

Olga Meshcheryakova

Mestrado em Engenharia Electrotécnica,
Sistemas e Computadores

Probabilistic constraint reasoning
 with Monte Carlo integration

to Robot Localization

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica, Sistemas e Computadores

Orientador: Pedro Alexandre da Costa Sousa,
Professor, FCT-UNL

Co-orientador: Jorge Carlos Ferreira Rodrigues da Cruz,
Professor, FCT-UNL

 Júri

 Presidente: João Paulo Branquinho Pimentão

 Arguente(s): José António Barata de Oliveira
 Pedro Alexandre da Costa Sousa

Setembro, 2014

iii

Probabilistic constraint reasoning with Monte Carlo integration to Robot

Localization

Copyright © Olga Meshcheryakova, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o

direito, perpétuo e sem limites geogr{ficos, de arquivar e publicar esta

dissertação através de exemplares impressos reproduzidos em papel ou de

forma digital, ou por qualquer outro meio conhecido ou que venha a ser

inventado, e de a divulgar através de repositórios científicos e de admitir a sua

cópia e distribuição com objectivos educacionais ou de investigação, não

comerciais, desde que seja dado crédito ao autor e editor.

iv

v

Acknowledgements

I would like to express my deepest gratitude to Professor Jorge Cruz,

who gave me guidance, suggestions and help, which was decisive for the work.

I am very grateful to Professor Pedro Sousa, who gave me motivation and

provided all kinds of support. Also, I would like to thank Marco Correia, who

helped me in the implementation and gave valuable advices.

Moreover, I want to express special thanks to my family and friends who

always supported and motivated me.

vi

vii

Resumo

Este trabalho estuda a combinação de raciocínio seguro e probabilístico

através da hibridação de técnicas de integração de Monte Carlo com

programação por restrições em domínios contínuos. Na programação restrição

contínua existem vari{veis que vão sobre os domínios contínuos (representados

como intervalos), juntamente com as restrições sobre elas (as relações entre as

vari{veis) e o objetivo é encontrar valores para as vari{veis que satisfazem

todas as restrições (cen{rios consistentes). Algoritmos programação por

restrições "branch-and-prune" produzem resultados de todos os cen{rios

consistentes. Algoritmos especiais propostos para o raciocínio probabilístico por

restrição calculam a probabilidade de conjuntos de cen{rios consistentes que

implicam o c{lculo de um integral sobre estes conjuntos (quadratura). Neste

trabalho, propomos estender os algoritmos "branch-and-prune" com técnicas de

integração de Monte Carlo para calcular essas probabilidades. Esta abordagem

pode ser útil na {rea da robótica para problemas de localização. As abordagens

tradicionais são baseadas em técnicas probabilísticas que buscam o cen{rio mais

prov{vel, que não pode satisfazer as restrições do modelo. Nós mostramos

como aplicar a nossa abordagem para lidar com este problema e fornecer

funcionalidade em tempo real.

Palavras-chave: programação por restrições em domínios contínuos,

an{lise do intervalo, integração de Monte Carlo, Localização de Robots

viii

ix

Abstract

This work studies the combination of safe and probabilistic reasoning

through the hybridization of Monte Carlo integration techniques with

continuous constraint programming. In continuous constraint programming

there are variables ranging over continuous domains (represented as intervals)

together with constraints over them (relations between variables) and the goal

is to find values for those variables that satisfy all the constraints (consistent

scenarios). Constraint programming “branch-and-prune” algorithms produce

safe enclosures of all consistent scenarios. Special proposed algorithms for

probabilistic constraint reasoning compute the probability of sets of consistent

scenarios which imply the calculation of an integral over these sets

(quadrature). In this work we propose to extend the “branch-and-prune”

algorithms with Monte Carlo integration techniques to compute such

probabilities. This approach can be useful in robotics for localization problems.

Traditional approaches are based on probabilistic techniques that search the

most likely scenario, which may not satisfy the model constraints. We show

how to apply our approach in order to cope with this problem and provide

functionality in real time.

Keywords: Continuous Constraint Programming, Interval Analysis,

Monte Carlo integration, Robot Localization

x

xi

Contents

1. INTRODUCTION .. 1

1.1 GOALS ... 2

1.2 AREA... 2

1.3 CONTRIBUTIONS ... 6

1.4 SCHEME OF THE DOCUMENT .. 6

2. STATE OF THE ART ... 9

2.1 CONTINUOUS CONSTRAINT PROGRAMMING 10

2.1.1 Interval Analysis .. 11

2.1.2 Constraint Reasoning with Continuous Domains 14

2.2 PROBABILISTIC CONSTRAINT REASONING 16

2.3 MONTE CARLO QUADRATURE METHODS 18

2.4 APPLICATION OF CONSTRAINT PROGRAMMING AND INTERVAL

ANALYSIS TO ROBOTICS ... 23

2.5 SUMMARY ... 25

3. PROBABILISTIC REASONING WITH MONTE CARLO

INTEGRATION .. 27

3.1 PROBABILISTIC CONSTRAINT REASONING 28

3.2 METHODS AND ALGORITHMS OF MONTE CARLO INTEGRATION .. 33

3.3 EXPERIMENTAL RESULTS .. 37

3.3.1 Experiment 1 ... 38

3.3.2 Experiment 2 ... 43

3.3.3 Experiment 3 ... 45

3.4 COMPARISON OF THE METHODS .. 48

3.5 CONCLUSION .. 49

4. APPLICATION TO ROBOT LOCALIZATION 51

xii

4.1 MOBILE SERVICE ROBOTS .. 52

4.2 SIMULTANEOUS LOCALIZATION AND MAPPING METHODS 54

4.3 APPLICATION OF CONSTRAINT REASONING TO ROBOT

LOCALIZATION ... 59

4.3.1 Computing Probabilities with Monte Carlo integration 62

4.3.2 Pruning Domains with Constraint Programming 65

4.4 SIMULATION RESULTS ... 67

4.5 CONCLUSION .. 73

5. CONCLUSIONS AND FUTURE WORK .. 75

5.1 CONCLUSIONS .. 75

5.2 FUTURE WORK ... 76

BIBLIOGRAPHY .. 77

xiii

List of Figures

Figure 1.1 Area of the research. ... 4

Figure 2.1 A box cover of the feasible space obtained through constraint

reasoning. .. 16

Figure 3.1 Graph of the integrand function .. 38

Figure 3.2 Graph of the integrand function on the constraint region 39

Figure 3.3 Errors of Monte Carlo integration method combined with continuous

constraint programming. .. 41

Figure 3.4 Errors of the quadrature methods... 42

Figure 3.5 Errors of Monte Carlo integration method combined with continuous

constraint programming. .. 44

Figure 3.6 Errors of the quadrature methods... 44

Figure 3.7 Graph of the integrand function .. 45

Figure 3.8 Graph of the integrand function on the constraint region 45

Figure 3.9 Errors of Monte Carlo integration method combined with continuous

constraint programming ... 46

Figure 3.10 Errors of the quadrature methods... 47

Figure 4.1 Mobile robot ServRobot .. 52

Figure 4.2 Extended Kalman Filter applied to the on-line SLAM problem. 56

Figure 4.3 Monte Carlo Localization ... 57

Figure 4.4 Robot pose on the global coordinate system ... 60

Figure 4.5 Robot pose and measurements. ... 65

Figure 4.6 Simulation of the robot position .. 68

xiv

Figure 4.7 Simulation results. Reduced space .. 68

Figure 4.8 Simulation results. Probability distribution ... 69

Figure 4.9 Simulation example 1. Constraint reasoning with Monte Carlo. 69

Figure 4.10 Simulation example 2. Constraint reasoning with Monte Carlo. 70

Figure 4.11 Simulation example 3. Constraint reasoning with Monte Carlo. 70

Figure 4.12 Simulation example 4. Constraint reasoning with Monte Carlo. 71

Figure 4.13 Simulation example 5. Constraint reasoning with Monte Carlo. 71

Figure 4.14 Simulation example 6. Constraint reasoning with Monte Carlo. 72

Figure 4.15 Simulation example 7. Constraint reasoning with Monte Carlo. 72

Figure 4.16 Simulation example 8. Constraint reasoning with Monte Carlo. 72

Figure 4.17 Simulation example 9. Constraint reasoning with Monte Carlo. 73

Figure 4.18 Simulation example 10. Constraint reasoning with Monte Carlo. ... 73

xv

List of Tables

Table 3.1 Integral . Relative errors ... 39

Table 3.2 Integral . Relative errors ... 43

Table 3.3 Integral . Relative errors ... 46

Table 4.1 SLAM filtering approaches .. 58

xvi

xvii

List of Algorithms

Algorithm 3.1 Branch-and-prune .. 29

Algorithm 3.2 Branch-and-prune with quadrature .. 31

Algorithm 3.3 Monte Carlo integration .. 35

Algorithm 3.4 Monte Carlo integration with deviation calculation for the

interval representation .. 37

Algorithm 4.1 Computation of the probability distribution.................................. 61

Algorithm 4.2 Monte Carlo integration for probability calculation 62

Algorithm 4.3 Value of probability density function calculation 63

Algorithm 4.4 Distance from robot to the closest object .. 64

Algorithm 4.5 robotCPA for pruning a domains box accordingly to the ladar

measurements ... 66

xviii

xix

Acronyms

CCP - Continuous Constraint Programming

CCSP - Continuous Constraint Satisfaction Problem

CSP – Constraint Satisfaction Problem

CP – Constraint Programming

CPA – Constraint Propagation Algorithm

DC - Direct Current

LADAR - LAser Detection And Ranging

MC – Monte Carlo

MCL - Monte Carlo Localization

MFTP – Multivariable Fuzzy Temporal Profile model

SLAM - Simultaneous Localization and Mapping Methods

p.d.f. - probability density function

PID – Proportional-Integral-Derivative

xx

1

1. Introduction

A key element in robotics is uncertainty that arises from many factors, such

as environment, sensors, models, computations and robot actuators and motors.

Probabilistic robotics is an approach for dealing with hard robotic problems

that relies on probability theory and has a number of developed algorithms and

implemented solutions that will be specified further in this dissertation. In the

case of the robot localization problem, where sensors play a major role, errors in

measurements are unavoidable and must be considered together with the

model constraints. This requires a method for uncertainty reasoning with

mathematical models involving nonlinear constraints over continuous

variables.

1

2

1.1 Goals

The general goal of this work is the development of an approach that

combines safe and probabilistic reasoning for dealing with the uncertainty in

nonlinear constraint models. We propose a new technique that is based on the

combination of methods from continuous constraint programming with Monte

Carlo integration techniques. We aim to overcome the scalability problem of the

pure (safe) constraint programming approach providing the means to quickly

obtain an accurate characterization of the uncertainty. We envisage to

successfully apply this technique to probabilistic robotics and, in particular, to

show its advantages with respect to the traditional approaches for the robot

localization problem.

1.2 Area

Uncertainty occurs in stochastic environments and is a subject of study in

a number of fields, including physics, economics, statistics, engineering, and

information science. In robotics uncertainty arises from many sources.

Physical worlds are unpredictable. In robotics the environment is highly

dynamic and unpredictable that leads to the high degree of uncertainty. In

some task (such as path planning) the ignorance of uncertainty is not possible.

Sensors have number of limitations that arise from the following factors.

The range and resolution of a sensor are limited by physical laws. Image

sensors cannot see through walls and, moreover numbers of the parameters

characterizing the performance are limited. Another problem is noise, which

disturbs the measurements of the sensors. The noise in unpredictable and it

limits the information that can be extracted from sensors measurements [1].

Robot actuation involves motors that could be subject to control noise.

Some of the actuators are characterized by low noise level. However others

cannot provide accurate positioning.

3

All of these factors give rise to uncertainty. A probabilistic approach

considers uncertainty and uses models to abstract useful information from the

measurements. The actual sensors always give some scatter of values measured

with some accuracy. Errors always occur in the sensor measurements.

Probabilistic robotics deals with the concepts of control and perception in

the face of uncertainty, inherent to the location of the robots which are usually

in unstructured environments. The key idea is to represent the uncertainty in an

explicit way, representing information by probability distributions over all

space of possible hypotheses instead of relying only on best estimates. In this

way, the models can represent the ambiguity and the degree of confidence in a

solid mathematics, allowing them to accommodate all sources of uncertainty.

