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S U M M A RY

Theoretical epidemiology aims to understand the dynamics of diseases in pop-

ulations and communities. Biological and behavioral processes are abstracted

into mathematical formulations which aim to reproduce epidemiological ob-

servations. In this thesis a new system for the self-reporting of syndromic

data — Influenzanet — is introduced and assessed. The system is currently

being extended to address greater challenges of monitoring the health and

well-being of tropical communities. Mathematical transmission models for

influenza and malaria are constructed and fitted to epidemiological observa-

tions, informing the design of future editions of self-reporting surveillance.

Influenzanet is an internet-based system to monitor influenza-like illness

(ILI) throughout Europe using self-reporting volunteers. It consists of na-

tional websites where everybody is invited to register by completing an intake

questionnaire, and participants are weekly reminded to complete a symptoms

questionnaire. The ILI activity is determined by applying a clinical case defi-

nition.

Based on the reports of tens of thousands of volunteers across Europe, the

ILI incidence as determined by Influenzanet closely follows the trends re-

ported by traditional surveillance based on sentinel medical doctors. Since In-

fluenzanet applies a single case definition uniformly across Europe and does

not depend on a country-dependent rate at which people seek medical care,
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the measured ILI activity can be directly compared across countries, which is

not possible in tradition surveillance.

Based on the follow-up questions of the symptoms questionnaire, Influen-

zanet also monitors behavioral characteristics of participants with ILI in differ-

ent countries and subgroups, such as how often and when they seek medical

care. ILI risk factors and season dependent vaccine effectiveness are deter-

mined based on life style and demographic information supplied at registra-

tion. The flexibility of the system has allowed various extensions, such as

questionnaires concerning stress, contact patterns, and vaccine side effects.

Based on different case definitions other diseases such as dengue are moni-

tored. Given the automated real-time data collection and analyses, in coun-

tries with sufficient participants the yearly onset of the ILI epidemic can be

detected up to two weeks earlier than with the traditional surveillance.

According to the measured ILI activity by both Influenzanet and the sen-

tinel doctors, during seasons when the activity starts early due to the emer-

gence of a new strain, the epidemic is not necessarily more severe as one

could naively expect. In this thesis it is hypothesized that this phenomenon

is due to an increased probability for an influenza infected person to have ILI

symptoms when the temperature and absolute humidity are lower. Including

this so-called ILI factor in a transmission model significantly improves the fit

to the observed ILI activity. The model further predicts that public health

measures which aim to delay the onset of an epidemic or pandemic, such as

school closures and global vaccination, could have the averse effect of increas-

ing disease burden if this causes the epidemic to unfold in colder and dryer

months.

The yearly influenza epidemics are sustained by antigenic drift, a phe-

nomenon by which each year new strains of influenza A arise due to mu-
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tations that enable to virus to escape population immunity and gradually

replace older strains. Infectious diseases with antigenic diversity pose a chal-

lenge to modeling the transmission dynamics. Plasmodium falciparum, which

causes the most severe forms of human malaria, is also characterized by im-

mense antigenic diversity. During the blood phase of infection, the parasite

expresses certain variant surface antigens (VSAs) on the surface of infected

red blood cells. Of special importance is the PfEMP1 family, which constitutes

a major target of the immune system. Each malaria parasite has the ability

to express around 60 different VSAs and generally only one is predominantly

expressed at a given time in a way that appears orchestrated by the host im-

mune system. A relatively conserved subset of these VSAs is preferentially

expressed in non-immune patients and related to severe malaria. Empirical

evidence suggests that most parasites are able to express VSAs from this con-

served subset.

In this thesis a mathematical model is constructed, which integrates both

a between-host element regulating the transmission dynamics, and a within-

host element regulating the VSA expression. The main hypothesis is that

VSAs can be organized into blocks which are characterized by their domi-

nance. An infected host will express the most dominant VSA block for which

it has no prior immunity, and an infected host can be superinfected if the in-

vading parasite can express a more dominant VSA block. This generates two

opposing selective forces within the parasite population, favoring both high-

dominance VSAs with the ability to superinfect, and increasingly diverse sub-

sets of low-dominance VSAs to escape the immunity of the population. The

model correctly reproduces the observed serological trends, as well as a par-

asite population where most parasites can express both the most and least

dominant VSA blocks.
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S U M Á R I O

Epidemiologia teórica tem como objetivo compreender a dinâmica de doenças

em populações e comunidades. Os processos biológicos e comportamentais

são transcritos em formulações matemáticas que visam reproduzir observações

epidemiológicas. Nesta tese um novo sistema para o auto-preenchimento de

dados sindrômicos — Influenzanet — é introduzido e avaliado. O sistema

está a ser estendido para dar resposta aos desafios de monitorizar saúde e

bem-estar em comunidades tropicais. Modelos matemáticos de transmissão

da gripe e malária são construı́dos e ajustados a observações epidemiológicas,

informando o desenho de edições futuras de vigilância com base em auto-

preenchimento voluntário.

Influenzanet é um sistema que monitoriza a sı́ndrome gripal em toda a

Europa, pela Internet, com base em participantes voluntários. Consiste em

websites nacionais onde todos os habitantes estão convidados a inscrever-se

preenchendo um questionário de adesão. Após a inscrição, os participantes

passam a ser lembrados semanal de preencher um questionário de sintomas.

A atividade da sı́ndrome gripal é determinada aplicando uma definição de

caso clı́nico.

Utilizando dezenas de milhares de relatórios de voluntários na Europa, a

incidência da sı́ndrome gripal determinada pelo Influenzanet segue estreita-

mente as tendências reportadas pelo sistema de vigilância tradicional baseado

em redes de Médicos-Sentinela. Uma vez que o Influenzanet aplica uma única
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definição de caso em toda a Europa e não depende da percentagem de pes-

soas que procuram assistência médica (que varia entre paı́ses) a atividade de

sı́ndrome gripal pode ser comparada diretamente entre paı́ses, o que não é

possı́vel no sistema de vigilância tradicional.

O questionário de sintomas também permite ao Influenzanet monitorizar o

comportamento dos participantes com sı́ndrome gripal, em particular no que

respeita a procura de cuidados médicos. Fatores de risco da sı́ndrome gri-

pal e a eficácia da vacina — que varia de ano para ano — são determinados

com base nas informações recolhidas pelo questionário de adesão. A flexi-

bilidade do sistema tem permitido várias extensões, tal como questionários

sobre stress, padrões de contato, e os efeitos secundários da vacina. Us-

ando definições de caso diferentes, a sistema é usado para monitorizar outras

doenças, como o dengue. A recolha de dados em tempo real e as análises

automáticas permitem que, em paı́ses com participantes suficientes, o inı́cio

da epidemia seja detectado precocemente, com uma antecipação que pode ir

até duas semanas relativamente à vigilância tradicional.

Segundo dados do Influenzanet e da vigilância tradicional, a atividade da

sı́ndrome gripal parece menor em épocas em que a atividade começa cedo.

Uma hipótese considerada nesta tese é que este fenómeno se deve a um au-

mento da probabilidade de uma pessoa infectada com influenza ter sintomas

quando a temperatura e a humidade absoluta são mais baixos. Incluindo

este fator num modelo de transmissão melhora significativamente o ajuste

às séries temporais de sı́ndrome gripal. O modelo prevê assim que medi-

das de saúde pública que visam retardar a epidemia ou pandemia, como o

encerramento de escolas e vacinação em massa, podem ter efeitos adversos

e aumentar o número de casos da doença se a epidemia for deslocada para

meses mais frios e secos.
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As epidemias de gripe anuais são sustentadas por um fenómeno evolutivo

de deriva antigénica, segundo o qual em cada ano novas estirpes surgem por

mutações que permitem ao vı́rus escapar a imunidade da população e substi-

tuir formas anteriores. As doenças infecciosas com diversidade antigénica

representam um desafio importante na modelagem da dinâmica de trans-

missão. Plasmodium falciparum, que causa a forma mais severa da malária

humana, é caracterizada por uma diversidade antigénica imensa. Durante a

fase sanguı́nea da infecção, o parasita expressa antigénios variáveis (VSAs)

na superfı́cie dos glóbulos vermelhos infectados. Com especial importância

temos a famı́lia PfEMP1, que constitui um alvo importante para o sistema

imunológico. Cada parasita tem a capacidade de expressar cerca de 60 VSAs

diferentes e geralmente apenas uma variante é predominantemente expressa

de cada vez de forma que se julga orquestrada pelo sistema imune do hos-

pedeiro. Um subconjunto relativamente conservado destes VSAs é expresso

preferencialmente em pacientes não-imunes e aparece relacionado com for-

mas mais severas da doença. Existe também evidência empı́rica de que a

maioria dos parasitas é capaz de expressar VSAs deste subconjunto conser-

vado.

Nesta tese um modelo matemático é construı́do, que integra tanto um ele-

mento extra-hospedeiro que regula a dinâmica de transmissão como um ele-

mento intra-hospedeiro que regula a expressão dos VSAs. A hipótese princi-

pal é que os VSAs podem ser organizados em blocos que são caracterizados

pela seu grau de dominância. Uma pessoa infectada vai expressar VSAs do

bloco mais dominante para qual o organismo não tenha imunidade prévia, e

uma pessoa infectada pode ser superinfectada se o parasita invasor expres-

sar um VSAs de dominância superior. Isto gera duas forças seletivas opostas

na população de parasitas, favorecendo VSAs de alta dominância com ca-
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pacidade de superinfecção por um lado, e subconjuntos diversos de VSAs de

baixa dominância para escapar à imunidade da população por outro lado. O

modelo reproduz corretamente as tendências sorológicas observadas em estu-

dos de campo, e reproduz uma população de parasitas onde a maioria pode

expressar blocos de VSAs nos extremos da escala de dominância.

xiv



P R I N C I PA L P U B L I C AT I O N S

Chapter 2

Sander P. van Noort, Marion Mühlen, Helena Rebelo de Andrade,
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1
I N T R O D U C T I O N

The grand aim of all science is to cover the greatest number of empiri-

cal facts by logical deduction from the smallest number of hypotheses or

axioms.

Albert Einstein
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introduction

1.1 theoretical epidemiology

Theoretical epidemiology aims to understand the dynamics of diseases in

populations and communities. Biological, medical and social processes are

translated into mathematical models which aim to reproduce epidemiologi-

cal observations, often based on public health data. The biological processes

are usually individual oriented, such as the number of infectious contacts,

whereas the epidemiological observations are usually measured in the popu-

lation, such as the total number of infections.

A classic model in theoretical epidemiology is the so-called SIR-model,

which describes the transmission of an infectious disease in a host popula-

tion. The population (size N) is classified into three subgroups: those who

are susceptible (S), those who are currently infected (I), and those who have

recovered from an infection and are current immune (R). This infection pro-

cess can be visualized as in Figure 1.1A.

To transform this infectious process into a mathematical model, the “in-

fection” and “recovery” processes have to be defined. For the deterministic

model, a common assumption is that infected hosts make β infectious contacts

per week and recover at a rate τ. If each contact is made at random, so-called

homogeneous mixing, the rate of new infections per week is then determined

by the total number of infectious contacts per week (βI) and the probability

that a contact is made with a susceptible host (S/N). In mathematical terms,

2
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A

Infection //
Recovery

//

Susceptible Infected Recovered

B
S

βI/N
// I τ // R

Figure 1.1: SIR model

the model can be illustrated by Figure 1.1B and described by the following

differential equations:

dS
dt

= −βI
S
N

dI
dt

= βI
S
N
− τ I

This system was first described by (Kermack and McKendrick, 1927) and

forms the basis for many transmission models of infectious diseases. Accessi-

ble books which introduce the mathematical modeling of infectious diseases

are written by (Anderson and May, 1991) and (Diekmann and Heesterbeek,

2000), among others.

Some individual biological and behavioral processes are difficult to mea-

sure directly, such as the transmission rate of influenza in the previously de-

scribed SIR model. Although certain elements of the transmission process can

be measured directly, such as the viral shedding of infected persons (Carrat

et al., 2008) and the number and type of personal contacts made per person

(Mossong et al., 2008), it is difficult to actually quantify the transmission rate

in the real world based on all different aspects of transmission.
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Biology
Behavior

1 //Model ks 3 +3

4a

ZZ

4b

EEData Epidemiological
observations

2oo

Figure 1.2: Theoretical epidemiology

Theoretical epidemiology allows the indirect quantification of these indi-

vidual processes, by fitting transmission models to epidemiological data and

discovering the most likely elements and parameters. This process can also

be applied in reverse: mathematical models can be used to estimate the out-

come of the intervention in certain individual processes. For example, by

assuming that closing schools or airports decreases the effective transmission

of a disease, the expected decrease in infections can be estimated (Colizza

et al., 2006). Mathematical models thus enable translation between individ-

ual biological and behavioral processes on one hand, and population-based

epidemiological and serological observations on the other (Figure 1.2).

The construction of a mathematical model is usually an iterative process as

visualized in Figure 1.2, and all steps are explored in this work.

1. Possible relevant biological and behavioral processes are selected and

transcribed into a model.

2. Epidemiological observations are gathered into a database.

3. The model is fitted to epidemiological data.

4. Based on how well the model fits the data, if necessary:

a) Selection of the relevant biological and behavioral processes (step

1) is revised.

b) Data collection protocol (step 2) is updated.

4
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1.2 model fitting

Although a transmission model describes the actual number of infected indi-

viduals in the population, the epidemiological data might contain observation

errors. Different observation uncertainties can be distinguished, which will be

illustrated based on a simple SIR model applied to influenza. At any time, the

observed number of persons with influenza-like illness (ILIt), is considered

to depend on the number of influenza-infected (It) by the following equation:

ILIt = pt · It + Jt + εt (1.1)

where pt denotes an observation bias, Jt a confounding variable, and εt a

measurement error.

observation bias Consistent over- or under-quantification of the data

is known as an observation bias, as indicated by pt in equation (1.1). Not

all persons with influenza are observed since not all influenza infections are

symptomatic, and not all symptomatic infected have all the symptoms to fit

the ILI case definition. Furthermore, if the observed number of ILI cases are

provided by general practitioners, only the persons with ILI who have visited

their doctor are counted.

confounding The observation of interest may be due to other causes,

generating confounding, indicated by the fraction Jt in equation (1.1). During

the season a number of persons will have symptoms which fit the ILI case

definition, independent of the presence of influenza, for example due to other

severe respiratory infections such as respiratory syncytial virus (RSV).

5
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measurement error A measurement error indicates that each observed

value differs from the actual value in the population, indicated by the addi-

tional term εt in equation (1.1). A common assumption is that all errors εt are

independent and follow from a normal distribution, such that the most likely

parameters can be determined using the well-known least-squares method.

The measurement error may also be due to a sampling bias. The number

of ILI cases is usually observed within a certain cohort, whereas the influenza

transmission process occurs in the whole population. The expected number

of ILI cases in a cohort of P persons, given that a fraction i of the population

has ILI, follows from a binomial distribution ILI ∼ Bin(P, i), which is known

as a binomial experiment.

1.3 data collection : origins of influenzanet

A common source of epidemiological data is the counting of disease cases

over time in association with plausible risk factors. These data are tradition-

ally collected via the public health system: medical doctors provide reports

on patients they have diagnosed with a certain disease, either clinical or by

laboratory diagnosis. Relatively recently, the meteoric rise of the Internet, in

particular “web 2.0”, where Internet users also actively participate and submit

data, has created a new path to survey the population.

On 1 January 2002, twelve European countries introduced the euro. Euro

coins have a European side, which is equal in every country, and a national

side, which indicates in which country the coin is produced. In the Nether-

lands, a project “Eurodiffusie” (Euro diffusion) was setup which consisted of

a website1, where people could weekly report the nationality of the coins cur-

1 http://www.eurodiffusie.nl
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1.3 data collection : origins of influenzanet

rently in their wallet. The project monitored the diffusion of euro coins from

various countries into the Netherlands over time (Hek et al., 2002).

The success of the “Eurodiffusie” project was overwhelming, which gave

Carl Koppeschaar (popular science journalist) the idea to build a similar sys-

tem to monitor the presence of flu and common cold in the population. To-

gether with people from the “Eurodiffusie” project, Marc Peletier and Bob

Planqué, a core team was formed consisting of Sander van Noort (math-

ematical modeler), Martin Takken (programmer), and Ronald Smallenburg

(entrepreneur), together with the help of people from various areas such as

medical doctors, teachers, biologists, journalists, and epidemiologists. The

first action meeting took place on 17 September 2003, and 6 weeks later the

website degrotegriepmeting.nl was launched, on 1 November 2003.

The primary objective of ‘Grote Griepmeting” was to let people actively

participate on an interesting health subject: flu and the common cold. Every-

body can register by completing an intake questionnaire containing life style

and demographic questions. Participants receive a weekly newsletter which

directs them to a questionnaire to report any flu-like symptoms they had in

the preceding week. Based on the collected data, the activity of influenza-

like illness (ILI) is determined and graphics and maps are published online.

The website was setup to actively involve participants into the system with

real-time results, discussion forums, competitions and educational material.

In response to prime time media attention, over 25,000 Dutch and Belgian

participants registered for “Grote Griepmeting” during the first season. This

participation success and the collected data made the system also interest-

ing from a public health point of view. The system was consequently imple-

mented in Portugal as “Gripenet” (2005), in Italy as “Influweb” (2008), and in

the United Kingdom as “FluSurvey” (2009). In 2009 an FP7 project (Epiwork)

7
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started, with one of its goals to introduce the system in more European coun-

tries under a common name Influenzanet. Influenzanet was implemented in

Sweden as “Influensakoll” (2010) in France as “Grippenet” (2011), in Spain

as “Gripenet” (2012), in Ireland as “FluSurveyIE” (2012), and in Denmark as

“Influmeter” (2013). The Portuguese team (coordinated by Gabriela Gomes)

also helped to introduce the system in Latin America: in Brazil as “Gripenet”

(2009), in Mexico as “Reporta” (2009), and in Salvador, Brazil as “Dengue-

naweb” (2010), a similar system focusing on dengue. Independently, similar

systems were implemented in Australia as “FluTracking” (2007), and in the

United States as “FluNearYou” (2011).

1.4 multiple strain diseases

The basic SIR model as illustrated in Figure 1.1 is a viable model for most

childhood diseases, such as measles, mumps and rubella, where infection

(or vaccination) leads to life-long protection. However, there are also various

diseases for which multiple strains are in circulation, and infection by one

strain only gives partial immunity against infection by other strains (Gomes

et al., 2002).

For Influenza A H3N2, each year new strains arise due to mutation, which

gradually replace the older strains. The circulating strains each season are

closely related, generating a ladder-like phylogenetic tree. A recently infected

person will have high crossimmunity against all circulating strains, but over

the years the circulating strains continue to mutate, which leads to a decrease

in immunity and to an eventual new infection. Various distinct mechanisms

have been proposed to explain the characteristic shape of influenza phyloge-

netics (Ferguson et al., 2003; van Noort, 2005; Koelle et al., 2006; Parisi
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et al., 2013), but in this thesis this debate is circumvented and multi-season

influenza is modeled by assuming full crossimmunity for a single season,

whereas for each new season the model estimates independently how many

people will have become susceptible again to the new circulating strains.

In the final chapter a more unusual type of multi-strain diversity is de-

scribed based on Plasmodium falciparum, which causes the most severe forms

of human malaria. Although for most infectious diseases, immunity depends

on the specific strain a host has been infected with, the main immunity for

Plasmodium falciparum is directed at specific variant surface antigens (VSAs)

that are expressed by the parasite during infection. Each parasite has the ca-

pacity to express ~60 different VSAs, of which during a single infection only

a subset are predominantly expressed to provoke an immune response. Im-

mune selection is modeled as a two-level process: a between-host element

which describes the disease dynamics of new infections, and a within-host

element which describes which VSAs are expressed within an infected host.

1.5 thesis outline

Chapter 2 introduces a new system for the collection of epidemiological data,

Influenzanet, which determines ILI activity in the population based on self-

reporting volunteers. The data collection method is explained and put in com-

parison with the traditional surveillance system based on health care-seeking

patients (ECDC). Results for the Netherlands, Belgium, and Portugal during

the season 2006–2007 are generated and compared with the ECDC data.

In Chapter 3 the collected Influenzanet data in eight participating countries

for the seasons 2003–2013 are assessed, by performing a time series analy-

ses on the ILI incidences of Influenzanet and ECDC, and by comparing the

9
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determined ILI risk factors with those encountered in other epidemiological

studies. Furthermore, the vaccine effectiveness for ILI is determined for each

season, and how often and when participants with ILI seek medical care is

compared across countries.

In Chapter 4 an influenza transmission model is fitted to ILI incidence from

ECDC and Influenzanet in the Netherlands, Belgium, and Portugal for the

seasons 2003–2013. The ILI factor, the probability that a person infected with

influenza actually fits the ILI case definition, is introduced and linked directly

to the measured absolute humidity and temperature.

In Chapter 5 the antigenic diversity of VSAs in the parasite population of

Plasmodium falciparum is explored. To reproduce serological and epidemiolog-

ical observations, the concept of dominance between difference VSA blocks

is introduced, regulating which VSA block will be expressed upon infection.

This chapter is concerned with malaria, and the remaining with influenza,

exposing the generality of the adopted research procedures.

In Appendix A a new analytic framework for parameter estimation for

stochastic transmission models is developed, and presented for theoretical in-

sight, although in this thesis deterministic models are fitted to the data using

numerical procedures.
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abstract

Influenzanet has been monitoring the activity of influenza-like illness (ILI) with the

aid of volunteers via the internet in the Netherlands and Belgium since 2003 and

in Portugal since 2005. In contrast with the traditional system of sentinel networks

of mainly primary care physicians collected via the European Influenza Surveillance

Scheme (EISS), since 2008 coordinated by the European Centre for Disease Control

and Prevention (ECDC), Influenzanet obtains its data directly from the population.

Any resident of the three countries can participate in Influenzanet by complet-

ing an application form on the appropriate websites — degrotegriepmeting.nl in the

Netherlands and Belgium, gripenet.pt in Portugal — which contain various medical,

geographic and behavioral questions. Participants report weekly on the website any

symptoms they have experienced since their last visit. ILI incidence is determined on

the basis of a uniform case definition.

In the 2006–2007 season, 19,623 persons participated in Influenzanet in the Nether-

lands, 7,025 in Belgium, and 3,118 in Portugal. The rise, peak and decline of ILI

activity occurred at similar times according to Influenzanet and ECDC. However, ILI

attack rates in the Netherlands (8.7%), Belgium (8.1%) and Portugal (7.3%) were

remarkably more similar in Influenzanet than in ECDC (0.8%, 3.9%, and 0.6% re-

spectively).

Monitoring ILI activity with the direct participation of volunteers provides similar

incidence curves compared to the traditional system coordinated by ECDC. Whereas

ECDC provides an established system whose data is validated by virology tests, In-

fluenzanet is a fast and flexible monitoring system whose uniformity allows for direct

comparison of ILI rates between countries. A current objective of Influenzanet is to

engage more European countries.

14

degrotegriepmeting.nl
gripenet.pt


2.1 introduction

2.1 introduction

During the winter 2003–2004 season, the Netherlands and Belgium launched

a system to monitor the activity of influenza-like illness (ILI) with the help

of volunteers via the Internet (degrotegriepmeting.nl). The success of this

initiative, which attracted over 25,000 participants in the first year, inspired

the establishment of a similar system in Portugal in 2005–2006 (gripenet.pt).

Throughout this paper, the system is referred to as “Influenzanet”.

Traditionally, influenza surveillance in Europe is monitored by the Euro-

pean Influenza Surveillance Scheme, since 2008 coordinated by the European

Centre for Disease Control and Prevention (ECDC), a collaborative program of

mainly primary care physicians, epidemiologists and virologists who actively

collect clinical and virological data on influenza. In this paper, we argue that

the Influenzanet monitoring system in which the data is gathered directly

from the population offers some advantages over the established surveillance

system based on the network of general practitioners (GPs). It has previously

been shown that the participants of Influenzanet in 2003–2004 in the Nether-

lands were representative for the Dutch population (Marquet et al., 2006).

Here, we compare Influenzanet results in the three countries with the ECDC

results from the same countries during the 2006–2007 season.
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Table 2.1: Intake questionnaire for Influenzanet during the seasons 2003–
2011.

Question Answers

Postal code First digits
Birth date Year and month
Gender Male; Female
Daily routine School; Work; Home; Reformed; Other
Daily means of locomotion Bicycle; Motorcycle; By foot; Car; Public trans-

port
Colds per year <2; 2–5; >5

Vaccination 1 Yes; No
Reasons vaccinated12 GP recommendation; Protect me; Protect oth-

ers; Other
Reasons not vaccinated12 GP recommendation; No protection; Causes

flu; Side effects; Still planning; No risk group;
Other

Chronic diseases Asthma or lung disease; Diabetes; Heart dis-
ease; Kidney disorder; Immunodeficiency

Allergy Hay fever; House dust mites; Pets
Smoking Daily; Sometimes; Never
Fruits and vegetables3 Regularly; Sometimes; Hardly ever
Vitamin supplements3 Regularly; Sometimes; Hardly ever
Diet3 Vegetarian; Vegan; Low calorie; Other
Sports hours per week <1; 2–4; >4

Household Alone; Only with adults; With children
Occupation of children Home; Nursery; School
Pets at home Cats; Dogs; Birds; Other

1 In 2009–2010 also for H1N1pdm vaccine
2 Since 2007

3 Not in Portugal
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Table 2.2: Symptoms questionnaire for Influenzanet during the seasons
2003–2011.

Question Answers

Symptoms since last visit Nasal congestion; Cough; Sore throat;
Headache; Myalgia (muscle or joint pain);
Chest pain; Stomach ache; Diarrhea; Nausea;
Chills; Eye irritation; Vomiting

Start date symptoms
Measured temperature Not measured; <37; 37–37.5; 37.5–38; 38–38.5,

38.5–39; 39–39.5, 39.5–40, >40 °C
Start date fever
Fever started abruptly Yes; No; Don’t know
Visit to medical doctor1 Yes; No
Daily routine alteration1 Yes, stayed at home; Yes, but went to

work/school; No
Days at home
Vaccinated2 Yes; No

1 Only when symptoms or fever are present
2 Every 4 weeks to participants who were not vaccinated
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2.2 method

2.2.1 Influenzanet

Influenzanet is a fully internet-based system, currently hosted on two web-

sites: degrotegriepmeting.nl for the Netherlands and Belgium (Flanders), and

gripenet.pt for Portugal. Any resident of these countries can register for In-

fluenzanet by completing an online application form containing various med-

ical, geographic, and behavioral questions (Table 2.1). Participants are mainly

recruited via mass-media, which present information on the system and give

regular updates of the latest results. Participation is further stimulated by

email newsletters, online educational materials, competitions, presentations,

and other activities. Once registered, participants receive a weekly email

newsletter reminding them to complete their symptoms questionnaire. In

this questionnaire participants are asked to select from a list of symptoms the

ones they have experienced since their previous visit to the Influenzanet web-

site (Table 2.2). If symptoms are reported, participants are asked to provide

the date of onset, and whether these led to change of behavior and/or a GP

consultation, and if so, the outcome of the consultation.

The incidence of ILI is determined based on the symptoms reported, using

a uniform case definition. ILI is defined as acute onset of fever (a measured

temperature ≥38 °C), plus muscle pain or headache, plus cough or sore throat.

