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Resumo 

A diabetes tipo 2 é uma doença que afeta milhões de indivíduos contribuindo significativamente 

para a morbilidade e mortalidade no mundo. Nas últimas décadas tem sido descrito um efeito benéfico do 

consumo crónico de café na diabetes e na síndrome metabólica. O nosso grupo demonstrou que o 

consumo crónico de cafeína (1g/l) em ratos previne a insulino-resistência induzida por dietas 

hipercalóricas. Assim, o objetivo deste trabalho foi investigar qual a dose terapêutica de cafeína que 

restaura a sensibilidade à insulina num modelo de pré-diabetes. As experiências foram levadas a cabo 

em ratos Wistar. O modelo patológico utilizado foi o rato HSu, que se obtém através do consumo de 

sacarose na água (35%) durante 28 dias. Foi testado o efeito de várias doses de cafeína (0.5, 0.75 e 1g/l) 

em animais controlo e HSu durante 12 semanas na: sensibilidade à insulina, glicémia basal, tolerância à 

glucose, massa adiposa, expressão de transportadores Glut4 no músculo-esquelético e na concentração 

de nitric oxide (NO) no músculo-esquelético e no fígado. Demonstrou-se que a administração crónica de 

cafeína restaura a sensibilidade à insulina e a tolerância à glucose no modelo HSu, sendo o período de 

reversão inversamente proporcional à concentração de cafeína Observou-se que os animais HSu não 

aumentam de peso em relação aos controlos, embora possuam um aumento de massa gorda. A ingestão 

de cafeína não alterou o aumento de peso/dia e massa gorda quer nos animais controlo quer nos HSu. A 

ingestão de cafeina (1g/l) reverteu os níveis de expressão de Glut4 no músculo nos animais HSu. Os 

níveis de NO diminuíram no músculo-esquelético, e não no fígado, com a deita HSu e a cafeína foi 

incapaz de os alterar. Em conclusão, a cafeína pode ser utilizada como uma ferramenta terapêutica para 

o tratamento da prédiabetes e para a prevenção das doenças metabólicas. 

Palavras-Chave: Cafeína, prediabetes, resistência à insulina, tolerância à glucose, Glut4 
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Abstract 

Type 2 diabetes mellitus (T2DM) is a chronic disease affecting millions of individuals, contributing 

to significant morbidity and mortality worldwide. Caffeine is the most widely consumed psychoactive 

substance in the world and recently several epidemiological studies described beneficial effects of chronic 

coffee intake on T2DM and metabolic syndrome. Our group has shown that chronic caffeine intake (1g/l) 

prevents the development of insulin resistance and hypertension in diet-induced insulin resistante rats. 

Therefore, the main objective of this work was to investigate the therapeutic dose of caffeine that restores 

insulin sensitivity in a prediabetic animal model. Experiments were performed in Wistar rats. The 

prediabetic animal model used was the high sucrose (HSu) model, which is obtained by submitting the 

animals to 35% of sucrose in drinking water during 28 days. The effect of chronic caffeine (0.5, 0.75 and 

1g/l) was tested in control rats and in HSu model during 12 weeks assessing: insulin sensitivity, basal 

glycemia, glucose tolerance, adipose tissue mass, Glut4 transporters and nitric oxide (NO) content in 

skeletal muscle and in the liver. We have seen that chronic caffeine intake restores insulin sensitivity and 

glucose tolerance in HSu rats, being the latency time inversely correlated with caffeine concentration. 

Also, HSu diet did not change weight gain comparing with controls but increased fat mass. Caffeine intake 

did not alter weight gain/day and fat mass. Caffeine (1g/l) restores Glut4 expression levels in skeletal 

muscle in HSu animals. NO levels decrease in skeletal muscle in HSu animals, but not in the liver, and 

caffeine did not modify these levels. These results suggest that caffeine can be used as a therapeutical 

tool for the treatment of prediabetes and prevention of T2DM. 

Keywords: Caffeine, prediabetes, insulin resistance, glucose tolerance, Glut4 
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1. Introduction 

 

1.1 Type 2 Diabetes mellitus 

Metabolic diseases, like type 2 diabetes mellitus (T2DM) and metabolic syndrome affects millions 

of individuals globally, contributing to significant morbidity and mortality worldwide. Diabetes affects over 

8.3% of the world population and it is expected that in 2035 affects over than 592 millions of people 

worldwide (IDF, 2013). This escalate represents an alarming health problem with severe economic and 

social repercussions being imperative to better define the biological mechanisms causing metabolic 

diseases and to identify prevention strategies and treatment interventions that would help stem this 

epidemic.  

From all types of diabetes the one that have been increasing worldwide is T2DM due to economic 

development, obesity, changes in diets and increased sedentary lifestyles. The criteria for the T2DM 

defined by the American Diabetes Association in 2014 is A1C ≥6.5% or fasting plasma glucose (FPG) 

≥126 mg/dl or 2-h plasma glucose ≥200 mg/dl during an oral glucose tolerance test (OGTT) or in a patient 

with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200mg/dl 

(ADA, 2014).Insulin resistance and pancreatic β-cell dysfunction are the main abnormalities that play a 

central role in T2DM pathogenesis (figure 1.1). Insulin resistance can be defined as a state of reduced 

responsiveness by insulin target organs (the liver, the muscle and adipose tissue) to normal circulating 

levels of insulin. In fact, the imbalance between insulin secretion and action lead to hyperglycemia (Kahn, 

2003; Wein and Florez, 2009).  

 

Figure 1.1 – Mechanism involved in 
Type 2 Diabetes Mellitus (T2DM) 
Pathogenesis. Insulin resistance 

and β-cell dysfunction are the main 

abnormalities responsible for 
hyperglycemia and subsequent 
T2DM development. Genetic 
factors, sedentary lifestyles and 
obesity are the main risk factors 
for the appearance of insulin 
resistance. When established, 
insulin resistance will lead to 

glucose intolerance. β-cell 

dysfunction lead to an impairment 
on insulin release (insulinopenia). 

Together (insulin resistance and β-

cell failure) originate to 
hyperglycemia. 
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The response of the β-cell to a chronic hypercaloric ingestion and insulin resistance is a 

compensatory insulin secretion to maintain normoglycemia. Individuals that develop T2DM show an 

increase in insulin levels in the normoglycemic and prediabetes phases that maintain normal glycemia 

despite the insulin resistance due to β-cell compensation (DeFronzo, 2004) (figure 1.2). β-cell 

compensation involves the expansion of cell mass, enhanced insulin biosynthesis and increased nutrient-

secretion coupling (Prentki and Nolan, 2006). Over time, β-cell compensation for insulin resistance starts 

to fail, resulting in a decline of β-cell function associated with a loss of β-cell mass, that progressively 

leads to late phase of T2DM (Leahy et al., 2005; Butler et al., 2003). 

Several mechanisms have been proposed to be involved in the early dysfunction of β-cell 

including mitochondrial dysfunction, oxidative stress, endoplasmatic reticulum stress, dysfunctional 

triglyceride/free fatty acid (FFA) cycling and glucolipotoxicity (Ríos and Fuentes, 2009; Poitout and 

Robertson, 2002) (figure 1.1). Once hyperglycemia has been developed, other mechanisms as islet 

inflammation and O-linked glycosilation accelerate the damage, resulting in severe β-cell alterations and 

loss of β-cell mass by apoptosis (Ríos and Fuentes, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Schematic representation of natural history of type 2 diabetes mellitus (T2DM). Relationship 
between glucose concentration (mg/dl) and the relative function (%) of insulin resistance and insulin level 
throughout the development of T2DM. In the beginning is observed an increase in insulin resistance which is 
compensated with an augment in insulin levels (increase in β-cell function), that maintain normal glucose 
levels. When the β-cell starts to fail, the insulin levels decreased and glucose (both fasting and postmeal) 
begins to rise leading to T2DM. 
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There are two main risk factors for T2DM development, one is based on genetic characteristics 

(age, gender, race, T2DM family history, genetic predisposition) and other based on lifestyle (obesity, 

physical inactivity, metabolic syndrome, pre-diabetes, diet) (Leu and Zonszein, 2010; Zimmet and Shaw, 

2009) (figure 1.1). 

The first therapeutic approach for T2DM is based on alterations in lifestyle, as encourage weight 

loss and physical activity with the objective of reducing glycemia and insulin resistance in order to delay 

drug therapeutic intervention (Ajala et al., 2013; Morsink et al., 2013; Zanuso et al., 2010). 

 

1.1.1. Insulin signalling pathways  

Insulin is a polypeptide hormone secreted by β-cells of pancreatic islets of Langerhans, which 

maintains normal glucose blood levels by promoting glucose uptake by cells. Insulin secretion is induced 

mainly by glucose in healthy individuals, and the pancreatic response to glucose is biphasic: the first 

phase representing the release of insulin already synthesised and stored, and the second one 

representing both stored and newly synthesised insulin (Wilcox, 2005). 

