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Abstract 

Staphylococcus aureus is one of the most important contemporary human 

pathogens. The evolutionary “success” of this species is closely related to 

its remarkably capacity to acquire antibiotic resistance traits. In this 

perspective, it is important to extend our knowledge concerning the 

mechanisms of antibiotic resistance in S. aureus and to identify new 

antimicrobials targets.  

Peptidoglycan is a unique and essential structure of the bacterial cell wall; 

its biosynthetic pathway is the target of powerful antibiotics such as β-

lactams and glycopeptides. The biosynthesis of this heteropolymer, which 

consists of alternating disaccharide units composed of N-acetyl-

glucosamine (GlcNAc) and N-acetyl-muramic acid (MurNAc) crosslinked by 

short peptides, is a complex process that takes part in three different 

cellular compartments. The biosynthesis begins in the cytoplasm with the 

formation of the UDP-MurNAc-pentapeptide precursor. Then, in the inner 

face of the cell membrane, the pentapeptide precursor is linked to a 

membrane associated lipid carrier, which results in the formation of lipid I 

that, with the subsequent addition of the GlcNAc, form the lipid II structure. 

The last stage of peptidoglycan biosynthesis includes polymerization of the 

disaccharide pentapetide units at the outside surface of the cytoplasmic 

membrane, through the coordinated action of transpeptidases and 

transglycosylases. During its synthesis and assembly, S. aureus 

peptidoglycan undergoes several modifications in its structure, namely the 

O-acetylation of MurNAc; the association of structures covalently linked, 

including teichoic acids, proteins and capsules; and the D-alanine 

esterification of wall teichoic acids. Furthermore, the peptidoglycan of S. 

aureus is virtually free of carboxyl groups, as the second aminoacid of the 

stem peptide, D-glutamic acid, is modified by amidation of its α-carboxyl 

group, which results in the formation of D-iso-glutamine. Although 
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peptidoglycan amidation is commonly present among gram-positive 

bacteria, its biological role is not completely clear, and the genes 

responsible for this modification were not identified, until now.  

The first part of this Thesis describes identification of two hitherto unknown 

genes, murT and gatD, in the genome of the methicillin resistant S. aureus 

(MRSA) strain COL. The protein products of these two genes are 

responsible for the amidation of D-glutamate into D-iso-glutamine, in the 

peptidoglycan of S. aureus. 

Due to their sequence similarities, the open reading frames corresponding 

to the murT and gatD genes were automatically annotated as a Mur ligase 

family-like protein and a glutamine amidotransferase, respectively. The 

DNA sequence analysis raised the hypothesis that murT and gatD genes 

are co-transcribed, since both genes are next to each other in the 

chromosome; they are transcribed in the same direction, and there is no 

promoter region upstream of the gatD gene. The results from reverse 

transcription-PCR and Northern blotting assays allowed us to conclude that 

murT and gatD are co-transcribed from the same promoter, forming a small 

operon. It is also interesting to note that and the murT-gatD are merged in 

several Gram-positive bacteria, and exist as a single gene. 

In order to explore the role of these uncharacterized genes the murT-gatD 

operon was placed under the control of an inducible promoter in the 

background of the MRSA strain COL. In the absence of inducer, the murT-

gatD conditional mutant produced a peptidoglycan of abnormal 

composition, with an increase in the amount of muropeptides containing D-

glutamate instead of D-iso-glutamine in the stem peptide. This provided 

direct evidence for the involvement of murT-gatD in the amidation of S. 

aureus peptidoglycan. The previously characterized glnRA transposition 

mutant RUSA208, in which the transcription of glutamine synthetase (glnA) 
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is affected, has already shown a similar - abnormal - muropeptide 

composition of its cell wall. In the present work, the peptidoglycan 

composition of the double mutant, in which expression of both murT-gatD 

and glnRA are inhibited, showed absence of amidated muropeptides, 

strongly suggesting that their protein products are the sole determinants for 

the amidation of the D-glutamate residues of S. aureus peptidoglycan. 

Analysis of the cell wall precursor pool composition, in the parental and in 

murT-gatD depleted cells, revealed the presence of D-glutamate in 

peptidoglycam precursors of both strains, which indicated that the 

amidation reaction occurs in a later stage of peptidoglycan biosynthesis, 

most likely in the membrane phase. Further, in vivo complementation 

assays of the murT-gatD depleted phenotype allowed us to infer that 

peptidoglycan amidation requires specifically expression of murT, (which 

appears to be essential and highly specific for the recognition of the 

peptidoglycan precursor), and at least a basal level of gatD, suggesting that 

S. aureus contains other glutamine amidotransferases able to partially 

replace GatD activity.  

The experimental data together with the analysis of aminoacid sequence, 

and the mechanism of action of the glutamine amidotransferases allowed 

us to propose that MurT and GatD together contain the domains and motifs 

required for the amidation of S. aureus peptidoglycan to occur. MurT, with 

its central domain similar to Mur ligases with motifs for ATP binding seems 

to represent the synthetase domain, responsible for the recognition of the 

acceptor substrate and for ATP binding, while GatD contains the 

glutaminase domain, catalyzing the hydrolysis of glutamine and the transfer 

of the resultant amino group to the acceptor substrate, the peptidoglycan 

precursor. 
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The inhibition of murT-gatD transcription caused impairment in growth rate, 

which demonstrated that peptidoglycan amidation has an important role in 

bacterial growth. Nevertheless, the murT-gatD depleted cells showed 

normal morphology, by electron microscopy analysis, indicating that the 

murT-gatD operon is not required for cell division and the involvement of 

peptidoglycan amidation in bacterial growth is completely independent of 

cell division. Consistent with the previous results from the glnRA 

transposition mutant RUSA208, the murT-gatD depleted mutant showed 

decreased methicillin resistance, confirming that peptidoglycan amidation is 

associated with the mechanism of resistance to β-lactams. Furthermore, it 

was found that lack of murT-gatD transcription caused decrease of 

lysozyme resistance both in cells and also in purified peptidoglycan, 

indicating that the reaction catalyzed by MurT and GatD proteins is directly 

involved in the mechanisms of resistance to lysozyme.       

The second part of this Thesis provides direct experimental evidence that 

the MurT and GatD proteins interact physically, forming a stable enzymatic 

complex, and that this interaction is essential for peptidoglycan amidation to 

occur.   

The co-transcription of murT and gatD genes and the requirement of both 

proteins for full in vivo complementation of the murT-gatD depletion 

phenotype, (as demonstrated in the first part of the Thesis), strongly 

suggested the existence of an interaction between MurT and GatD 

proteins. In the second part of the Thesis, the co-purification of MurT and 

GatD recombinant proteins, (from a vector expressing both murT and gatD 

genes), clearly showed that these proteins interact physically and form a 

stable enzymatic complex, needed for the amidation of S. aureus 

peptidoglycan. Additionally, several important findings were obtained 

through the in vitro analysis of lipid II amidation, using MurT-GatD and 
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GatD purified proteins. These findings included demonstration that: i) lipid II 

is a substrate for MurT-GatD catalyzed reaction; ii) that the in vitro 

amidation reaction requires the presence of both proteins; and iii) that 

amidation is dependent on ATP and glutamine.   

The third part of this Thesis describes that peptidoglycan amidation has 

different impacts in the expression of methicillin and lysozyme resistance, 

in representative strains of the most widespread clones of MRSA.  

Despite mecA being considered the main genetic determinant of methicillin 

resistance, several genes from the core genome and some related with cell 

wall biosynthesis, including murT-gatD operon, are required for the optimal 

expression of methicillin resistance in S. aureus. In the present work, 

different degrees of decrease in the original methicillin resistance were 

observed when murT-gatD transcription was inhibited in various MRSA 

genetic backgrounds, with a more pronounced effect on community 

acquired (CA-MRSA) related backgrounds, when compared with hospital 

acquired strains (HA-MRSA).  

It is also interesting that these different phenotypes may be related to the 

capacity of the strains’ genetic background to acquire and maintain the 

mecA gene, since the genetic backgrounds, previously described to be 

more prone to receiving mecA, were the ones less dependent of murT-gatD 

to express methicillin resistance. Inhibition of murT-gatD transcription, in a 

mecA-independent resistant strain, caused a decrease in methicillin 

resistance, suggesting that peptidoglycan amidation also contributes to the 

methicillin resistance by a mecA-independent pathway. Further, more two 

CA-MRSA genetic lineages showed a more pronounced effect on the 

decrease of methicillin resistance, when murT-gatD transcription was 

inhibited, as compared to inhibition of expression of MurF, an essential S. 

aureus Mur ligase. These findings highlight the proposition that MRSA can 
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follow different strategies, by recruitment of different housekeeping genes, 

for the optimal expression of methicillin resistance.  

Peptidoglycan amidation appears to be more significant for lysozyme 

resistance in cells of CA-MRSA backgrounds, as compared with cells of 

HA-MRSA. The absence of significant differences in the level of lysozyme 

resistance of peptidoglycan, indicated that lysozyme resistance in the CA-

MRSA analyzed may involve others factors that are triggered by 

peptidoglycan amidation. 
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Resumo 

Staphylococcus aureus é um dos mais importantes agentes patogénicos 

humanos, cujo sucesso evolutivo está intimamente relacionado com a sua 

capacidade de adquirir resistência aos antibióticos. Por esta razão é 

criticamente importante alargar os nossos conhecimentos relativamente 

aos mecanismos de resistência aos antibióticos em S. aureus e identificar 

novos alvos antimicrobianos.  

O peptidoglicano é o principal constituinte da parede celular bacteriana; as 

enzimas envolvidas na sua síntese são utilizadas como alvo para 

importantes antibióticos, como é o caso dos β-lactâmicos e dos 

glicopéptidos. A biossíntese deste heteropolímero, que consiste em 

unidades alternadas de dissacáridos compostas por N-acetilglucosamina 

(GlcNAc) e por ácido N-acetilmurâmico (MurNAc) ligadas por pequenas 

cadeias peptídicas, é um processo complexo que ocorre em três 

compartimentos celulares distintos. A biossíntese inicia-se no citoplasma 

com a formação do precursor muropeptídico, o pentapéptido-MurNAc. De 

seguida, na face interna da membrana celular, este precursor liga-se a um 

transportador lipídico membranar, originando o lípido I, que por sua vez ao 

associar-se com uma molécula de GlcNAc, origina o lípido II. A última fase 

da biossíntese do peptidoglicano inclui a polimerização das unidades do 

dissacarído pentapetídico, na face externa da membrana citoplasmática, 

através da ação coordenada das transpeptidases e transglicosilases. 

Durante a sua síntese, o peptidoglicano de S. aureus adquire várias 

modificações estruturais: é alvo de O-acetilação do MurNAc, de 

associação de estruturas covalentemente ligadas, como é o caso dos 

ácidos teicóicos, proteínas e cápsula, e de esterificação da D-alanina dos 

ácidos teicóicos. Para além disso, o peptidoglicano de S. aureus não 

contém grupos carboxilo, uma vez que o segundo aminoácido da cadeia 

peptídica, o D-glutamato, é modificado através da amidação do seu grupo 
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α-carboxilo em D-iso-glutamina. Apesar da amidação do peptidoglicano ser 

frequente em bactérias Gram-positivas, o seu papel biológico não é 

conhecido, e os genes responsáveis por esta modificação não estavam 

identificados até à realização desta Tese. 

A primeira parte desta Tese descreve a identificação de dois genes, até 

agora desconhecidos, murT e gatD, no genoma da estirpe COL, uma 

estirpe MRSA (de “Methicillin Resistant Staphylococcus aureus). Os 

produtos proteicos destes dois genes são responsáveis pela amidação do 

D-glutamato em D-iso-glutamina, no peptidoglicano de S. aureus. 

Devido a semelhanças de sequência, as ORFs (de “Open Reading 

Frames”) correspondentes aos genes murT e gatD, foram 

automaticamente anotadas nas bases de dados como codificando uma 

proteína pertencente à classe das Mur ligases e uma glutamina 

amidotransferase, respectivamente. A análise da sequência de DNA 

sugeriu que os genes murT e gatD são co-transcritos, uma vez que o 

codão stop do murT e o codão de iniciação do gatD apenas estão 

separados por 4 nucleótidos, ambos os genes são transcritos na mesma 

direção, e não existe nenhuma região promotora antes do início do gatD. 

Os resultados de PCR por transcriptase reversa e a análise por “Northern 

blotting” permitiram-nos concluir que murT-gatD é co-transcrito a partir do 

mesmo promotor, confirmando que se trata de um pequeno operão. É 

curioso também notar que em algumas bactérias Gram-positivas estes dois 

genes existem como uma única região codificante, o que sugere uma 

interação ou complementaridade de funções entre os respectivos produtos 

proteicos. 

Com o objetivo de investigar o papel destes genes construiu-se um 

plasmídeo em que o operão murT-gatD foi colocado sob o controlo de um 

promotor indutível na estirpe COL. Na ausência de indutor, este mutante 
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condicional do murT-gatD originou um peptidoglicano com uma 

composição alterada, nomeadamente, um aumento da quantidade de 

muropéptidos contendo D-glutamato em vez de D-iso-glutamina, na cadeia 

peptídica. Estes resultados constituíram evidências diretas para o 

envolvimento do murT-gatD na reação de amidação do peptidoglicano de 

S. aureus. O mutante de transposição RUSA208, no qual a transcrição da 

sintetase da glutamina (glnA) está afetada, também apresenta alterações 

idênticas na composição dos muropéptidos da sua parede celular. No 

presente trabalho, observou-se a ausência de precursores muropeptídicos 

amidados no duplo mutante, no qual a transcrição de murT-gatD e de glnA 

foi inibida, sugerindo que as respectivas proteínas são os únicos 

determinantes da amidação do D-glutamato do peptidoglicano de S. 

aureus. A análise da composição dos precursores citoplasmáticos da 

parede celular, na estirpe parental e na estirpe na qual murT-gatD não é 

transcrito, revelou a presença de D-glutamato em ambas, indicando que a 

reação de amidação ocorre numa fase posterior da biossíntese do 

peptidoglicano, muito provavelmente na fase lipídica. Os ensaios in vivo de 

complementação do fenótipo mutante, permitiram-nos inferir que a 

amidação do peptidoglicano requer a expressão de MurT, (que parece ser 

essencial e altamente específica para o reconhecimento do precursor do 

peptidoglicano), e uma expressão residual de GatD, sugerindo que em S. 

aureus existem outras glutamino amidotransferases, capazes de substituir 

parcialmente a atividade da proteína GatD. Os resultados experimentais, 

juntamente com a análise da sequência de aminoácidos, e o mecanismo 

de ação das glutamino amidotransferases permitiram-nos propor que as 

proteínas MurT e GatD, em conjunto, contêm os domínios e motivos 

necessários para que a amidação do peptidoglicano em S. aureus possa 

ocorrer. MurT, com o seu domínio central semelhante ao das Mur ligases e 

motivos para a ligação ao ATP, parece representar o domínio de sintetase, 

sendo responsável pelo reconhecimento do substrato recetor e pela 
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ligação ao ATP, enquanto a GatD contém o domínio da glutaminase, 

catalisando a hidrólise da glutamina e a subsequente transferência do 

grupo amino para o substrato recetor, o precursor do peptidoglicano. 

Na ausência de indutor, observou-se a diminuição da taxa de crescimento 

do mutante condicional do murT-gatD, o que demonstrou que a amidação 

do peptidoglicano é importante para o crescimento bacteriano. No entanto, 

sob as mesmas condições, as células do mutante não apresentaram 

diferenças significativas de morfologia, quando foram analisadas por 

microscopia eletrónica, indicando que o murT-gatD não é necessário para 

a divisão celular, mas que é importante para o crescimento bacteriano, 

através de um mecanismo independente do processo da divisão celular. 

Tal como já tinha sido observado com o mutante de transposição do gene 

glnA, RUSA208, a inibição da transcrição de murT-gatD causou diminuição 

na resistência à meticilina, confirmando que a amidação do peptidoglicano 

está associada ao mecanismo de resistência aos β-lactâmicos. Foi 

também demonstrado que a reação catalisada pelas proteínas MurT e 

GatD está diretamente envolvida nos mecanismos de resistência à 

lisozima, uma vez que tanto as culturas celulares como o peptidoglicano 

purificado mostraram-se mais sensíveis à lisozima, quando a expressão de 

murT-gatD se encontra afetada.  

A segunda parte desta Tese apresenta evidências experimentais para a 

existência de uma interação física entre as proteínas MurT e GatD, 

formando-se desta forma um complexo enzimático estável, sendo esta 

interação essencial para a ocorrência da amidação do peptidoglicano. 

A co-transcrição dos genes murT e gatD e a necessidade da expressão 

das duas proteínas para a total complementação do fenótipo mutante, 

(como demonstrado na primeira parte desta Tese), sugeriram a existência 

de uma interação entre as proteínas MurT e GatD. A co-purificação das 
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proteínas recombinantes MurT e GatD, (através de um plasmídeo que 

expressa simultaneamente os dois genes), mostrou claramente que estas 

proteínas interagem e formam um complexo enzimático estável, 

necessário para a amidação do peptidoglicano de S. aureus. 

Adicionalmente, a análise da reação de amidação, in vitro, do lípido II, 

usando as proteínas MurT-GatD e GatD purificadas, permitiu demonstrar 

que: i) o lípido II é um substrato para a reação catalisada pelo complexo 

MurT-GatD; ii) que a reação da amidação, in vitro, necessita da presença 

de ambas as proteínas, e iii) que a amidação é dependente da presença 

de ATP e glutamina. 

A terceira parte desta Tese descreve o impacto da falta de amidação do 

peptidoglicano na expressão da resistência à meticilina e à lisozima, em 

estirpes representativas dos clones mais disseminados de MRSA. 

Apesar do gene mecA ser o principal determinante genético da resistência 

à meticilina, existem outros genes, localizados no cromossoma e alguns 

relacionados com a biossíntese da parede celular, como é o caso do 

operão murT-gatD, necessários à expressão ótima da resistência à 

meticilina em S. aureus. No presente trabalho, foi observado um impacto 

diferente no decréscimo da resistência original à meticilina, quando a 

transcrição do murT-gatD era inibida em vários clones MRSA, havendo um 

impacto maior nos clones CA-MRSA (de ”Community Acquired-MRSA”), do 

que nos clones HA-MRSA (de “Hospital Acquired-MRSA”). 

É também interessante notar que estes diferentes fenótipos de resistência 

podem estar relacionados com a capacidade de cada estirpe de adquirir e 

manter o gene mecA, uma vez que os clones, anteriormente descritos 

como sendo mais eficientes na aquisição do gene mecA, foram os que 

apresentaram menor dependência do operão murT-gatD para expressar a 

resistência à meticilina. A inibição da transcrição dos genes murT-gatD 
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provocou um decréscimo de resistência numa estirpe resistente que não 

contém mecA, sugerindo que este operão está também envolvido na 

resistência à meticilina, através de um mecanismo que não necessita da 

presença do gene mecA para ser expresso. Curiosamente, duas linhagens 

genéticas de CA-MRSA apresentaram um efeito mais drástico na 

diminuição da resistência à meticilina, quando a transcrição de murT-gatD 

foi inibida, do que na ausência de expressão de uma Mur ligase essencial 

de S. aureus, a proteína MurF. Estas observações sugerem que MRSA 

pode desenvolver diferentes estratégias, através da utilização de diferentes 

genes essenciais de S. aureus, de forma a expressar resistência à 

meticilina. 

A amidação do peptidoglicano também parece ser mais importante para a 

expressão da resistência à lisozima em clones CA-MRSA, do que em HA-

MRSA. No entanto, não se observaram diferenças significativas 

relativamente ao nível de resistência à lisozima do peptidoglicano 

purificado, o que parece sugerir que a resistência à lisozima, nos clones de 

CA-MRSA analisados, é determinada por fatores que estão sob o controlo 

de murT-gatD. 
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Thesis Outline 

Staphylococcus aureus is an important human pathogen whose clinical 

relevance is mainly due to its remarkable capacity to develop mechanisms 

of resistance to antibiotics that are being introduced into the therapeutic 

arsenal. In this context, it is urgent and extremely important to extend our 

knowledge regarding the mechanisms of antibiotic resistance in S. aureus, 

and to discover new targets for the development of alternative 

antimicrobials agents. Peptidoglycan, a major component of the Gram-

positive bacteria cell wall, is essential for cell survival and unique to 

bacteria which makes the enzymatic steps of its biosynthetic pathway 

excellent candidates for the design of new antibiotics. Furthermore, the fact 

that most of the genes associated with β-lactam antibiotic resistance in S. 

aureus are important players in the biosynthesis of peptidoglycan, highlight 

their potential as targets for antimicrobial therapy. Despite the fact that the 

peptidoglycan biosynthetic pathway has been extensively studied, some 

features have remained unknown. The main finding of this Thesis is the 

identification of the so far uncharacterized murT and gatD genes, 

responsible for the amidation of the glutamic acid residue of the stem 

peptide of S. aureus peptidoglycan.  

Chapter I provides a general introduction to some of the important aspects 

of the cell wall of S. aureus, namely its structure is described and all the 

enzymatic steps of the peptidoglycan biosynthesis pathway are mentioned 

in detail. The relevant findings about peptidoglycan hydrolases, which 

includes the N-acetylmuramidase lysozyme, are also reviewed and a 

current understanding of cell wall modifications is summarized. As the 

structure of peptidoglycan is the primary target of β-lactam antibiotics, the 

mode of action and the mechanisms of resistance against this class of 

antibiotics are also described in some detail. Finally, some relevant aspects 

of the molecular epidemiology of S. aureus are also briefly reviewed.   
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Chapter II entitled “Identification of Genetic Determinants and Enzymes 

Involved with the Amidation of Glutamic Acid Residues in the Peptidoglycan 

of Staphylococcus aureus” describes the genetic and biochemical studies 

performed that allowed identification of the murT-gatD operon as 

responsible for the amidation of the glutamic acid residue in the stem 

peptide of S. aureus peptidoglycan. In this chapter, evidence is described 

that suggests that MurT and GatD proteins have a coordinated action in 

order to amidate glutamic acid. The availability of a murT-gatD conditional 

mutant enabled us to conclude that amidation of S. aureus peptidoglycan is 

involved in the mechanisms of resistance to β-lactam antibiotics and to 

lysozyme and is important for bacterial growth. 

Chapter III entitled “MurT-GatD is an enzyme complex responsible for the 

amidation of glutamic acid residues in the peptidoglycan precursor lipid II of 

Staphylococcus aureus” describes co-purification of MurT and GatD 

recombinant proteins from a vector expressing both murT and gatD genes, 

which allowed us to conclude that these proteins interact physically, 

forming a stable enzymatic complex. In this chapter, the in vitro lipid II 

amidation demonstrated that both proteins, MurT and GatD, as well as ATP 

and glutamine are required for the reaction to occur, and lipid II is a 

substrate of MurT-GatD complex. 

Chapter IV entitled “Contribution of Peptidoglycan Amidation to β-Lactam 

and Lysozyme Resistance in Different Genetic Lineages of Staphylococcus 

aureus” shows that peptidoglycan amidation has different impacts in the 

level of β-lactam and lysozyme resistance, according to the genetic 

background of the strain. The transcription of murT-gatD seems to be more 

important for the expression of methicillin resistance in the community 

acquired methicillin resistant S. aureus (CA-MRSA), than in hospital 

acquired strains (HA-MRSA). On the other hand, it is also shown in this 

chapter that inhibition of glutamic acid amidation produces a higher impact 
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on lysozyme resistance in cells of CA-MRSA than in HA-MRSA, suggesting 

the existence of specific factors in CA-MRSA, associated with lysozyme 

resistance, that are triggered by murT-gatD expression.   

Chapter V includes a general discussion of the main findings of my doctoral 

Thesis work. Strategies to follow up of the observations produced in this 

work, are also described in some detail.   

Appendix I is entitled “Purification, crystallization and preliminary X-ray 

diffraction analysis of GatD, a glutamine amidotransferase-like protein from 

Staphylococcus aureus peptidoglycan” and it reports the crystallization of 

native and the selenomethionine-derivative of GatD protein. 

 

Chapters II, IV and Appendix I describe findings that appear in the following 

publications: 

 

Teresa A. Figueiredo, Rita G. Sobral, Ana Madalena Ludovice, João 

Manuel Feio de Almeida, Nhat K. Bui, Waldemar Vollmer, Hermínia de 

Lencastre, Alexander Tomasz. 2012. Identification of Genetic Determinants 

and Enzymes Involved with the Amidation of Glutamic Acid Residues in the 

Peptidoglycan of Staphylococcus aureus.  PLoS Path. 8: e1002508. - 

Chapter II. 

 

Teresa A. Figueiredo, Ana Madalena Ludovice, and Rita G. Sobral. 2014. 
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Resistance in Different Genetic Lineages of Staphylococcus aureus. 

Microb. Drug. Resist. 20: 238-49. - Chapter IV. 

 

Diana Vieira, Teresa A. Figueiredo, Anil Verma, Rita G. Sobral, Ana 

Madalena Ludovice, Hermínia de Lencastre, and Jose Trincao. 2014. 

Purification, crystallization and preliminary X-ray diffraction analysis of 
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GatD, a glutamine amidotransferase-like protein from Staphylococcus 

aureus peptidoglycan. Acta Cryst. F70: 632–35. - Appendix I. 

 

 

 

 

 

 

 

 

 



 
 

 
 

Chapter I 

 

 

General Introduction   

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 



                                                                                                                  General Introduction  

3 
 

1. Staphylococcus aureus 

1.1. General description 

Staphylococci are Gram-positive cocci and were first described in 1881 by 

Alexander Ogston, who designated the clustered micrococci as 

“staphylococci” from the Greek staphyle, meaning bunch of grapes (247). In 

1884, Rosenbach, a German surgeon, proposed the first taxonomic 

description of the genus Staphylococcus after the isolation of two types of 

pigmented colonies: Staphylococcus aureus, from the Latin aurum for gold 

colonies, and Staphylococcus albus (later named Staphylococcus 

epidermidis) from the Latin albus for white colonies (173).  

All members genus Staphylococcus share several features: they are Gram-

positive bacteria of low DNA G+C content, facultative anaerobes, glucose 

fermenting, and positive for catalase activity converting hydrogen peroxide 

to water; also, they have the capacity to grow at temperatures ranging from 

15 to 45 degrees Celsius and at high saline concentrations. 

Among staphylococci, S. aureus and S. epidermidis are the most important 

for their capacity to interact with humans. S. aureus can be differentiated 

from S. epidermidis by the secretion of coagulase, which converts 

fibrinogen to fibrin, promoting the coagulation of plasma, and also by its 

ability to ferment mannitol aerobic and anaerobically. S. aureus is the best 

characterized staphylococcal species. In the past decades, it has been 

extensively studied, mainly due to its high prevalence, virulence, and 

capacity to acquire mechanisms of resistance to many antibiotics. 

 

1.2. S. aureus importance as a pathogen 

S. aureus are mostly mutualist or commensal organisms that are frequently 

found colonizing the skin and mucosas of human and several animal 
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species. It is estimated that 20 to 25% of the healthy human population are 

persistent carriers and about 60% are intermittent carriers of S. aureus (40, 

262). Despite the fact that the relationship between S. aureus and the host 

is frequently asymptomatic, the rupture of the cutaneous barrier allows 

bacteria to penetrate, causing disease. As a pathogen, S. aureus is 

considered an extraordinary versatile bacteria, as it can cause a wide 

spectrum of infections in humans ranging from skin and soft tissue 

infections (e.g., cellulitis, folliculitis, mastitis, impetigo, furuncles, superficial 

and deep skin abscesses, wound infections), to severe life-threatening 

diseases (e.g., pneumonia, meningitis, bacteremia, endocarditis, 

osteomyelitis) and toxin-mediated diseases (e.g., toxic shock syndrome, 

scalded skin syndrome and food poisoning) (280). 

S. aureus is considered an important human pathogen not only for its 

capacity to easily acquire and accumulate resistance to several 

antimicrobials (see section 4), but also for containing a large number of 

virulence factors. These virulence factors can be grouped according to their 

role during infection: i) virulence factors that cause the attachment to the 

host’s cells or extracellular matrix, as fibrinogen-binding proteins, 

coagulase, clumping factor, adhesins and biofilm related polysaccharides; 

ii) virulence factors that allows the bacterial evasion from host’s defense, 

including enterotoxins, protein A and leukocidins; and iii) virulence factors 

involved in invasion and tissue penetration, which attack the host’s cell and 

degrade components of extracellular matrices, such as hemolysins, α-toxin 

and phospholipase C (280). 

The expression of the virulence factors is controlled by a complex 

regulatory circuit, throughout the S. aureus life cycle (208) and at least 

three major operons are involved: the agr (accessory gene regulator) (285, 

337); the sar (staphylococcal accessory regulator) (43) and the sae 
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(staphylococcal accessory element) loci (3). Additionally, other regulatory 

systems also have an impact on virulence gene expression and these 

include arlR and arlS (autolysis-related locus sensor) (96) and rot 

(repressor of toxins) (303).  

 

2. Cell wall 

The bacteria cell wall envelope is a semi-rigid layer essential for the cell’s 

structural integrity and for the maintenance of cellular shape, as it provides 

protection against mechanical stress or damage from osmotic pressure; the 

cell wall also represents a functional interface between the bacteria and the 

outside environment. In the last decades, this organelle has been 

recognized as a highly complex and dynamic structure, which is in a 

constant state assembly and degradation, in order to allow a variety of 

cellular processes, such as: cell growth and division, cellular 

morphogenesis, chromosome segregation, competence and virulence. The 

cell wall of Gram-positive bacteria is structurally different from the one of 

Gram-negative microbes. Since S. aureus is a Gram-positive bacterium, we 

will focus on the description of this type of wall in the next section of this 

Thesis. 

 

2.1. Gram-positive cell wall 

The cell wall of Gram-positive bacteria is mostly composed of 

peptidoglycan, consisting of up to 50% of its mass, in contrast to Gram-

negative cell wall, whose peptidoglycan layer is thinner, contributing only 

with 10% of its mass (108). Importantly, unlike Gram-negative bacteria, 

Gram-positive are not protected by an outer membrane. In addition to 

peptidoglycan, the structure and synthesis of which is described in section 

2.2 and 2.3, the Gram-positive cell wall also includes several other 

chemically distinct molecules such as linear polymers of polysaccharides 
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and proteins, most of them covalently attached to the peptidoglycan mesh. 

Due to their importance for S. aureus physiology, the teichoic acids and the 

penicillin binding proteins (PBPs) will be a major focus of this Thesis. 

Teichoic acids (TAs). These phosphate-rich glycopolymers are present in 

the cell wall in roughly equal proportions to peptidoglycan, constituting 

about 50% of its total mass. TAs are anionic polymers with long chains, 

composed of alternating phosphate and alditol groups, and can be divided 

in two groups: i) wall teichoic acids (WTAs), long chains of ribitolphosphate 

units covalently attached to the peptidoglycan muramic acid, by 

phosphodiester bonds (277); and ii) lipoteichoic acids (LTAs), long chains 

of 1,3-linked glycerolphosphate residues, which are linked to the 

cytoplasmic membrane by a glycolipid (89). Importantly, the chemical 

structure of WTAs is modified in Gram-positive bacteria, namely WTAs of 

S. aureus are D-alanylated, which has implications in the bacteria 

mechanism of clearance by the host immune system during the infection 

process (see section 3).   

Recent studies have indicated that TAs have a critical role in cell division 

and morphogenesis by controlling the biosynthesis of peptidoglycan. On 

the one hand, LTAs are involved in the control of autolysis rates (268) and 

in other important cellular processes, namely in bacterial growth, 

physiology and during development (for a review see reference 287). On 

the other hand, in Bacillus subtilis, the transcription of several genes from 

peptidoglycan biosynthesis can be induced by alterations in WTAs 

production (57).  

In S. aureus, several functional roles have been attributed to WTAs, 

namely: i) host colonization; involvement of WTAs in bacterial adhesion to 

endothelial cells (363); ii) coordination of peptidoglycan synthesis; WTAs 

control the level of secondary cross-linking by temporally and spatially 
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regulating the recruitment of PBP4 to the site of cell-wall synthesis, the 

division septum (14); iii) β-lactam resistance mechanism; the impairment of 

tarO, which encodes a glycosyl transferase responsible for the first 

enzymatic step in WTAs biosynthesis (319), caused a decrease in β-lactam 

resistance level (39, 209); and iv) autolysis regulation; WTAs are important 

for the proper localization of Atl, the major staphylococcal autolysin, at the 

cross-wall where it performs the last step of cell division, namely the 

separation of daughter cells (305).   

The recent discoveries regarding the role of TAs in essential cellular 

processes in S. aureus, have made the biosynthesis of these polymers as a 

promising antibacterial target. Actually, early results in targeting TAs 

biosynthesis are encouraging, and both synthetic and modifying enzymes 

are validated antibiotic targets in a variety of animal models (for a review 

see reference 260).  

 

2.2. S. aureus peptidoglycan structure 

The peptidoglycan (murein) sacculus is a unique and essential structural 

macromolecule that encompasses the entire bacterial cell, providing 

strength to resist the high internal osmotic pressure and maintaining cell 

shape (226, 241, 353). Also, it functions as a scaffold for anchoring other 

cell envelope components such as proteins (77) and teichoic acids (243), 

as was mentioned in section 2.1. This polymer consists of alternating 

disaccharide units, composed of N-acetyl-glucosamine (GlcNAc) and N-

acetyl-muramic acid (MurNAc) linked by β-1,4 glycosidic bonds, to which 

pentapeptide chains are attached (L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala) 

through the lactyl moiety of MurNAc. In S. aureus, most of the pentapeptide 

chains of the adjacent macromolecules are interlinked by pentaglycine 

bridges between the penultimate D-alanine of one peptide chain and the 
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free amino group of the L-lysine residue of an adjacent chain, accompanied 

by the release of the last D-alanine (Figure 1). It has been estimated that 

only about 20% of the terminal D-alanyl-D-alanine residues remain intact 

(356).  