However one of the limitations of probabilistic algorithms is the

computational complexity, because the computation of the exact posterior

distributions can be unaffordable. Also those algorithms make approximations,

since robots perform continuous processes. Another problem is lower efficiency

when compared with non-probabilistic algorithms, since the best estimate but

probability densities are considered. This is an important issue because robots,

being real-time systems, limit the amount of computation that can be carried

out. Operating in a real-time requires fast time response. Many state-of-the-art

algorithms are approximate, and are not enough accurate.

In this work we propose usage of the probabilistic constraint techniques in

the context of probabilistic robotics and in particular to solve robot localization

problems. Mobile robot localization, also known as position estimation, is the

problem of determining the pose of a robot relative to a given map of the

environment. The robot pose cannot be measured directly from the sensors, but

it can be obtained from the available with consideration of the model

constraints and the underlying uncertainty. Instead of providing a single

scenario, the most probable position of the robot in the current moment, the

proposed approach is able to characterize all possible positions (consistent with

the model) and their probabilities (in accordance with the underlying

uncertainty).

4

The continuous probabilistic constraint framework provides expressive

mathematical model that can represent the robot localization problem. The

uncertainty and nonlinearity are taken into account in the probabilistic

constraint reasoning. The hybridization constraint branch-and-prune

algorithms with of Monte Carlo integration techniques increases the efficiency

of the approach. Figure 1.1 illustrates the relevant areas of research.

Figure 1.1 Area of the research.

In continuous constraint programming the computations are supported by

interval analysis which is a set extension of numerical analysis. The floating-

point numbers are replaced by intervals that guarantee safe enclosures of the

correct values. The relations between variables are stated in the form of

constraints.

The branch-and-prune algorithms of continuous constraint programming

are aimed to cover sets of exact solutions for the constraints with sets of interval

boxes. The box is Cartesian product of intervals bounded by floating-points.

Probabilistic constraint reasoning with Monte Carlo Integration

Monte Carlo Integration

Continuous Constraint Programming

Interval Analysis
Constraint
propagation

Robot Localization

Uncertainty
Sensors & measurements

constraints

5

These algorithms recursively refine initial crude cover of the feasible space (the

set of all values, Cartesian product of the initial domains). There are two

interleaving steps - branching and pruning, which repeat until a stopping

criterion is satisfied. On the branch step the interval box is splitted into a

partition of sub-boxes (usually two). On the pruning step an interval box is

reduced from the covering into a smaller (or equal) box such that all the exact

solutions included in the original box are also included in the reduced box [2].

Continuous constraint programming provides reasoning on safe

enclosures of all consistent scenarios. Intervals are used to include all their

possible values [3]. The framework provides safe constraint propagation

techniques. Constraint propagation reduces the search space by eliminating

combinations of values that do not satisfy model constraints. However, in some

cases obtained safe enclosure of all consistent scenarios may be too extensive

and insufficient to support decisions. This can happen, if initial intervals are

wide.

The continuous probabilistic constraint framework is an extension to

constraint programming that bridges the gap between pure safe reasoning and

pure probabilistic reasoning. This framework provides the decision support in

the presence of uncertainty. The interval bounded representation of uncertainty

is complemented with a probabilistic characterization of the values

distributions. That makes possible to further characterize the scenarios with a

likelihood value.

Moreover, this approach does not suffer from the limitations of

approximation techniques, due to the constraint programming paradigm that

supports it. The approach guarantees safe bounds for the solutions and their

likelihoods.

The probabilistic constraint framework provides methods to compute

certified enclosures for the probability of consistent scenarios based on reliable

interval techniques for multidimensional quadrature. However, these methods

are time consuming, limiting the usage of the technology in real problems.

6

This work explores an hybrid approach that relies on constraint

programming and Monte Carlo integration to obtain estimates for the

probability of consistent scenarios. The idea is to compute close estimates of the

correct probability value by applying Monte Carlo integration techniques that

benefit from the contribution of constraint programming to reduce the sample

space into a sharp enclosure of the region of integration. Instead of computing

guaranteed results with a computationally demanding method, we aim at

obtaining accurate estimates much faster.

1.3 Contributions

This work studies the hybridization of Monte Carlo integration techniques

with continuous constraint programming for effective probabilistic constraint

reasoning. The main contributions are:

 The development of an hybrid approach for probabilistic constraint

reasoning that improves the efficacy of the approximate quadrature methods in

the context of the constraint programming branch-and-prune algorithm.

 Implementation of the solution proposed and its benchmarking based on

a set of generic experimental tests on multidimensional integrals over nonlinear

constrained boundaries.

 Application of the developed techniques to the robot localization

problem and analysis of its performance on a set of simulated problems.

1.4 Scheme of the document

This dissertation is structured in 5 chapters. After the first introductory

chapter the rest of the work is organized as follows:

 Chapter 2 overviews the state-of-the-art, including the basic concepts of

continuous constraint programming, probability theory and quadrature

methods. Additionally it briefly summarizes the traditional applications of

these techniques to robotic problems.

7

 Chapter 3 presents our proposal to extend the constraint programming

branch-and-prune algorithms with Monte Carlo integration techniques. The

probabilistic constraint reasoning is analyzed and alternative integration

approaches are suggested and evaluated on a set of experiments.

 Chapter 4 discusses the application of our approach to probabilistic

robotics and, in particular to robot localization problems. The added value of

the approach is highlighted on a set of simulated problems.

 In chapter 5 the contributions of this work are summarized, some open

problems are identified, and directions for future work are set.

8

9

2. State of the Art

A mathematical model is a mathematical representation of the reality,

which describes a system by a set of variables and constraints that establishes

relations between them. In engineering systems, particularly in robotics,

nonlinearity and uncertainty occur very often. Reasoning with mathematical

models under uncertainty is traditionally based on probability theory.

There are two general types of approaches for reasoning under

uncertainty. Stochastic approaches reason on the basis of the most likely

scenarios, but don't guarantee the safeness of the calculations. The drawback is

that such approaches rely on approximations and may miss relevant

satisfactory scenarios leading to erroneous decisions.

The other type of approaches provides safe enclosures of all consistent

scenarios. Continuous constraint programming operates with intervals that are

used to include all the possible values of the variables. Safe constraint pruning

techniques only eliminate combinations of values that definitely do not satisfy

the model constraints. The drawback is the consideration that all consistent

scenarios are equally likely, which can be insufficient to support decisions.

2

10

We believe that the combination of those two types of approaches can

provide a powerful tool for reasoning under uncertainty which may be applied

in several real-world problems, including robotic problems.

This chapter overviews the theoretical basis of continuous constraint

programming, probability constraint reasoning and Monte Carlo quadrature

methods. It also describes the real-world applications of developed methods of

those areas to robotic problems.

2.1 Continuous Constraint Programming

Constraint programming [4], [5] is a programming paradigm wherein

relations between variables are stated in the form of constraints. Mathematical

constraints are relations between variables, each ranging over a given domain.

A constraint satisfaction problem (CSP) is a classical artificial intelligence

paradigm introduced in the 1970’s. CSP is characterized by a set of variables

(each variable has associated domain of possible values), and a set of

constraints that specify relations among subsets of these variables. The

solutions of CSP are assignments of values to all variables that satisfy all the

constraints [2],[6].

Constraint programming is a form of declarative programming in the

sense that instead of specifying a sequence of steps to execute, it relies on

properties of the solutions to be found which are explicitly defined by the

constraints. The idea of constraint programming is to solve problems by stating

constraints which must be satisfied by the solutions. As such, a constraint

programming framework must provide a set of constraint-based reasoning

algorithms that take advantage of constraints to reduce the search space,

avoiding regions that are inconsistent with the constraints. These algorithms are

supported by specialized techniques that explore the specificities of the

constraint model such as the domain of its variables and the structure of its

constraints.

11

Origins of continuous constraint programming comes from Davis [7],

Cleary [8] and Hyvonen [9] and later research that extended constraint

programming to continuous domains. In continuous constraint programming

the domains of the variables are real intervals and the constraints are equations

or inequalities represented by closed-form expressions (expression that can be

evaluated in a finite number of operations). In this sense the Continuous

Constraint Satisfaction Problem (CCSP) is a triple where:

 is a tuple of real variables

 is a box, the Cartesian product of intervals where each is the

interval domain of variable

 is a set of numerical constraints (equations or inequalities) on subset of

variables in .

Continuous constraint programming integrates techniques from constraint

programming and interval analysis into a single discipline. Interval analysis,

which addresses the use of intervals in numerical computations, is an important

component of continuous constraint programming.

2.1.1 Interval Analysis

Interval analysis was introduced in the late 1950’s [10] as a way to

represent bounds in rounding and measurement errors, and to reason with

these bounds in numerical computations. The introduction to interval analysis

can be found in [11]. In recent decades, interval analysis was widely used as the

basis for the reliable computing, calculations with guaranteed accuracy [12].

A real interval is a set of real numbers with the property that any number

that lies between two numbers in the set is also included in the set. The interval

of numbers between a and b, including a and b, is denoted [a, b] (in this work we

only consider closed intervals):

12

[] { | (2.1)

If a = b the interval is degenerated and is represented as .

The generalization of intervals to several dimensions is of major relevance

in this work. An n-dimensional box B is the Cartesian product of n intervals and

is denoted by I1 × · · · × In, where each Ii is an interval.

Elementary set operations, such as ∩ (intersection), ∪ (union),  (inclusion)

are valid for intervals. While the intersection between two intervals is still an

interval, this is not the case with the union of two disjoint intervals, where the

result is a set that cannot be represented exactly by a single interval. The

operation ⊎ (union hull) gives the smallest interval, containing all the elements

of both interval arguments:

[] ⊎ [] [] (2.2)

Interval arithmetic defines a set of operations on intervals, and is an

extension of real arithmetic for intervals. The obtained interval is the set of all

the values that result from a point-wise evaluation of the arithmetic operator on

all the values of the operands.

Let and be two real intervals. The basic interval arithmetic operators

 { are defined as:

 { | I1  I2 = { x  y : x I1 ∧ y I2 } (2.3)
 with  {+,−,×, /}

Under the basic interval arithmetic, the division is not defined if

 .

In practice, interval arithmetic simply considers the bounds of the

operands to compute the bounds of the result, since the involved operations are

monotonic. Given two real intervals [] and [] the basic interval arithmetic

operations can be defined as:

13

[][][] [] [] (2.4)

[] [] [] (2.5)

[] [] [] (2.6)

[] [] [] [] [] (2.7)

The implementation of the interval arithmetic operators is conditioned by

the floating point representation of real numbers. In order to guarantee the

correctness of the results, the above operations on the bounds of the operands

must be performed with outward rounding to the closest floating point. As

such, the computed interval is bounded by floating points and always includes

the correct real interval.

Several extensions to the basic interval arithmetic were proposed over the

years and are available in extended interval arithmetic libraries, namely:

redefinition of the division operator, allowing the denominator to contain zero;

generalization of interval arithmetic to unbounded interval arguments;

extension of the set of basic interval operators to other elementary functions

(e.g., exp, ln, power, sin, cos).

In continuous constraint programming interval arithmetic is used as a safe

method for evaluating an expression, by replacing each variable by its interval

domain, and applying recursively the interval operator evaluation rules. In fact,

the computed interval includes all possible values for the expression, but its

width may be much wider than the width of its exact range. Consequently, in

interval analysis special attention has been devoted to the definition of interval

functions that compute sharp interval images of real functions.

Moreover, interval methods are frequently used in constraint

programming due to their efficiency and reliability. One of the applications is

finding roots of equations with one variable. The combination of the Newton

method, interval analysis, and the mean value theorem gives the interval

Newton method [13]. This method can be used to provide rigorous bounds for

14

the solutions of the system of non-linear equations or to prove non-existence of

solutions or.

2.1.2 Constraint Reasoning with Continuous Domains

Constraint reasoning implies the techniques for eliminating values, which

do not satisfy the constraints, from the initial search space (the Cartesian

product of all variable domains). Branch-and-prune algorithms contain

dividing and pruning steps that are recursively applied until a stopping

criterion is satisfied. The sets of values that can be proved inconsistent are

eliminated on the pruning step [3].

The safe narrowing operators (mappings between boxes) are associated

with the constraint. The operators aim to eliminate value combinations that are

incompatible with a particular constraint. These operators must satisfy the

following requirements: be correct (do not eliminate solutions) and contracting

(the obtained box is contained in the original). The properties are guaranteed

due to interval analysis methods applied.