Insulin mediates its action through the binding to insulin receptor. Insulin receptor is a glycoprotein 

constituted by an extracellular α-subunit and an extracellular, transmembranar and intracellular β-subunit 

that express tyrosine kinase activity. When insulin binds to the insulin binding domain, in α-subunit, 

promotes the dimerization of the receptor to form the α2β2 complex and induces the autophosphorylation 

of β-subunit activating the insulin receptor tyrosine kinase (Gou, 2014). 

When activated, insulin receptor tyrosine kinase phosphorylates specific intracellular proteins 

including insulin receptor substrates (IRS) 1 and 2, in muscle and liver, respectively. IRS proteins, when 

phosphorylated, function as recognition sites for proteins containing src-homology 2 (SH2) domains like 

85-kDa regulatory subunit of phosphatidylinositol (PI3K) activating the PI3K→Protein Kinase B (PKB/Akt) 

signalling cascade (see for a review see Gou, 2014). PI3K, through activation of Akt promotes glucose 

transport, glucose metabolism, glycogen, lipid and protein synthesis (figure 1.3) (Saltiel and Kahn, 2011; 

Wilcox, 2005). IRS phosphorylation also actives RAS→Mitogenic-Activated-Protein Kinase (MAPK) 

cascade which mediates the effect of insulin on mitogenesis and cell growth (figure 1.3) (Gou, 2014). 

Insulin signalling pathways activation, namely PI3K→Akt pathway also promotes glucose 

transport thought a mechanism that involves translocation of glucose transporters to the plasma 

membrane (figure 1.3). 
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Figure 1.3 – Schematic representation of Insulin signalling pathways. Binding of insulin to its receptor leads 
to the phosphorylation of insulin receptor substract (IRS) originating the activation of several cascades like, 
phosphatidylinositol (PI3K), Protein Kinase B (Akt) Ras and Mitogenic-Activated-Protein Kinase (MAPK). 
Insulin action in cells is involved in general gene expression, cell growth differentiation, glucose metabolism, 
glycogen/lipid/protein synthesis, specific gene expression and glucose transport. (Saltiel and Khan, 2001). 

 

1.1.2 Glucose homeostasis 

Glucose is the obligatory energy substrate of the brain and because it cannot produce or storage 

glycogen it depends entirely of glucose in plasma (Owen et al., 1967). During basal or fasting state (12-16 

h overnight fast) the majority of glucose is produced by the liver (gluconeogenesis and glycogenolysis) 

and only 15% is produced by gluconeogenesis in kidney. The brain is the major glucose consumer, using 

50% of plasma glucose, followed by the liver and gastrointestinal tissues that use 25% and finally by 

insulin-dependent tissues like muscle (15-20%) and adipose tissue (2-4%) (DeFronzo, 2004; Gerich, 

1993). Hypoglycaemia stimulates the release of glucagon and catecholamines which promotes 

glycogenolysis and prevents both insulin secretion and action, respectively (figure 1.4) (Muhammad and 

Gerich, 2010). After a meal the glucose plasma levels increased, triggering insulin release which stimulate 

glucose uptake by splandichnic (liver and gut) and peripheral (skeletal muscle and adipose tissue) tissues, 

(figure 1.4) and inhibit endogenous glucose production (DeFronzo and Ferrannini, 1987; DeFronzo, 2004; 

Marin et al., 1987). 
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Figure 1.4 – Schematic representation of glucose homeostasis. Mechanisms that promote blood glucose 
increase/decrease. When blood glucose levels are elevated the pancreatic β-cells starts to produce and 
release insulin. The hyperinsulemia induce glucose uptake by peripheral tissues (skeletal muscle, adipose 
tissue and liver). On the other hand, hypoglycemia inhibits insulin release and promotes pancreatic glucagon 
release. Glucagon, which is the major counterpart of insulin, stimulates glucose production by the liver. 
(Adapted from Wardlaw and Hampl (2007). 

 

Also glucagon secretion, which is the major counterpart of insulin in the regulation of plasma 

glucose, is inhibited by hyperinsulinemia leading to the suppression of hepatic glucose production 

(DeFronzo, 2004; Muhammad and Gerich, 2010). Skeletal muscle is the major site of glucose uptake in 

prostprandial state (DeFronzo and Tripathy, 2009) and glucose when captured by muscle can be store as 

glycogen or go to glycolysis where it can be totaly oxidated or release at glycolysis intermediates (lactate, 

alanine, pyruvate) (Kelley et al., 1988). 

Despite the major site of glucose uptake is the skeletal muscle, insulin plays an important role in 

adipose tissue by inhibiting lipolysis (Groop et al., 1989). The inhibition of lipolysis prevents FFA release 

promoting glucose uptake by the skeletal muscle and inhibiting hepatic and renal gluconeogenesis. 

Hyperglycaemia also blocks glucagon release that will inhibit hepatic glycogenolysis (DeFronzo, 2004). 

In mammals, most cells take up glucose from interstitial fluid by a passive, facilitative transport 

process, driven by the downward glucose concentration gradient across the plasma membrane Only in 

the epithelial cell brush border of the small intestine and the kidney proximal convoluted tubules glucose is 

absorbed or reabsorbed against its electrochemical gradient by a secondary active transport mechanism 

which uses the sodium concentration gradient established by Na+/K+/ATP pumps. (Bell et al.,1990). The 

passive, facilitative transport process is mediated by the family of facilitative glucose transporters (Glut) 
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(Bell et al., 1990). Each glucose transporter isoform plays a specific role in glucose metabolism 

determined by its pattern of tissue expression, substrate specificity, transport kinetics, and regulated 

expression in different physiological conditions. There are 14 Glut proteins expressed in human (Thorens 

and Mueckler, 2010), but in the major peripheral insulin target tissues, skeletal muscle and adipose tissue, 

Glut 4 is the predominant transporter (DeFronzo, 2004). In these tissues, after exposure to insulin, Glut 4 

concentrations on plasma membrane increased as the concentrations on intracellular pool decreased 

(DeFronzo, 2004). In liver and brain the predominant glucose transporters are Glut 2 and Glut 1, 

respectively. 

 

1.1.3 Alterations in insulin action and glucose homeostasis in type 2 

diabetes mellitus 

T2DM is characterized by alterations in glucose homeostasis namely insulin resistance in liver, 

muscle and adipose tissue and impaired insulin secretion (DeFronzo, 2004). 

In the fasting state, T2DM subjects shows an increased hepatic glucose production (HGP) due to 

enhanced gluconeogenesis (Magnusson et al., 1992), which is higher with the severity of fasting 

hyperglycaemia (Jeng et al., 1994). Also, these subjects exhibit increased insulin plasma levels when 

compared with normal subjects, and liver insulin resistance, as hyperglycemia and hyperinsulinemia are 

inhibitors of HGP (Campbell et al., 1988; DeFronzo, 2004; Magnusson et al., 1992). In fact many 

mechanisms have been shown to increased hepatic gluconeogenesis, like: hyperglucagonemia, 

enhanced sensitivity to glucagon, increased FFA oxidation and insulin resistance (DeFronzo, 2004). 

Peripheral tissues, like adipose tissue and the liver and in particular skeletal muscle, are the most 

important sites of insulin resistance in T2DM (DeFronzo and Tripathy, 2009). Insulin resistance in skeletal 

muscle is characterized by a decreased glucose uptake as insulin induced-glucose uptake is blunted 

during an insulin clamp, and after 180min of hyperinsulinemia glucose disposal is reduced in 45% 

(DeFronzo et al., 1985). In addition, it was shown in T2DM subjects that glycogen synthesis is impaired 

(Cline et al., 1999; Shulman et al., 1990) being this defect due to an diminished glucose transport into 

skeletal muscle cells (Cline et al., 1999). In fact, it was previously described in subjects with insulin 

resistance and/or T2DM and in several animal species that the translocation of Glut4 glucose transporters 

to plasma membrane is reduced in skeletal muscle being this the possible cause of insulin resistance in 

this tissue (Garvey et al., 1998). Also, since translocation of Glut4 transporters to plasma membrane is the 

end-step initiated by the binding of insulin to its receptor, is expected that insulin receptor expression to be 

decreased in this disease condition. In fact, several authors have described a decreased insulin action at 

receptor level, both in the expression of its receptor as well as its phosphorylation (DeFronzo, 2004;Saltiel 

and Khan, 2001). Also, defects in insulin signalling pathways have been observed, namely in PI3K 
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pathway, as IRS-1 and 2 tyrosine phosphorylation and subsequent PI3K association and activity are 

altered (DeFronzo, 2004; Fröjdö et al., 2009). The genetic loss of IRS-1 and 2 leads to the inactivation of 

PI3K→Akt signalling pathway and this inactivation can elucidate the prevalence of insulin resistance and 

its association with T2DM (see review:Gou, 2014). Thereby, defects on PI3K→Akt signalling pathway, 

both in the liver and skeletal muscle, will lead to an increase in gluconeogenesis, defects on glucose 

metabolism and transport (figure 1.5) contributing to insulin resistance. 

