in cytosol that is subject to σ factor competition is 

determined by the amount of unbound σ factors of each type. We assume that σ factors can 

only bind to free RNAp, which means that it is not bound to DNA, therefore, the proportion of 

unbound σ factors of each type determines the composition of not only the free holoenzymes 

but also holoenzymes that are bound to DNA.  

As in (Grigorova et al., 2006), since the intracellular concentration of σ factors is smaller 

than the amount of RNAp (both holoenzyme and core enzyme), the amount of free RNAp is 

not a rate-limiting factor and as such does not require an explicit representation in our model.  
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Thereby the parameters of the model here presented are: the amount of RNAp core 

enzyme that is free (here modelled with E); the amount of holoenzyme that it is free (Eσ); the 

amount of nonspecifically binding of E to DNA (here modelled with Eb); the quantity of 

holoenzyme that bind nonspecifically to DNA (Eσ70
b, Eσ

38
b or Eσ

54
b) and that bind specifically to 

DNA in the promoter region (Eσ70, Eσ38 or Eσ54); and the total number of σ70 (nσ  ) σ
38 (nσ3 )and 

σ54 (nσ 4).  

Recent evidences (Grigorova et al., 2006) predict that σ factors only compete to bind to E 

when their total number is higher than the total amount of RNAp, rather than the amount of 

free RNAp, and σ70 is in excess of total of E. Other study (Shepherd et al., 2001) suggests that 

only a small percentage of the total amount of RNAp in the cell is represented by both free and 

non-specifically bound holoenzyme. As mentioned before our target is a single promoter. 

Thereby the non-specific binding is the binding of holoenzyme that blocks the target promoter, 

preventing the binding of other holoenzyme. Moreover, since our target promoter is single 

copy, non-specific binding should not affect the sigma factor composition but only the 

promoter dynamics.  

Once the value of free RNAp and RNAp that is non-specifically bound to DNA corresponds 

to a small percentage of the total amount of RNAp (Grigorova et al., 2006), we ignore these 

values (E and Eb). It is known that the total number of σ70 , nσ  , consists of the sum of σ
70 that 

it is free with the amount of σ70 that it is bound to RNAp, which means Eσ70
b (equation 4.5). 

The same is verified to σ38 and σ54 (equations 4.6 and 4.7). The total amount of free 

holoenzyme (Eσ) could be expressed by the sum of Eσ70
b with Eσ

38
b and Eσ54

b (equation 4.8).  

 

nσ     σ
     Eσb

             (4. ) 

 

nσ3    σ
3    Eσb

3            (4. ) 

 

nσ 4   σ
 4   Eσb

 4           (4. ) 

 

nE  ≈ Eσb
      Eσb

3     Eσb
 4          (4. ) 

 

From the prediction that to initiate transcription the total number of σ factors has to be 

higher than the total amount of RNAp (Grigorova et al., 2006), we infer the following 

expressions (equations 4.9 and 4.10). 
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σ  
  
Eσb
 4

Eσb
                      (4. ) 

Eσ3 

Eσ  
 
σ3 

σ  
  
Eσb
3 

Eσb
                      (4.1 ) 

Figure 4.5 represents two rates which have not yet been mentioned. These rates are the 

dissociation constant for nonspecific binding of E to DNA chain (KNS) and the dissociation 

constant for nonspecific binding of the holoenzyme to DNA chain ( N  ). Once that these rates 

do not affect the amount of free holoenzymes their values are not included in our model.  

 

4.3.1. Results of simulations of the model of σ factors  

 

As mentioned before, the difference between strains and cellular growth phase are 

modelled changing some parameters. In this sub-chapter, first, the values set per each 

simulation will be addressed as well as the results of the simulations for the three strains 

under control of PtetA during stationary and exponential phases. Second, the results of the 

simulations for the three strains under control of PBAD during the two cellular growth phases 

are presented. Further, the results of some simulations under stress response will be shown. 

