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Abstract 

Polymeric particulate-systems are of great relevance due to their possible biomedical applications, 

among them as carriers for the nano- or microencapsulation of drugs. However, due to their unique 

specific properties, namely small size range, toxicity issues must be discarded before allowing its 

use on health-related applications.  

Several polymers, as poly(methyl methacrylate) (PMMA), have proved to be suitable for the 

preparation of particulate-systems. However, a major drawback of its use refers to incomplete drug 

release from particles matrix. Recent strategies to improve PMMA release properties mention the 

inclusion of other acrylic polymers as Eudragit (EUD) on particles formulation. Though PMMA and 

EUD are accepted by the FDA as biocompatible, their safety on particle composition lacks sufficient 

toxicological data. 

The main objective of this thesis was to evaluate the biological effects of engineered acrylic 

particulate-systems. Preparation, physicochemical characterization and in vitro toxicity evaluation 

were assessed on PMMA and PMMA-EUD (50:50) particles.  

The emulsification-solvent evaporation methodology allowed the preparation of particles with 

spherical and smooth surfaces within the micrometer range (±500 nm), opposing surface charges 

and different levels of hydrophobicity. It was observed that particles physicochemical properties 

(size and charge) were influenced by biological media composition, such as serum concentration, 

ionic strength or pH. In what concerns to the in vitro toxicological studies, particle cellular uptake 

was observed on different cell lines (macrophages, osteoblasts and fibroblasts). Cytotoxicity effects 

were only found after 72 h of cells exposure to the particles, while no oxidative damage was 

observed neither on osteoblasts nor fibroblasts. Also, no genotoxicity was found in fibroblast using 

the comet assay to assess DNA damage. This observation should be further confirmed with other 

validated genotoxicity assays (e.g. Micronucleus Assay). 

The present study suggests that the evaluated acrylic particles are biocompatible, showing 

promising biological properties for potential use as carriers in drug-delivery systems.  

 

Keywords: particulate-systems; PMMA; Eudragit; particle characterization; biological effects; in 

vitro toxicity. 
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Resumo  

Os sistemas de partículas poliméricas têm adquirido uma grande relevância devido às suas 

possíveis aplicações biomédicas, entre elas para nano- ou microencapsulação de fármacos. No 

entanto, as propriedades específicas destas partículas, designadamente o reduzido tamanho, 

tornam necessário a avaliação da sua toxicidade de modo a garantir a sua utilização segura. 

Muitos polímeros têm demonstrado potencial para este tipo de aplicações, designadamente o 

poli(metil metacrilato) (PMMA). Contudo, a sua aplicação é muitas vezes limitada pela libertação 

incompleta dos fármacos através da matriz polimérica. De modo a aumentar a permeabilidade das 

partículas de PMMA, estratégias recentes têm vindo a incluir outros polímeros acrílicos na 

formulação, designadamente o Eudragit (EUD), visando melhorar a libertação dos fármacos. 

Apesar dos polímeros referidos serem aceites pela FDA como biocompatíveis, não existem 

estudos suficientes relacionados com a sua toxicidade na forma de partículas.  

O principal objectivo desta tese foi avaliar os efeitos biológicos de partículas acrílicas. Em 

particular, realizou-se a preparação, caracterização físico-química e a avaliação de efeitos tóxicos 

em culturas celulares de partículas de PMMA e de PMMA-EUD (50:50). 

As partículas, obtidas pelo método de emulsão-simples por evaporação de solvente, demonstraram 

uma distribuição de tamanhos semelhantes (±500 nm), cargas de sinal contrário e diferentes níveis 

de hidrofobicidade. Foi também observado que o tamanho e a carga das partículas eram 

influenciados pela composição do meio biológico (concentração do soro, força iónica e o pH).  

Relativamente aos ensaios de toxicidade, a internalização das partículas foi confirmada em várias 

linhas celulares (macrófagos, osteoblastos e fibroblastos). Só foram observados efeitos citotóxicos 

após 72 h de exposição às partículas. Não foi detetada a produção de espécies reativas de 

oxigénio em osteoblastos nem em fibroblastos. Também não foram observados quaisquer efeitos 

genotóxicos através da avaliação de lesões no ADN de fibroblastos através do ensaio do cometa. 

Estes resultados devem ser confirmados através de ensaios já validados para avaliação de 

genotoxicidade (ex: Ensaio dos Micronúcleos).  

O presente estudo sugere que as partículas acrílicas avaliadas são biocompatíveis, tendo sido 

demonstrado que apresentam propriedades biológicas interessantes para uma possível aplicação 

em veiculação de fármacos.  

Palavras-chave: sistemas de partículas; PMMA; Eudragit; caracterização de partículas; efeitos 

biológicos; toxicidade in vitro. 
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Objectives and Thesis Structure 

The thesis main objective was to evaluate the potential biological effects of engineered acrylic 

particulate-based systems. 

Specific aims were: 

- Optimization of the preparation method for obtaining two types of particles - PMMA and 

PMMA-Eudragit (50:50) - within the same micrometric size range and with opposite surface 

charges; 

- Characterization of the particles physicochemical properties, as well as the effect of the 

biological conditions on those features; 

- Evaluation of particles biological/toxicological effects by in vitro cellular assays. 

The thesis is structured in four chapters including: Introduction, Materials and Methods, Results and 

Discussion and Conclusions and Future Work. 

Chapter 1 – Introduction 

Contains a brief description of the state of the art of various polymers that have already been 

described for particle formulation, followed by the specific case of the acrylic particulate-systems. 

Methods on particle formulation are then approached, as well as their influence on the particles 

potential toxicological effects. After, a description is made on several physicochemical properties 

with influence on particles’ toxicity. It ends up with a general description of several in vitro 

toxicological assays.  

Chapter 2 – Materials and Methods 

This chapter is organized in three main parts. The first and second parts detail the preparation and 

characterization of the particles, while the third part describes the in vitro cellular studies, as well as 

the conditions in which they were conducted. All of the reagents, materials, equipment and methods 

used in this work are presented in detail. 

Chapter 3 – Results and Discussion 

Results concerning particles preparation and characterization in terms of size, surface charge, 

shape, chemical composition and hydrophobicity, as well as charge and size variation with medium 

composition, including protein adsorption, are presented and discussed. This is followed by a 

detailed discussion of the biological effects resulting from the exposure of several cell lines to the 

particulate-systems. Whenever available, a comparison is made between the obtained results 

consistency and the existent literature over the evaluated subjects on this work. 
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Chapter 4 – Conclusions and Future Work 

In this chapter, the main conclusions of the project are summarized and a reflection is made over 

the possibilities for future work, as well as possible improvements on the established methodologies 

on this thesis. 
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Chapter 1. Introduction  

1.1. Polymeric particulate-systems 

Recent advances in polymer science have provided many innovations, underlining an increasing 

importance of polymeric particulate-systems in both therapeutic and diagnostic applications (Juneja 

and Joy, 2014; Papa et al., 2014).  

In general, nanoencapsulation of drugs in particulate-systems involves forming drug-loaded 

particles with diameters ranging from 1 to 1000 nm (Reis et al., 2006, Naahidi et al., 2013). 

Particulate-systems offer relevant advantages in drug delivery by targeting molecules in specific 

cells and controlling drug release over time aiming to solve several problems related to the drugs 

themselves, such as low solubility, poor stability and unwanted side effects (Choi et al., 2012). The 

small size of these particles can have a huge impact over macro carrier systems, since it 

theoretically allow them to surpass barriers that other kind of carriers cannot. The use of polymeric 

materials for the synthesis of particles can constitute an improvement for the biomedical field, due 

to their flexibility in terms of size, mechanical stability, surface functionalization and 

hydrophilic/lipophilic properties (Papa et al., 2014). 

Many biocompatible polymers are available to prepare particulate-systems that are being used in 

biomedical applications as carrier materials of molecules like DNA, proteins and drugs, as well as in 

cell tracking and labelling for fluorescence or magnetic resonance imaging (Höchler et al., 2012). 

There are multiple examples of such polymers including synthetic compounds as poly(lactide-co-

glycolide) (PLGA) and poly-ε-caprolactone (PCL). For example, PLGA has been used in the 

preparation of microspheres (≈ 20 µm) for the sustained release of resperidone, an antipsychotic 

drug (D`Souza et al., 2014), and PCL has been used to formulate microspheres (28 – 43 µm) and 

nanospheres (750 nm), for insulin controlled-release studies (Mukerjee et al., 2007). Chitosan and 

its derivatives are another example of biocompatible polymers of natural origin used in drug 

delivery, as reported in the study of Gomathi et al. (2014), related to the preparation of particles 

(120-220 nm) loaded with lenalidomide, an anti-cancer drug.  

In addition, the acrylic based polymers, such as poly(methyl methacrylate) (PMMA) and the 

Eudragit series, are a class of synthetic polymers with numerous biomedical applications.  

1.1.1. PMMA particulate-systems 

PMMA polymer (Figure 1), also designated as poly(methyl 2-methylpropenoate) (IUPAC name), is 

one of the most widely explored biomedical biomaterials because of its biocompatibility, versatility 

and low cost (Bettencourt and Almeida, 2012). It is a non-biodegradable synthetic homopolymer of 

methyl methacrylate (MMA) monomer, which is vastly applied in the biomedical field as implant 



  4 

 

cement, in intra-ocular lenses (Pratt et al., 2006), as well as prosthetic (Reis et al., 2008) and 

mandibular dental material (Lye et al., 2011; Puricelli et al., 2011). 

 

Figure 1 - Chemical structure of PMMA repeating unit. 

The Eudragit polymer series is a trademark of Rohm GbmH & Co. KG. (Darmstadt, Germany) and 

comprise a number of (co-)polymers generally originated from polymerization reactions of acrylic 

and methacrylic acids or their esters. Each Eudragit compound has its own specific 

physicochemical properties derived from the added functional groups. Eudragit RL 100 (Figure 2) 

could be used in the preparation of polymeric particles because it can improve the matrix 

permeability, thus improving the drug release rates (Joshi, 2013).  

 

Figure 2 - Chemical structure of Eudragit RL 100. 

In the last decades, the focus on the use of PMMA as a carrier material has increased, and it has 

been adapted as a skeletal drug delivery system for releasing the drugs from macrodevices (bone 

cement and beads) (Bettencourt and Almeida, 2014). Moreover, particulate-systems based on 

PMMA are under investigation for multiple biomedical applications. For example, in Tencomnao et 

al. (2012), magnetic PMMA core/ polyethileneimine (PEI) shell particles proved to be promising new 

alternatives for magnetically-assisted gene transfection. In addition, different classes of drugs are 

being evaluated to be loaded into PMMA particulate-systems (PMMAp), aiming various routes of 

administration, such as oral and topical. Examples of successful drug incorporation include 

antibiotics (Naves et al., 2013), antioxidants like vitamin E (Bettencourt et al., 2010), antidiabetics 

(Cui et al., 2006; Dhana lekshmi et al., 2010) and anticancer drugs as gemcitabine (Wang et al., 

2014). It is also possible to include bioactive substances, as bovine serum albumin (BSA), which 

can confer new properties to the PMMAp. In a relatively recent study, researchers were able to 

prepare protein-polymer hybrid particles composed of PMMA and BSA as a carrier system for anti-

cancer drugs (Ge et al., 2012). 
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PMMA application as a vaccine coadjuvant has also been explored. Kreuter and Speiser (1976) 

showed the capacity for PMMAp, with the influenza virus inserted either before or after 

polymerization, as new vaccine adjuvants, though the first showed to have greater efficiency than 

the latter. In Voltan et al. (2007), PMMA core/EUD shell particles (< 300 nm) were prepared with 

reversibly-bound proteins (trypsin and lysozyme) which are able of aiding in the antigen 

incorporation, protecting it from oxidation and preserving its biological activity. Caputo et al. (2009) 

showed the safety of PMMA-core particles with a Eudragit L-100-55 outer-shell (with a size range 

between 0.22 - 2.00 µm) with hydrophilic surface properties, to be used as HIV-1 Tat protein-based 

vaccines, in mice by both mucosal and systemic administration.  

The interest on such applications for PMMA is mainly due to a great number of advantages related 

to the kinetics of drug transport into the organism, but also to the possibility for pH- and thermo-

dependent release, good mechanical stability and biocompatibility (Bettencourt and Almeida, 2012).  

In spite of the tremendous potential of PMMAp, a major drawback of its use refers to the incomplete 

drug release. To improve release profiles, recent strategies are focusing on formulating PMMA 

composites with permeable polymers, such as Eudragit RL 100 (Bettencourt and Almeida, 2012). 

The method chosen for particle formulation influences the particles properties and, therefore, will 

affect its potential toxicity. With this in mind, multiple techniques exist for the purpose of preparing 

PMMAp for a given target application, as described in the next section. 

1.1.2. Preparation techniques 

PMMAp, as spheres (monolithic devices) or capsules (reservoir devices), can be conveniently 

prepared by different methodologies. These techniques can be divided under two main types: 1) 

direct polymerization of the MMA monomer using polymerization reactions and 2) formulation from 

pre-formed PMMA polymer.  

Polymerization techniques include conventional emulsion, surfactant-free emulsion and micro/mini-

emulsion. These methods always require a physical or chemical initiation step (Bettencourt and 

Almeida, 2012). 

The second set of techniques uses a pre-formed polymer rather than a polymerization reaction. 

Examples are emulsion by solvent evaporation/extraction, nanoprecipitation, spray-drying, 

crystallization and Supercritical Fluid (SCF) methodologies (Bettencourt and Almeida, 2012). 

Among those techniques, single emulsion by solvent evaporation (SESE) is one of the most used 

and it will be explained in detail because it was the technique used in the present work. 
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SESE 

The single emulsion by solvent evaporation method is one of the most applied techniques for 

particle preparation, since it is one of the easiest methods (Bettencourt and Almeida, 2014). This 

technique is based on the emulsification of an organic phase, where the hydrophobic polymer is 

solubilized, into a water phase with a surfactant agent. Then, stirring conditions are applied, 

generally at room temperature, as the evaporation of the organic solvent occurs. This step results in 

the deposition of the polymer, forming particles. Most of the particles prepared by this method 

acquire a spherical conformation (Bettencourt and Almeida, 2012). 

Some of the advantages of the use of this technique are their easy-to-apply steps and processes 

and the possibility to develop various types of particles, either empty or with encapsulated 

compounds. It is also one of the most affordable methods for obtaining emulsions. However, since it 

is also necessary to apply organic solvents (as dichloromethane) and surfactant agents (as 

polyvinyl acetate), there could be some toxicity events if these substances are not completely 

eliminated from the final formulations (Soomro et al., 2011; Bettencourt and Almeida, 2012).  

1.1.3. Toxicological concerns 

As previously mentioned, PMMAp can have a great positive impact in health-related fields and 

presents alternatives for numerous applications, such as drug delivery systems or the development 

of new vaccines. Having this in mind, an exhaustive characterization of the particles’ toxicological 

potential needs to be made in order to ensure its safe application in biological systems.  

Biocompatibility of PMMA polymer  

PMMA, a Food and Drug Administration (FDA) approved polymer, has been extensively used in the 

past decades for both orthopaedic and ophthalmic applications showing good toxicological profiles
 

(Fonseca et al., 2013). It is a material that has been described as physiologically harmless, hence 

biocompatible, and it is not attacked by either moulds or enzymes, which have been some of the 

reasons for its numerous applications in the biomedical field. Curiously, in World War II, there were 

reports of PMMA fragments sticking into airplane pilots’ eyes with no observable abnormal reaction 

by the tissue (Pratt et al., 2006). In spite of its well-known biocompatibility, recent studies lead to 

some concerns about the material. Dansereau et al. (2008) observed the development of 

granulomas in patients submitted to cosmetic treatments with PMMA. Other studies using PMMA 

microspheres on soft tissue enlargement show a rare but existent risk for developing fibrosis of the 

treated tissue, though this side effect has been shown to be dependent on the method applied for 

developing the microspheres (Campos et al., 2011). Also, a clinical case has raised an issue when 

applying PMMA as a polymer for mandibular reconstruction as it may induce necrosis in bone tissue 

due to the exothermic polymerization process (Cakarer et al., 2010).  
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PMMA particulate-systems biocompatibility 

In particular, when referring to PMMA in nano- and micro-size range, it is known that PMMA in the 

form of wear debris has been frequently present in patients’ bodies, but what happens to PMMA 

engineered particles for drug delivery lacks considerable scientific studies (Bettencourt and 

Almeida, 2014). The interaction of PMMAp with cells and the extracellular environment can trigger a 

sequence of biological effects considerably different from the material in the macro-size form. 