Free fatty acids (FFA) are another mediator that is known to be involved in the development of 

insulin resistance (Boden, 1997). FFA are stored as triglycerides in adipocytes, and during fasting 

conditions are used as an energy source (DeFronzo, 2004). Triglycerides are hydrolysed by adipose 

tissue lipases, and FFA released to the circulation. Insulin is an anti-lipolytic hormone and prevents FFA 

release through the inhibition of triglyceride hydrolyse. In patients with T2DM the concentrations of FFA in 

plasma are high, showing an impaired insulin action on lipolysis (Reaven et al., 1988; Swislocki et al., 

1987). It is also known, that increased FFA concentrations inhibit glucose uptake by skeletal muscle, 

decreasing insulin secretion in the pancreas and promoting hepatic glucose production. In fact, in the 

postprandial state, lipolysis rate is increased despite the increased in insulin levels (DeFronzo, 2004; 

Eriksson et al., 1999). It was also seen that exogenous insulin in T2DM subjects fail to reduce lipolysis 

failing in decrease FFA plasma levels (Groop el tal., 1989). 

 

 

Figure 1.5 – Alterations in insulin signaling pathways that contribute to insulin resistance in the insulin-
sensitive tissues, liver and skeletal muscle. Here is represented some of the molecules involved in insulin 
action as insulin receptor (IR), insulin receptor substract (IRS) proteins, the phosphatidylinositol (PI3K) and 
Akt. 
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1.2 Caffeine 

Caffeine (1, 3, 7-trimethylxantine) is the most widely consumed psychoactive substance in the 

world. It is found in varying quantities in the beans, leaves, and fruits of more than 60 plants and is 

present in common beverages including coffee, tea, soft drinks and in products containing cocoa. Among 

different beverages, coffee has in general the highest value of caffeine concentration compared to tea, 

soft drinks and energy drinks (Heckman et al, 2010). Caffeine consumption from all sources can be 

estimated to be about 70-76 mg/person/day, yet it can be higher in some countries like USA, Canada, UK 

Sweden and Finland (Fredholm et al., 1999). In these countries, except UK, coffee accounts for the 

majority of the daily caffeine consumption, where in UK tea is the beverage of choice (Heckman et al., 

2010). Coffee has in their composition some substances that can affect glucose metabolism as caffeine, 

chlorogenic acid and magnesium (van Dam and Hu, 2005). It was seen that magnesium has an inverse 

association with risk of type 2 diabetes both in man and women (Lopez-Ridaura et al., 2004). Chlorogenic 

acid has an inhibitory effect on the hydrolysis of the glucose-6-phosphate, which could decrease glucose 

production (for a review see Higdon and Frei, 2006). Concerning caffeine effects, acute and chronic intake 

seems to have different consequences in glucose metabolism and in insulin sensitivity, which will be 

discussed below. 

 

1.2.1 Metabolism and cellular mechanism of action 

Once ingested, caffeine is absorbed in the gastrointestinal tract and is extensively metabolized in 

the liver (99%) (Fredholm et al., 1999) in three different metabolites: theophyline (1,3-dimethylxanthine); 

paraxanthine (1,7-dimethylxanthine); and theobromine (3,7-dimethyxanthine). Theophyline has a more 

potent effect that caffeine as an inhibitor of adenosine receptors and paraxanthine is also at least as 

potent as caffeine (Fredholm et al., 1999). 

Caffeine, at a cellular level, can act through different mechanisms depending on its concentration 

in humans (Figure 1.6): 1) at higher concentrations, in the milimolar range, caffeine act through the 

mobilization of intracellular Ca
2+

 depots; 2) at high micromolar doses, caffeine inhibit phosphodiesterases 

thereby increasing cyclic adenosine monophosphate (cAMP) levels; and finally 3) at nanomolar 

concentrations, achieved after a single cup of coffee, caffeine is capable of blocking adenosine action by 

antagonism of its receptors (figure 1.6). The effect on adenosine receptors is the only mechanism 

significantly affected by the relevant doses of caffeine in humans. Therefore this mechanism shall be the 

only one to be considered and further discussed. 
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Figure 1.6 - Effect of caffeine on different biochemical targets in relation to its levels in humans (Fredholm et 
al, 1999). 

 

1.2.2 Caffeine and adenosine 

There are four known adenosine receptors subtypes named as A1, A2A, A2B and A3, which belong 

to the superfamily of G-protein-coupled receptors (Jacobson and Gao, 2006). Of the four subtypes, A3 has 

been shown to be poorly affected by caffeine, as by other methylxanthines. The antagonist effect of 

caffeine is more potent at A2A receptors, followed by A1 and finally A2B receptors (Table 1.1). During many 

years it was thought that adenosine, at physiological concentrations, only acted at A1 and A2A receptors 

and that A2B (or A3) was only activated under pathological concentrations of adenosine. Therefore, it was 

thought that the mechanism of action of caffeine was through the inhibition of the A1 and A2A receptors. 

However, nowadays it is known that the activation of the adenosine receptors not only depends of the 

adenosine levels but also on the density of the receptor subtypes existent in the site of action (Conde et 

al., 2009). 

Adenosine is a product of adenosine triphosphate (ATP) metabolism, being an ubiquitous 

substance in cells. It exerts its action through the binding to its four different types of adenosine receptors 

(A1>A2A>A2B>A3). The four adenosine receptors have different affinity to endogenous adenosine, being 

activated by different amounts of endogenous adenosine (Conde et al., 2009). 
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Table 1.1 – Potency of caffeine at rat and human adenosine receptors subtypes (Adapted from Fredholm et 
al., 1999) 

Receptor Subtype Rat (KD μM) Human (KD μM) 

A1 20 12 

A2A 8.1 2.4 

A2B 17 13 

A3 190 80 

 

 

Adenosine regulates many physiological processes and the equilibrium between disposable of 

endogenous adenosine and the density of adenosine receptors at the site of action help to control the 

distinct physiological responses. The role of adenosine on glucose homeostasis and insulin sensitivity is 

not consensual. In adipose tissue adenosine has the ability to inhibit lipolysis thought the A1 adenosine 

receptors, which results in enhanced insulin sensitivity (see review: Koupenova and Ravid, 2014). 

However, in skeletal muscle adenosine action on insulin sensitivity it’s still controversial, as some authors 

have seem that the application of A1 adenosine receptors antagonists enhanced muscle insulin sensitivity 

and reverses insulin resistance (Budohoski et al., 1984; Challiss et al., 1984) while others showed that A1 

adenosine receptors antagonists enhanced insulin resistance through the decreased of insulin-stimulated 

glucose uptake (Han et al., 1998). In the liver, adenosine action through A2 adenosine receptors enhanced 

gluconeogenesis and glycogenolysis (Buxton et al., 1987; Bartrons et al., 1989). 

 

1.2.3 Caffeine, adenosine and Nitric Oxide  

 Nitric oxide (NO) is a physiological molecular messenger which mediates several basal functions 

and pathological states (Bredt and Snyder, 1994). NO is the major endogenous vasodilator, being 

currently used NO donors in clinical practice for the treatment of severe hypertension and congestive 

heart failure. NO is generated from L-arginine by constitutive NO synthases (eNOS and nNOS) and 

inducible NO synthase (iNOS) (Knowles and Moncada, 1994). 

NO is another mediator that is known to be key in insulin sensitivity. Steinberg and his co-workers 

(1994) showed that insulin causes skeletal muscle vasodilatation through endothelium-derived NO, 

enhancing muscle-glucose uptake. Also they showed that inhibition of NO production by a NO synthetase 

inhibitor induces insulin resistance. In fact, it was seen that in T2DM patients the NO-mediated 
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vasodilatation is impaired (Williams et al., 1996) as well as in obese man (Laakso et al., 1989). Also the 

co-administration of glutathione and NO in rats enhanced insulin sensitivity (Guarino and Macedo, 2006). 

 It is well known that adenosine modulates NO release via A1, A2A and A2B receptors (Olanrewaju 

and Mustafa, 2000; Ray and Marshall, 2006). Therefore, being caffeine, an adenosine antagonist, it is 

probably that caffeine administration alters NO synthesis and/or NO effects on insulin sensitivity. In fact, 

Bruce et al. (2002) showed that acute caffeine intake decreased exhaled NO. In this study the authors 

have measured exhaled NO during 4 hours after submit normal subjects to coffee (with an approximated 

caffeine content of 100mg per 200ml cup), decaffeinated coffee or decaffeinated coffee plus caffeine 

capsule (200mg) administration, and observe an absence of effects on exhaled NO only in decaffeinated 

coffee administration, meaning that caffeine reduces exhaled NO (Bruce et al. 2002). Also acute caffeine 

administration in rats reduces NOS expression in myocardial fibres (Corsetti et al., 2008). 

 

1.2.4 Acute vs chronic caffeine action on insulin sensitivity 

Acute and chronic caffeine consumption has different actions in insulin sensitivity. During many 

years one of the lifestyle modifications, among subjects with metabolic and cardiovascular diseases, was 

the reduction of coffee consumption, based on studies that showed that caffeine when consumed acutely 

impairs insulin sensitivity (Keijzers et al., 2002) and increased blood pressure (for a review see Rieksen et 

al.,(2009). However, recently several studies have shown a beneficial relationship between long-term 

coffee consumption and T2DM (Lopez-Garcia et al., 2006; Van Dam et al., 2002; Van Dam et al., 2004; 

Van Dam et al., 2006). Besides the discussion on the protective versus deleterious effects of coffee in 

T2DM, there is also controversy concerning the nature of the compound involved in it. Some authors claim 

that the beneficial effects of coffee are mediated by caffeine (Lopez Garcia et al., 2006, Van Dam et al., 

2006, Zheng et al., 2004) while others support that coffee components, apart from caffeine, are 

responsible for the protection against T2DM (Noordzij et al., 2005, Greenberg et al., 2005, Wu et al., 

2005). 

