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ABSTRACT 

Water is a limited resource for which demand is growing. Contaminated water from inadequate 

wastewater treatment provides one of the greatest health challenges as it restricts development 

and increases poverty in emerging and developing countries. Therefore, the connection between 

wastewater and human health is linked to access to sanitation and to human waste disposal. 

Adequate sanitation is expected to create a barrier between disposed human excreta and sources 

of drinking water. Different approaches to wastewater management are required for different 

geographical regions and different stages of economic governance depending on the capacity to 

manage wastewater. Effective wastewater management can contribute to overcome the 

challenges of water scarcity. 

Separate collection of human urine at its source is one promising approach that strongly reduces 

the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-

separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, 

reduces pollution of water resources and promotes health. However, the technical realisation of 

urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of 

ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems 

and significant nitrogen losses. 

The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable 

process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead 

to strong inhibition effects during bacterial nitrification. This can further lead to process 

instabilities. The major cause of instability is accumulation of the inhibitory intermediate 

compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring 

can be applied in biological source-separated urine nitrification reactors as a sustainable and 

efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of 

biological activity. Spectrophotometry appears as a promising candidate for the development and 

application of on-line nitrite monitoring.  

Spectroscopic methods together with chemometrics are presented in this work as a powerful tool 

for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the 

estimation of nitrite concentrations using an immersible UV sensor and off-line spectra 

acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance 

spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial 

effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In 

addition, improper mixing together with instabilities in the urine nitrification process appears to 

significantly reduce the performance of the estimation model.  

 

Key-words: Biological nitrification, Chemometrics, Nitrite estimation, Principal Component 

Regression, Source-separated urine, Spectral sensor, UV Spectroscopy. 
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RESUMO 

A água é um recurso limitado para o qual a procura é crescente. A água contaminada proveniente 

de tratamento inadequado de águas residuais conduz a um dos maiores desafios ao nível da 

saúde, condicionado o desenvolvimento de países em vias de desenvolvimento. O vínculo entre 

águas residuais e saúde humana está directamente relacionado com o acesso a saneamento e 

com a eliminação de resíduos humanos.  Espera-se que sistemas de saneamento adequados 

permitam a separação eficaz de dejectos humanos de correntes de águas limpas. Desta forma, 

são requeridas diferentes abordagens na gestão de águas residuais de acordo com diferentes 

áreas geográficas e respectivos níveis de desenvolvimento económico. A gestão eficaz de águas 

residuais pode contribuir para solucionar a problemática de escassez de água. 

A separação diferenciada de urina humana surge como uma promissora abordagem no sentido 

de reduzir grandemente as exigências económicas e energéticas em estações de tratamento de 

águas residuais. O tratamento de urina diferenciada apresenta-se como um sistema de 

saneamento económicamente viável, que possibilita a produção de um fertilizante de grande 

valor, reduzindo ainda a poluição  dos recursos hidricos e promovendo a saúde humana. No 

entanto, a técnica de separação diferenciada de urina enfrenta ainda alguns desafios. A hidrólise 

biológica da ureia causa um aumento notável de amónia e pH. Nestas condições ocorre 

volatilização da amónia o que pode originar problemas de odor e percas significativas de azoto. 

Os problemas referidos podem ser evitados através da estabilização da urina, sendo a 

nitrificação biológica um processo apropriado para a sua estabilização. Sendo a urina uma 

solução de nutrientes extremamente concentrada, podem ocorrer durante a nitrificação 

significativos efeitos de inibição. A principal causa de falhas no processo é a acumulação de 

nitrito (intermediário da reacção) que funciona como inibidor, o que pode levar ao colapso do 

processo. A monitorização on-line do nitrito pode ser aplicada em reactores de nitrificação de 

urina diferenciada como uma forma sustentável e eficiente para melhorar o desempenho do 

mesmo, evitando falhas e, eventualmente, a perda de atividade biológica. A espectrofotometria 

é uma técnica promissora para o desenvolvimento e aplicação da monitorização on-line de nitrito. 

Métodos espectroscópicos juntamente com métodos quemiométricos são apresentados neste 

trabalho como uma ferramenta valiosa para estimar as concentrações de nitrito. Uma regressão 

de componentes principais (PCR) é desenvolvida para estimar as concentrações de nitrito 

recorrendo a um sensor de UV imersível e a aquisição espectral off-line. Neste trabalho são 

investigados o efeito de partículas e o efeito de saturação no espectro de absorção UV. A análise 

permite concluir que (i) a saturação apresenta um efeito significativo na quantificação de nitrito; 

(ii) as partículas afiguram-se como tendo uma importância menor na quantificação de nitrito. 

Adicionalmente, agitação imprópria juntamente com instabilidades no processo de nitrificação de 

urina reduzem significativamente a eficiência do modelo. 

 

Palavras-chave: Espectroscopia de UV, Nitrificação biológica, Previsão de nitrito; Quemiometria, 

Regressão de Componentes Principais, Sensor espectral, Urina diferenciada. 

 



 
 

iv 
 

 

 

 

 

  



 
 

v 
 

TABLE OF CONTENTS 

 
ABSTRACT .................................................................................................................................... i 

RESUMO ....................................................................................................................................... iii 

1 INTRODUCTION ........................................................................................................................ 1 

1.1 BACKGROUND ................................................................................................................... 1 

1.2 OBJECTIVES ...................................................................................................................... 4 

1.3 STRUCTURE OF THE THESIS .......................................................................................... 4 

2 LITERATURE REVIEW .............................................................................................................. 7 

2.1 URINE SOURCE SEPARATION ......................................................................................... 7 

2.2 BIOLOGICAL PROCESSES................................................................................................ 8 

2.2.1 UREA HYDROLYSIS: UREOLYSIS ............................................................................. 8 

2.2.2 BIOLOGICAL NITRIFICATION ..................................................................................... 8 

2.3 ULTRAVIOLET (UV) SPECTROSCOPY ............................................................................. 9 

2.4 CHEMOMETRICS ............................................................................................................. 11 

3 MATERIALS AND METHODS ................................................................................................. 15 

3.1 RESEARCH STRATEGY .................................................................................................. 15 

3.2 MATERIALS....................................................................................................................... 16 

3.2.1 URINE SAMPLES ....................................................................................................... 16 

3.2.2 UV SPECTROMETER ................................................................................................ 16 

3.2.3 REFERENCE TESTS: Hach-Lange Cuvette Tests .................................................... 17 

3.2.4 FILTERS ..................................................................................................................... 17 

3.2.5 REAGENTS ................................................................................................................ 18 

3.3 EXPERIMENTAL PROCEDURE ....................................................................................... 19 

3.3.1 PRIMARY SATURATION EFFECT EXPERIMENT .................................................... 19 

3.3.1.1 Sample Collection and Pre-treatment (Decantation) ............................................ 19 

3.3.1.2 Sample Dilutions ................................................................................................... 20 

3.3.1.3 UV-Spectra Collection .......................................................................................... 21 

3.3.1.4 Chemical Analysis: Ammonium, nitrite and nitrate determination ........................ 21 

3.3.2 PARTICLES AND SATURATION EFFECT EXPERIMENT ........................................ 22 

3.3.2.1 Sample Collection and Pre-treatment (Decantation) ............................................ 22 

3.3.2.2 Sample Filtration ................................................................................................... 22 

3.3.2.3 Sample Preparation/Dilution ................................................................................. 23 

3.3.2.4 Preparation of Nitrite Stock-Solutions .................................................................. 24 

3.3.2.5 UV-Spectra Collection and Analysis ..................................................................... 24 

3.3.2.6 Chemical Analysis: Ammonium, nitrite and nitrate determination ........................ 25 

3.4 MODELLING ...................................................................................................................... 26 

3.4.1 PRIMARY SATURATION EFFECT EXPERIMENT .................................................... 26 

3.4.2 PARTICLES AND SATURATION EFFECT EXPERIMENT ........................................ 27 

3.4.2.1 Data Pre-Processing ............................................................................................ 27 

3.4.2.2 PCA Calibration: Singular Value Decomposition (SVD) ....................................... 28 

3.4.2.3 PCA Application .................................................................................................... 28 

3.4.2.4 PCR Calibration and Application .......................................................................... 28 



 
 

vi 
 

3.4.2.5 Cross-validation .................................................................................................... 29 

4 RESULTS AND DISCUSSION ................................................................................................. 31 

4.1 AMMONIUM, NITRITE AND NITRATE DETERMINATION .............................................. 31 

4.2 PRIMARY EVALUATION ON SATURATION EFFECT ..................................................... 33 

4.3 PARTICLES EFFECT AND SATURATION EFFECT EXPERIMENT ............................... 38 

4.3.1 ESTIMATION OF NITRITE (NO2--N) CONCENTRATIONS ....................................... 39 

4.3.1.1 Case (1) - Micro Filtration (0.7 µm), Dilution (1:10) and NO2
- stock-solution 

addition (5 ml) ................................................................................................................... 39 

4.3.1.2 CASE (2) –Non-Filtration, Dilution (1:10) and NO2
- stock-solution addition (5 ml)

 .......................................................................................................................................... 43 

4.3.1.3 CASE (3) – Micro Filtration (0.7 µm), non-Dilution and NO2
- stock-solution 

addition (5 ml) ................................................................................................................... 46 

4.3.1.4 Summary of Results for cases (1), (2) and (3) ..................................................... 49 

4.3.1.5 CASE (1.1) - Micro Filtration (0.7 µm), Dilution (1:10) and NO2
- stock-solution 

addition (5 ml) ................................................................................................................... 50 

4.3.1.6 CASE (2.1) –Non-Filtration, Dilution (1:10) and NO2
- stock-solution addition (5 ml)

 .......................................................................................................................................... 52 

4.3.1.7 CASE (3.1) – Micro Filtration (0.7 µm), non-Dilution and NO2
- stock-solution 

addition (5 ml) ................................................................................................................... 54 

4.3.1.8 Summary of Results for cases (1.1), (2.1) and (3.1) ............................................ 57 

4.3.2 ESTIMATION OF NITRATE (NO3
--N) CONCENTRATIONS ...................................... 58 

4.3.2.1 CASE (1.1.1) - Micro Filtration (0.7 µm), Dilution (1:10) and NO2
- stock-solution 

addition (5 ml) ................................................................................................................... 58 

5 CONCLUSIONS AND FUTURE DEVELOPMENTS ................................................................ 63 

6 REFERENCES ......................................................................................................................... 67 

APPENDIXES.............................................................................................................................. 71 

APPENDIX I. Matlab Code: Primary Saturation Effect Experiment......................................... 71 

APPENDIX II. Matlab Code: Particles and Saturation Effect Experiment ............................... 73 

APPENDIX III. Primary Saturation Effect Experiment: Results of data set 1 .......................... 80 

 
  



 
 

vii 
 

INDEX OF FIGURES 

 
Figure 2.1. Electromagnetic spectrum (Thomas & Theraulaz, 2007) ......................................... 10 
Figure 3.1. s::can spectrometer probe - measuring section ........................................................ 16 
Figure 3.2. Melitta® Coffee filter.................................................................................................. 18 
Figure 3.3. Schematic diagram of Saturation Effect Experiment ................................................ 19 
Figure 3.4. Sample Collection and Decantation steps: (a) Nitrification reactor; (b) Urine sampling 
(c) Urine plastic container; (d) Imhoff cones ............................................................................... 20 
Figure 3.5. Ammonium, nitrite and nitrate determination by means of Hach-Lange reference 
tests (a) Sample microfiltration; (b) Hach-Lange reference tests; (c) Hach DR2800 
spectrophotometer ...................................................................................................................... 21 
Figure 3.6. Schematic diagram of Particles Effect Experiment ................................................... 22 
Figure 3.7. Sample Filtration: (a) Coffee filtration and (b) Microfiltration .................................... 23 
Figure 3.8. Non-diluted and 10x diluted samples ........................................................................ 23 
Figure 3.9. Data collection ........................................................................................................... 24 
Figure 4.1. Measured ammonium, nitrite and nitrate concentrations in the collected samples, by 
means of reference tests ............................................................................................................. 31 
Figure 4.2. UV spectra for all the measured samples and for all applied dilutions ..................... 33 
Figure 4.3. Absorbance for the chosen wavelengths (220, 225, 230, 235, 240 nm) as a function 
of Urine fraction for (a) data set 1 and (b) data set 2 .................................................................. 34 
Figure 4.4. Linear regression of urine fraction as a function of Absorbance for the chosen 
wavelengths (220, 225, 230, 235, 240 nm) for (a), (c), (e), (g) data set 1 and (b), (d), (f), (h) data 
set 2 ............................................................................................................................................. 35 
Figure 4.5. (a)-(d) Predicted absorbances as function of measured absorbance, for the chosen 
wavelengths (220, 225, 230, 235, 240 nm) of data set 2 ............................................................ 36 
Figure 4.6. (e)-(h) Prediction errors as function of measured absorbance, for the chosen 
wavelengths (220, 225, 230, 235, 240 nm) of data set 2 ............................................................ 37 
Figure 4.7. Case 1. (a) UV absorbance spectra and (b) UV absorbance spectra centred, 
acquired for all the measured samples ....................................................................................... 39 
Figure 4.8. Case 1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st PC. ..................................................................... 40 
Figure 4.9. Case 1. (a) PC1 score as a function of sample index and (b) Nitrite Concentrations - 
predicted vs. measured with 1-PC model ................................................................................... 41 
Figure 4.10. Case1. (a) PC1 score as a function of sample index and (b) Nitrite Concentrations - 
predicted vs. measured with 1-PC model, after outliers removal ................................................ 41 
Figure 4.11. Case1. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set. . 42 
Figure 4.12. Effect of original variables (loadings) upon 1st and 2nd PC for the calibration data 
set; (b) PC2 score as a function of sample index ........................................................................ 43 
Figure 4.13. Case 2. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st PC. .................................................................... 44 
Figure 4.14. Case 2. (a) PC1 score as a function of sample index: (b) Nitrite Concentrations - 
predicted vs. measured with 1-PC model ................................................................................... 44 
Figure 4.15. Case 2. (a) PC1 score as a function of sample index and (b) Nitrite Concentrations 
- predicted vs. measured with 1-PC model, after outliers removal ............................................. 45 
Figure 4.16. Case 2. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set .. 45 
Figure 4.17. Case 3. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st and 2nd PC ....................................................... 46 
Figure 4.18. Case 3. (a) PC1 and (b) PC2 scores as a function of sample index ...................... 47 
Figure 4.19. Case 3. Nitrite Concentrations - predicted vs. measured with 2-PCs model (a) 
before outlier removal and (b) after outlier removal .................................................................... 47 
Figure 4.20. Case 3. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set .. 48 
Figure 4.21. Case 1.1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st PC. .................................................................... 50 
Figure 4.22. Case 1.1. (a) PC1 score as a function of sample index and (b) Nitrite 
Concentrations - predicted vs. measured with 1-PC model, after outliers removal .................... 51 
Figure 4.23. Case 1.1. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set .. 51 



 
 

viii 
 

Figure 4.24. Case 2.1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st PC. .................................................................... 52 
Figure 4.25. Case 2.1. (a) PC1 score as a function of sample index after outliers removing; (b) 
Nitrite Concentrations - predicted vs. measured with 1-PC model after outliers removal ........... 53 
Figure 4.26. Case 2.1. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set .. 53 
Figure 4.27. Case 3.1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st and 2nd PC ....................................................... 54 
Figure 4.28. Case 3.1. (a) PC1 and (b) PC2 scores as a function of sample index after outliers 
removal ........................................................................................................................................ 55 
Figure 4.29. Case 3.1. Nitrite Concentrations - predicted vs. measured with 2 PCs model after 
outliers removal ........................................................................................................................... 55 
Figure 4.30. Case 3.1. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set .. 56 
Figure 4.31. Case 1.1.1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st PC. ..................................................................... 58 
Figure 4.32. Case1. (a) PC1 score as a function of sample index; (b) Nitrate Concentrations - 
predicted vs. measured with 1-PC model ................................................................................... 59 
Figure 4.33. Case 1.1.1. (a) PC1 score as a function of sample index after outliers removing; (b) 
Nitrate Concentrations - predicted vs. measured with 1-PC model after outliers removing ....... 59 
Figure 4.34. Case1. (a) SSR as a function of model dimensions for the validation data set; (b) 
Predicted Concentration as a function of Measured Concentration for the validation data set .. 60 
Figure 4.35. Case1.1.1. Predicted Nitrate Concentration as a function of Measured Nitrate 
Concentration for the validation data set with 1-PC and 11-PCs ................................................ 60 
Figure A.0.1. Predicted absorbances as function of measured absorbance for the chosen 
wavelengths (220, 225, 230, 235, 240 nm) of data set 1 ............................................................ 80 
 

  



 
 

ix 
 

INDEX OF TABLES 

 
Table 3.1. Reference tests used for determination of ammonium, nitrite and nitrate 
concentrations in the collected samples ..................................................................................... 17 
Table 3.2. Glass microfiber filters used in experiments .............................................................. 17 
Table 3.3. Sample dilutions applied for UV-spectra measurements ........................................... 20 
Table 3.4. Reference tests used for determination of ammonium, nitrite and nitrate 
concentrations in the collected samples of the saturation effect experiments ............................ 21 
Table 3.5. Sample fractions used for UV-spectra measurements .............................................. 25 
Table 4.1. Type of samples acquired and corresponding number of measurements in the 
particles effect and saturation effect experiment ......................................................................... 38 
 

  



 
 

x 
 

  



 
 

xi 
 

INDEX OF ACRONYMS   

 

AOB Ammonia-Oxidising Bacteria 

CV Cross Validation 

EMR Electromagnetic Radiation 

HCO3
- Carbonic Acid 

HNO2 Nitrous Acid 

LOOCV Leave-One-Out Cross Validation 

MBBR Moving Bed Biofilm Reactor 

NOB Nitrite-Oxidising Bacteria 

NH3 Ammonia 

NH4
+ Ammonium 

NO2
- Nitrite 

NO3
- Nitrate 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PLS Partial Least Squares 

SSR Sum of Squared Residuals 

SVD Singular Value Decomposition 

WWTP Wastewater Treatment Plant 

 

 
  



 
 

xii 
 

 
 
  



 
 

1 

1 INTRODUCTION 

1.1 BACKGROUND 

The production of waste from human activities is inevitable. A significant part of this waste ends 

up as wastewater (Henze & Comeau, 2008). The primary aim of wastewater treatment is the 

removal of nutrients, organic matter and suspended solids contained in wastewater influent. This 

is usually carried out by using several unit processes, which include biological, chemical and 

physical treatment methods (Sedlak, 1991). Current treatment of wastewater presents several 

shortcomings throughout the treatment process, e.g. consumption of high amounts of resources, 

loss of valuable nutrients into water bodies and poor elimination of micropollutants (Udert et al., 

2006). Furthermore, incomplete wastewater treatment contributes to eutrophication (Lienert & 

Larsen, 2009), caused by the water enrichment in nutrients, particularly phosphorus and nitrogen, 

which lead to great development of algae and consequent deterioration of water quality 

(Fernández et al., 2014). Thus, managing wastewater and the resources it contains is an 

important step towards ecologically sustainable development (Ganrot, 2005).  

