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Resumo 

 

 

 

 

Este trabalho estuda a combinação de raciocínio seguro e probabilístico 

através da hibridação de técnicas de integração de Monte Carlo com 

programação por restrições em domínios contínuos. Na programação restrição 

contínua existem vari{veis que vão sobre os domínios contínuos (representados 

como intervalos), juntamente com as restrições sobre elas (as relações entre as 

vari{veis) e o objetivo é encontrar valores para as vari{veis que satisfazem 

todas as restrições (cen{rios consistentes). Algoritmos programação por 

restrições "branch-and-prune" produzem resultados de todos os cen{rios 

consistentes. Algoritmos especiais propostos para o raciocínio probabilístico por 

restrição calculam a probabilidade de conjuntos de cen{rios consistentes que 

implicam o c{lculo de um integral sobre estes conjuntos (quadratura). Neste 

trabalho, propomos estender os algoritmos "branch-and-prune" com técnicas de 

integração de Monte Carlo para calcular essas probabilidades. Esta abordagem 

pode ser útil na {rea da robótica para problemas de localização. As abordagens 

tradicionais são baseadas em técnicas probabilísticas que buscam o cen{rio mais 

prov{vel, que não pode satisfazer as restrições do modelo. Nós mostramos 

como aplicar a nossa abordagem para lidar com este problema e fornecer 

funcionalidade em tempo real. 

 

Palavras-chave: programação por restrições em domínios contínuos, 

an{lise do intervalo, integração de Monte Carlo, Localização de Robots 
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Abstract 

 

 

 

 

 

This work studies the combination of safe and probabilistic reasoning 

through the hybridization of Monte Carlo integration techniques with 

continuous constraint programming. In continuous constraint programming 

there are variables ranging over continuous domains (represented as intervals) 

together with constraints over them (relations between variables) and the goal 

is to find values for those variables that satisfy all the constraints (consistent 

scenarios). Constraint programming “branch-and-prune” algorithms produce 

safe enclosures of all consistent scenarios. Special proposed algorithms for 

probabilistic constraint reasoning compute the probability of sets of consistent 

scenarios which imply the calculation of an integral over these sets 

(quadrature).  In this work we propose to extend the “branch-and-prune” 

algorithms with Monte Carlo integration techniques to compute such 

probabilities. This approach can be useful in robotics for localization problems. 

Traditional approaches are based on probabilistic techniques that search the 

most likely scenario, which may not satisfy the model constraints. We show 

how to apply our approach in order to cope with this problem and provide 

functionality in real time. 

 

Keywords:  Continuous Constraint Programming, Interval Analysis, 

Monte Carlo integration, Robot Localization 
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1. Introduction 
 

 

 

 

A key element in robotics is uncertainty that arises from many factors, such 

as environment, sensors, models, computations and robot actuators and motors. 

Probabilistic robotics is an approach for dealing with hard robotic problems 

that relies on probability theory and has a number of developed algorithms and 

implemented solutions that will be specified further in this dissertation. In the 

case of the robot localization problem, where sensors play a major role, errors in 

measurements are unavoidable and must be considered together with the 

model constraints. This requires a method for uncertainty reasoning with 

mathematical models involving nonlinear constraints over continuous 

variables. 
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1.1 Goals 

The general goal of this work is the development of an approach that 

combines safe and probabilistic reasoning for dealing with the uncertainty in 

nonlinear constraint models. We propose a new technique that is based on the 

combination of methods from continuous constraint programming with Monte 

Carlo integration techniques. We aim to overcome the scalability problem of the 

pure (safe) constraint programming approach providing the means to quickly 

obtain an accurate characterization of the uncertainty. We envisage to 

successfully apply this technique to probabilistic robotics and, in particular, to 

show its advantages with respect to the traditional approaches for the robot 

localization problem. 

1.2 Area 

Uncertainty occurs in stochastic environments and is a subject of study in 

a number of fields, including physics, economics, statistics, engineering, and 

information science. In robotics uncertainty arises from many sources. 

Physical worlds are unpredictable. In robotics the environment is highly 

dynamic and unpredictable that leads to the high degree of uncertainty. In 

some task (such as path planning) the ignorance of uncertainty is not possible.  

Sensors have number of limitations that arise from the following factors. 

The range and resolution of a sensor are limited by physical laws. Image 

sensors cannot see through walls and, moreover numbers of the parameters 

characterizing the performance are limited. Another problem is noise, which 

disturbs the measurements of the sensors. The noise in unpredictable and it 

limits the information that can be extracted from sensors measurements [1]. 

Robot actuation involves motors that could be subject to control noise. 

Some of the actuators are characterized by low noise level. However others 

cannot provide accurate positioning. 

 



 

3 

 

All of these factors give rise to uncertainty. A probabilistic approach 

considers uncertainty and uses models to abstract useful information from the 

measurements. The actual sensors always give some scatter of values measured 

with some accuracy. Errors always occur in the sensor measurements. 

Probabilistic robotics deals with the concepts of control and perception in 

the face of uncertainty, inherent to the location of the robots which are usually 

in unstructured environments. The key idea is to represent the uncertainty in an 

explicit way, representing information by probability distributions over all 

space of possible hypotheses instead of relying only on best estimates. In this 

way, the models can represent the ambiguity and the degree of confidence in a 

solid mathematics, allowing them to accommodate all sources of uncertainty. 

However one of the limitations of probabilistic algorithms is the 

computational complexity, because the computation of the exact posterior 

distributions can be unaffordable. Also those algorithms make approximations, 

since robots perform continuous processes. Another problem is lower efficiency 

when compared with non-probabilistic algorithms, since the best estimate but 

probability densities are considered. This is an important issue because robots, 

being real-time systems, limit the amount of computation that can be carried 

out. Operating in a real-time requires fast time response.  Many state-of-the-art 

algorithms are approximate, and are not enough accurate. 

In this work we propose usage of the probabilistic constraint techniques in 

the context of probabilistic robotics and in particular to solve robot localization 

problems. Mobile robot localization, also known as position estimation, is the 

problem of determining the pose of a robot relative to a given map of the 

environment. The robot pose cannot be measured directly from the sensors, but 

it can be obtained from the available with consideration of the model 

constraints and the underlying uncertainty. Instead of providing a single 

scenario, the most probable position of the robot in the current moment, the 

proposed approach is able to characterize all possible positions (consistent with 

the model) and their probabilities (in accordance with the underlying 

uncertainty). 
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The continuous probabilistic constraint framework provides expressive 

mathematical model that can represent the robot localization problem. The 

uncertainty and nonlinearity are taken into account in the probabilistic 

constraint reasoning. The hybridization constraint branch-and-prune 

algorithms with of Monte Carlo integration techniques increases the efficiency 

of the approach. Figure 1.1 illustrates the relevant areas of research. 

 

Figure 1.1 Area of the research. 

In continuous constraint programming the computations are supported by 

interval analysis which is a set extension of numerical analysis. The floating-

point numbers are replaced by intervals that guarantee safe enclosures of the 

correct values. The relations between variables are stated in the form of 

constraints. 

The branch-and-prune algorithms of continuous constraint programming 

are aimed to cover sets of exact solutions for the constraints with sets of interval 

boxes. The box is Cartesian product of intervals bounded by floating-points. 

Probabilistic constraint reasoning with Monte Carlo Integration

Monte Carlo Integration

Continuous Constraint Programming

Interval Analysis
Constraint 
propagation

Robot Localization

Uncertainty
Sensors & measurements

constraints
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These algorithms recursively refine initial crude cover of the feasible space (the 

set of all values, Cartesian product of the initial domains). There are two 

interleaving steps - branching and pruning, which repeat until a stopping 

criterion is satisfied. On the branch step the interval box is splitted into a 

partition of sub-boxes (usually two). On the pruning step an interval box is 

reduced from the covering into a smaller (or equal) box such that all the exact 

solutions included in the original box are also included in the reduced box [2].  

Continuous constraint programming provides reasoning on safe 

enclosures of all consistent scenarios. Intervals are used to include all their 

possible values [3]. The framework provides safe constraint propagation 

techniques. Constraint propagation reduces the search space by eliminating 

combinations of values that do not satisfy model constraints. However, in some 

cases obtained safe enclosure of all consistent scenarios may be too extensive 

and insufficient to support decisions. This can happen, if initial intervals are 

wide. 

The continuous probabilistic constraint framework is an extension to 

constraint programming that bridges the gap between pure safe reasoning and 

pure probabilistic reasoning. This framework provides the decision support in 

the presence of uncertainty. The interval bounded representation of uncertainty 

is complemented with a probabilistic characterization of the values 

distributions. That makes possible to further characterize the scenarios with a 

likelihood value.  

Moreover, this approach does not suffer from the limitations of 

approximation techniques, due to the constraint programming paradigm that 

supports it. The approach guarantees safe bounds for the solutions and their 

likelihoods. 

The probabilistic constraint framework provides methods to compute 

certified enclosures for the probability of consistent scenarios based on reliable 

interval techniques for multidimensional quadrature. However, these methods 

are time consuming, limiting the usage of the technology in real problems. 
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This work explores an hybrid approach that relies on constraint 

programming and Monte Carlo integration to obtain estimates for the 

probability of consistent scenarios. The idea is to compute close estimates of the 

correct probability value by applying Monte Carlo integration techniques that 

benefit from the contribution of constraint programming to reduce the sample 

space into a sharp enclosure of the region of integration. Instead of computing 

guaranteed results with a computationally demanding method, we aim at 

obtaining accurate estimates much faster.  

1.3 Contributions 

This work studies the hybridization of Monte Carlo integration techniques 

with continuous constraint programming for effective probabilistic constraint 

reasoning. The main contributions are:  

 The development of an hybrid approach for probabilistic constraint 

reasoning that improves the efficacy of the approximate quadrature methods in 

the context of the constraint programming branch-and-prune algorithm.  

 Implementation of the solution proposed and its benchmarking based on 

a set of generic experimental tests on multidimensional integrals over nonlinear 

constrained boundaries. 

 Application of the developed techniques to the robot localization 

problem and analysis of its performance on a set of simulated problems. 

1.4 Scheme of the document 

This dissertation is structured in 5 chapters. After the first introductory 

chapter the rest of the work is organized as follows:  

  Chapter 2 overviews the state-of-the-art, including the basic concepts of 

continuous constraint programming, probability theory and quadrature 

methods. Additionally it briefly summarizes the traditional applications of 

these techniques to robotic problems. 
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  Chapter 3 presents our proposal to extend the constraint programming 

branch-and-prune algorithms with Monte Carlo integration techniques. The 

probabilistic constraint reasoning is analyzed and alternative integration 

approaches are suggested and evaluated on a set of experiments. 

  Chapter 4 discusses the application of our approach to probabilistic 

robotics and, in particular to robot localization problems. The added value of 

the approach is highlighted on a set of simulated problems.   

  In chapter 5 the contributions of this work are summarized, some open 

problems are identified, and directions for future work are set. 
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2. State of the Art 

 

A mathematical model is a mathematical representation of the reality, 

which describes a system by a set of variables and constraints that establishes 

relations between them. In engineering systems, particularly in robotics, 

nonlinearity and uncertainty occur very often. Reasoning with mathematical 

models under uncertainty is traditionally based on probability theory.  

