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ABSTRACT 

Amyotrophic Lateral Sclerosis (ALS) is the most common neurodegenerative disease affecting 

motor neurons (MNs). Neuroinflammation has shown to be a prominent pathological feature, highlighted 

by the presence of activated microglia, which may exert either beneficial or detrimental effects. Mutated 

MNs may release factors able to induce different microglial responses. However, how cells differently 

modulate each other remains elusive. Therefore, a better understanding of the MN-microglia signaling 

pathways compromised in ALS is warranted. Here, we aim (i) to uncover signaling pathways underlying 

MN injury and (ii) to dissect how MNs are modulating microglial response as well as the contribution of 

healthy microglia to rescue MN dysfunction. We focused on fractalkine-CX3XR1 axis, MFG-E8-

mediated phagocytosis and HMGB1-TLR4 signaling. 

For this we used a MN-like cell line (NSC-34) stably transfected with human SOD1, either wild-

type (wtMNs) or with G93A  mutation (mMNs), alone or in mixed cultures with N9 microglial cell line. We 

observed a compromised viability of microglia in the presence of mMNs, yet they were more activated, 

as suggested by the increase of CD11b mRNA expression. The dysfunctional mechanisms associated 

with increased NO and decreased glutamate production by mMNs were not recovered by the presence 

of healthy microglia. However, the increased activity of matrix metalloproteinase -9 observed in mMNs 

was decreased in the presence of microglia. In addition, mMNs presented accumulation of membrane-

fractalkine and, in mixed cultures, CX3CR1 mRNA expression was up-regulated in their presence. 

Furthermore, we showed that mMNs expressed higher levels of MFG-E8, which were further increased 

in the presence of microglia. Finally, both HMGB1 and TLR4 levels were also increased in mMNs, mainly 

in the presence of microglia.  

Together, these results highlight an impairment of microglial function caused by MN dysfunction 

and support the development of immunomodulatory strategies restoring both healthy state of microglia 

and MNs.   

 

 

Keywords: Motor neuron dysfunction, neuroinflammation, microglia activation/deregulation, MN-

microglia cross-talk, fractalkine -CX3CR1 axis, HMGB1-TLRs signaling pathways  
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RESUMO 

A Esclerose Lateral Amiotrófica (ELA) é uma das doenças neurodegenerativas mais frequentes, 

que afeta os neurónios motores (NMs). A neuroinflamação tem vindo a ser apontada como  

caracteristica da ELA, sobretudo pela presença de microglia activada que pode ter efeitos benéficos ou 

detrimentais. Os NMs mutados podem libertar fatores capazes de induzir diferentes respostas 

microgliais. Contudo, as vias de sinalização intercelular não estão ainda bem esclarecidas, tornando-

se necessário um melhor entendimento das vias de sinalização comprometidas entre os NMs e a 

microglia na ELA. Pretendeu-se: (i) descobrir as vias pelas quais os NMs sinalizam o seu 

comprometimento e (ii) explorar de que forma estes modulam a resposta da microglia, assim como a 

contribuição da microglia saudável em recuperar a função dos NMs. Focámo-nos nas vias fractalquina-

CX3CR1, fagocitose mediada pelo MFG-E8 e a sinalização HMGB1-TLR4. 

Utilizou-se uma linha celular de NMs (NSC-34) transfetados com a proteina humana SOD1, 

normal ou com mutação G93A, em mono-cultura ou em cultura-mista com uma linha celular de microglia 

(N9). Verificámos uma microglia comprometida na presença dos NMs mutados, mas mais ativada, com 

base no aumento de expressão do mRNA do CD11b. O aumento de produção de NO e diminuição de 

glutamato não foram recuperados na presença de microglia, no entanto a atividade aumentada da 

metaloproteinase-9 foi reduzida. Os NMs mutados demonstraram acumulação de fractalquina 

membranar e, nas culturas-mistas, a expressão do mRNA do CX3CR1 estava aumentada na sua 

presença.  Verificou-se ainda que os NMs mutados expressam níveis superiores de MFG-E8, 

aumentados na presença da microglia. Mais ainda os níveis de HMGB1 e TLR4 encontravam-se 

igualmente aumentados nos NMs mutados, e principalmente na presença da microglia.  

Os resultados obtidos evidenciam um comprometimento da função microglial causada pela 

disfunção dos NMs e apoiam o desenvolvimento de estratégias imunomoduladoras que recuperem a 

funcionalidade quer  da microglia quer dos NMs. 

 

 

 

Palavras-chave: Disfunção dos neurónios motores, neuroinflamação, ativação/desregulação da 

microglia, comunicação NM-microglia, eixo fractalquina-CX3CR1, vias de sinalização HMGB1-TLRs  
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I. INTRODUCTION 

 

1. Amyotrophic Lateral Sclerosis 

Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset neurodegenerative disease 

affecting motor neurons (MNs). It is characterized by the selective loss of MNs in the motor cortex (upper 

motor neurons - UMNs) as well as in the brainstem and in the spinal cord (lower motor neurons – LMNs). 

The disease begins focally, in the central nervous system (CNS), and spreads contiguously leading to 

progressive degeneration (Figure I.1). In 1869 the french neurobiologist and clinician Jean-Martin 

Charcot first described and diagnosed the first cases of ALS and found that the symptoms vary 

depending on the location of the lesion (Kumar et al., 2011) resulting in a clinical presentation of muscle 

weakness, spasticity, atrophy and ultimately, paralysis, together with a slurred speech, dysphasia and 

dysarthria, culminating in death, in the majority of cases by respiratory failure. Typically the cognitive 

functions of the brain remain undamaged so the patient is aware of the disease progression. This 

relentless disease usually has a fast rate of progression being the typical age of onset around 48 years 

and patients usually dye within 3-5 years from symptoms onset. ALS has a worldwide incidence of 1 to 

2 new cases per 100,000 individuals each year and a prevalence of 4 to 6 cases per 100,000 individuals 

(Chen et al., 2013).  

Nowadays, ALS is considered a multifactorial disease. Although the main hallmark is MN injury 

other cells were shown to be actively implicated in this disorder, as surrounding glial cells. Moreover, 

between the numerous pathological processes that seem to contribute to MN degeneration, 

neuroinflammation has been highlighted mostly by the presence of activated microglia at sites of injury 

where these cells were shown to have a detrimental role in its evolution (Beers et al., 2006; Bowerman 

et al., 2013; Yamanaka et al., 2008a; Yamanaka et al., 2008b; Zhao et al., 2013; Zhao et al., 2004).
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Figure I.1.  ALS symptoms are a result of UMNs and/or LMNs degeneration signs. Upper motor neurons 
(UMNs) localize in the motor cortex and connect with lower motor neurons (LMNs) present in brainstem and spinal 
cord. In ALS, motor neuron (MN) degeneration begins focally in CNS and then spreads contiguously, ultimately 
leading to an impairment of signal transmission from MNs to muscle. Clinically this is represented by progressive 
muscle weakness, spasticity, atrophy, paralysis and death, mostly by respiratory failure, within 3 to 5 years from 
symptoms onset. 

 

 

Concerning etiology, approximately 90% of ALS cases have unknown cause and are non-genetic, 

commonly classified as sporadic ALS (sALS), and only 5-10% of cases are genetic forms, generally 

known as familial ALS (fALS). Interestingly, both the non-genetic and the genetic forms of ALS are 

suggested to have common pathogenic mechanisms and share the clinical features (Lilo et al., 2013). 

  

1.1. Genetics 

Although only 5-10% of ALS cases have clear genetic linkage, the similarities in the clinical course 

and pathological findings suggest that investigating genetic forms will reveal the disease mechanisms 

behind non genetic forms of ALS. In fact, genetic discoveries allowed a better understanding of the 

pathophysiological mechanisms that contribute to the disease. ALS may have an autosomal dominant, 

autosomal recessive (Siddique et al., 1996) or X-linked pattern of transmission (Chen et al., 2013; Deng 

et al., 2011). The causative genes were identified in about 60% shedding light to superoxide dismutase 

1 (SOD1), transactive response DNA-binding protein (TARDBP), fused in sarcoma (FUS) and 

C9ORF72. 20% account for mutations within the gene encoding the enzyme SOD1, inherited mostly in 

an autosomal dominant pattern, 4-5% are results of mutations in TARDBP and FUS genes and more 

than 30% are related to C9ORF72 mutations. Given the range of cellular processes in which are involved 

the proteins these genes encode, it is generally assumed that ALS is the result of defects in a variety of 

independent cellular mechanisms culminating in a cascade of cellular degeneration. A single mutation 

can result in variable clinical phenotype and different mutations can lead to a similar phenotype revealing 

a high degree of heterogeneity in ALS and suggesting that the underlying mechanisms share 

pathophysiological pathways (Ravits et al., 2013).  
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1.1.1. Mutations in SOD1 

In 1993, Rosen and colleagues found the first causative mutations in fALS within the gene 

encoding the enzyme SOD1 (Rosen et al., 1993). The gene maps to chromosome 21q22.1 and is 

composed of five exons encoding a 153 amino acid metalloenzyme. SOD1 is a very stable dimer 

ubiquitously expressed with a crucial function in cellular homeostasis. The protein binds copper and zinc 

ions and forms a homodimer that acts as dismutase removing toxic superoxide radicals by converting 

them to molecular oxygen and hydrogen peroxide, thus preventing ROS toxicity (Keller et al., 1991), 

and was found to localize in the cytoplasm, nucleus, lysosomes and intermembrane space of 

mitochondria. 

So far,  177 SOD1 mutations have been described counting for 20% of genetic forms and 2-7% 

of non-genetic forms (Al-Chalabi, 2014) and with few exceptions all SOD1 mutations are dominant. The 

majority of the mutations in SOD1 are missense within all five exons affecting the functional domains of 

the protein, like the glycine-to-alanine substitution at position 93 (SOD1G93A) which seems to be 

particularly vulnerable since it is point mutated to all 6 possible residues in fALS (Turner and Talbot, 

2008). Nevertheless, nonsense mutations, insertions and deletions were also reported (Shaw and 

Valentine, 2007).  

SOD1-ALS is thought to originate as a distal axonopathy, being neuromuscular junctions the first 

regions of the MNs to degenerate in a process known as ‘dying back’ (Fischer et al., 2004). Clinically, 

patients with mutated SOD1 (mSOD1) present mostly with lower limb onset, with predominance of LMN 

features, and young age-of-onset (Gordon, 2013) but the time of onset and duration of disease may be 

different according to the type of mutations (Boillée et al., 2006a).  

It is believed that a gain of toxic function mechanism is the main pathway for SOD1 neurotoxicity 

(Pasinelli and Brown, 2006). It was reported from analysis of mSOD1 transgenic mouse models that 

mice lacking SOD1 did not develop the disease (Shefner et al., 1999) and transgenic mice 

overexpressing human SOD1G93A develop ALS clinical features (Gurney et al., 1994). The mechanism 

underlying this toxicity may be, for instance, through SOD1 aggregation that is likely to be an early event 

in the disease as it appears at disease onset and its abundance increases along ALS progression (Wang 

et al., 2002). 

 

1.1.2. Other mutations 

In addition to SOD1 mutations in the genes coding for TARDBP, FUS and C9ORF72 are closely 

associated with typical clinical phenotype (Chen et al., 2013).  

One of the most characteristic neuropathological features of ALS is the presence of cytoplasmic 

inclusions in the degenerating MNs. The major component of these ubiquitinated inclusions was found 

to be TDP-43 (Van Deerlin et al., 2008). TDP-43 is encoded by TARDBP gene that is composed of six 

exons and maps on chromosome 1p36.22. The protein contains two RNA-recognition motifs and a 

glycine-rich C-terminal region that allows it to bind single stranded DNA, RNA and proteins. The C-

terminal portion of TDP-43 was found to contain nuclear localization and export signal motifs allowing 

TDP-43 to shuttle between the nucleus and the cytoplasm (Mackenzie et al., 2010). In the brain, TDP-
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43 is usually localized in the nucleus of neurons and some glial cells (Gendron et al., 2010). Although 

its physiological function in the nervous system is currently unknown, as it is a DNA-RNA binding protein, 

it is predicted to be involved in mRNA splicing and nucleo-cytosolic RNA transport (Mackenzie and 

Rademakers, 2008). Hence, abnormal modified (phosphorylated and truncated) TDP-43 promoting its 

aggregation together with cellular mislocalization of TDP-43 to the cytoplasm of affected neurons leads 

to the hypothesis that TDP-43 mediated neurotoxicity is likely to result from the loss of normal TDP-43 

function, as well as from a toxic gain of function conferred by TDP-43 inclusions (Gendron et al., 2010). 

To date, several studies have report in total nearly 50 mutations in fALS and sALS (about 3% and 1.5%, 

respectively), mostly involving the C-terminal glycine-rich region of the protein (Lattante et al., 2013). So 

currently, TARDBP mutations seem to have comparable incidence of SOD1 mutations in sALS. In both 

lower MNs and glia TDP-43 positive inclusions are consistent feature of all sporadic cases and fALS 

without SOD1 mutations (Tan et al., 2007).  

Mutations in the gene encoding FUS / translocated in liposarcoma (TLS) have been identified in 

a subset of patients with familial ALS and, less common, with sporadic ALS (Liscic and Breljak, 2011). 

FUS is a DNA/RNA binding protein predominantly expressed in cell nuclei in physiological conditions 

that is involved in transcriptional regulation, RNA and miRNA processing, and mRNA transport. Similar 

to TDP-43, most mutations are clustered in the C-terminal region rich in arginine and glycine, which 

encodes also for nuclear localization signal (Lagier-Tourenne and Cleveland, 2009). Studies in 

postmortem tissue (brain and spinal cord) harboring FUS/TLS mutations revealed an increased 

cytoplasmic FUS-staining and cytoplasmic inclusions in MNs (Kwiatkowski et al., 2009; Vance et al., 

2009), leading to the hypothesis that FUS mutations may contribute to ALS pathogenesis through the 

formation of cytoplasmic inclusions and/or the loss of the physiological nuclear functions of the protein, 

analogous to TDP-43. More than 30 mutations have been identified and all except one have an 

autosomal dominant pattern (Kabashi et al., 2011). Clinically, mutations in this gene are usually 

associated with age of onset younger than 40 years, survival of less than three years and onset in the 

upper limbs (Millecamps et al., 2010).  

