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Abstract

In this thesis we study Schottky principal G-bundles over a compact Riemann sur-

face X, where G is a connected reductive algebraic group. A Schottky G-bundle

is defined as being a principal G-bundle induced by a represententation ⇢ of the

fundamental group ⇡1 (X) to G, such that, when we use the usual presentation for

⇡1 (X) =
�

↵1, · · · ,↵g, �1, · · · , �g|
Q

↵i�i↵
�1
i ��1

i = 1
 

, the images ⇢ (↵i) are in the cen-

ter Z of G for all i = 1, · · · , g.
Using analogous methods to those of Ramanathan, we set up a correspondence between

the categorical quotient (in the sense of GIT) of Schottky representations S, and the set

of equivalence classes of principal G-bundles. This correspondence can be restricted to

a non-empty open subset S] of S to obtain a well-defined map W : S] ! Mss
G (that we

call the Schottky moduli map) in which Mss
G denotes the moduli space of semistable

principal G-bundles over X.

One of the main results of the thesis is the proof, based on the description of Ramanathan,

that all Schottky G-bundles have trivial topological type. The second main result is

the generalisation of the local surjectivity of the Schottky moduli map obtained in

[Flo01] to the setting of principal G-bundles. More precisely, we show that the map

W : S] ! Mss,0
G is a local submersion around the unitary Schottky representations.

Finally, two simpler special cases are addressed: that of principal C⇤-bundles over a

general Riemann surface, and the case of a general principal G-bundle over an elliptic

curve. In both these cases, the Schottky map can be shown to be surjective onto the

space of flat bundles.

Keywords: Representations of the fundamental group, character varieties, prin-

cipal bundles, moduli spaces, compact Riemann surface.
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Resumo

Nesta tese investigamos G-fibrados principais de Schottky sobre uma superfície de

Riemann compacta X, onde G é um grupo algébrico redutivo e conexo. Um G-fibrado

de Schottky é definido como sendo um G-fibrado principal induzido por uma repre-

sentação do grupo fundamental de X, ⇡1(X), em G tal que, quando usamos a apre-

sentação usual ⇡1(X) =
�

↵1, · · · ,↵g, �1, · · · , �g|
Q

↵i�i↵
�1
i ��1

i = 1
 

, as imagens ⇢ (↵i)

estão contidas no centro Z de G para todo i = 1, · · · , g.

Analogamente ao que foi feito por Ramanathan, construimos uma correspondência

entre o quociente categórico (no sentido da Teoria geométrica dos invariantes) das

representações de Schottky S e o conjunto das classes de equivalência de G-fibrados

principais. Esta aplicação pode ser restringida a um aberto não vazio S] de S de modo

a obter uma correspondência bem definida W : S] ! Mss
G (a qual denominamos de

aplicação moduli de Schottky), onde Mss
G representa o espaço de moduli de G-fibrados

semiestáveis sobre X.

Um dos resultados mais importantes deste trabalho é a demonstração, realizada tendo

em conta a descrição de Ramanathan, de que todos os G-fibrados principais de Schottky

têm tipo topológico trivial. O segundo resultado mais importante é a generalização

do facto, obtido em [Flo01], de que a aplicação moduli de Schottky é localmente

sobrejectiva, para o caso de G-fibrados principais. Mais precisamente, provamos que a

aplicação W : S] ! Mss,0
G é uma submersão local em torno de representações unitárias

de Schottky.

Para finalizar analisamos dois casos particulares. O caso de C⇤-fibrados principais

de Schottky sobre uma superfície de Riemann compacta geral e o caso de G-fibrados
vii



viii RESUMO

principais sobre a curva elítica. Em ambas as situações, podemos demonstrar que a

aplicação de Schottky é sobrejectiva no espaço de fibrados planos.

Palavras Chave: Representações do grupo fundamental, variedade de caracteres,

fibrados principais, espaços moduli, superfícies de Riemann com-

pactas.
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Introduction

The uniformization theorem gives a simple uniform parameterization of all Riemann

surfaces X of genus g � 2. It states that each one can be written as a quotient of

the upper half-plane by a Fuchsian group �, that is, X ⇠= H/� where the group � is

isomorphic to the fundamental group ⇡1 (X). In addition, the ‘retrosection theorem’

asserts that X can be written as ⌦/�s where �s is a Schottky group with a region of

discontinuity ⌦ ⇢ CP1. In particular, �s is a free group Fg of rank g.

Passing from Riemann surfaces to flat bundles over Riemann surfaces, it is natural to

question ourselves if we can obtain an analogous parameterization.

Indeed, in their papers [NS65, NS64], Narasimhan and Seshadri proved that every

semistable vector bundle V over X is induced by a unitary representation ⇢ : ⇡1 (X) !
U (n) ⇢ GL (n, C), where

⇡1(X) =
n

↵1, · · · ,↵g, �1, · · · , �g|
Y

↵i�i↵
�1
i ��1

i = 1
o

is the usual presentation of the fundamental group of X. More precisely one has the

isomorphism

V⇢
⇠= X̃ ⇥ Cn

.

⇡1 (X)

where the fundamental group ⇡1 (X) acts diagonally, the action on the universal cover

eX being the natural one, and the action on Cn comes from the standard action of

GL (n, C) on Cn composed with the representation ⇢.

Ramanathan generalised Narasimhan and Seshadri’s results to principal G-bundles

where G is any reductive algebraic group over C. Following Mumford, he began by

adjusting the notion of stability for this case and then constructed the moduli space of

stable principal G-bundles over a compact Riemann surface. For principal G-bundles
1



2 INTRODUCTION

E⇢ coming from representations ⇢ of the fundamental group, Ramanathan established

that if ⇢ is unitary (and irreducible), E⇢
⇠= X̃ ⇥G

.

⇡1 (X) is semistable (respectively,

E⇢ is stable).

Taking the results obtained by Narasimhan and Seshadri into account, Florentino

[Flo01] hoped to describe the space of vector bundles coming from Schottky repres-

entations, which corresponds to homomorphisms ⇢ from the fundamental group ⇡1 (X)

to GL (n,C) such that the images of the generators ↵i, i = 1, · · · , g, ⇢ (↵i), are sent to

the identity element of GL (n, C). In fact, he showed the existence of an open set of

the moduli space of flat vector bundles which consists of Schottky vector bundles.

In this thesis, we consider the results achieved by Ramanathan [Ram75, Ram96]

for principal G-bundles and the ones obtained by Florentino [Flo01], and our aim

is to extend the results of the later one to the case where G is a connected reductive

algebraic group. We study the corresponding structures when Schottky representations

are considered as homomorphisms of ⇡1 (X) into G such that the g generators ↵i’s of

⇡1 (X) are sent to the center Z of G. Denoting the set of all Schottky representations by

S, we prove that the algebraic variety S is isomorphic to the variety of homomorphisms

of the free group Fg into the algebraic group G⇥Z (Proposition 2.4). Since conjugated

representations define isomorphic G-bundles, we consider the corresponding categorical

quotient

S = S//G ⇠= Hom (Fg, G⇥ Z) //G

which has the structure of an affine complex algebraic variety. By associating a prin-

cipal G-bundle to a representation as above, we can define the generalised Schottky

map as a map W : S ! MG, where MG denotes the set of isomorphism classes of

principal G-bundles.

Using Ramanathan’s characterisation of the topological type of a principal G-bundles,

we show that all Schottky G-bundles have trivial topological type (Theorem5.11).
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The isomorphism between the tangent space to S at a good representation (def. 1.24(3))

and the first cohomology group with coefficients on a Fg-module

T[⇢]S ⇠= H1
�

Fg, gAd⇢1

�� zg,

where gAd⇢1
represents the Fg-module in the Lie algebra of G and z is the Lie algebra

of Z, allows us to compute the dimension of S = S//G.

Now, let Mss
G denote the moduli space of semistable principal G-bundles on X. To

describe the subspace of Mss
G consisting of Schottky G-bundles, consider the map

W : S] ! Mss
G ,

obtained from the Schottky map, where S] := W�1 (Mss
G ). As before, this map assigns

to each equivalence class [⇢] the corresponding class [E⇢] of principal G-bundle. We

prove the following Theorem, which generalises the case of vector bundles.

Theorem.7.7 Let G be a connected reductive algebraic group and let ⇢ be a good and

unitary Schottky representation. Then, the derivative of the Schottky map d (W)⇢ :

T[⇢]S ! Mss
G has maximal rank. In particular, the Schottky map W : S] ! Mss

G is

a local submersion. This means that locally around ⇢, the map is a projection with

dim (W�1 ([E⇢])) = g dimZ�.

In the last part of this thesis, we analyse two special cases, principal bundles with

group G = GL (1,C) = C⇤ over a Riemann surface X and principal bundles over an

elliptic curve. For elliptic curves we obtain an analog result to the one of Florentino

which is the following one.

Theorem.8.9 Let X be an elliptic curve and let G be a connected reductive algebraic

group. Then E is a flat principal G-bundle over X if and only if E is Schottky.

In the case of Schottky C⇤-bundles, the Schottky moduli map, has a different descrip-

tion from Florentino’s. However, we obtain the same correspondence between flatness

and Schottky property, as we can see in to following Proposition.
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Proposition.8.1 Given a principal C⇤-bundle E over a compact Riemann surface X

then E is flat if and only if it is Schottky.

We can outline the contents of the thesis as follows.

Chapter 1 contains a review of some basic definitions and results that will be needed

in the forthcoming chapters. In this chapter there are no original results and all rel-

evant references are provided. In section one, we give a background about algebraic

groups. Section two is dedicated to the Geometric Invariant Theory and to the char-

acter varieties. Most of these results come from Mumford’s work. In the third section

we introduce the basic definitions related to cohomology groups. Our purpose in the

remaining sections of this chapter, is to give all basic notions related to fibre bundles

theory and moduli spaces of semistable bundles, focusing mainly on principal bundles.

We prove some of the basic results that we had not found in the literature.

In Chapter 2 we define the concept of Schottky representation and we prove that the set

of all Schottky representations S coincides with the variety Hom (Fg, G⇥ Z) consisted

of all representations from the free group into the algebraic group G ⇥ Z. Moreover,

we prove the existence of a geometric quotient S//G and, since this quotient is usually

not irreducible, we study its connected components. We finish this chapter with the

proof of the existence of good and unitary Schottky representations.

Chapter 3 provides the definition of the Schottky principal bundle and the proof of

the fact that, when we consider associated bundles, the property of being Schottky is

transferred between each other under certain conditions.

In Chapter 4 we explore properties of the Schottky map. We start by proving that

isomorphic Schottky bundles correspond to analytic equivalent representations. Then

we define the Schottky moduli map from the categorical quotient of a restricted Schot-

tky representations set to the moduli space of semistable G-bundles. Furthermore in

this chapter we make our first approach to obtain our main goal, that is to prove that
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there is an open subset of equivalent classes of principal bundles induced by Schottky

representations.

In Chapter 5 it is defined the concept of the topological type of a G-bundle. It is

shown that this topological invariant is related with the universal cover eG of G and

the concept of representation type concerning a homomorphism ⇢ : ⇡1 ! G such that

E ⇠= E⇢. This chapter ends with an important result stating that every Schottky G-

bundle over a compact Riemann surface X (g � 2) is on the connected component

containing the trivial bundle of the set consisted of isomorphic classes of G-bundles

over X.

In Chapter 6, we compute the dimension of the categorical quotients S := S//G (resp.

G := Hom (⇡1 (X) , G) //G) using the relation between tangent spaces T[⇢]S (resp.

T[⇢]G) with the first cohomology group H1 (Fg, gAd⇢1 � z) (resp. H1 (⇡1, gAd⇢)) where

gAd⇢ denotes a Fg- module (resp. ⇡1-module). It was therefore necessary to compute

the dimensions of the cohomology groups H1 (⇡1, gAd⇢) and H1 (Fg, gAd⇢1 � z).

Using the fact that the subset Msm
G of the smooth part of the moduli space of equivalent

classes of semistable G-bundles is nonempty and open in Mss
G , we prove that the inverse

images G] := E�1 (Msm
G ) and S] := W�1 (Msm

G ) are both nonempty. Moreover, we

prove that the (Schottky moduli) maps E. : G⇤ ! Msm
G and W. : S⇤ ! Msm

G

are well defined and that, in particular situations, it is surjective.

Chapter 7 describes procedures for computing the local derivative of the Schottky

moduli map at a good representation. We define an hermitian inner product over

H0 (X, AdE⇢ ⌦ ⌦1
X) which allow us to prove that the local derivative of the Schottky

moduli map is an isomorphism when G is semisimple. In addition, if G is reductive,

we prove that the Schottky moduli map is a submersion.

In Chapter 8, we comment two particular cases of Schottky principal bundles. One of

them is related with the elliptic curve (g = 1) which is excluded in the most of the

chapters of this thesis. The other one is about principal G-bundles where G is a one

dimensional reductive group.