There are two general types of approaches for reasoning under 

uncertainty. Stochastic approaches reason on the basis of the most likely 

scenarios, but don't guarantee the safeness of the calculations. The drawback is 

that such approaches rely on approximations and may miss relevant 

satisfactory scenarios leading to erroneous decisions. 

The other type of approaches provides safe enclosures of all consistent 

scenarios. Continuous constraint programming  operates with intervals that are 

used to include all the possible values of the variables. Safe constraint pruning 

techniques only eliminate combinations of values that definitely do not satisfy 

the model constraints. The drawback is the consideration that all consistent 

scenarios are equally likely, which can be insufficient to support decisions. 

2 
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We believe that the combination of those two types of approaches can 

provide a powerful tool for reasoning under uncertainty which may be applied 

in several real-world problems, including robotic problems.  

This chapter overviews the theoretical basis of continuous constraint 

programming, probability constraint reasoning and Monte Carlo quadrature 

methods. It also describes the real-world applications of developed methods of 

those areas to robotic problems.  

2.1 Continuous Constraint Programming  

Constraint programming [4], [5] is a programming paradigm wherein 

relations between variables are stated in the form of constraints. Mathematical 

constraints are relations between variables, each ranging over a given domain.  

A constraint satisfaction problem (CSP) is a classical artificial intelligence 

paradigm introduced in the 1970’s. CSP is characterized by a set of variables 

(each variable has associated domain of possible values), and a set of 

constraints that specify relations among subsets of these variables. The 

solutions of CSP are assignments of values to all variables that satisfy all the 

constraints [2],[6]. 

Constraint programming is a form of declarative programming in the 

sense that instead of specifying a sequence of steps to execute, it relies on 

properties of the solutions to be found which are explicitly defined by the 

constraints. The idea of constraint programming is to solve problems by stating 

constraints which must be satisfied by the solutions. As such, a constraint 

programming framework must provide a set of constraint-based reasoning 

algorithms that take advantage of constraints to reduce the search space, 

avoiding regions that are inconsistent with the constraints. These algorithms are 

supported by specialized techniques that explore the specificities of the 

constraint model such as the domain of its variables and the structure of its 

constraints. 
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Origins of continuous constraint programming comes from Davis [7], 

Cleary [8] and Hyvonen [9] and later research that extended constraint 

programming to continuous domains. In continuous constraint programming 

the domains of the variables are real intervals and the constraints are equations 

or inequalities represented by closed-form expressions (expression that can be 

evaluated in a finite number of operations). In this sense the Continuous 

Constraint Satisfaction Problem (CCSP) is a triple         where: 

   is a tuple of   real variables           

   is a box, the Cartesian product of intervals        where each    is the 

interval domain of variable    

   is a set of numerical constraints (equations or inequalities) on subset of 

variables in  . 

Continuous constraint programming integrates techniques from constraint 

programming and interval analysis into a single discipline. Interval analysis, 

which addresses the use of intervals in numerical computations, is an important 

component of continuous constraint programming. 

 

2.1.1 Interval Analysis 

Interval analysis was introduced in the late 1950’s [10] as a way to 

represent bounds in rounding and measurement errors, and to reason with 

these bounds in numerical computations. The introduction to interval analysis 

can be found in [11]. In recent decades, interval analysis was widely used as the 

basis for the reliable computing, calculations with guaranteed accuracy [12]. 

A real interval is a set of real numbers with the property that any number 

that lies between two numbers in the set is also included in the set. The interval 

of numbers between a and b, including a and b, is denoted [a, b] (in this work we 

only consider closed intervals): 
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[   ]   {     |                 (2.1) 

If a = b     the interval is degenerated and is represented as  . 

The generalization of intervals to several dimensions is of major relevance 

in this work. An n-dimensional box B is the Cartesian product of n intervals and 

is denoted by I1 × · · · × In, where each Ii is an interval. 

Elementary set operations, such as ∩ (intersection), ∪ (union),  (inclusion) 

are valid for intervals. While the intersection between two intervals is still an 

interval, this is not the case with the union of two disjoint intervals, where the 

result is a set that cannot be represented exactly by a single interval. The 

operation ⊎ (union hull) gives the smallest interval, containing all the elements 

of both interval arguments: 

[   ]  ⊎  [   ]    [                 ]   (2.2) 

Interval arithmetic defines a set of operations on intervals, and is an 

extension of real arithmetic for intervals. The obtained interval is the set of all 

the values that result from a point-wise evaluation of the arithmetic operator on 

all the values of the operands. 

Let    and   be two real intervals. The basic interval arithmetic operators 

  {        are defined as: 

      {      |              I1  I2 = { x  y : x   I1 ∧ y   I2 }        (2.3) 
 with    {+,−,×, /}  

Under the basic interval arithmetic, the division        is not defined if 

    . 

In practice, interval arithmetic simply considers the bounds of the 

operands to compute the bounds of the result, since the involved operations are 

monotonic. Given two real intervals [   ] and [   ] the basic interval arithmetic 

operations can be defined as: 
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[    ][    ][    ]    [    ]    [        ]   (2.4) 

[    ]   [    ]    [        ]    (2.5) 

[    ]  [    ]    [                                  ]  (2.6) 

[    ]    [    ]    [    ]   [        ]         [    ]             (2.7) 

The implementation of the interval arithmetic operators is conditioned by 

the floating point representation of real numbers. In order to guarantee the 

correctness of the results, the above operations on the bounds of the operands 

must be performed with outward rounding to the closest floating point. As 

such, the computed interval is bounded by floating points and always includes 

the correct real interval. 

Several extensions to the basic interval arithmetic were proposed over the 

years and are available in extended interval arithmetic libraries, namely: 

redefinition of the division operator, allowing the denominator to contain zero; 

generalization of interval arithmetic to unbounded interval arguments; 

extension of the set of basic interval operators to other elementary functions 

(e.g., exp, ln, power, sin, cos). 

In continuous constraint programming interval arithmetic is used as a safe 

method for evaluating an expression, by replacing each variable by its interval 

domain, and applying recursively the interval operator evaluation rules. In fact, 

the computed interval includes all possible values for the expression, but its 

width may be much wider than the width of its exact range. Consequently, in 

interval analysis special attention has been devoted to the definition of interval 

functions that compute sharp interval images of real functions. 

Moreover, interval methods are frequently used in constraint 

programming due to their efficiency and reliability. One of the applications is 

finding roots of equations with one variable. The combination of the Newton 

method, interval analysis, and the mean value theorem gives the interval 

Newton method [13]. This method can be used to provide rigorous bounds for 
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the solutions of the system of non-linear equations or to prove non-existence of 

solutions or.  

2.1.2 Constraint Reasoning with Continuous Domains 

Constraint reasoning implies the techniques for eliminating values, which 

do not satisfy the constraints, from the initial search space (the Cartesian 

product of all variable domains). Branch-and-prune algorithms contain 

dividing and pruning steps that are recursively applied until a stopping 

criterion is satisfied. The sets of values that can be proved inconsistent are 

eliminated on the pruning step [3]. 

The safe narrowing operators (mappings between boxes) are associated 

with the constraint. The operators aim to eliminate value combinations that are 

incompatible with a particular constraint. These operators must satisfy the 

following requirements: be correct (do not eliminate solutions) and contracting 

(the obtained box is contained in the original). The properties are guaranteed 

due to interval analysis methods applied. 

For example, consider the constraint: 

              (2.8) 

The following narrowing operators may be associated with this constraint 

to prune the domain of each variable: 

X  X  Z - Y,     Y  Y  Z - X,     Z  Z  X + Y  (2.9) 

If, for instance, the domains of the variables are X = [1,3], Y = [3,7] and 

Z = [0,5] then interval arithmetic can be used to prune them to: 

X  [1,3]  [0,5] - [3,7] = [1,3]  [-7,2] = [1,2] 

Y  [3,7]  [0,5] - [1,2] = [3,7]  [-2,4] = [3,4] 

Z  [0,5]  [1,2] + [3,7] = [0,5]  [4,9] = [4,5] 
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With this technique, based on interval arithmetic, safe narrowing 

operators may be associated with the above constraint which are able to reduce 

the original box <[1,3],[3,7],[0,5]> into <[1,2],[3,4],[4,5]> with the guarantee that 

no possible solution is lost. 

Once narrowing operators are associated with all the constraints of the 

continuous constraint satisfaction problem, the pruning can be achieved 

through constraint propagation. Narrowing operators associated with a 

constraint eliminate some incompatible values from the domain of its variables 

and this information is propagated to all constraints with common variables in 

their scopes. The process terminates when a fixed point is reached i.e., the 

domains cannot be further reduced by any narrowing operator [14]. 

The pruning achieved through constraint propagation is highly dependent 

on the ability of the narrowing operators for discarding inconsistent value 

combinations. Further pruning is usually obtained by splitting the domains and 

reapplying constraint propagation to each sub-domain. In general, continuous 

constraint reasoning is based on such a branch-and-prune process which will 

eventually terminate due to the imposition of conditions on the branching 

process (e.g. small enough domains are not considered for branching). 

Since no solution is lost during the branch-and-prune process, constraint 

reasoning provides a safe method for computing an enclosure of the feasible 

space of a CCSP. It applies, repeatedly, branch and prune steps to reshape the 

initial search space (a box) maintaining a set of working boxes (a box cover) 

during the process. Moreover, some of these boxes may be classified as inner 

boxes, if it can be proved that they are contained in the feasible space (again 

interval analysis techniques are used to guarantee that all constraints are 

satisfied).  

Figure 2.1 illustrates the results that can be achieved through continuous 

constraint reasoning for a CCSP with two variables x and y, both ranging 

within [-,], and a single constraint:  
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x2y + xy2   0.5    (2.10) 

 

Figure 2.1 A box cover of the feasible space obtained through constraint 
reasoning. 

As show in the figure 2.1, constraint reasoning can prove that there are 

regions with no solutions (white) and find boxes where every point is a solution 

(dark gray). Additionally there are some boxes that cannot be proved to contain 

or not solutions (light gray). These boxes denominated boundary boxes 

represent the uncertainty on the feasible space enclosure which may be reduced 

by further splitting and pruning.  

2.2 Probabilistic Constraint Reasoning  

Probability provides a classical model for dealing with uncertainty [14]. 

The basic elements of probability theory are random variables, with an 

associated domain, and events, which are appropriate subsets of the sample 

space. A real-valued random variable is a function from the sample space into 

the real numbers.  
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A probabilistic model is an encoding of probabilistic information that 

allows the probability of events to be computed, according to the axioms of 

probability. In the continuous case, the usual method for specifying a 

probabilistic model assumes, either explicitly or implicitly, a full joint 

probability density function (p.d.f.) over the considered random variables, 

which assigns a probability measure to each point of the sample space. 

The probability of an event H, given a p.d.f. f, is its multidimensional 

integral on the region defined by the event:  

     ∫       
 

     (2.11) 

In accordance to the axioms of probability, f must be nonnegative and 

when the event is the entire sample space  then P()=1. 

