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ABSTRACT 

 

Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from 

four different oxazoline monomers. The polymerization reactions were conducted in 

supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) 

mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living 

polymers were then end-capped with different types of amines, in order to confer them 

antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and 

by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. 

After functionalization the obtained polymers were isolated, purified and characterized by 

standard techniques (FT-IR, NMR, MALDI-TOF and GPC).  

The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. 

High concentration of carbonyl groups in the polymer backbone is appointed as a key 

structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential 

applications. 

Microbiological assays were also performed in order to evaluate their antimicrobial profile 

against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia 

coli AB1157 strains, two well known and difficult to control pathogens. The minimum 

inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both 

strains were determined. The end-capping with N,N-dimethyldodecylamine of  living poly(2-

methyl-2-oxazoline) and poly(bisoxazoline) led  to materials  with higher MIC values but fast 

killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than 

LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and 

S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 

hours in contact with S.aureus. 

 

Such huge differences in the biocidal behavior of the different polymers can possibly underlie 

different mechanisms of action. In the future, studies to elucidate the obtained data will be 

performed to better understand the killing mechanisms of the polymers through the use of 

microbial cell biology techniques. 
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RESUMO 

 

 

Utilizando uma metodologia alternativa, foram sintetizados 17 polioxazolinas a partir de 

quatro monómeros diferentes. As reacções de polimerização foram realizadas em dióxido de 

carbono supercrítico através de um mecanismo de polimerização catiónica via abertura de 

anel (CROP) e utilizando como iniciador o eterato de trifluoreto de boro. Os polímeros 

obtidos foram terminalmente funcionalizados com diferentes tipos de aminas, com o intuito 

de lhes conferir actividade antimicrobiana. Para comparação, foram também sintetizadas 

quatro polioxazolinas não funcionalizadas (terminação com água) e, através de hidrólise das 

polioxazolinas, foi produzido o polímero linear polietileneimina (LPEI).  

 

Após a polimerização e funcionalização, os polímeros foram isolados, purificados e 

caracterizados pelas técnicas usuais (FT-IR, RMN, MALDI-TOF e GPC).  

 

Os polímeros sintetizados revelaram uma fluorescência azul inesperada. A elevada 

concentração de grupos carbonilo na cadeia do polímero é apontada como o factor 

estrutural fundamental para a existência desta fluorescência intrínseca potenciando futuras 

aplicações das polioxazolinas. 

 

Foram também efectuados ensaios microbiológicos de modo a avaliar o efeito 

antimicrobiano para as estirpes gram-positiva Staphylococcus aureus NCTC8325-4 e gram-

negativa Escherichia coli AB1157, dois conhecidos e importantes microorganismos 

patogénicos. A concentração mínima inibitória (MIC) e as curvas de morte dos polímeros 

sintetizados foram determinadas para ambas as estirpes. A funcionalização com N,N-

dimetildodecilamina dos polímeros vivos de poli(2-metil-2-oxazolina) e poli(bisoxazolina) 

originaram materiais com valor de MIC mais elevado e velocidades de morte mais rápidas 

(inferiores a 5 minutos para reduzir 100% a viabilidade de ambas as estirpes) enquanto que 

o LPEI, o polímero com valor de MIC mais baixo, reduz a viabilidade de E.coli e de S.aureus 

após 45 minutos e 4 horas em contacto com a estirpe, respectivamente.  

 

 

Valores de MIC e tempos de acção tão distintos podem provavelmente ser justificados pela 

diferença ao nível dos mecanismos de acção do polímero. No futuro, serão desenvolvidos 

alguns estudos para elucidar estes mecanismos, nomeadamente através de técnicas de 

biologia celular e de microscopia de fluorescência. 
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Chapter 1 – 2-OXAZOLINE-BASED POLYMER SYNTHESIS 

AND FUNCTIONALIZATION 

 

1.1 OVERVIEW 

 

This section describes the green synthesis of 2-oxazoline-based polymers and their 

functionalization using scCO2 technology. 

The synthetic method consists in a cationic ring opening polymerization (CROP), using boron 

trifluoride etherate (BF3.Et2O) as the catalyst. The polymerization is performed using CO2 as 

the solvent under supercritical conditions. The pressure, temperature and monomer to 

catalyst feed ratio of the polymerizations was based on previously established conditions.1 

The CROP methodology produces living polymers which allows the end-capping of poly(2-

oxazolines)  with different types of amines. This functionalization allow the tuning of the 

polymers antimicrobial activity, a goal of the present work that will be later investigated 

(chapter 2). 

 

The aim of this chapter is to investigate whether a scCO2-based process can be successfully 

employed in the synthesis of antimicrobial 2-oxazoline-based polymers and also to obtain a 

library of amine end-capped polyoxazolines. 

 

Characterization and analysis of the polymers will be performed using FT-IR, NMR, GPC and 

MALDI-TOF along with microbiological techniques (chapter 2). 

 

 

1.2 INTRODUCTION 

This section describes the production of 2-oxazoline-based polymers which are potentially 

suitable for use as antimicrobial materials. The chosen methodology takes advantage of the 

unique properties of scCO2.  

The process that was used to produce 2-oxazoline-based polymers generates well defined 

polymers of narrow average molecular weight distributions by using an alternative synthesis. 

Since no organic solvents are employed it constitutes a greener approach and a cleaner 

process to the environment. 
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This is important as long as the environment issues concerns are growing nowadays and 

industries are looking forward to have new and cleaner alternatives relatively to the existing 

processes. 

 

1.2.1 Supercritical fluids (SCF) 

The use of supercritical fluids has been investigated continuously in recent years since they 

exhibit interesting physical properties.  

The definition of a supercritical fluid usually begins with a phase diagram, which defines the 

critical temperature and pressure of a substance (figure 1.1). 

For a pure substance, the critical point marks the end of the vapour-liquid coexistence curve. 

Above that critical point (with defined temperature and pressure), neither liquid or gas phases 

exist; instead, a poorly defined phase, known as a supercritical region, occurs. Then, a 

homogeneous and opalescent system without a phase separation takes place. Such fluids 

have the gas-like characteristic of compressibility, diffusivity and low viscosity, and the liquid-

like characteristic of high density and solubilization power. The SCF characteristics can be 

tuned by simply changing the pressure or temperature, being this possibility a great 

advantage in several processes.2,3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1 Schematic pressure-temperature phase diagram of a pure substance showing the 

supercritical fluid (SCF) region.  The triple point (T) and critical point (C) are marked. The diagram also 

shows the variation in density of the substance in the different regions (adapted from ref. 4). 
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All pure substances can form SCF above their respective critical points but higher values of 

temperature and pressure can limit some processes, being of particularly importance the 

correct choice of what SCF should be used (table 1.1). 

 

Table 1.1 Temperature and pressure critical conditions of some substances (adapted from ref. 2). 

  

Solvent Tc / ºC Pc / bar 

Carbon dioxide 31.0 73.8 

Ethane 32.3 48.7 

Methanol 239.6 80.9 

n-hexane 234.5 30.1 

Water 374.3 221 

 

 
 
 
In particular, supercritical CO2 (scCO2) is the most used, being frequently promoted as a 

green solvent with many advantages over conventional solvents. ScCO2 is a non-flamable, 

non-toxic, chemically inert and readily accessible solvent and simple depressurization results 

in its removal. In additional, its physical properties can be tuned by manipulation of the 

temperature and pressure.5,6   

 

ScCO2 has been receiving increasing attention as a reaction medium in alternative to 

common and environmentally unattractive organic solvents. Although carbon dioxide is a 

greenhouse gas, it is an abundant material in the environment and can be extracted from the 

atmosphere, be used as an alternative solvent and later released again to the environment, 

completely clean from any chemicals used in the process. However, commercial CO2 later on 

employed in a process is usually not captured from the atmosphere, but in fact obtained as a 

byproduct of the commercial ammonia process. This process can be considered as a 

process that prevents pollution once it avoids the emission of CO2 to the atmosphere.7 
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Figure 1.2 Schematic phase diagram of CO2 with snapshots of the observed changes from a liquid-

gas equilibrium to the supercritical region (adapted from ref. 5). 

 

 

1.2.2 Polymerization and polymer processing in scCO2 

Supercritical fluids have a great potential in polymer processing, providing some key 

advantages when compared to the conventional methods. Although there are significant 

costs associated with polymer processing under high pressures, the advantages of this type 

of polymerization add significant value to the final processed products.2  

ScCO2 and its distinctive properties allowed it to emerge as the most extensively studied 

supercritical fluid for polymerization reactions.  

One of the key advantages of the use of scCO2 in polymerizations is the weak ability of 

interaction between CO2 and the functional groups in polymers. For polymerization reactions 

performed in supercritical fluids, the mass transfer for mixing reactants plays an important 

role in the entire process, in order to allow proper contact between monomer and catalyst, 

having, then, a significant influence on the yield and selectivity of a large range of chemical 

processes.2 

Another advantage is the “solvent-free” nature of scCO2 that makes it an ideal choice for the 

processing of pharmaceutical and biomedical materials, materials that are under a strong 

control over product integrity and presence of harmful solvent residues. By that reason, 

scCO2 has stimulated several studies, since industries are becoming increasingly more 

aware of environmental issues.  

Carbon dioxide is also a good solvent for most non-polar and some polar molecules of low 

molar mass but it is a poor solvent for most high molar mass polymers under mild conditions 

(<100 °C, <350 bar), being the only polymers that show good solubility in CO2 under this 
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conditions, fluoropolymers and silicones.8 This fact generally permits the precipitation of the 

polymer in high pressure reactor. Consequently, polymers can be isolated from the reaction 

media by simple depressurization (with removal of unreacted monomer and catalyst), 

resulting in a dry clean product (figure 1.3).8 This feature corresponds to a potential cost and 

energy saving since it decreases the energy used and eliminates purification steps (drying 

and purification) required in polymer manufacturing to remove the solvent.8  

 

 

 

Figure 1.3 General method for the synthesis of polymers in scCO2. The monomer and initiator are 

added to a high-pressure cell and CO2 is introduced.  The reactor is heated, a supercritical phase 

occurs and polymerization starts. After polymerization is complete, polymer precipitates and CO2 is 

released from the high pressure cell. (adapted from ref.4) 

 

 

Classification of polymerization reactions. Polymerizations can be classified as chain 

growth and step-growth polymerizations. The main types of chain-growth polymerization 

include free-radical, cationic, anionic, and metal-catalyzed reactions. The majority of 

polymerizations in scCO2 are focused on free-radical polymerizations, but there are a 

number of reports in the areas of cationic and metal-catalyzed reactions.8  

In this work it was used a chain growth polymerization through a cationic ring opening 

mechanism and for that reason this is the type in focus here. 

Cationic polymerizations are a challenging area in polymer science. Living cationic 

polymerization methods have been developed in order to produce polymers with a high 

control of molecular weight, molecular weight distribution, reactivity and end group 

functionalization by stabilization of the active carbocation through nucleophilic interactions. 

This stabilization is generally achieved by association of a nucleophilic counterion or with a 

Lewis base since it avoid side reactions. Studies have shown that CO2 is inert in this type of 

polymerization.8 
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1.2.3 Synthesis of 2-oxazoline-based polymers 

There are many publications describing the polymerization of polyoxazolines.  

Polyoxazolines of various architectures and chemical functionalities can be prepared in a 

living and controlled manner via cationic ring-opening polymerization (CROP). Monomers 

substituted in the 4- and 5-position are more difficult to polymerize due to steric hinderance,9  

the reason why 2-substituted oxazolines were chosen in this work. 

Oxazoline-based polymers are biodegradable, relatively non-toxic and generally water 

soluble. Due to their versatility and ability to form functional materials, this class of polymer 

are interesting candidates for use in a large number of applications, such as smart materials, 

membrane structures, drug carriers, synthethic vectors for DNA or RNA delivery and  

antimicrobial agents.9 

Although, 2-oxazoline-based polymers have not found widespread commercial application 

due, in part, to their polymerization times ranges (reactions times can vary from several 

hours to several days).9 This disadvantages can be overcome with the use of supercritical 

fluid or microwave technologies. These methods lead to less side reactions and maintain the 

living character of the reaction, using a higher temperature and pressure. 