 

Figure 1. Structure of S. aureus peptidoglycan. (A) Schematic representation of the 
mesh-like structure of S. aureus peptidoglycan (adapted from reference 335); (B) Structure 
of a disaccharide composed of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid 
(MurNAc) attached to a pentapeptide, which is cross-linked to a second peptidoglycan 

molecule by a pentaglycine bridge (adapted from reference 170). 

A

B
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The peptidoglycan of Gram-positive and Gram-negative bacteria shows 

some diversity, regarding chemical structure. The most common variations 

are the presence of unmodified D-glutamate amino acid in the position 2 

and meso-diaminopimelate residue in the position 3 of the pentapeptide 

structure of Gram-negative bacteria, while Gram-positive bacteria have D-

iso-glutamine and L-lysine in the positions 2 and 3, respectively.  Another 

important feature of the peptidoglycan of Gram-positive bacteria is the 

presence of an interpeptide bridge that is used in the cross-linking reaction, 

which is commonly absent in Gram-negative bacteria where the 

pentapeptides are directly crosslinked. The structure of this interpeptide 

bridge is extremely diverse in size and sequence of amino acids among 

bacterial species. In S. aureus, the interpeptide bridge is composed of five 

glycine residues that are added at the third amino acid (L-lysine) of the 

stem peptide (352).  

Identification of the chemical structure of S. aureus peptidoglycan were 

performed through the analysis of the muropeptide profile by reverse-phase 

high performance liquid chromatography (RP-HPLC), combined with mass 

spectrometric analysis. About 21 distinct peaks and a “hump” of unresolved 

material, corresponding to oligomers with high degree of cross-linking, were 

identified when S. aureus peptidoglycan was digested with a muramidase 

(62) (Figure 2). The mass spectrometry analysis of these peaks revealed 

the existence of monomers (disaccharide pentapeptides that represent 

13% of S. aureus muropeptides), dimers (two monomeric structures cross-

linked that correspond to 20%), trimers to enneamers (40%) and even 

higher oligomers account for an additional 15% of the muropeptides units.  
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Figure 2. S. aureus peptidoglycan composition. Separation of S. aureus cell wall 

muropeptides by reverse-phase HPLC. Peptidoglycan of methicillin resistant S. aureus 
strain COL was isolated, digested with muramidase and the resulting muropeptides were 
separated by reverse-phase HPLC (adapted from reference 62).   
 

2.3. S. aureus peptidoglycan biosynthesis pathway 

In the last half century, the peptidoglycan biosynthesis pathway has been 

extensively studied, partly for its role as an antimicrobial target. The 

resolution of this pathway started with the pioneering work of Park and 

Johnson, who first reported the impact of penicillin on cell wall (259), 

followed by the description of specific steps of the peptidoglycan 

biosynthesis pathway by Strominger and collaborators (146-150). 

Peptidoglycan biosynthesis is a complex process that takes place in three 

stages at three different cellular compartments. The biosynthesis begins in 

the cytoplasm where the soluble nucleotide precursors, the UDP-MurNAc-

pentapeptide precursor and the UDP-GlcNAc are synthesized. The second 

stage takes place at the cytoplasmic membrane, and consists in the 

transfer of the UDP-N-acetylmuramyl-pentapeptide to the membrane 

acceptor bactoprenol, leading to the synthesis of lipid I. The subsequent 

addition of GlcNAc from UDP-GlcNAc produces lipid II. The stage II also 

includes synthesis of the interpeptide crossbridge, which constitutes a 

Minutes

-150 -100 -50 0 50 100 150 200 250 300

V
o
lt
s

0

1

2

3

4

1

2

3 4

5

6

7
8

9

10

11

15 16

17

1819
20

21

12
13

14

0                                          50                                         100                                    150

Time (min.)

A
b

s
2

0
6

 n
m



                                                                                                                  General Introduction  

11 
 

distinctive structure of S. aureus peptidoglycan. The lipid II is then 

translocated from the cytoplasmic face to the external face of the 

membrane, where it is incorporated into nascent peptidoglycan by 

penicillin-binding proteins (PBPs). In the stage III, the last steps of 

biosynthesis take place, which include the assembly of peptidoglycan 

through transglycosylation and transpeptidation reactions catalyzed by 

PBPs (Figure 3).   

 

Figure 3. The peptidoglycan biosynthesis occurs in three different locations in the 
cell. In a first stage, which occurs in the cytoplasm, the peptidoglycan monomer is 

produced. The second stage takes place at the cytoplasmic membrane, where the UDP-
MurNAc-pentapeptide precursor is linked to a membrane associated lipid carrier resulting in 
the formation of lipid I, which is subsequently added to GlcNAc forming lipid II. The stage 
three includes the translocation of Lipid II from the cytoplasmic face to the external face of 
the membrane, where it is incorporated into nascent peptidoglycan by transglycosylation 
and transpeptidation reactions (adapted from reference 275).  

 

2.3.1. Stage I: synthesis of the cytoplasmic precursor 

The cytoplasmic steps that result in the formation of the peptidoglycan 

monomer include the following reactions: formation of UDP-GlcNAc, 
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conversion of UDP-GlcNAc into UDP-MurNAc, assembly of the stem 

peptide leading to UDP-MurNAc-pentapeptide (15). 

Formation of UDP-N-acetyl-glucosamine (UDP-GlcNAc). UDP-GlcNAc 

biosynthesis from fructose-6-phosphate requires four successive enzyme 

activities. The first reaction, the conversion of D-fructose-6-phosphate into 

glucosamine-6-phosphate is catalyzed by the glucosamine-6-phosphate 

amidotransferase, GlmS. Then, GlmM, a phosphoglucosamine mutase, 

catalyses the isomerization of glucosamine-6-phosphate to glucosamine-1-

P (Glc-1-P), which is modified sequentially to UDP-N-acetylglucosamine by 

acetylation and uridylation through the action of a bifunctional enzyme, 

GlmU. The C-terminal domain of GlmU acts as an acetyltransferase, 

transferring an acetyl group from acetyl-CoA to Glc-1-P yielding N-acetyl-

glucosamine-1-phosphate (GlcNAc-1-P), and the N-terminal domain works 

as an uridyltransferase, catalyzing the transfer of an uridyl group from UTP 

to GlcNAc-1-P, which results in the formation of UDP-GlcNAc (Figure 4). 

 

Figure 4. Formation of UDP-GlcNAc. Formation of UDP-GlcNAc from a fructose-6-P 

molecule, through the sequential catalytic action of GlmS, GlmM and GlmU enzymes.  
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Formation of UDP-N-acetyl-muramic acid (UDP-MurNAc). The formation 

of UDP-MurNAc from UDP-GlcNAc occurs in a two-step process. First, 

MurA catalyses the transfer of the enolpyruvyl moiety from 

phosphoenolpyruvate to the 3’-hydroxyl of UDP-GlcNAc, resulting in the 

formation of UDP-GlcNAc-enolenol. Then, the enolpyruvyl moiety 

undergoes a reduction catalysed by MurB, yielding UDP-MurNAc. These 

two reactions are the first ones that occur specifically for the peptidoglycan 

synthesis.   

Formation of the UDP-MurNAc-pentapeptide. The UDP-MurNAc-

pentapeptide is formed through the stepwise assembly of five amino acids 

to the UDP-MurNAc. These successive reactions are ensured by four 

specific and essential enzymes, known as the Mur ligases enzymes (MurC, 

D, E and F) (316). These proteins catalyse the addition of L-alanine (MurC), 

D-glutamic acid (MurD), L-lysine (MurE) and dipeptide D-alanyl-D-alanine 

(MurF) onto the D-lactoyl group of UDP-MurNAc (Figure 5).  

Biochemical studies regarding the mechanism of action of the Mur ligases 

have revealed that these enzymes share some characteristics: i) they share 

the same type of enzymatic reaction, consisting in the activation of the 

carboxyl group of the UDP precursor by ATP, generating an acyl phosphate 

intermediate and ADP, and in the nucleophilic attack by the amino group of 

the condensing amino acid or dipeptide, which removes the phosphate and 

forms a new amide bond (5); ii) they show a series of six invariant amino 

acid residues in addition to an ATP-binding consensus sequence, a 

characteristics that led to the definition of the Mur ligases as a new family of 

enzymes (32, 85); iii) they also share a similar three-dimensional structure 

based on the occurrence of three domains, a N-terminal domain primarily 

responsible for binding the UDP-MurNAc substrate, a central domain 
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involved in the binding of ATP and a C-terminal domain, associated with 

binding of the incoming amino acid (26, 310).  

 

Figure 5. Formation of UDP-MurNAc-pentapeptide. Formation of UDP-MurNAc-

pentapeptide by a series of consecutive peptidoglycan synthesis committed steps, which 
occurs in the cytoplasm.  

Formation of D-alanyl-D-alanine. To synthesize the D-alanyl-D-alanine 

dipeptide, L-alanine is converted to D-alanine by the alanine racemase Alr. 

Then, the two D-alanine residues are dimerized through the action of DdlA 

ligase with the consumption of an ATP molecule. 

 

2.3.2. Stage II: synthesis of peptidoglycan lipid-linked 
intermediates 

Formation of the lipid intermediates. Once completely synthesized, the 

pentapeptide precursor has to be translocated across the cytoplasmic 

membrane in order to reach the cell wall, where the polymerization of the 

peptidoglycan occurs. This process begins with the transfer of the muramyl-

pentapeptide from UDP-MurNAc-pentapeptide to the undecaprenyl-

phosphate (or bactoprenol), a lipid carrier molecule embedded within the 

membrane, resulting in the synthesis of the MurNac(pentapeptide)-
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phosphate-undecaprenol, also designated lipid I (124). This transfer is 

catalysed by the UDP-MurNAc-pentapeptide phosphotransferase, MraY 

(33, 143). Then, the GlcNac, from the UDP-GlcNac precursor, is transfered 

to lipid I to form a β-1,4 glycosidic bond, through the activity of a N-

acetylglucosaminyltransferase, MurG, yielding the second lipid 

intermediate, lipid II.  

Formation of the glycine bridge. As mentioned before, in the particular 

case of S. aureus, a peptide crossbridge composed of five glycines, 

connects the L-lysine of the stem peptide of one peptidoglycan strand to 

the D-alanine in position 4 of the adjacent strand. This bridge is formed in a 

sequential order by the activity of specific peptidyltransferases: FemX, adds 

the first glycine (296), FemA adds the glycines at the position 2 and 3 (206, 

323), and FemB is responsible for the addition of the last two glycines 

(Figure 6). Since these enzymes require glycyl-tRNAs as glycine donors 

(216), which are only present in the cytoplasm membrane, the synthesis of 

the pentaglycine bridge must occur in the inner side of the cytoplasmic 

membrane, after the formation of Lipid II, the glycines acceptor structure 

(306). This pentaglycine structure is of great importance for S. aureus; 

besides conferring a high degree of cross-linking to peptidoglycan, it also 

plays a crucial role in the cell division and level of expression of methicillin 

resistance (127, 206).  

Amidation of D-glutamate. Siewert and collaborators concluded that the 

D-glutamate at position 2, of the S. aureus stem peptide, is modified by 

amidation of its α-carboxyl group at the stage of the lipid-linked 

intermediate (313). The same study showed that L-glutamine or NH3 is 

required as an amino donor and that the reaction requires ATP. Later, the 

analysis of Tn551 insertion mutants (see section 5.3) allowed to conclude 

that the amidation of D-glutamate is important for the optimal expression of 
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methicillin resistance (252) and that the reaction requires the expression of 

glutamine synthetase (120).  

The identification of the genes responsible for the D-glutamate amidation, 

and its impact on important biological processes in S. aureus are 

addressed in this Thesis.  

 

Figure 6. Three enzymes, FemX, FemA and FemB catalyse the addition of specific 
residues to form the S. aureus pentaglycine interpeptide. M: N-acetyl-Muramic acid; N: 
N-acetyl-Glucosamine (reproduced from reference 306). 

Translocation of lipid II. The translocation of the peptidoglycan monomer 

to the external surface of the cytoplasmic membrane does not occur 

spontaneously (36, 345). In Escherichia coli, lipid II is translocated from the 

inner to the outer side of the cytoplasmic membrane by the lipid II flippase 

FtsW localized in the septum (231, 359). This integral membrane protein 

forms a size-restricted pore-like structure, which accommodates lipid II 

during transport across the cytoplasmic membrane, indicating that FtsW is 

specific for the catalysis of lipid II translocation (230). Although in S. 

aureus, the protein responsible for this process is not identified, it is likely 

that lipid II is translocated at the septum by a similar mechanism, as two 

homologues of FtsW were identified in this species.  
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2.3.3. Stage III: polymerization of peptidoglycan 

The last stage of peptidoglycan synthesis consists of the polymerization of 

the monomer unit at the outside surface of the cytoplasmic membrane, 

through the concerted action of peptidoglycan synthetases and hydrolases. 

 

2.3.3.1. Penicillin binding proteins (PBPs) 

The PBPs catalyze the polymerization of the glycan strands 

(transglycosylation) and the cross-linking between peptide chains 

(transpeptidation). These enzymes can also hydrolyze the last D-alanine of 

stem pentapeptides (DD-carboxypeptidation) or cleave the cross-bridge 

connecting two glycan strands (endopeptidation). PBPs have been divided 

into two main categories: the high molecular mass (HMM) and the low 

molecular mass PBPs (LMM) (113).  

The group of HMM PBPs is composed of multimodular proteins, and 

includes the major enzymes responsible for peptidoglycan polymerization 

and insertion into pre-existing cell envelope. Their topology consists of a 

cytoplasmic tail, a transmembrane anchor and two specific domains: a C-

terminal penicillin-binding domain and a N-terminal domain (113). 

Accordingly to the structure and the catalytic function of the N-terminal 

domain, the HMM belong either to class A or to class B PBPs. Both classes 

have a C-terminal penicillin-binding domain, responsible for the 

transpeptidase reaction and for β-lactam binding. However, in class A 

HMM-PBPs, the N-terminal domain is responsible for their 

glycosyltransferase activity, catalyzing the elongation of uncross-linked 

glycan chains, whereas in class B the N-terminal is presumably associated 

with cell morphogenesis by interacting with other proteins involved in the 

cell cycle (69, 135, 376). Surprisingly, in some Gram-positive bacteria 

including B. subtilis (222), Enterococcus faecalis (10), and Enterococcus 
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faecium (290), it appears that these bifunctional PBPs are not essential, 

since strains lacking all class A PBPs are viable and have only minor 

differences in peptidoglycan composition. However, in Streptococcus 

pneumoniae, the deletion of class A PBP1a and class A PBP2a was lethal 

(139). In S. aureus, the PBP2 that is the only PBP of class A, is essential 

for viability in methicillin-susceptible strains but not to methicillin-resistant 

strains (273, 276).  

The LMM PBPs are single-domain proteins that can catalyse both DD-

carboxypeptidase and transpeptidase reactions (107). 

Multiple PBPs are present in all peptidoglycan-containing bacteria, whose 

number varies regarding bacterial species. It seems that the number of 

PBPs is related with the morphology and complexity of the life cycle of the 

respective organism. The rod-shaped bacteria E. coli and B. subtilis have 

12 (three class A, two class B and seven LMM PBPs) and 16 PBPs (four 

class A, six class B and six LMM PBPs), respectively; while coccoid 

bacteria S. pneumoniae and S. aureus have six (three class A, two class B 

and one LMW PBPs) and four PBPs (one class A, two class B and one 

LMW PBPs), respectively.  

DD-transpeptidation reaction. This reaction is responsible for the cross-

linking between stem peptides of different glycan strands. This process 

begins with the disruption of D-alanyl-D-alanine bond of the pentapeptide 

unit due to the nucleophilic attack of the hydroxyl group of the active serine, 

present in the penicillin binding domain, on D-alanyl-D-alanine bond, 

resulting in the formation of a serine ester-linked peptidyl enzyme 

intermediate. This intermediate structure is resolved by transferring the 

peptidyl moiety to the side chain amino group of the L-lysine residue of 

another peptide (107).  
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DD-carboxypeptidation reaction.  This reaction cleaves the terminal D-

alanyl-D-alanine of the peptidoglycan unit, preventing in this way that 

transpeptidation occurs with that particular peptide molecule. The 

carboxypeptidases are responsible for the control of the cross-linking 

degree of peptidoglycan and of the cell division process (17). The reaction 

mechanism is very similar to the one described for transpeptidation. It also 

involves the acylation of the serine residue of the catalytic domain, resulting 

in the cleavage of the D-alanyl-D-alanine bond and the formation of an 

ester-linked acyl-enzyme complex. The difference lies on the resolution of 

this intermediate structure, which involves in this case the transfer of the 

peptidyl to a water molecule, instead of the L-lysine residue of the second 

stem peptide (107). 

DD-endopeptidation reaction. Transpeptidation and endopeptidation can 

be considered reverse activities, since DD-endopeptidation cleaves cross-

bridges between two glycan strands.   

Transglycosylation reaction. Transglycosylation consists in the 

elongation of the linear glycan chains. The resolution of the crystal structure 

of PBP2 in complex with moenomycin (structural analog of 

transglycosylase substrate lipid II) was crucial for the clarification of the 

transglycosylation mechanism. It was proposed that transglycosylase 

interacts both with the growing chain (donor) and lipid II (acceptor) (202). 

The growing glycan chain attached to the membrane lipid carrier (PP-

undecaprenyl) acts as glycosyl donor and is transferred to the GlcNAc 

moiety of lipid II with the formation of a new β-1,4 glycosidic bond (375). 

 

2.3.3.2. Monofunctional glycosyltransferases (Mgts) 

Besides the transglycosylase activity provided by the class A PBPs, 

bacteria may also express membrane-bound enzymes composed by a 
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single transglycosylase domain, capable of catalyzing only the formation of 

uncross-linked peptidoglycan, known as monofunctional 

glycosyltransferases (Mgts) (53, 71, 321, 360).  Interestingly, in B. subtilis 

and Enterococcus spp., no Mgts were identified so far (10, 182, 290), which 

suggest that in both species, transglycosylases are not required for survival 

or that additional enzymes with transglycosylase activity are yet to be 

identified. Regarding S. aureus, significant advances have been made in 

order to determine the exact role of Mgts in transglycosylase activity and in 

expression of -lactam resistance in this organism. In fact, in vitro 

transglycosylase activity of two Mgts was reported in S. aureus, MGT and 

SgtA (286, 332, 360). Although MGT and SgtA do not seem essential, in 

the absence of PBP2, the transglycosylase activity of MGT is crucial for cell 

viability. This indicated that either PBP2 or MGT is the sole peptidoglycan 

transglycosylase in S. aureus (286).  

 

2.3.3.3. PBPs in S. aureus 

As mentioned before, S. aureus has four native PBPs, including one 

bifunctional class A HMM PBP (PBP2), two class B HMM PBPs (PBP1 and 

PBP3) and one LMM PBP (PBP4) (106). PBP1 and PBP2 are both 

essential in MSSA, while PBP3 and PBP4 are not (274, 276, 355). MRSA 

strains have acquired an extra class B HMM PBP (PBP2A) which has low 

affinity to β-lactams antibiotics, being primarly responsible for the 

expression of β-lactam resistance (see section 5.2.4 and 5.3).  

PBP2 is the major peptidoglycan transpeptidase and also the most 

abundant among the native PBPs, being the unique bifunctional PBP 

present in S. aureus (105). PBP2 is only essential in MSSA, since in MRSA 

the transpeptidase activity of PBP2 is complemented by PBP2A (276). 

Nevertheless, the PBP2 transglycosylase domain, although not essential, is 
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required for the expression of β-lactam resistance, as it cooperates with the 

transpeptidase domain of PBP2A to sustain cell wall biosynthesis, in the 

presence of a β-lactam (273) (see section 5.2.4 and 5.3).     

PBP1 was shown to be essential in MSSA and MRSA strains  (263, 355), 

and to be intimately related with the mechanism of cell division, playing an 

important role in septum’s formation (263). Interestingly, in contrast to 

PBP2 (276), the essential function of PBP1 could be not replaced by 

PBP2A (263), suggesting that the essential role of PBP1 in cell division is 

not dependent of its transpeptidase activity. PBP1 was proposed to have a 

dual role in cell cycle of S. aureus: it is an essential protein in the initiation 

of the septation and also it acts as a transpeptidase to generate a critical 

signal for cell separation at the end of cell division (264).  

PBP3 is the less studied staphylococcal PBP and although it was 

suggested to be involved in septation (249), its exact role remains to be 

determined.  

PBP4, the only LMM-PBP, was characterized to have both DD-

carboxipeptidase and transpeptidase activities in vitro (180). Later, PBP4 

was described as being directly involved in secondary cross-linking of the 

peptidoglycan (128, 373). It seems that PBP2 and PBP4 cooperate in order 

to produce the high cross-linking level that characterizes S. aureus. This 

process starts with the primary cross-linking, catalysed by PBP2, which 

results in the formation of dimeric, trimeric, and tetrameric muropeptides. 

Then, these muropeptides constitute the substrate of PBP4, with the 

subsequent formation of more complex oligomers. On the other hand, it 

was also shown that PBP4 plays a crucial role the mechanism of β-lactam 

resistance in community-acquired MRSA (CA-MRSA) (225).    
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Regarding their cellular localization, PBP1, PBP2 and PBP4 localize at the 

septum (14, 263, 271), which is consistent with the fact that peptidoglycan 

synthesis occurs only at this site (271). So far, the localization of PBP3 

remains unknown. The recruitment of each PBP to the division site occurs 

by different mechanisms. Since PBP1 is essential for cell division through a 

mechanism that does not require its transpeptidase activity, it seems that 

this PBP is part of the divisome and, probably, is recruited to the division 

site by an unidentified divisome protein through a mechanism that does not 

require the PBP transpeptidase domain (263, 264). Regarding PBP2, the 

delocalization of this protein can be observed when its substrate (lipid II) is 

eliminated, suggesting that PBP2 is recruited to the division site after 

binding to lipid II (272). Interestingly, PBP2 becomes dispersed over the 

cell surface, if its transpeptidase active site is acylated. However, in the 

presence of PBP2A, the lack of transpeptidase activity does not result in 

delocalization of PBP2, indicating that acylated PBP2 can be maintained in 

place by functional PBP2A (272). The recruitment of PBP4 to the septum is 

regulated by an unidentified intermediate of WTAs synthesis (14). As WTAs 

are attached to peptidoglycan, its synthesis probably occurs at the division 

septum after peptidoglycan assembly has been initiated by PBP1 and 

PBP2. Thus, it most likely that PBP4 is recruited to the septum later than 

PBP1 and PBP2, in order to allow the incorporation of polysaccharides and 

proteins into the cell wall, which may be hampered if peptidoglycan were to 

become highly cross-linked at an earlier stage (14). 

 

2.3.3.4. Peptidoglycan hydrolases 

In order to allow the incorporation of new murein units and also to promote 

the separation of the two daughter cells, old peptidoglycan must be 

degraded and removed by the action of peptidoglycan hydrolases such as 

N-acetylglucosaminidases, N-acetylmuramidases, N-acetylmuramyl-L-
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alanine amidases, lytic transglycosylases and endopeptidases (Figure 7). 

Importantly, these enzymes are also associated with cell wall turnover, lysis 

induced by cell wall synthesis inhibitors, establishment of competence for 

genetic transformation and bacterial pathogenicity processes (for a review 

see reference 136).  

 

Figure 7. Murein hydrolase targets within S. aureus peptidoglycan. The peptidoglycan 
is composed of interlinked glycan chains containing alternating subunits of N-
acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Pentapeptide chains, 
attached to MurNAc, are cross-linked to stem peptides from adjacent muropeptide strands 
as indicated. Different murein hydrolases that cleave the various bonds within peptidoglycan 
have been identified and include N-acetyl muramidase, N-acetyl-β-D-glucosaminidase 
(Lysozyme), N-acetylmuramoyl- L-alanine amidase, L-alanoyl-D-glutamate endopeptidases, 

and interpeptide bridge endopeptidases (adapted from reference 327). 

The analysis of the pattern of autolytic enzymes in S. aureus, obtained by 

zymograme assays revealed the presence of more than 20 bacteriolytic 

bands, suggesting that S. aureus produces several peptidoglycan 

hydrolases (324). Although at least 13 genes were identified as responsible 

for the expression of known or putative peptidoglycan hydrolases, only 

three genes, atl, sleI, and lytM, and their products have been characterized. 

Atl, the major staphylococcal autolysin, is a bifunctional protein initially 

synthesized as a 138 kDa protein that undergoes proteolytic cleavage to 

produce two independent hydrolases, a 62-kDa N-acetylmuramyl-L-alanine 

amidase and a 51-kDa N-acetylglucosaminidase (176, 254). Atl is important 
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for separation of daughter cells after cell division, cell wall recycling, and for 

biofilm formation (27, 31, 126, 328). Both amidase and glucosaminidase 

proteins localize at the equatorial ring on the staphylococcal cell surface 

that marks the future cell division site (374). Curiously, the mechanism by 

which Atl-hydrolases are targeted to the equatorial surface ring is based on 

an avoidance strategy by WTAs, which prevents binding of Atl. As WTAs 

are abundant in the old cell wall but not at the cross-wall region, Atl is able 

to bind to this region (305). Sle1 is a 32 kDa protein with N-acetylmuramyl-

L-alanine activity and is also involved in cell separation after division in S. 

aureus (126). In fact, Sle1 together with Atl were considered the main, if not 

the only, lytic enzymes responsible for cell separation after division in S. 

aureus (161). LytM is a 32 kDa protein with glycylglycine endopeptidase 

activity, being able to hydrolyze the glycyl-glycine bonds of S. aureus cross-

bridges. It appears that LytM plays a role in cell growth as it is distributed 

uniformly on the cell surface (282, 283). Other peptidoglycan hydrolases 

with N-acetyl-muramyl-L-alanine amidase activity were described in S. 

aureus including LytH (33 kDa), LytA (23 kDa) and LytN (46 kDa). 

Importantly, despite their role in cell separation, the inactivation of any of 

these genes and respective protein products, or even the deletion of both 

genes, is not lethal for the cell, suggesting that other genes with similar 

functions should exist (161). 

Since many of these enzymes are able to cause cell wall disruption, their 

activities and expression must be strongly regulated to avoid undesired 

lysis. In S. aureus, the regulation of autolytic activity involves several two-

component signal transduction systems and global regulators. The 

autolysis in S. aureus can be negatively controlled by MgrA (144, 205), 

ArlRS (195), LytSR (118), and SarA (100, 210). On the other hand, walkr 

(78), agr (100) and cidABC (289) are able to regulate positively the autolytic 

activity.  Additionally, it was shown that perturbations of S. aureus cell wall 
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synthesis resulted in a strong transcriptional repression of several 

peptidoglycan hydrolases, which provided evidence for close regulation 

between cell wall synthetic and hydrolytic enzymes (8). 

 

2.3.3.4.1. Lysozyme: the host N-acetylmuramidase 

Lysozyme, a powerful antibacterial protein, is among the most and best-

studied enzymes. It is present in a large number of organisms and various 

biological fluids such as tears, breast milk, respiratory and saliva 

secretions, as well as in cells of the innate immune system including 

neutrophils, monocytes, macrophages, and epithelial cells, being involved 

in the initial host defensive response against bacterial infection (191). 

The protective role of lysozyme for opportunistic pathogens was 

demonstrated in a study wherein killing of group B streptococci and 

Pseudomonas aeruginosa was enhanced by over- expression of lysozyme 

in the lungs of transgenic mice (4). On the other hand, deletion of both 

genes that encode two important lysozymes in mice resulted in a defective 

clearance of P. aeruginosa and Klebsiella pneumoniae from the mice lower 

airways (47).  

In fact, lysozyme is an important player in the host’s response against 

invading microorganisms, since it targets the bacterial cell wall and is 

associated with the removal of high molecular weight peptidoglycan 

fragments that remain after cell lysis. The persistence of these fragments, 

within the cell, may often cause physiological problems in the host, even 

after the majority of the viable bacteria have been destroyed (29; for a 

review see reference 353). Beside its antimicrobial activity, lysozyme has 

other important functions: it can be an enhancer of the phagocytic activity of 

polymorphonuclear leukocytes and macrophages (174, 333), and can 

stimulate proliferation and antitumor functions of monocytes (190).  
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The ability of lysozyme to cause bacterial lysis relies on its N-

acetylmuramidase activity since it hydrolyses the β-1,4 glycosidic bonds 

between MurNAc and GlcNAc residues of peptidoglycan, resulting in its 

degradation and consequently causes the lysis of bacterial cells (269, 304).      

Most pathogenic bacteria are resistant to lysozyme, such as S. 

pneumoniae, Streptococcus suis, Listeria monocytogenes, S. aureus, 

Neisseria gonorrhoeae, E. faecalis, and Helicobacter pylori. The 

mechanisms of resistance to lysozyme are mainly due to peptidoglycan 

modifications, which hamper recognition by the enzyme. In the particular 

case of Gram negative bacteria, they are generally resistant to lysozyme 

because their outer membrane prevents access of the secreted enzyme to 

the peptidoglycan. The modifications of cell wall associated with lysozyme 

resistance are described in section 3.  

Importantly, lysozyme has two different antimicrobial activities. Besides the 

muramidase activity, lysozyme can also act as a cationic antimicrobial 

peptide (CAMP), which results in its ability to cause disruption of the 

cytoplasmic membrane. The CAMP activity of lysozyme was demonstrated 

using catalytically inactivated lysozyme, peptides isolated from digested 

lysozyme, and synthetic lysozyme-derived peptides (79, 141, 142, 184). S. 

aureus has two different resistance mechanisms to lysozyme, which are 

related to the muramidase and CAMPs activities of lysozyme (129). Both 

mechanisms will be described in section 3. 

The CAMPs are present in mucous membranes and skin and are 

responsible for the killing capacity of phagocytic cells. They are small 

positively charged peptides with hydrophobic residues (189), which allow 

interactions with bacterial cytoplasmic membrane, that usually contains 

negatively charged phospholipids. In fact, membrane damage is probably 

the main CAMPs’ mechanism of action; it involves firstly the interaction 
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between the cationic groups of the peptide with the anionic groups of the 

membrane lipids, and secondly the integration of the peptide into the 

hydrophobic core of the membrane. On the other hand, several authors 

assume that lysozyme as a CAMP is not only acting as a membrane 

permeabilization agent, but also it activates autolytic wall enzymes of 

Gram-positive bacteria thus causing cell lysis (110, 111, 362). It has been 

shown that the degree of D-alanylation of teichoic acids, modification that 

confers resistance to CAMPs action, affects the autolysis rate (46, 90, 243). 

In line with these findings, it was demonstrated in S. aureus that CAMPs 

activate autolytic enzymes (129).   

Bacteria have developed several strategies to resist to CAMPs  (for a 

review see reference 267). One of these mechanisms is based on 

modifications of their cell surfaces to reduce the net negative charge of the 

cell envelope and therefore reduce the affinity of CAMPs for the bacterial 

membrane (83, 265). The cell wall modifications involved in the resistance 

to CAMP activity of lysozyme will be described in the section 3. 

 

3. Cell wall modifications  

The normal glycan strands of bacterial peptidoglycan consist of alternating 

unmodified residues of β-1,4-linked MurNAc and GlcNAc. However, there 

are no known examples of bacterial species that contain exclusively 

unmodified peptidoglycan polymerized from lipid II, as mature glycan 

strands become modified or linked to other polymers after their insertion 

into the cell wall (for a review see reference 350). Several secondary 

modifications were described and although their functional roles are not 

completely understood, their presence affects the hydrolysis of 

peptidoglycan and its enlargement during cell growth. Furthermore, these 

alterations avoid the recognition of bacteria by host factors, which 
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contribute to the bacteria resistance to host defense factors such as 

lysozyme. Actually, the occurrence of modifications in cell wall components, 

which leads to lysozyme resistance, are not surprising since bacteria are 

likely to encounter host lysozymes during infection, thus the development of 

resistance to these and other defense mechanisms confers a selective 

advantage to bacteria, being crucial for maintaining bacterial viability. The 

more frequent variations are in the glycan strands, that include their N-

deacetylation and O-acetylation, the D-alanine esterification of teichoic 

acids, and the modification of membrane phospholipids with L-lysine.  

N-deacetylation. The presence of N-deacetylated glucosamine (GlcN) was 

first described in the peptidoglycan of Bacillus cereus (9), and soon after N-

deacetylated muramic acid residues (MurN) were identified in the Bacillus 

anthracis peptidoglycan (379). The existence of N-deacetylated GlcN was 

further extended to several other bacterial species including S. pneumoniae 

(248, 351), Lactobacillus fermentum (201) and L. monocytogenes (30), 

while N-deacetylated MurN was identified in small quantities only in S. 

pneumoniae (351) and Micrococcus lysodeiktikus (138). 

The gene which encodes a peptidoglycan GlcNAc deacetylase, pgdA, was 

first identified in S. pneumoniae (351); later, several pgdA homologues 

were identified in other pathogenic species including S. suis (91, 92), L. 

monocytogenes (30), and H. pylori (358). The deacetylation reaction most 

likely occurs on polymerized peptidoglycan, since deacylated precursors 

were not detected in bacteria with deacylated peptidoglycan and also the 

deacetylases have a predicted extracytoplasmic localization (351). 