The striking functional and structural similarities of TDP-43 and FUS, both DNA/RNA binding 

proteins, suggest that abnormal RNA processing is a crucial event in ALS pathogenesis although the 

mechanisms underlying protein aggregation and the consequent neurodegeneration remain currently 

unknown. 

Recently, increased evidence points to the importance of C9ORF72 gene, that represents around 

40% of the genetic and 7% of non-genetic forms (DeJesus-Hernandez et al., 2011; Gordon, 2013; 

Renton et al., 2011). Linkage analysis of ALS and frototemporal dementia (FTD) cases revealed an 

important locus for the disease on chromosome 9p21 leading to deeper studies which revealed an 

hexanucleotide repeat located in the non-coding region of C9ORF72 (DeJesus-Hernandez et al., 2011; 

Renton et al., 2011), a gene that encodes an uncharacterized protein with unknown domains or function 

although highly conserved across species. The repeat expansion leads to the loss of one alternatively 

spliced C9ORF72 transcript and to formation of nuclear RNA foci, implying also both loss-of-function 

and gain-of-function mechanisms (DeJesus-Hernandez et al., 2011). Clinically, this mutation has been 

associated with lower age of onset, cognitive and behavioral impairment and reduced survival among 



I. Introduction 
 

5 
 

other features. Byrne et al. (2012) suggest that the C9ORF72 repeat expansion may be inherited in an 

autosomal dominant way with an expanded phenotype of neurodegeneration and variable penetrance.  

 

1.2. Sporadic ALS 

Despite all the progress achieved so far, the causes of large majority of sALS remain unknown 

but it is thought to be probably associated with a combination of genetic and environmental factors. 

Environmental factors associated with ALS have been studied for many years and recent advances 

have shed light to the cyanotoxin β-N-Methylamino- L-alanine (BMAA). Interestingly, food containing 

BMAA has been found on Guam, a well-known focus of ALS/parkinsonism-dementia complex (AL-

SPDC) and high concentrations of BMAA were found in the postmortem brain tissue (Cox et al., 2003). 

This non-protein neurotoxic amino acid can be misintegrated into the protein structure, in the place of L-

serine (Dunlop et al., 2013) which may induce protein misfolding and cell death. 

Although to date most cases are unrelated to SOD1 gene mutations, the chance that sporadic 

and familial ALS may converge on a common pathogenic pathway involving abnormal SOD1 species 

must be taken into account. For instance, SOD1 immunoreactive protein aggregates were found in 

spinal cord of both human fALS and sALS cases (Gruzman et al., 2007) and wild-type SOD1 (wtSOD1) 

was shown to acquire binding and toxic properties of mSOD1 through oxidative damage (Ezzi et al., 

2007; Rakhit et al., 2004). Also, wtSOD1 can interact with Heat shock protein 70 (Hsp70) as well as 

chromogranin B, inducing tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS), 

leading to a dose dependent cell death (Ezzi et al., 2007). Moreover, oxidized wtSOD1 and mSOD1 

were reported to share a conformational epitope that is not present in normal wtSOD1, and both 

recombinant oxidized wtSOD1 and wtSOD1 immunopurified from human sALS tissues have been 

shown to inhibit kinesin-based fast axonal transport, similar to SOD1-fALS (Bosco et al., 2010). 

These findings imply that both genetic and non-genetic forms of ALS must share key pathogenic 

mechanisms such as protein aggregation, endoplasmic reticulum stress, mitochondrial failure or axonal 

transport dysfunction, thus triggering a compromised homeostasis of MNs, as will be further detailed. 
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1.3. Compromised Homeostasis of MNs  

A main hallmark of ALS is MN degeneration and identification of SOD1 mutations has enabled 

development of animal and cell culture models from which it was possible to uncover some of the 

mechanisms triggering MN injury, schematically represented in Figure I.2. Although the precise 

mechanism by which SOD1-mediated toxicity triggers ALS pathogenesis remains unknown, several 

hypotheses have been proposed such as oxidative stress, glutamate excitotoxicity, protein aggregation, 

endoplasmic reticulum stress, mitochondrial dysfunction, axonal transport abnormalities, as well as 

microglial activation and neuroinflammation. Given the variety of mechanisms already reported to be 

involved in the disease, it seems, most likely that ALS results from cumulative upstream abnormalities 

which will lead to a common pathogenic cascade. 

 

 

Figure I.2.  Molecular mechanisms leading to compromised homeostasis of MNs in ALS. Motor neuron (MN) 
injury is believed to be a result of multiple dysfunctional processes. In SOD1-linked ALS, mutations in the gene will 
result in a protein with major propensity to aggregate with itself as well as with other proteins. These protein 
aggregates will cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). 
Prolonged UPR triggers apoptosis, characterized by exposure of phosphatidylserine (PS), through ER-stress 
specific caspases and pro-apoptotic proteins, and cross-talk with mitochondrial intrinsic apoptotic pathway. Also 
mitochondrial dysfunction results in release of cytochrome c (cyt c) and production of higher levels of free radicals, 
as reactive oxygen species (ROS) and nitric oxide (NO), inducing apoptosis and increased oxidative stress. 
Increased number of autophagic vacuoles is also observed within MNs. Abnormalities in the axonal transport are 
reported in MNs, further resulting in accumulation of protein and organelles that cause axonal damage and, 
consequently, impaired signal transmission. Extracellular glutamate accumulation promoting excitotoxicity is 
reported in ALS. For instance, overstimulation of AMPA/kainate receptors leads to major influx of calcium (Ca2+) 
that further contributes to disrupted homeostasis of MNs. Adapted from Ferraiuolo et al. (2011b) 
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1.3.1. Oxidative Stress – accumulation of free radicals 

Oxidative stress, associated with the formation of reactive oxygen species (ROS), has been 

identified as one of the major causes of cellular injury in several neurodegenerative diseases. Oxidative 

stress is commonly defined as a disturbance in the balance between the production of ROS and 

antioxidant defenses, where biological system’s ability to readily detoxify free radicals or easily repair 

the resulting damage is compromised. Intracellular ROS may be instigated by leakage of electrons from 

the mitochondrial respiratory chain, leading to incomplete reduction of molecular oxygen during 

oxidative phosphorylation, generating superoxide radical anion and hydrogen peroxide. Free radicals, 

as superoxide and nitric oxide (NO), generated by nitric oxide synthase (NOS) are also produced by 

immune cells and modulate the expression of the immune response (Wink et al., 2011). Increased levels 

of superoxide reacting with NO lead to production of peroxinitrite, a potent oxidant, and slowly 

decomposition of hydrogen peroxide lead to the highly reactive hydroxyl radical (OH). Both peroxynitrite 

and hydroxyl radical are highly reactive oxidizing agents being able to damage proteins, lipids and DNA. 

This injury may include changing of protein conformation, altering cellular membrane dynamics by 

oxidation of unsaturated fatty acids and alterations in DNA and RNA species, as reviewed in Barber and 

Shaw (2010). 

In ALS, the role of oxidative stress has been established in several studies. In fact, Shaw et al. 

(1995) reported that the levels of protein carbonyl, a biomarker of oxidative stress, were increased in 

the spinal cord of patients with sALS and Ferrante et al. (1997) reported that those levels were also 

increased in the motor cortex. In addition, Beal et al. (1997) showed increased concentrations of 3-

nitrotyrosine, a marker of peroxynitrite-induced oxidation, in MNs of both familial and sporadic ALS 

patients. Moreover, using a transgenic mouse model of ALS (SOD1G93A), Andrus et al. (1998) proposed 

that the increased hydroxyl radical production associated with the SOD1G93A mutation may cause 

extensive protein oxidative injury, for instance, in SOD1 protein itself. 

 

1.3.2. Excitotoxicity – glutamate activity 

An important pathophysiological process in both forms of ALS seems to be glutamate-mediated 

excitotoxicity. Glutamate is the main excitatory neurotransmitter in the mammalian CNS. Whereas it is 

important for normal nerve cell function, it becomes toxic in elevated concentrations. This phenomenon 

is known as excitotoxicity and arises when there is a rupture in the equilibrium between the release and 

re-uptake of glutamate that leads to increased synaptic glutamate concentrations and consequent 

excessive stimulation of glutamate receptors, resulting in augmented intracellular calcium levels, 

generation of ROS, consequent neuron damage and death. This may happen either as a consequence 

of excessive production or by failure of glutamate transporters, as the excitatory amino acid transporters 

(EAAT), mostly present in glial cells. MNs are known to have a high level of glutamatergic input and to 

be particularly vulnerable to excitotoxic cell death (Heath and Shaw, 2002).  

Multiple studies have reported the evidence of excitotoxic mechanisms in ALS. For instance, 

increased levels of glutamate were observed in the plasma of ALS patients (Plaitakis and Caroscio, 

1987), while a decrease in glutamate levels was shown in ventral horn of spinal cord and motor cortex  

of postmortem CNS tissue (Tsai et al., 1991). In addition, the expression of the astrocytic glutamate 
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transporter EAAT2, the major glutamate transporter responsible to remove glutamate from the synaptic 

cleft, is reduced by 90% in the ventral horn of paralyzed transgenic SOD1G93A rats (Howland et al., 

2002). Moreover, by using primary cultures of MNs from murine spinal cord, Roy et al. (1998) have 

shown that normally non-toxic glutamatergic input, particularly via calcium-permeable AMPA/kainate 

receptors, is a major factor in the vulnerability of MNs to the toxicity of SOD1 mutants. 

 

1.3.3. Protein misfolding and aggregation 

Protein aggregation is a hallmark of many neurodegenerative diseases, including ALS. The 

clumps of protein misfolded, either because of injury from ongoing cellular processes or through the 

heritage of an abnormal structure in genetic disorders, may affect normal MN functions and induce cell 

death. SOD1 inclusions constitute a primary feature of SOD1-fALS in both human ALS patients and 

animal models. These inclusions were reported to form before symptoms onset and to accumulate 

during disease progression and were found to occur in the cytoplasm, mitochondria and vacuoles of 

MNs, as well as axons and dendrites (Chattopadhyay and Valentine, 2009).  

In addition, Wang and co-workers proposed that toxicity of aggregates is mediated by their size 

and that mSOD1 has an increased aggregation propensity, i.e., an increased likelihood of an unfolded 

protein to aggregate,  toxic for ALS patients (Wang et al., 2008). In fact, aggregation is thought to be a 

consequence of the formation of misfolded SOD1 that escape from cellular quality-control and 

housekeeping mechanisms, and different ALS-associated mutations may increase SOD1 aggregation 

for several reasons, such as: a decrease in the negative charge of SOD1 without affecting stability or 

metal binding, a destabilization of protein native state, or an impairment of Cu or Zn binding by SOD1 

(Shaw and Valentine, 2007). Interestingly, intracytoplasmic protein deposits strongly stained for SOD1 

in the spinal cord of both sALS and fALS and, in ALS, are thought to consist of granule-coated fibrils 

that contain SOD1 as well as other proteins as reviewed by Chattopadhyay and Valentine (2009). 

 

1.3.4. ER stress 

Protein aggregates and inclusions containing misfolded proteins have been correlated with the 

activation of stress signaling pathways from the endoplasmic reticulum (ER). The endoplasmic reticulum 

is the organelle responsible for the native folding, post-translational modifications and trafficking of 

secreted and membrane proteins. ER stress occurs when misfolded proteins accumulate in the ER and 

ER Ca2+ content is depleted. ER stress is transduced by three proximal sensors of the unfolded protein 

response (UPR): the double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), the 

basic leucine-zipper activating transcription factor 6 (ATF6) and the inositol requiring enzyme 1 (IRE1). 

These sensors are maintained in an inactive state by interaction with the ER chaperone binding 

immunoglobulin protein (BiP). When there is increased accumulation of misfolded proteins, BiP is 

released and ER stress sensors become activated. Thus, to reestablish cell homeostasis, cells activate 

the UPR which mediates the upregulation of genes encoding ER-resident chaperones, such as BiP, 

glucose regulated protein 94, calreticulin, calnexin and protein disulphide isomerase (PDI) family 

members; decrease in protein translation in order to reduce ER protein load;  and degradation of 

misfolded proteins by the proteasome. When protein misfolding and accumulation can no longer be 
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compensated for, prolonged UPR triggers apoptosis through ER-stress specific caspases and pro-

apoptotic proteins, and cross-talk with mitochondrial intrinsic apoptotic pathway (Walker and Atkin, 

2011).  Regarding ALS, two studies reported that UPR was present in mice model SOD1G93A (Atkin et 

al., 2006; Kikuchi et al., 2006) and that mSOD1 was present inside the ER. Atkin et al. (2008) pointed 

out an up-regulation of the full spectrum of UPR markers in lumbar spinal cord tissue from human sALS, 

therefore suggesting ER stress as common phenomenon to all ALS cases. Interestingly, Saxena et al. 

(2009), by using SOD1G93A mice model, have observed that selectively vulnerable MNs were prone to 

ER stress and that the activation of UPR was correlated with microglial activation in lumbar spinal cord. 

Altogether, these findings highlight an important role for ER in the pathogenicity of ALS, although the 

underlying mechanisms remain elusive.  

 

1.3.5. Mitochondrial dysfunction and impairment of axonal transport 

Mitochondria are involved in generation of intracellular ATP and in free radicals, buffering of 

intracellular calcium and initiation of programmed cell death. Free radicals, as ROS and NO, are 

produced in mitochondria and both mitochondria and its genetic material are sensitive to oxidative stress 

(Duchen, 2004). Hence, impairment of mitochondrial function, for instance through an imbalance 

between fission and fusion processes, results in lower energy production by neurons, diminished activity 

and lack of healthy mitochondria at synaptic terminals. 

Studies in human ALS postmortem tissue (spinal cord) have shown both biochemical and 

morphological mitochondrial abnormalities (Sasaki and Iwata, 1996) as well as in mSOD1 transgenic 

mice (Jaarsma et al., 2000). mSOD1 was shown to be toxic to mitochondria affecting bioenergetics 

(Mattiazzi et al., 2002), protein import (Li et al., 2010) and the conformation of apoptotic proteins (Pedrini 

et al., 2010). Recent studies in our lab with NSC-34/hSOD1G93A cells, an in vitro model of MN 

degeneration in ALS, reported a significant impairment of mitochondria dynamic properties (Vaz et al., 

2014). By analyzing dynamin related protein 1 (Drp1) and mitofusin 1 (Mfn1), two main proteins involved 

in fission and fusion processes, respectively, these cells demonstrated mitochondrial dysfunction 

essentially trough fission processes (Ferreira, 2013).  