The polymerization starts with a nucleophilic attack of the lone pair of the nitrogen of the 2-

oxazoline ring onto an activated 2-oxazoline monomer (oxazolinium species formed by 

coordination of the 2-oxazoline monomer with the initiator). The nucleophilic attack of the  

second monomer unit onto the formed oxazolinium species leads to the ring opening by 

cleavage of the C–O bond. Due to the absence of chain-transfer or termination reactions 

under the appropriate conditions, the polymerization occurs in a living manner until all 

monomer is consumed or an end-capping agent is added.10 

 

The interest in this class of polymers is increasing due to their particular characteristics and 

extensive applications in chemistry, biochemistry and pharmacology.11 In this work, four 

different 2-oxazoline monomers were used; three are commercially available (2-methyl-2-

oxazoline, 2-ethyl-2-oxazoline and 2-phenyl-2-oxazoline) and one was synthesized (bis-

oxazoline, that leads to a branched polyoxazoline). 

 

Conventional synthesis of 2-oxazoline-based polymers. Conventional polymerization of 

2-substituted-2-oxazoline has been widely described in the literature. In a typical  procedure, 

a solution of 2-substituted-2-oxazoline in acetonitrile and the initiator methyl p-
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toluenesulfonate (MeOTs) is heated at 60 ºC with stirring. The polyoxazoline is obtained as 

white powder, after purification by reprecipitation in diethyl ether and drying under vacuum.12 

It is important to develop green alternatives to this process of synthesis due to the current 

shortage of acetonitrile, a common solvent used on a manufacturing scale in several 

processes, and mainly to avoid the use of organic solvents and purification steps. 

 

 

Synthesis of 2-oxazoline-based polymers in scCO2. The synthesis of 2-substituted-2-

oxazolines in scCO2 was already described in literature for three different monomers using 

boron trifluoride etherate (BF3.OEt2) as initiator. The effect of temperature, pressure and 

initial monomer/initiator molar ratio on the yield, average molecular weight and polydispersity 

of the synthesized polymers was also investigated. It was obtained, in all reactions, low 

molecular weight polymers in high yield (over 80%) with narrow molecular weight distribution. 

2-Methyl- and 2-ethyl-2-oxazolines polymers were found to be water soluble while poly(2-

phenyl-2-oxazoline) is only soluble in organic solvents.1 This method was the one used in 

this work. 

 

The table 1.2 describes the effect of such parameters in the polymerization reaction of 2-

substituted-2-oxazoline in scCO2 and summarizes some of the conditions used in the 

experimental part of this work. 

 

 

Table 1.2 Effect of temperature, pressure and monomer/initiator ratio in the polymerization reaction of 

2-substituted-2-oxazoline in scCO2 (adapted from ref.1).  

 

Monomer Tc / ºC pc / Mpa [M]/[I] Yield (%) 

MeOx 
60 16 15 94 
60 20 15 80 
70 16 15 93 

EtOx 
60 16 12 90 
70 17 12 94 
70 21 12 97 

PhOx 
60 16 10 95 
60 20 10 99 
70 16 10 99 

 

 

Microwave-assisted synthesis of 2-oxazoline-based polymers. In the last decade, 

microwave irradiation has been developed to provide an effective alternative energy source 
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for conventional reactions and processes, leading to an exponential increase of publications 

in this area.  

Microwaves are electromagnetic radiation with frequencies between 300 GHz and 300 MHz 

(with a wavelength in the range of 1 mm to 1 m) and have been widely used in heating 

materials for industrial and domestic purposes.13 Microwave irradiation, considered an 

environmentally-friend process, offers some advantages over conventional heating, such as 

instantaneous and rapid bulk heating, direct heating, high temperature homogeneity and 

energy saving. This technology can provide an improvement in reaction rate, yield and 

selectivity of a certain process and it is nowadays widely used in polymerizations and 

polymer processing. Microwave irradiation is then a fast and effective method for 

polymerization, being with no doubt an alternative methodology.14 

 

This type of polymerization can be used to obtain polymers with a higher molecular weight, 

when compared to the supercritical technology, maintaining the living character of the 

reaction as well as the possibility of further functionalization. 

 

 

1.2.4 End-capping of living poly(2-oxazolines)  

Most of the studies related with antimicrobial activity are based in compounds and materials 

possessing  quaternary ammonium salts in their structure (although biguanide, phosphonium 

and sulphonium salts have also been used) since its antimicrobial activity has been known 

for decades.15,16   

The urgent need of antimicrobial materials has stimulated research in the last years in order 

to face the spreading of microbial infections and the increasing microbial resistance to 

antibiotics. The polymerization of 2-substituted-2-oxazoline via a living cationic ring-opening 

mechanism provides an extraordinary control of the morphology of the polymers as well as 

their later functionalization in order to obtain an ammonium-type end-capping.17,18 

In this work, the obtained living polymers were later end-capped with different types of 

amines (linear, branched, cyclic, acyclic, aliphatic and aromatic) producing the desired 

quaternary ammonium functionalization. 
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1.2.5 Linear poly(ethyleneimine), LPEI 

Poly(ethyleneimine) is a polymer which contains nitrogen free groups in the backbone. 

Therefore, its functional backbone (with secondary amine groups) offers many possibilities 

for further chemical modifications.19 Moreover, it possesses a high number of advantages, 

such as chelating agent, good water solubility, and good physical and chemical stability.20 

Concerning biochemistry and medicine, further research involving PEI could throw light upon 

certain biological processes and bring interesting results for the treatment of diseases and 

infections.20 

 

Under normal physiological conditions (pH from 6.8 to 7.4), PEI is charged but has the 

capacity to protonate in certain acidic subcellular environments. Its potency as a gene 

delivery vector could be due to a direct charge-based interaction with the various biological 

barriers, such as negatively charged membranes that any polymeric drug delivery vehicle 

must traverse, which can result ultimately in destabilization of the membranes. It is also 

possible that PEI can influence indirectly a particular cell or subcellular compartment, for 

example, by acting as a proton sponge that causes ion influx and ultimately leads to 

membrane rupture.21 

 
Linear PEI (LPEI) has been synthesized via the cationic ring-opening polymerization of N-(2-

tetrahydropyranyl)aziridine22 or through an acid or base-catalysed hydrolysis  of 

unsubstituted or 2-substituted-2-oxazolines.23 

 

Therefore, LPEI can also be synthesized by the hydrolysis of 2-substituted-2-oxazoline 

polymerized in scCO2 leading this way to a low molecular weight linear polymer. Its use as 

an antimicrobial agent has been already described in the literature, being used in modified 

membranes,24 as nanoparticles25 and as a ligand.20 However, its mechanism of action has 

not been yet described and the characterization of its effect has been not deeply studied. 
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1.3 EXPERIMENTAL METHODS 

 

1.3.1 Materials and Instrumentation 

The monomers 2-methyl-2-oxazoline (MetOx), 2-ethyl-2-oxazoline (EtOx) and 2-phenyl-2-

oxazoline (PhOx), the initiator boron trifluoride diethyl etherate (BF3.OEt2), diethyl ether, as 

well as methylimidazole, 1,4-diazabicyclo[2.2.2]octane and methyl tosylate were purchased 

from Sigma-Aldrich. N,N-dimethyldodecylamine and N-methylcyclohexylamine were 

purchased from Fluka. N-methyldioctylamine was purchased from Acros Organics. All 

monomers and amines were used without further purification. Acetonitrile was purchased 

from Scharlau Chemie. The monomer Bisoxazoline (BisOx) was synthesized as described in 

the literature.26 Carbon dioxide was supplied by Air Liquide with a purity of 99,998%. 

The infrared spectra were obtained using a FT-IR ‘‘Nicolet Nexus’’ equipment.  The NMR 

spectra were acquired in a Bruker ARX 400 spectrometer. The MALDI-TOF mass 

spectrometry was performed on a AUTOFLEX Bruker apparatus using dithranol as the 

matrix.  The samples were prepared by mixing aqueous solutions of the polymer (10-4 M) and 

matrix in a typical ratio 1:1 (v/v).  Average molecular weight of the polymer samples were 

determined by Gel Permeation Chromatography (GPC) using a KNAUER system with an 

evaporative light scatter detector from Polymer laboratories using dimethylformamide (DMF) 

as the eluent (temperature of the evaporator: 175 ºC, temperature of the nebulizator: 85 ºC, 

eluent rate flow: 1.8 mL min-1). Two Polypore columns were used in series. MALDI-TOF 

mass spectrometry was carried out at Riaidt in Spain. All the other polymer analyses were 

carried out at REQUIMTE, Associated Laboratory. 

 

The polymerization reaction in a microwave was performed in a screw capped quartz 

reaction vial specially designed for the single-mode microwave system Synthewave 402 

(Prolabo). 

 

 

 

 

 

 

 



                                                                  

 

 

1.3.2 Polymer synthesis

 

1.3.2.1 Experimental apparatus.

 

 

 

 

 

 

 

 

 

 

 

Figura 1.4 Schematic representation of the experimental apparatus. 1

pressure pump; 3 – line filter; 4

thermostatted bath; 8 – syringe; 9 

immersible stirrer; 12 – schlenk; 13 

inlet (argon or nitrogen) or vacuum exit; V9 

 

 

1.3.2.2 Preparation of the

11 mL stainless-steel reactor

stamped with Teflon o-rings

(MetOX, EtOx, PhOx and 

initiator. The monomer/initiator ratio used to each 

(MetOx), [M]/[I]=12 (EtOx), [M]/[I]=10 (PhOx) and [M]/[I]=7,5 (BisOx), according to the results 

previously reported in the literature.

The reactor cell was charged with the 2

stirring bar, and then immersed in 

60 ºC a water bath was used, for higher temperatures

dioxide was introduced in the reactor in order to achieve the desired reaction pressure

16 to 20 MPa). After 20 hours
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Experimental apparatus. 

Schematic representation of the experimental apparatus. 1- CO

line filter; 4- check valve; 5 – high pressure transducer; 6 

syringe; 9 – HPLC high-pressure valve; 10- high presssure visual cell; 11

schlenk; 13 – vent; V1 to V12 – HIP high pressure valves; V4 and V5 

vacuum exit; V9 – vacuum exit (adapted from 1). 

the living polymers.  Polymerization reactions were carried out in a 

steel reactor equipped with two aligned sapphire windows

rings. Four different 2-substituted oxazoline monomers were 

and BisOx) and boron trifluoride etherate (BF3.Et

onomer/initiator ratio used to each polymerization was, respectively: [M]/[I]=15 

M]/[I]=12 (EtOx), [M]/[I]=10 (PhOx) and [M]/[I]=7,5 (BisOx), according to the results 

n the literature.1  

charged with the 2-substituted oxazoline, the initiator

stirring bar, and then immersed in a thermostatized bath. For polymerizations performed at

60 ºC a water bath was used, for higher temperatures, 70ºC, an oil bath was 

introduced in the reactor in order to achieve the desired reaction pressure

hours of reaction, the pressure was slowly released and the reactor

Based Polymer Synthesis and Functionalization 
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CO2 cylinder; 2 – high 

high pressure transducer; 6 – rupture disc; 7 – 

resssure visual cell; 11- 

HIP high pressure valves; V4 and V5 – gas 

Polymerization reactions were carried out in a 

equipped with two aligned sapphire windows in both tops 

oxazoline monomers were studied 

.Et2O) was used as the 

was, respectively: [M]/[I]=15 

M]/[I]=12 (EtOx), [M]/[I]=10 (PhOx) and [M]/[I]=7,5 (BisOx), according to the results 

the initiator, a magnetic 

For polymerizations performed at 

an oil bath was chosen. Carbon 

introduced in the reactor in order to achieve the desired reaction pressure (from 

eased and the reactor 
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reached the room temperature. Inside the reactor, and according to the adopted conditions of 

temperature and pressure, a viscous foam or a solid, was obtained – the so called living 

polymer. The living polymer allows the functionalization by end-capping with different 

molecules and, later, the determination of its antimicrobial susceptibility (figure 1.5). 

 

N O

R

2-substituted-oxazoline

R=Me, Et, Ph

scCO2

BF3.Et2O

16-20 MPa

60 or 70ºC, 20h

*

N

N

R O

n

*

N

NR'3

R O

n

BF4
BF4

living polymer

end-cappingO

R

R' = alkyl, aryl

70 or 90ºC, 24h

 

Figure 1.5 Green synthesis of 2-oxazoline-based polymers and its functionalization by amine end-

capping. 