For example, consider the constraint:

 (2.8)

The following narrowing operators may be associated with this constraint

to prune the domain of each variable:

X  X  Z - Y, Y  Y  Z - X, Z  Z  X + Y (2.9)

If, for instance, the domains of the variables are X = [1,3], Y = [3,7] and

Z = [0,5] then interval arithmetic can be used to prune them to:

X  [1,3]  [0,5] - [3,7] = [1,3]  [-7,2] = [1,2]

Y  [3,7]  [0,5] - [1,2] = [3,7]  [-2,4] = [3,4]

Z  [0,5]  [1,2] + [3,7] = [0,5]  [4,9] = [4,5]

15

With this technique, based on interval arithmetic, safe narrowing

operators may be associated with the above constraint which are able to reduce

the original box <[1,3],[3,7],[0,5]> into <[1,2],[3,4],[4,5]> with the guarantee that

no possible solution is lost.

Once narrowing operators are associated with all the constraints of the

continuous constraint satisfaction problem, the pruning can be achieved

through constraint propagation. Narrowing operators associated with a

constraint eliminate some incompatible values from the domain of its variables

and this information is propagated to all constraints with common variables in

their scopes. The process terminates when a fixed point is reached i.e., the

domains cannot be further reduced by any narrowing operator [14].

The pruning achieved through constraint propagation is highly dependent

on the ability of the narrowing operators for discarding inconsistent value

combinations. Further pruning is usually obtained by splitting the domains and

reapplying constraint propagation to each sub-domain. In general, continuous

constraint reasoning is based on such a branch-and-prune process which will

eventually terminate due to the imposition of conditions on the branching

process (e.g. small enough domains are not considered for branching).

Since no solution is lost during the branch-and-prune process, constraint

reasoning provides a safe method for computing an enclosure of the feasible

space of a CCSP. It applies, repeatedly, branch and prune steps to reshape the

initial search space (a box) maintaining a set of working boxes (a box cover)

during the process. Moreover, some of these boxes may be classified as inner

boxes, if it can be proved that they are contained in the feasible space (again

interval analysis techniques are used to guarantee that all constraints are

satisfied).

Figure 2.1 illustrates the results that can be achieved through continuous

constraint reasoning for a CCSP with two variables x and y, both ranging

within [-,], and a single constraint:

16

x2y + xy2 0.5 (2.10)

Figure 2.1 A box cover of the feasible space obtained through constraint
reasoning.

As show in the figure 2.1, constraint reasoning can prove that there are

regions with no solutions (white) and find boxes where every point is a solution

(dark gray). Additionally there are some boxes that cannot be proved to contain

or not solutions (light gray). These boxes denominated boundary boxes

represent the uncertainty on the feasible space enclosure which may be reduced

by further splitting and pruning.

2.2 Probabilistic Constraint Reasoning

Probability provides a classical model for dealing with uncertainty [14].

The basic elements of probability theory are random variables, with an

associated domain, and events, which are appropriate subsets of the sample

space. A real-valued random variable is a function from the sample space into

the real numbers.

17

A probabilistic model is an encoding of probabilistic information that

allows the probability of events to be computed, according to the axioms of

probability. In the continuous case, the usual method for specifying a

probabilistic model assumes, either explicitly or implicitly, a full joint

probability density function (p.d.f.) over the considered random variables,

which assigns a probability measure to each point of the sample space.

The probability of an event H, given a p.d.f. f, is its multidimensional

integral on the region defined by the event:

 ∫

 (2.11)

In accordance to the axioms of probability, f must be nonnegative and

when the event is the entire sample space  then P()=1.

The idea of probabilistic constraint reasoning [3] is to associate a

probabilistic space to the classical CCSP by defining an appropriate density

function. A constraint (or set of constraints) can be viewed as an event whose

probability can be computed by integrating the density function over its

feasible space.

In general these multidimensional integrals cannot be easily computed,

since they may have no closed-form solution and the event may establish a

complex nonlinear integration boundary.

The probabilistic constraint framework relies on continuous constraint

reasoning to get a tight box cover of the region of integration and compute the

overall integral by summing up the contributions of each box in the cover.

Generic quadrature methods are used to evaluate the integral at each box.

Taylor models [15] provide certified methods to obtain sharp enclosures

for the integral at each box and are used in probabilistic constraint reasoning

[14] to compute interval enclosures for the probability of an event. To guarantee

correctness, the contributions of inner and boundary boxes are processed

18

differently. The inner boxes contribution to the overall integral is the interval

obtained by the certified method. However, in the case of boundary boxes, the

region is some unknown subset of the box (eventually empty) and its

contribution ranges from zero to the obtained integral over the entire box.

Although this probabilistic constraint reasoning approach outputs

guaranteed results it is computationally demanding. This justifies an hybrid

approach which relies on constraint programming to obtain a cover of the

feasible space and then uses an approximate quadrature method on this

reduced space to obtain an estimate for the probability of an event.

The study of such hybridization with approximate quadrature methods is

the subject of this work. In particular, approaches based on Monte Carlo

integration techniques are investigated.

2.3 Monte Carlo Quadrature Methods

Quadrature methods are numerical methods that aim to approximate the

value of a definite integral [16],[17]. Numerical integration is used when

integrand itself is not specified analytically; analytical representation of the

integrand is known, but it is not expressed in terms of the primitive analytic

functions; primitive function is complex.

 Methods for one-dimensional integrals include [16]: Newton-Cotes

Formulas, Midpoint Rule, piecewise step function approximation, Trapezoid

Rule: piecewise linear approximation, Simpson's Rule, piecewise quadratic

approximation, Gaussian Formulas, Euler–Maclaurin formula, Romberg's

method. Methods for multidimensional integrals include: Sparse grids,

Quadrature Rules over Simplices, Monte Carlo and its modifications.

Quadrature methods based on the sparse grid approach [18],[19] consider

integration over the d-dimensional hypercube, [] . For spaces where

functions have bounded mixed derivatives Smolyak's construction (Smolyak,

19

1963) effectively combats the curse of dimensionality. The multidimensional

quadrature formulas based on tensor products of one-dimensional formulas for

constructing sparse grids. Regardless of the size of the problem, this process

preserves the number of function evaluations and numerical within a

logarithmic factor.

Different quadrature methods were proposed for cases where the domain

is not an hypercube, but a simplex. A simplex is defined by vertices in the

n-space. The multidimensional regions of integration can often be

approximated by union of simplexes. One of the methods is the Duffy

transformation, that reduces the problem to a quadrature rule over a

hypercube.

In general, Monte Carlo methods are computational algorithms that rely

on repeated random sampling to obtain numerical results. The applications of

these methods are: integration, simulation and optimization, computational

mathematics, inverse problems.

Sampling methods, such as Monte Carlo and its modifications, contrary to

numerical quadrature rules, are more efficient for multidimensional integrals of

large dimension (d≥15). For Monte Carlo integration, the error scales like

O(1/n), where n is the number of samples, independently from the dimension

of the integral. However, for substantial accuracy the convergence, a rate of

error is extremely slow. Hence, several techniques to improve the efficiency of

Monte Carlo integration were developed, including variance reduction

methods, Quasi-Monte Carlo and Adaptive Monte Carlo methods.

The Monte Carlo method is defined as following. We consider the integral

of a function f over , subset of with volume :

 ∫

, (2.12)

20

The naive approach is to sample random points on and calculate the

average value of the function. Then the integral can be approximated by:

∑

 (2.13)

where n is the number of samples and is random point in .

The Monte Carlo estimate converges to the true value of the integral as

 (Law of Large Numbers):

 (2.14)

The error estimate for finite n is characterized by the variance of the

function :

 √

 (2.15)

 The main advantage of Monte Carlo integration is that the error estimate

is independent of the number of dimension. The disadvantage is that integral

converges slowly to the true value as the sample size increases. There are

several approaches to improve this drawback, such as stratified sampling,

importance sampling, and control variates.

 Stratified Sampling [20] is the sampling method that partition the

domain of integration into sub-domains (strata), and the overall result is

computed by summing up the results of Monte Carlo integration in each sub-

domain. This method can improve the accuracy of statistical results of Monte

Carlo method.

The integration domain Ω is partitioned into a set of m disjoint subspaces

Ω1,. .. ,Ωm (strata). Then we can evaluate the integral as a sum of integrals over

each stratum Ωi.

21

Stratified sampling works well for low-dimensional integration, in case of

high dimensionality it does not scale well for integrals. The expected error of

this method is lower than variance of ordinary unstratified sampling.

 Importance sampling [21] is another modification of Monte Carlo

method, and is used for variance reduction. Here a density function p should be

chosen similar to the integrand f. This method corresponds to a change of

integration variables

∫

 ∫

 (2.16)

the estimator is:

 ̂

∑

 (2.17)

The variance of the estimator ̂ depends on the density p(x) from which

random samples are drawn. If we choose the density p(x) intelligently, the

variance of the estimator is reduced. p(x) is called the importance density and

 (2.18)

is the importance weight.

The best possible sampling density is p*(x)=c f(x) where c is the

proportionality constant:

∫

 (2.19)

The constant ensures that p* is normalized:

∫

 (2.20)

This gives us an estimation to the integral with zero variance, since

 (2.21)

22

In practice, we cannot use this density, because we must know the value

of the integral we want to compute to evaluate c. However, if we choose an

importance density p(x) that has a similar shape to f(x), the variance can be

reduced. It is also important to choose an importance density p such that it is

simple and efficient to evaluate.

 Importance sampling is very effective when function f(x) has large values

on small portions of the domain.

 But this method has different problems and is not practical. If p goes to

zero somewhere where f is not zero, the variance can be increased and can

actually be infinite. Another common problem that happens in importance

sampling is when the sampling density has a similar shape to f(x) except that

f(x) has longer (wider) tails. In this case, the variance can become infinite.

The control variates method is a variance reduction technique. It reduce

the error of an estimate of an unknown quantity by using the information about

the errors in estimates of known quantities.

If we can rewrite the estimator as

 ∫ ∫

 (2.22)

where integral of function is known and function has the following

property:

 [] [], (2.23)

then a new estimator is

 ∫

∑

 (2.24)

The variance of this new estimator will be lower than the original

estimator.

23

The method of control variates is more stable than importance sampling,

since zeros in g cannot induce singularities in .

Quasi-Monte Carlo methods are modifications of the Monte Carlo method

that do not require that the samples be chosen randomly. The idea is to

deterministically distribute the samples uniformly. In this methods the

irregularity of the distribution of the samples is measured and is called

discrepancy measure.

 Adaptive Monte Carlo Methods introduce the idea of adaptive sampling

(or sequential sampling), to take more samples where the integrand has the

most variation. The previous taken samples are examined, and using this

information the placement of future samples is controlled. The variance of the

samples in a given domain is computed, and then more samples are taken if the

variance exceeds a given threshold.

2.4 Application of Constraint programming and Interval

Analysis to Robotics

In [5] some applications of constraint programming for robotics are

presented. The example of an application is the design of controllers for

sensory-based robots.

Many of the tools developed up to that moment in the CSP and CP

paradigms were not adequate for the task, because techniques presume an

offline model of computation, whereas controllers in real physical systems

should be designed in an online model. Furthermore, the online model must be

based on various time structures: continuous, discrete and event-based, and

computations should be performed over various type structures domains:

continuous and discrete. That requires new models of computation and

constraint programming. For this task Zhang and Mackworth [22] defined

constraint satisfaction as a dynamic system process. It approaches

24

asymptotically the solution set of the given constraints, possibly time-varying.

In [23], [24] robots are considered as on-line constraint-satisfying devices.

Automatic synthesis of a correct constraint-satisfying controller can be

implemented with given a constraint-based specification and a model of the

plant and the environment, that was shown for a ball-chasing robot in [25].

Later [26], [27], was designed the system to support hybrid agents i.e., agents

with both continuous and discrete interactions with their environment. A

constraint satisfying controller could be synthesized by driving the system

toward satisfying all constraints (if the robotic system deviated from a

satisfactory state it will be driven toward a satisfying state). For reactive

systems, such as controllers and signal-processing systems, timed concurrent

constraint programming was developed [28].

More recent papers in application of constraint programming in robotics

suggest different approaches. For example, in [29] in order to provide a solution

in real-time a framework was developed, that models this decision process as a

constraint satisfaction problem. It uses techniques and algorithms from

constraint programming and constraint optimization.

Using constraint programming for finding the maximal pose error

(position and rotational errors) in robotic mechanical systems is proposed in

[30]. The authors claim that their global optimizer is very competitive compared

to the other methods and provides more robust results.