CHAPTER 1

Preliminaries

This chapter introduces some basic concepts that are needed in the forthcoming chapters.

First we provide some notions related with the representations of algebraic groups and

character varieties. Thereafter, we bring up some fibre bundle theory, mainly, vector

and principal bundles over a compact Riemann surface are analysed in more detail.

The definitions and the properties displayed in this chapter are not original. Thus, all

the appropriate references are given.

1.1. Algebraic groups

In this section we introduce some definitions and relations concerning to algebraic

groups and the corresponding Lie algebras. More details about this topic are available

in [TY05, OV90, Hum75] among others.

We start by giving general definitions related with algebraic groups over complex num-

bers, despite of many of them being valid for any algebraically closed field.

Definition 1.1. A complex algebraic group G is an algebraic variety over C and a

group such that the following maps

• µ : G⇥G ! G which corresponds to µ(g, h) = gh;

• i : G ! G which corresponds to i(g) = g�1;

are morphisms of algebraic varieties. An algebraic group G has an element e such that

µ(e, g) = g, 8g 2 G and i(e) = e, which is called the identity element of G.

Example 1.2. The special linear group SL(n,C) is a subset of n⇥ n matrices A with

complex entrances satisfying det(A) = 1. This condition is a polynomial equation
7
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and SL(n,C) is a group with multiplication and inversion as operations which are

polynomial maps. Thus, SL (n,C) is an algebraic group.

Definition 1.3. A homomorphism � : G ! H of algebraic groups is a morphism

of varieties which is simultaneously a group homomorphism. Moreover, the map � is

an isomorphism of algebraic groups if there exists a homomorphism  : H ! G such

that � �  = idH and  � � = idG. Over a base field with zero characteristic (like C)

any bijective homomorphism of algebraic varieties is an isomorphism.

There is an important type of homomorphisms between groups that leads us to the

notion of rational representation.

Definition 1.4. A homomorphism � : G ! GL(V ) where V is a complex vector

space is called a rational representation of an algebraic group G in the space V .

In this case, the space V is a finite dimensional rational G-module. A rational

representation is faithful if ker(�) = e.

Theorem 1.5. Every algebraic group G over the complex numbers is isomorphic to a

closed subgroup of some GL (n, C).

According to this Theorem, all complex algebraic groups are linear. In this way, we

can use the matrix notation whenever we have to do some computations, which allows

us to simplify some proofs related with algebraic groups.

Definition 1.6. A left action (resp. right action) of the algebraic group G on a

variety V is a morphism � : G⇥ V ! V such that

(g, v) 7! � (g, v) = g · v
(resp. v · g) satisfying

(1) v · e = v (resp. e · v = v) , 8v 2 V

(2) (v · h) · g = v · (hg) (resp. g · (h · v) = (gh) · v) , 8v 2 V, g, h 2 G.

If such action exists, we say that G acts on V or that V is a G-variety.
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Let � : G ⇥ V ! V be an action of the algebraic group G on the variety V . The set

{g 2 G| g · v = v} is called stabiliser or isotropy group of v 2 V and is denoted by

Gv or by ZG(v). The set {g · v| g 2 G} is called orbit of v and it is denoted by Gv or

by Ov.

An action � is said to be:

• transitive if for any v, w 2 V there exists g 2 G such that w = g · v.
• free if for each g 2 G and for any v 2 V with g · v = v then g = e.

We may consider an action � : G⇥H ! H where H is a subgroup of G. According to

the previous notions, we have the following definitions.

Definitions 1.7. The subgroup given by {g 2 G| gh = hg, 8h 2 H} is called central-

iser of the subset H on G and the subgroup Z(G) defined by {g 2 G|hg = gh, 8h 2 G}
is the centre of G.

The connected component of the identity of G is denoted by G� and analogously,

Z(G)� stands for the connected component of the identity of the centre of G.

An algebraic group G is said to be connected if G = G�.

Proposition 1.8. Let G be a nontrivial connected algebraic group. Then it contains

a unique maximal closed connected normal solvable subgroup called radical of G and

denoted by R(G), and contains a unique maximal closed connected unipotent normal

subgroup which is called unipotent radical and denoted by Ru(G):

(1) if R(G) is trivial, G is said to be semisimple.

(2) if R(G) = Z(G)� = (C⇤)n or, equivalently, if Ru(G) is trivial, G is said to be

reductive.

Definitions 1.9. A subgroup T ⇢ G is called n-dimensional torus if it is isomorphic

to (C⇤)n. The torus T is called maximal if it is a torus and there is no other torus

T 0 with T ⇢ T 0 ⇢ G. A subgroup B ⇢ G is called Borel if it is maximal among

the (Zariski) closed connected solvable subgroups of G. A subgroup P of G is called

parabolic subgroup of G if it is a closed subgroup such that G/P is a complete variety.
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Parabolic subgroups are all closed subgroups between Borel subgroups and the group G.

A subgroup K of G is called compact if it is an algebraic subgroup whose topology is

compact Hausdorff.

If G is a reductive algebraic group we have the following theorem asserting that there

exists always a maximal compact subgroup K of G such that it is Zariski dense

in G and such that its complexification KC coincides with G. As we will see latter,

this fact allows us to write the elements of G in a particular form, usually called polar

decomposition.

Theorem 1.10. A complex algebraic group G is reductive if and only if it is the com-

plexification KC of a compact Lie group K.

Examples 1.11. • G = GL(n, C) =
n

(aij, b) 2 Cn2+1 : b det(aij) = 1
o

is a re-

ductive algebraic group.

The centre of G is Z(GL(n, C)) = {�In : � 2 C⇤}. The subgroup of diagonal

matrices in G is a maximal torus of G. And the maximal compact subgroup

K of GL (n, G) is U (n), the group of unitary matrices.

• G = SL(n, C) =
n

(aij) 2 Cn2
: det(aij) = 1

o

is a semisimple algebraic group.

The centre is Z(SL(n, C)) = {�In : �n = 1 and � 2 C⇤} and the maximal

compact subgroup K is SU (n), the group of special unitary matrices.

Theorem 1.12. Let G be an algebraic group. The following conditions are equivalent:

(1) the group G is reductive;

(2) the radical R(G) is a torus;

(3) the connected component G� = T ·G0 where T is a torus and G0 is a connected

semisimple subgroup;

(4) any finite dimensional rational representation of G is completely reducible;

(5) the group G admits a faithful finite dimensional completely reducible rational

representation.
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Remark. If the algebraic group G is connected and reductive we can write G as an

almost direct product G = Z� oG0 where G0 = [G,G] is a semisimple algebraic group

and the connected component of the center of G, Z�, is a torus.

Theorem 1.13. Any complex algebraic group is a complex Lie group with the same

dimension.

The previous theorem allows us to interchange from the category of algebraic groups

to the category of Lie groups.

Definition 1.14. Let G be an algebraic group over C. We define the Lie algebra of G

as the tangent space of G at the identity e, g := Te(G) endowed with a skew-symmetric

bilinear map [ , ] : g ⇥ g ! g satisfying the Jacobi identity ([X, [Y, Z]] + [Y, [Z,X]] +

[Z, [X, Y ]] = 0).

Theorem 1.15. Let  : G ! H be a homomorphism of algebraic groups. Then its

differential at identity e is given by

d e : TeG := g ! TeH := h

and it is a homomorphism of Lie algebras.

For more details about this theorem, see for example [chap. III, [Hum75]].

Definition 1.16. Given a maximal compact subgroup K of G then the Lie algebra g

of G can be written in the following way g = k � ik where k denotes the Lie algebra

of K. Each element g of the connected reductive group G can be decomposed in the

following way
(1.1.1) g = k. exp (Y ) = k · p

where k 2 K, p = exp (Y ) with Y 2 ik. This decomposition is called polar decom-

position of g.
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There is an important action of an algebraic group G into itself which is called con-

jugation on G and it is defined as follows

c : G⇥G ! G

(g, h) 7! cgh := g · h = ghg�1.

For each g 2 G we define the following morphism

cg : G ! G

h 7! cgh = ghg�1.

If we compute the differential of cg at the identity, we obtain the adjoint map, that is,

the map given by

(1.1.2)
Adg := de(cg) : TeG ! TgG ⇠= TeG

X 7! AdgX.

We can write this map as an action of the algebraic group G in its corresponding Lie

algebra

(1.1.3)
Ad : G⇥ g ! g

(g,X) 7! AdgX = gXg�1.

Proposition 1.17. Let G be a connected algebraic group and let g be the corresponding

Lie algebra of G. The adjoint representation Ad : G ! GL(g), which associates to

each g 2 G a map Ad from the Lie algebra g of G to itself, is a morphism of algebraic

groups and it satisfies the following relations

(1) If g 2 G, Lie (ZG(g)) = {X 2 g|Adg(X) = X}.
(2) Its kernel, kerAd, coincides with the center Z(G) and its Lie algebra is ker ad =

Lie(Z(g)) where Z (G) denotes the centre of G and ad defines the differential

of Ad at the identity.

1.2. Character variety

The main goal of this section is to introduce the notions and properties of character

varieties. Hence, it is provided some important results involving these objects which

will be needed in the forthcoming chapters.
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Throughout this section, � and G denote a finitely generated group and a connected

reductive complex algebraic group, respectively, and ⇢ : �! G means a representation

(homomorphism) from � to G.

Definition 1.18. The set of all representations from � to G is called representation

variety and it is denoted by R (�, G) := Hom(�, G). This set has the structure of an

affine algebraic variety.

Let us start by seeing that R (�, G) has the structure of algebraic variety. Any repres-

entation ⇢ 2 R(�, G) is defined by the image of each element that generates �. More

precisely, we can define the following embedding

(1.2.1)
R (�, G) ,! GN

⇢ 7! (⇢ (�1) , · · · , ⇢ (�N))

where � = h�1, · · · , �N |Wi and W is a collection of restrictions involving the elements

�i’s. The set R (�, G) is a subset of GN and each restriction W provides, by above

map, algebraic constrains in GN . Thus, R (�, G) is an algebraic subvariety of GN .

Furthermore, we can define an action of G on R (�, G) by conjugation as follows

G⇥R(�, G) ! R(�, G)

(g, ⇢) 7! g · ⇢ = g⇢g�1.

As it was defined in the previous section, the set given by ZG (⇢) = {g 2 G|g · ⇢ = ⇢}
is an algebraic subgroup of G and it is called stabiliser of ⇢.

Definition 1.19. The set defined by O⇢ = {g · ⇢| g 2 G} is a subvariety of Hom(�, G)

and it is called orbit of ⇢ or conjugacy class of ⇢.

When X is a closed orientable surface of genus g (for example a compact Riemann

surface), the fundamental group ⇡1(X) is a finitely generated group generated by 2g

elements that satisfies a particular condition, that is,

⇡1(X) =
n

↵1, · · · ,↵g, �1, · · · , �g|
Y

↵i�i↵
�1
i ��1

i = 1
o

.

Hence, we can consider previous constructions replacing � by ⇡1 (X).
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Example 1.20. Let us denote by ⇡1 the fundamental group of X. Putting � = ⇡1 and

G = GL (n,C), we can construct representations ⇢ : ⇡1 ! GL(n,C) such that assigns

to each element � 2 ⇡1 a matrix ⇢ (�). The group GL(n,C) acts by conjugation on the

set of representations R (⇡1, GL (n, C)). More precisely, given ⇢ 2 R (⇡1, GL (n, C))

and for each g 2 GL (n,C), the action g · ⇢ is given by

g · ⇢(�) = g⇢(�)g�1.

The quotient space R (⇡1, GL (n, C))/GL (n, C) consists of equivalence classes of rep-

resentations. Namely, ⇢2 2 [⇢1] means

⇢1 ⇠ ⇢2 , 9g 2 GL (n, C) : ⇢2 = g⇢1g
�1.

In general, the quotient Hom(�, G)/G is not Hausdorff. This means that it may

happen that ⇢1 ⌧ ⇢2 and the respective neighbourhoods are not disjoint (O⇢1 \O⇢2 6=
?).

As an example, let us look to the following case given by Goldman [Gol84b].

Example 1.21. Let ⇡1 represent the fundamental group of a surface of genus 2 and

G = SL(2,R). Consider representations ⇢ 2 Hom (⇡1, SL(2, R)) such that ⇢(↵2) =

⇢(�1) =

2

4

a 0

0 a�1

3

5 =: g for a fixed a > 1 and ⇢(�2) = ⇢(↵1). Take two representations

⇢1 and ⇢2 from this set and consider ⇢1(↵1) =

2

4

1 0

1 1

3

5 and ⇢2(↵1) =

2

4

1 1

0 1

3

5. It is

clear that they belong to different conjugacy classes but they cannot be separated.

Consider the following sequence of representations ⇢n

⇢n(↵1) =

2

4

(1 + a�2n)
1
2 a�2n

1 (1 + a�2n)
1
2

3

5 .