Particularly, some concern exists regarding the non-biodegradable behaviour of the nanoparticles, 

which can lead to their over-accumulation near organs and, eventually, to the development of 

harmful effects, which turns it into a toxicity-increasing factor (Rimessi et al., 2009). Besides the 

material toxicity, another important aspect to look for is the relevance of the preparation processes 

for particle safety. Preparation methods often require the use of surfactant agents and organic 

solvents, which may increase the risk of toxicity upon human exposure to the particles.  

So far, the majority of studies that specifically address the evaluation of PMMAp biocompatibility did 

not find any significant toxicity. Ge et al. (2012) results are illustrative of this, as no toxicity from 

PMMAp conjugated with BSA was found with the MTT test, either in vitro with human colorectal 

cancer cells (HCT116) or in vivo assays with mice. The authors pinpoint the negative charge of the 

particles as responsible for the reduced toxicity because they interact less with the cells’ 

membranes since they are also anionic. Furthermore, PMMA–chitosan microspheres (50-500 µm) 

were shown to be hemocompatible and non-cytotoxic to mouse fibroblast cells (Changerath et al., 

2009). Kundu et al. (2014) and Hazra et al. (2014) showed that PMMAp (<100 nm) coated with 

biosurfactants prepared through atomized microemulsion with and without ultrasounds, 

respectively, did not originate cytotoxicity on human peripheral blood mononuclear cells. Relatively 

to in vivo studies, Dhana lekshmi et al. (2010) concluded that no obvious toxicity was observed after 

oral administration of repaglinide-loaded PMMAp to albino rats. 

Overall, there is insufficient data on PMMA particulate-based carriers’ toxicity, as happens in 

general with all engineered nanoparticles for drug delivery. Lack of standard biocompatibility 

evaluation criteria is a subject of intense discussion and in the future it is advisable that the 

toxicological evaluation should become an important part in the design of such particulate-systems, 

as well as the establishment of standardized protocols. 

1.2. Toxicological evaluation of particulate-systems 

1.2.1. The role of physicochemical properties 

When evaluating the toxicological effects of particulate-systems, it is extremely important to 

characterize the physicochemical properties that are likely to influence cell and tissue processes. In 

fact, specific physicochemical properties of the materials at the nano- and microscale, such as size, 
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charge and hydrophobicity can greatly differ from the ones of the bulk material and, thereby, can 

also drive unpredictable biological interactions and effects (Louro et al., 2014).  

Size plays an important role in biological interaction since the smaller the size of the particle, the 

higher will be its surface reactivity and the higher will be its capability to interact with multiple 

organelles. Another important property of smaller particles is their capability of surpassing barriers 

of subcellular structures, therefore, enabling them to reach structures like the nucleus. Though this 

potential biological interaction may be an advantage in terms of drug delivery innovative treatments 

for various conditions, it has also the reverse aspect of constituting a potential toxicity induction 

factor (Oberdörster et al., 2005). 

Charge is also one of the determinant properties of biological interaction, since it relates with 

repulsion and attraction between different components. In fact, cationic particles have been shown 

to produce more effects on various cells than neutral or anionic particles. In Verma et al. (2008), 

uptake of anionic nanoparticles (≈ 6 nm) didn’t cause the formation of many pores in the cell 

membrane and cytotoxicity was minimal, while their cationic counter-parts showed to penetrate by 

generating pores on the cells’ membranes and produced cytotoxic effects on a mouse dendritic 

clone cell line. In Arvizo et al. (2010), it was demonstrated that the uptake of cationic gold 

nanoparticles caused decreased proliferation and cell viability of normal cells but not of cancer 

cells.  

Another important property of the particles used as carriers is their hydrophobicity. This property 

concerns water-interactions and may affect not only the relation with the surrounding cells, but also 

with other compounds present in the biological media. Highly hydrophobic particles may be poorly 

stable and, therefore, are highly susceptible to aggregation when interacting with biological media 

(Ge et al., 2011). In consequence, particles may also have lower clearance rates, leading to their 

accumulation on various organelles/cells, which in turn may cause dose-dependent toxicity (Zhu et 

al., 2009; Murphy et al., 2011).  

A common interaction between particles and substances in biological media is the formation of 

protein corona, a layer of various proteins capable of interacting with the particles surface and even 

alter its properties. These can be highly influenced by charge and hydrophobicity, as well as other 

surface-related physicochemical properties. Particle-protein interaction is a dynamic process, as the 

composition of the protein layer may vary as the particles travel across different compartments in 

the biological system (Kane and Stroock, 2007). The resulting effect from this protein layer is 

generally changes in biological interaction Pelaz et al., 2013). 
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1.2.2. In vitro cellular assays 

At an initial stage, toxicity of particulate-systems can be evaluated through in vitro cellular assays. 

In vitro assays allow an evaluation of cells exposure to diverse conditions, recurring to cell lines 

instead of a whole individual. In some cases, in vitro assays may be enough for toxicity assessment 

of a given substance, preventing the use of invasive methods on living organisms, e.g. rodents. 

However, their biggest downside is the difficulty of simulating a whole organism function and 

dynamics in aspects, such as cell-cell or surrounding tissues interactions, which may generate 

different effects based on parameters, as the location of the cells and their distribution over a 

generic area (Takhar and Mahant, 2011). Moreover, in vitro assays are restricted to observations at 

molecular and cellular levels, while in vivo studies account for the several layers of complexity 

inherent to the integrated response of a whole-organism and that may influence the outcome of the 

exposure to agents under study (Louro and Silva, 2010). Nevertheless, in vitro studies are valuable, 

rapid and cost-effective for the frontline toxicity assessment of new molecules or particle 

formulations and some limitations are being addressed with the development of 3D cultures, which 

is gaining increasing interest as researchers are realizing the limitations of 2D cultures (Caicedo-

Carvajal et al., 2011).  

As a first stage to assess particles toxicity it is important to evaluate their cellular uptake. For that 

evaluation, particles loaded with fluorescent compounds can be prepared. Some of the most 

commonly used fluorescent probes for this purpose are organic fluorescent dyes, such as Nile Red, 

which is widely used due to its absorption/emission wavelengths, high solubility on organic solvents 

and easy applicability on almost any particle formulation methods (Rose, 2010). 

The use of fluorescent probes is an important tool for the identification of sites of interest and allows 

the visualization and evaluation of some effects over specific locations as far as the nuclear level 

(Forster et al., 2012).  

Cellular toxicity can be mediated by diverse mechanisms, including nutrient receptors blockage, 

DNA damage, oxidative stress, protein synthesis inhibition and many others. Hence, there is a need 

for multiple-parameter testing to evaluate toxicity of a given tested material. Moreover, a toxic effect 

includes many types of toxicity, e.g.: immunotoxicity, cytotoxicity, genotoxicity, among others. For 

the purpose of safety evaluation of new drugs, genotoxicity assessment is, unequivocally, one of 

the most important aspects given that genotoxicity is intimately related to carcinogenicity. 

Cytotoxicity and genotoxicity are distinguishable adverse effects given that the former is related with 

damage on the cellular level and the latter at the genetic level (O’Brien and Haskins, 2006). Both 

types may result from a direct effect or from a stress response of the cell due to the production of 

reactive species. 
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1.2.2.1. Cytotoxicity 

Cell viability is the most commonly investigated parameter in cytotoxicity testing. As cell viability is 

determined by various cellular processes, different endpoints are currently used to assess the 

actual state of the cells in vitro, such as the detection of mitochondrial activity and cellular 

membrane integrity (Kroll et al., 2009). One of the most common assays for the detection of 

mitochondrial activity is the MTT, a method first developed by Mosmann et al. (1983) to evaluate 

cell proliferation that enables a fast and quantitative measurement of living cells allowing the 

analysis of multiple samples at the same time. It is achieved through the reaction of of 3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), a yellow, water-soluble 

tetrazolium dye, which is converted by the viable cells’ mitochondrial dehydrogenases into a water-

insoluble, purple compound (formazan) by cleavage of the tetrazolium ring (Figure 3). 

 

Figure 3 - MTT conversion into formazan crystals inside the mitochondria (adapted from Riss et al., 
2013). 

 

Figure 4 - Conversion of resazurin into resorufin by viable cells (adapted from Riss et al., 2013). 

Another cytotoxicity test is the Alamar Blue Assay. This method is a more accessible alternative to 

MTT test and it is based on the conversion of 7-Hydroxy-3H-phenoxazin-3-one 10-oxide (resazurin), 

a weakly fluorescent blue dye, into resorufin, a highly red fluorescent pink coloured compound. In 

this redox reaction, the transference of electrons from NADH, NADPH, FADH or FMNH, as well as 

some cytochromes, by mitochondrial enzymes to rezasurin reduces it into resorufin (Figure 4). This 

technique has the disadvantage of requiring a spectrophotometer with specific filters, which may be 

financially incompatible with many laboratories (Borra et al., 2009; Rampersad, 2012). 
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Other method, which may be applied to evaluate cell viability, is by measuring membrane integrity 

using the Trypan Blue exclusion assay. The main principle applied in this methodology is that living 

cells possess intact cell membranes which exclude the internalization of certain dyes, such as 

trypan blue (Strober, 2001). Intact/viable cells will be presented as white/non-coloured, while 

damaged cells should be presented as blue cells. However, care should be taken in result 

interpretation as not always does the uptake of the dye indicate that a cell is unviable. In fact, as 

shown by Tran et al. (2011), some toxins may originate pores over the cellular membrane, 

therefore, increasing its permeability to the dye, even though the cell is still viable as its recovery 

mechanisms are capable of repairing most of the damage. This was shown by comparing cells 

coloured after 2 h of exposure to the toxin with cells to which the toxin was removed after that 

period and left to recover for 24 h. Furthermore, metabolic activity was found to be active since cells 

were still able to produce ATP. 

Therefore, one must take into account the cell repair mechanisms since a cell membrane may be 

able to recover from damage, hence the cell may still viable. Also, the dye itself may induce 

damage to the cells after a long period of exposure, which ultimately leads to false positives. 

However, it has the advantage of being more accessible than other existing alternatives for 

cytotoxicity evaluation, such as MTT or Alamar Blue assays. 

1.2.2.2. Genotoxicity 

Genotoxicity can be derived from either primary or secondary effects, where the first can be sub-

divided into direct and indirect effects.  

Within the primary genotoxic effects, a direct effect derives from a direct interaction between the 

exogenous compounds and DNA, or any other molecule or process responsible for regulating its 

integrity. It might be caused, for instance, by the direct contact of particles with DNA, either through 

physical or chemical processes. An indirect effect will arise from oxidative stress generated from by-

products of the reaction between particles and other organelles, either through generated reactive 

oxygen species (ROS) which can deplete the available anti-oxidants (Donaldson et al., 2010) or 

from ionic species resulting from soluble particles (Magdolenova et al., 2014). 

Secondary genotoxicity is associated with an inflammatory response to the 

presence/aggregation/accumulation of exogenous particles. This process can also lead to oxidative 

stress and subsequently cellular and DNA damage. Moreover, persistent oxidative stress can occur, 

leading to the sum of DNA damage and, eventually, to carcinogenicity (Donaldson et al., 2010). 

Each type of particle has its own set of properties, as described above, which can determine the 

potential for genotoxicity as well as the type of effect induced (Magdolenova et al., 2014). For a 

particle to produce primary direct genotoxicity it must have the potential to enter the nucleus and 
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interact with DNA, which can occur by various mechanisms. According to the literature, each 

particle may have its own mechanisms, though most particles show size-dependent entry (Chen 

and von Mikecz, 2005; Geiser et al., 2005; Nel et al., 2006).  

Several studies (Park et al., 2008; Li et al., 2009; Wang et al., 2009) indicate that nanoparticles may 

decrease significantly the amount of anti-oxidants inside the cell, hence increasing the amount of 

free radicals and other reactive species which may affect DNA integrity. One of the by-products of 

mitochondrial processes, namely mitochondrial respiration, that can reproduce this mechanism is 

H2O2 originated by dismutation of superoxide anions, either spontaneously or through superoxide 

dismutase activity. The inhibition of the DNA repair mechanism has also been reported for metal 

ions that can be released from metallic nanoparticles, which seem to inhibit the activity of some of 

the proteins involved in this biological process (Donaldson et al., 2010; Magdolenova et al., 2014). 

The same kind of effects may also underlie indirect genotoxicity when particles small enough to 

allocate near the nucleus are able to drag other small molecular weight compounds or reactive 

species generated on its surface, which can then diffuse into the nucleus and induce DNA damage. 

According to literature (Gedik et al., 2002; Schins et al., 2002), guanine is one of the most 

susceptible nucleotides to suffer damage from ROS forming 8-oxo-guanine adducts. The presence 

of these DNA adducts may be detected through the use of the enzyme formamido-pyrimidine-DNA-

glycosylase (FPG) in a modified version of the comet assay (Donaldson et al., 2010). 

ROS can also result from an inflammatory process, resulting in secondary genotoxicity as 

previously mentioned. This process can induce a high rate of oxygen consumption which can lead 

to the activation of NADPH-oxidase whose reaction can produce an elevated number of ROS and 

add to the already existing reactive species from other processes. Though these are produced as a 

self-defence mechanism they can produce damage in the surrounding cells and may transverse the 

nuclear membrane, causing oxidative damage in the DNA molecule (Donaldson et al., 2010). 

Most studies pinpoint surface area and its reactivity as the two main factors involved in dose-

dependent genotoxic events. As previously stated, a protein corona may be formed on the particles 

surface, which could imply a variation on their genotoxic potential, while making it hard to identify 

the source of the effect. It is also difficult to study this process of corona formation in vitro since, in 

the native organism, the particles can transverse different combinations of proteins, impossible to 

simulate in the cell culture environment (Donaldson et al., 2010). 

Depending on particle size, aggregation can also produce genotoxic effects upon entering the cell, 

since larger particles can accumulate outside the nucleus and deform it, while smaller particles can 

translocate its barrier through pores and accumulate inside, where it can lead to physical damage to 

the chromosomes (Magdolenova et al., 2014). 
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Genotoxicity evaluation 

The assessment of genotoxic effects of a given substance generally follows the cytotoxicity analysis 

in order to evaluate only non-cytotoxic doses since cell death can increase the levels of DNA 

fragmentation, leading to false positive results. There are a few methods that can be employed for 

assessment of the genotoxicity of manufactured nanomaterials, e.g. the comet and the 

micronucleus assays. In addition, attention has to be given to the choice of the cell line since it 

should be biologically relevant and must not be affected by the method itself (Donaldson et al., 

2010). Another issue in testing the genotoxic effects produced by nanoparticles is the choice of 

relevant positive and negative controls. Since most assays focus on the oxidative damage to DNA, 

some of the most employed positive controls are H2O2 and UV radiation. However, a number of 

other positive control candidates are being tested (Donaldson et al., 2010). 

There are a number of available methods for genotoxicity evaluation either for in vitro or in vivo 

conditions. The two most commonly used are the comet assay and the micronucleus assays.  

The comet assay, also known as single-cell gel electrophoresis, is based on the evaluation of 

breaks in the DNA double-helix, either on both strands (double-strand breaks, DSBs) or on a single 

strand (single-strand breaks, SSBs). For this test, the cells are exposed to the material in evaluation 

for a certain period of time and then the cells are lysed in order to obtain the nucleoids. Then this 

organelles are put under unwinding conditions in such a way that any breaks in the helix will 

migrate further than the remaining of the intact chains through gel electrophoresis under alkaline 

conditions. The visualization of this effect through fluorescence resembles a comet, hence the 

name of this assay. The experimental overlay of the traditional comet assay is presented on Figure 

5. The evaluation consists on analysing the percentage of DNA in the tail of these “comets”, which 

indicates the percentage of damaged DNA, as the intact DNA remains in the “head” of the comet. In 

order to analyse DNA oxidative damage enzymes, such as Endonuclease III or FPG, can be used 

to detect oxidation of pyrimidines and purines respectively. It could be argued that the nanoparticles 

may interact with FPG and inhibit its effect, yet a study by Magdolenova et al. (2012) was able to 

dismiss this hypothesis. 
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Figure 5 - Critical steps for the comet assay on alkaline conditions (Adapted from Tice et al., 2000). 

The micronucleus assay is based on the formation of very small nuclei during anaphase, when the 

nucleus divides forming two separate nuclei. It evaluates chromosomal abnormalities. Micronuclei 

contain either whole chromosomes or fragments which do not incorporate in none of the originated 

nuclei. It can be detected in the cytoplasm upon staining. This assay can be improved by adding a 

cytokinesis blocker with no effect over mitosis, such as Cytochalasin B, which allows obtaining 

multiple bi-nucleated cells and, therefore, by analysing only these, excluding interference from 

micronuclei generated before the assay. This method is also known as cytokinesis-block 

micronucleus assay (CBMA) and the possible occurrences on the cells are presented on Figure 6 

(Fenech, 2000; Magdolenova et al., 2014). 