Acute caffeine administration impaired insulin sensitivity in healthy subjects (Beaudoin et al., 

2013, Greer et al., 2001; Keijzers et al., 2002) and in T2DM patients (Lane et al., 2004; Robinson et al., 

2004). In the Greer et al (2001) study,  oral acute caffeine administration (5mg/kg body weight), after an 

overnight fast and 48h abstained from all methylxanthine-products containing in healthy subjests, result in 

decreased glucose disposal and carbohydrate storage. Also in this study the epinephrine levels were 

increase after oral caffeine administration. Confirming this study, Keijzers et al (2002) showed that after a 

caffeine administration (3mg/kg body weight), an increase in epinephrine levels, an increase in FFA levels 

and a decrease in insulin sensibility. More recently, in a study conducted by Beaudoin et al., (2013) 

twenty-four healthy volunteers (12 males, 12 females) participated in 4 trials, in a crossover, randomized, 
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and double-blind fashion and it was showed that caffeine ingestion disrupted insulin sensitivity in a dose-

dependent fashion beginning at very low doses (0-1 mg/kg body weight) in both healthy men and women. 

Also, in T2DM and obese patients after acute caffeine administration (5mg/kg body weight) the 

FFA levels increased compared with placebo, however insulin and glucose levels were not significantly 

modified. Although the authors observed an increase in insulin and glucose levels after the oral glucose 

tolerance test (Robertson et al., 2004). Likewise, Lane et al (2004) have showed an increase of glucose 

and insulin concentrations after an oral glucose tolerance test in T2DM patients preceded by an acute 

caffeine administration (375mg). 

These effects of acute caffeine administration contrast with the long-term caffeine consumption, 

where beneficial actions have been reported. van Dam et al (2004) observed that in older and glucose 

intolerant subjects the higher caffeine consumption is associated to a lower incidence of glucose 

intolerance and a beneficial effect on insulin sensitivity. The same conclusions were taken in other cohort 

studies in healthy younger and middle-age women (van Dam et al., 2006) and in healthy younger, middle-

age women and men (Bhupathiraju et al., 2014) where the risk of development T2DM is lower in the 

groups where the coffee consumption is higher. Although, coffee has many components able to modify 

insulin sensitivity, so it is necessary to evaluate the effects of caffeine itself. Recent studies of our group 

demonstrate that chronic caffeine intake (1g/L during 15 days) on Wistar rats prevent the development of 

insulin resistance induced by hypercaloric diets in pre-diabetes animal models, effect which appears to be 

mediated by a decrease in sympathetic nervous system activity (Conde et al., 2012). 
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1.3 General and specific objectives 

 The main objective of this work is to investigate the therapeutic dose of caffeine that 

restores insulin sensitivity in a prediabetes animal model, hopping to found a therapy accessible, 

low-cost and without side effects therapy. 

 The specific aims of this work are:  

1. Investigate if chronic administration of caffeine restores insulin sensitivity in a prediabetes animal 

model; 

2. Investigate the time required for the reversion of insulin resistance; 

3. Investigate possible mechanisms of action involved in the recovery of insulin sensitivity induced 

by caffeine. 
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2. Methods 

2.1 Animals and experimental procedures 

The experiments were performed in Wistar rats of both genders aged 8 -12 weeks old (250-450g), 

obtained from the animal house of the Faculdade de Ciências Médicas of Nova Medical School. The 

animals were maintained at control temperature and humidity (21 ± 1°C; 55 ± 10% humidity) with a 12h 

cycle of light and darkness. 

Two groups of rats were used: a high-sucrose (HSu) group, which is a lean model of insulin 

resistance and hypertension (Conde et al., 2012, Ribeiro et al., 2013, Ribeiro et al., 2005), and a control 

group. The HSu model was obtained by submitting the animals to 35% sucrose in drinking water during 28 

days. The control group fed a standard chow (7.4% fat, 75% carbohydrate (4% sugar) and 17% protein; 

SDS diets RM1; Probiológica, Sintra, Portugal). Fasting glycemia, insulin sensitivity and glucose tolerance 

were assessed prior to submit the animals to the diets and after 28 days to confirm insulin resistance in 

the HSu animal model. 

In order to investigate if chronic administration of caffeine restores insulin sensitivity in the HSu 

animal model, after 28 days caffeine was administered in drinking water to HSu and control groups. Three 

doses of caffeine were tested: 0.5g/L; 0.75 g/L and 1g/L. Rats without caffeine treatment were maintained 

in both control and HSu groups as controls. The animals were maintained under diets during 12 weeks 

after initiating chronic caffeine treatment. Insulin sensitivity and glucose tolerance were monitored each 

2/3 weeks. Also, blood was collected from the tail vein after the oral glucose tolerance test (OGTT) in 

order to evaluate alterations in insulinemia and other mediators associated with insulin resistance. 

Food and liquid intake in all groups of animals was monitored throughout the experimental 

protocol. Body weight and possible animal behavioural changes were monitored twice per week. 

At the end of the experimental period and after glucose tolerance evaluation, rats were 

anaesthetized with pentobarbitone (60mg/Kg). Blood was collected by heart puncture and skeletal muscle 

and liver were collected for posterior analysis of mediators related with insulin sensitivity. Also visceral, 

perirenal and genital fat was weighted at the end of the experiment. 

Principles of laboratory care were followed in accordance with the European Union Directive for 

Protection of Vertebrates Used for Experimental and Other Scientific Ends (2010/63/EU). Experimental 

protocols were approved by the Ethics Committee of the Faculty of Medical Sciences. 
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2.2 Insulin Tolerance Test 

 The insulin tolerance test (ITT) was used to measure insulin sensitivity. The ITT is one of the 

earliest methods developed to assess insulin sensitivity in vivo and provides an estimate of overall insulin 

sensitivity, correlating well with the ‘gold standard’ hyperinsulinaemic–euglycaemic clamp (Monzillo and 

Hamdy, 2003). 

ITT was performed always in conscious animals submitted to an overnight fasting of 

approximately twelve hours. The test consist in the measurement of basal glycaemia, followed by the 

administration of an insulin bolus (0.1 U/Kg) in the tail vein and the measure of the decline in plasma 

glucose concentration over 15 min at 1 min intervals. The constant rate for glucose disappearance (KITT) 

was calculated using the formula 0•693/t1/2. Glucose half-time (t1/2) was calculated from the slope of the 

least-square analysis of plasma glucose concentrations during the linear decay phase (Conde et al., 2012, 

Ribeiro et al., 2013). Blood samples were collected by tail tipping and glucose levels were measured with 

a glucometer (Abbott Diabetes Care, Portugal) and test strips (Abbott Diabetes Care, Portugal). 

 

2.3 Oral Glucose Tolerance Test 

 For the OGTT the animals were submitted to an overnight fasting of approximately twelve hours. 

The test consisted of an oral administration of glucose (2g/kg) by gavage and the measurement of plasma 

glucose at 0, 15, 30, 60, 120 and 180 minutes. The blood samples were collected by tail tipping and 

glucose levels were measured with a glucometer (Abbott Diabetes Care, Portugal) and test strips (Abbott 

Diabetes Care, Portugal). Glucose excursion curves (plasma glucose vs time) were draw with the data 

obtained and the Area Under the Curve (AUC) was compared. 

 

2.4 Collection of tissues 

After an abdominal laparotomy, the liver and skeletal muscle were collected and cryopreserved at 

-80°C to posterior analysis of NO production and the expression of glucose transporters. 

 

2.5 Glut4 Protein quantification by Western Blot 

Skeletal muscle samples (50mg) were homogenized in 300µL of Zurich buffer (Tris-HCL 10mM; 

EDTA 1mM; NaCL 150mM; Triton X-100 1%; Sodium cholate 1%; SDS 1%) with proteases inhibitors 

(trypsin, leupeptin, pepstatin, aprotinin, sodium orthovanadate, PMSF). Then the homogenate was 

centrifuged (Eppendorf, Madrid, Spain) at 13000g during 20 minutes, and the supernatant collect, and 
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frozen at -80°C until further use. The protein quantification of the homogenate was determined by using 

the colorimetric assay Micro-BCA (Pierce, Madrid, Spain). 

Samples of the homogenate (50µg) and markers (Precision Plus Protein Duo Color, Biorad, 

Madrid, Spain) were separated by SDS-PAGE (10%) in reductive conditions. 