It is clear that, as n ! +1, ⇢n(↵1) ! ⇢1 and gn⇢n(↵1) ! ⇢2 meaning that ⇢1 and ⇢2

cannot be in disjoint neighbourhoods.
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Despite the problem of R (�, G)/G not being Hausdorff, it is possible to construct

a nicer quotient of R (�, G) by G with better properties like being Hausdorff. The

construction of this quotient follows from [New78, MFK94]. Explaining briefly,

the action of G on the variety R (�, G) induces a homomorphism of groups G !
GL (k [R(�, G)]) where k [R(�, G)] = {f : R(�, G) ! C regular } is the ring of regular

functions. This is equivalent to define the following action

k [R(�, G)]⇥G ! k [R(�, G)]

f, g 7! f g = f(g�1 · ⇢).

Let k [R(�, G)]G = {f 2 k [R(�, G)] | f g = f, 8g 2 G} denote the ring of invariants.

Since G is reductive, Nagata’s theorem asserts that the ring k [R(�, G)]G is finitely

generated. This corresponds to the existence of a variety Y such that k [Hom(�, G)]G =

k [Y ]. If such variety Y exists then it is called geometric quotient.

Let us, now, give the formal definitions related with geometric quotients.

Definition 1.22. [Ses72] A categorical quotient is a pair (Y, p) where Y is a

variety and p : X ! Y is a G-invariant morphism that satisfies the universal property

for quotients. This means that if there exists an invariant G-morphism ' : X ! Z then

there exists a unique morphism  : Y ! Z (up to isomorphism) such that ' =  � p.

The pair (Y, p) is called a good quotient if

i. p : X ! Y is a surjective G-invariant morphism;

ii. p⇤
⇣

C [X]G
⌘

= C [Y ]

iii. if W is closed G-stable subset of X, then p (W ) is closed in Y .

A pair (Y, p) is called a geometric quotient if

i. p : X ! Y is a good quotient;

ii. 8x1, x2 2 X, p (x1) = p (x2) , Ox1 = Ox2 (i.e., Y is an orbit space).

As previously stated, geometric quotient is an important attribute since this ensures

that if two orbits intersects then they are the same (Hausdorff).
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Given a G-variety X, Rosenlicht’s theorem asserts the existence of an open G-stable

subset of X such that it has a geometric quotient.

Definition 1.23. The geometric quotient Y of R(�, G) by G, usually denoted by

R (�, G) //G, has a natural structure of an affine algebraic set. This variety is called

G-character variety of � and it is, usually, denoted by C (�, G) or XG (�).

The inclusion k [R (�, G)]G ,! k [R (�, G)] induces a morphism ⇡� : Hom (�, G) ⇣

C (�, G) such that it is surjective. According to the universal property of quotients, if

there is a G-invariant morphism � from Hom (�, G) to a variety Z, �(g⇢) = �(⇢), for

all g 2 G and all ⇢ 2 Hom (�, G), then there exists a unique ' : C (�, G) ! Z such

that � = '⇡
�
.

Hom (�, G)

⇡
�✏✏

✏✏

�
// // Z

C (�, G)

'
::

The morphism ⇡
�

maps closed invariant sets of Hom(�, G) to closed sets of C(�, G) and

given a point of C(�, G), ⇡
�
(⇢), we have that ⇡�1

�
(⇡

�
(⇢)) is a closed set of conjugacy

classes. This ensures the closure property, although this variety may still have singular

or not reduced points. In this way, it is important to define some representations

attributes in order to obtain nonsingular or irreducible subvarieties.

Definition 1.24. The representation ⇢ : �! G is called
(1) irreducible if ⇢(�) is not contained in any proper parabolic subgroup of G.

The set of irreducible representations will be denoted by Hom(�, G)i and the

corresponding image in C(�, F ) will be denoted by C(�, G)i.

(2) unitary if ⇢(�) ⇢ K where K is a maximal compact subgroup of G.

(3) good if ⇢ is irreducible and ZG(⇢) = Z(G). The set of good representations

will be denoted by Hom(�, G)g and the corresponding image in C(�, F ) will

be denoted by C(�, G)g.

(4) stable if there is a Zariski open neighbourhood of ⇢ on Hom(�, G) preserved

by G on which the G action is closed and ZG(⇢)/Z(G) is finite. That is, a
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representation ⇢ is said to be stable if its orbit in Hom(�, G)/G is closed and

ZG(⇢)/Z(G) is finite.

1.3. Group Cohomology for finitely generated groupsLet � = h{�1, · · · , �n| r1, · · · , rk}i be a finitely generated group. Suppose that � acts

on a vector space V , in the following way
�⇥ V ! V

�, v 7! � · v.

Hence, V gets a structure of �-module and we may define the following sets:• the set C i(�, V ) = {f : �i ! V } of functions, from �i = �⇥ · · ·⇥ �
| {z }

i times

to V , is

called the group of i-cochains of � with coefficients in V . If i = 0 we put

C0(�, V ) = V .

• the cochain map di : C i(�, V ) ! C i+1(�, V ) defined by

di(f) (�0, · · · , �i) = �0 · f(�1, · · · , �i)

+
i
X

j=1

(�1)jf (�0, · · · , �j�2, �j�1�j, �j+1, · · · , �i)

+ (�1)i+1f(�0, · · · , �i�1).

With some computations it can be shown that di+1 � di = 0.

• the set Zi(�, V ) = ker di is the group of i-cocycles of � with coefficients in

V .

• the set Bi(�, V ) defined by

Bi(�, V ) =

8

<

:

0, i = 0

Im di�1, i � 1

is the group of i-coboundaries of � with coefficients in V . Since di+1�di = 0,

it is clear that Bi(�, V ) ⇢ Zi(�, V ).

• the quotient H i(�, V ) = Zi(�, V )/Bi(�, V ) is called ith cohomology group

of � with coefficients in V .
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Example 1.25. Let us compute the cases in which i = 0 and i = 1.

C1(�, V ) = {f : �! V } and d0f(�) = � · v � v

Z0(�, V ) = ker d0 =
�

f 2 C0(�, V )|d0f(�) = 0 , � · v = v
 

= V �

B1(�, V ) = {f : �! V |9a 2 V : f(�) = � · a� a, 8� 2 �}

C2(�, V ) = {f : �⇥ �! V } and d1f(�0, �1) = �0 · f(�1)� f(�0�1) + f(�0)

Z1(�, V ) = {f : �! V |�0 · f(�1)� f(�0�1) + f(�0) = 0}

= {f : �! V |f(�0�1) = �0 · f(�1) + f(�0)}

Lemma 1.26. (1) The 0-cohomology group H0 (�, V ) is equal to V �, the group of

�-invariants of V.

(2) If V is a trivial �-module, then H1 (�, V ) = Hom (�, V ).

(3) In general, the first cohomology group is given by

H1(�, V ) =
{f : �! V | f(↵�) = ↵ · f(�) + f(↵) 8↵, � 2 �}
{f : �! V | 9a 2 V : f(�) = ↵ · a� a 8� 2 �} .

Example 1.27. Let � be a finite generated group and let G be a connected reductive

algebraic group. Given a representation ⇢ : � ! G we may consider the composition

of ⇢ with the adjoint representation

Ad⇢ : �! End(g) ⇢ GL (g) .

Let us represent by gAd⇢ ⇢ g the �-module induced by the above representation. This

representation can be seen as an action of � on gAd⇢ in the following way

�⇥ gAd⇢ ! gAd⇢

�, v 7! � · v = Ad�1
⇢(�)v.

Consider now the cohomology groups of � with coefficients in gAd⇢

H i
�

�, gAd⇢

�

= Zi
�

�, gAd⇢

�

/Bi
�

�, gAd⇢

�

H0
�

�, gAd⇢

�

= Z0
�

�, gAd⇢

�

=
�

gAd⇢

�⇡1(X)
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H1
�

�, gAd⇢

�

= Z1
�

�, gAd⇢

�

/B1
�

�, gAd⇢

�

=

n

� : �! g|�(�0�1) = Ad�1
⇢(�0)

�(�1) + �(�0) 8�0, �1 2 �
o

n

� : �! g| 9a 2 g, �(�0) = Ad�1
⇢(�0)

a� a 8�0 2 �
o .

1.4. Principal G-bundles

The aim of this section is to provide all the important notions and results, in the context

of this thesis, concerned with fibre bundles. Our attention is particularly focus on

principal bundles. For more details see for example [Hus94, Ste51, Nar76, Ram75]

Following Steenrood [Ste51], we start by introducing the following definition of fibre

bundle.

Definition 1.28. A fibre bundle consists on

i. a topological space E called bundle space;

ii. a topological space B named base space;

iii. a projection ⇡ : E ! B;

iv. a topological space F := ⇡�1 (x) called fibre over x;

v. an effective group G of morphisms between fibres,

vi. a local trivialisation {Ui, 'i} where {Ui} designates an open cover of the base

space B and the morphisms 'i verify the following commuting diagram

⇡�1U↵

'↵
//

⇡

""

U↵ ⇥ F

pr1{{
U

If there is no confusion, we simply denote a fibre bundle by E.

Remark. The maps 'ij = 'i � '�1
j are called transition functions and they verify

the cocycle relations, that is, 'ij'jl'li = id. Without loss of generality, since 'ij :

⇡�1 (Ui \ Uj) ! (Ui \ Uj)⇥F can be thought as a map from F to itself and the set of

these maps provides the structure group G.
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Examples 1.29. Consider E, B smooth complex manifolds.

(1) If F is a complex vector space then the transition maps are linear maps and

the bundle E is called a vector bundle.

(2) Let G be a Lie group (or an algebraic group) acting transitively and freely on

F then the maps between fibres are G-equivariant maps and E is a principal

bundle.

Since we are mainly interested in principal G-bundles over a compact Riemann surface

X, it is important to deal within holomorphic context. In this way, let us give a more

concrete definition of holomorphic principal G-bundle over X.

Definition 1.30. Let G be a complex reductive algebraic group. A holomorphic

principal G-bundle EG over a compact Riemann surface X is a smooth complex

variety with a free right G-action such that the projection ⇡ : EG ! X is G-invariant

(⇡(y · g) = ⇡(y), 8y 2 EG).

Example. If we take the fibre G = GL (n, C) (the general linear group) then we

obtain a principal GL (n, C)-bundle E over X.

Another fundamental definition is the concept of maps between bundles.

Definition 1.31. Given two bundles E ! X and E 0 ! X 0, a bundle morphism

between E and E 0 is a pair of maps (�, f) such that the following diagram

(1.4.1) E
�

//

⇡
✏✏

E 0

⇡0
✏✏

X
f

// X 0

commutes. Namely, the morphism � sends fibres of E to fibres of E 0, that is, �(Ex) ⇢
E 0

f(x), 8x 2 X. The map f is completely determined by the map � (since ⇡ is sur-

jective). The bundles E and E 0 are isomorphic if, additionally, there exists a pair
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(�0 : E 0 ! E, f 0 : X 0 ! X) such that � � �0 = idE0 , �0 � � = idE, f � f 0 = idX0 and

f 0 � f = idX .

If we are dealing with bundles over the same base space then we must have ⇡ (y) =

(⇡0 � �) (y), 8y 2 E.

Remark 1.32. According to the above definitions, if we are dealing with vector bundles

then � must be a linear map. On the other hand, if we are working with principal

bundles then � has to be a G-equivariant homomorphism.

The following Theorem asserts an important property of morphism over G-bundles.

More details can be found in [Hus94].

Theorem 1.33. Any morphism of principal G-bundles over the same base space is an

isomorphism.

Definition 1.34. A morphism s : X ! E such that ⇡ � s = idX is called a global

section (or section) of E. The set of all global sections is represented by � (E).

In general, smooth global sections may not exist, it may happen that they cannot be

defined in all base space X. For example, in the case of principal G-bundles we have

the following Proposition.

Proposition 1.35. A principal G-bundle EG ! X is trivial if and only if it admits a

section.

According to this, a non-trivial principal G-bundle EG does not have any global section.

On the other hand, a vector bundle always has, at least, one section (the zero section).

More details about this matter can be found, for example, in [Hus94] or [Ste51].

1.5. Associated bundles

Herein, we explain how to produce bundles from others. We begin with the idea

of pulling back bundles and after this, following [Nar76], we give some notions of
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factors of automorphy and its relationship with a particular type of isomorphic principal

bundles. This section ends with a general construction of associated bundles.

Further details as well as the proofs of the results listed in this section can be found in

[Hus94, Ste51].

Definition 1.36. Let X and Y be topological spaces. Consider a G-bundle E over X

and a continuous map f : Y ! X. We define the pull-back of the bundle E and

denote it by f ⇤(E). The transition functions of the bundle f ⇤(E) over Y are defined

by
'ij(y) = �ij(f(y))

where �ij are the transition functions of the bundle E. In this sense, the bundle f ⇤(E)

is a G-bundle over the space Y and f induces a bundle morphism f̃ : f ⇤(E) ! E.