 

Figure 6 - Potential fates of cells during CBMA after exposure to a potential genotoxic agent (Adapted 
from Fenech, 2000). 

Other methods widely used in genotoxicity assessment include the Chromosomal Aberration assay, 

Ames test, HPRT gene mutation and the H2AX assay.  

Each assay can have its own strengths and weaknesses as each is focused on the evaluation of 

different endpoints. The comet assay can measure in detail low-levels of damaged DNA and can be 
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adapted to identify specific lesions on the chain, such as the ones produced through oxidative 

damage, but has the downside of being a somewhat subjective assay since it generally requires an 

operator to manually identify the comets. If not careful, an operator can be biased by knowing which 

sample was treated or not which can lead to ignoring some of the comets simply because they don’t 

fit with collected data resulting in a sort-of manipulation of the results. As for the micronucleus 

assay, it is a less quantitative assay than the comet assay (Magdolenova et al., 2014). 

There are a number of variables which can influence the results obtained through genotoxicity-

evaluating assays. From the method applied for the preparation of nanoparticles, to the choice of 

biologically significant concentrations, through the existence of impurities over the analysed 

samples, to the choice of the cell lines themselves, or even the way the particles are taken up at a 

certain cellular level (Magdolenova et al., 2014). 

The vehicles used on particle dispersion may, in some cases, alter particles properties, such as 

their surface charge or hydrophobicity, which can have a direct or indirect impact over their potential 

for generating genotoxic responses. Hence, it must be a parameter to take into account when 

evaluating toxic effects. Care must also be taken while using very high concentrations of particles 

for they tend to agglomerate which may affect the amount of particles available for cell intake and, 

therefore, result in false positive/negative assessments (Magdolenova et al., 2014). 

Another element which may affect these results is the presence of impurities or other chemical 

species mixed with the particles, such as free ionic species, ROS or proteins which promote 

agglomeration, since they can produce changes on the particles or simply have a direct effect over 

the cells during exposure, which could lead to false positive results (Magdolenova et al., 2014). 

One more variable is the cell line itself, since the same particles may interact differently with distinct 

cell lines, even if the cells derive from the same tissue origin. Factors as the receptors and 

transporter proteins present on the cells surface or even the amount of antioxidants and the 

metabolic pathways of each cell line may induce different responses when in contact with the 

materials/particles, since there are some lines more prone to damage than others (Magdolenova et 

al., 2014). 

Apart from these issues, operator experience also plays a role on assay variability and it is often 

desirable that a set of assays are performed by the same operator, minimizing experimental 

variation, or following specific guidelines, such as the ones described by Fenech (2000) for the 

micronucleus assay. 

Finally, it is very important to guaranty that the particles themselves do not interfere with the chosen 

assay in order to achieve reproducible results (Magdolenova et al., 2014). 
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There are some differences between what can be achieved, in terms of toxicity evaluation, through 

in vitro or in vivo assays. The main limitation of in vitro assays is that they can only evaluate primary 

genotoxicity due to the fact that it is very hard to reproduce all the in vivo conditions, in which 

secondary genotoxicity from the ROS originated through the inflammatory mechanism. However, in 

vitro studies can be useful to study concentrations, which may be excessive for many organisms. 

For biological relevance purposes the time of exposure for in vitro studies should be longer than the 

cell cycle period in order to maximize the accessibility of the cells to the particles. Also, the protein 

content must be taken into account since there are major differences between these systems in 

terms of both concentration and variability of proteins (Magdolenova et al., 2014). 

Having all of the above in mind, PMMAp and PMMA-EUDp potential genotoxic effects were 

evaluated through the combination of Comet and Micronucleus in a fibroblast cell line. 

1.2.2.3. Stress response 

Both cyto- and genotoxicity are often mediated by oxidative stress from ROS or their excessive 

accumulation as reactional by-products. Several authors implicate the generation of ROS as early 

signs of nanoparticle-induced cellular damage. Some of the underlying mechanisms which originate 

oxidative stress are mitochondrial respiration and apoptosis, NADPH oxidase system activation, 

interference in calcium homeostasis or depletion of antioxidant enzymes. Also, ROS biological 

responses include the activation of signalling pathways, expression of inflammatory cytokines and 

chemokines, and increased transcription of inflammatory, genotoxicity, fibrosis and cancer 

associated factors (Manke et al., 2013).  

Hence, oxidative stress is one of the most relevant outcomes of particles interaction with the 

biological medium. In fact, it is thought as one of the main reason for in vivo nanotoxicity (Zolnik et 

al., 2010; Chompoosor et al., 2010), especially if the particles can be sequestered by phagocytic 

cells in the reticuloendothelial system, which will target both liver and spleen (Schipper et al., 2009; 

Stark, 2011).  

Cellular stress response, evaluated through the measurement of ROS, is often investigated with 

2’,7’-Dichlorofluorescein diacetate (H2DCF-DA), which is a non-fluorescent cell-permeable 

compound used as a marker of oxidative stress. Once inside the cell, it is cleaved by endogenous 

esterases to H2DCF, thus preventing the back-diffusion of the dye into the extracellular space. The 

de-esterified product becomes the highly fluorescent compound 2’,7’-Dichlorofluorescein (DCF) on 

oxidation by ROS (Wardman, 2007). 
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Chapter 2. Materials and Methods  

PMMA and PMMA-EUD particles will be hereinafter represented by PMMAp and PMMA-EUDp, 

respectively. 

2.1. Particles preparation 

2.1.1. Materials 

PMMA (Mw=120000) and polyvinyl alcohol (PVA, Mw=13000 – 23000; 87-89 % hydrolysed) were 

provided by Sigma-Aldrich (UK). Dichloromethane (DCM), D(+)-Sucrose, Nile Red was purchased 

from Applichem (Germany). Poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl 

methacrylate chloride) (Eudragit RL 100, EUD; Mw=32000) was kindly provided by Evonik Degussa 

International AG (Zaragoza, Spain). 

Sterile water used in the experiments was filtered through 0.22 µm pore size (Whatman filter). 

2.1.2. Methods 

Both particles were prepared at room temperature by single-emulsion (oil-in-water) through solvent 

evaporation (SESE). Preliminary assays were performed in order to optimize size distribution. After 

the preparation of each batch, size distribution was evaluated in order to verify changes in particles 

mean size and ensure that unimodal size populations were obtained.  

During this work we aimed to prepare particles with a size range around 500 nm in order to exclude 

different cellular effects due to this property. To achieve this goal, different formulation conditions 

were tested (Table 1). 

Batches for PMMAp and PMMA-EUDp (50:50 polymer ratios) were prepared in pairs. Batches nº 1, 

4 and 6 represent PMMAp, while batches nº 2, 5 and 7 correspond to PMMA-EUDp. Batch nº 3 

corresponds to 100% EUD particles preparation.  

Considering the best results in what refers to size distribution the selected protocol was as shown 

by Figure 7  

PMMA and Eudragit 100 RL powders were weighted and added directly to glass flasks and 

dissolved in an organic solvent (DCM). After complete dissolution of the polymers, the solution was 

mixed with the PVA (5 %) on a Silverson mixer emulsifier (L5M, Silverson, UK) during 10 min at 

high-shear velocity, to obtain the w/o emulsion. After this step, the emulsion was put under 

magnetic stirring conditions (350 rpm) (Multipoint 15, Varomag, UK) so that the organic solvent was 

evaporated per 4 h. After DCM had been completely evaporated, particles were purified by two 
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successive centrifugations (64R, Beckman, USA) of 20000×g, during 20 min, for PMMAp and 

5723×g, during 10 min, for PMMA-EUDp, both at 4 ºC. The particles were washed two times with 

10 % D(+)-Sucrose.  

Table 1 - Different tested conditions for particles preparation. 

Batch 

nº(composition) 

PMMA 

(mg) 

Eudragit 

RL 100 

(mg) 

Total 

Mass 

(mg) 

DCM 

(mL) 

PVA 

(5%)(mL) 

Time for 

emulsion at 

Silverson 

(min) 

Centrifugation 

(×g, 4 ºC,Time) 

1(PMMA) 
25 - 25 3.5 10 10 

2×20000,  

20 min 

2(PMMA-EUD) 62.5 62.5 125 5 30 10 

5723, 10 min 

20000, 20 min 

3(EUD)* - 125 125 5 30 10 

5723, 20 min 

20000, 20 min 

4(PMMA) 125 - 125 5 30 10 

2×20000,  

20 min 

5(PMMA-EUD) 62.5 62.5 125 5 30 10 2×5723, 10 min 

6(PMMA) 65 - 65 7.5 30 10 

2×20000,  

20 min 

7(PMMA-EUD) 62.5 62.5 125 5 30 10 2×5723, 10 min 

*Note: Eudragit (100%) particles were not possible to be prepared. 

When the particles were prepared with intent to be lyophilized they were resuspended in 5 mL of 

filtered H2O and 1 mL of sucrose (0.5%).  

 

Figure 7 - Schematic representation of the experimental protocol for particles preparation (Adapted 
from Bettencourt and Almeida, 2012). 
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In order to evaluate the Yield of Production (YP), aliquots were taken and lyophilized and weighted 

as a powder. The yield was calculated as follows: YP (%) = (Practical Yield/ Theoretical Yield) × 

100.  

Lyophilized particles were obtained after frozen samples submitted through a Freeze-Dryer (Alpha 

1-4 (100-400), Christ, Germany) (n = 3). 

Particles loaded with the fluorophore Nile Red (0.1 mM) were obtained using the same protocol as 

unloaded particles except that, after dissolving the polymers with DCM, 100 µL of the compound 

was added to the solution immediately before the emulsification step.  

2.2. Particles characterization 

2.2.1. Particles size distribution 

Particle size distribution was evaluated by Laser Diffraction. 

In Laser Diffraction the intensity of light, which is diffracted by a particle or set of particles is 

measured over a set of detectors distributed under a predetermined set of angles in accordance 

with Lorenz-Mie Theory, which states that light intensity is inversely proportional to the analysed 

particles size. Still there’s an associated residual error when using this technic, which must be 

minimized through an iterative process of measurements (Stojanović and Marković, 2012). 

For Mie’s theory to be applied two parameters need to be known: the refraction index and the 

absorbance. The first can be obtained through a refractometer and the latter is obtained by 

observing the dispersed particles though microscopy. Before measurements the most suitable 

method must be chosen since results can be affected by a variety of factors, such as temperature, 

sample’s stability through time, agglomeration, among others. Two methods are available 

depending on sample properties: wet dispersion (used in the present study) and dry dispersion, the 

first easier to control and with higher signal to noise ratio and the latter faster and cheaper 

(Stojanović and Marković, 2012).  

Mastersizer 2000 - Hydro 2000S (Malvern Instruments, UK) was used to measure particles size 

distribution. This apparatus employs 50 lasers at various angles in order to identify and analyse 

PMMAp and PMMA-EUDp size distribution, which was determined per volume unit. Previously to 

each measurement the samples were homogenized and then dispersed in purified water in the 

reservoir until obscuration criteria (between 5 and 10 %), were met. PMMA-EUDp were also 

measured under 50 % sonication due to their tendency to aggregate. Solvent’s refraction index was 

set as 1.361 and room temperature was applied.  
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2.2.2. Surface morphology  

Surface morphology was evaluated by Transmission Electron Microscopy (TEM). This technique is 

based on focusing an electron beam through a measurement chamber using electromagnetic 

lenses in a manner, which allows synthesizing an image with very high resolution. The system is 

run on vacuum and the scattering effect is produced by the electronic beam hitting any gas particles 

present in the solution (Höcherl, 2012). 

The morphological characterization of PMMAp and PMMA-EUDp was performed by image analysis 

obtained by TEM in a Hitachi H8100 (Hitachi High-Technologies Europe GmbH, Germany) using an 

applied voltage of 200 kV, equipped with digital image acquisition with a CCD MegaView II bottom-

mounted camera. To analyse the samples, a droplet of the suspension was deposited on the 

copper grid with a formvar film and dried at room temperature. 

2.2.3. Surface charge evaluation  

The surface charge of the particles was evaluated through ζ-potential measurement (Malvern 

Zetasizer Nano Z, Zen 2600, Malvern Instruments, UK). ζ-potential is based on dynamic light 

scattering methodologies while applying an electrical field that will polarize an electrophoretic cell 

and the surface charges will be evaluated due to electrophoretic mobility/velocity in the cell through 

the correlation equation of Smoluchowski which relates the velocity of the molecule through the 

electrical field with its charge (Domingues et al., 2009). 

Standard electrophoretic cell was used with gold electrodes to apply the electric field. Termocaps 

were used to limit temperature variation. Samples were diluted in 3 mL filtered water and the cell 

was filled verifying for the existence of bubbles that could cause interference in the ζ-potential 

measurements. 

2.2.4. Chemical composition  

The chemical composition of the particles was assessed by FT-IR (Fourier transform infrared 

spectroscopy). 

Lyophilized particles were mixed with potassium bromide (KBr) (Merck, Germany) (in a 2:200 mg 

ratio) in an agate mortar. A pellet was obtained by compressing the powder mixture into discs in a 

hydraulic press, under a pressure of 10 Ton for 3 min. FT-IR spectra were obtained with IRAffinity-1 

spectrophotometer (Shimadzu, Kyoto, Japan) at 400–4000 cm
−1

 scanning range. The pellet was 

placed in a light path and the spectra obtained were the results of the average of thirty scans. 

PMMA and EUD powders used during the preparation of the particles were used as controls of the 

structure of each polymer. 
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2.2.5. Hydrophobicity 

Hydrophobicity was evaluated by hydrophobic interaction chromatography (HIC) for each type of 

particles.  

HIC is generally used as a purification/separation method, usually for proteins, based on their 

different hydrophobicity. A compound which possesses a higher hydrophobic surface can be 

retained for a longer period of time in a column packed with a resin presenting many hydrophobic 

receptors than other compounds with less hydrophobic surfaces. This may happen when the first 

interacts by forming stronger bonds to the column’s surface where a selective resin (stationary 

phase) is immobilized. In HIC the substances are eluted several times with a neutral saline solution 

(mobile phase) until all different compounds have been separated. Strongly bonded compounds 

may only be released through an elution with a detergent, such as Triton X-100. However, it may 

occur that a compound presents such a strong bond with the chosen column package that it bounds 

to it irreversibly (Alpar and Almeida, 1994; Murphy et al., 2011). 

This method may also be applied in order to relatively evaluate and compare particles with different 

hydrophobicity values (Alpar and Almeida, 1994). In order to do so, three types of column packages 

are usually used, each with increasing hydrophobicity in order to distinguish different bonding 

capabilities (Murphy et al., 2011). 

In the present work, vertical disposable columns were used with three resins with different 

hydrophobicity as follows: Sepharose 4-FF < Butyl Sepharose 4-FF < Octyl Sepharose 4-FF, all 

provided by Ge Healthcare (UK). These resins were used as packaging for the columns after 

successive centrifugations (Megafuge 1.0R; Heraeus, UK), at 900 rpm for 10 min, at room 

temperature, in order to wash the preservation liquid (ethanol) in which they were suspended. For 

the third washing cycle the resins were re-suspended in mobile phase, a 0.6 M NaCl (Applichem, 

Germany) solution previously prepared. After the final centrifugation the resins were re-suspended 

in the mentioned mobile phase until 15 mL were obtained and sonicated (250, Branson, USA) for 

10 min. Then 1 mL of resin suspension was applied to each empty column. The columns were 

washed with 10 mL mobile phase and then stored at 4-8 ºC overnight.  

The next day, 1 mL of the particles samples (20 mg/mL) was applied to each column (n = 3 per 

resin, per particle type) and the resulting elution was captured at vials for each column (Figure 8). 

This step was repeated for elutions with mobile phase, for partially retained particles, and 0.1% 

(w/V) Triton X-100 (Applichem, Germany), for strongly bound particles. 200 L from each vial were 

then transferred to a 96-well flat bottom microplate and OD600nm was measured (FLUOstar Omega, 

BMG Labtech, Germany). Previously, samples from both particles dispersions were diluted until 

OD600nm reached 0.5 with this value being taken as the total of particles for statistical purposes.  
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Figure 8 - Experimental overlay for HIC assay. 
 

2.2.6. Study of the interactions between biological parameters and particles  

2.2.6.1. Surface charge as a function of ionic strength, pH and serum concentration  

To evaluate the ionic strength effects, aqueous solutions of NaCl were set at 0.0008, 0.0015, 0.008, 

0.015, 0.08 and 0.15 M though successive dilutions. 

To evaluate the serum percentage effect, solutions of Fetal Bovine Serum (FBS) (Life 

Technologies, UK) were prepared by successive dilutions in water and culture medium (RPMI 1640, 

Life Technologies, UK). The chosen concentrations were 0.01, 0.1, 1, 2, 5, and 10 % (V/V). 