The presence of deacetylated peptidoglycan strongly reduces the lysozyme 

activity, as interactions between the acetyl groups of glycan strands and 

amino acids of the lysozyme molecule are crucial for substrate binding (28, 

349). The impact of deacetylated peptidoglycan on lysozyme activity, and 
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consequently on virulence of important human pathogens, has been 

analyzed in mouse infectious models. In S. pneumoniae, a pgdA mutant 

exhibited significantly reduced virulence in an intraperitoneal mouse model, 

indicating that PgdA is a putative virulence factor (351). Interestingly, in S. 

suis the deletion of pgdA caused a severe impairment in the bacteria ability 

to persist in the blood. It was also observed an increase of pgdA expression 

upon interaction of the bacterium with neutrophils in vivo as well as in vitro 

(92), which suggests that deacetylation is an adaptative response to 

escape the immune clearance mechanisms.  

The inactivation of pgdA in L. monocytogenes revealed the key role of 

peptidoglycan deacetylation in virulence, as the mutant was very sensitive 

to the bacteriolytic activity of lysozyme and rapidly destroyed within 

macrophages (30). Similar findings were observed when pgdA homologue 

was inactivated in H. pylori (357). It seems that both lysozyme activities, the 

muramidase and the CAMP activities, are affected by the deacetylation of 

peptidoglycan, since a L. monocytogenes pgdA mutant was more 

susceptible not only to mutanolysin (a muramidase) but also to lysozyme as 

a CAMP (279). It was also evident that pgdA mutant was more prone to 

autolysis, suggesting that some of the peptidoglycan hydrolases 

(autolysins), in particular those cleaving in the glycan strands, have 

different functional activities against fully acetylated or deacetylated 

peptidoglycan. If the hydrolases’ activity is affected by the state of 

acetylation of the peptidoglycan, the separation of the daughter cells should 

also be altered. However, in S. pneumoniae the pgdA deletion did not affect 

cell separation (351). 

O-acetylation. The O-acetylation occurs specifically at the C-6 hydroxyl 

group of muramoyl residues of peptidoglycan. Recently, the O-acetylation 

of GlcNAc residues was described in B. anthracis and also in Lactococcus 

plantarum (25, 183). O-acetylated peptidoglycan was discovered more than 
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50 years ago in the cell walls of E. faecalis (2), and since then this 

modification has been found in 49 other species of bacteria, both Gram 

positive and Gram negative, including S. aureus, B. anthracis and H. pylori  

(19, 44). Similarly to N-deacetylation, peptidoglycan O-acetylation is known 

to be a maturation event, occurring within the peptidoglycan sacculus 

following its synthesis and assembly (44). oatA from S. aureus was the first 

peptidoglycan O-acetyltransferase gene identified (21). Meanwhile, 

homologues of oatA have been described in several other Gram positive 

bacteria including S. pneumoniae (56), B. cereus, B. anthracis (183), and 

Lactococcus lactis (347). 

O-acetylation turns the peptidoglycan resistant to the hydrolytic activity of 

lysozyme (38). As the binding of peptidoglycan to lysozyme involves a large 

H-bonding network between the C-6 hydroxyl moieties of three MurNAc 

residues and amino acids from the active site of the enzyme (28), the steric 

hindrance caused by the O-acetylation of the C-6 group results in a weaker 

affinity of the enzyme for the modified substrate (Figure 8).  

In fact, O-acetylation of peptidoglycan contributes to lysozyme resistance of 

pathogenic Gram-positive bacteria such as S. aureus and S. pneumoniae, 

as oatA mutants of both species showed more sensitivity to lysozyme (21, 

56). Additionally, a correlation was found between pathogenicity, lysozyme 

resistance and the occurrence of O-acetylation in the peptidoglycan of 

staphylococcal species (19).  

During infection, bacteria are normally lysed by the immune system, and 

the resulting peptidoglycan fragments rapidly degraded by hydrolytic 

enzymes. Since human lysozyme is unable to digest the O-acetylated 

peptidoglycan fragments, the persistence of these fragments in the host 

may lead to inflammation and eventually rheumatoid arthritis (94). Several 

studies demonstrated in vivo that the persistence of peptidoglycan in a host 
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is directly due to the high degree of O-acetylation (299). Therefore, it 

appears that, as in the case of N-deacetylation, O-acetylation prevents the 

recognition of peptidoglycan fragments by host factors such as 

peptidoglycan recognition proteins.  

 

Figure 8. Proposed interaction of the aminoacids of the binding groove of the egg-
white lysozyme and staphylococcal peptidoglycan, based on the structure of 
reference 28. The C6-OH group of muramic acid in staphylococci is modified by O-

acetylation and serves also as an anchor for wall teichoic acid (WTA). Five amino acid 
residues of lysozyme binding groove (Asp101, Gln57, Phe34, Asn37 and Arg114) interact 
with the C6-OH group of unmodified peptidoglycan. The high degree of O-acetylation of 
staphylococcal peptidoglycan inhibits the interaction with lysozyme, thus causing lysozyme 
resistance. LCS, lysozyme cleavage site. (reproduced from reference 21). 

 
Interestingly, the decrease of O-acetylation degree upon treatment with 

penicillin in S. aureus (312), suggested that O-acetylation should be related 

with the cross-linking reaction. Although the mechanism is not clarified, 

peptidoglycan containing pentapeptides was proposed to be a poor 

substrate for O-acetylation. It was also reported that the presence of 

teichoic acid and a high degree of peptide cross-linkage in the 

peptidoglycan may contribute to lysozyme resistance in S. aureus (20). 
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D-Alanylation of teichoic acids. In Gram-positive bacteria, resistance to 

CAMPs is explained by the increase of the positive surface charge due to 

D-alanylation of teichoic acids, catalysed by the dlt operon gene products 

and/or incorporation of L-lysine into phosphatidylglycerol, the major 

membrane lipid, mediated by the mprF gene product (364). Deletion of the 

dlt operon leads to the complete absence of D-alanyl esters of TAs in S. 

aureus and confers sensitivity to antimicrobial peptides (266). In S. aureus, 

its high levels of lysozyme resistance are not only based on resistance to 

its muramidase activity, due to the occurrence of O-acetylation, but also to 

its inherent CAMP resistance, which is related to D-alanylation (129). 

Several studies in animal models have demonstrated that alanylated 

teichoic acids contribute to an increased virulence of S. aureus, as this 

modification helps the bacteria to avoid rapid killing by CAMPs from the 

host immune system (51, 314, 365).   

 

4. Antibiotic resistance in S. aureus  

S. aureus has always been a challenge for antimicrobial chemotherapy, 

due to its remarkable capacity to acquire antibiotic resistance mechanisms, 

overcoming all therapeutic agents that have been developed in the last 70 

years.  

Before the antibiotic era, the mortality rate of patients with S. aureus 

invasive infections was extremely high, exceeding 80%, and over 70% 

developed in metastatic infections (315). In the early 1940s, the discovery 

of penicillin (93), the first cell wall targeting β-lactam antibiotic, significantly 

improved the prognosis of patients with staphylococcal infections, with over 

94% of strains exhibiting susceptibility (223). However, shortly after the 

introduction of penicillin into clinical use, penicillin-resistant S. aureus 

expressing and secreting a β-lactamase were isolated (1, 284 ). In the 

1960s, more than 80% of hospital and community-acquired staphylococcal 
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isolates were resistant to penicillin (300) and currently, more than 90% of 

staphylococcal isolates produce β-lactamases (203). The pattern of 

resistance, consisting in the emergence of resistance in the hospitals that 

can then spread into the community, is presently a well-established pattern 

that occurs with each new antibacterial (42, 203). 

In 1960, in order to overcome the problem of penicillin-resistant S. aureus 

strains, the first semi-synthetic penicillin resistant to β-lactamases, 

methicillin, was introduced in clinical practice (297). However, two years 

later, S. aureus resistant to this antibiotic were isolated (156). These 

strains, designated as methicillin resistant S. aureus (MRSA), have 

acquired the mecA gene, which encodes PBP2A, an extra PBP with low 

affinity for β-lactam antibiotics (37, 123, 288). In contrast to penicillin 

resistant S. aureus, MRSA show resistance to the entire class of β-lactam 

antibiotics including penicillins, cephalosporins and carbapenems. 

Multidrug-resistant MRSA became a serious health problem in hospitals, 

frequently developing resistance to virtually all antibiotics and spreading 

worldwide (72). 

As a consequence of MRSA spread, vancomycin, a glycopeptide antibiotic 

that also targets the cell wall and to which MRSA were consistently 

susceptible, became the remaining most often therapeutic agent against 

this pathogen. However, the increased use of vancomycin led to the 

emergence, in 1996, of vancomycin resistant intermediate S. aureus strains 

(VISA)  and in the 2000s highly vancomycin resistant S. aureus strains 

(VRSA) also appear in the USA and very recently in Europe as well (41, 84, 

134).   

In the last decade, a huge effort has been made in order to develop 

alternative antibiotics to treat MRSA infections (200), including inhibitors of 

protein synthesis (quinupristin-dalfopristin, tigecycline and linezolid) and 
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inhibitors of the transmembrane electrical potential gradient (daptomycin); 

nevertheless, all of them show specific disadvantages and resistance has 

already been observed for most (122, 125, 131, 339). Currently, the 

development of compounds that inhibit PBP2A transpeptidase activity 

constitute a significant progress and seems to represent a good therapeutic 

choice against MRSA infections (200). 

Overall, the remarkable capacity of S. aureus to adapt and acquire 

resistance to the antibiotics that are being introduced into clinical use, turns 

this microorganism into a major public health concern, as staphylococcal 

infections may become untreatable in the future.  

The mode of action of β-lactam antibiotics will be discussed in detail in the 

next section, due to its importance for the work developed in this Thesis. 

 

5. β-lactam mode of action and resistance mechanisms 

β-lactam antibiotics are the most widely used class of antimicrobial agents, 

mainly due to their low toxicity to humans, high efficiency, low cost and 

general broad-spectrum of action. They include several compounds which 

are divided according to their chemical structure into penicillin derivatives, 

cephalosporins, monobactams, carbapenems and β-lactamases inhibitors 

(242). 

The β-lactams, which owe their name to the presence of the four member 

β-lactam ring in their chemical structure, are highly specific inhibitors of the 

PBP enzymes involved in the polymerization of cell wall, by acting as 

suicide substrates of the transpeptidase domain of these proteins. In fact, 

the bactericidal activity of these compounds depends on their structural 

similarly to the carboxy-terminal D-alanyl-D-alanine of the peptidoglycan 

precursor, the natural substrate of PBPs. Therefore, the β-lactam molecule 
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irreversibly binds to the serine residue of the PBPs’ active site, through an 

acylation reaction, which results in the formation of a covalent acyl 

complex. The resultant acyl enzyme species are irreversibly inactived, 

preventing the crosslinking (transpeptidation) of the nascent peptidoglycan, 

and cell wall synthesis (107). 

Several mechanisms have evolved in bacteria to resist β-lactam antibiotics, 

namely: i) degradation of the antibiotic molecule by β-lactamase enzyme 

(154); ii) production of low-affinity PBPs to β-lactams, which allow the 

transpeptidation reaction even in the presence of high concentrations of β-

lactam antibiotics (104); or iii) decrease of the production of outer 

membrane proteins, present only in Gram-negative bacteria, which leads to 

reduction of the outer membrane permeability, and consequently blocks the 

access of the antibiotic to their cellular target (198, 322).  

In S. aureus, resistance to β-lactams is known to occur by two 

mechanisms. One mechanism, conferring resistance only to penicillin, is 

based on the production of the β-lactamase enzyme encoded by the blaZ 

gene, which cleaves the β-lactam ring of penicillin (245, 292). The second 

one, conferring resistance to most β-lactams, is due to the acquisition of 

mecA gene, which encodes the low affinity PBP, PBP2A (37, 124, 288). 

 

5.1. β-lactamase resistance mechanism 

The β-lactamase resistance mechanism is the most predominant among S. 

aureus, as more than 95% of staphylococcal isolates produce β-lactamases 

(199, 203). The majority of β-lactamases are related to PBPs, being both 

considered active-site serine enzymes (98, 213). Therefore, these enzymes 

inactivate β-lactams by hydrolyzing the amide group of the β-lactam ring, 

through a mechanism similar to the one described for the inhibition of PBPs 

by β-lactams (98, 214, 215). However, in this resistance mechanism, β-
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lactamases are able to undergo deacylation, by the hydrolysis of the β-

lactam ring, inactivating in this way the antibiotic molecule and regenerating 

their own activity (107).    

The β-lactamase BlaZ is predominantly extracellular and its expression is 

normally induced by the presence of β-lactam antibiotics (45, 291). The 

gene blaZ, which can be plasmid or chromosome located, is under the 

control of two adjacent regulatory genes, the anti-repressor blaR1 and the 

repressor blaI (45). The signaling pathway responsible for the induction of 

β-lactamase synthesis is dependent of the sequential cleavage of the 

regulatory proteins BlaR1 and BlaI. In the absence of β-lactams, BlaI binds 

to the bla promoter region, which represses the RNA transcription from 

both blaZ and blaRI-blaI. In the presence of antibiotic, the β-lactam 

molecule binds to the extracellular part of transmembrane sensor 

transducer, BlaRI, which causes a conformational modification that 

activates its cytoplasmatic domain as a protease, and it cleaves itself. The 

repressor, BlaI, is then cleaved by the BlaRI protease, so that it no longer 

binds to the bla operator, thus allowing synthesis of blaZ mRNA and hence 

β-lactamase (117, 193, 378).  

 

5.2. mecA gene resistance mechanism 

5.2.1. mecA gene 

The MRSA strains show high level of resistance to β-lactams due to the 

presence of the exogeneous mecA gene (2.1kb in length), which encodes 

PBP2A, a PBP with low affinity to all β-lactam antibiotics, allowing cell wall 

biosynthesis when the native PBPs have been inactivated by β-lactam 

antibiotics (37, 124, 288, 343). In fact, a drastic reduction in methicillin 

resistance was observed in mutant strains with inactivated mecA, strongly 
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suggesting that this gene is crucial for the optimal expression of methicillin 

resistance in S. aureus (217, 236).  

Although mecA is undoubtedly the main genetic determinant for methicillin 

resistant in MRSA, very recently, a highly divergent mecA gene, designated 

mecC, was identified with relatively low prevalence rates (102, 311). 

The mecA gene is not native to S. aureus but was acquired from another 

species by an unknown mechanism (16). According to DNA and amino acid 

sequence alignments, it has been proposed that the mecA gene of S. 

aureus may have resulted from a fusion event between a β-lactamase gene 

and a PBP gene (320). On the other hand, efforts to track the evolutionary 

origin of mecA led to the identification of a close homologue of the S. 

aureus mecA gene, present in all strains of Staphylococcus sciuri as the 

pbpD gene. S. sciuri is a taxonomically primitive staphylococcal species 

recovered most frequently from rodents and mammals (54). The purification 

of the protein product of pbpD showed that it shares a number of 

biochemical properties with S. aureus PBP2A (99). In fact, several studies 

have supported the proposition that S. sciuri pbpD may be associated 

and/or be an evolutionary precursor of mecA gene in S. aureus: (i) the 

transpeptidase domain of S. sciuri pbpD has 88% similarity, at the amino 

acid level, with the mecA gene of MRSA (370); (ii) introduction of the pbpD 

from a methicillin-resistant strain of S. sciuri into a susceptible strain of S. 

aureus resulted in an increased of β-lactam resistance and allowed 

continued growth and cell wall synthesis of the bacteria in the presence of 

high concentrations of β-lactams (307, 372) and iii) reconstruction of the 

methicillin resistant phenotype in an highly homogeneously resistant MRSA 

(lacking the SCCmec), using a plasmid-borne copy of the heterologous 

upregulated S. sciuri pbpD gene (7). 
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5.2.2. Regulation of mecA transcription  

Until recently, it was assumed that the expression of mecA was regulated 

by a two component system consisting of a sensor-transducer, MecR1, and 

a transcriptional repressor, MecI (309), which are located immediately 

upstream of mecA promoter and are transcribed divergently from mecA. 

The regulation of mecA expression is similar to the one of blaZ gene, since 

the mecR1-mecI-mecA element is homologous to the S. aureus β-

lactamase blaR1-blaI-blaZ genetic system (121, 309, 340). However, while 

MecI and BlaI repressors are almost identical and seem to be compatible in 

blocking transcription of both genes (117, 121, 192), MecR1 and BlaRI are 

specific for their own repressors (221). The MecR1/MecI system consists of 

two main proteolytic steps, as follows: first, the acylation of MecR1 

extracellular sensor domain, through the binding of the β-lactam, leads to a 

conformational change, which results in the activation of the intracellular 

proteolytic domain. Then, the active protease induces the cleavage of the 

MecI repressor that is bound to mecA promoter region, allowing for mecA 

to be transcribed (11, 378). This model was recently modified with the 

identification of a third gene responsible for the induction of mecA 

transcription, designated mecR2 gene. The cleavage of MecI, which is 

essential for mecA transcription, can be also promoted by MecR2 (12) 

(Figure 9).   
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Figure 9. Regulation of mecA transcription. In the presence of a -lactam antibiotic, 

MecR1 is activated and rapidly induces the expression of mecA and mecR1-mecI-mecR2. 
The anti-repressor activity of MecR2 is essential to sustain the mecA induction since it 
promotes the inactivation of MecI by proteolytic cleavage (reproduced from reference 12). 

 

5.2.3. Staphylococcal Cassette Chromosome mec (SCCmec) 

The mecA gene is located on a large mobile genetic element (21-67 Kb) 

named staphylococcal cassette chromosome mec (SCCmec) (153, 167). 

This element integrates in the genome of susceptible strains at a specific 

site at the 3’ end of orfX, which is located near the origin of replication 

(167), and encodes a staphylococcal ribosomal methyltransferase (34). The 

SCCmec element is composed of two essential genetic complexes: (i) the 

mec gene complex containing mecA, its regulatory elements and insertion 

sequences upstream or downstream of mecA; and (ii) the cassette 

chromosome recombinase (ccr) gene complex, containing ccrAB or ccrC 

genes that encode site-specific recombinases, namely 

invertases/resolvases, responsible for the excision/integration of SCCmec 

from/into the chromosome (145). Also, the basic structure of SCCmec 

element includes three genetic regions called the “joining” (J) regions: i) the 
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J1 region, located between the chromosomal right junction and the ccr 

genes; ii) the J2 region that comprises the region between ccr genes and 

the mec complex; and iii) the J3 region that includes the genetic region 

between the mec complex and orfX (132). Some SCCmec type variants are 

defined by differences in the J regions (227, 228). 

Up to now, eleven different types of SCCmec elements (SCCmec I to XI) 

and several variants have been identified and characterized, each type 

being defined according to the binary combination of the class of mec 

complex and the type of ccr gene complex (133, 145).  

Currently, five different classes of mec complex were described: mec 

complex A, B, C, which is divided in C1 and C2, and mec complex E (145). 

Regarding ccr gene complex variability, three distinct ccr genes were 

described: ccrA, ccrB and ccrC, the latter representing a ccr complex 

classified in two main structures: one carrying two adjacent genes, ccrA 

and ccrB, and the other carrying only one gene, ccrC. So far, seven ccr 

gene complex types were described in S. aureus: types 1 to 4, carrying 

ccrA and ccrB with four allotypes (ccrA1B1, ccrA2B2, ccrA3B3, ccrA4B4); 

type 5 carrying a single allotype, ccrC; type 7 carrying the combination of 

ccrA1B6 and type 8 carrying the combination ccrA1B3 

(http://www.sccmec.org).  

 

5.2.4. PBP2A and the mechanism of methicillin resistance in S. 
aureus 

PBP2A is a 78 KDa HMW PBP located in the extracellular surface of the 

cytoplasmic membrane, where it can catalyze the final steps of cell wall 

assembly (113). The crystal structure of PBP2A revealed the presence of 

three domains: i) a N-terminal domain, which corresponds to the anchor 

characteristic of the HMW PBPs; ii) a central non-penicillin binding domain 

http://www.sccmec.org/
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of unknown function; and iii) a C-terminal penicillin binding domain with the 

typical folding pattern of the PBP transpeptidases and the serine β-

lactamases (196). PBP2A has the particularity of the nucleophilic serine 

active site being sequestrated within an extended narrow groove, which 

results in a substantial decrease in the affinity for β-lactams, when 

compared to the native PBPs (124, 196, 288).  

Initially, the model of β-lactam resistance mechanism mediated by PBP2A 

was based on the fact that, in the presence of β-lactams, the only functional 

PBP, able to catalyze the final reactions of the cell wall biosynthesis, is the 

low-affinity PBP2A, as the four native PBPs are fully acylated and 

consequently inactivated (124, 288). However, it was later described that 

PBP2A is a poor substitute of the native PBPs, as it shows a weak 

transpeptidase activity. The peptidoglycan of a MRSA strain, challenged 

with β-lactams, is weakly cross-linked, being composed mainly by 

monomeric, dimeric and trimeric structures, in contrast to the highly cross-

linked peptidoglycan produced by the same MRSA strain, grown without 

antibiotic (61). Subsequently, several observations indicated that this model 

required revision. 

 

5.3. Role of auxiliary genes in β-lactam resistance 

Despite being the main player in the mechanism of resistance to methicillin, 

the production of PBP2A is not sufficient for the optimal expression of 

methicillin resistance. The first evidence that pointed in that direction came 

from the study wherein no correlation between the levels of resistance and 

the respective PBP2A cellular amounts was observed, suggesting that 

other factors, besides mecA, were involved in the expression of resistance 

to methicillin (123, 236). Additionally, introduction of mecA gene, from 

homogeneous MRSA strains, into MSSA, produced transformants with low 
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resistance or heterogeneous resistance to methicillin, independently of the 

mecA donor, which indicated that additional genes, belonging to the strains’ 

genetic background, determine the levels of methicillin resistance (236).   

The identification of these additional factors was initially addressed by two 

independent laboratories, that screened Tn551 mutants of a homogeneous 

MRSA strain for reduced levels of methicillin resistance (22, 65, 67, 179). 

The location of the transposon insertion site in those mutants led to the 

identification of several genes, described as necessary for the full 

expression of methicillin resistance and designated as factors essential for 

methicillin resistance (fem) or auxiliary (aux) genes.  

Initially, only the mutants that showed a drastic decrease in methicillin 

resistance were selected, allowing the identification of femAB (22, 24), 

femX, femC and femD (23, 66). The femAB operon, the first genetic locus 

identified as an additional player in the methicillin resistance mechanism, 

encodes two proteins, FemA and FemB (22, 24). This operon is 

responsible for the formation of the branched-peptide structure 

characteristic of S. aureus peptidoglycan, the pentaglycine bridge, namely 

FemA is essential for the addition of glycine residues 2 and 3, while FemB 

is specific for the attachment of glycine residues 4 and 5 (80). The first 

glycine is added independently of FemA and FemB, through the action of 

femX (178, 296). Characterization of the femC mutant revealed that the 

transposon inserted in the glutamine synthetase repressor (glnR), which 

has a polar effect on the transcription of the glutamine synthetase 

transcription (glnA) (120). The inhibition of the glnRA operon produced a 

decrease in glutamine synthetase activity and therefore, a reduction in the 

glutamine availability in the cells. Importantly, the analysis of the 

peptidoglycan composition of the femC mutant, by HPLC, revealed a 

decrease in the proportion of cross-linked peptides and the existence of 
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new muropeptides structures containing glutamic acid units with free α-

carboxyl group instead of the normal isoglutamine residues (253). The 

femD (glmM) gene encodes GlmM, a phosphoglucosamine mutase, which 

catalyses the conversion of phosphoglucosamine-6-phosphate into 

glucosamine-1-phosphate, leading to the production of UDP-N-

acetylglucosamine (158). The inhibition of GlmM production results in the 

decrease of the synthesis of the peptidoglycan precursor, which is revealed 

by a complete disappearance of the unsubstituted disaccharide monomer 

from the peptidoglycan (63). Importantly, all these mutants were unaffected 

regarding mecA expression and most of them showed a heterogeneous 

resistance to methicillin (179) (see section 5.4). 

On the other hand, the analysis of the Tn551 mutants that showed a less 

severe decrease in methicillin resistance led to the identification of 20 to 30 

auxiliary genes, most of them associated with cell wall biosynthesis (65, 

67).  

The murE gene, which encodes the Mur ligase responsible for the addition 

of the L-lysine residue to the UDP-muramyl-dipeptide cell wall precursor, 

was also identified as an auxiliary gene by the characterization of a Tn551 

transposon mutant (204). Contrary to previously studied auxiliary genes, 

the inhibition of murE transcription affected the amount of PBP2A, 

suggesting that the expression of this PBP can be directly or indirectly 

under the control of the murE gene (103).  

The analysis of an insertion mutant for murF gene, which encodes the 

UDP-N-acetylmuramyl-pentapeptide synthetase, allowed identification of 

this gene as being important for methicillin resistance. The inactivation of 

murF caused both a decrease in methicillin resistance and a reduction in 

mecA transcription, suggesting that the expression of mecA and murF 

seems to be correlated (317). Later, the analysis of a murF conditional 
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mutant demonstrated that MurF is also important for cell division, being 

essential for cell viability (318).   

It was surprising to find that pbpB was an auxiliary gene, since it was 

assumed that PBP2 was inactivated in the presence of β-lactams (270). 

The inactivation of the transglycosylase domain, but not the transpeptidase 

domain, of PBP2 results in a decrease of β-lactam resistance, even in the 

presence of PBP2A (273). This suggested that, in the presence of 

antibiotic, MRSA peptidoglycan biosynthesis depends on the functional 

cooperation between the transglycosylase domain of the native PBP2 and 

the transpeptidase domain of PBP2A (273, 276). Also, in the presence of β-

lactams, PBP2A complements the essential peptidoglycan transpeptidase 

function of PBP2, confirming that PBP2A has transpeptidase activity (276) 

(Figure 10). 

 

Figure 10. Model for the cooperative functioning of the transglycosylase (TGase) 
domain of PBP2 and the transpeptidase (TPase) domain of PBP2A in methicillin-
resistant S. aureus. (left) In the absence of antibiotic, both the TPase and TGase domains 

of PBP2 participate in the biosynthesis of staphylococcal peptidoglycan. (Right) When 
antibiotic is present, the TPase domain of PBP2 is acylated and is unable to perform its 
peptide crosslinking activity. However, the penicillin-insensitive TGase domain of PBP2 
remains functional and cooperates with the TPase activity of PBP2A (adapted from 
reference 273). 

Also, while pbpA gene, which encodes for PBP1, was involved in methicillin 

resistance (263), impairment of pbpD did not affect the β-lactam resistance 
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level of MRSA, being not classified as an auxiliary gene (166). Later, pbpD 

was shown to be an auxiliary gene only in the community acquired MRSA 

(CA-MRSA), playing a key role in the resistance mechanism of these 

strains (225). Within the four staphylococcal PBPs, only PBP3 is not 

consider a auxiliary gene for β-lactam resistance, as the inactivation of 

pbpC gene had no significant impact on the methicillin resistance profile 

(274). 

Besides the genes described above, other cell wall related genes were 

linked to the optimal expression of methicillin resistance (for a review see 

reference 295): i) fmtA gene, which encodes a methionyl- tRNA 

formyltransferase, affects both methicillin resistance and autolysis in the 

presence of Triton X-100 (175, 176); ii) mrp (or fmtB), which protein product 

was annotated as a sortase A-dependant cell surface protein (371); iii) tarO 

gene, which is involved in the first enzymatic step in WTAs biosynthesis 

(319), has an impact on both methicillin resistance and autolysis rate (209). 

The genetic strategy, based on the screening of Tn551 insertion mutants, 

showed some limitations, as genes that are involved in essential reactions 

for cell survival and that simultaneously contribute to β-lactam resistance 

are not identified through this approach. Recently, in order to overcome this 

issue, a genome-wide antisense fragmentation approach was followed to 

identify essential genes (95). The genes targeted by antisense RNAs were 

identified in a community acquired and in a hospital acquired MRSA strains 

(187). The resulting mutants were then screened under inducing conditions 

to identify additional genes required for β-lactam resistance (187). In this 

way, more genes were recognized to contribute to β-lactam resistance, 

including essential factors of cell division (ftsZ and ftsA), protein secretion 

(spsB), wall teichoic acid biosynthesis (tarL) and signal transduction system 

(pknB) (187). 



Chapter I 
 

46 
 

The mechanism behind the contribution of auxiliary genes to the expression 

of methicillin resistance is far from being completely understood. It is 

proposed that the auxiliary genes, which are cell wall related, are implicated 

in β-lactam resistance by providing optimal peptidoglycan precursors 

substrates for PBPs to complete peptidoglycan synthesis. The inactivation 

of these genes leads to the production of abnormal muropeptides 

structures, which are inefficient substrates for PBP2A. Consequently, 

methicillin molecules may easily bind to the active site of PBP2A due to the 

lack of correct muropeptide competitors, which results in the decrease of 

methicillin resistance (65).  

Although the mechanism behind the contribution of auxiliary genes to the 

expression of an optimal methicillin resistance phenotype is not clarified, 

the identification of their role is a significant step and shows that β-lactam 

resistance requires the coordinated activity of a large network of 

interdependent biological processes. In fact, many other genes, not related 

with cell wall biosynthesis, were recognized as auxiliary genes. The large 

number of auxiliary genes described until now and the diversity of their 

cellular functions illustrates the complexity of the β-lactam resistance 

mechanism in S. aureus.  

 

5.4. Heterogeneity  

In most MRSA strains the level of antibiotic resistance, minimal  inhibitory 

concentration (MIC), varies widely from one strain to another and also 

within the progeny of a single MRSA isolate, which reveals a 

heterogeneous expression of methicillin resistance. Heterogeneous 

methicillin resistant strains are composed of a majority of cells with low-

resistance to methicillin, corresponding to the MIC of the strain, and one or 

more subpopulations of highly resistant cells present at variable low 
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frequencies (123, 325). In clinical settings, this heterogeneous phenotype 

can be easily misinterpreted as sensitive, which consequently, originates 

treatment failure of infections caused by these strains (123). The level of 

resistance of the subpopulations and their frequency within the culture, are 

reproducible and specific features of the MRSA strain (64). In fact, 

regarding the high resistance level phenotype, once expressed, it is stable 

and most of these highly resistant subpopulations, designated as 

“homostar” population, express highly homogeneous resistance and do not 

revert to the heterogeneous phenotype (88, 123). Therefore, it appears that 

the heterogeneous composition of MRSA cultures is genetically controlled, 

i.e., the highly resistant subpopulations of bacteria must carry mutations in 

some genes, not located in the SCCmec element (302). Some genes 

including hmrA, hmrB, lytA and the dlt operon were indicated as putative 

candidates to develop such mutations (101, 177, 240). Moreover, it was 

recently described that, within a heterogeneous population, the 

subpopulations that were able to express high-level resistance carried a 

single mutation in the relA gene, causing the accumulation of a small 

signaling molecule called (p)ppGpp, which in turn leads to persistent 

activation of the stringent response, an important bacterial stress response 

(238). Soon after, evidences were provided that support the model in which 

the ultimate controlling factor of the phenotypic expression of β-lactam 

resistance in MRSA is a RelA-mediated stringent response (76, 169). 

Although heterogeneity is mainly due to genomic differences, namely 

chromosome mutations, methicillin resistance in MRSA is dependent upon 

the growth medium and other factors such temperature, pH, osmolarity, 

trace metals, chelating agents, and anaerobiosis (218). 
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6. Molecular Epidemiology of Methicillin Resistant S. aureus (MRSA)  

In 1961, two years after the introduction of methicillin in clinical practice, the 

first MRSA was isolated in the United Kingdom (156). In the following 

years, MRSA became pandemic, spread worldwide and accumulated 

resistance to almost all antimicrobial classes (72, 203). During this time, 

MRSA isolates seemed to be confined mainly to hospitals and other 

healthcare facilities, being designated as hospital or healthcare acquired 

MRSA (HA-MRSA). However, in the last two decades, this scenario has 

changed and the emergence of community-acquired MRSA (CA-MRSA), 

causing infections among healthy individuals, has been the subject of a 

growing concern, as MRSA are no longer limited to the hospital 

environment (41, 42, 130, 235). Nevertheless, as the global epidemic of 

CA-MRSA continued, CA-MRSA begun to appear as a cause of hospital 

outbreaks, replacing the classic HA-MRSA clones in some hospitals (35, 

171, 255, 256, 261, 278, 308). The emergence of CA-MRSA as a cause of 

nosocomial infections is a serious threat for public health. First, it puts a 

wider group of hospitalized patients, healthcare workers and their 

community contacts potentially at risk of a MRSA infection. Second, the 

presence of CA-MRSA in hospital environment exposes them to the 

selective pressure of antibiotic use in hospitals, which can result in the 

increase of antibiotic resistance. On the other hand, the spread of strains, 

associated with the healthcare setting, into the community has also been 

described (137, 212, 219, 329), suggesting that the boundaries between 

the hospital and community are blurring. 
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6.1. Origin, evolution and global dissemination of hospital-acquired 
MRSA (HA-MRSA) clonal lineages  

HA-MRSA are the leading cause of the majority of nosocomial infections, 

including bacteremia, pneumonia, urinary tract, surgical wound infections, 

and catheter-related infections (116).  

Epidemiological studies, conducted by the SENTRY Antimicrobial 

Surveillance Program, between 1997 and 2003, revealed that the global 

MRSA prevalence in hospitals was 23% in Australia, 67% in Japan, 40% in 

South America, 36% in USA and 23% in Europe (18, 72, 119, 334). 