Hence, we have the following commutative diagram

f ⇤(E)
f̃

//

⇡⇤

✏✏

E

⇡

✏✏

Y
f
// X.

Let � be an algebraic group and E� ! X be a principal �-bundle. A factor of

automorphy on E�⇥� with values in an algebraic group G is a holomorphic function

f : E� ⇥ �! G satisfying

f(y, �1�2) = f(y, �1)f(y�1, �2)

for y 2 E� and �1, �2 2 �.

Narasimhan worked about automorphy factors and he established the following Pro-

position.

Proposition 1.37. [Nar76] Let �, G be complex algebraic groups and let E� and EG

be principal bundles over a compact Riemann surface X with fibres � and G respectively.

If the pull-back of EG by the projection ⇡� : E� ! X, denoted by ⇡⇤(EG), is trivial

over E� then there exists a map i� : E� ! EG such that

i�(y · �) = i�(y)f(y, �)
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for all y 2 E� and � 2 �, where the map f is a factor of automorphy.

Remark. If the pull-back of EG, by the projection ⇡ : E� ! X, ⇡⇤(EG) is trivial over

E� then this means that there exists a section � : E� ! ⇡⇤(EG). The map i� is such

that
⇡⇤(EG)

e⇡
//

pr

✏✏

EG

pr

✏✏

E�

⇡
//

�

KK

i�

77

X

i� = ⇡̃ � � where ⇡̃ : ⇡⇤(EG) ! EG is the natural projection.

Definition 1.38. Two factors of automorphy f, f̃ are said to be equivalent if exists

a holomorphic function h : E� ! G satisfying f̃(y, �) = h(y)�1f(y, �)h(y · �) for all

y 2 E� and all � 2 �.

Given any factor of automorphy f : E� ⇥ � ! G we may construct a holomorphic

bundle Ef associated to E� in the following way. First, we define the map

(1.5.1)
 : E� ⇥G⇥ � ! E� ⇥G

(y, g, �) 7! �

y · �, f (y, �)�1 g
�

for every y 2 EG, � 2 �, g 2 G. The properties of the factor of automorphy f allow

us to define a right action of � on E� ⇥ G. In this way, we can consider the orbit

space Ef := (E� ⇥G)/� and Ef gets the structure of a G-bundle if we consider a

right G-action only on the second coordinate

' : Ef ⇥G ! Ef

(y, g0) 7! ⇥

x · �, f (x, �)�1 gg0
⇤

where the element y 2 Ef represents a class of the form
⇥�

x · �, f (x, �)�1 g
�⇤

.

Definition 1.39. The bundle obtained by the above construction, Ef , is called asso-

ciated bundle to E� by f . Moreover, given two factors of automorphy f, f̃ : E�⇥�!
G, the G-bundles Ef and Ef̃ are isomorphic if the factors of automorphy f, f̃ are

equivalent (Def. 1.38).
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Proposition 1.40. [Proposition A.8, [Nar76] ] Let E� ! M be a principal �-bundle

and G a group. Then the set of isomorphism classes of principal G-bundles on M ,

whose pull-backs on E� are trivial, is in canonical bijective correspondence with the set

of equivalence classes of factors of automorphy on E� ⇥ � with values in G.

Remark. When we have a homomorphism of complex algebraic groups ⇢ : � ! G,

this map defines a factor of automorphy that does not depend on y 2 E�.

Example 1.41. Let ⇡1 denotes the fundamental group of a compact Riemann surface

X and let G be a complex algebraic group. Considering that a universal cover eX of X

is a ⇡1-bundle over X, given a homomorphism ⇢ : ⇡1 ! G we construct the following

associated principal G-bundle

(1.5.2) E⇢ := eX ⇥⇢ G =
⇣

eX ⇥G
⌘.

⇡1

where we have the following identifications

(ex, g) ⇠ (ex, g) · � =
�

ex · �, ⇢(�)�1 · g� .

Definition 1.42. Let H and G be algebraic groups and let ⇢ : H ! G be a homo-

morphism. The function ⇢ is one factor of automorphy that does not depend on any

point of the bundle. In this way, given a H-bundle E, we can construct the G-bundle

E (G) using the method of (1.5.1) and obtain

E(G) = (E ⇥G)/H

where we identify the points (y, g) and
�

y · h, ⇢ (h)�1 g
�

for all h 2 H.

The bundle E(G) is said to be an extension of the structure group by E (specially

when H is a subgroup of G) and E is said to be a reduction of structure group by

E(G).

The next definition gives a generalisation of the above constructions.

Definition 1.43. Let G be an algebraic group and V a variety. Let � : G ⇥ V ! V

be a left action of G on V defined by � (g, v) = g�1 · v. If EG is a principal G-bundle,
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we construct the following quotient

(1.5.3) EG(V ) = (EG ⇥ V )/G

where we identify the points of the form (y, v) and (y · g, g�1 · v) for all y 2 EG, v 2 V

and g 2 G. This quotient EG(V ) is called associated fibre bundle to the principal

G-bundle EG

⇡
// X induced by the action �. The projection e⇡ : EG(V ) ! X

assigns to each ỹ 2 EG (V ) the following element

e⇡(ey) = e⇡((y, v) ·G) = ⇡(y), 8ey 2 EG(V ).

Notice that this map is well defined in the sense that it depends only on the class of ey.

In fact, e⇡(ey · g) = e⇡((yg, g�1v) ·G) = ⇡(yg) = ⇡(y) since ⇡ is G-invariant.

Remark. As it was stated previously, above action can also be given as a representa-

tion ⇢ : G ! GL(V ). If V is a vector space and G ! GL(V ) is a representation, E(V )

is a vector bundle.

Example 1.44. Given that eX is a ⇡1(X)-bundle, we may construct a vector bundle

associated to a representation of the fundamental group ⇢ : ⇡1(X) ! GL(n,C). The

quotient space V⇢ := eX ⇥ Cn
.

⇠= X ⇥⇢ Cn is a vector bundle over X.

Proposition 1.45. Let EG(V ) be the fibre bundle associated to the G-bundle EG as

constructed in definition 1.43. For each x 2 X, the fibre V is homeomorphic to e⇡�1(x).

Example 1.46. Given the adjoint representation Ad : G ! GL(g) and a G-bundle

EG, we can construct the adjoint bundle

(1.5.4) Ad(EG) := EG ⇥Ad g

associated to the principal G-bundle EG. This bundle is a vector bundle with fibre the

vector space g, the Lie algebra of G. The bundle Ad(EG) is constructed from EG ⇥ g

through the following equivalence relation

(y, Y ) ⇠ (y, Y ) · g = (y · g,Ad�1
g · Y )
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for all y 2 EG, Y 2 g and g 2 G. Observe that, according to the way that we define

Ad(EG), ⇡�1 (y) is homeomorphic to the Lie algebra g.

Theorem 1.47. Let EG be a principal G-bundle over X and V a left G-variety. The

set of sections � (X,EG(V )) of the fibre bundle EG (V ) are in bijective correspondence

with maps f : EG ! V satisfying f(y · g) = g�1f(y).

Given two isomorphic principal G-bundles E and E 0 then there exists an isomorphism �

between them (definition 1.31). Accordingly, we may construct isomorphisms between

corresponding associated fibre bundles.

E (V )
�V

//

⇡

✏✏

E 0 (V )

⇡0

✏✏

X
f

// X 0

Proposition 1.48. The functions EG 7! EG(V ) and (�, f) 7! (�V , f) define a func-

tor from the category of principal G-bundles to the category of bundles, admitting the

structure of a fibre bundle with fibre V and structure group G.

1.6. Stability notion

The notions of stable (or semistable) points are extremely important to construct a

(coarse) moduli space as was stated by Mumford [Mum63, MF82]. Restricting vari-

eties to stable or semistable points allow us to arrange the set of certain objects in order

to get an algebraic variety or a scheme (moduli space) that parameterises equivalence

classes of these objects.

In this section, we describe notions and properties related with the semistability (sta-

bility) of vector and principal bundles. In order to avoid any confusion, we denote by

V a vector bundle and by E a principal G-bundle.

Definitions 1.49. Given a vector bundle V over X, we define slope of V as the

number given by

µ (V ) =
deg V

rkV
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where deg (V ) = deg (detV ) = deg (^nV ) represents the degree of the vector bundle V

and rkV = n is the rank of V (it corresponds to the dimension of the fibre which is a

vector space).

A vector bundle V in X is said to be stable (resp. semistable) if and only if for every

proper sub-bundle W of V we have the following inequality

µ(W ) :=
degW

rkW
< µ(V ) :=

deg V

rkV
(resp. µ(W )  µ(V )) .

In order to explain the condition of stability (semistability) for principal G-bundles we

must remind the notion of reduction of structure group. In spite of the fact that we

had already given this notion (in def. 1.42), we redefine it in order to emphasise some

aspects of this construction.

Definition 1.50. Let E be a G-bundle over X and let P ⇢ G be a closed subgroup

of G. One section � : X ! E/P over the bundle E/P corresponds to a reduction of

the structure group to a P -bundle EP := q�1 (Im(�)) over X.

EP := q�1 (Im(�))

&&

E

✏✏

q

!!

X
�
// E/P

If P is a parabolic subgroup of a connected reductive algebraic group G then G/P is

a complete variety and G acts on this variety (def. 1.43). Then we may construct the

fibre bundle E/P := E (G/P ) = (E ⇥ G/P )/G associated to the G-bundle E.

Now, we are in conditions to give Ramanathan’s definitions of stability of a principal

G-bundle.

Definition 1.51. [Ram75] A holomorphic G-bundle E over X is stable (resp. semi-

stable) if for every reduction � : X ! E/P to maximal parabolic subgroups P of G

we have

deg �⇤ �TE/P

�

> 0 (resp. � 0)
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where TE/P is the tangent bundle along fibres of E/P ! X. More accurately, TE/P

is the vector bundle E(g/p) := (E ⇥ (g/p))/P over E/P associated to the P -bundle

E ! E/P and to the action of P on g/p induced by the adjoint action ((p, v) 7! Adp (v)).

E //

⇡E

''

E/P

vv
X

(E ⇥ g)/G := E (g) //

77

E (g/ p) = (E ⇥ (g/ p))/P

OO

⇡

hh

Let us, now, give the definition of semistability for G-bundles E using the semistability

of the corresponding adjoint bundle Ad (E).

Definition 1.52. A G-bundle E is semistable if for every reduction E 0 of the struc-

ture group to a maximal parabolic subgroup P we have

deg (Ad(E)/Ad(E 0)) � 0.

Taking into consideration that G is reductive, there exists a G-invariant non-degenerate

bilinear form on g and, consequently, Ad(E) is isomorphic to its dual. Thus, � deg(Ad(E)⇤) =

deg(Ad(E)) and we obtain deg(Ad(E)) = 0.

Proposition 1.53. [Prop.2.10, [AB01]] Let G be a connected reductive algebraic group

and M a compact Kähler manifold. A principal G bundle EG over M is semistable if

and only if the adjoint bundle Ad(EG) is semistable.

Remark 1.54. Ramanathan in [Ram96] established the above result for a Riemann

surface X of genus g � 2.

1.7. Flat bundles over a compact Riemann surface

Flat bundles are those induced by representations of the fundamental group of the sur-

face X (base space). Narasimhan and Seshadri proved that stable/semistable vector
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bundles over a compact Riemann surface X are exactly those which are induced by

certain types of representations. In addition, Ramanathan established a similar res-

ult for the corresponding structures in the case of principal G-bundles over X where

G denotes a connected reductive algebraic group. In what follows, we are going to

summarise some of these results due mostly to the authors cited above.

1.7.1. Connections on fibre bundles. Let E
⇡
// X be a fibre bundle over

a compact Riemann surface X. For each y 2 E, consider the following subspace of

TyE
Vy = {Y 2 TyE : d⇡y (Y ) = 0}

which is designated by vertical subspace at y.

A connection D on the fibre bundle E is a collection of vector subspaces Hy ⇢ TyE,

called horizontal spaces, such that, for each y 2 E, we have

TyE = Hy � Vy.

Every smooth fibre bundle admits a connection. However, since we are dealing with

compact Riemann surfaces, it makes sense to work with holomorphic functions and

correspondingly, define the concept of holomorphic connection on a fibre bundle.

Moreover, particular characteristics of each fibre bundle have its influence on the prop-

erties of the corresponding connection. For example, if we consider a vector bundle

over a compact Riemann surface maps are required to be linear, and if we consider

principal G-bundles we require smoothness (or holomorphy) and equivariance under

the G-action.

Let us first define the concept of holomorphic connection over a holomorphic vector

bundle.