To evaluate the pH effect on the particles, sterile water was used and pH was adjusted with a pH 

measuring device (inoLab730, WTW, Germany) with 0.1 N HCl to pH=1.6, 2.3, 3.4, 5, 7.1 and with 

0.1 N NaOH to pH=9.4, both provided by Merck (Germany). 

All particle dispersions for the different evaluated conditions were prepared by adding 10 L of 

particles stock suspension (20 mg/mL) to 1 mL of testing condition (n = 3). The ζ-potential of the 

samples was then measured with Zetasizer Nano Z. 

2.2.6.2. Effect of serum concentration on size distribution 

Two particles suspensions of PMMAp and PMMA-EUDp (in culture medium containing 10% FBS) 

were incubated at 37 ºC. Samples were taken at 0, 1, 24, 48 and 72 h and introduced into 

Mastersizer 2000 - Hydro 2000S for particle size measuring. Mean particle size and standard 

deviation result from the mean of five consecutive measurements at constant stirring conditions. 

Measurements for PMMA-EUDp were made with and without 100 % sonication for aggregate 

stability evaluation.  

2.2.6.3. Protein adsorption assays 

Bovine Serum Albumin (BSA) (Sigma-Aldrich, UK) was selected as the model protein for the 

adsorption studies. Initially, the UV-Vis spectrum of BSA was obtained in a microplate reader 
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(FLUOstar Omega, BMG Labtech, Germany) and the highest absorbance peaks were chosen for 

BSA adsorption analysis by measuring the OD at wavelengths 230 and 280 nm for BSA specific 

detection and 562 nm for total protein amount detection through the BCA method. 

Particles dispersion (20 mg/mL) and BSA stock (1 mg/mL) solutions were prepared with 10 mM 

PBS (pH 7.4, Sigma-Aldrich, UK). Particles suspension with BSA were prepared in 1.5 mL 

microtubes at various concentrations depending on the assay and incubated at 37 ºC (Incubator 

INB 500, Memmert, Germany). Controls for BSA and both particles were also prepared in 

microtubes directly from the stock solutions. At pre-determined time points the samples were 

collected and then centrifuged (R11288 Sigma 112, Sigma-Aldrich, UK). The supernatants were 

transferred to 96-wells plates specially designed for UV measurements and non-adsorbed BSA was 

detected by UV-vis spectroscopy, as previously described.  

In addition, a biochemical assay (bicinchoninic acid assay, BCA assay, Sigma-Aldrich, UK) for the 

detection of the BSA in the supernatants was also performed. The method was executed as follows: 

concentration of PMMAp and PMMA-EUDp was changed until OD600nm = 0.5, having been chosen 

[PMMAp] = 500 µg/mL and [PMMA-EUDp] = 202 µg/mL. Then different studies were performed: i) 

BSA adsorption variation with time, ii) adsorption of particles at different concentration of BSA and 

iii) adsorption of BSA at different concentration of particles.  

i) For BSA adsorption variation with time, dispersions of particles at the previously discussed 

concentrations were incubated with [BSA] = 1 mg/mL, at 37 ºC with steering conditions and 

analysed at 1, 2, 4, 6, 24 and 48 h. 

ii) For [BSA] variation particles were incubated with 59.7; 67.6; 92.6; 113.6; 146.9; 208.3; 476.2 and 

909.1 µg/mL of BSA for 24 h at 37 ºC. 

iii) For [particles] variation, [BSA] was fixed at 1 mg/mL and was added to particles dispersions at 

0.5, 1 and 2 mg/mL which were incubated for 24 h at 37 ºC. 

After incubation, each sample was centrifuged (R11288 Sigma 112, Sigma-Aldrich, UK) for 15 min 

at 12000 rpm and 50 µL of the resulting supernatant were transferred into 96 wells plates specially 

designed for UV measurements. Then reaction was induced with 50 µL of BCA solution Kit (1:20 

ratio between Copper (II) and Biocinchoninic Acid) which specifically identifies proteins through the 

reduction of Cu
2+

 to Cu
+
, which forms a purple chromogenic compound with absorbance maximum 

at 562 nm. The plates were incubated for 15 min at 37 ºC and then OD562nm was measured with the 

FLUOstar Omega microplate reader.  
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2.3. In vitro cellular assays 

2.3.1. Cell lines, cell maintenance and particles dispersions 

Cell lines 

Cell lines L929 (Mouse fibroblast cell line, ATCC® CCL-1™) and MG63 (human osteoblast cell line, 

ATCC CRL-1427™) were chosen for uptake evaluation, cytotoxicity and oxidative stress response. 

L929 alone was used for genotoxicity assays due to time concerns. THP1 cells (human monocytic 

cell line, ATCC TIB-202™) were also used for uptake evaluation because it can be differentiated 

into macrophages. 

Cell maintenance 

Each cell line was kept at optimal conditions for growth, i.e., incubated in RPMI 1640 culture 

medium supplemented with 10% FBS, 100 units of penicillin G (sodium salt), 100 µg of 

streptomycin sulfate and 2 mM L-glutamine, at 37 ºC with 5 % CO2, until confluence levels reached 

at least 75 %. At this point cell lines were trypsinized with 1 mL of enzyme (TrypLE™Express) and 

subsequently transferred to new T-flasks at a tenth of its original volume. All the mentioned 

products were acquired from Life Technologies (UK). 

The THP1 cell line was differentiated to macrophages for 3 days with 200nM of phorbol 12-

myristate 13-acetate (PMA) (Sigma-Aldrich; UK) before exposition to the particles. 

Particles dispersion 

Stock particles dispersions were obtained by weighting an adequate amount of particles in purified 

sterile H2O to a final concentration of 20 mg/mL. Careful homogenization through sample inversion 

was performed until no aggregation was visually detected. PMMA-EUDp stock dispersions were 

prepared immediately before its use due to their rapid aggregating properties. PMMAp stock 

solutions were prepared and used as seen fit since these didn’t show any physical signs of 

aggregation. 

All concentrations (µg/mL) were converted into µg of particles in the applied volume (100 µL and 

500 µL in 96 or 24-well plates, respectively) per well area (0.34 and 1.80 cm
2
 in 96 or 24-well 

plates, respectively). This conversion is shown on Table 2. 
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Table 2 - Relationship between particles concentrations. 

Particle 

concentration 

(µg/mL) 

96-well plates 

(µg/cm
2
) 

24-well plates 

(µg/cm
2
) 

10 3 2.8 

100 30 28 

500 147 139 

1000 294 278 

2000 588 556 

5000 1471 1389 

  

2.3.2. Cell Uptake Assays 

Nile Red-loaded particles were used in these studies. 

Cells were seeded in sterile flat bottom 96-well tissue culture plates (Greiner, Germany) at a cell 

density of 2×10
5
, 1×10

5
 and 2.5×10

5
 per well, respectively for L929, MG63 and THP1 cell lines. 

Cells were then exposed to 3, 30 and 147 µg/cm
2
 of each type of particles. Negative control refers 

to culture media-only.  

After 24 h for L929 and MG63 or 72 h for THP1, culture medium was replaced with 100 µL of Nile 

Red loaded particles. The analysis for each concentration was made on 5 wells. The cells with the 

treatment medium were incubated for 1 and 24 h, after which they were washed three times with 

250 µL of PBS containing 20 mM Glycine (Bio Rad, USA) at pH 7.4 at 37 ⁰C and then fluorescence 

was immediately measured at excitation wavelength 485 nm and emission 520 nm. PBS was then 

removed and the cells were disrupted with 100 µL of 1 % Triton X-100 after which fluorescence was 

again measured to determine the amount of internalized particles. 

Confocal microscopy analysis was performed further for confirmation of cellular uptake. 

Cells (MG63 and L929) were grown at 8-well chamber slides (Nalgen Nunc, Denmark) for 

immunocytochemistry assays. After incubation, cells were rinsed with 10 mM PBS containing 20 

mM Glycine at pH 7.4, before and after being fixed for 15 min (in the dark, at room temperature) 

with paraformaldehyde (4 % w/V in PBS, Applichem, Germany). Slides were then mounted in 

fluorescent mounting medium ProLong® Gold antifade reagent with DAPI (Life Technologies, UK) 

and their images of fluorescence were recorded with Leica TCS-SPE confocal microscope and 

processed with Leica Software (Leica, Germay). 
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2.3.3. Cytotoxicity Assays 

The effect of particles on cell viability was first evaluated by two distinct methods which measure the 

cell mitochondrial activity, MTT and Alamar Blue assays. 

Cells were seeded as in the uptake assay at a cell density of 2×10
5
 and 1×10

5
 per well, respectively 

for L929 and MG63 cell lines. Cells were then exposed to 3, 30, 147, 294 and 588 µg/cm
2
 of both 

types of particles. Negative control refers to culture media-only and Sodium Dodecyl Sulphate 

(SDS) (Merck, Germany) at 1 mg/mL was chosen as positive control. After 24 h, fresh media was 

applied with the different treatments and five wells per concentration were analysed. Cell viability 

was assessed after 24, 48 and 72 h of incubation at 37 ºC and 5 % CO2. After each time of 

incubation, culture medium was replaced with medium containing 5 mM of resazurin (Applichem, 

Germany), or 0.25 mg/mL of MTT (Sigma-Aldrich, UK). This was followed by further 3 h of 

incubation in a fluorescence microplate reader after which fluorescence was measured at 530 nm 

for excitation wavelength and 590 nm for emission wavelength for the Alamar Blue assay.  

For the plates containing MTT, the media was removed and intracellular formazan crystals were 

solubilized and extracted with 100 µL DMSO (Merck, Germany). After 15 min at room temperature 

absorbance was measured at 570 nm. 

The relative cell viability (%) by comparison to the control cells was then calculated through the 

formulas [Fluorescence]sample/[Fluorescence]control x 100 for the Alamar Blue assay and 

[Absorvance 570nm]sample/[Absorvance 570nm]control x 100 for the MTT assay. 

Alamar Blue assays had particle interference at the given fluorescence excitation and absorbance 

wavelengths and, therefore, results were not consistent and won’t be presented. 

The Trypan Blue assay was further used to evaluate cell membrane integrity. Cell seeding was 

done as for the cytotoxicity assays previously described and the same for particle exposure but only 

for 24 h. For the Trypan Blue cell counting, a sample was taken from each well and a dilution factor 

of 5 was employed, by adding 200 µL of Trypan Blue (Sigma-Aldrich, UK) to 50 µL of the samples. 

Cells were then counted with a Neubauer chamber on an inverted microscope with phase contrast 

(TC5400, Meiji Techno). The number of unviable cells was compared to the number of total cells. 

2.3.4. Genotoxicity Assays 

2.3.4.1. Materials 

a) Comet Assay 

RPMI 1640 w/Glutamax, FBSi, Penicillin-Streptomycin (10000 U/mL), 0.05% Trypsin-EDTA, DMSO, 

Tris-HCl (10mM), Trypan Blue (0.4%), PBS and 10 mM Tris-HCL were provided by Life 
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Technologies (UK); Triton X-100, Hydrogen Peroxide, 10 mg/mL Ethidium Bromide (EtBr), Trizma 

Base (0.4 M Tris), 0.5 mM Acid EDTA, 8.8M Hydrogen Peroxide (H2O2), 0.2 mg/mL BSA and Low 

Melting Point agarose were provided by Sigma-Aldrich, UK); FPG was kindly provided by A.R. 

Collins (University of Oslo, Norway); 2.5 M NaCl, 10 M NaOH, 4 M HCl and 100 mM KCl were 

provided by Merck (Germany); 100 mM Na2EDTA.2H2O was provided by Calbiochem (Germany) 

and Normal Melting Point agarose was provided by Amersham (UK).  

Microscopy-related material was provided by Hirschman (Germany), Thermo Scientific (UK) and 

Immuno-Cell (Belgium). 

b) Micronucleus assay 

Mitomycin C, Cytochalasin B, and 96% Methanol were provided by Sigma-Aldrich (UK); 3% Acetic 

Acid, KCl, Giemsa Stock Solution and Entellan Mounting Medium were provided by Merck 

(Germany); Gurr’s phosphate buffer (pH 6.8) was provided by Life Technologies (UK); 6-well flat 

bottom tissue culture plates were provided by Greiner (Germany) 

2.3.4.2. Methods 

Though we had done the previous assays with at least two cell lines, the evaluation of the genotoxic 

effects were studied on the L929 cell line only, since it was the one recommended on ISO 10993-5. 

In respect to the dose-range selection, since the previous tests showed no relevant cytotoxicity up 

to the concentration of 2 mg/mL (or 556 µg/cm
2
), we decided to proceed with an evaluation on the 

maximum concentration recommended by OECD (2010) guidelines, which is 5 mg/mL (or 1389 

µg/cm
2
).  

a) Comet assay 

Cells were grown on 24 well flat bottom plates and incubated for 24 h at 37 ºC and 5.5 % CO2 with a 

cell concentration of 1.5×10
5
. Particle dispersion (20 mg/mL) of the powdered particles in fresh 

purified H2O was used for making the treatment mediums at concentrations 28, 139, 278, 556 and 

1389 µg/cm
2
 by successive dilutions with culture medium. For PMMA-EUDp the stock dispersion 

needed to be freshly prepared due to agglomeration concerns. After the initial incubation period, 

culture medium was replaced with treatment medium, two wells per concentration, and re-incubated 

at previous conditions for 3 and 24 h. Culture medium was added to negative control wells and 200 

µM H2O2 was added as positive control 30 min before the end of the incubation periods. Cells were 

then extracted by trypsinization and transferred into microtubes where they were centrifuged for 10 

min at 1200 rpm and 4 ºC. Cells were then embedded in low melting agarose (1 % w/V) and spread 

onto previously agarose-coated microscope slides, four per concentration. These were then 

immersed in lysis solution (2.5 M NaCl, 100 mM Na2EDTA.2H2O, 10 mM Tris-HCl, 10 M NaOH, 10 

% DMSO and 1 % Triton X-100, pH 10) overnight.  
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Next, the slides were rinsed three times, 5 min each, with enzyme buffer (40 mM HEPES, 100 mM 

KCl, 0.5 mM Acid EDTA and 0.2 mg/mL BSA, pH 8) and then 50 µL of FPG was added to half of 

the slides, while to the others was added enzyme buffer (control), for 30 min. Then, slides were 

submerged in electrophoresis buffer (300 mM NaOH and 10 Na2EDTA.2H2O, pH 13), for DNA 

unwinding and exposure of alkali-labile sites, for 30 min. Electrophoresis was then run for 25 min, 

28 V and 300 mA). Finally, the slides were submerged in neutralization buffer (0.4 M Tris and 4 M 

HCl, pH 7.5) for 10 min, air dried at room temperature for several days and stained with EtBr.  

For evaluation of DNA damage, one hundred randomly selected nucleoids were analysed using 

Axioplan2 Imaging epifluorescence microscope equipped with high resolution camera (Carl Zeiss, 

Germany). DNA in the comets’ tails was scored with Comet Imager 2.2 software (MetaSystems, 

Germany). For statistical purposes the median of the percentage of DNA in tail was registered and 

used to extrapolate the DNA damage level since it is linearly related with breaks on DNA strands. 

b) Micronucleus assay 

Cells at a concentration of 2.5×10
5
 were incubated in 6-wells plates for 24 h before exposure. After 

that, the medium was removed and cells were treated with the same particle concentrations as in 

the comet assay, with 3 mL of treatment medium being added per well. Mitomycin C was chosen as 

the positive control for this assay. After overnight exposure, Cytochalasin A was added to inhibit cell 

cytokinesis, therefore, entrapping any formed micronuclei inside the dividing cells’ membranes, for 

30 h. A fixing solution was prepared, with a 3:1 ratio of methanol and acetic acid, and maintained at 

-20 ºC until necessary. The cells were then extracted, transferred onto 15 mL tubes and centrifuged 

at 1200 rpm for 5 min. The supernatant was then discarded and hypotonic shock was induced with 

5 mL of KCl 0.1 M added drop-by-drop while vortexing. The solution was re-centrifuged at 1200 rpm 

for 5 min and supernatant discarded by pipetting. Then, the cells were fixed with 1 mL of fixing 

solution while vortexing and spread over microscope slides with a cytocentrifuge. The slides were 

kept at room temperature for several days in order to be air-dried. A solution of 4 % Giemsa was 

then prepared by dilution with Gurr’s phosphate buffer (pH 6.8). Three recipients were prepared for 

the staining procedure: one with the diluted Giemsa solution and two with Gurr’s phosphate buffer 

(1:25). Slides were then submerged in phosphate buffer for 4 min, then on Giemsa solution for 13 

min and finally washed twice in phosphate buffer. The slides were then air-dried at room 

temperature and mounted with entellan with three drops per slide.  