Another work deals with landmark recognition in mobile robotics, using

Multivariable Fuzzy Temporal Profile model (MFTP) based on Constraint

Satisfaction Problems (CSP). This model successfully detects 95% of the

landmarks on the reference wall [31].

The application of continuous constraint programming to modular robot

control was proposed in [32]. They consider the control of modular, hyper-

redundant robots, namely robots with many more degrees of freedom than

25

required for typical tasks. They assumed the control problem as a constraint

problem which is a promising approach for robustly handling a variety of non-

standard constraints. A parametric model for robotic control was presented and

a generic benchmarking model for continuous constraint satisfaction problems

was proposed.

In [33] interval analysis was applied to the design and the comparison of

three-degrees-of-freedom (3-DoF) parallel kinematic machines. They introduced

an algorithm describing this method and two 3-DoF translational parallel

mechanisms designed for machining applications were compared using that

method. Also [34] considered a Gough-type parallel robot. A numerically

robust algorithm based on interval analysis was developed. It allows to solve

the forward kinematics, to determine all the possible poses of the platform for

given joint coordinates. It is possible to take into account physical and

technological constraints on the robot, such as limited motion of the passive

joints. This algorithm is competitive in terms of computation time with a real-

time algorithm such as the Newton scheme, while being safer.

Application of interval methods for certification of the kinematic

calibration of parallel robots was proposed by [35]. A certified approach for this

problem in the case of a Gough platform was developed. This approach avoids

wrong solutions produced by the classical approaches.

2.5 Summary

In this chapter the basic notions of continuous constraint programming

and interval analysis were introduced. It was discussed how probabilistic

constraint reasoning extends pure constraint reasoning with special propose

techniques for computing the probability of events defined as constraints. This

requires the computation of multidimensional integrals over constrained

nonlinear regions. Classical methods for multidimensional quadrature were

overviewed with special emphasis to Monte Carlo integration techniques.

26

Finally it is shown how different methods and techniques of constraint

programming and interval analysis have been applied to robotics.

The next chapter discusses our probabilistic constraint reasoning approach

based on Monte Carlo integration techniques.

27

3. Probabilistic Reasoning with Monte Carlo

Integration

Probabilistic constraint reasoning depends on the joint cooperation of

continuous constraint programming with a multidimensional integration

method. Here the uncertainty is represented as bounded intervals with a

probabilistic characterization of the values distribution.

The probabilistic constraint framework relies on integral computations of

probabilistic density functions over constrained regions. This chapter presents

alternative approaches for the hybridization of constraint programming with

Monte Carlo integration. Continuous constraint programming is used to obtain

the feasible space, and then Monte Carlo Integration is applied on this reduced

space.

3

28

3.1 Probabilistic constraint reasoning

The probabilistic constraint framework complements the representation

the uncertainty by means of intervals with a probabilistic distribution of values

within such intervals. The main goal of the hybrid approach is the

development of a fast and convenient method for calculating the integral on a

bounded region. The usage of continuous constraint programming techniques

provide the results as a set of boxes that represent an enclosure of the bounded

region. Numerical and formal methods of integration can be used to compute

the value of integrals with certain accuracy. However, the error committed in

such computations can be critical for the specific problems. Whereas, certified

Taylor methods guarantee safe computations of the integral returning an

interval enclosure that contains the actual value, approximate methods aim at

obtaining fast accurate estimates.

In Chapter 2 we already introduced the notions of continuous constraint

programming and talked about the branch-and-prune process. Several branch-

and-prune algorithms were developed, their main principle is to recursively

refine the initial interval box, which is trivially a covering of the feasible space.

The two main procedures of those algorithms are branch and prune steps which

are recursively applied until a stopping criterion is satisfied. The branching

procedure splits an interval box from the covering into a partition of sub-boxes

(usually two). The prune procedure narrows down an interval box; it either

eliminates a box from the covering or reduces it into a smaller (or equal) box

maintaining all the exact solutions. For this task a combination of constraint

propagation (CPA) and consistency techniques are usually used. A box is

reduced through the consecutive application of the consistency techniques

associated with the constraints until a fixed-point is attained [4], [6].

Algorithm 3.1 illustrates a general branch-and-prune scheme. It computes

a joint box cover from the initial domains box and is based on the algorithm

presented in [6].

29

Branch&Prune(D, C, split, eligible, order, stop)

Input: D: initial domains box; C: set of constraints; eligible, stop: predicate; split,

order: function;

Output: S: box cover;

1 { ;

2 while do

3 ;

4 ;

5 for each

6 ;

7 if

8 { ;

9 end

10 end

11 end

12 return ;

Algorithm 3.1 Branch-and-prune

The input parameters of Algorithm 3.1 are: the initial domains box D; a set

of constraints C; predicates eligible, and stop; and functions split and order. The

eligible predicate checks a box for being appropriate for further processing (for

example, it may check if it contains an interval domain that can be further

subdivided). The predicate stop imposes the stopping criterion such as

precision, cardinality of the covering, or computation time. The function split

implements the branch procedure, it defines how to partition the box into sub-

boxes. The function order defines a total order between the boxes in the cover

determining which box is retrieved for processing.

The output of Algorithm 3.1 is a box cover S for the feasible space of the

constraints in C. In order to compute it, the box cover is initialized with the

domains box (line 1) and maintained during the algorithm main cycle (lines 2-

11). The first box from the current box cover that verifies the eligible predicate is

selected (boxes are ordered accordingly to the order function), and removed

from the list (line 3). Then, on the branch step, that box is split into a set of

boxes Si (line 4). Next is the prune step (lines 5-10), where each box in Si is

narrowed by the constraint propagation algorithm CPA (line 6) and, if not

30

discarded (line 7), is added to the box cover (line 8). The algorithm stops when

the stopping criterion is fulfilled (line 2).

Branch-and-prune algorithms can be applied for solving different

problems. In this work we are focused on the quadrature problem, i.e.

evaluation of the multidimensional integrals. Considering this problem,

Algorithm 3.1 can be modified in order to compute the value of the integrals.

The basic idea is to calculate the value of integral on each box obtained during

the branch-and-prune algorithm. The integration can be implemented using

any method, for example using Taylor models or Monte Carlo Integration. In

this work, we compare the integration using the Taylor method, which produce

accurate results and alternatives based on Monte Carlo integration techniques

which provide approximate results. This idea is presented by Algorithm 3.2.

Basically, it is a modification of Algorithm 3.1, in which the value of the integral

on each box is computed at each step. The result of each integration is

represented as an interval, the width of which, proportional to the uncertainty

around the correct value, will be used as a selection criterion for the next box to

process.

Branch&Prune Quadrature(D, C, split, eligible, order, stop)

Input: D: initial domains box; C: set of constraints; eligible, stop: predicate; split,

order: function;

Output: Q: interval;

1 ;

2 {

3 ;

4 while do

5 ;

6 ;

7 ;

8 for each

9 ;

10 if

11 ;

12 ;

13 {

31

14 end

15 end

16 end

17 return

Algorithm 3.2 Branch-and-prune with quadrature

The input parameters of the Algorithm 3.2 are similar to the previous

algorithm: the initial domains box D, the set of constraints C, predicates eligible

and stop, and functions split and order. As in the previous case, the eligible

predicate checks a box for being appropriate for further processing, the

predicate stop imposes the stopping criterion (such as precision). The function

split implements the branch procedure and the function order defines which box

is retrieved next for processing.

The first step of the algorithm is the integration of the entire domains box

 considering the constraints (line 1). The integration, represented in the

pseudo code by function integrate, can be implemented by any method, such as

Taylor, Monte Carlo or any other method. In our approach we assume that the

result of the integrate function is always an interval. If the function is

implemented with the Taylor Model method then this interval must contain the

correct value. This is not the case when the Monte Carlo approach is used,

where the center or the interval is the estimated approximate value and the

width of the interval is made proportional to the estimated deviation.

During the execution of Algorithm 3.2 a box cover S is maintained where

the interval computed by function integrate is kept associated with the

respective box. At beginning the box cover is initialized with the box domains

together with the computed interval (line 2). Then, the interval is assigned to

variable (line 3) that is maintained during the processing to represent the

overall integral resulting from the contributions of every box in the cover.

The function order selects the first box from the current box cover that

verifies the eligible predicate, and this box is removed from the list (line 5). The

32

order of boxes is determined by the width of the corresponding intervals.

Ordering them by descending interval width we aim at choosing first the boxes

with largest uncertainty on the computed integral.

The contribution of box to the overall integral must be removed from

(line 6) because we will replace such contribution by the contributions of its

sub-boxes. Notice that and are intervals and so the correct way to remove

the contribution of from is to use the special interval operator \ that reverse

the effect of the interval operator + and is defined as:

 [] [] [] (3.1)

 Afterwards, the box is splitted into sub-boxes on the branch step (line

7). On the prune step the constraint propagation algorithm is applied for

each of the sub-boxes (lines 8-9) in order to reduce or eliminate them. If the sub-

box is not discarded (line 10), the integral value is computed over this sub-box

considering the constraints (line 11). The integral value represented as an

interval is added to the previous according to the rules of interval arithmetic

(line 12). Finally the sub-box with its integral value is added to (line 13).

Basically, the integral is computed for each sub-box and the obtained

values of the integral over these sub-boxes are added (line 12) according to the

addition rule of interval analysis discussed in the Chapter 2. The widths of

those intervals serve as a criterion for choosing the box on line 5. The sum of all

those intervals is the final value of the integral.

Function can be implemented with any quadrature method. The

first method proposed in the original probabilistic constraint framework [14] is

a certified quadrature method based on Taylor models which is briefly

discussed next. Approximate implementations based on Monte Carlo

integration methods are presented is section 3.2.

33

Taylor Models

Taylor models can be used for the computation of the quadrature over a

box. Taylor models provide efficient methods to compute enclosures for the

quadrature of multivariate functions.

A Taylor model of inside an n-dimensional box is a pair

 , where is a polynomial and is an interval satisfying

 The degree of the Taylor model is the degree of p.

A Taylor model of a function can be obtained from its multivariate Taylor

expansion, using the interval evaluation of the highest order derivatives to

compute rigorous bounds for the remainder [6].

Given a Taylor model of a function inside an n-

dimensional box B:

∫

 ∫

 (3.2)

The enclosure provided can be very sharp: if a Taylor model of order is

used, the quadrature computation has an order of convergence of . To

compute an integral of a function over some region defined as a box, the

method can be applied to obtain a sharp enclosure. However, when the region

is some unknown subset of the box (eventually empty) the integral ranges from

zero to the integral of the function maximum (minimum) over the entire box. In

this case, a sharp (and more costly) enclosure is no longer worth computing and

a cruder enclosure can be used.

3.2 Methods and algorithms of Monte Carlo integration

The Monte Carlo integration method was discussed in Chapter 2. It

provides an approach to estimate the value of the multidimensional integrals.

34

Let consider the region with a possible nonlinear boundary,

indicator function { , an n-dimensional box and function

 . Consider random sample points { uniformly distributed

inside , then the approximation of the integral value is following:

∫

∑

 (3.3)

The indicator function assumes the value 1 if the sample point

satisfy the constraints and value 0 if not.

 Monte Carlo integration provides an estimate of the uncertainty in the

approximation ̂ obtained by the method. From the central limit theorem the

standard deviation of the estimate of the integral is:

√∑ ∑

 ⁄

 (3.4)

Thus we can represent the obtained value of the integral as the interval

 [̂ ̂]. The sequence of steps for computing the interval will be the

following:

1) Select random points;

2) Calculate for these points and the square of this value

 ; (3.5)

3) Estimate the mean of using the average of these samples:

 ̅
∑

; (3.6)

4) Multiply with the volume to get an approximation of the integral:

 ̂
∑

 ; (3.7)

5) Calculate deviation:

√∑ ∑

 ⁄

 ; (3.8)

6) Calculate interval:

 [̂ ̂]. (3.9)

35

The error of the estimation decreases as √ . The advantage of Monte

Carlo integration is that this result does not depend on the number of

dimensions of the integral, while most deterministic methods depend

exponentially on the dimension. The Algorithm 3.3 describes the simple Monte

Carlo integration method.