However, data from the European Antimicrobial Resistance Surveillance 

Network (EARSS), between 1999 and 2002, revealed that the prevalence 

of MRSA in Europe is not homogeneous. While in the Northern countries, 

the percentage of MRSA is approximately 1%, in the Southern countries it 

is as high as 45% (334). 

Another study was based on the genetic analysis of more than 3,000 

MRSA isolates from surveillance and outbreak studies in Southern and 

Eastern Europe, North and Latin America and Asia, through the CEM/NET 

initiative, between 1994 and 2000 (336), revealed that the majority of the 

cases of HA-MRSA infections are caused by a small group of epidemic 

MRSA (EMRSA) clones, which are highly disseminated worldwide (251). 

Each clonal lineage, designated as Iberian (ST247-IIA), Brazilian (ST239-

IIIA), Hungarian (ST239-III), New York/Japan (ST5-II), Pediatric (ST5-VI) 

and epidemic MRSA-16 (EMRSA-16) (ST36-II) clones, was defined as a 

result of its specific genetic background and to the geographic site of its 

first identification. Additionally, two other clones, the EMRSA-15 (ST22-IV) 

and Berlin (ST45-IV) showed epidemic potential, in the United Kingdom 

and Germany, respectively (157, 234, 361, 368). 
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Several studies have addressed the topic related to the origin and evolution 

of the major contemporary MRSA clones. The most widely accepted theory 

defends that SCCmec was introduced several times into different S. aureus 

lineages that subsequently disseminated (55, 82, 114, 237).  

In order to clarify the origin and evolution of MRSA strains, the genetic 

background of MSSA and early MRSA strains isolated in the 1950/60s, in 

Denmark and United Kingdom was characterized (55). The comparison of 

these genetic profiles with the ones of the MRSA contemporary epidemic 

clones revealed that MSSA strains had gradually acquired resistance traits, 

in parallel to the introduction of antimicrobials in therapy. Moreover, it was 

shown that a large group of early MSSA isolates were identical to all early 

MRSA, in phenotypic and genetic properties, suggesting that these MSSA, 

with the genotype sequence type 250 (ST250), are the progeny of an S. 

aureus strain, that was one of the first recipients of the mec element in the 

MRSA evolutionary history. This early MRSA, with SCCmec type I and 

ST250, designated as Archaic clone, (55, 251) was the sole MRSA clone, 

in Danish hospitals, for over 17 years, after its emergence in 1960s (114). 

Furthermore, the Iberian clone (ST247-I) was described as a single locus 

variant of ST250, indicating that it was a direct descendent of the Archaic 

clone (55), which was further confirmed by a similar study of S. aureus, 

isolated in the 1960s, from blood infections in Denmark (114). 

Soon after, an evolutionary model was proposed through the 

characterization, (by SCCmec typing and MLST), of a large collection of 

MRSA and MSSA, isolated in 20 countries between 1961 and 1999 (82). 

The major MRSA clones evolved from five different groups of related 

genotypes or clonal complexes (CC): CC5, CC8, CC22, CC30 and CC45, 

each arising from a distinct ancestral genotype. The presence of different 

SCCmec elements within the same sequence type (ST), suggested that 
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methicillin resistance had emerged on multiple occasions within a specific 

lineage. In fact, additional high-resolution genetic evolutionary studies 

revealed that it emerged due to at least 20 SCCmec acquisitions, and that 

the acquisition of this genetic element was four times more common than 

the replacement of one SCCmec between the MRSA clones (294), which 

emphasizes the role of this genetic element as a driving force for MRSA 

evolution. Furthermore, a more recent study, proposed that the SCCmec 

element was imported much more frequently than previously suggested, 

and that MRSA apparently emerged by temporal and geographically 

independent SCCmec acquisitions (246).  

Therefore, accordingly to both studies, the CC8 lineage includes the first 

MRSA, ST250-I (Archaic clone), that was derived through acquisition of 

SCCmec type I, by ST250 MSSA, which itself was derived from the lineage, 

ST8-MSSA. ST250 MSSA is also the ancestor of other nosocomial MRSA 

pandemic lineages such as ST247-I (Iberian clone) and ST239-III 

(Brazilian/Hungarian clone). CC8 also comprises one of the most 

widespread community acquired clones, the ST8-MRSA-IV (USA300 clone) 

(82, 294, 331). In the CC5 lineage, ST5-MSSA was the ancestor of three 

major contemporary clonal lineages: the ST5-MRSA-II (New York/Japan 

clone), the ST5-MRSA-IV (Pediatric clone) and ST228-MRSA-I (Southern 

German clone). The CC22 lineage includes ST22-MRSA-IVh, known as 

EMRSA-15 that originated through the SCCmec-IVh acquisition into ST22-

MSSA. On the other hand, in CC45, the ancestor ST45-MSSA precedes 

the ST45-MRSA-IV background of the Berlin clone. In CC30, ST30-MSSA 

diverged into two distinct clonal types, which are the hospital acquired 

ST36-MRSA-II (EMRSA-16) and the community acquired ST30-MRSA-IV 

Southwest Pacific clone (293, 294).  
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The evolutionary pathways of the five MRSA clonal lineages referred to 

above showed that worldwide disseminated EMRSA clones have originated 

through the acquisition of the methicillin resistance determinant, by 

successful MSSA lineages, frequently associated with disease (55, 82, 

114). In this way, the epidemicity of MRSA clones seems to depend on 

genetic determinants that control the ability to colonize and/or cause 

disease. The study performed by Katayama et al (165) demonstrated that 

MSSA strains from major MRSA lineages were easier to transform with a 

plasmid-expressed mecA and better able to express resistance, in 

comparison to MSSA from other lineages, indicating that not all S. aureus 

genetic backgrounds favored the presence of the mecA gene in an active 

form. However, a thorough analysis of selected sequenced genomes did 

not show evidence that there are specific genetic factors, differentiating 

epidemic from sporadic S. aureus clones (181). 

The putative presence in strains of intrinsic properties, that defined the 

capacity to acquire and maintain the SCCmec element is not well 

understood and is being explored in several laboratories.  Such studies 

should help understand the reasons for the limited number of MRSA clones 

detected in surveillance studies. 

6.2. The emergence and epidemiology of community-acquired MRSA 
(CA-MRSA)  

For a long time MRSA strains were exclusively isolated from nosocomial 

environment. However, in the mid and late 1990s, a change in the MRSA 

epidemiology occurred, with the emergence of CA-MRSA strains, which 

have the capacity to infect otherwise healthy individuals (41, 60, 115, 130).  

The epidemiological success of CA-MRSA is due to the combination of 

methicillin resistance at low fitness cost (59, 73, 188) with a high level of 
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aggressive virulence, which enables CA-MRSA to spread and cause 

severe infections in otherwise healthy people (68, 257). 

The range of diseases caused by CA-MRSA is similar to the ones caused 

by MSSA in the community, but are clearly distinct from infections caused 

by HA-MRSA. Commonly, CA-MRSA causes skin and soft-tissue 

infections, however, it can be also associated with more severe infections 

such as folliculitis, cellulites, impetigo, pyomyositis and myositis, septic 

arthritis, osteomyelitis, sepsis, endocarditis, and necrotizing pneumonia 

(229, 258). 

Regarding the global epidemiology of CA-MRSA, a huge difference in the 

CA-MRSA prevalence between USA and the rest of the world has been 

observed. While in the USA the percentage of CA-MRSA infections can 

reach 59% (235), and is associated with only a single clone (USA300 

clone), in Europe, the prevalence of CA-MRSA is lower, ranging from 1 to 

29% (185, 211, 212, 367) and these strains are genetically diverse (298). 

The impact of the fast epidemic spread of CA-MRSA in United States on 

public health is remarkable, and it contributed for an overall increase of 

MRSA in this country (164, 171). The annual death rate caused by MRSA 

the highest among all those caused by an infectious agent, even higher, for 

example, than the one due to the human immunodeficiency virus, HIV 

(171). 

Studies on the molecular epidemiology of CA-MRSA suggested that CA-

MRSA emerged through the acquisition of SCCmec elements, mainly 

SCCmec type IV, by community strains of MSSA (70, 250). The existence 

of MSSA strains in the community sharing the same genetic background as 

CA-MRSA supports this hypothesis (114). Additionally, it has been 

described that genetic lineages of CA-MRSA are clearly distinct from the 

predominant HA-MRSA clones within defined geographic regions, 
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demonstrating that CA-MRSA did not emerge from local HA-MRSA (346). 

On the other hand, the larger clonal diversity of CA-MRSA, when compared 

to HA-MRSA, indicates that more MSSA clones have the ability to become 

CA-MRSA than HA-MRSA (82, 250).   

The first case of CA-MRSA, identified as belonging to the Southwest Pacific 

(SWP) clone (ST30-IVc) (52), was recovered among Aboriginal patients in 

remote communities from Western Australia in 1993 (341). However, CA-

MRSA were considered a public health threat, only in 1998, when four 

healthy children died from sepsis and necrotizing pneumonia due to CA-

MRSA, belonging to USA400 clone (ST1-IVa), in Minnesota and North 

Dakota (41).  

Since then, several CA-MRSA genetic backgrounds emerged and spread 

differently in separate geographical areas. Until recently, the five major CA-

MRSA clones, not genetically related, could be associated to a continent 

specific geographic location (346). Therefore, the USA300 clone (ST8-Iva, 

CC8) and USA400 (ST1-Iva, CC1) were both epidemic in the United States 

(172, 330), the European clone (ST80-IVc, CC80) was detected in several 

European countries (87, 186), the Southwest Pacific clone (ST30-IVc, 

CC30) was prevalent in Asia and Oceania (348), and the ST59 (CC59) 

clone, circulated mainly in the Asian-Pacific area (140). In recent years, 

another clone that became important was ST398-V (CC398), which was 

first considered a livestock-clone associated with colonization in pigs. The 

first descriptions were reported in France (13) however, nowadays, the 

ST398 clone is disseminated worldwide, not only in animals but also in 

humans (86, 168, 342, 344). Currently, CA-MRSA clones are not restricted 

to a specific geographic region anymore and the five major CA-MRSA 

clones are disseminated worldwide: the USA 400 clone in Asia, Europe and 

the USA, the USA300 clone in the USA and Europe, the Southwest Pacific 
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clone in Australia, Europe and South America, the ST59-V clone in Asia 

and the USA and the European clone, ST80-IV in Europe, Asia and the 

Middle-East) (224, 233). 

Presently, more than 20 distinct genetic lineages of CA-MRSA are known 

(60, 68, 224, 366), however, their epidemicity varies. The USA300 is the 

most epidemic CA-MRSA clone, having been found in as many as 50 

different countries (244, 298). Moreover, USA300 is considered the cause 

of almost all CA-MRSA infections in USA (235), having quickly overcome 

the USA400 clone. In these last years, the pathogenic success of USA300 

in USA has been remarkable as it was able to spread rapidly within the 

community, to start severe outbreaks in terms of frequency and severity of 

infection and to emerge as the major cause of hospital associated 

infections in USA (97, 155, 220, 229, 235).  

 

7. CA-MRSA versus HA-MRSA strains - genotypic and phenotypic 
uniqueness  

Soon after its emergence, it was shown that CA-MRSA contain several 

interestingly features that distinguish them from HA-MRSA (346). 

CA-MRSA is generally considered more virulent than HA-MRSA (194, 354). 

The mechanisms underlying the high virulence of CA-MRSA are based on 

their efficient evasion of the host immune system (326). The capacity of 

CA-MRSA to evade or subvert host defenses is mainly due to the presence 

of mobile genetic elements, such as the phage-encoded Panton-Valentine 

leukocidin (PVL) (346), the arginine catabolic mobile element (ACME) (75, 

81, 112) and to the increased expression of virulence genes, carried by the 

accessory or adaptative genome, most importantly the ones coding for the 

phenol-soluble modulins (PSM) and the alpha-hemolysine (60, 194). 
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PVL is a S. aureus-specific exotoxin that forms pores in the cytoplasmic 

membrane of neutrophils, causing their lysis (197). This bi-component 

exotoxin is encoded by two co-transcribed genes, lukF-PV and lukS-PV 

(369), which are carried by staphylococcal temperate bacteriophages (162, 

163). PVL genes have been found in all CA-MRSA strains, namely in the 

ones associated with severe disease, in contrast to HA-MRSA, in which 

PVL is usually absent (109, 197, 229, 257, 346, 377). Therefore, PVL was 

initially considered to be the main cause of the increased virulence and - 

together with a specific genetic background and the presence of SCCmec 

types IV or V - a genetic marker for CA-MRSA (48, 58, 239, 338, 346).   

In addition to the pronounced virulence, common to all CA-MRSA, some 

particularly strains contain specific additional factors that contribute to their 

pathogenic success. For instance, the presence of the arginine catabolic 

mobile element (ACME) in the genome of the successful CA-MRSA 

USA300 clone is assumed to contribute to its growth, virulence and high 

capacity to spread. It contains two gene clusters, arc and opp-3, which 

encode for an arginine deiminase pathway and an oligopeptide permease 

system, respectively (75). While arc is responsible for the depletion of L-

arginine, which is involved in the production of nitric oxide, a molecule used 

in the innate and adaptive immune responses against bacterial infections 

(232), opp-3 belongs to the ABC transporter family, which members have a 

variety of biological functions such as quorum sensing, resistance to 

antimicrobial peptides, peptide nutrient uptake and chemotaxis (74).  

Regarding methicillin resistance, the structure of the SCCmec element 

differs in CA-MRSA and HA-MRSA strains. Commonly, CA-MRSA carry the 

smaller and potentially more mobile SCCmec types IV, V, VII (59, 151, 152, 

338, 346),  whereas HA-MRSA are typically associated with the largest 

chromosomal elements SCCmec type I-III (60). Consequently, CA-MRSA 
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strains are relatively susceptible to other antibiotics, and most are resistant 

only to β-lactams, since SCCmec types IV-VII do not carry ancillary 

resistance genes.  

On the other hand, as antibiotic resistance is associated to a fitness cost 

(6), which is easily attenuated by compensatory mutations in the bacterial 

genome (207), the different suitability caused by the diverse SCCmec types 

could influence the virulence of CA and HA-MRSA. In this context, it was 

recently demonstrated that SCCmec type II, but not the SCCmec type IV, 

has a significant cost for the bacteria, which results in a decrease in the 

growth rate, and in a reduction of the toxin production (49, 50). It appears 

that the balance between the costs of virulence and antibiotic resistance 

can explain why MRSA with attenuated virulence and SCCmec type II are 

found mainly in hospital environments where high antibiotic pressure, 

immunocompromised individuals and vector-mediated transmission are 

present. The low levels of antimicrobial agents used in the community 

favors the presence of MRSA harboring SCCmec type IV, which does not 

impose a high biological cost, allowing a more pronounced virulence.  

Additionally, the reduced virulence of HA-MRSA containing SCCmec type II 

can be explained by the high levels of mecA expression in HA-MRSA, in 

comparison to CA-MRSA with SCCmec type IV (301). It was previously 

observed that HA-MRSA with SCCmec type II tend to be more resistant to 

oxacillin than CA-MRSA containing SCCmec type IV (250), probably 

because they produce higher levels of PBP2A. In fact, it was later 

confirmed that the hospital-associated SCCmec type II strains are more 

resistant to oxacillin and produce higher concentrations of PBP2A than CA-

MRSA harboring SCCmec type IV (301). Consequently, the high levels of 

PBP2A production, by mecA gene on MRSA SCCmec type II, induce 

changes in cell wall that “disable” the strain to respond to the accessory 
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gene regulator (agr) auto-inducing peptide, reducing in this way the 

secretion of cytolytic toxins. In contrast, the same study showed that the 

toxicity CA-MRSA SCCmec type IV was not affected, probably due to their 

lower levels of PBP2A production. Therefore, the dual activity of mecA on 

antibiotic resistance and virulence regulation, has allowed CA-MRSA to 

maintain both virulence and antibiotic resistance and succeed where HA-

MRSA could not. 

Besides mecA, psm-mec, a cytolysin gene located in type-II and type-III 

SCCmec but not in type-IV SCCmec, connects virulence to methicillin 

resistance in MRSA (159, 281). It was shown that psm-mec RNA 

specifically binds agrA mRNA, a gene belonging to agr locus, inhibiting its 

translation (160). Since AgrA drives the transcription of RNAIII, the 

inhibition of its translation results in the suppression of virulence. Therefore, 

absence of psm-mec function in CA-MRSA, harboring SCCmec type IV, 

“explains” its high virulence property. 
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Abstract  

The glutamic acid residues of the peptidoglycan of Staphylococcus aureus 

and many other bacteria become amidated by an as yet unknown 

mechanism. In this communication we describe the identification, in the 

genome of S. aureus strain COL, of two co-transcribed genes, murT and 

gatD, which are responsible for peptidoglycan amidation. MurT and GatD 

have sequence similarity to substrate-binding domains in Mur ligases 

(MurT) and to the catalytic domain in CobB/CobQ-like glutamine 

amidotransferases (GatD). The amidation of glutamate residues in the stem 

peptide of S. aureus peptidoglycan takes place in a later step than the 

cytoplasmic phase – presumably the lipid phase - of the biosynthesis of the 

S. aureus cell wall precursor. Inhibition of amidation caused reduced 

growth rate, reduced resistance to beta-lactam antibiotics and increased 

sensitivity to lysozyme which inhibited culture growth and caused 

degradation of the peptidoglycan. 
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Introduction  

Peptidoglycan forms an essential stress-bearing and shape maintaining 

layer in the bacterial cell envelope. Its biosynthetic pathway is the target of 

important classes of antimicrobials such as beta-lactams and 

glycopeptides, and the polymerized cell wall is targeted by antimicrobial 

enzymes like lysozyme. The biosynthesis of peptidoglycan is a complex 

process involving several consecutive enzymatic steps that take place in 

the cytoplasm and on the inner and outer surface of the cytoplasmic 

membrane. The cytoplasmic stage of biosynthesis culminates in the 

formation of the UDP-N-acetylmuramic acid (UDP-MurNAc) covalently 

linked to a pentapeptide which is composed of L-alanine, D-iso-glutamic 

acid, L-lysine (or meso-diaminopimelic acid, DAP) and D-alanyl D-alanine. 

The assembly of this stem peptide moiety involves a superfamily of 

enzymes, the Mur ligases (22). In the next steps of biosynthesis, the UDP-

MurNAc-pentapeptide is attached to a membrane acceptor undecaprenyl 

phosphate (C55-P) followed by the addition of GlcNAc to the MurNAc 

residues yielding the structure known as lipid II. Lipid II, i.e., the 

bactoprenol linked disaccharide pentapeptide is then transported to the 

outer surface of the cytoplasmic membrane where it serves as a substrate 

for polymerization reactions catalyzed by transpeptidases and 

transglycosylases to form the polymeric cell wall peptidoglycan.  

Chemical analysis of the S. aureus peptidoglycan showed that the structure 

of these polymers differed from the structure of the cytoplasmic 

disaccharide pentapeptide cell wall precursor: some hydroxyl groups in the 

glycan chain were acetylated; and the second amino acid residue of the 

muropeptides was not isoglutamic acid but its amidated version, iso-

glutamine.  
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The mechanisms of these secondary modifications of the cell wall are not 

well understood. Enzymes and genetic determinants involved with the 

acetylation of the glycan chain and the role of this structural modification in 

the resistance of S. aureus against host lysozyme - have only been 

described recently (2).  

While amidation of the stem peptide residues at positions 2 or 3 or both is 

frequent among gram-positive bacteria, the physiological roles of this 

chemical modification have remained a matter of speculation (26) and the 

genetic determinants and enzymes responsible for the conversion of iso-

glutamic acid to iso-glutamine residues have also remained unknown.  

In this communication we describe the identification of a small operon 

composed of two genes – murT and gatD – in the genome of the beta-

lactam resistant S. aureus strain COL. Amino acid sequence of the protein 

products of these genes show similarity to murein ligases (murT) and to 

CobB/CobQlike glutamine amidotransferases (gatD). The properties of a 

conditional mutant of murT/gatD indicate that this operon is responsible for 

the conversion of isoglutamic acid to iso-glutamine residues in the 

peptidoglycan of S. aureus. 
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Materials and Methods 

Bacterial strains, plasmids, and growth conditions. Bacterial strains 

and plasmids used in this study are listed in Table 1. Staphylococcus 

aureus strains were grown at 37ºC with aeration in tryptic soy broth (TSB) 

or tryptic soy agar (TSA) (Difco Laboratories, Detroit, Mich.). Transposition 

mutant RUSA208 (19) and the conditional mutant strains 

RN4220pCadmurT-gatD and COLpCadmurT-gatD, the double mutant 

RUSA208pCadmurT-gatD, the complemented strains COLpCadmurT-

gatD+pSKmurT and COLpCadmurT-gatD+pSKgatD and the control strain 

COLpCadmurT-gatD+pSK were grown in the presence of the respective 

antibiotics (Table 1). The growth medium was supplemented with 0.2 µM of 

cadmium chloride (CdCl2; Sigma, St. Louis, MO), unless otherwise 

described. Escherichia coli strains (Table 1) were grown in Luria-Bertani 

broth (LB; Difco Laboratories) with aeration at 37ºC. Erythromycin (10 

µg/ml), neomycin sulphate (50 µg/ml), kanamycin (50 µg/ml), 

chloramphenicol (10 µg/ml) and ampicillin (100 µg/ml) from Sigma were 

used for the selection and maintenance of S. aureus and E. coli mutants. 

In silico analysis of the murT-gatD gene products. The amino acid 

sequences of ORFs SACOL1951 (MurT) and SACOL1950 (GatD) were 

retrieved from the UniProtKB database (25), and their domain architecture 

was checked using the InterProScan tool (28). The domains were aligned 

through TCoffee (18). Given the limited similarity between sequences, 

secondary structure inference was used as an independent benchmark for 

the alignment. This inference was accomplished through Psipred (4). 

Position specific annotation other than the one present in the InterPro 

documentation was collected from references (9, 22). 

DNA methods. Restriction enzymes from New England Biolabs (Beverly, 

MA) were used as recommended by the manufacturer. Routine PCR 
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amplification was performed with Tth DNA polymerase (HT Biotechnology, 

Cambridge, United Kingdom) and PCR amplification for cloning purposes 

was performed using Pfu DNA polymerase (Stratagene, Heidelberg, 

Germany). For plasmid DNA extraction High pure Plasmid Purification Kit 

(Roche, Basel, Switzerland) was used. PCR and digestion products were 

purified using High pure PCR Purification Kit (Roche). Ligation reactions 

were performed using Rapid DNA Ligation kit (Roche). 

Reverse transcription analysis. Reverse transcription (RT)-PCR was 

performed as described (24) using total RNA from strain COL as the 

template. The primers used for the reverse transcription reactions are 

described in Table S1 and the amplification conditions were: 94ºC for 2 

min; 40 cycles of 94ºC for 30 s, 53ºC for 30 s, and 72ºC for 2 min; and one 

final extension step of 72ºC for 5 min.  

Construction of pMurT’ plasmid. A 918- bp DNA fragment of murT gene 

was amplified by PCR using chromosomal DNA from strain COL as a 

template and the specific primers PmurT’-R and PmurT’-F (Table S1). The 

amplification conditions used were as follows: 94ºC for 4 min; 30 cycles, 

each consisting of 94ºC for 30 s, 50ºC for 30 s, and 72ºC for 1 min 30 s; 

and one final extension step of 72ºC for 10 min. The amplified fragment and 

the integrative plasmid pBCB20, carrying a cadmium chloride inducible 

promoter (R.G. Sobral and M.G. Pinho, unpublished) were both digested 

with SmaI and ligated, generating plasmid pMurT’. 
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Table 1. Strains and plasmids used in this study. 

Strain or plasmid  Description 
Source or 
reference 

Strains    
S. aureus  
RN4220 
 

Mc
s
; restriction negative 

 
(R. Novick) 
 

COL Homogeneous Mc
r
 (MIC, 1600 μg/ml); 

Em
s
 

Rockefeller  
University 
Collection 

RUSA208 COL with Tn551 insertion in glnR, Em
r
 (19) 

    
COLpCadmurT-gatD  COL with murT-gatD operon under Pcad 

control, Kan
r
, Neo

r
 

This study  
 

 

COLpCadmurT-gatD+ 
pSKmurT 

 

COLpCadmurT-gatD with pSK5632 
plasmid with murT gene, Kan

r
, Neo

r
, Cm

r
 

 

This study 

  
COLpCadmurT-gatD+ 
pSKgatD 

COLpCadmurT-gatD with pSK5632 
plasmid with gatD gene, Kan

r
, Neo

r
, Cm

r
 

This study 

COLpCadmurT-gatD+ 
pSK 

COLpCadmurT-gatD with pSK5632 
plasmid, Kan

r
, Neo

r
, Cm

r 
This study 

 

 

 
RUSA208pCadmurT-gatD COL with an insertion of Tn551 in glnR, 

Ery
r
 and

 
with murT-gatD operon  under  

Pcad control, Kan
r
, Neo

r
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Construction of the conditional mutant. Plasmid pMurT’ was 

electroporated into competent cells of RN4220 with a Gene Pulser 

apparatus (Bio-Rad, California) under conditions described previously (15). 

Selection of the transformants was performed using kanamycin (50 µg/ml), 

neomycin sulphate (50 µg/ml) and 0.2 µM of Cadmium chloride. The correct 

insertion of pMurT’ into RN4220 chromosome was confirmed by PCR, 

using an internal murT primer chosen outside the region cloned and an 

internal pBCB20 primer (Table S1). The murT-gatD conditional mutation 

was then transduced, by phage 80α to the background of COL as 

previously described (20) and mutant COLpCadmurT-gatD was obtained. 

Construction of complemented strains. A 1673 bp DNA fragment, 

including the complete murT coding sequence and 300 bp of the immediate 

upstream region was amplified from COL genome using the primers 

PmurTSalI and PmurTBamHI (Table S1). The amplified murT fragment and 

plasmid pSK5632 (10) were digested with SalI and BamHI and ligated, 

generating the replicative plasmid pSKmurT. The same strategy was used 

for the construction of the replicative plasmid pSKgatD, in which a 1088 bp 

DNA fragment including the complete gatD gene sequence and 300 bp of 

the immediately upstream region. Plasmids pSKmurT and pSKgatD were 

separately introduced into RN4220 by electroporation and subsequently 

transferred to COLpCadmurT-gatD by transduction, generating 

COLpCadmurTgatD+pSKmurT and COLpCadmurT-gatD+pSKgatD, 

respectively. Plasmid pSK5632 was also introduced in the conditional 

mutant, providing the control strain COLpCadmurT-gatD+pSK.  

Construction of RUSA208pCadmurT-gatD double mutant. The murT-

gatD conditional mutation was transduced, using phage 80α, to the 

background of RUSA208. The obtained double mutant 
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RUSA208pCadmurT-gatD, has a transposon insertion in glnRA operon and 

the murT-gatD operon under the control of pCad promoter. 

Northern blotting analysis. Cells were grown in TSB at 37ºC to mid-

exponential phase (OD620 nm of 0.7). Prior to harvesting the cells, the 

RNA protect reagent (QIAGEN, Hilden, Germany) was added to the 

cultures. Total RNA was isolated as previously described (23). PCR 

amplified internal fragments of the murT, gatD, SACOL1949-SACOL1948, 

SACOL1952, glnA and pta genes were used as probes for hybridization 

(the primers used are listed in Table S1). The DNA probes were labeled 

with [a-32P]dCTP (Perkin Elmer, MA, USA). 

Cell wall isolation. Isolation of cell wall was performed as described (2, 6). 

Briefly, cells were harvested by centrifugation, washed twice with cold 0.9% 

NaCl, resuspended in 0.9% NaCl and boiled for 20 min. After chilling on 

ice, the suspension was centrifuged and washed twice with 0.9% NaCl. The 

cells were disrupted using 106 mm glass beads (Sigma) and FastPrep 

FP120 apparatus (Bio 101, La Jolla, Calif.), purified, washed, and boiled for 

30 min in 5% SDS, diluted in 50 mM Tris/HCl pH 7, to remove non-

covalently bound proteins. After centrifugation, the cell wall fragments were 

diluted in 0.1 M Tris-HCl (pH 6.8) and incubated with 0.5 mg/ml trypsin for 

16 h at 37ºC to degrade cell-bound proteins. Purified cell walls were 

washed with double-distilled water and lyophilized.  

Peptidoglycan purification. Lyophylised cell wall was treated with 49% of 

hydrofluoric acid for 48 hours at 4ºC in order to remove teichoic acids. The 

teichoic acid free peptidoglycan was washed with water several times to 

remove all traces of hydrofluoric acid and then lyophylised.  

Peptidoglycan analysis by RP-HPLC. Identical amounts of peptidoglycan 

were digested with mutanolysin (1 mg/ml; Sigma). The resulting 
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muropeptides were reduced with sodium borohydride and separated by 

reverse phase-high performance liquid chromatography (RP-HPLC) using a 

Hypersil ODS (Runcorn Cheshire, UK) column (3 mm particle size, 25064.6 

mm, 120 A ° pore size) and a linear gradient from 5% to 30% MeOH in 100 

mM sodium phosphate buffer pH 2.5 at a flow rate of 0.5 ml/min as 

described (7). 

Purification of monomeric muropeptides. Highly purified cell wall was 

prepared as previously described (2) and resuspended to a final 

concentration of 10 mg/ml. Cell wall material (500 µg) was digested with 

lysostaphin (300 µg) in 20 mM amonium acetate, pH 4.8, for 24 h at 37ºC 

with stirring. Subsequently, cellosyl (Hochst AG, Frankfurt, Germany) (15 

µg) was added to the reaction mixture which was incubated for 12 h at 

37ºC. Finally, additional 15 µg of cellosyl was added and the incubation 

continued for an additional 12 h. The enzymatic reaction was stopped by 

boiling the samples for 5 min and insoluble contaminants were removed by 

centrifugation. The digested cell wall was reduced with sodium borohydride 

and the resulting monomeric muropeptides were separated by RP-HPLC 

using a Prontosil (Bischoff, Leonberg, Germany) column (3 mm, particle 

size, 25064.6 mm, 120 A ° pore size), and a linear gradient from 0% to 30% 

MeOH in 10 mM sodium phosphate buffer pH 6.0 at a flow rate of 0.5 

ml/min. 

Mass spectrometry analysis of monomeric muropeptides. The eluted 

fractions corresponding to the most predominant peaks of the 

chromatograms were collected after HPLC separation, concentrated to 10–

20 µl, and acidified with 1% trifluoroacetic acid (TFA). The samples were 

then desalted and further concentrated using ZipTips (C- 18, Millipore, UK) 

according to the standard protocol recommended by the manufacturer. The 

material was eluted from the ZipTip with 3 µl of 50% acetronitrile, 0.1% TFA 
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and was sprayed directly into a Finnigan LTQ-FT mass spectrometer 

(Thermo, Bremen, Germany) operating in positive mode (Pinnacle 

Proteomics Facility, Newcastle University, UK) (5). 

Analysis of UDP-linked precursor pool. The UDP-linked peptidoglycan 

precursors from the cytoplasmic pool were isolated using a modified 

protocol (14). Briefly, vancomycin (Sigma) was added (at five times the 

minimal inhibitory concentration) to mid-exponential grown cultures and 

incubation proceeded for additional 30 minutes. The cultures were then 

chilled below 10ºC, cells were harvested, suspended in cold water and 

slowly stirred into the same volume of boiling water for 15 minutes. After 

centrifugation the supernatant was collected, lyophilized, dissolved in water 

and the pH was adjusted to 4.0 using 20% phosphoric acid. The 

suspension was again centrifuged and the pH of the supernatant adjusted 

to 2.0. The suspension was centrifuged at 4ºC for 1 h at 200000 g.  

The UDP-linked peptidoglycan precursors were separated through the 

same column used to separate the muropeptides of peptidoglycan – using 

a linear gradient from 0 to 30% of MeOH in 100 mM sodium phosphate 

buffer (pH 2.0), with a flow rate of 0.5 ml/min. Compounds to be analyzed 

by MS were isolated and desalted using the same column as before with a 

linear gradient from 0 to 30% of MeOH in 10 mM of sodium phosphate (pH 

4.3) for 25 min with a flow rate of 0.5 ml/min. Mass spectral data were 

obtained by MALDI-TOF analysis (Pinnacle Proteomics Facility, Newcastle 

University, UK). 

Growth curves. Overnight grown cultures of strains COL and 

COLpCadmurTgatD, COLpCadmurT-gatD+pSKmurT, COLpCadmurT-

gatD+pSKgatD and COLpCadmurT-gatD+pSK were diluted 1:1,000 into 

fresh TSB supplemented with the respective antibiotics (Table 1). The 

conditional mutants were grown in media containing CdCl2 concentrations 
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at 0, 0.01, 0.05 and 0.2 µM. The cultures were incubated at 37ºC with 

agitation and the OD620 nm was monitored over time. 

Determination of beta-lactam resistance. Overnight grown cultures of 

strains COL and COLpCadmurTgatD, COLpCadmurT-gatD+pSKmurT and 

COLpCadmurT-gatD+pSKgatD and COLpCadmurT-gatD+pSK were plated 

on TSA supplemented with increasing concentrations of CdCl2 (0, 0.01, 

0.05 and 0.2 µM) and incubated at 37ºC for 24 hours. Oxacillin (Sigma) 

diffusion disks (1 mg) were used to determine inhibition halos.  

Turbidometric assay of peptidoglycan hydrolysis. To analyze the 

susceptibility of peptidoglycan to lysozyme hydrolysis, a turbidometric 

assay was used as described (2, 12). Briefly, 0.5 mg of purified 

peptidoglycan from the conditional mutant, grown with and without CdCl2, 

were sonicated in 1 ml of 100 mM Sodium-Potassium phosphate buffer pH 

6.6. Human lysozyme or hen egg white lysozyme (Sigma) was added to a 

final concentration of 300 µg/ml and the reaction was incubated at 37ºC. 