2.3.5. Stress Response Assays 

L929 and MG63 sub-confluent cells grown in 96 well plates were incubated for 30 min with 20 μM of 

2-7’ dichlorodihydrofluorescein diacetate (H2DCFDA, Life Technologies, UK) in the dark at 37 ºC. 

Medium was removed and fresh medium was added before exposing the cells to the different 

concentrations of particles for 1 and 2 h. H2O2 (0.5 mM) was used as positive control for the 
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induction of ROS. After exposure, ROS levels were determined at excitation 485 nm and emission 

520 nm wavelengths using a florescence microplate reader (FLUOstar BMGLabtech, Germany).  

Data from 5 replicates was reported as relative fluorescence units (RFU) percentage and expressed 

as mean fluorescence ratio (fluorescence of exposed cells/fluorescence of unexposed control from 

the same experiment x 100). 

2.3.6. Statistical Analysis 

Data are expressed as mean and standard deviation (mean ± SD) of separate experiments (n = 5 

for uptake, cytotoxicity and stress response assays and n = 3 for genotoxicity assays). Statistical 

evaluation of data from uptake, cytotoxicity and stress response assays was performed using one-

way analysis of variance (ANOVA). Tukey’s multiple comparison test (GraphPad PRISM 5 software, 

USA) was used to compare the significance of the difference between the groups, a p-value<0.05 

was accepted as significant. 

Statistical evaluation of data from genotoxicity assays was performed using one-way analysis of 

variance (ANOVA) and Tukey’s multiple comparison test (SPSS Statistics 22.0, IBM Software, 

USA) was used to compare the significance of the difference between treated and untreated cells. 

The Mann-Whitney test was used to compare the statistical difference between the positive and 

negative controls. A p-value<0.05 was accepted as significant. 
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Chapter 3. Results and Discussion  
 

3.1. Particles preparation  

The first step of the present work was the optimization of the particles preparation method. 

Both PMMAp and PMMA-EUDp were obtained through simple emulsion solvent evaporation 

methodology (SESE). This technique is often reported in the literature for the encapsulation of 

bioactive principles in acrylic particles (Zydowicz et al., 2002; Bettencourt et al., 2010). The method 

is based on the emulsification of an organic phase in an aqueous phase, containing a surfactant. 

After the emulsification process, the volatile organic solvent is evaporated, resulting in the 

precipitation of the polymer and the formation of particles (Zigoneanu et al., 2008).This method 

assures a faster and easier way to prepare the particles than other time-consuming and more costly 

methods as the polymerization techniques, therefore, minimizing the production costs and the time 

needed for this purpose (Bettencourt and Almeida, 2012). Moreover, the use of SESE allows the 

exclusion of toxicity issues related to the polymerization methods, such as the presence of residual 

monomers or oligomers in the final product. Nevertheless, the use of dichloromethane (DCM), a 

Class 2 solvent, according to International Conference on Harmonization (ICH) for which the 

maximum residual concentration allowed is 600 ppm (EMEA, 2006) could be of some concern. Its 

use is justified by the high volatility of DCM that induces very low residual solvent rates after 

particles drying (Bettencourt and Almeida, 2012). In fact, Florindo et al. (2008) found that the 

residual DCM amount present in polymeric particles after freeze-drying, quantified using nuclear 

magnetic resonance spectroscopy technique was well below the safety limit. Furthermore, the 

residual DCM content in PMMAp prepared by Kwon et al. (2002) was less than 10 ppm, measured 

by gas chromatography.  

PMMA and Eudragit RL 100 were chosen as the polymers of the formulations as both are 

biocompatible, with a long history of application in the human body. PMMA has been largely 

described as a safe-to-apply, FDA-approved polymer, with low toxicity related effects. Also, it is a 

non-biodegradable polymer and many authors suggest its utility for controlled drug release over a 

specific target area or system as this feature allows particles long-term tracking in the physiological 

milieu, without contamination with any degradation product (Jung et al., 2007; Bettencourt and 

Almeida, 2012; Papa et al., 2014; Juneja and Roy, 2014). As for Eudragit RL 100, it is well known 

that this polymer can improve the efficiency of both the cellular uptake and the delivery of a target 

drug in acrylic polymer formulations (Joshi, 2013).  
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The formulation of both PMMAp and PMMA-EUDp has shown to be highly influenced by a number 

of parameters like polymer mass, surfactant and organic solvent volume, time of emulsifying and 

the purification process, among others. For example, emulsifying time can have an effect in the 

size, because it will affect the distribution of the polymers in the solution, and the forces applied 

during the emulsion step will be unbalanced. This fact will result in particles with different 

characteristics. The DCM volume can also influence the resulting particle size distribution. In our 

study we aimed to achieve reproducible narrow size distributions in the 500 nm range. This size 

was selected since, in preliminary studies (data not shown), it was found to be the lowest size that 

could be achieved for both types of particles using SESE. While trying to optimize the most suitable 

conditions, we verified that size was highly influenced by both the mass of each polymer and the 

volume of DCM used to dissolve the polymer. The purification step, with centrifugation at different 

velocities, was a key stage to obtain the most suitable particle sizes since, after the emulsion 

process, a complex suspension of particles with heterogeneous sizes was obtained.  

Although the above described conditions were the best for our purposes, it is important to consider 

that the method should be always optimized when the particles are to be used as carriers for the 

delivery of drugs. Depending on the drug of interest to incorporate, adaptations of the described 

method may be necessary, as each compound may have its own specific points, that will always 

need to be taken into account. 

Some studies that report the toxicity of PMMAp point to the formulation methodology as one 

possible cause of cytotoxicity. In Colombo et al. (2013), PMMAp were synthesized using either SDS 

or Tween80 as surfactant agents. The authors proved that the chosen method for particles 

formulation and minor factors, such as the composition of the surfactants, can have great impact 

over the particles biocompatibility. In this study, particles synthesized using SDS have shown to 

produce cytotoxic effects on murine mammary tumour cells, while particles with Tween80 have 

shown no decrease in cell viability. The possible explanation given by the authors is that the main 

difference that could provide this variation would be the sulphate groups provided by the SDS.  

Results of the YP for each type of particle show that PMMAp were easier obtained than PMMA-

EUDp (Table 3). Results for PMMAp are similar of those obtained by Bettencourt et al., (2010) (YP≈ 

95 %) in which the same kind of unloaded particles were formulated by the same method. The 

lower YP values for PMMA-EUDp may be explained by the inclusion of the EUD polymer in the 

formulation. EUD has hindered the emulsification step and induced the adhesion of the particles to 

the glass and plastic containers.  

This justification was suggested by our attempt of obtaining EUD (100 %) particles. In this case it 

was not possible to formulate the particles as we could not obtain a stable pellet, in the purification 

steps, as those obtained for PMMAp. In this case it was clear that EUD polymer caused adhesion of 
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the particles to the glass flasks used for containing the particles dispersions, sometimes even 

forming films on their surface.  

Table 3 - Yield of production per particle type (n = 3) 

Particles YP (%, w/w) 

PMMAp 92.31 ± 15.38 

PMMA-EUDp 32.43 ± 0.15 

 

3.2. Particles characterization 

At present, it is accepted by both the scientific community and the regulatory agencies that 

physicochemical data should be included in any toxicology study (Fubini et al., 2010), as several of 

these properties affect the particles biological behaviour. Therefore, different properties of the 

particles, such as size distribution, shape, charge, hydrophobicity and chemical composition, were 

evaluated and will be subsequently presented. 

3.2.1. Particles size distribution 

One of the most important physicochemical properties of particulate-systems is particle size 

distribution. This property will influence many other characteristics either intrinsic to the particles or 

related with their interaction with the biological surroundings. Size is directly related to the particle 

surface area with obvious impact on their biological reactivity. Also, it is the main characteristic that 

will determine the physical barriers that the carriers can transpose either limiting or increasing 

access to certain organs/tissues. It will also determine the bioavailability of the particles and their 

pathway of internalization into cells (Vollrath et al., 2012). 

Table 4 - Average results from size distributions of different batches (corresponding to different 
formulation conditions) evaluated through Laser Diffraction (n = 3). 

Batch 
nº(Composition) 

Obscuration VMD (µm) Span 

1(PMMAp) 5.3±0.07 0.449±0.014 0.994±0.035 

2(PMMA-EUDp) 5.2±0.01 0.512±0.000 1.055±0.002 

3(EUDp) No Data Available 

4(PMMAp) 5.7±0.04 0.899±0.047 0.867±0.060 

5(PMMA-EUDp) 5.9±0.10 0.703±0.260 1.269±0.253 

6(PMMAp) 5.7±0.10 0.573±0.020 1.031±0.030 

7(PMMA-EUDp) 5.6±0.03 0.509±0.080 1.043±0.006 

Notes: Obscuration reflects the concentration of particles in solution. VMD stands for volume mean 
diameter. Span is a measure which evaluates the uniformity of size distributions. 

Particles average size of the different prepared batches is displayed on Table 4. Particles from 

batches 6(PMMAp) and 7(PMMA-EUDp) were the chosen for further characterization and for all 

subsequent assays, since they displayed the most comparable and reproducible sizes.  
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Also, as shown on Figure 9 and 10, all batches are monodisperse since they present unimodal 

populations, evidencing the high reproducibility of the preparation process. This can also be verified 

by the Span values on Table 4 since, the closer these are to 1, the narrower will be the size 

distributions and fewer populations will be present within the analysed sample. 

 

Figure 9 - Representative Particle Size Distribution for PMMAp (n = 3). 

 

Figure 10 - Representative Particle Size Distribution for PMMA-EUDp (n = 3). 

Overall, the SESE methodology allowed the preparation of particles within the micrometric range. 

The formulation procedure which allowed the preparation of particles with the size distribution that 

proved to be suitable to our propose goals (PMMAp = 572.7 ± 20 nm; PMMA-EUDp = 508.9 ± 8 

nm) was elected to proceed for further evaluation. 

3.2.2. Surface morphology  

Shape of particles has also been shown to have a pronounced effect on the biological activity of 

particulate-systems (Arora et al., 2012). For example, Chithrani et al. (2006) reported better uptake 

of spherical gold nanoparticles than gold nanorods in HeLa cells.  

Figure 11 illustrates common TEM images of PMMAp and PMMA-EUDp. Particles exhibited very 

similar spherical morphology. 

TEM was also used to evaluate if the loading of the fluorophore affected particle size. As the 

fluorescence emitted by the probe interferes with the optical properties of the particles, other 

methods as Laser Diffraction or Dynamic Light Scattering are not feasible. In the present study, 

TEM showed that the particles were able to incorporate Nile Red and maintain their size range after 

being loaded with this fluorescent compound (Figure 11). 
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Figure 11 - Panels showing particles shape from images taken with TEM spectroscopy for PMMAp and 
PMMA-EUDp, with and without Nile Red (NR). 

 

3.2.3. Surface charge evaluation  

Surface charge in addition to size and shape plays a decisive role in the interaction between 

particles and the cells or organisms.  

Our data has shown that surface charge modification, as measured through ζ-potential, was 

considerably changed after inclusion of Eudragit in the formulation (Table 5). PMMAp were strongly 

negative (-32.7 ± 1.04 mV), whereas PMMA-EUDp were strongly positive (+31.8 ± 1.66 mV).. 

These results suggest that particles could have different interactions with cells, which could lead to 

diverse toxicity effects, considered further on this thesis (Section 3.3.). Also, the fact that both 

particles showed absolute ζ-potential values above 30 mV should indicate high stability in 

dispersions because, the higher these values are, the less will be the tendency for particles to 

aggregate since particle repulsion will increase due to similar surface charges (Mendes et al., 

2012).  

Similar results for ζ-potential of PMMAp were obtained in other studies, even when different 

preparation methods (e.g. polymerization) were applied for particle formulation (Höcherl et al., 2012; 

Papa et al., 2014). A note of interest is presented in a study by Sitia et al. (2014) in which opposing 

charged PMMAp were synthesized which could be an element of comparison with our PMMA-EUD 

composite particles. 

(PMMA-EUDp) 

(PMMAp) (PMMAp+NR) 

(PMMA-EUDp+NR) 
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Since most cells present negative surface charge, it would be most likely that particles with positive 

charge, such as the PMMA-EUDp, would develop more electrostatic interactions than those with a 

negative one. By studying two structurally very similar particles, with opposing charges, we can 

evaluate this phenomenon and infer as to the suitability of the charge inversion and its effects on 

toxicity. 

Surface charge was also evaluated for the fluorescent particles containing Nile Red, as previously 

explained. The results have shown only slight variations of this property within the standard 

deviation acceptable values, hence, in combination with the TEM imaging results, it was considered 

that the loading of the fluorescent compound did not affect the particles size and charge.  

Table 5 - Surface charge of the particles diluted in purified H2O (n = 3). 

Batch 
PMMAp 

PMMAp 

(+Nile Red) 
PMMA-EUDp 

PMMA-EUDp 

(+Nile Red) 

ζ-Potential (mV) -32.7±1.04 -27.0±0.65 31.8±1.66 29.6±0.45 

 

3.2.4. Hydrophobicity 

The hydrophobicity, which refers to the water-attracting/water-repelling properties of a particulate-

system, is a major factor determining how particles become dispersed or agglomerated in aqueous 

solutions (Kroll et al., 2009). Also, wetting properties are of paramount importance in the interaction 

of the particles with biological elements, influencing proteins adsorption and cellular responses (e.g. 

uptake, cytotoxicity, DNA damage) (Fubini et al., 2010, Tran and Webster, 2013). Kim et al. (2013) 

points that hydrophobicity of particles is as important as the charge in dictating the genotoxicity of 

particles. 

The hydrophobicity of the particles was tested by the HIC method. A similar assessment was made 

by Blunk et al., (1993) in order to identify the levels of hydrophobicity of colloidal particles but 

through a more automated chromatography approach. Instead, we manually switched the 

containers with the eluted samples and used a colorimetric method by measuring OD=600 nm 

before and after elution through the packed columns.  

Analysis of collected data (Table 6) has shown that PMMA-EUDp have higher retention rates than 

PMMAp for all of the resins, being that the degree of the hydrophobicity of the resin surfaces can be 

represented as Sepharose < Butyl Sepharose < Octyl Sepharose (sorted as increasingly 

hydrophobicity). 
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Table 6 - Hydrophobicity assay results as a percentage of sample retention in the resins sorted by 
increasing hydrophobicity (n = 3). 

 

 

 

 

HIC results showed that when interacting with the hydrophobic resins the number and distribution of 

surface-exposed hydrophobic groups are more abundant in the case of PMMA-EUDp than PMMAp. 

Also, since all resins used in the assays did not contain any charged groups and have a low content 

of ionisable groups, the hypothesis that electrostatic interactions will be responsible for PMMA-

EUDp adherence to the resins, rather than to hydrophobic interactions between the columns and 

the applied samples, is unlikely. Sepharose resin, as expected retained a low % of the particles 

since this resin does not have the proper functional groups (alkyl residues) to influence the 

hydrophobic interaction with the particles, being used as a control for the assay. Therefore, 

although both types of particles demonstrate some hydrophobicity, our results showed that PMMA-

EUDp have clearly stronger hydrophobic behaviour than PMMAp.  

Interestingly, no differences were found between butyl- and octyl- resins meaning that in this case 

the chain length did not influence the hydrophobic interactions. Also, PMMA-EUDp form strong 

irreversible bonds since most particles remain on the columns even after washing with a strong 

detergent (Triton X-100).  

Finally, it is necessary to point out that the terms hydrophilic/hydrophobic are comparative for a row 

of different compounds and that different experimental methods exist for assessing the hydrophobic 

nature of the materials. This approach consists in a relative measure of this property and, therefore, 

should not be used as a comparison outside the applied experimental conditions detailed in this 

work. It would be interesting to further evaluate this property using different approaches namely by 

the measurement of the contact angle between the particles and biological fluids. 

3.2.5. Chemical composition  

Fourier-Transform Infrared Spectroscopy (FT-IR) spectral data was used to evaluate if any changes 

took place on the chemical composition of the particles, compared to those of the raw polymers or 

between both types of particles, for example, by the appearance of new chemical bonds.  

FT-IR spectra (Figure 12) showed that the main characteristic peaks of both PMMA and EUD 

polymers remained unchanged for both particles. Therefore, we concluded that the PMMA-EUD 

formulation did not yielded new chemical liaisons between both polymers.  