Algorithm 3.3. simpleMonteCarlo Integrate(B, C, N, f, randomGenerator, indicator,

volume)

Input: : n-dimensional box; C: set of constraints; : number of samples;

 , randomGenerator, indicator, volume: function;

Output: I : interval;

1 ̂ ;

2 ;

3 ;

4 while do

5

6

7 ̂ ̂

8

9 ;

10 end

11 ̂ ̂

12 √ ̂

13 [̂ ̂]

14 return

Algorithm 3.3 Monte Carlo integration

The input parameters are the n-dimensional box, the set of constraints, the

number of samples, the integrand function f, and such functions as,

randomGenerator that generates a random point within a box, indicator that

define whether a point satisfy the constraints, and volume that calculates the

volume of a box. The output is the integral, represented as an interval.

The algorithm works for a fixed number of samples (line 4) and

maintains two accumulators ̂ and initialized in lines 1 and 2, respectively.

36

The random generator generates values inside box (line 5). Then the

algorithm calculates the value of the integrand function in that point (line 6),

considering the constraints with usage of function . The sum of

obtained results is calculated (line 7), as well as the sum of the square of the

result (line 8). The estimate of the integral ̂ is computed by multiplying the

average of these samples by the volume of the box (line 11). The deviation is

computed by the formula above (line 12). The result is an interval enclosing

the estimated value within the computed deviation (line 13).

This method assumes that the number of samples is initially defined.

However, if we chose a fixed number of samples, we cannot guarantee that the

result of the calculation will be acceptable. In case of a too small number of

samples, the accuracy may be unsatisfactory. In case of large number of trials

the calculations may take too long. An alternative is to proceed the calculation

until some predefined required deviation is obtained (or width of interval

represented as double deviation). This approach is shown in Algorithm 3.4.

Algorithm 3.4. deviationMonteCarlo Integrate(B, C, N, , f, randomGenerator,

indicator, volume)

Input: : n-dimensional box; C: set of constraints; : number of samples; :

accuracy;

 , randomGenerator, indicator, volume: function;

Output: I : interval;

1 ̂ ;

2 ;

3 ;

4 ;

5 while do

6

7

8 ̂ ̂

9

10 √ ̂

11

12 end

37

13 ̂ ̂

14 √ ̂

15 [̂ ̂]

16 return

Algorithm 3.4 Monte Carlo integration with deviation calculation for the
interval representation

 This algorithm differs from the previous one in that it calculates the

deviation for each sample (line 10). The calculation proceeds while the required

value of accuracy is not obtained (line 5). All other steps are similar to the

previous algorithm.

The possible advantage of this approach is that it can be specified a

required accuracy which must be fulfilled after the initial number of trials. The

drawback is that this requirement may be too demanding specially in

articulation with the branch-and-prune algorithm.

3.3 Experimental results

In this work we implement and compare three methods for integration.

One is the pure Monte Carlo integration, the other two are based on Algorithm

3.2 (Branch&Prune Quadrature) one uses Taylor Models, and the other uses

Monte Carlo integration. We will test those methods on different problems and

analyze the results. Since the results of integration are represented as intervals,

the criterion of comparison is the error of the interval midpoint. For a given

exact value and an approximation value the relative error is

 |

| (3.10)

In the following we present the integrals extracted from [15], the graphs of

the integrand functions over the constrained regions, and the results of

computations. We compare the described above methods and present tables

with the relative errors. The tables contain the values of errors of the midpoints

for every 30 seconds execution time. We also present the graphics of the errors.

38

3.3.1 Experiment 1

Integral ∫ ((

)) x

.

The illustration of this function is shown on

Figure 3.1. The same function on the constraint region of integration

() is presented on Figure 3.2.

Figure 3.1 Graph of the integrand function

39

Figure 3.2 Graph of the integrand function on the constraint region

The integrand function is highly oscillatory. We consider the

multidimensional integral with the integration domain represented as unit

circle.

We compare the midpoint of the integral with the correct value obtained

by formal method in Mathematica [15]. The correct value of the integral is

 . The application of the algorithms gives the following

results shown in Table 3.1.

Table 3.1 Integral . Relative errors

Time, [seconds] 30 60 90 120 150 180 210 240 270 300

Taylor CCP 0,000026 0,000013 0,000009 0,000006 0,000005 0,000004 0,000003 0,000003 0,000003 0,000003

Simple MC 0,000220 0,000031 0,000214 0,000115 0,000057 0,000088 0,000125 0,000008 0,000047 0,000072

MC

+CCP

10

- 0,000380 0,000315 0,000262 0,000231 0,000204 0,000176 0,000163 0,000154 0,000153 0,000146

0,1 0,000455 0,000374 0,000276 0,000235 0,000216 0,000193 0,000175 0,000170 0,000158 0,000151

0,01 0,000814 0,000374 0,000317 0,000272 0,000209 0,000198 0,000183 0,000168 0,000156 0,000148

100

- 0,000005 0,000068 0,000042 0,000033 0,000043 0,000037 0,000032 0,000026 0,000031 0,000026

0,1 0,000126 0,000127 0,000052 0,000037 0,000026 0,000033 0,000033 0,000028 0,000033 0,000031

0,01 0,000247 0,000186 0,000063 0,000042 0,000009 0,000029 0,000034 0,000029 0,000035 0,000037

40

Table 3.1 shows the values of the errors obtained by the various

techniques for execution times of 30, 60, ..., 300 seconds. Comparing values this

allows to understand the best method for a specific problem.

In the first line, we present the results for the integration based on

continuous constraint programming with Taylor models (Branch&Prune

Quadrature with function integrate based on the Taylor model quadrature

technique).

The second line contains the results of calculation errors using the pure

Monte Carlo method (simpleMonteCarlo Integrate over the initial domains box).

For this and the following methods that use Monte Carlo techniques the error is

calculated as an average value of 20 independent tests. This is done in order to

obtain objective results, since Monte Carlo method is a stochastic

nondeterministic method and its results cannot be fairly evaluated based on a

single experience (there is a significant fluctuation on the values obtained).

The next 6 rows in the table, are the error values for the Monte Carlo

method combined with continuous constraint programming. The first 3 lines

show errors for calculations, in which the minimum number of trials for each

box equal to 10. In the first of that three lines there are the results of Algorithm

3.3 (Branch&Prune Quadrature with simpleMonteCarlo Integrate), in which the

number of trials is fixed for each box (there are precisely 10 samples). The next

row shows the results of the calculation error of Algorithm 3.4 (Branch&Prune

Quadrature with deviationMonteCarlo Integrate), in the case where the minimum

value of the deviation is defined and is equal to 0.1, so that sample process ends

when the deviation decreases until the required value. In the next row the

specified value of the deviation is 0.01. The next 3 lines are similar, but the

minimum number of trials is 100. Such experiments are carried out in order to

determine which configuration is best for this example.

41

From this table we can conclude that the best results we obtained with the

Taylor model approach. The graphs with the error values are shown on Figure

3.3 and Figure 3.4.

First we compare the results for the Monte Carlo integration method

combined with continuous constraint programming. Figure 3.3 shows the

errors of the integral values, obtained by this method with different

configurations. From this graphic we can conclude that increasing the number

of trials decreases the error of computations. In this case Algorithm 3.3 for the

Monte Carlo integration presents better results than Algorithm 3.4 with the

required value of the deviation. It can be explained by the fact that Algorithm

3.4 takes more time for the calculations. In Algorithm 3.4 the calculations are

similar to Algorithm 3.3, but continue, if not achieved the desired deviation, i.e.

the calculation takes a bit more time, but it ensures that the value of the

deviation is less than or equal to the specified value.

Comparing the obtained results, we conclude that for this example, the

best result is at line 6 of table 3.2, corresponding to the hybrid approach with a

fixed number of 100 trials.

Figure 3.3 Errors of Monte Carlo integration method combined with continuous

constraint programming.

0,000000

0,000200

0,000400

0,000600

0,000800

0,001000

1 2 3 4 5 6 7 8 9 10

Error

Time, s

Integration MC+CCP

trials = 10; deviation = 0

trials = 10; deviation = 0,1

trials = 10; deviation = 0,01

trials = 100; deviation = 0

trials = 100; deviation = 0,1

trials = 100; deviation = 0,01

42

Figure 3.4 shows the comparison of the integration with Taylor models,

pure Monte Carlo and Monte Carlo with continuous constraint programming

(best value). For this example, the best results were obtained using the Taylor

method closely followed by the Monte Carlo with CCP method.

Figure 3.4 Errors of the quadrature methods

For these approaches, the value of the errors decreases with the time.

However, for pure Monte Carlo the results are oscillating, that due to the fact

that Monte Carlo is a stochastic method.

These results indicate that the combination of Monte Carlo with

continuous constraint programming gives an advantage over the pure Monte

Carlo integration method. The branch-and-prune algorithm reduces the

sampling space that improves the efficiency of the Monte Carlo method and

makes it more robust to stochastic oscillations.

Thus, the order of the results from best to worst is:

1) Taylor models

2) Monte Carlo with continuous constraint programming

3) Pure Monte Carlo

0,000000

0,000050

0,000100

0,000150

0,000200

0,000250

0 50 100 150 200 250 300 350

Error

Time, s

Errors of the quadrature methods

Taylor CP

Simple MC

MC+CCP

43

3.3.2 Experiment 2

Integral ∫

 x

This integral is similar to the integral from the previous example, but it

has one more dimension, another variable . The increase on the dimension of

the integral complicates the calculations.

Table 3.2 shows the results errors of the calculations with the Taylor

method, the pure Monte Carlo, and the CCP + Monte Carlo method. The exact

value of the integral obtained using formal methods is 8.37845. The table

structure is similar to that in Example 1.

Table 3.2 Integral . Relative errors
time 30 60 90 120 150 180 210 240 270 300

Taylor CCP 0,000057 0,003221 0,003459 0,003633 0,003126 0,002786 0,002642 0,002527 0,002506 0,002518

Simple MC 0,000151 0,000798 0,000432 0,000135 0,000410 0,000090 0,000150 0,000232 0,000284 0,000337

MC+CCP

10

- 0,003569 0,003576 0,003709 0,003880 0,004001 0,003991 0,004068 0,004130 0,004133 0,004142

0,1 0,004454 0,004850 0,005046 0,004960 0,005156 0,005246 0,005249 0,005281 0,005249 0,005319

0,01 0,012221 0,012495 0,012358 0,012745 0,012672 0,012798 0,012892 0,012893 0,012916 0,012917

100

- 0,000320 0,000213 0,000057 0,000372 0,000294 0,000177 0,000136 0,000008 0,000108 0,000052

0,1 0,000534 0,000342 0,000228 0,000346 0,000220 0,000130 0,000110 0,000039 0,000075 0,000044

0,01 0,000747 0,000471 0,000398 0,000319 0,000145 0,000082 0,000084 0,000070 0,000043 0,000036

Figure 3.5 illustrates the results for the Monte Carlo integration method

combined with continuous constraint programming, showing the errors of the

integral values, obtained by this method with different configurations.

Comparing the different configurations we note that the best is at line 6

of Table 3.2 with a fixed value of 100 trials.

Figure 3.6 shows the error values obtained by the different methods.

Unlike the previous example, the method of Taylor presents the worst results.

After 30 seconds of execution time, the error value is acceptable, but it abruptly

increases. This example clearly shows that the calculation of multidimensional

integrals using the Taylor method may be very inefficient. In this example we

added just one dimension, and Taylor method significantly decreased

performance. That's why we can talk about the effectiveness of the Monte Carlo

44

method, for which the multi-dimensionality of the integral does not affect

exponentially the efficiency of the algorithm.

Figure 3.5 Errors of Monte Carlo integration method combined with continuous
constraint programming.

Figure 3.6 Errors of the quadrature methods

Thus, in this example, the order of the results from best to worst is:

1) Monte Carlo with continuous constraint programming

2) Pure Monte Carlo

3) Taylor models

0,000000

0,002000

0,004000

0,006000

0,008000

0,010000

0,012000

0,014000

1 2 3 4 5 6 7 8 9 10

Error

Time, s

Integration MC+CCP

trials = 10; deviation = 0

trials = 10; deviation = 0,1

trials = 10; deviation = 0,01

trials = 100; deviation = 0

trials = 100; deviation = 0,1

trials = 100; deviation = 0,01

0,000000

0,000500

0,001000

0,001500

0,002000

0,002500

0,003000

0,003500

0,004000

0 100 200 300 400

Error

Time,s

Errors of the quadrature methods

Taylor CP

Simple MC

MC+CCP

45

3.3.3 Experiment 3

 Integral ∫ arctan

 x

 {x [] ‖x‖

In this example, the integrand function is shown in Figure 3.7. The same

function on the bounded domain is shown in Figure 3.8.