Axonal transport is required for multiple neural functions as neurotransmitter synthesis, release 

and recycling. MNs have long axons that demand orderly function of the axonal transport mechanism 

to keep the structure and signal transmission at synaptic terminals. The transport is mediated by two 

major families of motor proteins – kinesin for anterograde transport and dynein for retrograde transport 

(Goldstein and Yang, 2000). Impairment on the axonal transport may result in accumulation of proteins 

and organelles and lead to damage in axons. Altered axonal transport activity is one characteristic of 

ALS disease. In fact, Collard et al. (1995) reported an impaired anterograde transport of neurofilaments 

and tubulin before disease onset in mSOD1 transgenic mice, probably due to the observed accumulation 

of neurofilaments. Also, using SOD1G93A transgenic mice Shi and co-workers reported a decrease in 

retrograde transport of dynein and suggested disruption of dynein-mediated transport as an early event 

in SOD1G93A transgenic mice starting before disease onset (Shi et al., 2010). Thus, the literature 

suggests the damage to the cargoes or machinery of axonal transport as an early feature of toxicity 

carried out by mSOD1. Moreover, studies in our lab using NSC-34/hSOD1G93A cells, have shown that 
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both anterograde and retrograde axonal transport are impaired due to dysfunction of kinesin and dynein, 

respectively (Ferreira, 2013). 

 

1.3.6. Cell death pathways 

Evidence has accumulated pointing towards a programmed cell death of MNs in ALS resembling 

apoptosis. Apoptosis is characterized biochemically by exposure of phosphatidylserine (PS) on the outer 

leaflet of the plasma membrane, alterations in mitochondrial membrane permeability, which is thought 

to be regulated by proteins of the B-cell lymphoma 2 (Bcl2) family, release of intermembrane space 

mitochondrial proteins, as cytochrome c, and caspase-dependent activation (Elmore, 2007). 

Morphologically it is characterized by plasma membrane blebbing, nuclear fragmentation, formation of 

apoptotic bodies and chromatin condensation in the nuclear membrane (Elmore, 2007). In human ALS 

postmortem tissue, changes in the balance of pro- and anti-apoptotic members of the Bcl2 family were 

reported, either for expression and intracellular localization, usually resulting in predisposition for 

apoptosis in mMNs when compared to controls, and increased activities of caspases 1 and 3 were 

reported in the spinal cord, as reviewed by Sathasivam et al. (2001). Nuclear and cytoplasmic 

condensation and formation of apoptotic bodies were described in morphological studies. Furthermore, 

in cellular models of SOD1 ALS was observed that mSOD1 cells express higher amounts of PS on cell 

surface and increased cleavage/activation of caspase-9 (Sathasivam et al., 2001; Shaw, 2005; Vaz et 

al., 2014).  

Nevertheless, autophagic dysfunction is emerging as a possible contributing factor in MN 

degeneration in ALS. Autophagy is important to neuronal homeostasis and may serve as a 

neuroprotective mechanism preventing the spreading of damages. It is an intracellular mechanism 

involved in degradation of abnormal proteins or wasted cytoplasmic components, within lysosomes. 

However, upon excessive autophagy cells may undergo autophagic cell death characterized by massive 

accumulation of autophagosomes without nuclear condensation. Increased expression of microtubule-

associated protein light chain 3 (LC3) together with other proteins, such as beclin-1, is one marker of 

autophagy (Caldeira et al., 2014; Glick et al., 2010). In SOD1G93A mice model was reported altered 

autophagy starting from the pre-symptomatic stage of the disease together with an increased number 

of LC3-labeled autophagic vacuoles in spinal cord (Li et al., 2008; Zhang et al., 2011). Induction of 

autophagy has also been shown in ALS postmortem tissue by immunohistochemical analysis of LC3 

and p62, another marker of autophagy (Sasaki, 2011). It is hypothesized that mSOD1 can inhibit the 

autophagic machinery and lead to disrupted homeostasis (Chen et al., 2012). Still, it remains unclear 

whether the increased autophagic vacuoles seen within MNs are result of autophagy induction or 

autophagy influx impairment and whether it exerts a beneficial or detrimental role, being proposed that 

it could vary accordingly to disease course (Ghavami et al., 2014). 
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1.4. The role of glial cells in ALS 

Increased evidence indicates that MN death in ALS is a non-cell autonomous process. Although 

it was initially considered a secondary phenomenon, an increasing number of studies support the 

contributory role of non-neuronal cells in the selective MN degeneration. 

 

1.4.1. Schawn cells and oligodendrocytes  

Myelination of axons allows more speed and energy efficiency of nerve conduction through the 

process of saltatory conduction in which there is neuronal action potential propagated between nodes 

of Ranvier (Waxman, 2006). This process is performed by oligodendrocytes in the CNS and Schwan 

cells in the peripheral nervous system.  

Recently, oligodendrocytes were reported to play a relevant role in ALS since widespread 

degeneration was observed in the gray matter oligodendrocytes in the spinal cord of mSOD1 mice prior 

to disease onset (Kang et al., 2013). Even new oligodendrocytes were still formed they weren’t able to 

maturate and therefore they were unable to mediate remyelination. Also it was suggested that 

oligodencrocytes injury together with demyelination and lack of metabolic support to neurons may 

contribute to accelerate disease progression in ALS (Philips et al., 2013).  

Schwan cells, which are associated with the full length of peripheral axons that represent 90% of 

the volume of MNs, are also involved in non-conductive functions of MNs such as axonal development 

and regeneration and maintenance of neuromuscular synapses. These are processes disrupted in early 

stages of ALS models and thus injury in these cells may be somehow involved in ALS. For instance, 

Lobsiger et al. (2009) reported that decreased levels of mSOD1 within Schwann cells in a ALS mouse 

model promotes a significant acceleration of disease progression as well as a reduction of insulin-like 

growth factor 1 (IGF-1) in nerves, hypothesizing a protective role of mSOD1 within Schwann cells. 

Interestingly, Turner et al. (2010) stated no pathological effects of mSOD1 accumulation within Schwann 

cells to spinal MNs nor injurious to disease course in ALS model mice.  In the other hand, Chen et al. 

(2010) suggested that Schwann cells are involved in the process of distal axonopathy in mouse ALS 

through their expression of iNOS inducing MN axonal damage at the nodes of Ranvier.  

Taken together, these findings suggest an important role for myelinating glia in ALS pathogenesis. 

 

1.4.2. Astrocytes 

Astrocytes constitute the major fraction of non-neuronal cells in the CNS and are emerging as 

major players in MN degeneration. In fact, Nagai et al. (2007), by using an in vitro model of either MNs 

derived from mouse embryonic spinal cord or MNs from mouse embryonic stem cells co-cultured with 

astrocytes expressing mSOD1, have reported that astrocytes promote death of wild-type MNs mediated 

by the release of soluble factors specific to astrocytes. Later, it was shown by Ferraiuolo et al. (2011a) 

that pro-NGF (nerve growth factor) is one toxic factor compromising MN survival in those conditions.  

Reactive astrogliosis is characterized by an increased immunoreactivity for glial fibrillary acidic 

protein (GFAP) as well as the expression of inflammatory markers such as COX-2, iNOS and neuronal 

NOS (Pehar et al., 2005). It constitutes a pathological hallmark of ALS reported in several regions of 

both genetic and non-genetic cases (Nagy et al., 1994) and transgenic SOD1G93A mice (Levine et al., 
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1999). Additionally, dysfunction of the glutamate transporters GLAST (the rodent homologue of human 

EAAT1) and GLT-1 (EAAT2), the transporters responsible for most of the glutamate uptake and mainly 

expressed by astrocytes, has been linked with ALS (Dumont et al., 2014). Interestingly, it was recently 

reported a population of astrocytes with an aberrant phenotype, highly proliferative and undifferentiated 

in the spinal cord of symptomatic transgenic SOD1G93A rats. This astroglial population was also capable 

of inducing MN death through the secretion of soluble factors, which still remain to uncover but are 

suggested to be cytokines, excitotoxins or trophic factors (Diaz-Amarilla et al., 2011).  

 

1.4.3. Microglia 

Microglia are the brain immune cells that provide the first line of defense against invading 

microbes and can be the first to detect critical changes in neuronal activity via interactions with neurons. 

As the resident macrophages of the CNS, microglia are part of the innate immune response and play 

many significant functions in the normal brain and during neurodevelopment, by providing neurotrophic 

support (Benarroch, 2013). Microglia are from hematopoietic origin and are essential regulators for cell 

number and synapse formation during development, revealing changes within maturation process. As 

proposed in the literature, microglial regulation by the CNS microenvironment can change as a function 

of age and demands of CNS (Benarroch, 2013). In 2005, two studies showed that resting microglia are 

not inactive but rather in a state of surveillance. This state is represented by high motility of cells that 

sample their environment with continuously moving processes with a fast response to brain injury, being 

able to sense subtle changes through a variety of surface receptors such as purine-receptors or 

fractalkine (FKN or CX3CL1) receptor (Davalos et al., 2005; Nimmerjahn et al., 2005). When microglia 

become activated, they migrate towards the damaged cells and clear the debris and may undergo rapid 

morphological and functional activation, such as change from highly ramified cells towards a more 

amoeboid-like shape (Xiang et al., 2006), increased phagocytosis and antigen presentation. Also, 

microglial activation is associated with expression of a broad spectrum of factors that can modulate the 

functions of surrounding cells, such as chemokines, cytokines, ROS or neurotrophic  factors (Nakamura, 

2002) and surface markers, such as CD11b (Roy et al., 2006). The role of microglial cells has 

demonstrated to be very complex and the final result of their activation is likely to depend on the stimulus 

by which it occurs, the type of neuronal damage, the release of cytokines and the interplay with 

surrounding cells (Minghetti and Levi, 1998). 

 

In 2003, Clement and colleagues, by using a model of chimeric mice in which the expression of 

SOD1G93A was induced in MNs or glial cells, report that injury to MNs requires damage from mSOD1 

acting within non-neuronal cells since normal MNs in the chimeras develop ALS features. Moreover, 

non-neuronal cells free of mSOD1 delayed degeneration and significantly prolonged survival of mSOD1 

expressing MNs (Clement et al., 2003). In accordance, an important role has been addressed by 

observing that wild-type microglia slowed neuron loss and disease progression in mice expressing 

mSOD1 suggesting that even if microglial cells are not directly involved in disease onset they do 

influence disease progression (Beers et al., 2006; Boillée et al., 2006b). Hence, it can be presumed that 

mSOD1 in MNs affects disease onset while mSOD1 in microglia leads to the propagation of disease at 
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later stages. More recently, it was observed that microglia is highly reactive in preclinical stages of ALS 

in the transgenic rat model with  mSOD1G93A (Graber et al., 2010) however its ablation in spinal cord 

close to clinical onset has not shown to protect MNs (Gowing et al., 2008). Moreover, replacement of 

microglial cells expressing mSOD1 using clodronate liposomes significantly slowed disease progression 

and prolonged survival of the transgenic ALS mice (Lee et al., 2012).   

In this way, a strong possibility concerning microglia role in ALS is that microglia may assume 

different phenotypes along the disease course, becoming activated in the early stages in anti-

inflammatory-like phenotype and then, in the later stages, become pro-inflammatory and further 

dystrophic, with no ability to have an active immune response and further contributing to disease 

progression (Appel et al., 2011; Brites and Vaz, 2014).  

A general overview of the diversity of phenotypes that microglia may assume is schematically 

represented in Figure I.3, and will be further detailed in section I.2.1.  

 

 

 

 

Figure I.3. General overview of microglia phenotypes. Under normal conditions, microglia remains highly 
ramified in a surveillant state, sampling the environment. Activation may occur through multiple stimuli causing them 
to change from highly ramified cells to amoeboid-like shape, with an active immune response through increased 
phagocytosis and antigen presentation, release of cytokines and soluble factors capable of modulate the 
inflammatory process. However, microglia may become senescent or dystrophic with aging, showing fragmented 
cytoplasmic processes and low ability to respond to external stimuli. 

 

 

 

Microglia activation has been reported in the brain (Turner et al., 2004) and spinal cord of both 

patients (Henkel et al., 2004) and different mSOD1 mouse models (Beers et al., 2011), being now seen 

as a prominent pathological feature in ALS (Brites and Vaz, 2014).   
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In summary, glial cells play an important role for ALS onset/progression. A schematic interaction 

between those cells with MNs, and the main molecules involved in such dialogue that can be altered in 

ALS, are summarized in Figure I.4. 

 

 

 

Figure I.4. The role of glial cells in ALS. ALS is a non cell-autononous disease with glial cells exerting an 
imperative role in its course. Injury in oligodendrocytes is translated in myelination abnormalities. The role of 
Schwann cells is somehow controversial; mutated SOD1 (mSOD1) in these cells is suggested to have a protective 
role although, at some point, they may be contributing to axonal damage of motor neurons (MNs) through increased 
levels of nitric oxide (NO). Astrogliosis is a feature of ALS with increased expression of glial fibrillary acidic protein 
(GFAP), and astrocytes are reported to release toxic soluble factors, as pro-nerve growth factor (pro-NGF), 

promoting injury in MNs. Also, decreased expression of the glutamate transporters, excitatory amino acid 
transporters 1 and 2 (EAAT1 and EAAT2, respectively) were observed, expected to be a cause of glutamate 
excitotoxicity. Microglia is thought to have a beneficial action in the early stages of the disease, through the release 
of neurotrophic factors (NTFs), whereas it’s thought to contribute to an accelerated rate of disease progression in 
the later stages, when they become toxic,  through the release of reactive oxygen species (ROS), and lately 
dystrophic.  
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2. Microglia: a key player in the pathoprogression of ALS  

2.1. Variable role: from surveillant to neuroprotective or neurotoxic  

As seen previously, under normal conditions microglial cells have a surveillance function essential 

to keep CNS homeostasis. It is widely accepted that these cells make brief, repetitive contacts with 

synapses and rapidly retract (Benarroch, 2013). Activated microglia are very plastic cells that may exert 

various phenotypes and shift their activation state in agreement with microenvironmental changes. Their 

main role is to initiate appropriate responses, such as inflammation. Although neuroinflammation is 

crucial in order to protect CNS, uncontrolled and consequent chronic neuroinflammation is harmful and 

leads to cellular injury (Cherry et al., 2014).  