 Sepharose-FF 
(%) 

Butyl 
Sepharose-FF 

(%) 

Octyl 
Sepharose-FF 

(%) 

PMMAp 16.0±2.7 27.1±0.4 17.2±1.5 

PMMA-EUDp 20.3±2.9 84.5±4.4 78.5±3.5 
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Obtained data is in accordance with literature for PMMA and EUD (Mendes et al., 2012; Evonik 

technical report):  

- signals around 2990 and 2950 cm
-1

 were assigned to axial deformation of CH bonds of aliphatic 

carbons;  

- the sharp and intense signal at 1724 cm
-1

 was assigned to the axial deformation of the ester 

carbonyl group (C=O);  

- the region comprised in the range of 1250-1000 cm
-1

 showed signals related to the angular 

deformation of C=O in ester bonds and to the C-N stretch. The latter are more intense and well-

defined on the PMMA-EUDp spectra because the C-N stretch, from EUD aliphatic amines, overlaps 

the C=O signal of ester bonds for both PMMA and EUD polymers.  

The similarities between both spectra imply that differences on the biological effects cannot be 

explained, for these particles, by FT-IR analysis, since most of the EUD vibration peaks are 

coincident with PMMA peaks. 

  

Figure 12 - FT-IR spectra with particles’ characteristic vibration peaks correspondent to the vibration 
frequencies of various identifiable bonds on their chemical composition. 

 

3.2.6. Effect of biological conditions on particles properties 

Besides a complete physicochemical characterization of the particulate-systems, their interaction 

with biological media is essential for reliable studies (Landsiedel et al., 2010). Phenomena 

occurring during the contact between the particles and cellular media or biological fluids (dispersion, 

agglomeration/aggregation, protein adsorption) can be highly relevant changing intrinsic particles 

properties, such as size and charge (Fubini et al., 2010). 

The evaluation of all biological factors (e.g. ionic strength, pH, protein content) with impact on the 

physicochemical properties of the particles is a complex task. As the main focus of this thesis was 
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to evaluate the biological effect of two distinct acrylic particles, within the same size range and 

opposite charges, we decided to investigate some of the cell culture conditions, specifically ionic 

strength, pH and FBS concentration that would have a direct impact on particles charge.  

Also, it was found important to evaluate the effect of FBS in the size of the particles mimicking the 

conditions used in the cell culture assays. It was of interest to check if the assays were actually 

performed on particles within the same size range rather than on aggregates and/or agglomerates 

of the particles. Finally, an attempt was made to assess the adsorption of a model protein onto our 

particles. Proteins may significantly change particles properties and consequently, the cellular 

responses to the material (Fubini et al., 2010). Protein adsorption is an important factor to be taken 

into consideration when testing biological responses to particulate-systems (Allouni et al., 2009). 

3.2.6.1. Effect of the ionic strength, serum concentration and pH value on particles 

surface charge 

Effect of Ionic strength  

The ionic strength of a physiological solution is a measure of the ions concentration in that solution. 

The effect of increasing the ionic strength of a solution was evaluated by measuring the surface 

charge of the particles suspensions with increasing concentration of a strong electrolyte (NaCl).  

Results showed a significant reduction in the absolute surface charge values of the particles with 

the increase in the ionic strength of the media (Figure 13). It should be pointed that at 0.12 M, which 

is the reported salt concentration in physiological solutions (Allouni et al., 2009), both particles 

showed a surface charge close to zero. 

 

 

 

 

 

 

 

 

Figure 13 - Surface charge as a function of Ionic strength (n = 3). 
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Our results showed that the increase of ionic strength has led to a neutralization of the particles’ 

surface charge. This may be explained by the electrostatic interactions between the ions in solution 

(Na
+
 and Cl

-
) and the particles. Since PMMAp present a high negative charge, Na

+
 ions are strongly 

attracted to these particles, thereby neutralizing their surface charge. On the other hand, PMMA-

EUDp have a high positive charge which leads to the attraction of Cl
-
 ions, thereby neutralizing their 

surface charge. This effect can have some impact in vivo where the charge of the particles can end 

up being relatively irrelevant for the interaction with cells and other properties, as the hydrophobicity 

or size, will have a higher relevance. 

Effect of serum concentration  

FBS with a concentration in the range of 10 % (V/V) is generally added to cell culture medium for 

optimal cell growth. Therefore, its effect on the surface charge of particles is highly relevant (Merhi 

et al., 2012). 

Our results indicate that particles did not retain their original charge once they were put in contact 

with FBS either on water (Figure 14) or culture medium (Figure 15). A complete inversion of PMMA-

EUDp surface charge was observed when exposed to FBS, even at low concentrations (as low as 

0.01 %), while PMMAp surface charge tends to neutrality. The standard deviation for both analyses 

was within acceptable values.  

Figure 15 shows that the dispersion of particles in culture medium alone (a complex mixture of 

various ionic salts, low amounts of amino acids, vitamins, and glucose) is enough to lower particles 

absolute charge. FBS dissolved in water (Figure 14) or culture medium (Figure 15) has the same 

dose-dependent effect on particle charge. The source of variation could then be attributed to the 

adsorption of some of the components present in serum or in the culture medium onto the particles 

surfaces.  

Similar results were found in a study by Merhi et al. (2012), in which positively charged 

polysaccharide nanoparticles were dispersed either in PBS or MEM (culture medium similar to 

RPMI 1960), and the addition of either FBS or BSA was conducted to evaluate its biological effects. 

Zeta potential concentration-dependent (0 – 10% serum) decrease was found to occur with lower 

particle concentrations (1250 µg/mL) but not with very high concentrations (5000 µg/mL). Although 

the effects may vary with particle composition and with the proteins present in the serum, these 

results are in accordance with the ones presented in this work in the matter that the constituents of 

serum can alter particles surface charge. The extent of this alteration is probably dependent on the 

particle-serum interactions, as well as the chemical composition of both. 



  41 

 

In summary, our results show that FBS in distinct media (water or culture medium) can induce 

considerable variation on particles surface charge. Since our cellular assays were conducted with 

10% FBS we should assume that our particles will actually be near neutrality, in the case of 

PMMAp, and negatively charged for PMMA-EUDp. 

 

Figure 14 - Effect of FBS concentration (V/V, in water) on the surface charge (n = 3). 

 

Figure 15 - Effect of FBS concentration (V/V, culture medium) on the surface charge (n = 3). 

 

Effect of pH  

Although physiological pH value is mostly constant (7.35 – 7.45), some organs work at a different 

pH range, as the stomach. Therefore, the different behaviour of the particles at different pH values 

should always be analysed. As shown by our results, pH can alter the surface charge of the 

particles. At pH ≈ 7, PMMA-EUDp appear positively charged, while PMMAp present a negative 

surface charge (Figure 16).  
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Also, analysis of the obtained data (Figure 16) has shown a tendency for the decrease of absolute 

surface charge values in PMMA-EUDp along with a pH increase. As for PMMAp, surface charge 

shows a decrease in absolute surface charge for pH ≥ 5. 

 

Figure 16 - Surface charge as a function of pH for 0.12 mg of particles suspended in water solutions 
with different pH (n = 3). 

The isoelectric point, sometimes abbreviated to IEP, is the pH at which a particular molecule or 

surface has no net electrical charge. The different behaviour of the particles in function of pH was 

also shown due to the particles opposing isoelectric points - pHIEP = 3.5 for PMMAp and pHIEP = 8.7 

for PMMA-EUDp - which demonstrates that the particles may favour different pH values, in terms of 

stability. For example, our results suggests that PMMAp will show a higher tendency to aggregate in 

the stomach (pH ranging between 1 and 3) than PMMA-EUDp. This fact could lead to toxicity-

related events by the excessive accumulation of particles (Pandit, 2007). 

3.2.6.2. Effect of serum concentration on size distribution  

Due to their surface reactivity particles may interact with each other leading to the formation of 

agglomerates. This phenomenon may be checked by evaluating variation on size distribution and 

has been shown to occur on several studies with various types of particles (Lamprecht et al., 2001; 

Hackenberg et al., 2010; Merhi et al., 2012). As such, the particles stability in culture media was 

monitored maintaining the particles at 37 °C in the same medium used for the cellular assays. 

Our results show that PMMAp did not reveal any alteration in terms of size and span until 48 h, 

meaning that no aggregation took place and, consequently, that PMMAp are stable in the selected 

medium during this time (Table 7). At 72 h, we verified a slight increase in particle size distribution 

due to the formation of small agglomerates, probably due to particle deposition over the glass 

materials used for the laser diffraction process.  
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Table 7 – Particles size (VMD) variation (on culture medium containing FBS) with time.  

Time (h) 
PMMAp 

(µm) 
Span 

PMMA-EUDp 

w/o 

sonication 

(µm) 

Span 

PMMA-EUDp 

w/ sonication 

(µm) 

Span 

Negative 

Control 

(H2O) 

0.599±0.030 1.031±0.030 0.531±0.027 1.043±0.006 - - 

0 0.588±0.002 1.095±0.012 38.910±8.478 20.078±5.246 41.576±14.978 12.045±5.115 

1 0.587±0.001 1.348±0.265 84.701±7.537 5.766±0.217 61.825±15.992 11.129±5.716 

24 0.586±0.001 1.061±0.004 75.171±4.909 5.783±0.260 35.348±7.541 3.533±0.142 

48 0.588±0.000 1.052±0.002 56.281±38.888 6.359±1.256 48.879±4.729 6.278±0.629 

72 2.262±0.247 1.484±0.046 82.147±5.038 13.262±1.113 27.680±2.630 4.853±0.781 

 Notes: The samples’ homogeny is presented by the Span values. Only PMMA-EUDp were submitted to 
sonication to test the aggregate stability (w/o = without; w/ = with). 

Overall, PMMAp showed to be very stable in the selected medium. Our results are in accordance 

with Lazzari et al. (2012), who found that PMMA nanoparticles (in the range 100-200 nm) remained 

stable in different fluids as saliva, gastric juice, intestinal and lysosomal fluid, serum and tissue 

homogenates. 

However, for PMMA-EUDp, an increase of particle size occurs and very quickly the particles 

showed signs of aggregation, with the formation of several different particle populations and an 

increase of mean size distribution from 500 nm to 42 µm as well as extremely high heterogeneity. A 

similar result was demonstrated in Ehrenberg et al. (2009), in which serum proteins rapidly covered 

polystyrene nanoparticles immersed in culture medium. 

The formation of these agglomerates may have great implications in terms of biological 

applications, since it reduces the bioavailability of the carrier, and, therefore, the amount of drug 

being transported, in the cases of drug delivery applications.  

Another relevant fact is that, after 72 h, we continually evaluated the size of PMMA-EUDp with 

ultrasounds for 1 h and verified a decrease in the mean size of the particles, as well as an increase 

over the population related with the original size, though a threshold was reached after 30 min of 

sonication (Table 8). This could be a proof that these agglomerates are a result of weak interactions 

and, therefore, a more effective treatment with ultrasounds could be used for restitution purposes of 

conditions more similar to those of the original particles than the ones we were able to obtain. 
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Table 8 - PMMA-EUDp size variation with continous sonication in culture medium with FBS (10 %). 

Time with sonication (min) VMD (µm) Span 

0 27.680 ± 2.630 4.853 ± 0.781 

10 7.217 ± 0.610 13.568 ± 0.612 

20 5.392 ± 0.422 13.894 ± 0.452 

30 3.097 ± 0.196 10.589 ± 0.437 

40 3.113 ± 0.127 11.234 ± 0.373 

Notes: VMD stands for volume mean diameter. The samples’ homogeny is presented by the Span 
values. 

 

3.2.6.3. Protein adsorption assays  

Proteins are a major component of cellular media. Estimating the proteins adsorption to particles is 

critical for designing optimal toxicological studies, as proteins may deeply modify the agglomeration 

behaviour of the particles and, consequently, the cellular responses to the material (Fubini et al., 

2010).  

A spectrophotometric assay was initially chosen for the evaluation of protein adsorption onto 

particles, which was selected in accordance with the literature, as well as the model protein (BSA) 

(Hu et al., 2005). Through the analysis of BSA absorption spectrum (Figure 17), the concentration 

of 1 mg/mL was chosen as the best concentration and two wavelengths were identified as optimal 

for the assays: 230 and 280nm. Preliminary experiments were conducted aiming to evaluate the 

adsorption of BSA as a function of time, protein and particles concentration. 

 

Figure 17 - BSA absorbance spectrum (concentration ranging between 0.125 – 1 mg/mL). 

The chosen spectrophotometric assays were unable to verify any adsorption of BSA by the particles 

due to different experimental problems. At 230 nm, remaining particles present in the supernatants, 

due to their optical properties, directly influenced the readout by significantly increasing the light 
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absorption. At 280 nm, the absorbance levels for control BSA were as low as the ones obtained for 

the particles’ control, greatly reducing the assay’s sensitivity.  

 

As we were unable to perform a spectrophotometric assay we decided to try a different technique, 

the BCA method, aiming to have less interference from the particles as it is a method based on a 

specific reaction with the proteins. However, no improvement on the procedure was observed, as 

no significant adsorption was possible to quantify. 

 

Although some degree of adsorption is always expected on particles surface, we were predicting no 

significant adsorption for PMMAp, since BSA, like the particles, is described as negatively charged 

at the physiological pH (Fologea et al., 2007). Also, Höcherl et al. (2012) proved that PMMAp have 

low interaction levels with the surrounding proteins. Finally, from the results of size variation in the 

presence of FBS, no significant change in size was observed, indicating no protein adsorption. 

 

The adsorption of proteins is a very complex phenomena and it is difficult to compare results with 

others if the experimental conditions are different. For example, Hu et al., (2005) was able to 

evaluate the adsorption of BSA but on modified PMMA microspheres. It is not possible to compare 

these studies with ours as particles were modified by introducing sulfonate groups on the surface of 

the particles and size was much higher (≈ 3.4 µm).  

 
In contrast to PMMAp, PMMA-EUDp have a positive charge, strong hydrophobic behaviour and 

their size is greatly influenced by the presence of FBS as already discussed, which would predict a 

high degree of BSA adsorption. The fact that we weren’t able to quantify any significant BSA 

adsorption onto PMMA-EUDp, leads us to the conclusion that the experimental procedure should 

be modified. One of the problems to solve is related to the centrifugation step, that was unable to 

remove all the particles from the supernatants, causing interference with the spectrophotometric 

assays. In addition, in this step the protein adsorbed to the particles could be physically desorbed 

causing an overestimation of non-adsorbed BSA in the supernatants, leading to the false 

conclusion that there was no adsorption to the particles. Also, the particles or BSA concentrations 

could not have been appropriate for the selected methodology. 

3.3. In vitro cellular assays 

Biological evaluation is of utmost importance in assessing the potential benefit of 

nano/microparticles systems for human use. In vitro cellular studies can be an important first step 

when considering the safety assessment of these systems. In fact, particulate-systems interacting 

with cells and the extracellular environment can trigger a sequence of biological effects. These 

effects largely depend on the dynamic physicochemical characteristics of the particles (previously 

discussed), which determine the biocompatibility and efficacy of the intended outcomes (Naadhi et 
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al., 2013). Despite the large interest of acrylic particles for medical applications lack of toxicological 

data still persists (Bettencourt et al., 2012). 

In order to get further insights on the biological effects of the different prepared and characterized 

acrylic particles, three different cell lines were used namely mouse fibroblasts (L929), human 

osteoblasts (MG63) and monocytes/macrophages (THP1). 

L929 fibroblasts are a cell model often used in the biocompatibility studies of biomaterials as it is 

recommended by the ISO 10993-5. As bone infections would be a potential therapeutic target for 

these acrylic particles (Bettencourt and Almeida 2012), human osteoblasts were also selected 

because particles are supposed to be in contact with bone forming cells, and there is some 

literature pointing to the toxicological effects of acrylic cement wear debris (in the nano and 

microsize range) in these same type of cells (Lohmann et al., 2002). The use of macrophages is 

fully justified since these cells are primary mediators of the chronic foreign body response to 

implanted materials. 

Different tests commonly used to evaluate the biological effects of the particles were assessed 

namely, cell uptake, mitochondrial enzyme activity (MTT assay), plasmatic membrane damage 

(Trypan blue exclusion assay), genotoxicity and stress response assays. The combination of 

different methods with specific targets, within the structure of the cell, is highly recommended since 

it provides a more reliable final evaluation of toxicity. Also, in order to obtain robust data from these 

assays the user must determine the correlation between what is measured and cell viability, since 

each assay has its own specifications and limitations that must be taken into account when 

choosing the ones that will best correlate with the reality. The type of cell in study also plays its part 

on the chosen methods since some are more suited for adherent cell and others to cells that grow 

in suspension (Rampersad, 2012).  

3.3.1. Cell uptake assays 

Certain therapeutic strategies require a more direct approach on drug delivery to certain cellular 

targets. In this context, it is of the upmost importance to study the internalization of these particles 

by the cells. Also, some toxic effects as genotoxicity may only occur if the particles are internalized. 