 

4.3.1.1. Under control of PtetA during exponential phase  

 

In this sub-chapter the values of the parameters used will be described, as well as the 

results obtained for the three strains under control of PtetA during the exponential phase. The 

value of the total number of molecules of σ70, σ38, σ54 and Eσ are obtained by (Maeda, Fujita, & 

Ishihama, 2000). Note that the value itself is not the most important point, but the relationship 

between these values. Therefore, the total number of σ70, nσ  , is defined as 700 molecules per 

cell (Maeda et al., 2000), the total number of σ54, nσ 4, is set as 110 molecules per cell (Maeda 

et al., 2000), the total number of σ38, nσ3 ,  is 0 molecules per cell (Table 4.2) (Maeda et al., 

2000) and the total number of holoenzyme, nE , is 600 molecules per cell. Using the equations 

4.  to 4.1  and applying some math it is possible to infer that the σ70 is 181 molecules per cell, 

σ54 is 2  molecules per cell, σ38 does not exist in exponential phase, Eσb
   is 519 molecules per 

cell, Eσb
 4 is 81 molecules per cell and Eσb

3  is 0. 
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To simulate the three strains used in our study, three simulations were done, where to 

simulate the mutant cells, the total number of σ factor lacking and the number of 

corresponding holoenzymes is set as 0. Between strains, the total amount of holoenzyme, nE , 

does not change, but between cellular growth phases it changes.  

The disassociation constant of the specific binding of the holoenzyme, Eσ70, to PtetA is set as 

900 seconds, once that we are only interested in the amount of the holoenzyme unbound 

from the DNA and its copy number is higher when compared to the promoter copy number. 

Moreover, the specific binding occurs only around the promoter region and the specific 

binding is only done by Eσ70. Thereby the disassociation constants of specific binding of the 

holoenzyme Eσ54 and Eσ38 are set with a higher number (1013 seconds), in order to not 

influence the process of transcription. The value of the disassociation constants of the closed 

and open complex formation were first set as the values represented in Table 4.6, respectively 

kc
    equal to 156 seconds and ko

    as 712 seconds. Once PtetA is not affected by σ 

composition, the higher value should correspond to the open complex formation and the 

smaller to the closed complex formation. As with these values the results were not acceptable, 

we adjusted the values for: kc
    was set as 100 seconds as well as the elongation rate and the 

value of ko
     was set as 600 seconds. The disassociation constants of the open complex 

formation for the other σ factors are set as 1011 seconds, due to the specific binding is only 

done by Eσ70 and the disassociation constant of the closed complex formation for σ54 and σ38 

and the elongation rate are set as 103. 

From Figure 4.6 and Table 4.14 it is possible to infer that the results from the simulations 

of the stochastic model are in agreement with the in vivo measurements. The distributions of 

the intervals between consecutive transcription events in the three strains under control of 

PtetA during exponential phase and the CVS value shows that this process is a sub-Poissonian 

process. Thereby the results are also in agreement with previous studies made for this 

promoter (Muthukrishnan et al., 2012). 
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In Figure 4.6, the distribution of production intervals obtained for each measurement 

(Figure 4.1) is repeated in the left side of Figure 4.6 in order to compare these results with the 

distribution of production intervals obtained from our model (Figure 4.6 - right side). From 

that, we conclude that both distributions follow the same trend. The mean production interval 

(µ(s)) (Table 4.14) is in agreement with the in vivo measurements (Table 4.1), once the value 
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Figure 4.6: Distribution of RNA production under control of PtetA during exponential phase. Histogram 
of the duration of the intervals between consecutive productions of RNA for the three strains (A – wild-
type cells, B – mutant cells lacking σ38 and C – mutant cells lacking σ54 ) under control of PtetA during 
exponential phase resulting from in vivo measurements (left) and from simulations of the model  
(right). 
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between the three strains is similar. This similarity is due to PtetA is not affected by σ factor 

composition. 

 

Table 4.14: Results of the stochastic model developed in this study for the three strains under control 
of PtetA during exponential phase. The mean production interval (µ(s)), its standard deviation (σ(s)) and 
the CVS value are presented for wild-type cells and mutant cells lacking σ38 and σ54. 

Strains µ(s) σ(s) CVS 

Wild-type cells 987 646 0.43 

Mutant cells (lacking σ38) 937 659 0.49 

Mutant cells (lacking σ54) 1025 690 0.45 

 

 

4.3.1.2. Under control of PtetA during stationary phase 

 

For the simulations during the stationary phase some parameters were changed. The value 

of the total number of molecules of σ70, σ38, σ54 and Eσ were obtained by (Jishage et al., 1996; 

Maeda et al., 2000). The total number of σ70, nσ  , were defined as 700 molecules per cell 

(Maeda et al., 2000), the total number of σ54, nσ 4, was set as 110 molecules per cell (Maeda et 

al., 2000), the total number of σ38, nσ3 , 230 molecules per cell (Table 4.2) (Jishage et al., 1996) 

and the total number of holoenzyme, nE , 670 molecules per cell. Using the same procedure of 

the simulations during the exponential phase, it is possible to infer that σ70 is 249 molecules 

per cell, σ54 is 3  molecules per cell, σ38 is 82 molecules per cell, Eσb
   is 451 molecules per cell, 

Eσb
 4 is 71 molecules per cell and Eσb

3  is 148.  