The importance of wastewater management is more striking in emerging and developing 

countries, which have inadequate infrastructure and resources to address wastewater 

management in an efficient and sustainable way. Therefore, providing adequate sanitation is a 

major challenge for these countries (Udert et al., 2006). Adapting centralized sanitation systems 

from industrialized countries to poorer and water scarce countries is nearly impossible as these 

systems require enormous capital investments and high amounts of water (Lienert & Larsen, 

2009). Moreover, the typical wastewater treatment turns valuable resources into pollutants 

(Ganrot, 2005). Innovative approaches in wastewater management will generate significant 

returns, as addressing wastewater is a key step in reducing poverty and sustaining ecosystems 

(Corcoran et al., 2010). New technologies focus on the recovery of resources such as water, 

nutrients and energy instead of simply preventing pollution (Udert & Wächter, 2012). One very 

promising approach is the separation of wastewater streams and their specific treatment in 

decentralized reactors (Udert & Wächter, 2012). The separate collection and treatment of urine 

has attracted considerable attention in the engineering community in the last few years and has 

been seen as a viable option for enhancing the sustainability of wastewater management (Maurer 

et al., 2006).  

Urine contains most of the nutrients in domestic wastewater (typically 80% of nitrogen and 50% 

of phosphorus (Lienert & Larsen, 2009)), however makes up less than one percent of the total 

wastewater volume and contributes with many problematic micropollutants such as synthetic 

hormones, pharmaceuticals and their metabolites (Maurer et al., 2006; Udert et al., 2003; Udert 

et al., 2006). Separation of urine at the source allows for high nutrient recycling from a 

concentrated nutrient solution and at the same time avoids advanced nutrient removal, including 

phosphorus elimination and the nitrogen removing processes nitrification and denitrification 

(Maurer et al., 2006). Urine separation relieves conventional wastewater treatment, facilitates the 

elimination of organic micropollutants originating from the human metabolism (Udert et al., 2003 

a)) and mitigates the negative impact of eutrophication in water bodies (Lienert & Larsen, 2009).  
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Moreover, urine is a natural resource, which is available in all human societies, even in the poorest 

ones (Heinonen-Tanski et al., 2007).  

Urine contains high amounts of nitrogen, phosphorus and potassium, which makes its use as a 

fertilizer in agriculture the most appropriate and obvious application (Maurer et al., 2006). Since 

fertilizers have a market value, separate collection and treatment of urine has the potential to 

motivate private business initiatives, which help to promote sanitation in emerging and developing 

countries (Udert & Wächter, 2012). In addition, urine treatment is also essential regarding the 

prevention of the release of micropollutants into the environment (Udert et al., 2006).  

Apart from all the positive aspects of source-separated urine, some process aspects can be 

enhanced (Larsen & Gujer, 1996). Source-separated urine is a highly concentrated and unstable 

solution (Udert et al., 2003). Fresh urine contains salts, soluble organic matter and urea. During 

storage, urine undergoes microbial contamination. Urea, the main component of urine, 

decomposes quickly (hydrolysis) into ammonia (NH3) and carbonic acid (HCO3
-). Ammonia is 

released into the bulk liquid and the pH increases strongly. At the same time, organic matter is 

degraded and malodorous compounds are produced (Maurer et al., 2006). After storage, urine 

contains a large amount of ammonia, which can volatilise and be lost during transport or 

application as fertilizer (Udert et al., 2003). This can be avoided by stabilisation of urine. Urine 

stabilisation can be performed by means of biological nitrification (Udert & Wächter, 2012). The 

urine stabilisation is essential to prevent both environmental pollution and negative effects on 

human health as well as to retain nitrogen in solution for later recovery (Udert et al., 2006).  

Biological nitrification is a microbial process by which reduced nitrogen compounds (primarily 

ammonia) are sequentially oxidized to nitrite (NO2
-) and nitrate (NO3

-), by ammonia oxidising 

bacteria (AOB) and nitrite oxidising bacteria (NOB), respectively. High concentrations in urine, 

mainly of salt, ammonia and nitrous acid (HNO2), can inhibit biological nitrification and make the 

process sensitive to instabilities. A major concern is accumulation of the inhibitory intermediate 

NO2
-, since it can lead to process breakdown (VUNA, 2013). In a well-functioning biological 

nitrification reactor the NO2
- concentration is normally very low. However, under special 

circumstances enrichment of nitrite can be caused by disturbances in the microbiological 

processes. Inhibition due to toxic substances or to unfavourable conditions for the nitrite oxidizer 

(NOB) are also reported in conventional wastewater treatment plants (WWTP) (Rieger et al., 

2008).  

Stable biological nitrate production requires the nitrite oxidation to be as fast as the ammonia 

oxidation. Thus, it is of major importance to monitor the nitrification process carefully. Monitoring 

of the NO2
- concentrations is particularly crucial (Maurer et al., 2006). Among the potential 

candidates for the development and application of on-line NO2
--N measurements, spectroscopy 

is promising and could lead to interesting results (Paulo, 2008). Spectroscopy is the basis for non-

invasive and non-destructive measuring systems (Pons et al., 2004). Rieger et al., 2008, 

demonstrate that for conventional wastewater systems measuring variables on-line with a single 

sensor will increase the monitoring capability and enable appropriate control of the process.  

Currently, there are several continuous sensors and analysers capable of operating on-line, 

among them the UV spectrophotometry sensors. UV spectrophotometry is promising for 

measuring NO2
- concentrations in the urine nitrification reactor because nitrite dissolved in water 
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absorbs UV light mostly at wavelengths below 250 nm. This absorption makes it possible to have 

a photometric determination without reagents by using a sensor positioned in the media (Drolc & 

Vrtovsek, 2010). 

Although the peak absorbance wavelengths in the UV range are well known for nitrite, the urine 

nitrification system causes a number of interferences. Turbidity is the most important influence on 

in-situ absorption, typically occurring due to suspended solids causing light scattering and 

shading, which influences absorption over the entire spectrum (Langergraber, 2003). Sample 

filtration has been proposed to reduce turbidity (Pons et al., 2004). Interferences stemming from 

organic matter and other ions which absorb in the same wavelength range should also be taken 

into account (Rieger et al., 2008). All these interferences could lead to unreliable measurement 

results (Drolc & Vrtovsek, 2010).  

Spectroscopic methods together with chemometrics are being presented as a powerful tool for 

process monitoring and control of biotechnological processes. They combine a “hard” part, for 

sensing, and a “soft” part, for data treatment (Pons et al., 2004). Models for on-line estimation 

address the problem of reconstructing the relationship existing between the process inputs (easy-

to-measure variables) and the process outputs (hard-to-measure variables). Relationships 

regarding the input and output variables can be modelled by solving a regression problem. The 

simplest regression techniques assume the existence of a linear input-output relationship. For 

instance, they fit a linear model to reconstruct it by means of multivariate statistics (Haimi et al., 

2013). The term multivariate calibration refers to the process of constructing a mathematical 

model that relates the absorbances of a set of known reference samples at more than one 

wavelength to a property of the sample such as a concentration or identity (Drolc & Vrtovsek, 

2010). 

Multivariate modelling can provide an interpretable description of how the inputs affect the 

outputs. When large numbers of inputs exist, multivariate statistical methods combine reduction 

techniques and linear regression to reduce the dimensionality of the modelling problem. This 

usually makes the model easier to understand and increases the quality of the produced 

estimates. Commonly used methods include principal component regression (PCR) and partial 

least square (PLS) regression (Haimi et al., 2013). 

Principal components regression (PCR) is used when there is a large number of predictor 

variables and those predictors are highly correlated or even collinear. PCR constructs new 

predictor variables, known as components, as linear combinations of the original predictor 

variables (Maesschalck et al., 1999). This method can be used to make data easier to understand 

by extracting relevant information and modelling it. PCR is typically used to deal with large 

amounts of data, such as spectral data. It makes use of data directly collected from the process 

to build an empirical model, providing graphical tools that are easy to apply and to interpret, 

making them very useful for real-time control and monitoring (Aguado & Rosen, 2008).  

PCR is applied in this work as a method to create a model for the estimation of nitrite 

concentrations using an immersible UV-sensor and off-line spectra acquisition. The successful 

implementation of a nitrite estimation model in the nitrification reactor is promising in terms of 

process monitoring and prevention of process breakdown. 
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1.2 OBJECTIVES 

The main goal of this thesis is to develop a chemometric PCR model for estimation of nitrite 

concentrations in a nitrification reactor treating stored source-separated urine. Estimation of nitrite 

concentrations in the urine nitrification reactor is vital for the operation of the same, since it could 

avoid system failures and, potentially, a total system breakdown. A PCR model for estimation of 

nitrate concentrations is developed as well. 

 

A number of important factors that could affect the performance of the sensor and the associated 

PCR model are investigated. These are the effect of particles, which can cause back-scattering, 

and the effect of saturation, which could make linear models impractical.  

 

Ultimately, the proposed work is expected to contribute to biological urine nitrification process 

stabilization.  

 

1.3 STRUCTURE OF THE THESIS 

The thesis includes the following chapters and contents: 

 

1. Introduction  

2. Literature review  

3. Materials and methods  

4. Results and discussion  

5. Conclusions and future developments  

6. References  

 

Chapter 1 includes the background, objectives and the structure of the thesis. Chapter 2 provides 

an introduction to the concepts presented and discussed in this thesis. Additionally, it serves the 

purpose of reviewing the pertinent literature, and therefore, the main advances put forward in the 

last years. Thus, it attempts to create the necessary base for a constructive and supported 

discussion of the results found from the current work. The materials and methods applied are 

presented in Chapter 3.  Chapter 4 reports the results and discussion for all experiments and was 

divided in two parts. The first part (4.1) includes the effects of saturation in UV absorbance spectra 

and the second part (4.2) discusses the effects of particles and saturation in UV absorbance 

spectra. Main conclusions and proposals for future work developments are presented in Chapter 

5.  
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2 LITERATURE REVIEW 

The most important concepts discussed in this thesis will be presented in the following 

paragraphs. In Section 2.1 a brief introduction to urine source separation technology is presented, 

followed by a description of the main biological processes involved in source-separated urine 

stabilisation (Section 2.2). Sections 2.3 and 2.4 introduce the UV spectroscopy fundamentals and 

chemometric principles by means of a review of the pertinent literature. 

 

2.1 URINE SOURCE SEPARATION 

Managing wastewater and the resources it contains is tremendously important for an ecologically 

sustainable development (Ganrot, 2005). Conventional wastewater treatment system functions 

well, at least in developed countries. However, this system always lags behind with respect to 

upcoming environmental problems (Corcoran et al., 2010). In addition, adapting the same system, 

which is extremely wasteful of water and energy, is nearly impossible in poor and arid countries. 

This impracticality leads to devastating consequences for human health (Lienert & Larsen, 2009). 

Nutrient losses to the environment can be strongly reduced if nutrients from wastewater are 

recycled, for instance for agricultural applications (Udert, 2002).  

One promising alternative to the current mixing of waste streams is the separate collection and 

treatment of urine. Separate collection of urine allows to recover valuable nutrients such as 

nitrogen, phosphorous and potassium. Subsequently, by keeping urine out of the sewage system, 

wastewater treatment plants would reportedly receive 80 percent less nitrogen and 50 percent 

less phosphorous. Hence, the recovered nutrients can be used as fertiliser in agriculture (VUNA, 

2013). An additional advantage of urine separation could be the elimination of micropollutants, 

mainly excreted with urine (Udert, 2002). 

Urine source separation comes in several variations. The main principle is to always divert urine 

from faeces in the toilet bowl by a separate outlet. In urine-collecting systems the separated urine 

is directed to a collection tank with or without flushing water and stored for later transport to a 

treatment facility (Lienert & Larsen, 2009). Microbial urea hydrolysis occurs in the collection tank. 

The present work addresses a setting with water-flushed urine diverting NoMix-technology 

applied at Eawag, Switzerland. According to Lienert & Larsen, (2009), NoMix-technology is a 

promising innovation aiming at a decentralized approach in urban wastewater. Sweden is a 

pioneering country regarding the above technology, followed by other Northern and Central 

European countries and more recently Australia and China, where several urine-diverting toilets 

have been installed and successfully tested. 

During urine storage both ammonia concentration and pH increase due to urea degradation. High 

pH values cause ammonia volatilisation leading to odour problems and nitrogen losses during 

handling of stored urine. Therefore, source-separated urine needs to be pre-treated in order to 

stabilise it. Urine stabilisation can be achieved by means of biological nitrification. 

  

A brief explanation of the main biological processes involved in the collection and treatment of 

source-separated urine is introduced in Section 2.2. 
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2.2 BIOLOGICAL PROCESSES 

 2.2.1 UREA HYDROLYSIS: UREOLYSIS 

Microbial urea hydrolysis, ureolysis, corresponds to the degradation process of urea, the main 

component of urine (Udert, 2002). The enzyme urease, hydrolyses urea to ammonia and 

carbonate (Maurer et al., 2006). Carbonate decomposes spontaneously to carbonic acid and 

ammonia (Udert & Wächter, 2012). The overall reaction can be written as 

 

CO(NH2)2 + 2 H2O 
   urease   
→       2NH3 + H2CO3                                                        (2.1) 

 

During urea degradation, ammonia (NH3) is released and the pH increases strongly (Udert et al., 

2003). At the same time, anaerobic bacteria produce malodorous compounds, which are 

responsible for the characteristic strong smell of stored urine (Maurer et al., 2006). In addition, 

urea degradation is a very fast process. All urea is hydrolysed after little more than one day of 

retention time. Under these conditions large amounts of phosphate minerals precipitate, which 

can lead to pipe blockages (Udert, 2002).  

Thus, urine stabilisation is essential to prevent both environmental pollution and negative effects 

on human health. In addition, it retains nitrogen in solution for later recovery (Udert et al., 2006).  

Biological nitrification is a method for preventing the ammonia volatilisation from stored urine 

(urine stabilisation) and will be discussed in detail in Section 2.2.2. In addition to the nitrogen 

stabilisation, the biological treatment of urine has further beneficial effects: 80% of the organic 

compounds (based on chemical oxygen demand) are degraded and the unpleasant odour is 

eliminated (Udert, 2002).  

 

2.2.2 BIOLOGICAL NITRIFICATION 

Nitrification is the biological oxidation of ammonia to nitrate with nitrite formation as an 

intermediate (Sedlak, 1991). The nitrification process is primarily accomplished by two groups of 

autotrophic nitrifying bacteria that can build organic molecules using energy obtained from 

nitrogen containing inorganic sources, in this case ammonia and nitrite (Bock & Wagner, 2006). 

In the first step of nitrification, ammonia-oxidising bacteria (AOB) oxidize ammonia to nitrite 

according to Equation 2.2. 

NH3 +
3

2
 O2 → NO2

− + 3H+ + H2O                                              (2.2) 

 
Nitrosomonas is the most frequently identified genus associated with this step, although other 

genera, including Nitrosococcus and Nitrosospira can be present (EPA, 2002). In the second step 

of the process, nitrite-oxidising bacteria (NOB) oxidize nitrite to nitrate according to Equation 2.3. 

 

NO2
− +

1

2
 O2 → NO3

−                                                                             (2.3) 
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Nitrobacter is the most frequently identified genus associated with this second step, although 

other genera, including Nitrospina, Nitrococcus and Nitrosospira can also autotrophically oxidize 

nitrite (EPA, 2002). Both groups of nitrifying bacteria are obligate aerobic organisms commonly 

found in terrestrial and aquatic environments. Their growth rates are controlled by substrate 

(ammonia and nitrite) concentrations, temperature, pH, light, oxygen concentrations and 

microbiological community composition (EPA, 2002). 

Owing to stored urine alkalinity, nitrifying bacteria oxidise just half of the NH3 to non-volatile nitrate 

(NO3
- ion). Ammonia-oxidising bacteria (AOB) convert ammonia to nitrite (NO2

-), which is the 

substrate for the second group of bacteria, the nitrite-oxidising bacteria (NOB) that produces 

nitrate (NO3
-). The remaining NH3 is converted to non-volatile ammonium (NH4

+ ion), due to the 

release of protons (VUNA, 2013). Nevertheless, almost all ammonium can be oxidized to nitrate, 

by adding additional alkalinity. Additional alkalinity leads to an equilibrium shift (Udert & Wächter, 

2012). 