The day of fever onset determines the onset of ILI. A participant is considered

to be active between the day of registration and the day of the last completed

symptoms questionnaire. Only participants who have completed at least three

symptoms questionnaires are included in the analysis. The daily incidence is

determined by the number of participants with an onset of ILI on a given
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day, divided by the number of active participants on that day. The weekly

incidence for each day is determined by the total number of participants with

an onset of ILI in the previous seven days, divided by the average number of

active participants during those seven days (participant-weeks). The ILI attack

rate for both Influenzanet and ECDC is defined as the cumulative incidence

rate over the total surveillance period.

2.2.2 ECDC

During the 2005–2006 influenza season, 39 countries were members of Euro-

pean Influenza Surveillance Scheme (EISS), the predecessor for the European

Influenza Surveillance Network (EISN) as coordinated by the ECDC, and the

sentinel surveillance was carried out by 21,162 GPs, pediatricians and other

physicians. The population under clinical surveillance by the sentinel net-

works represents at least a median number of 24.8 million inhabitants of Eu-

rope. The population under surveillance in the Netherlands accounts for 0.7%

of the total population, in Belgium 0.4%, and in Portugal 0.7%. Although

there are differences in the general characteristics of the sentinel systems in

each of the countries, the majority collect weekly incidences of ILI cases per

100,000 inhabitants, as is the case in the Netherlands, Belgium, and Portugal

(European Influenza Surveillance Scheme, 2007). The different case defi-

nitions used in these countries are shown in Table 2.3. Using historical data,

several countries within ECDC introduced an influenza activity baseline. The

intensity of influenza activity is determined by measuring the influenza ac-

tivity against the baseline and its geographical spread. A proportion of the

sentinel physicians additionally collect nose and/or throat swabs for viro-

logical surveillance according to a uniform swabbing protocol. The weekly
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Table 2.3: Influenza-like illness case definitions as used by Influenzanet
and by the sentinel GPs reporting to ECDC in the Netherlands, Belgium,
and Portugal. Influenzanet uses the same ILI case definition in all coun-
tries.

System ILI case definition

Influenzanet Acute onset, and measured temperature ≥38 °C, and
muscle pain or headache, and cough or sore throat.

ECDC: Netherlands An acute onset (i.e. at most a prodromal stage of
three to four days), accompanied by a rise in rec-
tal temperature of >38 °C, and at least 1 of the fol-
lowing symptoms: cough, coryza, sore throat, frontal
headache, retrosternal pain, myalgia. (Pel criteria)

ECDC: Belgium Sudden onset with fever, myalgia and respiratory
symptoms (cough or thoracic pain)

ECDC: Portugal 6 of the following criteria: sudden onset, fever, cough,
chills, prostration and weakness, myalgia or general
pain, rhinitis and/or pharyngitis, contact with a case.

incidence covering the period from Monday to Sunday is published on the

ECDC website the following Wednesday or Thursday. This number is usually

updated one week later to include the latest available information.

2.3 results

We compared the Influenzanet and ECDC data from 15 December 2006 to

1 May 2007. Influenzanet data showed that in the Netherlands, 17,056 out of

19,623 participants (87%) completed at least three symptoms questionnaires,

in Belgium 6,062 out of 7,025 (86%) and in Portugal 2,167 out of 3,118 (69%).

The national participation rate was 0.1% in the Netherlands (total population

16.3 million), 0.1% in Flanders (6.2 million), and 0.02% in Portugal (10.5 mil-
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Figure 2.1: Age distributions of Influenzanet participants compared
with the national age distribution in A) Netherlands, B) Belgium, and
C) Portugal (2006–2007). In the Netherlands and Belgium the age groups
<20 and ≥70 years are underrepresented, with a very clear under rep-
resentation in the age groups <10 and ≥80 years. In Portugal the age
groups < 10 and ≥60 years are underrepresented, with a very clear
underrepresentation in the age group ≥70 years. Age distributions are
downloaded from Eurostat (epp.eurostat.ec.europa.eu).
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lion). In all three countries, the younger and older age groups are underrepre-

sented (Figure 2.1). The geographical distribution of participants follows the

patterns of population density, with higher concentration in the larger cities.

In the Netherlands, 31% participants matching the ILI case definition vis-

ited a GP (477 out of 1536), in Belgium 71% (321 out of 453) and in Portugal

56% (71 out of 127). Influenza activity in Europe was, in 2006–2007, mainly

due to influenza A (H3N2) (European Influenza Surveillance Scheme,

2008). In all three countries, the incidence curves provided by Influenzanet

show the same trends as the incidence curves of ECDC (Figure 2.2). For each

country the shapes of the curves are similar, with peak incidence occurring

in the same week and approximately equal onset and decline of ILI activity.

However, incidences calculated from Influenzanet data are higher than those

reported by ECDC. According to Influenzanet data, the ILI attack rate in the

Netherlands was 8.7%, in Belgium 8.1%, and in Portugal 7.3%, while accord-

ing to ECDC data, it was 0.8%, 3.9%, and 0.6% respectively.

2.4 discussion

Although there is an approximately simultaneous rise, peak and decline of

ILI activity in the Influenzanet and ECDC epidemic curves, quantitatively the

incidences obtained by Influenzanet are much higher than those provided by

ECDC. This could be partially explained by the use of different denominators

in the incidence calculations. Influenzanet participants are requested to fill

in the questionnaire each week irrespective of whether they have experienced

any symptoms, and the incidence of ILI is determined, considering only those

participants who have filled in their symptoms questionnaire. Influenzanet is

therefore independent of the rate at which people seek advice from a health
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Figure 2.2: Comparison of ILI incidence curves between Influenzanet

and ECDC for A) Netherlands, B) Belgium, and C) Portugal (2006–2007).
ECDC provides for each week (Monday–Sunday) the number of patients
diagnosed with ILI, per 100,000 of the population under observation by
the sentinel network. Influenzanet provides for each day the number
of ILI onsets per 100,000 active participants (those who filled in their
symptoms questionnaire for that period) in the preceding 7 days. The
data points in the incidence curve of Influenzanet which monitor the
same time period (Monday–Sunday) as ECDC are marked with squares.
Note that Influenzanet only monitors the Northern Dutch-speaking part
of Belgium (Flanders), whereas ECDC monitors the whole of Belgium.
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professional. In contrast, the incidence determined by ECDC depends on the

GP visiting rates which differ across countries (as can be seen also in the

Influenzanet data), reflecting differences in the health care systems.

Other population-based surveillance systems for ILI have been tested (Mar-

quet et al., 2006), but they often depend on the proportion of the people

which seeks advice from a health professional when experiencing ILI symp-

toms. An interesting real-time monitoring system used data on symptoms

reported through the NHS Direct service in the UK, a nurse-led telephone

helpline for medical advice (Harcourt et al., 2001; Cooper et al., 2002).

Although such systems may perform very well within one country, applying

them in other countries can bring very different results. Social and cultural dif-

ferences between countries may affect the tendency for people to seek advice

when experiencing ILI symptoms, leading to differences in reported incidence

rates.

The ILI attack rates measured by Influenzanet in winter 2006–2007 were

very similar in the three countries (7.3–8.7%), while according to ECDC, the

ILI attack rate in Belgium (3.8%) was five times higher than in the Nether-

lands (0.8%) and seven times higher than in Portugal (0.6%) (Figure 2.3). The

reasons for this discrepancy could be the different case definitions used by

Dutch, Belgian and Portuguese sentinel GPs (Table 2.3), the different GP vis-

iting rates per country and the extent to which the population under obser-

vation is representative for the general population. ECDC is in the process

of standardizing the case definitions for ILI used by the GPs in the different

countries (Aguilera et al., 2003). The GP visiting rates, however, are not

realistically controllable.

More data and analysis are needed to establish a baseline for Influenzanet.

According to the Influenzanet data collected in 2006–2007 (Figure 2.2), the ILI
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Figure 2.3: Comparison of ILI activity between the Netherlands, Bel-
gium, and Portugal for A,B) Influenzanet and C,D) ECDC (2006–2007).
The ILI incidence by Influenzanet is defined as the number of ILI on-
sets per 100,000 participant-weeks. The peak of the ILI activity was first
reached in Portugal, closely followed by Belgium and then in the Nether-
lands. According to Influenzanet data the height of the peak in ILI inci-
dence in the Netherlands is slightly lower than in Belgium and Portugal,
but the activity lasted longer. Therefore, ILI attack rates in the three coun-
tries are similar according to Influenzanet data (B), whereas according to
ECDC data there is great variation (D).
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incidence outside the epidemic peak in the Netherlands (~300 per 100,000)

is different from the rates in Portugal and Belgium (~100–200 per 100,000).

However, outside the influenza seasons, virology tests only rarely confirm

influenza cases, rendering a system based on symptoms to low specificity.

Hence the reported differences are not necessarily related to differences in

influenza attack rates.

Although Influenzanet aims to attract a representative sample of the pop-

ulation, people who do not experience any ILI symptoms may not consider

themselves suitable for participation. The ILI incidence based on just the first

completed symptoms questionnaire of every participant, which contains data

on symptoms a participant had upon registration, is significantly higher than

the ILI incidence based on subsequent reports (Figure 2.4). To remove this se-

lection bias, participants are only active from the day of registration onward,

and the first symptoms questionnaire concerning the week before registration

is thus not included in the analysis.

The non-representative nature of the Internet-using population results in a

selection bias that is generally a major concern in web-based surveys (Mar-

quet et al., 2006). Based on the data supplied by all participants upon appli-

cation, the representativeness of the Influenzanet sample can be determined.

(Marquet et al., 2006) showed that the demographic and health character-

istics of the Influenzanet participants in 2003–2004 in the Netherlands were

remarkably similar to those in the general Dutch population. Similar results

were obtained for the Belgian population (Vandendijck et al., 2013). There

is evidence, however, that the younger and older age groups are similarly

underrepresented in all three countries (Figure 2.1).

Influenzanet seeks to monitor the representativeness of the participants in

all three countries, and direct recruitment aims at targeting the underrepre-
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sented sections of the population. The number of participants is critical for

Influenzanet’s success. A survey performed among 4,500 Dutch participants

of Influenzanet at the end of the first season showed that most of them were

recruited via radio or television (47%), via newspaper (21%) and via internet

sites (16%)

Since the Influenzanet data are collected and analyzed in one place, results

can be published in real time, whereas ECDC reporting each Thursday the

ILI incidence for the previous Monday–Sunday period is four days behind.

Influenzanet also has the capability to publish a daily incidence rate. How-

ever, participants with ILI might fill in their symptoms questionnaire earlier

than participants without symptoms, which would lead to an overestimation

of ILI incidence rates for the most recent days in real-time monitoring. The

ILI incidence becomes increasingly more reliable as time passes and all par-

ticipants complete their symptoms questionnaires. The advantage of Influen-

zanet, however, lies not only in its potential for an earlier assessment of weekly

ILI incidences, but also in the possibility of observing the daily fluctuations in

real time, thus allowing to detect early warning signals. Similar time advan-

tages could be achieved by ECDC as well, if all GPs reported electronically in

real time, as has been demonstrated by pilot projects in France and Germany

(Lange and Schöttler, 2002; Carrat et al., 1998). The Influenzanet system

gathers a variety of valuable data on ILI activity, however, only a fraction of

these have been analyzed so far. For example, Influenzanet has the potential

of monitoring the geographical spread of ILI, using the postal codes of the

participants. Demographic data can also be used to monitor ILI activity in

different subgroups of the population. Comparing participants with differ-

ent behaviors could give indications on risk factors. Detecting an earlier rise
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of ILI activity in certain subgroups could make Influenzanet an even faster

early-warning system.

The uniformity of this monitoring system makes it possible to compare ILI

activity between countries without further data standardization. This has im-

portant practical implications for studies concerning the global spread of ILI

activity. Current efforts are directed at recruiting more European countries to

join the Influenzanet. The strength of Influenzanet lies in the unique central

control of every element of the monitoring system: the recruitment of partici-

pants, the questionnaires, the case definitions, the analysis of the data and the

presentation of results. This makes the system not only efficient but also very

flexible. If desired, any specific component can be altered without disturbing

the overall system functionality. For example, the case definition can at any

moment, even retrospectively, be adapted to include demographic variables.

Further advantages and disadvantages of Influenzanet and ECDC are listed

in Table 2.4. The two systems can complement each other to provide a better

understanding of ILI activity in Europe.

2.5 conclusion

Based solely on voluntary online reports from participants in the Netherlands,

Belgium, and Portugal, Influenzanet detected an approximately simultaneous

rise, peak and decline of the ILI activity as compared to ECDC during the

2006–2007 influenza season. In contrast to ECDC, however, Influenzanet uses

a uniform monitoring system, allowing the direct comparison of ILI activity

between countries, potentially offering a platform to monitor the geographical

spread of ILI throughout Europe. We believe that the established system

of ECDC, which is validated by laboratory results, could be complemented
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Table 2.4: Advantages and disadvantages of Influenzanet and ECDC

ECDC: + Established system
+ Combine clinical and virological data in the same popu-

lation
- Participating countries using different case definitions
- Dependent on the GP visiting rate

Influenzanet: + Uniform method, allows for direct comparison of ILI
rates across countries

+ Flexible
+ Real-time monitoring
+ Channel to participants for influenza-related information
- Self-selection bias of participants
- Dependent of continuous participation of volunteers

by the fast and flexible system of Influenzanet. Furthermore, Influenzanet

could provide an important channel for influenza awareness and education

in Europe. Our current strategy is to extend Influenzanet to include more

European countries, thus increasing the value of its results and its impact.

Those interested in implementing Influenzanet are encouraged to contact the

corresponding author.
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abstract

Recent public health threats have propelled major innovations on infectious disease

monitoring, culminating in the development of innovative syndromic surveillance

methods. Influenzanet is an internet-based system that monitors influenza-like ill-

ness (ILI) in cohorts of self-reporting volunteers in European countries since 2003.

We investigate and confirm coherence through the first ten years in comparison with

ILI data from the European Influenza Surveillance Network and demonstrate country-

specific behavior of participants with ILI regarding medical care seeking. Using re-

gression analysis, we determine that chronic diseases, being a child, living with chil-

dren, being female, smoking and having pets, are all independent predictors of ILI

risk, whereas practicing sports and walking and bicycling for locomotion are associ-

ated with a small risk reduction. No effect for using public transportation or living

alone was found. Furthermore, we determine the vaccine effectiveness for ILI for each

season.
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3.1 introduction

Recent concerns with emerging infectious diseases have exposed deficiencies

in disease surveillance systems and impelled radical rethinking on how to

monitor population health and detect anomalies in real time (Butler, 2006).

In this context, new approaches in syndromic surveillance — the collection

and interpretation of data for public health before laboratory or clinical con-

firmation is available (Lazarus et al., 2001; Mandl et al., 2004) — have

emerged. Several systems are in evaluation, showing a large diversity of data

sources and methodologies employed, such as telephone-based health infor-

mation services (Cooper et al., 2008), automated medical records (Lazarus

et al., 2001; van den Wijngaard et al., 2008), pharmacy sales and absen-

teeism (Chretien et al., 2008), queries to online search engines (Ginsberg

et al., 2009), and telephone-based self-reporting in cohorts of randomly se-

lected participants (Merk et al., 2013). Syndromic surveillance is complemen-

tary to traditional public health surveillance in disease reporting (Henning,

2004; Lipsitch et al., 2009).

Influenzanet is a monitoring system for influenza-like illness (ILI) in volun-

tary cohorts of internet users. It was initially conceived to make scientific in-

formation accessible to a broad public and to kindle students’ enthusiasm for

science, and was launched in the Netherlands and Belgium (degrotegriepmeting.

nl) in 2003 and in Portugal (gripenet.pt) in 2005. The system was consecutively

implemented in Italy (influweb.it) in 2008, United Kingdom (flusurvey.org.uk)

in 2009, Sweden (halsorapport.se) in 2011, France (grippenet.fr) and Spain

(gripenet.es) in 2012, and Denmark (influmeter.dk) and Ireland (flusurvey.ie)

in 2013. Similar systems have been implemented outside Europe, most no-
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tably in Australia (flutracking.net) in 2007, Mexico (reporta.c3.org.mx) in 2009,

and the United States (flunearyou.com) in 2011.

Based on single-season analysis, previous studies established good correla-

tions between ILI incidences as determined by Influenzanet and by the clinical

surveillance by sentinel General Practitioners (GPs) as coordinated by the Eu-

ropean Centre for Disease Prevention and Control (ECDC) (Friesema et al.,

2009; Marquet et al., 2006; van Noort et al., 2007; Paolotti et al., 2014;

Vandendijck et al., 2013). The absolute ILI incidence as reported by In-

fluenzanet is, however, much more consistent across countries according to

Influenzanet than reported by the ECDC, due to country specific medical care

seeking rates and disparities in ILI case definitions used by GPs in different

countries (van Noort et al., 2007). This uniformity in rates reported across

European countries facilitates the geographical analysis and modeling of epi-

demics (van Noort et al., 2012). By integrating serological data sources, ILI

rates reported by Influenzanet have been converted to estimates of influenza

attack rates (Patterson-Lomba et al., 2014).

Here we aim to further establish the Influenzanet system as a valid sentinel

for ILI surveillance, by confirming that both the timing and relative intensities

of epidemics are consistent with those reported by ECDC, and that the identi-

fied risks factors for ILI are consistent with those in published literature. The

analysis is based on data collected over the first 10 seasons (2003–2013) from

the countries in which Influenzanet was implemented for at least 5 seasons:

Netherlands, Belgium, Portugal, and Italy. Time series analyses are applied

to compare ILI incidences from Influenzanet and ECDC, whereas regression

analysis is used to determine individual risk factors based on personal char-

acteristics and vaccination status. Furthermore, based on the health seeking
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3.2 method

behavior as reported to Influenzanet, differences in ILI incidence by Influen-

zanet and ECDC are explained.

3.2 method

data collection Influenzanet participants are recruited from the gen-

eral population by completing an intake questionnaire on one of the national

websites, containing various demographic and life style questions. During the

influenza season, participants receive a weekly newsletter by email in which

they are directed to an online questionnaire about a number of symptoms that

they might have experienced since their last report. The ethics committee of

Instituto Gulbenkian de Ciência approved the study.

participants An active population of participants is essential for the

consistency of the system. An important cornerstone for success is the feed-

back of information to keep the participants involved and motivated. The

websites contain a wealth of information on influenza, ILI and common cold,

while the educational and scientific aims of the project are explained in di-

rect mailings to schools, in repeated interviews on television and radio, and

in newspapers. Schools are provided with educational material on influenza

to promote incorporation of ideas of disease surveillance in science classes.

At the beginning of each season, all participants from previous seasons are

sent an email inviting them to participate again by completing an intake ques-

tionnaire for the new season. Based on a unique user id, participants can be

tracked over multiple seasons.
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bias Public health statistics such as asthma, diabetes and influenza vac-

cination rates in the Influenzanet participants have been shown to be similar

for the Dutch (Marquet et al., 2006) and Belgian (Vandendijck et al., 2013)

populations. Although younger and older age groups are underrepresented

in Influenzanet, these differences did not seem to have an impact on the ob-

served ILI trends (van Noort et al., 2007). To minimize the selection bias

in recruiting participants who already have ILI, any symptoms that started

before or on the registration date are excluded from the analysis. Only par-

ticipants who participate at least 3 times during a season are included in the

analyses.

ili incidence ILI is defined as the acute onset (within a few hours)

of fever (a measured temperature ≥38 °C), together with muscle pain or

headache, and cough or sore throat. The day of fever onset determines the

day of ILI onset. Participants are considered active between registration date

and the date of their last completed symptoms questionnaire. ILI incidence

is determined by dividing the number of ILI onsets per week by the number

of active participants. If participants fit the ILI case definition in consecutive

questionnaires, this is considered as a single ILI episode.

european influenza surveillance network The clinical surveil-

lance of influenza in the European Influenza Surveillance Network (EISN,

formally EISS), coordinated by the ECDC, is generally based on reports made

by sentinel GPs. The ILI incidence for each country is determined by the num-

ber of patients who visit their (sentinel) GP and fit the (country-specific) ILI

case definition (Aguilera et al., 2003), divided by the total number of people

assigned to the participating GPs.
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cross-correlation For each country, the crosscorrelation between ILI

incidence rates as reported by ECDC and Influenzanet is determined. Since

both time series are autocorrelated and share a common seasonal trend, this

direct crosscorrelation could give a misleading indication of their relation-

ship (Bloom et al., 2007). Therefore, both time series are also prewhitened

by fitting seasonal autoregressive integrated moving average (ARIMA) mod-

els using the Box-Jenkins approach (Allard, 1998), where the model with

the lowest Akaike information criterion is selected (Hyndman and Athana-

sopoulos, 2014). The detrended time series are obtained by filtering each

time series by the selected model, and for each country the crosscorrelation be-

tween the detrended time series from Influenzanet and ECDC is determined.

Since the ILI incidence from Influenzanet is based on the reported day of

onset and the ILI incidence from ECDC is determined by the week a patient

visited their GP, it would be expected that the reported ILI incidence from

Influenzanet precedes the ILI incidence as determined by ECDC. Since in In-

fluenzanet not only the week of onset but the actual day is recorded, the

weekly ILI incidence from Influenzanet can be shifted by single days, where

a shift of zero days indicates that the ILI incidence from both systems is com-

pared for the period Monday–Sunday.

medical care seeking behavior Each participant who reports (ILI)

symptoms, is asked some follow-up questions, such as whether the partici-

pant visited a medical doctor. This allows the determination of the percentage

of participants with ILI who seek medical care. Since participants could seek

medical care after they have reported their symptoms to Influenzanet, a re-

ported visit within 15 days after a reported ILI onset is still considered. Since

season 2011–2012, Influenzanet participants who reported to have visited a
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medical doctor are also asked how many days elapsed between the onset of

symptoms and the visit.

risk factor analysis We use regression analysis to explore the associ-

ation between several individual covariates and the occurrence of at least one

ILI episode during a season. These covariates are selected beforehand, con-

sisting mostly of characteristics which have been identified in other studies

regarding influenza risk, and some extra characteristics which are not nor-

mally analyzed. Most covariates are considered equal across all seasons: age

group (<15, 15–49, 50–64, 65+), household situation (alone, with children or

with only adults), gender, chronic disease (asthma, diabetes, heart disease,

and/or immunocompromised), smoking, sports (at least 1 hour per week),

possession of pets (dogs, cats, and/or birds), and primary mode of daily lo-

comotion (bicycle / foot, car, or public transport). The covariate “risk group

(others)” includes those participants who report to belong to a risk group, but

are younger than 65 years (60 years in the Netherlands since 2008) and did not

report any of the chronic diseases. The effect of vaccination is considered as

a season-dependent covariate. For the season 2009–2010, the vaccine status is

based on the pandemic vaccine. Country of residence and season (indirectly)

are two extra covariates.

Only ILI onsets during the weeks when influenza strains were circulating in

the population are considered. These periods are defined for each season and

country as the weeks when the number of influenza-confirmed samples as

reported by ECDC was at least 15% of the maximum for that season (moving

average over 3 weeks) (Figure B.13). All participants are considered indepen-

dent between two different seasons, and participants who were not active for

the complete influenza period are excluded. Since Influenzanet is a cohort
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study in which healthy individuals (without ILI) are recruited and the pos-

sible onset of ILI is monitored over a fixed period of time, Influenzanet can

determine the risk ratios for all the covariates. For each covariate a univariate

risk ratio is determined. Adjusted risk ratios are determined by a multivariate

log-binomial regression model including all global and season-dependent co-

variates, analyzed by the general linear model in R software (R development

core team, 2014). The variance inflationary factor (VIF) for each covariate is

determined to check for collinearity in the multivariate regression model.

3.3 results

ili incidence The ILI incidence as determined by Influenzanet corre-

lates well over multiple seasons with the ILI incidence as reported by ECDC

(Figure 3.1). However, Influenzanet measures ILI incidence in all countries on

the same scale, while the incidences reported by ECDC are in general lower

and vary in scale between countries.

The crosscorrelation between the raw ILI incidences from Influenzanet and

ECDC is significant (Figure 3.2A,C,E,G). The ILI incidences show a high level

of autocorrelation and some degree of seasonality (Figures B.5–B.12A, Ap-

pendix B, page 211). We fitted to each time series a seasonal ARIMA model

(Table B.1, Appendix B, page 206), and filtered the time series by each model

to obtain a detrended time series (Figures B.1–B.4, Appendix B, page 207).

The detrended time series are no longer autocorrelated (Figures B.5–B.12B,

Appendix B, page 211), as confirmed by the Ljung-Box test (Table B.1, Ap-

pendix B, page 206), The detrended time series of Influenzanet and ECDC

also show a significant level of crosscorrelation at a lag of zero weeks (Fig-
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Figure 3.1: ILI incidence for Influenzanet and ECDC in A) Netherlands, B)
Belgium, C) Portugal, and D) Italy (2003–2013). The ILI incidence by In-
fluenzanet is defined as the number of ILI onsets per 100,000 participant-
weeks. The vertical axes for the ILI incidence are scaled based on a linear
regression between the ILI incidences of Influenzanet and ECDC.
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Figure 3.3: Influenzanet participants with ILI who visited a medical

doctor specified by country (2011–2013).

ure 3.2B,D,F,H), for the Netherlands (0.38), Belgium (0.53), Portugal (0.38),

and Italy (0.29).

medical care seeking behavior The percentage of participants with

ILI who sought medical care varies greatly by country (Figure 3.3). Similar dif-

ferences are observed in the number of days between the onset of symptoms

and visiting the doctor (Figure 3.4). The observed patterns do not change if

only working adult participants are considered in the analysis.

The crosscorrelation between the detrended time series from Influenzanet

and ECDC is maximum when a shift of 4 days is applied in the Netherlands,

1–2 days in Belgium, 1 day in Portugal, and no shift in Italy (Table 3.1). This

corresponds well with the median delay between ILI onset and seeking medi-

cal care as reported during the seasons 2011–2013: 4 days in the Netherlands,

2 days in Belgium, 1 day in Portugal and 1 day in Italy.
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Spain, G) Portugal, and H) Italy (2011–2013).
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Table 3.1: Crosscorrelation between Influenzanet and ECDC for daily

lags based on the detrended time series (2003–2013). Values in bold
indicate the crosscorrelation at a lag equal to the median number of days
between ILI onset and visit to a medical doctor.