Similarly to the simulations made during exponential phase, three simulations were also 

done, one per each strain, where to the mutant cells, the total number of σ factor which is 

lacking and the number of corresponding holoenzymes was as well set to 0. Between strains, 

the total amount of holoenzyme, nE , does not change.  

The disassociation constants are the same for the simulations during exponential phase, 

once these values change between promoters but not between strains and cellular growth 

phases. 
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Similar to the analysis made for the simulations during exponential phase, from Figure 4.7 

and from Table 4.15 it is possible to infer that the results from the simulations of the stochastic 

model developed in this study are also in agreement with the in vivo measurements. Since the 

distributions of the intervals between consecutive transcription events in the three strains 

under control of PtetA during stationary phase and the CVS value shows that this process is a 
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Figure 4.7: Distribution of RNA production under control of PtetA during stationary phase. Histogram of 
the duration of the intervals between consecutive productions of RNA for the three strains (A – wild-type 
cells, B – mutant cells lacking σ38 and C – mutant cells lacking σ54 ) under control of PtetA during stationary 
phase resulting from in vivo measurements (left) and from simulations of the model  (right). 
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sub-Poissonian process, which is also in agreement with previous studies made for this 

promoter (Muthukrishnan et al., 2012). Likewise Figure 4.6, Figure 4.7 also contains the 

distribution of production intervals obtained with the in vivo measurements for these 

conditions (Figure 4.2 and left side of Figure 4.7) and the distributions of production intervals 

resulting from simulations of our model (right side of Figure 4.7). Comparing both distributions 

it is possible to observe that in vivo measurements and our simulations follow the same trend. 

The mean production interval (µ(s)) (Table 4.15) is also in agreement with the in vivo 

measurements (Table 4.3) once the value between the three strains is similar. This similarity 

can be explained likewise as the in vivo measurements, due to PtetA that is not affected by σ 

factor composition. 

 

Table 4.15: Results of the stochastic model developed in this study, for the three strains under control 
of PtetA during stationary phase. The mean production interval (µ(s)), its standard deviation (σ(s)) and 
the CVS value are presented for wild-type cells and mutant cells lacking σ38 and σ54. 

Strains µ(s) σ(s) CVS 

Wild-type cells 986 676 0.47 

Mutant cells (lacking σ38) 988 678 0.47 

Mutant cells (lacking σ54) 1004 672 0.45 

 

4.3.1.3. Under the control of PBAD during the exponential phase 

 

The total number of molecules of σ70, σ38, σ54 and Eσ change between cellular growth 

phases, but do not change between promoters. Thereby, the values of these parameters for 

the simulations under control of PBAD are the same than the ones from the simulations under 

control of PtetA.  

Three simulations were also done, one per each strain of E. coli and the simulations of the 

mutant cells were also made setting the total number of σ factor which is lacking and the 

number of corresponding holoenzymes to 0. Between strains, the total amount of 

holoenzyme, nE , does not change.  

The disassociation constant of the specific binding of the holoenzyme, Eσ70, to PBAD is set as 

900 seconds. Further, also for this promoter the specific binding occurs only around the 

promoter region and the specific binding is only done by Eσ70. Thereby, the disassociation 

constants of specific binding of the holoenzyme Eσ54 and Eσ38 are set with a higher number 

(1013 seconds), in order to not influence the transcription process, as for PtetA. The value of the 
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disassociation constants of the closed complex and open complex formation were first set as 

the values represented in Table 4.10, respectively kc
    equal to 625 seconds and ko

    as 87 

seconds, due to PBAD is strongly affected by σ composition and the higher value should 

correspond to the closed complex formation and the smaller to the open complex formation 

(note that the smaller value is around 20 seconds and it will be set as the elongation rate). The 

results using kc
    equal to 598 seconds were not acceptable once that PBAD is not always 

saturated by Eσ70 and the prediction of this value, represented in Table 4.4, is higher than it 

should be. In the end, the value of kc
     should be slower. Thus it was set as 250 seconds and 

the value of ko
    was set as 51 seconds as well as the elongation rate. The disassociation 

constants of the closed complex formation for the other σ factors are set as 1011 seconds, for 

the same reason than the disassociation constant of the specific binding, and the 

disassociation constant of the open complex formation for σ54 and σ38 and the elongation rate 

are set as 103. 