 

1.3.2.3 Living polymer end-capping with water. Termination of the living polymer can be 

performed with the addition of a tenfold excess of water in relation to the added amount of 

initiator. The mixture was kept at room temperature under stirring during one hour. To purify 

the final polymer, an extraction with diethyl ether is performed. The aqueous fase, where the 

polymer is present, is then evaporated, dried in vacuum and the final pure product is easily 

obtained.  

 

1.3.2.4 Living polymer end-capping with amines.  Functionalization of the living polymer 

can be performed with the addition of a tenfold excess of amine to relation of the amount of 

initiator. The mixture was kept at 70 ºC (or 90 ºC in the case of PPhOxs) under stirring during 

24 hours (figure 1.6). When the final polymer was a solid, it was washed with diethyl ether 

and dried in vacuum. Oily polymers were purified by extraction with diethyl ether and water, 

once the polymer is miscible in water. Finally, the aqueous fase is evaporated to dryness.  
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N

N,N-dimethyldodecylamine

N

N-methyldioctylamine

N

N

N-methylimidazole

NH

N-methylcyclohexylamine

a)

b)

c)

d)

 

Figure 1.6 Chemical structures of the amines used in living polymer end-capping. 

 

Functionalization of the living polymer can also be performed with the dropwise addition of 

DABCO (figure 1.7) in acetronitrile solution (0,1 g/mL of acetronitrile), taking into account that 

DABCO is also in a tenfold excess to the relation of the amount of the initiator.27 The mixture 

was kept at room temperature under stirring during 1 hour. The final product, in the presence 

of an excess of diethyl ether, precipitated and become an oil. Diethyl ether and acetonitrile 

were removed and the final product was dried in vacuum. The final product was obtained as 

a white solid. 

1,4-diazabicyclo[2.2.2]octane

N N

 

Figure 1.7 Chemical structure of DABCO. 

 

1.3.2.5 Preparation of Linear Poly(ethyleneimine) hydrochloride. LPEI was prepared by 

hydrolysis of poly(2-methyl-2-oxazoline) end-capped with N,N-dimethyldodecylamine (Mw= 

1248 g/mol, PD=1.13) in a 5M HCl (hydrochloric acid) solution under reflux (100 ºC) for 9 

hours (figure 1.8). After this period the polymer precipitates as the hydrochloride salt. The 

mixture is then filtered off, washed with acetone and dried in vacuum.28 LPEI is obtained as a 

white solid.  
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Figure 1.8 Real apparatus of LPEI preparation. 

 

 

1.3.3 Microwave-assisted synthesis of PMeOx 

 

1.3.3.1 Preparation of the poly(2-methyl-2-oxazoline) living polymer. A solution of the 

monomer 2-methyl-2-oxazoline in acetonitrile was prepared. The polymerization was initiated 

by methyl tosylate considering a ratio [monomer]:[initiator]= 60:1. The solution contained the 

following quantities of monomer/initiator/solvent (all entries in grams), in that order: 

(2.0/0.0729/3.0535). The reaction occurred in a single mode microwave system at 140 ºC 

and during 9 minutes (figure 1.9).14 The polymer was obtained as a dark green oil. 

 

 

1.3.3.2 Living polymer end-capping with N,N-dimethyldodecylamine. Functionalization 

of the living polymer can be performed with the addition of a tenfold excess of amine to 

relation of the amount of initiator. The mixture was kept at 70 ºC under stirring and during 24 

hours (figure 1.9). The polymer was washed with diethyl ether and become a viscous brown 

solid. After being dried in vacuum, the polymer became an orange solid. 
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Figure 1.9 Microwave assisted synthesis of poly(2-methyl-2-oxazoline) followed by end-capping with 

N,N-dimethyldodecylamine. 
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1.4 RESULTS AND DISCUSSION 

 

1.4.1 Synthesized 2-oxazoline-based polymers 

The table 1.3 summarizes all the synthesized polymers. 

Table 1.3 Schematic representation of the synthesized 2-oxazoline-based polymers. 

2-oxazoline monomer End-capping 

Polymer 

reference 

O

N  

2-methyl-2-oxazoline 

 N,N-dimethyldodecylamine PMetOx-DDA 

 N-methyldioctylamine 
PMetOx-MDA 

 Water  
PMEtOx-OH 

 N,N-dimethyldodecylamine PMetOx-DDAmw 

O

N  

2-ethyl-2-oxazoline 

 N,N-dimethyldodecylamine PEtOx-DDA 

 N-methyldioctylamine 
PEtOx-MDA 

 DABCO 
PEtOx-DABCO 

 N-Methylimidazole PEtOx-MI 

 N-methylcyclohexylamine 
PEtOx-MCHA 

 Water  
PEtOx-OH 

O

N  

2-phenyl-2-oxazoline 

N,N-dimethyldodecylamine PPhOx-DDA 

N-methyldioctylamine PPhOx-MDA 

Water  
PPhOx-OH 

O

N
O

N

 

Bis-oxazoline 

N,N-dimethyldodecylamine PBisOx-DDA 

 N-methyldioctylamine 
PBisOx-MDA 

 Water  
PBisOx-OH 

 

The LPEI, also synthesized, was prepared by acid hydrolysis of poly(2-methyl-2-oxazoline) 

end-capped with N,N-dimethyldodecylamine (PMetOx-DDA). 
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1.4.2 Polymer characterization  

Polymers were characterized using FT-IR, 1H-NMR, 13C-NMR, GPC and MALDI-TOF 

techniques, as long as they were soluble in the required solvents.  

NMR as well as FT-IR spectroscopies are useful to identify the functional groups present in 

the polymers. The NMR analysis, provided not only information about the structure of the 

polymers and purity but also enable us to determine the molecular weights of the obtained 

polymers through the integration of the signals of the polymer backbone relative to the 

signals of the amine end-capping. These techniques allowed us also to conclude if the end-

capping was successfully achieved. 

GPC and MALDI-TOF will be important in the determination of the molecular weights of the 

polymers. 

 

Poly(2-methyl-2-oxazoline) end-capped with N,N-dimethyldodecylamine (PMetOx-

DDA). Yellow solid. Water soluble. Hygroscopic. Yield: 68 %. 

FT-IR: νmáx/cm-1 1738 (w, HO(C=O)N-), 1634 (s, Me(C=O)N-)  

1H-NMR (400MHz, CDCl3) δ/ppm= 0.87 (3H, t, J=6.3 Hz, Ha), 1.24 (16H, bs, Hb), 1.71 (2H, 

bs, Hc), 2.13 (3H, bs, Hh), 3.01 (2H, t, J=8.0 Hz, Hd), 3.15 (2H, bs, He), 3.44 (10H, bs, 

Hg+Hf, overlapped signals) 13C-NMR (400MHz, CDCl3) δδδδ/ppm= 14.10, 21.15, 22.65, 24.48, 

26.44, 29.80, 29.35, 29.56, 31.86, 43.49, 44.95, 47.05, 47.84, 58.63, 170.88 (C=O), 171.62 

(C=O) 

GPC: Mn= 17 235 g/mol   Mw/Mn= 1.13  

MALDI-TOF (after hydrolysis): Mn= 1248 g/mol  n= 12 

*

N

N

O

n

BF4 a

b

b

b

b

b

b

b

b

e

d

c
f

f

g

g

h  

 

Poly(2-methyl-2-oxazoline) end-capped with N-methyldioctylamine (PMetOx-MDA). 

Yellow solid. Water soluble. Hygroscopic. Polymer insoluble in dimethylformamide. Yield: 66 

%. 
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FT-IR: νmáx/cm-1 1731 (w, HO(C=O)N-), 1636 (s, Me(C=O)N-)  

1H-NMR (400MHz, (CD3)2SO) δδδδ/ppm= 0.85 (6H, t, 6.68Hz, Ha), 1.26 (12H, bs, Hb), 1.54 (4H, 

bs, Hc), 1.98 (3H, bs, Hh), 2.88 (2H, t, J=7.6 Hz, Hd), 3.07 (2H, s, He), 3.34 (7H, bs, Hg+Hf, 

overlapped signals)  13C-NMR (400MHz, (CD3)2SO) δδδδ/ppm= 13.94, 20.84, 22.04, 23.76, 

26.01, 28.46, 31.15, 42.85, 44.10, 46.01, 46.72, 55.26, 170.19 (C=O) Mn= 1305 g/mol  n= 12 

GPC: n.a. 

MALDI-TOF: n.a. 

*

N

N

O

n

BF4

bbe

d

c

b b a

f

g

g

h

b
b

e
c

d
b

b
a

 

 

Poly(2-methyl-2-oxazoline) end-capped with water (PMetOx-OH). Yellow oil. Water 

soluble. Yield: 43%. 

FT-IR: νmáx/cm-1 3460 (w, OH), 1735 (w, HO(C=O)N-), 1634 (s, Me(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 2.14 (3H, bs, Hh), 3.45 (2H, bs, Hg) 13C-NMR (400MHz, 

CDCl3) δδδδ/ppm=  20.54, 46.44, 104.85, 173.31 (C=O) 

GPC: Mn= 17384 g/mol  Mw/Mn= 1.24 

MALDI-TOF: n.a. 

*

N

OH

O

n

g

g

h  

 

Poly(2-methyl-2-oxazoline) end-capped with N,N-dimethyldodecylamine, synthesized 

in microwave (PMetOx-DDAmw). Orange solid. Water soluble. Hygroscopic. Yield: 96 %.  
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FT-IR: νmáx/cm-1 1710 (w, HO(C=O)N-), 1622 (s, Me(C=O)N-) 

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 0.86 (3H, bs, Ha), 1.24-1.17 (18H, m, Hb+Hc), 2.14 (3H, 

bs, Hh), 3.03 (4H, Hd+He), 3.44 (10H, bs, Hg+Hf, overlapped signals) 13C-NMR (400MHz, 

CDCl3) δδδδ/ppm=  15.24, 21.17, 43.50, 45.33, 46.74, 47.56, 170.70 (C=O), 171.36 (C=O) Mn: 

4988 g/mol n: 56 

GPC: Mn= 26194 g/mol  Mw/Mn= 1.30 

MALDI-TOF: Mn= 2098 g/mol  n= 22   

*
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Poly(2-ethyl-2-oxazoline) end-capped with N,N-dimethyldodecylamine (PEtOx-DDA). 

Yellow solid. Water soluble. Hygroscopic. Yield: 61 %. 

FT-IR: νmáx/cm-1 1738 (w, HO(C=O)N-), 1637 (s, Et(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 0.85 (3H, t, J=6.6 Hz, Ha), 1.08 (3H, bs, Hh), 1.22 (16H, 

bs, Hb), 1.70 (2H, bs, Hc), 2.27-2.38 (2H, bs, Hi), 3.04 (2H, t, J=7.5 Hz, Hd), 3.14 (2H, bs, 

He), 3.42 (10H, bs, Hg+Hf, overlapped signals)  13C-NMR (400MHz, CDCl3) δδδδ/ppm= 9.30, 

9.42, 14.04, 22.59, 24.34, 25.87, 26.33, 27.03, 29.02, 29.29, 29.40, 29.50, 31.81, 43.45, 

45.32, 45.77, 46.93, 58.59, 174.00 (C=O), 174.72 (C=O)  Mn= 1572 g/mol  n= 13 

GPC: Mn= 11 745 g/mol  Mw/Mn=  1.15  

MALDI-TOF: n.a. 

*

N

N

O

n

BF4

bbbbe c

abbbbd

f

f

g

g

h

i

 

 

 



                                                                  2-Oxazoline-Based Polymer Synthesis and Functionalization 

20 

 

Poly(2-ethyl-2-oxazoline) end-capped with N-methyldioctylamine (PEtOx-MDA). Yellow 

solid. Water soluble. Hygroscopic. Yield: 66 %. 