After protein sample separation by a SDS-PAGE technique, the proteins were transferred to a 

polyvinylidene fluoride membrane (Merck Millipore, Darmstadt, Germany). Once the transfer was 

concluded the membrane was blocked with a solution of milk powder (5%) in a Tris-Buffered saline, ph 7,6 

(TBS), with tween 20 (TTBS 0,1%) (BioRad, Madrid, Spain) during 1h at room temperature. The 

membranes were incubated overnight at 4ºC with the primary antibody Goat anti-GLUT4 (1:200) 

(SantaCruz Biotecnhology, Dallas, EUA) and then washed 3 times during 15 minutes with TTBS 0,1%. 

Next the membranes were incubated with the secondary antibody Donkey anti-Goat (1:5000)( SantaCruz 

Biotecnhology, Dallas, EUA) during 90 minutes at room temperature and then washed 3 times during 15 

minutes with TTBS 0,1%. The intensity of the signals was detected in a ChemiDoc molecular imager (Bio-

Rad Laboratories) and quantified using Quantity One software (Bio-Rad Laboratories, Hercules, CA). The 

membranes were then reprobed and tested for GAPDH immunoreactivity (bands in the 37-kDa region) to 

compare and normalize the expression of proteins with the amount of protein loaded. Briefly, the 

membranes were incubated for the primary antibody mouse anti-GAPDH (1:250) (SantaCruz 

Biotecnhology, Dallas, EUA) overnight at 4ºC. After washed 3 times during 15 minutes the membranes 

with TTBS 0,1% they were incubated during 90 minutes at room temperature with the secondary anti-body 

goat anti-mouse (1:2000) (SantaCruz Biotecnhology, Dallas, EUA). After washing the membranes they 

were revealed. 

 

2.6 Liver and skeletal muscle Nitric Oxide (NO) quantification 

 Skeletal muscle and liver samples (160 mg) were homogenized in 500 µl of homogenization 

buffer (Tris-HCL 100mM; EDTA 50mM; EGTA 50mM). Then the homogenate was centrifuged (Eppendorf, 

Madrid, Sapin) at 13000g, during 20 minutes at 4°C, and the supernatant was collected and stored at -

80°C. 

 For the deproteinization of the samples, the homogenate samples were diluted 3x in absolute 

ethanol at 0°C and mixed in vortex. After resting during 30 minutes on ice, the samples were centrifuged 

at 12000g during 15 minutes at 4°C. Finally the supernatant was collected and stored at -80 until needed 

for NO quantification. 

 NO/NO3
-
 concentration was determined by using a selective and sensitive NO/ozone 

chemiluminescence technique (NO-Analyzer 280; Sievers Research Inc., Boulder, CO, USA). 
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2.7 Drugs and chemicals 

 Aprotinin, caffeine, sodium cholate, EDTA, leupeptin, NaCl, sodium orthovanadate, pesptatin, 

PMSF, tripsin, Tris, Trito X-100 were all obtained from Sigma-Aldrich (Madrid, Spain). The insulin was 

commercially available as Humulin® Regular (Lilly, Portugal) in a concentration of 1000Ul/ml. 

 

2.8 Data Analysis 

 Data were analyzed with Graph Pad Prism Software, version 5 (GraphPad Software Inc., San 

Diego, CA, EUA) and represented as mean ± SEM. The significance between means difference was 

estimate through One e Two-Way Analysis of Variance (ANOVA) with Bonferroni, and Dunnett and 

Bonferroni multicomparison test, respectively. Differences was significant when p>0.05. 
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3. Results 

3.1 Effect of chronic caffeine intake in caloric intake and rats weight 

 Caloric intake was monitored twice a week and the effect of diet administration and chronic 

caffeine intake is summarized in table 3.1. Caffeine intake in the control group was only tested in the 

concentration of 1g/L, and this concentration did not modify caloric intake in this group of animals (table 

3.1). As expected, HSu diet increased significantly caloric intake by 35.8%. Caffeine in all concentrations 

tested, except for the 0.75g/l concentration, did not change caloric intake within HSu group (table 3.1).  

 

Table 3.1 – Effect of chronic caffeine administration on caloric Intake in control and High-Sucrose (HSu) diet 
animals. 

  Caffeine 
concentration (g/L) 

Caloric Intake 
(Kcal/Kg/day) 

Control 0 196.4 ± 7.63 

1 183.6 ± 8.78 

HSu 0 305.7 ± 14.58*** 

0.5 292.84 ± 24.02*** 

0.75 236.7 ± 22.97**, # 

1 319.95 ± 3.52*** 

Caloric intake was monitored twice a week. Data represent means ± SEM. ** p<0.01 in comparison with controls; *** 
p<0.001 in comparison with controls; # p<0.05 in comparison with High-Sucrose (HSu) diet without caffeine. (One 
Way ANOVA with dunnet’s or Bonferroni multicomparison test) 

 

 In table 3.2 is represented the effect of caffeine intake in weight increase (g/day) and fat weight 

(total, visceral and perirenal). 

It can be seen, the HSu diet and chronic caffeine intake (in control and HSu groups) did not affect 

weight gain, both in male and female animals. Although, HSu diet promoted a significant increase in total, 

visceral and perirenal fat by 40, 35 and 54%, respectively, in comparison to controls. Caffeine intake did 

not modify fat mass in control animals and in Hsu animals when administered in the concentrations of 

0.75 and 0.5g/l However, when administered in a 1g/l concentration produced a non-significant reduction 

in total, visceral and perirenal by 20, 26 and 21% on, respectively. Nevertheless, this decreased was not 

significant. 
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Table 3.2 - Effect of chronic caffeine administration on weight increase and total, visceral and perirenal fat in 
control and high-Sucrose (HSu) diet animals. 

 Caffeine 
concentration (g/l) 

weight increase (g/day) Fat weight (g) 

Male Female Total Visceral Perirenal 

Control 0 1.867 ± 
0.20 

0.543 ± 
0.10 

16.59 ± 
0.08 

3.920 ± 
0.28 

4.877 ± 
0.10 

1 1.581 ± 
0.20 

0.730 ± 
0.14 

19.46 ± 
2.30 

4.330 ± 
0.36  

7.223 ± 
1.22 

HSu 0 1.952 ± 
0.16 

0.682 ± 
0.13 

27.64 ± 
4.80* 

6.030 ± 
0.83* 

10.63 ± 
3.34* 

0.5 1.547 ± 
0,26 

0.717 ± 
0.09 

31.67 ± 
2.44** 

5.827 ± 
0.66* 

12.66 ± 
1.57* 

0.75 1.822 ± 
0.16 

  31.02 ± 
4.39* 

6.597 ± 
1.22* 

13.33 ± 
1.63* 

1 1.721 ± 
0.02 

0.437 ± 
0.10 

23.24 ± 
0.55 

4.455 ± 
0.20 

8.427 ± 
0.85 

Body weight increased, calculated as total weight variation during the experimental period, in control and high-sucrose 
(HSu) animals with and without caffeine (0.5, 0.75 and 1 g/l). Total, visceral and perirenal fat, weighed postmortem 
and corrected to body weight in control and HSu rats with and without caffeine (0.5, 0.75 and 1 g/l). Data are present 
as means of 4-6 values. *p<0.05, **p<0.01, compared with control values (One-way ANOVA with Dunnett 
multicomparison tests) 

 

3.2 Effect of chronic caffeine intake on fasting glycemia and insulin 

sensitivity 

 Fasting glycemia was monitored in the beginning of the ITT and in OGTT, and the effect of 

chronic caffeine administration is represented in figure 3.1. HSu diet induced an increase in fasting 

glycemia at the 4
th
 week of diet to 102 ± 5.72 mg/dl (control = 84.88 ± 4.09 mg/dl). Also in the following 

weeks, the fasting glycemia remained elevated, although the values were not statistical significant (figure 

3.1C). Caffeine intake in control group did not change fasting glycemia (figure 3.1B). In the HSu group 

chronic caffeine intake in all concentrations tested, progressively restored fasting glycemia, being 

significantly different, at the 13
th
 week in the caffeine concentration of 0,5g/l and in 16

th
 week for the 

remaining caffeine concentrations, when compared to HSu group at the 4
th
 week of diet (figure 3.1D-F). 
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Figure 3.1 - Effect of chronic caffeine administration on fasting glycemia in control and high-sucrose (HSu) 
animals. Fasting glycemia was monitored in all insulin tolerance test (ITT) and oral glucose tolerance test 
(OGTT). Fasting glycemia in control (A), control with caffeine (1g/l) (B), Hsu (C), HSu with caffeine (0.5g/l) (D), 
HSu with caffeine (0.75g/l) (E) and HSu with caffeine (1g/l) (F) animals. Values are presented as the mean ± 
SEM. *p<0.05, **p<0.01, compared with control values (week 0); 

#
p<0.05, compared with the values at the 4

th
 

week (One-way ANOVA with Dunnett multicomparison test). 