From Figure 4.8 and from Table 4.16 it is possible to infer that the results from the 

simulations of the stochastic model developed in this study are in agreement with the in vivo 

measurements. The distributions of the intervals between consecutive transcription events in 

the three strains under control of PBAD during exponential phase and the CVS value shows that 

this process is a sub-Poissonian process, which is also in agreement with previous studies 

made for this promoter (Mäkelä et al., 2013). 

 Comparing the left side of Figure 4.8, which represent the distributions of production 

intervals obtained for the in vivo measurements, with the right side, where the distributions of 

production intervals of simulations of our model are represented, we concluded that both 

distributions follows the same trend, as for PtetA. On the other hand, the mean production 

interval (µ(s)) (Table 4.16) is not in agreement with the in vivo measurements (Table 4.10), 

once the values are similar to all the strains and it was expected that mutant cells lacking σ54 

needed less time to produce RNA once this σ factor does not initiate  BAD transcription. 

Table 4.16: Results of the stochastic model here developed for the three strains under control of PBAD 
during exponential phase. The mean production interval (µ(s)), its standard deviation (σ(s)) and the 
CVS value are presented for wild-type cells and mutant cells lacking σ38 and σ54. 

Strains µ(s) σ(s) CVS 

Wild-type cells 773 691 0.79 

Mutant cells (lacking σ38) 782 715 0.84 

Mutant cells (lacking σ54) 802 714 0.79 
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 4.3.1.4. Under control of PBAD during stationary phase 

 

Once the value of the total number of molecules of σ70, σ38, σ54 and Eσ does not change 

between promoters, these parameters are set as the simulations under PtetA during 

exponential phase. Similarly to the others simulations, here are also done three simulations 

following the same procedure.  

A 

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

250

300
Distribution of RNA prodution

Time (Seconds)

N
u
m

b
e
r 

o
f 

R
N

A

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5
x 10

-3

Interval duration (s)

 

 

Data

1 step

2 steps

3 steps

B 

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300
Distribution of RNA prodution

Time (Seconds)

N
u
m

b
e
r 

o
f 

R
N

A

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2
x 10

-3

Interval duration (s)

 

 

Data

1 step

2 steps

3 steps

C 

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

250

300
Distribution of RNA prodution

Time (Seconds)

N
u
m

b
e
r 

o
f 

R
N

A

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

-3

Interval duration (s)

 

 

Data

1 step

2 steps

3 steps

Figure 4.8: Distribution of RNA production under control of PBAD during exponential phase. Histogram 
of the duration of the intervals between production of RNA for the three strains (A – wild-type cells, B – 
mutant cells lacking σ38 and C – mutant cells lacking σ54 ) under control of PBAD during exponential 
phase resulting from in vivo measurements (left) and from simulations of the model  (right) developed 
in the aim of this study. 
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The disassociation constants are the same for the simulations during exponential phase, 

once these values changes between promoters but not between cellular growth phases, 

therefore, these values will not be repeated in this sub-chapter. 

From Figure 4.9 and from Table 4.17 it is possible to infer that the results from the 

simulations of the stochastic model developed in this study are in agreement with the in vivo 

measurements during stationary phase. The distributions of the intervals between consecutive 

transcription events in the three strains under control of PBAD and the CVS value shows that 

this process is a sub-Poissonian process which is also in agreement with previous studies made 

for this promoter (Mäkelä et al., 2013).  

It is also compared the distributions of production intervals obtained with in vivo 

measurements (left side of Figure 4.9) with the distributions obtained with our simulations 

(right side of Figure 4.9) and observe that both distribution follow the same trend.  