FT-IR: νmáx/cm-1 1741 (w, HO(C=O)N-), 1634 (s, Et(C=O)N-)  

1H-NMR (400MHz, (CD3)2SO) δδδδ/ppm= 0.85 (6H, t, 6.68Hz, Ha), 1.03 (3H, bs, Hh) 1.26 (12H, 

bs, Hb), 1.56 (4H, bs, Hc), 2.30 (4H, bs, Hi), 2.95 (4H, t, J=7.6 Hz, Hd), 3.07 (7H, s, He+Hf, 

overlapped signals), 3.34 (4H, bs, Hg)  13C-NMR (400MHz, (CD3)2SO) δδδδ/ppm= 9.42, 13.94, 

22.05, 23.52, 24.97, 25.96, 28.46, 31.16, 42.84, 44.45, 45.89, 55.13, 173.20 (C=O) Mn= 1374 

g/mol n= 11 

GPC: Mn= 15 573 g/mol Mw/Mn= 1.07 

MALDI-TOF: n.a. 
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Poly(2-ethyl-2-oxazoline) end-capped with DABCO (PEtOx-DABCO). White solid. Water 

soluble. Yield: 79 %. 

FT-IR: νmáx/cm-1 1718 (w, HO(C=O)N-), 1631 (s, Et(C=O)N-)   

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 1.11 (3H, bs, Hh), 2.29-2.41 (2H, bs, Hi), 2.82 (12H, s, 

Ha), 3.46 (2H, bs, Hg)  13C-NMR (400MHz, CDCl3) δδδδ/ppm= 9.44, 25.91, 29.40, 29.66, 30.89, 

43.65, 45.24, 46.88, 52.76, 173.93 (C=O), 174.61 (C=O) Mn= 1315 g/mol n= 12 

GPC: Mn= 9499 g/mol Mw/Mn= 1.12  

MALDI-TOF: n.a. 
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Poly(2-ethyl-2-oxazoline) end-capped with N-Methylimidazole (PEtOx-MI). Orange oil. 

Water soluble. Yield: 85 %. 

FT-IR: νmáx/cm-1 1743 (w, HO(C=O)N-), 1620 (s, Et(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 1.07 (3H, bs, Hh), 2.25-2.35 (2H, bs, Hi), 3.41 (4H, bs, 

Hg), 3.69 (3H, s, Ha), 6.89 (2H, bs, Hd), 7.04 (2H, bs, Hc), 7.55 (2H, s, Hb)  13C-NMR 

(400MHz, CDCl3) δδδδ/ppm= 9.37, 25.85, 33.48, 42.28, 43.71, 45.31, 120.30, 128.31, 137.54, 

173.93 (C=O), 174.61(C=O) Mn= 790 g/mol n= 7 

GPC: Mn= 13 924 g/mol Mw/Mn= 1.08 

MALDI-TOF: Mn= 790 g/mol n= 7 
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Poly(2-ethyl-2-oxazoline) end-capped with N-methylcyclohexylamine (PEtOx-MCHA). 

Orange oil. Water soluble. Yield: 86 %. 

FT-IR: νmáx/cm-1 1726 (w, HO(C=O)N-), 1657 (s, Et(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 0.83-1.29 (6H, m, Ha), 1.09 (3H, bs, Hh), 1.63-2.01 (4H, 

m, Hb), 2.25-2.40 (2H, bs, Hi), 2.58 (3H, s, Hd), 2.70 (1H, s, Hc), 3.43 (4H, bs, Hg)  13C-NMR 

(400MHz, CDCl3) δδδδ/ppm=  9.30, 9.42, 14.04, 22.59, 24.34, 25.87, 26.33, 27.03, 29.02, 

29.29, 29.40, 29.50, 31.81, 43.45, 45.32, 45.77, 46.93, 174.00 (C=O), 174.72 (C=O) Mn= 821 

g/mol n= 7 
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GPC: Mn= 10 776 g/mol Mw/Mn= 1.11  

MALDI-TOF: n.a. 
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Poly(2-ethyl-2-oxazoline) end-capped with water (PEtOx-OH). Orange oil. Water soluble. 

Yield: 70%. 

FT-IR: νmáx/cm-1 3418 (w, OH), 1738 (w, HO(C=O)N-), 1626 (s, Et(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 1.08 (3H, bs, Hh), 2.37 (2H, bs, Hi), 3.41 (4H, bs, Hf)  

13C-NMR (400MHz, CDCl3) δδδδ/ppm=  9.40, 25.89, 44.16, 45.41, 46.46, 46.91, 174.07 (C=O), 

174.73 (C=O)  

GPC: Mn=8482 g/mol Mw/Mn= 1.15  

MALDI-TOF: n.a. 
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Poly(2-phenyl-2-oxazoline) end-capped with N,N-dimethyldodecylamine (PPhOx-DDA). 

Orange solid. Methanol and chloroform soluble. Yield: 99 %. 

FT-IR: νmáx/cm-1 1717 (w, HO(C=O)N-), 1634 (s, Ph(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 0.87 (3H, t, J= 6.3 Hz, Ha), 1.24 (16H, s, Hb), 1.55 (2H, 

bs, Hc), 3.06 (2H, bs, Hd), 3.10 (2H, bs, He), 3.35 (10H, bs, Hg+Hf, overlapped signals), 

7.08-7.35 (5H, bs, Hh) 13C-NMR (400MHz, CDCl3) δδδδ/ppm= 14.06, 22.63, 25.50, 26.73, 

29.27, 29.39, 29.55, 31.85, 44.11, 126.29, 126.93, 128.64, 129.60, 171.74 (C=O) Mn= 1116 

g/mol n= 6 
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GPC: Mn= 8 184 g/mol Mw/Mn: 1.12  

MALDI-TOF: n.a. 
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Poly(2-phenyl-2-oxazoline) end-capped with N-methyldioctylamine (PPhOx-MDA). 

Orange solid. Methanol and chloroform soluble. Yield: 88 %. 

FT-IR: νmáx/cm-1 1726 (w, HO(C=O)N-), 1630 (s, Ph(C=O)N-)  

1H-NMR (400MHz, CDCl3) δδδδ/ppm= 0.87 (3H, t, J= 6.88 Hz, Ha), 1.25 (12H, bs, Hb), 1.69 

(4H, bs, Hc), 2.99 (11H, bs, Hd+He+Hf, overlapped signals), 2.99-3.53 (4H, bs, Hg), 7.08-

7.33 (5H, bs, Hh) 13C-NMR (400MHz, CDCl3) δδδδ/ppm= 14.03, 22.54, 23.68, 26.39, 28.95, 

31.59, 42.32, 46. 25, 125.55, 126.34, 127.19, 127.85, 128.67, 129.48, 135.57, 172.13 (C=O) 

Mn= 1321 g/mol n= 7 

GPC: Mn= 12 036 g/mol Mw/Mn = 1.13 

MALDI-TOF: n.a. 
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Poly(2-phenyl-2-oxazoline) end-capped with water (PPhOx-OH). Orange oil. Methanol 

and chloroform soluble. Yield: 99% 

FT-IR: νmáx/cm-1 3368 (w, OH), 1714 (w, HO(C=O)N-), 1644 (s, Ph(C=O)N-)  
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1H-NMR (400MHz, CDCl3) δδδδ/ppm= 3.44-3.49 (4H, bs, Hg), 7.03-7.29 (5H, bs, Hh) 13C-NMR 

(400MHz, CDCl3) δδδδ/ppm=  46.99, 126.26, 126.99, 127.83, 128.39, 128.66, 129.47, 172.28 

(C=O), 173.41 (C=O) 

GPC: Mn= 5875 g/mol Mw/Mn= 1.14 

MALDI-TOF: n.a. 
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Poly(bisoxazoline) end-capped with N,N-dimethyldodecylamine (PBisOx-DDA). Brown 

solid. Water soluble. Yield: 67 %. 

FT-IR: νmáx/cm-1 1744 (w, HO(C=O)N-), 1652 (w, N-(C=O)) 

1H-NMR (400MHz, CD3OD) δδδδ/ppm= 0.89 (3H, t, J= 6.2 Hz, Ha), 1.29-1.37 (16H, bs, Hb), 

1.62 (4H, bs, Hh), 1.70 (2H, bs, Hc), 2.22 (4H, bs, Hi), 3.02 (2H, t, J=5.3 Hz, Hd), 3.07-3.11 

(2H, bs, He), 3.26-3.30 (14H, bs, Hg+Hf, signals overlapped with the signal of the solvent) 

13C-NMR (400MHz, CD3OD) δδδδ/ppm= 14.41, 17.08, 23.71, 26.63, 27.42, 30.18, 30.45, 30.47, 

30.61, 30.71, 33.04, 36.66, 42.80, 42.93, 43.43, 61.60, 176.18 (C=O)  Mn= 786 g/mol n= 3 

GPC: Mn= 4 897 g/mol Mw/Mn= 1.05 

MALDI-TOF: n.a. 
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Poly(bisoxazoline) end-capped with N-methyldioctylamine (PBisOx-MDA). Orange solid. 

Slightly soluble in water and methanol. Polymer insoluble in chloroform, dimethyl sulfoxide 

and dimethylformamide. 

FT-IR: νmáx/cm-1 1735 (w, HO(C=O)N-), 1654 (s, N-(C=O)) 

1H-NMR: n.a. 13C-NMR: n.a. 

GPC: n.a. 

MALDI-TOF: n.a. 
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Poly(bisoxazoline) end-capped with water (PBisOx-OH). Yellow solid. Slightly water and 

methanol soluble. Polymer insoluble in chloroform, dimethyl sulfoxide and 

dimethylformamide. Yield: 67%. 

FT-IR: νmáx/cm-1 3384 (w, OH), 1737 (w, HO(C=O)N-), 1636 (s, N-(C=O)) 

1H-NMR: n.a. 13C-NMR: n.a. 

GPC: n.a. 

MALDI-TOF: n.a. 
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Linear Poly(ethyleneimine) hydrochloride (LPEI). White solid. Water soluble. Polymer 

insoluble in dimethylformamide. Yield: 74 %. 

 

FT-IR: νmáx/cm-1 3420 (s, NH), 2659 (s, CH)  

1H-NMR (400MHz, D2O) δδδδ/ppm= 3.48 (4H, s, Hg) 13C-NMR (400MHz, D2O) δδδδ/ppm= 43.83  

GPC: n.a. 

MALDI-TOF:  Mn= 548 g/mol n= 12 
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FT-IR spectroscopy allowed the identification of the main functional groups of all polymers. 

The amide carbonyl absorption band was found in the spectra of all polymers (with exception 

of LPEI) with values from 1620 to 1657 cm-1. LPEI showed its typical absorption bands at 

3420 cm-1 (NH) and 2659 cm-1 (CH). The partial insertion of CO2 in the polymer chain, that is 

already reported,1 was also observed for all polymers. This was confirmed by the absorption 

bands ranging from 1710 to 1743 cm-1. The OH functional groups were also observed in the 

polymers end-capped with water with absorption bands from 3368 to 3460 cm-1. 

To determine the molecular weight of each polymer, NMR spectroscopy, GPC and MALDI-

TOF techniques were used.  

The Mn values determined by GPC were higher than the expected. This result can be 

explained by the use of polystyrene standards for the calibration of the GPC curves (with a 

minimum value around 1260 g/mol). 

MALDI-TOF analysis, when performed, showed to be more reliable than GPC and to be 

consistent with the results of NMR analysis. In the case of PMetOx-DDAmw, the difference 

obtained by different techniques, could be justified by the higher polidispersity obtained by 

the microwave-assisted synthesis (PDI= 1.30). Therefore, the polymer obtained should be a 

mixture of polymers with a range of molecular weights and consequently can justify the lower 

n value obtained by MALDI-TOF analysis. 

NMR analysis is the most reliable technique to determine the molecular weight of the end-

capped polymers. The end-capping with different amines only occurs in one of the chain 
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ends. In the case of polymers end-capped with water, this calculation was not possible 

because the signals of OH functional group usually cannot be visualized in the NMR 

spectrum. In the case of branched PBisOx-DDA, the end-capping with the amine could have 

occurred in more than one end-chain. Therefore, it can only be concluded that, to each 

branch of the polymer that was end-capped, the calculated n value was 3, and consequently 

the polymer can have a higher molecular weight. 

In addition, the analysis of the NMR spectra allows us to conclude that the end-capping was 

successfully performed in all living polymers. The NMR signals of the different 2-oxazoline-

based polymers and the end-capping amines are consistent with data reported in the 

literature. It was also possible to conclude from the NMR spectra of LPEI that the complete 

hydrolysis of both oxazoline’s acetyl groups and the amine end-capping has been achieved 

(see appendix 2). 