The activities of AOB and NOB are strongly dependent on the pH as the concentration of their 

substrates, NH3 (AOB) and HNO2 (NOB) are in a pH dependent equilibrium with their acid (NH4
+) 

or base (NO2
-) (Udert, 2002). As nitrite is an intermediate product of the two-step process of 

nitrification and the second step of nitrification is rather fast, the nitrite concentration in a steady 

biological nitrification is normally very low. Enrichment of nitrite in the system is a major concern 

and usually suggests that the microbiological process is disturbed/inhibited. Extreme events could 

lead to an increased influent to the nitrification reactor, increasing NH3 concentration and 

consequently pH values. Due to higher availability of NH3 at higher pH values, AOB activity 

increases immediately. NOB reacts too slowly to the rising nitrite concentration. As a 

consequence, nitrite keeps increasing and the HNO2 concentration approaches values that could 

cause complete NOB inhibition and lead to process breakdown (Udert & Wächter, 2012). Thus, 

it is imperative for the well-functioning of the biological nitrification process to monitor the nitrite 

concentrations. 

 

2.3 ULTRAVIOLET (UV) SPECTROSCOPY 

Among the potential candidates for the development and application of on-line measurements, 

spectroscopy is very promising, since it can be the basis for non-invasive and non-destructive 

measuring systems (Pons et al., 2004). The use of submersible equipment which can perform a 

spectra analysis directly in liquid media for determination of several parameters in the effluent of 

a conventional WWTP such as nitrite and nitrate, has been successfully applied using the UV 

spectra range 200-400 nm (Rieger et al., 2004). 

Spectroscopic processes rely on the fact that electromagnetic radiation (EMR) interacts with 

atoms and molecules in discrete ways to produce characteristic absorption or emission profiles 

(Thomas & Theraulaz, 2007). EMR is energy that is propagated through free space or through a 

material medium in the form of electromagnetic waves. The various types of radiation can be 

defined in terms of their wave frequency and when EMR is spread out according to its wavelength, 

the result is a spectrum (Thomas et al., 1996). The types of EMR that make up the 

electromagnetic spectrum are presented in Figure 2.1. 
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Figure 2.1. Electromagnetic spectrum (Thomas & Theraulaz, 2007) 

 

 

UV spectroscopy is the study of how a sample responds to ultraviolet light. When a beam of light 

passes through a substance or a solution, some of the light may be absorbed and the remainder 

transmitted through the sample. The most important principle in absorption analysis is the 

Lambert–Beer’s law (Upstone, 2000). This law states that, for a given ideal solution, there is a 

linear relation between absorption and concentration of a single determinant (Langergraber et al., 

2003). Thus UV spectroscopic techniques used for quantifying purposes are based on the 

mentioned law. According to Lambert-Beer’s law, for a single wavelength and a single component, 

absorbance is a linear function of the concentration of the component and the following relation 

(Equation 2.4) is valid: 

 

A = ε. b. c                                                                                         (2.4) 

 

where A is the absorbance, ε is the molar absorptivity (mol-1.cm-1), which is constant for each 

chemical compound and for each wavelength, b is the path length of the cell in which the sample 

is contained (cm) and c is the concentration of the absorber (mol.dm-3). 

Provided that ε and b are kept constant for a given set of experiments, a plot of the sample 

absorbance against the concentration of the absorbing substance should give a linear calibration 

curve going through the origin. In addition, Lambert–Beer’s law allows to change the path length 

to affect the absorbance. The path length can be increased or reduced when lower or higher limits 

are required, respectively. Alternatively, it is possible to reduce the absorbance by diluting the 

sample (Upstone, 2000). 

The Lambert-Beer’s law describes a linear relationship between sample concentration and 

absorbance. However, this relationship is based on a number of assumptions, including that 

radiation is perfectly monochromatic, there are no uncompensated losses due to scattering or 

reflection, there are no molecular interactions between the absorber and other molecules in 

solution and the temperature remains constant. In practice, these assumptions are not always 

met which causes deviations from the ideal Lambert–Beer’s law behaviour (Burgess, 2007). 

Langergraber et al., (2003), and Drolc & Vrtovsek, (2010), report that wastewater monitoring has 
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to deal with superposition of numerous single substance absorbances, sometimes even with 

overlapping peaks, due to numerous dissolved and suspended compounds, which can lead to 

poor performance of the UV sensor. In urine, saturation and turbidity due to high nitrate 

concentrations and suspended particles, respectively, are additional factors influencing the 

measurement. The latter effects could be minimized by dilution and filtration, respectively. 

Previous studies of a saturation effect in a urine nitrification reactor have not been reported. An 

alternative method to reduce saturation is to decrease the path length of the sensor. However, 

for the studied case the applied path length (0.5 mm) cannot be minimized further. 

 

2.4 CHEMOMETRICS 

The term chemometrics was introduced in 1972 by Svante Wold and Bruce Kowalski and has its 

foundation as a discipline in chemistry. In chemometrics the main issue is to structure the 

chemical problem to a form that can be expressed as a mathematical relation, by means of a 

statistical–mathematical method (Otto, 2007). According to Svante Wold, a reasonable definition 

of chemometrics is ‘How to get chemically relevant information out of measured chemical data, 

how to represent and display this information, and how to get such information into data’ and the 

only reasonable way to extract and represent this chemical information is in terms of models 

(Wold, 1995).  

Spectroscopic techniques can deliver a large amount of data when several spectra, with several 

wavelengths, are recorded in order to have as much information as possible related to a process. 

Considering bioprocess applications, the background complexity can complicate the direct 

identification of individual compounds. Therefore, data-reduction techniques such as 

chemometric tools are essential to rapidly extract the relevant information, presenting the data in 

a more clear way. Indirect chemometric models are used in wastewater for correlating the 

concentrations of the required parameters to spectral information. 

Multivariate statistical methods of data analysis are applied to find patterns in data and to 

distinguish those patterns in the samples. Recognition of patterns is feasible with projection 

methods, such as principal component analysis (PCA) and principal component regression (PCR) 

(Otto, 2007). These tools are usually used to deal with large amounts of data, such as spectral 

data. Both methods can be used to make data more understandable by extracting relevant 

information. These methods make use of data directly collected from the process to build an 

empirical model which serves as reference of the desired process behaviour and against which 

new data can be compared. Additionally, they provide graphical tools that are easy to apply and 

to interpret (Aguado & Rosen, 2008). 

Both the PCA and PCR models are linear. The unknown variables are linear functions of the 

known ones (Hyötyniemi, 2001). Linear models are simple and often provide an adequate and 

interpretable description of how the inputs affect the outputs. For prediction purposes they can 

sometimes outperform fancier non-linear models, especially in situations with a small number of 

training cases (Hastie et al., 2001). 

PCA is the multivariate statistical method most frequently used for environmental data analysis. 

It has already been applied in some cases of wastewater monitoring (Pons et al., 2004; Aguado 
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& Rosen, 2008). The main purpose of principal component analysis (PCA) is to reduce the 

dimensionality of a data set consisting of a large number of interrelated variables to a considerably 

smaller number, while retaining as much as possible of the variation present in the data set 

(maximum variance). This reduction is achieved by transforming to a new set of variables, the 

principal components (PCs), which are uncorrelated and ordered so that the first few retain most 

of the variation present in all of the original variables (Jolliffe, 2002). PCA is a popular technique 

to find patterns in data of high dimension and expressing the data in such a way as to highlight 

their similarities and differences (Smith, 2002). PCA models can be computed efficiently by 

singular value decomposition (SVD). 

Multivariate regression models like principal component regression (PCR) and partial least 

squares (PLS) regression are very popular in a wide range of fields. The main reason for this is 

that they have been designed to confront the situation that there are many, possibly related, 

predictor variables, and relatively few samples (Mevik & Wehrens, 2007). The use of UV/Vis 

spectroscopy in combination with multivariate methods was reported to be a useful tool for 

correlating the concentrations of parameters to spectral information. Several studies were 

developed for nitrite and nitrate prediction. Partial least squares (PLS) regression based on 

UV/Vis spectra for prediction of nitrate and organic carbon in groundwater was reported as very 

promising (Dahlen et al., 2000). Rieger et al., 2004, demonstrates that an in-situ UV spectrometer 

together with a multivariate calibration based on PLS was successfully applied to nitrite and nitrate 

concentrations prediction in a WWTP. Similar results were obtained by Langergraber et al., 2003, 

Bouvier et al., 2008, and more recently by Drolc & Vrtovsek, 2010. 
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3 MATERIALS AND METHODS 

3.1 RESEARCH STRATEGY  

 
In order to achieve the central objective of this thesis (defined in Section 1.2), the research 

strategy developed was divided in 2 main steps. 

 

An evaluation of both particles and saturation effects in the UV absorbance spectra was 

performed. The evaluation of particles effect aims to clarify how strong the effect of particles is 

and whether a reasonable estimation of nitrite and nitrate concentrations remains feasible in the 

presence of particles. The target of the saturation effect experiment is to evaluate how the 

presence of saturation influences the estimation of nitrite and nitrate concentrations. 

 

Prior to the evaluation of the effects of particles and saturation in the UV absorbance spectra, 

there is a need to find an ideal dilution – a particular dilution to ensure that no saturation is 

present. This ensures that the best conditions are met for the identification of a linear model. 

Thus, an experiment to characterize the saturation effect empirically was carried out. On the basis 

of this experiment, a dilution was selected which guarantees the absence of saturation. 

 

 

Thus, the research strategy can be described in 2 main experiments: 

 

I. Primary evaluation of saturation effect in the UV absorbance spectra on the 

collected spectra data through dilution experiments.  

UV spectral measurements of diluted treated urine samples (10 different dilutions) were 

performed. The collected data were evaluated with linear models in order to determine a 

reference dilution for the following experiments. The main goal of this step was to find a 

dilution which guarantees that the saturation effect disappears. 

 

II. Investigate the effect of particles and the effect of saturation in the UV absorbance 

spectra. 

UV spectral measurements of treated urine samples, with 3 different types of filtration 

(0.7µm filter, coffee filter and unfiltered), diluted and non-diluted, with and without nitrite 

stock-solution addition, were performed. The applied dilution was based on the results of 

the previous experiment.  

The collected data were evaluated with a multivariate model (PCR), in order to evaluate 

how strong the effect of particles and the effect of saturation are in the referred 

measurements and to clarify if a reasonable estimation of NO2
- and NO3

- concentrations 

is achievable in the presence of particles and saturation.  
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3.2 MATERIALS 

3.2.1 URINE SAMPLES 

The urine samples for the experiments are collected from the nitrification reactor in the Eawag 

main building (Forum Chriesbach). The stored source-separated urine, collected within the 

building, is pre-treated in the nitrification reactor in order to stabilise the urine. The reactor is a 

moving bed biofilm reactor (MBBR) with a volume of 120 L and Kaldnes® K1 biofilm carriers to 

support the growth of nitrifying bacteria. The Kaldnes® biofilm carriers are polyethylene tubes 

with a diameter of 9 mm and a length of 7 mm. Air is supplied by a bubble aeration system (Etter 

et al., 2013; Alexandra Fumasoli, personal communication, July 21, 2014).   

 

3.2.2 UV SPECTROMETER 

The spectro::lyserTM UV, a spectrometer probe manufactured by s::can, is a submersible 

spectrometer of 44 mm diameter and about 0.6 m length, capable of online measurements of UV 

absorption spectra directly in liquid media (in-situ), without sampling or sample treatment and 

without reagents. The sensor provides measurements of spectra in the wavelength region 

between 220 nm and 390 nm (171-dimensional spectra) and displays and/or communicates the 

result in real time. The measuring path is 0.5 mm which is unusual for UV spectrophotometry in 

wastewater processes. Figure 3.1 shows a picture of the applied sensor.  A single measurement 

takes about 45 seconds (s::can, 2007; Langergraber et al., 2003).  

 

The probe consists of three main components: the emitter, measuring cell and receiving unit, with 

a xenon flash lamp as a light source. The measuring section includes (1) optical measuring path, 

(2) cleaning nozzles and (3) fixtures for the measuring path (Figure 3.1). In the measuring path 

(1) the light passes through the space between the two measuring windows which is filled with 

the medium. A second light beam within the probe – compensation beam – is guided across an 

internal comparison section and performs as a reference. 

 

 

Figure 3.1. s::can spectrometer probe - measuring section 
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3.2.3 REFERENCE TESTS: Hach-Lange Cuvette Tests 

Hach-Lange cuvette tests are colorimetric tests that allow identification of the concentrations of 

the compounds of a sample, by means of barcoded cuvettes. A Hach DR2800 spectrophotometer 

is used to automatically identify the cuvette test from its barcode, rotating the cuvette and taking 

10 measurements, eliminating outliers, and showing the measurement result in mg/l (HACH, 

2012). 

 

The Hach-Lange tests used are LCK 303, LCK 341/342 and LCK 340 for ammonia, nitrite and 

nitrate concentrations, respectively (Table 3.1).   

 
Table 3.1. Reference tests used for determination of ammonium, nitrite and nitrate 

concentrations in the collected samples 

 

TESTED 
COMPOUND 

HACH-LANGE 
TEST 

MEASURING 
RANGE 

METHOD 

NH4
+-N LCK 303 2 - 47 mg/l NH4

+-N Indophenol Blue1 

NO2
--N 

LCK 341 
LCK 342 

0.015 - 0.6 mg/l NO2
--N 

0.6 – 6.0 mg/l NO2
--N 

Diazotisation2 

NO3
--N LCK 340 5 - 35 mg/l NO3

--N 2.6-Dimethylphenol3 

 
 

3.2.4 FILTERS 

Glass Fiber Filters: 

Glass fiber filters are widely applicable in many fields of laboratory use due to the exceptionally 

good resistance to most organic and inorganic solvents. They allow a fast filtration with 

simultaneous high particle retention and good loading capacity (Macherey-Nagel, 2014). The 

general characteristics of the used micro filters are presented in Table 3.2. 

 
Table 3.2. Glass microfiber filters used in experiments 

 

GLASS FIBER 
FILTER 
PAPER 

GRADES 

AVERAGE 
RETENTION 
CAPACITY 

(μm) 

WEIGHT 
(g.m-2) 

DIAMETER 
(mm) 

THICKNESS 
(mm) 

FILTRATION 
SPEED 

(s) 

MN GF-1 0.7 55 90 0.3 12 

MN GF-4 1.4 120 90 0.6 5 

MN GF-5 0.4 85 47 0.4 80 

 
 
 
 
 

                                                      
1 Ammonium ions react at pH 12.6 with hypochlorite ions and salicylate ions in the presence of sodium 
nitroprusside as a catalyst to form indophenol blue 
2 Ammonium ions react at pH 12.6 with hypochlorite ions and salicylate ions in the presence of sodium 
nitroprusside as a catalyst to form indophenol blue 
3 Nitrate ions in solutions containing sulphuric and phosphoric acids react with 2.6-dimethylphenol to form 
4-nitro-2.6-dimethylphenol. 
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Coffee Filters: 

Melitta® Original Coffee Filters #4 and #6 made from natural brown paper with multi-layer filtration 

separated into 3 zones (Figure 3.2), each with a different number of perforations (Melitta®, 2014) 

are used to remove a majority of the suspended particles from the samples. 

 

Figure 3.2. Melitta® Coffee filter 

 

3.2.5 REAGENTS 

Ethanol is of HPLC gradient grade, with a purity of ≥ 99.8%, according to the supplier (Sigma-

Aldrich Chemie GmbH, Buchs, Switzerland). Sodium hydroxide (Sigma-Aldrich Chemie GmbH, 

Buchs, Switzerland) and Hydrochloric acid (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) 

are reagent grade of 50% and 37%, respectively. Sodium nitrite (Merck Millipore, Darmstadt, 

Germany) is of extra pure Ph Eur, USP. Detailed product information can be found under CAS 

number 7632-00-0. The laboratory water used in the study is provided by the Thermo Scientific™ 

Barnstead™ NanoPure™ system (Thermo Fisher Scientific, Basel, USA). 
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3.3 EXPERIMENTAL PROCEDURE 

In order to accomplish the central objective of this thesis (defined in Section 1.2), the research 

strategy (defined in Section 3.1) is divided in 2 main experiments and explained in detail in 

Sections 3.3.1 and 3.3.2. 

 

3.3.1 PRIMARY SATURATION EFFECT EXPERIMENT 

The goal of the first experiment is to determine a reference dilution for the following experiments 

and it is schematically represented in Figure 3.3. The experiment was carried out in the Eawag 

laboratory.  

 

 

 

Figure 3.3. Schematic diagram of Saturation Effect Experiment 

 
 
 

3.3.1.1 Sample Collection and Pre-treatment (Decantation) 

Urine samples measuring at least three liter (3 l) are collected from the nitrification reactor (Figure 

3.4 (a) and (b)) in the Eawag main building (Forum Chriesbach) and carried to the Eawag 

laboratory in a plastic container (Figure 3.4 (c)). The volumetric fraction of the suspended solids, 

which is approximately 750 ml, settles relatively fast and is removed by sedimentation and 

decantation. To this end, the urine sample is distributed over 4 Imhoff cones of 1 l (Figure 3.4 (d)). 

Following this, the supernatant was collected from the top of the Imhoff cones for further analysis. 
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By following this procedure, effects of improper mixing during spectral measurements can be 

minimized.  

 

 

Figure 3.4. Sample Collection and Decantation steps: (a) Nitrification reactor; (b) Urine 

sampling (c) Urine plastic container; (d) Imhoff cones 

 3.3.1.2 Sample Dilutions 

After the decantation step, several diluted samples are prepared from the supernatant. The 

dilutions used in each experiment are represented in Table 3.3. 