The in vivo results for the mean production interval (µ(s)) (Table 4.5) suggest that the three 

strains need more time to complete a transcription initiation event once initiated comparing 

with the results for the stochastic simulations (Table 4.17). However, for both results, the 

strain which needs more time is the wild-type cells and the strain which complete a 

transcription initiation event quickly is the mutant cells lacking σ38. As for the in vivo 

measurements (Table 4.5), when going from exponential growth phase to stationary phase, 

the difference between wild-type cells and mutant cells lacking σ38 becomes greater, which can 

be explained for an increasing in the proportion of σ38 in the wild-type strain. Although this 

difference is significantly smaller comparing with the difference obtained in the in vivo 

measurements, it is possible to conclude that PBAD is affected by σ factor composition. 

 

Table 4.17: Results of the stochastic model here developed for the three strains under control of PBAD 
during stationary phase. The mean production interval (µ(s)), its standard deviation (σ(s)) and the CV  
value are presented for wild-type cells and mutant cells lacking σ38 and σ54. 

Strains µ(s) σ(s) CVS 

Wild-type cells 861 748 0.76 

Mutant cells (lacking σ38) 842 727 0.74 

Mutant cells (lacking σ54) 853 724 0.72 
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Figure 4.9: Distribution of RNA production . Histogram of the duration of the intervals between 
consecutive productions of RNA for the three strains (A – wild-type cells, B – mutant cells lacking σ38 
and C – mutant cells lacking σ54 ) under control of PBAD during stationary phase resulting from in vivo 
measurements (left) and from simulations of the model  (right). 
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5. Conclusion 

We studied the potential differences in dynamics of transcription between mutant cells 

lacking σ54 or lacking σ38 and wild-type cells under the same, optimal growth conditions. This 

study of transcription dynamics dependence on σ factors was performed under control of two 

promoters, PtetA and PBAD, during two cellular growth phases, in order to determine if existing 

differences in RNA production kinetics between mutant cells are solely σ factor-dependent 

(which differ with the cell phase and mutations) or are also promoter-dependent.  

For this study, we did the analysis of the time series obtained in our laboratory for each 

strain during exponential and stationary phase, by a semi-automatic method (Kandhavelu et 

al., 2011). For all the experiments, assuming that transcription initiation consists of a sequence 

of exponentially distributed steps, it was inferred the number of steps, as well as the duration 

of the underlying rate-limiting steps. We also developed a stochastic model which takes into 

account the presence of σ factors. Further, as transcription by RNAp takes some time, our 

model contains these time delays, being a delayed stochastic model. Thereby, the model 

developed includes explicitly the steps of transcription initiation, as well as the formation of 

the closed complex and its isomerization, which leads to the open complex formation (Buc & 

McClure, 1985) and the elongation process. It further contains the reactions of the translation 

process, namely the formation of proteins and the time needed for that.  

From this model, it is extracted the dynamics of transcription for all the simulations using 

the delayed stochastic simulation algorithm. Then we compare the in vivo dynamics with the 

ones from the simulations of the model, developed in this study. 

From the analysis of the mean duration to complete a transcription initiation event once 

initiated of the experiments made under control of PtetA during exponential and stationary 

phase, we conclude that this promoter is not affected by σ factor composition, due the 

dynamics of transcription almost does not change between strains during the two growth 

phase.  

On the other hand, for PBAD, during both cellular growth phases, there are significant 

differences of the mean production intervals between strains. As such, we conclude that the 

dynamics of transcription from this promoter is affected by the σ factor population 

composition in the cells. Moreover, as for one promoter there are significant differences in 

RNA production kinetics between strains and for the other there are not, we conclude that the 

dynamics of transcription initiation is promoter-dependent.  
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Relatively to the shape of the distributions of the intervals obtained either with the in vivo 

measurements or with the simulations of the model, for all the strains under control of both 

promoters during the two cellular growth phase, it is conclude that the distributions are not 

exponential-like, which is consistent with the literature (Mäkelä et al., 2013; Muthukrishnan et 

al., 2012). Further, the process of RNA production under the control of PtetA or PBAD is sub-

Poissonian also in agreement with previous studies.  

 Finally, from the data, it is possible to infer the number and duration of the sequential 

steps in transcription initiation by maximum-likelihood from the distribution of intervals 

between production of consecutive RNA molecules and it is concluded that there are three 

rate-limiting steps in transcription initiation by PtetA and by PBAD for all the strains during 

exponential and stationary phase. However, the steps durations differ significantly. 

The results from our model are in agreement with the in vivo measurements, when 

analysing the dynamics per each strain under control of PtetA during both growth phases. Under 

control of PBAD there are some differences between our model and in vivo measurements. 