To date, there aren’t many studies assessing PMMAp internalization. Still, some of the existing 

studies could provide insight on this problematic and on the properties involved in particle 

endo/exocytosis. Papa et al. (2014) proved that PEGylation and surface charge intervene on the 

selective internalization of PMMAp by LPS-activated microglia. 

For cell uptake assays, and as previously mentioned, the particles were stained with a fluorescent 

dye, Nile Red (NR), with known excitation and absorbance wavelengths on which the amount of 

fluorescence was measured after cell lysis.  
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Assays were then conducted on the three previously described cell lines (L929, MG63 and THP1). 

A thorough analysis of the obtained data allowed the comparison of uptake values over its variation 

with time, particle type and concentration.  

In L929, no significant differences with increasing concentration were detectable for internalized 

PMMAp, after either 1 or 24 h exposure (Figure 18). In contrast, PMMA-EUDp showed significant 

and consistent increase in uptake values between each concentration after both 1 and 24 h. After 

24 h of exposure, PMMA-EUDp have shown their highest uptake for the maximum tested 

concentration.  

In MG63 and THP1 cells, PMMA-EUDp showed significant increase in the uptake values with 

increasing concentration for both exposure times. For PMMAp, a slight increase was observed for 

the 2 highest concentrations for both times but comparatively lower than the ones presented with 

PMMA-EUDp (Figure 18).  

Overall, both particles were internalized by the evaluated cells, though with greater efficiency for the 

PMMA-EUDp, since these presented higher uptake values (clearly concentration and time 

dependent) than PMMAp. 

Figure 18 - Results from uptake assays after particle exposure for 1 and 24 h; Note – *, ** and *** 
correspond to p<0.05, p<0.01 and p<0.001, respectively (n = 5). 

The comparison between both particles showed that PMMA-EUDp could be more easily 

internalized than PMMAp for all the tested cell lines, with higher differences observed for the 24 h 

assays. The reason for these differences may be related to their specific physicochemical features. 

One possible explanation could be the difference between the particles charges since positive 

charges are expected to be easily internalized in consideration of the attraction exerted by the 

negatively charged cytoplasmic membrane of the cells. 

L929 MG63 THP1 
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However, our results have indicated that the particles charge was heavily altered by the medium 

and that PMMA-EUDp even inverted their surface charge from positive to negative. Yet, a possible 

explanation to our results could be that these particles charge variation would be due to adsorption 

of various components on their surface which would mask their original charge but that when they 

were put in contact with the cells, these components could easily dissociate from the particles due 

to low interactions, returning the particles to their original surface charge. Our results are in 

accordance with Papa et al. (2014) who found that positively charged PMMAp had faster uptake 

rates that negatively charged ones. In that study, charge was the main difference between particles 

due to different levels of PEGylation. However, in the mentioned paper no evaluation of the effect of 

serum on the charge of the particles was conducted, so it is not known if the particles evaluated by 

Papa et al. (2014) would eventually have the change in charge as the ones presented in this study. 

The study also showed that PMMAp probable uptake mechanism should be a clathrin-mediated 

one since an inhibitor of this pathway chlorpromazine was able to decrease the uptake values. 

Besides charge, it has been shown that cellular uptake depends on the hydrophobicity of the 

nanoparticles. This can be attributed to hydrophobic interaction between the surface of the 

nanoparticles and the lipophilic cellular membrane (Wu et al., 2012; Juneja and Roy, 2014). PMMA-

EUDp showed to be highly hydrophobic which could account for favoring particles internalization 

rather than the charge effect. Our results are in accordance with the study of Juneja and Roy 

(2014), who concluded that coating PMMA nanoparticles with hydrophilic polymers, such as PVA 

and polyacrylic acid, decreased nanoparticles uptake by lung carcinoma cells. Also, it has been 

shown on the literature that the adhesion force between particles and cell membranes can increase 

with enhancement of particles surface hydrophobicity, creating a favorable situation for the 

internalization of particles into the cells (Liu et al., 2013). 

Human monocyte-derived macrophages presented the lowest uptake values after the 24 h 

exposure assays. This could either be simply due to their duplication time being higher than for the 

other two cell lines or because of cell internal saturation (Papa et al., 2014).  

To get further insights on particles uptake, confocal microscopy studies were carried out on L929 

and MG63 cell lines. Due to macrophages well-known capacity for particles internalization we do 

not consider relevant to perform these studies with THP1 cells. 

Figure 19 show PMMA and PMMA-EUD particles loaded with Nile Red. As observed, PMMAp seem 

to be more dispersed on the solution since they are less present around the cells than PMMA-

EUDp. Intense markings corresponding to PMMA-EUDp can be seen around the cells and, in some 

cases, inside the cells. This is valid for both cell lines although for MG63 there appear to be a 

smaller number of both cells and particles. 
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The fact that PMMA-EUDp were visible near and around the cells, while PMMAp are more 

scattered, is consistent with the hypothesis that positively charged particles will produce greater 

interactions than negatively charged ones. Confocal microscopy results are also in accordance with 

our uptake studies and could confirm the hypothesis that particles’ charge has great importance 

over the particles internalization, since for the tested lines the positively charged PMMA-EUDp had 

higher internalization values than the negatively charged PMMAp as previously discussed. 

 

L929 
PMMAp PMMA-EUDp 

  

MG63 
PMMAp PMMA-EUDp 

  
 

Figure 19 - Representative confocal microscopy images showing PMMAp and PMMA-EUDp (red signal) 
and L929 (above) and MG63 (below) cells (nuclei, blue signal) after 24 h of incubation. 

3.3.2. Cytotoxicity assays 

The biocompatibility of the PMMA polymer has already been investigated, including studies on 

cytotoxicity (Cakerer et al., 2010; Gülçe Iz et al., 2010; Lye et al., 2011) and inflammatory potential 

(Horowitz et al., 1988; Puricelli et al., 2011). Most of the literature is related to the effects of the in 

vivo setting of the polymer and on wear debris in the nano and microsize range formed during the 

aging of the bone cement mantle (Goodman et al., 2006; Zhu et al. 2010; Yang et al. 2011). In one 

of such studies, the toxicity of various MMA-based materials was evaluated. PMMA polymers 

showed strong cytotoxic effects on mouse fibroblasts (L929) after 48 h of exposure to the material, 

possibly due to incomplete polymerization during cement setting (Gülçe Iz et al., 2010). Some other 

studies include in vitro tests on bone marrow cells, hepatocytes, cancer-derived and kidney cells. 
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There is also some literature on in vivo studies, mostly on model mice systems (Campos et al., 

2011; Dhana lekshmi and Reddy, 2012; Sitia et al., 2014).  

 

The MTT assay was performed to evaluate particles toxicity on fibroblasts and osteoblasts. As 

previously mentioned it is a method based on the conversion of a yellow tetrazolium salt into purple 

formazan crystals by the living cell’s NAD(P)H-dependent mitochondrial dehydrogenases, hence 

giving the information of the amount of living cells (Mosmann, 1983) . This method allows the 

evaluation of cytotoxicity by cell exposure to the particles on different concentrations. This is 

generally one of the most recurrent assays made for cytotoxicity assessment, though others may 

also be used depending on the evaluated cells and materials like the Alamar Blue and the Neutral 

Red assays. The first, a method based on the conversion of rezasurin into a fluorescent dye, was 

also attempted but the results had great variability and the detected fluorescence of the particles 

control dispersion was as high as the particle-exposed cells samples (data not shown). These 

results suggested that particles optical properties had interference over the fluorescence 

measurement which made us give up the Alamar Blue assay for these specific type of particles. 

 

By the analysis of collected data from the MTT assays represented on Figure 20, we can verify that, 

in L929, cell viability only showed significant, yet slight, decrease with the two highest PMMAp 

concentrations after 48 h of exposure (78,34.83±2.38 and 76.86±2.38 %, respectively). After 72 h, 

cell viability, for the same concentrations of PMMAp, further decreased (66.83±6.59 and 66.83±7.97 

%). Exposure to PMMA-EUDp significantly, but slightly, reduced cell viability after 24 h, for the two 

highest concentrations (80.08±3.77 and 74.36±4.36 %, respectively). After 72 h, all PMMA-EUDp 

concentrations significantly lowered cell viability values. Yet, the lower value was 59.98±8.55%. 

In MG63 (Figure 20), significant decrease in cell viability occurs after 72 h for the two highest 

PMMAp concentrations (53.38±3.67 and 38.87±11.12%, respectively). For PMMA-EUDp, except for 

the lowest concentration, there was a significant decrease in cell viability. The lowest value was 

54.77±13.47, but it does not seem to be a concentration-dependent effect.  

These results indicate that some cytotoxicity should be expected after 72 h for PMMAp at 

concentrations between 294-588 µg/cm
2
 (1-2 mg/mL) and for PMMA-EUDp at concentrations 

between 147-588 µg/cm
2
 (0.5-2 mg/mL) on both fibroblast and osteoblast cell lines.  

The existing studies focusing on the toxicity of PMMAp vary on either particle composition, 

formulation methods or evaluated cell line, which makes it hard to consistently compare two studies. 

Most of these studies, in accordance with ours, suggest no evidence of high toxicity of the PMMA 

particulate-systems. Acosta-Torres et al. (2012) results didn’t show any cytotoxicity (evaluated by 

MTT) on mouse embryonic fibroblasts (NIH-3T3) or lymphocyte (Jurkat) cells after 24 and 72 h of 

exposure to PMMAp (10-20 nm). Mendes et al. (2012) showed the safety of PMMAp with an 
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average size of 90 nm and negative surface charge on human leukemic cells (K562), Dhana 

lekshmi and Reddy (2012) verified that no significant hemolysis occurred from hepatocyte exposure 

to PMMAp (300 nm). Recently, Papa et al. (2014) found no cytotoxicity induced by PMMAp (with 

mean size around 92 nm) on spinal cord-derived microglia. Finally, Sitia et al. (2014) showed no 

cytotoxic events with PMMAp with different sizes (50, 100 and 200 nm) and surface charge 

(negative and positive) on triple-negative breast cancer (4T1) cells, though a significant reduction 

occurred with positively charged PMMAp (100 nm) on another similar cell line (MDA-MB231.1833). 

To the best of our knowledge no published study reports the cytotoxic effect of acrylic particles 

(within our size range) on MG63 to be able to compare with ours. Still, there are some studies 

regarding particles with different sizes on several osteoblast-like cell lines. In Lohmann et al. (2002) 

no cytotoxic effect of PMMAp (2.22±0.07 µm) was found but it was proved that these particles could 

mediate an increase of the synthesis of alkaline phosphatase (up to 50 %) and prostaglandin E2 

(PGE-2) (30-40 %) in MG63 cells. Chiu et al. (2006) showed, on bone marrow-extracted cells, that a 

more prolonged exposure to PMMAp (1-10 µm; between 5 to 15 days) could completely suppress 

osteoprogenitor differentiation and proliferation the cells. Recently, in a study by Shen et al. (2014), 

cytotoxic effects of PMMAp in a size range between 0.1-10 µm and concentration of 1 mg/mL were 

evaluated by the lactate dehydrogenase (LDH) levels on osteoblast-precursor (MC3T3-E1) cells. 

Similarly to our results, LDH levels showed an increase after 48 h of exposure and further elevated 

levels at 72 h. The increase in LDH is correlated with the decrease of cell viability and, therefore, 

these results are in accordance with those presented in this thesis. 

 

Regarding the results obtained with the fibroblasts, the ones reported in this work are supported by 

studies with 100 and 500 nm fluorescent PMMAp where, using the XTT assay, which is similar to 

MTT, cell viability of L929, after exposure to nanoparticles, was similar to the negative controls. It is 

noticeable that these results were obtained with low particle concentrations (0.1-10 µg mL
-1

) and 

only for 24 h of exposure. In addition, cell integrity was confirmed as well as the absence of 

haemolytic or aggregation effects on erythrocytes (Vollrath et al., 2012). PMMAp safety in terms of 

particle cytotoxicity was also confirmed in human foreskin fibroblasts and monkey kidney cell lines, 

through the MTT assay, with up to 500 µg/mL of nanoparticles (114 – 169 nm) (Hoffmann et al., 

1997).  

Other studies with human foreskin fibroblasts proved that pre-formed PMMAp (1-10 µm) are 

capable of mediating the release of pro-inflammatory C-C chemokines, such as MCP-1 and IL-6. 

Despite of this fact, no significant cytotoxicity was detected with the LDH method after exposure to 

several PMMAp concentrations for 24 h (Yaszay et al., 2001).  

Interestingly, to the best of our knowledge, no studies were reported so far addressing the 

evaluation by MTT or other related methodology of PMMA-EUDp cytotoxicity. 
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PMMAp PMMA-EUDp 

  

MG63 

PMMAp PMMA-EUDp 

  

 

Figure 20 - MTT results on L929 and MG63 cells viability variation to particle exposure; Note: *, ** and 
*** significantly different from negative control (p<0.05; p<0.01 and p<0.001, respectively) (n = 5). 

Accordingly to Dhana lekshmi and Reddy (2012), charge is crucial for toxicity. Since PMMA-EUDp 

present a positive charge measured in water (section 3.2.4.) it would then be expected to observe a 

greater impact on cell viability than the negative PMMAp, yet the differences between particles were 

not very pronounced on tested cell lines. This fact may be related with the change in the surface 

charge of PMMA-EUDp (section 3.2.6.2.) due to the effect of both the culture medium and serum. 

PMMA-EUDp charge became negative in cell culture conditions which could have contributed in 

decreasing the toxicity related to the positive charge. This could be a great advantage in terms of 

their applicability on the drug delivery field because of the previously described effects of the 

presence of Eudragit in the particles release properties, hence improving the effectiveness for drug-

treatments. However, charge alone, though crucial for the effects, does not imply that given 

particles will be secure or otherwise cause these effects, as previously explained depend on a 

variety of different factors (e.g. size, hydrophobicity). 
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Cell membrane integrity was also assessed, using the trypan blue dye exclusion assay, which is 

commonly used to measure viable cells, through the incorporation of a dye on dead cells (Mehri et 

al., 2012). Viable cells appeared refringent and dead cells incorporated trypan blue (0.4 %) due to 

membrane damage. Viable and non-viable cells are counted and, if there is sufficient number of 

cells, an assessment is made based on the ratio of viable cells, constituting a cell viability assay. 

However, this method doesn’t allow one to distinguish between healthy cells and cells losing their 

cellular integrity, which constitutes a serious problem since the last may internalize the dye and, 

therefore, be counted as unviable when in fact their cellular repair mechanisms are able to recover 

from the sustained damage. 

Results showed that after 24 h of exposure the number of cells permeable to the dye was very low 

(even for concentrations as high as 2 mg/mL) and didn’t show evidence of a concentration-

dependent effect for either particle type (Table 9). 

Table 9 - Cell counting for membrane integrity assessment (n = 4). 

PMMAp MG63 L929 

[Particles] (mg/mL) Non-viable Cells 
Total Counted 

Cells 
Non-viable Cells 

Total Counted 

Cells 

0 0 56 3 173 

3 0 55 8 179 

30 1 53 3 149 

147 1 51 11 186 

294 0 33 13 138 

588 0 54 3 161 

PMMA-EUDp MG63 L929 

[Particles] (mg/mL) Non-viable Cells 
Total Counted 

Cells 
Non-viable Cells 

Total Counted 

Cells 

0 0 56 3 173 

3 0 38 9 148 

30 1 32 6 144 

147 0 24 3 168 

294 0 20 6 168 

588 0 29 5 141 

 

The low number of counted cells, partly due to the dilution factor applied (1:5), didn’t enable the 

quantification of cytotoxicity but showed that the particles did not cause damage to the cells’ 

membranes.  



  54 

 

This preliminary assay had relevance since the chosen subsequent in vitro assays were based on 

interactions with internal enzymes and/or organelles, which would be affected in case that the cells 

membranes were compromised.  

3.3.3. Genotoxicity 

The increasing interest in the application of nanomaterials in various fields, such as industry and 

medicine, has dictated a greater need for an extensive research on their potential to generate toxic 

effects and, particularly, genotoxicity. As the particles developed in this study have potential for 

application as drug carriers, their adverse effects must be prevented, especially in cases of non-

cytotoxic drug delivery. Therefore, genotoxicity must be evaluated, especially considering long-term 

uses. Indeed, genotoxicity is frequently associated with carcinogenicity, which is time-consuming 

and difficult to evaluate. Thus, short-term genotoxicity assays are used as a consensual alternative. 