 
Table 3.3. Sample dilutions applied for UV-spectra measurements 

 

SAMPLE 

 

SAMPLE 

DATE 

(dd.mm.yy) 

SAMPLE 

DILUTION 

VURINE 

(ml) 

VH2O 

(ml) 

VTOTAL 

(ml) 

URINE 

FRACTION 

(%) 

01 03.04.14 1:100 5 495 500 1 

02 02.04.14 1:50 10 490 500 2 

03 03.04.14 1:20 25 475 500 5 

04a 02.04.14 1:10 50 450 500 10 

04b 03.04.14 1:10 50 450 500 10 

05 03.04.14 1:5 100 400 500 20 

06 04.04.14 2:5 200 300 500 40 

07 02.04.14 1:2 250 250 500 50 

08 04.04.14 3:5 300 200 500 60 

09 04.04.14 4:5 400 100 500 80 

10 02.04.14 0 500 0 500 100 

01.1 09.04.14 1:100 5 495 500 1 

02.1 09.04.14 1:50 10 490 500 2 

03.1 09.04.14 1:25 20 480 500 4 

04.1 09.04.14 1:20 25 475 500 5 

05.1 09.04.14 1:10 50 450 500 10 

06.1 09.04.14 1:5 100 400 500 20 

07.1 09.04.14 2.5 200 300 500 40 

08.1 09.04.14 3:5 300 200 500 60 

09.1 09.04.14 4:5 400 100 500 80 

10.1 09.04.14 0 500 0 500 100 

(a) (c) (d) (b) 
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3.3.1.3 UV-Spectra Collection  

Experiments are carried out in a 1000 ml graduated glass cylinder placed on a magnetic agitator 

at 1000 rpm. 500 ml of sample and a stirring magnet were added to the graduated cylinder. The 

UV probe was immersed in the media until the volume of the graduated cylinder read 900 ml. The 

stirrer was started at 1000 rpm. Absorbance spectra were collected using the s::can UV sensor 

during 5 minutes, with a measurement interval of one (1) minute. The above procedure is 

repeated for each sample and each dilution. Between sets of measurements (5 spectra) the UV 

probe was cleaned with 20% NaOH solution, 15% HCl solution, EtOH and nanopure water, in this 

order, to avoid deposition of biomass particles and salts in the measuring path.  

 

 3.3.1.4 Chemical Analysis: Ammonium, nitrite and nitrate determination 

Hach-Lange tests of the collected samples are used for reference in this study. A 15 ml of the 

collected supernatant sample was filtered through a glass microfiber filter MN GF-5 (Macherey-

Nagel AG, Switzerland) to remove suspended particles (Figure 3.5 (a)). Thereafter, an additional 

dilution (50x) of the sample is performed in order to work in the range of the Hach-Lange test. 

Stable operation of the reactor allowed the use of the same dilution during all experiments. 

Ammonium, nitrite and nitrate concentrations were measured by means of Hach-Lange tests LCK 

303, LCK 342 and LCK 340, respectively (Figure 3.5 (b) and (c), Table 3.4).    

 

 

Figure 3.5. Ammonium, nitrite and nitrate determination by means of Hach-Lange reference tests 

(a) Sample microfiltration; (b) Hach-Lange reference tests; (c) Hach DR2800 spectrophotometer 

Table 3.4. Reference tests used for determination of ammonium, nitrite and nitrate 

concentrations in the collected samples of the saturation effect experiments 

 

TESTED 
 COMPOUND 

HACH-LANGE  
TEST 

SAMPLE  
DILUTION 

MEASURED 
CONCENTRATION 

NH4
+-N LCK 303 1:50 mg/l NH4

+-N 

NO2
--N LCK 342 1:1 mg/l NO2

--N 

NO3
--N LCK 340 1:50 mg/l NO3

-
 -N 

(a) (b) (c) 
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3.3.2 PARTICLES AND SATURATION EFFECT EXPERIMENT 

 
The second experiment aims to evaluate the effect of particles and the effect of saturation in the 

UV-spectra. The experiment was carried out in the Eawag laboratory and is schematically 

represented in Figure 3.6. Samples for this experiment were collected 3 times a week, during 16 

weeks. 

 

 

 

Figure 3.6. Schematic diagram of Particles Effect Experiment 

 

 3.3.2.1 Sample Collection and Pre-treatment (Decantation) 

The detailed explanation of this step is described above in Section 3.3.1.1. 

 

 3.3.2.2 Sample Filtration  

After the decantation step, the remaining liquid is split in 3 fractions (A, B and C, V=800 ml each). 

Fraction A is used as is without filtration. Fractions B and C are subjected to a filtration step. 

Fraction B is filtered through a coffee filter to remove a majority of suspended particles and 

collected in an 800 ml beaker. Fraction C is initially filtered through a coffee filter. Subsequently, 

the sample is filtered through a glass microfiber filter MN GF-4 (pore size 1.4µm), followed by 
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filtration through a glass fiber filter MN GF-1 (pore size 0.7µm) to remove suspended particles 

and collected in an 800 ml beaker. The apparatus used for filtrations is presented in Figure 3.7. 

 

 

Figure 3.7. Sample Filtration: (a) Coffee filtration and (b) Microfiltration 

 

 3.3.2.3 Sample Preparation/Dilution 

Fractions A, B and C are each collected undiluted by means of a 500 ml volumetric flask. The 

remaining liquid of each fraction is used to prepare diluted fractions (A’, B’, C’). The dilutions 

performed are based on the results of the previous experiment. Fraction A’, B’, C’ are collected 

by means of a 500 ml volumetric flask as well (Figure 3.8).  

 

 

Figure 3.8. Non-diluted and 10x diluted samples 
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 3.3.2.4 Preparation of Nitrite Stock-Solutions 

Three different nitrite (NO2
-) stock solutions, V=500 ml, are prepared by dissolving sodium nitrite 

(NaNO2) in water. The target concentrations in the sample fractions analysed were 50 mg NO2
--

N/l, 100 mg NO2
--N/l and 150 mg NO2

--N/l. 

 

 3.3.2.5 UV-Spectra Collection and Analysis 

Experiments are carried out in 1000 ml graduated glass cylinder placed on a magnetic agitator at 

1000 rpm. Sample fractions (A, A’, B, B’, C, C’, Table 3.5) are added to the graduated cylinder 

together with a stirring magnet. The UV probe is submerged in the media until the volume of the 

graduated cylinder reads 900 ml. The stirrer is started. Measurements are performed during 5 

minutes, in steps of one (1) minute. Between sets of measurements, the UV probe is cleaned with 

20% NaOH solution, 15% HCl solution, EtOH and nanopure water. All samples are also spiked 

with 5 ml of NO2
- stock solution to ensure measurements of a wide range of NO2

- concentrations.  

The concentrations of the added NO2
- stock solution are 50 mg NO2

--N/l, 100 mg NO2
--N/l and 

150 mg NO2
--N/l, for each of the 3 days of the week, respectively. To save time, no cleaning is 

executed before NO2
- stock solution is added. The apparatus used is presented in Figure 3.9. 

 

 

Figure 3.9. Data collection 
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Table 3.5. Sample fractions used for UV-spectra measurements 

SAMPLE 

FRACTION 

TYPE OF 

FILTRATION 

SAMPLE 

DILUTION 

(times) 

VURINE 

(ml) 

VH2O 

(ml) 

V NO2
-
 STOCK 

SOLUTION 

(ml) 

VTOTAL 

(ml) 

A 
01 0.7 µm Filter 0 500 0 0 500 

02 0.7 µm Filter 0 500 0 5 505 

A’ 
03 0.7 µm Filter 10 50 450 0 500 

04 0.7 µm Filter 10 50 450 5 505 

B 
05 Coffee filter 0 500 0 0 500 

06 Coffee filter 0 500 0 5 505 

B’ 
07 Coffee filter 10 50 450 0 500 

08 Coffee filter 10 50 450 5 505 

C 
09 Non-filtered 0 500 0 0 500 

10 Non-filtered 0 500 0 5 505 

C’ 
11 Non-filtered 10 50 450 0 500 

12 Non-filtered 10 50 450 5 505 

 

3.3.2.6 Chemical Analysis: Ammonium, nitrite and nitrate determination 

The detailed explanation of this step is described above in Section 3.3.1.4. 
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3.4 MODELLING 

In the current Section the methods used for data analysis will be introduced. In Section 3.4.1 the 

required steps to apply a linear regression on the acquired data of the first experiment are 

explained in detail. Section 3.4.2 presents the methods used to build a PCR model for estimation 

of nitrite concentrations, based on the acquired data of the second experiment. 

 

3.4.1 PRIMARY SATURATION EFFECT EXPERIMENT 

 
The obtained UV-spectra are analysed using Matlab®, by means of a linear regression (Matlab 

code is presented in Appendix I). 

 

Consider a vector of inputs x and the desired estimation of an output y, where x correspond to 

the urine fractions and y to the UV absorbances. The linear regression model has the form: 

f(x) =  β0 + ∑𝑥𝑗βj

p

j=1

 , 

where β0 and βj’s are unknown parameters to be estimated - intercept and slope.  

The most popular estimation method is least squares, in which we pick the coefficients β = (β0, 

β1, …, βp)T to minimize the sum of squares of residuals (SSR). 

SSR(β) =  ∑(yi − f(xi))
2 =∑ (𝑦𝑖 − β0 − ∑xij βj

p

j=1

)

2

.

N

i=1

N

i=1

 

 

The solution is easiest to characterize in matrix notation, given by: 

 

𝑆𝑆𝑅(𝛽) = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽), 𝑋 = [1   𝑋] 

 

where X is a N x p matrix with each row an input and y an N-vector of the outputs of the calibration 

set. A column of ones is added to the X matrix for determination of β0 . Differentiating the above 

equation with respect to β, gives 

 

𝜕𝑆𝑆𝑅

𝜕𝛽
= −2𝑋𝑇 (𝑦 − 𝑋𝛽). 

Setting the first derivative to zero  

 

𝑋𝑇(𝑦 − 𝑋𝛽) = 0 

 

the estimated values for the intercept and the slope are obtained as follows: 

 

𝛽 ̂ =  (𝑋𝑇𝑋)−1𝑋𝑇𝑦. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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The fitted values for the training inputs (predicted UV absorbances) are given by: 

 

𝑦 ̂ =  𝑋𝛽 ̂ = 𝑋 (𝑋𝑇𝑋)−1𝑋𝑇𝑦. 

 

After fitting the data with a linear model, there is a need to evaluate the accuracy of the model. In 

the present work residuals allow to measure the total deviation of the predicted absorbances from 

the measured absorbances. The prediction error is computed as: 

 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖  , 

 

where, 𝑦𝑖 is the measured absorbance, 𝑦̂𝑖 is the predicted absorbance, 𝑒𝑖 is the residual error.  

 

 

 

3.4.2 PARTICLES AND SATURATION EFFECT EXPERIMENT 

 
The collected data are evaluated firstly with principal component analysis (PCA) followed by 

multivariate regression (PCR) in order to build an estimation model for nitrite concentrations. A 

leave-one-out cross validation (LOOCV) is performed as well, to choose the best number of 

principal components (PCs) for the PCR model (Matlab code is presented in Appendix II).  

 

3.4.2.1 Data Pre-Processing 

Consider that the collected data are represented as an m x n matrix, X, where the n columns are 

the samples (observations) and the m rows are the variables (wavelengths).  

 

𝑋 = [

𝑥1.1 ⋯ 𝑥1.𝑛
⋯ ⋯ ⋯
𝑥𝑚.1 ⋯ 𝑥𝑚.𝑛

]  

 

Prior to data analysis, the absorbance measurements are centred. Mean centring is commonly 

applied for any multivariate calibration model. This involves calculating the average for each 

column in the training data set and then subtracting the result from each element of that column. 

This operation ensures that results are interpretable in terms of variation around the mean 

(Maesschalck et al., 1999). The mean-centring operation is given by: 

 

Xi,cent = Xi − X̅,      

 

where, 𝑋𝑖,𝑐𝑒𝑛𝑡 is the centred value of 𝑋𝑖 and 𝑋̅ the mean value of 𝑋.  

 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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After mean centring, the matrix is scaled as follows: 

 

Y =
Xi,cent 

√(n − 1)
 

 

3.4.2.2 PCA Calibration: Singular Value Decomposition (SVD)  

The n-dimensional spectra are reduced to a lower number of principal components (PCs), by 

means of SVD. Y can be rewritten as follows: 

 

𝑌 = 𝑈 ∗ 𝑆 ∗ 𝑉𝑇 

 

where U and V are (m x r) and (n x r) orthogonal matrices, S is a (r x r) diagonal matrix which 

contains the variance described by each singular value and r is the rank of Y (Jolliffe, 2002). The 

diagonal entries d1 ≥ d2 ≥ … ≥ dm ≥ 0, are called the singular values of Y (Hastie et al., 2001). The 

eigenvalues of the covariance matrix of Y are equal to the singular values of the matrix Y and are 

found on the diagonal of S. 

 

3.4.2.3 PCA Application 

The main purpose of PCA is to reduce the dimensionality of a data set consisting of a large 

number of interrelated variables to a much smaller number, while retaining as much as possible 

of the variation present in the data set (maximum variance). The PCs are uncorrelated and 

ordered so that the first few retain most of the variation present in all of the original variables. In 

doing so, the measured variables (absorbances at different wavelengths) are converted into new 

variables called scores. 

 

The score matrix T (n x r) containing the PCs can be calculated as  

 

𝑇 = 𝑈 ∗ 𝑆 = 𝑌 ∗ 𝑉 

3.4.2.4 PCR Calibration and Application 

In the present work PCA is used as a precursor for a predictive model (PCR). The PCs with the 

higher variance are the ones chosen to perform the linear regression. A PCR is then made to 

estimate nitrite concentrations by means of the selected PCs in the PCA model. The estimated 

values for the intercept and the slope are obtained as follows: 

 

𝛽 ̂ =  (𝑇𝑇𝑇)−1𝑇𝑇𝑦. 

 

 

The fitted values of the training inputs (predicted UV absorbances) are given by:  

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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𝑦 ̂ =  𝑇𝛽 ̂ = 𝑇 (𝑇𝑇𝑇)−1𝑇𝑇𝑦. 

 

3.4.2.5 Cross-validation 

Finally, the optimal value for the number of PCs is defined by means of cross validation (CV). In 

this study, leave-one-out cross validation (LOOCV) is chosen. Model performance evaluation is 

based on the sum of squared residuals (SSR). A set of data is removed as a validation set (1 

sample corresponding to 5 measurements) from the calibration set once and a model is fitted with 

the remaining data. Then the model is used to estimate the target variables in the validation data 

set and the sum of the squared residuals over all removed data samples is calculated. The 

number of significant principal components is obtained from the SSR minimum. SSR can be 

rewritten as follows: 

 

𝑆𝑆𝑅 =∑∑(𝑦𝑖𝑗 − 𝑦̂𝑖𝑗(𝑟))
2

𝑛

𝑗=1

𝑚

𝑖=1

, 

 

where 𝑦̂𝑖𝑗(𝑟) are the predicted elements of the validation data with r PCs used to reconstruct the 

data matrix, and 𝑦𝑖𝑗 are the original calibration data values.  

 

 

  

(3.14) 

(3.15) 
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4 RESULTS AND DISCUSSION 

4.1 AMMONIUM, NITRITE AND NITRATE DETERMINATION 

The measured concentrations for each type of samples and compounds are represented in Figure 

4.1. The data set consists of reference measurements of treated urine samples from 02/04/2014 

to 11/08/2014. The first four (4) samples correspond to samples of the primary evaluation on 

saturation effect in the UV spectra experiment (from 02/04/2014 to 09/04/2014) and the remaining 

values from 5 to 49 correspond to samples of the evaluation on particles and saturation effects 

experiment (from 14/04/2014 to 11/08/2014).  

 

 

 

Figure 4.1. Measured ammonium, nitrite and nitrate concentrations in the collected 

samples, by means of reference tests 

 
 
Analysing the figure, it is possible to infer that NH4

+-N and NO3
--N concentrations hover closely 

around 1000 mg/l. Exceptions from this behaviour are visible for sample 37 (11/07) and for the 

last three (3) samples 47, 48 and 49 (05/08, 06/08 and 11/08). Performance of sample 37 could 

be attributed to kinetic variability in the nitrification reactor. The atypical behaviour of the last 3 

samples is due to a change in the reactor feed source. The source feed was changed from female 

urine to male urine, which is more concentrated. Ammonia concentrations in the influent 

underwent a huge increase, which leads to a large increase of NH4
+-N and NO3

--N concentrations 

in the nitrification reactor. Regarding NO2
--N concentrations some variation during the 

experimental period is visible. Samples 7 to 13 (between 22/04 and 07/05) show NO2
--N 

concentrations values close to zero. This behaviour could be a consequence from the reset of the 

nitrification reactor after being disabled for a period of 7 days (between 17/04 and 22/04). During 
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the restarting period some disturbances in the nitrification reactor were reported. Sample 6 (16/04) 

was collected from the nitrification reactor effluent tank during the reactor deactivation period. 

Samples 36, 38 and 39 (10/07, 14/07 and 16/07) also exhibit an increase of the NO2
--N 

concentration, which could be attributed to kinetic variability in the nitrification reactor that 

probably led to NOB partial inhibition and subsequent nitrite accumulation. 

UV absorbance measurements could be influenced by the above referred deviations from the 

normal behaviour. In addition, during the period between 14/04 and 12/05 (samples 1 to 15) a 

smaller magnet agitator was used for mixing.  Imperfect mixing could lead to interferences in the 

sensor reading. For these reasons, data screening and selection was performed as follows. Data 

collected during the second experiment (particles and saturation effect experiment) are divided in 

three (3) different groups. Data set 1, corresponding to guaranteed normal operation and female 

urine feeding from 12/05 to 31/07 (samples 16 to 46). Data set 2, corresponding to abnormal 

operation plus normal operation and female urine feeding from 14/04 to 31/07 (samples 5 to 46). 