Figure 3.7 Graph of the integrand function

Figure 3.8 Graph of the integrand function on the constraint region

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.5

1

1.5

0 0.5 1 1.5 20

1

2

0

0.5

1

1.5

46

The exact value of the integral is equal to 1.2562052338296295. As in the

previous examples Table 3.3 shows the results obtained by each method.

Table 3.3 Integral . Relative errors

time 30 60 90 120 150 180 210 240 270 300

Taylor CCP 0,000061 0,000023 0,000015 0,000010 0,000008 0,000007 0,000005 0,000004 0,000004 0,000004

Simple MC 0,000525 0,000617 0,000123 0,000127 0,000224 0,000167 0,000215 0,000264 0,000149 0,000197

MC+CCP

10

- 0,000381 0,000268 0,000229 0,000206 0,000190 0,000174 0,000158 0,000145 0,000139 0,000129

0,1 0,000378 0,000268 0,000208 0,000177 0,000160 0,000148 0,000135 0,000118 0,000108 0,000099

0,01 0,000415 0,000310 0,000229 0,000206 0,000194 0,000180 0,000169 0,000150 0,000140 0,000127

100

- 0,000039 0,000030 0,000027 0,000026 0,000020 0,000021 0,000020 0,000019 0,000017 0,000017

0,1 0,000049 0,000035 0,000028 0,000026 0,000021 0,000020 0,000020 0,000020 0,000018 0,000017

0,01 0,000060 0,000040 0,000029 0,000026 0,000021 0,000018 0,000020 0,000020 0,000019 0,000017

Figure 3.9 illustrate the results for the Monte Carlo integration method

combined with continuous constraint programming. The errors of the integral

values obtained by this method with different configurations are presented.

Comparing different configurations we note that the best is again at line 6 of

Table 3.3, with a fixed minimum value of 100 trials. Also it should be noted,

that Algorithm 3.4 for Monte Carlo integration with the required deviation

presents better results, than Algorithm 3.3 for a number of trials equal to 10.

Figure 3.9 Errors of Monte Carlo integration method combined with continuous
constraint programming

0,000000

0,000100

0,000200

0,000300

0,000400

0,000500

1 2 3 4 5 6 7 8 9 10

Error

Time, s

Integration MC+CCP
trials = 10; deviation = 0

trials = 10; deviation = 0,1

trials = 10; deviation = 0,01

trials = 100; deviation = 0

trials = 100; deviation = 0,1

trials = 100; deviation = 0,01

47

Figure 3.10 shows the comparison of the integration results obtained

with Taylor models, pure Monte Carlo and Monte Carlo with continuous

constraint programming.

Figure 3.10 Errors of the quadrature methods

In this case, the results are ordered as follows:

1) Taylor models

2) Monte Carlo with continuous constraint programming

3) Pure Monte Carlo

We again observe that the usual method of Monte Carlo loses in efficient

with respect to its hybridization with continuous constraint programming.

0,000000

0,000100

0,000200

0,000300

0,000400

0,000500

0,000600

0,000700

0 100 200 300 400

Error

Time, s

Errors of the quadrature methods

Taylor CP

Simple MC

MC+CCP

48

3.4 Comparison of the methods

Taylor models

In two cases integration with Taylor models gave better results than other

methods. But in cases of higher dimension they obviously lose, which is a clear

disadvantage of this method.

Monte Carlo

Pure Monte Carlo cannot guarantee the accurate value of the integral and

showed the worst performance in the all experiments. The advantage of this

method lies in the simplicity of its implementation and application possibilities

for solving multidimensional integrals. The disadvantage is the poor efficiency

compared to other methods considered.

Monte Carlo with continuous constraint programming

The hybridization of the Monte Carlo method with continuous constraint

programming is clearly superior in performance with respect to the pure Monte

Carlo method. This is based on the branch and-prune integration algorithm

where sampling is performed on reduced boxes requiring less execution time

than in the pure Monte Carlo approach. This method can be successfully

applied when Taylor method fails as it is more efficient for the calculation of

multidimensional integrals.

The work studies a modification of the simple Monte Carlo algorithm, in

which further sampling is enforced until a required value for the deviation is

achieved. This is done in order to ensure accuracy. Often this approach leads to

an increase in computation time. In general it is necessary to find a balance

between the number of trials and the required deviation. A possibility could be

to specify an adequate maximum number of trials so that calculations do not

take too long.

49

3.5 Conclusion

The goal of this chapter is to propose a method to compute close estimates

of the correct integral value by applying Monte Carlo integration techniques

that benefit from the contribution of constraint programming to reduce the

sample space into a sharp enclosure of the integration region. This integration

method will be used in the next Chapter, where a robot localization algorithm is

presented based on the developed techniques.

We addressed Monte Carlo quadrature methods in the context of the

branch-and-prune algorithm of constraint programming. Several methods and

algorithms of integration were developed and their parameterization was

studied. We tested the methods on different benchmark examples involving

multidimensional quadrature over constrained regions. We compared those

methods with simple Monte Carlo integration and certified quadrature

methods based on Taylor models.

In many cases the results depend on the integrated function, the kind of

constraints and the dimension of the integral. Further experimentation is

needed in order to support our main conclusions. The Taylor method approach

guarantee the safe enclosure of the integral correct value, but in case of many

dimensions it fails to compute the integral with reasonable accuracy. On the

contrary, the efficiency of the Monte Carlo methods do not depend

exponentially on the number of dimensions of the problem. The hybridization

of the Monte Carlo integration method with constraint propagation is a

promising approach that allows the estimation of the value of a

multidimensional integral, usually faster than the pure Simple Monte Carlo

alternative and requires less number of samples. This approach is able to

provide accurate results even in cases when the Taylor method fails.

50

51

4. Application to Robot Localization

Among the large variety of robots we can distinguish the class of mobile

robots that perform operations which require the displacement of the robot in

space. Mobile robots have to be accurately positioned in the working

environment, i.e. must be identified by their coordinates.

 In this Chapter we explain how Monte Carlo Integration with Continuous

Constraint Programming can be used for solving localization problems.

Research carried out in this work, allowed to implement algorithms designed to

solve the problem of mobile robot localization.

To be autonomous, mobile robots must be able to estimate their position

from available prior information about the environment and measurements

provided by its sensors during navigation. An autonomous robot must

integrate the incoming information from the sensory inputs into a consistent

model of the environment and simultaneously determine its own location.

4

52

4.1 Mobile service robots

The Monte Carlo Integration with Continuous Constraint Programming

can be applied to the mobile robot localization. One of such robots ServRobot

(Figure 4.1) that was created in the scope of the Research and Technology

Development component of the Holos company. ServRobot is an service robot

that can be applied in surveillance systems. The robot moves around in their

environment and collects the sensory information. ServRobot can work and

perform certain tasks in conditions that are difficult to humans thus replacing

them. Robot adapts to different types of use and environmental conditions

which addresses a new paradigm in video surveillance systems.

Figure 4.1 Mobile robot ServRobot

ServRobot is a skid-steered four-wheel mobile robot developed using

state-of-the-art technology. The robot is mechanically robust and simple for

outdoor navigation. The motion direction is changed by turning the left- and

right-side wheels at different velocities. The robot is equipped with several

sensors that receive the information about surrounding environment.

- optical encoders;

- inertial measurement unit with an accelerometer;

- gyroscope;

- magnetometer;

- sonars;

- LADAR.

53

The estimation of the robot position can be implemented with the

information provided by those sensors. The front sonars are used to capture

environment information ahead of the vehicle within a range of 3 meters. A

LADAR (Laser Detection and Ranging) provides a panoramic view of the

environment, it gathers distance measurements within a range of 20 meters.

ServRobot has the following technical paramenters:

 Weight: 80 kg

 Load capacity: 65kg (with maximum slope of 5%)

 Maximum speed: 10 km / h

 Battery: 4 hours

 Ground distance: 25 cm

 Dimensions:

o Length: 152 cm

o Width: 60 cm

o Height: 97 cm

The robot is driven by DC motors that are the most commonly used

method for locomotion in mobile robots. These motors can produce sufficient

power for a variety of tasks [36]. DC motor has a complicated construction,

however, the motor control system is easier than control system induction

motor, which nevertheless are applicable in robotics. The research concerning

induction motors and the universal method of its general structural analysis

was proposed in [37]. It can be used in engineering practice for the purpose of

investigating complex electromechanical systems.

The control of the robot can be implemented with various of methods,

such as classical approaches (PID) and the modern ones (sliding mode control,

passivity-based control) [36]. Another important area is robot learning that

allows a robot to adapt to its environment through learning algorithms.

Artificial neural networks can be used for a number applications of in robotics.

The application of complex-valued neural networks for control of automation

systems was proposed in [38]. There were presented the developed algorithms

that can be applied for the robot control and robot learning.

54

4.2 Simultaneous Localization and Mapping methods

The idea of probabilistic robotics is to represent uncertainty explicitly,

using the calculus of probability theory. Instead of relying on a “single

scenario”, probabilistic algorithms represent information by probability

distributions over a whole space of possible hypotheses.

Odometry aims to estimate the change in the position of the robot over

time. The robot gets the current angular velocity of the wheels and the current

rotation angles of the wheels relative to the initial position. Knowing the angles

of rotation of the wheels, the current angle of rotation of the robot is calculated

by geometry formulas. Coordinates of the robot are calculated as integrals of

the angular velocities of the wheels. The formulas depend on the specific

kinematic configuration of the robot.

With the use of visual odometry or based on the analysis of ranging data

the robot can determine its offset relative to the previous position. In the ideal

case, when the calculations are accurate and faultless, it is possible to build a

map of environment and describe its trajectory. Unfortunately, in reality, at

each step there is a small calculation error (due to measurements error,

interference, restrictions imposed by the algorithms, etc.). Over time, total

accumulative error continues to grow, so that the global map will be inaccurate.

The complexity of the technical process of determining the current location and

constructing the map is magnified by the low precision instruments involved in

the calculation of the current location. In order to deal with this problem

Simultaneous Localization and Mapping Methods (SLAM) were designed. An

overview of SLAM methods is given in [39].

SLAM is aimed to solve two problems:

 1) build a map of an unknown environment

 2) navigating the environment using this map

55

The large number of researches was conducted in this area. The surveys

can be found in [1], [39], [40]. It should be noted that this problem is not

completely resolved and is still under investigation.

The important problem in a SLAM algorithm is the representation of the

joint distribution over robot poses and maps, because maps are usually

represented by an high number of parameters. The mostly used representations

are: the feature-based - collection of landmark locations and correlated

uncertainty; the grid based - collection of discretized obstacle/free-space pixels;

and topological - collection of nodes and their interconnections. SLAM

problems can be divided into several connected parts: landmark extraction,

data association, state estimation, state update and landmark update.

Different SLAM probabilistic approaches exists, such as Kalman Filters,

Particle Filters also called Monte Carlo localization, and Expectation

Maximization , which are mathematical derivations of the recursive Bayes rule

[40]. There are variations of Kalman Filter: the Extended Kalman Filter and

Information Filtering. There is a number of other SLAM methods, for example

Compressed Extended Kalman Filter, Extended Information Filtering, Rao-

Blackwellised particle filters for laser-based SLAM, incremental Smoothing and

Mapping, Tree-based netwORk Optimizer, etc.

The Extended Kalman Filter deals with nonlinear process model and

nonlinear observation model. It is aimed to linearize a nonlinear dynamic

system for use in a Kalman Filter, which is applied to estimate the position of

the robot through a motion model, and its environment through an observation

model, based on its odometry and landmark position measurements. It is one of

the most successful SLAM algorithms and is used navigation systems and GPS.

The example of Extended Kalman Filter from [1] is shown on Figure 4.2.

56

Figure 4.2 Extended Kalman Filter applied to the on-line SLAM problem.

The dotted in is the robot’s path, shaded ellipses show the estimations of

its own position. The dots mean eight distinguishable landmarks of unknown

location, and their location estimations are white ellipses. On the figures (a)–(c)

the positional uncertainty of robot is increasing, as is its uncertainty about the

landmarks it encounters. When the robot senses the first landmark again (figure

(d)) the uncertainty of all landmarks decreases. The uncertainty of the current

pose decreases as well.