 

The effect of chronic caffeine intake on insulin sensitivity in the control and HSu animals, with the 

different caffeine concentrations tested is represented in figure 3.2. In the HSu group, after 4 weeks of 

diet, the animals became insulin-resistant, since the constant of insulin tolerance test, KITT, decreased 

significantly to 2.355 %glucose/min (Kitt control = 4.7 ± 0.2 %glucose/min) (figure 3.2C). At the following 

weeks under diet the animals remained insulin resistant. In the control group, caffeine administration (1g/l) 

did not alter the insulin sensitivity (figure 3.2B). As we observe in figure 3.2D and E, the chronic caffeine 

intake in the concentrations of 0.5 and 0.75g/l progressively increases insulin sensitivity, in the HSu group, 

being completely restored at 9 and 5 weeks of caffeine administration, respectively. Also in the HSu 
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group, caffeine administration of 1g/l decrease insulin resistance faster than the other concentrations, 

being insulin sensitivity completely restored after 3 weeks of caffeine administration (Figure 3.2F). 

 

Figure 3.2 - Effect of chronic caffeine intake on insulin sensitivity determined by the insulin tolerance test and 
expressed as the constant rate for glucose disappearance (KITT) in control and high-sucrose (HSu) animals. 
Insulin sensitivity in control (A), caffeine (1 g/l) (B), HSu (C), HSu with caffeine (0.5 g/l) (D), HSu with caffeine 
(0.75 g/l) (E) and HSu with caffeine (1 g/l) (F) animals. Caffeine was administrated in the drinking water during 
12 weeks together with control or Hsu diet after the animals became insulin resistant (after four weeks of HSu 
diet). Data are present as means of 4-6 values. *p<0.05, **p<0.01, ***p<0.001, compared with control values 
(week 0); 

#
p<0.05, 

##
p<0.01, 

###
p<0.001, compared with the values at the 4

th
 week (One-way ANOVA with 

Dunnett multicomparison test). 
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3.3 Effect of chronic caffeine intake on glucose tolerance 

 The effect of caffeine intake on glucose tolerance is summarized in figure 3.3. In figure 3.3A it can 

be seen that caffeine administration (1g/l), after 16 weeks, does not modify glucose tolerance. On the 

other hand, HSu diet progressively impaired glucose tolerance over the weeks, becoming significantly 

different at the 16
th
 week, in comparison with control (figure 3.3B). 

 

Figure 3.3 - Effect of chronic caffeine intake on glucose tolerance determined by the oral glucose tolerance 
test, in control and high-sucrose (HSu) animals. (A) Glucose tolerance in control (at 0 and 16 weeks of diet) 
and caffeine 1g/l (at 16 weeks of diet) animals. (B) Glucose tolerance in control (at 0 weeks) and HSu (at 4 and 
16 weeks of diet) animals. (C) Glucose tolerance in HSu, HSu+Caf (0.5, 0.75 and 1g/l) animals (at 16 weeks of 
diet). Caffeine was administrated in the drinking water during 12 weeks together with control or Hsu diet after 
the animals became insulin resistant (after four weeks of HSu diet). Data are present as means of 4-6 values. 
*p<0.05, **p<0.01, ***p<0.001, compared with control values (One-way ANOVA with Dunnett multicomparison 
test). 
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Caffeine administration in the HSu group ameliorates glucose tolerance in comparison with the HSu group 

without caffeine intake (figure 3.3C). This effect of caffeine on glucose tolerance is more significant as 

higher is the concentration of caffeine administered, as we can see from the values of the AUC showed in 

the table and the glucose excursion curves presented in figure 3.3C. 

 

3.4 Effect of chronic caffeine intake on Glut4 skeletal muscle protein 

expression 

 Glut4 transports are the main responsible for glucose uptake in skeletal muscle and therefore we 

have investigated if the reversion in insulin sensitivity and glucose tolerance can be associated with a 

recovery of Glut4 expression in this insulin-sensitive tissue. Chronic caffeine intake (1g/l) did not alter the 

Glut4 expression levels in skeletal muscle (figure 3.4). However, as expected, HSu diet decreased 

significantly Glut4 transporters expression by 59.2% (figure 3.4). Chronic caffeine intake in HSu group in a 

concentration of 0.5 g/l partially restored Glut4 expression, increasing its levels by 24.3%, whereas the 

concentration of 1g/l completely restored Glut4 expression levels (figure 3.4). 

 

Figure 3.4 – Effect of chronic caffeine intake on Glut4 transporters expression in skeletal muscle in control 
and high-sucrose (HSu) animals. One-Way ANOVA with Dunnett multicomparison test, **p<0.01, compared 
with control; Two-Way ANOVA with Bonferroni multicomparison test, ##p<0.01 comparing values with and 
without caffeine. 

 



 

25 

 

3.5 Effect of chronic caffeine intake on NO production in skeletal 

muscle and liver 

 NO is known to be a key mediator in insulin sensitivity and therefore we have evaluated its 

content in the liver and in skeletal muscle. Figure 3.5A represents the effect of chronic caffeine 

administration on NO content in liver. Caffeine administration did not altered liver NO content in control 

group and, HSu diet as well as the combination of HSu plus caffeine in the concentrations of 0.5g/l and 

1g/l did not change NO levels in the liver. Surprisingly, a chronic caffeine administration in a dose 0.75g/l 

in Hsu rats produced a significant increase in NO to 70.4 ± 5,7nmol/g tissue (control= 45.5 ± 1.8nmol/g 

tissue). 

   

 

Figure 3.5 – Effect of chronic caffeine intake in nitric oxide (NO) content in the liver (A) and in skeletal muscle 
(B) in control and high-sucrose (HSu) animals. One-Way and Two-Way ANOVA with Dunnett and Bonferroni’s 
multicomparison test, *p<0.05; **p<0.01, compared with control. 
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The effect of chronic caffeine intake on NO in skeletal muscle in both control and HSu groups is 

summarized in figure 3.5B. In control group caffeine administration produced a non-significant decrease of 

NO of 15.5%. HSu diet decreased significantly NO production in skeletal muscle by 16% when compared 

to controls (control = 59.5 ± 3.07nmol/g tissue). Chronic caffeine administration, in all concentrations 

tested, did not modify NO content in skeletal muscle in HSu group. 



 

27 

 

4. Discussion 

The present work demonstrates, for the first time, that chronic caffeine administration restores 

insulin sensitivity, glucose tolerance and fasting hyperglycemia in prediabetic rats (HSu). In addition, we 

have shown that the latency time needed to restore insulin sensitivity and glucose tolerance is inversely 

correlated with caffeine concentration. Caloric intake, as well as weight increase per day and total fat 

mass, both in controls and in the prediabetes model, was not affected by caffeine consumption. Also, 

caffeine intake did not alter skeletal muscle Glut4 expression levels in control animals, but restored its 

levels in the HSu group when administered at concentration of 1g/l. Finally, we have shown that skeletal 

muscle NO levels were decreased in HSu animals and that caffeine did not modify these levels. All 

together, these results suggest that caffeine reversion of insulin resistance and glucose intolerance did not 

involve alterations in appetite, weight loss or in NO levels but can be due to a restore of insulin signaling 

pathways in insulin sensitive tissues, like skeletal muscle, and point forward to the use of caffeine for the 

treatment of prediabetes and prevention of T2DM. 

At the onset of the discussion we want to state that the reasons that lead to the use of these 

concentrations of caffeine is the correspondence to the human coffee consumption. Caffeine 

concentration of 1g/l corresponds to a caffeine dose of 3/4 coffees per day, 0.75 g/L to 2/3 coffees per day 

and 0.5 g/L to 1/2 coffees per day (Fredholm et al., 1999). Also, it should be noted that in these doses the 

only mechanism significantly affected by caffeine is the antagonism of adenosine receptors (Fredholm et 

al., 1999). 

HSu diet increase fasting glycemia and decrease insulin sensitivity after 4 weeks (28 days) of diet 

which remains throughout the 16 weeks in control animals. This increase in fasting glycemia and the 

decrease in insulin resistance are consistent with the previous studies from our laboratory indicating 

reproducibility in the animal models (Conde et al., 2012; Ribeiro et al., 2013), although these parameters 

were only analyzed up to four weeks in those studies. Also, the results obtained in our laboratory are in 

agreement with the findings obtained by others in animals and in humans. In a study taken by Ribeiro et 

al., 2005 it was seen that liquid HSu diet (35%) intake during 6 weeks also decrease insulin sensitivity in 

Wistar and Sprague-Dawley rats. In humans it was shown that diets rich in sugar (glucose/fructose) 

decrease insulin sensitivity approximately in 25% (Beck-Nielsen et al., 1980). In the present study, the 

increase in glycemia was only significant at the 4
th
 week of HSu diet, and insulin resistance tends to 

diminish through time. Nevertheless, is important to highlight that these insulin sensitivity and fasting 

glycemia measurements were performed in conscious animals and therefore animal stress became a 

variable that must be taken into account. It is known that acute stress activates sympathetic nervous 

system and due to the close connection between sympathetic activation and insulin resistance, stress can 

alter metabolic parameters (Muhammad and Gerich, 2010; Lambert et al., 2010 ). Chronic caffeine 
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administration in control animals did not alter fasting glycemia or insulin sensitivity, although when applied 

to HSu animals it restored completely fasting glycemia, being the effect significant for all the 

concentrations of caffeine tested at 12 weeks of diet. The beneficial/prejudicial effects of chronic coffee 

intake in the risk of T2DM in human were already commented. Recently a study performed in Sprague-