Definition 1.55. Let E be a holomorphic vector bundle over a compact Riemann sur-

face X, a holomorphic connection D on E ! X is a first order holomorphic differen-

tial operator D : �(E) ! �(T ⇤X ⌦ E) satisfying the Leibniz rule

D(fs) = df ⌦ s+ fD(s).
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Here f is a (locally) holomorphic function on X and s is a (locally) holomorphic section

of E. There exists a unique extension of D to a linear operator

D : ⌦p(E) ! ⌦p+1(E)

satisfying D(! ⌦ s) = d! ⌦ s+ (�1)p! ^Ds for all p-forms ! 2 ⌦p(M) and s 2 �(E).

Definition 1.56. A connection D is said to be flat if the curvature operator ⇥ := D2

vanishes identically. Given that ⇥ := D2 is a holomorphic differential 2-form and since

over a compact Riemann surfaces there are no holomorphic two forms, we can conclude

that every holomorphic connection on E ! X is flat.

A vector bundle E ! X together with a flat connection is called a flat vector bundle.

In the case of principal G-bundles, we define the concept of connection on E in the

following way.

Definition 1.57. A connection on a principal G-bundle E is a g-valued 1-form

!y : TyE ! g satisfying the following conditions

• !y

⇣

Ỹ (y)
⌘

= Y, 8Y 2 g, where Ỹ (y) =
d

dt
(y exp (tY ))

�

�

�

�

t=0

, y 2 E.

• R⇤
g!y = Adg�1!y, 8 g 2 G,

where Rg : E ! E , y ! y · g, represents the right G-action on E. These properties

can be translated over each horizontal space in the following way

HRg(y)E = (Rg)⇤ HyE, 8g 2 G, 8y 2 E.

1.7.2. Flat vector bundles. Many authors such as Weil, Narasinham, Seshadri,

Biswas and others studied flat vector bundles over compact Riemann surfaces. In what

follows, we bring out some definitions and results obtained by these authors.

Definition 1.58. A vector bundle V over a compact Riemann surface X is flat if

there exists a representation ⇢ 2 Hom(⇡1(X), GL(n,C)) such that V ⇠= X̃ ⇥⇢ Cn := V⇢

(see example 1.44).
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There is an important theorem that relates the property of being flat with the degree

of the corresponding vector bundle (Weil’s Theorem 1.60) but first we need to remind

some definitions.

Definition 1.59. A vector bundle V is

• reducible if contains a proper subbundle; otherwise V is called irreducible.

• decomposable if is the direct sum of two vector subbundles V1 and V2, i.e,

V = V1�V2. If there is not any such decomposition V is called indecompos-

able.

Theorem 1.60. [Thm 10, [?, Wei38]] Let V be a vector bundle over an algebraic

curve and let V = V1 � V2 � · · · � Vl be a direct sum of indecomposable bundles Vi.

Then V arises from a representation of the fundamental group if and only if deg Vi =

0, i = 1, 2, · · · , l.

Corollary 1.61. A holomorphic vector bundle V over X admits a holomorphic con-

nection if and only if all indecomposable components of V have degree zero.

These results allow us to relate the property of being flat with the existence of a

holomorphic connection when we are working over compact Riemann surfaces.

Corollary 1.62. A vector bundle V over X is flat if and only if it admits a flat

connection (or holomorphic connection).

1.7.3. Flat principal bundles. According to the previous subsection, the term

flat on vector bundles over compact Riemann surfaces X is related with representations

of the fundamental group of X and with the existence of holomorphic connections. We

can always define connections on vector or principal bundles over X but they could not

be holomorphic. Herein, we are going to describe some similar results, but for principal

G-bundles case.

Since a holomorphic connection D on a principal G-bundle EG induces a holomorphic

connection on any associated bundle to it, in particular on the adjoint bundle Ad(EG)
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(see for example [Bis96]), we will start with the idea of a connection on the adjoint

bundle and then we will state a necessary and sufficient condition that relates the

existence of a holomorphic connection on the principal bundle and on the associated

adjoint bundle.

The connection D, as a holomorphic connection in the vector bundle Ad (EG), can be

defined as a linear operator from the set of (holomorphic) sections of the vector bundle

Ad (EG) to (holomorphic) sections of the cotangent bundle ⌦1
X with values in Ad (EG)

D : � (Ad(EG)) ! �
�

Ad(EG)⌦ ⌦1
X

�

:= ⌦1
X(Ad(EG))

satisfying the Leibniz rule D(f · s) = @f.s + fD(s) where f is a smooth function on

X. Usually we denote the corresponding induced connection by the same letter D.

Proposition 1.63. [Prop.2.2, [AB03]] Let G be a connected semisimple linear algeb-

raic group and X a compact Riemann surface. A principal G-bundle EG over X admits

a flat connection if and only if the adjoint bundle Ad(EG) admits one.

We may drop the requirement of G to be semisimple if an extra condition is fulfilled.

Proposition 1.64. [Prop.3.1, [AB03]] Let G be a connected reductive linear algebraic

group and X a compact Riemann surface. A holomorphic G-bundle EG over X admits

a flat connection if and only if the following conditions hold:

(1) the adjoint bundle Ad(EG) admits a flat connection;

(2) for every character � of G, the line bundle (EG ⇥ C)/G associated to EG for

� is of degree zero.

Given that Ad(EG) has degree zero, by definition of semistable vector bundle, Ad(EG) is

semistable if and only if any subbundle (in particular any indecomposable component)

has degree zero and, by Theorem 1.60, this is equivalent to admit a flat connection.
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Proposition 1.65. [Prop 14, [?]] Let E be a principal G-bundle over a compact

Riemann surface X where G is a complex Lie group. Then the following properties

are equivalent:

(1) E admits a flat connection.

(2) E admits constant transition functions.

(3) E is isomorphic to E⇢ for a representation ⇢ : ⇡1 (X) ! G.

If a principal G-bundle E over X fulfils the above conditions, E is called flat.

Definition 1.66. Let G be a complex algebraic group and let ⇡1 (X) be the funda-

mental group of X. Two representations ⇢, � : ⇡1 (X) ! G are called conjugate or

equivalent if there exists an element w 2 G such that ⇢ (�) = w� (�)w�1 for all

� 2 ⇡1 (X).

The following proposition establishes which type of relationship exists between principal

bundles induced by conjugate representations.

Proposition 1.67. Given two conjugate representations ⇢, � : ⇡1 (X) ! G then the

corresponding induced G-bundles are isomorphic (or equivalent).

Proof. By construction, E⇢
⇠= eX ⇥⇢ G, E�

⇠= eX ⇥� G and in order to obtain a

morphism of principal bundles the following diagram

E⇢
'�! E�

&
⇡⇢

.
⇡�

X

has to be commutative. Hence, we define the map ' : E⇢ ! E� such that ' assigns

to each element v = [x̃, g] 2 E⇢ an element ' (v) = w 2 E� such that ⇡⇢ (v) =

⇡� (' (v)) = ⇡� (w) = x 2 X. Taking in account the above universal cover ⇡ : eX ! X,

we fix x̃ 2 ⇡�1 (x). Now, we can consider the map E⇢
'�! E� defined in the ensuing

way.

' (v) = ' ([ex, g]) := [x̃, g0] = w.
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where g0 = ' (g) = hgh.1 for h 2 G such that h also verifies ⇢ (�) = h� (�)h�1 for all

� 2 ⇡1 (X). The map ' is an endomorphism of G.

The bundles E⇢ and E� are induced by the representations ⇢ and �, respectively. This

means that each element ḡ of G acts on the points v of E⇢ via � the corresponding

element of ⇡1 (X) via ⇢. Let us prove that ' is well defined, that is, given two elements

(x̃, g) ⇠ �x̃ · �, ⇢ (�)�1 · g� on E⇢ then the corresponding images in E� coincides.

'
�⇥

x̃ · �, ⇢ (�)�1 · g⇤� = ⇥x̃ · �, ' �⇢ (�)�1 · g�⇤

Using the fact that ⇢ and � are conjugate we obtain ⇢ (�) = h� (�)h�1 for some h 2 G,

so

= '
⇣h

x̃ · �, �h� (�)h�1
��1 · g

i⌘

=
⇥

x̃ · �, ' �h�1� (�)�1 hgh�1� (�)h
�⇤

.

=
⇥

x̃ · �, hh�1� (�)�1 hgh�1� (�)hh�1
⇤

=
⇥

x̃ · �, � (�)�1 �hgh�1
�

� (�)
⇤

=
⇥

x̃ · �, � (�)�1 · g0⇤

= [x̃, g0]

since the elements w 2 E� are defined by (x̃, g0) ⇠ �x̃ · �, � (�)�1 · g0�. ⇤

Now, let us prove that associated vector bundles to flat G-bundles are isomorphic to

vector bundles induced by representations of ⇡1 (X) into GL (V ).

Proposition 1.68. Let G be a connected reductive algebraic group and E a G-bundle

over a compact Riemann surface X. Suppose that E ⇠= E⇢ where ⇢ : ⇡1(X) ! G is a

surjective representation and that ⌧ : G ! GL(V ) is a linear representation of G in

the complex vector space V . Then the associated vector bundle E(V ) is isomorphic to

E⌧⇢ where E⌧⇢ is the vector bundle associated to ⌧ � ⇢ : ⇡1(X) ! GL(V ).
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Proof. First let us look to the linear representation ⌧ : G ! GL(V ). This is

equivalent to give an action of G on V , that is, G⇥ V ! V such that each pair (g, v)

corresponds to g · v = ⌧ (g)�1 · v.
The vector bundle E (V ) is obtained by identifying the following elements of E ⇥ V

(y, v) ⇠ �y · g, ⌧�1 (g) · v� .

In addition, the G-bundle E is induced by a representation ⇢ : ⇡1 (X) ! G, namely,

E = eX ⇥⇢ G. Each element y of this G-bundle can be written as [x̃, h] where we are

identifying elements of the form

(x, h) ⇠ ⇥x̃ · �, ⇢ (�)�1 · h⇤

where � 2 ⇡1 (X) and g = ⇢ (�).

In order to prove that E (V ) is isomorphic to E⌧⇢, let us denote by ⇡⌧⇢ : E⌧⇢ ! X

and ⇡V : E (V ) ! X the corresponding projections. Now, we have to construct a map

� between these vector bundles such that � is an isomorphism. This corresponds to

show that the map �|⇡�1(x) :⇡
�1
V (x) ! ⇡�1

⌧⇢ (x) is a vector space isomorphism for each

x 2 X.

Each element in E⌧⇢ = eX ⇥⌧⇢ V is, locally, of the form [(x̃, v)] = [(x̃�, (⌧ � ⇢) (�)�1v)]

where � 2 ⇡1 (X) is such that (⌧ � ⇢) (�) = w. In this way, we may define the following

bundle morphism
� : E (V ) ! E⌧⇢

that to each [(y, v)] 2 ⇡�1
V (x) assigns an element [(x̃, v)] 2 ⇡�1

⌧⇢ (x) where ⇡V ([(y, v)]) =

⇡⌧⇢ [(x̃, v)] = p (x̃) = x 2 X where p : eX ! X is the projection map of a universal

cover eX of X.

The morphism � is well defined since � does not depend on the element consider in

the class [y, v]

� ([(y, v) · g]) = �
⇥�

y · g, ⌧ (g)�1 v
�⇤

= �
⇥�

(x̃, h) · g, ⌧ (g)�1 v
�⇤

= �
⇥�

[x̃, hg] , ⌧ (g)�1 v
�⇤

:=
⇥

x̃, ⌧ (hg) ⌧ (g)�1 v
⇤

= [x̃, ⌧ (h) v] := � [(x̃, v)]
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Furthermore, over each fibre we have the following isomorphisms

⇡�1
V
(x)

�
//

⇠=
✏✏

⇡�1
⌧⇢ (x)

⇠=
✏✏

V
�

// V.

This means that if (y1, v1) , (y2, v2) 2 ⇡�1
V (x) then we have the following operations

⇡V (z (y1, v1)) = ⇡V (y1, v1) , 8z 2 C

⇡V ((y1, v1) + (y2, v2)) = ⇡V (y1 + y2, v1 + v2) = ⇡V (y1, v1) = ⇡V (y2, v2)

and the same happens to ⇡⌧⇢. Hence, we may see that � is an isomorphism of vector

spaces for each x 2 X. In fact,

� [z1 (y1, v1) + z2 (y2, v2)] = � [(y1 + y2, z1v1 + z2v2)]

= � [((x̃1 + x̃2, g1 + g2) , z1v1 + z2v2)]

= (x̃1 + x̃2, z1v1 + z2v2) = z1 (x̃1, v1) + z2 (x̃2, v2)

= z1� [(y1, v1)] + z2� [(y2, v2)]

8z1, z2 2 C, 8 (y1, v1) , (y2, v2) 2 ⇡�1
V (x) , 8x 2 X. Thus, we may conclude that � is

an isomorphism of vector bundles. ⇤

Proposition 1.69. Let G and H be algebraic groups and ' : G ! H a group homo-

morphism. Additionally, let EH be a H-bundle obtained from a G-bundle EG over a

compact Riemann surface X by extension of structure group by '. If EG is flat then

EH is also flat.