One of the simplest and most productive SLAM implementations is based

on particle filter, also called Monte Carlo Localization (MCL). Particle filters are

mathematical models that represent probability distribution as a set of discrete

particles which occupy the state space. Particle filters are a way to efficiently

represent non-Gaussian distribution. Monte Carlo localization is a particle-filter

based implementation of recursive Bayesian filtering for robot localization [7,8].

On the each iteration of MCL, the likelihood function is evaluated at sample

points that are randomly distributed according to the posterior estimate of the

robot location.

57

The principle of MCL is the following:

1) The map of the surrounding space is a two-dimensional array of

single-byte variables. Initially, the map is empty.

2) Initialize the initial position of the robot.

3) Read the values from the range finder and maps obstacles according to

the obtained measurements.

4) Next, proceed in an infinite loop.

a) Use odometry to predict how much the robot have moved relative

to the previous measurement.

b) Read the values from the range finder.

c) Calculate the most probable position of the robot using the particle

filter for the current map. One particle contains the position and

angular orientation of the robot. Probability of a particle is

calculated based on the difference between the actual readings of

range finder and predicted value for the given particle.

d) Assuming that the robot is in the most probable position, update

the current map based on readings from the range finder.

The Monte Carlo localization process is shown in Figure 4.3 (from [41]).

Figure 4.3 Monte Carlo Localization

On the left picture the robot is globally uncertain and the samples are

spread uniformly. On the middle picture the robot moved about 1 meter and

58

the ambiguity is almost resolved. The right picture shows samples that now

centered tightly around the correct position, so robot knows where he is [41].

Other methods based on Expectation Maximization are iterative methods

for finding maximum likelihood that offer an optimal solution, being an ideal

option for map-building, but not for localization. The Expectation Maximization

algorithm is able to build a map when the robot’s pose is known, for instance,

by means of expectation [6,9].

Table 4.1 from [40] shows the advantages and disadvantages of the

methods applied into the SLAM framework.

Table 4.1 SLAM filtering approaches

Advantages Disadvantages

Kalman Filter and Extended KF (KF/EKF)

- high convergence
- handle uncertainty

- Gaussian assumption
 - slow in high dimensional maps

Compressed Extended KF (CEKF)

- reduced uncertainty
- reduction of memory usage
- handle large areas
- increase map consistency

 - require very robust features
 - data association problem
- require multiple map merging

Information Filters (IF)

- stable and simple
- accurate
- fast for high dimensional maps

- data association problem
 - may need to recover a state
estimates
 - in high-D is computationally
expensive

Particle Filter (PF)

- handle nonlinearities
- handle non-Gaussian noise

 - growth in complexity

Expectation Maximization (EM)

- optimal to map building
- solve data association

 - inefficient, cost growth
 - unstable for large scenarios
- only successful in map building

Generally, the advantages of probabilistic robotics are its robustness (the

only known methods to perform real-world SLAM) and weaker requirements

on sensors and models (because we know they are not perfect). On the other

side its drawbacks are the computational complexity (because we consider

59

more information) and the need to make approximations (it is not feasible to

compute exact posterior distributions for continuous worlds).

4.3 Application of Constraint reasoning to Robot

Localization

The localization of the robot implies the definition of the robot’s current

location and orientation. The sensor’s measurements provide the information

about the environment. We propose a method that uses constraint reasoning for

computing the enclosure of all scenarios consistent with the constraint model.

We also apply the probabilistic constraint approach to add likelihood

information and support reliable solutions that can be useful for the robot

navigation.

The distribution of the error of sensor data can be included and

propagated into the probabilistic characterization of the scenarios that remain

in according to the updated model limitations.

The problem of localization in a probabilistic aspect can be seen as the

problem of determining the density of the distribution function of the position

of the robot. There is a need to reduce the probability to a small space region.

We assume that the map of the environment is known. A map of the

environment is a list of objects and their locations. The walls and the objects on

the map can be presented as segments with the coordinates of the beginning

and the end of the segment.

The robot pose is defined on the coordinate plane with its (x,y)

coordinate and an angle that is the orientation of a robot, often called bearing,

or heading direction (Figure 4.4).

60

Figure 4.4 Robot pose on the global coordinate system

The application of continuous constraint programming and Monte Carlo

integration to the robot localization problem is based on the defining the grid

over the region, applying the constraint propagation technique and obtaining

the probability over the grid. It can be represented by the following steps:

1) Obtain map of the environment;

2) Set a grid on the map;

3) Apply constraint propagation technique

4) Get probability of the box by Monte Carlo integration method:

a) Set random points inside the box

b) Compute the value of pdf for each point

c) Estimate the mean of using the average of these samples:

∑

; (4.1)

d) Multiply with the volume to get an approximation of the

integral:

∑

 ; (4.2)

5) Normalize the computed probabilities

61

We will use a simplification of the algorithm from [6] that computes a

grid over the feasible region and calculates the probability distribution

conditioned to the model constraints.

Algorithm 4.1 computes a conditional probability distribution of the

variables random vector given the event that satisfies all

constraint in . The result of the algorithm is an n-dimensional matrix

representing the conditional probability at each grid cell.

A grid is specified by the spacings of its dimensions, which are

computed based on a specified number of partitions for each dimension. The

input variable G is an n-dimentional array that defines the number or partitions

considered at each dimention.

gridConditionalDistribution

Input: D: initial domains box; C: set of constraints; eligible, stop: predicate;

split, order: function; : array of integers

Output: : n-dimentional matrix of intervals;

1 ;

2 [] [] [] []

3 ;

4 for each do

5 〈 〉 ;

6 [] [] ;

7 [] [];

8 end

9 [] [] [] []
 [] []

10 return ;

Algorithm 4.1 Computation of the probability distribution

The Algorithm 4.1 first computes a grid box cover for the feasible space

of the model constraint (line 1). Function is used with a grid

oriented parameterization, i.e., splits the boxes in the grid and

chooses boxes that are not yet inside a grid box. The predicate requires that

62

the algorithm only stops when there are no more eligible boxes and

induces a depth first search.

Then the matrix M of conditional probability distributions is initialized to

zero (line 2) as well as the normalization factor P that will contain, in the end of

the process, the overall sum of all non normalized parcels (line 3). For each box

B in the cover S (lines 4-8), its corresponding index of the matrix cell is

identified (line 5) and its probability is computed by function integrate and

assigned to the value in that cell (line 6). The normalization factor is updated

(line 7) and used in the end to normalize the computed probabilities (line 9).

4.3.1 Computing Probabilities with Monte Carlo integration

For the calculation of the probability (function integrate of Algorithm 4.1)

we will use the Monte Carlo integration method that was discussed in the

Chapter 3. We calculate the probability of robot being inside a box. Here the

sampling will be implemented inside the box within a grid cell, which is

defined by the coordinates [] [] []. Algorithm 4.2 calculates

the probability over the box of the grid.

 simpleMonteCarloProbability(

)

Input: : coordinates; : angles; : number of samples;

 , : function;

Output: : probability;

1 ;

2 while () do

3 ;

4 ;

5 ;

6 ;

7 end

8 ;

9 ;

10 return

Algorithm 4.2 Monte Carlo integration for probability calculation

63

 For the defined number of samples generates the

points (lines 3-5). Function calculates the value of the pdf for each

point and accumulates its contribution (line 6) . The volume is calculated (line 8)

and the probability estimate is obtained in line 9.

A common probability distribution for a single measurement error is the

one-dimensional normal distribution with mean and variance . In this case,

the probability density function is the following Gaussian function:

√

 (4.3)

The above normal distribution assumes that x is a scalar value. Often, x

will be a multidimensional vector resulting from several independent

measurements. Normal distributions over vectors are called multivariate.

Multivariate normal distributions with 0 mean and identical variance for

each dimension are characterized by density functions of the following form:

 (

 √
)

 ∑

 (4.4)

Algorithm 4.3 computes the value of probability density function for the

current pose of the robot and n ladar measurements.

getPdfValue()

Input: : coordinates; : angle; : specified value of the error;

 : number of ladar measurements; : function;

Output: : value of probability density function;

1 ;

2 ;

3 while do

4 ;

5

6 ;

7
 ;

8 end

9

 (√)

;

10 return ;

Algorithm 4.3 Value of probability density function calculation

64

 Here we consider ladar measurements. The direction of the robot is

described by the angle , to which we add the angle of the related

measurement (line 4). The predicted value of the distance is calculated with the

function (line 5). The observed value is simply the value of the

distance obtained by the ladar (line 6). The difference between predicted and

observed value is the error committed in measurement i and its square is

accumulated in line 7. The value of the corresponding probability density

function is obtained in line 9.

Algorithm 4.4 represent the function , it basically computes

the distance from the robot pose to the closest object in the direction .

getDistance()

Input: : coordinates; : angle; : function;

Output: : distance;

1 ;

2 ;

3 ;

4 return

Algorithm 4.4 Distance from robot to the closest object

The coordinates of the robot are assigned to the point (line 1). The point

 is located at distance from the point along the direction (line 2).

This maxD is the maximum range of the ladar. The function finds

the distance D to the closest wall returning maxD if it could not intersect any

wall (line 3).

The representation is illustrated in the Figure 4.5. The robot is located in

the point . In the simulation we obtain the vector of measurements. If the wall

is not detected, then measurement has value , otherwise the distance from

robot till obstacle is calculated.

65

Figure 4.5 Robot pose and measurements.

4.3.2 Pruning Domains with Constraint Programming

Function is used in Algorithm 4.1 (line 1) to reduce the

search space, avoiding the application of the Monte Carlo integration over all

grid cells and eventually restricting it to a small number of boxes consistent

with the ladar measurements and the map of the environment. This function,

generally represented in Algorithm 3.1 requires a specialized constraint

propagation algorithm to process adequately the information gathered by the

sensors in robot localization problems. Algorithm 4.5 robotCPA prunes a

domains box accordingly to the ladar measurements.

robotCPA([] [] [])

Input: : coordinates; : angles; : function;

Output: : box;

1 ; ;

2 while () do

3 [] [] ;

4 [] [] [] ;

5 if (=)

P
0
(x,y)

P
1
(x+maxD*cos(α),y+maxD*sin(α))

66

6 {‖ ‖ ;

7 end

8 if (={〈 〉) and

9

10

 {‖

 ‖ } ;

11 end

12 if (={〈 〉) and

13

14

 {‖

 ‖ } ;

15 end

16 end

17 [] [] [] ;

18 return

Algorithm 4.5 robotCPA for pruning a domains box accordingly to the ladar
measurements

It computes a set of numerical constraints (initialized in line 1) that can

be enforced over the variables of the problem and then calls the

function (line 17) to reduce the box domains. The constraints may result from

each one of the n ladar measurement processed in the while loop (lines 2 to 16).

Firstly an enclosure [] for the possible angle of vision (in global coordinates)

associated with the ladar measurement i is computed (line 3). Next, a

specialized geometric function is used to determine which of the

walls in the map can eventually be seen by a robot positioned in

[] [] with an angle of vision [] and a vision range up to .

If no wall can be seen (line 5) the predicted distance is always and a

constraint is added (line 6) to enforce the error between the predicted and the

ladar measurement not to exceed .

If it is only possible to see a single non vertical wall (line 8), represented by

the segment 〈 〉, an adequate numerical constraint is enforced

(line 10) to restrain the error between the ladar measurement and the predicted

67

distance for a pose . This cannot be done in the case of a vertical wall

since it would induce a numerical exception (a division by zero in line 9). A

similar procedure is adopted to add a new constraint when is only possible to

see a single non horizontal wall (lines 12 to 15).

Notice that whenever there is the possibility of seeing more that one wall

it cannot be decided which constraint to enforce, and the algorithm proceeds

without associating any constraint to the ladar measurement.

Summarizing, the idea of constraint reasoning with Monte Carlo

integration in application to robot localization is to define the grid over the

map, apply the propagation technique in order to localize the possible

solutions, and then apply the Monte Carlo method for obtaining the probability

of each grid. As a result we obtain the probability distribution that shows the

robot’s probability of being located in the exact position.

4.4 Simulation results

The following experiments were carried out on an Intel Core i7-4700MQ at

2.40 GHz. The Algorithms 4.1-4.4 were implemented in C++.

For the simulation we define the simple case of the room with the size

1000x1000 and 2 objects inside the room, defined as the segments. Let pose the

robot in the middle of the room with the bearing equal to 0 (robot “looks” to the

right). Then we define the size of the measurement vector that is equal to 7, so

we obtain the measurements { . We define the error of the

measurements equal to 5. As we can see from the Figure 4.6 some of the

measurements intersect the objects.