There is increasing evidence highlighting neuroinflammation as a prominent pathological hallmark 

in ALS, not only in animal models but also in patients. One of the most noticeable features of 

neuroinflammation is the presence of activated microglia at sites of MN injury. So far, studies have 

shown that activated microglia may have distinct phenotypic states, being able to exert either a toxic or 

protective effect on neurons depending on the stimulus by which they are activated. Classically activated 

microglia (M1) are cytotoxic due to the secretion of ROS and pro-inflammatory cytokines such as 

interleukin (IL)-6, IL-1β, TNF-α, interferon-γ. Alternatively activated microglia (M2), in a general way, 

block pro-inflammatory response and produce high levels of anti-inflammatory cytokines including IL-4 

and IL-10, and neurotrophic factors like IGF-1 and tumor growth factor β (TGF-β) (Appel et al., 2011). 

Yet, this M2 phenotype has been further subdivided in three subgroups: M2a, M2b and M2c. M2a 

phenotype appears to be associated with suppression of inflammation, since it leads, to inhibition of 

inflammatory associated signaling molecules such as nuclear factor-KB (NF-kB) isoforms; M2b 

phenotype seem to be potential immunoregulator or initiator of the M2 response in general, once these 

cells are able to induce Th2 T cells (Cherry et al., 2014). Lastly, M2c primarily typified as a deactivated 

state, is now thought to be involved in tissue remodeling and matrix deposition after downregulation of 

inflammation (Cherry et al., 2014), and in phagocytosis, suggested to be through a Milk-fat globule EGF 

factor-8 (MFG-E8)-dependent manner (Brites and Vaz, 2014). The mechanisms underlying this shift 

from neuroprotective to neurotoxic microglia remains elusive, however strong evidence points towards 

the MN-microglia cross-talk (see Figure I.5).  
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Figure I.5. Microglia’s shift from surveillant to neuroprotective or neurotoxic in ALS is thought to be through 
interaction with MNs. Depending on the type and duration of the stimulus by which microglia are activated, these 
cells may turn into an anti-inflammatory phenotype, so called M2 phenotype, or into a cytotoxic phenotype (M1). 
M2 microglia, in general, have enhanced phagocytosis and act by the release of neurotrophic factors and anti-

inflammatory cytokines such as insulin-like growth factor 1 (IGF-1) and interleukin(IL)-4, respectively, in a way 
to supress inflammation and help injured motor neurons (MNs). M1 microglia have impaired phagocytic ability and 

are cytotoxic due to secretion of pro-inflammatory cytokines, as IL-1β and tumor necrosis factor α (TNF-α), and 
reactive oxygen species (ROS) and promote cells’ injury. It remains elusive the cause of this change of phenotypes, 
though in ALS MNs are believed to have a crucial role.  

 

 

 

In addition to the activation of microglial cells, infiltrating lymphocytes at sites of MN injury may 

also constitute a feature of neuroinflammation in ALS pathogenesis (Henkel et al., 2009). CD4+ T cells 

are believed to cross-talk with microglia and promote their neuroprotective or neurotoxic phenotype 

being a possible intervenient in the MN-microglial dialogue in ALS. Indeed, Appel et al. (2010) reported 

that in mSOD1 mouse model, the lack of CD4+ T cells leads to faster progression of MN disease, 

implying a neuroprotective role of these cells. It also eliminates the early slow phase of disease together 

with increased pro-inflammatory and cytotoxic factors, diminished anti-inflammatory and neurotrophic 

factors as well as survival. 

However, it is described a shift from protective to injurious T cells along with transformation of M2 

to M1 phenotype along disease progression, which also implies a well-orchestrated cross-talk among 

microglia, neurons and T cells (Zhao et al., 2013).  
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2.2. Motor neuron-microglia cross-talk in ALS 

2.2.1. Ligand-receptor interaction 

As seen previously, it is believed that there is an immunological shift from neuroprotection to 

neurotoxicity with major contributes to ALS disease progression (Appel et al., 2011). Once established 

an imperative role of microglial cells and their mutable action, the questions now are how, when and 

why this shift occurs and a strong possibility is that the answer lies in the cross-talk between MNs and 

microglia.  

Neurons may modulate microglia phenotype through the release of molecules such as the CD200 

neuronal glycoprotein, suggested to suppress the pro-inflammatory-like state of microglia, and the 

chemokine FKN, likely to maintain the resting/ramified microglial state or promote antioxidant effects 

(Suzumura, 2013). CD200 has been reported to promote a down-regulation of the activated state of 

microglia through interaction with its receptor CD200R, predominantly expressed by myeloid cells 

(Deckert et al., 2006). Regarding ALS studies, by analyzing transgenic SOD1G93A mice during pre-

symptomatic and symptomatic stages, Chen and co-workers observed a significant up-regulation of 

CD200R in the pre-symptomatic stage, though no alterations on CD200 were reported (Chen et al., 

2004). 

On the other hand, under pathological conditions, damaged neurons will release signals such as 

high mobility group box 1 (HMGB1) that will lead to microglial activation (Suzumura, 2013). Interestingly, 

in ALS context, extracellular mSOD1 was found to be able to induce activation of wild-type microglia to 

a pro-inflammatory-like state, in the same way the lipopolysaccharide (LPS) does (Zhao et al., 2010), 

by interacting with CD14, a receptor for misfolded proteins, which ligates TLR-2 and TLR-4, co-

receptors, and activate a pro-inflammatory cascade, as suggested by Appel et al. (2011) (Figure I.6).  

 

The aforementioned chemokine FKN and its receptor CX3CR1, as well as the alarmin HMGB1 

are two promising intervenient that are likely to play an essential role in MN-microglia cross talk in ALS, 

and that will be further detailed below.  

 

2.2.1.1. Fractalkine 

Fractalkine is the only member of a unique subgroup of chemokines, a family of relatively low 

mass proteins within the major group of cytokines that chemo-attract and activate inflammatory cells, 

with particular characteristics: it may exist both in a membrane-bound form or a soluble form, which may 

be cleaved by matrix metalloproteinases (MMPs), (Sheridan and Murphy, 2013), and binds to, so far 

only known specific receptor, CX3CR1, which mediates both adhesive and migratory functions of FKN 

(Imai et al., 1997) (Figure I.6). Identified by Pan et al. (1997), FKN is located predominantly in the brain 

and was shown to be constitutively expressed by neurons whereas its highly specific receptor, CX3CR1, 

is mostly expressed in microglial cells, although it has also been reported in hippocampal neurons 

(Meucci et al., 2000) and astrocytes (Maciejewski-Lenoir et al., 1999). The FKN-CX3CR1 axis is 

reported to mediate neuron-microglial interaction, synaptic transmission and neuronal protection from 

toxic insults (Sheridan and Murphy, 2013). 
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FKN was shown to have a beneficial action in an in vitro model, decreasing the secretion of pro-

inflammatory cytokines and ROS by microglia activated with LPS, a previous mentioned strong 

exogenous activator of microglial cells (Mizuno et al., 2003). Nevertheless, in human Parkinson’s 

disease patients, the plasma levels of soluble FKN were reported to be positively correlated with disease 

severity and progression (Shi et al., 2011). Regarding its receptor, CX3CR1 deficiency in transgenic 

mouse model of ALS was reported to trigger microglial neurotoxicity and it was proposed by the authors 

that enhancing CX3CR1 signaling could protect neurons against toxicity (Cardona et al., 2006).  

 

2.2.1.2 High mobility group box 1 

HMGB1 is a ubiquitous nuclear protein with multiple functions able to act as a transcription factor, 

promoting expression of pro-inflammatory cytokines, and to bind receptors as receptor for advanced 

glycation endproducts (RAGE) and TLR-2 or TLR-4, triggering a pro-inflammatory cascade (Figure I.6). 

It is known to be released from necrotic cells, retained by apoptotic cells or actively secreted by activated 

immune cells, such as monocytes, macrophages and microglia, in response, for example, to LPS 

stimulus (Zurolo et al., 2011). Lo Coco et al. (2007) described a progressive reduction of HMGB1 within 

MNs of SOD1G93A mice and a prominent immunoreactivity in the nucleus of glial cells and hypothesized 

that HMGB1 could be released from damaged MNs and act as inflammatory signal while contributing to 

proliferation and hypertrophy of glial cells. Casula et al. (2011) observed a cytoplasmic translocation of 

HMGB1 in activated microglia and astrocytes from spinal cord tissue of sALS patients, suggesting that 

extracellular HMGB1 is derived mostly from glial cells and arising the hypothesis that may exist a positive 

feedback loop leading to an amplified inflammatory response.  

 

2.2.2. Phagocytosis 

The clearance of pathogens, apoptotic and senescent cells from the organism is performed by 

immune cells trough a well conserved process termed phagocytosis. This process is characterized by 

the engulfment of particles and cells and is of outmost importance for the development and homeostasis 

of organisms, as defective or inefficient clearance may contribute to several human pathologies (Neher 

et al., 2013). As resident macrophages of the CNS, microglia are in charge of this process, possibly 

through an M2c activated state, as seen previously. MFG-E8, or lactaderin, is a protein known to 

mediate phagocytosis in the peripheral immune system by macrophages (Li et al., 2013). The proposed 

mechanism of action implies that MFG-E8 acts as a bridge between the apoptotic cell and the 

macrophage by binding exposed phosphatidylserine (PS) and vitronectin present in the membrane of 

the macrophage (Aziz et al., 2011) (Figure I.6). Fuller and Van Eldik (2008) reported that microglial 

phagocytosis of apoptotic neurons was mediated by MFG-E8 and suggested that a dysregulation in this 

process could be implicated in neurodegeneration. Interestingly, Fricker et al. (2012) reported that there 

is phagocytosis of viable neurons by microglia activated with LPS via an MFG-E8-dependent pathway. 

These results suggest that, although, phagocytosis is associated with an anti-inflammatory phenotype, 

MFG-E8-dependent pathway may be a promising intervenient in ALS pathogenesis involved in 

dysfunctional phagocytosis and possibly leading to the exacerbated inflammation, likely to occur in ALS.  
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Figure I.6. Molecular pathways involved in MN-microglia cross-talk focusing on FKN/CX3CR1 axis, MFG-
E8-mediated phagocytic pathway and HMGB1 signaling. Motor neurons (MNs) modulate microglia response 
through diverse signs. High mobility group box 1 (HMGB1) may be released from injured MNs or secreted by 
activated microglia, and act in receptors present in microglial cells, such as toll-like receptor 2 or 4 (TLR 2 or 4, 
respectively) and receptor for advanced gycation endproducts (RAGE), thus starting a pro-inflammatory cascade 

via activation of nuclear factor-KB (NF-kB). On the other hand, it can also act as a transcription factor in the 
nucleus, and promote the transcription of pro-inflammatory cytokines, such as interleukin(IL)-6, IL-1β, tumor 
necrosis factor α (TNF-α). The chemokine fractalkine (FKN) may exert its functions by directly bind to its receptor 
CX3CR1, in microglia, or it can be cleaved by matrix metalloproteinases (MMPs) which expression is induced by 
pro-inflammatory cytokines. Both membrane and soluble FKN are likely to attenuate the pro-inflammatory state of 
microglia. Concerning amyotrophic lateral sclerosis (ALS), mutated SOD1 (mSOD1) may be released from MNs 
and bind TLRs acting as a signal from injured cells. Apoptotic MNs expose phosphatildyserine (PS) in their 
membranes which can be further recognized by Milk fat globule-EGF factor 8 (MFG-E8), acting as a bridge between 
the phagocytic microglia and the dying MN. 
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3. ALS research mice models 

Due to the similarities previously mentioned for non-genetic and genetic ALS, mSOD1 animal and 

cellular models constitute the most common tool to study the disease and they are also important to 

perform parallel experiments in more than one model system to better understand different aspects of 

a process and in order to have more accurate results. 

 

3.1. In vitro models 

In vitro models, as cell or organotypic cultures, have an increased yield and homogeneity in 

comparison with in vivo models that allows more data output in a shorter time. 

 

3.1.1. Primary cultures and cell lines 

Primary cultures refer to cells that are obtained from the tissue and maintained in culture. These 

may be composed of mixed cell types that can be further sorted in order to have the desired cell type to 

study. Primary spinal cord cultures have been used as a good model to study morphological, 

biochemical and electrophysiological characteristics of MNs (Tovar et al., 2009). They are obtained from 

12-14 days-old rodent embryos, where the spinal cord is dissociated by mechanical and enzymatic 

procedures and plated on matrix-coated dishes. Although this culture system is very limited in terms of 

simulating in vivo conditions, it offers the possibility of studying, for instance, intracellular mechanisms 

such as whose triggering MN injury in SOD1-ALS. MNs can be induced to express various copies of the 

gene of interest in order to reproduce an ALS phenotype, as mSOD1G93A, through microinjection of the 

vector into the cells identified by their specific morphology (Tradewell et al., 2011). However, cultures of 

MNs without the trophic support of glial cells are known to be difficult to maintain for more than 2 weeks. 

Moreover, the use of primary cells from embryos may fail to reproduce some features of the adult 

phenotype. 

Cell lines constitute a good model to overcome some limited aspects of primary cultures such as 

yields and time of maintenance of the culture. In 1992, Cashman and co-workers developed a cell line 

(NSC-34) of immortalized neurons able to reproduce selected aspects of MN development. NSC-34 cell 

line is a hybrid cell line of neuroblastoma and spinal cord MNs from enriched primary cultures. These 

cells are described to have a rounded morphology within the first 24-48 hours and after they evidence 

morphological and physiological properties of MNs, including extension of processes, formation of 

contacts with cultured myotubes, support of action potentials and expression of neurofilament proteins, 

among other features (Cashman et al., 1992). Moreover, these cells may be able to model aspects of 

neuromuscular synapse formation, as referred by Martinou et al. (1991). NSC-34 cell line expressing 

mSOD1 is a well-accepted cellular model of ALS in which some features of MN degeneration have been 

described, as Golgi apparatus fragmentation or mitochondrial dysfunction (Tovar et al., 2009). More 

recently, it has been established in our lab that NSC-34/hSOD1G93A reveals features of mitochondrial 

dysfunction, energy impairment, oxidative stress, as well as apoptosis and inflammation-related 

processes (Vaz et al., 2014). All of these are commonly described processes in transgenic mice models 

of the disease and in ALS patients. Studies in our laboratory have also shown that this model 
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demonstrated the efficacy of the anti-inflammatory and anti-oxidant bile acid, glycoursodeoxycholic acid 

(GUDCA) (Vaz et al., 2014). 