Future research is required to explain such differences. 

The results of the analysis of the in vivo measurements of tagged RNA molecules in wild-

type cells and mutant cells (lacking σ54 and σ38) during exponential phase under control of the 

PtetA and PBAD  were presented in conference entitled Views into Nuclear Function, Patras, 

Greece, on 11-13 September 2014 [2].  

  



Cristiana Isabel Martins Ferreira  2014

 

Page | 53  
 

7. References 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology 

of the Cell. (M. Anderson & S. Granum, Eds.) (Fifth Edit., pp. 329–410). New York: Garland 

Science. 

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., … Mori, H. (2   ). 

Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio 

collection. Molecular Systems Biology, 2, 2006.0008. doi:10.1038/msb4100050 

Bernstein, J. A., Khodursky, A. B., Lin, P.-H., Lin-Chao, S., & Cohen, S. N. (2002). Global analysis 

of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-

color fluorescent DNA microarrays. Proceedings of the National Academy of Sciences of 

the United States of America, 99(15), 9697–702. doi:10.1073/pnas.112318199 

Buc, H., & McClure, W. R. (1985). Kinetics of open complex formation between Escherichia coli 

RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism 

involving three steps. Biochemistry, 24(11), 2712–2723. doi:10.1021/bi00332a018 

Crick, F. (1970, August). Central Dogma of Molecular Biology. Nature, 227, 561–564. 

Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a 

single cell. Science (New York, N.Y.), 297(5584), 1183–6. doi:10.1126/science.1070919 

Fusco, D., Accornero, N., Lavoie, B., Shenoy, S. M., Blanchard, J. M., Singer, R. H., & Bertrand, E. 

(2003). Single mRNA molecules demonstrate probabilistic movement in living mammalian 

cells. Current Biology : CB, 13(2), 161–7. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/12546792 

Gillespie, D. T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal 

of Physical Chemistry, 81(25), 2340–2361. 

Golding, I., & Cox, E. C. (2004). RNA dynamics in live Escherichia coli cells. Proceedings of the 

National Academy of Sciences of the United States of America, 101(31), 11310–5. 

doi:10.1073/pnas.0404443101 



Cristiana Isabel Martins Ferreira  2014

 

Page | 54  
 

Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-time kinetics of gene activity in 

individual bacteria. Cell, 123(6), 1025–1036. doi:10.1016/j.cell.2005.09.031 

Greive, S. J., & von Hippel, P. H. (2005). Thinking quantitatively about transcriptional 

regulation. Nature Reviews. Molecular Cell Biology, 6(3), 221–32. doi:10.1038/nrm1588 

Grigorova, I. L., Phleger, N. J., Mutalik, V. K., & Gross, C. a. (2006). Insights into transcriptional 

regulation and sigma competition from an equilibrium model of RNA polymerase binding 

to DNA. Proceedings of the National Academy of Sciences of the United States of America, 

103(14), 5332–7. doi:10.1073/pnas.0600828103 

Gruber, T. M., & Gross, C. a. (2003). Multiple sigma subunits and the partitioning of bacterial 

transcription space. Annual Review of Microbiology, 57, 441–66. 

doi:10.1146/annurev.micro.57.030502.090913 

Harada, Y., Funatsu, T., Murakami, K., Nonoyama, Y., Ishihama, a, & Yanagida, T. (1999). Single-

molecule imaging of RNA polymerase-DNA interactions in real time. Biophysical Journal, 

76(2), 709–15. doi:10.1016/S0006-3495(99)77237-1 

Huh, D., & Paulsson, J. (2011a). Non-genetic heterogeneity from stochastic partitioning at cell 

division. Nature Genetics, 43(2), 95–100. doi:10.1038/ng.729 

Huh, D., & Paulsson, J. (2011b). Random partitioning of molecules at cell division. Proceedings 

of the National Academy of Sciences of the United States of America, 108(36), 15004–9. 

doi:10.1073/pnas.1013171108 

Ishihama, A. (2000). Functional Modulation of Escherichia Coli RNA Polymerase. Annual Review 

of Microbiology, 54, 499–518. 

Jishage, M., & Ishihama, A. (1995). Regulation of RNA polymerase sigma subunit synthesis in 

Escherichia coli : intracellular levels of sigma    and sigma 3  . Journal of Bacteriology, 

177(23). 