68

Figure 4.6 Simulation of the robot position

Then we define the grid. For our case it will be equal 100x100 for the

coordinates and 360 for the angle (each box has dimension 10x10x1°).

Algorithm 4.1 divides the space into the grid and applies constraint

propagation techniques to reduce the space. The resulting boxes are shown on

the Figure 4.7. Those boxes represent the possible position of the robot.

Figure 4.7 Simulation results. Reduced space

69

The Monte Carlo integration sets random points inside the box as it shown

on Figure 4.5. Algorithms 4.2-4.4 are implemented in order to obtain the

probability over the box. The obtained probability is shown in the Figure 4.8.

The calculations take 8 seconds.

Figure 4.8 Simulation results. Probability distribution

Further we present several experiments with different configurations. The

simulation results are presented in Figure 4.9. This is the simple case. The boxes

are obtained on the small region and the probabilities are calculated for that

boxes.

Figure 4.9 Simulation example 1. Constraint reasoning with Monte Carlo.

70

The example from the Figure 4.10 shows not that trivial result. We can see

that robot can be positioned in different spaces in the room and the probability

if being in the different stop is different. So we obtain higher probability along

the right wall of the room.

Figure 4.10 Simulation example 2. Constraint reasoning with Monte Carlo.

As we can see from the figure above our approach of probabilistic

constraint reasoning with Monte Carlo integration gives the accurate results.

In the following experiment we assume a map of the environment such as

the one shown in Figure 4.11. The robot is placed in one of the four rooms and

detects the objects. The algorithm that uses constraint reasoning with Monte

Carlo method computes probability of the robot pose. As we can see from the

figure the probability of the robot pose is equal for each room.

Figure 4.11 Simulation example 3. Constraint reasoning with Monte Carlo.

71

Placing the robot in the corridor gives the results shown on Figure 4.12.

The algorithm calculates the possible poses of the robot as well as the

probability of this poses.

Figure 4.12 Simulation example 4. Constraint reasoning with Monte Carlo.

More complicated environment is shown in Figure 4.13. We simulate the robot

robot placing it in the middle of the room. The measurements define the unique

pose of the robot. Different options of the robot pose are shown in Figures 4.13-

4.18.

Figure 4.13 Simulation example 5. Constraint reasoning with Monte Carlo.

72

Figure 4.13 Simulation example 5. Constraint reasoning with Monte Carlo.

Figure 4.14 Simulation example 6. Constraint reasoning with Monte Carlo.

Figure 4.15 Simulation example 7. Constraint reasoning with Monte Carlo.

73

Figure 4.16 Simulation example 8. Constraint reasoning with Monte Carlo.

Figure 4.17 Simulation example 9. Constraint reasoning with Monte Carlo.

Figure 4.18 Simulation example 10. Constraint reasoning with Monte Carlo.

From the following tests we conclude that proposed technique allow solve

the simple localization problem. The propagation method accelerates the

calculation of the robot coordinates and the Monte Carlo integration gives the

probability of the robot pose. The experiments show the efficiency and

74

convenience of the method. However, time spend each example is 4-12 seconds

that requires improvements of algorithms performance.

4.5 Conclusion

Mobile robots can change their location thought locomotion. For a mobile

robot one of the most important capabilities is ability to navigate. We study the

localization problem and use the developed in the previous Chapter techniques

for developing the algorithms of mobile robot localization with probabilistic

constraint reasoning.

We discussed several aspects of the localization problem and methods for

robot localization. Then we defined the type of the map representation that is

more convenient for our task. Further, we define the type of sensors and

representation of the data from them.

We developed the algorithm for robot localization using Probabilistic

constraint reasoning with Monte Carlo integration. This method allows to

determine the position of robot and with its probability. Experiments shows,

that robot can easily determine its position on the map.

75

5. Conclusions and Future Work

5.1 Conclusions

In this dissertation the probabilistic constraint reasoning tool with Monte

Carlo integration and its application to robot localization problem were

proposed. The probabilistic constraint framework can be used as an effective

tool for dealing with uncertainty in the localization problem. We used the

approach that bridges the gap between pure safe reasoning and pure

probabilistic reasoning.

First, we introduced the basic notions of Continuous Constraint

Programming and probability theory, and quadrature methods and presented

the basic algorithms. Continuous Constraint programming is used to solve a

wide range of problems, including integration. We studied the efficiency of

quadrature methods, such as Monte Carlo and its modifications.

Second, we proposed technique for integration over constraint region that

computes close estimates of the correct integral value. For this task we apply

Monte Carlo integration techniques combined with constraint programming. In

5

76

comparison with pure Monte Carlo integration, our method is faster and

requires less sampling, due to constraint programming techniques that reduce

the sample space into a enclosure of the integration region.

Third, we described various techniques for integrating using Monte Carlo

methods and its modifications combined with constraint propagation

techniques.

Fourth, we studied the mobile robots, their technical characteristics, types

of sensors, motors. We defined the reasons of arising of uncertainty in robotics,

talked about probabilistic robotics and denoted several approaches for

Simultaneous Localization and Mapping.

Finally, we developed the algorithm for robot localization that is based on

continuous constraint programming with Monte Carlo integration method. The

simulation shows that proposed approach is efficient and can be applied to the

real systems. The probabilistic reasoning with Monte Carlo integration

minimizes the uncertainty and can be successfully applied for robot localization

problem.

5.2 Future work

 There are many possibilities for the development of the proposed

technique to robotics and related areas. One of the possible directions of the

future work is the development Simultaneous Localization and Mapping

algorithm based on the proposed techniques.

Moreover there is possibility to develop the modifications of the algorithm

in order to improve efficiency.

77

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. 2005, pp. 1999–

2000.

[2] J. Cruz, Constraint Reasoning for Differential Models. IOSPress, 2005, p. 244.

[3] E. Carvalho, J. Cruz, and P. Barahona, “Reasoning with Uncertainty in

Continuous Domains,” pp. 1–12.

[4] T. W. F. Rossi, P. van Beek, “Handbook of Constraint Programming,” vol.

2, 2006.

[5] P. Van Hentenryck and V. Saraswat, “Constraint programming: Strategic

directions,” Constraints, vol. 33, pp. 7–33, 1997.

[6] E. Carvalho, J. Cruz, and P. Barahona, “Probabilistic constraints for

nonlinear inverse problems,” Constraints, vol. 18, no. 3, pp. 344–376, Feb.

2013.

[7] E. Davis, “Constraint propagation with interval labels,” Artif. Intell., vol.

32, no. 3, pp. 281–331, 1987.

[8] J. C. Cleary, “Logical arithmetic,” Futur. Comput. Syst., vol. 2, pp. 125–

149, 1987.

[9] E. Hyvonen, “Constraint Reasoning Based on Interval Arithmetic,” Proc.

IJCAI-89 (Morgan Kaufmann, Los Altos, USA), pp. 1193–1198, 1989.

[10] T. Sunaga, “Theory of an interval algebra and its application to numerical

analysis,” RAAG Mem. 2, pp. 29 – 46, 1958.

[11] R. Moore, Methods and applications of interval analysis. Philadelphia: SIAM,

1979.

[12] J. Rohn, “A handbook of results on interval linear problems,” Inst.

Comput. Sci. Acad. Sci. Czech Republic, Prague, 2005-2012. – Tech. Rep. No. V-

1163.

78

[13] G. Walster and E. Hansen, Global Optimization Using Interval Analysis.

New York: Marcel Dekker, 2004.

[14] E. Carvalho, J. Cruz, and P. Barahona, “Probabilistic Continuous

Constraint Satisfaction Problems,” 2008 20th IEEE Int. Conf. Tools with

Artif. Intell., vol. 2, 2008.

[15] A. Goldsztejn, J. Cruz, and E. Carvalho, “Convergence analysis and

adaptive strategy for the certified quadrature over a set defined by

inequalities,” J. Comput. Appl. Math., Sep. 2013.

[16] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed.

New York: Academic Press, 1984, p. 612.

[17] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical

recipes in C: the art of scientific computing, 1992,” Cité en, 1992.

[18] T. Gerstner and M. Griebel., “Sparse grids,” Encycl. Quant. Financ. R. Cont

(ed.), Wiley, 2008.

[19] T. Gerstner and M. Griebel, “Numerical integration using sparse grids,”

Numer. algorithms, pp. 1–26, 1998.

[20] H. Niederreiter, Random number generation and Quasi-Monte Carlo methods.

Society for Industrial Mathematics, 1992.

[21] M. Colbert, S. Premoze, and G. François, “Importance Sampling for

Production Rendering,” SIGGRAPH 2010 Course …, 2010.

[22] Y. Zhang and A. K. Mackworth, “Specification and verification of

constraint-based dynamic systems,” Princ. Pract. Constraint Program.

number. Springer-Verlag, vol. 874 in LNC, pp. 229 – 242, 1994.

[23] A. K. Mackworth and Y. Zhang, “Constraint programming in constraint

nets,” Princ. Pract. Constraint Program. Newport Pap. MIT Press. Cambridge,

MA., pp. 49–68., 1995.

[24] D. K. Pai, “Least constraint: A framework for the control of complex

mechanical systems,” Proc. Am. Control Conf. Boston, MA, pp. 1615–1621,

1991.

79

[25] Y. Zhang and A. K. Mackworth, “Synthesis of hybrid constraint-based

controllers,” Hybrid Syst. II. Springer Verlag, vol. 999 in LNC, pp. 552 – 567,

1995.

[26] A. Mackworth, “Constraint-based design of embedded intelligent

systems,” Constraints, vol. 86, pp. 83–86, 1997.

[27] H. Zhang, “Interval importance sampling method for finite element-

based structural reliability assessment under parameter uncertainties,”

Struct. Saf., vol. 38, pp. 1–10, Sep. 2012.

[28] V. A. Saraswat, R. Jagadeesan, and V. Gupta., “Timed Default Concurrent

Constraint Programming,” J. Symb. Comput. To Appear. Ext. Abstr. Appear.

Proc. ACM Symp. Princ. Program. Lang. San Fr., 1995.

[29] R. S. Stansbury and A. Agah, “A robot decision making framework using

constraint programming,” Artif. Intell. Rev., vol. 38, no. 1, pp. 67–83, May

2011.

[30] N. Berger, R. Soto, A. Goldsztejn, and P. Cardou, “Finding the Maximal

Pose Error in Robotic Mechanical Systems Using Constraint

Programming,” 2010.

[31] A. Otero, P. Félix, C. Regueiro, M. Rodríguez, and S. Barro, “Fuzzy

constraint satisfaction approach for landmark recognition in mobile

robotics,” AI Commun., 2006.

[32] M. Fromherz and T. Hogg, “Modular robot control and continuous

constraint satisfaction,” … Probl. with Constraints, 2001.

[33] D. Chablat, P. Wenger, F. Majou, and J.-P. Merlet, “An Interval Analysis

Based Study for the Design and the Comparison of Three-Degrees-of-

Freedom Parallel Kinematic Machines,” Int. J. Rob. Res., vol. 23, no. 6, pp.

615–624, Jun. 2004.

[34] J.-P. Merlet, “Solving the Forward Kinematics of a Gough-Type Parallel

Manipulator with Interval Analysis,” Int. J. Rob. Res., vol. 23, no. 3, pp.

221–235, Mar. 2004.

[35] D. Daney, “Interval methods for certification of the kinematic calibration

of parallel robots,” Robot. Autom. …, no. April, pp. 1913–1918, 2004.

80

[36] T. Braünl, “Embedded robotics,” Springer, ISBN, p. 458, 2006.

[37] V. N. Meshcheryakov and O. V. Meshcheryakova, “Mathematical vector

model of induction motor and structural-topological analysis of the

model,” News high Educ. institutes Chernozemya, vol. 2, 2014.

[38] V. N. Meshcheryakov, O. V. Meshcheryakova, and P. V. Saraev,

“Mathematical modeling and process control in industrial automation

systems using complex-valued neural networks,” Probl. Upr., vol. 6, pp.

71–75, 2013.

[39] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and mapping

(slam) part 2: State of the art,” Robot. …, pp. 1–10, 2006.

[40] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The SLAM problem: a

survey.,” CCIA, 2008.

[41] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization:

Efficient Position Estimation for Mobile Robots Dieter Fox, Wolfram

Burgard,” Proc. Natl. Conf. Artif. Intell., vol. 113, p. 114, 1999.