Lag Netherlands Belgium Portugal Italy

–6 0.40 0.42 0.23 –0.01

–5 0.40 0.45 0.32 0.09

–4 0.47 0.52 0.32 0.19

–3 0.46 0.50 0.35 0.24

–2 0.39 0.57 0.35 0.22

–1 0.32 0.57 0.42 0.24
0 0.38 0.53 0.38 0.29

1 0.34 0.46 0.22 0.24

2 0.35 0.44 0.22 0.20

3 0.34 0.37 0.24 0.18

4 0.31 0.40 0.13 0.16

5 0.35 0.32 0.17 0.17

6 0.34 0.24 0.06 0.16

7 0.19 0.24 0.15 0.18
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Figure 3.5: Number of Influenzanet participants who completed at least
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participation The Netherlands has most participants (on average 19491

per season, of which 16481 completed at least 3 symptoms questionnaires), fol-

lowed by Belgium (6001; 5072), Portugal (2871; 1894), and Italy (1882; 1219)

(Figure 3.5). This corresponds to 0.1% of the population in the Netherlands

and Belgium (Flanders, since basically all participants are from Flanders),

0.02% in Portugal, and 0.003% in Italy. Of all participants who completed at

least 3 symptoms questionnaires during a season, in the Netherlands 76± 8%

participated again in the following season, 74± 12% in Belgium, 69± 12% in

Portugal, and 70± 4% in Italy.

risk factors The univariate risk ratios are listed in Table B.2, Appendix B,

page 217, whereas the adjusted risk ratios from the multivariate regression

are listed in Table 3.2. The variance inflationary factor (VIF) for the covari-

ates varies between 1.3 and 2.8 in the multivariate regression (Table B.2, Ap-

pendix B, page 217), reassuring that model specification is not compromised

by undesirable collinearities (O’Brien, 2007).

According to the adjusted risk ratios, having a chronic disease (asthma,

diabetes, heart disease and/or immunocompromised), living with children,

being female, belonging to a younger age group, having pets (cats and/or

dogs), and being a smoker, were all independent predictors of the risk of

having at least one ILI episode during a flu season. A small risk reduction

was observed in participants who primarily use bike or foot for locomotion

(compared to a car) and participants who practice more than 1 hour of sports

per week. No significant effect was observed for participants who live with

other adults (compared to living alone), participants who have birds at home,

and participants who use public transportation (compared to using a car).
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Table 3.2: Risk factors and vaccine effectiveness for ILI in the Nether-
lands, Belgium, Portugal, and Italy (2003–2013).

Question Answer RR (adjusted)

Age <18 1.59 (1.46 – 1.74)
18–49 *
50–64 0.82 (0.78 – 0.86)
65+ 0.46 (0.41 – 0.51)

Household Alone *
Only with adults 0.99 (0.92 – 1.05)
With children 1.31 (1.22 – 1.40)

Gender Male *
Female 1.22 (1.17 – 1.28)

Chronic diseases Asthma or lung disease 1.58 (1.47 – 1.69)
Diabetes 1.27 (1.15 – 1.41)
Heart disease 1.29 (1.13 – 1.47)
Kidney disorder 1.23 (0.80 – 1.90)
Immunodeficiency 1.23 (1.02 – 1.49)

Unknown risk groupa
1.23 (1.06 – 1.41)

Smoking 1.16 (1.10 – 1.22)
Pets at home Dogs 1.15 (1.09 – 1.22)

Cats 1.07 (1.02 – 1.12)
Birds 1.03 (0.94 – 1.13)

Sports ≥ 1 hour per week 0.95 (0.90 – 1.00)
Daily means of locomotion Bicycle / Foot 0.95 (0.90 – 1.00)

Car *
Public Transport 0.97 (0.89 – 1.05)

Vaccination 2003–2004 1.07 (0.78 – 1.47)
2004–2005 1.10 (0.94 – 1.28)
2005–2006 0.97 (0.83 – 1.12)
2006–2007 1.00 (0.86 – 1.15)
2007–2008 0.81 (0.70 – 0.94)
2008–2009 0.80 (0.71 – 0.90)
2009–2010

b
0.87 (0.74 – 1.03)

2010–2011 0.67 (0.58 – 0.78)
2011–2012 0.97 (0.82 – 1.16)
2012–2013 0.80 (0.71 – 0.91)

a Classified by GP as risk group due to factors not specified on this table
b Vaccination for the new H1N1pdm strain
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The vaccine effectiveness for influenza-like illness varies from season to

season. A significant reduction in ILI due to vaccination was observed in the

seasons 2007–2008, 2008–2009, 2010–2011, and 2012–2013, while no significant

effect was observed in other seasons. The vaccine effectiveness for season

2009–2010 is possibly underestimated, since the vaccine only became available

when the ILI activity was already epidemic.

3.4 discussion

Based on single-season analysis, previous studies established excellent corre-

lations between ILI incidences as determined by Influenzanet and by ECDC

(Friesema et al., 2009; Marquet et al., 2006; van Noort et al., 2007). A

question remained on whether this consistency would persist for multiple-

season data streams. We showed that during 10 seasons in the Netherlands

and Belgium (2003–2013), 8 seasons in Portugal (2005–2013), and 5 seasons in

Italy (2008–2013), the ILI trends from Influenzanet and ECDC are consistent

in both timing and relative magnitude, with a significant crosscorrelation be-

tween both time series as lags of zero weeks. The signal from Influenzanet

precedes ECDC by a few days, corresponding approximately to the median

number of days between ILI onset and seeking medical care. However, this

does not necessary indicate that in real-time monitoring Influenzanet would

detect ILI trends earlier, since this depends on when the data becomes avail-

able and the statistical uncertainties in the data (Section 6.3.3)

Although both time series are correlated over the full 10-year period, there

are localized discrepancies between the data streams, which could be at-

tributed to the different methodology and composition of the cohorts in both

systems. As an example, young children are largely underrepresented in In-
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fluenzanet (van Noort et al., 2007), whereas young children visit relatively

more often a medical doctor. This could explain why for the season 2007–2008

in Portugal, dominated by the influenza B strain affecting mostly children, a

small epidemic was reported by ECDC which went mostly undetected by In-

fluenzanet. Another local discrepancy is the relatively high ILI incidence as

reported by ECDC in the Netherlands during the months preceding the 2009

ILI pandemic, which might be attributed to an increase in both awareness by

medical doctors and patients due to a global concern about the new H1N1

influenza strain (Keramarou et al., 2011).

The presence of multiple independent sources encourages the development

of integrative methods that explore the specific strengths of each system (Reis

et al., 2007). Having multiple independent systems could uncover aspects

of influenza transmission that would go unnoticed if only one data stream

was available. Another cross-country data source for ILI incidences is Google

Flu Trends (Ginsberg et al., 2009), which determines ILI incidence based on

the frequency of ILI-related search terms. However, Google Flu Trends is not

a strictly independent data source, since their algorithms rely on the ECDC

data streams for calibration.

Patterns in medical care seeking behavior suggest cultural difference be-

tween northern and southern Europe. In southern Europe (France, Italy, Por-

tugal, and Spain) participants generally visit a medical doctor within 1–2 days

after the onset of symptoms, whereas in northern Europe (Sweden, United

Kingdom, and the Netherlands) participants seek medical care generally only

5–7 days after the onset of symptoms. Belgium (Flanders) seems an excep-

tion to the suggested pattern, most likely because according to Belgium law,

an employer can require from their employee a medical statement within 24

hours to justify work absenteeism. A similar pattern is observed in the per-
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centage of participants with ILI who seek medical care, which is lower in the

northern Europe (except Belgium) than in southern Europe. The two patterns

could be associated by considering that in countries where participants wait

longer before seeking medical care, many participants would no longer feel

sufficiently ill to warrant a visit to a medical doctor.

This variation in medical care seeking rates across countries is one of the

reasons why ILI incidences reported by ECDC cannot be compared directly

(van Noort et al., 2007). Variations in medical care seeking could also affect

the determined ILI incidence by ECDC within a country, if certain subgroups

of the population visit a doctor at different rates. Influenzanet does not only

serve as an independent source for ILI activity, but could also be used to

calibrate ILI data as collected by GP sentinel systems.

A crucial element in the success of Influenzanet, is having a sufficiently

large cohort of participants. In the Netherlands (on average 16481 active par-

ticipants), Belgium (5072), Portugal (1894), and Italy (1219) the Influenzanet

cohort was large enough to detect similar ILI epidemics as ECDC in all sea-

sons, with the exception of season 2007–2008 in Portugal. Larger cohorts

would lead to lower statistical noise such that epidemics could be detected

earlier and even small ILI epidemics could be distinguished from baseline

ILI activity. Furthermore, in larger cohorts, different subgroups, for example

based on age or vaccine status, could be monitored separately. Of all active

participants during a certain season, 73± 11% participated again in the fol-

lowing season. Although this shows impressive loyalty of participants, each

season an effort should be made to recruit new participants to at least replace

those who have left.

Risk factors estimated from the Influenzanet cohort are consistent with the

influenza literature. Higher risk of ILI in children and in those living with
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children was observed, in consistency with observational studies (Cauchemez

et al., 2009; Monto and Ross, 1977; Monto, 2004; Viboud et al., 2004). The

increased ILI risk in women compared to men, which may be due to more

intensive contact between women and children, has also been previously rec-

ognized (Monto and Ross, 1977). We found a significantly reduced risk of

ILI among participants over 65. This is not due the higher vaccine uptake

in seniors, since vaccine status is already included as a separate covariate in

this multivariate analyses. Seniors are generally considered a risk group for

influenza, not because of a higher probability for infection, but due to their

greater risk for complications (Monto, 2004). Having a chronic disease, such

as asthma, diabetes, heart disease or immunocompromised, was a strong pre-

dictor of ILI in the Influenzanet cohort. People with these chronic diseases

are generally advised to take an influenza vaccine. Increased risk of influenza

has been observed in children with asthma in clinical cohort studies (Gordon

et al., 2009), while diabetes is known to be strongly associated with complica-

tions due to influenza infections (Irwin et al., 2001). An increased risk of ILI

was observed among the Influenzanet participants who smoke, as has been

confirmed by other studies (Arcavi and Benowitz, 2004).

The Influenzanet system is flexible to the extent that questions of interest

can easily be added or removed, allowing for the estimation of risk factors

which are not usually considered. In this study, we found a small but signif-

icant protective effect of walking or bicycling as a primary means of locomo-

tion in comparison with traveling by car, while no significant risk of traveling

by public transportation was observed, nor in participants who live with other

adults in comparison with adults who live alone. A small increase in risk was

observed in participants who have pets at home. Practicing sports for at least

53



influenzanet : ili time series , risks and vaccine effects

one hour per week was associated with a small but significant decrease on

the ILI risk.

Not only extra questions could be included in the intake questionnaire, en-

tire new questionnaires could be added in particular seasons enabling further

studies. A stress-related questionnaire released in the Netherlands in sea-

son 2004–2005 revealed significant trends between stress/personality and ILI

self-reporting (Smolderen et al., 2007), and a simple questionnaire related

to contact behavior, showed that changes in contact patterns could explain

changes in disease incidence (Eames et al., 2012).

In only 4 out of 10 seasons Influenzanet estimated a significant reduction

in ILI due to vaccination, and the direct effectiveness of vaccination var-

ied between a significant 33% in season 2010–2011 and a non-significant -

10% in season 2004–2005. A relatively low vaccine effectiveness against ILI

is to be expected, since vaccination targets specifically the influenza virus,

and not other influenza-like illnesses. A double-blind, randomized, placebo-

controlled trial measured within the same cohort a vaccine efficacy for sero-

logically confirmed influenza of respectively 50% (1997–1998) and 86% (1998–

1999), but a vaccine effectiveness for ILI of -10% (1997–1998) and 33% (1998–

1999) (Bridges et al., 2000). According to a large meta-study based on 48

reports on vaccine effectiveness in healthy adults, inactivated parenteral vac-

cines were 30% effective against ILI, and 80% efficacious against influenza

when the vaccine matched the circulating strain and circulation was high, but

this decreased to an effectiveness against ILI of 12% and efficacy against in-

fluenza of 50% when it did not (Demicheli et al., 2009).

For two seasons (2003–2004 and 2004–2005) Influenzanet estimated a nega-

tive although non-significant vaccine effectiveness. Both seasons were charac-

terized by a poor vaccine match (Jin et al., 2005; Belongia et al., 2009). A
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negative vaccine effect can be due to original antigenic sin, the tendency for

antibodies produced in response to exposure to influenza vaccine antigens to

suppress the maturation of antibodies with high affinity to the actual virus

(Gupta et al., 2006).

In an observational study of vaccine effectiveness, any preexisting bias be-

tween vaccinated and unvaccinated participants could distort the results. The

univariate risk ratios (Table B.2, Appendix B, page 217) indicate on average

a 10% higher ILI reduction in vaccinated participants than the adjusted risk

ratios (Table 3.2). Participants over 65 years of age have a lower ILI rate and

a relatively high vaccination rate, and the multivariate model estimates that

a part of the reduction in ILI in vaccinated participants is due to their age.

Although the multivariate regression analysis aims to correct for these biases,

it is possible that other biases not represented by any of the risk factors listed

in Table 3.2 exist.

A cohort study of 72,527 seniors over 65 years of age followed during an

8 year period, found that vaccinated seniors already had a reduced risk of

death and pneumonia hospitalization in the periods before the influenza sea-

son, and that the risk reduction actually decreased during the influenza sea-

son (Jackson et al., 2006). Such a preferential receipt of vaccine by relatively

healthy seniors could lead to overestimation of the vaccine effectiveness in ob-

servational studies. It is plausible that most elderly Influenzanet participants

are relatively healthy and that this selection bias is less present in Influen-

zanet, leading to relatively lower estimates of vaccine effectiveness than in

the average literature. Because of global recommendations for influenza vac-

cination, placebo-controlled trials, which could clarify the effects of influenza

vaccines in individuals, are no longer considered possible on ethical grounds

(Jefferson et al., 2010).
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Since the Influenzanet participants are not a random sample of the overall

population, care should be taken in extrapolating the estimated risks to the

overall population in the respective countries. However, the observed consis-

tency in risk factors for ILI between Influenzanet and those reported by stud-

ies in community settings further establishes that the Influenzanet population

is a valuable sentinel for ILI surveillance in the population, in addition to the

merits of engaging the participants in public health research and promoting

risk awareness.

The system presented here stands on a concept for syndromic surveillance

that depends on intense activity in science communication, public awareness

and sufficient levels of Internet penetration. It has reported ILI activity in

a consistent way for over 10 seasons in multiple countries. Influenzanet re-

ports ILI trends consistent with GP sentinel surveillance (ECDC), and can

complement these systems by providing valuable information about medical

care seeking behavior. Based on reported symptoms, Influenzanet can be ex-

tended to detect diseases other than influenza, including those in developing

settings. Influenzanet as an Internet monitoring system based on voluntary

participants might therefore develop into an important weapon to fight in-

fluenza as well as other contagious diseases globally.
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role of weather on the relation between influenza and ili

abstract

Influenza epidemics, enabled by viral antigenic drift, occur invariably each winter

in temperate climates. However, attempts to correlate the magnitude of virus change

and epidemic size have been unsatisfactory. The incidence of influenza is not typically

measured directly, but rather derived from the incidence of influenza-like illness (ILI),

a clinical syndrome. Weather factors have been shown to influence the manifestation

of influenza-like symptoms.

We fitted an influenza transmission model to time series of influenza-like illness as

monitored from 2003 to 2013 by two independent symptomatic surveillance systems

(Influenzanet and ECDC) in three European countries. By assuming that season-

ality only acts upon the manifestation of symptoms, the model shows a significant

correlation between the absolute humidity and temperature at the time of infection,

and the proportion of influenza infections fulfilling the clinical ILI case definition, the

so-called ILI factor.

When a weather-dependent ILI factor is included in the model, the epidemic size of

influenza-like illness becomes dependent not only on the susceptibility of the popula-

tion at the beginning of the epidemic season but also on the weather conditions during

which the epidemic unfolds. The combination reduces season-to-season variation in

epidemic size and, interestingly, leads to a non-monotonic trend whereby the largest

ILI epidemic occurs for moderate initial susceptibility.
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4.1 introduction

Influenza epidemics occur invariably each winter in temperate climates, ex-

hibiting impressive resilience to demographic, social and medical change

(Hope-Simpson, 1981). The continuous viral evolution (Smith et al., 2004)

and global migration (Nelson et al., 2007) keeps host populations suscep-

tible for recurring epidemics. However, attempts to directly correlate the

magnitude of virus change and the epidemic size have been unsatisfactory

(Chowell et al., 2008), and this could be partly attributed to interference

with seasonal factors.

The seasonality of influenza is governed by numerous factors and occupies

researchers from a multitude of disciplines. Weather effects on viral survival

(Shaman and Kohn, 2009) and host susceptibility (Dowell, 2001), and the

effect of social contacts on transmission (Cauchemez et al., 2008), favor the

transmission of influenza during the winter months (Lipsitch and Viboud,

2009). Transmission models for influenza, which include seasonality in trans-

mission, usually apply a seasonal sinusoidal transmission rate (Koelle et al.,

2006; Bacaër and Ait Dads, 2011), or link the transmission rate directly to

weather factors such as the absolute humidity (Shaman et al., 2010).

Transmission models for influenza are not typically fitted to incidence data

for influenza, but rather to incidence data for influenza-like illness (ILI) or

excess pneumonia and influenza (P&I) death rates (Chowell et al., 2008;

Shaman et al., 2010; Mills et al., 2004). Determining the presence of the

influenza virus in the population is a costly process, only performed regu-

larly on symptomatic persons to determine the circulating strains (Meerhoff

et al., 2004). Instead, cohort based syndromic surveillance systems determine

the weekly burden of ILI based on a clinical case definition (Mandl et al.,
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2004). Various case definitions are in use by different surveillance systems,

requiring the simultaneous presence of multiple influenza-related symptoms,

to exclude persons with non-influenza respiratory syndromes. A typical case

definition, as applied by the Influenzanet system, requires the simultaneous

occurrence of a fast rise of fever, muscle pain and at least one respiratory

symptom (van Noort et al., 2007). Recent studies have shown that experi-

mentally infected persons do not regularly expose all symptoms (Lau et al.,

2010), indicating that the influenza activity in the population could be signifi-

cantly higher than the reported ILI incidence.

Influenza transmission models fitted to ILI incidence, typically assume a

constant asymptomatic rate (Ferguson et al., 2003) or constant reporting rate

(Cauchemez et al., 2008) to transform the influenza incidence to an ILI in-

cidence. Seasonal variation in these parameters could, however, significantly

influence the expression of clinical symptoms in influenza infected persons

(Baetjer, 1967; Assaad and Reid, 1971; Eccles, 2002; Fuhrmann, 2010), and

thus the proportion of influenza infections that fit the ILI case definition.

We will explore the effect of a seasonal ILI factor, defined as the proportion

of influenza infections that fit the ILI case definition. We fit a simple trans-

mission model to ILI incidence data corresponding to ten seasons (2003–2013)

in the Netherlands, Belgium, and Portugal from two independent ILI surveil-

lance systems: European Influenza Surveillance Scheme as coordinated by the

ECDC and Influenzanet. The transmission rate is set to be constant during the

winter months throughout all seasons. Although seasonality is likely to coact

in the transmission rate and season-to-season variation of influenza subtypes,

the model aims to solely explore the seasonal variation of the ILI factor, and

link it directly to the measured weather variables in each country.
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4.2 method

4.2.1 Model

We divide the population into three subgroups: hosts with symptomatic in-

fluenza infection (I), hosts who are susceptible to symptomatic infection (S)

and hosts who are immune to symptomatic infection. Infected hosts recover

at a rate τ, and make β infectious contacts per week while infected. A con-

stant low rate of infection per week, m, is caused by external contacts, most

notably persons being infected abroad. The system is described by the follow-

ing equations:

dS
dt

= −λS

dI
dt

= λS− τ I

λ = βI + m

(4.1)

where λ denotes the force of infection.

A proportion p, the ILI factor, of all symptomatic infections fits the ILI case

definition, while a time-dependent but season invariant proportion J of the

population fits the ILI case definition without an influenza infection. The

measured ILI prevalence is thus given by:

ILI(t) = p(t)I(t) + J(t) (4.2)

The ILI incidence is estimated by multiplying the ILI prevalence by the recov-

ery rate τ. All symptomatic infected persons are assumed to transmit equally,

independently of whether they fit the ILI case definition.
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4.2.2 Model including asymptomatics

If a constant proportion of all infected is asymptomatic, and possibly less in-

fectious, the above system of equations still applies, but the interpretation of

the transmission rate β is transformed. We divide the population into four

subgroups: hosts with symptomatic influenza infection (I), hosts with asymp-

tomatic infection (A), hosts who are susceptible to either symptomatic or

asymptomatic infection (Ŝ) and hosts who are immune to both symptomatic

and asymptomatic infection. Upon infection, a proportion α of the suscepti-

bles gets a symptomatic infection (I), while a proportion 1− α gets an asymp-

tomatic infection (A). Both symptomatic and asymptomatic infected recover

at a rate τ, where symptomatic make β̂ infectious contacts per week while

infected, and asymptomatic make φβ̂ infectious contacts, where 0 ≤ φ ≤ 1.

A constant low rate of infection per week, m, is caused by external contacts.

This system is described by the following equations:

dŜ
dt

= −λŜ

dI
dt

= αλŜ− τ I

dA
dt

= (1− α)λŜ− τA

λ = β̂I + φβ̂A + m
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It follows that I = α(I + A), and substitution of A = 1−α
α

I lead to the

following system:

d(αŜ)
dt

= −λ(αŜ)

dI
dt

= λ(αŜ)− τ I

λ =

(
1 + φ

1− α

α

)
β̂I + m

which is equivalent to the system (4.1), where S = αŜ denotes hosts that

are susceptible to symptomatic infection, and the transmission parameter β is

transformed by:

β =

(
1 + φ

1− α

α

)
β̂

An SIAR model with transmitting asymptomatics thus has the same funda-

mental dynamics as the basic SIR model. The underlying parameters α and φ

are not identifiable when only symptomatically infected hosts are observed.

4.2.3 Data

Two independent symptomatic surveillance systems, which measure the ILI

activity in multiple countries in Europe, are currently active. The European

Influenza Surveillance Network as coordinated by the European Centre for

Disease Control and Prevention (ECDC) measures the ILI activity based on

the number of ILI patients who visit a GP belonging to one of the national

sentinel networks. Influenzanet measures the ILI activity based on weekly

online symptoms questionnaire completed by voluntary participants. Google

Flu Trends (Ginsberg et al., 2009), another cross-country monitoring system,
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is not strictly independent since their algorithms rely on ECDC data streams

for parameter calibration.

We apply the model to those countries and seasons for which both Influen-

zanet and ECDC provide ILI incidence data: the Netherlands, Belgium, and

Portugal (2003–2013) from September to May. The ILI incidence data as de-

termined by Influenzanet is uniform across countries and seasons, due to

the application of a single ILI case definition in all countries, and the indepen-

dence of country- and season-specific rate at which influenza-infected persons

seek medical attention (van Noort et al., 2007). We therefore scale the ILI

incidence data from ECDC to the same order as the ILI incidence data from In-

fluenzanet based on the linear regression between both data sets (van Noort

et al., 2014). The model is fitted to the average of the ILI incidence from

Influenzanet and the scaled ILI incidence from ECDC. For weeks in which

data from only one system is available, most notably due to the absence of

Influenzanet data in Portugal 2003–2005, the ILI incidence is based on only

one data source.

Weather variables for each country are based on measurements from a cen-

tral location in the country: Utrecht in the Netherlands, Brussels in Belgium,

and Coimbra in Portugal1. We assess, independently, the influence of tem-

peratures and absolute humidity on syndromic reporting. For both factors

we consider two alternative implementations: (1) integrate weekly weather

measurements straight into the model; and (2) construct a periodic function

based on a 40-year average (1970–2010) of the 1-month moving average of the

weather factor of interest. Implementation (2) has advantages for long-term

prediction.

1 http://www.noaa.gov
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4.2.4 Fitting

The baseline level of non-influenza ILI activity J(t) is determined by fitting a

general function

J(t) = A · sin
(
(t− H) · 2π

365

)
+ V

with parameters amplitude (A), horizontal shift (H) and vertical shift (V), to

all historic non-epidemic ILI incidences. ILI activity outside the influenza pe-

riods is considered non-epidemic, where the influenza period for each season

is defined as the weeks when the number of positive samples as collected by

ECDC is at least 15% of the maximum number of positive samples in that

season (for more details see Section 6.3.3).

The recovery rate τ is set to 7/5, corresponding to an average of 5 days dur-

ing which influenza-infected persons excrete the virus (Lau et al., 2010). The

transmission coefficient β, summarizing contact rates, viral persistence, and

all other social and environmental factors that affect transmission, is assumed

to be country-specific but invariant across seasons. The proportion of suscep-

tibles at the beginning of each season S0 is estimated through the fitting, as an

independent variable, which captures the cumulative effect of antigenic drift

and shift, births and deaths and possible vaccination campaigns between the

end of the preceding influenza season and the start of the next. The start of

the influenza season is set to 1 September, corresponding roughly to the start

of schools after summer vacation. The migration rate m is set to 10−7 per week

for all countries. Simulations with a migrations factor an order of magnitude

higher or lower do not significantly alter the goodness-of-fit of the models or

the qualitative conclusions of the study (data not shown). All model fittings

are performed by a least squares minimization fitting procedure implemented

69



role of weather on the relation between influenza and ili

in Python 2.7. For each fit the goodness-of-fit (R2) is determined by a linear

regression between the model output and the ILI incidence.

4.3 results

The main focus of this study is the estimation and interpretation of the pro-

portion of influenza infections that fit the ILI case definition, the so-called ILI

factor p. We begin by estimating directly from the data the contribution of

non-influenza cases to the weekly ILI incidence, and proceed by estimating

indirectly (based on a model) the ILI factor under a series of approximations

of increasing refinement.

4.3.1 Non-influenza ILI

Figure 4.1 shows for each country the best fit of a baseline incidence to non-

epidemic ILI activity. The seasonal variation in non-influenza ILI cases is

more marked in northern countries.
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Figure 4.1: ILI incidence and a fitted baseline in A) Netherlands, B) Bel-
gium, and C) Portugal (2003–2013). The ILI incidence by Influenzanet is
defined as the number of ILI onsets per 100,000 participant-weeks. The
ILI incidence by ECDC is defined as the weekly number of patient visits
with ILI per 100,000. The plotted ILI incidence is based on the average
incidence of both systems.
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4.3.2 First approach: ILI factor constant

As a first approximation, we assume that the ILI factor p is constant through-

out the seasons. The system of (4.1) and (4.2) can then be written as:

d(pS)
dt

= −λ(pS)

d(pI)
dt

= λ(pS)− τ(pI)

λ = (
β

p
)(pI) + m

ILI(t) = (pI) + J(t)

(4.3)

leading to a system with variables pS, pI and β
p .

For each country we estimate a constant transmission rate β
p and season de-

pendent parameters pS0. Figure 4.2 shows the estimated ILI incidence curves

and the estimated parameters are listed in Table 4.1 (p constant). The model is

able to capture the timing of the epidemics, but cannot capture the magnitude

of the ILI incidence accurately, most notably due to an underestimate of the

ILI incidence during the seasons 2004–2005, 2008–2009, and 2012–2013, and

an overestimate during the pandemic season 2009–2010.