The idea of probabilistic constraint reasoning [3] is to associate a 

probabilistic space to the classical CCSP by defining an appropriate density 

function. A constraint (or set of constraints) can be viewed as an event whose 

probability can be computed by integrating the density function over its 

feasible space. 

In general these multidimensional integrals cannot be easily computed, 

since they may have no closed-form solution and the event may establish a 

complex nonlinear integration boundary.  

The probabilistic constraint framework relies on continuous constraint 

reasoning to get a tight box cover of the region of integration and compute the 

overall integral by summing up the contributions of each box in the cover. 

Generic quadrature methods are used to evaluate the integral at each box. 

Taylor models [15] provide certified methods to obtain sharp enclosures 

for the integral at each box and are used in probabilistic constraint reasoning 

[14] to compute interval enclosures for the probability of an event. To guarantee 

correctness, the contributions of inner and boundary boxes are processed 
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differently. The inner boxes contribution to the overall integral is the interval 

obtained by the certified method. However, in the case of boundary boxes, the 

region is some unknown subset of the box (eventually empty) and its 

contribution ranges from zero to the obtained integral over the entire box.  

Although this probabilistic constraint reasoning approach outputs 

guaranteed results it is computationally demanding. This justifies an hybrid 

approach which relies on constraint programming to obtain a cover of the 

feasible space and then uses an approximate quadrature method on this 

reduced space to obtain an estimate for the probability of an event. 

The study of such hybridization with approximate quadrature methods is 

the subject of this work. In particular, approaches based on Monte Carlo 

integration techniques are investigated.  

2.3 Monte Carlo Quadrature Methods 

Quadrature methods are numerical methods that aim to approximate the 

value of a definite integral [16],[17]. Numerical integration is used when 

integrand itself is not specified analytically; analytical representation of the 

integrand is known, but it is not expressed in terms of the primitive analytic 

functions; primitive function is complex. 

 Methods for one-dimensional integrals include [16]: Newton-Cotes 

Formulas, Midpoint Rule, piecewise step function approximation, Trapezoid 

Rule: piecewise linear approximation, Simpson's Rule, piecewise quadratic 

approximation, Gaussian Formulas, Euler–Maclaurin formula, Romberg's 

method. Methods for multidimensional integrals include: Sparse grids, 

Quadrature Rules over Simplices, Monte Carlo and its modifications. 

Quadrature methods based on the sparse grid approach [18],[19] consider 

integration over the d-dimensional hypercube,   [   ] . For spaces where 

functions have bounded mixed derivatives Smolyak's construction (Smolyak, 
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1963) effectively combats the curse of dimensionality. The multidimensional 

quadrature formulas based on tensor products of one-dimensional formulas for 

constructing sparse grids. Regardless of the size of the problem, this process 

preserves the number of function evaluations and numerical within a 

logarithmic factor. 

Different quadrature methods were proposed for cases where the domain 

is not an hypercube, but a simplex. A simplex is defined by     vertices in the 

n-space. The multidimensional regions of integration can often be 

approximated by union of simplexes. One of the methods is the Duffy 

transformation, that reduces the problem to a quadrature rule over a 

hypercube.  

In general, Monte Carlo methods are computational algorithms that rely 

on repeated random sampling  to obtain numerical results. The applications of 

these methods are: integration, simulation and optimization, computational 

mathematics, inverse problems. 

Sampling methods, such as Monte Carlo and its modifications, contrary to 

numerical quadrature rules, are more efficient for multidimensional integrals of 

large dimension (d≥15). For Monte Carlo integration, the error scales like 

O(1/n), where n is the number of samples, independently from the dimension 

of the integral. However, for substantial accuracy the convergence, a rate of 

error is extremely slow. Hence, several techniques to improve the efficiency of 

Monte Carlo integration were developed, including variance reduction 

methods, Quasi-Monte Carlo and Adaptive Monte Carlo methods.  

The Monte Carlo method is defined as following. We consider the integral 

of a function f over  , subset of    with volume  : 

  ∫       
 

,     (2.12) 
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The naive approach is to sample   random points on   and calculate the 

average value of the function. Then the integral can be approximated by: 

      
 

 
∑      

 
        (2.13) 

where n is the number of samples and    is random point in  .  

The Monte Carlo estimate converges to the true value of the integral as 

   (Law of Large Numbers): 

             (2.14) 

The error estimate for finite n is characterized by the variance of the 

function     : 

       √
         

 
    (2.15) 

 The main advantage of Monte Carlo integration is that the error estimate 

is independent of the number of dimension. The disadvantage is that integral 

converges slowly to the true value as the sample size increases. There are 

several approaches to improve this drawback, such as stratified sampling, 

importance sampling, and control variates. 

 Stratified Sampling [20] is the sampling method that partition the 

domain of integration into sub-domains (strata), and the overall result is 

computed by summing up the results of Monte Carlo integration in each sub-

domain. This method can improve the accuracy of statistical results of Monte 

Carlo method. 

The integration domain Ω is partitioned into a set of m disjoint subspaces 

Ω1,. .. ,Ωm (strata). Then we can evaluate the integral as a sum of integrals over 

each stratum Ωi.  
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Stratified sampling works well for low-dimensional integration, in case of 

high dimensionality it does not scale well for integrals. The expected error of 

this method is lower than variance of ordinary unstratified sampling.   

 Importance sampling [21] is another modification of Monte Carlo 

method, and is used for variance reduction. Here a density function p should be 

chosen similar to the integrand f. This method corresponds to a change of 

integration variables 

∫       
 

 ∫
    

    
      

 
   (2.16) 

the estimator is: 

  ̂  
 

 
∑

     

     

 
           (2.17) 

The variance of the estimator  ̂  depends on the density p(x) from which 

random samples are drawn. If we choose the density p(x) intelligently, the 

variance of the estimator is reduced. p(x) is called the importance density and 

    
     

     
     (2.18) 

is the importance weight. 

The best possible sampling density is p*(x)=c f(x) where c is the 

proportionality constant: 

  
 

∫       
 

     (2.19) 

The constant ensures that p* is normalized: 

∫         
 

    (2.20) 

This gives us an estimation to the integral with zero variance, since 

 
     

     
 

 

 
          (2.21) 
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In practice, we cannot use this density, because we must know the value 

of the integral we want to compute to evaluate c. However, if we choose an 

importance density p(x) that has a similar shape to f(x), the variance can be 

reduced. It is also important to choose an importance density p such that it is 

simple and efficient to evaluate.  

 Importance sampling is very effective when function f(x) has large values 

on small portions of the domain.  

 But this method has different problems and is not practical. If p goes to 

zero somewhere where f is not zero, the variance can be increased and can 

actually be infinite. Another common problem that happens in importance 

sampling is when the sampling density has a similar shape to f(x) except that 

f(x) has longer (wider) tails. In this case, the variance can become infinite.  

The control variates method is a variance reduction technique. It reduce 

the error of an estimate of an unknown quantity by using the information about 

the errors in estimates of known quantities.  

If we can rewrite the estimator as 

  ∫        ∫              
  

   (2.22) 

where integral of function      is known and function has the following 

property: 

 [         ]   [    ],    (2.23) 

then a new estimator is 

  ∫        
 

 
∑

           

     
 
    

   (2.24) 

The variance of this new estimator will be lower than the original 

estimator. 
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The method of control variates is more stable than importance sampling, 

since zeros in g cannot induce singularities in      . 

Quasi-Monte Carlo methods are modifications of the Monte Carlo method 

that do not require that the samples be chosen randomly. The idea is to 

deterministically distribute the samples uniformly. In this methods the 

irregularity of the distribution of the samples is measured and is called 

discrepancy measure. 

 Adaptive Monte Carlo Methods introduce the idea of adaptive sampling 

(or sequential sampling), to take more samples where the integrand has the 

most variation. The previous taken samples are examined, and using this 

information the placement of future samples is controlled. The variance of the 

samples in a given domain is computed, and then more samples are taken if the 

variance exceeds a given threshold. 

2.4 Application of Constraint programming and Interval 

Analysis to Robotics 

In [5] some applications of constraint programming for robotics are 

presented. The example of an application is the design of controllers for 

sensory-based robots. 

Many of the tools developed up to that moment in the CSP and CP 

paradigms were not adequate for the task, because techniques presume an 

offline model of computation, whereas controllers in real physical systems 

should be designed in an online model. Furthermore, the online model must be 

based on various time structures: continuous, discrete and event-based, and 

computations should be performed over various type structures domains: 

continuous and discrete. That requires new models of computation and 

constraint programming. For this task Zhang and Mackworth [22] defined 

constraint satisfaction as a dynamic system process. It approaches 
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asymptotically the solution set of the given constraints, possibly time-varying. 

In [23], [24] robots are considered as on-line constraint-satisfying devices. 

Automatic synthesis of a correct constraint-satisfying controller can be 

implemented with given a constraint-based specification and a model of the 

plant and the environment, that was shown for a ball-chasing robot in [25].  

Later [26], [27], was designed the system to support hybrid agents i.e., agents 

with both continuous and discrete interactions with their environment. A 

constraint satisfying controller could be synthesized by driving the system 

toward satisfying all constraints (if the robotic system deviated from a 

satisfactory state it will be driven toward a satisfying state). For reactive 

systems, such as controllers and signal-processing systems, timed concurrent 

constraint programming was developed [28].   

More recent papers in application of constraint programming in robotics 

suggest different approaches. For example, in [29] in order to provide a solution 

in real-time a framework was developed, that models this decision process as a 

constraint satisfaction problem. It uses techniques and algorithms from 

constraint programming and constraint optimization. 

Using constraint programming for finding the maximal pose error 

(position and rotational errors) in robotic mechanical systems is proposed in 

[30]. The authors claim that their global optimizer is very competitive compared 

to the other methods and provides more robust results. 

Another work deals with landmark recognition in mobile robotics, using 

Multivariable Fuzzy Temporal Profile model (MFTP) based on Constraint 

Satisfaction Problems (CSP). This model successfully detects 95% of the 

landmarks on the reference wall [31]. 

The application of continuous constraint programming to modular robot 

control was proposed in [32]. They consider the control of modular, hyper-

redundant robots, namely robots with many more degrees of freedom than 
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required for typical tasks. They assumed the control problem as a constraint 

problem which is a promising approach for robustly handling a variety of non-

standard constraints. A parametric model for robotic control was presented and 

a generic benchmarking model for continuous constraint satisfaction problems 

was proposed. 

In  [33] interval analysis was applied to the design and the comparison of 

three-degrees-of-freedom (3-DoF) parallel kinematic machines. They introduced 

an algorithm describing this method and two 3-DoF translational parallel 

mechanisms designed for machining applications were compared using that 

method. Also [34] considered a Gough-type parallel robot. A numerically 

robust algorithm based on interval analysis was developed. It allows to solve 

the forward kinematics, to determine all the possible poses of the platform for 

given joint coordinates. It is possible to take into account physical and 

technological constraints on the robot, such as limited motion of the passive 

joints. This algorithm is competitive in terms of computation time with a real-

time algorithm such as the Newton scheme, while being safer. 