Therefore, the synthesis of 2-oxazoline-based polymers in scCO2 generates well defined 

living polymers, with low polidispersity (PDI= 1.05 to 1.15) and low molecular weight (n=6 to 

13); these polymers can be later selectively end-capped. Yields from 68 to 99% were 

obtained. 

On the other hand, the polymerization of PMetOx-DDAmw by a microwave-assisted synthesis 

showed a yield of 96% but with a higher PDI. 

 

1.4.3 Scanning electron microscopy, SEM 

SEM micrographs were only obtained for LPEI since polyoxazolines are highly hygroscopic 

solids or oils (figures 1.10 and 1.11). 

Figure 1.10 SEM micrographs  of LPEI powder obtained by acid hydrolysis of PMetOx-DDA. 
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Figure 1.11 SEM micrographs of LPEI after liophilisation of their aqueous solution. 

 

LPEI shows a well defined and characteristic microstructure. The differences observed in the 

SEM micrographs may be related to the process of liophilisation, in which the freezing of the 

aqueous solution of the polymer leads to an unusual star shaped morphology (figure 1.11). 

 

1.4.4 Intrinsic blue photoluminescence  

A strong blue photoluminescence was observed from the synthesized polymers, even after a 

careful and extensive purification procedure. This unexpected result was already described 

in the literature for dendrimers29,30 and hyperbranched polymers.31,32,33 Carbonyl groups that 

exist in the core of the polymer are appointed as a key structural factor for the presence of 

fluorescence.32 This is a surprising result, because there are no fluorophores in this type of 

polymers, and this behavior is unexpected for linear polymers. 

 

 

 

 

 

Figure 1.12 Left glass vial: pure water. Right glass vial: strong fluorescence phenomenon of PMetOx-

DDAmw in aqueous solution under UV lamp. 
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The fluorescence emission intensity of 2-oxazoline-based polymers with different molecular 

weights and end-capping molecules was also measured. The samples were prepared in 

order to assure an absorbance equal to 0.1 to ensure that self-quenching processes were 

not present.  

 

• 2-methyl-2-oxazoline-based polymers 

 

Figure 1.13 Absorption spectra of the synthesized 2-methyl-2-oxazoline-based polymers. 

 

Comparing the 2-methyl-2-oxazoline-based polymers with different end-capping molecules 

(figure 1.13), it can be observed that similar absorbance spectra were obtained for the  

polymers synthesized in scCO2 with an absorption maximum at 308-312 nm. In PMetOx-

DDAmw two absorption bands were present. Excitation of the maximum of both bands was 

performed in order to evaluate their emission spectra. It was found that both led to the same 

emission band although with different intensities. The band at 378 nm led to the most intense 

emission band. 

The LPEI showed no absorption band, supporting the idea that the carbonyl groups are 

essential to the existence of an intrinsic fluorescence in the polymers (figure 1.13). 
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Figure 1.14 Fluorescence emission spectra of the 2-methyl-2-oxazoline-based polymers. 

 

Comparing the relative intensity of polymers fluorescence (figure 1.14), it was found that 

polymers synthesized in supercritical media showed again a more similar behavior with an 

emission band around 390 nm. On the other hand, PMetOx-DDAmw, showed a more 

intensive band at 430 nm. The different polymerization conditions can justify the differences 

observed. The fluorescence intensity increases with the molecular weight, resulting from a 

possible enhanced rigidity of the molecular architecture and/or from a more quantity of 

carbonyl groups present in the polymer backbone. 

 

• 2-ethyl-2-oxazoline-based polymers 

 

Figure 1.15 Absorption spectra of the synthesized 2-ethyl-2-oxazoline-based polymers. 
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Comparing now the 2-ethyl-2-oxazoline-based polymers with different end-capping 

molecules (Figure 1.15), it can be observed that some polymers have their absorption band 

from 267 to 276 nm.  

 

Figure 1.16 Fluorescence emission spectra of 2-ethyl-2-oxazoline-based polymers. 

 

In figure 1.16, analyzing the fluorescence intensity of 2-ethyl-2-oxazoline-based polymers it 

can be seen that all polymers showed a similar emission. 

 

• 2-phenyl-2-oxazoline-based polymers 

 

Figure 1.17 Absorption spectra of synthesized 2-phenyl-2-oxazoline-based polymers. 
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Figure 1.17 shows the absorption spectra of 2-phenyl-2-oxazoline-based polymers with a 

maximum at 370nm.  

 

Figure 1.18 Fluorescence emission spectra of the 2-phenyl-2-oxazoline-based polymers. 

 

In figure 1.18, it can be seen that 2-phenyl-2-oxazoline polymers have higher fluorescence 

intensities than the 2-alkyl-substituted polyoxazolines, fact that can be justified with the 

presence of aromatic groups in the polymer backbone.  

 

• bisoxazoline-based polymers 

 

Figure 1.19 Absorption spectra of synthesized the bisoxazoline-based polymers. 
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The absorbance spectra of the bisoxazoline-based polymers (figure 1.19) show two different 

absorption bands being coincident for PBisOx-MDA and PBisOx-OH at 275nm, while in the 

case of PBisOx-DDA the band is around 300nm. 

 

Figure 1.20 Fluorescence emission spectra of the bisoxazoline-based polymers. 

 

In PBisOx-MDA and PBisOx-OH it can be observed an emission band around 400nm, while 

in the case of PBisOx-DDA a double emission is observed (at 400nm and 450nm). These 

two bands can be due to the existence of different three-dimensional conformations in the 

polymer (figure 1.20). 

  

It can be concluded that the presence of carbonyl groups are essential for the intrinsic 

fluorescence of the polymers and that aromatic groups in the polymer chain will enhance the 

fluorescence intensity. All polymers exhibit emission bands that vary from 350 to 475 nm, 

possibly related with the linear or branched backbone structure. Polymers end-capped with a 

hydroxyl group showed, in general, higher fluorescence intensity. The end-capping with 

different amine groups (even aromatic amine groups) does not influence the absorbance 

bands but can decrease the fluorescence intensity. These findings led us to conclude that 

the quaternary ammonium end groups could be involved in the fluorescence quenching 

mechanism. 

This unusual property of 2-oxazoline-based polymers enlarges their potential applications. 

For instance, their use as fluorescent tags can be envisaged as a promising tool for 

fluorescence microscopy assays.  
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1.5 CONCLUSION 

 

This chapter reports the synthesis of 2-oxazoline-based polymers in supercritical media 

under a CROP mechanism and the end-capping of the living polymers with different types of 

amines. 

Using 1H-NMR, 13C-NMR and FT-IR it was possible to characterize all the synthesized 

materials. The polymers were synthesized using four different types of monomers and were 

also further hydrolysed, for the obtention of the corresponding LPEI. Both synthesis and later 

end-capping were performed with success. Using a CROP methodology in supercritical 

carbon dioxide, low molecular weight polymers were obtained but with low polydispersivity.  

The synthesis by a microwave-assisted polymerization was also performed in order to 

prepare higher molecular weight polymer, which will allow the evaluation of molecular weight 

effect on antimicrobial activity (chapter 2).  

An intrinsic blue photoluminescence was observed for all synthesized polymers. Since no 

fluorophores are present it was concluded that this property should be related to the high 

concentration of carbonyl groups present in the backbone, conjugated in some cases 

(PBisOx) with a more rigid three-dimensional polymer network. 
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Chapter 2 – CHARACTERIZATION OF THE 

ANTIMICROBIAL EFFECT OF FUNCTIONALIZED 2-

OXAZOLINE-BASED POLYMERS 

 

2.1 OVERVIEW 

This section describes the work that has been done in order to investigate the antimicrobial 

effect of the synthesized 2-oxazoline-based polymers (chapter 1). 

The aim of this part of the work is to establish if the functionalized polyoxazolines produced 

in supercritical media display antimicrobial activity against different pathogenic, planktonic 

bacteria. The antimicrobial activity of quaternary ammonium groups is well documented, 

therefore it could be anticipated that the synthesized polymers would display activity against 

pathogenic microorganisms. 

Staphylococcus aureus NCTC8325-4 and Escherichia coli AB1157 strains were the selected 

organisms to answer the following questions: 

What molecules will have efficient antimicrobial activity? 

Can different quaternary ammonium groups highly influence the antimicrobial activity? 

Does the size of the polymer influence the antimicrobial activity? 

How much time will the polymers take to highly reduce the viability of microorganisms? 

Characterization of the antimicrobial effect of the polymers was evaluated by the 

determination of minimum inhibitory concentration (MIC) and of the killing curves of the 

polymers against S.aureus and E.coli and also by fluorescence microscopy for the 

assessment of bacterial viability. 

  

2.2 INTRODUCTION 

 

The introduction of penicillin in 1940 provided a main breakthrough in bacterial infection 

chemotherapy, significantly contributing to the increase in average life expectancy observed 

over the last decades. However, even before its use was widespread, the first cases of 

penicillin resistance were described.1 Regrettably, bacteria soon developed resistance 

mechanisms against new antibiotics, making bacterial resistance a long established and 

widely studied health problem.2  Antimicrobial resistance can also be seen as an inevitable 
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consequence of the misuse, overuse, and abuse of antibiotics. Therefore, it is critical to 

develop new antibiotics with novel modes of action.  

 

 

2.2.1 Mechanisms of resistance to antibacterial agents 

 

Bacteria may manifest resistance to antibacterial drugs through a variety of mechanisms. Of 

greater concern are cases of acquired resistance, where initially susceptible populations of 

bacteria become resistant to an antibacterial agent and proliferate under the selective 

pressure of use of that agent.  

Several mechanisms of antimicrobial resistance are commonly found in a variety of bacterial 

genera: acquisition of genes encoding enzymes that destroy the antibacterial agent before it 

can act; acquisition of efflux pumps that expel the antibacterial agent from the cell before it 

can reach its target site; point mutations or acquisition of gene(s) that results in the alteration 

of the target (either enzymes or compounds such as cell wall); and alteration of the 

permeability of the cellular membrane, decreasing the access and binding of the antibiotic to 

the intracellular target.3 

As a result, normally susceptible populations of bacteria may become resistant to 

antimicrobial agents through point mutations or by acquiring the genetic information that 

encodes resistance from other bacteria genes. 

In all of these cases, strains of bacteria with the mutations that confer resistance are selected 

by the use of antimicrobial agents allowing their survival and growth.  

 

Some bacteria have become resistant to multiple classes of antibacterial agents, and these 

bacteria with multidrug resistance constitute a serious concern, particularly in hospitals and 

other healthcare institutions where they tend to occur more frequently.  

 

 

2.2.2 Mechanisms of action of antibacterial agents 

Most antimicrobial agents used for the treatment of bacterial infections may be categorized 

according to their principal mechanism of action. There are four main modes of action: 

interference with cell wall synthesis, inhibition of protein synthesis, interference with nucleic 

acid synthesis, and inhibition of a metabolic pathway.3 

Gram positive and gram negative bacteria have different susceptibilities to different class of 

antimicrobial compounds, mainly due to the presence of the outer membrane in gram 

negative bacteria. 
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Gram negative bacteria have two membranes: an inner membrane composed principally of 

phosphatidylethanolamine (PE) and phosphatidylglycerol and an outer membrane that 

contains lipopolysaccharides (LPS) on its outer leaflet. Gram positive bacteria have only one 

membrane composed mainly of phosphatidylglycerol and cardiolipin,4 to which lipoteichoid 

acids (LTA) can be attached (figures 2.1 and 2.2). 

 

Nevertheless, it should keep in mind that the phospholipid composition of bacterial 

membranes varies widely among different species. Generally gram-negative bacteria 

contains both anionic and zwitterionic phospholipids, while many gram-positive bacteria 

contains predominantly anionic lipids, although there are some exceptions. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Chemical structures of the main phospholipid components of bacterial 

membranes.(adapted from ref. 4). 