Proof. Given a flat principal bundle EG, this corresponds to be induced from the

universal covering bundle by a representation ⇢ : ⇡1(X) ! G, that is, EG = eX ⇥⇢ G.

In this way, we obtain the diagram

⇡1(X)

'�⇢ ""

⇢
// G

'

✏✏

H
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and correspondingly we have the ensuing relations

EH = EG ⇥' H ⇠=
⇣

eX ⇥⇢ G
⌘

⇥' H

which identify the following points

(x̃, g, h) ⇠ (x̃, g, h) · g0 = �x̃ · �, gg0,'(⇢(�))�1h
�

where � 2 ⇡1(X) such that g0 = ⇢(�).

In this sense, we may consider that EH
⇠= eX⇥⇢̄H where the representation ⇢̄ : ⇡1(X) !

H is obtained from the composition of ' with ⇢. Therefore, the principal H-bundle

EH is flat. ⇤

1.8. Moduli spaces of flat bundles

In this section, we describe the moduli space of flat bundles over a compact Riemann

surface of genus g � 2. These important results and definitions were given, mostly,

by Mumford, Narasimhan, Seshadri and Ramanathan. Essentially, they relate stable

points on the set of equivalence classes of bundles to representations of the fundamental

group of a compact Riemann surface X.

Hereinafter, when we use the term moduli space we mean coarse moduli space. In

both cases (vectorial and principal) we cannot usually construct a (fine) moduli space,

namely, a family that parametrises the objects (bundles) and such that the family has

a nice structure, like being a variety.

Throughout this section X and G will denote, respectively, a compact Riemann surface

with genus g and a connected reductive algebraic group over complex numbers. In order

to simplify notation, we use ⇡1 to denote the fundamental group of X, ⇡1 (X).

1.8.1. Moduli space of vector bundles. Mumford, Narasimhan and Seshadri

proved, in [NS64, NS65, Mum63], the existence of a nice orbit space (coarse moduli

space) parameterising the set of equivalence classes of stable (semistable) vector bundles

over X. Moreover, they proved important properties of this space, such as, it is an
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algebraic set, and they, also, compute its dimension. In what follows we are going to

highlight some properties and definitions that will be useful to understand the structure

and properties of the corresponding moduli space.

Using the notation introduced in [Flo01], let

Gn := Hom (⇡1, GL(n,C))/GL(n,C)

denotes the set of equivalence classes of representations of the fundamental group

⇡1 in GL(n,C) and consider the following map

(1.8.1)
V. : Gn ! H1 (X, GL (n, C))

[⇢] 7! [V⇢]

assigning to each equivalence class of a representation ⇢ the equivalence class of the

flat vector bundle V⇢ = eX ⇥⇢ Cn.

Since to each representation we may associate a flat vector bundle over X, it is natural

to ask when we have equivalent representations corresponding to isomorphic vector

bundles. Narasimhan and Seshadri gave the answer to this question. They proved that

this really happens when the representations are unitary (and irreducible).

Proposition 1.70. [Prop. 4.2, [NS64]] Let ⇢1 and ⇢2 be n-dimensional unitary rep-

resentations of the fundamental group ⇡1(X) of a compact Riemann surface X. Then

the holomorphic vector bundles V⇢1 and V⇢2 are isomorphic if and only if the represent-

ations ⇢1 and ⇢2 are equivalent.

With this notion of equivalence it is natural to ask if, when we restrict to stable flat

vector bundles over X, we obtain a nice space (moduli space) of equivalence classes of

these vector bundles.

Theorem 1.71. [Thm 2, Cor. 1, [NS65]] Let X be a Riemann surface of genus g � 2.

Then

(1) A holomorphic bundle V with rank n and degree zero is stable if and only if

V ⇠= V⇢ for some irreducible unitary representation ⇢ of the fundamental group

of X.
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(2) The correspondence ⇢ 7! V⇢ establishes a categories equivalence between the

category of irreducible unitary representations of the fundamental group and

the category of stable holomorphic vector bundles of degree zero over X.

Definition 1.72. [NS65] A holomorphic family of vector bundles on X paramet-

rised by a complex space T , W := {Wt}t2T , is a holomorphic vector bundle W on

T ⇥X. If we consider the inclusion

i : X ! T ⇥X

x 7! (t, x)

each Wt = i⇤W is the pull-back of image of W by the inclusion i.

Theorem 1.73. [Theorem 2, [NS65]] Let T be a complex space (resp. algebraic space)

parameterising a holomorphic (resp. an algebraic) family {Wt}, t 2 T , of vector bundles

of rank n on X. Then the following subsets of T

T s = {t 2 T : Wt is stable}

T ss = {t 2 T : Wt is semistable}

are open sets (resp. Zariski open sets) of T .

Considering the concept of unitary representation introduced in definition 1.24 (2), in

the case ⇢ : ⇡1 ! GL (n,C), the maximal compact subgroup of GL (n,C) is U (n),

consequently one unitary representation is one that can be reduced to ⇢ : ⇡1 ! U (n).

Let U⌧ (n) (respectively U�
⌧ (n)) denote the set of n-dimensional unitary (resp. irredu-

cible and unitary) representations from ⇡1 to GL (n,C) of type ⌧ .

Definition 1.74. A representation ⇢ : ⇡1 ! U(n) is of type ⌧ if ⇢ (�) = ⌧ (�) In⇥n,

8� 2 ⇡x̃ where
- x̃ 2 X̃, a universal cover of X,

- the map p : eX ! X is the projection associated to eX with p (x̃) = x,

- the group ⇡x̃ is the stabiliser of x̃,

- the map ⌧ is a character of ⇡x̃.
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The group PU (n) = U (n)/Z (U (n)) acts freely on the right on U�
⌧ (n), ⇢T = T�1⇢T

where T 2 PU (n) and ⇢ 2 U�
⌧ (n).

Proposition 1.75. [NS64] The set U�
⌧ (n) has a natural structure of a real analytic

manifold of dimension 2 (n2 (g � 1) + 1) + n2 � 1. Moreover, equivalent classes of n-

dimensional irreducible unitary representations of type ⌧ , U�
⌧ (n)/PU (n), form a real

analytic manifold of dimension 2 (n2 (g � 1) + 1).

Let M s (n, d) (respectively, M ss (n, d)) denote the set of equivalence classes of stable

(resp. semistable) vector bundles with rank n and degree d, over a compact Riemann

surface X of g � 2.

Corollary 1.76. [[NS65, MFK94]] There exists a complex manifold M s(n, 0) that

parameterises the isomorphism classes of stable holomorphic bundles of rank n and

degree 0. Furthermore, M s(n, 0) has the following properties:

(1) it is connected and it has (complex) dimension n2(g � 1) + 1.

(2) it has a natural complex structure, that is, if {Wt}t2T is a family of stable holo-

morphic bundles of rank n and degree 0, parameterised by a complex manifold

T , then the classifying map

(1.8.2)
T ! M s (n, 0)

t 7! [Wt]

is holomorphic.

1.8.2. Moduli space of principal bundles. Generalising concepts of Narasim-

han and Seshadri, Ramanathan proved in [Ram96, Ram75] that, for a Riemann

surface X of genus g � 2 and a connected reductive algebraic group G over C, the set

of isomorphism classes of stable G-bundles of a given topological type has a natural

structure of a connected normal complex space. In what follows, we review some of the

most important results of Ramanathan that will be needed in the forthcoming sections.



1.8. MODULI SPACES OF FLAT BUNDLES 41

Let us start with a generalisation of Narasimhan and Seshadri’s Theorem (Theorem

1.71), made by Ramanathan, to principal G-bundles where G is a reductive algebraic

group.

Proposition 1.77. [Prop.2.2, [Ram75]] If ⇢ : ⇡1(X) ! G is a unitary representation

then E⇢ is semistable. Further, if ⇢ is also irreducible then E⇢ is stable.

There exists an important group related to a G-bundle E over X, which is called

automorphisms group of E and it is denoted by Aut (E). It is convenient that this

group is as small as possible in order to obtain smoothness (as we will see later). In

this case it has to be reduced to the center of the group G, Z := Z (G).

Given a principal G-bundle E over X, we consider the corresponding adjoint bundle

AdE. Each section � : X ! AdE induces a G-equivariant map � : E ! G such that

� (y · g) = g�1 · � (y) = g�1� (y) g.

Consider an automorphism �� : E ! E defined by �� (y) = y � (y). According to

G-equivariance of �, we obtain the same property on ��, that is,

�� (y · g) = yg� (y · g) = ygg�1� (y) g = �� (y) · g.

In this way, sections of the adjoint bundle corresponds exactly to automorphisms of

E (for more details see, for example, [Hus94]). In this way, we obtain the following

equalities

Lie (Aut (E)) ⇠= H0 (X,E (g)) = H0 (X, Ad (E)) .

Remark. The group of automorphism Aut (E) of a G-bundle E has a physics inter-

pretation related with the particles movement and is called gauge group.

Proposition 1.78. [Prop. 3.2,[Ram75] ] Let E be a stable G-bundle then

H0 (X, Ad (E)) = z

where z is the centre of g. In particular, if G is semisimple then H0 (X, Ad (E)) = 0

and Aut (E) is finite.
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Remark. Given that H0 (X, Ad (E)) = Lie (Aut (E)) and considering that Z is al-

ways contained in Aut(E) as a normal subgroup, we have always z = Lie (Z) ⇢
H0 (X, Ad (E)).

If E is stable then Aut (E) is a finite extension of the centre Z, that is, Aut (E) /Z is

finite. Furthermore, when G is semisimple, its centre is finite thus we obtain the fact

of Aut (E) being finite.

Proposition 1.79. [Thm. 4.1, [Ram75]] Let {Et}t2T be an analytic family of G-

bundles parameterised by the complex space T . Then the set F = {t 2 T : Et is stable}
is a Zariski open subset of T .

When we are dealing with vector bundles we define some types of invariants in order

to index these objects. The main goal of this approach is to “catalog” the set of similar

objects and look for a space with specific characteristics (moduli space). In the case of

flat G-bundles, usually, we set the following topological invariant

c (⇢) = c (E⇢) 2 ⇡1 (G) .

This object is called topological type of E⇢ and it is related with the representation

⇢. More accurately, this element is given through the exact sequence

1 ! ⇡1 (G) ! eG ! G ! 1

where eG is a universal cover of G. Since G is a connected algebraic group over C,

there always exists a universal cover eG such that ker p = ⇡1 (G) is finite. Moreover,

Z (G) ⇢ ⇡1 (G).

Remark. If we consider the case of vector bundles over X, the topological type of V

is exactly the degree of the vector bundle V, deg (V ).

The set of isomorphism classes of G-bundles MG is indexed by the elements of ⇡1 (G),

that is,
MG =

a

d2⇡1(G)

Md
G.
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Let us denote by M s,d the set of isomorphisms classes of stable G-bundles over X with

topological type d 2 ⇡1 (G). The following theorem is a generalisation of Theorem 1.76

and establishes that the moduli space M s,d is a connected complex space.

Theorem 1.80. [Thm. 4.3 and Prop. 5.1, [Ram75]] The set of isomorphism classes

of stable G-bundles of a given topological type d 2 ⇡1 (G), M s,d has the structure of a

connected normal (Hausdorff) complex space. Moreover, if {Es}s2S is any holomorphic

family of bundles, of the given topological type d, the natural map S ! Md,s is holo-

morphic.

We are, now, in conditions to introduce the Ramanathan’s Theorem analogous to

Narasimhan and Seshadri’s Proposition 1.70 but, in this case, applied to principal

G-bundles.

Theorem 1.81. [Thm 7.1, [Ram75]] A holomorphic G-bundle E on a compact Riemann

surface X (g � 2) is stable if and only if it is of the form E⇢, for some irreducible unit-

ary representation ⇢ of the fundamental group. Moreover, the topological type and the

equivalence class of ⇢ under conjugation by elements of K are uniquely determined by

E.

The next Proposition sets the existence of irreducible and unitary representations of any

type when G is semisimple. In this way we can always guarantee the existence of stable

G-bundles on X. We actually can generalise a little more the following proposition to

the case where G is reductive as we will discuss later on the Proposition 2.18.

Proposition 1.82. [Proposition 7.7, [Ram75]] Let X be a compact Riemann surface

of genus greater or equal to 2. For any c 2 ⇡1(G), G semisimple, there is an irreducible

unitary representation ⇢ : ⇡1(X) ! K such that � (E⇢) = c.