Application of interval methods for certification of the kinematic 

calibration of parallel robots was proposed by [35]. A certified approach for this 

problem in the case of a Gough platform was developed. This approach avoids 

wrong solutions produced by the classical approaches. 

2.5 Summary 

In this chapter the basic notions of continuous constraint programming 

and interval analysis were introduced. It was discussed how probabilistic 

constraint reasoning extends pure constraint reasoning with special propose 

techniques for computing the probability of events defined as constraints. This 

requires the computation of multidimensional integrals over constrained 

nonlinear regions. Classical methods for multidimensional quadrature were 

overviewed with special emphasis to Monte Carlo integration techniques. 
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Finally it is shown how different methods and techniques of constraint 

programming and interval analysis have been applied to robotics. 

The next chapter discusses our probabilistic constraint reasoning approach 

based on Monte Carlo integration techniques. 
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3.  Probabilistic Reasoning with Monte Carlo 

Integration 

 

Probabilistic constraint reasoning depends on the joint cooperation of 

continuous constraint programming with a multidimensional integration 

method. Here the uncertainty is represented as bounded intervals with a 

probabilistic characterization of the values distribution. 

The probabilistic constraint framework relies on integral computations of 

probabilistic density functions over constrained regions. This chapter presents 

alternative approaches for the hybridization of constraint programming with 

Monte Carlo integration. Continuous constraint programming is used to obtain 

the feasible space, and then Monte Carlo Integration is applied on this reduced 

space.  

3 
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3.1 Probabilistic constraint reasoning  

The probabilistic constraint framework complements the representation 

the uncertainty by means of intervals with a probabilistic distribution of values 

within such intervals.  The main goal of the hybrid approach is the 

development of a fast and convenient method for calculating the integral on a 

bounded region. The usage of continuous constraint programming techniques 

provide the results as a set of boxes that represent an enclosure of the bounded 

region. Numerical and formal methods of integration can be used to compute 

the value of integrals with certain accuracy. However, the error committed in 

such computations can be critical for the specific problems. Whereas, certified 

Taylor methods guarantee safe computations of the integral returning an 

interval enclosure that contains the actual value, approximate methods aim at 

obtaining fast accurate estimates.  

In Chapter 2 we already introduced the notions of continuous constraint 

programming and talked about the branch-and-prune process. Several branch-

and-prune algorithms were developed, their main principle is to recursively 

refine the initial interval box, which is trivially a covering of the feasible space. 

The two main procedures of those algorithms are branch and prune steps which 

are recursively applied until a stopping criterion is satisfied. The branching 

procedure splits an interval box from the covering into a partition of sub-boxes 

(usually two). The prune procedure narrows down an interval box; it either 

eliminates a box from the covering or reduces it into a smaller (or equal) box 

maintaining all the exact solutions. For this task a combination of constraint 

propagation (CPA) and consistency techniques are usually used. A box is 

reduced through the consecutive application of the consistency techniques 

associated with the constraints until a fixed-point is attained [4], [6]. 

Algorithm 3.1 illustrates a general branch-and-prune scheme. It computes 

a joint box cover from the initial domains box and is based on the algorithm 

presented in [6].  
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Branch&Prune(D, C, split, eligible, order, stop) 

Input: D: initial domains box; C: set of constraints; eligible, stop: predicate; split, 

order: function; 

Output: S: box cover; 

1   {  ; 

2 while             do 

3                             ; 

4             ;  

5  for each       

6               ; 

7   if      

8        {   ; 

9   end 

10  end 

11 end 

12 return  ; 

Algorithm 3.1 Branch-and-prune 

The input parameters of Algorithm 3.1 are: the initial domains box D; a set 

of constraints C; predicates eligible, and stop; and functions split and order. The 

eligible predicate checks a box for being appropriate for further processing (for 

example, it may check if it contains an interval domain that can be further 

subdivided). The predicate stop imposes the stopping criterion such as 

precision, cardinality of the covering, or computation time. The function split 

implements the branch procedure, it defines how to partition the box into sub-

boxes. The function order defines a total order between the boxes in the cover 

determining which box is retrieved for processing.  

The output of Algorithm 3.1 is a box cover S for the feasible space of the 

constraints in C. In order to compute it, the box cover is initialized with the 

domains box (line 1) and maintained during the algorithm main cycle (lines 2-

11). The first box from the current box cover that verifies the eligible predicate is 

selected (boxes are ordered accordingly to the order function), and removed 

from the list (line 3). Then, on the branch step, that box is split into a set of 

boxes Si (line 4). Next is the prune step (lines 5-10), where each box in Si is 

narrowed by the constraint propagation algorithm CPA (line 6) and, if not 
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discarded (line 7), is added to the box cover (line 8). The algorithm stops when 

the stopping criterion is fulfilled (line 2).  

Branch-and-prune algorithms can be applied for solving different 

problems. In this work we are focused on the quadrature problem, i.e. 

evaluation of the multidimensional integrals. Considering this problem, 

Algorithm 3.1 can be modified in order to compute the value of the integrals. 

The basic idea is to calculate the value of integral on each box obtained during 

the branch-and-prune algorithm. The integration can be implemented using 

any method, for example using Taylor models or Monte Carlo Integration. In 

this work, we compare the integration using the Taylor method, which produce 

accurate results and alternatives based on Monte Carlo integration techniques 

which provide approximate results. This idea is presented by Algorithm 3.2. 

Basically, it is a modification of Algorithm 3.1, in which the value of the integral 

on each box is computed at each step. The result of each integration is 

represented as an interval, the width of which, proportional to the uncertainty 

around the correct value, will be used as a selection criterion for the next box to 

process. 

Branch&Prune Quadrature(D, C, split, eligible, order, stop) 

Input: D: initial domains box; C: set of constraints; eligible, stop: predicate; split, 

order: function; 

Output: Q: interval; 

1                  ; 

2   {        

3     ; 

4 while               do 

5                                 ; 

6           ; 

7             ; 

8  for each       

9               ; 

10   if      

11                       ; 

12          ; 

13        {          
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14   end 

15  end 

16 end 

17 return   

Algorithm 3.2 Branch-and-prune with quadrature 

The input parameters of the Algorithm 3.2 are similar to the previous 

algorithm: the initial domains box D, the set of constraints C, predicates eligible 

and stop, and functions split and order. As in the previous case, the eligible 

predicate checks a box for being appropriate for further processing, the 

predicate stop imposes the stopping criterion (such as precision). The function 

split implements the branch procedure and the function order defines which box 

is retrieved next for processing.  

The first step of the algorithm is the integration of the entire domains box 

  considering the constraints   (line 1). The integration, represented in the 

pseudo code by function integrate, can be implemented by any method, such as 

Taylor, Monte Carlo or any other method. In our approach we assume that the 

result of the integrate function is always an interval. If the function is 

implemented with the Taylor Model method then this interval must contain the 

correct value. This is not the case when the Monte Carlo approach is used, 

where the center or the interval is the estimated approximate value and the 

width of the interval is made proportional to the estimated deviation.  

During the execution of Algorithm 3.2 a box cover S is maintained where 

the interval computed by function integrate is kept associated with the 

respective box. At beginning the box cover is initialized with the box domains 

together with the computed interval (line 2). Then, the interval is assigned to 

variable   (line 3) that is maintained during the processing to represent the 

overall integral resulting from the contributions of every box in the cover.  

The function order selects the first box   from the current box cover that 

verifies the eligible predicate, and this box is removed from the list (line 5). The 
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order of boxes is determined by the width of the corresponding intervals. 

Ordering them by descending interval width we aim at choosing first the boxes 

with largest uncertainty on the computed integral.  

The contribution of box   to the overall integral must be removed from   

(line 6) because we will replace such contribution by the contributions of its 

sub-boxes. Notice that   and   are intervals and so the correct way to remove 

the contribution of   from   is to use the special interval operator \ that reverse 

the effect of the interval operator + and is defined as:  

 [   ]   [   ]  [       ]   (3.1) 

   Afterwards, the box   is splitted into sub-boxes on the branch step (line 

7). On the prune step the constraint propagation algorithm     is applied for 

each of the sub-boxes (lines 8-9) in order to reduce or eliminate them. If the sub-

box is not discarded (line 10), the integral value is computed over this sub-box 

considering the constraints (line 11). The integral value represented as an 

interval is added to the previous   according to the rules of interval arithmetic 

(line 12). Finally the sub-box with its integral value is added to   (line 13). 

Basically, the integral is computed for each sub-box and the obtained 

values of the integral over these sub-boxes are added (line 12) according to the 

addition rule of interval analysis discussed in the Chapter 2. The widths of 

those intervals serve as a criterion for choosing the box on line 5. The sum of all 

those intervals is the final value of the integral.  

Function           can be implemented with any quadrature method. The 

first method proposed in the original probabilistic constraint framework [14] is 

a certified quadrature method based on Taylor models which is briefly 

discussed next. Approximate implementations based on Monte Carlo 

integration methods are presented is section 3.2. 
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Taylor Models 

Taylor models can be used for the computation of the quadrature over a 

box. Taylor models provide efficient methods to compute enclosures for the 

quadrature of multivariate functions.  

A Taylor model of         inside an n-dimensional box   is a pair 

     , where   is a polynomial and   is an interval satisfying           

        The degree of the Taylor model is the degree of p. 

A Taylor model of a function can be obtained from its multivariate Taylor 

expansion, using the interval evaluation of the highest order derivatives to 

compute rigorous bounds for the remainder [6]. 

Given a Taylor model       of a function         inside an n-

dimensional box B: 

∫        
 

 ∫               
 

     (3.2) 

The enclosure provided can be very sharp: if a Taylor model of order   is 

used, the quadrature computation has an order of convergence of      . To 

compute an integral of a function over some region defined as a box, the 

method can be applied to obtain a sharp enclosure. However, when the region 

is some unknown subset of the box (eventually empty) the integral ranges from 

zero to the integral of the function maximum (minimum) over the entire box. In 

this case, a sharp (and more costly) enclosure is no longer worth computing and 

a cruder enclosure can be used. 

3.2 Methods and algorithms of Monte Carlo integration 

The Monte Carlo integration method was discussed in Chapter 2. It 

provides an approach to estimate the value of the multidimensional integrals.  



 

34 

 

Let consider the region      with a possible nonlinear boundary, 

indicator function         {    , an n-dimensional box   and function 

       . Consider   random sample points {           uniformly distributed 

inside  , then the approximation of the integral value is following:  

∫       
   

 
∑            

 
   

 
          (3.3) 

The indicator function    assumes the value 1 if the sample point    

satisfy the constraints and value 0 if not.  

 Monte Carlo integration provides an estimate of the uncertainty in the 

approximation  ̂ obtained by the method. From the central limit theorem the 

standard deviation   of the estimate of the integral is: 

  
      

 
√∑                 ∑            

 
      ⁄   

    (3.4) 

Thus we can represent the obtained value of the integral as the interval 

  [ ̂     ̂   ]. The sequence of steps for computing the interval will be the 

following: 

1) Select   random points;  

2) Calculate              for these points and the square of this value  

             
 ;         (3.5) 

3) Estimate the mean of   using the average of these samples:   

 ̅  
∑            

 
   

 
;     (3.6) 

4) Multiply with the volume        to get an approximation of the integral:   

 ̂  
∑            

 
   

 
      ;   (3.7) 

5) Calculate deviation:   

  
      

 
√∑                 ∑            

 
      ⁄   

   ; (3.8) 

6) Calculate interval: 

   [ ̂     ̂   ].    (3.9) 
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The error of the estimation decreases as   √ . The advantage of Monte 

Carlo integration is that this result does not depend on the number of 

dimensions of the integral, while most deterministic methods depend 

exponentially on the dimension. The Algorithm 3.3 describes the simple Monte 

Carlo integration method. 