The optical density was monitored at 660 nm.  

Determination of lysozyme and polymyxin resistance. The impact of 

lysozyme on exponential growth was determined as described (12). 

Overnight cultures of the conditional mutant grown with inducer were 

diluted to an OD620 nm of 0.1 in fresh TSB (with and without inducer). The 

cultures were incubated at 37ºC until an OD620 nm of 1.0. Then, each 

culture was diluted 1:10 into fresh TSB medium and lysozyme (300 µg/ml) 

was added at an OD620 nm of 1.0. The growth was monitored for several 

hours. The same procedure was done using 20 µg/ml of Polymyxin B 

(Sigma), a cationic antimicrobial peptide. 
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Results 

The two open reading frames, SACOL1951 and SACOL1950, were 

automatically annotated in the genome of S. aureus strain COL as a 

putative Mur ligase family-like protein and a CobB/CobQ-like glutamine 

amidotransferase, respectively. The preliminary annotations of these 

genes, designated murT and gatD, respectively, suggested a role for their 

protein products in cell wall metabolism.  

murT and gatD genes are co-transcribed as a small operon. DNA 

sequence analyses of murT-gatD region suggested that murT and gatD are 

located in the same operon and might be co-transcribed from a common 

promoter: the murT stop codon and the gatD methionine codon are 

separated by 4 bp only; both genes are transcribed in the same direction 

and no promoter region sequence could be found upstream from gatD 

(Figure 1A). 

Reverse transcription-PCR (RT-PCR) was performed using total cDNA of 

strain COL with forward primers specifically binding to murT and a reverse 

primer specifically binding to gatD. The test yielded products of the 

expected size (Figure 1B, lanes C and D). No PCR product was obtained 

from the negative control using primers from the SACOL1949-1948 region, 

which was found by northern blotting not to be transcribed (Figure 1B, lane 

A). A PCR product of the expected size was obtained for the positive 

control, using primers internal to pta, a housekeeping gene. The results of 

the RT-PCR test indicated that both murT and gatD are co-transcribed from 

a common promoter. 
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Figure 1. RT-PCR amplification of the murT-gatD region. (A) S. aureus COL genome 
region encompassing murT and gatD genes and the vicinity regions. Fragments A, B, C, and 
D which were amplified by RT-PCR using primers from Table S1, are shown. (B) 
Amplification results by PCR using COL DNA and by RT-PCR using COL cDNA produced 
from a total RNA sample. A fragment from pta gene was used as a positive internal control. 
Fragment A was used as a negative control, as no transcript was detectable for SACOL1948 
and SACOL1949 by northern blotting (data not shown). 

The murT-gatD operon is a syntenic block. Analysis of genome 

sequences available showed that the murT and gatD genes occur, 

widespread among bacteria, as a syntenic block, although it is not a 

universal feature. This is in agreement with our RT-PCR results, which 

identified the two genes as a small operon. The distribution of this syntenic 

block among the prokaryotes, with emphasis on the Staphylococcaceae, is 

shown in Figure S1. 

Construction of a murT-gatD conditional mutant. In order to explore the 

functions of these uncharacterized genes we constructed a mutant strain 

containing a single chromosomal copy of murT-gatD under the control of an 

inducible promoter (pCad). A DNA fragment of murT gene which includes 

the first 298 codons and the ribosome binding site but not the promotor 

region, was cloned into the integrative plasmid pBCB20 (see Table 1). The 

recombinant plasmid was electroporated into RN4220 and the 
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chromosomal construct was transduced into the background of the MRSA 

strain COL. The only complete functional copies of murT and gatD genes 

were located immediately downstream from the pCad, generating mutant 

COLpCadmurT-gatD (Figure S2). Hence, this strain expresses the murT-

gatD genes when grown in the presence of Cd2+, and both genes are 

depleted when Cd2+ is absent from the growth medium (see below). 

Transcriptional analysis of the murT-gatD conditional mutant. Northern 

blotting assays were performed in order to confirm the specificity of 

transcription of the murT-gatD operon controlled by the CdCl2 concentration 

in the medium. The transcription of murT, gatD, SACOL1952 and 

SACOL1948-SACOL1949 genes was analyzed for COL and mutant 

COLpCadmurT-gatD grown with several concentrations of inducer. The 

level of murT and gatD transcription was found to increase with the inducer 

concentration in the medium (data not shown). No alterations were 

detected under the same conditions in the transcription level of the ORFs 

located in the immediate vicinity of the murT-gatD operon, SACOL1952 and 

SACOL1949-SACOL1948, which were found to be not transcribed even for 

strain COL (data not shown). The housekeeping gene pta was used as 

control. For strain COL, a single transcript was visualized for each gene: an 

mRNA structure of approximately 1780 nt long hybridized with murT probe 

and an mRNA structure of approximately 2300 nt long was obtained for 

hybridization with gatD probe. The size of this last transcript matches the 

size of both genes, consistent with their co-transcription. 

Abnormal peptidoglycan produced upon murT-gatD depletion. Cell 

walls of parental strain COL and of the conditional mutant, grown with and 

without Cd2+, were purified and digested with cellosyl and lysostaphin. The 

resulting monomeric muropeptides were reduced and analyzed by RP-

HPLC. The muropeptide profiles revealed that, when the transcription of 
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murT-gatD operon was inhibited, two new muropeptide structures appeared 

in the RP-HPLC profile (Figure 2A – peaks V and VI). These two 

muropeptide species showed shorter retention times than peak I, which is 

common to all the profiles. To identify the structural modifications, all peaks 

annotated in Figure 2A were isolated and analyzed by MS. The MS results 

(Table 2) indicate that the two new peaks (V and VI) observed in the profile 

of the murT/gatD depleted cells corresponded to muropeptide structures 

with D-iso-glutamate in the stem peptide replacing D-iso-glutamine. Peaks 

I, II, III and IV correspond to muropeptide structures with D-iso-glutamine 

(Figure 2B). Amidated muropeptides (Peak I) were still present when the 

transcription of murT-gatD operon was inhibited. This could be due to the 

activity of MurT and GatD expressed by residual transcription from the 

pCad promoter or to the presence of other enzymes with the same activity. 

These findings identify the protein products of murT-gatD as essential for 

the full amidation of the Dglutamic acid residues in the S. aureus 

peptidoglycan. 
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Figure 2. RP-HPLC profiles of cell walls of strains COL and the conditional mutant. (A) 

RP-HPLC profiles of cell walls prepared from strains COL and COLpCadmurT-gatD mutant 
grown with and without 0.2 µM of CdCl2. The cell walls were purified and digested with 
cellosyl and lysostaphin and the resulting muropeptides were reduced and analyzed by RP-
HPLC. Fractions eluting at 50.73 min (peak I), 52.42 min (peak II), 54.10 min (peak III), 
56.13 min (peak IV) in COL strain, and eluting at 47.00 min (peak V) and 48.33 min (peak 
VI) in COLpCadmurT-gatD, grown without the inducer, were collected and analyzed by 
mass spectrometry. (B) Proposed structures for the muropeptides corresponding to peaks I, 
II, III, IV, V and VI. Structures with different numbers of glycine residues associated with the 
D-Ala and L-Lys of the stem peptide, were identified for each peak. The mass of the 
analyzed compounds are presented in Table 2. 
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Table 2. Reduced monomeric muropeptides in HPLC fractions analyzed by LTQ-
FT mass spectrometry. 
 

Peak 
Nº 

Proposed muropeptide 
structure(s)

1
 

Theoretical 
neutral mass (Da) 

Determined 
neutral 
mass(Da) 

 
 
I
a 

Tetra(Gln)Gly3 

Tetra(Gln)Gly4 

Tetra(Gln)Gly5 

Tetra(Gln)Gly6 

Tetra(Gln)Gly7 

1067.4983 
1124.5197 
1181.5412 
1238.5626 
1295.5841 

1067.5227 
1124.5410 
1181.5290 
1238.5933 
1295.6296 
 

 
II

b 
Penta(Gln)Gly2 

Penta(Gln)Gly3 

Penta(Gln)Gly4 

1081.5139 
1138.5354 
1195.5568 

1081.5242 
1138.5427 
1195.5806 
 

III
b 

Penta(Gln)Gly3 

Penta(Gln)Gly4 

1138.5354 
1195.5568 

1138.5423 
1195.5801 
 

 
IV

b 
Penta(GlcNAc)(Gln)Gly2 

Penta(GlcNAc)(Gln)Gly3 

Penta(GlcNAc)(Gln)Gly4 

1284.5933 
1341.6147 
1398.6362 

1284.6128 
1341.6536 
1398.6787 
 

 
V

c 
Tetra(Glu)Gly3 

Tetra(Glu)Gly4 

Tetra(Glu)Gly5 

1068.4823 
1125.5037 
1182.5252 

1068.4794 
1125.5191 
1182.4912 

    

VI
c 

Penta(Glu)Gly2 

Penta(Glu)Gly3 
1082.4979 
1139.5194 

1082.5122 
1139.5170 

1
 Muropeptides with main MS intensities are in bold. 

a  
Structures found in strain COL and in COLpCadmurT grown with 0 and 0.2 µM CdCl2. 

b  
Structures found in strain COL and in COLpCadmurT grown with 0.2 µM CdCl2. 

c  
Structures found in COLpCadmurT with 0 µM CdCl2.  

 

Comparison of the peptidoglycan composition of the murT-gatD 

mutant and glnRA mutant. The cell walls of the parental strain COL and 

the conditional mutant COLpCadmurT-gatD grown with different 

concentrations of inducer were extracted, the peptidoglycan purified, 

digested with muramidase and the muropeptides analyzed by RP-HPLC 

(Figure 3A). The elution profile of the conditional mutant grown in the 

absence of CdCl2 showed longer retention times for all peaks, when 
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compared with COL. In addition, the peaks corresponding to muropeptide 

structures with higher oligomerization level (retention time over 60 min) 

were split into two or more smaller peaks eluting at very similar retention 

times. The elution profiles of the mutant grown with 0.01 µM and 0.05 µM of 

CdCl2 showed gradual re-establishment of the parental muropeptide 

pattern. For cells grown in 0.2 µM CdCl2 supplemented medium, the 

optimal inducer concentration, the peptidoglycan HPLC profile was 

indistinguishable from that of strain COL. The muropeptide elution profile of 

COLpCadmurT-gatD, grown in the absence of inducer, showed similarities 

to the elution profile of the previously characterized glnRA transposition 

mutant RUSA208 (19) (Figure 3B). In RUSA208, the transposon inserted 

into the glnR gene which codes for the repressor of the glutamine 

synthetase operon glnRA, resulting in the abolishment of glnA transcription. 

The impact of the glnRA mutation on the peptidoglycan of RUSA208 has 

been described as the substitution of the normal D-iso-glutamine residues 

by D-iso-glutamic acid at position 2 of the stem peptide (19). Substitution of 

iso-glutamine by iso-glutamic acid residues has been observed among 

muropeptide monomers (Peak 5A in Figure 3B), among dimeric 

muropeptides (Peaks 11A & 11B in Figure 3B), among the tripeptide 

structures (Peak 15B in Figure 3B) and among three of the stem peptides 

represented by peaks 15A, B & C in Figure 3B. All these structures are also 

present in the conditional mutant COLpCadmurT-gatD grown in the 

absence or at suboptimal concentrations of the inducer (see Figure 3A). 

The glnA gene sequence in COLpCadmurT-gatD was identical to that in 

strain COL, excluding the possibility that a mutation in glnA causes the 

deficiency in peptidoglycan amidation as it occurs in RUSA208 strain. Also, 

the transcription of the glnA gene did not vary with the Cd2+ concentration 

in COLpCadmurT-gatD (data not shown) discarding the hypothesis that 

murT and/or gatD may indirectly reduce glnA transcription.  
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The peptidoglycan profiles of RUSA208 and COLpCadmurTgatD grown 

with no CdCl2, showed that amidation of the muropeptides still occured 

partially. This may be due to a leaky expression of murT-gatD operon 

through pCad promoter in the absence of CdCl2. In the case of RUSA208, 

other sources of amino group, besides glutamine, may be used, although 

less efficiently. 

The peptidoglycan HPLC profile of the double mutant RUSA208pCadmurT-

gatD showed a virtually complete lack of amidated muropeptides (Figure 

3A), indicating that the gene products of these two operons are together 

needed for the amidation of the glutamic acid residue of the peptidoglycan. 

Complementation of the murT-gatD conditional mutation. The 

transcriptional analysis showed that the expression of both murT and gatD 

genes is being controlled in COLpCadmurT-gatD mutant, through the 

concentration of inducer added to the medium. For this reason we 

constructed two independent complementation mutants, COLpCadmurT-

gatD+pSKmurT and COLpCadmurT-gatD+pSKgatD, by separately 

introducing into the COLpCadmurT-gatD mutant, the replicative plasmid 

pSK5632 with either the murT or the gatD gene. Cloning of the murT-gatD 

operon into pSK5632 was also attempted, but this construct did not yield 

viable E. coli transformants. Strain COLpCadmurTgatD+pSK harboring 

pSK5632 with no cloned gene was constructed and used as control. 
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Figure 3. RP-HPLC cell wall profiles. The purified peptidoglycan was digested with 

mutanolysin, reduced and analyzed by RP-HPLC. (A) muropeptide profiles of strains COL, 
RUSA208pCadmurT-gatD, grown without CdCl2, and COLpCadmurT-gatD grown with 0, 
0.01, 0.05 and 0.2 µM of CdCl2. (B) muropetide profiles of strains COL, RUSA208. The 
muropeptide structures corresponding to peaks 5, 5A, 11, 11A, 11B, 15, 15A, 15B and 15C 
were inferred from mass spectrometric analysis (19). 
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Re-establishment of the normal peptidoglycan composition in the 

murT-gatD complementation. With the two complementation strains 

available, we obtained three distinct levels of re-establishment of the 

normal peptidoglycan: i) the in trans complementation with several copies 

of the murT gene showed a partially restored peptidoglycan with a small 

amount of muropeptides containing glutamic acid residues 

(COLpCadmurT-gatD+pSKmurT – 0 µM CdCl2, Figure S3A); ii) the in trans 

complementation with several copies of gatD gene showed no re-

establishment of the normal peptidoglycan profile (COLpCadmurT-

gatD+pSKgatD – 0 µM CdCl2, data not shown); iii) the in trans 

complementation with several copies of the murT gene and sub-optimal 

expression of the chromosomal copy of murT-gatD operon showed 

complete restoration of the peptidoglycan profile (COLpCadmurT-

gatD+pSKmurT – 0.01 µM CdCl2, Figure S3B). In the latter case (iii), the 

0.01 µM CdCl2 of added inducer is responsible for providing a sub-optimal 

number of copies of murT-gatD transcripts, adding to the already available 

copies of murT transcript provided in trans. The few copies of gatD 

provided in this condition are enough for a complete reestablishment of the 

normal peptidoglycan composition. Thus, complementation of the murT-

gatD-depletion phenotype requires the expression of murT and at least a 

basal level of gatD. 

Composition of cell wall precursor pool of COLpCadmurT-gatD 

mutant. In order to identify the biosynthetic stage at which amidation 

occurred, the cell wall precursor pool was analyzed by RP-HPLC from 

strains COL and for the murT-gatD conditional mutant grown with and 

without the inducer. The HPLC profiles were identical for the three 

conditions analyzed (Figure S4). The major peak, eluting at 38 minutes, 

was isolated from the cytoplasmic fractions of COL and of the murT-gatD 

conditional mutant grown with and without the inducer. The corresponding 
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structures were analyzed by MALDI-TOF MS. The results indicated an 

identical molecular mass of 1149.35 (neutral mass) for each of the three 

samples, consistent with the structure of the UDP-MurNAc-L-Ala-D-iGlu-L-

Lys-D-Ala-D-Ala, the last cytoplasmic precursor. The presence of D-iso-

glutamate in these three structures indicated that the conversion of 

glutamic acid to iso-glutamine residues must occur at a later stage of cell 

wall precursor biosynthesis – most likely in the lipid phase – confirming an 

earlier finding (21). 

Properties of the conditional mutant.  

Deficit in growth rate. The murT-gatD depleted cells had normal 

morphology as examined by electron microscopy (data not shown) but their 

growth rate was greatly reduced, indicating that the amidation of 

peptidoglycan is required for normal growth. COLpCadmurT-gatD was 

unable to grow on solid medium in the absence of Cd2+. In liquid medium 

the growth rate was significantly reduced in the absence of Cd2+, and it 

increased with the concentration of inducer added to the medium (Figure 

4A and 4B). The growth rate of the COLpCadmurT-gatD+pSKmurT strain in 

the absence of inducer was higher than the growth rate of the control strain 

COLpCadmurT-gatD+pSK, although a complete restoration could not be 

obtained. In contrast, the growth rate of the COLpCadmurT-gatD+pSKgatD 

strain was lower than that of the control strain COLpCadmurT-gatD+pSK 

(Figure 4C). This behavior was more obvious when the strains were grown 

in solid medium (Figure 4D). 
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Figure 4. Growth rate of the conditional mutant at different concentrations of CdCl2. 
(A) Growth curves of strains COL (black diamond), and the COLpCadmurT-gatD conditional 

mutant in TSB supplemented with (black triangle) 0 µM of CdCl2 and (white square) 0.2 µM 
of CdCl2. (B) Growth on solid medium with or without supplementation of 0.2 µM CdCl2 of 
COLpCadmurT-gatD. (C) Growth curves in liquid medium supplemented with Cm (10 µg/ml) 
of the complementation mutants COLpCadmurT-gatD+pSKmurT with 0.2 µM CdCl2 (white 
circle) or without CdCl2 (black circle), COLpCadmurTgatD+pSKgatD with 0.2 µM CdCl2 
(white triangle) or without CdCl2 (black triangle), and the control strain 
COLpCadmurTgatD+pSK with 0.2 µM CdCl2 (white line) or without CdCl2 (black line). (D) 
Growth on solid medium, with or without supplementation of 0.2 µM CdCl2, of the 
complementation strains COLpCadmurT-gatD+pSKmurT, COLpCadmurT-gatD+pSKgatD, 
and the control strain with the plasmid pSK5632, COLpCadmurT-gatD+pSK. 
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Decrease in beta-lactam resistance. The oxacillin resistance level of 

COLpCadmurT-gatD was found to depend on the inducer concentration: as 

the CdCl2 concentration was reduced, the size of the growth inhibition halos 

increased (Figure 5A). In the presence of 0.2 µM of CdCl2, the resistance 

phenotype was identical to that of COL. COLpCadmurTgatD+pSKmurT, 

grown in the absence of inducer, completely reestablished the parental 

phenotype (data not shown). 

Increased sensitivity to lysozyme. The murT-gatD depleted cells of 

COLpCadmurT-gatD grown in the absence of Cd2+ were sensitive to 

human lysozyme (Figure 5B), while the same cells grown in the presence 

of Cd2+ were lysozyme resistant, as was the parental strain COL (data not 

shown), indicating that peptidoglycan amidation is required to express 

lysozyme resistance. By contrast, murT-gatD depleted cells did not show 

diminished resistance to the cationic antimicrobial peptide polymyxin B 

(data not shown). Next, the sensitivity to lysozyme of peptidoglycan of the 

conditional mutant grown in the absence and presence of inducer were 

compared. After an incubation period of 60 minutes, lysozyme was able to 

hydrolyse 46% of peptidoglycan from the conditional mutant grown in the 

absence of inducer. For the mutant grown with inducer, less than 20% of 

peptidoglycan was hydrolysed (Figure 5C). MurT-gatD-depleted cells and 

peptidoglycan isolated from them showed also increased susceptibility to 

hen egg white lysozyme (data not shown). 
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Figure 5. Reduced antibiotic resistance and increased sensitivity to lysozyme in the 
conditional mutant. (A) Oxacillin inhibition halos (1-mg oxacillin disks) were determined for 
COL and COLpCadmurT-gatD mutant grown with 0, 0.01, 0.05 and 0.2 µM of CdCl2. At the 
right hand side of each dish is the diameter of the respective inhibition halo in mm. (B) Effect 
of human lysozyme on the growth rate of: COLpCadmurT-gatD grown with 0.2 µM of CdCl2 
(black diamond), COLpCadmurT-gatD grown with 0.2 µM of CdCl2+lysozyme (white 
diamond), COLpCadmurT-gatD grown with 0 µM of CdCl2 (black triangle), COLpCadmurT-
gatD grown with 0 µM of CdCl2+lysozyme (white triangle). Human lysozyme was added (300 

µg/ml) at an OD620 nm of 1.0 for all strains (arrow). (C) Effect of human lysozyme (300 
µg/ml) on peptidoglycan purified from COLpCadmurT-gatD grown with 0.2 µM of CdCl2 
(black diamond), or COLpCadmurT-gatD grown with 0 µM of CdCl2 (white triangle). 

Amino acid sequence analysis of MurT and GatD. MurT shares 

approximately 15% identity and 53% similarity with the sequence of the Mur 

ligases of S. aureus. Interestingly, while MurT shares the characteristic Mur 

ligase central domain (17, 22) as defined at InterPro (IPR013221), Pfam 

(PF08245) and Panther (PTHR23135) MurT lacks the flanking N- and C-

terminal domains (Figure S5A). 
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Among the conserved residues were some critical motifs required for ATP 

and Mg2+ binding and other conserved sites that may not be directly 

involved in catalysis (Figure 5A). In addition, the MurT protein has a C-

terminal domain of unknown function (Pfam: DUF1727, InterPro: 

IPR013564), which is also found at the C-terminus of more than 900 

sequences of prokaryotic proteins at UniProt, and in 5 different domain 

architectures, all of them sharing the same ORF, or in contiguous ORFs, 

with Mur central domain (PF08353). GatD shows similarity to one of the two 

domains of a cobyric acid synthetase protein: a glutamine-dependent 

amidotransferase (Gn-AT), with glutamine amide transfer (GAT) activity. Its 

architecture comprises the overlapping domain signatures of 

CobB/CobQ_GATase (InterPro: IPR017929), and GATase_3 (InterPro: 

IPR011698) domains. Through multiple sequence alignment of the N-

terminal region of three known Gn-ATs, the absence of a large fragment 

was noted in GatD (Figure S5B). This missing fragment included important 

residues for the dethiobiotin synthase activity (9) and part of the ATP 

binding motif. By placing the representation of the secondary structures 

over the sequence alignment, we can observe considerable agreement 

between the shared regions, especially near the reactive center of 

GATase_3 (Figure S5B). This domain harbored the conserved residues 

directly involved in GAT activity, according to IPR011698. GatD was also 

found to contain the unusual Triad family glutamine amidotransferase 

domain with conserved Cys and His residues (Figure S5B), but lacking the 

Glu residue of the catalytic triad, as the CobB and CobQ proteins (9). 
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Discussion 

The basic structure of S. aureus peptidoglycan is known to undergo at least 

two major secondary modifications, the O-acetylation of the free OH groups 

in the glycan strand and the amidation of the c-carboxyl group of the 

second residue of the stem peptide, D-iso-glutamate, resulting in the 

formation of D-isoglutamine. O-acetylation of the S. aureus peptidoglycan 

confers lysozyme resistance to the bacteria and its main genetic 

determinant, the oatA gene has been identified and characterized recently 

(2). 

In contrast, the mechanism of the amidation of glutamic acid residues has 

remained unknown. 

In this communication we report the identification of two genetic 

determinants – murT and gatD – in the genome of S. aureus strain COL - 

that are required and sufficient for peptidoglycan amidation. A conditional 

mutant constructed for these two genes, showed abnormal peptidoglycan 

composition, with decreased amidation of the glutamate residue. The 

characterization of a double mutant in which not only the expression of 

murT-gatD operon is inhibited but also the operon glnRA, responsible for 

providing glutamine substrate, is impaired, allowed us to infer that murT 

and gatD are the key determinants for the amidation of S. aureus 

peptidoglycan. 

Furthermore, through the analysis of the precursor pool composition of the 

mutant strain we showed that this modification step does not occur in the 

cytoplasm and most probably takes place at the membrane level, 

confirming previous observations (21). 
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Other phenotypes associated with murT-gatD mutation are decreased 

growth rate, decreased resistance to beta-lactams and to lysozyme 

hydrolysis. The strong impact on growth rate suggests that an amidated 

peptidoglycan may provide better substrates for proteins that catalyze 

peptidoglycan biosynthesis and cell division. Lack of the amide group may 

create an unbalance between the synthetic and the hydrolytic machineries 

of the cell. Electron microscopy pictures of the conditional mutant showed 

cells with normal size. However, fewer cells showed complete septa, 

suggesting slower biosynthesis of the septum (data not shown). 

The amidation of glutamic residues had already been shown to have a 

major impact on the expression of beta-lactam resistance, through the 

femC (glnRA) mutant of MRSA (11). Consistent with this result, the 

depletion of murT-gatD also shows a major decrease in the oxacillin 

resistance level. The mechanism of this effect is not well understood (8).  

However, similar effects were already described for several other genes (8) 

many of them related to peptidoglycan biosynthesis. One of the existing 

theories is that the structurally abnormal lipid II or cell wall peptides are 

poorer substrates for PBP2A. 

More unexpectedly, another feature observed in this mutant was the 

decrease of resistance to lysozyme action. Lysozyme belongs to the innate 

immune response and acts on bacteria by hydrolyzing the b-1,4 glycosidic 

bonds between the two sugar molecules of the glycan strands of 

peptidoglycan (muramidase activity). Several cell wall modifications have 

been implicated in the lysozyme resistance mechanism of S. aureus, 

namely the O-acetylation in the C-6 position in the MurNac (2) and the 

presence of wall teichoic acids (1). 
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Firstly, we observed in vivo, that the mutant cells grown in the absence of 

inducer were susceptible to lysozyme action, as the growth was impaired. 

Besides muramidase activity, lysozyme has also cationic antimicrobial 

peptide (CAMP) activity (12). The enhanced inhibitory action of lysozyme 

towards the mutant could be associated with either one of the two activities 

or both. However, we did not observe any effect of polymyxin B, a CAMP, 

on the growth rate of the mutant, indicating that glutamate amidation is 

important to prevent the muramidase activity of lysozyme. This effect could 

be a direct consequence of glutamate amidation or an indirect effect 

associated with changes in O-acetylation of the MurNac and/or in wall 

teichoic acids (WTA). For the mutant grown in the absence of inducer, the 

purified peptidoglycan, which lacks O-acetyl groups and WTA, suffered 

faster hydrolysis by lysozyme than normally amidated peptidoglycan. These 

observations allowed us to conclude that glutamate amidation is one of the 

key factors for lysozyme resistance in S. aureus. 

The role of glutamate amidation has already been described in the context 

of pathogenesis. Peptidoglycan is sensed by the human innate immune 

system via NOD1 and NOD2 (3); NOD1 recognizes as minimal structure 

the D-Glu-meso-DAP dipeptide, typical of Gram-negative bacteria, and is 

impaired by D-isoglutamine presence suggesting the involvement of this 

modification in immune evasion. However, the same was not observed for 

NOD2, whose binding activity to muropeptides is not affected by the 

amidation of glutamic acid (27). Also, this modification did not induce 

cytokine production, indicating that it is not involved in the modulation of 

pro-inflammatory capacity (16). 

Amidation of peptidoglycan glutamic acid residue is common to many 

bacterial species – not all pathogenic (Figure S1) – suggesting additional 

physiological roles for this modification. One role of amidation could be to 
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reduce the number of cell wall carboxylate groups that have recently been 

implicated together with wall teichoic acid phosphate residues to 

cooperatively bind divalent cations like Mg2+ or Mn2+ (13).  

A model for the cooperative functions of MurT and GatD. The murT-

gatD operon emerged as a syntenic block that seems to be widespread 

among bacteria. Interestingly, for the distant taxa of Actinobacteria, in some 

rare cases, the two ORFs are merged into a single one (Figure S1). 

The genome co-localization of the two determinants, together with data 

from sequence analysis, led us to suggest a model for the coordinated 

function of MurT and GatD proteins in the peptidoglycan glutamate 

amidation (Figure 6). 

Both proteins together harbor all domain functions required for amidation of 

peptidoglycan precursor: MurT may be responsible for the recognition of 

the reaction substrates, the lipid-linked peptidoglycan precursor and ATP, 

while GatD could be the catalytic subunit involved in the transfer of the 

amino group from free glutamine to the peptidoglycan precursor. The GatD 

sequence lacks an ATP binding motif which is common to all members of 

the Gn-AT family suggesting an activity that depends on the MurT protein 

which exhibits a typical Mur ligase central domain including the ATP 

binding motif (Figure 6). 
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Figure 6. Protein regions necessary for the cooperative function of MurT and GatD 
proteins. The top panel represents the general topology of Mur ligase family proteins, with 

three domains. The only domain showing homology with MurT is the central domain 
involved in nucleotide binding. The conserved motifs for ATP-binding are indicated by red 
boxes. The lower panel represents the modular structure of Gn-ATs, with a synthase domain 
and a GAT domain which has glutaminase activity motifs (yellow boxes) and ATP-binding 
motifs (red boxes). GatD only shares the glutaminase motifs. 
 

Experiments are in progress to better define the roles of MurT and GatD 

proteins in the mechanism of amidation of S. aureus peptidoglycan 

precursor. Irrespective of mechanistic details, the results with the 

conditional mutant of murT/gatD clearly indicate that the amidation of 

glutamic acid residues in the S. aureus peptidoglycan is catalyzed by the 

concerted action of these two enzymes. The murT-gatD operon appears to 

be the last missing genetic determinant to account for the structural 

variation in the S. aureus peptidoglycan. 
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Supplementary Information 
 
Supplementary Tables 

 
Table S1. Primers used in this study. 

   Primer          Sequence (5' - 3')
a
 

Source or  
reference  

Amplification of Transcripts (RT-PCR)  

P1949-R1 CTCTGAACATCGCATCAATGG This study 

P1948-R1 CGGGATCCCTAAACTACGGAGGGATGTG This study 

PmurT-D1 CTTCGGTGAAATTGATATTATGG This study 

PmurT-XR1 ATTGATCATCGCTTCTTTTCG This study 

PgatD-R1 GTGGAAGTGATAGAGAACAAGC This study 

PSK50f ACGCGTCGACGAACAATTAGAAGGCGA This study 

PmurT-D2 TATACATCAGACAATGGTCG This study 

PgatD-XR1 GCGCCTCGAGCGAGATTTCTTCTGTC This study 

   

Construction of the conditional mutant   

PmurT
'
F TCCCCCGGGCGAGTGGAAATTTGAGGAGG This study 

PmurT
'
R CGAGATCTGACCATTGTCTGATGTATACG This study 

PmurT-R1 GTTCTCTATCACTTCCACCACC This study 

PmurT-R2 GTGTTGATTGCATGATGAATGC This study 

PcadF GCACTTATTCAAGTGTATTT Novick 

PcadR GTTCAGACATTGACCTTCAC Novick 

   

Amplification of DNA probes (Northern blotting)  

PmurT-D TCCCCCGGGCGAGTGGAAATTTGAGGAGG This study 

PmurT-R CGAGATCTGACCATTGTCTGATGTATACG This study 

PgatD-D GTGGAAGTGATAGAGAACAAGC This study 

PgatD-R GAATACCCTTACGTTCACAAGC This study 

P1952-D GAATGTACGAGCGCCAAGTTC This study 

P1952-R CAATGGCAGCATACTGTGATAAAG This study 

                                                                                                    Continued in the next page. 
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Table S1. Primers used in this study (cont.). 