4.3.3 Second approach: ILI factor per season

As an intermediate step in the identification of temporal trends in the ILI fac-

tor, we assume the ILI factor p to be constant during each season, but variable

from season to season. Since the ILI factor only influences the observation

of ILI and not the influenza dynamics itself, the estimated parameters p can
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Figure 4.2: Best fit for the reference model based on the first approach:
the ILI factor p constant throughout all seasons in A) Netherlands, B)
Belgium, and C) Portugal (2003–2013). The ILI incidence by Influenzanet
is defined as the number of ILI onsets per 100,000 participant-weeks.
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Table 4.1: Estimated parameters for the three model approaches

p constant p per season p by climate

pS0 S∗0 p∗ S∗0 p∗(W) W

Netherlands

2003/04 0.048 0.14 0.38 0.09 0.69 5.8
2004/05 0.040 0.11 1.00 0.07 0.98 5.3
2005/06 0.039 0.11 0.59 0.07 0.92 5.4
2006/07 0.039 0.11 0.36 0.07 0.87 5.4
2007/08 0.040 0.12 0.40 0.07 0.92 5.4
2008/09 0.043 0.13 0.55 0.08 0.88 5.4
2009/10 0.058 0.18 0.16 0.12 0.24 7.2
2010/11 0.043 0.12 0.35 0.08 0.89 5.4
2011/12 0.039 0.11 0.28 0.07 0.85 5.5
2012/13 0.041 0.12 0.84 0.08 0.99 5.3
All seasons β/p = 50 β∗ = 17 β∗ = 27, k = −0.73, ε∗ = 3.8

Belgium

2003/04 0.036 0.10 0.49 0.08 0.60 5.9
2004/05 0.029 0.08 0.96 0.07 0.95 5.3
2005/06 0.028 0.08 0.67 0.06 0.87 5.4
2006/07 0.029 0.08 0.96 0.07 0.99 5.2
2007/08 0.029 0.08 0.50 0.06 0.94 5.3
2008/09 0.030 0.09 0.79 0.07 0.91 5.4
2009/10 0.046 0.14 0.14 0.12 0.17 7.7
2010/11 0.031 0.09 0.34 0.07 0.92 5.3
2011/12 0.029 0.08 0.61 0.07 0.94 5.3
2012/13 0.030 0.08 1.00 0.07 0.99 5.2
All seasons β/p = 68 β∗ = 24 β∗ = 30, k = −0.72, ε∗ = 3.8

Portugal

2003/04 0.035 0.08 0.30 0.06 0.54 9.4
2004/05 0.027 0.06 0.94 0.04 0.95 8.2
2005/06 0.026 0.06 0.13 0.04 0.90 8.4
2006/07 0.027 0.06 0.82 0.04 0.94 8.3
2007/08 0.025 0.06 0.13 0.04 0.83 8.5
2008/09 0.031 0.07 0.73 0.05 0.74 8.8
2009/10 0.037 0.09 0.23 0.06 0.39 10.1
2010/11 0.029 0.07 0.59 0.05 0.94 8.3
2011/12 0.026 0.06 1.00 0.04 0.90 8.4
2012/13 0.026 0.06 0.62 0.04 0.90 8.4
All seasons β/p = 76 β∗ = 32 β∗ = 47, k = −0.48, ε∗ = 3.9
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Table 4.1: (Previous page) The reference model (p constant) assumes the ILI
factor p to be constant throughout all seasons. The intermediate model
(p per season) assumes the ILI factor p constant throughout a season, but
changing from season to season. The final model (p by climate) assumes
a correlation between the typical absolute humidity and the ILI factor.
The parameter W is the typical absolute humidity at the peak of each
epidemic, with the associated ILI factor p(W). Parameters indicated with
a (∗) are scaled due to the normalization of the ILI factor p.

be interpreted as the average proportion of influenza cases that fitted the ILI

case definition during the epidemic in that specific season.

System (4.1) with a constant transmission rate β and season dependent

parameters S0 and p is mathematically equivalent to applying system (4.3) to

each season independently. From the estimated parameters pS0 and β
p for each

season, we separate a constant transmission rate β and a normalized season

dependent ILI factor p. Figure 4.3 shows the estimated ILI incidence curves

and the estimated parameters are listed in Table 4.1 (p per season).

Figure 4.4 shows the relation between the estimated ILI factor p for each epi-

demic, and two weather factors (temperature and absolute humidity) during

the epidemic period. The epidemic period is defined as the two weeks before

and two weeks after the epidemic peak. For both weather factors a similar

correlation with the logarithm of the ILI factor p is observed, whether we con-

sider the actual measurements for each year or 40-year averages. Located in

the European continent, the three countries included in this study exhibit typ-

ical northern weather patterns, whereby temperature and humidity decrease

between August and February, to start increasing again until August, complet-

ing the annual cycle. As the epidemic peaks occur when the weather factors

above are going through the decreasing phase, we also obtain a correlation
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Figure 4.3: Best fit for the intermediate model based on the second ap-
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Table 4.2: Goodness-of-fit of the models to the data for the reference
model (“Constant”) and the final models using either the The weekly
absolute humidity (“Abs hum”), the typical absolute humidity based on
a 40-year average (“Typ abs hum”), the weekly temperature (“Temp”),
and the typical temperature (“Typ temp”).

Country Constant Typ Abs Hum Abs Hum Typ Temp Temp

Netherlands 0.66 0.82 0.77 0.79 0.74

Belgium 0.53 0.81 0.70 0.76 0.66

Portugal 0.65 0.76 0.74 0.78 0.76

between the ILI factor and the timing of the epidemic activity (Figure B.14,

Appendix B, page 218).

4.3.4 Third approach: ILI factor by climate

The observed correlation between the weather variable (W) and the ILI factor

p, suggests the following relation:

log p(t) = k ·W(t) + ε (4.4)

where the parameters k and ε are the linear regression coefficients. Instead of

a season-dependent ILI factor, we will now apply the above relation between

the ILI factor and a weather variable into the model. The constant transmis-

sion rate β, the season dependent initial susceptibility S0 and the parameters k

and ε were initially approximated by adopting the averaged weather variable

over a period of four weeks around the epidemic peaks. Using a continuously

changing weather variable W throughout the seasons, we will readjust the

model using these parameters as initial conditions.
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Using the typical average humidity as the weather variable, Figure 4.5

shows the estimated ILI incidence and the estimated parameters are listed

in Table 4.1 (p by climate). Estimated ILI incidence curves based on the other

weather variables are available in the supplementary material (Figures B.15–

B.17, Appendix B, page 219). The goodness-of-fit improves significantly by

applying a seasonal ILI factor instead of a constant ILI factor, using either

temperature or absolute humidity (Table 4.2). Although the goodness-of-fit

of the intermediate model (as measured by R2) may appear more favorable,

we must note that the weather model only requires two parameters (k and

ε) and the weather measurements to determine the time-dependent ILI factor

p, whereas in the intermediate model the number of parameters is as large

as the number of epidemic seasons included in the fit (ten in this case). The

F-test statistic confirms that both models perform significantly better than the

original constant-p model. Since in the three countries absolute humidity and

temperature are highly correlated (Figure 4.6), it is expected that both weather

variables perform equally well.

4.3.5 Influenza and ILI

Figure 4.7 shows the dynamics of four characteristic seasons for each country,

the full line representing ILI incidence according to the best fitting model and

the dashed lines the extrapolated influenza frequencies by applying the ILI

factor p. Early epidemics, which occur when the initial proportion of suscep-

tibles is high, are characterized by high frequency of influenza infections, but

not necessarily a higher burden of ILI (Panels A–C) as the epidemic activity

occurs when the ILI factor is still low (Panels D–F).
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Figure 4.5: (Previous page) Based on the third approach: the ILI factor p de-
termined by the typical absolute humidity. The ILI incidence by Influen-
zanet is defined as the number of ILI onsets per 100,000 participant-weeks.
A,C,E) ILI incidence curves and B,D,F) the typical absolute humidity and
the corresponding ILI factor p for A,B) Netherlands, C,D) Belgium, and
E,F) Portugal (2003–2013). The ILI incidence by Influenzanet is defined as
the number of ILI onsets per 100,000 participant-weeks. The black dots
on the ILI factor curve indicate the time of the epidemic peaks.
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Figure 4.6: Absolute humidity and temperature in A) Netherlands, B) Bel-
gium, and C) Portugal (2003–2013).

Figure 4.8 plots the relation between the initial proportion of susceptibles

and the peak ILI incidence generated by the model with estimated parameters

for each country. The peak ILI incidence initially increases with the initial pro-

portion of susceptibles, but the tendency is inverted at some point. Increasing

the proportion of susceptibles above a certain level will lead to a lower peak

ILI incidence, due the milder weather conditions at the time in which an early

epidemic takes place.
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Portugal. A,B,C) The ILI incidence by Influenzanet is defined as the num-
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4.4 discussion

By parameterizing multiple time series of influenza-like illness, we unlock a

potential mechanism for the modest variation of ILI rates across seasons in

temperate climates despite large variations in the initial susceptibility of the

population. Focusing on the northern hemisphere (more specifically, three

European countries) we simulate a minimal transmission model that runs for

9 months each year (September–May) over 10 seasons (2003–2013). The pro-

portion of the host population susceptible to infection by the dominant virus

(S0) is a specificity of each influenza season since it depends on the antigenic

novelty of the emerging virus. Variability in population susceptibility leads to

variability in the timing of onset and peak of the epidemic — epidemics peak

later when susceptibility is low. We find a significant correlation between the

temperature and absolute humidity at time of infection and the proportion of

infected persons fitting the ILI case definition, the ILI factor p.

By making the ILI factor p directly dependent on weather variables, a single

model simulation is able to capture the ILI incidence of all seasons 2003–

2013, which includes the 2009–2010 season characterized by a new influenza

A pandemic strain, the 2003–2004 season characterized by an antigenic cluster

jump (Smith et al., 2004), and the seasons 2005–2006, 2007–2008, 2010–2011,

and 2012–2013 characterized by co-circulating influenza B strains.

Influenza transmission models which include weather variables typically

incorporate seasonal variation on the transmission rate. We demonstrate that

seasonal variation in the ILI factor alone significantly improves the ability of

a simple model to reproduce the observed ILI incidence curves. It is also

well recognized that each epidemic is caused predominantly by a different in-

fluenza virus, which could be evoked in defense of season-to-season variation
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in the model parameters. These three factors — seasonality in transmission,

seasonality in the ILI factor, and season-to-season variation due to changes

in viral phenotype — are totally compatible and there is nothing precluding

their combination in a more elaborate model formulation; however, more data

types would be required for parameter estimation.

A more direct approach in determining the seasonal variation of the ILI fac-

tor p, for example, could be the confirmation of the presence of ILI symptoms

in influenza infected persons (Lau et al., 2010) under various weather con-

ditions. Season specific information about the circulating influenza viruses

could also be included directly into the model when available. Figure 4.4 sug-

gests that the ILI factor was relatively lower in Portugal during the seasons

2005–2006 and 2007–2008, seasons with significant circulation of influenza B,

which could lead to milder symptoms (Kim et al., 1979). The migration rate

m of influenza from abroad, is assumed to be constant throughout all seasons,

but the global surge of pandemic influenza A in 2009, could have increased

the migration rate.

Although the model predicts positive correlation between the initial suscep-

tibility and the incidence of influenza infections, after applying the ILI factor

we are left with no correlation between the initial susceptibility and the inci-

dence of ILI cases (Chowell et al., 2008). Public health measures taken to

delay the onset of the epidemic, such as school closures and global vaccina-

tion, might lead to an increased ILI burden by shifting the epidemic to colder

and dryer months.
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significant changes compared to published article

The analyses has been extended to include the seasons 2003–2013. The pe-

riod over which the typical temperature and absolute humidity is determined

is extended to 1970–2010. The correlation between temperature and abso-

lute humidity is visualized in Figure 4.6. The F-test is only used to compare

nested models. The model output (ILI prevalence) is converted to an ILI in-

cidence rate, and all analyses and figures use the ILI incidence. The method
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to determine the baseline ILI incidence is based on Section 6.3.3. The supple-

mentary text on the model including asymptomatics has been included into

the Method section.
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abstract

The evolutionary mechanisms structuring the expression pattern of variant surface

antigen (VSA) families that allow pathogens to evade immune responses and estab-

lish chronic and repeated infections pose major challenges to theoretical research. In

Plasmodium falciparum, the best-studied VSA family is erythrocyte membrane pro-

tein 1 (PfEMP1). Each parasite genome encodes about 60 PfEMP1 variants, which

are important virulence factors and major targets of host antibody responses. Tran-

scriptional switching is the basis of clonal PfEMP1 variation and immune evasion.

A relatively conserved subset of PfEMP1 variants tends to dominate in non-immune

patients and in patients with severe malaria, while more diverse subsets relate to

uncomplicated infection and higher levels of pre-existing protective immunity.

Here, we use the available molecular and serological evidence regarding VSAs, in

particular PfEMP1, to formulate a mathematical model of the evolutionary mech-

anisms shaping VSA organization and expression patterns. The model integrates

the transmission dynamics between hosts and the competitive interactions within

hosts, based on the hypothesis that the VSAs can be organized into so-called domi-

nance blocks, which characterize their competitive potential. The model reproduces

immunological trends observed in field data, and predicts an evolutionary stable bal-

ance between inter-clonally conserved dominance blocks that are highly competitive

within-host and diverse blocks that are favored by immune selection at the population

level.

The application of a monotonic dominance profile to VSAs encoded by a gene family

generates two opposing selective forces and, consequently, two distinct clusters of

genes emerge in adaptation to naive and partially immune hosts, respectively.
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5.1 introduction

Although people living in malaria endemic regions typically carry Plasmod-

ium falciparum parasites throughout life, clinical symptoms decrease markedly

with age (Doolan et al., 2009). Naturally acquired immunity to the disease

involves many components and their relative importance is only partially un-

derstood (Langhorne et al., 2008). However, antibodies undoubtedly form

a critical component of immunity to the asexual blood stages (Cohen et al.,

1961), and the parasite-encoded variant surface antigens (VSAs) exported to

the surface of infected erythrocytes (IEs) are important targets (Marsh and

Howard, 1986; Hviid, 2005). P. falciparum parasites possess several VSA fami-

lies, of which the best characterized is P. falciparum erythrocyte membrane pro-

tein 1 (PfEMP1) encoded by approximately 60 var genes per genome (Gard-

ner et al., 2002). The level of diversity among var genes varies greatly both

between and within individual genomes (Kyes et al., 2007). PfEMP1 variants

mediate adhesion of IEs to different host endothelial receptors, and different

binding properties have been associated with distinct patterns of sequestra-

tion and pathogenesis (Miller et al., 2002). The importance of PfEMP1 in

malaria pathogenesis has motivated the development of theoretical models of

diversity and immune selection (Gatton and Cheng, 2004; Recker et al.,

2004; Buckee et al., 2009).

Individual IEs express only a single PfEMP1 variant at a time (Scherf

et al., 2008). Early in blood stage infection after liver release, many var genes

are transcribed by the various IEs, but gradually this pattern changes and

particular subsets of var genes are predominantly expressed (Peters et al.,

2002; Lavstsen et al., 2005), while others may still be expressed at low fre-

quency due to transcriptional switching (Roberts et al., 1992; Horrocks
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et al., 2004). Variants that predominate in the early phase of infection prob-

ably have higher effective multiplication rates (possibly due to more efficient

endothelial sequestration rates) or higher on-switching rates. In any case,

the history of PfEMP1 expression is recorded in the antibody repertoires that

accumulate in individual hosts, regardless of the molecular basis of the se-

quence of expression (Marsh and Howard, 1986; Bull et al., 1998; Giha

et al., 1999; Ofori et al., 2002).

There is evidence that there is a threshold of PfEMP1 expression necessary

for induction of an immune response (Krause et al., 2007). If so, low-level or

heterogeneous expression of PfEMP1 variants, such as in the early stages of

infection, might not be sufficient to induce immunity. As the immune system

disables IEs expressing the dominant VSA, the parasite is either cleared from

the host or parasites expressing an antigenically distinct VSA will come to

dominate the infection (Staalsoe et al., 2002). When a VSA is no longer ex-

pressed, antibody levels against it decrease, but immunological memory per-

sists and antibody levels can be rapidly restored upon re-exposure (O’Neil-

Dunne et al., 2001; Staalsoe et al., 2001; Nielsen et al., 2005).

Here we investigate the role of variation in adhesion properties and cumu-

lative antibody repertoires in selecting for the observed patterns in expression

(Bull et al., 1999; Nielsen et al., 2002). Integrating these individual-level

processes into a mathematical model of P. falciparum transmission, we refine

the requirements for the emergence of realistic variation in VSA expression at

the population level. The model allows for multiple genotype infections, en-

capsulating a form of within-host competition that gives selective advantage

to parasites expressing more dominant VSAs (Phiri et al., 2009).

Although global var gene diversity is immense (Barry et al., 2007), there is

increasing evidence that there exist restricted subgroups of antigenically simi-
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lar VSAs that have a selective advantage in naive hosts and are associated with

severe disease (called “high-dominance” VSAs here), whereas other more di-

verse PfEMP1 variants (called “low-dominance” VSAs) are more common in

the uncomplicated and sub-clinical infections of more immune hosts (Nielsen

et al., 2002; Bull et al., 2000; Kirchgatter and del A Portillo, 2002;

Kaestli et al., 2006; Kyriacou et al., 2006; Rottmann et al., 2006; Nor-

mark et al., 2007; Bull et al., 2008). Our model suggests that within-host

competition selects for a relatively conserved repertoire of high-dominance

VSAs, while a diverse repertoire of low-dominance forms is maintained by

their ability to remain unrecognized by host immunity for extended periods

allowing chronicity of infections. We propose this mechanism of two-level

selection as an evolutionary explanation for the subdivision of large VSA fam-

ilies such as PfEMP1.

5.2 method

On the basis of available experimental evidence summarized above, we hy-

pothesize that the global repertoire pool of variants within a given VSA fam-

ily can be ordered into a dominance hierarchy that determines the order in

which they are expressed in an infection. The dominance hierarchy is consid-

ered the aggregated result of a variety of selective factors, including adhesion

avidity, receptor availability, metabolic cost, gene switching rates, and immun-

odominance, to name a few. The parasites in an infection will therefore tend

to express the most dominant variant to which the host does not have pre-

existing immunity. As immunity to the initially dominant variant is acquired,

continued parasite survival depends on the ability to switch away from this

variant, and switching back to the originally expressed variant will be unsuc-
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cessful as long as protective levels of antibody with specificity for this variant

persist.

Before constructing a model we must devise a scheme to aggregate the

immense VSA diversity in a way that is both biologically meaningful and

mathematically tractable. As we are mainly interested here to explore host

population-level processes, we define “dominance blocks” as groupings of

undefined numbers of consecutive variants. Since dominance reflects prefer-

ential expression, it is assumed here that antigenic switching during a single

infection occurs among consecutive variants within a dominance block, and

is therefore not visible at the scale of blocks. Dominance blocks are thus a

convenient unit for the construction of transmission models at this level.

Estimates of the duration of a P. falciparum infection are in the order of 200

to 700 days (MacDonald, 1950; Sama et al., 2004; Aguas et al., 2008), with

peaks in parasitaemia every 20–25 days (Collins and Jeffery, 1999). If peaks

in parasitaemia correspond to clonal replacement of one variant by another,

and in the absence of substantial cross-reactive immunity among intraclonal

variants (Joergensen et al., 2006), between eight (an infection that lasts 200

days with peaks every 25 days) and 35 (peaks every 25 days of a 700 day

infection) different VSAs can be assumed to be expressed in the course of

an untreated monoclonal infection. This collection of VSAs corresponds to a

dominance block. The model will be formulated in terms of blocks of VSAs,

indexed such that a lower index represents a higher dominance (Figure 5.1A,

top). Each parasite can thus be assumed to possess between approximately

two (at 35 variants per block) and seven (at eight variants per block) domi-

nance blocks of a given VSA family such as the 60-member PfEMP1 family,

and should therefore be able to re-infect a given host at least a corresponding

number of times (each time expressing variants from a new block) before all
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Figure 5.1: Schematic representation of infection dynamics . A) VSA
variants are organized into dominance blocks, where dominance ranges
from the highest (VSA block 1) to the lowest (VSA block n) (A, top). Each
parasite genotype contains VSAs from a fixed number of VSA blocks. In
a naive host, a parasite clone (illustrated by a set of 3 VSA blocks) ex-
presses VSAs from the most dominant block. Immunity is illustrated by
an antibody and expression by a star. The host mounts an immune re-
sponse to the expressed VSAs and eventually the infection is cleared. On
a subsequent infection the host is already immune to VSAs from previ-
ously expressed blocks, leading to the expression of VSAs belonging to
the next most dominant VSA block (A, middle). When an infected host
is exposed to a new parasite which encodes VSAs from a more dominant
block, the resident parasite can be replaced with a probability σ (A, bot-
tom). B) Implementation of dominance hierarchy of 7 VSA blocks, such
that σ1,4 is the probability of superinfection when VSA block 1 invades a
host with a resident parasite expressing VSA block 4. C) Heterogeneous
immune repertoires among hosts. Hosts acquire specific immunity with
exposure, represented by colors matching VSA blocks in previous panels.
The immune repertoire may contain gaps if a host has not been exposed
to a particular variant block. Fewer hosts are susceptible to VSA 1 (small
dashed circle) than to VSA 7 (large dashed circle).
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family members have been expressed (Figure 5.1A, middle). In reality, the

number may well be higher, as levels of variant-specific antibodies often de-

cline fairly rapidly once exposure to the variant ceases (O’Neil-Dunne et al.,

2001; Staalsoe et al., 2001; Nielsen et al., 2005).

Multiple-clone infections are very common in malaria endemic areas. We

hypothesize that VSA dominance not only determines the order of VSA ex-

pression of a single clonal lineage, but also the dynamics of multiple-clone

infections. When an already infected host is exposed to a new parasite, we as-

sume that the transmission potential of the invader in relation to the resident

increases with the dominance difference between the respective VSAs. Oth-

ers (Gog and Grenfell, 2002) have shown that such weighted processes can

be mathematically simplified while maintaining the essence of the model dy-

namics, by assuming the polarized view that the invader replaces the resident

parasite (superinfection) with a probability σ (Figure 5.1A) and is cleared oth-

erwise. The probability σ is formally defined as a function of the difference

between the dominance blocks expressed by invader and resident parasites

(Figure 5.1B).

As hosts in the population gradually acquire immunity to individual dom-

inance blocks, they remain susceptible only to parasites which express blocks

of lower dominance (Figure 5.1C). A correlation between dominance and dis-

ease severity is implicit in the model, and is used to evaluate its performance.

Immunity to specific VSA blocks wanes over time. The mathematical formal-

ism of the model is provided in Section 5.5.
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5.3 results

We will describe equilibrium results from simulations of model realizations

where parasites are described by four dominance blocks drawn from a pool of

seven. This greatly simplifies the description of the model output but retains

the generality of the model performance.

The vast majority of hosts without any pre-existing VSA-specific antibodies

is predicted by the model to be infected by parasites expressing VSAs be-

longing to dominance block 1. As host repertoires of VSA-specific antibodies

broaden, the probability that their infections will be dominated be parasites

expressing VSAs from dominance blocks lower in the hierarchy increases, and

the ability to predict which block is expressed in a given host decreases (Fig-

ure 5.2A). If we associate high-dominance VSAs with more severe forms of

malaria, and note that the antibody repertoire broadens with age, this output

fits the observations that overall malaria severity decreases with age in en-

demic areas (Doolan et al., 2009), and that low immunity and young age are

associated with infections dominated by serologically similar VSAs, whereas

VSA expression in older, more immune individuals with uncomplicated in-

fections is much more diverse (Nielsen et al., 2002; Bull et al., 2000). The

host’s capacity to clear an infection before exhausting the VSA repertoire

of the infecting parasite (see Model outline above) and the non-random se-

quential expression of variants from high- to low-dominance, furthermore

leads the model to predict a population-level gradient from high prevalence

of hosts with antibodies against high-dominance VSAs to low prevalence of

hosts with antibodies against low-dominance VSAs (Figure 5.2B). The model

also predicts a negative correlation between the size of the antibody reper-

toire and the seroprevalence against the expressed VSA, meaning that VSAs
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Figure 5.2: Expression and seroprevalence of VSAs at endemic equilib-
rium. A) VSA expression within hosts with different levels of past expo-
sure (measured by host antibody repertoire). B) Seroprevalence for the
different VSA blocks (trend displayed in Fig. 3 of (Bull et al., 2000)).
C) Seroprevalence for the expressed VSA as a function of host antibody
repertoire (trend displayed in Fig. 2c of (Bull et al., 2005)).
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expressed in hosts with broad antibody repertoires are less recognized in the

host population than VSAs expressed in hosts with narrow antibody reper-

toires (Figure 5.2C). The trends in Figure 5.2B,C correspond well with field

data (Bull et al., 1999; Nielsen et al., 2002; Bull et al., 2005).

The model predicts that the high prevalence of antibodies with specificity

for dominant VSAs favors parasites encoding low-dominance variants while

parasites encoding the high-dominance variants are simultaneously favored

because of their ability to superinfect and displace resident parasites from in-

fected hosts (Figure 5.3, solid red line). These opposing selective forces shape

the parasite population such that a typical parasite genome will contain VSAs

from both high- and low-dominance VSAs, while variants of intermediate

dominance will be the least frequent in the parasite population. Indeed, the

selection for high-dominance VSAs becomes weaker when the ability to su-

perinfect is removed from the model, while assigning only a single VSA block

to each parasite weakens the selection for low-dominance VSAs. Parasite

genomes encoding multiple copies of the same VSAs are outcompeted by par-

asite genomes encoding the maximum number of distinct VSAs, consistent

with high inter-locus diversity seen in the genome (Gardner et al., 2002).

Finally, we explore the dependence of VSA distributions on the size of the

available pool of variants. By increasing the size of the VSA pool from 5 to

8 blocks, the model predicts that the prevalence of high-dominance VSAs is

essentially independent on the global size of the pool, while low dominance

VSAs tend to become more heterogeneously distributed throughout the par-

asite population (Figure 5.4). In reality, the number of antigenically distinct

VSAs, and thereby the number of possible dominance blocks, is likely to be

very large, leading to a restricted set of highly dominant and serologically
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Figure 5.3: Frequency distributions of VSAs in the parasite population

at endemic equilibrium. Opposing selection pressures favor VSA blocks
at each end of the dominance hierarchy (solid red line), suggesting a
mechanism behind the two clusters displayed in Fig. 3 of (Bull et al.,
2008). Superinfection selects for high-dominance VSAs (compare solid
red line and dotted blue line). When parasites contain multiple VSA
blocks, acquired immunity selects for low-dominance variants (compare
solid red line and dotted green line). Without superinfection and only a
single VSA block per parasite, there is no frequency difference between
the different VSA blocks (dotted yellow line).
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Figure 5.4: Frequency distributions of VSAs for increasing sizes of the

global pool at endemic equilibrium. Increasing the size of the global
pool leaves the frequency of high-dominance VSAs unchanged, and di-
versity accumulates among the low-dominance VSAs. The frequency dis-
tribution for a global pool of 7 blocks is also shown in Figure 5.3 (solid
red line).
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similar VSAs, and a much larger set of serologically diverse VSAs each with

low prevalence.

5.4 discussion

Immunity to malaria following natural exposure to P. falciparum is developed

over several to many years, and sterile immunity is probably never achieved.

However, immunity to severe disease develops much faster than protection

from uncomplicated disease and asymptomatic parasitaemia (Gupta et al.,

1999). It has been suggested that this epidemiological pattern is due to the im-

portance of VSA-specific immunity for clinical protection, to the non-random

order in which immunity to specific VSAs is acquired, and to the association

between particular VSAs with specific disease syndromes (Hviid, 2005, 2004).