Algorithm 3.3. simpleMonteCarlo Integrate(B, C, N, f, randomGenerator, indicator, 

volume) 

Input:  : n-dimensional box; C: set of constraints;  : number of samples;                              

  , randomGenerator, indicator, volume: function; 

Output: I : interval;  

1  ̂   ; 

2    ; 

3    ; 

4 while       do 

5                         

6                        

7   ̂   ̂     

8        
  

9     ; 

10 end 

11  ̂   ̂              

12   √   ̂                

13   [ ̂     ̂   ] 

14 return   

Algorithm 3.3 Monte Carlo integration 

The input parameters are the n-dimensional box, the set of constraints, the 

number of samples, the integrand function f, and such functions as, 

randomGenerator that generates a random point within a box, indicator that 

define whether a point satisfy the constraints, and volume that calculates the 

volume of a box. The output is the integral, represented as an interval. 

The algorithm works for a fixed number of samples   (line 4) and 

maintains two accumulators  ̂ and   initialized in lines 1 and 2, respectively. 
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The random generator generates values inside box   (line 5). Then the 

algorithm calculates the value of the integrand function in that point (line 6), 

considering the constraints with usage of function          . The sum of 

obtained results is calculated (line 7), as well as the sum of the square of the 

result (line 8). The estimate of the integral  ̂ is computed by multiplying the 

average of these samples by the volume of the box (line 11). The deviation   is 

computed by the formula above (line 12). The result   is an interval enclosing 

the estimated value within the computed deviation (line 13). 

This method assumes that the number of samples is initially defined. 

However, if we chose a fixed number of samples, we cannot guarantee that the 

result of the calculation will be acceptable. In case of a too small number of 

samples, the accuracy may be unsatisfactory. In case of large number of trials 

the calculations may take too long. An alternative is to proceed the calculation 

until some predefined required deviation is obtained (or width of interval 

represented as double deviation). This approach is shown in Algorithm 3.4. 

Algorithm 3.4. deviationMonteCarlo Integrate(B, C, N,  , f, randomGenerator, 

indicator, volume) 

Input:  : n-dimensional box; C: set of constraints;  : number of samples;  : 

accuracy; 

  , randomGenerator, indicator, volume: function; 

Output: I : interval;  

1  ̂   ; 

2    ; 

3    ; 

4    ; 

5 while                do  

6                         

7                        

8   ̂   ̂     

9        
  

10    √   ̂                 

11      

12 end 
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13  ̂   ̂              

14   √   ̂                

15   [ ̂     ̂   ] 

16 return   

Algorithm 3.4 Monte Carlo integration with deviation calculation for the 
interval representation 

 This algorithm differs from the previous one in that it calculates the 

deviation for each sample (line 10). The calculation proceeds while the required 

value of accuracy   is not obtained (line 5). All other steps are similar to the 

previous algorithm. 

The possible advantage of this approach is that it can be specified a 

required accuracy which must be fulfilled after the initial number of trials. The 

drawback is that this requirement may be too demanding specially in 

articulation with the branch-and-prune algorithm. 

3.3 Experimental results 

In this work we implement and compare three methods for integration. 

One is the pure Monte Carlo integration, the other two are based on Algorithm 

3.2 (Branch&Prune Quadrature) one uses Taylor Models, and the other uses 

Monte Carlo integration. We will test those methods on different problems and 

analyze the results. Since the results of integration are represented as intervals, 

the criterion of comparison is the error of the interval midpoint. For a given 

exact value   and an approximation value         the relative error is 

  |
         

 
|     (3.10) 

In the following we present the integrals extracted from [15], the graphs of 

the integrand functions over the constrained regions, and the results of 

computations. We compare the described above methods and present tables 

with the relative errors. The tables contain the values of errors of the midpoints 

for every 30 seconds execution time. We also present the graphics of the errors.  
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3.3.1 Experiment 1 

Integral    ∫ (     (     
    

  )) x
                 

. 

The illustration of this function is shown on  

Figure 3.1. The same function on the constraint region of integration 

(                 ) is presented on Figure 3.2. 

 

 

 

Figure 3.1 Graph of the integrand function    
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Figure 3.2  Graph of the integrand function    on the constraint region  

The integrand function is highly oscillatory. We consider the 

multidimensional integral with the integration domain represented as unit 

circle. 

We compare the midpoint of the integral with the correct value obtained 

by formal method in Mathematica [15]. The correct value of the integral is  

                    . The application of the algorithms gives the following 

results shown in Table 3.1. 

 

Table 3.1 Integral   . Relative errors 

Time, [seconds] 30 60 90 120 150 180 210 240 270 300 

Taylor CCP 0,000026 0,000013 0,000009 0,000006 0,000005 0,000004 0,000003 0,000003 0,000003 0,000003 

Simple MC 0,000220 0,000031 0,000214 0,000115 0,000057 0,000088 0,000125 0,000008 0,000047 0,000072 

MC 

+CCP 

10 

- 0,000380 0,000315 0,000262 0,000231 0,000204 0,000176 0,000163 0,000154 0,000153 0,000146 

0,1 0,000455 0,000374 0,000276 0,000235 0,000216 0,000193 0,000175 0,000170 0,000158 0,000151 

0,01 0,000814 0,000374 0,000317 0,000272 0,000209 0,000198 0,000183 0,000168 0,000156 0,000148 

100 

- 0,000005 0,000068 0,000042 0,000033 0,000043 0,000037 0,000032 0,000026 0,000031 0,000026 

0,1 0,000126 0,000127 0,000052 0,000037 0,000026 0,000033 0,000033 0,000028 0,000033 0,000031 

0,01 0,000247 0,000186 0,000063 0,000042 0,000009 0,000029 0,000034 0,000029 0,000035 0,000037 
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Table 3.1 shows the values of the errors obtained by the various 

techniques for execution times of 30, 60, ..., 300 seconds. Comparing values this 

allows to understand the best method for a specific problem.  

In the first line, we present the results for the integration based on 

continuous constraint programming with Taylor models (Branch&Prune 

Quadrature with function integrate based on the Taylor model quadrature 

technique).  

The second line contains the results of calculation errors using the pure 

Monte Carlo method (simpleMonteCarlo Integrate over the initial domains box). 

For this and the following methods that use Monte Carlo techniques the error is 

calculated as an average value of 20 independent tests. This is done in order to 

obtain objective results, since Monte Carlo method is a stochastic 

nondeterministic method and its results cannot be fairly evaluated based on a 

single experience (there is a significant fluctuation on the values obtained).  

The next 6 rows in the table, are the error values for the Monte Carlo 

method combined with continuous constraint programming. The first 3 lines 

show errors for calculations, in which the minimum number of trials for each 

box equal to 10. In the first of that three lines there are the results of Algorithm 

3.3 (Branch&Prune Quadrature with simpleMonteCarlo Integrate), in which the 

number of trials is fixed for each box (there are precisely 10 samples). The next 

row shows the results of the calculation error of Algorithm 3.4 (Branch&Prune 

Quadrature with deviationMonteCarlo Integrate), in the case where the minimum 

value of the deviation is defined and is equal to 0.1, so that sample process ends 

when the deviation decreases until the required value. In the next row the 

specified value of the deviation is 0.01. The next 3 lines are similar, but the 

minimum number of trials is 100. Such experiments are carried out in order to 

determine which configuration is best for this example.  
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From this table we can conclude that the best results we obtained with the 

Taylor model approach. The graphs with the error values are shown on Figure 

3.3 and Figure 3.4. 

First we compare the results for the Monte Carlo integration method 

combined with continuous constraint programming. Figure 3.3 shows the 

errors of the integral values, obtained by this method with different 

configurations. From this graphic we can conclude that increasing the number 

of trials decreases the error of computations. In this case Algorithm 3.3 for the 

Monte Carlo integration presents better results than Algorithm 3.4 with the 

required value of the deviation. It can be explained by the fact that Algorithm 

3.4 takes more time for the calculations. In Algorithm 3.4 the calculations are 

similar to Algorithm 3.3, but continue, if not achieved the desired deviation, i.e. 

the calculation takes a bit more time, but it ensures that the value of the 

deviation is less than or equal to the specified value.  

Comparing the obtained results, we conclude that for this example, the 

best result is at line 6 of table 3.2, corresponding to the hybrid approach with a 

fixed number of 100 trials.  

 

Figure 3.3 Errors of Monte Carlo integration method combined with continuous 

constraint programming. 
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Figure 3.4 shows the comparison of the integration with Taylor models, 

pure Monte Carlo and Monte Carlo with continuous constraint programming 

(best value). For this example, the best results were obtained using the Taylor 

method closely followed by the Monte Carlo with CCP method.  

 

Figure 3.4 Errors of the quadrature methods 

For these approaches, the value of the errors decreases with the time. 

However, for pure Monte Carlo the results are oscillating, that due to the fact 

that Monte Carlo is a stochastic method.  

These results indicate that the combination of Monte Carlo with 

continuous constraint programming gives an advantage over the pure Monte 

Carlo integration method. The branch-and-prune algorithm reduces the 

sampling space that improves the efficiency of the Monte Carlo method and 

makes it more robust to stochastic oscillations. 

Thus, the order of the results from best to worst is: 

1) Taylor models 

2) Monte Carlo with continuous constraint programming 

3) Pure Monte Carlo 
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3.3.2 Experiment 2 

Integral    ∫             
    

    
     x

                         
 

This integral is similar to the integral from the previous example, but it 

has one more dimension, another variable   . The increase on the dimension of 

the integral complicates the calculations.  

Table 3.2 shows the results errors of the calculations with the Taylor 

method, the pure Monte Carlo, and the CCP + Monte Carlo method. The exact 

value of the integral obtained using formal methods is 8.37845. The table 

structure is similar to that in Example 1. 

Table 3.2 Integral   . Relative errors 
time 30 60 90 120 150 180 210 240 270 300 

Taylor CCP 0,000057 0,003221 0,003459 0,003633 0,003126 0,002786 0,002642 0,002527 0,002506 0,002518 

Simple MC 0,000151 0,000798 0,000432 0,000135 0,000410 0,000090 0,000150 0,000232 0,000284 0,000337 

MC+CCP 

10 

- 0,003569 0,003576 0,003709 0,003880 0,004001 0,003991 0,004068 0,004130 0,004133 0,004142 

0,1 0,004454 0,004850 0,005046 0,004960 0,005156 0,005246 0,005249 0,005281 0,005249 0,005319 

0,01 0,012221 0,012495 0,012358 0,012745 0,012672 0,012798 0,012892 0,012893 0,012916 0,012917 

100 

- 0,000320 0,000213 0,000057 0,000372 0,000294 0,000177 0,000136 0,000008 0,000108 0,000052 

0,1 0,000534 0,000342 0,000228 0,000346 0,000220 0,000130 0,000110 0,000039 0,000075 0,000044 

0,01 0,000747 0,000471 0,000398 0,000319 0,000145 0,000082 0,000084 0,000070 0,000043 0,000036 

Figure 3.5 illustrates the results for the Monte Carlo integration method 

combined with continuous constraint programming, showing the errors of the 

integral values, obtained by this method with different configurations.  