 

Figure 2.2 Molecular composition of gram positive and gram-negative bacteria. Main differences in 

evidence: peptidoglycan thickness and the presence of outer membrane (OM) in gram-negative 

bacteria (adapted from ref. 5). 
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Both gram-negative and gram-positive bacteria have a peptidoglycan layer outside of the cell 

membrane. Peptidoglycan (PG), also called murein, is a polymer that consists of long glycan 

chains cross-linked via flexible peptide bridges to form a strong but elastic structure which  

protects the cell from environmental stress or from lysis due to the high internal osmotic 

pressure.6 The glycan chain is built up of two different alternating subunits, β-1,4-linked N-

acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc).7 The chemistry of the 

glycan chains varies only slightly between different bacteria (figure 2.3). 

 

 

Figure 2.3 Structural differences between the E.coli and the S.aureus peptidoglycans. The basic unit 

of the petidoglycan is composed by β-1,4-linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic 

acid (MurNAc). (adapted from ref. 7). 

 

Although the basic structure of the PG is very similar in gram-positive and gram-negative 

bacteria, its thickness is very different (figure 2.2), with the gram-positive wall much thicker (it 

has at least 10 to 20 layers) than the gram-negative wall (1 to 3 layers). In gram-negative 

bacteria, the thinner layer of PG is enough to maintain the mechanical stability of the cell and 

the PG is covalently attached to the outer membrane via lipoprotein. On the other hand, 

gram-positive bacteria, which do not have an outer membrane, have a thick cell wall that 

contains charged polymers covalently linked to it, such as teichoic acids, teichuronic acids, 

and proteins.7 

 

The mechanisms of membrane disruption have been intensely studied. In general, 

membrane disruption is believed to occur mainly either via a detergent-like carpet 

mechanism (or carpeting mechanism),8 or through formation of discrete pores (figures 2.5 

and 2.4, respectively).9 There is good experimental evidence for each of these processes, 

and different peptides may utilize different mechanisms to ultimately disrupt the microbial 

membrane. It may be that these mechanisms are not mutually exclusives: one process may 
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represent an initial or intermediate step and another may be its consequence. Additional 

factors such as the lipid-to-peptide ratio and the target membrane composition may also 

have an effect on the mechanisms of membrane disruption.  

 

Regarding the pore formation mechanism, the antimicrobial agent can form a pore that acts 

as a conductance channel that disrupts the transmembrane potential and its ion gradients, 

leading to a leakage of cell components and consequently cell death. Dissipation of the 

transmembrane electrochemical gradient causes a loss of the bacterial cell's ability to 

synthesize ATP, and the increase in water and ion flow that accompanies loss of the 

permeability barrier leads to cell swelling and osmolysis. This mechanism requires the 

antimicrobial agent to be sufficiently long to traverse the hydrophobic core of the bilayer, and 

implies a direct contact between the antimicrobial agent molecules upon channel formation 

(figure 2.4).10 

 

 

 

Figure 2.4 Models of transmembrane channel formation. Antimicrobial agent associates to the 

membrane surface (A) and accumulates (B). Once a critical antimicrobial agent/lipid ratio is reached, 

an insertion into the membrane is observed, with the formation of barrel-stave type pore (C) or 

formation of localized toroidal pores (D). (adapted from ref. 10) 

 

On the other hand, in the carpeting mechanism, the antimicrobial agent accumulates at the 

bilayer surface like a carpet and, above a threshold concentration of the antimicrobial agent, 

the membrane is permeated and disintegrated in a detergent-like manner without the 

formation of discrete channels (figure 2.5).8 
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Figure 2.5 Model of membrane disruption by the carpet mechanism. The antimicrobial agent binds (A) 

and accumulates (B) in the membrane surface. Continued accumulation and covering (“carpeting”) of 

the bilayer (C) leeds to a detergent-like disintegration (D) (adapted from ref. 10). 

 

Possible mechanisms of action of functionalized 2-oxazoline-based polymers. There 

are some references in the literature about the possible mechanisms of action of polymers 

similar to the ones synthesized in this work, suggesting that the main target of these 

antimicrobial agents is the membrane.11,12 It is proposed that the antimicrobial mechanism of 

these polymers involves interaction with the membrane surface, which causes localized 

disruption of the bacterial phospholipid membrane by the linear end-capper group (figure 

2.6).12 

 

 

Figure 2.6 Proposed mechanism of membrane disruption by the polymers in the literature. (adapted 

from ref. 12) 
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2.2.3 Pathogenic relevance of E.coli and S.aureus 

In this study two common pathogenic bacteria, the gram-negative E.coli and the gram-

positive S.aureus, were used as model organisms. 

  

Since 1883, S.aureus has been recognized as the most likely cause of wound infections. 

S.aureus infections are usually preceded by colonization, which occurs in about 30% of 

healthy people. It can cause common superficial infections, such as carbuncles, cellulitis, 

folliculitis, furuncles and impetigo but also primary bloodstream infections, or pneumonia.13 

Bacterial infections are more common in hospital environments than elsewhere and S.aureus 

is most commonly passed on by direct contact. The spread of this type of infectious agents 

can be controlled effectively through a rigorous hygiene regime. Surfaces may act as 

reservoirs of microbes which could in turn lead to the spread of infection upon being touched, 

by either healthcare professionals or patients. Studies have shown the contamination of 

common hospital surfaces such as door handles, sterile packaging, ward fabrics and 

plastics, healthcare professionals pens, keyboards and taps, stethoscopes and telephones 

by potentially harmful microbes.14,15 Therefore, in hospitals, patients with open wounds, 

invasive devices, and weakened immune systems are at greater risk for infections than the 

general population. 

 

E.coli is one of the best-known bacterial species and one of the most frequently isolated 

microorganisms from clinical specimens. E.coli can cause a wide variety of infections having 

a high incidence and associated morbidity and mortality. It can cause urinary, abdominal, 

pelvic and surgical site infections, pneumonia, meningitis and sepsis.16  

New treatments and prevention measures are urgently needed for improved outcomes of 

bacterial infections and diminished disease. 

 

2.2.4 Characterization of the antimicrobial effect 

The success of the antimicrobial therapy is determined by complex interactions between an 

administered drug, a host and an infecting microorganism. In a clinical situation, the 

complexity of these interactions is usually reflected by a high variability in the dose-response 

relationship. Therefore, to minimize the dose-response variability and maximize antibiotics 

efficiency, key characteristics of the drug, host and microorganism should be taken in 

account.  
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Two methods that are frequently used to evaluate the antimicrobial activity are the 

determination of minimum inhibitory concentration (MIC) and of the killing-curves. 

Fluorescence methods can be used for the assessment of bacterial viability in the presence 

of the polymers. 

 

Methods based on (MIC)s. The most common approach to antibiotic dosing is to adjust the 

doses to obtain antimicrobial concentrations in plasma that are above the MIC for the 

respective pathogenic microorganism during the dosing interval. MIC is defined as the lowest 

concentration of a specific antimicrobial agent that will completely inhibit the visible growth of 

a specific microorganism.17,18 This parameter is well known and allows  the evaluation of the 

efficacy of antimicrobial agents. It is an extremely useful method due to its simplicity and 

reproducibility. However, this parameter has some limitations as it provides only limited 

information on the kinetics of the drug action. Since the MIC determination depends on the 

number of bacteria at a single time point, many different combinations of growth and kill rates 

can result in the same MIC. The different killing kinetics can be of extremely importance in 

therapeutics. MIC also represents in vitro threshold concentrations and not an in vivo 

scenario, where bacteria are not being exposed to constant but to constantly changing 

antimicrobial concentrations.19 

 
Methods based on killing-curves. A different approach to assess the efficacy of 

antimicrobial agents is to follow microbial growth and killing as a function of time. These in 

vitro models provide more information about the time course of antimicrobial effect.  

A typical bacterial growth curve (figure 2.7), in the absence of any antimicrobial compound, 

shows four characteristic phases: an initial lag phase, a phase of logarithmic growth called 

exponential phase, a stationary phase and, finally, a death phase. During the exponential 

phase, cells divide at a constant rate, which is dependent on the composition of the growth 

medium and conditions of incubation. 
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Figure 2.7 Typical bacterial growth curve at constant temperature conditions with three main phases 

shown. no represents the initial population density, nmax the maximum population density, µmax the 

maximum specific growth rate and λ the lag parameter (adapted from 20). 

 

The effect of an antimicrobial agent can be evaluated by comparing the typical growth curve 

to the killing-curve performed in the presence of a constant concentration of the antimicrobial 

agent added in the exponential phase. Exposure to an antimicrobial compound while the 

bacteria are in the logarithmic phase will result in a change on the growth rate constant. A 

disadvantage of this type of approach is that, similarly to the MIC determination, it does not 

reflect the in vivo situation where a fluctuation of the concentration of the antimicrobial agent 

occurs.19 

 

Fluorescent methods for assessment of bacterial viability. Classical methods for the 

determination of bacterial viability rely on the ability of cells to actively grow and form visible 

colonies on solid media. However, the number of viable cells can be underrepresented using 

these methods as viable bacteria may be unable to form a colony. Consequently, alternative 

methods for determining viability have been developed based on demonstration of cell 

integrity or metabolic activity. Alternatives include techniques like flow cytometry and 

fluorescent staining, the exploitation of physiological responsiveness or metabolic activity 

and nucleic acid-based analyses.21, 22, 23, 24 

 
The definition of bacterial cell death is quite controversial but, in this work, cells maintaining 

membrane integrity and retaining some metabolic activity will be considered viable. 
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Figure 2.8 Schematic diagram that illustrates some approaches used in the assessment of bacterial 

viability (adapted from ref. 25)
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cells. Therefore, PI only penetrates bacteria with compromised membrane and is commonly 

used to identify dead cells in a population. 
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2.3 EXPERIMENTAL METHODS 

 

2.3.1 Bacterial strains and growth conditions. Staphylococcus aureus NCTC8325-4 

and Escherichia coli AB1157 strains were used in all experiments and were grown in 

Mueller-Hinton broth medium (MHB, Oxoid). Cultures were grown overnight in broth at 37ºC, 

diluted 1/200 and further incubated at 37 ºC, with aeration and vigorous shaking to an optical 

density at 600nm of 0.5-0.6. 

 

2.3.2 Disc diffusion technique. An initial test of antimicrobial activity of the synthesized 

polymers was made using disc diffusion technique. The tests were performed using 7 

different microorganisms: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 

29212 (both gram-positive), Escherichia coli ATCC 25922, Proteus mirabilis, Pseudomonas 

aeruginosa ATCC 27853, Klebsiella oxytoca (all gram-negative) and Candida albicans ATCC 

MYA-2876 (fungi).  

Cells were cultivated by adding 350µL of a stock solution of bacterial or fungi cells to a 

standard growth medium, Mueller-Hinton Agar (Merck, composition in g/L: meat infusion 2.0; 

starch 1.5; casein hydrolysate 17.5; agar 13.0).  

Polymers were dissolved in water (all MetOx, EtOx and BisOx polymers) or in methanol 

(PhOx polymers).  

Paper discs (BBL no. 231039, BD) were then impregnated with 15µL of polymer solution (of 

a concentration of 100mg/mL) and placed on the surface of the growth medium. The plates 

were incubated and the presence or absence of a zone of inhibition was evaluated. A 

negative control was set using a disc impregnated with water or methanol, according to the 

solvent used in the polymers solutions. Experiments were run in duplicate and the results 

obtained after incubation of 24 hours at 37ºC for bacterial strains and 48 hours at 37ºC for 

Candida albicans. 

 

2.3.3 MIC determination. 2-oxazoline-based polymers were dissolved in the Mueller 

Hinton Broth medium. The polymers solutions were placed in a sterile 96-well microtiter plate 

and serially diluted. Then, 5 µL of culture (105 cells) were added to each well containing a 

volume of 100 µL of medium with a specific concentration of polymer (sequential 2 fold 

dilutions). Plates were incubated with shaking (100 rpm) at 37 ºC overnight. Sterilization 

controls of the medium and polymer were also carried out. MIC results were determined after 
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24 hours of incubation. The tests were performed in duplicate and with both S.aureus and 

E.coli strains. 