Jishage, M., Iwata, a, Ueda, S., & Ishihama, a. (1996). Regulation of RNA polymerase sigma 

subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit 

under various growth conditions. Journal of Bacteriology, 178(18), 5447–51. Retrieved 

from 



Cristiana Isabel Martins Ferreira  2014

 

Page | 55  
 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=178365&tool=pmcentrez&r

endertype=abstract 

Kandhavelu, M., Lloyd-Price, J., Gupta, A., Muthukrishnan, A.-B., Yli-Harja, O., & Ribeiro, A. S. 

(2012). Regulation of mean and noise of the in vivo kinetics of transcription under the 

control of the lac/ara-1 promoter. FEBS Letters, 586(21), 3870–5. 

doi:10.1016/j.febslet.2012.09.014 

Kandhavelu, M., Mannerström, H., Gupta, A., Häkkinen, A., Lloyd-Price, J., Yli-Harja, O., & 

Ribeiro, A. S. (2011). In vivo kinetics of transcription initiation of the lar promoter in 

Escherichia coli. Evidence for a sequential mechanism with two rate-limiting steps. BMC 

Systems Biology, 5(1), 149. doi:10.1186/1752-0509-5-149 

Lloyd-Price, J., Gupta, A., & Ribeiro, A. S. (2012). SGNS2: A Compartmentalized Stochastic 

Chemical Kinetics Simulator for Dynamic Cell Populations. Bioinformatics (Oxford, 

England), 28(22), 3004–5. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/23014631 

Loewen, P. C., & Hengge-aronis, R. (1994). THE ROLE OF THE SIGMA FACTOR SIGMA s ( KatF ) 

IN BACTERIAL GLOBAL REGULATION. Microbiol., 53–80. 

Lutz, R., Lozinski, T., Ellinger, T., & Bujard, H. (2001). Dissecting the functional program of 

Escherichia coli promoters: the combined mode of action of Lac repressor and AraC 

activator. Nucleic Acids Research, 29(18), 3873–81. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=55909&tool=pmcentrez&re

ndertype=abstract 

Maeda, H., Fujita, N., & Ishihama, a. (2000). Competition among seven Escherichia coli sigma 

subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Research, 

28(18), 3497–503. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=110723&tool=pmcentrez&r

endertype=abstract 

Mäkelä, J., Kandhavelu, M., Oliveira, S. M. D., Chandraseelan, J. G., Lloyd-Price, J., Peltonen, J., 

… Ribeiro, A.  . (2 13). In vivo single-molecule kinetics of activation and subsequent 



Cristiana Isabel Martins Ferreira  2014

 

Page | 56  
 

activity of the arabinose promoter. Nucleic Acids Research, 41(13), 6544–52. 

doi:10.1093/nar/gkt350 

McAdams, H. H., & Arkin, a. (1   ). It’s a noisy business! Genetic regulation at the nanomolar 

scale. Trends in Genetics : TIG, 15(2), 65–9. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10098409 

McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of 

the National Academy of Sciences of the United States of America, 94(3), 814–9. 

Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=19596&tool=pmcentrez&re

ndertype=abstract 

McClure, W. R. (1980). Rate-limiting steps in RNA chain initiation. Proceedings of the National 

Academy of Sciences of the United States of America, 77(10), 5634–8. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=350123&tool=pmcentrez&r

endertype=abstract 

Merrick, M. J. (1993), In a class of its own — the RNA polymerase sigma factor σ;54 (σN). 

Molecular Microbiology, 10: 903–909. doi: 10.1111/j.1365-2958.1993.tb00961.x 

Mooney, R. A., Darst, S. a, & Landick, R. (2005). Sigma and RNA polymerase: an on-again, off-

again relationship? Molecular Cell, 20(3), 335–45. doi:10.1016/j.molcel.2005.10.015 

Muthukrishnan, A.-B., Kandhavelu, M., Lloyd-Price, J., Kudasov, F., Chowdhury, S., Yli-Harja, O., 

& Ribeiro, A. S. (2012). Dynamics of transcription driven by the tetA promoter, one event 

at a time, in live Escherichia coli cells. Nucleic Acids Research, 40(17), 8472–83. 

doi:10.1093/nar/gks583 

Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D., & van Oudenaarden, A. (2002). 