Comparing the different configurations we note that the best is at line 6 

of Table 3.2 with a fixed value of 100 trials.  

Figure 3.6 shows the error values obtained by the different methods. 

Unlike the previous example, the method of Taylor presents the worst results. 

After 30 seconds of execution time, the error value is acceptable, but it abruptly 

increases. This example clearly shows that the calculation of multidimensional 

integrals using the Taylor method may be very inefficient. In this example we 

added just one dimension, and Taylor method significantly decreased 

performance. That's why we can talk about the effectiveness of the Monte Carlo 
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method, for which the multi-dimensionality of the integral does not affect 

exponentially the efficiency of the algorithm. 

 

Figure 3.5 Errors of Monte Carlo integration method combined with continuous 
constraint programming. 

 

Figure 3.6 Errors of the quadrature methods 
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3.3.3 Experiment 3 

 Integral    ∫ arctan   
    

   x
 

 

  {x  [   ]  ‖x‖ 
              

In this example, the integrand function is shown in Figure 3.7. The same 

function on the bounded domain is shown in Figure 3.8. 

 

Figure 3.7 Graph of the integrand function    

 

Figure 3.8 Graph of the integrand function    on the constraint region 
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The exact value of the integral is equal to 1.2562052338296295. As in the 

previous examples Table 3.3 shows the results obtained by each method. 

Table 3.3 Integral   . Relative errors 

time 30 60 90 120 150 180 210 240 270 300 

Taylor CCP 0,000061 0,000023 0,000015 0,000010 0,000008 0,000007 0,000005 0,000004 0,000004 0,000004 

Simple MC 0,000525 0,000617 0,000123 0,000127 0,000224 0,000167 0,000215 0,000264 0,000149 0,000197 

MC+CCP 

10 

- 0,000381 0,000268 0,000229 0,000206 0,000190 0,000174 0,000158 0,000145 0,000139 0,000129 

0,1 0,000378 0,000268 0,000208 0,000177 0,000160 0,000148 0,000135 0,000118 0,000108 0,000099 

0,01 0,000415 0,000310 0,000229 0,000206 0,000194 0,000180 0,000169 0,000150 0,000140 0,000127 

100 

- 0,000039 0,000030 0,000027 0,000026 0,000020 0,000021 0,000020 0,000019 0,000017 0,000017 

0,1 0,000049 0,000035 0,000028 0,000026 0,000021 0,000020 0,000020 0,000020 0,000018 0,000017 

0,01 0,000060 0,000040 0,000029 0,000026 0,000021 0,000018 0,000020 0,000020 0,000019 0,000017 

Figure 3.9 illustrate the results for the Monte Carlo integration method 

combined with continuous constraint programming. The errors of the integral 

values obtained by this method with different configurations are presented. 

Comparing different configurations we note that the best is again at line 6 of 

Table 3.3, with a fixed minimum value of 100 trials. Also it should be noted, 

that Algorithm 3.4 for Monte Carlo integration with the required deviation 

presents better results, than Algorithm 3.3 for a number of trials equal to 10.  

 

Figure 3.9 Errors of Monte Carlo integration method combined with continuous 
constraint programming 
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Figure 3.10 shows the comparison of the integration results obtained 

with Taylor models, pure Monte Carlo and Monte Carlo with continuous 

constraint programming. 

 

Figure 3.10 Errors of the quadrature methods 
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3.4 Comparison of the methods 

Taylor models 

In two cases integration with Taylor models gave better results than other 

methods. But in cases of higher dimension they obviously lose, which is a clear 

disadvantage of this method. 

Monte Carlo 

Pure Monte Carlo cannot guarantee the accurate value of the integral and 

showed the worst performance in the all experiments. The advantage of this 

method lies in the simplicity of its implementation and application possibilities 

for solving multidimensional integrals. The disadvantage is the poor efficiency 

compared to other methods considered.  

Monte Carlo with continuous constraint programming 

The hybridization of the Monte Carlo method with continuous constraint 

programming is clearly superior in performance with respect to the pure Monte 

Carlo method. This is based on the branch and-prune integration algorithm 

where sampling is performed on reduced boxes requiring less execution time 

than in the pure Monte Carlo approach. This method can be successfully 

applied when Taylor method fails as it is more efficient for the calculation of 

multidimensional integrals. 

The work studies a modification of the simple Monte Carlo algorithm, in 

which further sampling is enforced until a required value for the deviation is 

achieved. This is done in order to ensure accuracy. Often this approach leads to 

an increase in computation time. In general it is necessary to find a balance 

between the number of trials and the required deviation. A possibility could be 

to specify an adequate maximum number of trials so that calculations do not 

take too long. 
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3.5 Conclusion 

The goal of this chapter is to propose a method to compute close estimates 

of the correct integral value by applying Monte Carlo integration techniques 

that benefit from the contribution of constraint programming to reduce the 

sample space into a sharp enclosure of the integration region. This integration 

method will be used in the next Chapter, where a robot localization algorithm is 

presented based on the developed techniques. 

We addressed Monte Carlo quadrature methods in the context of the 

branch-and-prune algorithm of constraint programming. Several methods and 

algorithms of integration were developed and their parameterization was 

studied. We tested the methods on different benchmark examples involving 

multidimensional quadrature over constrained regions. We compared those 

methods with simple Monte Carlo integration and certified quadrature 

methods based on Taylor models. 

In many cases the results depend on the integrated function, the kind of 

constraints and the dimension of the integral. Further experimentation is 

needed in order to support our main conclusions. The Taylor method approach 

guarantee the safe enclosure of the integral correct value, but in case of many 

dimensions it fails to compute the integral with reasonable accuracy. On the 

contrary, the efficiency of the Monte Carlo methods do not depend 

exponentially on the number of dimensions of the problem. The hybridization 

of the Monte Carlo integration method with constraint propagation is a 

promising approach that allows the estimation of the value of a 

multidimensional integral, usually faster than the pure Simple Monte Carlo 

alternative and requires less number of samples. This approach is able to 

provide accurate results even in cases when the Taylor method fails. 
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4. Application to Robot Localization 

 

 

Among the large variety of robots we can distinguish the class of mobile 

robots that perform operations which require the displacement of the robot in 

space. Mobile robots have to be accurately positioned in the working 

environment, i.e. must be identified by their coordinates. 

 In this Chapter we explain how Monte Carlo Integration with Continuous 

Constraint Programming can be used for solving localization problems. 

Research carried out in this work, allowed to implement algorithms designed to 

solve the problem of mobile robot localization.  

To be autonomous, mobile robots must be able to estimate their position 

from available prior information about the environment and measurements 

provided by its sensors during navigation. An autonomous robot must 

integrate the incoming information from the sensory inputs into a consistent 

model of the environment and simultaneously determine its own location.   

  

4 
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4.1 Mobile service robots 

The Monte Carlo Integration with Continuous Constraint Programming 

can be applied to the mobile robot localization. One of such robots ServRobot 

(Figure 4.1) that was created in the scope of the Research and Technology 

Development  component of the Holos company. ServRobot is an service robot 

that can be applied in surveillance systems. The robot moves around in their 

environment and collects the sensory information. ServRobot can work and 

perform certain tasks in conditions that are difficult to humans thus replacing 

them. Robot adapts to different types of use and environmental conditions 

which addresses a new paradigm in video surveillance systems.  

 

Figure 4.1 Mobile robot ServRobot 

ServRobot is a skid-steered four-wheel mobile robot developed using 

state-of-the-art technology. The robot is mechanically robust and simple for 

outdoor navigation. The motion direction is changed by turning the left- and 

right-side wheels at different velocities. The robot is equipped with several 

sensors that receive the information about surrounding environment.  

- optical encoders;  

- inertial measurement unit with an accelerometer; 

- gyroscope; 

- magnetometer; 

- sonars; 

- LADAR. 
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The estimation of the robot position can be implemented with the 

information provided by those sensors. The front sonars are used to capture 

environment information ahead of the vehicle within a range of 3 meters. A 

LADAR (Laser Detection and Ranging) provides a panoramic view of the 

environment, it gathers distance measurements within a range of 20 meters. 

ServRobot has the following technical paramenters: 

 Weight: 80 kg 

 Load capacity: 65kg (with maximum slope of 5%) 

 Maximum speed: 10 km / h 

 Battery: 4 hours 

 Ground distance: 25 cm 

 Dimensions:  

o Length: 152 cm 

o Width: 60 cm 

o Height: 97 cm 

The robot is driven by DC motors that are the most commonly used 

method for locomotion in mobile robots. These motors can produce sufficient 

power for a variety of tasks [36]. DC motor has a complicated construction, 

however, the motor control system is easier than control system induction 

motor, which nevertheless are applicable in robotics. The research concerning 

induction motors and the universal method of its general structural analysis 

was proposed in [37]. It can be used in engineering practice for the purpose of 

investigating complex electromechanical systems. 

The control of the robot can be implemented with various of methods, 

such as classical approaches (PID) and the modern ones (sliding mode control, 

passivity-based control) [36]. Another important area is robot learning that 

allows a robot to adapt to its environment through learning algorithms. 

Artificial neural networks can be used for a number applications of in robotics. 

The application of complex-valued neural networks for control of automation 

systems was proposed in [38]. There were presented the developed algorithms 

that can be applied for the robot control and robot learning.  
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4.2 Simultaneous Localization and Mapping methods 

The idea of probabilistic robotics is to represent uncertainty explicitly, 

using the calculus of probability theory. Instead of relying on a “single 

scenario”, probabilistic algorithms represent information by probability 

distributions over a whole space of possible hypotheses.  

Odometry aims to estimate the change in the position of the robot over 

time. The robot gets the current angular velocity of the wheels and the current 

rotation angles of the wheels relative to the initial position. Knowing the angles 

of rotation of the wheels, the current angle of rotation of the robot is calculated 

by geometry formulas. Coordinates of the robot are calculated as integrals of 

the angular velocities of the wheels. The formulas depend on the specific 

kinematic configuration of the robot.  

With the use of visual odometry or based on the analysis of ranging data 

the robot can determine its offset relative to the previous position. In the ideal 

case, when the calculations are accurate and faultless, it is possible to build a 

map of environment and describe its trajectory. Unfortunately, in reality, at 

each step there is a small calculation error (due to measurements error, 

interference, restrictions imposed by the algorithms, etc.). Over time, total 

accumulative error continues to grow, so that the global map will be inaccurate. 

The complexity of the technical process of determining the current location and 

constructing the map is magnified by the low precision instruments involved in 

the calculation of the current location. In order to deal with this problem 

Simultaneous Localization and Mapping Methods (SLAM) were designed. An 

overview of SLAM methods is given in  [39].  