We present a mathematical model which implements the interplay between

two opposing selection pressures; one that favors virulent (high-dominance)

VSAs in non-immune hosts, the other facilitating non-virulent (low-dominance)

VSAs that allow chronic infections in individuals with substantial VSA-specific

immunity. Our results complement previous models that have addressed ex-

pression patterns (Recker et al., 2004; Gatton et al., 2003) and acquisition

of immunity (Recker et al., 2008).

We introduce the concept of dominance blocks to describe the competitive

interactions among the different VSAs of a single parasite (intraclonal varia-

tion) and among the VSAs of different parasite clones (inter-clonal diversity).

The model dynamics of VSA expression, within and between hosts, all follow

from the dominance hierarchy. The preferential expression of high-dominance

VSAs in naive hosts leads to host immunity and quickly exhaust the pool of

susceptible hosts available to them. Low-dominance VSAs, on the other hand,
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allow persistent infections and thereby ensure efficient transmission from host

to host. The ability of parasites encoding high-dominance VSAs to superin-

fect, favors their conservation. The output of our model is compatible with

field observations.

The existence of different levels of immune selection acting on VSAs has

been suggested through the application of network approaches to serological

data (Buckee et al., 2009). It is reinforced here with a model that is the first to

combine intra-host competition and inter-host transmission to investigate the

combined effects of selection at multiple levels. The model suggests a mech-

anism for the observed structuring of VSA into distinct clusters, reproducing

important features of serological observations from the field. Although the

results are general, it would be interesting to investigate how they might be

modulated by transmission intensity and crossimmunity.

Molecular studies have shown that var genes, previously classified into

five major groups (A–E), could be organized into two broad clusters (Bull

et al., 2008; Trimnell et al., 2006). A relatively conserved cluster consists

of restricted subsets of structurally related variants transcribed by parasites

obtained from individuals with limited or no immunity preferentially tran-

scribe (Lavstsen et al., 2005; Warimwe et al., 2009), and parasites selected

in vitro for reactivity of IEs with IgG from children with limited immunity

(Jensen et al., 2004). Transcription of two of these subsets (Group A and

Group B/A) has repeatedly been associated with severe disease (Kirchgat-

ter and del A Portillo, 2002; Kaestli et al., 2006; Kyriacou et al., 2006;

Rottmann et al., 2006; Normark et al., 2007). A much more diverse clus-

ter contains Group C which has been largely associated with asymptomatic

infections (Kaestli et al., 2006).
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In summary, we present a model that identifies the mechanisms that might

be driving the evolution of separate clusters of VSAs, as seen for the var gene

subfamilies of P. falciparum. The hypothesis predicts a restricted subset of

high-dominance VSAs associated with severe malaria, and genetically and

immunologically diverse low-dominance VSAs related to uncomplicated and

asymptomatic infection.

5.5 mathematical implementation

The model, constructed as a system of ordinary differential equations, inte-

grates dynamics at two levels (pathogen competition at the individual level

as immunological memory accumulates, and pathogen transmission at the

population level) in a form that is inevitably dense. In the interest of clarity

we construct the model in a stepwise manner.

parasites with a single dominance block We write a first version

where each parasite in characterized by only one dominance block, and then

generalize for multiple blocks. Consider a pathogen population comprising a

diversity of VSA blocks, indexed by the set N = 1, 2, . . . , n, ordered by inverse

dominance. Hosts are classified into uninfected (S) or infected (I) and by

the subset of blocks to which they have immunological memory (h). Infected
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hosts are further classified by the blocks that they are currently infected with

(p). This system is written as

dSh

dt
= ∑

h=h̃+q1

γI h̃
q1
− ∑

q2 6∈h
λq2 Sh + µδh=∅

− µSh + W(Sh), for all h ⊂ N

dIh
p

dt
= λpSh − (γ + µ)Ih

p + W(Ih
p)

+ X(Ih
p), for all h ⊂ N, p 6∈ h

where q1 indicates the VSA block by which the host was previously infected

while having immunological memory h̃, q2 indicates the VSA block by which

the susceptible host will be infected, γ is the rate of recovery from infection,

µ is the rate of birth and death, δh=∅ is a delta function indicating that indi-

viduals have no immunity at birth, λp = ∑p 6∈h βIh
p is the force of infection of

variant p, and W and X are functions that determine waning immunity (5.1)

and superinfection (5.2), respectively. For simplicity of notation, we write

h + p, instead of h + {p}, even though h is a set and p is an element.

Waning immunity is implemented as

W(Sh) = ∑
q1 6∈h

αSh+q1 − ∑
q2∈h

αSh

W(Ih
p) = ∑

q1 6∈h
αIh+q1

p − ∑
q2∈h

αIh
p

(5.1)

where q1 indicates the VSA block for which the host previously had immunity,

and q2 indicates the VSA block for which the host is losing immunity. Superin-

fection is implemented such that hosts currently infected by a block, p, can be

superinfected by a higher dominance block, q2, with a force of infection σq2 p.

By superinfection, we mean that hosts become infectious with the new block
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while the old variant is cleared and added to the repertoire of immunological

memory. This is formalized as

X(Ih
p) = ∑

h=h̃+q1
p 6∈h̃

σpq1 λp I h̃
q1
− ∑

q2 6∈h
σq2 pλq2 Ih

p (5.2)

where q1 indicates the VSA block by which an infected host was previously

infected while having immunological memory h̃. The coefficient σq2 p (and

equivalently σpq1) is defined such that the rate of superinfection increases with

the difference in dominance between blocks (see Figure 5.1B)

σq2 p =

1/q2 − 1/p, if q2 < p

0, otherwise.
(5.3)

parasites with multiple dominance blocks The system is read-

ily generalizable to a scheme where each parasite is characterized by multiple

VSA blocks. Consider a parasite, p = (v1, v2, . . . , vm), characterized by m

blocks drawn from a pool N = (1, 2, . . . , n), and ordered by inverse domi-

nance. Upon infection by a parasite, p, a host with immunological memory,

h, will express the most dominant block for which the host does not have

immunity, v = min(p \ h). The system is written as

dSh

dt
= ∑

h=h̃+v1
v1=min(q1,h̃)

γI h̃
q1
− ∑

q2 6⊂h
λq2 Sh + µδh=∅

− µSh + W(Sh), for all h ⊂ N

dIh
p

dt
= λpSh − (γ + µ)Ih

p + W(Ih
p)

+ X(Ih
p), for all h ⊂ N, p 6⊂ h
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where q1 indicates a parasite expressing VSA block v1 by which the suscep-

tible host was previously infected while having immunological memory h̃,

q2 indicates the parasite by which a susceptible host will be infected, and

λp = ∑p 6⊂h βIh
p is the force of infection of parasite p. Waning immunity is

implemented as

W(Sh) = ∑
v1 6∈h

αSh+v1 − ∑
v2∈h

αSh

W(Ih
p) = ∑

v1 6∈h,v1 6∈p
αIh+v1

p − ∑
v2∈h,v2 6∈p

αIh
p

where v1 indicates the VSA block for which the host previously had immunity,

and v2 indicates the VSA block for which the host is losing immunity.

Superinfection is determined by

X(Ih
p) = ∑

h=h̃+v1
v=min(p\h)

v1=min(q1\h̃)

σvv1 λp I h̃
q1

− ∑
q2 6⊂h

v=min(p\h)
v2=min(q2\(h+v))

σv2vλq2 Ih
p

where q1 indicates the parasite expressing VSA block v1 by which the host was

previously infected while having immunological memory h̃, and q2 indicates

the parasite expressing VSA block v2 by which the host will be superinfected,

The coefficients σ are as in equation (5.3).

The principal steps in this process are represented diagrammatically in Fig-

ure 5.5. The parameters describing the rates of transition between compart-

ments take values in accordance with previous studies (Aguas et al., 2008):
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Figure 5.5: Flow diagram for two parasites: (1,3) and (2,3).
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birth and death (µ = 1/50); recovery from infection (γ = 6); loss of immunity

(α = 0.8); transmission (β = 10). The time unit is one year.
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6
D I S C U S S I O N

When things get too complicated, it sometimes makes sense to stop and

wonder: Have I asked the right question?

Enrico Bombieri
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6.1 syndromic surveillance : methods and statistics

6.1.1 Influenzanet and traditional surveillance in Europe

Influenzanet and ECDC run independent syndromic surveillance systems,

which report the activity of influenza-like illness (ILI) based on a clinical case

definition. ILI activity is traditionally being determined based on the rate of

health care seeking patients diagnosed with ILI. This data is collected via na-

tional networks of sentinel general practitioners (GPs), currently coordinated

in Europe by the European Influenzanet Surveillance Network (EISN) within

the ECDC structure. Influenzanet runs national websites, where cohorts of

volunteers weekly report their symptoms (Chapters 2 and 3) and the ILI ac-

tivity is based on the proportion of participants whose symptoms fit the ILI

case definition. Most assertions done in this section on Influenzanet would

apply to any self-reporting surveillance system, whereas most assertions for

ECDC hold for any syndromic surveillance system which depends on health

care seeking. The ILI activity calculation in both systems is described by:

Influenzanet: Participants whose self-reported symptoms fit ILI case definition
Active participants in Influenzanet

ECDC: Patients visiting GP and diagnosed with ILI
Patients registered to sentinel GP

An important difference between the two systems concerns the bias intro-

duced in determining the ILI activity. For Influenzanet a selection bias could

be present in the active participants: people who decide to participate in In-

fluenzanet might not be representative for the whole population. Since the

sentinel GPs are generally selected to have a representative registration of

patients, such a selection bias is less prevalent in ECDC.
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Figure 6.1: Age corrected ILI incidence compared to raw ILI incidence in
A) Netherlands, B) Belgium and C) Portugal (2008–2009). The ILI inci-
dence by Influenzanet is defined as the number of ILI onsets per 100,000

participant-weeks.

For ECDC a reporting bias could be present in the people who decide to

seek medical care if they suffer from ILI symptoms, since they might not be

representative for a typical person with ILI. Since in Influenzanet all active

participants report weekly, such a reporting bias is less prevalent in Influen-

zanet.

biases in influenzanet Based on the intake questionnaire, some se-

lection biases in the Influenzanet participants can be detected. For some char-

acteristics it has been shown that the Influenzanet participants are representa-

tive, such as the presence of asthma and diabetes in Dutch (Marquet et al.,

2006) and Belgian (Vandendijck et al., 2013) participants. With respect to

characteristics for which the Influenzanet participants are not representative

for the whole population, a corrected ILI incidence can be determined.
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For most countries the younger and older age groups are underrepresented

(Figure 2.1, Chapter 2, page 21), and an age-corrected ILI incidence can be

calculated by:

ILI (corrected) =
∑age groups

(
ILIage group × Populationage group

)
Population

Figure 6.1 shows the raw and age-corrected ILI incidences for the Netherlands,

Belgium and Portugal in season 2008–2009.

Some selection biases might be hard to detect and therefore hard to correct.

For example, Influenzanet might attract persons who are more susceptible for

flu-like symptoms than an average person, a so-called hidden bias (Rosen-

baum, 1991). Since participation is voluntary, active recruitment strategies

targeting underrepresented groups (Rehn et al., 2014) does not prevent the

presence of these hidden selection biases.

In contrast with most traditional surveillance systems, a total increase in

participants does only marginally increase the costs of running the system.

Moreover, having more participants does facilitate the recruiting of new par-

ticipants due to increased media attention.

biases in ecdc Influenzanet data shows that across Europe only 25–75%

of people with ILI actually seek medical care (Figure 3.3, Chapter 3, page 44),

such that the ILI activity as determined by ECDC is structurally underesti-

mated. Note that the determined percentages depend on the applied ILI case

definition. More critically, there could be a reporting bias in those people with

ILI who decide to seek medical care. Since people wait various days before a

possible visit to a medical doctor (Figure 3.4, Chapter 3, page 45), persons who

are sick for a longer time might be overrepresented. Furthermore, changes in
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Figure 6.2: ILI activity by age group according to ECDC in the Netherlands
(2008–2009). The ILI incidence by ECDC is defined as the weekly number
of patient visits with ILI per 100,000. A) ILI activity by age group. B)
Percentage of Influenzanet participants with ILI who sought medical care
by age group. C) Raw and corrected ILI attack rate by age group. D) ILI
attack rate according to Influenzanet data.
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Table 6.1: Participation rate in Influenzanet for various countries (2003–
2013). The number of participants is the average over all seasons the
system was active. Active participants completed at least 3 symptoms
questionnaires. The participation rate is based on the number of active
participants.

Country Population Participants Active Participation

Netherlands 17M 14121 12397 0.074%
Belgium (Flanders) 6M 4127 3788 0.061%
Portugal 10M 1527 1246 0.012%
Italy 59M 2071 1349 0.002%
United Kingdom 64M 5909 3911 0.006%
Sweden 10M 2954 2411 0.025%
France 66M 6000 4754 0.007%
Spain 46M 632 476 0.001%

medical care seeking rate over time could disturb the determined ILI activity.

The impact of such reporting biases could be especially significant in coun-

tries where fewer people seek medical care.

According to the ILI activity as reported by ECDC, Dutch people over 65

years old suffer slightly more ILI than participants 5–14 and 15–64 years old

(Figure 6.2A). However, according to Influenzanet data, participants over 65

years old with ILI are much more likely to seek medical care (Figure 6.2B). A

corrected ILI attack rate for each age group can be estimated by dividing the

ILI attack rate by the medical care seeking rate. According to the corrected ILI

attack rate, people over 65 years old actually have the lowest attack rate from

all age groups (Figure 6.2C), consistent with Influenzanet data (Figure 6.2D).
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6.1.1.1 Advantages of traditional surveillance

1 . cohort size The sentinel GPs aim to represent 1–5% of the physi-

cians in a country,1 although in 2005–2006 the population under surveillance

in the Netherlands (0.7%), Belgium (0.4%), and Portugal (0.7%) is significantly

lower (van Noort et al., 2007). In Influenzanet, the country with the highest

participation rate only monitors 0.07% of the population, with significantly

lower participation rates in some other countries (Table 6.1). Even though

the actual population under surveillance within the ECDC system should in-

corporate the medical care seeking rate, the population under surveillance by

ECDC is still significantly larger than by Influenzanet. This could be one of

the reasons why the ILI activity as determined by ECDC has less statistical

noise than the ILI incidence by Influenzanet (Figure 3.1, Chapter 3, page 42).

2 . historic data and continuity The national sentinel networks

which report to ECDC have been in operation for many decades,1 whereas

the first Influenzanet system has been operational since 2003. Furthermore,

for the foreseeable future many people will continue to visit a medical doctor

when they are sick, so provided enough funding a system based on sentinel

doctors will continue to function. Although Influenzanet participants have

proven to be quite loyal during the first 10 years of the system, with around

75% of participants remaining in a following season (Figure 3.5, Chapter 3,

page 47), each season an effort is required to recruit new participants. Fur-

thermore, low participation rate in some countries (Table 6.1) indicates that it

may be difficult to obtain a high participation rate. Funding for Influenzanet

is still vital for the maintenance, in particular to keep participants active by

1 http://ecdc.europa.eu/en/activities/surveillance/EISN/surveillance/Pages/sentinel
surveillance.aspx
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sending them weekly newsletters, and recruiting new participants by contin-

uing to provide the media with the latest news and results, or other public

initiatives.

3 . viral confirmation In most countries sentinel GPs are requested

to take a swab of some of their patients with ILI, which are tested for the

presence of the influenza virus. Based on the detected strains worldwide,

the WHO decides each year the composition of the influenza vaccine. Fur-

thermore, the results of these laboratory tests are usually considered in deter-

mining whether the detected ILI incidence can be considered the start of the

influenza epidemic. Recent studies have shown that self-sampling by lay peo-

ple and shipment of nasal swabs via regular mail is feasible (Cooper et al.,

2008; Elliot et al., 2009). During the 2011–2012 season, Swedish partners

of Influenzanet performed a pilot study in which people could self-sample

with nasal swabs, which were then sent to laboratory for viral confirmation

(Plymoth et al., unpublished).

6.1.1.2 Advantages of Influenzanet

1 . ili onset day recorded For Influenzanet not only the day a partici-

pant completed the symptoms questionnaire is recorded, but each participant

also reports on which day the symptoms and/or fever started. The ILI in-

cidence for Influenzanet is usually determined based on the day the fever

started, whereas ECDC determines the ILI incidence based on the week a

person visited the GP. Since people usually wait a few days before seeking

medical care (Figure 3.4, Chapter 3, page 45), the ILI incidence by Influen-

zanet better resembles the actual ILI activity in the population. Although this

does not necessarily indicate that Influenzanet is faster in real-time reporting
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(Section 6.3.3), it can be important when linking ILI activity with weather

variables (Chapter 4) or school closures (Eames et al., 2012).

2 . automated The Influenzanet system operates in a relatively auto-

matic manner. Participants are weekly sent a reminder, usually accompanied

by a newsletter, and report their symptoms online. All questionnaire data are

stored in a central database and the latest results are generated and published

daily.2

For ECDC, sentinel GPs send their latest data once a week to a national

coordinator, who reports the latest (provisional) results a few days later to

the ECDC. This delay currently allows Influenzanet, — in countries with suf-

ficient participants — to detect the yearly onset of the ILI epidemic up to two

weeks earlier than ECDC (see Section 6.3.3). However, this reporting delay

is not inherent to the ECDC methodology, since in principle a system could

be developed for sentinel GPs to report their data in real-time (Lange and

Schöttler, 2002; Carrat et al., 1998).

3 . flexible Modifications in the Influenzanet system, for example the in-

clusion of an extra question or symptom, requires only a change on the central

server, after which all participants will be presented with the updated ques-

tionnaires. Since 2011 all European systems use the same platform (Paolotti

et al., 2014), which facilitates the application of European-wide changes.

For ECDC it is much harder to implement (European-wide) changes. Al-

though an objective of the ECDC is to unify all sentinel GP systems, progress

is slow. The most noticeable difference between countries is the application

of different ILI (or ARI, acute respiratory illness) case definitions (Aguilera

2 http://www.influenzanet.eu/results
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et al., 2003). It is understandable that countries would be reluctant to imple-

ment changes, to avoid discontinuities in their historic data.

4 . consistent across countries Due to the application of single

ILI case definition across countries, Influenzanet is able to measure the ILI

incidence rate consistently across multiple countries (Figure 2.3A, Chapter 2,

page 25). In contrast, the ILI incidence as reported by ECDC may vary signifi-

cantly by country (Figure 2.3B, Chapter 2, page 25), due to the different rates

at which people seek medical care (Figure 3.3, Chapter 3, page 44), and the

different national ILI case definitions (Table 2.3, Chapter 2, page 20).

5 . risk factors and vaccine effects The intake questionnaire which

is completed by each participant at the beginning of every season, contains

various demographic, medical, socioeconomic and lifestyle questions. To-

gether with the determined ILI attack rate, Influenzanet can estimated risk

factors for ILI (Table 3.2, Chapter 3, page 49). The determined risk factors

are in correspondence with those found in the literature, but also allow for

the assessment of risk factors not previously identified, such as having pets

(dogs or cats) at home. Furthermore, based on the vaccination status a season-

dependent vaccine effectiveness for ILI can be determined (Table 3.2, Chap-

ter 3, page 49, and Section 6.3.2).

6 . unaffected by media hype A common misconception about In-

fluenzanet is that an increase in media interest for influenza would lead to

more ILI reports and distort the results. However, since Influenzanet deter-

mines the ILI incidence among all its active participants, an increase in par-

ticipation would increase both the numerator and denominator for the ILI
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incidence. Although people who have ILI are more likely to register on In-

fluenzanet (Figure 2.4, Chapter 2, page 27), this selection bias is removed in

the analyses by excluding all symptoms a participant had upon joining In-

fluenzanet. Furthermore, if necessary all participants who register during

the season could be completely excluded from the analyses, removing this

selection bias completely.

In contrast, if people who do not normally seek medical care for ILI symp-

toms would decide to do so due to increased media attention, the ILI inci-

dence as reported by ECDC would be artificially increased. During the spring

and summer of 2009 in Wales, a significant increase in ILI rate was reported

by the sentinel GPs, whereas the percentage of people who were tested posi-

tive for influenza was relatively low. The concern about the new H1N1pdm

influenza strain might have been largely responsible for phenomenon (Kera-

marou et al., 2011).

7 . monitor behavior Influenzanet participants not only report their

symptoms, but in case of symptoms they also receive some follow-up ques-

tions. Influenzanet has determined the rate of participants with ILI who seek

medical care (Figure 3.3, Chapter 3, page 44) and when (Figure 3.4, Chapter 3,

page 45), but also monitors when they stay at home, for how many days, and

whether they used any over-the-counter drugs.

8 . monitor other diseases Based on the self-reported symptoms

and a syndromic case definition, other syndromes besides ILI could be mon-

itored. Since 2011 Influenzanet monitors in all countries ILI, gastroenteri-

tis, common cold, and hay fever. In Salvador, Brazil, a system based on the

original Portuguese Gripenet platform was implemented to monitor dengue
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(denguenaweb.br). Although in principle any syndrome could be monitored,

care should be taken in interpreting data from diseases with high incidence.

Anecdotal evidence suggests that participants who regularly have the same

symptoms, such as a headache, might stop reporting them to avoid getting

the weekly follow-up questions.

9 . extra questionnaires The way in which the Influenzanet system is

constructed — a website where volunteers can register and complete (weekly)

questionnaires — allows the collection of data that can extend far beyond

the collection of weekly ILI cases. An extended questionnaire released in

the Netherlands (2004–2005) revealed significant trends between stress/per-

sonality and ILI self-reporting (Smolderen et al., 2007). Influenzanet in

the United Kingdom includes a questionnaire about inter-personal contacts

which, included in a transmission model, inform how changes in contact pat-

terns result in a fall in the reproduction number of influenza during the school

holidays (Eames et al., 2012).

Extra questionnaires which are not directly related to ILI surveillance could

be included as well. In 2009–2010 in the Netherlands and Belgium a question-

naire was added for participants (and non Influenzanet participants) to report

any side effects from their influenza vaccine. Differences in effects were de-

tected between the standard seasonal flu shot, the pandemic vaccine in Bel-

gium (Pandemrix) and the pandemic vaccine in the Netherlands (Focetria).3 In

Portugal in 2009, a questionnaire was included on pandemic awareness.4

3 http://www.degrotegriepmeting.nl/nl/artikelen/groot-aantal-meldingen-bijwerkingen-
griepprik/

4 http://www.gripenet.pt/pt/resultados/estudo-pandemia-2009/
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6.1.2 Data mining

Although Influenzanet performs on the Internet and without any input of

medical doctors, it should not be confused with data mining. In data mining

surveillance, data which has been collected for other purposes, such as Google

searches (Ginsberg et al., 2009) or Twitter messages (Signorini et al., 2011),

are transformed to estimated ILI rates. Based on historic data from traditional

surveillance systems, algorithms are calibrated to translate the frequency of

flu-related search terms or messages to estimated ILI rates. These algorithms

are then able to estimate ILI rates based on new data. Since these data sets are

usually not medically related, they are often made freely available, leading to

the application of novel analytic methods.

Data mining methods such as Google Flu Trends have been shown to be

able to detect changes in ILI trends earlier than the traditional surveillance

based on sentinel GPs (Ginsberg et al., 2009). Several features could enable

earlier detection based on data mining. People with ILI (or others around

them) might search on Google or post on Twitter before they seek medical

care. The traditional surveillance system might also have a longer delay be-

tween data collection and publication than a fully automatic algorithm. Fi-

nally, the algorithms can be calibrated such that they are more sensitive to

early signals in ILI trends (Christakis and Fowler, 2010).

Extreme caution should be applied to surveillance reports that rely on these

secondary data sources (Butler, 2013). To monitor influenza activity in the

population, the most reliable way would be the confirmation of real influenza

infections. However, since this is a costly process, and arguably clinical illness

is a more interesting statistic than actual infections, syndromic surveillance is

based on clinical symptoms. Both Influenzanet and ECDC assess the activity
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Box 6.1: Beware of self-enforcing systems

A younger inexperienced Indian chief was wondering how much firewood he
needed to gather for the winter. He was not like the chiefs in the pas that could
tell from the clouds and stuff like that. He decided to make his people gather tons
of firewood, more than they usually gather just to be safe. The young chief was
still curious though so he decided to call the weather service people. They said that
it was supposed to be a pretty cold winter, colder than most years. So the young
chief made his people gather more firewood. Again the chief called the weather
service and they said that it was suppose to be even colder. So the Indians went
back to wood cutting. Once again the chief called, and the weather service said
that there may be another ice age. The chief asked him how they could tell all
of this and he simply replied, “Because the Indians are gathering firewood like
crazy!”.

of influenza-like illness based on clinical symptoms and an ILI case definition.

Data mining surveillance adds one more proxy to the surveillance, in this

case behavioral, how people react to having (or seeing) ILI-like symptoms,

such as searching for information on Google or writing about it on Twitter.

Depending on underlying behavioral processes, changes in ILI trends esti-

mated by data mining, may not only be due to changes in the presence of

ILI symptoms in the population, but also due to the higher or lower rate at

which people search or talk about it (Box 6.1). The algorithms should there-

fore be regularly re-calibrated, such that data mining methods can only serve

as secondary systems.

6.1.3 ECDC, Influenzanet, and data mining in perspective

The ILI trends as determined by Influenzanet and ECDC are very similar (Fig-

ure 3.1, Chapter 3, page 42). Divergence of the ILI trends in certain periods
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Table 6.2: Differences Influenzanet and ECDC

Influenzanet ECDC

ILI: Self-reported symptoms GP diagnosis
Bias: Participation in Influenzanet Visit GP if sick
Advantages: 1. ILI onset day recorded

2. Automated
3. Flexible
4. Consistent across countries
5. Risk factors and vaccine effects
6. Unaffected by media hype
7. Monitor behavior
8. Monitor other diseases
9. Extra questionnaires

1. Size of the cohort
2. Historic data and con-

tinuity
3. Viral confirmation

might be attributed to differences in biases and methodology. Although diver-

gence of the trends could lead to uncertainty and confusion about the current

state of influenza activity in the country, this might actually be an important

benefit of having several independent systems. If only one system would be

active, such uncertainty would not be known and could lead to a false confi-

dence in the data. The differences and advantages of Influenzanet and ECDC

are summarized in Table 6.2.

In summary, ECDC delivers a robust weekly ILI incidence accompanied

by an integrated system for viral confirmation. Influenzanet provides an in-

dependent ILI surveillance system, which also provides related information

on for example behavior, ILI risks, and contact patterns. Influenzanet allows

the development of more sophisticated surveillance methods based on the de-

tailed personal and symptoms information on all participants (Section 6.3.4).

The often freely available “big data” has led to considerable innovation on

data mining surveillance, but the adopted algorithms continue to depend on
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regular calibration based on independent systems such as ECDC and Influen-

zanet.
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6.2 linking models and data

Influenza epidemics invariably occur during winter in temperate climates,

and various theories have been put forward to explain this phenomenon. Al-

though no conclusive explanation has been found, studies have pointed at de-

creased immunity, increased transmission, increased virulence during winter,

and changes in contact patterns (Fuhrmann, 2010). More specifically, immu-

nity appears lower in winter due to lower sunlight-induced vitamin D produc-

tion (Cannell et al., 2006) and increased melatonin secretion (Dowell, 2001).