In vitro cultures of microglia allow the study of the activation state, released factors, motility, 

among others. The N9 murine microglial cell line was developed by immortalization of E13 mouse 

embryonic cultures with the v-myc or v-mil oncogenes of the avian retrovirus MH2. It has been largely 

used as illustrative of mouse microglial cells since it is derived from mouse brain and has many 

phenotypical characteristics of primary mouse microglia in producing substantial amounts of NO and 

various cytokines after stimulation (Stansley et al., 2012). 

 

3.1.2. Mixed cultures and co-cultures 

Mixed cultures and/or co-cultures constitute a valuable tool for the study of specific interactions 

among cells being studied, discarding any external interference (Zhang and Fedoroff, 1996). Also, cells 

with a target mutation can be combined with healthy cells in order to better understand the role of which 

cell type in the disease. For instance, combining cultures of NSC-34, either transfected with wtSOD1 or 

mSOD1, and N9 cell line, is likely to be a valuable model to study the interaction between MNs and 

healthy microglia.  

 

3.1.3. Organotypic cultures 

Organotypic cultures constitute a three-dimensional culture system which has biochemical and 

physiological properties more similar to in vivo tissue (Ravikumar et al., 2012). Organotypic slice cultures 

can be achieved from embryos and postnatal animals and the slices are obtained from 200-400 μm-

thick transversal sections that are transferred into membrane inserts to a 6-well or 12-well culture plates 

and can be used for more than two months (Delfs et al., 1989). The slices may be used to perform 

multiple analyses like immunohistochemical staining or electrophysiological recordings. This culture 

system constitute a good model to preserve important processes that occur in ALS, as cellular 

interactions between MNs and neighboring cells, once the whole slice is cultivated in an organotypic 

culture. Although this culture system allows dynamic studies with various drugs, it doesn’t completely 

recapitulate what happens in vivo (Tovar et al., 2009). An important feature of these cultures is that they 

may constitute a first approach before using in vivo models, in order to reduce the number of animals 

sacrificed in experiments.  

 

3.2. In vivo models 

3.2.1. Transgenic mSOD1 mice 

Vertebrate models allow the establishment of landmarks of disease progression and the 

understanding of the functional consequences of gene mutations. The laboratory mouse Mus musculus 

is widely used as a study model because of its close genetic and physiological similarities to humans, 

the possibility of genome manipulation and its relatively high reproductive rate. 

Nowadays, the SOD1 transgenic mice constitute the most widely used model of ALS. The first 

model carried an ALS-causative point mutation resulting in a glycine to alanine substitution at residue 
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93 (G93A) and was shown to recapitulate the paralytic phenotype of ALS (Gurney et al., 1994). 

Therefore, this model is useful for examining the pathophysiology of MN degeneration in ALS, as briefly 

reviewed above, and has provided a tool for developing preclinical data on drugs that may be used to 

slow the course of the disease. Though G93A is currently the main study model, also G37R, G85R, 

G86R, among other mutations in SOD1, are used as study models of this disease, since they were 

shown to also recapitulate some classical features of  MN degeneration (Turner and Talbot, 2008).  

Still, there are also other transgenic mice being used as a model to study ALS, harboring 

mutations in other ALS-associated proteins, such as TDP-43 and FUS. Namely, last year, transgenic 

mice expressing a variant of FUS protein were create, reported to recapitulate some features of human 

ALS FUS, such as the presence of FUS-positive inclusions, abrupt disease onset and fast progression, 

and motor impairment (Shelkovnikova et al., 2013). As for TDP-43, there exist now transgenic mice 

carrying TDP-43 transgenes, either WT or mutated (A315T or G348C), that mimic multiple aspects of 

ALS, such as age-related development of motor and cognitive dysfunction, cytoplasmic TDP-43-positive 

ubiquitinated inclusions, axonopathy, intermediate filament abnormalities, as well as neuroinflammation 

(Swarup et al., 2011). 
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4. Therapeutic approaches – recent findings 

A century after it has been first described, there is still no effective treatment for ALS. The only 

FDA approved drug Riluzole possess anti-glutamatergic properties but may only increase survival by 

two or three months (Bensimon et al., 1994).  

Given the evidence of non-cell autonomy in ALS, therapeutic shifted its focus from neuron to their 

interaction with non-neuronal cells. Stem cell research aims to replace damaged cells in injurious 

regions. For instance, regarding the determinant role of microglia in ALS course, replacing mutant 

microglia for healthy microglia may serve as a source of neurotrophic factors and provide protection 

delaying MN degeneration and disease progression. In fact, Lee et al. (2012) reported that replacing 

microglial cells by bone marrow transplantation in SOD1G93A mouse model slowed disease progression 

and prolonged survival elucidating the therapeutic potential of these cells.  

In addition, treatments that may down-regulate toxic responses of innate and adaptive immune 

cells and up-regulate the beneficial responses could also slow ALS progression. For that, modulation of 

microglial phenotype is becoming an appealing neurotherapeutic strategy. Interestingly, bone marrow 

transplantation with stem cell factor, in transgenic SOD1G93A mice, was reported to change microglia 

phenotype towards a neuroprotective state, resulting in increased MN function and survival (Terashima 

et al., 2014). 

Herewith, mesenchymal stem cells (MSCs) are arising as a promising therapeutic strategy given 

the relative availability and their potential for autologous cellular therapy (Kassem et al., 2004). Delivery 

of MSCs in SOD1G93A mice promotes multiple beneficial effects on disease course as improved motor 

function, decrease in MN loss and prolonged survival. Besides, intraspinal MSC transplants lead to 

improvement on neuroinflammation effects, astrogliosis and microglial activation. Moreover, MSCs are 

being considered to serve as vehicle to deliver neuroprotective factors to CNS. Intracerebroventricular 

injection of umbilical cord stem cells (UBCs), capable of differentiate into mesenchymal cells, in 

SOD1G93A mice diminished disease progression and enhanced survival up to 10% and those effects are 

thought to be mediated by production and release of anti-inflammatory cytokines and chemokines. 

Likewise, retro-orbital delivery of UBC’s improved neuromuscular transmission and intravenous 

administration delayed disease progression by 15%, promoted anti-inflammatory responses, decreased 

microglial activation and enhanced survival by 20-25% (Lunn et al., 2014). 

Another strategic approach concerning therapy in ALS may involve the bile acid ursodeoxycholic 

acid (UDCA). UDCA was hypothesized as a therapeutic for ALS and used in a clinical trial (Min et al., 

2012) due to its cytoprotective mechanisms. Its glyco-conjugated form - GUDCA, also showed anti-

apoptotic, immunomodulatory and anti-oxidant effects (Fernandes et al., 2007; Vaz et al., 2010). 

Interestingly, recent studies in our lab with NSC-34/hSOD1G93A cells, have reported that GUDCA showed 

beneficial effects concerning MN degeneration, such as inhibition of MMP-9 and caspase-9 increased 

activities, highlighting its potential use in ALS therapy in slowing disease onset and progression (Vaz et 

al., 2014). 
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A major understanding of the upstream pathogenic mechanisms underlying ALS is still lacking 

which greatly inhibited the development of successful targeted therapies so far, so efforts must continue 

to be done to accurate the most efficacious cell type, or cell types, in order to reach meaningful therapies 

for ALS patients. 

 

 

  



I. Introduction 
 

25 
 

5. Aims 

 

With this thesis we aim to dissect the MN-microglia signaling pathways that are compromised in 

MN-microglia homeostasis, by using an in vitro model of ALS. We will focus on the production and 

release of mediators that are involved in cellular demise and neuroinflammation, as well as specific 

molecules involved in MN-microglia cross-talk that may be compromised. 

 

Therefore, the specific aims are: 

 

 To uncover the pathways by which MNs are signaling their own injury. For this we will use 

mono-cultures of a MN-like cell line (NSC-34) stably transfected with human SOD1, either 

wild-type (wtMNs) or with G93A (mMNs) mutation.  

 

 To further dissect how MNs are modulating microglial immune response and the contribution 

of healthy microglia to rescue MN degeneration. For this we will use mixed cultures of a MN-

like cell line (NSC-34) stably transfected with human SOD1, either wild-type (wtMNs) or with 

G93A (mMNs) mutation, and healthy N9 microglial cell line. 
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II. MATERIALS AND METHODS 

 

1. Materials 

1.1. Chemicals 

Dulbecco’s modified eagle’s medium-Ham’s F12 medium (DMEM-Ham’s F-12), DMEM high 

glucose w/o pyruvate, fetal bovine serum (FBS), penicilin/streptomycin, L-glutamine and nonessential 

aminoacids (NEAA) were purchased from Biochrom AG (Berlim, Germany). RPMI-1640 medium, poly-

D-lysine (PDL), trypsin-EDTA solution (1X), trypsin-EDTA solution (10X), ATP, Hoechst 33258 dye, 

bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St.Louis, MO, USA). Geneticin 418 

sulfate (G418) was obtained from Calbiochem (Darmstadt, Germany). L-glutamic acid kit and Triton X-

100 were obtained from Roche Diagnostics (Mannhein, Germany). Nitrocellulose membrane was 

obtained from Amersham Biosciences (Piscataway, NJ, USA). Cell lysis buffer® and LumiGLO® were 

purchased from Cell Signaling (Beverly, MA, USA). Luminaris HiGreen High ROX qPCR Master Mix 

was obtained from Thermo Scientific (Waltham, MA, USA). Trizol was obtained from Invitrogen 

Corporation™ (Carlsbad, CA, USA). All the other chemicals were purchased either from Sigma-Aldrich 

or Merck. 

 

1.2. Antibodies 

Primary antibodies used in this work: goat anti-FKN [FKN (1:100)] and rabbit polyclonal anti-TLR4 

(1:200) were purchased from Santa Cruz Biotechnology® (Santa Cruz, CA, USA), mouse anti-HMGB1 

(1:200) from BioLegend® (San Diego, CA, USA), rabbit polyclonal anti-MFG-E8 (1:100), rat anti-CD11b 

(1:100), mouse anti-βIII-tubulin (1:250), mouse anti-β-actin (1:2000) was obtained from Sigma-Aldrich 

(St. Louis, MO, USA) 

Secondary antibodies used in this work: FITC anti-mouse (1:227), Alexa Fluor® 488 anti-rabbit (1:1000) 

and Alexa Fluor® 594 anti-rat (1:1000) were obtained from Invitrogen Corporation™ (Carlsbad, CA, 

USA). Horseradish peroxidase-labelled goat anti-rabbit IgG, Horseradish peroxidas-labelled rabbit anti-

goat IgG and Horseradish peroxidase-labelled goat anti-mouse IgG were purchased from Santa Cruz 

Biotechnology® (Santa Cruz, CA, USA).  
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1.3. Equipment 

Fluorescence microscope (model AxioScope.A1) with integrated camera (AxioCamHRm) and 

optical microscope with phase-contrast equipment (Olympus, model CK2-TR) were used for cell 

morphology evaluation. Microplate reader (PR 2100 Microplate Reader) was used for nitrites, glutamate 

and protein measurement and ChemiDoc™ for immunodetection in western blot, both from Bio-Rad 

Laboratories (Hercules, CA, USA). In order to ensure a stable environment to optimal cell growth (37ºC 

and 5 % CO2), cell cultures were maintained in HERAcell 150 incubators (Thermo Scientific, Waltham, 

MA, USA) and the work performed in sterile conditions in a HoltenLamin Air HVR 2460 (Allerod, 

Denmark). Guava easyCyte 5HT Base system Flow Cytometer (Merck-Milipore, Darmstadt, Germany) 

was used for flow cytometry studies. Eppendorf 580R (Eppendorf, Hamburg, Germany) and a Sigma 

3K30 centrifuges were used for different experimental procedures. 7300 Real-Time PCR System 

(Applied Biosystems, CA, USA) was used for qRT-PCR.  

 

2. Methods 

2.1. Cell lines 

2.1.1. NSC-34 cell line 

NSC-34 cell line transfected with human SOD1, either wild type or mutated in G93A [NSC-

34/hSOD1wt (wtMNs) or NSC-34/hSOD1G93A (mMNs), respectively] were a gift from Dr. Júlia Costa, 

Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Portugal and were 

used as currently in our lab (Vaz et al., 2014). NSC-34/hSOD1wt cells were used as a control. NSC-34 

cells were grown in proliferation media (DMEM high glucose, w/o pyruvate, supplemented with 10% of 

FBS and 1% of penicilin/streptomycin) and selection was made with geneticin sulphate (G418) at 0.5 

mg/ml. Medium was changed every 2 to 3 days. Culture plates were coated with PDL before plating the 

cells. Cells were seeded in 6, 12 or 24-well culture plated at a concentration of 5x104 cells/ml and 

maintained at 37ºC in a humidified atmosphere of 5% CO2. 

 

2.1.2. N9 cell line 

N9 cell line was a gift from Dr. Teresa Pais, Institute of Molecular Medicine (IMM), Lisboa, 

Portugal and were used as currently in our lab (Cunha, 2012; Ferreira, 2013). Cells were cultured in 

RPMI media supplemented with 10% FBS, 1% L-glutamine and 1% penicillin/streptomycin and 

incubated in 6, 12 or 24-well culture plates with NSC-34 (mixed-cultures) with a ratio 1:1, and maintained 

at 37ºC in a humidified atmosphere of 5% CO2.  

 

2.2. Cell cultures 

2.2.1. NSC-34 mono-culture 

After 48 hours in proliferation media, differentiation was induced by changing medium for DMEM-

F12 plus 1% FBS, 1% NEAA, 1% penicillin/streptomycin and 0.1% G418. Measurements were 

performed after 4 days in vitro (DIV), as shown in Figure II.1A, where mMNs showed high levels of 

degeneration (Vaz et al., 2014). 
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2.2.2. NSC-34 and N9 mixed-cultures 

For mixed cultures, NSC-34 were grown and differentiated as described for mono-cultures. N9 

cells were added after MN differentiation, in a pre-symptomatic-like stage of MNs, as shown in Figure 

II.1B. Cell cultures were maintained at 37ºC in a humidified atmosphere of 5% CO2 and collected after 

4 days of differentiation. 