 

2.3.4 Killing Curves. A solution of polymer in growth medium with a concentration 5 or 2 

times the obtained MIC value was added to S.aureus and E.coli cultures in exponential 

growth phase (OD600nm= 0,5-0,6). Samples of the culture were taken before addition of 

polymer and 0, 2, 4, 6 and 10 minutes after the addition of PMetOx-DDA and PBisOx-DDA, 

and 0, 15, 30, 45, 60, 90, 120, 150, 180, 240 minutes after the addition of LPEI (see 

polymers reference at table 1.3). Each sample was serially diluted to 100, 10-2 and 10-4 in 

growth medium. 100 µL of each dilution were plated on Mueller Hinton agar and incubated at 

37 ºC. After 24 hours, the number of viable colony was determined. Optical density was also 

measured during time assay. Killing curves were constructed by plotting colony-forming units 

(CFU) against time, in a log scale. 

 

2.3.5 Fluorescence microscopy. A solution of polymer in a growth medium, with a 

concentration 5 times the obtained MIC value, was added to S.aureus and E.coli cultures in 

exponential phase (OD600nm= 0,5-0,6). The incubation time used for each polymer solution 

was set according to the killing curve results obtained. Cultures were then labelled with 

propidium iodide (Molecular Probes, Invitrogen) during 5 minutes at room temperature, with 

agitation. Cells were visualized by phase-contrast and fluorescence microscopy in a Leica 

DRMA2 microscope coupled to a CoolSNAP HQ Photometrics camera (Roper Scientific).  
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2.4 RESULTS AND DISCUSSION 

 

2.4.1 Disc diffusion technique 

To have an initial idea of which polymers had antimicrobial activity, solutions of each 2-

oxazoline-based polymer were placed on paper discs and were tested against different gram 

positive and negative bacteria as well as fungi. Microorganisms were incorporated in solid 

medium and solutions applied in paper discs. 

The polymer solutions were highly concentrated to make sure that the quantity present was 

enough to inhibit the growth of the microorganism, if the polymer had antimicrobial activity. It 

should be noted that PBisOx-MDA and PBisOx-OH were only slightly soluble in water and 

methanol, the two solvents used in this test. 

Table 2.1 Evaluation of the presence or absence of antimicrobial activity determined by disc diffusion 

technique (see polymers reference in table 1.3) Results of each polymer were identical to all 7 

microorganism tested. �=presence of an inhibition halo; �= no inhibition halo present. 

 

 

 

 

 

 

 

 

 

This qualitative method allows the quick determination of the presence of antimicrobial 

activity (figure 2.10), although it may be considered less rigorous than the method based on 

MIC determination. 

Polymers that showed antimicrobial activity, were efficient against all the 7 microorganisms 

tested, bacteria as well as fungi. The antimicrobial activity was observed for PMetOx-DDA, 

PMetOx-MDA, PEtOx-DDA, PEtOx-MDA, PPhOx-DDA, PPhOx-MDA, PBisOx-DDA, which  

Polymer Antimicrobial activity as 
determined by disc diffusion 

PMetOX-DDA � 
PMetOX-MDA � 
PMetOX-OH � 
PMetOX-DDAmw � 

PEtOX-DDA � 
PEtOX-MDA � 
PEtOX-DABCO � 
PEtOX-MI � 
PEtOX-MCHA � 
PEtOX-OH � 

PPhOx-DDA � 
PPhOx-MDA � 
PPhOx-OH � 

PBisOx-DDA � 
PBisOx-MDA � 
PBisOx-OH � 

LPEI � 
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are end-capped with linear aliphatic amines N,N-dimethyldodecylamine (DDA) and N-

methyldioctilamine (MDA) and that were obtained using four different oxazoline monomers 

(MetOx, EtOx, PhOx and BisOx); LPEI, the linear poly(ethyleneimine), also had antimicrobial 

activity. These results are in agreement with previous reports using similar polymers.11,12,27 

Consequently, it may be concluded that the use of different oxazoline monomer will not 

highly influence the presence of antimicrobial activity.   

The large size of the compound can explain the lack of activity of PMetOx-DDAmw since this 

polymer is chemically identical to PMetOx-DDA but it has a higher molecular weight, which 

may limit diffusion.  

Polymers end-capped with water, PMetOx-OH, PEtOx-OH, PPhOx-OH and PBisOx-OH 

showed no antimicrobial activity. These polymers were synthesized in order to evaluate if the 

antimicrobial activity was related with the presence of a quaternary ammonium salt end 

group. This result was predictable since the backbone of the 2-oxazoline-based polymer is 

not expected to have antimicrobial activity. 

The functionalization of PEtOx-DABCO, PEtOx-MI and PEtOx-MCHA with non-linear amines 

(cyclic and aromatic amines) showed no antimicrobial activity, a result that might be related 

with the mechanism of membrane disruption proposed in the literature (figure 2.4),11,12 which 

seems to favor the insertion of linear amines in the membrane.  

The lack of activity obtained for PBisOx-MDA, may be due to insufficient quantity of 

antimicrobial agent in the disc due to the low solubility of the polymer in the solvent used. 

 

Negative results, in this type of test, can be due to the absence of antimicrobial activity but 

also to the incapacity of the polymer to diffuse from paper discs into the medium because of 

its size or solubility. 

Due to the limitations of this technique, the antimicrobial activity was also tested using an 

alternative and quantitative method, the determination of the polymer’s MICs. 
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Figure 2.10 Disc diffusion test. Two 

defined) and two polymers that do not impair bacterial growth are

 

2.4.2 MIC determination

In this test, all 2-oxazoline

serially diluted and their antimicrobial effect was evaluated after 24 and 48 hours of 

incubation (table 2.2 and figure 

in the range of 2-fold difference. This slight difference can be justified with different growth 

times of overnight cultures that led to different quantity of cells in the assays.

controls of medium and polymer showed no microbial growth.

Table 2.2 MIC determination of 

Polymer

PMetOX-DDA

PMetOX-MDA
PMetOX-OH
PMetOX-DDA

PEtOX-DDA
PEtOX-MDA

PEtOX-DABCO

PEtOX-MI 

PEtOX-MCHA

PEtOX-OH

PBisOx-DDA

LPEI * 

CH3-PMetOX

CH3-PMetOX
* MIC of these three polymers was determined in duplicate, once they were 

antimicrobial assays. 
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Disc diffusion test. Two polymers showing antimicrobial activity (with inhibition zones well 

polymers that do not impair bacterial growth are shown in the image.

determination 

oxazoline-based polymers synthesized which are soluble in water 

serially diluted and their antimicrobial effect was evaluated after 24 and 48 hours of 

and figure 2.11). The MIC values determined in duplicate are consistent 

difference. This slight difference can be justified with different growth 

times of overnight cultures that led to different quantity of cells in the assays.

controls of medium and polymer showed no microbial growth. 

MIC determination of water soluble 2-oxazoline-based

Polymer 
MIC value (mg/mL)

S.aureus NCTC 8325-4 E.coli AB1157

DDA * 
1,5 
0,75 

MDA 1,5 
OH > 25 
DDAmw 1,5 

DDA 1,25 
MDA 10 

DABCO 5 

 10 

MCHA 10 

OH > 25 

DDA * 
0,37 
0,19 

0,09 
0,05 

OX53-DDA 
11

 1,03 

OX22-DDA 
12

 0,43 
MIC of these three polymers was determined in duplicate, once they were chosen

Oxazoline-Based Polymers 
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(with inhibition zones well 

shown in the image.   

ich are soluble in water were 

serially diluted and their antimicrobial effect was evaluated after 24 and 48 hours of 

The MIC values determined in duplicate are consistent 

difference. This slight difference can be justified with different growth 

times of overnight cultures that led to different quantity of cells in the assays. The sterilization 

based polymers. 

MIC value (mg/mL) 

E.coli AB1157 

0,75 
0,75 
0,75 
> 25 
0,75 

1,25 
10 

> 25 

> 25 

> 25 

> 25 

0,37 
0,37 

0,09 
0,19 

2,49 

1,15 
chosen to perform the rest of 
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Figure 2.11 MIC of the water soluble 

literature, for E.coli and S.aureus
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PEtOx-DABCO, PEtOx-MI and PEtOx-MCHA, end-capped with non-linear amines showed a 

higher MIC value to S.aureus than polymers end-capped with linear-amines and were not 

effective against E.coli in the concentration tested. It is described in the literature that the 

possible mechanisms of action of this type of compounds may involve a disruption of the 

membrane by a linear end-capper group.11,12 This may explain the requirement of a higher 

amount of antimicrobial compound end-capped with non-linear amines to inhibit bacterial 

growth. The lack of activity of these polymers against E.coli in the concentration range tested 

may result from the presence of an outer membrane.  

Polymers with a hydroxyl end-capping group, (PMetOx-OH and PEtOx-OH) that were 

synthesized as a control, showed no biocidal activity. This proves that the antimicrobial 

activity is due to the presence of quaternary ammonium groups and that the backbone of the 

polymer does not influence its activity. 

The polymers with a lowest MIC value were PBisOx-DDA and LPEI. The polymer PBisOx-

DDA is poly(bisoxazoline) end-capped with N,N-dimethyldodecylamine, a branched polymer. 

This polymer is chemically similar to the 2-oxazoline-based polymers and the lowest MIC 

obtained can be related to the possibility of functionalization with more than one end group. 

The polymer LPEI does not have quaternary ammonium salt groups but the amine groups of 

its backbone become charged at physiological pH. According to the literature, the protonation 

of LPEI is obviously dependant of the pH of the assay. At pH 6.5-7.5 (the expected pH of the 

assays), the percentage of unprotonated amines may vary from 70 to 90%.28 The polymer 

obtained was found to have a degree of polymerization (DP) of 12 by MALDI-TOF spectral 

analysis, and consequently it can contain 1 to 4 protonated amines. Therefore, LPEI can 

have 4 protonated amines in its chain, while PBisOx-DDA has the number of charges 

according with the number of end-capper groups in the polymer chain. These two polymers 

are the polymers with more positive charges per molecule, comparing to the rest of the 

synthesized polymers (that only have one charge per molecule since they have only one 

quaternary ammonium end-group). 

The existence of positive charge may be an important requisite for the antimicrobial activity 

of the polymers and may play a key role in their mode of action, since the phospholipid 

composition of bacterial membranes has predominantly an anionic character. The cationic 

part of the polymer is believed to initiate electrostactic interactions with the negatively 

charged components of the membranes of microbes and to provide some degree of 

selectivity towards negatively charged microbial cell envelopes and cytoplasmatic 

membranes. Development of resistance to these type of antimicrobial polymers would then 

require bacteria to completely change their membrane structure, therefore this strategy could 

constitutes a new and efficient alternative to conventional antimicrobial compounds.29 
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In the literature, similar mechanisms are described as possible modes of action of polymers. 

For instance, it is believed that chitosan, a natural polycationic polymer, interacts with the 

negative charge on the surface of bacteria changing the permeability of the bacterial cell 

membrane. It is also described that the antimicrobial activity of this polymer is dependent of 

the pH of the assay. Chitosan is effective at pH 6.0 but ineffective at pH above 7.0 as a 

consequence of the deprotonation of amine groups of the polymer in basic conditions.30 

 

To perform the next microbiological tests, PMEtOx-DDA, PBisOx-DDA and LPEI were 

chosen. PBisOx-DDA and LPEI were selected because of their lowest MIC value and 

PMEtOx-DDA as representative of a 2-oxazoline-based and functionalized polymer. 

Moreover, PMEtOx-DDA is a linear polymer, PBisOx-DDA is a branched one and LPEI is a 

non-functionalized amine-based polymer. 

 

 

 

 

2.4.3 Killing curves   

In this test, microbial killing by three chosen polymers was followed as function of time. A 

solution of the polymer (PMEtOx-DDA, PBisOx-DDA or LPEI), with concentrations higher 

than the MIC value obtained (2 or 5 times) was added to the E.coli and S.aureus 

exponentially growing cultures. Samples were taken over time and plated to assess cell 

viability. OD600nm was also measured. Assays were done in duplicate. 

Optical density (OD) measures turbidity directly and the turbidity of a suspension of cells is 

directly related with the cell quantity. However, this measure does not differentiate between 

viable and death cells. Samples were therefore plated at different time points to assess 

viability since dead cells will not form any colonies.  
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Figure 2.12 Bacterial growth after the addition of the polymers. The decrease in the optical density 

(600 nm) of E.coli in the presence of PMetOx-DDA and PBisOx-DDA after 4 and 10 minutes and 

stabilization of the bacterial growth during 45 minutes in the presence of LPEI can be seen. Time t=0 

minutes represents the addition of the polymer. Assays were done in duplicate (1 and 2 for each 

polymer).  