In spite of existing clear guidelines for carcinogenicity, genotoxicity and reproductive toxicity testing 

of pharmaceuticals for human use (ICH 2012), the particular case of the nanomaterials field of 

expertise is still lacking proper ones that could guide testing of the genotoxicity of such materials 

(Shah et al., 2013). This part of the study aimed at evaluating the genotoxicity of the newly 

developed particles through the Comet assay and the Micronucleus assay, since, as previously 

described, these are two complementary assays commonly used to determine the genotoxic 

potential of chemicals and nanomaterials.  

3.3.3.1. Comet Assay 

Representative images are shown in Figure 21. Round nucleoids are seen when no damage occurs 

on DNA strands from exposure to a given agent. The increase in the length and intensity of 

fluorescence of the comet’s tail is proportional to the levels of damage to DNA. In this work, most of 

the analysed nucleoids were similar to the first picture, i.e., without or with a very low level of DNA 

in the tail. Comets with longer tails, as exemplified in the last picture, are typical of positive controls. 

Also exemplified, is the effect produced by using the enzyme FPG on assessing oxidative damage. 

As the enzyme increases the sensitivity of the assay to oxidative DNA damage, usually, higher 

levels of DNA damage are observed. 

Our results of the Comet assay in cells exposed to PMMAp and PMMA-EUDp, expressed in terms 

of the percentage of DNA in the comet tail, are presented in Figure 22. In general, low levels of 

DNA in the comets tails were observed in cells exposed to several concentrations of both test 

particles, independently from the exposure length (3 and 24 h), implying that these particles do not 

produce genotoxic events, at least under the experimental conditions applied. The FPG 

modification of the Comet assay was used to assess oxidative DNA damage recognized by the 

enzyme and converted into DNA breaks. By comparing (and calculating) the difference between the 

results obtained for nucleoids treated with the enzyme and their untreated counterparts, a measure 
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of oxidative DNA damage was obtained. No significant differences were found between FPG-

treated and untreated cells, indicating that the particles under study do not produce significant 

oxidative DNA damage in fibroblasts. As expected, either the conventional comet assay or the FPG-

modified comet assay was able to detect significant increases in DNA damage in cells exposed to 

hydrogen peroxide (positive control), confirming the validity of the data reported for the particles. 

No DNA Damage Low Level DNA Damage 

  

-FPG +FPG 

  

 

Figure 21 - Examples of increasing DNA damage that can be found during Comet Assay analysis. 

 

Both particles gave rise to negative effects, independently from their potential to form 

aggregates/agglomerates. Previous results (Section 3.2.6.2.) from particle stability in culture 

medium with FBS, showed that PMMA-EUDp tend to agglomerate/aggregate over time when 

dispersed in culture medium containing 10 % FBS, while PMMAp size distribution remains steady in 

the same medium. Due to this different dynamic behaviour we were expecting a differential DNA 

damaging effect since it had been previously reported that particles aggregation may lead to an 

accumulation of particles near the cells interface, which could lead to the recruitment of free radicals 

and, consequently, to indirect primary genotoxicity (Donaldson et al., 2010; Magdolenova et al., 

2014). This was not the case and it might even have been that aggregation reduced or even 

prevented its uptake into the nucleus, therefore, limiting the amount of particles which could interact 

with the nucleus and, consequently, the potential for direct primary genotoxicity.  

Since particle size ranged from 20 and 2000 nm with a mean size of 500 nm, it is likely that very 

few, if any, particles would be able to transpose the nuclear barrier, which only substances below 

100 nm may transpose, according to the literature (Tkachenko et al., 2004) 
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We were only able to find one other study specifically relative to PMMA’s monomer, MMA, which 

showed a genotoxic potential on CHO cells through the chromosome aberration and sister-

chromatid exchange assays (Yang et al., 2003). This could be indicative that, should the particles 

suffer loss of some of these monomers, the same effect could be verified after their application and, 

therefore, it is extremely important to confirm their stability.  

PMMAp 

3 h 24h 

  

[Particles] (µg/cm
2
) 

PMMA-EUDp 

3h 24h 

  

[Particles] (µg/cm
2
) 

 

Figure 22 - Damage to the cells’ DNA is expressed as the mean DNA percentage on the comets’ tails. 
Note: *** significantly different from negative control (p<0.001; n = 3). 

 

As previously stated, charge also plays an important role in potential interactions within a cellular 

environment (Magdolenova et al., 2014) and particles presenting a positive net charge are expected 

to produce more interaction with cells (Verma and Stellacci, 2009) because of the negative surface 
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charge verified near the membrane and since the DNA molecule itself is negatively charged. 

However, the genotoxic potential of our particles does not seem to be influenced by this property 

since there is no relationship between the different charge of the particles in culture medium 

(Section 3.2.6.1.) and the amount of DNA damage. Kim et al. (2013) also suggested that surface 

hydrophobicity plays an important role in both cytotoxicity and genotoxicity but, in our study, this 

property was not associated with any difference in the toxicity of the tested particles. 

To the best of our knowledge, there are no other studies involving particles with at least two similar 

properties for comparison purposes with our study. Yet, there are some studies with other polymeric 

particles concerning their genotoxic potential. No clastogenicity was found after 6, 24 and 48 h 

exposures of Chinese hamster lung cells to PCL-Polyethylene glycol (PEG)-PCL particles (≈ 40 

nm), since no chromosomal aberrations occurred (Huang et al., 2010). The authors also found no 

genotoxicity on ICR mice exposed to these same particles, using the in vivo micronucleus assay. 

Furthermore, in Lima et al. (2011), no genotoxic effects were found from 72 h exposure of human 

lymphocytes to negatively charged PLGAp (≈ 100 nm) through the evaluation of chromosomal 

abnormalities.  

Kazimirova et al. (2012) observed no genotoxic effects from negatively charged PLGA-polyethylene 

oxide (PEO) particles, with a bimodal distribution (143 and 180 nm), on human B-lymphoblastoid 

cells after exposure for 2 and 24 h, with the comet assay, and 24, 48 and 72 h with the 

micronucleus assay. In Jena et al. (2012), however, genotoxicity was found from exposure of 

chitosan-coated silver particles with a bimodal distribution (55 and 278 nm, respectively) and 

strongly positive surface charge (36.3 and 51.1 mV, respectively), though only for the highest 

concentrations (20 ppm). All studies were in accordance with this work on the absence of 

genotoxicity induced by polymeric particles as with PMMAp and PMMA-EUDp. The latter study was 

not in accordance with our results for the PMMA-EUDp, which were also positively charged. The 

reasons for this different effect could be explained from properties, such as the chemical 

composition of the applied polymer, particle size or even the presence of a metallic component on 

the studied particles, which could be more prone to oxidative reactions. 

3.3.3.2. Micronucleus Assay 

The Micronucleus assay was used in an effort to further evaluate the genotoxicity from exposure to 

PMMAp or PMMA-EUDp and to confirm the results previously obtained through the Comet assay, 

since it is a validated assay for regulatory purposes (ICH 2012). However, during the assay we 

observed that the standard technique was not directly applicable to the L929 cell line, since after 

treatments and hypotonic shock the cytoplasm integrity could not be attained in most.  

We then proceeded with an optimization of the method by attempting different Cytochalasin B 

exposure intervals (36 vs 42 h), hypotonic shock solutions (0.1M KCl vs 1:1 dilution of culture 
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medium with sterile bi-distilled water), fixing solutions (1:3 acetic acid and methanol vs 3:97 of the 

same solutions), spreading methods (manual spreading vs cytospin-assisted) and staining time 

intervals with Giemsa (5, 8, 10, 13 and 15 min). In the end, we were able to accomplish optimization 

but, as previously justified, could not proceed with the evaluation. We assessed that the most 

critical parameters would be the hypotonic shock, having chosen 0.1M KCl, the fixing solution, 

which proved better with a 1:3 proportion between the chemicals, and the spreading method, with 

the cytospin-assisted spread allowing to obtain more cells with less strain on the cytoplasm 

integrity. 

After the modification of the method, negative control samples were analysed and results are 

presented in Table 10: 

Table 10 - Assessment of the number of micronucleus presented in untreated cells (negative control).  

Concentration (µg/ml) CBMN/1000 CB CBPI 

0 10.8 1.74 

Note: CBMN - Micronucleus number in bi-nucleated cells; CB – Bi-nucleated cells; CBPI – Cytokinesis-
block proliferation index. 

The CBPI value gives us an indication that only about two cell cycles had passed when the cells 

were collected. This result allied with the fact that a high number of mononucleated cells were still 

found could be indicative that further optimization should be attained possibly by prolonging the 

time of treatment with Cytochalasin B. Furthermore, the background level of MN for L929 cell was 

established which allows proceeding in the future with the assay after exposure to the test particles. 

To the best of our knowledge, very few studies exist on the literature about particle genotoxicity 

assessment in L929 cell line using the micronucleus assay (Chlopkiewicz et al., 2001). This 

technical constraint together with the fact that the required microscopic analysis is quite time 

consuming prevented the test from being performed within the available time frame. Further testing 

should be made with this optimized method to evaluate the adequacy of the method to this cell line. 

No problems were found during the comet assay, as it proves to be a good alternative to the 

micronucleus assay. 

As previously referred, by adding this particular type of EUD to the composition of PMMA particles 

could greatly improve its efficiency of drug encapsulation and release. Within the applied 

experimental conditions it was shown that this modification did not alter the genotoxic potential of 

these particles. Still, further research is needed to complementarily confirm this hypothesis and the 

particles’ safety, namely the re-evaluation of the particles effects with the micronucleus assay. In 

vivo testing is also recommended, as it is impossible to completely simulate all biological condition 

with in vitro assays. 
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3.3.4. Oxidative Stress 

The intracellular ROS production was determined using H2DCFDA. It is a stable, non-fluorescent 

molecule that is hydrolysed by intracellular esterase to non-fluorescent 2-7’-

dichlorodihydrofluorescein (DCFH), which is rapidly oxidized in the presence of hydroxyl radical to a 

highly fluorescent compound (DCF) (Crow et al., 1997). This method allows the specific detection of 

these compounds in a solution and can be measured by fluorescence intensity which is correlated 

with the relative quantity of fluorescent units.  

L929 

1 h 2 h 

  

MG63 

1 h 2 h 

  

 

Figure 23 - Evaluation on the formation of ROS through relative fluorescence unit percentage (RFU); 
Note – *** Significantly different from control (culture medium) (p<0.001); RFU % - Relative 
fluorescence units percentage. 

With this in mind, this method was applied to evaluate the intracellular formation of ROS by the 

particles interactions with L929 and MG63 cells. Exposure of L929 cells to various concentrations of 

each particle type didn’t show significant variation from the values obtained with negative controls 

(Figure 23; P>0.05). No significant variation occurred between 1 and 2 h of exposure neither with 

particle type. With MG63 the same results were achieved. We can, therefore, conclude from this 

assay that these particles do not originate significant formation of ROS inside the tested cell lines 
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due to low variation of RFU percentage compared to those of negative controls. This effect was 

proved not be time or dose-dependent on these particles, within the established parameters of the 

assay.  

These results are comparable and confirm those from the modified comet assay recurring to FPG, 

since on the mentioned assay no significant rise in DNA damage from oxidative lesions was found 

between treated and untreated samples with this enzyme.  

Few reports that refers to the induction of free radicals by the PMMA polymer are related with the 

release of ROS during the in vivo setting of bone cement by cultured human fibroblasts (Vale et al., 

1997) or the effect of PMMA wear debris (particle sizes range between 0.2-1 μm in diameter) by 

murine whole bone marrow cultures (Fang et al., 2011). In the case of engineered PMMA and 

PMMA-EUD particles, our study showed that no effect on ROS production is expected on fibroblast 

or osteoblast cells. 
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Chapter 4. Conclusions and Future Work 

In summary, the objectives proposed in the beginning of this thesis of preparing, characterizing and 

evaluating the biological/toxicological effects of engineered acrylic particulate-systems were 

achieved during the timeframe of this project. SESE methodology allowed the preparation of 

particles with spherical and smooth surfaces within the micrometer range (PMMA = 572.7 ± 20 nm; 

PMMA-EUD = 508.9 ± 8 nm) with unimodal and narrow size distribution. Surface charge 

modification, as measured through zeta potential, was one of the main feature observed after 

inclusion of EUD in the formulation. Initially, PMMAp were strongly negative (-32.7±1.04 mV) 

whereas PMMA-EUDp were strongly positive (+31.8±1.66 mV). The formulated PMMA-EUDp have 

shown higher levels of hidrophobicity than the PMMAp. 

Another important conclusion from our studies refers to the fact that physicochemical properties of 

the particles as size and surface charge were highly influenced by the media composition. The 

surface charge of PMMAp was shown to be neutralized by both fetal serum and ionic strength, 

while PMMA-EUDp surface charge was only neutralized by ionic strength but inverted by the 

presence of the fetal serum proteins. It was demonstrated that the evaluated particles had very 

different pH profiles as well as isoelectric points. Furthermore, it was verified that PMMA-EUDp may 

agglomerate over time in biological conditions. Protein adsorption was studied using a model 

protein (bovine serum albumin) through UV-Vis spectroscopy but results were inconclusive. 

Concerning the evaluation of the particles biological/toxicological effects assessed by in vitro 

cellular assays, it was concluded that the particles were internalized in THP1, L929 and MG63 after 

only 1 h of exposure. This uptake proved to be both time and dose-dependent for PMMA-EUDp but 

not for PMMAp. The uptake of the particles was confirmed by confocal microscopy analysis.  

Cytotoxicity, evaluated by the MTT assay on L929 and MG63 was only observed after 72 h of 

exposure. The potential for cell membrane damage was evaluated with Trypan Blue and it was 

concluded that the particles did not affect its integrity. 

Genotoxicity testing showed that PMMAp and PMMA-EUDp were not genotoxic in vitro, given that 

no significant induction of in DNA damage was found through the comet assay for either particle 

type, not significantly different from negative controls. Also, no significant oxidative DNA lesions 

occurred. This absence of oxidative damage was confirmed with the H2DCFDA oxidative stress 

assay, since no significant rise in ROS was detected. Nevertheless, further tests with validated 

methods, such as the micronucleus assays that we were able to optimize for L929, would be 

valuable to confirm the genotoxicity results. 

It can, therefore, be concluded that both PMMAp and PMMA-EUDp proved to be safe on the tested 

cell lines and within the conditions employed on the various assays. 
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Further studies need to be assessed to deeply understand the interaction of the particles with the 

biological environment and ensure a safe biomedical application of these acrylic particles.  

The taken approach for hydrophobicity evaluation was a comparison method (HIC). This kind of 

methodologies has the inconvenient of depending on many variables, some of them very hard to 

control, such as the physical conditions of the resins and the time taken for elution on the columns. 

It was acknowledged that other methodologies, as the measurement of contact angles, could 

produce more definite results, which weren’t followed for lack of time. This technique should be 

used to confirm our results. 

It is proposed that a better characterization in terms of protein adsorbance should be conducted, 

preferably eliminating the centrifugation steps. Improvement in the technique should focus on 

removing the particles effect and presenting sensitivity to small changes in adsorption. A positive 

control should also be found to verify the capabilities of the method within the chosen parameters. A 

range of particle concentrations were tested for one BSA concentration and vice-versa, but it could 

not be discarded that the chosen conditions could be under the detection limit of the assays. 

Therefore, greater quantities of both particles and protein should be mixed in order to possibly 

potentiate the adsorption and achieve quantifiable results. 

Another important aspect to consider in future work is the evaluation of the mechanisms by which 

the particles are internalized by the cells. It is an aspect of great importance, not only from a 

toxicity-related safety point of view, but also to understand how a pharmaceutical compound could 

be delivered to certain cell compartments, as well as its bioavailability. So, further evaluation of 

particle uptake as well as exocytosis mechanisms should be conducted in order to better 

understand particles biological behaviour. Moreover, to get further insights on particles toxicity, 

other complementary studies should be conducted. For example, the inflammatory potential and 

haemolytic effects will be useful.  

In respect to the genotoxicity evaluation, as we were able to achieve a proper protocol for the 

Micronucleus assay on L929 cells, a complementary evaluation should be conducted on the 

particles genotoxic effects. Also, other cell lines like the MG63 could be tested to allow extrapolation 

of the effects of the particles to other tissues. 

Although in vitro assays allow the specific and detailed comprehension of several biological effects 

and its mechanisms, it is very difficult to actually mimic all the conditions that the particles would 

encounter inside a living organism, as further interactions could arise from the many bio-interactions 

between the various tissues and circulating components. As such, as recommended by several 

safety regulations, it is necessary to conduct in vivo studies to evaluate particle safety on real 

biological conditions.  
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Overall, the present study suggests that the evaluated acrylic particles may be used in biomedical 

applications, showing promising properties as drug-delivery carriers. Therefore, the next logical step 

would be testing the toxicological particles’ properties when loaded with a model drug as well as 

evaluating their intake release profiles and potential delivery mechanisms. 
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