Dawley rats showed that coffee administration during 12 weeks improves insulin sensitivity and glucose 

tolerance in 30% liquid HSu fed rats (Morakinyo et al., 2013). On the other hand it was showed that 

decaffeinated coffee had beneficial effects on all body insulin sensitivity than decaffeinated plus alkaloid 

caffeine (20g/l) in high-fat fed Sprague-Dawley rats, indicating that caffeine antagonizes decaffeinated 

coffee action (Shearer et al., 2007). However, these studies evaluated caffeinated/ decaffeinated coffee 

intake, and being coffee a mixed of many compounds, direct effect of caffeine was not evaluated. In the 

present study we have tested the direct effect of caffeine and our results are in concordance with recent 

studies where it was showed that chronic caffeine intake (caffeine 0.5 g/kg of food) during 8 weeks 

restores and ameliorates metabolic syndrome in diet-induced obese Wistar rats (Panchal et al., 2012) and 

that chronic caffeine intake (15mg/kg/day) during 4 weeks improved insulin sensitivity in Wistar-Kyoto rats 

(Yeh et al., 2014). In the present work, chronic caffeine consumption restored completely insulin sensitivity 

in a concentration dependent-manner, being the latency time necessary to restore this parameter 

inversely correlated with caffeine dose, suggesting that a low caffeine dose requires more time to induce 

substantial changes in order to recover the mechanisms. Recently, it was seen that acute caffeine 

ingestion impaired insulin sensitivity in a dose-dependent manner in humans (Beaudoin et al., 2013). This 

caffeine induced-insulin resistance in humans is in agreement with the findings of our laboratory in rats, in 

where we have found that caffeine decreases in a dose-dependent manner insulin sensitivity (Sacramento 

et al., 2014). The dose-dependent effect of chronic caffeine on insulin sensitivity herein described as well 

as the described for acute consumption (Beaudoin et al., 2013; Sacramento et al., 2014) suggest an effect 

mediated by adenosine receptors. In fact, Sacramento et al. (2014) have shown that insulin resistance 

induced by acute caffeine is mediated by A1 and A2B adenosine receptors. 

As expected, we have shown that glucose tolerance gradually decreased with HSu diet 

consumption, showing a tendency to diminish at 4 weeks of diet and being significantly decreased at 16 

weeks of diet. Some controversy exists regarding the effects of HSu diets in glucose tolerance. While 

some authors described that chronic HSu diets intake improves glucose tolerance in Wistar rats (Kergoat 

et al., 1987) and in human (Anderson et al., 1973), more recent studies described a reduction of glucose 

tolerance with this kind of diets (Kirino et al., 2009; Sakamoto et al., 2012), being these data in agreement 

with the present study. However, we must note that in some of these studies the authors have used solid 

HSu diets as well as different percentages of sucrose. Also, differences in animal species can also 

contribute for the distinct results, for example, in the Sakamoto et al. (2012) the study was performed in 

mice. 
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In the present study chronic caffeine intake in control animals did not alter glucose tolerance. 

Similar results were also observed by Úrzua et al., (2012) and by Morakinyo et al., (2013), since they 

didn’t saw any effect of chronic coffee consumption on glucose tolerance in healthy rats. Also, Morakinyo 

et al., (2013) shown that coffee administration to HSu rats improved glucose tolerance in these animals. 

Although, these authors have tested coffee and no caffeine as in the present study. In fact, herein we 

have observed a complete restore of glucose tolerance with the highest concentration of caffeine tested 

(1g/l). In a study taken by Ohnaka et al., 2012 chronic caffeinated/decaffeinated coffee intake (5 

cups/day), which corresponds to a caffeine dose similar to 1g/l, was tested in glucose metabolism during 

16 weeks in overweight, middle-aged men with a mild-to-moderate elevation of fasting glucose. The 

authors have shown that glucose tolerance, assess through an OGTT, was not altered by caffeinated 

coffee at 8 weeks, yet after 16 weeks the 2-hour glucose and AUC glucose during OGTT were decreased 

(Ohnaka et al., 2012). Also, in the same study the authors did not observe differences in fasting plasma 

glycemia with caffeinated chronic intake both in 8
th
 and 16

th
 week (Ohnaka et al., 2012). In another 

previous study Wedick et al. (2011) demonstrated that chronic coffee intake (5 cups/day) during 8 weeks 

was also unable to alter glucose tolerance, glycemia and insulin sensitivity in overweight men and women. 

All together, these results suggest that for the amount of caffeine/coffee administered (1g/l, 4 to 5 cups of 

coffee per day) is necessary a longer-term intake (at least 12 weeks as in the present study) to see the 

caffeine beneficial effects on glucose tolerance. 

The beneficial effect of coffee on glucose homeostasis described in several epidemiological 

studies have been attributed to weight loss due to an increased thermogenesis, lipolysis and fat oxidation 

induced by the drug (Cheung et al., 1988, Choi et al., 2011; van Dam et al., 2006, Lopez-Garcia et al., 

2006, Zheng et al., 2004). Nevertheless, this hypothesis stills debatable since it has also been observed 

that long-term coffee consumption does not cause significant weight reduction (Astrup et al., 1992). One 

of the mechanisms that could contribute to weight loss are alterations in food intake, however the effects 

of caffeine/coffee administration in appetite and food/caloric intake are not consensual. Acute caffeine 

administration seems to reduce food intake both in rats (Racotta et al., 1994) and in men, but not in 

women (Tremblay et al., 1988). Also, acute coffee intake did not modify appetite in normal subjects 

(Gavrieli et al., 2011) but reduced food intake in overweight/obese subjects (Gavrieli et al., 2013). In 

contrast, in a study conducted by Pettenuzzo et al (2008), where it was evaluated the chronic 

administration of caffeine on feeding behavior of rats, it was reported that caffeine do not affected 

standard chow diet intake, although diminished food intake in relation to palatable food. The basis of these 

controversial may rely on the differences between acute and chronic caffeine administration, since the 

majority of the effects of caffeine on food intake was observed as a result of acute caffeine intake. Also we 

cannot forget that coffee is a mixture of many compounds, and perhaps when the effect of coffee is 

tested, the observed effect on food intake is not due to caffeine. Herein we have observed that caffeine 

did not alter caloric intake either in control group or in the HSu-treated group, except for the dose of 0.75 
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g/l tested in HSu animals, suggesting that is not the reduction in food intake that contribute to the 

beneficial effects of chronic caffeine intake in glucose homeostasis. At the moment we do not have a 

consistent explanation for the reduction of food intake observed for the dose of 0.75g/l, although since the 

number of animals tested in this group was lower (n = 3) than in the other groups (n = 6) we should 

increase the number of animals to verify this results before trying to achieve a plausible explanation. 

The HSu model is described as being a lean model of insulin resistance (Conde et al., 2012, 

Ribeiro et al., 2005, Morakinyo et al., 2013) therefore, and as expected, although caloric intake was 

increased in the HSu animals, the weight gain per day was not affected. Although after 16 weeks under 

HSu diet we have observed an increase in total, visceral and perirenal fat in HSu animals. In a study 

previously published by our group, it was found that HSu diet did not alter weight gain (g/day) yet, 

however no alterations were found in the percentage of visceral fat (Conde et al., 2012). This absence of 

effect on visceral fat can be due to the fact that the HSu model tested in that study was submitted to 4 

weeks of diet and not for 16 weeks as in the present one. Chronic caffeine intake did not alter weight gain 

and adipose tissue mass both in controls and HSu group, with the exception of 1g/l concentration that 

slightly decrease total fat, visceral and perirenal fat in HSu group, although these decreases were not 

statistical significant in relation to HSu group without caffeine. The absence of effects of caffeine on weight 

gain and in the adipose tissue mass in controls and HSu rats are in accordance with the previous results 

of our group (Conde et al., 2012) and by others (Morakinyo et al., 2013; Urzúa et al., 2012) and suggest 

that is not the reduction on adipose mass or weight gain that is on the basis of caffeine effects on insulin 

sensitivity and glucose. Although it seems that at high doses of caffeine, the reduction of adipose tissue 

mass can be one of the mechanisms contributing to insulin sensitivity and glucose tolerance. In fact, 

recently it was seen that in vitro chronic caffeine decreases the expression of adipogenesis-related genes 

in a dose-dependent manner, inhibiting adipogenic differentiation in cell lines of rat adipose-derived stem 

cells (ADSCs) and a mouse bone marrow stromal cell line (M2-10B4) (Su et al., 2013). Also Aoyagi et al., 

(2014) showed that coffee decreased lipid accumulation in the adipose differentiation of mouse line cells 

(3T3-L1) in a dose-dependent manner and that reduction was correlated with a decrease in adipocyte 

marker genes. However, they do not show which coffee compounds are responsible for decreasing lipid 

accumulation. Therefore, we can suggest that one of the mechanisms of caffeine to restore insulin 

sensitivity and glucose tolerance can be the reduction of visceral fat by inhibiting adipocyte differentiation 

and that this happened at higher concentrations of caffeine. 