Transmission appears higher during winter, due to less UV radiation which

inactivates influenza viruses (Sagripanti and Lytle, 2007), the longer sur-

vival time of influenza particles in lower absolute humidity (Shaman et al.,

2010), and increased aerosol transmission at lower temperature (Lowen et al.,

2008). Influenza infected individuals may expose more symptoms during win-

ter, due to the colder temperature (Eccles, 2002), and decreased vitamin D

production (Cannell et al., 2006). School closure has been linked to a de-

crease of infectious contacts between children (Cauchemez et al., 2008), and

in most countries children have a long summer holiday.

Surveillance during the summer is usually low, but in the spring and sum-

mer of 2009 the virological surveillance increased due to the detection of a

new pandemic influenza strain. This revealed that several lineages of sea-

sonal influenza strains continued to circulate for prolonged periods of time,

suggesting that unseasonal transmission of influenza A viruses might be more

widespread than is usually supposed (Ghedin et al., 2010).
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6.2.1 Time-varying ILI factor or transmission

Most studies have focused on the impact of weather variables on the seasonal-

ity of influenza, with British general practitioner Robert Edgar Hope-Simpson

stating:

The method by which the influence of season is mediated so as to control

influenza outbreaks is as yet unidentified, but its importance cannot be

doubted. It is concerned in most of the phenomena [concerning influenza

evolution and epidemiology] and may indeed provide the key to under-

standing them

(Hope-Simpson, 1979).

Weather elements might not only play a role in regulating the seasonality of

influenza, but also in the relative severity of the yearly epidemics of influenza-

like illness (ILI).

Figure 6.3A,B shows the ILI incidences in the Netherlands for seasons 2003–

2013 according to Influenzanet and ECDC. Both systems indicate that the

earliest ILI epidemic occurred in the season 2009–2010, characterized by the

new pandemic strain (Garten et al., 2009), whereas the second-earliest was

in 2003–2004, the season when the Fuijan strain started circulating, a strain

characterized by an antigenic cluster jump (Smith et al., 2004). ILI epidemics

that occur early in the season seem to be characterized by influenza strains

for which the immunity in the population is low. These early ILI epidemics

were however not the most severe according to either system.
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Figure 6.3: ILI incidence data compared to basic SIR model . A) ILI in-
cidence for Influenzanet in the Netherlands (2003–2013). The ILI inci-
dence by Influenzanet is defined as the number of ILI onsets per 100,000

participant-weeks. B) ILI incidence for ECDC in the Netherlands (2003–
2013). The ILI incidence by ECDC is defined as the weekly number of
patient visits with ILI per 100,000. C) Simple SIR model with various
initial fraction of susceptibles (S0 ∈ [1, 0.85, 0.7, 0.6]), whereas the other
parameters are fixed (β = 0.44, τ = 0.2, m = 10−5, p = 0.08).
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One of the most basic deterministic transmission models for influenza is

given by the following SIR system:

dS
dt

= −(βI + m)S

dI
dt

= (βI + m)S− τ I

ILI = p · I

where S denotes the fraction of susceptibles, I the fraction of influenza in-

fected and ILI the fraction of persons with ILI. The parameters are the trans-

mission coefficient β, the recovery rate τ, and the migration rate m. The ILI

factor p, introduced in Chapter 4, denotes the fraction of persons infected

with influenza who have sufficient symptoms to fit the ILI case definition.

Figure 6.3C shows simulations of this model for various initial fractions of

susceptibles. A higher initial fraction of susceptibles results in ILI epidemics

which are not only earlier, but also higher. This does not correspond to the

actual measured ILI data (Figure 6.3A,B), which indicates that this basic SIR

model would not be able to accurately capture the multi-season dynamics of

influenza (see also Figure 4.2, Chapter 4, page 73).

Since the most severe ILI epidemics appear to occur during the months

January–March, when winter conditions are most severe, the same weather

variables which regulate the seasonality of influenza, might also regulate

the ILI epidemics during each winter. Two possible candidates are seasonal

transmission and seasonal ILI factor. Based on the relation (4.4) (Chapter 4,

page 77), the time-varying variables during the winter are implemented as:

p(t) = pmin + (pmax − pmin)e−10(1−sin 2πt
365 )

β(t) = βmin + (βmax − βmin)e−10(1−sin 2πt
365 )
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Figure 6.4: Influenza transmission models with seasonality in trans-
mission or ILI factor . Both models have parameters τ = 0.2, m = 10−5

and initial fraction of susceptibles S0 ∈ [1, 0.85, 0.7, 0.6]. On the left
(A,C,E,G) is a model simulation with seasonal transmission and param-
eters βmin = 0.34, βmax = 1, and p = 0.08. On the right (B,D,F,H) is a
model simulation with seasonal ILI factor and parameters pmin = 0.05,
pmax = 0.4, and β = 0.44. A,B) ILI incidence, C,D) Influenza incidence,
E,F) Effective reproduction ratio, and G,H) ILI factor and transmission.
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Figure 6.4 (left panel) shows an illustrative simulation with time-varying

transmission, and Figure 6.4 (right panel) mimics a a time-varying ILI factor.

In both simulations, a higher initial fraction of susceptibles leads to earlier

onset of the ILI epidemic, but not necessarily to higher ILI incidence (Fig-

ure 6.4A,B). There are some differences in the dynamics of both simulations.

For the model with time-varying transmission, the number influenza infected

follows the same pattern as the number of ILI cases (Figure 6.4A,C), whereas

for the model with time-varying ILI factor the patterns are different (Fig-

ure 6.4B,D). The effective reproduction number Reff can increase during the

winter in the model with time-varying transmission (Figure 6.4E), whereas it

is strictly decreasing in the model with a time-varying ILI factor (Figure 6.4F).

So in principle the two processes can be disentangled given appropriate data.

6.2.2 Fitting the model to data

When a mathematical model has been constructed for disease transmission,

it has to be determined whether the model output accurately describes the

epidemiological observations. This can be done either qualitatively, meaning

that the model simulations do (visually) reproduce the same trends as the

observed data, or quantitatively, meaning that model parameters have to be

determined to fit the observed data as accurately as possible. In the previ-

ous section it has been shown that a model with a time-varying transmission

or time-varying ILI factor could qualitatively reproduce the observation that

earlier ILI epidemics are not necessarily more severe.

In Chapter 4 the actual ILI data from Influenzanet and ECDC for three

countries and the seasons 2003–2013 are quantitatively fitted to a deterministic

transmission model in which a time-varying ILI factor is directly related to
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the actual absolute humidity and temperature over time. The seasonality

in the transmission is modeled as a discrete process, with a constant high

transmission in the winter and an insignificant low transmission during the

summer. The model furthermore includes a seasonal baseline ILI incidence.

Using the F-test it is confirmed that the inclusion of the seasonal ILI factor

significantly improved the fit. Although models with seasonal transmission

varying continuously in time are common (Koelle et al., 2006; Bacaër and

Ait Dads, 2011), sometimes directly linked to measured values such as the

absolute humidity (Shaman et al., 2010), Chapter 4 is probably the first effort

to explicitly define a time-varying or weather-dependent ILI factor to fit an

influenza transmission model to ILI data.

Although quantitatively fitting the model to data is a stronger argument for

the validity of the model, in this case the weather-dependence of the ILI factor,

caution must taken in interpreting the determined model parameters. Some

parameters for the model with a time-varying ILI factor (Table 4.1, Chapter 4,

page 74) are actually a composition of other unidentifiable parameters. The

estimated transmission factor β is a composition of the transmission rate of

symptomatics, the percentage of asymptomatics and the transmission rate

of asymptomatics, and a normalization of the ILI factor (see Chapter 4). Fur-

thermore, the estimated parameters depend on the model assumptions. As an

example, the model assumes a constant transmission rate throughout the win-

ter, but incorporating a time-varying transmission rate into the model would

have an impact on the other estimated parameters.

6.2.2.1 Stochastic models

The procedure just described is deterministic, meaning that each simulation

is uniquely determined by the model parameters. In reality, most processes
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are usually stochastic in nature. As an example, the deterministic model con-

siders that all infected hosts make exactly β infectious contacts per week. In a

stochastic model, the number of infectious contacts per host is not fixed, but

usually follows from a certain distribution, such that the number of contacts

differs from week to week and from person to person. Each simulation of a

stochastic model with the same parameters is expected to generate a different

output.

If the number of infected hosts is high, the output of a stochastic model

generally approaches the output of a deterministic model, such that the trans-

mission factor β can be interpreted as the average number of infectious con-

tacts per week per person. Just as a mathematical model can be considered

a simplification of the real biological processes, a deterministic model can be

interpreted as a simplification of processes that are inherently stochastic. For

each model it should be determined whether this simplification is justified.

In Appendix A a method for parameter estimation of stochastic models is

introduced based on master equations, and this system is applied to various

simple stochastic transmission processes. For the simplest infection processes,

it is possible to give an explicit analytic formula for determining the most

likely parameters, based on the observed data. However, for even moderately

elaborate models, such as the SIR model, the method leads to analytically

unsolvable partial differential equations (PDEs). An open question remains

as to whether for more complicated models for which the stochastic nature

is considered important, it would be better to estimate parameters by solving

these PDEs numerically, or whether numerical procedures applied direct to

the model simulations, such as Markov chain Monte Carlo or other integrated

methods (Bretó et al., 2009), are preferable.
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6.2.3 Perspectives

Although the model from Chapter 4 was able to accurately capture the ILI

dynamics for three countries during ten seasons with the introduced seasonal

ILI factor, the assumption of constant transmission throughout the winter for

all symptomatic influenza infected might be too strong. Furthermore, it is

assumed that all symptomatic infections transmit equally, independent of the

severity of symptoms and whether they fit the ILI case definition. Although

persons with more symptoms might have higher viral shedding (Lau et al.,

2010), they might reduce contact with others by staying home and therefore

decrease their effective transmission. Future research is required to disentan-

gle (He et al., 2013) the importance of seasonality in the transmission and

the ILI factor.

Although it is difficult to directly measure seasonality in transmission, it

might be possible to determine seasonality in the ILI factor by other methods.

Some cohort studies detect mild and asymptomatic infections by testing for se-

roconvergence between the beginning and the end of the season (Mann et al.,

1981). A relation between the weather conditions during the ILI epidemic, the

severity of the epidemic, and the rate of seroconvergence (see Figure 6.4B,D),

might indicate the impact of a seasonal ILI factor. In (Lau et al., 2010) house-

hold members for families with one confirmed index case for influenza were

regularly monitored for 1–2 weeks, both for symptoms and (RT-PCR) con-

firmed influenza cases. Such a study under various weather conditions might

expose a weather-associated ILI factor.

The possible importance of the ILI factor was inspired by the selection of an

ILI case definition for Influenzanet. Although many ILI case definitions lead

to very similar trends, the inclusion or exclusion of a few symptoms from the
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Figure 6.5: ILI incidences based on various case definitions in the Nether-
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cidence by Influenzanet is defined as the number of ILI onsets per 100,000
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lack of confirmed influenza infections.
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6.2 linking models and data

Table 6.3: Various ILI case definitions

Case definition Symptoms

ILI Acute onset, and temperature ≥38 °C, and mus-
cle pain or headache, and cough or sore throat

ILI (≥38.5) Acute onset, and temperature ≥38.5 °C, and
muscle pain or headache, and cough or sore
throat

ILI (cough + sore throat) Acute onset, and temperature ≥38 °C, and mus-
cle pain or headache, and cough, and sore throat

ILI (only fast fever) Acute onset, and temperature ≥38 °C.
ILI (not fast) Temperature ≥38 °C, and muscle pain or

headache, and cough or sore throat
ILI (chills, not fast) Temperature ≥38 °C or cold shivers / chills, and

muscle pain or headache, and cough or sore
throat

case definition could lead to significant decrease or increase in the absolute

value for the ILI incidence (Figure 6.5). It is possible that during warm or

humid weather some ILI symptoms are less likely to be experienced (Bar-Or

et al., 1977; Bollag, 2009; Eccles, 2002; Cannell et al., 2006) by persons

infected with influenza.

Vaccination is not incorporated explicitly into the model, but is implicitly

included in the estimated fraction of susceptibles at the beginning of each sea-

son. Since the vaccination campaign is usually at the beginning of the season,

this is generally an accurate simplification of the model. However, during

the pandemic season 2009–2010 the vaccine only became available when the

ILI activity was already epidemic in all countries, so the model might be

improved by including explicitly the vaccination campaign for the pandemic

vaccine in 2009.
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6.3 influenzanet : remaining challenges

6.3.1 The challenge of accuracy of self-reported symptoms

Although Influenzanet participants in general seem to be quite able to evalu-

ate and report their own symptoms, care should be taken with the applied ILI

case definition. The ILI case definition used throughout this thesis requires a

measured body temperature ≥38 °C, which thus requires participants to ac-

tually measure their temperature. Since 2011 participants in all countries can

also report an unmeasured fever, which allows for a case definition for sus-

pected ILI which includes a measured or an unmeasured fever (acute onset,

and unmeasured fever or temperature ≥38 °C, and muscle pain or headache,

and cough or sore throat). The percentage of participants with suspected ILI

who had a measured temperature ≥38 °C, and thus fit the standard ILI case

definition, varies by country (Figure 6.6). This is probably due to cultural

differences, where participants in for example the United Kingdom are much

less likely to actually measure their body temperature.

For an applied ILI case definition which requires a measured tempera-

ture, these differences could affect the measured ILI incidences. The differ-

ences between the Netherlands (60%), Belgium (52%), and Portugal (49%) are

relatively small, leading to similar ILI attack rates (Figure 2.3A, Chapter 2,

page 25). For cross-country analyses not including data before 2011, it might

be preferable to use an ILI case definition which does not require a measured

temperature.

However, it is important to realize that this involves a compromise. Ap-

plying an ILI case definition which accepts unmeasured fever (possible since

2011), may introduce another “self-diagnosis” bias, if certain groups are more
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Figure 6.6: Participants with suspected ILI who measured their body tem-
perature and had a temperature ≥38 °C, classified by country (2011–
2013). Suspected ILI is defined by the standard ILI case definition, but
with a measured or unmeasured fever (acute onset, and fever (unmea-
sured or temperature ≥38 °C), and muscle pain or headache, and cough
or sore throat).

likely to think they have a fever. A Hong Kong study in which children and

adults were asked whether they have fever before their actual temperature

was measured, revealed that children were much more likely than adults to

claim they have fever for any measured temperature, and that a significant

quantity of people with low temperature claimed to have fever (Patterson-

Lomba et al., 2014).

The determined ILI risks (Table 3.2, Chapter 3, page 49) can also depend

on the applied ILI case definition. For a risk analysis during the seasons

2011–2013 for the same covariates, the determined ILI risks for children and

women are lower when using the case definition for suspected ILI (accepting

an unmeasured fever), than with the standard ILI case definition (requiring

measured temperature ≥38 °C) (data not shown). Further research is needed

to determine whether these differences are due to different habits in actually
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measuring the body temperature, or to different self-evaluations for having a

fever.

Similar to fever, the evaluation of other symptoms could also be different

in various subgroups. For fever a reasonable objective standard exists — the

actual measured temperature — but for many symptoms such as a headache

or muscle pain this is much harder to evaluate. However, these problems

are not unique to self-reporting systems such as Influenzanet, but could also

affect the diagnosis by medical doctors.
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6.3.2 The challenge of estimating vaccine effectiveness

With Influenzanet the incidence of influenza-like illness (ILI) in a cohort of

self-reporting participants is measured, and from those participants it is known

for each season whether they were vaccinated for influenza. Therefore, In-

fluenzanet would seem like a powerful system to measure the effectiveness of

the influenza vaccine, even in real-time. In Chapter 3 the vaccine effectiveness

for all seasons 2003–2013 is determined.

There are two problems which complicate the determination of the vac-

cine effectiveness based on Influenzanet data. First of all, Influenzanet mea-

sures the incidence of influenza-like illness (ILI), a syndromic case definition,

whereas the influenza vaccine only protects against infections with the in-

fluenza virus. Not all people infected with the influenza virus will have suf-

ficient symptoms to fit the ILI case definition, and not all ILI cases are due

to an infection with the influenza virus. A second problem is that vaccinated

and unvaccinated participants cannot be directly compared. Participants who

decide to take a vaccine most often do this because they belong to a risk

group. Differences in ILI rate between vaccinated and unvaccinated partici-

pants can be either due to the vaccine, or due an a priori different risk between

both groups. Here the vaccine effectiveness for the season 2008–2009 in the

Netherlands is estimated based on various methods which try to minimize

these problems. The vaccine effectiveness is determined by the relative risk

reduction in vaccinated participants.

6.3.2.1 Influenza and ILI

surveillance period Although ILI onsets are reported during the whole

season, only during certain weeks within each season the actual influenza

147



discussion

0

200

400

600

800

1000

1200

In
flu

en
za

ne
t:

IL
I/

10
0,

00
0

A
Not vaccinated
Vaccinated
Baseline

Nov Dec Jan Feb Mar Apr May Jun Jul

2008 – 2009

0

5

10

15

20

25

EC
D

C
V

ir
al

co
nfi

rm
at

io
n B

Influenza A
Influenza B

Influenza period Epidemic peak

Figure 6.7: ILI incidence in vaccinated and unvaccinated participants

in the Netherlands (2008–2009). A) ILI incidence in vaccinated and un-
vaccinated participants. The ILI incidence by Influenzanet is defined as
the number of ILI onsets per 100,000 participant-weeks. The baseline is
the typical number of ILI cases measured in the absence of circulating
influenza viruses. B) Number of weekly confirmed laboratory cases as
reported by the ECDC. The dotted vertical lines indicate the influenza
period when the number of confirmed influenza cases is at least 15% (av-
erage over 3 weeks) of the maximum. The dashed vertical lines indicate
the epidemic when the number of confirmed influenza cases is at least
70% (average over 3 weeks) of the maximum.
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Figure 6.8: Vaccine effectiveness based on various assumptions in the
Netherlands (2008–2009).

virus is detected in significant quantities by virological tests. Figure 6.7B

shows the number of confirmed influenza samples as reported by ECDC in

the Netherlands during the season 2008–2009. The influenza period (between

dotted lines) is defined as the weeks that the number of positive samples is at

least 15% of the maximum number of positive samples (moving average over

3 weeks), and the epidemic peak (between dashed lines) as the weeks that the

number of positive samples is at least 70%. During the 2008–2009 season the

influenza period was from 15 December–15 March, and the epidemic peak

from 5 January–2 February.
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Figure 6.7A shows the ILI incidence in vaccinated and non-vaccinated par-

ticipants. By default the vaccine effectiveness is estimated by only considering

ILI onsets during the influenza period, which leads to an estimated vaccine ef-

fectiveness of 23% (CI 13–32%) (Figure 6.8A). The ILI curves of vaccinated and

unvaccinated participants diverge mostly during the epidemic peak, when the

ILI incidence among unvaccinated participants is clearly higher than among

vaccinated participants. The estimated vaccine effectiveness based only on

the ILI onsets during the epidemic peak is 39% (CI 27–49%) (Figure 6.8B1). In-

cluding all ILI onsets during the full season leads to a non-significant estimate

for the vaccine effectiveness of 7% (CI -2–15%) (Figure 6.8B2).

influenza-related ili The baseline in Figure 6.7A is determined as

the typical ILI incidence among all participants outside the influenza periods

(see Section 6.3.3). It is plausible that most ILI cases under this baseline are not

due to influenza infections. By considering only ILI cases above the baseline,

the estimated vaccine effectiveness to influenza-related ILI is 54% (CI 41–64%)

during the influenza period, 59% (CI 46–69%) during the full season, and

59% (CI 46–68%) during the epidemic peak (Figure 6.8C). Interestingly, by

excluding the baseline ILI incidence, the estimated vaccine effectiveness for

influenza-related ILI does depend strongly on the surveillance period.

ili case definitions The vaccine effectiveness can be estimated based

on various ILI case definitions. The estimated vaccine effectiveness for the

stronger “ILI (cough + sore throat)” case definition (Table 6.3) is 21% (CI 7–

33%), whereas for the weaker “ILI (chills + not fast)” case definition it is 27%

(CI 21–32%) (Figure 6.8D). During the season 2008–2009, the estimated vaccine

effectiveness does not appear sensitive to the applied ILI case definition, but
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the the confidence intervals are much smaller for weaker ILI case definitions,

since it is determined based on more cases. For seasons with low activity

or countries with low participation, this could be the difference between a

significant or a non-significant estimate for vaccine effectiveness.

6.3.2.2 Multivariate analyses

Many participants are vaccinated because they belong to a risk group. In the

Netherlands people belong to a risk group if they are over 65 years old (over

60 since 2010) or if they have a chronic disease such as asthma or diabetes.

Risk groups consist of people who either have a higher risk of influenza in-

fection or a higher risk of complications if infected. Figure 6.9 shows the vac-

cination rate in the Netherlands in 2008–2009, structured by age and chronic

diseases, together with reported reasons for vaccination.

A multivariate regression analysis determines the influence of various per-

sonal characteristics, including vaccination status, on the probability that a

participant has at least one ILI onset. For a multivariate regression model

which includes vaccine status and age group (<18, 18–49, 50–64, 65+) as risk

factors, the estimated vaccine effectiveness is -1% (CI -16–12%) (Figure 6.8E1).

The main reason for the estimated vaccine effectiveness to be lower than with

the univariate model (Figure 6.8A), is that the model estimates participants

over 65 to have a lower risk for ILI and infers that the lower ILI rate in partic-

ipants over 65 is not due to their vaccination but rather due to their age.

An opposite effect is observed by a multivariate regression model which

includes vaccine status and the presence of a chronic disease (asthma and/or

diabetes) as risk factors, which estimates a vaccine effectiveness of 35% (CI 25–

45%) (Figure 6.8E2). The estimated vaccine effectiveness is higher than with

the univariate model Figure 6.8A), since the model estimates that participants
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152



6.3 influenzanet : remaining challenges

with asthma or diabetes have a higher risk for ILI, and infers a higher vaccine

effectiveness.

For a multivariate regression model which includes various covariates (in-

cluding chronic disease and age group, see Table 3.2, Chapter 3, page 49),

the estimated vaccine effectiveness is non-significant 12% (CI -4–26%) (Fig-

ure 6.8E3). A multivariate regression model can also be applied to data from

all seasons 2003–2013 simultaneously. Although the vaccine effectiveness is

considered to be season dependent, all other variables are considered invari-

ant across the seasons. The inclusion of data from all seasons 2003–2013 leads

to different estimates for the season-independent covariates, and the model

adjusts the vaccine effectiveness for the season 2008–2009 accordingly. Ac-

cording to this multi-season regression the estimated vaccine effectiveness for

the season 2008–2009 is 18% (CI 6–28%) (Figure 6.8E4). This model is applied

to determine the ILI risk factors in Table 3.2, Chapter 3, page 49, although for

multiple countries simultaneously.

6.3.2.3 Different groups

For a multivariate regression, it is assumed that certain personal characteris-

tics (such as chronic disease and age) could lead to an (a priori) higher or

lower risk of ILI, whereas the effect of a vaccine is equal for all. However,

it is also possible, that the vaccine effect depends on these personal charac-

teristics. For participants who do not belong to a risk group (age under 65,

no asthma, no diabetes and no vaccine recommendation from their GP), the

estimated vaccine effectiveness is 35% (CI 19–48%). For participants who do

belong to a risk group, the estimated vaccine effectiveness is a non-significant

1% (CI -123–56 %) for participants over 65 without asthma or diabetes, and
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a non-significant -30% (CI -87–10%) for participants under 65 with asthma or

diabetes (Figure 6.8F).

6.3.2.4 General remarks

Since ILI is not a perfect proxy for influenza infections, vaccination is volun-

tary and Influenzanet participation is voluntary, the Influenzanet system is

not well suited to estimate the absolute vaccine effectiveness. Based on In-

fluenzanet data for the Netherlands 2008–2009, it can be argued that there

is no significant overall reduction in ILI cases among vaccinated participants

(Figure 6.8B), and that the estimated vaccine effectiveness among participants

belonging to a risk group is even negative although insignificant (Figure 6.8F3).

On the other hand, the same data could be used to argue for a significant re-

duction of 54–59% in influenza-caused ILI among vaccinated participants (Fig-

ure 6.8C). Although the absolute value for the vaccine effectiveness depends

strongly on the assumptions, the season-to-season variation (not shown) in

vaccine effectiveness is more robust. Influenzanet might thus provide a valu-

able tool for determining the relative vaccine effectiveness in real-time.

The vaccine effectiveness is regularly determined by I-MOVE (Influenza

Monitoring Vaccine Effectiveness in Europe) within the ECDC. For all patients

with ILI who visit a sentinel GP and are swabbed, the vaccine effectiveness is

determined based on laboratory confirmed influenza. According to Influen-

zanet data, vaccinated participants in the Netherlands are twice as likely to

seek medical care if they have ILI than unvaccinated participants (Figure 6.10).

Such a bias might affect the determined vaccine effectiveness by I-MOVE.

According to large meta-studies the estimated vaccine effects vary widely

(Demicheli et al., 2009; Jefferson et al., 2010), and even the interpreta-

tion of the same data can be controversial (Beyer et al., 2013). As shown,
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Figure 6.10: Medical care seeking rate in vaccinate and unvaccinated

participants in the Netherlands (2003–2013).

the vaccine effectiveness does not only vary from season to season (Table 3.2,

Chapter 3, page 49), but the estimated vaccine effectiveness depends strongly

on the used method and assumptions (Figure 6.8). Since various studies on

vaccine effects, see for example (Beyer et al., 2013), have long lists of com-

peting interests with the pharmaceutical industry, ambiguity in determining

vaccine effectiveness is a reason for concern. According to a study on news-

papers in the UK in 2009–2010, academics with competing interests assessed

the risk for the new H1N1pdm influenza strain higher and had increased ad-

vocacy for pharmaceutical products to counter this risk (Mandeville et al.,

2014).
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6.3.3 The challenge of real-time monitoring

It is often suggested that self-reporting surveillance systems might be able

to detect changes in disease activity earlier than the traditional surveillance

systems, such as for Influenzanet in the Netherlands (Friesema et al., 2009),

FluNearYou in the U.S.A. (Chunara et al., 2012), and FluTracking in Aus-

tralia (Dalton et al., 2009). For Google Flu Trends, another well known

online ILI surveillance system, it has been shown that it could consistently

detect changes in ILI trends 1–2 weeks earlier during the 2007–2008 season in

the U.S.A. than the traditional clinical surveillance by CDC (Ginsberg et al.,

2009). However, such early detection has never been shown for any of the

Influenzanet-like systems. Here the capabilities for real-time detection of ILI

activity by Influenzanet and sentinel GP surveillance system as coordinated

by ECDC are compared for the Netherlands, Belgium and Portugal (seasons

2003–2013).

Run-time detection of disease activity above baseline should not be con-

fused with detection of a newly emerging disease. A cohort-based system

such as Influenzanet, which so far has been able to recruit at maximum 0.07%

of the population (Table 6.1), is not a viable system for early warning for the

first cases of a new disease. This section is dedicated to the determination of

whether the ILI activity, which is present throughout the whole season, is sig-

nificantly higher than normal, signaling the beginning of the yearly influenza

epidemic.
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6.3.3.1 ILI activity

To determine the ILI activity in Influenzanet, both retrospectively and in real-

time, it has to be determined how the number of ILI cases are counted (nu-

merator), and what is the cohort size (denominator).