SLAM is aimed to solve two problems: 

 1) build a map of an unknown environment  

 2) navigating the environment using this map 
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The large number of researches was conducted in this area. The surveys 

can be found in [1], [39], [40]. It should be noted that this problem is not 

completely resolved and is still under investigation.  

The important problem in a SLAM algorithm is the representation of the 

joint distribution over robot poses and maps, because maps are usually 

represented by an high number of parameters. The mostly used representations 

are: the feature-based - collection of landmark locations and correlated 

uncertainty; the grid based - collection of discretized obstacle/free-space pixels; 

and topological - collection of nodes and their interconnections. SLAM 

problems can be divided into several connected parts: landmark extraction, 

data association, state estimation, state update and landmark update.  

Different SLAM probabilistic approaches exists, such as Kalman Filters, 

Particle Filters also called Monte Carlo localization, and Expectation 

Maximization , which are mathematical derivations of the recursive Bayes rule 

[40].  There are variations of Kalman Filter: the Extended Kalman Filter and 

Information Filtering.  There is a number of other SLAM methods, for example 

Compressed Extended Kalman Filter, Extended Information Filtering, Rao-

Blackwellised particle filters for laser-based SLAM, incremental Smoothing and 

Mapping, Tree-based netwORk Optimizer, etc. 

The Extended Kalman Filter deals with nonlinear process model and 

nonlinear observation model. It is aimed to linearize a nonlinear dynamic 

system for use in a Kalman Filter, which is applied to estimate the position of 

the robot through a motion model, and its environment through an observation 

model, based on its odometry and landmark position measurements. It is one of 

the most successful SLAM algorithms and is used navigation systems and GPS. 

The example of Extended Kalman Filter  from [1] is shown on Figure 4.2. 
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Figure 4.2 Extended Kalman Filter applied to the on-line SLAM problem. 

The dotted in is the robot’s path, shaded ellipses show the estimations of 

its own position. The dots mean eight distinguishable landmarks of unknown 

location, and their location estimations are white ellipses. On the figures (a)–(c) 

the positional uncertainty of robot is increasing, as is its uncertainty about the 

landmarks it encounters. When the robot senses the first landmark again (figure 

(d)) the uncertainty of all landmarks decreases. The uncertainty of the current 

pose decreases as well. 

One of the simplest and most productive SLAM implementations is based 

on particle filter, also called Monte Carlo Localization (MCL). Particle filters are 

mathematical models that represent probability distribution as a set of discrete 

particles which occupy the state space. Particle filters are a way to efficiently 

represent non-Gaussian distribution. Monte Carlo localization is a particle-filter 

based implementation of recursive Bayesian filtering for robot localization [7,8]. 

On the each iteration of MCL, the likelihood function is evaluated at sample 

points that are randomly distributed according to the posterior estimate of the 

robot location.  
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The principle of MCL is the following: 

1) The map of the surrounding space is a two-dimensional array of 

single-byte variables. Initially, the map is empty.  

2) Initialize the initial position of the robot.  

3) Read the values from the range finder and maps obstacles according to 

the obtained measurements.  

4) Next, proceed in an infinite loop.  

a) Use odometry to predict how much the robot have moved relative 

to the previous measurement.  

b) Read the values from the range finder.  

c) Calculate the most probable position of the robot using the particle 

filter for the current map. One particle contains the position and 

angular orientation of the robot. Probability of a particle is 

calculated based on the difference between the actual readings of 

range finder and predicted value for the given particle.  

d) Assuming that the robot is in the most probable position, update 

the current map based on readings from the range finder.  

The Monte Carlo localization process is shown in Figure 4.3 (from [41]). 

 
Figure 4.3 Monte Carlo Localization 

On the left picture the robot is globally uncertain and the samples are 

spread uniformly. On the middle picture the robot moved about 1 meter and 
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the ambiguity is almost resolved. The right picture shows samples that now 

centered tightly around the correct position, so robot knows where he is [41]. 

Other methods based on Expectation Maximization are iterative methods 

for finding maximum likelihood that offer an optimal solution, being an ideal 

option for map-building, but not for localization. The Expectation Maximization 

algorithm is able to build a map when the robot’s pose is known, for instance, 

by means of expectation [6,9]. 

Table 4.1 from [40] shows the advantages and disadvantages of the 

methods applied into the SLAM framework. 

Table 4.1 SLAM filtering approaches 

Advantages Disadvantages 

Kalman Filter and Extended KF (KF/EKF) 

- high convergence  
- handle uncertainty 

- Gaussian assumption 
 - slow in high dimensional maps 

Compressed Extended KF (CEKF) 

- reduced uncertainty 
- reduction of memory usage 
- handle large areas  
- increase map consistency 

 - require very robust features 
 - data association problem 
- require multiple map merging 

Information Filters (IF)  

- stable and simple  
- accurate 
- fast for high dimensional maps 

- data association problem 
 - may need to recover a state 
estimates 
 - in high-D is computationally 
expensive 

Particle Filter (PF) 

- handle nonlinearities 
- handle non-Gaussian noise 

 - growth in complexity 

Expectation Maximization (EM)  

- optimal to map building  
- solve data association 

 - inefficient, cost growth 
 - unstable for large scenarios 
- only successful in map building 

 

Generally, the advantages of probabilistic robotics are its robustness (the 

only known methods to perform real-world SLAM) and weaker requirements 

on sensors and models (because we know they are not perfect). On the other 

side its drawbacks are the computational complexity (because we consider 
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more information) and the need to make approximations (it is not feasible to 

compute exact posterior distributions for continuous worlds). 

4.3 Application of Constraint reasoning to Robot 

Localization 

The localization of the robot implies the definition of the robot’s current 

location and orientation. The sensor’s measurements provide the information 

about the environment. We propose a method that uses constraint reasoning for 

computing the enclosure of all scenarios consistent with the constraint model. 

We also apply the probabilistic constraint approach to add likelihood 

information and support reliable solutions that can be useful for the robot 

navigation. 

The distribution of the error of sensor data can be included and 

propagated into the probabilistic characterization of the scenarios that remain 

in according to the updated model limitations. 

The problem of localization in a probabilistic aspect can be seen as the 

problem of determining the density of the distribution function of the position 

of the robot. There is a need to reduce the probability to a small space region.  

We assume that the map of the environment is known. A map of the 

environment is a list of objects and their locations. The walls and the objects on 

the map can be presented as segments with the coordinates of the beginning 

and the end of the segment.  

The robot pose is defined on the coordinate plane with its (x,y) 

coordinate and an angle   that is the orientation of a robot, often called bearing, 

or heading direction (Figure 4.4). 
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Figure 4.4 Robot pose on the global coordinate system 

The application of continuous constraint programming and Monte Carlo 

integration to the robot localization problem is based on the defining the grid 

over the region, applying the constraint propagation technique and obtaining 

the probability over the grid. It can be represented by the following steps: 

1) Obtain map of the environment; 

2) Set a grid on the map; 

3) Apply constraint propagation technique 

4) Get probability of the box by Monte Carlo integration method: 

a) Set   random points inside the box 

b) Compute the value of pdf       for each point 

c) Estimate the mean of   using the average of these samples: 

  
∑      

 
   

 
;     (4.1) 

d) Multiply with the volume to get an approximation of the 

integral: 

     
∑      

 
   

 
      ;    (4.2) 

5) Normalize the computed probabilities 
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We will use a simplification of the algorithm from [6] that computes a 

grid over the feasible region and calculates the probability distribution 

conditioned to the model constraints.  

Algorithm 4.1 computes a conditional probability distribution of the 

variables random vector              given the event that satisfies all 

constraint in  . The result of the algorithm is an n-dimensional matrix   

representing the conditional probability at each grid cell. 

A grid is specified by the spacings of its dimensions, which are 

computed based on a specified number of partitions for each dimension. The 

input variable G is an n-dimentional array that defines the number or partitions 

considered at each dimention. 

 

gridConditionalDistribution                                  

Input: D: initial domains box; C: set of constraints; eligible, stop: predicate;  

split, order: function;  : array of   integers 

Output:  : n-dimentional matrix of intervals;  

1                                              ; 

2          [ ]           [ ]     [    ]  [    ]          

3             ; 

4 for each       do 

5  〈           〉             ; 

6   [    ] [    ]              ; 

7       [    ]  [    ]; 

8 end 

9          [ ]           [ ]     [    ]  [    ]  
 [    ] [    ]

 
 

10 return  ; 

Algorithm 4.1 Computation of the probability distribution  

The Algorithm 4.1 first computes a grid box cover   for the feasible space 

of the model constraint   (line 1). Function              is used with a grid 

oriented parameterization, i.e.,       splits the boxes in the grid and          

chooses boxes that are not yet inside a grid box. The      predicate requires that 
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the algorithm only stops when there are no more eligible boxes and       

induces a depth first search. 

Then the matrix M of conditional probability distributions is initialized to 

zero (line 2) as well as the normalization factor P that will contain, in the end of 

the process, the overall sum of all non normalized parcels (line 3). For each box 

B in the cover S (lines 4-8), its corresponding index of the matrix cell is 

identified (line 5) and its probability is computed by function integrate and 

assigned to the value in that cell (line 6). The normalization factor is updated 

(line 7) and used in the end to normalize the computed probabilities (line 9). 

4.3.1 Computing Probabilities with Monte Carlo integration 

For the calculation of the probability (function integrate of Algorithm 4.1) 

we will use the Monte Carlo integration method that was discussed in the 

Chapter 3. We calculate the probability of robot being inside a box. Here the 

sampling will be implemented inside the box within a grid cell, which is 

defined by the coordinates [     ]  [     ]  [     ]. Algorithm 4.2 calculates 

the probability over the box of the grid. 

 simpleMonteCarloProbability(                     

                                  ) 

Input:            : coordinates;     : angles;  : number of samples;  

               ,            : function; 

Output:  : probability;  

1    ; 

2 while (   ) do 

3                            ; 

4                            ; 

5                            ; 

6                           ; 

7 end 

8                             ; 

9             ; 

10 return   

Algorithm 4.2 Monte Carlo integration for probability calculation 
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 For the defined number of samples                 generates the 

points (lines 3-5). Function             calculates the value of the pdf for each 

point and accumulates its contribution (line 6) . The volume is calculated (line 8) 

and the probability estimate is obtained in line 9. 

A common probability distribution for a single measurement error is the 

one-dimensional normal distribution with   mean and variance   . In this case, 

the probability density function is the following Gaussian function: 

     
 

√    
 

 
 

 
 
  

       (4.3) 

The above normal distribution assumes that x is a scalar value. Often, x 

will be a multidimensional vector resulting from several independent 

measurements. Normal distributions over vectors are called multivariate. 