 

 

 

Figure II.1. Schematic representation of the experimental model of mono- and mixed cultures. (A) NSC-34 
cells, stably transfected with human superoxide dismutase 1 (SOD1), wild type or with G93A mutation [NSC-
34/hSOD1wt (wtMNs) or NSC-34/hSOD1G93A (mMNs)], were grown in proliferation media and selection was made 
with G418. Differentiation was induced after 48h in culture by changing medium for DMEM-F12 plus 1% FBS and 
1% non-essential amino acids. Cell cultures were evaluated after 4 days in vitro (DIV), where mMNs showed high 
levels of degeneration (Vaz et al., 2014), considered a symptomatic-like stage. (B) In mixed cultures, microglia (N9 
cell line) were added after differentiation, considered a pre-symptomatic-like stage, in order to evaluate if they could 
prevent MN degeneration. Cultures were evaluated on production of nitrites by Griess reaction, release of glutamate 

by L-Glutamic acid kit, mRNA expression by qRT-PCR, protein analysis by western blot and immunocytochemistry, 
and cell death by flow cytometry. 
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2.3. Immunocytochemistry 

Immunocytochemistry was performed as usual in our lab (Vaz et al., 2014). NSC-34 cells, either 

alone or in mixed culture with N9 cells, were fixed with 4% (w/v) paraformaldehyde in PBS. For the 

immunostaining, cells were first permeabilized with 0.2% Triton X-100, for 20 min, and after incubated 

with blocking solution (3% BSA in PBS), for 30 min. For the immunostaining of FKN and MFG-E8 

proteins, there was no permeabilization of cells. Cells were incubated overnight at 4ºC with primary 

antibody and then incubated with respective secondary antibody, during 2 hours at room temperature. 

Cell nuclei were stained with Hoechst 33258 dye (1:1000, Sigma). Fluorescence was visualized using 

AxioCam HR camera (Zeiss) adapted to an AxioScope® microscope. Ten random fields were acquired 

per sample, with 400X or 630X magnification. 

 

2.4. Western Blot assay 

Western Blot was carried out as usual in our lab (Fernandes et al., 2006). Total cell extracts were 

obtained by lysing cells with 1X Cell Lysis Buffer plus 1mM phenylmethyl sulfonyl fluoride (PMSF) for 

5min, on ice and shaking. Proteins from the supernatants were precipitated by trichloroacetic acid (TCA) 

9:1 washed in cold acetone containing 20mM Dithiothreitol (DTT), and solubilization in sample buffer 

(Brissette et al., 2012). Protein extracts were sonicated for 20seg followed by centrifugation at 14 000 g 

for 10min, at 4ºC. Protein concentration was determined using the Bradford method (Bradford, 1976) 

using Bio-Rad’s Protein Assay Reagent. Equal amounts of protein were separated on a 10% sodium 

dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE). After electrophoresis, proteins were 

transferred to a nitrocellulose membrane and immunoblot was performed. Membranes were incubated 

in blocking buffer [Tween 20-Tris buffered saline (T-TBS) plus 0.5% (w/v) non-fat dried milk], for 1hour 

at room temperature. After, membranes were incubated overnight, at 4ºC, with the following primary 

antibodies diluted in T-TBS with 5% BSA: goat anti-FKN (1:100, Santa Cruz Biotechnology®), mouse 

anti-HMGB1 (1:200, BioLegend®), rabbit anti-TLR4 (1:200, Santa Cruz Biotechnology®), rabbit anti-

MFG-E8 (1:100, Santa Cruz Biotechnology®), mouse anti-β-actin (1:2000, Sigma-Aldrich). Next, 

membranes were washed with T-TBS and incubated for 1 hour at room temperature with respective 

secondary antibodies diluted in blocking solution: goat anti-rabbit HRP-linked, goat anti-mouse HRP-

linked, or rabbit anti-goat HRP-linked (each 1:5000, Santa Cruz Biotechnology®). After washing with T-

TBS, chemiluminescent detection was performed by using LumiGLO® reagent. Bands were visualized 

in Chemidoc equipment and relative intensities of protein were analized using Image Lab™ analysis 

software (both from Bio-Rad Laboratories, Hercules, CA, USA). Results from lysates and extracellular 

media were normalized to β-actin or Amidoblack protein stain, respectively. 

 

2.5. Gelatin Zymography 

Gelatin zymography was performed as usual in our lab (Silva et al., 2010). MMP-2 and MMP-9 

activity in the extracellular media of NSC-34 mono-cultures and NSC-34/N9 mixed-cultures was 

evaluated by SDS-PAGE zymography, in 0.1% gelatin-10% acrylamide gel, under non-reducing 

conditions. After, the gel was washed for 1 h with 2.5% Triton-X-100 (in 50 mM Tris pH 7.4; 5 mM CaC2; 

1 μM ZnCl2) to remove SDS and to renature the MMP species in the gel. In order to induce gelatin lysis, 
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the gel was incubated at 37ºC in the developing buffer (50 mM Tris 7.4; 5 mM CaC2; 1 μM ZnCl2), 

overnight. For enzyme activity analysis, the gel was stained with 0.5% Coomassie Brilliant Blue R-250 

and destained in 30% ethanol/10% acetic acid/H2O. Gelatin activity was analyzed by measuring the 

white band on the blue background, by using computerized image analysis (Image Lab) and normalized 

for total protein. 

 

2.6. Quantification of nitrite levels 

Nitric oxide levels were estimated in differentiation media of NSC-34 mono-cultures and NSC-

34/N9 mixed-cultures, by quantifying the concentration of nitrites (NO2) that are a result of NO 

metabolism. After a brief centrifugation, cell supernatants free from cellular debris were mixed with 

Griess reagent [1% (w/v) sulphanilamide in 5% H3PO4 and 0.1% (w/v) N-1 naphtylethylenediamine, in 

a proportion of 1:1 (v/v)] in 96-well tissue culture plates for 10 min in the dark, at room temperature. 

Absorbance at 540 nm was determined by using a microplate reader. A calibration curve of standard 

nitrites was performed for every assay. Samples and standards were analyzed in duplicate and the 

mean value was used (Vaz et al., 2014). 

 

2.7. Measurement of extracellular glutamate   

Extracellular glutamate was determined in the differentiation media from NSC-34 mono-cultures 

and NSC-34/N9 mixed-cultures, by using the L-glutamic acid kit (Roche). For the reaction, a 96-well 

microplate was used and the absorbance was measured at 490 nm, by using a microplate reader. A 

calibration curve of glutamic acid was performed for every assay. Samples and standards were analyzed 

in duplicate and the mean value was used (Falcão et al., 2005). 

 

2.8. Flow cytometry  

After 4 days of differentiation, extracellular media was collected to 2 ml tubes and cells were 

detached by using a solution of trypsin 1X for 5 min at 37ºC. Next, FBS 10% was added, in order to stop 

the action of trypsin, and cells were collected to the tubes with extracellular media and centrifuged at 

500 g for 5 min (Eppendorf, 5810R). The supernatant was discharged and the pellet resuspended in 

400 µL of 1% BSA in PBS. The samples were added to 96-well plates and incubated with Nexin 

Reagent® (Anexin V-PE/7AAD), for 20 min in the dark, at room temperature. Samples were then 

analyzed on Guava easyCyte 5HT Base System Flow Cytometer (Merck-Millipore). 5000 events per 

sample were counted. This assay allows the distinction of three cellular populations: viable cells 

(annexin V-PE-/7AAD-), early-apoptotic cells (annexin V-PE+/7AAD-) and late apoptotic/necrotic cells 

(annexin V-PE-/7AAD+) (Barateiro et al., 2012). 
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2.9. qRT-PCR 

Total RNA was extracted from 6-well tissue culture plates using Trizol Reagent (Invitrogen). RNA 

concentration was quantified using Nanodrop ND-100 Spectrophotometer (NanoDrop Technologies).  

The sequences used as primers were: HMGB1 FWR 5’-CTCAGAGAGGTGGAAGACCATGT-3’ 

and REV 5’-GGGATGTAGGTTTTCATTTCTCTTTC-3’; MFG-E8 FWR 

5’TGACTTTGGACACACAGCGT-3’ and REV 5’GTGTAGAACAACGGGAGGCT-3’; TLR-4 FWR 5’-

ACCTGGCTGGTTTACACGTC-3’ and REV 5’-GTGCCAGAGACATTGCAGAA-3’; CD11b FWR 

5’CAGATCAACAATGTGACCGTATGGG-3’ and REV 5’CATCATGTCCTTGTACTGCCGCTTG-3’; FKN 

FWR 5’-CTCACGAATCCCAGTGGCTT-3’ and REV 5’TTTCTCCTTCGGGTCAGCAC-5’; CX3CR1 

FWR 5’- TCGTCTTCACGTTCGGTCTG-3’ and REV 5’-CTCAAGGCCAGGTTCAGGAG-3’; β-actin 

FWR 5´GCTCCGGCATGTGCAA-3’ and REV 5’-AGGATCTTCATGAGGTAGT-3’. qRT-PCR was 

performed on a 7300 Real-Time PCR System (Applied Biosystems) using Luminaris HiGreen High ROX 

qPCR Master Mix (Thermo Scientific). The PCR was performed in 8-well strips, with each sample 

performed in duplicate, and a non-template control (NTC) was included for each amplificate (Barateiro 

et al., 2013). 

 

2.10. Statistical analysis  

Results of at least three different experiments were expressed as mean ± SEM for NSC-34 

cultures, either alone or in mixed culture with N9 cells. Comparisons between the different parameters 

evaluated in NSC-34/hSOD1wt and NSC-34/hSOD1G93A cells, with or without microglia, were done via 

two-tailed Student’s t-test for equal or unequal variance, as appropriate, using GraphPad Prism 5 

(GraphPad Software, San Diego, CA, USA). p<0.05 was considered statistically significant, p<0.01 very 

significant and p<0.001 highly significant. 
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III. RESULTS 

 

1. Characterization of mMN-microglia mixed cultures 

Our model of mixed cultures was obtained by adding healthy microglia (N9 cell line) to motor 

neuron-like cells (NSC-34) expressing human SOD1, either wt (wtMNs) or mutated in G93A (mMNs), 

before motor neuron degeneration, as described in Methods. Mixed cell cultures were collected after 4 

days in culture, since at this time point, differentiated mMNs have features of neuronal dysfunction, 

namely mitochondrial loss of viability and MMP-9 activation as previously observed in our lab (Vaz et 

al., 2014). 

 

1.1. Microglial cells are more vulnerable, yet more activated, in the presence of 

mMNs than wtMNs 

In order to first characterize our model of mixed cultures at 4 DIV, we performed flow cytometry 

studies to evaluate cell viability, which was shown to be compromised in the presence of mMNs, either 

alone and in mixed culture with microglia (p<0.01) (Fig III.1A). We also evaluated apoptotic and necrotic 

levels by using a specific reagent that comprises two dyes, Annexin V-PE and 7AAD, allowing the 

distinction between early apoptosis and late apoptosis/necrosis, respectively. We observed that 

apoptosis is likely to be the main cell death pathway in our model, since levels of early apoptosis were 

higher in mMNs, either alone and in mixed cultures with microglia (p<0.05), than wtMNs (Figure III.1B), 

whereas necrotic levels were lower than 10% in all cases (Figure III.1C). The decreased viability seen 

in mixed cultures of mMNs and microglia, suggests a disrupted homeostasis of these cells. 
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Figure III.1. Mixed cultures with mutated motor neurons (mMNs) and mMNs alone, evidence decreased 
viability and increased apoptosis, as compared with wild type (wt) MNs. Cells were treated as indicated in 
Methods. Results are expressed as percentage of (A) viable, (B) early apoptotic or (C) late apoptotic/necrotic cells 
from a total of 5000 events for each determination. Results are mean (± SEM) from at least three independent 
experiments performed in duplicate. *p<0.05, **p<0.01 vs. respective wtMNs. 
 

 

 

We then analyzed the ratio MN-microglia at 4 DIV. For that, we stained the cells with anti-βIII-

tubulin for MN and with anti-CD11b for microglia. By counting the number of βIII-tubulin+ and CD11b+ 

cells per total number of nuclei, we observed that there is a 30% decrease of the number of microglial 

cells in the presence of mMNs, which does not occur in the presence of wtMNs (p<0.05) (Figure III.2A-

B), suggesting that the presence of mutated hSOD1 is also affecting microglia viability.  

In order to further characterize microglial cells, we also analyzed them in terms of morphological 

activation and functional changes. For the morphological analysis we evaluated the cell-body area and 

we noticed that microglial cells have a larger cell body in the presence of mMNs, in comparison with 

microglial cells in the presence of wtMNs (p<0.05) (Figure III.2C). For the functional analysis we focused 

on CD11b expression, a widely described marker of microglial activation (Costantini et al., 2010; Eyo 

and Wu, 2013; Roy et al., 2006). As shown in Figure III.2D, we observed a 1.58-fold increase (p<0.05) 

in CD11b mRNA expression in the presence of mMN, even though the number of microglial cells is 

decreased, suggesting the presence of a more reactive microglia population. 

 

(A) 

(B) (C) 
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Figure III.2. Mutated motor neurons (mMNs) cause the reduction 
of microglia (mg) density while promote their activation, when 
compared with wild type (wt) MNs. Cells were treated as indicated 
in Methods. (A) Representative results of one experiment with 
staining of CD11b (for microglia, in red) and βIII-tubulin (for neurons, 
in green). (B) Results are expressed as the percentage of CD11b+ 
cells per total number of nuclei. (C) Results are expressed as the 
area (μm2) of CD11b+ cells. (D) Relative CD11b mRNA levels were 
determined by qRT-PCR in total RNA. Results are mean (± SEM) 
from at least three independent experiments. Scale bar represents 
40 μm. *p<0.05 vs. respective wtMNs. 

 

 

1.2. Markers of neuroinflammation are differently modulated by the presence of 

mMNs 

After having assessed an increased activation state of microglia, we considered relevant to 

evaluate some markers related with inflammation and dysfunction that were already reported in ALS 

models, as reviewed in Ferraiuolo et al. (2011b). Studies in our lab have previously reported that 

degeneration together with SOD1 accumulation starts to occur after 2 DIV and this differentiated mMN 

have higher levels of NO production than wtMNs (Vaz et al., 2014). In our model, we observed that the 

addition of microglia in the pre-symptomatic-like stage (before MN degeneration) doesn’t have an effect 

on the production of NO since the increased levels in the extracellular media observed in mMNs alone 

(p<0.05) are maintained in the presence of microglia (p<0.05) (Figure III.3A), suggesting that microglia 

is not ameliorating the dysfunctional effects seen in mMNs and, instead, those effects may be 

contributing to the compromised state of microglia. 