Theorem 1.83. [Thm. 5.9, [Ram96] ] Let G be a connected reductive algebraic group

and X be a compact Riemann surface with genus g � 2. The coarse moduli space

Mss,d of isomorphism classes of semistable principal G-bundles of topological type d
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is irreducible, projective, normal and Cohen-Macaulay variety, and its dimension is

given by (g � 1)dimG + dimZ(G). The subset Ms,d of Mss,d corresponding to stable

G-bundles is open (and dense).



CHAPTER 2

Schottky Representations

Given a compact Riemann surface X of genus g � 1, we may write it as a quotient

⌦⌃/⌃ where ⌃ is a Schottky group and ⌦⌃ is the corresponding region of discontinuity.

The Schottky group ⌃ is a group generated by the image of a representation of the

free group FN , with N generators, into PSL(2,C) (up to conjugation). These ideas

lead Florentino (in [Flo01]) to define the concept of Schottky representation, that is,

a homomorphism ⇢ : Fg ! GL (n,C) and to relate it with the notion of vector bundles

induced by representations of a free group.

In this chapter we extend the definition of Schottky representation in [Flo01] to rep-

resentations ⇢ : Fg ! G⇥Z from the free group with g generators to the product G⇥Z

where G is a connected reductive algebraic group and Z the corresponding centre. We

also prove some properties of the set consisted by all representations of this type.

Let us begin by fixing some notation. We denote by X a compact Riemann surface of

genus g � 2 and by ⇡1 = ⇡1(X) the corresponding fundamental group with the usual

presentation
⇡1 (X) =

(

↵1, · · · ,↵g, �1, · · · , �g :
g
Y

i=1

[↵i, �i] = 1

)

and let Fg denote the free group in g generators �1, · · · , �g.

2.1. Free group representations

In order to define Schottky representation for a general reductive group, we begin by

recalling the definitions for the case of GL(n,C). Here, we denote by B1, · · · , Bg the

g generators of Fg. Consider a group homomorphism p : ⇡1 ! Fg with the following

properties
p(↵i) = 1 and p(�i) = Bi

45
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for i = 1, · · · , g, and where 1 denotes the identity element of Fg. This homomorphism

lead us to the following short exact sequence of groups

(2.1.1) 1 ! N ! ⇡1(X)
p! Fg ! 1

where N denotes the smallest normal subgroup of ⇡1(X) containing the elements

{↵1, · · · , ↵g}. For each homomorphism ⇢ : ⇡1 ! GL (n,C), the map p induces one

homomorphism ⇢̃ : Fg ! GL (n,C) defined by ⇢̃ (Bi) = ⇢ (p (�i)) where Bi = p (�i).

According to this construction, Florentino defined the concept of Schottky repres-

entations as homomorphisms ⇢̃ : Fg ! GL (n,C) that are obtained in this way, i.e.,

all homomorphisms ⇢ : ⇡1 (X) ! GL (n,C) such that ⇢ (↵i) = 1, 8↵i 2 ⇡1 (X). In this

context, Sn denotes the set of all Schottky representations constructed in the above

way.

We generalise this concept for representations into an arbitrary connected reductive

algebraic group G (over C) in the following definition.

Definition 2.1. A representation ⇢ : ⇡1(X) ! G is called a Schottky represent-

ation if ⇢(↵i) 2 Z for all ↵i 2 ⇡1 (X), where Z denotes the center of the connected

reductive algebraic group G. The set of all Schottky representations is denoted by S.

The set of all Schottky representations

S = {⇢ 2 Hom (⇡1 (X) , G) : ⇢ (↵i) 2 Z (G)},

as a subset of Hom (⇡1 (X) , G) has a nice structure, as we can see in the follow-

ing Lemma. The proof of this lemma is a similar result to the one for the case of

Hom (⇡1 (X) , GL (n,C)) (definition 1.18), the set S is also an algebraic variety.

Lemma 2.2. The set of Schottky representations S is an algebraic variety.

Proof. If we consider the map ev : S ! G2g defined by

ev(⇢) = (⇢(�1), ⇢(↵1), · · · , ⇢(�g), ⇢(↵g))
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it is clear that each representation ⇢ 2 S is completely defined by the image of the

generators {↵1, · · · ,↵g, �1, · · · , �g}. Thus, as in the case of Hom (⇡1 (X) , G), this map

is an embedding in G2g and consequently S gets the structure of an algebraic subvariety

of G2g. ⇤

Recall that we have fixed a set of generators {B1, · · · , Bg} of the free group Fg and

{↵1, · · · ,↵g, �1, · · · , �g} of the fundamental group ⇡1 (X). As above, given a Schottky

representation ⇢, since ⇢ (↵i) 2 Z and as a representation of ⇡1 (X), we can consider

this representation as a representation from the free group Fg. In order to obtain this

correspondence, we define a representation

(2.1.2) ⇢̃ : Fg ! G⇥ Z

as a pair of representations (⇢̃1, ⇢̃2) where ⇢̃1 : Fg ! G maps each Bi 2 Fg to ⇢ (�i) 2 G

and ⇢̃2 : Fg ! Z maps each Bi 2 Fg to ⇢ (↵i) 2 Z.

In what follows, we aim to prove that we can identify the varieties S and Hom (Fg, G⇥Z).
Afterwards, if we consider a G-action over S, we prove that this action coincides with

the analogous G-action on Hom (Fg, G⇥ Z). With these identifications it will be sim-

pler and more intuitive to work with the set of Schottky representations S. We just have

to think on it as a set of representations of the free group in G⇥ Z, Hom (Fg, G⇥ Z).

Let us start by defining an action of the algebraic group G⇥Z on Hom (Fg, G⇥ Z) by

conjugation in the following way

(g, h) · ⇢̃ = (g, h) · (⇢̃1, ⇢̃2) =
�

g⇢̃1g
�1, h⇢̃2h

�1
�

.

According to the fact that h 2 Z, this action reduces to

(g, h) · ⇢̃ = �g⇢̃1g�1, ⇢̃2
�

.

Hence, this is actually a G-action on Hom (Fg, G⇥ Z) where each element g 2 G acts

only in the first coordinate
g · ⇢̃ = �g⇢̃1g�1, ⇢̃2

�

for all g 2 G.
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Lemma 2.3. If G is a reductive algebraic group, there exists a categorical quotient

Hom (Fg, G⇥ Z) //G, that is, a surjective G-morphism

p : Hom (Fg, G⇥ Z) ! Hom (Fg, G⇥ Z) //G.

Proof. Nagata’s Theorem states that the ring of invariants C [Hom (Fg, G⇥ Z)]G

is finitely generated when G is reductive. Additionally, [Theorem 3.5, [New78]] or

[Thm. 6.1, [Dol03]], stating that if a reductive group acts on a G-variety then there

exists a categorical quotient Hom (Fg, G⇥ Z) //G. ⇤

In the next theorem we prove that any Schottky representation can be defined as an

element of the variety Hom(Fg, G⇥ Z) and vice versa.

Proposition 2.4. Let G be a complex connected (reductive) algebraic group and let Z

denotes its center, then the following algebraic G-varieties are isomorphic

S ⇠= Hom(Fg, G⇥ Z) ⇠= (G⇥ Z)g.

Proof. Since all representations of S or Hom (Fg, G⇥ Z) are completely defined

by the corresponding image of its generators, we start by defining two morphims of

varieties, � : S ! Hom (Fg, G⇥ Z) and  : Hom (Fg, G⇥ Z) ! S, in terms of the

respective generators. Since we are working over C, it is enough to show that � is a

bijective homomorphism and that  � � = idS and � �  = idHom(Fg ,G⇥Z) .

Each representation ⇢ : ⇡1 (X) ! G of S fulfils ⇢ (↵i) 2 Z for all i = 1, · · ·, g. Hence,

we define the morphism � in the following way

(2.1.3)
� : S ! Hom (Fg, G⇥ Z)

⇢ 7! � (⇢) = ⇢̃

where the element ⇢̃ is a pair of representations (⇢̃1, ⇢̃2) 2 Hom (Fg, G⇥ Z) with

(2.1.4)
⇢̃1 : Fg ! G and ⇢̃2 : Fg ! Z

Bi 7! ⇢ (�i) Bi 7! ⇢ (↵i) .
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The elements Bi’s, ↵i’s and �i’s denote, respectively, the g generators of the free group

Fg and the 2g the generators of ⇡1 (X).

Similarly, we define the map

(2.1.5)  : Hom (Fg, G⇥ Z) ! S

assigning to each representation ⇢̃ in Hom (Fg, G⇥ Z) the representation  (⇢̃) =  (⇢̃1, ⇢̃2) =

⇢ in S in the following way

(2.1.6)
 (⇢̃) (�i) = ⇢̃1 (Bi) 2 G

 (⇢̃) (↵i) = ⇢̃2 (Bi) 2 Z

thinking on ⇢̃ (Bi) as (⇢̃1 (Bi) , ⇢̃2 (Bi)) = (⇢̃1 (Bi) , e) · (e, ⇢̃2 (Bi)).

Now, we prove that � is bijective. According to the way we had defined �, the injectivity

� (⇢) = � (⇢0) , ⇢ = ⇢0 is obvious. Concerning to surjectivity, we take an arbitrary

element ⇢̃ = (⇢̃1, ⇢̃2) 2 Hom (Fg, G⇥ Z). We intend to prove that we can define one

representation ⇢ 2 S such that � (⇢) = ⇢̃.

The representation ⇢̃ = (⇢̃1, ⇢̃2) : Fg ! G⇥Z is such that ⇢̃1 (Bi) 2 G and ⇢̃2 (Bi) 2 Z

and thereby we construct the representation ⇢ 2 Hom (⇡1, G) in the ensuing way

⇢ (�i) = ⇢̃1 (Bi) 2 G and ⇢ (↵i) = ⇢̃2 (Bi) 2 Z.

Clearly, this representation ⇢ is Schottky and
8

>

>

<

>

>

:

� (⇢) (�i) = ⇢̃1 (Bi)

� (⇢) (↵i) = ⇢̃2 (Bi)

that is, � (⇢) = ⇢̃.

In order to prove the remaining part of the proposition we have to show that  �� = idS

and � �  = idHom(Fg ,G⇥Z).

Given any element ⇢ of S the image of the map ( � �) (⇢) is given by the composition

of laws in (2.1.4) and (2.1.6). This means that, for each generators ↵i and �i of ⇡1 (X),
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we have the following equalities

( � �) (⇢) (↵i) =  ((e, ⇢̃2 (Bi))) = ⇢̃2 (Bi) = ⇢ (↵i)

and
( � �) (⇢) (�i) =  ((⇢̃1 (Bi) , e)) = ⇢̃1 (Bi) = ⇢ (�i) .

Hence we obtain, for an arbitrary ⇢ 2 S, ( � �) (⇢) = ⇢. Thus,  � � = idS .

Remains to prove that � �  = idHom(Fg ,G⇥Z) . In an analogous way, for any element

⇢̃ of Hom (Fg, G⇥ Z), let us compute the image of the map (� �  ) (⇢̃). First, by

(2.1.6), the image ⇢ =  (⇢̃) =  (⇢̃1, ⇢̃2) is defined by ⇢ (↵i) =  (e, ⇢̃2 (Bi)) and

⇢ (�i) =  (⇢̃1 (Bi) , e). According to the fact that  is a homomorphism, we write the

image  (⇢̃) (Bi) in the following way  (⇢̃) (Bi) =  (⇢̃1 (Bi) , e) (e, ⇢̃2 (Bi)). Now,

the composition (� �  ) (⇢̃ (Bi)) is equal to

� ( (⇢̃1 (Bi) , e) (e , ⇢̃2 (Bi)))

and using the fact that � is a homomorphism, we obtain

(� �  ) (⇢̃) (Bi) = � ( (⇢̃1 (Bi) , e))� ( (e, ⇢̃2 (Bi)))

= � (⇢ (�i))� (⇢ (↵i))

= (⇢̃1 (Bi) , e) (e, ⇢̃2 (Bi))

= ⇢̃ (Bi) .

Then, we can conclude that, � �  = idHom(Fg ,G⇥Z) .

At this point, we demonstrate that � is an isomorphism of algebraic varieties. To finish

the Proposition’s proof we just have to determine that the map � is G-equivariant, that

is, � (g · ⇢) = g · � (⇢) for all g 2 G. As above, it is enough to verify this property over

the generators of ⇡1 (X) and Fg.

g ·� (⇢ (↵i)) = g · (e, ⇢̃2 (Bi)) = g⇢̃2 (Bi) g
�1 = ⇢̃2 (Bi) = � (⇢ (↵i))

⇢(↵i)2Z(G)
= � (g · ⇢ (↵i))
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Now, let us consider that g · ⇢ = � and � (�) = �̃ = (�̃1, �̃2)

g · � (⇢ (�i)) = g · (⇢̃1 (Bi) , e) =
�

g⇢̃1 (Bi) g
�1, e

�

= (�̃1 (Bi) , e) ,

additionally,

� (g · ⇢ (�i)) = � (� (�i)) = (�̃1 (�i) , e) .