The simplest way to determine the number of ILI cases (numerator), is to

count each week the number of completed questionnaires which fit the ILI

case definition, leading to a so-called ILI reporting rate. The denominator

can be either determined as the total number of registered participants, or the

number of completed questionnaires each week. Since Influenzanet partici-

pation is online and voluntary, some participants lose interest in the system

during the season and stop reporting. Determining the ILI reporting rate

based on the number of registered participants therefore underestimates the

ILI activity. Despite the weekly reminders sent by email, participants some-

times skip reporting during a certain week (Figure 6.11). Determining the

ILI reporting rate based on the weekly number of completed questionnaires

therefore overestimates the ILI activity.
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Since Influenzanet participants also report when their symptoms started, a

more appropriate way to determine the ILI activity in Influenzanet is based

on the onset day, leading to a so-called ILI incidence. The number of ILI cases

(numerator) is determined as the total number of participants who fit the ILI

case definitions, for which the onset day (based on the fever onset day) was in

that week. The denominator is determined each week as the number of par-

ticipants who have completed a symptoms questionnaire covering that week.

Throughout the thesis the ILI activity by Influenzanet is always determined

as the ILI incidence.

In Figure 6.12 the three alternatives for determining the ILI activity are

plotted: the ILI reporting rate based on all registered participants, the ILI

reporting rate based on the number of completed questionnaires each week,

and the ILI incidence based on the day of ILI onset and the number of active
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participants. The ILI incidence precedes the ILI reporting rate by a few days

since it is based on the onset day of the symptoms, and not on the day of

reporting. The amount of over- and underestimation of the ILI reporting

rates is also visualized.

Since the Influenzanet ILI incidence is based on the day the symptoms

started, whereas the ECDC ILI incidence is based on the day a patient vis-

ited a GP the ILI incidence more closely resembles the real ILI activity in the

population. This can be important when linking ILI activity with weather vari-

ables (Chapter 4) or school closures (Eames et al., 2012). Although sentinel

GPs might start registering the onset day for patients they have diagnosed

with ILI, this can only be used to determined an ILI incidence at the end of

the season. Since ECDC cannot determine a dynamic denominator for the

cohort size, in real-time reporting the ILI incidence based on the onset day

would be consistently under estimated by ECDC.

In real-time monitoring, for participants who have not (yet) reported for a

certain week, it is still unknown whether they had an onset of ILI or not. These

participants are neither included into the numerator nor the denominator for

the ILI incidence. Participants who only reported over a part of the week are

counted as a fraction for the denominator. The determined ILI incidence is

therefore always preliminary in real-time monitoring, especially over the most

recent weeks, and will approach its final value when participants continue to

report in the following weeks.

6.3.3.2 Data collection

Influenzanet can update the ILI incidence in real-time as participants report

their symptoms online, orchestrated by the reminders sent to them on a

weekly basis. The email reminder can be sent to all participants on the same
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Figure 6.13: Weekday on which Influenzanet participants report for var-
ious countries (2012–2013).

day, or spread throughout the week. As Figure 6.13 shows, in the Netherlands

and Belgium the reminders are sent throughout the week, whereas in Portu-

gal, Italy, United Kingdom, Sweden and Spain the email reminders are sent

once a week. Which method is used has implications for the time when data

becomes available.

If the email reminder is sent to all participants on the same day, most symp-

toms questionnaire will be completed within a day. Influenzanet is therefore

able to significantly update the ILI incidence once every week with a delay of

1 day based on complete data from most participants. If all email reminders

are sent throughout the week, every day new information becomes available,

and every day the latest weekly ILI incidence over the preceding 7 days can

be updated. However, the determined ILI incidence over the most recent days

is preliminary, since for many participants it is still unknown whether they

had an onset of symptoms or not.
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Sentinel doctors report at the end of every week the number of patients they

diagnosed with ILI, and the weekly ILI incidence is reported and published

by ECDC on the following Wednesday or Thursday. The reported incidence

is usually slightly updated one week later to correct for late-reporting GPs.

Due to the 2–5 days between the onset of ILI and the GP visit (Figure 3.4,

Chapter 3, page 45), and the 3–4 days the ECDC needs to collect and pub-

lish, Influenzanet will be able report changes in activity 5–9 days earlier than

ECDC, and based on the daily preliminary ILI incidence even earlier. This

advantage would mostly disappear, however, if sentinel doctors would start

to report daily (Carrat et al., 1998; Lange and Schöttler, 2002).

6.3.3.3 Epidemic onset detection

Having a smaller time lag in data collection does not necessary indicate that

Influenzanet can detect changes in ILI trends earlier than ECDC. In real-time

monitoring each system has to be able to determine whether changes in the

detected ILI activity are due to real changes in ILI activity in the population,

or are caused by stochastic uncertainty or measurement error. One way to

evaluate the real-time power of a system, is to evaluate when each system is

able to detect the onset of the yearly influenza epidemic.

To determine when the measured ILI activity is epidemic, first it has to be

determined what ILI activity can be considered non-epidemic. One way to

determine the baseline non-epidemic ILI incidence is to fit a general function

to the historic non-epidemic ILI incidences:

B(t) = A · sin
(
(t− H) · 2π

365

)
+ V
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with parameters amplitude (A), horizontal shift (H) and vertical shift (V).

Such general function was first applied to epidemic detection by (Serfling,

1963). Here no linear term for a secular trend is considered and only one

Fourier term is included.

Various methods have been applied to choose which historic ILI incidences

can be considered non-epidemic, such as only considering non-epidemic years

(Serfling, 1963), removing the 25% highest ILI activities (Viboud et al., 2004),

removing the ILI rate above a certain threshold (Costagliola et al., 1991),

and removing the period when the ILI activity increased significantly (Vega

et al., 2013).

Since influenza-like illness is used as a proxy for influenza infections, it is

also possible to look at the number of laboratory confirmed influenza cases

to determine when ILI activity can be considered epidemic. In (Cowling

et al., 2006) the non-epidemic periods are defined as those weeks when the

percentage of samples tested positive for influenza is below a certain thresh-

old. Based on the yearly reports published by ECDC, which only list the

number of positive samples per week, the influenza period for each season is

defined as those weeks when the number of positive samples is at least 15%

of the maximum number of positive samples in that season (3-week average).

For baseline fitting only the ILI incidences outside these determined influenza

periods are included.

Figure 6.14B shows the absolute number of samples taken by the sentinel

GPs and tested positive for influenza in the Netherlands 2007–2011, indicating

the influenza period. In Figure 6.14A the ILI incidence as determined by

Influenza is plotted, as well as the best fit for the baseline ILI incidence. The

somewhat subjective method to choose the weeks when the ILI activity can

be considered non-epidemic, will lead to different ILI baselines.
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Figure 6.14: Influenzanet ILI incidence, baseline, and confirmed in-
fluenza cases in the Netherlands (2007–2011). The ILI incidence by In-
fluenzanet is defined as the number of ILI onsets per 100,000 participant-
weeks. The epidemic periods are defined by the influenza periods, the
weeks when the number of positive samples is at least 15% of the maxi-
mum number of positive samples in a season (3-week average).
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Next it has to be determined whether the determined ILI incidence is sig-

nificantly above baseline, usually by defining a certain threshold for epidemic

activity. A common approach is to determine the variance in the historic

non-epidemic ILI incidence, and determine the epidemic threshold such that

the probability that the ILI activity is above this threshold is less than 5%

(Serfling, 1963; Pelat et al., 2007). In (Vega et al., 2013) the threshold for

epidemic activity is defined by fitting a constant baseline function only to the

highest ILI rates of the pre-epidemic periods.

These methods to determine the threshold for epidemic activity do not

work very well for Influenzanet. The number of participants can change from

season to season, and in real-time monitoring the preliminary ILI incidence

is determined by a lower number of participants as the data are still being

entered. A lower number of participants leads to more uncertainty in the de-

termined ILI incidence, and thus to a higher threshold. Therefore, the thresh-

old for epidemic activity in Influenzanet cannot be based (only) on the the

variance of historic Influenzanet ILI incidences.

Here we assume that the uncertainty in the measured ILI incidence by In-

fluenzanet is only due to the sampling bias. Suppose that during a certain

week Nt Influenzanet participants are active and the baseline incidence is es-

timated by bt. The number of ILI onsets during a non-epidemic period can be

considered a binomial experiment

It ∼ Bin(Nt, bt)

which for large a number of participants can be approximated by the Pois-

son distribution with parameter btNt with a continuous approximation in the

Gamma distribution with parameters (btNt, 1).

164



6.3 influenzanet : remaining challenges

100 1000 10000 100000

Active participants

0

500

1000

1500

2000

IL
I/

10
0,

00
0

Threshold for epidemic activity
Baseline

Detectable ILI activity

Figure 6.15: Threshold for epidemic detection and detectable ILI activ-
ity for various number of active participants. The ILI incidence by In-
fluenzanet is defined as the number of ILI onsets per 100,000 participant-
weeks. The baseline ILI incidence is fixed at 300 per 100,000.

The threshold Tt = Xt/Nt is determined, such that the probability to ob-

serve more than Xt cases is less than 5%

Xt = inf {xt : P(It > xt) < 0.05}

A higher number of participants leads to a lower threshold (Figure 6.15).

A different question is given that the actual ILI incidence in the whole

population is pt, what is the minimal number of active participants needed to

detect that this ILI activity is significantly above baseline. Based on (Rosner,

2006), the minimal sample size to distinguish the output of a Bernoulli trial

from a known proportion can be estimated by:

Nt =

(
z1−α

√
bt − b2

t + z1−β

√
pt − p2

t

)2

(pt − bt)2
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with power 1− β and significance level α for two-tailed and 2α for one-tailed

test. Figure 6.15 shows for various ILI incidences in the population the mini-

mal number of active participants needed to determine with power 80% that

the measured ILI incidence is significantly (level 5%) above a baseline of 300

per 100,000.

6.3.3.4 Detection

For ECDC, each season the onset of the ILI epidemic is detected if the mea-

sured ILI activity is at least two consecutive weeks above the threshold for epi-

demic activity. The threshold has been taken from (Vega et al., 2013), where

it has been determined for various European countries based on the moving

epidemic method (MEM). Although the published ILI activity by ECDC is

usually slightly updated one week later, it is assumed that the final ILI inci-

dence has always been published on the following Wednesday.

For Influenzanet, the ILI epidemic is detected if the measured ILI incidence

is for 14 consecutive days above the threshold for epidemic activity. The

threshold for each day is based on the baseline incidence and the number of

active participants on that day. Real-time monitoring is simulated by creating

a snapshot of the database as it existed on each day of the season. The detec-

tion day is the first day on which based on the available data the epidemic

would have been detected.

In real-time monitoring, the preliminary ILI incidence over the most recent

weeks is based on fewer participants, and therefore the threshold is higher.

For countries where most participants report every week (Netherlands and

Belgium, Figure 6.11), the preliminary ILI incidence does not contain a con-

sistent bias compared to the final ILI incidence, but in countries where many
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participants do not report every week, the preliminary ILI incidence is on

average over estimated (data not shown).

Table 6.4 lists for all seasons when the epidemic was detected by Influen-

zanet and by ECDC. In the Netherlands, Influenzanet detected the onset of

the ILI epidemic on average two weeks earlier than ECDC, and in the season

2011–2012 no epidemic was detected by ECDC. In 2007–2008 the ILI epidemic

was detected 6 weeks earlier than ECDC, since Influenzanet measured two ILI

peaks, whereas ECDC only measured the second.

In the Netherlands and Belgium the onset of the ILI epidemic was detected

significantly earlier by ECDC during the pandemic season 2009–2010. This

could be related to increase anxiety in the population, leading to an increased

rate at which participants visit their GP (Keramarou et al., 2011). In (de

Lange et al., 2013) the ILI detection capacity for Influenzanet, ECDC, and

three other systems are compared during the season 2009–2010, and in (Vega

et al., 2013) the performance of the moving epidemic method (MEM) is tested

for all countries for the season 2009–2010. Table 6.4 indicates that the pan-

demic season might not have been the most typical season to evaluate the

performance of ILI surveillance systems.

In Belgium, Influenzanet and ECDC detected the ILI epidemic on average in

the same week, and during in the season 2010–2011 no epidemic was detected

by Influenzanet. During the seasons 2003–2005 Influenzanet had significantly

less participants (Figure 3.5, Chapter 3, page 47), which explains the later

detection of the onset of the ILI epidemic.

In Portugal, Influenzanet detected the ILI epidemic later than ECDC, and

during three out of eight seasons (2005–2006, 2007–2008 and 2012–2013) no

onset of the ILI epidemic was detected by Influenzanet.
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Table 6.4: Detection times of the ILI epidemic by Influenzanet and ECDC
in the Netherlands, Belgium, and Portugal (2003–2013).

Country Season Influenzanet ECDC Difference

Netherlands 2003/04 Fri 12 Dec Wed 24 Dec 12

2004/05 Tue 8 Feb Wed 16 Feb 8

2005/06 Thu 16 Feb Wed 15 Feb –1

2006/07 Thu 22 Feb Wed 14 Mar 20

2007/08 Fri 11 Jan Wed 27 Feb 47

2008/09 Thu 25 Dec Wed 14 Jan 20

2009/10 Tue 3 Nov Wed 21 Oct –13

2010/11 Mon 3 Jan Wed 19 Jan 16

2011/12 Fri 24 Feb * *
2012/13 Tue 1 Jan Wed 16 Jan 15

Belgium 2003/04 Tue 9 Dec Wed 26 Nov –13

2004/05 Mon 7 Feb Wed 2 Feb –5

2005/06 Sun 19 Feb Wed 22 Feb 3

2006/07 Thu 15 Feb Wed 14 Feb –1

2007/08 Tue 8 Jan Wed 23 Jan 15

2008/09 Sun 18 Jan Wed 21 Jan 3

2009/10 Wed 4 Nov Wed 7 Oct –28

2010/11 * Wed 29 Dec *
2011/12 Fri 17 Feb Wed 22 Feb 5

2012/13 Fri 1 Feb Wed 16 Jan –16

Portugal 2005/06 * Wed 1 Mar *
2006/07 Fri 2 Feb Wed 31 Jan –2

2007/08 * Wed 16 Jan *
2008/09 Sat 13 Dec Wed 10 Dec –3

2009/10 Sun 8 Nov Wed 11 Nov 3

2010/11 Thu 20 Jan Wed 22 Dec –29

2011/12 Tue 14 Feb Wed 15 Feb 1

2012/13 * Wed 30 Jan *

168



6.3 influenzanet : remaining challenges

0

200

400

600

800

1000

1200

1400

IL
I/

10
0,

00
0

Influenzanet
25 Dec 2008

A

Dec Jan Feb Mar Apr
0

50

100

150

200

250

IL
I/

10
0,

00
0

ECDC
25 Dec 2008

D

Influenzanet
14 Jan 2009

B

Dec Jan Feb Mar Apr

ECDC
14 Jan 2009

E

Influenzanet
C

Dec Jan Feb Mar Apr

ECDC
F

2008 – 2009

ILI activity Baseline Threshold for epidemic activity

Figure 6.16: ILI epidemic detection in the Netherlands (2008–2009) by A–
C) Influenzanet, and D–F) ECDC. The ILI incidence by Influenzanet is
defined as the number of ILI onsets per 100,000 participant-weeks. The
ILI incidence by ECDC is defined as the weekly number of patient visits
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Figure 6.17: Detection of the ILI epidemic in Portugal (2012–2013) by A)
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Figure 6.16 shows the measured ILI activity by both systems in the Nether-

lands during the season 2008–2009 — a typical season in Table 6.4 — with

snapshots of the available data on the days the ILI epidemic was detected by

either system. Influenzanet was able to detect the onset of the ILI epidemic

2–3 weeks earlier than ECDC.

Figure 6.17 shows the measured ILI activity by both systems in Portugal

during the season 2012–2013. Although Influenzanet measured increased ILI

activity during the same time an ILI epidemic was detected by ECDC, the ILI

activity was never for longer than two weeks above the threshold for epidemic

activity and could therefore not be distinguished significantly from baseline

ILI incidence.

6.3.3.5 Perspective

Not too much emphasis should be put on the exact differences in detection

times between both systems (Table 6.4), since the thresholds for epidemic ac-

tivity are determined by different methods. However, it seems that given

enough participants, such as in the Netherlands, Influenzanet is able to detect

the onset of the ILI epidemic up to 2 weeks earlier than ECDC. For coun-

tries with relatively few participants, such as in Portugal, Influenzanet cannot

detect the onset of an ILI epidemic earlier.

The capacity for earlier detection of the onset of the ILI epidemic based

on identifying a threshold, is probably not the most consistent advantage for

a self-reporting system such as Influenzanet (Section 6.1). If sentinel GPs

would start to report the latest ILI data daily and electronically, most time-

advantage for Influenzanet would probably disappear. However, based on

more sophisticated methods, taking full advantage of all available symptoms

data and personal characteristics, Influenzanet might be able to detect signals
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which predict the imminent onset of an ILI epidemic in the whole population

(see also Section 6.3.4).
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6.3.4 The challenge of establishing a paradigm shift in clinical surveillance

In standard analyses, all symptom data are basically summarized to deter-

mining if a participant has ILI or not, based on a certain ILI case definition.

The ILI rate can be corrected for the whole population based on individual

data from the intake questionnaire. However, to reduce all the data collected

by Influenzanet to a single weekly ILI incidence, hides a lot of the system’s

potential.

Various different ILI case definitions can be applied in parallel and retro-

spectively. Although case definitions are generally only based on symptoms,

even more sophisticated definitions can be applied. For example, age and

chronic conditions can be included, and even external factors such as current

weather (see Chapter 4) can be considered. Furthermore, the ILI incidence

can be determined independently in various critical subgroups, such as those

who are vaccinated and persons with high contact rates.

Influenzanet and ECDC monitor influenza-like illness, since it is easier (and

less expensive) to determine the incidence of a clinical syndrome. However,

the incidence of influenza infections is arguably more interesting. Since not

all persons infected with influenza exhibit the same symptoms (Lau et al.,

2010), and infections with other viruses such as RSV could lead to symptoms

similar to influenza, the ideal clinical case definition for influenza that applies

universally, does not exists. Many different ILI case definitions are in use by

the sentinel GPs throughout Europe (Aguilera et al., 2003). By applying a

relatively weak ILI case definition, many people who fit the ILI case definition

might be infected with something other than influenza, whereas by applying

a relatively strong ILI case definition, persons with a mild influenza infection

would not fit the case definition.
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In (Patterson-Lomba et al., 2014) the attack rate of real influenza infec-

tions is estimated for the Netherlands in 2012–2013. It assumes that only ILI

cases above a determined baseline in Influenzanet are due to influenza in-

fection, and that from all participants with influenza only a fraction fits the

ILI case definition. This fraction is estimated from a study which monitored

daily symptoms in persons with RT-PCR confirmed influenza infections (Lau

et al., 2010),

However, instead of relying on a single ILI case definition, Influenzanet

has the power to determine, in real-time and retrospectively, the incidence of

various case definitions Ii simultaneously. For example, it might be possible

to choose these case definitions such that any participant will fit one and only

case definition, such that the real influenza incidence Flu(t) can be estimated

by:

Flu(t) = I1(t)P(Flu|I1, t) + . . . + In(t)P(Flu|In, t)

where P(Flu|In, t) is the probability that a participant in week t fitting the

case definition for In has an actual influenza infection. In general, the more

ILI-symptoms a participant reports, the more likely that this participant has a

real influenza infection, whereas during weeks when RSV is circulating, this

probability is lower. Although determining these various case definitions with

corresponding probabilities could be an enormous challenge, the results col-

lected by (Lau et al., 2010) and provided online5 make substantial progress

in that direction.

Such a probabilistic approach to surveillance, for which each participant is

given a probability of having the infection of interest (in this case, influenza),

5 http://web.hku.hk/∼bcowling/influenza/HK NPI study.htm
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might give a more accurate estimation of the real attack rate of influenza in

the population than any single clinical case definition.
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6.4 integration of pathogen diversity with disease epidemiol-

ogy

For both influenza H3N2 and Plasmodium falciparum, the pathogen diversity

is critical in understanding the epidemiology of these infectious diseases.

For Influenza A H3N2, each year new strains arise due to mutation, which

gradually replace the older strains and generating a ladder-like phylogenetic

tree. Various distinct mechanisms have been proposed to explain the char-

acteristic shape of influenza phylogenetics, such as a short-term full cross-

immunity among strains (Ferguson et al., 2003), a low prevalence during

summer (van Noort, 2005), a specific genotype-to-phenotype mapping (Koelle

et al., 2006), and a narrow immune response in children (Parisi et al., 2013).

All proposed models have in common that they implement a mutation rate

for the influenza virus, cross-immunity among strains, and seasonality in the

transmission rate. Although the models aim to reproduce seasonal epidemics,

none of the models is actually fitted to epidemiological observations, due to

the complexity of required statistics.

The objective of the model in Chapter 4 and Section 6.2 was not to explain

the typical antigenic diversity of influenza H3N2, but to determine the role of

weather elements on the yearly epidemics of influenza-like illness. Influenza

transmission models are fitted to actual observations of influenza-like illness

and meteorological data on temperature and absolute humidity (Figure 4.5,

Chapter 4, page 80). The typical antigenic diversity of influenza is already in-

cluded into the model, although indirectly, by assuming full cross-immunity

for a single season whereas for each new season the model estimates inde-

pendently how many people will have become susceptible again to the new

circulating strains.
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Plasmodium falciparum is also characterized by immense antigenic diversity.

During the blood phase of infection, the parasite expresses certain variant

surface antigens (VSAs) of the PfEMP1 family on the surface of infected red

blood cells. Each malaria parasite has the ability to express around 60 dif-

ferent VSAs and generally only one is predominantly expressed at a given

time in a way that appears orchestrated by the host immune system. After

a specific immune response has been mounted, the parasite is either cleared

or switches expression to another VSA. A relatively conserved subset of these

VSAs is preferentially expressed in non-immune patients and related to severe

malaria, whereas more diverse subsets are related to uncomplicated malaria.

Empirical evidence suggests that most parasites are able to express VSAs from

this conserved subset.

Studies which aim to reproduce epidemiological observations can imple-

ment some effects of antigenic diversity of Plasmodium falciparum already into

the model. In (Aguas et al., 2008) a model is fitted to age-dependent attack

rates of hospitalizations of (severe) malaria in regions of various transmission

intensity. In the model a naive host which is exposed to the parasite will de-

velop severe malaria, which corresponds to the expression of a VSA of the

restricted subset. Each subsequent exposure will cause mild malaria, which

corresponds to the expression of a VSA from the more diverse subsets.

The objective of Chapter 5 was to generate the typical antigenic diversity in

the parasite population while reproducing observed serological trends. The

main hypothesis for the model is that all VSAs in the parasite population are

organized into blocks of antigenically related variants, characterized by their

dominance, and that each parasite can express a limited number of these VSA

blocks. Upon infection the parasite will express the most dominant VSA block
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for which the host has no prior immunity, and expression of a more dominant

VSA block increases the probability of severe malaria.

This initial model was able to reproduce the serological observations that

infected erythrocytes from people with either severe malaria (dominant VSA

block) or with a small antibody repertoire, are more often recognized by

serum of other people in the population. Due to the increased immunity

in the population against the dominant VSA blocks, the model predicts a

selective force against these dominant VSA blocks, creating a competitive ad-

vantage for parasites which only encode for low-dominance VSAs.

Experimental studies show that mice infected with a low virulence strain of

Plasmodium chabaudi can be superinfected if exposed to a more virulent strain

(de Roode et al., 2005a,b). This inspired the extension of the model, such

that an already infected host can be superinfected if exposed to a parasite

which is able to express a more dominant VSA block, where the probability

of superinfection depends on the difference in dominance. This mechanism

generates a competitive advantage for parasites which are able to express

high-dominance VSAs.

The two opposing selective forces generate a parasite population in which

most parasites contain both a restricted block of high dominance VSAs and a

increasingly diverse repertoire of low-dominance VSAs (Figure 5.4, Chapter 5,

page 103), while still reproducing the serological observations (Figure 5.2B,C,

Chapter 5, page 100).

The VSAs from the selected subset related to severe malaria — the domi-

nant VSA block in the model — are being considered important targets for

vaccine development (Hviid, 2010). Targeting only specific strains could have

an impact on the disease epidemiology. As an example, pneumococcal dis-

ease is caused by ~90 different Streptococcus pneumoniae serotypes, and 7 of
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the most commonly found to cause invasive disease in children are targeted

by the PCV7 vaccine. The introduction in 2000 of the PCV7 vaccine not only

led to a reduction in the rate of carriage of the vaccine serotypes, but the

incidence of the non-vaccine serotypes also increased (Hicks et al., 2007).

Mathematical models can play an important role in predicting how vaccina-

tion might impact the diversity of multi-type pathogens and disease.
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Viboud C, Boëlle PY, Pakdaman K, Carrat F, Valleron AJ, et al. (2004). In-
fluenza epidemics in the united states, france, and australia, 1972-1997. Emerg Infect
Dis, 10(1):32–39.

184



A
F R O M D Y N A M I C A L P R O C E S S E S T O L I K E L I H O O D

F U N C T I O N S

Sander P. van Noort1, Nico Stollenwerk2

1Instituto Gulbenkian de Ciência, Oeiras, Portugal

2 Universidade de Lisboa, Lisbon, Portugal

Based on:

Proceedings of CMMSE 2008, ISBN 978-84-612-1982-7

Proceedings of CMMSE 2009, ISBN 978-84-612-9727-6

185



from dynamical processes to likelihood functions

abstract

In epidemiological transmission processes, the stochasticity in the observed data can

be due to the observation process or due to the dynamics of the system. In case of the

latter, the master equation framework can be applied to deduce likelihood functions for

parameter estimation.

For more simple epidemiological processes, we derive complete analytic expressions

for the likelihood function and the best parameter estimators. For more elaborate

models, such as the full SIR model, we show how the likelihood function can be

expressed in terms of the solution to a partial differential equation.

Likelihood functions are commonly simulated numerically. The use of full or partial

analytic solutions, could increase the accuracy of the parameter estimation.

186



A.1 introduction

a.1 introduction

To model the stochasticity in epidemiological dynamic processes, the master

equation framework (van Kampen, 1992; Tomé and de Oliveira, 2001) can

be used to determine likelihood functions. Solutions for the master equation

can be achieved via generating functions or characteristic functions, the choice

between the two often determined by ease or difficulty of solving the PDE and

the subsequent back transformation to the original probabilities (van Kampen,

1992; Bharucha-Reid, 1960). The likelihood functions can be maximized for

parameter estimation and data fitting (Honerkamp, 1993).

The likelihood functions for epidemiological processes are commonly deter-

mined by complete numerical simulation (Stollenwerk and Briggs, 2000).

Also approximations such as the Poisson approximation (Gustafsson and

Sternad, 2007) over small time intervals are applied, which becomes less and

less accurate for longer integration times.

Evaluation of the fitting process can be obtained via Fisher information

(Stollenwerk et al., 2001) or in the Bayesian framework via the posterior

distribution for the parameters (Sivia, 1996). Hypothesis testing and model

selection can be achieved by the Kolomgorov-Smirnov test, either numerically

(Press et al., 1992) or analytically (Rényi, 1962). A comparison of various

models to one time series in a population biological context is demonstrated

in (Stollenwerk et al., 2001).