Finally, data set 3, which includes all samples from 12/05 to 11/08 (samples 16 to 49). This third 

data set includes normal data corresponding to female urine and male urine feeding. This data 

set excludes data for which mixing conditions are considered suboptimal. 
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4.2 PRIMARY EVALUATION ON SATURATION EFFECT  

The analysed data set consists of UV spectral measurements of treated urine samples, acquired 

between 02/04/2014 to 09/04/2014 (4 days). 21 samples with different dilutions are analysed 

(Table 3.3). The spectral measurements are grouped in groups of 5, each corresponding to a 

certain sample dilution and nitrite (NO2
-) and nitrate (NO3

-) concentration.  This results in a total 

of 105 absorbance spectra. As discussed above, UV absorbance measurements are recorded in 

the range between 220 and 390 nm (171-dimensional spectra). The evaluation of the acquired 

data is accessed by means of a linear regression, in order to find out which dilution is necessary 

to ensure that no saturation is present. The methods used for data analysis are explained in detail 

in Chapter 3, Section 3.4.1. 

 

UV spectra, based on the collected data results from the UV sensor, are displayed in the following 

figure. In Figure 2.1, it is possible to see that the nitrite and nitrate compounds result in peaks in 

the UV spectra in a range between 220 nm and 240 nm. Saturation of absorbance measurements 

take place in the same range. For this reason the chosen wavelengths to pursuit the analysis are 

from 220 nm up to 240 nm, in steps of 5 nm.  

 

 

 

Figure 4.2. UV spectra for all the measured samples and for all applied dilutions 
 
 
 
 
 
Prior to data analysis, the original data is split in two sets – data set 1 from 02/04 to 04/04, 

including sample dilutions 01 to 10, and data set 2 from 09/04, including sample dilutions 01.1 to 
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10.1 (Table 3.3, Section 3.3.1.2). In Figure 4.3, the absorbance measurements for the chosen 

wavelengths (220, 225, 230, 235, 240 nm) are plotted as a function of the urine fraction. 

 

 

 

Figure 4.3. Absorbance for the chosen wavelengths (220, 225, 230, 235, 240 nm) as a 

function of Urine fraction for (a) data set 1 and (b) data set 2 

 

A linear regression model is fitted to the presented data. This results in an estimate for the 

intercept and slope. Linear regression is executed for different subsets of the available data. 

Firstly, a linear regression model is fitted by including only the data corresponding to fractions of 

urine lower or equal than 10% (Figure 4.4 (a) and (b)). Then, the same linear regression was 

executed by also including the data obtained corresponding to a urine fraction of 20% (Figure 4.4 

(c) and (d)). This iterative addition of data to the calibration data set is repeated for all fractions 

until all available data is included (Figure 4.4 (e)-(h)). By doing so, one can experimentally 

evaluate at which concentration the linear law of Beer-Lambert (Equation 2.4) becomes invalid 

due to saturation. Analysing the figures below it is possible to infer that for urine fractions up to 

20% (see Figure 4.4 (a)-(d)) the linear regression fits rather well. However, when increasing the 

highest urine fraction to 40%, the linear regression does not fit properly anymore (see (Figure 4.4 

(e)-(h)). This results suggest that for urine fractions below 20% no saturation is present and a 

linear model can be applied. 
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Figure 4.4. Linear regression of urine fraction as a function of Absorbance for the chosen wavelengths (220, 

225, 230, 235, 240 nm) for (a), (c), (e), (g) data set 1 and (b), (d), (f), (h) data set 2 
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Included urine fractions: all (10 urine fractions) 
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The above estimated parameters (intercept and slope) together with the input variables (urine 

fractions) allow to predict absorbance measurements, for the chosen wavelengths. The 

absorbance measurements predicted by the linear models are plotted as a function of the 

measured absorbances in Figure 4.5 (a)-(d). The prediction error is also displayed as function of 

the same measurements in Figure 4.6 (e)-(h). The prediction error is computed based on the 

difference between the measured absorbances and the predicted absorbances. The figures 

below are based on data set 2. Results of data set 1 are in accordance with the presented ones 

and are shown in Appendix III.  

 

  

    

 

Figure 4.5. (a)-(d) Predicted absorbances as function of measured absorbance, for the chosen 

wavelengths (220, 225, 230, 235, 240 nm) of data set 2 
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Figure 4.6. (e)-(h) Prediction errors as function of measured absorbance, for the chosen 

wavelengths (220, 225, 230, 235, 240 nm) of data set 2 

Once more, it is possible to infer that for urine fractions up to 20% the linear regression model fits 

well. By increasing the urine fraction further than 20%, the linear regression does not fit anymore. 

With increasing values for the highest included urine fraction, the prediction errors increase 

drastically. Therefore, it is obvious that the saturation effect challenges the assumption of linearity 

quite dramatically. The above results suggest that for urine fractions below 20% no saturation is 

present and Lambert-Beer’s law is valid. In order to work in a safe range a 10% urine fraction 

corresponding to a 10x dilution is considered a proper experimental setting in which the saturation 

effect is expected to be removed entirely. The following experiment in Section 4.3 therefore uses 

this dilution as a means of reference for evaluation of the quality of nitrite estimates. 
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4.3 PARTICLES EFFECT AND SATURATION EFFECT EXPERIMENT 

The data set consists of UV spectral measurements of treated urine samples, from 14/04/2014 to 

11/08/2014 (16 weeks, 3 times a week) and corresponding nitrite (NO2
-) and nitrate (NO3

-) 

concentration measurements. The spectral measurements are grouped in groups of 5 

(corresponding to one particular sample), each corresponding to a certain nitrite (NO2
--N) and 

nitrate (NO3
--N) concentration. This results in a total of 2720 absorbance spectra. UV spectra are 

recorded in the range between 220 and 390 nm (171-dimensional spectra). The number of 

absorbance spectra for each type of sample fractions are listed in Table 4.1. 

 

Table 4.1. Type of samples acquired and corresponding number of measurements in the 

particles effect and saturation effect experiment 

 

FRACTION 
TYPE OF 

FILTRATION 

TYPE OF 

DILUTION 

NO- 

STOCK –SOLUTION 

ADDITION 

NUMBER OF 

SAMPLES 

ACQUIRED 

NUMBER OF 

ABSORBANCE 

SPECTRA 

A 
01 0.7 µm Filter Non-diluted No addition 46 230 

02 0.7 µm Filter Non-diluted 5 ml addition 46 230 

A’ 
03 0.7 µm Filter Diluted (1:10) No addition 46 230 

04 0.7 µm Filter Diluted (1:10) 5 ml addition 46 230 

B 
05 Coffee filter Non-diluted No addition 45 225 

06 Coffee filter Non-diluted 5 ml addition 45 225 

B’ 
07 Coffee filter Diluted (1:10) No addition 45 225 

08 Coffee filter Diluted (1:10) 5 ml addition 45 225 

C 
09 Non-filtered Non-diluted No addition 45 225 

10 Non-filtered Non-diluted 5 ml addition 45 225 

C’ 
11 Non-filtered Diluted (1:10) No addition 45 225 

12 Non-filtered Diluted (1:10) 5 ml addition 45 225 

TOTAL 544 2720 

 

 

The spectral data are analysed according to the procedure described in detail in Chapter 3, 

Section 3.4.2. 
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4.3.1 ESTIMATION OF NITRITE (NO2--N) CONCENTRATIONS  

PCR modelling is initiated with evaluation of data set 1 (described in Section 4.1), corresponding 

to normal operation and female urine feeding. The spectral data are firstly evaluated for the ideal 

case corresponding to diluted and filtered samples (case 1). In order to gradually challenge the 

calibration/validation procedure for PCR, the spectral data are evaluated for unfiltered and diluted 

samples (case 2), followed by the analysis for filtered and non-diluted samples (case 3). These 

cases enable the evaluation of the effect of particles and the effect of saturation in the nitrite 

estimation model, respectively. Hereafter, data set 2 (described in Section 4.1) including urine 

samples corresponding to irregular operation is analysed. The same three cases are evaluated 

for data set 2 as well and are referred to as case 1.1, case 2.1 and case 3.1. 

 

4.3.1.1 Case (1) - Micro Filtration (0.7 µm), Dilution (1:10) and NO2
- stock-solution addition 

(5 ml) 

The evaluation of the results are started for what is considered as a most ideal case – a sample 

subjected to filtration, dilution and NO2
- stock-solution addition – since in this case the saturation 

effect and the particles effect are minimized due to the dilution (1:10) step and to the filtration (0.7 

µm) step, respectively. Data set 1 only includes data of guaranteed normal operation of the reactor 

and excellent experimental conditions. 

 

Prior to data analysis, the absorbance measurements are centred. In Figure 4.7 UV absorbance 

spectra and UV centred absorbance spectra of the sample fractions above described are 

presented. It is clear that nitrite absorbs mostly in UV range between 220 nm and 240 nm. 

 

 

 

Figure 4.7. Case 1. (a) UV absorbance spectra and (b) UV absorbance spectra centred, 

acquired for all the measured samples  
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Hereafter, the remaining spectral data are first analysed by PCA, to reduce the dimensionality of 

the data. The 171-dimensional spectra are reduced to a lower number of principal components 

(PCs), by means of singular value decomposition (SVD). The singular values of the covariance 

matrix are indicative of the importance of each of the orthogonal components and are displayed 

in Figure 4.8 (a). The eigenspectrum suggests that a single principal component explains most of 

the information in the spectral data. The variance of the first PC correspond to a value of 

3.906(*106) and the variance of the second PC decrease radically to a value of 0.021(*106). PC1 

correspond to 99% of the total variance on the eigenspectrum. This effect was expected, since 

the first PC is assumed to correspond to the nitrite concentration and no other major effects are 

expected with this data set. In the present case the saturation effect and the particles effect are 

minimized due to the dilution (1:10) step and to the filtration (0.7 µm) step, respectively, and the 

only effect expected is variation on nitrite concentration. The first component is displayed in Figure 

4.8 (b), showing that the spectra vary in a band between 220 nm and 240 nm, which corresponds 

to nitrite range of absorbance. 

 

   

Figure 4.8. Case 1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) Effect of 
original variables (loadings) upon 1st PC. 
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measured concentrations, respectively. The spectral measurements are grouped in sets of 5, each 

group corresponding to a certain original urine sample and nitrite concentration. 
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Figure 4.9. Case 1. (a) PC1 score as a function of sample index and (b) Nitrite 

Concentrations - predicted vs. measured with 1-PC model 

 
 
In Figure 4.9 (a) some outliers can easily be distinguished (indicated by red circles in Figure 4.9 

(a)). During addition of nitrite stock-solution, proper mixing is needed to mix it properly in the 

sample. Outliers could occur however, typically in the first spectral measurement of a group of 5, 

due to incomplete mixing. Six (6) outliers are removed and PCR model is repeated for the 

remaining samples. The results are displayed in Figure 4.10 (a) and (b). 

 

   

Figure 4.10. Case1. (a) PC1 score as a function of sample index and (b) Nitrite 

Concentrations - predicted vs. measured with 1-PC model, after outliers removal 
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Figure 4.11. Case1. (a) SSR as a function of model dimensions for the validation data set; (b) Predicted 

Concentration as a function of Measured Concentration for the validation data set.  

 
  

Analysing Figure 4.11 (a), it can be clearly seen that the minimum SSR corresponds to 2 

dimensions (represented by a blue circle in Figure 4.11 (a)), thus the PCR model should include 

2 PCs. The model dimension obtained by means of SSR minimum (2 PCs) is very close to the 

dimension achieved by studying the eigenspectrum (1 PC). Figure 4.11 (b) shows the predicted 

nitrite concentrations as a function of measured nitrite concentration for the validation data set for 

one and two dimensions. The PCR model seems to fit well to the nitrite concentrations in both 

cases. The figure demonstrates small deviations from the linear model, which could be explained 

by the non-linear behaviour of the samples or by drastic changes in the concentrations range that 

could not be accurately predicted by the sensor. Sample from 16/05 ((indicated by a red arrow in 

Figure 4.11 (b)) presents a concentration range that hinders the model fit. The high nitrite 

concentration in the sample led to saturation. The saturation effect in the sample appears to 

influence the model fitting. 

The first two components are displayed in Figure 4.12 (a) showing that the spectra vary similarly 

in a band between 220 nm and 240 nm for both eigenvectors, as expected. The second 

eigenvector starts to decrease slowly at around 260 nm, which could indicate the effect of organic 

compounds on the spectra. Figure 4.12 (b) shows the scores for the second PC as a function of 

sample. Substantial variation is present. 
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Figure 4.12. Effect of original variables (loadings) upon 1st and 2nd PC for the calibration 

data set; (b) PC2 score as a function of sample index 

 

4.3.1.2 CASE (2) –Non-Filtration, Dilution (1:10) and NO2
- stock-solution addition (5 ml) 

The evaluation of the results proceed with samples subjected to dilution and NO2
- stock-solution 

addition, however without the filtration step. The goal of this is to evaluate the effect of particles 

in the UV spectra. The saturation effect remains minimized due to the dilution (1:10) step. 
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data. The singular values of the covariance matrix are displayed in Figure 4.13 (a). The 

eigenspectrum suggests again that a single principal component dominates all the rest, which 

could mean that the effect of particles in the UV spectra appears to be of less importance. The 

variance of the first PC correspond to a value of 3.876(*106) and the variance of the second PC 

decrease considerably to a value of 0.019(*106). PC1 represents 99% of the total variance on the 

eigenspectrum. The first component is displayed in Figure 4.13 (b), showing that the spectra vary 

in a band between 220 nm and 240 nm, which corresponds to the known range of absorbance 

for nitrite. 
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Figure 4.13. Case 2. (a) Eigenvalues corresponding to the first 30 Principal Components; 

(b) Effect of original variables (loadings) upon 1st PC. 

The PCA model is used as a precursor for a PCR model. A regression is made to predict nitrite 

concentrations by means of a single PC in the PCA model. Figure 4.14 (a) and Figure 4.14 (b) 

display the score for each spectrum as a function of sample index and predictions of nitrite vs. 

the measured concentrations, respectively. 

     

Figure 4.14. Case 2. (a) PC1 score as a function of sample index: (b) Nitrite 

Concentrations - predicted vs. measured with 1-PC model 

Similarly to the case above, two (2) outliers are thereafter removed and PCR model is repeated 

for the remaining samples. The results are shown in Figure 4.15 (a) and (b). 
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Figure 4.15. Case 2. (a) PC1 score as a function of sample index and (b) Nitrite 

Concentrations - predicted vs. measured with 1-PC model, after outliers removal 

Analysing Figure 4.15 (b) it appears that the one dimensional PCR model fits with reasonable 

accuracy to the data. However, the results above are performed without cross-validation. A cross 

validation is then performed to determine the ideal number of PCs for the above PCR model. The 

number of significant PCs is obtained from the minimum residual error (minimum SSR). The 

number of PCs is displayed in Figure 4.16 (a). 

 

   

Figure 4.16. Case 2. (a) SSR as a function of model dimensions for the validation data set; (b) 

Predicted Concentration as a function of Measured Concentration for the validation data set 
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appear to decrease when the dimensionality of the PCR model is increased. Sample from 16/05 

(indicated by a red arrow in Figure 4.16 (b)) is not predicted well. The high nitrite concentration in 

the sample led to saturation. The saturation effect in the sample appears to influence the model 

fitting. 

 

 

4.3.1.3 CASE (3) – Micro Filtration (0.7 µm), non-Dilution and NO2
- stock-solution addition 

(5 ml) 

The third evaluation is based on samples subjected to filtration and NO2
- stock-solution addition, 

however without the dilution step. The goal is to evaluate the effect of saturation on the UV 

spectra. The particles effect remains minimized due to the filtration (0.7 µm) step. 

 

Spectral data are analysed by PCA, after mean centring. The singular values of the covariance 

matrix are indicative of the importance of each of the orthogonal components and are shown in 

Figure 4.17 (a). The eigenspectrum suggests a gradual decrease of importance of each 

orthogonal component and that two principal component explain most of the information in the 

spectral data. This is different from cases (1) and (2). The variance of the first PC correspond to 

a value of 5.379(*105) and the variance of the second PC decrease considerably to a value of 

2.125(*105), followed by the third that presents a value of 0.298(*105). PC1, PC2 and PC3 

correspond to 65%, 26% and 4%, respectively, of the total variance. PC1 and PC2 together 

correspond to 91% of the variance on the eigenspectrum. 

   

Figure 4.17. Case 3. (a) Eigenvalues corresponding to the first 30 Principal Components; 

(b) Effect of original variables (loadings) upon 1st and 2nd PC 

The first two components are displayed in Figure 4.17 (b), respectively, showing that the spectra 

vary in a band between 220 nm and 240 nm for the first eigenvector and for the second 

eigenvector vary simultaneously in a band between 220 nm and 240 nm and a broader band 

around 260 nm. Nitrite absorbances in the range between 220 nm and 240 nm are expected. 

However, absorbance at 260 nm is unexpected and suggests that the presence of saturation is 

possibly leading to poor sensor reading.  
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A PCR is made to predict nitrite concentrations by means of two PCs in the PCA model. Figure 

4.18 and Figure 4.19 (a) shows the scores for each spectrum as a function of sample index and 

predictions of nitrite vs. the measured concentrations for a two dimensions (2 PCs) model, 

respectively. 

 

Figure 4.18. Case 3. (a) PC1 and (b) PC2 scores as a function of sample index 

Six (6) outliers are removed, after analysing the above figures, and PCR model was repeated for 

the remaining samples.  

   

Figure 4.19. Case 3. Nitrite Concentrations - predicted vs. measured with 2-PCs model 

(a) before outlier removal and (b) after outlier removal 

The predicted nitrite concentrations as a function of the measured nitrite concentrations for a two 

dimensions (2 PCs) model are shown in Figure 4.19. Analysing the figure appears that the two 

dimensional PCR model fit with acceptable accuracy to the results which is coherent with the 

presence of saturation effect due to non-dilution. Nevertheless, the results above are performed 

without cross-validation. A cross validation is then performed to determine the best number of 
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PCs for the PCR model. The number of significant principal components (PCs) was obtained from 

the SSR minimum, as indicated in Figure 4.20 (a). 