Primer          Sequence (5' - 3')
a
 

Source or  
reference  

FemC-D CTGGACAAGGTAAAGTTGCACG This study 

FemC-R CTAGTCCAGCTTCTAAGATTGC This study 

  

Construction of the complementation mutants  

PmurTSalI ACGCGTCGACATATGCGTGTGCTGC This study 

PmurTBamHI CGGGATCCATATTATGATTGACCTCCTTCAAAC This study 

PgatDSalI ACGCGTCGACGAACAATTAGAAGGCGA This study 

PgatDBamHI CGGGATCCAAATCCATTGATGCG This study 

a 
The restriction sites included in the primers are underlined and the putative ribosome binding site is 

indicated in boldface type. 
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Supplementary Figures 
 

 

Figure S1. Distribution of murT/gatD (red) among prokaryotes. Bacillaceae is depicted 

in magenta because only one species has the pair. In grey are the taxonomic groups for 
which no sequence information is available. Actinobacteria present three cases of fused 
ORFs. The tree representation was built with the help of iTOL (http://itol.embl.de/), and it is 
based on the structure of the NCBI Taxonomy hierarchy. It should not be considered as a 
proper phylogenetic tree. 
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Figure S2. Construction of the murT-gatD conditional mutant. A 918 bp DNA fragment 

containing the ribosome binding site and the 5' sequence of SACOL1951 ORF was cloned 

downstream from pCad promoter. The resulting plasmid, pMurT', was introduced into S. 

aureus RN4220 by electroporation and integrated into the chromosomal SACOL1951-1950 

region by Campbell type recombination. The only complete copy of murT-gatD operon is 

under the control of the pCad promoter, in the COLpCadmurT-gatD conditional mutant. 
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Figure S3. RP-HPLC profiles of purified peptidoglycan digested with mutanolysin. (A) 

Comparison of peptidoglycan elution profiles of strains COL, mutant COLpCadmurT-gatD 
grown without inducer and the complementation strain COLpCadmurTgatD+pSKmurT grown 
without inducer. The complementation strain shows partial re-establishment of the abnormal 
amidation level. (B) Comparison of peptidoglycan elution profiles of strains COL, mutant 
COLpCadmurT-gatD grown without inducer, with sub-optimal inducer concentration (0.01 
µM of CdCl2) and the complementation strain COLpCadmurT-gatD+pSKmurT grown with 
0.01 µM of CdCl2 and with 0.2 µM of CdCl2. The complementation strain grown with sub-
optimal inducer concentration shows complete re-establishment of the abnormal amidation 
level. 
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Figure S4. RP-HPLC profiles of UDP-linked precursor pools. The UDP-linked precursor 
pools of the strain COL and COLpCadmurT-gatD grown with or without 0.2 µM of CdCl2. 
The major precursor structure (elution time of 38.0 min) was identified by mass spectrometry 
as UDP-MurNAc-L-Ala-D-iGlu-L-Lys-DAla-D-Ala. 
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Figure S5A. Structure-informed aminoacid sequence alignments. Sequence alignment 

of the central domain of Mur ligases. Residues involved with the nucleotide binding of four 

known S. aureus COL Mur ligases and MurT are labelled TP (ATP triphosphate), Mg1 and 

Mg2 (magnesium), A (adenine), and Ri (ATP ribose). The residue labelled C is the 

carbamoylated lysine residue observed in all the Mur enzymes except MurC; in this enzyme 

a glutamate residue, indicated with an asterisk (*) seems to play the same role in Mg2 

coordination. The initial alignment was performed by TCoffee (2), the secondary structure 

was inferred for all sequences through Psipred (1), and the alignment was manually edited 

according to the latter.SACOL1951-MurT; SACOL1790-MurC; SACOL1196-MurD; 

SACOL1023-MurE; SACOL2073-MurF. In the top line a-helixes (green cylinders) and b-

strands (orange arrows) were inferred for the sequences of the known Mur ligases. 
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Figure S5B. Structure-informed aminoacid sequence alignments. Sequence alignment 

of the N-terminal halves of three known GATases. The residues involved in nucleotide 
binding of S. aureus COL GatD and three known GATases are indicated with a filled red box 

and are labelled TP (ATP triphosphate). Residues in green boxes marked with DS are 
deemed important for the dethiobiotin synthetase activity. The residues in the filled box 
labelled C are annotated as being directly involved with reactive center according to the 
GATase 3 (IPR011698) domain documentation. The initial alignment was performed by 
TCoffee (2), the secondary structure was inferred for all sequences through Psipred (1), and 
the alignment was manually edited according to the latter.GatD-Q5HEN2_STAAC (S. 
aureus); COBB_BACME (Bacillus megaterium); COBB_METJA (Methanocaldococcus 
jannaschii); COBB_PSEDE (Pseudomonas denitrificans). In the top line a-helixes (green 

cylinders) and b-strands (orange arrows) were inferred for the sequences of these three 
known GATases. In the bottom line, the same information is shown for GatD. 
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Abstract 

The peptidoglycan of Staphylococcus aureus is virtually free of carboxyl 

groups due to the amidation of the α-carboxyl group of D-glutamate at 

position 2 of the stem peptide, resulting in the formation of D-isoglutamine. 

Recently, the murT-gatD operon was identified as the genetic determinant 

responsible for the amidation of D-glutamate. The MurT and GatD proteins 

have sequence similarity to the highly conserved central domain of Mur 

ligases and to the catalytic domain in CobB/CobQ-like glutamine 

amidotransferases, respectively. In the present study, we describe the co-

purification of MurT and GatD recombinant proteins from a vector 

expressing both murT and gatD genes and provide evidence indicating that 

these proteins interact, forming a stable enzymatic complex. In vitro 

analysis of lipid II amidation, using purified GatD and MurT-GatD 

recombinant proteins, demonstrated that both proteins are required for 

peptidoglycan amidation; most probably, GatD is responsible for the 

glutaminase activity and MurT is related to the ATP-dependent synthetase 

activity and substrate recognition. This second part of my Thesis also 

provided information essential for the establishment of the structure of the 

MurT-GatD protein complex. The crystal structure of the GatD protein is 

already available.  
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Introduction 

In gram-positive bacteria, the thick peptidoglycan multilayer constitutes an 

essential stress-bearing and shape-maintaining component of the bacterial 

cell envelope. The biosynthesis of peptidoglycan is a complex process, 

which requires several enzymatic reactions, and takes place in three 

distinct cellular compartments: the cytoplasm and the inner and the outer 

surface of the cytoplasmic membrane. The biosynthesis starts in the 

cytoplasm with the formation of the UDP-N-acetylmuramic acid (UDP-

MurNAc) covalently linked to a pentapeptide, which is composed of L-

alanine, D-glutamate, L-lysine and D-alanyl D-alanine. The successive 

addition of the five aminoacids is catalyzed by a set of enzymes, belonging 

to the superfamily of Mur ligases (12). The UDP-MurNAc-pentapeptide is 

next attached to a membrane acceptor, undecaprenyl phosphate (C55-P), 

by the translocase MraY, producing a structure known as lipid I. In the 

subsequent steps of biosynthesis, the enzyme MurG links UDP-GlcNAc to 

lipid I, resulting in the formation of lipid II (3, 14), which is transported to the 

outer surface of the cytoplasmic membrane, where it serves as a substrate 

for polymerization reactions catalyzed by transpeptidases and 

transglycosylases to form the polymeric cell wall peptidoglycan (9, 15). 

Chemical analysis of S. aureus peptidoglycan showed that the molecular 

composition of this polymer differs from the molecular composition of the 

cytoplasmic disaccharide pentapeptide cell wall precursor, namely some 

hydroxyl groups of the glycan chain were O-acetylated (1, 2) and the 

second amino acid residue of the pentapeptide was not glutamic acid but 

its amidated version, D-iso-glutamine (10). 

In search for genes and enzymes responsible for the amidation of glutamic 

acid carboxyl residues, we identified in S. aureus strain COL a small 

operon composed of two genes, murT and gatD. The two genes were 
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encoding enzymes responsible for the conversion of glutamic acid residues 

to iso-glutamine of peptidoglycan. This secondary modification of the S. 

aureus peptidoglycan was shown to be important for bacterial growth and 

resistance to beta-lactam antibiotics and lysozyme (5). Furthermore, a 

substantial reduction of peptidoglycan crosslinking was also observed in a 

mutant (femC), unable to synthesize glutamine, the amino group donor, 

suggesting that non-amidated cell wall precursors are poor substrates for 

transpeptidases. Thus, glutamate amidation also plays an important role in 

proper transpeptidation of neighboring stem peptides (4, 13).  

In this study, we document the physical interaction between the MurT and 

GatD proteins and provide evidence for the importance of this interaction in 

the amidation of peptidoglycan. In addition, we also demonstrate that the 

amidation of glutamic acid residues occurs at the lipid II stage of 

peptidoglycan biosynthesis.    
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Materials and Methods 

Bacterial strains, plasmids, and growth conditions. Bacterial strains 

and plasmids used in this study are listed in Table 1. Escherichia coli 

strains were grown at 37ºC in Luria-Bertani broth (LB, Difco Laboratories) 

or in LB agar (LA, Difco Laboratories), in the presence of the respective 

antibiotics (Table 1), ampicillin 100 g/ml (Sigma), kanamycin 30 g/ml 

(Sigma) and chloranfenicol 50 g/ml (Sigma). For protein expression, a 

final concentration of 1mM of IPTG inducer (Sigma) was used. Growth in 

liquid medium was monitored by measuring the optical density of E. coli 

cultures at 578 nm.  

Construction of S. aureus GatD as an His6-tag N-terminal fusion.  The 

gatD gene of S. aureus strain COL was amplified using primers PGatD-

NdeI-d1 and PGatD-NotI-r1 (Table 2) and ligated into pET28a vector using 

T4 DNA ligase (New England Biolabs) and NdeI (Fermentas) and NotI 

(Fermentas) restrictions sites to generate a N-terminal His6-fusion protein. 

E. coli DH5 host was transformed with the ligation mixture and positive 

transformants were screened by PCR and sequenced. The correct 

recombinant plasmid was designated pET28a-His6-gatD. 

Over-expression and purification of S. aureus His6-GatD. E. coli 

BL21(DE3) CodonPlus RIPL cells transformed with the pET28a-His6-gatD  

were grown at 37ºC in LB medium supplemented with the appropriate 

antibiotics. In order to optimize the expression and solubility, several 

conditions were tested: different induction periods (3h versus overnight), 

induction temperatures (37ºC, 30ºC, 28ºC) and salt concentrations (100 

mM versus 500 mM NaCl). The final induction conditions were the 

following: at an optical density at 578 nm (OD578nm) of 0.6, 1mM IPTG 

inducer was added and the culture was grown at 30ºC, to induce 

expression of the recombinant protein. After 3 h, cells were centrifuged at 
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6000 g for 15 min at 4ºC, resuspended in extraction buffer (20 mM Tris-HCl 

pH 8.2, 500 mM NaCl, 10 mM MgCl2, 1 mM PMSF, 0.1 mg/ml of DNaseI 

(Sigma)) and incubated on ice, for 10 min. The cell suspension was 

sonicated, with 30% of intensity for 10 min (Branson S450D), and the cell 

debris were spun down. After addition of Imidazole (Sigma) to a final 

concentration of 10 mM, the supernatant was mixed with Ni-NTA beads 

(Qiagen) and incubated at 4ºC for 16 h, with stirring. This mixture was then 

loaded onto a gravity column. In order to remove the weakly bound 

material, the column was washed with 10 column bead volumes of 

extraction buffer containing 10 mM Imidazole. The His-tagged recombinant 

protein was eluted with extraction buffer containing 200 mM of Imidazole. 

The purity of each elution was controlled by SDS-PAGE. Imidazole was 

dialyzed out against 20 mM Tris-HCl pH 8.2, 200 mM NaCl, 10 mM MgCl2 

and 10% of glycerol. Then, the suspension was diluted to a final 

concentration of NaCl of 100 mM and purified by anion exchange 

chromatography using a Q-HP-5 ml column (GE Healthcare) with a 

gradient of 30 ml from 100 mM to 1 M of NaCl in 20 mM Tris-HCl, pH 8.2, 

10 mM MgCl2, 10% of glycerol and at a flow rate of 0.5 ml/min. Elutions of 1 

ml were collected and their purity was analyzed by SDS-PAGE. The elution 

fractions of interest were concentrated using Vivaspin centrifugal 

concentrators (Sartorius) and purified by size exclusion chromatography 

using a Superdex 7510/300 Gl column (GE Healthcare) and 20 mM Tris-

HCl, pH 8.2, 500 mM NaCl, 10 mM MgCl2 at a flow rate of 0.5 ml/min. 
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Table 1. Strains and plasmids used in this study. 

Strain or plasmid  Description
a Source or 

reference 

Strains    

S. aureus   

COL Homogeneous Mc
r 

The Rockefeller 
Univ. Collection 

E. coli 

DH5α recA endA1 gyrA96 thi-1 hsdR17 supE44 
relA1 F80 DlacZDM15 

Invitrogen 

 

BL21-CodonPlus(DE3)-RIPL B F
- 
ompT hsdS(rB

-
  mB

-
) dcm

+ 
Tet

r 
gal λ 

(DE3) endA Hte [argU proLCm
r
]
 
[argU ileY 

leuW Strep/Spec
r
] 

   Stratagene 

   
BL21-His6-gatD BL21-CodonPlus(DE3)-RIPL strain with 

pET28a-His6-gatD 
This study 

   
BL21-murT-gatD-His6 BL21-CodonPlus(DE3)-RIPL strain with 

pET28a-murT-gatD-His6 
This study 

Plasmids 

 
pET28a Expression vector with T7/lac promoter,  

N-terminal His tag, thrombin cleavage site, 
C-terminal His tag; Kan

r
 

Invitrogen 

pET28a-His6-gatD pET28a expressing His6-GatD This study 

pET28a-murT-gatD-His6 pET28a expressing MurT-GatD-His6 This study 

a)
 Mc

r
,
 
methicillin resistant; Cm

r
, chloramphenicol resistant; Spec

r
, spectinomycin resistant; Kan

r
, 

kanamicin resistant.  

Construction of S. aureus MurT-GatD as a His6-tag C-terminal fusion. 

The murT-gatD operon of S. aureus strain COL was amplified using the 

primers P1951-NcoI-d1 and P1950-XhoI-r1 (Table 2) and cloned in pET28a 

vector using NcoI (Fermentas) and XhoI (Fermentas) restrictions sites to 

generate a C-terminal GatD-His6 fusion protein. E. coli DH5 host was 

transformed with the ligation mixture and positive transformants were 
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screened by PCR and sequenced. The correct recombinant plasmid was 

designated pET28a-murT-gatD-His6. 

Table 2. Primers used in this study. 

Primer  Sequence (5' - 3')a Reference 

GatD-NdeI-d1 GCGCCATATGCATGAATTGACTATTTATC This study 

GatD-NotI-r1 GCGCGCGGCCGCTTAACGAGATTTCTTCTGTC This study 

P1951-NcoI-d1 CATGCCATGGGAAGACAGTGGACGGCAATC This study 

P1950-XhoI-r1 GCGCCTCGAGACGAGATTTCTTCTGTCTATTTG This study 

a 
Restrictions sites are underlined. 

Co-expression and purification of MurT-GatD enzyme complex. The 

pET28a-murT-gatD-His6 plasmid was introduced into E. coli BL21(DE3) 

CodonPlus RIPL and over-expression was performed as described for His6-

GatD purification, with the following modifications. Briefly, after the 

induction of expression of recombinant proteins, cells were resuspended in 

extraction buffer (20 mM Tris-HCl, pH 8.2, 1 M NaCl, 10 mM MgCl2, 1 mM 

PMSF, 0.1 mg/ml of DNaseI), sonicated and the cell debris were spun 

down. After the addition of Imidazole, to a final concentration of 20 mM, the 

supernatant was mixed to Ni NTA beads and incubated at 4ºC for 16 h, with 

stirring. The elution was performed as described for His6-GatD purification, 

with modifications. After loading the mixture onto a gravity column, the 

column was washed with 10 column bead volumes of extraction buffer 

containing 40 mM Imidazole followed by elution with extraction buffer 

containing 400 mM of Imidazole. Imidazole was dialyzed out as described 

above. The suspension was purified by cation exchange chromatography, 

using a HP-S-5 ml column (GE Healthcare), with a gradient of 30 ml from 

100 mM to 1 M of NaCl in 20 mM Tris-HCl, pH 8.2, 10 mM MgCl2, 10% of 

glycerol, at a flow rate of 0.5 ml/min. Protein elutions of 1 ml were collected 
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and their purity was analysed by SDS-PAGE. The eluted fractions of 

interest were concentrated as mentioned before and purified by size 

exclusion chromatography using a Superdex 7510/300 GI column (GE 

Healthcare) and 20 mM Tris-HCl, pH 8.2, 1 M NaCl, 10 mM MgCl2 at a flow 

rate of 0.5 ml/min. 

In vitro synthesis of amidated lipid II. The assays for synthesis of 

amidated lipid II were performed in a total volume of 30 µl containing 2 mg 

of purified His6-GatD or MurT-GatD-His6. Different reaction conditions were 

tested and the ones that yielded the best results were described in Munch 

et al (7). Briefly, 0.5 mM of lipid II 

(http://www2.warwick.ac.uk/efac/sci/lfesci/people/droper/bacwan/) were 

incubated with 160 mM Tris-HCl, 0.7 % or 0.2 % Triton X-100, 5 mM KCl, 

40 mM MgCl2, pH 7.5, 6 mM ATP and 7 mM glutamine, for 4 h at 30ºC. To 

extract the synthesis products, the reaction mixtures were incubated with 

the same volume of n-butanol/pyridine acetate, pH 4.2. After centrifugation, 

the upper phase, containing the lipid products, was analyzed by Thin Layer 

Chromatography (TLC) using the mobile phase (butanol, acetic acid, water, 

pyridine, 15:3:12:10) and aluminum foil sheets coated with silica gel 

adsorbent with a pore size of 60 Å (Sigma), as the stationary phase. Lipid 

spots were visualized using iodine vapor. 
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Results 

In order to explore the enzymatic mechanism of the two enzymes and their 

contribution to the amidation reaction, active recombinant proteins were 

constructed: i) a MurT-GatD co-expression system was constructed in 

order to test the physical interaction between the two proteins; ii) MurT and 

GatD proteins were purified for enzymatic studies and structure 

determination.  

MurT and GatD proteins interact physically. Previously, murT and gatD 

genes were shown to be co-transcribed from the same promoter, organized 

as a small operon.  Moreover, analysis of available genome sequences 

showed that the murT and gatD genes occur, widespread among Gram-

positive bacteria, as a syntenic block, suggesting that the protein products 

interact functionally. The full in vivo complementation of the murT-gatD 

depletion phenotype, confirmed the functional cooperative action of the two 

proteins (5).  

The experimental evidence for a functional interaction between GatD and 

MurT proteins suggested that the two proteins interact physically and form 

an enzymatic complex.  

To test this hypothesis we designed a co-purification assay for MurT and 

GatD proteins using a vector expressing both murT and gatD genes. The 

murT-gatD operon amplified from strain COL was cloned into the E. coli 

expression vector pET28a, fusing the operon sequence with the C-terminal 

His6-tag. Such construction allowed the expression of both proteins, MurT 

and GatD-His6. The conditions used to over-express both MurT and GatD 

were the following: E. coli expressing MurT-GatD-His6, was induced with 1 

mM of IPTG for 3h at 30ºC. The optimal salt concentration for the elution 

procedure was 1 M.  
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Through affinity chromatography, the recombinant GatD-His6 was 

recovered from the supernatant and MurT was pulled down along, strongly 

suggesting that the two proteins are able to form an enzymatic complex 

(Figure 1). Moreover, the fact that both proteins co-eluted at high ionic 

conditions (1M NaCl) in the absence of substrate molecules, suggests a 

strong physical interaction between GatD and MurT. 

 

 
 

Figure 1. Co-elution of MurT and GatD-His6 proteins using Ni-NTA beads. Samples of 

the co-expression and co-purification procedure were resolved by 12%-SDS-PAGE and 
stained with coomassie blue G-250 (Bio-rad). Lane 1: PageRuler prestained protein ladder 
(Fermentas); Lane 2: protein sample before be applied to the column; Lane 3: flow through; 
Lane 4: washing step 1; Lane 5: washing step 10; Lane 6: elution 1; Lane 7: elution 2; Lane 
8: elution 3; Lane 9: elution 4; Lane 10: elution 5. Numbers on the left side represent the 
molecular weights of the protein ladder. 

Enzymatic activity of MurT and GatD proteins. To determine in vitro the 

amidation activity of MurT and GatD, independent His-tagged proteins were 

constructed. However, while the His6-GatD fusion was successfully 

expressed, the His6-MurT fusion was not obtained in sufficient amounts for 

activity assays. The amidation assays were performed with the purified 

MurT-GatD complex and with GatD protein alone. 

Purification of the MurT-GatD-His6 complex. To determine in vitro the 

enzymatic activity of MurT-GatD, the enzymatic complex was purified. 

Elution fractions 1 to 5 (Figure 1) were purified by cation exchange 

chromatography, using a salt concentration gradient from 100 mM to 1 M 
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NaCl (Figure 2). Elutions 14 to 18 (Figure 2) were concentrated and purified 

by size exclusion chromatography (Figure 3). 

 

 

Figure 2. Purification of MurT-GatD-His6 by cation exchange chromatography. 

Samples of some steps of the purification procedure were resolved by 12% SDS-PAGE and 
stained with coomassie blue G-250 (Bio-rad). Lane 1, 4 and 21: PageRuler prestained 
protein ladder (Fermentas); Lane 2: protein sample before application to the column; Lane 3: 
flow through; Lane 5: elution 5; Lane 6: elution 6; Lane 7: elution 7; Lane 8: elution 8; Lane 
9: elution 9; Lane 10: elution 10; Lane 11: elution 11; Lane 12: elution 12; Lane 13: elution 
13; Lane 14: elution 14; Lane 15: elution 15; Lane 16: elution 16; Lane 17: elution 17; Lane 
18: elution 18; Lane 19: elution 19; Lane 20: elution 20. Numbers on the left side represent 
the molecular weights of the protein ladder. 

 

Figure 3. Purification of MurT-GatD-His6 by size exclusion chromatography. Samples 

of some steps of the purification procedure were resolved by 12%-SDS-PAGE and stained 
with coomassie blue G-250 (Bio-rad). (A) MurT-GatD-His6 elutions purified by size exclusion 
chromatography. Lane 1 and 11: PageRuler prestained protein ladder (Fermentas); Lane 2: 
protein sample before be applied to the column; Lane 3: elution 6; Lane 4: elution 7; Lane 5: 
elution 8; Lane 6: elution 9; Lane 7: elution 10; Lane 8: elution 11; Lane 9: elution 12; Lane 
10: elution 13. (B) MurT-GatD-His6 protein after concentration, as described in materials and 
methods, from elutions 9 and 10 from painel A.  Lane 1: PageRuler prestained protein 
ladder; Lane 2: MurT-GatD-His6 protein. Numbers on the left side represent the molecular 
weights of the PageRuler prestained protein ladder. 
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Expression and purification of GatD recombinant protein. To further 

investigate the role of GatD in glutamate amidation, GatD was purified as a 

His-tag fusion protein. The conditions used to over express His6-GatD were 

the following: induction was performed with 1 mM of IPTG for 3h at 30ºC. 

The capture of His6-GatD was performed with Ni-NTA beads and 10 mM 

imidazole. A step of 200 mM imidazole was used to remove the weakly 

bound material and to elute His6-GatD (Figure 4). Elutions 1 to 7 (Figure 4) 

were further purified by anion exchange chromatography using a 

concentration gradient from 100 mM to 1 M of NaCl (Figure 5). Due to the 

concentration ratio between His6-GatD and contaminant proteins, elutions 

11 to 15 (Figure 5) were further purified by size exclusion chromatography 

(Figure 6). 

 

Figure 4. Affinity purification of His6-GatD protein using Ni-NTA beads. Samples of 

each phase of the purification procedure were resolved by 12% SDS-PAGE and stained with 
coomassie blue G-250 (Bio-Rad). Elutions were performed with 200 mM of Imidazole. Lane 
1: PageRuler prestained protein ladder (Fermentas): Lane 2: flow-through; Lane 3: washing 
step 1; Lane 4: washing step 10; Lane 5: elution 1; Lane 6: elution 2; Lane 7:  elution 3; 
Lane 8: elution 4: Lane 9: elution 5; Lane 10: elution 6; Lane 11: elution 7. Numbers on the 
left side represent the molecular weights of the protein ladder. 
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Figure 5. Purification of His6-GatD protein by anion exchange chromatography. 

Samples of some steps of the purification procedure were resolved by 12% SDS-PAGE and 
stained with coomassie blue G-250 (Bio-rad). Lane 1 and 4: PageRuler prestained protein 
ladder (Fermentas); Lane 2: Protein sample before be applied to the column; Lane 3: flow 
through; Lane 5: elution 7; Lane 6: elution 8; Lane 7: elution 9; Lane 8: elution 10; Lane 9: 
elution 11; Lane 10: elution 12; Lane 11: elution 13; Lane 12; elution 14; Lane 13: elution 15; 
Lane 14: elution 16; Lane 15: elution 17. Numbers on the left side represent the molecular 
weights of the protein ladder. 

 

Figure 6. Purification of His6-GatD protein by size exclusion chromatography. Samples 

of some steps of the purification procedure were resolved by 12%-SDS-PAGE and stained 
with coomassie blue G-250 (Bio-rad). (A) His6-GatD elutions purified by size exclusion 
chromatography. Lane 1 and 7: PageRuler prestained protein ladder (Fermentas); Lane 2: 
Protein sample before be applied to the column; Lane 3: elution 7; Lane 4: elution 8; Lane 5: 
elution 9; Lane 6: elution 10; Lane 8: elution 11; Lane 9: elution 12; Lane 10: elution 13; 
Lane 11: elution 14; Lane 12: elution 15; Lane 13: elution 16; Lane 14: elution 17. (B) His6-
GatD protein after concentration, as described in materials and methods, from elutions 13, 
14 and 15 (pannel A).  Lane 1: PageRuler prestained protein ladder; Lane 2: His6-GatD 

protein. Numbers on the left side represent the molecular weights of the protein ladder. 
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Enzymatic activity assays. Siewert and Strominger observed that after 

addition of ATP and NH4Cl or glutamine, amidated Lipid I or lipid II could be 

detected in membranes of S. aureus (11). In fact, S. aureus cytoplasmic 

precursors are not amidated, while the cell wall fraction shows prevalence 

of amidated muropeptides, suggesting that the amidation reaction takes 

place at the membrane level (5). For these reasons, lipid II was chosen as 

substrate for the activity assays. 

To assess the enzymatic activity of the MurT-GatD complex and GatD 

alone, lipid II intermediate was incubated with the previously purified 

recombinant proteins, ATP and glutamine. Different reaction conditions 

were tested and the ones that yielded the best results were described in 

Munch et al (7). 

Separation of the reaction products by TLC showed an additional lipid II 

band, that migrates slightly faster than unmodified lipid II (Figure 7A, lane 

1), which indicates that both lipid structures differ in their polarity. Analysis 

of the product band was performed by ESI-TOF-Mass Spectrometry, which 

allowed us to identify the compound as amidated lipid II (7). Therefore, lipid 

II is a substrate for peptidoglycan amidation, which confirms previous data 

(11). When the reaction occurs in the presence of purified GatD (Figure 7, 

lane 2), or in the absence of MurT-GatD (Figure 7A, lane 3), only non-

amidated lipid II is observed, indicating that the occurrence of glutamic acid 

amidation is dependent on the presence of MurT-GatD complex. In 

addition, this modification is also dependent of glutamine and ATP, since in 

the absence of these components, only non-amidated lipid II is observed 

(Figure 7B). 
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Figure 7. Migration behavior of lipid II and amidated lipid II on TLC. (A) TLC of Lipid II 
incubated with 0.2% of Triton-X-100. Lane 1:  Lipid II incubated with MurT-GatD purified 
complex; Lane 2: Lipid II incubated with GatD; Lane 3: Lipid II incubated in the absence of 
MurT-GatD purified complex. (B) TLC of Lipid II incubated with 0.7% of Triton-X-100. Lane 
1: Lipid II incubated in the absence of MurT-GatD purified complex; Lane 2: Lipid II 
incubated with MurT-GatD purified complex; Lane 3: Lipid II incubated with GatD; Lane 4: 
Lipid II incubated in the absence of ATP: Lane 5: Lipid II incubated in the absence of L-
glutamine.  

Structure determination of GatD protein. X-ray structure determination of 

the enzymatic complex MurT-GatD should provide mechanistic insights into 

the amidation reaction of peptidoglycan in S. aureus. With this aim, the 

recombinant proteins for GatD and MurT described above were 

constructed. As previously stated, MurT expression was unsuccessful. 

Regarding GatD, in collaboration with J. Trincão (Diamond Light Source, 

Harwell Oxford, Didcot, UK), preliminary crystal growth attempts were 

unsuccessful as the expression yield was not enough for crystalization 

purposes. Optimization of the expression and purification strategies were 

pursued and the native and selenomethionine derivatives of substrate-free 

GatD were crystallized. For this purpose, the protein was produced using 

the expression vector pOPINF in E. Coli Lemo21pLysS(DE3) expression 
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strain. These results are described in Appendix I (Vieira, D., T. A. 

Figueiredo, A. Verma, R. G. Sobral, A. M. Ludovice, H. de Lencastre, and 

J. Trincao. 2014. Purification, crystallization and preliminary X-ray 

diffraction analysis of GatD, a glutamine amidotransferase-like protein from 

Staphylococcus aureus peptidoglycan. Acta Crystallogr. F Struct. Biol. 

Commun. 70: 632-635.) 
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Discussion 

The peptidoglycan of S. aureus is a highly dynamic molecule that 

undergoes several secondary modifications to its primary structure during 

its biosynthesis.  Amidation of the -carboxyl group of the D-glutamate 

residues is one of such modifications and studies described in this Thesis 

have led to the identification of the murT-gatD operon as the genetic 

determinant involved in this step. MurT shares approximately 15% identity 

and 53% similarity with the sequence of the Mur ligases of S. aureus, while 

GatD shows similarity to one of the two domains of a cobyric acid 

synthetase protein: a glutamine amidotransferase, with glutamine amide 

transfer activity (5).  

The glutamine amidotransferases (GATases) are involved in a variety of 

biological reactions such as biosynthesis of nucleotides, amino acids, 

aminated sugars, coenzymes and antibiotics. These proteins are modular 

enzymes, since they are organized in two distinct catalytic domains: the 

glutaminase domain responsible for glutamine hydrolysis and for the amide 

nitrogen transfer from glutamine to its acceptor substrates; and the 

synthetase domain involved with the recognition and binding of the amino 

group acceptor substrate. The nitrogen transfer requires synchronization of 

both reactions and a close interaction between the two catalytic domains.  

This may be achieved by several – alternative – ways: the catalytic 

domains may be located on the same polypeptide; on two distinct subunits 

in heterodimeric GATase; or they can be positioned on subunits from 

different enzymes, forming an enzymatic complex (6).  

In the present study we used co-purification of MurT and GatD to 

demonstrate that the two proteins interact physically.  Furthermore, using in 

vitro activity assays, we showed that lipid II amidation needs the presence 

of both enzymes, demonstrating that MurT and GatD form a glutamine 
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amidotransferase bi-enzymatic complex. We infer that GatD is responsible 

for the glutaminase activity, while the role of MurT is related to the ATP-

dependent synthetase activity. Our results demonstrate that lipid II is an 

efficient amino acceptor molecule and that glutamine is an efficient amino 

donor. 

While obtaining the data described in this Thesis chapter, similar results 

were obtained by Munch and colleagues (7). In the study of Munch and 

colleagues, the nature of the nitrogen donor substrate and of the acceptor 

substrate was further explored. While the majority of GATases seem to be 

highly specific for using glutamine as an amide nitrogen donor, they can 

also accept exogenous ammonia as nitrogen source (16). Munch et al, (7) 

demonstrated that at optimal conditions for the ammonia-dependent activity 

(pH 8.5), the MurT-GatD complex is able to use free ammonia, as nitrogen 

donor substrate. However, taking into account the neutral pH within the 

cytoplasm and the fact that the peptidoglycan composition of a glnRA 

transposition mutant (8), unable to synthesize glutamine, is identical to the 

one of the murT-gatD depletion mutant (5), it is most likely that MurT-GatD 

enzymatic complex, normally, uses glutamine as nitrogen donor. Moreover, 

the peptidoglycan HPLC profile of a glnRA and murT-gatD depletion double 

mutant, showed a complete lack of amidated muropeptides (5), which 

indicates that the gene products of these two operons are together 

essential for the lipid II amidation and highlight that this modification is 

glutamine-dependent. 

Regarding the acceptor molecule, Munch et al (7) tested the in vitro 

amidation of several structures, namely lipid I, lipid II and lipid II-Gly5, in the 

presence of MurT-GatD, glutamine and ATP. The authors concluded that 

the most efficient substrate was lipid II, although amidation of lipid I and 

lipid II-Gly5 also occurred. The presence of a 10 fold excess of MurNAc-
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pentapetide did not interfere with the amidation of lipid II, indicating that the 

cytoplasmic precursors are not substrates for MurT-GatD dependent 

amidation reaction. 

The glutamine amido transfer domains are highly conserved among the 

GATases family, whereas the synthetase domains are all different, since 

they bind to different nitrogen acceptor substrates in different biological 

reactions (6). Regarding MurT-GatD complex, MurT shares high level of 

similarity with the sequence of the four Mur ligases of S. aureus (5) that 

catalyze the synthesis of UDP-MurNAc-pentapeptide through the stepwise 

addition of five aminoacids. Munch et al showed that, despite the sequence 

similarity, all S. aureus Mur Ligases were not able to replace in vitro the 

activity of MurT protein. It has been shown that the amidation reaction itself 

doesn’t require the presence of ATP, however, some GATases are 

dependent of ATP to activate the nitrogen acceptor substrate (6). Our 

results indicate that the amidation reaction requires the presence of ATP.  

The absence of amidated lipid II when only GatD is present in the in vitro 

reaction, together with the fact that the in trans complementation with 

several copies of gatD gene showed no re-establishment of the normal 

peptidoglycan profile (5), demonstrate that MurT is essential for 

peptidoglycan amidation. 

Taking into account the frequent presence of MurT-GatD in gram-positive 

bacterial pathogens; the essentiality of these proteins in S. aureus; and 

their involvement in the resistance to -lactam antibiotics and to lysozyme – 

the amidation step in peptidoglycan biosynthesis offers a new target for the 

development of inhibitors as mono therapeutics and/or as combination 

agents for existing β-lactam antibiotics. 
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All the experimental work described in this chapter was performed by T. A. 