 

In figure 2.12, after the addition of PMetOx-DDA and PBisOx-DDA the optical density of 

E.coli cultures decreased indicating that the cells are dying after only 4 minutes in the 

presence of the polymers.  

After the addition of LPEI, the optical density of E.coli continues to increase in the first 20-30 

minutes and then stabilizes.  
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Figure 2.13 Number of viable cells per mL after the addition of the polymers. The reduction in the 

number of viable E.coli in the presence of PMetOx-DDA and PBisOx-DDA during 10 minutes and LPEI 

during 45 minutes of assay can be seen in a logarithmic scale. PMetOx-DDA and PBisOx-DDA assays 

are overlapped in the graph, showing identical behaviour. The value of the initial viable cells (10
8
 cells) 

is an estimated value. Time t=0 minutes represents the addition of the polymer. Assays were done in 

duplicate (1 and 2 for each polymer).  

 

Immediately after the addition of PMetOx-DDA and PBisOx-DDA there is a quick decrease in 

the number of colony-forming units. In fact, just after the addition of the polymer all cells are 

killed (figure 2.13).  

 

After the addition of LPEI, viable cells of E.coli started to decrease but only achieved zero 

CFU after 45 minutes of incubation with LPEI.  

PMetOx-DDA and PBisOx-DDA showed to have faster killing rates comparatively to LPEI. 
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• S.aureus 

 

Figure 2.14 Bacterial growth after the addition of the polymers. The reduction in the optical density 

(600 nm) of S.aureus in the presence of PMetOx-DDA and PBisOx-DDA after 4 and 10 minutes and 

the stabilization of the bacterial growth during 240 minutes in the presence of LPEI can be seen. Inset 

shows PMetOx-DDA and PBisOx-DDA assays in detail. Time t=0 minutes represents the addition of 

the polymer. Assays were done in duplicate (1 and 2 for each polymer).  

 

Figure 2.14 shows a slight reduction in the optical density after the addition of PMetOx-DDA 

and PBisOx-DDA. Both polymers caused a decrease in O.D. 10 minutes after their addition 

to a S.aureus culture.  

LPEI caused a halt in exponential growth but no decrease in O.D. was observed during the 4 

hours assay.  

Similarly to E.coli, PMetOx-DDA and PBisOx-DDA were more effective at inhibiting growth of 

S.aureus than LPEI. 
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Figure 2.15 Number of viable cells per mL after the addition of the polymers. The reduction in the 

number of viable S.aureus in the presence of PMetOx-DDA and PBisOx-DDA during 10 minutes and 

of LPEI during 240 minutes of assay can be seen in a logarithmic scale. PMetOx-DDA and PBisOx-

DDA assays are overlapped in the graph, showing identical behaviour. The value of the initial viable 

cells (10
8
 cells) is an estimated value. Inset shows PMetOx-DDA and PBisOx-DDA assays in detail. 

Time t=0 minutes represents the addition of the polymer. Assays were done in duplicate (1 and 2 for 

each polymer). 

 

Figure 2.15 shows that addition of PMetOx-DDA and PBisOx-DDA caused a fast decrease of 

total viable S.aureus cells. 

 LPEI took 240 minutes to kill all (≥ 108 cells) S.aureus cells. 

 

The end-capping with N,N-dimethyldodecylamine of poly(2-methyl-2-oxazoline) and 

poly(bisoxazoline) led  to materials  with higher MIC values but fast killing rates: less than 5 

minutes to achieve  100 % killing for both bacterial species. On the other hand, LPEI, the 

polymer with lower MIC value, achieved 100 % killing after 45 minutes in contact with E.coli 

and after 4 hours in contact with S.aureus.  

This difference in the biocidal behavior (MIC and killing rates) can possibly indicate some 

differences in the mode of action of these polymers. Polymers with higher MIC value and 

faster killing rates may act in the bacterial membrane by a carpeting mechanism. Polymer 

accumulates in the membrane until reaches a required concentration and then, the 
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membrane disintegrates. Therefore, it is expected that the amount of antimicrobial agent will 

be higher than the amount required to form discrete pores. The polymer with a lower MIC 

value is expected may act through a pore formation mechanism, taking more time to act in 

the membrane. 

Hence, PMetOx-DDA and PBisOx-DDA could possible act by a carpeting mechanism. The 

polymer accumulates, acts in the membrane rapidly and lyses the bacterial cells, without 

making a distinction between E.coli and S.aureus, leading to similar behaviors of both strains 

(rapid killing rates and the immediate reduction in O.D. confirming that the cells are, in fact, 

being lysed).  

On the other hand, LPEI may act as a proton sponge that causes ion influx and leads to 

membrane rupture, or can act in the membrane by forming pores. In this second type of 

mechanism, cell lysis does not occur immediately as the cells first lose their membrane 

potential, components and the ability to divide. This fact can justify the stabilization of the 

O.D. during the assays since cells are no longer dividing but are not yet lysed. Comparing 

the results for both strains, a large difference in the killing rates can also be noted. Growth of 

E.coli can be inhibited by disrupting just the outer membrane,31 justifying the need of 30 

minutes to reduce the viable cells. In case of S.aureus, the polymer must diffuse through the 

thicker peptidoglycan to be effective at the inner membrane.32  

 

 

 

 

 

2.4.4 Fluorescence microscopy 

Propidium iodide dye was used for cell labeling, followed by fluorescence microscopy to 

assess viability of S.aureus and E.coli strains in the presence of the three better studied 

polymers: PMetOx-DDA, PBisOx-DDA and LPEI (figures 2.16 and 2.17). Cells were 

incubated in the presence of the polymers for variable times, chosen in agreement of the 

killing curves obtained for each polymer (figures 2.13 and 2.15). 
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Figure 2.16 Fluorescence labeling with propidium iodide for assessment of cell viability. A and B: cells 

of E.coli AB1157 visualized by phase-contrast and fluorescence microscopy using Texas Red filter, 

respectively, in the absence of any polymer. C and D: same cells incubated with PMEtOx-DDA during 

5 minutes. E and F: same cells incubated with PBisOx-DDA 4a during 5 minutes. G and H: same cells 

incubated with LPEI during 30 minutes. Dead cells are seen as fluorescent on right panels. 
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Figure 2.17 Fluorescence labeling with propidium iodide for assessment of cell viability. A and B: cells 

of S.aureus NCTC 8325-4 visualized by phase-contrast and fluorescence microscopy using Texas 

Red filter, respectively, in the absence of any polymer. C and D: same cells incubated with PMEtOx-

DDA during 5 minutes. E and F: same cells incubated with PBisOx-DDA during 5 minutes. G and H: 

same cells incubated with LPEI during 240 minutes. Dead cells are seen as fluorescent on right 

panels. 
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The results obtained in this test are in accordance with the results obtained in the killing-

curves for each polymer. Both E.coli and S.aureus become fluorescent after the addition of 

each polymer indicating that cells are in fact being killed.  

 

 

In figure 2.16H the cells were not all stained with propidium iodide, but on the other hand 

some unstained lysed cells in the picture can be seen. Lysed cells are dead cells with 

membrane integrity compromised and that had released the cellular contents. Moreover, 

accordingly to the results obtained in the killing-curves of E.coli, after 30 minutes in the 

presence of the LPEI, the presence of viable cells can be still observed. 

 

This method is reliable, easy to perform and a good alternative to assess the viability, since 

viable cells are not underrepresented in this method. 
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2.5 CONCLUSION 

 

The library of the synthesized 2-oxazoline-based polymers was characterized by 

microbiological techniques. 

A initial quick and qualitative test and a later rigorous method for the determination of 

minimum inhibitory concentrations (MIC) values of each polymer, lead to the conclusion that 

2-oxazoline-based polymers functionalized with different types of amines as well as LPEI 

have a broad antimicrobial activity as well as antifungal activity.  

The four different types of 2-substitued oxazoline monomers used in the polymers’ synthesis 

as well as the difference in the molecular weight between chemically identical polymers do 

not highly influence their antimicrobial activity. 

Besides MIC, killing curves of the synthesized polymers against S.aureus and E.coli were 

also determined. The end-capping with N,N-dimethyldodecylamine of  poly(2-methyl-2-

oxazoline) and poly(bisoxazoline) living polymers led to materials  with higher MIC values but 

fast killing rates (less than 5 minutes) than LPEI, a polymer which had a lower MIC value, but 

took longer to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes 

in contact with E.coli and after 4 hours in contact with S.aureus. 

The presence of positive charge in the polymers might play a significant role in the initial 

binding of the polymers to the cell membrane and, therefore, in the mode of action since the 

phospholipid composition of bacterial membranes has predominantly an anionic character.  

In a second step, it is believed that polymers will induce membrane permeation either via 

pore formation or membrane disintegration, accompanied by a loss of bacterial membrane 

potential.33,34  

The differences observed in the biocidal behavior (MIC and killing rates) of different polymers 

may be an indication of differences in their mode of action. Polymers with higher MIC values 

and faster killing rates possibly act in the bacterial membrane by a carpeting mechanism, 

while LPEI, the polymer with a lower MIC value and slower killing rate, may act through the 

formation of pores in the membranes. 

Further studies are being performed to elucidate these mechanisms of action.  
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FUTURE WORK 

 

In order to achieve a better understanding of the polymers killing mechanisms and also to 

explore their fluorescence properties further work is required. 

It is essential to fully understand the mechanisms of action of PMetOx-DDA, PBisOx-DDA 

and LPEI in E.coli and S.aureus, through the use of microbial cell biology techniques, with 

the aim of confirming the membrane as the target. 

It is very important to study the precise local of polymers action in order to understand their 

mechanism of action. To assess if the polymers permeabilize either inner (IM) or outer 

membrane (OM), a reported method will be used, through the use of E.coli ML 35p. This 

E.coli strain constitutively expresses cytoplasmic β-galactosidase but lacks its permease. In 

the presence of β-galactosidase substrate, ONPG (o-nitrophenyl-β-D-galactopyranoside), the 

production of o-nitrophenyl (ONP) over time is going to be monitorized 

spectrophotometrically at 420nm. The production of ONP indicates that β-galactosidase was 

released from the cytoplasm and that IM was damaged. OM permeabilization will be 

assessed using the same strain and by 1-N-phenyl-naptylamine (NPN) uptake. This 

hydrophobic probe strongly interacts in phospholipid layer but only weakly in an aqueous 

environment. Usually, intact OM excludes hydrophobic molecules, but through the usage of 

permeabilizers, the phospholipids become accessible and allow NPN access into the 

phospholipid layer. By this way, increased fluorescence in NPN-containing bacterial 

suspensions will indicate OM damage. 

 

It is also fundamental to study the cytotoxicity of the synthesized polymers. If their toxicity to 

mammalian cells is proved to be minimal, it would be interesting to exploit some applications: 

development of scaffolds with antimicrobial activity for cell growth; immobilization, coating or 

incorporation of the polymers in medical devices like catheters, for example; the 

development of antimicrobial gels for topic use; among many others. 

 

Testing the antibiofouling activity of the polymers is also envisaged, once that the formation 

of biofilms is also a major problem in the spread of infections, exhibiting extreme resistance 

to antibiotics. 
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It would be also interesting to promote the growth of bacterial cells with sub-MIC quantities of 

polymers and assess if the cells become polymer resistant and then study the resulted 

mutations to better understand the mechanisms of resistance associated with polyoxazolines 

and to exploit alternatives to the development of this resistance. 

 

Taking advantage of the intrinsic fluorescence of 2-oxazoline-based polymers, it would be 

fascinating to optimize the assays conditions to examine the localization of polymers while 

interacting with bacteria without the use of any staining molecules. 
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Appendix 1 
1
H-NMR spectrum (400 MHz, CDCl3) of PMetOx-DDA. 
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Appendix 2 
1
H-NMR spectrum (400 MHz, D2O) of LPEI. 
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Appendix 3 FT-IR spectrum (NaCl) of PMetOx-DDA. 
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Appendix 4 FT-IR spectrum (NaCl) of LPEI. 
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Appendix 5 MALDI-TOF spectrum (dithranol) of PMetOx-DDAmw. 
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Appendix 6 MALDI-TOF spectrum (dithranol) of LPEI. 
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