Regulation of noise in the expression of a single gene. Nature Genetics, 31(1), 69–73. 

doi:10.1038/ng869 

Paulsson, J. (2004). Summing up the noise in gene networks. Nature, 427(6973), 415–8. 

doi:10.1038/nature02257 



Cristiana Isabel Martins Ferreira  2014

 

Page | 57  
 

Peabody, D. S. (1993). The RNA binding site of bacteriophage MS2 coat protein. The EM, 12(2), 

595–600. 

Peabody, D. S. (1997). Role of the coat protein-RNA interaction in the life cycle of 

bacteriophage MS2. Molecular & General Genetics : MGG, 254(4), 358–64. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/9180688 

Peccoud, J., & Ycart, B. (1995). Markovian Modelling of Gene Product Synthesis. 

Ribeiro, A. S., & Lloyd-Price, J. (2007). SGN Sim, a Stochastic Genetic Networks Simulator. 

Bioinformatics (Oxford, England), 23(6), 777–779. doi:10.1093/bioinformatics/btm004 

Ribeiro, A., Zhu, R., & Kauffman, S. a. (2006). A general modeling strategy for gene regulatory 

networks with stochastic dynamics. Journal of Computational Biology : A Journal of 

Computational Molecular Cell Biology, 13(9), 1630–1639. 

Ruusuvuori, P., Aijö, T., Chowdhury, S., Garmendia-Torres, C.,  elinummi, J., Birbaumer, M., … 

Yli-Harja, O. (2010). Evaluation of methods for detection of fluorescence labeled 

subcellular objects in microscope images. BMC Bioinformatics, 11, 248. 

doi:10.1186/1471-2105-11-248 

Samoilov, M., Arkin, A., & Ross, J. (2002). Signal Processing by Simple Chemical Systems. The 

Journal of Physical Chemistry A, 106(43), 10205–10221. doi:10.1021/jp025846z 

Shaevitz, J. W., Abbondanzieri, E. a, Landick, R., & Block, S. M. (2003). Backtracking by single 

RNA polymerase molecules observed at near-base-pair resolution. Nature, 426(6967), 

684–7. doi:10.1038/nature02191 

Shepherd, N., Dennis, P., & Bremer, H. (2001). Cytoplasmic RNA Polymerase in Escherichia coli. 

Journal of Bacteriology, 183(8), 2527–34. doi:10.1128/JB.183.8.2527-2534.2001 

Shingler, V. (1996, September). MicroReview Signal sensing by s54 -dependent regulators : 

derepression as a control mechanism. Molecular Microbiology, 19, 409–416. 

Skinner, G. M., Baumann, C. G., Quinn, D. M., Molloy, J. E., & Hoggett, J. G. (2004). Promoter 

binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-



Cristiana Isabel Martins Ferreira  2014

 

Page | 58  
 

molecule view of the transcription cycle. The Journal of Biological Chemistry, 279(5), 

3239–44. doi:10.1074/jbc.M310471200 

Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M., & Elowitz, M. B. (2006). An excitable gene 

regulatory circuit induces transient cellular differentiation. Nature, 440(7083), 545–50. 

doi:10.1038/nature04588 

Suh, W. C., Leirmo, S., Record, M. T., & Jr. (1992, February). Roles of Mg2+ in the Mechanism of 

Formation and Dissociation of Open Complexes between Escherichia coli RNA polymrase 

and the Pr Promoter: Kinetic Evidence for a Second Open Complex Requiring Mg2+. 

Biochemistry, 7815–7825. 

Taniguchi, Y., Choi, P. J., Li, G.-W., Chen, H., Babu, M., Hearn, J., …  ie,  .  . (2 1 ). Quantifying 

E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 

(New York, N.Y.), 329, 533–538. doi:10.1126/science.1188308 

Wösten, M. M. S. M. (1998). Eubacterial sigma-factors. FEMS Microbiology Reviews, 22, 127–

150. 

 

Website: 

 

[1] http://amolecularmatter.tumblr.com/post/21213985951/transcription-in-prokaryotes, 

consulted in 10/07/2014. 

 

Publication: 

 

[2]  V Kandavalli, H Tran, J Chandraseelan, C Ferreira and AS Ribeiro (2014). The role of 

different σ factors in the dynamics of transcription during the exponential growth phase. 

Proceedings of the Symposium on Views into Nuclear Function. Patras, Greece, Sept 11–13, 

2014. 

 