Figueiredo. 
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Abstract  

The enzymes responsible for peptidoglycan amidation in Staphylococcus 

aureus, MurT and GatD, were recently identified and shown to be required 

for optimal expression of resistance to β-lactams, bacterial growth, and 

resistance to lysozyme. In this study, we analyzed the impact of 

peptidoglycan amidation in representative strains of the most widespread 

clones of methicillin resistant S. aureus (MRSA). The inhibition of the 

expression of murT-gatD operon resulted in different phenotypes of 

resistance to β-lactams and lysozyme according to the different genetic 

backgrounds. Further, clonal lineages CC1 and CC398 (community-

acquired MRSA [CA-MRSA]) showed a stronger dependency on MurT-

GatD for resistance to β-lactams, when compared to the impact of the 

impairment of the cell wall step catalyzed by MurF. In the remaining 

backgrounds similar phenotypes of β-lactam resistance were observed 

upon the impairment of both cell-wall-related genes. Therefore, for CA-

related backgrounds, the predominant β-lactam resistance mechanism 

seems to involve genes associated with secondary modifications of 

peptidoglycan. On the other hand, the lack of glutamic acid amidation had a 

more substantial impact on lysozyme resistance for cells of CA-MRSA 

backgrounds, than for hospital-acquired MRSA (HA-MRSA). However, no 

significant differences were found in the resistance level of the respective 

peptidoglycan structure, suggesting that the lysozyme resistance 

mechanism involves other factors. Taken together, these results suggested 

that the different genetic lineages of MRSA were able to develop different 

molecular strategies to overcome the selective pressures experienced 

during evolution. 
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Introduction  

Methicillin resistant Staphylococcus aureus (MRSA) are a major cause of 

nosocomial infections worldwide (15, 18, 24, 27) and most cases of 

hospital-acquired MRSA (HA-MRSA) infections are caused by a few 

successful multidrug-resistant epidemic clones (38).  

In the last two decades, the emergence of community-acquired MRSA (CA-

MRSA), causing infections among healthy individuals, has been a subject 

of growing concern (6, 7, 20, 33). Nevertheless, nowadays, the recent 

changes in the epidemiology of CA-MRSA suggest that the boundaries 

between the hospital and community are blurring (21, 29, 30, 50).  

Several studies have demonstrated that genetic backgrounds associated 

with CA-MRSA have a number of features that distinguish them from HA-

MRSA. CA-MRSA typically have increased virulence and carry the smaller 

and easier to transfer staphylococcal chromosomal cassette (SCCmec) 

type IV and V (12). Interestingly, the largest SCCmec type II, usually found 

in HA-MRSA, has a significant fitness cost for the bacteria, resulting in a 

decrease in the growth rate, and in a reduction of toxin expression levels 

(9, 10). The balance between the virulence and antibiotic resistance costs 

may explain why MRSA with SCCmec type II are found mainly in hospital 

environments where high antibiotic pressure, immunocompromised 

individuals, and vector-mediated transmission are present (10). Moreover, 

for CA-MRSA strains, in contrast to HA-MRSA, mecA was suggested not to 

be the primary determinant of methicillin resistance, being the expression of 

pbp4 the main determinant of resistance (32).  

Recently, a small operon, encoding the enzymatic complex MurT-GatD, 

was identified to be responsible for a secondary modification of 

peptidoglycan in S. aureus, the amidation of glutamic acid in the stem 
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peptides (17, 34). Inhibition of amidation caused reduced growth rate; 

reduced resistance to β-lactam antibiotics, shown previously to be affected 

by auxiliary genes (14); and increased sensitivity to lysozyme in HA-MRSA 

strain COL (17). 

In this communication we report that peptidoglycan amidation has different 

impacts in the expression of resistance to β-lactams and to lysozyme, 

depending on the genetic background of the particular strain. These 

observations suggest that S. aureus, from different genetic lineages, 

include different elements from their core genomes in the strategies of 

resistance to β-lactam and lysozyme adopted. 
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Materials and Methods 

Bacterial strains and growth conditions. The 11 MRSA strains analyzed 

in this study are listed in Table 1. The respective mutants with murT-gatD 

and murF conditional mutations are listed in Table 2. S. aureus strains were 

grown at 37ºC with aeration in tryptic soy broth (TSB; Difco Laboratories) or 

tryptic soy agar (TSA; Difco Laboratories). The strains with murT-gatD and 

murF conditional mutations were grown in the presence of kanamycin (50 

µg/ml; Sigma) and neomycin sulfate (50 µg/ml; Sigma). Growth medium 

was supplemented with the appropriate concentration of cadmium chloride 

(CdCl2; Sigma), unless otherwise described. 

Construction of murT-gatD conditional mutants. The murT-gatD 

conditional mutation (17) was transduced, by phage 80α into the recipient 

strains (Table 1), as previously described (41) generating the murT-gatD 

conditional mutants in different backgrounds (Table 2). 

Construction of murF conditional mutants. A 768-bp DNA fragment of 

the 5’ end of murF gene, including the ribosome binding site but not the 

promoter sequence, was amplified using chromosomal DNA from strain 

COL as template and the specific primers PmurF’-R and PmurF’-F (Table 

S1). The amplified murF fragment and plasmid pBCB20 (R.G. Sobral and 

M.G. Pinho, unpublished data), carrying a CdCl2 inducible promoter, were 

digested with SmaI (New England Biolabs) and ligated, generating plasmid 

pMurF’. Plasmid pMurF’ was electroporated into competent cells of 

RN4220 with a Gene Pulser apparatus (Bio-Rad). The correct insertion of 

pMurF’ into RN4220 chromosome was confirmed by polymerase chain 

reaction, using an internal murF primer chosen downstream of the cloned 

region (PmurFdn) and an internal primer to pCad conditional promoter 

(Pcad-F) (Table S1). The murF conditional mutation was then transduced, 

by phage 80α into the recipient strains (Table 1), as previously described 
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(41) generating the murF conditional mutants in different backgrounds 

(Table 2). 

Pulsed-field gel electrophoresis. The correct insertion of murT–gatD and 

murF conditional mutations into the chromosome of the recipient strains 

was performed by comparing the pulsed-field gel electrophoresis (PFGE) 

profiles of the parental strains and the respective transductants. DNA 

agarose disks of the parental strain and the respective mutant were 

prepared, digested with SmaI, and separated as described (8). 

Southern blot analysis. SmaI chromosomal fragments, from the parental 

strain and the respective murF and murT-gatD mutants, were transferred to 

nylon membranes (Hybond N+; GE Healthcare) that were subsequently 

hybridized with specific DNA probes labeled with the ECL direct labeling 

system (GE Healthcare). The DNA probes used for murT-gatD and murF 

genes were amplified with primer pairs PmurT-D1+PmurTR1 and PmurF’-R 

+PmurF’-F, respectively (Table S1). 

Population analysis profile. Overnight-grown cultures of the parental 

strains and the respective murT-gatD and murF conditional strains were 

plated at various dilutions on TSA plates, with increasing concentrations of 

oxacillin (0, 0.75, 1.5, 3, 6.25, 12.5, 25, 50, 100, 200, 400, and 800 µg/ml), 

and colonies were counted after incubation at 30ºC for 48 hours, as 

previously described (13). 
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Peptidoglycan isolation for lysozyme lytic assays. Isolation of cell wall 

was performed as described previously (3). Briefly, cells were harvested by 

centrifugation, washed twice with cold 0.9% NaCl, and boiled for 20 

minutes. After chilling, the cells were washed twice and disrupted using 

106-mm glass beads (Sigma) and FastPrep FP120 apparatus (Bio 101). 

The suspension was then washed, and boiled for 30 minutes in 5% sodium 

dodecyl sulfate and 50mM Tris-HCl (pH 7), to remove noncovalently bound 

proteins. After centrifugation, the cell wall fragments were diluted in 0.1M 

Tris-HCl (pH 6.8) and incubated with 0.5 mg/ml trypsin for 16 hours at 37ºC 

to degrade cell bound proteins. Purified cell walls were washed with water 

and lyophilized and treated with 49% hydrofluoric acid for 48 hours at 4ºC, 

to remove teichoic acids. The purified peptidoglycan was washed with 

water and lyophilized. 

Turbidometric assay of peptidoglycan hydrolysis. To analyze the 

susceptibility of peptidoglycan to lysozyme hydrolysis, a turbidometric 

assay was performed as described previously (3, 17, 19). Briefly, purified 

peptidoglycan was sonicated in 100mM sodium-potassium phosphate 

buffer (pH 6.6). Egg white lysozyme (Sigma) was added (300 µg/ml) and 

the reaction was incubated at 37ºC. The optical density was monitored at 

595 nm in 96-well microplates (pure grade, Brand) using a microplate 

reader (Infinite F200 Pro; Tecan).  

Determination of lysozyme resistance of S. aureus growing cells. The 

impact of lysozyme on exponentially growing cultures was determined as 

described previously (17, 19). Overnight cultures of the conditional mutants, 

grown with inducer, were inoculated into fresh TSB, with and without 

inducer. The cultures were incubated at 37ºC to an OD620nm of 1.0. Then, 

each culture was diluted 1:10 into fresh TSB, with and without inducer, and 
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lysozyme (300 µg/ml) was added as the OD620nm reached 1.0. The growth 

was monitored for several hours. 

Statistical analysis. A two-tailed Student’s t test with Welch correction was 

used to determine the significance of differences in lysozyme digestion 

within groups of CA-MRSA and HA-MRSA. Differences were considered 

statistically significant when p was < 0.005. The Graph Pad Prism 5.0 

package was used. 
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Results 

The impact of the impairment of peptidoglycan amidation on oxacillin 

resistance was previously demonstrated by the construction and 

characterization of the murT-gatD conditional mutation in strain COL. This 

mutation was shown to impact not only β-lactam resistance, but also growth 

rate and lysozyme resistance (17). In this study, we first observed that the 

effects of murT-gatD inhibition in the resistance level of strain COL and 

strain MW2 were clearly distinct, as observed through oxacillin inhibition 

halos (1-mg disc) (Figure S1). The decrease in the resistance level of the 

strain was significantly more pronounced for MW2pCadmurT-gatD, 

showing a twofold wider inhibition halo. To test that this behavior was the 

result of different genetic backgrounds and not a strain-specific trait, the 

mutation was transferred to another strain of the same clone USA400 and a 

similar resistance profile was obtained (Figure 1A). These results led to the 

hypothesis that murT-gatD expression and/or the enzymatic step catalyzed 

by the MurTGatD complex could have different physiological consequences 

depending on the genetic background.  

To address this hypothesis, the murT-gatD conditional mutation was 

transduced to representative strains of the most widespread MRSA clones, 

among both HA-MRSA and CA-MRSA (Table 1).  

The correct transfer of the mutation was determined by comparing the 

SmaI PFGE profiles of the parental strains and the respective transductants 

(Figure S2). In addition, Southern blot analysis using specific probes for 

murT-gatD genes confirmed the correct insertion of the conditional 

mutation. 

Impact of murT-gatD conditional mutation on resistance to β-lactam 

antibiotics in different MRSA genetic backgrounds. The impact of 
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murT-gatD conditional mutation on the β-lactam resistance level of the 

different MRSA strains was evaluated by performing oxacillin population 

analysis profiles.  

The most striking observation was that MW2/USA400, ST398, and WIS 

CA-MRSA murT-gatD conditional mutants (Figure 1A) grown in the 

absence of inducer were overall less resistant to oxacillin, when compared 

with the HA-MRSA mutant strains (Figure 1B). A first early drop in the 

number of cfu/ml, occurring at 0.75 µg/ml, was common to all analyzed 

mutant strains, followed by a high frequency of resistant subpopulations, 

able to grow on higher concentrations of antibiotic. Strikingly, while for the 

HA-MRSA (COL, HUR75, and HDES57) the subpopulations of the mutants 

were able to grow on antibiotic concentrations near the MIC (minimal 

inhibitory concentration) of the parental strain (from 50 to 800 µg/ml, Figure 

1B), for the CA-MRSA (MW2, USA400, ST398, and WIS), the mutants’ 

subpopulations only grew at low antibiotic concentrations (from 0.75 to 6.25 

µg/ml, Figure. 1A). Consequently, complete growth inhibition occurred at 

much lower antibiotic concentrations for murT-gatD mutants of CA-MRSA 

backgrounds (Figure 1A).  

Within the CA-MRSA strains, C377pCadmurT-gatD and 

DEN2294pCadmurT-gatD showed a less striking decrease in resistance to 

oxacillin (Figure 2A), with subpopulations that were able to grow up to 100 

µg/ml. In fact, C377pCadmurTgatD showed an overall resistance profile 

similar to HUR75pcadmurT-gatD (Figures 2A and 1B, respectively). The 

similarities between these resistance profiles were consistent with the fact 

that HUR75 and C377 are genetically related, belonging to the same clonal 

complex (CC8). 

Likewise, DEN2294 (ST30-IV, Southwest Pacific clone) is genetically 

related to the HA-MRSA ST36-MRSA-II (EMRSA-16) as they are 
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descendants from the common ancestral ST30-MSSA (45). A conditional 

murT-gatD mutant was not constructed in the ST36-MRSA-II background, 

as all the strains available were resistant to the selectable marker of the 

pMurT’ integrative plasmid (kanamycin). 

Regarding the Pediatric and New York/Japan clones (HDE288 and 

HUC599, respectively) the parental strains exhibited, together with a high 

frequency of resistant subpopulations, lower MIC values (0.75 µg/ml) than 

the previously analyzed HA-MRSA strains (50–800 µg/ml, Figure 2B). 

Consistently, for these strains, the murT-gatD mutation had a complete 

inhibitory impact at lower antibiotic concentrations (6.25 and 100 µg/ml for 

HDE288 and HUC599 mutants, respectively, Figure 2B), than the 

remaining HA-MRSA mutants.  

To explore whether this behavior is associated with distinct steps of 

peptidoglycan biosynthesis, the impact of a murF conditional mutation was 

also studied in the same genetic backgrounds. 

Impact of murF conditional mutation on resistance to β-lactam 

antibiotics in different MRSA genetic backgrounds. A conditional 

mutation for murF gene ( pCadmurF) was constructed using the same 

pCad inducible promoter, transduced from RN4220pCadmurF to the strains 

listed in Table 1, and oxacillin population analysis profiles were performed 

(Figures 1 and 2). In the absence of inducer, the murF conditional mutants 

were impaired in the last biosynthetic cytoplasmic step, catalyzed by MurF 

protein, the addition of the D-alanyl-D-alanine terminus to the stem peptide 

(49). For most clonal lineages the level of resistance to oxacillin was similar 

for murT-gatD and murF mutants (Figures 1B and 2B). However, for 

MW2/USA400 and ST398 CA-MRSA strains, all CA-MRSA strains, the 

inhibition of murT-gatD transcription caused a more pronounced effect on 

oxacillin resistance, than inhibition of murF transcription (Figure 1A).  
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Figure 1. Impact of murT-gatD and murF conditional mutations on the oxacillin 
resistance profiles of MW2, USA400, WIS, ST398, COL, HUR75, and HDES57 strains. 

Overnight cultures of the parental strains and conditional mutants grown with CdCl2 inducer 
were plated on TSA containing increasing concentrations of oxacillin. Plates were incubated 
for 48 hours at 30ºC. (■) Oxacillin population analysis profile of parental strains; (○) oxacillin 
population analysis profile of murT-gatD conditional mutants; ( ) oxacillin population 
analysis profile of murF conditional mutants. Oxacillin population analysis profile of (A) CA-
MRSA strains and (B) HA-MRSA strains. CA-MRSA, community-acquired methicillin 
resistant Staphylococcus aureus; CdCl2, cadmium chloride; HA-MRSA, hospital-acquired 
MRSA; TSA, tryptic soy agar. 
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Figure 2. Impact of murT-gatD and murF conditional mutations on the oxacillin 
resistance profiles of C377, DEN2294, HUC599, and HDE288 strains. Overnight cultures 

of the parental strains and conditional mutants, grown with CdCl2 inducer, were plated on 
TSA containing increasing concentrations of oxacillin. Plates were incubated for 48 hours at 
30ºC. (■) Oxacillin population analysis profile of parental strains; (○) oxacillin population 
analysis profile of murT-gatD conditional mutants; () oxacillin population analysis profile of 
murF conditional mutants. Oxacillin population analysis profile of (A) CA-MRSA strains and 
(B) HA-MRSA strains. 

Impact of murT-gatD and murF conditional mutations on β-lactam 

resistance in a mecA-negative strain resistant to methicillin. The 

pCadmurT-gatD and pCadmurF conditional mutations were transduced to 

the M100 strain (Table 2), a laboratory step mutant selected for methicillin 

resistance (51) which encodes a modified PBP3 (43) and does not contain 

mecA. The inhibition of murF transcription, in the background of M100 
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strain, resulted in a decrease in cell viability, shown by a drop in the 

number of cfu/ml from 108 to 106 (Figure 3). However, no effect was 

observed in the oxacillin resistance level. In contrast, the impairment of 

murTgatD caused, besides the same decrease in viability, a four fold 

decrease in oxacillin resistance; the conditional mutant, grown in the 

absence of inducer, showed complete growth inhibition at 2 µg/ml of 

oxacillin, in contrast to the parental strain (8 µg/ml) (Figure 3). 

 

Figure 3. Impact of murT-gatD and murF conditional mutations on the oxacillin 
resistance profile of mecA-negative M100 strain. Overnight cultures of the parental strain 

and conditional mutants, grown with CdCl2 inducer, were plated on TSA containing 
increasing concentrations of oxacillin. Plates were incubated for 48 hours at 30ºC. (■) 
Oxacillin population analysis profile of M100 parental strain; (○) oxacillin population analysis 
profile of murT-gatD conditional mutant; () oxacillin population analysis profile of murF 
conditional mutant. 

Impact of murT-gatD conditional mutation on lysozyme resistance in 
different MRSA genetic backgrounds. 

Lysozyme resistance assays in living cells. To evaluate the impact of 

murT-gatD conditional mutation on S. aureus intrinsic lysozyme resistance, 

in the several genetic backgrounds, the murT-gatD conditional mutants 

were grown, in the absence and in the presence of inducer, and treated 

with muramidase during the exponential phase. The cell density of the 

cultures was then monitored for several hours. 
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The parental strains, as the conditional mutants grown with inducer, 

showed no growth alteration upon addition of lysozyme to the medium 

(shown for HDES57, HDE288, MW2, and C377 strains and for the 

respective mutants, grown without inducer, Figure 4; data not shown for the 

remaining strains), confirming that all these strains are resistant. 

To address the effects of the impairment of murT-gatD transcription on 

lysozyme resistance level, the cell density values of each mutant culture, 

grown with and without lysozyme, were compared at 90 minutes after the 

addition of muramidase (Figure 5A). 

Overall, murT-gatD mutants constructed in CA-MRSA backgrounds were 

more sensitive to lysozyme, when compared with mutants constructed in 

HA-MRSA backgrounds. In fact, while all CA-MRSA mutants showed a 

decrease in optical density above 70% (mean value of 86.1% – 9.6%) when 

grown in the presence of lysozyme, in HA-MRSA the decrease was much 

more variable, ranging between 23.1% and 90.6% (Figure 5A). The 

difference in the mean lysozyme digestion level, between groups of CA-

MRSA and HA-MRSA, was statistically significant (p < 0.005, Student’s t 

test). Interestingly, mutants DEN2294pCadmurT-gatD and C377pCadmurT-

gatD were more resistant to lysozyme, than the remaining CA-MRSA 

strains, showing again a different behavior, as previously observed for the 

oxacillin resistance profiles (Figures 5A and 2A). 
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Figure 4. Impact of murT-gatD conditional mutation on lysozyme resistance in 
HDES57, HDE288, MW2, and C377 strains and the respective mutants, grown without 
inducer. Overnight cultures were diluted to OD620nm 0.1 and were incubated at 37ºC to 

OD620nm of 1.0. Then, each culture was diluted into fresh medium and lysozyme (300 µg/ml) 
was added at OD620nm 1.0, as indicated by the dashed line. Conditional mutant grown 
without inducer, in the presence (∆) and in the absence of lysozyme (▲); parental strain 
grown in the presence (□) and in the absence of lysozyme (■). 

Lysozyme resistance assays with purified peptidoglycan. To determine 

whether the mutant phenotypes, observed in vivo, were directly associated 

with the lack of amidation of peptidoglycan, or whether they were 

associated with other strain specificities, the peptidoglycan of the parental 

strains and the respective mutant, grown without inducer, was isolated and 

purified. The peptidoglycan concentration was adjusted and after addition 

of lysozyme, the optical density was monitored to assess the amount of 

peptidoglycan digested. The results of the lytic assays showed no 

statistically significant differences (Student’s t test) between the lysozyme 

resistance of the purified peptidoglycan of the different mutant strains 

(Figure 5B). The comparison between the susceptibility to lysozyme of 
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murT-gatD mutants’ living cells and their respective purified peptidoglycan 

(Figure 5A, B) showed no correlation. In fact, while cells from CA-MRSA 

mutants were more susceptible to lysozyme than cells from HA-MRSA 

mutants, their respective purified peptidoglycan showed no significant 

variability between the resistance levels. 

 

Figure 5. Impact of murT-gatD conditional mutation on lysozyme resistance. (A) Effect 

of lysozyme (300 µg/ml) on the growth rate of the conditional mutants grown without inducer. 
The impact of lysozyme is represented as the ratio between the optical density of the culture 
of the mutant grown with lysozyme ( + lys) and without lysozyme ( - lys), 90 minutes after 
addition of the muramidase. (B) Effect of lysozyme (300 µg/ml) on purified PG from the 
conditional mutants grown without inducer. The impact of lysozyme is represented as the 
percentage of undigested peptidoglycan, 40 minutes after addition of the muramidase. 
Dashed bars, conditional mutants of CA-MRSA strains; solid bars, conditional mutants of 
HA-MRSA strains. Also represented are the mean and standard deviation of triplicate 
experiments. PG, peptidoglycan. 
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Discussion 

In the last half-century, the cell wall biosynthetic pathway has been 

extensively studied, namely, for its role as an antimicrobial target. However, 

the enzymes responsible for the amidation of D-glutamic acid of 

staphylococcal peptidoglycan were described only recently. Figueiredo et 

al. (17) identified, in MRSA strain COL, the murT-gatD operon whose 

protein products catalyze the amidation of peptidoglycan and showed that 

this cell wall modification is important for optimal growth, β-lactam 

resistance, and sensitivity to the host defense factor lysozyme. Munch et al. 

(34) demonstrated that both enzymes, MurT and GatD, are essential for 

survival and interact as a glutamine amidotransferase bi-enzymatic 

complex.  

Several genes of the peptidoglycan biosynthetic pathway, among other 

housekeeping genes, are involved in the β-lactam resistance mechanism. 

In fact, the mechanism of resistance of MRSA strains is not simply mecA-

dependent, but also needs the optimal expression of the so-called auxiliary 

genes (4, 14, 25, 35) among which are essential cell-wall related 

determinants, such as murE (28) murF (48); pbp2 (44); pbp1 (42); femABX 

(5); and murT-gatD operon (17). However, the impact of different steps of 

peptidoglycan synthesis in β-lactam resistance of MRSA strains from 

different genetic backgrounds, was only assessed for PBP4 (32). 

Previously, Katayama et al. (23) showed that impairment of pbp4 does not 

affect the β-lactam resistance level of MRSA, being not classified as an 

auxiliary gene. Later, Memmi et al. (32) showed that pbp4 is an auxiliary 

gene in CA-MRSA, being the key player in the resistance mechanism of 

these specific strains. 

In this communication, the murT-gatD conditional mutation was studied in 

the background of the major contemporary MRSA clones. Different impacts 



Chapter IV 

180 
 

in the oxacillin resistance profile were observed for murT-gatD depletion in 

several MRSA genetic backgrounds, with a more pronounced effect on CA-

MRSA-related backgrounds, when compared with HA-MRSA. The 

conditional mutants of MW2/USA400, ST398, and WIS strains showed 

complete growth inhibition at antibiotic concentrations *100-fold lower than 

HA-MRSA mutants. However, this effect was not shared by all CA-MRSA 

strains; the conditional mutants of C377 and DEN2294, belonging to 

lineages highly disseminated in community settings (USA300 and 

Southwest Pacific clones, respectively), showed a less striking decrease in 

resistance to oxacillin. In the case of C377, this behavior could be 

explained by the fact that this strain is genetically related with the HA-

MRSA HUR75 strain, as they belong to the same clonal complex (CC8). 

Likewise, DEN2294 CAMRSA (ST30-IV, Southwest Pacific clone) has a 

genetic background related to the hospital-acquired ST36-MRSA-II 

(EMRSA-16) as DEN2294 and ST36-MRSA-II have a common ancestral, 

ST30-MSSA (22, 45).  

Although the differences in oxacillin resistance decrease observed between 

the CA- and HA-related strains are clear, the molecular mechanism behind 

these different phenotypes is probably directly associated rather with the 

strains’ clonal complexes, and therefore, with their genetic background.  

An association between the strains’ genetic background and their capacity 

to acquire and maintain a recombinant plasmid expressing mecA was 

previously observed (22).  Strains from clonal complexes CC1 and CC5 

were, among the major MRSA lineages tested, the ones that were less 

efficiently transformed. However, CC5 lineage has been recently described 

to be well adapted to the hospital environment through the efficient 

acquisition of resistance to new antibiotics (26), suggesting that strains 

belonging to CC5 are able to easily acquire mecA, but not able to efficiently 
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maintain it. Therefore, the CC5 lineage seems to be less dependent on the 

presence of mecA than other major lineages, for the efficient expression of 

resistance to β-lactams. One hypothesis is that in strains of CC5 β-lactam 

resistance relies on the presence of specific housekeeping genes, namely, 

murT-gatD, although the presence of mecA would still be essential. 

Coincidently, strains belonging to CC1 (MW2/USA400) typically associated 

with the community onset, and CC5 (HDE288 and HUC599), which 

includes hospital-related strains, were among the ones that showed higher 

impact from murT-gatD impairment. The other strains that showed the 

same level of impact were WIS and ST398 (CC59 and CC398, 

respectively), which harbor the small SCCmec type V, suggesting that their 

genetic background would also not favor the stability of mecA expression. 

In this line of thought, the clonal complexes CC8, CC22, and CC30, which 

showed higher efficiency of transformation with mecA and stability of mecA 

expression (22) were, in our study, represented by the strains showing less 

impact of murT-gatD impairment (COL, HUR75, C377, HDES57, and 

DEN2294). Taken together, these observations suggest that the genetic 

backgrounds less prone to receiving mecA gene recruited preferentially 

specific housekeeping genes, such as murT-gatD, for their β-lactam 

resistance strategy. To address the importance of mecA presence in this 

alternative resistance strategy, murT-gatD mutation was transferred into a 

mecA-independent resistant strain, M100, with a truncated PBP3. The 

murT-gatD impairment resulted in a decrease in the level of resistance of 

the M100 strain, indicating that peptidoglycan amidation is essential for a 

mecA-independent resistant strategy. 

To assess the importance of different steps of peptidoglycan biosynthesis 

in this alternative strategy of mecA associated resistance, murF gene was 

chosen for further testing. On one hand, MurF catalyzes a crucial step of 
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the primary pathway of peptidoglycan biosynthesis; on the other hand, it is 

a well-documented auxiliary gene for COL background (48). While for most 

genetic backgrounds the impact of murF impairment in the resistance 

profile was comparable to the one of murT-gatD, for MW2/USA400 and 

ST398 strains, murT-gatD conditional mutation showed a drastic and 

unique effect. Further, the inhibition of murF transcription did not affect the 

level of resistance in the mecA-negative strain M100, suggesting that the 

contribution of murF auxiliary gene for β-lactam resistance is related to the 

presence of mecA.  

Therefore, the alternative strategy for β-lactam resistance seems to rely on 

genes involved in peptidoglycan secondary modifications, as secondary 

cross-linking (pbp4) and amidation (murT-gatD) (32). Recently, Zapun et al. 

(52) showed that in Streptococcus pneumoniae, peptidoglycan amidation 

catalyzed by MurT-GatD complex is necessary for efficient cross-linking by 

PBP2a, PBP2b, and PBP2X. PBP1a retained some activity for 

nonamidated lipid precursors. Although the substrate preferences of S. 

aureus PBPs regarding the amidation status of the precursor molecule are 

not known, it seems reasonable to speculate that PBP4 and/or PBP2 also 

require amidated precursors to perform transpeptidation, as these two 

proteins appear to be involved in the alternative mechanism of resistance to 

β-lactams (32). 

Moreover, besides being essential for optimal β-lactam resistance, the 

murT-gatD operon is also needed for optimal lysozyme resistance, 

evidencing its role in virulence. We also observed that the impairment of 

murT-gatD operon had a strong impact on lysozyme resistance in CA-

MRSA backgrounds. For the HA backgrounds, the impact of this mutation 

is more variable, according to the genetic background. However, the 

lysozyme resistance levels of purified peptidoglycan were similar for strains 
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from both CA and HA settings. This observation indicates that specific 

factors, intrinsic to the strain genetic background, contribute to the final 

lysozyme resistance level, although dependent on the amidation status of 

the cell wall.  

The results reported in this communication suggest that peptidoglycan 

amidation is involved through different mechanistic links in the β-lactam 

resistance strategies of strains from distinct backgrounds, evidencing in this 

way the existence of more than one physiological approach for survival to 

antibiotic stress. 
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Supplementary Information 
 
Supplementary Tables  

Table S1. Primers used in this study. 

Primer Sequence 5'-3' 
a
 

Source or 
reference 

PmurF’-R  CCCGGGCATTATCAGTAGCAACACCA This study 

PmurF’-F  CCCGGGCTGAGGTTGTTATTATGATT This study 

PmurFdn TGCTTTTTCGACATGTTGC (3) 

Pcad-R GTTCAGACATTGACCTTCAC (1) 

PmurT-D1 CTTCGGTGAAATTGATATTATGG (2) 

PmurT-R1 GTTCTCTATCACTTCCACCACC (2) 

a)
 The  restriction sequences included in the primers are underlined and the putative ribosome-binding 

site is indicated in boldface type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Contribution of Peptidoglycan Amidation to β-Lactam and Lysozyme Resistance in Different 
Genetic Lineages of Staphylococcus aureus 

 

191 
 

Supplementary Figures 

 

Figure S1.  Effect of murT-gatD conditional expression on β-lactam resistance 
phenotype in COL and MW2 strains. Oxacillin inhibition halos (1-mg disks) were 
determined for COL, COLpCadmurT-gatD, MW2 and MW2pCadmurT-gatD grown under 
CdCl2 concentrations of 0 and 0.2 μΜ.  

 

Figure S2. PFGE profiles of strains, listed in table 1, and of their respective murT-gatD 
conditional mutants. The boxes highlight the fragments where murT-gatD operon is 

located in the chromosome. The identification of these fragments was performed by the 
analysis of SmaI PFGE profile of the parental strain and the respective murT-gatD 

conditional mutant and through Southern blotting. Numbers on the left side indicate the size 
(Kb) of the molecular marker (M).  
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Discussion 

The peptidoglycan of Staphylococcus aureus is a highly dynamic molecule 

that undergoes several secondary modifications to its primary structure. 

One of these modifications is the amidation of the -carboxyl group of the 

second residue of the stem peptide, D-glutamate, resulting in the formation 

of D-iso-glutamine. My doctoral Thesis describes identification of two genes 

- murT and gatD - in the genome of S. aureus strain COL, the new protein 

products of which are responsible for the amidation of the peptidoglycan. 

These determinants were unknown at the beginning of my work. My Thesis 

work also provided evidence for the existence of a physical interaction 

between the MurT and GatD proteins, resulting in the formation of a 

glutamine amidotransferase bi-enzymatic complex.  

The findings reported in my Thesis allows one to conclude that amidation of 

S. aureus peptidoglycan requires the cooperative action of the MurT and 

GatD proteins, and to draw a functional model in which MurT is associated 

with the ATP-dependent synthetase activity, responsible for the recognition 

of the substrate and ATP, while GatD provides the glutaminase domain, 

involved in glutamine hydrolysis and in the subsequent amide nitrogen 

transfer from free glutamine to the peptidoglycan precursor.  

Importantly, the availability of a murT-gatD conditional mutant allowed to 

demonstrate that amidation of peptidoglycan is important for bacterial 

growth, and is associated with the mechanism of resistance to β -lactams 

and lysozyme in S. aureus. Finally, the evaluation of the impact of 

peptidoglycan amidation on β-lactam and lysozyme resistance in different 

lineages of methicillin resistant S. aureus (MRSA) led to the suggestion that 

MRSA strains are able to develop different molecular mechanisms to 

overcome antibiotic pressure and to evade the host immune system during 

the infection process.   
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The amidation of S. aureus peptidoglycan is dependent on the activity 

of MurT-GatD enzymatic complex. In Chapter II of this Thesis, it is 

described a conditional mutant constructed for murT-gatD operon in the 

background of strain COL, COLpCadmurT-gatD, which showed abnormal 

peptidoglycan composition with decreased amidation of the D-glutamate 

residues, when grown in the absence of the promoter inducer. This 

provided direct evidence for the involvement of both genes in peptidoglycan 

amidation in S. aureus (8). Observations, described in Chapter II of this 

Thesis, raised the hypothesis that the protein products of murT and gatD 

genes interact functionally in order to amidate the peptidoglycan: i) murT 

and gatD genes are co-transcribed from the same promoter, and are 

organized as a small operon; ii) murT and gatD genes are present in most 

Gram-positive bacteria, as a syntenic block; and iii) the murT-gatD 

depletion phenotype is fully complemented, only when both murT and gatD 

are expressed extra-chromosomally (8).  

The co-purification of MurT and GatD recombinant proteins from a vector 

expressing both murT and gatD genes, described in the chapter III, clearly 

indicating that the two proteins interact physically. Furthermore, the in vitro 

activity assays, with purified MurT-GatD and GatD proteins, showed that 

peptidoglycan amidation is dependent on both MurT and GatD activities, 

which is in agreement with the findings of Munch and colleagues (24).     

The in vivo complementation assays, described in the Chapter II of this 

Thesis, constituted the first experimental evidence for the requirement of 

both MurT and GatD proteins in the peptidoglycan amidation reaction. 