In this work, we will give the master equation for various epidemiological

processes, starting with the complete SIR model to the more simple processes.

We show how the likelihood function can be expressed in terms of the solution

to a partial differential equations, and derive a complete analytic solution for

the likelihood function when the PDE is analytically solvable.
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a.2 method and results

For various epidemiological processes, we will give the reaction scheme and

the corresponding master equation. Based on the generating function, we will

derive a partial differential equation, whose solution can be used to solve the

master equation and the likelihood function. For the processes for which the

PDE is solvable, we derive the solution and the complete expression for the

likelihood function, and the best parameter estimators where feasible. Solu-

tions from the more complex processes are used as a starting points for the

more simple processes.

The dynamics of the mean values are the starting point of deterministic

modeling. In the final section, we show how the dynamics of the mean follows

directly from the master equation and its solution.

a.2.1 SIR model

We first consider the basic epidemic process known as the SIR system, an

important system for the analysis of recurrent outbreaks in seasonal influenza

(Casagrandi et al., 2006). Susceptible individuals S become infected on

contact with already infected I with infection rate β, and recover with rate γ

into the recovery R class. The SIR system is given by the reaction scheme:

S + I
β−→ I + I

I
γ−→ R
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A.2 method and results

for a fixed population size S + I + R = N. The master equation for the vari-

ables S and I is given by:

d
dt

p(S, I, t) =
β

N
(I − 1)(S + 1) p(S + 1, I − 1, t)

+ γ(I + 1) p(S, I + 1, t)

− β

N
SI p(S, I, t)

− γI p(S, I, t)

(A.1)

where p(S, I, t) is the probability to have S susceptibles and I infected at time

t, with initial condition p(S, I, t0) = δS=S0 · δI=I0 .

To solve the master equation, we define the generating function f as:

f (x, y, t) = 〈xIyS〉 =
N

∑
I=0

N

∑
S=0

xIyS p(S, I, t) (A.2)

The probability p(I, S, t) can be written in terms of the generating function as:

p(I, S, t) =
1

I! S!
∂(I+S) f (x, y, t)

∂xI∂yS

∣∣∣∣
x=0,y=0

(A.3)

which follows from the Taylor’s expansion of the generating function (A.2) at

(x, y) = (0, 0):

f (x, y, t) = ∑
I

∑
S

xIyS

I! S!
∂(I+S) f (x, y, t)

∂xI∂yS

∣∣∣∣
x=0,y=0

To find a solution for the generating function f , we first note that the first

and second-order partial derivatives are given by:

∂ f (x, y, t)
∂x

=
N

∑
I=0

N

∑
S=0

IxI−1yS p(S, I, t) (A.4)
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and
∂ f (x, y, t)

∂y
=

N

∑
I=0

N

∑
S=0

SxIyS−1 p(S, I, t) (A.5)

and
∂2 f (x, y, t)

∂x∂y
=

N

∑
I=0

N

∑
S=0

ISxI−1yS−1 p(S, I, t) (A.6)

The time dynamics for the generating function f is given by

∂

∂t
f (x, y, t) =

N

∑
I=0

N

∑
S=0

xIyS d
dt

p(S, I, t)

and by inserting the master equation (A.1) and substituting the partial deriva-

tives (A.4), (A.5) and (A.6) we arrive at the following partial differential equa-

tion for the generating function:

∂ f
∂t

=
β

N
x · (x− y)

∂2 f
∂x∂y

+ γ(1− x)
∂ f
∂x

(A.7)

with initial condition f (x, y, t0) = xI0 yS0 .

For observed data points S and I at times t0, . . . , tn, the likelihood function

L(β, γ) is defined as the joint probability of the observations:

L(β, γ) = P(Sn, In, tn, . . . , S0, I0, t0)

=
n−1

∏
ν=0

p(Sν+1, Iν+1, tν+1|Sν, Iν, tν) · p(S0, I0, t0)
(A.8)

which can be maximized to obtain the most likely parameter values given the

observed data. No analytic solution for the PDE (A.7) exists, so numerical

methods have to be applied.
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a.2.2 Onset of the epidemic

We will now explore a simpler epidemic process in which there is an abundant

number of susceptible individuals S∗. This model is an approximation of the

initial exponential phase of an SIR epidemic, in which the number of infected

individual is still relatively small, such that the pool of susceptibles can be

considered constant. The reaction scheme is given by:

S∗ + I
β−→ I + I

I
γ−→ R

where S∗ denotes the constant size of the pool of susceptibles. The master

equation is given by:

d
dt

p(I, t) =
β

N
S∗(I − 1)p(I − 1, t) + γ(I + 1) p(I + 1, t)

−
(

β

N
S∗ I + γI

)
p(I, t)

This process is similar to the SIR system, where the probability p is truncated

by:

p(S, I, t) = δS=S∗ p(I, t)

such that:

f (x, y, t) = yS∗
N

∑
I=0

xI p(I, t)

By defining a new generating function g as

g(x, t) = 〈xI〉 = f (x, y, t)|y=1
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the PDE for the SIR system (A.7) is simplified to:

∂g
∂t

= (1− x)(γ− β̃x)
∂g
∂x

(A.9)

where β̃ = βS∗

N and initial condition g(x, t0) = xI0 .

We can solve this PDE analytically by introducing an arbitrary function Φ

such that g(x, t) = Φ(z), and the separation of variables z(x, t) = u(x) · v(t):

g(x, t) = Φ(z) = Φ(u(x) · v(t))

The direct partial derivative to time gives:

∂

∂t
g(x, t) =

dΦ
dz
· ∂z

∂t

=
dΦ
dz
· u(x)

∂v
∂t

while inserting the PDE (A.9) and determining the partial derivative to time

gives:

∂

∂t
g(x, t) = (1− x)(γ− β̃x)

∂ f
∂x

= (1− x)(γ− β̃x)
dΦ
dz

∂z
∂x

= (1− x)(γ− β̃x)
dΦ
dz
· ∂u

∂x
v(t)

This separates the PDE (A.9) into two ODEs for v(t) and u(x):

dv
dt

= v(t)

du
dx

=
u(x)

(1− x)(γ− β̃x)
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and arbitrary function Φ(z).

Integration of the ODEs gives the special solutions

v(t) = et

u(x) =

(
x− 1
x− γ

β̃

) 1
β̃−γ

and as solution for the separation of variables

z(x, t) =

(
x− 1
x− γ

β̃

) 1
β̃−γ

et (A.10)

and the inverse relation

x =

γ

β̃
(ze−t)

β̃−γ − 1

(ze−t)
β̃−γ − 1

From the initial condition g(x, t0) = xI0 , it follows that

g(x, t0) = Φ(z(x, t0)) =

 γ

β̃
(z(x, t0)e−t)

β̃−γ − 1

(z(x, t0)e−t)
β̃−γ − 1

I0

Now we take z(x, t) from (A.10) for all times t to obtain the general solution:

g(x, t) = Φ(z(x, t)) =

 γ

β̃
(x− 1)e(β̃−γ)(t−t0) −

(
x− γ

β̃

)
(x− 1)e(β̃−γ)(t−t0) −

(
x− γ

β̃

)
I0

(A.11)

From the solution of the generating function, we can obtain the solution for

the master equation similar to (A.3) as:

p(I, t) =
1
I!

∂I g(x, t)
∂xI

∣∣∣∣
x=0
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No explicit analytic solution for the nth derivative of the generating function

g exists. For calculating the likelihood function (A.8) and the maximum-

likelihood, the derivative operator ∂Iν+1 /∂xIν+1 should either by calculated nu-

merically or by symbolic transformation computer programs. To determine

the maximum likelihood for the two parameters, 2-dimensional Newton’s

method could be used.

a.2.3 Constant force of infection

We will now explore the epidemic process, where a pool of susceptibles is

exposed to a constant force of infection λ:

S λ−→ I

where the master equation is given by:

d
dt

p(S, t) = λ(S− 1) p(S− 1, t)− λS p(S, t)

This system is equivalent to the previous described SI model with a con-

stant pool of susceptibles, setting β = 0 and swapping the variables I and R

to S and I, respectively. For a generating function h(x, t) defined by

h(x, t) = 〈SI〉

the PDE (A.7) is simplified to:

∂h
∂t

= λ(1− x)
∂h
∂x
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while its solution (A.11) to

h(x, t) =
(

1− (1− x)e−λ(t−t0)
)S0

Via complete induction it follows that:

∂S f (x, t)
∂xS =

S0!
(S0 − S)!

(
e−λ(t−t0)

)S (
1− (1− x)e−λ(t−t0)

)S0−S

such that from (A.3) it follows that:

p(S, t) =
1
S!

∂S f (x, t)
∂xS

∣∣∣∣
x=0

=

S0

S

(e−λ(t−t0)
)S (

1− e−λ(t−t0)
)S0−S

(A.12)

For observed data points in a time series (S0, . . . , Sn) at times (t0, . . . tn), the

likelihood function (A.8) is given by:

L(λ) =
n−1

∏
ν=0

 Sν

Sν+1

 (
e−λ(tν+1−tν)

)Sν+1
(

1− e−λ(tν+1−tν)
)Sν−Sν+1

and the log-likelihood ` = log L by:

`(λ) =
n−1

∑
ν=0

(log Γ(Sν + 1)− log Γ(Sν+1 + 1)− log Γ(Sν − Sν+1 + 1)

−λSν+1(tν+1 − tν) + (Sν − Sν+1) log(1− e−λ(tν+1−tν))
)

using the gamma function x! = Γ(x + 1). To obtain the most likely param-

eter values given the data, the log-likelihood function has to be maximized:

d`/dλ = 0.
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If we assume that the time steps are equally distributed with step ∆t, the

derivative to λ is given by:

d`
dλ

=
1

1− e−λ∆t

n−1

∑
ν=0

(Sν − Sν+1) · e−λ∆t · ∆t−
n−1

∑
ν=0

(Sν+1) · ∆t

and from setting d`
dλ

= 0, the best estimator λ̂ is given by:

λ̂ =
1

∆t
log

(
∑n−1

ν=0 Sν

∑n−1
ν=0 Sν+1

)

From S + I = N, the estimator λ̂ can also be expressed as a function of the

cumulative number of infected I:

λ̂ =
1

∆t
log

(
N − 1

n ∑n−1
ν=0 Iν

N − 1
n ∑n−1

ν=0 Iν+1

)
(A.13)

a.2.4 Constant influx

A very simple epidemic process is constant influx of new infected, represented

as a Poisson counting process with constant rate. This can be interpreted as

the noise floor of infected individuals before a seasonal outbreak, where the

force of infection is constant and there is an abundant number of susceptibles.

The reaction scheme is given by

µ−→ I

where the master equation is given by:

d
dt

p(I, t) = µ p(I − 1, t)− µ p(I, t)
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This system is equivalent to system with a constant force of infection and an

abundant number of susceptibles S∗, such that S∗ � I and µ = λS∗. The

probability function (A.12), by noting that 1− e−µ ≈ µ, simplifies to:

p(I, t|I0, t0) =
(µ(t− t0))I−I0

(I − I0)!
e−µ(t−t0)

The best estimator as a function of the data points (A.13) simplifies to:

µ̂ =
In − I0

tn − t0

a.2.5 Solutions of the mean

For the SIR model in section A.2.1, we obtain the moments of the variables I

and S by evaluating the partial derivatives of the generating function at point

(x, y) = (1, 1),

∂ f (x, y, t)
∂x

∣∣∣∣
x=1,y=1

=
N

∑
I=0

N

∑
S=0

I · p(S, I, t) = 〈I〉

and
∂ f (x, y, t)

∂y

∣∣∣∣
x=1,y=1

=
N

∑
I=0

N

∑
S=0

S · p(S, I, t) = 〈S〉

and for the correlations

∂2 f (x, y, t)
∂x∂y

∣∣∣∣
x=1,y=1

=
N

∑
I=0

N

∑
S=0

SI · p(S, I, t) = 〈SI〉 .
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The dynamics of the mean value for S and I can be obtained via the gener-

ating function (A.2) and its PDE (A.7):

d
dt
〈S〉 = d

dt

(
∂ f (x, y, t)

∂y

∣∣∣∣
x=1,y=1

)

=

(
∂

∂y

(
∂ f
∂t

))∣∣∣∣
x=1,y=1

= − β

N
〈SI〉+ α(N − 〈S〉 − 〈I〉)

and similarly

d
dt
〈I〉 = d

dt

(
∂ f (x, y, t)

∂x

∣∣∣∣
x=1,y=1

)

=
β

N
〈SI〉 − γ〈I〉

By inserting the mean field approximation 〈SI〉 − 〈S〉〈I〉 ≈ 0, which ne-

glects higher moments, we arrive at the well known closed system ordinary

differential equations:

d
dt
〈S〉 = − β

N
〈I〉〈S〉

d
dt
〈I〉 = β

N
〈I〉〈S〉 − γ〈I〉

which are the starting point of deterministic modeling.

For the onset of the epidemic in section A.2.2, from (A.11) we can calculate

the solution for the mean value as

〈I(t)〉 = ∂ f (x, t)
∂x

∣∣∣∣
x=1

= I0 e(β̃−γ)(t−t0)

giving an exponential time dependence.
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a.3 discussion

For the standard susceptible-infected-recovered (SIR) epidemic process (Sec-

tion A.2.1), we have defined the likelihood function in terms of the solutions

to a partial differential equation (PDE) of second order, for which no analytic

solution exists. For simpler epidemic processes, such as the onset of the epi-

demic (section Section A.2.2), a constant force of infection (Section A.2.3) and

the constant influx of infected (Section A.2.4), the master equation led to a

solvable PDE and we determined the likelihood functions analytically.

The analytic expressions obtained here can be treated in future numeric

work. For epidemiological models in which the partial differential equation

can not be solved analytically we often have to use numerical methods to

obtain likelihood functions and their maximums (Stollenwerk and Briggs,

2000; Stollenwerk et al., 2001; Stollenwerk and Mikolajczyk, 2006) on

the basis of numerically simulating the respective master equations (Gille-

spie, 1976, 1978).

The determined likelihood function for the constant influx of infected has

been used to distinguish the start of the yearly influenza outbreaks and the

normal fluctuations in the noise floor of sporadic influenza cases (van Noort

and Stollenwerk, 2008). The determined likelihood function for the epi-

demic onset of a new unknown pathogen, could lead to more accurate esti-

mates of its infectiousness than the traditional deterministic model or numer-

ical simulations.

Analytic solutions for the likelihood functions can only be determined for

relatively simple epidemiological processes and assume no observation errors.

Most epidemiological processes are governed by more complex models and

have observational noise in the data, so rather than the direct application
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of the likelihood functions, they could be incorporated into more elaborate

algorithms for parameter estimation.
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significant changes compared to published articles

This appendix combines the analytic results from two articles published in

conference proceedings. Instead of deriving the solutions to each model sepa-

rately, the intermediate results from the more elaborate models are used as a

starting point for the more simple models. All applications of the simplified

models to Influenzanet data are removed.
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Rényi A (1962). Wahrscheinlichkeitsrechnung. VEB Deutscher Verlag der Wis-
senschaften, Berlin.

Sivia DS (1996). Data analysis: A Bayesian tutorial. Oxford University Press.

Stollenwerk N and Briggs KM (2000). Master equation solution of a plant disease
model. Physics Letters A, 274:84–91.

Stollenwerk N, Drepper F, and Siegel H (2001). Testing nonlinear stochastic
models on phytoplankton biomass time series. Ecological Modelling, 144:261–277.

Stollenwerk N and Mikolajczyk R (2006). Algorithm for parameter estimation in
nosocomial infection. Mathematical Modeling of Biological Systems, 2:23–34.
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B
S U P P L E M E N TA RY M AT E R I A L

Science is facts. Just as houses are made of stones, so science is made of

facts. But a pile of stones is not a house and a collection of facts is not

necessarily science.

Henri Poincaré
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b.1 time series analyses

This section contains the time series analyses for ILI activity from Influenzanet

and ECDC, as a supplement to Chapter 3. For both the weekly ILI incidence

of Influenzanet and ECDC, the week 27 is considered the first week of each

season, and each season consists of 52 weeks. Since Influenzanet in Italy

did never measure the ILI incidence during the summer weeks, in Italy the

week 38 is considered the first week of each season, and each season consists

of 35 weeks. Only seasons for which both Influenzanet and ECDC data are

available are considered: for the Netherlands and Belgium seasons 2003–2013,

for Portugal seasons 2005–2013 and for Italy seasons 2008–2013. The time

series are plotted in Figures B.1–B.4A,C.

The Box-Jenkins method is used to find for each time series the Autoregres-

sive integrated moving average (ARIMA) model which best fits the time series.

As a first step, each time series is made stationary by differencing. Since the

time series of Influenzanet and ECDC both show seasonality, each time series

is first seasonally differenced. Next, each time series is tested for stationar-

ity by both the augmented Dickey-Fuller (ADF) test and the Kwiatkowsky-

Philips-Schmidt-Shin (KPSS) test. Since the (seasonally differenced) ILI series

for Influenzanet in Italy fails the ADF test, this time series is also once ordi-

nary differenced. The autocorrelation and partial autocorrelation plots for the

raw and integrated data are plotted in Figures B.5–B.12A,B,D,E.

For the next step, for each time series various seasonal ARIMA models

with different orders (p, q, P, and Q) are iteratively fitted using maximum

likelihood. The model with the lowest Akaike information criterion (AIC)

for which the residuals resemble white noise is selected. The Ljung-Box test

is used to determine whether the residuals resemble white noise, where the
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lag for the Ljung-Box test is set to min(10, T/5), with T being the frequency

of the time series.1 The parameters and order for the best model are listed

in Table B.1. The residuals are plotted in Figures B.1–B.4B,D, and the auto-

correlation and partial autocorrelation plots for the residuals are plotted in

Figures B.5–B.12C,F.

All analyses were done using R version 3.1.0. The ARIMA fitting was done

using the function Arima from the R package forecast. The ADF and KPSS tests

were done using the functions adf.test and kpss.test from the R package tseries.

The Ljung-Box test was done using the function Box.test from the R package

stats.

1 http://robjhyndman.com/hyndsight/ljung-box-test/
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Table B.1: Estimated parameters for the fitted seasonal ARIMA models .
Parameters with a * are significant. SEE is the standard error of estimate.

Source Model SEE AIC Ljung–box

Influenzanet (nl) (2,0,1) (0,1,1)52 116 2523 0.99 (NS)
ECDC (nl) (3,0,0) (1,1,1)52 15 2962 0.93 (NS)
Influenzanet (be) (1,0,0) (0,1,1)52 160 2627 0.31 (NS)
ECDC (be) (4,0,0) (0,1,1)52 51 4340 0.98 (NS)
Influenzanet (pt) (3,0,0) (0,1,1)52 126 1941 0.57 (NS)
ECDC (pt) (3,0,1) (0,1,1)52 12 2571 0.65 (NS)
Influenzanet (it) (0,1,2) (0,1,1)35 245 1097 0.82 (NS)
ECDC (it) (2,0,4) (1,1,1)35 47 1295 0.66 (NS)

Source AR1 AR2 AR3 AR4 MA1 MA2 MA3 MA4

Influenzanet (nl) 1.8* –0.84* –1*
ECDC (nl) 1* 0.016 –0.19*
Influenzanet (be) 0.63*
ECDC (be) 1.3* –0.38* –0.19* 0.072

Influenzanet (pt) 0.6* 0.24* –0.16*
ECDC (pt) 1.3* –0.17 –0.25* –0.43*
Influenzanet (it) –0.65* –0.35*
ECDC (it) 1.7* –0.77* –0.11 –0.14 –0.19* –0.57*

Source SAR1 SMA1

Influenzanet (nl) –0.7*
ECDC (nl) –0.014 –0.75*
Influenzanet (be) –0.64*
ECDC (be) –1*
Influenzanet (pt) –1*
ECDC (pt) –0.78*
Influenzanet (it) –1*
ECDC (it) –0.063 –1*
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Figure B.1: ILI time series in the Netherlands (2003–2013) A) Influenzanet,
B) Influenzanet (detrended), C) ECDC, and D) ECDC (detrended). The
ILI incidence by Influenzanet is defined as the number of ILI onsets per
100,000 participant-weeks. The ILI incidence by ECDC is defined as the
weekly number of patient visits with ILI per 100,000.
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Figure B.2: ILI time series in Belgium (2003–2013) A) Influenzanet. The
ILI incidence by Influenzanet is defined as the number of ILI onsets per
100,000 participant-weeks. B) Influenzanet (detrended) C) ECDC. The ILI
incidence by ECDC is defined as the weekly number of patient visits with
ILI per 100,000. D) ECDC (detrended).
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Figure B.3: ILI time series in Portugal (2005–2013) A) Influenzanet, B) In-
fluenzanet (detrended), C) ECDC, and D) ECDC (detrended) The ILI inci-
dence by Influenzanet is defined as the number of ILI onsets per 100,000

participant-weeks. The ILI incidence by ECDC is defined as the weekly
number of patient visits with ILI per 100,000.
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Figure B.4: ILI time series in Italy (2008–2013) A) Influenzanet, B) Influen-
zanet (detrended), C) ECDC, and D) ECDC (detrended) The ILI inci-
dence by Influenzanet is defined as the number of ILI onsets per 100,000

participant-weeks. The ILI incidence by ECDC is defined as the weekly
number of patient visits with ILI per 100,000.
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Figure B.5: Autocorrelation for Influenzanet data in the Netherlands

. A–C) Autocorrelation, D–F) Partial autocorrelation. A,D) original series
B,E) integrated series, and C,F) detrended series.
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Figure B.6: Autocorrelation for ECDC data in the Netherlands
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Figure B.7: Autocorrelation for Influenzanet data in Belgium
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Figure B.8: Autocorrelation for ECDC data in Belgium
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Figure B.9: Autocorrelation for Influenzanet data in Portugal
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Figure B.10: Autocorrelation for ECDC data in Portugal
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Figure B.11: Autocorrelation for Influenzanet data in Italy
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Figure B.12: Autocorrelation for ECDC data in Italy
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b.2 extended risk analyses

This section contains an extended risk analyses, as a supplement to Chap-

ter 3. Table B.2 lists the extended results from the risk analyses. For each

country the average percentage of participants who belongs to each covariate

is listed. For each covariate the univariate risk ratio is determined. The vari-

ance inflation factors (VIF) for each covariate in the multivariate analyses is

determined.

Figure B.13 shows the periods for which the risk analyses was performed.

These periods are defined for each season and country as the weeks when the

number of influenza-confirmed samples as reported by ECDC was at least

15% of the maximum for that season (moving average over 3 weeks). For each

season, only ILI onsets during these periods are included, and only partici-

pants who were active during the full period are included.

All analyses were done using R version 3.1.0. The multivariate analyses was

done using function glm from the R package stats. The VIF are determined

using the function vif from the R package rms.
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Table B.2: Risk analyses (2) . Extension to Table 3.2, Chapter 3, page 49, in-
cluding univariate analyses, VIF and percentage per country (2003–2013).

Question Answer nl be pt it RR (univariate) VIF

Age <18 4 2 5 7 1.64 (1.50 – 1.78) 1.1
18–49 49 47 67 52 * –
50–64 35 37 21 28 0.77 (0.73 – 0.80) 1.3
65+ 13 13 6 13 0.39 (0.36 – 0.43) 1.3

Household Alone 18 13 11 10 * –
Only with adults 51 57 51 65 0.94 (0.88 – 1.00) 2.5
With children 32 30 39 26 1.54 (1.44 – 1.65) 2.7

Gender Male 44 56 49 62 * –
Female 56 44 51 38 1.39 (1.33 – 1.45) 1.1

Chronic Asthma / Lung 10 5 6 5 1.60 (1.51 – 1.71) 1.2
Diabetes 5 4 2 3 1.01 (0.92 – 1.12) 1.1
Heart disease 8 8 10 14 0.96 (0.85 – 1.09) 1.2
Kidney disorder 0.6 0.5 0.6 0.4 1.08 (0.70 – 1.68) 1.0
Immunodeficiency 3 3 1 0.5 1.19 (0.98 – 1.43) 1.0

Unknown risk group 4 5 4 2 1.05 (0.92 – 1.19) 1.2
Smoking 18 16 17 18 1.16 (1.10 – 1.22) 1.0
Pets Dogs 17 20 24 18 1.24 (1.18 – 1.31) 1.1

Cats 26 26 21 20 1.24 (1.18 – 1.30) 1.1
Birds 5 7 10 3 1.07 (0.98 – 1.17) 1.0

Sports ≥1 hour/week 54 46 46 44 1.01 (0.96 – 1.06) 1.3
Locomotion Bicycle / Foot 45 23 12 25 1.06 (1.01 – 1.12) 1.3

Car 47 66 70 59 * –
Public Transport 9 10 18 17 0.98 (0.90 – 1.06) 1.1

Vaccination 2003–2004 25 32 – – 0.97 (0.71 – 1.33) 1.3
2004–2005 24 32 – – 0.97 (0.83 – 1.13) 1.3
2005–2006 29 41 18 – 0.85 (0.73 – 0.99) 1.4
2006–2007 29 38 17 – 0.90 (0.78 – 1.04) 1.4
2007–2008 32 41 18 – 0.75 (0.65 – 0.87) 1.4
2008–2009 37 43 17 22 0.74 (0.66 – 0.82) 1.5
2009–2010 43 31 – 26 0.86 (0.73 – 1.02) 1.6
2010–2011 42 48 24 19 0.63 (0.54 – 0.72) 1.5
2011–2012 40 44 24 19 0.93 (0.78 – 1.10) 1.6
2012–2013 38 46 24 17 0.74 (0.66 – 0.83) 1.6
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b.3 model fits based on other weather variables

This section contains model fits of other weather variables, as a supplement to

Chapter 4. Figure B.14 shows the correlation between the estimated ILI factor

for each season, and the timing of the peak of the ILI epidemic. In Figure B.15

a transmission model is fitted to ILI data using the actual measured absolute

humidity for each week, in Figure B.16 using the typical measured tempera-

ture for each week, and in Figure B.17 using the actual measured temperature

for each week.
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Figure B.14: ILI factor and timing of ILI epidemic based on the peak date
of the ILI epidemic.
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Figure B.15: Model based on the actual absolute humidity
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Figure B.16: Model based on the typical temperature
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B.3 model fits based on other weather variables
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Figure B.17: Model based on the actual temperature
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illustrated guide to a ph .d. , by matt might

1. Imagine a circle that
contains all of human
knowledge.

2. By the time you fin-
ish elementary school,
you know a little.

3. By the time you
finish high school, you
know a bit more.

4. With a bachelor’s
degree, you gain a spe-
cialty.

5. A master’s degree
deepens that specialty.

6. Reading research
papers takes you to
the edge of human
knowledge.

7. Once you’re at the
boundary, you focus.

8. You push at the
boundary for a few
years.

9. Until one day, the
boundary gives way.

10. And, that dent
you’ve made is called a
Ph.D.

11. Of course, the
world looks different to
you now.

12. So, don’t forget the
bigger picture.

Ph.D.

Ph.D.

Keep pushing.*

* http://matt.might.net/articles/phd-school-in-pictures/
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