Glutamate excitotoxicity also constitutes a feature of a compromised homeostasis of MNs in ALS, 

as briefly reviewed before (Van Den Bosch et al., 2006). In our model, mMNs didn’t show increased 

production of glutamate when they were alone, instead there seems to exist lower levels of extracellular 

glutamate compared to wtMNs, possibly due to mitochondrial dysfunction, as suggested by 

D'Alessandro et al. (2011). When in mixed culture with microglial cells, glutamate levels remain lower 

+mg
0

20

40

60

80

100

wtMN mMN

*

%
 o

f 
m

g
 c

e
lls

+mg
0

100

200

300

400
*

C
D

1
1
b

+
c
e
ll
s
 A

re
a
 (

m

2
)

(C) 

+mg
0

1

2

3

4

*

C
D

1
1
b
 m

R
N

A
 e

x
p
re

s
s
io

n

fo
ld

 v
s
. 
w

t

(D) 

(B) 



Exploring deregulated signals involved in Motor neuron-Microglia cross-talk in ALS 

36 
 

than wtMNs in the same conditions (p<0.05) (Figure III.3.B), which again points towards an impaired 

function of microglia in recovering MN dysfunction. 
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Figure III.3. Mutated motor neurons (mMNs), when compared with wild type (wt) MNs, increasingly produce 
NO, independently of the presence of microglia (mg), and release less glutamate, an effect aggravated by 
mg. Cells were treated as indicated in Methods. (A) NO production was assessed by Griess reaction. (B) Glutamate 
release was assessed by L-Glutamic acid kit. Results are mean (± SEM) from at least five independent experiments. 
*p<0.05 vs. respective wtMNs.  

 

 

Activation of MMPs is one marker of inflammation and high levels of MMP-9 were reported in ALS 

MNs (Kaplan et al., 2014). In addition, studies in our lab have shown that, at 4 DIV, mMNs have 

increased activity of MMP-9 but no differences of MMP-2 (Vaz et al., 2014). We were able to reproduce 

such values in our model and, when we added microglia in the pre-symptomatic-like stage of mMNs, 

the activity of MMP-2 was significantly decreased (0.35-fold, p<0.05) as well as MMP-9 (0.44-fold, 

p<0.001), when compared to wtMNs in the same conditions (Figure III.4). Together, these results 

suggest that healthy microglia makes an attempt to constrain the inflammatory pattern observed in the 

presence of mMNs, at least in terms of MMPs activation pattern. 
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Figure III.4. Only MMP-9 is increasingly released by mutated motor neurons (mMNs) vs. wild type (wt) MNs 
and both MMP-2 and MMP-9 levels show to decrease by the presence of microglia (mg). Cells were treated 
as indicated in Methods. (A, B) MMP’s activity was assessed by gelatin zymography assay. Results are mean (± 
SEM) from at least five independent experiments. *p<0.05, **p<0.01, ***p<0.001 vs. respective wtMNs. 
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2. Communication between microglia and MNs is modified when 

cells express mutated hSOD1 (mMNs) 

In order to better explore the mechanisms behind MN-microglia cross-talk that might be altered 

in the presence of mMNs, we focused in molecules involved in three promising signaling pathways: the 

FKN – CX3CR1 axis, MFG-E8-mediated phagocytic pathway and HMGB1 – TLR4. 

 

2.1. Deregulation of FKN/CX3CR1 signaling is observed when MNs express 

mutated hSOD1 (mMNs)  

FKN is one kind of signal involved in the communication from MNs to microglia. Through its action 

on microglial receptor CX3R1, it is thought that FKN mediates microglial activation (Sheridan and 

Murphy, 2013). Here, we first analyzed FKN expression in mMNs alone. By evaluating FKN mRNA 

expression by qRT-PCR, we noticed an up-regulation of FKN gene in mMNs (Figure III.5A), and, by 

immunocytochemistry, we also observed a significant increase in protein expression (p<0.05) (Figure 

III.5B-C). Then, we further explored the different forms of FKN by Western Blot analysis both in cellular 

lysates and in extracellular media, and we were able to distinguish between membrane and soluble 

forms of FKN (respectively, 95 and 76 kDa bands) (Sheridan and Murphy, 2013; Suzuki et al., 2011). 

As demonstrated in Figure III.5D, we noticed that there is an increase in the membrane-form of FKN in 

cellular lysates (0.45-fold, p<0.05), and a decrease in the soluble-form in extracellular media (0.28-fold, 

p<0.01) in mMNs, which suggests that there is a decrease in the portion of FKN released by mMN that 

could be responsible for the maintenance of resting state of microglia. 

 

 
(A) (B) 

(C) 
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Figure III.5. Mutated motor neurons (mMNs), when compared with wild type (wt) MNs, increasingly express 
fractalkine (FKN) which accumulates in the membrane, instead of being released. Cells were treated as 
indicated in Methods. (A) Relative FKN mRNA levels were determined by qRT-PCR in total RNA. (B) Representative 
results of one experiment with staining of FKN (in red) and quantified in (C) Results are expressed as the intensity 
of fluorescence per cell. (D) Protein levels of FKN were quantified by Western Blot in total cell lysates (mFKN) and 
extracellular media (sFKN). Results are mean (± SEM) from at least three independent experiments. Scale bar 
represents 40 μm. *p<0.05, **p<0.01 vs. respective wtMNs. 

 

 

 

 

We also analyzed FKN receptor - CX3CR1 - in mixed cultures, since it is expressed by microglial 

cells (Clark and Malcangio, 2014). Interestingly, we observed a 2.17-fold increase (p<0.05) in CX3CR1 

mRNA expression when microglia was added in the pre-symptomatic-like stage of mMNs (Figure III.6), 

despite the decreased FKN levels found in extracellular media of mMNs. Together, these results may 

indicate that the increased expression of CX3CR1 in microglia is not directly related with the signaling 

effect promoted by FKN release by MNs, which could be a possible mechanism to microglia-MN defense 

since FKN is thought to prevent microglia from hyper-activation and promote a neuroprotective action 

(Wolf et al., 2013), which will be further discussed in next section.   
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Figure III.6. Expression of CX3CR1 in microglia (mg) increases in the presence of mutated motor neurons 
(mMNs), when compared with wild type (wt) MNs.  Cells were treated as indicated in Methods. Relative CX3CR1 
mRNA levels were determined by qRT-PCR in total RNA. Results are mean (± SEM) from three independent 
experiments. *p<0.05 vs. respective wtMNs. 

 

 

 

2.2. Neuronal MFG-E8 increases in mMNs in the presence of healthy microglia  

As mentioned in the introduction section, phagocytosis is an important process in maintaining 

cellular homeostasis and is mainly performed by microglial cells in the CNS.  

Since we and others (Ghadge et al., 1997; Guegan et al., 2001; Pasinelli et al., 2000) observed 

cell death preferentially by the apoptotic process, we aimed to determine if phagocytic ability of microglia 

could be somehow altered when exposed to mMNs, through a MFG-E8 dependent manner. For that, 

we analyzed protein levels of MFG-E8 by immunocytochemistry and Western Blot analysis, and we 

found higher levels of MFG-E8 in mMNs and that those were significantly enhanced in the presence of 

microglia (0.75-fold, p<0.05), when compared with wtMNs in the same conditions (Figure III.7A-B). We 

then analyzed MFG-E8 mRNA expression and observed an up-regulation of this gene in mixed cultures 

with mMNs, although not statistically significant (Figure III.7C). These results suggest that there may 

be an attempt of healthy microglia to phagocytize apoptotic neurons and the increased levels of MFG-

E8 by MNs may be impairing this process, as will be further discussed in the next section. 
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Figure III.7. Increased levels of lactaderin/MFG-E8 in mutated motor neurons (mMNs) as compared with wild 
type (wt) cells and mainly in the presence of healthy microglia, may compromise phagocytosis. Cells were 
treated as indicated in Methods. (A) Representative results of one experiment with staining of MFG-E8 (in red) and 
βIII-tubulin (for neurons, in green). (B) Protein levels of MFG-E8 were quantified by Western Blot in total cell lysates. 
(C) Relative MFG-E8 mRNA levels were determined by qRT-PCR in total RNA. Results are mean (± SEM) from at 
least three independent experiments. Scale bar represents 40 μm. *p<0.05, **p<0.01 vs. respective wtMNs. 
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2.3. Intracellular HMGB1 levels are higher in mMNs than in wtMNs, mainly in the 

presence of microglia 

HMGB1 is an alarmin, considered one main player in the inflammatory process as a damage-

associated molecular pattern (Erlandsson Harris and Andersson, 2004). In this sense, we intended to 

see if activation of microglia could be triggered via HMGB1 signaling. For this purpose, we analyzed the 

expression of HMGB1 in MNs either alone or in the presence of microglia. By qRT-PCR we observed a 

marked increase of the mRNA expression in mMNs alone (0.30-fold, p<0.05), which was also increased 

in the presence of microglia (0.84-fold, p<0.05) (Figure III.8A). Accordingly, by Western Blot analysis, 

we observed an increase in the intracellular levels of this protein, both in mMN cultures alone (0.40-fold, 

p<0.05) and in mixed cultures with microglia (1.02-fold, p<0.01), represented by a 26 kDa band (Figure 

III.8B). Regarding mixed cultures, we further explored which cells have higher protein levels by 

immunocytochemistry and we noticed that intracellular HMGB1 seems to be increased in mMNs (Figure 

III.8C). Together, these results suggest that activated microglia may be releasing HMGB1 and the 

increased levels of HMGB1 in mMNs may be inducing that activation, seen through CD11b increased 

expression. 
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Figure III.8. Intracellular HMGB1 is increased in motor neurons expressing mutated hSOD1 (mMNs), either 
alone or in mixed culture with microglia. Cells were treated as indicated in Methods. (A) Relative HMGB1 mRNA 
levels were determined by qRT-PCR in total RNA. (B) Protein levels of HMGB1 were quantified by Western Blot in 
total cell lysates. (C) Representative results of one experiment with staining of CD11b (for microglia, in red) and 
HMGB1 (in green). Results are mean (± SEM) from at least four independent experiments. Scale bar represents 
40 μm. *p<0.05, **p<0.01 vs. respective wtMNs. 

 

 

2.4. TLR4 expression is up-regulated in mMNs, mainly in the presence of 

healthy microglia 

Microglia express multiple receptors able to efficiently respond to external stimuli (Pocock and 

Kettenmann, 2007). One of them is TLR4, which, among other roles, triggers a pro-inflammatory 

cascade when activated (Lu et al., 2008). Since HMGB1 is one well-known ligand of TLR4 (Lee et al., 

2014b), in order to uncover by which pathways microglia were being activated, we evaluated TLR-4 

expression at both gene and protein level. By qRT-PCR we observed that TLR4 mRNA expression is 

augmented in mMNs, either alone or in mixed cultures, although not statistically significant (Figure 

III.9A). By Western Blot analysis, we were able to take information about the two forms of the protein: 

the protein itself, represented by a 95kDa band; and the glycosylated form of TLR4, which is the one 

present in the membrane, represented by a 120kDa band (Figure III.9B) (Ismail et al., 2013) and with 

ability to recognize the inflammatory stimuli and activate the signaling pathway (da Silva Correia and 

Ulevitch, 2002). Interestingly, we observed that the glycosylated form is mainly increased in mixed 

cultures with mMNs, as well as TLR4 (1.16-fold, p<0.05) (Figure III.9B). Taken together, these results 

suggest that there is more susceptibility to an inflammatory microenvironment in the presence of mMNs 

even in the presence of healthy microglia. 
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Figure III.9. TLR4 levels increased in mutated motor neurons (mMNs), as compared with wild type (wt) cells 
and mainly in the presence of healthy microglia (mg), may derive from the up-regulation of HMGB1. Cells 
were treated as indicated in Methods. (A) Relative TLR4 mRNA levels were determined by qRT-PCR in total RNA. 
(B) Protein levels of glycosylated (Gly) TLR4 and TLR4 were quantified by Western Blot in total cell lysates. Results 
are mean (± SEM) from at least three independent experiments. *p<0.05 vs. respective wtMNs. 
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IV. DISCUSSION 
 

ALS is a neurodegenerative disease that affects thousands of people worldwide (Chio et al., 

2013). Over more than a century after it was first described, there’s still no effective treatment due to its 

established complexity.  Given the variety of microglial responses when facing CNS disrupted 

homeostasis, and their critical role in the pathoprogression of motor neuron degeneration in ALS, one 

of the most recent proposals to therapy concerning neurodegenerative disorders is replacement of 

microglial cells (Cartier et al., 2014). In addition, modulation of microglia phenotypes from M1 (pro-

inflammatory, neurotoxic) into M2 (alternatively-activated, neuroprotective) have shown to protect motor 

neurons in ALS mice, whereas microglia isolated from end-stage disease ALS mice have adopted an 

M1 phenotype and were shown to be neurotoxic, facts that support the dual phenotypes of microglia and 

their transformation during disease pathoprogression in these mice (Liao et al., 2012). However, what 

is lacking so far is the complete understanding of the interactions of these cells with the injured ones. 

Therefore, our study aimed to better explore the therapeutic potential of healthy microglia when exposed 

to MNs harboring a well-established causative mutation of ALS, a glycine-to-alanine substitution in 

position 93 (SOD1G93A or mSOD1). For this purpose, our study line consisted in mixing NSC-34 cells, a 

MN-like cell line, stably transfected with the human SOD1G93A (mMNs), and N9 cells, a microglia-like 

cell line, and evaluate their interaction until the time-point when these mMNs previously showed higher 

levels of dysfunction (4 DIV) (Vaz et al., 2014).  