 

   

Figure 4.20. Case 3. (a) SSR as a function of model dimensions for the validation data set; (b) Predicted 

Concentration as a function of Measured Concentration for the validation data set 

Analysing the figure, it can be seen that the SSR minimum corresponds to 17 dimensions 

(represented by a red circle in Figure 4.20 (a)), thus the PCR model should include 17 PCs as 

well. The model dimension obtained by means of SSR minimum (17 PCs) differs drastically from 

the dimension given by the eigenspectrum (2 PCs). Even so, for 2 PCs the SSR presents a 

pronounced minimum as well ((represented by a blue circle in Figure 4.20 (a)). This discrepancy 

is explained as a result of saturation. To evaluate the impact of this discrepancy on the nitrite 

estimations, PCR models are inspected in more detail for 2 PCs and 17 PCs.  Figure 4.20 (b) 

displays the predicted nitrite concentrations as a function of measured nitrite concentration for the 

validation data set for these models. The figure demonstrates some deviations from the linear 

model. However, increasing the model dimension from 2 PCs to 17 PCs minimizes these 

deviations. The sample from 16/05 (indicated by a red arrow in Figure 4.20 (b)) presents a 

concentration range that negatively influences the model fit. The high nitrite concentration in the 

sample led to saturation. The saturation effect in the sample appears to influence the model fitting. 
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4.3.1.4 Summary of Results for cases (1), (2) and (3) 

Comparing Figure 4.16 (case 2 - unfiltered and diluted samples) with Figure 4.11 (case 1- filtered 

and diluted samples) it is possible to infer that the effect of particles appears to have a minimal 

impact on nitrite concentration estimation. The dimensionality of both models is 2 PCs, based on 

SSR minimum. The quality of the obtained estimation for a two dimension model presents a 

suitable accuracy. 

 

Comparing Figure 4.20 (case 3 – filtered and non-diluted) with Figure 4.11 (case 1 – filtered and 

diluted) it is possible to infer that the effect of saturation has a drastic impact on nitrite 

concentration estimation. The main difference from case 1 to case 3 is the need to increase the 

dimension of the model from 2 PCs to 17 PCs, based on SSR minimum. Nevertheless, the quality 

of the obtained estimation for a 17 dimension model might be acceptable for practical application 

 

In summary, it is possible to infer that the UV absorbance measurements and, consequently, 

nitrite concentration estimation are severely affected by saturation while the particle effect is of 

limited importance.  
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4.3.1.5 CASE (1.1) - Micro Filtration (0.7 µm), Dilution (1:10) and NO2
- stock-solution 

addition (5 ml) 

The evaluation of the acquired data is now calculated for data set 2, in order to evaluate in what 

way unstable operation of the nitrification reactor could influence the nitrite estimation. Data set 2 

includes both data from abnormal operation and of guaranteed normal operation. 

 

The new evaluation of the results is started once more for what is considered as a most ideal 

case. The samples are subjected to filtration, dilution and NO2
- stock-solution addition. Indeed, in 

this case the saturation effect and the particles effect are minimized due to the dilution (1:10) step 

and to the filtration (0.7 µm) step, respectively.  

 

Outliers identified for case 1 are removed. Thereafter, PCA is performed. The singular values of 

the covariance matrix are shown in Figure 4.21 (a). The variance of the first PC correspond to a 

value of 4.190(*106) and the variance of the second PC decrease considerably to a value of 

0.021(*106). PC1 represents 99% of the total variance on the eigenspectrum. The eigenspectrum 

suggests once more that a single principal component explains most of the information in the 

spectral data. This effect was expected, since in this case the saturation effect and the particles 

effect are minimized due to the dilution (1:10) step and to the filtration (0.7 µm) step, respectively. 

The first component is displayed in Figure 4.21 (b), showing that the spectra vary in a band 

between 220 nm and 240 nm, which corresponds to the range of absorbance for nitrite. 

 

  

Figure 4.21. Case 1.1. (a) Eigenvalues corresponding to the first 30 Principal 

Components; (b) Effect of original variables (loadings) upon 1st PC. 

The above PCA model is used as a precursor for a predictive model – PCR. A regression is made 

to predict nitrite concentrations by means of a single PC in the PCA model. The following Figure 

4.22 (a) and (b) shows the score for each spectrum as a function of sample index and predictions 

of nitrite vs. the measured concentrations, respectively. 
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Figure 4.22. Case 1.1. (a) PC1 score as a function of sample index and (b) Nitrite Concentrations - 

predicted vs. measured with 1-PC model, after outliers removal 

Observing the figures above, the abnormal behaviour is very obvious for the first 60 samples 

which correspond to the reactor restart period. This behaviour could be caused by imperfect 

mixing during the experiment (a smaller magnet agitator was used during the referred period) or 

to the presence of higher percentage of organic compounds, related to the reactor restart. Both 

hypotheses potentially explain the poorer fit. Inappropriate agitation appears to have a great 

impact on the PCR model which leads to poor accuracy in the model adjustment. Nevertheless, 

the results above are performed without cross-validation. A LOOCV is then performed to evaluate 

the best number of PCs for the PCR model. The number of significant PCs is obtained from the 

minimum residual error (minimum SSR). The number of PCs is given in the Figure 4.23 below. 

   

Figure 4.23. Case 1.1. (a) SSR as a function of model dimensions for the validation data 

set; (b) Predicted Concentration as a function of Measured Concentration for the 

validation data set 

Analysing Figure 4.23 (a), it can be clearly seen that the minimum SSR corresponds to 12 

dimensions (represented by a blue circle in Figure 4.23 (a)), thus the PCR model should include 

12 PCs. The model dimension obtained by means of SSR minimum (12 PCs) differs drastically 

from the dimension given by the eigenspectrum (1 PC). To evaluate the impact of this discrepancy 
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on the nitrite estimations, PCR models are performed including 1 PC and 12 PCs, respectively.  

Figure 4.23 (b) shows the predicted nitrite concentrations as a function of measured nitrite 

concentration for the validation data set. The figure demonstrates some deviations from the linear 

model. Samples affected by improper mixing or abnormal operation appear to present poorest 

fitting. 

 

4.3.1.6 CASE (2.1) –Non-Filtration, Dilution (1:10) and NO2
- stock-solution addition (5 ml) 

The new evaluation of the results is pursued with samples subjected to dilution and NO2
- stock-

solution addition, however without the filtration step. The goal is to evaluate the effect of particles 

in the UV spectra. The saturation effect remains minimized due to the dilution (1:10) step. 

 

Outliers referred to in previous Section for case 2 are removed. The spectral data are then 

primarily analysed by PCA.  The singular values of the covariance matrix are displayed in Figure 

4.24 (a). The eigenspectrum suggests again that a single principal component dominates all the 

rest, which could mean that the effect of particles in the UV absorbance spectra appears to be of 

less importance. The variance of the first PC correspond to a value of 3.827(*106) and the 

variance of the second PC decrease considerably to a value of 0.023(*106). PC1 corresponds to 

99% of the total variance on the eigenspectrum. The first component is displayed in Figure 4.24 

(b), showing that the spectra vary in a band between 220 nm and 240 nm, which, once more, 

corresponds to the range of absorbance for nitrite. 

  

Figure 4.24. Case 2.1. (a) Eigenvalues corresponding to the first 30 Principal 

Components; (b) Effect of original variables (loadings) upon 1st PC. 

A regression is made to predict nitrite concentrations by means of a single PC in the PCA model. 

Figure 4.25 (a) and (b) shows the score for each spectrum as a function of sample index and 

predictions of nitrite vs. the measured concentrations, respectively. 
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Figure 4.25. Case 2.1. (a) PC1 score as a function of sample index after outliers 

removing; (b) Nitrite Concentrations - predicted vs. measured with 1-PC model after 

outliers removal 

A LOOCV is performed to determine the correct number of PCs for the PCR model. The number 

of significant PCs are displayed in the following Figure 4.26 (a) and is obtained from the SSR 

minimum. 

 

 

Figure 4.26. Case 2.1. (a) SSR as a function of model dimensions for the validation data 

set; (b) Predicted Concentration as a function of Measured Concentration for the 

validation data set 

Analysing Figure 4.26 (a), it can be seen that the minimum SSR corresponds to 19 dimensions 

(represented by a red circle in Figure 4.26 (a)), thus the PCR model should include 19 PCs as 

well. However, for 2 PCs the SSR presents a pronounced minimum as well (represented by a 

blue circle in Figure 4.26 (a)). The model dimension obtained by means of SSR minimum (19 

PCs) differs drastically from the dimension given by the eigenspectrum (1 PC). This discrepancy 

is not entirely expected since particles appear to have a lower impact in the UV absorbance 

spectra, based on the previous evaluation. To evaluate the impact of this discrepancy on the 

nitrite predictions, PCR models are performed including 1 PC and 19 PCs.  Figure 4.26 (b) 
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displays the predicted nitrite concentrations as a function of measured nitrite concentration for the 

validation data set for the referred dimensions. The figure demonstrates several deviations from 

the linear model. Samples affected by improper mixing and abnormal operation appear to present 

more deviations from the model. However, by increasing the model dimension up to 19 PCs the 

referred deviations appears to be minimized.  

 

 

4.3.1.7 CASE (3.1) – Micro Filtration (0.7 µm), non-Dilution and NO2
- stock-solution addition 

(5 ml) 

Lastly, the third evaluation is based on samples subjected to filtration and NO2
- stock-solution 

addition, however without the dilution step. The goal is to evaluate the effect of saturation in the 

UV spectra. The particles effect remains minimized due to the filtration (0.7 µm) step. 

 

Outliers indicated in the previous Section for case 3 are removed again. The spectral data are 

then primarily analysed by PCA. The singular values of the covariance matrix are displayed in 

Figure 4.27 (a). The variance of the first PC correspond to a value of 7.104(*105). In the second 

PC the value of the variance decreases considerably to 1.717(*105), followed by the third PC that 

presents a value of 0.355(*105). PC1, PC2 and PC3 correspond to 74%, 18% and 4%, 

respectively, of the total variance. PC1 and PC2 together correspond to 92% of the total variance 

on the eigenspectrum. Thus, the eigenspectrum suggests a gradual decrease of importance of 

each orthogonal component and that two principal components dominate all the rest, which 

suggests that saturation has a larger effect in the UV absorbance spectra, comparing to the effect 

of particles.  

 

  

 

Figure 4.27. Case 3.1. (a) Eigenvalues corresponding to the first 30 Principal 

Components; (b) Effect of original variables (loadings) upon 1st and 2nd PC 

The first two components are displayed in Figure 4.27 (b), respectively, showing that the spectra 

vary in a band between 220 nm and 240 nm for the first eigenvector and for the second 
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eigenvector vary simultaneously in a band between 220 nm and 240 nm and a band around 260 

nm. Nitrite absorbances in the range between 220 nm and 240 nm are expected. However, 

absorbance at 260 nm are unexpected and could indicate the effect of organic compounds on the 

spectra 

 

A PCR is made to predict nitrite concentrations by means of two PCs in the PCA model. Figure 

4.28 and Figure 4.29 show the scores for each spectrum as a function of sample index and 

predictions of nitrite vs. the measured concentrations for a two dimensions (2 PCs) model, 

respectively. 

  

Figure 4.28. Case 3.1. (a) PC1 and (b) PC2 scores as a function of sample index after 

outliers removal 

  

 

Figure 4.29. Case 3.1. Nitrite Concentrations - predicted vs. measured with 2 PCs model 

after outliers removal 

Analysing the figure above it seems that the two dimensional PCR model fit with poor accuracy 

to the results which is coherent with the presence of saturation effect due to non-dilution and 

samples acquired from unstable nitrification process with poor agitation.  Nevertheless, the results 

above are performed without cross-validation. Subsequently, a LOOCV is performed to evaluate 
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the best number of PCs for the PCR model. The number of significant principal components (PCs) 

was obtained from the minimum residual error (minimum SSR), as displayed in Figure 4.30 (a). 

 

   

Figure 4.30. Case 3.1. (a) SSR as a function of model dimensions for the validation data 

set; (b) Predicted Concentration as a function of Measured Concentration for the 

validation data set 

Analysing Figure 4.30 (a), it can be seen that the minimum SSR corresponds to 15 dimensions 

(represented by a red circle in Figure 4.30 (a)), thus the PCR model for the cross validation should 

include 15 PCs. The model dimension obtained by means of SSR minimum (15 PCs) differs 

drastically from the dimension given by the eigenspectrum (2 PCs). Even so, for 2 PCs the SSR 

presents a pronounced minimum as well. This discrepancy is explained as an effect of saturation. 

Figure 4.30 (b) shows the predicted nitrite concentrations as a function of measured nitrite 

concentration for the validation data set. To evaluate the impact of the referred discrepancy on 

the nitrite predictions, PCR models are performed including 2 PCs and 15 PCs. The figure 

demonstrates some deviations from the linear model, which could be explained by the non-linear 

saturation effect. Samples affected by improper mixing or abnormal operation appear to lead to 

the poorest fit. 
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4.3.1.8 Summary of Results for cases (1.1), (2.1) and (3.1) 

Comparing Figure 4.26 (case 2.1 - unfiltered and diluted samples) with Figure 4.23 (case 1.1- 

filtered and diluted samples) it is possible to infer that the effect of particles show a pronounced 

impact on nitrite concentration estimation. The main difference from case 1.1 to case 1.2 is the 

need to increase the dimensionality of the model from 12 PCs to 19 PCs, based on the SSR 

minimum. 

 

Comparing Figure 4.30 (case 3.1- filtered and non-diluted) with Figure 4.23 (case 1.1- filtered and 

diluted) it is possible to infer that saturation appears to have a great effect on nitrite concentration 

estimation. Based on SSR minimum, the dimensionality of the model increases drastically from 

12 PCs (case 1.1) to 15 PCs (case 3.1).  

 

The described results for case (1.1), (2.1) and (3.1) are different from those obtained in case (1), 

(2) and (3). These results appear to be a consequence of the inclusion of data with an atypical 

behaviour corresponding to samples with improper mixing and/or corresponding to the restart of 

the nitrification reactor. Improper mixing could lead to sensor malfunction, since sedimentation of 

suspended biomass could occur in the sensor measuring path. In addition, during the start-up 

period there appear to exist some disturbances/failures in the nitrification reactor. Thus, the UV 

absorbance measurements could also be influenced due to the possible presence of suspended 

biomass in higher concentrations than for the stable nitrification process, which could lead to 

back-scattering. Unfortunately, the available data cannot be used to test these hypotheses. 

 

Under the above conditions the UV absorbance measurements appear to be limited. Incomplete 

mixing together, or not, with abnormal operation of the nitrification reactor appears to have a great 

impact on the nitrite estimation model which leads to poor accuracy in the model fitting. 

 

 

 

 

 

  



 
 

58 

4.3.2 ESTIMATION OF NITRATE (NO3
--N) CONCENTRATIONS 

PCR modelling for nitrate estimation is started with evaluation of data set 1, corresponding to 

normal operation and female urine. Thereafter, data set 3 including female and male urine is 

analysed. Data set 1 and 3 are described in detail in Section 4.1. 

4.3.2.1 CASE (1.1.1) - Micro Filtration (0.7 µm), Dilution (1:10) and NO2
- stock-solution 

addition (5 ml) 

As in the previous evaluation for nitrite concentrations, the evaluation for nitrate is started with 

samples subjected to filtration, dilution and NO2
- stock-solution addition. The saturation effect and 

the particles effect are minimized due to the dilution (1:10) step and to the filtration (0.7 µm) step, 

respectively. 

 

The spectral data are then primarily analysed by PCA. The singular values of the covariance 

matrix are displayed in Figure 4.31 (a). The eigenspectrum suggests that a single principal 

component explains most of the information in the spectral data. The variance of the first PC 

corresponds to a value of 3.906(*106) and the variance of the second PC decreases considerably 

to a value of 0.021(*106). PC1 represents 99% of the total variance on the eigenspectrum. The 

first component is displayed in Figure 4.31 (b), showing that the spectra vary in a band between 

220 nm and 240 nm, which corresponds to the range of absorbance for nitrate. 

 

  

Figure 4.31. Case 1.1.1. (a) Eigenvalues corresponding to the first 30 Principal Components; (b) 
Effect of original variables (loadings) upon 1st PC. 

 
 

A PCR is made to predict nitrate concentrations by means of a single PC in the PCA model. The 

spectral measurements are grouped in sets of 5, each group corresponding to a certain nitrate 

concentration. Figure 4.32 (a) and (b) shows the score for each spectrum as a function of sample 

index and predictions of nitrate vs. the measured concentrations, respectively. 
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Figure 4.32. Case1. (a) PC1 score as a function of sample index; (b) Nitrate 

Concentrations - predicted vs. measured with 1-PC model 

Five (5) outliers were thereafter removed and PCR model is repeated for the remaining samples. 

The results are shown in Figure 4.33.  

 

  

Figure 4.33. Case 1.1.1. (a) PC1 score as a function of sample index after outliers 

removing; (b) Nitrate Concentrations - predicted vs. measured with 1-PC model after 

outliers removing 

The above figure demonstrates several deviations from the linear model, which could be 

explained by the limited range of nitrate concentration in the evaluated samples. However, the 

results above are performed without cross-validation. A LOOCV is then performed to choose the 

best number of PCs for the PCR model. The number of significant principal components (PCs) is 

obtained from the minimum residual error (minimum SSR), as displayed in Figure 4.34 (a). 
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Figure 4.34. Case1. (a) SSR as a function of model dimensions for the validation data 

set; (b) Predicted Concentration as a function of Measured Concentration for the 

validation data set 

Analysing Figure 4.34 (a), it can be seen that the minimum SSR corresponds to 11 dimensions, 

thus the PCR model should include 11 PCs as well. The model dimension obtained by means of 

SSR minimum (11 PCs) differs drastically from the dimension given by the eigenspectrum (1 PC). 