Caffeine is a thermogenic agent, and therefore the consumption of caffeinated bevarages/caffeine 

is often associated to a body weight decrease due to increased thermogenesis. In fact some 

epidemiological studies show that an increase in caffeine intake was associated with a greater weight loss 

and relatively higher thermogenesis and fat oxidation in obese and postobese subjects (Lopez-Garcia et 

al., 2006, Westerterp-Plantenga et al., 2013). This correlation between caffeine-thermogenic effect and 

weight loss was also described in mice, as Zeng et al., (2004) showed that chronic caffeine intake 
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reduced body weight through thermogenesis and fat oxidation. However the animal model is different from 

the used in the present study, meaning that caffeine can act through different mechanism of action. 

Although we haven’t assess thermogenesis in the present study, we did not observe any caffeine-induced 

weight loss. Therefore we can exclude a thermogenic effect of caffeine as the responsible for the restore 

of insulin sensitivity and glucose tolerance. 

Herein we have shown that animals submitted during 16 weeks of HSu diet present a decreased 

Glut4 expression in skeletal muscle, suggesting that an impairment of insulin signaling pathways in this 

organ contributes to insulin resistance. These results are in agreement with the previous findings of our 

lab, where animals submitted to 4 weeks of HSu diet exhibit a decrease in 58% in Glut4 expression 

(Guarino et al., 2014). Also, Kim et al., (1999) have showed that glucose uptake in skeletal muscle is 

diminished in rats fed with HSu diet, and so the impaired Glut4 expression seen by us in the present study 

and in our previous findings (Guarino et al., 2014) could explain the impaired glucose uptake. Chronic 

caffeine intake did not alter Glut 4 levels in control animals but increased in a concentration-dependent 

manner Glut4 expression in the skeletal muscle of HSu animals, suggesting that this is an important 

mechanism that contributes to insulin sensitivity and explain the return of glycemia to control levels. The 

effect of chronic caffeine intake on Glut4 expression described in the present thesis is in agreement with 

the partial reversal of the Glut4 expression induced by caffeine in the skeletal muscle of aged rats 

(Guarino et al., 2013). Although, the reversion of Glut4 expression in HSu animals showed herein 

contrasts to what we have found in the study taken by Guarino et al. (2014) where chronic caffeine intake 

(1g/l) did not altered Glut4 expression in HSu group. Nevertheless, in this study caffeine was administered 

only for 15 days with the aim of evaluating if caffeine can prevent the development of diet-induced insulin 

resistance (Guarino et al., 2014). All together these results suggest that is necessary more time of 

caffeine administration to see its effects on Glut4 expression levels. Egawa et al., (2009, 2011a) have 

shown that acute caffeine did not alter Glut4 levels in skeletal muscle but impairs insulin signal 

transduction by inhibiting IRS-1 tyrosine phosphorylation and PI3K phosphorylation (Egawa et al. 2011b). 

However these studies evaluated acute caffeine effects and were performed with caffeine concentrations 

in the milimolar range that will affect other molecular targets than adenosine receptors (Fredholm et al. 

1999), which may explain the difference compared to our results. 

Herein, we have showed that NO levels in liver are not affected by HSu diet and by chronic 

caffeine administration. However, in the HSu group treated with 0.75g/l of caffeine it was observed an 

unexpected increase in NO concentration levels. At this moment we do not have any plausible explanation 

for this effect, however and at it was mentioned earlier in this discussion the HSu group treated with 

0.75g/l possess a low number of animals (n = 3) than the others (n = 6), and this can affect the results.  

NO content in the skeletal muscle was decreased after 16 weeks of HSu diet. This result is in 

concordance with others that saw impaired vascular responses to insulin, with decreased levels of eNOS 
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in skeletal muscle, in high-fat-sucrose rats (Bourgoin et al., 2008) and in hypertensive HSu feeding rats 

(Mélançon et al., 2006). Santuré et al. (2002) also showed that insulin-mediated skeletal muscle 

vasodilation, that is NO-dependent, was impaired in sucrose-fed rats. Also, the same authors have 

described a reduction in eNOS protein content in muscle, which could be responsible for this impairment 

(Santúre et al., 2002). In the present study, chronic caffeine administration did not change skeletal muscle 

NO levels either in controls or in HSu animals, meaning that caffeine action on insulin sensitivity is not 

mediated by NO. 

The insulin-sensitizing effect of chronic caffeine treatment may also be directly related to 

antagonism of adenosine receptors on insulin target tissues. The effect of adenosine on glucose 

homeostasis is currently a hot-topic area with controversial results: while positive effects of A1 receptor 

partial agonists are well documented on adipose tissue glucose uptake (Dhala et al., 2009), studies using 

adenosine receptor antagonists have shown increases (Espinal et al., 1983), decreases (Han et al., 1998) 

and no effect (Vergauwen et al., 1994) of these drugs on skeletal muscle glucose uptake. More recently, 

Faulhaber-Walter et al. (2011) have demonstrated that A1 receptor deficient mice have decreased glucose 

tolerance with pronounced IR, which suggests that these receptors contribute significantly to glucose 

homeostasis and insulin sensitivity. Also, A2B receptor antagonists have been used to increase plasma 

insulin levels in vivo (Rusing et al., 2006) and more recently to reduce insulin resistance (Figler et al., 

2011). More recently, a study from our lab tried to solve some of the controversy and Sacramento el al. 

(2014), as referred earlier in the discussion, showed that acute caffeine induces whole body-insulin 

resistance an effect that was mediated by A1 and A2B adenosine receptors, meaning that adenosine is an 

insulin-sensitizer substance. Also, it was shown in the same study that activation of A1 adenosine 

receptors by an A1 agonist increases glucose uptake skeletal muscle in a magnitude similar to the 

obtained with insulin, were A2B agonist did not produced any effect on glucose uptake. Therefore, since 

adenosine is a sensitizer substance and since acute caffeine produces insulin resistance it is possible that 

the acute caffeine effect on insulin sensitivity will be lost with the chronic caffeine consumption due to a 

desensitization or an up-regulation of adenosine receptors thereby recovering adenosine action on insulin 

sensitivity. In the present work we did not evaluate adenosine receptor expression in insulin-sensitive 

tissues, although assessment of possible alterations in adenosine receptor expression as well as 

adenosine concentrations will be our next steps to understand the cellular mechanism of chronic caffeine 

effects. 
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5. Conclusion 

We can conclude that chronic caffeine intake restores insulin sensitivity and glucose tolerance in 

an animal model of prediabetes in a concentration-dependent manner and that the latency time needed to 

restore these parameters is inversely correlated with caffeine concentration. Also, we have shown that the 

caffeine concentration that achieved the best results in metabolic performance was the higher 

concentration tested (1g/l). Moreover, we have demonstrated that the mechanism involves a restore of 

Glut4 expression in skeletal muscle and not alterations in the NO levels or weight gain. All together these 

results suggest that caffeine can be used therapeutically for the treatment of prediabetes and prevention 

of T2DM. 
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6. Future work 

The work presented in this Master thesis resulted from experimental work perfomed in the last 

year in order to obtain the degree of master in Genética Molecular e Biomedicina, Faculdade de Ciências 

e Tecnologia, Universidade Nova de Lisboa. This year went to fast and in fact is not so much time to learn 

new techniques and to achieve results, therefore many questions related with the present thesis still 

unsolved and new ideas have come up. Our idea is to send the present work to be published in a peer 

review scientic journal and so, some experiments must be performed namely, the quantification of caffeine 

and its metabolites concentrations in the plasma rats by High-performance liquid chromatography (HPLC). 

In addition, we must continue to investigate the cellular mechanisms behind chronic caffeine action on 

insulin sensibility and glucose tolerance. In particular the effects of chronic caffeine in the expression of 

adenosine receptors both in skeletal muscle and in must be performed as well as effect of this xanthine in 

theexpression of insulin receptor and AMP-activated protein kinase (AMPK) activity in the same insulin-

sensitive tissues. 

In the present work we have demonstrated that chronic caffeine intake was capable of restore 

insulin sensitivity and glucose tolerance in a prediabetes animal model, however we did not know if the 

same will happens with a type 2 diabetes model, therefore as a future work we want to elucidate if 

caffeine is capable of restore these same metabolic parameters in a animal model of type 2 diabetes, 

which is obtained by a combined model of high sucrose plus high fat diet.  

Finally, we want to translate this data to the clinic and for that we prompt us to start a clinical trial 

to evaluate the benefits of chronic caffeine intake in volunteer subjects with prediabetes, hypertension, 

metabolic syndrome and type 2 diabetes, also to assess the therapeutic dose of caffeine to be 

administered that restores insulin sensitivity, glucose tolerance and that normalizes blood pressure and 

finally to study the time frame necessary to restore insulin sensitivity, glucose tolerance and that 

normalizes blood pressure in these patients.  

With this, we hope to find that chronic caffeine in Humans also restore some deregulated 

pathological features that are present in metabolic and cardiovascular diseases as it happens in animals 

and to establish the caffeine dose responsible for it. Positive results will allow us to develop cheap and low 

adverse reactions treatment for the most common diseases of the century. 
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