Multivariate normal distributions with 0 mean and identical variance    for 

each dimension are characterized by density functions of the following form: 

     (
 

 √  
)
 

 
 

 

    ∑    
 

     (4.4) 

Algorithm 4.3 computes the value of probability density function for the 

current pose         of the robot and n ladar measurements.  

getPdfValue(     ) 

Input:    : coordinates;  : angle;    : specified value of the error; 

 : number of ladar measurements;            : function; 

Output:         : value of probability density function;  

1        ; 

2      ;      

3 while       do 

4                   ; 

5                                  

6                           ; 

7                                
 ; 

8 end 

9           
 

   

    ( √  )
 

; 

10 return         ; 

Algorithm 4.3 Value of probability density function calculation 
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 Here we consider   ladar measurements. The direction of the robot is 

described by the angle  , to which we add the angle             of the related 

measurement (line 4). The predicted value of the distance is calculated with the 

function             (line 5).  The observed value is simply the value of the 

distance obtained by the ladar (line 6). The difference between predicted and 

observed value is the error committed in measurement i and its square is 

accumulated in line 7. The value of the corresponding probability density 

function is obtained in line 9. 

Algorithm 4.4 represent the function            , it basically computes 

the distance from the robot pose to the closest object in the direction  . 

getDistance(     ) 

Input:    : coordinates;  : angle;              : function; 

Output:   : distance;  

1         ; 

2                             ; 

3                       ; 

4 return    

Algorithm 4.4 Distance from robot to the closest object 

The coordinates of the robot are assigned to the point    (line 1). The point 

   is located at distance      from the point    along the direction   (line 2).  

This maxD is the maximum range of the ladar. The function               finds 

the distance D to the closest wall returning maxD if it could not intersect any 

wall (line 3).  

The representation is illustrated in the Figure 4.5. The robot is located in 

the point   . In the simulation we obtain the vector of measurements. If the wall 

is not detected, then measurement has value     , otherwise the distance from 

robot till obstacle is calculated.  
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Figure 4.5 Robot pose and measurements. 

 

4.3.2 Pruning Domains with Constraint Programming  

Function              is used in Algorithm 4.1 (line 1) to reduce the 

search space, avoiding the application of the Monte Carlo integration over all 

grid cells and eventually restricting it to a small number of boxes consistent 

with the ladar measurements and the map of the environment. This function, 

generally represented in Algorithm 3.1 requires a specialized constraint 

propagation algorithm to process adequately the information gathered by the 

sensors in robot localization problems. Algorithm 4.5 robotCPA prunes a 

domains box accordingly to the ladar measurements.  

 

robotCPA([     ]  [     ]  [     ]) 

Input:            : coordinates;      : angles;            : function; 

Output:  : box;  

1    ;    ; 

2 while (   ) do 

3  [  ]  [     ]              ; 

4                [     ]  [     ]  [  ]       ; 

5  if ( = )  

P
0
(x,y)

P
1
(x+maxD*cos(α),y+maxD*sin(α))
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6        {‖                   ‖       ; 

7  end 

8  if ( ={〈               〉 ) and       

9     
     

     
                        

10  

      {‖
             

                               
               ‖     } ; 

11  end 

12  if ( ={〈               〉 ) and       

13     
     

     
                        

14  

      {‖
             

                               
               ‖     } ; 

15  end 

16 end 

17       [     ]  [     ]  [     ]   ; 

18 return   

Algorithm 4.5 robotCPA for pruning a domains box accordingly to the ladar 
measurements 

It computes a set of numerical constraints   (initialized in line 1) that can 

be enforced over the variables of the problem         and then calls the     

function (line 17) to reduce the box domains. The constraints may result from 

each one of the n ladar measurement processed in the while loop (lines 2 to 16). 

Firstly an enclosure [  ] for the possible angle of vision (in global coordinates) 

associated with the ladar measurement i is computed (line 3). Next, a 

specialized geometric function             is used to determine which of the 

walls in the map can eventually be seen by a robot positioned in       

[     ]  [     ] with an angle of vision   [  ] and a vision range up to     .  

If no wall can be seen (line 5) the predicted distance is always      and a 

constraint is added (line 6) to enforce the error between the predicted and the 

ladar measurement not to exceed    .  

If it is only possible to see a single non vertical wall (line 8), represented by 

the segment 〈               〉, an adequate numerical constraint is enforced 

(line 10) to restrain the error between the ladar measurement and the predicted 
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distance for a pose        . This cannot be done in the case of a vertical wall 

since it would induce a numerical exception (a division by zero in line 9). A 

similar procedure is adopted to add a new constraint when is only possible to 

see a single non horizontal wall (lines 12 to 15).  

Notice that whenever there is the possibility of seeing more that one wall 

it cannot be decided which constraint to enforce, and the algorithm proceeds 

without associating any constraint to the ladar measurement. 

Summarizing, the idea of constraint reasoning with Monte Carlo 

integration in application to robot localization is to define the grid over the 

map, apply the propagation technique in order to localize the possible 

solutions, and then apply the Monte Carlo method for obtaining the probability 

of each grid. As a result we obtain the probability distribution that shows the 

robot’s probability of being located in the exact position. 

4.4 Simulation results 

The following experiments were carried out on an Intel Core i7-4700MQ at 

2.40 GHz. The Algorithms 4.1-4.4 were implemented in C++. 

For the simulation we define the simple case of the room with the size 

1000x1000 and 2 objects inside the room, defined as the segments. Let pose the 

robot in the middle of the room with the bearing equal to 0 (robot “looks” to the 

right). Then we define the size of the measurement vector that is equal to 7, so 

we obtain the measurements   {         .  We define the error of the 

measurements equal to 5. As we can see from the Figure 4.6 some of the 

measurements intersect the objects.  
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Figure 4.6 Simulation of the robot position 

Then we define the grid. For our case it will be equal 100x100 for the     

coordinates and 360 for the angle (each box has dimension 10x10x1°).  

Algorithm 4.1 divides the space into the grid and applies constraint 

propagation techniques to reduce the space. The resulting boxes are shown on 

the Figure 4.7. Those boxes represent the possible position of the robot.  

 

Figure 4.7 Simulation results. Reduced space 



 

69 

 

 

The Monte Carlo integration sets random points inside the box as it shown 

on Figure 4.5. Algorithms 4.2-4.4 are implemented in order to obtain the 

probability over the box. The obtained probability is shown in the Figure 4.8. 

The calculations take 8 seconds. 

 

Figure 4.8 Simulation results. Probability distribution  

Further we present several experiments with different configurations. The 

simulation results are presented in Figure 4.9. This is the simple case. The boxes 

are obtained on the small region and the probabilities are calculated for that 

boxes. 

 
Figure 4.9 Simulation example 1. Constraint reasoning with Monte Carlo.   
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The example from the Figure 4.10 shows not that trivial result.  We can see 

that robot can be positioned in different spaces in the room and the probability 

if being in the different stop is different. So we obtain higher probability along 

the right wall of the room. 

 

Figure 4.10 Simulation example 2. Constraint reasoning with Monte Carlo.  

As we can see from the figure above our approach of probabilistic 

constraint reasoning with Monte Carlo integration gives the accurate results. 

In the following experiment we assume a map of the environment such as 

the one shown in Figure 4.11. The robot is placed in one of the four rooms and 

detects the objects. The algorithm that uses constraint reasoning with Monte 

Carlo method computes probability of the robot pose. As we can see from the 

figure the probability of the robot pose is equal for each room. 

 
Figure 4.11 Simulation example 3. Constraint reasoning with Monte Carlo.  
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Placing the robot in the corridor gives the results shown on Figure 4.12. 

The algorithm calculates the possible poses of the robot as well as the 

probability of this poses. 

 
Figure 4.12 Simulation example 4. Constraint reasoning with Monte Carlo.  

More complicated environment is shown in Figure 4.13. We simulate the robot 

robot placing it in the middle of the room. The measurements define the unique 

pose of the robot. Different options of the robot pose are shown in Figures 4.13-

4.18.

 

Figure 4.13 Simulation example 5. Constraint reasoning with Monte Carlo.  
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Figure 4.13 Simulation example 5. Constraint reasoning with Monte Carlo.  

 

Figure 4.14 Simulation example 6. Constraint reasoning with Monte Carlo.  

 

Figure 4.15 Simulation example 7. Constraint reasoning with Monte Carlo.  



 

73 

 

 

Figure 4.16 Simulation example 8. Constraint reasoning with Monte Carlo.  

 

Figure 4.17 Simulation example 9. Constraint reasoning with Monte Carlo.  

 

Figure 4.18 Simulation example 10. Constraint reasoning with Monte Carlo.  

 

From the following tests we conclude that proposed technique allow solve 

the simple localization problem. The propagation method accelerates the 

calculation of the robot coordinates and the Monte Carlo integration gives the 

probability of the robot pose. The experiments show the efficiency and 
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convenience of the method. However, time spend each example is 4-12 seconds 

that requires improvements of algorithms performance. 

4.5 Conclusion 

Mobile robots can change their location thought locomotion. For a mobile 

robot one of the most important capabilities is ability to navigate. We study the 

localization problem and use the developed in the previous Chapter techniques 

for developing the algorithms of mobile robot localization with probabilistic 

constraint reasoning. 

We discussed several aspects of the localization problem and methods for 

robot localization. Then we defined the type of the map representation that is 

more convenient for our task. Further, we define the type of sensors and 

representation of the data from them.  

We developed the algorithm for robot localization using Probabilistic 

constraint reasoning with Monte Carlo integration. This method allows to 

determine the position of robot and with its probability. Experiments shows, 

that robot can easily determine its position on the map. 
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5. Conclusions and Future Work 
 

 

5.1 Conclusions 

In this dissertation the probabilistic constraint reasoning tool with Monte 

Carlo integration and its application to robot localization problem were 

proposed. The probabilistic constraint framework can be used as an effective 

tool for dealing with uncertainty in the localization problem. We used the 

approach that bridges the gap between pure safe reasoning and pure 

probabilistic reasoning. 

First, we introduced the basic notions of Continuous Constraint 

Programming and probability theory, and quadrature methods and presented 

the basic algorithms. Continuous Constraint programming is used to solve a 

wide range of problems, including integration. We studied the efficiency of 

quadrature methods, such as Monte Carlo and its modifications. 

Second, we proposed technique for integration over constraint region that 

computes close estimates of the correct integral value. For this task we apply 

Monte Carlo integration techniques combined with constraint programming. In 

5 
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comparison with pure Monte Carlo integration, our method is faster and 

requires less sampling, due to constraint programming techniques that reduce 

the sample space into a enclosure of the integration region. 

Third, we described various techniques for integrating using Monte Carlo 

methods and its modifications combined with constraint propagation 

techniques.   

Fourth, we studied the mobile robots, their technical characteristics, types 

of sensors, motors.   We defined the reasons of arising of uncertainty in robotics, 

talked about probabilistic robotics and denoted several approaches for 

Simultaneous Localization and Mapping. 

Finally, we developed the algorithm for robot localization that is based on 

continuous constraint programming with Monte Carlo integration method. The 

simulation shows that proposed approach is efficient and can be applied to the 

real systems. The probabilistic reasoning with Monte Carlo integration 

minimizes the uncertainty and can be successfully applied for robot localization 

problem. 

 

5.2 Future work 

 There are many possibilities for the development of the proposed 

technique to robotics and related areas. One of the possible directions of the 

future work is the development Simultaneous Localization and Mapping 

algorithm based on the proposed techniques. 

Moreover there is possibility to develop the modifications of the algorithm 

in order to improve efficiency. 
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