This discrepancy is expected due to limited range of nitrate concentrations, which appear to have 

a large effect in the UV absorbance spectra.  Figure 4.34 (b) displays the predicted nitrate 

concentrations as a function of measured nitrate concentration for the validation data set. To 

evaluate the impact of the referred discrepancy on the nitrate estimations, PCR models are 

performed including 1 PC and 11 PCs. The figure demonstrates several deviations from the linear 

model, which could be explained by the limited range of nitrate concentration in the evaluated 

samples. The same behaviour could be observed analysing Figure 4.33 (b). 

To demonstrate the above assumptions, data set 3 is now used as it contains a wider range of 

nitrate concentrations. The PCR modelling step and LOOCV are repeated. The results are shown 

in Figure 4.35. 

 

Figure 4.35. Case1.1.1. Predicted Nitrate Concentration as a function of Measured 

Nitrate Concentration for the validation data set with 1-PC and 11-PCs 
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Analysing Figure 4.35 it is possible to infer that by increasing the range of nitrate concentrations 

in the model, the deviations from the linear model decrease. In addition, increasing the 

dimensionality of the model, from 1 PC up to 11 PCs, appears to have a positive impact on nitrate 

concentrations estimation. 

 

The focus of the present work is nitrite concentrations estimation. As a result, the obtained data 

contain limited information regarding the nitrate concentrations and their effect on the spectra. 

Thus, the creation of a linear regression model that links the acquired spectra to nitrate 

concentrations is challenged. Experimentally induced variations in the latter would allow the 

development of a better estimation model for nitrate and could be achieved, for instance, by 

adding nitrate stock-solutions with different concentrations to the samples, identically to what was 

performed for nitrite. This is considered as an idea for further study. 
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5 CONCLUSIONS AND FUTURE DEVELOPMENTS 

The detection of contaminants in water sources is raising global concerns regarding their potential 

risks to the environment and human health, limiting development and increasing poverty in 

emerging and developing countries. Different approaches to wastewater management are 

required for different geographical regions and different stages of economic governance 

depending on the capacity to manage wastewater. One promising approach is the separate 

collection and treatment of urine. Source-separation of urine represents a treatment opportunity 

for removal of these compounds from water sources and preventing significant environmental 

exposure. However, realisation of urine separation still faces challenges. Ammonia volatilization 

is one that presents bigger concerns, since significant nitrogen losses occur. In addition, 

inconvenient odour problems arise. Thus, ammonia stabilization is imperative to prevent 

environmental pollution and negative effects on human health. Importantly, it is essential to retain 

nitrogen in solution for a later recovery.  

 

Biological nitrification is a suitable pre-treatment to stabilise urine. The major concern regarding 

biological nitrification is the accumulation of the inhibitory intermediate nitrite, which can lead to 

process breakdown. Currently, there is no on-line measurement available which could help to 

prevent nitrite accumulation events. The application of a chemometric model, such as principal 

component regression (PCR), is a promising approach for estimation of nitrite in urine nitrification 

processes. UV spectrophotometry together with PCR were used in this work in order to develop 

a model for estimation of nitrite concentrations. Monitoring of nitrite concentrations in the urine 

nitrification reactor could avoid system failures and, possibly, a total system breakdown. 

 

An evaluation of particles and saturation effects on the UV absorbance spectra was performed. 

In the first part of this work the saturation effect on the UV absorbance spectra was characterized 

empirically. The goal of the experiment was to determine an ideal dilution where no effect of 

saturation was present and Lambert-Beer’s law was applicable. The latter was investigated by 

means of a linear regression. An ideal dilution, where saturation is absent and Lambert-Beer’s 

law conditions are present, was achieved and determined to correspond to a 10% urine fraction. 

In the second part of this work, both the effect of particles and the effect of saturation in the UV 

absorbance spectra were investigated. The aim was (i) to clarify how strong the effect of particles 

is, and (ii) to evaluate how saturation influences the nitrite estimation.  Nitrite concentrations were 

estimated through the use of a PCR model.   

 

The model developed in this study estimates the nitrite concentrations accurately under stable 

operation conditions. A PCR model performs well when the saturation effect and the particles 

effect are minimized through dilution and filtration (ideal case). The accuracy of the PCR model 

remains good when particles are present. This allows to conclude that particles have a minimal 

impact on nitrite concentration estimation. Furthermore, the PCR model remains acceptable when 

saturation effect is present. However, a large increase in model dimension is required. This allows 

to conclude that effect of saturation shows a large impact on nitrite concentration estimation. 
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Despite the above positive result, the model remains sensitive to operational conditions and to 

considerable changes in the samples composition, revealing lower performance in these 

circumstances. The quality of mixing appears particularly crucial in the sensor’s ability to sense 

nitrite.   

 

The work presented in this thesis represents a step forward in the biological urine nitrification 

process stabilization. However there are still some aspects that can be studied in further research. 

A similar experimental approach could be carried out to evaluate the effect of changing nitrate 

concentrations. This would lead to a full understanding of the sensor’s estimation abilities under 

different operational conditions. Furthermore, it is necessary to evaluate whether good mixing 

conditions can be achieved under realistic conditions when using the sensor as an on-line 

instrument. 

 

 
 
  



 
 

65 

 
  



 
 

66 

 
 



 
 

67 

6 REFERENCES 

Aguado, D. & Rosen, C., 2008. Multivariate statistical monitoring of continuous wastewater 

treatment plants. Engineering Applications of Artificial Intelligence, 21, pp. 1080-1091. 

Bock, E. & Wagner, M., 2006. Oxidation of Inorganic Nitrogen Compounds as an Energy Source. 

In: The Prokaryotes. A Handbook on the Biology of Bacteria. Ecophysiology and Biochemistry. 

3rd ed. Singapore: Springer, p.1107. 

Bouvier, J.-C. et al., 2008. On-Line Monitoring of Nitrate and Nitrite by UV Spectrophotometry in 

a SBR Process Used for the Treatment of Industrial Wastewaters. International Journal of 

Chemical Reactor Engineering, 6, pp. 1-19. 

Burgess, C., 2007. The Basis of Spectrophotometric Measurements. In: UV-Visible 

Spectrophotometry of Water and Wastewater. Techniques and Instrumentation in Analytical 

Chemistry. Startforth, England: Elsevier, p.372. 

Corcoran, E. et al., 2010. Sick Water? The Central Role of Wastewater Management in 

Sustainable Development. A Rapid Response Assessment, United Nations Environment 

Programme: UN-HABITAT, GRID-Arendal. 

Dahlen, J. et al., 2000. Determination of nitrate and other water quality parameters in groundwater 

from UV/Vis spectra employing partial least squares regression. Chemosphere, 40, pp. 71-77. 

Drolc, A. & Vrtovsek, J., 2010. Nitrate and nitrite nitrogen determination in waste water using on-

line UV spectrometric method. Bioresource Technology, 101, pp. 4228-4233. 

Etter, B., Hug, A. & Udert, K. M., 2013. Total Nutrient Recovery from Urine – Operation of a Pilot-

Scale Nitrification Reactor. WEF/IWA International Conference on Nutrient Removal and 

Recovery, 2013, 28-31 July, Vancouver, p. 4. 

EPA, 2002. Nitrification, USA: United States Environmental Protection Agency. [online] Available 

at:http://water.epa.gov/lawsregs/rulesregs/sdwa/tcr/upload/nitrification.pdf [Accessed 

06.2014].  

Fernández, J., Nieto, P., Muñiz, C. & Antón, J., 2014. Modelling eutrophication and risk prevention 

in a reservoir in the Northwest of Spain by using multivariate adaptive regression splines 

analysis. Ecological Engineering, 68, pp. 80-89. 

Ganrot, Z., 2005. Urine processing for efficient nutrient recovery and reuse in agriculture, Ph.D. 

thesis, Göteborg University, Göteborg, Sweden, p.170. 

Haimi, H., Mulas, M., Corona, F. & Vahala, R., 2013. Data-derived soft-sensors for biological 

wastewater treatment plants: An overview. Environmental Modelling & Software, 47, pp. 88-

107. 

Hastie, T., Tibshirani, R. & Friedman, J., 2001. Linear Methods for Regression. In: The Elements 

of Statistical Learning; Data Mining, Inference and Prediction. 4th ed. Stanford University, 

USA: Springer, p.739. 

Heinonen-Tanski, H., Sjöblom, A., Fabritius, H. & Karinen, P., 2007. Pure human urine is a good 

fertiliser for cucumbers. Bioresource Technology, 98, pp. 214-217. 

Henze, M. & Comeau, Y., 2008. Wastewater Characterization. In: Biological Wastewater 

Treatment: Principles, Modelling and Design. IWA Publishing, p.511. 



 
 

68 

Hyötyniemi, H., 2001. Multivariate Regression. Techniques and tools, Helsinki University of 

Technology, Control Engineering Laboratory, Helsinki, report 125, p.207. 

Jolliffe, I., 2002. Principal Component Analysis. 2nd ed. University of Aberdeen, UK: Springer, 

p.487. 

Juan, A. & Tauler, R., 2003. Chemometrics applied to unravel multicomponent processes and 

mixtures. Revisiting latest trends in multivariate resolution. Analytica Chimica Acta, 500, pp. 

195–210. 

Langergraber, G., Fleischmann, N. & Hofstädter, F., 2003. A multivariate calibration procedure 

for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. Water 

Science and Technology, 47 (2), pp. 63-71. 

Larsen, T. A. & Gujer, W., 1996. Separate Management of Anthropogenic Nutrient Solutions 

(Human Urine). Water Science and Technology, 34(3-4), pp. 87-94. 

Lienert, J. & Larsen, T. A., 2009. High Acceptance of Urine Source Separation in Seven European 

Countries: A Review. Environmental Science & Technology, 44, pp. 556-566. 

Macherey-Nagel, 2014. Glasfaserfilter. [online] Available at: http://www.mn-

net.com/StartpageFiltration/Filterpapers/Glasfaserfilter/tabid/10497/language/en-

US/Default.aspx [Accessed 07. 2014]. 

Maesschalck, R. D. et al., 1999. The development of calibration models for spectroscopic data 

using Principal Component Regression. Internet Journal of Chemistry, 2, pp. 19-36. 

HACH, 2012. Manual DR 2800™ Portable Spectrophotometer, p. 4. 

S::can, 2007. Manual s::can spectrometer probe, p.62. 

Mark, H. & Workman, J., 2007. Calculating the Solution for Regression Techniques: Part 4 - 

Singular Value Decomposition. In: Chemometrics in Spectroscopy. 1st ed. New York: 

Academic Press, pp. 127-129. 

Mathworks, 2014. MathWorks - MATLAB and Simulink for Technical Computing. [online] 

Available at: http://www.mathworks.com [Accessed 06. 2014]. 

Maurer, M., Pronk, W. & Larsen, T., 2006. Treatment processes for source-separated urine. 

Water Research, 40, pp. 3151-3166. 

Melitta, 2014. Melitta® Original Coffee Filters - Melitta. [online] International.melitta.de. Available 

at: https://international.melitta.de/en/Melitta-Original-Coffee-Filters-618.html [Accessed 07. 

2014]. 

Mevik, B. & Wehrens, R., 2007. The pls Package: Principal Component and Partial Least Squares 

Regression in R. Journal of Statistical Software, 18, pp.1-24. 

Otto, M., 2007. What is Chemometrics? In: Chemometrics. Statistics and Computer Application 

in Analytical Chemistry. 2nd ed. Weinheim: Wiley-VCH, pp. 1-11. 

Paulo, A. M., 2008. Monitoring of Biological Wastewater Treatment Processes using Indirect 

Spectroscopic Techniques, Ph.D. thesis, Universidade do Minho, Minho, Portugal, p.135. 

Pons, M., Bonté, S. & Potier, O., 2004. Spectral analysis and fingerprinting for biomedia 

characterisation. Journal of Biotechnology, 113, pp. 211–230. 

Rieger, L. et al., 2008. Long-term evaluation of a spectral sensor for nitrite and nitrate. Water 

Science & Technology, 57(10), pp. 1563-1569. 



 
 

69 

Rieger, L. et al., 2004. Spectral in-situ analysis of NO2, NO3, COD, DOC and TSS in the effluent 

of a WWTP. Water Science & Technology, 50(11), pp. 143-152. 

Sedlak, R., 1991. Phosphorus and nitrogen removal from municipal wastewater: principles and 

practice. 2nd ed. New York: The Soap and Detergent Association, p. 88. 

Smith, L., 2002. A tutorial on Principal Components Analysis. USA: Cornell University, pp.1-26. 

Thomas, O. & Theraulaz, F., 2007. Aggregate Organic Constituents. In: UV-Visible 

Spectrophotometry of Water and Wastewater. Techniques and Instrumentation in Analytical 

Chemistry. Startforth, England: Elsevier, pp. 89-114. 

Thomas, O., Theraulaz, F., Agnel, C. & Suryani, S., 1996. Advanced UV Examination of 

Wastewater. Environmental Technology, 17, pp. 251-261. 

Udert, K., 2002. The Fate of Nitrogen and Phosphorus in Source Separated Urine, Ph.D. thesis, 

Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, p. 117. 

Udert, K., Fux, C., Münster, M., Larsen, T. A., Siegrist, H., Gujer, W., 2003 b). Nitrification and 

autotrophic denitrification of source-separated urine. Water Science and Technology, 48(1), 

pp. 119-130. 

Udert, K., Larsen, T. & Gujer, W., 2006. Fate of major compounds in source-separated urine. 

Water Science and Technology, 54(11), pp. 413-420. 

Udert, K. M., Larsen, T. A., Biebow, M. & Gujer, W., 2003 a). Urea hydrolysis and precipitation 

dynamics in a urine-collecting system. Water Research, 37, pp. 2571-2582. 

Udert, K. & Wächter, M., 2012. Complete nutrient recovery from source-separated urine by 

nitrification and distillation. Water Research, 46, pp. 453-464. 

Upstone, S. L., 2000. Ultraviolet/Visible Light Absorption Spectrophotometry in Clinical Chemistry. 

In: P. Ltd., ed. Encyclopedia of Analytical Chemistry. Beaconsfield, UK: John Wiley & Sons 

Ltd, pp. 1699–1714. 

VUNA, 2013. Eawag: VUNA - Nutrient harvesting in South Africa: VUNA. [online] Available at: 

http://www.vuna.ch [Accessed 07.2014].  

Wold, S., 1995. Chemometrics; what do we mean with it, and what do we want from it? 

Chemometrics and Intelligent Laboratory Systems, 30, pp. 109-115. 

  



 
 

70 

 

  



 
 

71 

APPENDIXES 

APPENDIX I. Matlab Code: Primary Saturation Effect Experiment 

clc; clear all; close all 

  
% load DilutionData1 
% templegend = {'10x',’2x','1x','20x','5x','100x','50x','10x', 

'(5/3)x','2.5x','1.25'}; 
% dilutions = [10 2 1 20 5 100 50 10 5/3 2.5 1.25]; %c=1:11 

  
load DilutionData2 
templegend = {'5x', 

'25x','2.5x','(5/3)x','10x','100x','50x','1.25x','20x','1'}; 
dilutions = [5 25 2.5 5/3 10 100 50 1.25 20  1]; %c=1:10 

  
x = 1./dilutions; %Compute urine fractions 
x = repmat(x,5,1); 
x = x(:) ; 
x_sort=sort(x); %Sort urine fractions 
[x_sort,index]=sort(x); 
index; 

  
y = spectra_out(:,[23:5:43]);%Choose the wavelenght (ex:23=220nm) 
y_sort=y(index,:);  

  
c=10;%Change the value of c according data set 1 or 2 and desired 

urine fractions 

  
%Plot for chosen dilutions (urine fractions)vs Absorbance 
figure 
hold on 
for j=1:c 
  plot(x_sort((j-1)*5+1),y_sort((j-1)*5+1,:),'.') 
  axis([0 1 0 6000]) 
  xlabel('Urine fraction','Fontsize',14, 'Fontname', 'Arial'); 

  ylabel('Asorbance (Abs/m)','Fontsize',14, 'Fontname', 'Arial') 
  title('(g) Included urine fractions: ','Fontsize',14, 'Fontname','Arial') 
  newlegend={'220','225','230','235','240'}; 
  legend(newlegend) 
end 
for j=1:c 
plot(x_sort ((j-1)*5+(2:5))',y_sort((j-1)*5+(2:5),:),'.') 
end 

  
%Equation to obtain the matrix X=[ones x] 
X=[ones(c.*5,1) x_sort(1:c.*5)]; 

  
%Equation for the matrix [b; m], b=intercept, m=slope 
p=((X'*X)^-1)*X'*y_sort(1:c.*5,:) 

  
%Definition of b(intercept) and m(slope) to the regression line 
b1= p(1,1) ; b2=p(1,2); b3= p(1,3); b4= p(1,4); b5= p(1,5);  
m1= p(2,1) ; m2= p(2,2) ;m3= p(2,3) ; m4= p(2,4) ; m5= p(2,5);  
v=0:1; 
z1=v.*m1+b1; z2=v.*m2+b2; z3=v.*m3+b3; z4=v.*m4+b4; z5=v.*m5+b5;  
hold on 
plot(v,z1,v,z2,v,z3,v,z4,v,z5,'k') %Plot regression line 

  
yp=X*p; %Equation that defines the predicted values of absorbance 
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%Plot for Measured Absorbance vs Predicted Absorbance (for chosen 

urine fractions) 
figure, hold on 
str={'b.','g.','r.','c.','m.'}; 
for k=1:5 
plot(y_sort(1:5*c,k),yp(1:5*c,k),str{k}) 
xlabel('Measured Absorbance (Abs/m)','Fontsize',14,'Fontname', 'Arial');  

ylabel('Predicted Asorbance (Abs/m)','Fontsize',14, 'Fontname', 'Arial') 
title('(a) Included urine fractions: ','Fontsize',14, 'Fontname', 

'Arial') 
newlegend={'220','225','230','235','240'}; 
legend(newlegend) 
end 
R =get(gca,'Xlim'); 
plot(R,R,'k-'); 