We started by analyzing the viability of the cells at that time-point by performing flow cytometry 

studies and observed that cells of mixed cultures with mMNs have lower viability and are more prone to 

apoptotic cell death. It is, in fact, well-known that apoptosis is one of the elected cell death pathways for 

motor neurons in ALS, as reviewed in Ferraiuolo et al. (2011b), although other pathways may be 

affected, as necroptosis or autophagy (Bandyopadhyay et al., 2014; Barmada et al., 2014; Lee et al., 

2014a; Re et al., 2014). We also evaluated whether mMNs could as well induce apoptosis of the cells 

they were interacting with. In order to better understand which cells were, in fact, more committed, we 

analyzed the ratio of MN-microglia at 4 DIV and observed a significant reduction of microglial cells in 

the presence of mMNs. This fact give us an indication that, besides mMNs being predisposed to 

apoptosis, when in contact with healthy microglia they may trigger apoptotic cell death in these cells as 

well. Indeed, activated microglia was shown to undergo apoptosis following CNS injury (Gehrmann and 

Banati, 1995) and over-activation with LPS (Liu et al., 2001) and it is suggested 
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that neurons may influence the survival of microglial cells through released factors, as reviewed in Luo 

and Chen (2012). In fact, previous studies in our lab have shown that N9-microglia incubated with 

conditioned media from mMNs at 4 DIV have higher levels of cell death by apoptosis (Cunha, 2012), 

suggesting that mMNs release factors that will cause microglial over-activation which culminates in 

apoptotic cell death.  

Microglial activation is characterized by morphological and functional changes, as turning into 

amoeboid-like shape and increased expression of CD11b. Therefore, in order to characterize the 

phenotypic-like state of microglial cells in our mixed cultures, we evaluated the cell-body area and 

observed that in mixed cultures with mMNs, microglial cells present a larger cell-body in accordance 

with an appearance of an amoeboid-like shape, characteristic of morphological activation (Xiang et al., 

2006). In addition, we explored the mRNA expression of the proposed cell activation marker, CD11b, 

by qRT-PCR, and we observed an increase in its expression. CD11b is an integrin that acts as a bridge 

between cytoskeleton and cell-membrane being probably involved in cell rearrangement during 

morphological activation changes (Roy et al., 2008). These results highlight an activated state of 

microglia in the presence of mMNs.  

We next explored the microenvironment in the mixed cultures. To evaluate the existence of 

oxidative stress, we analyzed the production of NO and our results showed no alterations with the 

addition of microglia. This finding suggests that mMNs dysfunction associated with NO production is not 

being recovered or any ameliorated by the presence of healthy microglia. In fact, if microglia is over-

activated they may lose their ability to actively fight and recover microenvironment’s toxicity, further 

contributing to it (Yu et al., 2012). Also, it is known that NO contributes to microglial activation (Roy et 

al., 2006). Besides nitrosative stress, also glutamate excitotoxicity has been related to MN injury in ALS, 

as briefly reviewed in section I.1.3.2 (Roy et al., 1998). One possibility is that this phenomenon occurs 

not as a consequence of excessive production by injured MNs, but as a consequence of an impaired 

uptake by glial cells due to deficiency in glutamate transporters (Dunlop et al., 2003). Indeed, our results 

with mMNs alone showed decreased levels of glutamate in the extracellular media. This feature may be 

caused by dysfunctional metabolism consequent of motor neuron injury (D'Alessandro et al., 2011). In 

this case, we also observed that glutamate levels do not change in the presence of healthy microglia in 

mixed cultures with mMNs, remaining decreased, again suggesting that microglia is not being able to 

ameliorate the dysfunctional features of mMNs. Curiously, the activity of the pro-inflammatory 

associated markers, MMP-2 and MMP-9, was remarkably reduced in the presence of microglia. We 

have previously reported that mMNs presented an increased activity of MMP-9 (Vaz et al., 2014). In 

addition, an increase of MMP-9 intracellular levels was also reported in mMNs and pointed as a 

causative factor of the selective vulnerability of motor neurons in ALS (Kaplan et al., 2014). The fact that 

the presence of microglia is enough to decrease those levels may suggest that there is an attempt to 

minimize microenvironment’s toxicity, caused by mMNs degeneration. Still, one could think that if that 

attempt was well-succeed, those levels would achieve the same levels observed in mixed cultures with 

our control, wtMNs. Yet, both MMP-2 and MMP-9 activities are significantly decreased in the mixed 

cultures with mMNs when in comparison with wtMNs in the same conditions, which again points towards 

a disrupted interaction between mMNs and microglia, having the last one its functions impaired. 
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Accordingly, the decreased activity of MMP-9 was observed in aged cultured microglia from brain mice 

(Caldeira et al., 2014). Decrease of MMP-9 activity may be also a consequence of an imbalance 

between tissue inhibitors of metalloproteinases (TIMPs) and MMPs, in which the first ones are known 

to have an increased expression under inflammatory insults, as reviewed in Moore and Crocker (2012). 

Together, these results suggest a microglia with an attempt to fight microenvironment’s pro-

inflammatory conditions, yet with a compromised and impaired function.   

 Given the altered interaction between mMNs and microglia, we intended to further explore which 

signaling pathways were compromised by the presence of mMNs. It is well-known the ability of motor 

neurons to modulate microglial activity (Eyo and Wu, 2013). One way is through the FKN-CX3CR1 axis. 

This unique chemokine presented in section I.2 , is one signal of MNs to keep microglia in a quiescent-

like state, preventing them from over-activation and its pro-inflammatory phenotype (Hao et al., 2013). 

Chapman et al. (2000) showed that cleavage of sFKN in primary cortical neurons is mediated by MMPs. 

In our model, we observed an increased expression of the FKN gene in mMNs alone, along with 

increased protein expression. However, when we were able to further dissect the two forms of the 

protein, the membrane-bound and the soluble form, we noticed that this increased expression of FKN 

is only due to the membrane-bound form but not to the soluble form, found decreased in the extracellular 

media from mMNs. This result suggests an impaired cleavage of the chemokine domain of FKN and 

that it is independent from the activity of the MMP-9, once we already saw that its activity levels are 

increased. We then intended to evaluate the expression of the FKN receptor, CX3CR1, in mixed cultures 

with microglia and we surprisingly observed a marked increase in microglia with mMNs. This 

phenomenon can be explained due to the fact that FKN presents itself in two forms, as mentioned, and 

both have active functions: the soluble one is thought to mediate migration of the immune cells to the 

injured area, through chemotaxis, while the membrane-bound form is thought to mediate cell-to-cell 

adhesion and interaction (Sheridan and Murphy, 2013). Our results propose that in our model, FKN-

CX3CR1 mediated interaction is through the membrane-bound form. Curiously, Morganti et al. (2012), 

by using a mouse model of Parkinson’s disease, reported that the soluble form is the only capable of 

triggering a neuroprotective environment through its action on microglia receptor, CX3CR1, and they 

suggested that it is because it can be internalized by CX3CR1, while the membrane form doesn’t have 

any action on protecting from neurotoxicity since it is able to ligate the receptor but cannot be 

internalized. Taken together, these results suggest that one deregulated signaling pathway involved in 

this model of ALS is the FKN-CX3CR1 axis, which may provide a new tool to novel immunotherapy 

strategies. 

As the resident macrophages of the CNS, an important process in order to microglia properly 

execute its protective functions and maintain CNS homeostasis, is phagocytosis. Cellular debris, protein 

aggregates as well as damaged cells, promote a toxic environment and can trigger several pathologies. 

MFG-E8, as detailed in section I.2.2.2, is a glycoprotein that has been highlighted for its ability to 

recognize PS present in the membrane of apoptotic cells, and act as a bridge between PS and the 

macrophage, leading to further phagocytosis of the apoptotic body (Aziz et al., 2011). With this in mind, 

since the most common cell death pathway in our model seemed to be apoptosis, we determined the 

phagocytic ability of microglia through MFG-E8 pathway when in the presence of mMNs. Here, when 
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we quantified the protein levels we found an increased expression in mixed cultures with mMNs but also 

in mMNs alone. For that reason, we performed immunocytochemistry studies, and we found that the 

increased expression was mainly observed in mMNs and not in microglia. Bowen et al. (2007) proposed 

that neurons may have phagocytic capacity, through demonstration of microspheres uptake into living 

neurons and the presence of integrin receptors known to be involved in macrophage phagocytosis, as 

CD29. They also observed that rat spinal cord neurons had processes to take up apoptotic cell debris. 

Considering the fact that is the number of microglial cells that is decreased and not the number of mMNs, 

we may assume that microglial phagocytic activity is compromised in our model of mixed cultures with 

mMNs. Therefore, we suggest that the overexpression of MFG-E8 molecules by mMNs may be blocking 

PS exposed by apoptotic MNs, thereby impairing microglia phagocytic ability through MFG-E8 pathway. 

Because HMGB1 is one main player in the inflammatory process (Lee et al., 2014b), we prompted 

to investigate if it was involved in the activation of microglia by mMNs. As previously detailed, HMGB1 

may be released from injured cells or actively secreted by activated immune cells, triggering a pro-

inflammatory cascade via binding to TLR4 (Zou and Crews, 2014). Here, we observed an increased 

expression of HMGB1, both the gene and the protein, in mMNs either alone and in mixed cultures, 

wherein, we could observe by immunocytochemistry more staining in mMNs than in microglia. In 

accordance, Bell et al. (2006) reported that HMGB1 is released from apoptotic cells in a time-dependent 

manner. Then, our results suggest that the increased intracellular HMGB1 may be further released by 

injured mMNs contributing to microglial activation, and that it is being actively released by activated 

microglia.  

Microglia have a broad spectrum of receptors that induce their response to the signals released 

from motor neurons. TLR4 is one of them and is activated by HMGB1 (Lee et al., 2014b). The activation 

of TLR4 is generally known to initiate a pro-inflammatory cascade leading to activation of NF-kB, further 

culminating in the transcription and release of pro-inflammatory cytokines (Lu et al., 2008). The 

expression of TLRs is reported to be up-regulated in the spinal cord of sALS cases (Casula et al., 2011). 

Curiously, we observed that mMNs express increased levels of TLR4. This finding suggests that 

neuronal TLR4 may induce the expression of mediators capable of trigger microglial activation. In fact, 

neurons were reported to express TLR4 (He et al., 2013; Okun et al., 2011; Tang et al., 2007; Wang et 

al., 2013) and their activation was shown to induce neuronal chemokines, as CXCL1, and cytokines as 

TNF-α and IL-6 (Leow-Dyke et al., 2012). In addition, the increased expression of TLR4 in mixed cultures 

with mMNs suggests that the soluble factor(s) released from mMNs leading to activation of microglial 

cells, are acting through TLR4 signaling pathway, shedding light to the increased HMGB1 that we 

previously stated. Also, a new mechanism of SOD1 toxicity was suggested in which mSOD1 may be 

secreted from MNs through chaperon-like proteins – chromogranins – (Urushitani et al., 2006)  and act 

as a “danger signal” promoting the activation of microglial cells through TLRs pathway (Zhao et al., 

2010). Hence, mSOD1 may be also one of those soluble factors. Moreover, TLR4 signaling was also 

shown to trigger apoptosis of activated microglia (Jung et al., 2005). As reviewed in section I.1.4.3, in 

ALS it is thought that before microglia becomes overactivated and consequently dystrophic, with no 

ability to efficiently respond to external stimuli, they become in a pro-inflammatory phenotype (M1), with 

increased release of pro-inflammatory cytokines. Therefore, the increased expression of TLR4 may be 
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one of those disrupted signaling pathways, preceding and further contributing to the overactivation of 

healthy microglia.  

Taken together, the results obtained in this thesis suggest that mMNs are impairing microglia’s 

function, impeding them to maintain cellular homeostasis and further leading to an overactivated 

microglia. This is suggested to be occurring through FKN-CX3CR1 axis, blocked MFG-E8-mediated 

phagocytic pathway and TLR4 hyperactivation, as schematically represented in Figure IV.1. The soluble 

factors released by mMNs still remain to unravel, being mSOD1 and HMGB1 strong candidates. 

Therefore, immunomodulatory approaches directed to the signaling pathways here addressed may 

constitute a promising therapeutic approach, reinforcing the use of therapeutic strategies that can 

restore both the healthy state of MNs and microglial cells in ALS.  
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Figure IV.1. Schematic representation of the major findings of this thesis. In the presence of mutated motor 
neurons (mMNs), microglia become activated, exhibiting both morphological and functional alterations, evidenced 
by the increase in cell-body area and the increased CD11b expression. The number of microglial cells is decreased, 
highlighting a compromised viability of these cells and suggesting their overactivation. Apoptosis seems to be the 
elected cell death pathway, evaluated by the exposure of phosphatidylserine (PS). Dysfunction of mMNs regarding 
NO and glutamate production are not recovered by healthy microglia, although the activity of matrix 
metalloproteinases, namely metalloproteinase-9 (MMP-9), is strongly decreased. mMNs reveal an impairment in 
the cleavage of soluble fractalkine (FKN) and its receptor, CX3CR1, is increased in mixed cultures, suggesting the 
action of FKN through adhesion of the membrane-bound form. Milk-fat globule EGF factor-8 (MFG-E8) expression 
is also increased in mixed cultures and in mMNs, which may be impairing MFG-E8-mediated microglial 
phagocytosis. Toll-like receptor 4 (TLR4) is increased in the presence of mMNs. Whether this activation is caused 
by mutated SOD1 (mSOD1) release from mMNs or by high mobility group box 1 (HMGB1), which is also increased 
in mMNs, is still to investigate. Overall, mMNs are suggested to be causing overactivation of microglia, impairing 
their neuroprotective functions.  
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Future Perspectives 

In the present study we discussed the importance of the cross talk between motor neurons and 

microglia in ALS, an issue that still needs to be overcome for clinical translation in cellular therapy that 

aims to either modulate CNS immune cells and to prevent the fast and progressive motor neuron loss 

in ALS patients. In this context, it will be interesting to evaluate the parameters observed to be 

deregulated in this culture model, namely the FKN-CX3CR1 axis, MFG-E8-mediated phagocytosis and 

HMGB1-TLR4 signaling, both in prior and posterior time-points, in this model as well as in transgenic 

mice.  

It will be also important to accurate the expression of FKN in the mixed cultures, as well as the 

proliferation rate of microglia, and to address some other specific parameters such as mSOD1 and 

HMGB1 in the extracellular media, given their potential to be soluble factors triggering microglia 

overactivation and neuroprotective impairment here observed. 

This study contributes to a better understanding on how the detrimental effects of mMNs are 

overriding the beneficial effects of healthy microglia. For this, it would be also interesting to assess the 

parameters here evaluated in a transgenic microglia, transfected with hSOD1G93A, to further elucidate 

the mechanisms of action altered in mutant microglia and their modulation by intrinsic mSOD1.  

Accordingly, immunomodulatory interventions may be a promising therapy in ALS, as therapeutic 

administration of TLR4 antagonists or CX3CR1 agonists, in order to take advantage of the 

neuroprotective potential of microglia.  
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