These results indicated that MurT enzyme is essential and highly specific 

for the peptidoglycan amidation reaction, since the in trans 

complementation of the murT-gatD conditional mutant with several copies 

of gatD gene revealed no re-establishment of the normal peptidoglycan 
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composition (8). The specificity of MurT for S. aureus peptidoglycan 

amidation reported in this Thesis is in agreement with the findings of Munch 

and colleagues. Despite the fact that MurT shared high similarity with the 

sequence of S. aureus Mur ligases, MurT activity could not be replaced by 

purified MurC, D, E, and F proteins, in the lipid II amidation reaction in vitro 

(24). Regarding GatD specificity, S. aureus may contain other glutamine 

amidotransferases, besides GatD, able to catalyse the glutamine hydrolysis 

and the amino group transfer to peptidoglycan, as the in trans 

complementation with several copies of the murT gene was enough to 

obtain a partial amidated peptidoglycan. Nevertheless, the 

complementation assays showed that full expression of murT, together with 

a sub-optimal expression of gatD, are the minimal conditions to produce 

peptidoglycan fully amidated. Taking together, these results were not 

unexpected as the glutaminase domains of glutamine amidotransferases 

(GATases) have been described as highly conserved all through the entire 

GAT-family, while the synthetase domains tend to be more heterogeneous, 

since they are specific for the different nitrogen acceptor substrates in 

different biological reactions (22). In conclusion, the complete re-

establishment of the murT-gatD-depletion phenotype requires the 

expression of murT, which is essential and highly specific for the 

recognition of peptidoglycan precursor, and at least a basal level of gatD, 

suggesting that S. aureus contains other glutamine amidotransferases that 

are able to partially replace GatD activity.  

MurT amino acid sequence shares approximately 15% identity and 53% 

similarity with the sequence of the Mur ligases of S. aureus, which are 

responsible for the sequential addition of the five aminoacids to the cell wall 

precursor UDP-MurNAc, resulting in the formation of UDP-MurNAc–

pentapeptide (30). The Mur ligases share the same type of enzymatic 

mechanism, consisting in the activation of the carboxyl group of the UDP 
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precursor by ATP, generating an acyl phosphate intermediate and ADP (1). 

Whereas several GATases do not need ATP for the amidation reaction, for 

some subtypes the ATP-hydrolysis is essential for the activation of the 

acceptor substrate (22).  

The in vitro amidation assays, described in Chapter III, revealed that the 

MurT-GatD catalyzed reaction requires the presence of ATP, which allowed 

to infer mechanistically, that this reaction includes the activation of the 

substrate acceptor, resulting in the formation of an acyl phosphate 

intermediate. The phosphate group is then displaced by the incoming 

nitrogen group. Through similar in vitro amidation assays, Munch and 

colleagues also concluded that amidation of peptidoglycan is an ATP-

dependent reaction (24). Interestingly, these authors reported that MurT 

could replace, in vitro, the MurE activity, suggesting that MurT is able to 

recognized UDP-MurNAc-dipeptide, bind L-lysine and activate the D-Glu 

carboxylate by phosphorylation. However, it is improbable that, in vivo, 

MurT can substitute MurE activity, as both genes are considered essential 

(16, 34).  

The 243 amino acid GatD protein shows sequence similarities with the 

glutaminase domain of GATases. Also, S. aureus GatD harbored the 

conserved cysteine and histidine residues, commonly found in this family of 

proteins, but the third catalytic triad residue, glutamine, is missing (8). It 

was suggested by Munch and colleagues that the highly conserved glycine 

present in GatD aminoacid sequence, could be the third residue of its 

catalytic triad (24). The cysteine residue from the active site of the 

GATases is essential for glutaminase activity (22, 32, 37), since its 

nucleophilic sulfhydryl side chain initiates the amide transfer by the 

formation of a thioester with the substrate glutamine. Therefore, Munch and 

colleagues explored the importance of the cysteine residue in the catalytic 
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activity of GatD by site-directed mutagenesis. The inability of the GatD 

mutant, wherein the canonical cysteine of the proposed active site was 

replaced by glycine, to use glutamine and consequently to amidate the 

peptidoglycan precursor allowed to confirm the active site of the enzyme 

and provided clear evidence for the function of GatD as a glutaminase (24). 

The analysis of MurT-GatD amino acid sequence and the experimental 

data allowed to propose that both proteins together contain the domains 

required for the amidation of S. aureus peptidoglycan to occur. Therefore, 

considering the modular organization of the GATases, the peptidoglycan 

amidation should require the synchronization of MurT and GatD activities: 

MurT acting as the synthetase domain, responsible for the recognition of 

the acceptor substrate and ATP, while GatD acting as the glutaminase 

domain, responsible for the hydrolysis of glutamine and the transfer of the 

resultant amino group to the peptidoglycan precursor (Figure 1).  
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Figure 1. Protein regions necessary for the cooperative function of MurT and GatD proteins. 

The top panel illustrates the topology of Mur ligase family proteins. The MurT protein shows 
similarities only with the central domain, including the conserved motifs for ATP binding, 
which are indicated by red boxes.The lower panel illustrates the modular structure of 
glutamine-dependent amidotransferases, which includes a synthetase domain and a 
glutamine amide transfer domain, containing the glutaminase activity motifs (yellow boxes) 
and ATP-binding motifs (red boxes). GatD only shows similarities with the glutaminase 
domain, namely with the conserved residues important for glutaminase activity. 
(Reproduced from reference 8). 
 

The peptidoglycan lipid-linked intermediates are acceptor substrates 

of the peptidoglycan amidation reaction. It was previously described by 

Siewert and Strominger that, upon addition of ATP and NH4Cl or glutamine, 

amidated lipid I or lipid II could be detected in membranes of S. aureus. 

The composition of the peptidoglycan precursor pool of the murT-gatD 

conditional mutant and the respective parental strain, described in Chapter 

II of this Thesis, showed that S. aureus cytoplasmic precursors are not 

amidated (8). Hence, probably the D-glutamic acid amidation occurs at the 

membrane stage, confirming the previous findings described above (29).  

The in vitro amidation of lipid II in the presence of MurT-GatD, glutamine 
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and ATP, described in Chapter III, supports the proposal that this step 

occurs at the membrane stage of peptidoglycan biosynthesis and shows 

that lipid II is an acceptor substrate of the reaction catalyzed by the MurT-

GatD enzyme complex. In order to identify the primary acceptor substrate, 

Munch and colleagues also included purified lipid I and lipid II-Gly5 in the in 

vitro amidation assay, and concluded that the both lipid intermediates can 

serve as acceptor substrates for the MurT-GatD enzymatic complex (24). 

On the other hand, the presence of a 10 fold excess of MurNAc-

pentapeptide did not interfere with the amidation of lipid II, indicating that 

the cytoplasmic precursors are not substrates for MurT-GatD dependent 

amidation. Furthermore, these authors also clarified that this reaction does 

not occur during MurC-F catalyzed stem peptide formation, highlighting 

once again that the soluble cell wall precursor UDP-MurNac-pentapeptide 

does not serve as a substrate for the amidation reaction (24).     

Glutamine is the nitrogen donor substrate of the peptidoglycan 

amidation reaction. The abnormal peptidoglycan composition of murT-

gatD depletion mutant had already been observed for glnRA transposition 

mutant RUSA208 (27). In RUSA208, the transposon insertion occurred in 

the glutamine synthetase repressor gene (glnR), resulting in a polar effect 

on the transcription of the glutamine synthetase gene (glnA). The inhibition 

of the glnRA operon produced a decrease in the glutamine synthetase 

activity and most probably, a reduction in the availability of glutamine in the 

cells, which explains the decrease of the amount of amidated D-glutamate 

in the mutant strain RUSA208 peptidoglycan. In the present study, the fully 

non amidated peptidoglycan of the construct RUSA208pCadmurT-gatD, in 

which both expression of murT-gatD and glnRA are inhibited, allowed us to 

conclude that their protein products are together essential for the amidation 

of the glutamic acid residue of S. aureus peptidoglycan, indicating that 

MurT-GatD enzymatic complex uses glutamine as the nitrogen source (8).  
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The analysis of the peptidoglycan composition of RUSA208 strain revealed 

that amidation of the muropeptides still occurred partially (27), suggesting 

that other sources of nitrogen, besides glutamine, may be used, although 

less efficiently. In fact, although most GATases seem to be highly specific 

for glutamine utilization as an amide nitrogen donor, they can also accept 

exogenous ammonia as nitrogen source (36). Munch and colleagues 

demonstrated that only at optimal conditions for the ammonia-dependent 

activity at pH 8.5, is the MurT-GatD complex able to use free ammonia, as 

nitrogen donor substrate (24). Taking into account the neutral pH within the 

cytoplasm and the fact that the peptidoglycan composition of a glnRA 

transposition mutant, unable to synthesize glutamine, is identical to that of 

the murT-gatD depletion mutant (8), it is most likely that MurT-GatD 

enzymatic complex uses preferentially glutamine as nitrogen donor 

substrate. Additionally, the complete absence of amidated muropeptides in 

the peptidoglycan of glnRA and murT-gatD depletion mutant highlight that 

D-glutamate amidation is dependent of the presence of glutamine, as the 

source of the amino group, and no other nitrogen donor is accepted by 

MurT-GatD enzymatic complex.  

Peptidoglycan amidation is required for bacterial growth, and for 

optimal expression of β-lactam and lysozyme resistance in S. aureus. 

The growth rate of murT-gatD depleted cells was greatly reduced in the 

conditional mutant, indicating that amidation of peptidoglycan is required, 

but not essential, for normal growth (8), which contrasts with the findings of 

Munch and colleagues who found the murT-gatD genes essential for S. 

aureus growth (24). The residual growth and the partial amidation of the 

peptidoglycan of the conditional mutant, grown with no CdCl2, can be 

explained by the leaky expression of murT-gatD operon through the pCad 

promoter in the absence of CdCl2. However, the viability of the glnRA and 

murT-gatD depleted mutant, the peptidoglycan of which is totally 
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deamidated, suggests that D-glutamic acid amidation is not essential for 

bacterial survival (8). The different genetic strategies used in the two 

studies can account for the divergent results regarding the essentiality of 

murT-gatD in S. aureus. In the study of Munch and collaborators, murT and 

gatD were recognized as essential genes for S. aureus, through the 

transformation of the MRSA COL strain with a plasmid containing a xylose 

inducible antisense interference fragment, specifically targeting murT and 

gatD genes (9, 21). Upon addition of xylose, the antisence expression 

targets the complementary mRNA which totally blocks the transcription and 

translation of both proteins. In contrast, the murT-gatD conditional mutant 

used in our work, wherein the murT-gatD operon was placed under the 

control of an inducible promoter, showed a residual level of transcription in 

the absence of inducer, which probably is the cause for the observed 

residual growth.  

The impact of peptidoglycan amidation on growth rate is consistent with 

previous results, which suggested that non-amidated lipid II is an inefficient 

substrate for one or more transpeptidases, as crosslinking of two adjacent 

stem peptides requires that at least one of them is amidated (26, 31). On 

the other hand, considering that the cell viability depends on the close 

coordination between the peptidoglycan precursor translocation, 

transglycosylation and transpeptidation reactions, MurT-GatD dependent 

amidation may function as a check-point signal, and could regulate, 

spatially and temporally, these biochemical events. In Streptococcus 

pneumoniae, it was recently demonstrated that the efficient peptidoglycan 

crosslinking, catalyzed by penicillin binding proteins 2a, 2b, and 2x, is 

dependent on the presence of D-iso-glutamine in lipid II structure (38). 

Curiously, the PBP2x and PBP2b are the two essentials PBPs of S. 

pneumoniae (18), which are also the main targets of β-lactams, and PBP2a 

seems to be the main transglycosylase, since the mutant affected in pbp2a 
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gene showed a higher sensitivity to moenomycin, a inhibitor of the 

transglycosylase activity in Escherichia coli PBP1b (14, 28). Therefore, it 

appears that amidation of peptidoglycan is involved in the growth of S. 

pneumoniae, by interfering with the activity of essentials proteins in cell wall 

biosynthesis.   

It is possible that lack of the amide group may create an unbalance 

between the biosynthetic and the hydrolytic machineries of the cell. 

Interestingly, the structure of the amidase catalytic domain of the autolysin 

Atl of Staphylococcus epidermidis, referred to as AmiE, revealed the 

existence of extended contacts between the D-iso-glutamine residue of the 

cell wall muropeptide and conserved residues in the putative ligand-binding 

groove of AmiE, which suggested an essential role for the D-iso-glutamine 

in substrate recognition (39). This data raised the hypothesis that cell wall 

degradation during cell division, required for splitting the equatorial septum 

between two dividing daughter cells (13, 35), can be regulated by the 

presence of D-iso-glutamine in the stem peptide. However, the morphology 

of the murT-gatD depleted cells did not show significant abnormalities, 

which suggests that the cell division process is not affected by the 

presence of D-glutamate in the stem peptide of peptidoglycan. Interestingly, 

these findings can lead to new insights into S. aureus cell division 

mechanism, as Atl can be replaced by the activity of Sle1, the other S. 

aureus hydrolase responsible for daughter cells separation during cell 

division. 

The impact of amidation on oxacillin resistance level observed in murT-

gatD depleted cells, is consistent with previously results described for 

glnRA mutant (RUSA208) (12). It has been shown that several genes (the 

so called auxiliary genes), many of them cell wall related, are linked to the 

optimal expression of methicillin resistance (7). However, the mechanism 
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by which these genes contribute to the expression of methicillin resistance 

is not well understood. One of the existing theories is that the inactivation of 

genes involved in cell wall biosynthesis leads to the production of 

structurally abnormal muropeptides, which are poorer substrates for 

PBP2A. Consequently, due to the lack of effective muropeptide 

competitors, methicillin molecules would bind more frequently to the active 

site of PBP2A, resulting in a decrease of methicillin resistance levels (6).  

In S. aureus, several modifications of cell wall structure, namely the O-

acetylation of MurNac and the D-alanylation of wall teichoic acids (WTA), 

are involved in lysozyme resistance (3). In this Thesis, glutamate amidation 

was also found to contribute to S. aureus lysozyme resistance, since 

purified non-amidated peptidoglycan was more susceptible to the 

muramidase activity of this enzyme (8). However, it appears that the lack of 

amidation in the stem peptide of peptidoglycan does not affect the cationic 

antimicrobial peptide activity of lysozyme, which was an unexpected result, 

as the presence of D-glutamate leads to a more negatively charged cell 

wall. These observations suggest that the negative charge induced by the 

presence of glutamic acid may be neutralized by same other factor, such as 

the level of D-alanylation of WTAs.  

The impact of peptidoglycan amidation on lysozyme resistance of the cell 

wall may play a role in bacterial pathogenesis, as it may encumber bacterial 

clearance by the host’s immune system. The impact of peptidoglycan 

structure on pathogenesis has been studied extensively. The products of 

peptidoglycan degradation, the muropeptides, are recognized by receptors 

from the human innate immune system, namely by NOD1, that senses the 

minimal structure D-Glu-meso-diaminopimelic acid (DAP) dipeptide, 

commonly found in Gram-negative bacteria (5, 10), and NOD2, which 

detects the muramyl dipeptide and the lysine-containing muramyl tripeptide 
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(11, 15). It was reported that the presence of D-isoglutamine hampered 

recognition of peptidoglycan via NOD1, while the binding activity of NOD2 

was not impaired (33). On the other hand, it appears that this peptidoglycan 

modification is unrelated with pro-inflamatory activity, as amidated S. 

aureus peptidoglycan did not affect the production of cytokines (20). 

Despite the clear evidences, suggesting a direct involvement of amidation 

of peptidoglycan glutamic acid residue in bacterial pathogenesis, other 

physiological roles must also be attributed to this cell wall modification, as it 

is commonly found in many no pathogenic bacterial species.  

The impact of peptidoglycan amidation on β-lactam and lysozyme 

resistance is determined by the genetic background of the strain. As 

mentioned above, despite mecA gene being the main determinant of 

methicillin resistance in MRSA strains, other genes are required for the 

optimal expression of methicillin resistance (4, 7, 19, 25).  

Chapter IV of this Thesis describes that lack of amidation can generate 

different levels of decrease in oxacillin resistance in the most important 

MRSA clones, including community acquired MRSA (CA-MRSA) and 

hospital acquired MRSA (HA-MRSA). Overall, the impairment of murT-gatD 

caused a higher decrease of oxacillin resistance in CA-MRSA or related 

strains, than in HA-MRSA. Actually, this differential impact in oxacillin 

resistance can be correlated with the genetic background of each strain. 

Therefore, according to the ability of each genetic background to receive 

and maintain mecA (17), these results seem to suggest that the 

backgrounds less fit to receiving mecA gene need to recruit preferentially 

specific housekeeping genes, such as murT-gatD, for their -lactam 

resistance mechanism. Thus, the absence of murT-gatD expression would, 

in these strains, produce a higher decrease of oxacillin resistance. 

Interestingly, the impairment of murT-gatD also caused a decrease of β-
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lactam resistance in a mecA-independent resistant strain, suggesting that 

peptidoglycan amidation is important for expression of β-lactam resistance, 

even in the absence of mecA gene.  

Furthermore, the impairment of murT-gatD and murF caused different 

levels of oxacillin resistance in some CA-MRSA clones. In these strains, it 

appears that murT-gatD is more important for the optimal expression of 

methicillin resistance, than the murF gene, suggesting that various auxiliary 

genes may be involved in methicillin resistance through different 

mechanisms. 

Overall, these results allowed us to speculate that MRSA strains are able to 

develop different strategies, in which different auxiliary genes are recruited, 

in order to overcome the antibiotic selective pressure.  

In this line of thought, and considering that PBP4 is a major player for 

methicillin resistance specifically in CA-MRSA (23), a strategy for -lactam 

resistance that relies on peptidoglycan secondary modifications, such as 

secondary cross-linking (pbp4) and amidation (murT-gatD), may also exist.  

Despite the lack of evidence indicating a dependence of S. aureus PBPs 

catalytic “efficiency” on the amidation status of the substrate molecule, the 

results reported in this Thesis allows one to speculate that PBP4 and/or 

PBP2 may also require amidated muropeptides to perform optimal 

transpeptidation, both proteins being involved in methicillin resistance 

although through different mechanisms.   

The impairment of murT-gatD operon produced a strong impact on 

lysozyme resistance in CA-MRSA backgrounds. For the HA backgrounds, 

the impact of this mutation was more variable, depending on the genetic 

background. However, the lysozyme resistance levels of purified 
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peptidoglycan were similar for strains from both CA and HA settings. We 

propose that additional factor(s) conferring lysozyme resistance that are 

triggered/controlled by peptidoglycan amidation, may exist in the CA-MRSA 

strains analyzed.  

 

Future perspectives 

The studies performed in this Thesis led to the conclusion that amidation of 

the -carboxyl group of the D-glutamate of the stem peptide of the S. 

aureus peptidoglycan is important for the rate of bacterial growth and also 

for several other physiologically important properties. However, the exact 

mechanism through which peptidoglycan amidation influences growth 

remains unknown. To explore if deaminated peptidoglycan is a poor 

substrate for S. aureus autolysins, we plan to perform zymogram, using cell 

walls from the murT-gatD depleted mutant. This approach should clarify if 

peptidoglycan amidation is required for the proper cell wall degradation by 

the action of autolysins during cell division. In addition, this strategy may 

also provide insights regarding the role of the major staphylococcal 

autolysins in cell division, as this event is not affected by peptidoglycan 

amidation.   

It is clear that lipid-linked intermediates of peptidoglycan synthesis are the 

acceptor substrates for the reaction catalyzed by the MurT-GatD enzymatic 

complex. However, it is not yet understood if amidation of D-glutamate 

takes place in the cytoplasm, or in the outer side of the cytoplasmic 

membrane, where the polymerization of peptidoglycan occurs. The 

determination of the intra- or extra-cellular presence of MurT-GatD complex 

by chemical cross-linking followed by immunoprecipitation should allow one 

to determine the precise location of amidation reaction. The 

immunoprecipitation assays would also provide evidence for the existence 

of other partners able to interact with MurT and GatD proteins.   
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Considering the frequent presence of MurT-GatD among gram-positive 

bacterial pathogens, the importance of these proteins in S. aureus, and 

their involvement in the resistance to -lactams and lysozyme, the 

amidation step offers a new target for the development of inhibitors as 

monotherapeutics and/or as combination agents for existing β-lactam 

antibiotics, thereby boosting and/or restoring their activity against MRSA. 

The identification of the specific region responsible for the interaction 

between MurT and GatD is essential for the design of the proper inhibitor of 

peptidoglycan amidation. The C-terminal domain of unknown function 

(DUF1727) present in the MurT structure constitutes a likely candidate for 

the region responsible of MurT-GatD interaction. The construction of a 

MurT-GatD-His6 co-expression system, in which expression of DUF1727 is 

blocked by the insertion of a stop codon in the 3’ end of murT, would clarify 

the role of the N-terminal domain of MurT in the assembly of MurT-GatD 

enzymatic complex. This strategy would test if DUF1727 is required for the 

co-purification of GatD-His6 and MurT, by affinity chromatography. 

Furthermore, the construction of a His6-DUF-GatD co-expression system, 

wherein the duf-gatD sequence is fused with the N-terminal His6-tag, 

would also provide some clues regarding the role of DUF1727 in the 

interaction between MurT and GatD proteins. The co-purification of His6-

DUF1727 with GatD, through affinity chromatography, would indicate that 

the N-terminal domain of MurT (DUF1727) is able to interact with GatD and 

therefore is important for the interaction between MurT and GatD. 

Additionally, the performance of “Bacterial two-hybrid system”, using GatD 

and different versions of MurT, should clarify and confirm the results 

obtained by affinity chromatography, described above. On the other hand, 

in a more detailed approach, the performance of Isothermal Titration 

Calorimetry assays would define not only the requirement of DUF1727 for 

MurT-GatD interaction, but also would identify the forces that stabilize the 

interaction. 
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Since peptidoglycan amidation is directly involved in the intrinsic resistance 

of S. aureus to lysozyme, it is expected that this structural modification 

provides protection against macrophage killing and may limit host cytokine 

responses, promoting bacterial survival in the infected host, similarly to 

OatA acetyltransferase in Listeria monocytogenes (2). The evaluation of the 

impact S. aureus MurT-GatD inhibition on the stimulation of an 

inflammatory response by macrophages, (using murine infection models 

and animal cells lines), should begin to explore the role of glutamate 

amidation of peptidoglycan in host evasion. The effect of reduced 

peptidoglycan amidation on lysozyme resistance was clearly distinct 

between CA and HA MRSA backgrounds, with a more pronounced effect 

on MRSA strains predominant in the community. For this reason exploring 

the impact of the murT-gatD mutation should be done in S. aureus genetic 

backgrounds, representing both hospital derived as well as community 

strains of MRSA.  
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Abstract  

Amidation of peptidoglycan is an essential feature in Staphylococcus 

aureus that is necessary for resistance to β-lactams and lysozyme. GatD, a 

27 kDa type I glutamine amidotransferase-like protein, together with MurT 

ligase, catalyses the amidation reaction of the glutamic acid residues of the 

peptidoglycan of S. aureus. The native and the selenomethionine-derivative 

proteins were crystallized using the sitting-drop vapour-diffusion method 

with polyethylene glycol, sodium acetate and calcium acetate. The crystals 

obtained diffracted beyond 1.85 and 2.25 A°, respectively, and belonged to 

space group P212121. X-ray diffraction data sets were collected at 

Diamond Light Source (on beamlines I02 and I04) and were used to obtain 

initial phases. 
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Introduction 

Peptidoglycan, the major component of the Gram-positive bacterial cell 

wall, is a polymer composed of glycan chains cross-linked by short 

peptides and is responsible for cell-shape maintenance and for 

counterbalancing turgor pressure (5). The importance of peptidoglycan for 

cell survival and its exclusivity to the bacterial kingdom renders most 

enzymatic steps involved in its biosynthesis excellent targets for 

antimicrobial therapy. 

Staphylococcus aureus, an opportunistic bacterium responsible for a wide 

range of infections (2, 6) owes its success as a human pathogen mainly to 

its capacity to acquire antibiotic-resistance traits. Most genes involved in 

the peptidoglycan biosynthesis pathway are intimately related to the 

mechanism of β-lactam resistance, enhancing their potential as targets for 

antimicrobial therapy (3).  

The main biosynthesis of peptidoglycan is well understood (9, 12).  

Additional steps are responsible for secondary modifications to the main 

structure (13). In S. aureus, one such modification is the amidation of the γ-

carboxyl group of the second residue of the stem peptide, d-isoglutamate, 

resulting in the formation of d-isoglutamine (10). Recently, the murT-gatD 

operon was identified as the genetic determinant of peptidoglycan 

amidation in S. aureus, which is found to be widespread among bacteria as 

a syntenic block, almost exclusively in Gram-positives. The impaired 

expression of this operon impacts bacterial growth, β-lactam resistance and 

intrinsic lysozyme resistance (4). Moreover, the two proteins physically 

interact and form a glutamine amidotransferase bienzymatic complex (8). 

We have cloned and expressed the GatD protein in Escherichia coli and 

purified and crystallized it. X-ray diffraction data were collected both from 
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native as well as SeMet-containing protein and were used to obtain 

preliminary phases of the model. 
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 Materials and methods 
 

Cloning, overexpression and purification of GatD. The coding sequence 

of the gatD gene was amplified from S. aureus and cloned into the vector 

pOPINF using the In-Fusion method to generate the construct OPPF12143 

(1). The protein was produced in E. coli using the auto-induction method 

(11). Macromolecule production information is given in Table 1. 

Table 1. Macromolecule-production information. 

Source organism S. aureus COL 

DNA source S. aureus COL 

Forward primer AAGTTCTGTTTCAGGGCCCGCATGAATTGACTATTTATCAT 

TTTATGTCAG 

Reverse primer ATGGTCTAGAAAGCTTTAACGAGATTTCTTCTGTCTATTTG- 

CTC 

Cloning vector pOPINF 

Expression vector pOPINF 

Expression host E. coli strain Lemo21(DE3) 

UniProt accession code Q5HEN2 

Complete amino-acid 

sequence of the construct 

produced 

GPHELTIYHFMSDKLNLYSDIGNIIALRQRAKKRNIKVNVVEINE

TEGITFDECDIFFIGGGSDREQALATKELSKIKTPLKEAIEDGMP

GLTICGGYQFLGKKYITPDGTELEGLGILDFYTESKTNRLTGDI

VIESDTFGTIVGFENHGGRTYHDFGTLGHVTFGYGNNDEDKK

EGIHYKNLLGTYLHGPILPKNYEITDYLLEKACERKGIPFEPKEI

DNEAEIQAKQVLIDRANRQKKSR 

 

After 20 h of incubation, the cells were harvested and resuspended in lysis 

buffer: 50 mM Tris–HCl pH 7.5, 500 mM NaCl, 20 mM imidazole and 0.2% 

Tween 20 supplemented with protease inhibitors (Sigma) and 400 U/ml 

DNAse type I. The cells were lysed using a Basic-Z cell disruptor at 207 

MPa and clarified by centrifugation at 30 000g for 30 min at 4ºC. The 

supernatant was loaded onto a 5 ml HisTrap FF column (GE Healthcare) 
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equilibrated with wash buffer (50 mM Tris–HCl pH 7.5, 500 mM NaCl, 20 

mM imidazole), extensively washed with this buffer and eluted with elution 

buffer (50 mM Tris–HCl pH 7.5, 500 mM NaCl, 500 mM imidazole). The 

sample was subsequently loaded onto a Superdex 200 HiLoad 16/60 

column (GE Healthcare) equilibrated with gel-filtration buffer (20 mM Tris–

HCl pH 7.5, 200 mM NaCl, 1 mM TCEP). Fractions containing GatD protein 

were pooled and the N-terminal hexahistidine tag was removed by 

cleavage with 3C protease. The mixture was then purified by reverse Ni-

affinity chromatography. The protein was concentrated to 10, 20 and 45 

mg/ml in gel-filtration buffer for crystallization. The expressed protein differs 

from the native in its N-terminus, where the original M is substituted by GP. 

A selenomethionine derivative was expressed using the Seleno-Methionine 

Expression Media kit (Molecular Dimensions) and the purification protocol 

was followed as described above. 

 

Crystallization. Crystallization screens were performed at the Oxford 

Protein Production Facility (OPPF-UK) using a Cartesian instrument 

(Digilab MicroSys liquid-handling system). 100 nl GatD sample was mixed 

with 100 nl crystallization solution and equilibrated over 90 ml reservoir 

solution (see Table 2 for details). Crystals appeared in several conditions 

from the Emerald Wizard 1 and 2 crystallization screen (Rigaku Reagents). 

The best crystals (native and SeMet derivative) grew after 48 h (Fig. 1). 

The crystals were cryoprotected in 50%(v/v) PEG 400 and flash-cooled in 

liquid nitrogen prior to data collection. 

 

 

 

 



Appendix I 

222 
 

Table 2. Crystallization. 

Method Sitting-drop vapour diffusion 

Plate type Greiner Bio-One 

Temperature (K) 294 

Protein concentration (mg ml
-1

) 45 

Buffer composition of protein solution 20 mM Tris–HCl pH 7.5, 200 mM NaCl, 1mM 
TCEP 

Composition of reservoir solution 30%(w/v) PEG 400, 100 mM sodium acetate/ 
acetic acid pH 4.5, 200 mM calcium acetate 

Volume and ratio of drop 200 nl; 1:1 

Volume of reservoir (ml) 90 

 

Figure 1. GatD crystals obtained using the crystallization robot (native, left; SeMet 

derivative, right). The dimensions of the best crystal were 250x30x30 mm. 

 

Data collection and processing. Data were collected on beamlines I02 

(on a Pilatus 6M detector) and I04 (on an ADSC Quantum Q315r detector) 

at the Diamond Light Source (DLS). Crystals of the native protein diffracted 

beyond 1.9 A° resolution and those of the SeMet-derivatized protein 

diffracted beyond 2.3 A° resolution (Fig. 2). The data were automatically 

processed using xia2 (14). Data-collection and processing statistics are 

given in Table 3. 
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Initial phases were obtained by single-wavelength anomalous diffraction 

(SAD) using data collected from SeMet derivative at the Se edge peak. 

 

Figure 2. Representative diffraction patterns of the crystals (native, left; SeMet derivative, 

right). The resolution at the edge of the detector is 2.1 and 2.5 A°, respectively. 
 

Table 3. Data collection and processing. Values in parentheses are for the 
outer shell. 

 SAD Native 

Diffraction source I04, DLS I02, DLS 
Wavelenght (Å) 0.9796 1.0000 
Temperature (K) 100 100 
Detector ADSC Q315r Pilatus 6M 
Crystal-to-detector distance 
(mm) 

375 407.4 

Rotation range per image (º) 1.0 0.5 
Total rotation range (º) 360 1200 
Exposure time per image (s) 0.5 0.04 
Space group P212121 P212121 
a, b, c (Å ) 48.28, 93.00, 109.30 48.61, 93.92, 110.08 
α, β, γ (Å) 90, 90, 90  90, 90, 90 
Mosaicity (º) 0.387 0.141 
Resolution range (Å) 47.12-2.25 36.43-1.85 
Total No. of reflection 301512 839410 
No. of unique reflection 24020 42987 
Completeness (%) 98.7 (89.2) 97.9 (83.7) 
Multiplicity 12.6 (6.7) 19.5 (10.1) 
I/σ(I) 16.5 (2.2) 20.7 (2.2) 
Rp.i.m. 0.078 (0.477) 0.028 (0.313) 
Overall B factor from Wilson 
plot (Å

2
) 

9.429 15.237 

Anomalous completeness 
(%) 

98.7 (89.2)  

Anomalous multiplicity 6.7 (3.4)  
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Results and discussion 

The recently identified MurT–GatD enzymatic complex represents an 

unexplored step as a potential antimicrobial target. MurT shares 

considerable similarity with the sequence of the Mur ligases of S. aureus, 

which are cytoplasmic enzymes that are responsible for the sequential 

addition of amino-acid residues to the growing muropeptide stem. GatD 

shows similarity to the glutamine amidotransferases (GATases), with 

glutamine amide-transfer activity to a wide variety of substrates (7). 

Typically, GATases catalyze two distinct reactions: the glutaminase 

reaction, in which glutamine is converted into ammonia and glutamate, and 

the synthase reaction, in which ammonia is transferred to an acceptor 

substrate. These two reactions occur at distinct active sites, which may sit 

on the same polypeptide chain or on independent protein subunits. GatD 

protein corresponds to a glutaminase subunit, most probably being 

responsible for the production of ammonia from glutamine. 

In order to determine the structure of S. aureus GatD protein, the encoding 

region of the gatD gene was cloned into pOPINF plasmid and expressed in 

E. coli Lemo21(DE3) as an N-terminal His-tag fusion. The purity of the 

recombinant protein was estimated by SDS–PAGE, which showed a single 

band corresponding to a molecular weight of 27 kDa. 

The crystallization trials were performed at a high-throughput crystallization 

facility. Several crystallization hits were obtained using the Emerald Wizard 

1 and 2 screens from Rigaku Reagents. 

Diffraction data were collected on I02 and I04 at DLS to a resolution 

beyond 1.9 A°. Initial phases were obtained by single-wavelength 

anomalous diffraction (SAD) using data collected from SeMet derivatives at 

the Se edge peak.  



Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine 
amidotransferase-like protein from Staphylococcus aureus peptidoglycan 

 

225 
 

The crystals belonged to space group P212121, with unit-cell parameters a 

= 48.29, b = 93.00, c = 109.31 A°. The structure of GatD, together with 

complete biochemical studies, will provide important insights into the 

molecular basis of the mechanism responsible for the amidation of the 

glutamic acid residues of the peptidoglycan of S. aureus. 
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