  

  
e=y_sort(1:c.*5,:)-yp; %%Compute the prediction error 

  
% Measured Absorbance vs Prediction Errors(for chosen urine fractions) 
figure 
hold on 
for j=1:c 
  axis([0 6000 -2000 2000]) 
  plot(y_sort ((j-1)*5+1,:)',e ((j-1)*5+1)' ,'.') 
  xlabel('Measured Absorbance (Abs/m)','Fontsize',14, 'Fontname', 'Arial') 
  ylabel('Prediction errors (Abs/m)','Fontsize',14, 'Fontname', 'Arial') 
  hold on 
  plot(0:6000,0,'k-'); 
  newlegend={'220','225','230','235','240'}; 
  legend(newlegend) 
end 
for j=1:c 
  plot(y_sort ((j-1)*5+(2:5),:)',e ((j-1)*5+(2:5))' ,'.') 
end 
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APPENDIX II. Matlab Code: Particles and Saturation Effect Experiment 

close all, clear all, clc 

  
% Pre Processing 

  
load SamplesData4 

 
SelectSamples = [1:240] ;%SamplesData2 and SamplesData4 
% SelectSamples = [1:235] ;%SamplesData12 
lambda = [220:390]; 

  
SelectSamples = setdiff(SelectSamples,[1:60 76 86:95 111 145 166 186 

191 226:240]); %setdiff remove "undesired" samples %SamplesData4 

% SelectSamples = setdiff(SelectSamples,[1:55 81:90 91 171 221:235]); 

%SamplesData12 
% SelectSamples = setdiff(SelectSamples,[1:60 61 86:95 176 191 221 

226:240]); %SamplesData2 

 

  
% outliers=[11 36 70 91 111 116] %outliers (SamplesData 4) %original 

outliers: 76 111 145 166 186 191 
% outliers=[21 101] %outliers (SamplesData 12) %original outliers: 91 

171 
% outliers=[1 41 46 101 116 146] %outliers (SamplesData 2) %original 

outliers: 61 176 191 221 

  
D=spectra_out(SelectSamples,21:191)'; 

  
X=D; %Define X data matrix [m x n] (n=rows and m=columns) 

%m=Variables(waveleghts from 220nm(21) up to 390nm(191) = 171 

spectras) 
     %n=observations(samples) 

  
[m n]=size(X) %Define m and n 

  
mn=mean(X,2); %Compute the mean 

  
figure,  
 hold on, 
    plot(lambda,mn,'c.','markersize',10);legend('mean') %plot mean of  

    the original data 
    plot(lambda,X,'k-') %plot original data 
    plot(lambda,mn,'c.','markersize',10);legend('mean') 
    xlabel('wavelenghts (nm)','Fontsize',14,'FontName','Arial');  

    ylabel('Absorbance (Abs/m)','Fontsize',14,'FontName','Arial');  

    title('(a)','Fontsize',14,'FontName','Arial') 

  
X=X-repmat(mn, 1, n); %Compute centred absorbance 

  
figure, plot(lambda, X, 'k-')%plot centred absorbance 
xlabel('wavelenghts (nm)', 'Fontsize',14,'FontName','Arial'); 

ylabel('Centred Absorbance (Abs/m)','Fontsize',14,'FontName','Arial'); 

title('(b)','Fontsize',14,'FontName','Arial') 

  
Y=X'/sqrt(n-1); %Create matrix Y 

 
 

 

%Singular Value Decomposition (SVD): Y=USV' 
[U,S,V]=svd(Y);  
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var=diag(S).*diag(S); %Compute covariance matrix 
figure, bar(var(1:30), 'k') %Plot Eigenspectrum including 30PCs 
xlabel('Eigenvector number/PC number','Fontsize',14,'FontName','Arial'); 

ylabel('Eigenvalue/Variance','Fontsize',14,'FontName','Arial');   
title('(a)','Fontsize',14,'FontName','Arial')  

  
var_p=var/sum(var)*100; % %Compute covariance matrix in % 
% figure, bar(var_p(1:30), 'b')%Plot Eigenspectrum including 30PCs 
% xlabel('Eigenvector number/PC number','Fontsize',12); 

ylabel('Eigenvalue/Variance(%)','Fontsize',12);  
% title('Eigenspectrum') 

  
% Principal Component Analysis 
 

PC=V'*Y';%Compute scores (PC=T) 
figure,plot(PC(1,:),'k.')%plot PC1 
% hold on, plot(outliers,PC(1,outliers),'ro','Markersize',14) %plot 

outliers 
xlabel('sample index','Fontsize',14,'FontName','Arial');  

ylabel('PC1 score','Fontsize',14,'FontName','Arial');  

title('(a)','Fontsize',14,'FontName','Arial');  

 
figure,plot(PC(2,:),'b.')%plot PC2 
% hold on, plot(outliers,PC(2,outliers),'ro','Markersize',14) %plot 

outliers 
xlabel('sample index','Fontsize',14,'FontName','Arial');  

ylabel('PC2 score','Fontsize',14,'FontName','Arial');  
title('(b)', 'Fontsize',14,'FontName','Arial'); 

  
figure, plot(PC(1,1:end),'k.') %plot PC1 with different colours for 

data set 1 (black) 
hold on, plot(PC(1,1:60),'r.') %plot PC1 with different colours for 

data set 2 (red) 
xlabel('sample index','Fontsize',14,'FontName','Arial'); ylabel('PC1 

score','Fontsize',14,'FontName','Arial');  

title('(a)','Fontsize',14,'FontName','Arial');  
legend('normal operation', 'abnormal operation') 

  
figure, plot(PC(2,1:end),'k.')  

hold on, plot(PC(2,1:60),'r.') 
xlabel('sample index','Fontsize',14,'FontName','Arial');  

ylabel('PC2 score','Fontsize',14,'FontName','Arial');  

title('(b)','Fontsize',14,'FontName','Arial');  
legend('normal operation', 'abnormal operation') 

  
% figure,plot(PC(1,:),0,'.','markersize',15) %plot PC1 
% xlabel('PC1 score'); title('Projection onto 1st Principal Component 

(score plot)') 
% figure,plot(PC(2,:),0,'.','markersize',15)%plot PC2 
% xlabel('PC2 score'); title('Projection onto 2nd Principal Component 

(score plot)') 

  
figure,plot(PC(1,:),PC(2,:),'k.','markersize',12)%plot PC1 vs PC2  
xlabel('PC1'), ylabel('PC2'), 
title('Projections onto first 2 Principal Components') 

  
figure, plot(lambda, V(:,1),'k.-','markersize',15) 
xlabel('wavelenghts (nm)','Fontsize',14,'FontName','Arial'); 

ylabel('loadings-PC1','Fontsize',14,'FontName','Arial'); 

title('(b)','Fontsize',14,'FontName','Arial') 
% title('effect of original variables (loadings) upon PC1');  
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% figure, plot(lambda,V(:,2),'r.-','markersize',15),  
% xlabel('wavelenghts','Fontsize',14,'FontName','Arial');  

% ylabel('loading-PC2','Fontsize',14,'FontName','Arial'); 

% title('(b)','Fontsize',14,'FontName','Arial') 
% % title('effect of original variables (loadings) upon PC2');   

  
figure, plot(lambda, V(:,1),'k.-','markersize',12), hold on, 

plot(lambda,V(:,2),'b.-','markersize',12),  

legend('1st Eigenvector','2nd Eigenvector') 
xlabel('wavelenghts (nm)','Fontsize',14,'FontName','Arial'); 

ylabel('Eigenvectors','Fontsize',14,'FontName','Arial');title('(b)','F

ontsize',14,'FontName','Arial') 
% %  
% figure, plot(V(:,1),V(:,2),'.')%plot influence of each original 

variables upon PC1 and PC2 % good to see a trend  

% xlabel('effect (PC1)','Fontsize',14,'FontName','Arial'),  

% ylabel('effect (PC2)','Fontsize',14,'FontName','Arial') 
% % title('Load plot') 

  
% Principal Component Regression 

  
T=PC'; %=U*S %Create matrix T  

  
nPCs=1 
for d=1:nPCs 
Ts=T(:,1:d); %define T for d scores 
Vs=V(:,1:d); %define V for d scores 

  
[r c]=size(Ts); 
Z=[ones(r,1) Ts]; %Equation to obtain the matrix Z=[ones Ts] 

  
Ym=[NO2_conc_out(SelectSamples)']; %matrix Ym=[NO2_measured] 

 
p=((Z'*Z)^-1)*Z'*Ym;%Equation for the matrix [b; m]  

  
Yp=Z*p; %Equation for the predicted NO2 concentrations 

  
figure, plot(Ym(1:end,:)',Yp(1:end,:)','k.'),  
% hold on, plot(Ym(outliers,:),Yp(outliers,:),'ro','Markersize',14) 

%plot outliers 
% %  
% for i=1:n 
%     text(Ym(i)+1/2,Yp(i)+1/2,num2str(i)); 
% end 
hold on, R =get(gca,'Xlim');plot(R,R,'k-'); %Compute y=x 
% plot(0:250, 0:250,'k-') 
xlabel('Measured NO2 Concentration(mg NO2-N/l)','Fontsize',14,'FontName', 

'Arial'),  

ylabel('Predicted NO2 Concentration(mg NO2-N/l)','Fontsize',14,'FontName', 

'Arial'); 
title('(b)','Fontsize',14,'FontName','Arial') 
% title('Predicted Concentration as a function of Measured Concentration') 

  
figure, plot(Ym(1:end,:)',Yp(1:end,:)','k.') %plot PC1 with different 

colour for data set 1 
hold on,plot(Ym(1:60,:)',Yp(1:60,:)','r.') %plot PC1 with different 

colour for data set 2 
hold on, R =get(gca,'Xlim');plot(R,R,'k-'); 
xlabel('Measured NO2 Concentration(mg NO2-N/l)','Fontsize',14,'FontName', 

'Arial'),  

ylabel('Predicted NO2 Concentration(mg NO2-N/l)','Fontsize',14,'FontName', 
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'Arial'); 
legend('normal operation', 'abnormal operation') 
title('(b)','Fontsize',14,'FontName','Arial') 
end 

  
e=Ym-Yp;%Compute the prediction error 
figure, plot(Ym(:,:),e(:,:),'.') 

  
for i=1:n 
    text(Ym(i)+1/2,e(i)+1/2,num2str(i)); 
end 

  
hold on, R=2*max(Ym); plot(0:R,0:0,'k-'); %Compute y=0 
xlabel('Measured NO2 Concentration','Fontsize',12),  

ylabel('Prediction error','Fontsize',12) 

  

  
% Leave-One-Out Cross Validation 

 

clear all, close all, clc 

  
load SamplesData4 

  
SelectSamples = [1:240] ;%SamplesData2 and SamplesData4 
% SelectSamples = [1:235] ;%SamplesData12 

  
% SelectSamples = setdiff(SelectSamples,[1:60 86:95 226:240]); 

%SamplesData2 and SamplesData4  
% SelectSamples = setdiff(SelectSamples,[1:55 81:90 221:235]); 

%SamplesData12  

 
N=length(SelectSamples);  

  
nPCs = 30; % Define number of PCs 

  
SampleIndex = nan(N,1) ; 
for j=1:N/5 
    SampleIndex((1:5)+(j-1)* 5) = j; 
end 

  
j_index=1:N/5; 

  
% outliers = []; 
outliers = [76 111 145 166 186 191]; %SamplesData4 
% outliers = [91 171]; %SamplesData12 
% outliers = [61 176 191 221]; %SamplesData2 
  

 

 

 

  
outliers_index=[]; 
for k = 1:length(outliers) 
    outliers_index = [outliers_index 

find(SelectSamples==outliers(k))]; 
end 

  
SelectSamples = setdiff(SelectSamples,outliers); 

  
SampleIndex = SampleIndex(setdiff(1:N,outliers_index),:); 
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A=spectra_out(SelectSamples,21:191)'; %matrix for the selected spectra 

  
C=NO2_conc_out(SelectSamples)'; %matrix for the selected NO2 concentrations 

  
X=A; 

  
Ymval_matrix =[];% Ymval_matrix = zeros(length(SampleIndex),nPCs);  % 

predefine matrix for Measured NO2 concentrations storage, for the 

validation data set 
Ypval_matrix = [];% Ypval_matrix = zeros(length(SampleIndex),nPCs);  % 

predefine matrix for Predicted NO2 concentrations storage, for the 

validation data set 
error_matrix = [];% error_matrix = zeros(length(SampleIndex),nPCs);  % 

predefine matrix for error storage 

  
for jj = 1:length(j_index) 

     
    j = j_index(jj); 

     
    cal_temp = SampleIndex~=j ; cal = cal_temp~=0; 
    val = SampleIndex==j ; 

     
    Xcal = X(:,cal); 
    Xval = X(:,val);  
    val_length = size(Xval,2); 

     
    Ccal = C(cal); 
    Cval = C(val);  

  

     
% 1st. Centering/scaling of calibration and validation data 

     
[m n]=size(Xcal); %Define m and n 
mn=mean(Xcal,2); %Calculate the mean 
Xcaln=Xcal-repmat(mn, 1, n); 
[o p]=size(Xval); 

Xvaln=Xval-repmat(mn, 1, p);  

    

  
% 2nd. PCA modelling (SVD) 

     
Ycal=Xcaln'/sqrt(n-1); %Create matrix Ycal 

     
[Ucal,Scal,Vcal]=svd(Ycal); %Singular Value Decomposition (SVD): Y=USV' 

     
var=diag(Scal).*diag(Scal); %Compute covariance matrix 
 

 

PCcal=Vcal'*Ycal';%Calculate scores (PC it's equal to T on PCR) 

     
Yval=Xvaln'/sqrt(n-1); %Create matrix Yval 

  
PCval=Vcal'*Yval';%Calculate scores (PC it's equal to T on PCR) 

 
    % 3. Regression for calibration and validation data (PCR) 

     
Tcal=PCcal'; %=Ucal*Scal; %Create matrix T  
Tval=PCval'; %Create matrix T  

  
Ymval_matrix_small = zeros(val_length,nPCs); 
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Ypval_matrix_small = zeros(val_length,nPCs); 
error_matrix_small = zeros(val_length,nPCs); 
    

for d=1:nPCs 

     
    Tscal=Tcal(:,1:d); %define Tcal for d scores  
    Vscal=Vcal(:,1:d); %define Vcal for d scores 

     
    Tsval=Tval(:,1:d); %define Tval for d scores 
    Vsval=Vcal(:,1:d); %define Vval for d scores 

        
    [r c]=size(Tscal); 
    Zcal=[ones(r,1) Tscal]; %Equation to obtain the matrix Z=[ones  

    Tscal] 

     
    [s f]=size(Tsval); 
    Zval=[ones(s,1) Tsval]; %Equation to obtain the matrix Z=[ones  

    Tsval] 

      
    Ymcal=Ccal; %matrix Ymcal=[NO2_measured]for the calibration set; 
    Ymval=Cval; %matrix Ymcal=[NO2_measured]for the validation set 
    Ymval_matrix_small(:,d) = Ymval; 

     
    pcal=((Zcal'*Zcal)^-1)*Zcal'*Ymcal; % Equation for the matrix [b; m] 

      
    Ypcal=Zcal*pcal; %Equation for the predicted NO2 concentrations  

    for the calibration set  
    Ypval=Zval*pcal;%Equation for the predicted NO2 concentration for  

    the validation set   
    Ypval_matrix_small(:,d) = Ypval; 

     
    eval=Ymval-Ypval;%Equation for the prediction error 
    error_matrix_small(:,d) = eval; 

           
   end 

    
   Ymval_matrix = [Ymval_matrix; Ymval_matrix_small]; 
   Ypval_matrix = [Ypval_matrix; Ypval_matrix_small]; 
   error_matrix = [error_matrix; error_matrix_small]; 

     
end 

   
SSR=sum(error_matrix(:,1:nPCs).^2)%compute SSR(Sum of Squared Residuals) 
figure, plot(1:nPCs,SSR,'k-') %choose SSR minimum to know the optimal  

number of PCs 
hold on, plot(2,SSR(2),'bo','Markersize',14) 
hold on, plot(13,SSR(13),'ro','Markersize',14) 
xlabel('nr. of PCs _ validation data set','Fontsize',14,'FontName','Arial'),  

ylabel('SSR _ validation data set (mg/L)','Fontsize',14,'FontName','Arial'), 

title('(a)','Fontsize',14,'FontName','Arial')  

  
%plot Predicted Concentrations vs Measured Concentrations based on SSR 

model 
figure, hold on,  
plot(Ymval_matrix(:,2),Ypval_matrix(:,2),'r.','Markersize',6) %plot 

for the 2nd PC 
% plot(Ymval_matrix(1:60,2),Ypval_matrix(1:60,2),'r*','Markersize',6) 

%plot for the 2nd PC 
%  plot(Ymval_matrix(:,2),Ypval_matrix(:,2),'ro','Markersize',6) %plot 

for the 2nd PC 
 plot(Ymval_matrix(:,nPCs),Ypval_matrix(:,nPCs),'k.')%plot for the 1st 

PC 
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%   plot(Ymval_matrix(1:60,nPCs),Ypval_matrix(1:60,nPCs),'k*')%plot 

for the 1st PC 
hold on, plot(0:250, 0:250,'k-') 
%  legend('2 PCc - normal operation','2 PCs - abnormal operation','15 

PCs - normal operation','15 Pcs - abnormal operation'),  
legend('2 PCs','13 PCs'),  
%  legend('nr PCs'),  
xlabel('Measured NO2-N Concentration (mg/L)','Fontsize',14,'FontName','Arial'),  

ylabel('Predicted NO2-N Concentration (mg/L)','Fontsize',13,'FontName','Arial'),  
title('(b)','Fontsize',14,'FontName','Arial')  
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APPENDIX III. Primary Saturation Effect Experiment: Results of data set 1 

 
 
 

 

Figure A.0.1. Predicted absorbances as function of measured absorbance for the chosen 

wavelengths (220, 225, 230, 235, 240 nm) of data set 1 
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