Then we obtain the G-equivariance of �, that is, g · � (⇢) = � (g · ⇢). In conclusion,

we have the isomorphism of the G-varieties S ⇠= Hom (Fg, G⇥ Z) and, according to

the map defined on (1.2.1), the isomorphism Hom(Fg, G ⇥ Z) ⇠= (G ⇥ Z)g follows

immediately. ⇤

Having the set of Schottky representations S identified with the set of representations

of the free group Hom (Fg, G⇥ Z), it becomes natural to wonder how can we write the

corresponding categorical quotient S := S//G.

According to the Proposition 2.4, both S//G and Hom (Fg, G⇥ Z) //G are good quo-

tients of S by G. Good quotients are categorical, namely, there exists a unique morph-

ism (up to isomorphism) � such that the following diagram

S
⇡S
✏✏

�
//

⇡�

((

Hom (Fg, G⇥ Z(G))

⇡Hom

✏✏

S//G
�
// Hom (Fg, G⇥ Z(G)) //G

commutes, i.e., � � ⇡S = ⇡�. Furthermore, since � is an isomorphism of G-varieties, it

is obvious that � is an isomorphism of categorical quotients.

Having all this into account, we state the following Lemma.

Lemma 2.5. The isomorphism of affine G-varieties � : S ! Hom (Fg, G⇥ Z) induces

a unique isomorphism (up to isomorphism) between the corresponding categorical quo-

tients
� : S//G ! Hom (Fg, G⇥ Z) //G.

An important feature over varieties is irreducibility, the next proposition establishes

when we obtain on these varieties such property.
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Proposition 2.6. Let G be a connected reductive algebraic group. The categorical

quotient S = S//G is irreducible if and only if the center of G, Z, is connected.

Proof. If G is connected then the character variety C (Fg, G) = Hom (Fg, G) //G

is irreducible [Lemma 6.1, [Mar00]]. The group G ⇥ Z is connected if and only if

Z is connected (since G is connected). In this way, the geometric quotient S ⇠=
Hom (Fg, G⇥ Z) // (G⇥ Z) is irreducible since the connected reductive algebraic group

G⇥Z acts on the connected algebraic variety Hom (Fg, G⇥ Z). Moreover, since the ac-

tion of Z is trivial, Hom (Fg, G⇥ Z) // (G⇥ Z) coincides with Hom (Fg, G⇥ Z) //G. ⇤

In Proposition 2.6, we were forced to add the connectedness condition on the center Z

of the algebraic group G. Since we are considering the case of a connected reductive

algebraic group G and, usually, its center is non connected, we want to consider this

possibility. In this way, let us assume that the center of G, Z, can be non connected

and correspondingly G⇥ Z might be non connected reductive group.

Given the center Z of a connected reductive algebraic group G, the connected compon-

ente Z� is an algebraic torus and the quotient Zf = Z/Z� is finite. Moreover there is

a short exact sequence 1 ! Z� ! Z ! Zf ! 1 and thus we can write the algebraic

group Z as a semidirect product,

Z = Z� o Zf .

This decomposition corresponds to a surjective homomorphism with finite kernel: Z�⇥
Zf ! Z such that to each (z�, zf ) we assign the element z = z�zf .

Remark. The finite group Zf is the kernel of the projection p : G ! G/ [G,G] !
Z� (G).

As a variety, we can write Z as a cartesian product of above subgroups, Z = Z� ⇥ Zf .

Having these facts in mind we establish the following Proposition which gives us a

procedure to compute the number of irreducible components of the categorical quotient

S and moreover, it gives a description of each connected component .
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Proposition 2.7. Let G be a connected reductive algebraic group and let Z denote the

center of G. All irreducible components of the categorical quotient S are isomorphic to

Hom (Fg, G⇥ Z�) //G ⇠= (Gg//G)⇥ (Z�)g

where Z� is the identity component of Z. Moreover, the number of irreducible com-

ponents of the categorical quotient S = S//G is given by the number of elements of the

quotient Zf = Z/Z�, to the power of g, that is, |Zf |g.

Proof. As it was mentioned before the center of G, Z, can be written, thinking

as an algebraic variety, as Z ⇠= Z� ⇥ Zf . In this way, as varieties, we get the following

isomorphism
Hom (Fg, G⇥ Z) ⇠= Hom (Fg, G)⇥ Hom (Fg, Z)

⇠= Gg ⇥ Zg

⇠= (G⇥ Z�)g ⇥ (Zf )
g

Let us now consider a G-action on the above varieties. The former is defined by

g · ⇢ (�) = g⇢ (�) g�1. In the latter one we define the G-action on (G⇥ Z�)g(and on

(Zf )
g) as g · (h, z) = (ghg�1, gzg�1) = (ghg�1, z) (respectively, g · zf = gzfg�1 = zf ).

It is obvious that G acts trivially on Z� and on Zf . Hence we obtain the following

isomorphic varieties Hom (Fg, G⇥ Z) //G ⇠= (Gg//G) ⇥ Zg. If we denote by S� =

(G⇥ Z�)g //G = (Gg//G) ⇥ (Z�)g, this corresponds to a connected component of S.

Taking all this into account, we obtain the following isomorphism

S ⇠= S� ⇥ (Zf )
g .

⇤

Now that we have analysed the connected components of the categorical quotient S, we

want to compute the corresponding geometric quotient. By Rosenlicht theorem, there

exists an open G-stable subset U of S such that there exists the geometric quotient

U//G . According to Mumford’s Theorem [1.10, [MFK94]] the set of all stable points
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(definition 1.24(4)) of S, Ss, is such that the quotient Ss = Ss//G is a geometric

quotient of Ss ⇢ S.

Proposition 2.8. Let Ss denote the subset of S consisted by all stable (irreducible)

representations of S. Then Ss is a (open) dense subset of S (in complex topology).

Moreover, Ss = Ss//G is a geometric quotient of Ss.

Proof. First let us remind a Sikora’s Corollary [Cor. 31(2),[Sik10]] stating that

any representation ⇢, of a free group (with N � 2 elements) on a reductive group G,

is a stable representation if and only if ⇢ is irreducible. According to another Sikora’s

result [Prop. 29 (1), [Sik10]], the set of irreducible representations is dense in S. To

finish, we remind a Theorem [Thm. 1.10, [MFK94]] (or [Thm 3.14, [New78]]] which

assert that the quotient of the set of stable points is a geometric quotient, and we apply

to the set of stable representations Ss and we conclude that Ss = Ss//G is a geometric

quotient of Ss. ⇤

The following corollary establishes the analogy of working with the geometric quotients

Ss and Hom (Fg, G⇥ Z)s //G.

Proposition 2.9. Let Ss and Hom (Fg, G⇥ Z)s denote the subsets of stable repres-

entations of S and Hom (Fg, G⇥ Z) respectively. Then Ss ⇠= Hom (Fg, G⇥ Z)s and

there exist the geometric quotients Ss = Ss//G and Hom (Fg, G⇥ Z)s //G. Moreover,

Ss ⇠= Hom (Fg, G⇥ Z)s //G.

Proof. By Proposition 2.8, since Ss and Hom (Fg, G⇥ Z)s are open (and dense)

and � : S ! Hom (Fg, G⇥ Z) is an isomorphism of G-varieties then the restriction

of � to stable points, �|Ss , maps isomorphically Ss to Hom (Fg, G⇥ Z)s. Considering

the diagram of the proof of the Lemma 2.5 and restricting the corresponding maps to

the subsets of stable representations we obtain the diagram

Ss

⇡Ss

✏✏

�
//

⇡�

((

Homs (Fg, G⇥ Z)

⇡Hom

✏✏

Ss//G
�
// Homs (Fg, G⇥ Z) //G
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Since geometric quotients are categorical, the morphism � is unique (up to isomorph-

ism). ⇤

According to the above Proposition, from now on, we make the following identifications

Ss ⌘ Homs (G⇥ Z) //G.

2.2. Good representations

In the definition 1.24(3) we refereed the concept of a good representation, this notion

is quite important if we pretend, in particular, to handle with tangent spaces. These

points have the particularity of being smooth points of the geometric quotient, as we

will see throughout this section. Our main goal of this section is to study the set

of these points and to state some properties that will be useful in the forthcoming

sections.

Let us begin by defining the concept of good representation applied to the case of

Schottky representations.

Definition 2.10. A representation ⇢ 2 S ⇢ Hom (⇡1, G) is said to be good if ⇢ is

irreducible as an element of Hom (⇡1, G) and if the stabiliser of the representation ⇢,

Z(⇢), coincides with the center Z of the group G. The set of all good Schottky

representations is denoted by Sg.

As in the case of stable representations, the set of good representations is open in S
thus it is very important to have the guarantee of non emptiness of the set Sg. The

following Lemma allows us to assert the existence of good Schottky representations .

Lemma 2.11. [Lemma 4.6, [Mar00]] If � has a finitely generated group with N ele-

ments, FN , as a quotient, for some N � 2, and if G is a connected reductive algebraic

group then there exists a good representation in Hom (�, G).
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Remark 2.12. For the case of compact Riemann surfaces X of genus g � 2, the

fundamental group ⇡1 is a quotient of a free group FN where N � 2, so above Lemma

confirms directly the existence of good representations on Hom (⇡1, G).

Now, we want to prove that the set of good Schottky representations is nonempty. In

order to obtain this assertion, we first have to prove the following Proposition which

claims that a unitary Schottky representation ⇢ in Hom (⇡1, G) is good if and only if,

when we consider it as an element (⇢1, ⇢2) in Hom (Fg, G⇥ Z), we have ⇢1 good.

Proposition 2.13. Let ⇢ be a representation of S. Writing ⇢ as before, ⇢ = (⇢1, ⇢2) :

Fg ! G⇥ Z, where ⇢1 : Fg ! G and ⇢2 : Fg ! Z are homomorphisms, we have:

(a) Z(⇢) = Z(⇢1),

(b) If ⇢1 is irreducible if and only if ⇢ is irreducible.

In particular, ⇢ is a good Schottky representation as an element of Hom (⇡1 (X) , G) if

and only if ⇢1 : Fg ! G is good too.

Proof. Let ⇢ be a unitary Schottky representation, as a representation in Hom (⇡1, G).

(a) Let us begin by proving that Z (⇢) = Z (⇢1). Since the representation ⇢ is com-

pletely defined by the image of the generators of ⇡1, the intersection of the

corresponding stabilisers, in G, gives the stabiliser of ⇢. Then,

Z (⇢) =

g
\

i=1

Z (⇢ (�i))
g
\

i=1

Z (⇢ (↵i))

=

g
\

i=1

Z (⇢1 (Bi))

g
\

i=1

Z (⇢2 (�i))

=

g
\

i=1

Z (⇢1 (Bi))
\

G

since ⇢2 (Bi) 2 Z then its centraliser consists in all elements of G. Then we

obtain
Z (⇢) =

g
\

i=1

Z (⇢1 (Bi)) = Z (⇢1) .
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(b) Now we want to prove that ⇢ is reducible if and only if ⇢1 is reducible.

Let us suppose that ⇢ is reducible, this means that, the image ⇢ (⇡1) is con-

tained in a proper parabolic subgroup of G

⇢ (⇡1) ⇢ P.

This is equivalent to have, in particular, all images of the generators of ⇡1

contained in P ,

, ⇢ (↵i) , ⇢ (�i) 2 P, 8i = 1, · · · , g

This implies that

⇢ (�i) = ⇢1 (Bi) 2 P, 8i , ⇢1 (Fg) ⇢ P.

With this, we prove that ⇢1 being irreducible implies that ⇢ is irreducible.

Reciprocally, let us see that if ⇢1 is reducible then we obtain the reducibility

of ⇢.

If ⇢1 is reducible, then there is a proper parabolic subgroup of G such that

⇢1 (Fg) ⇢ P . Since any parabolic P contains the center of G, we can conclude

that

⇢1 (Fg) ⇢ P , ⇢1 (Bi) 2 P, 8i = 1, · · · , g , ⇢ (�i) 2 P, 8i = 1, · · · , g
⇢2 (Fg) ⇢ Z , ⇢2 (Bi) 2 P, 8i = 1, · · · , g , ⇢ (↵i) 2 P, 8i = 1, · · · , g

,

equivalently, ⇢ (⇡1) ⇢ P . Thus ⇢ is reducible.

To conclude, we have reached to ⇢ is irreducible if and only if ⇢1 is irreducible

and that Z (⇢1) = Z (⇢), i.e., ⇢ is good if and only if ⇢1 is good.
⇤

Lemma 2.14. If X is a Riemann surface of genus g � 2, the subsets of good repres-

entations Homg (⇡1, G) and Sg are dense in Hom (⇡1, G) and S, respectively.

Proof. By Lemma 2.11 and remark 2.12, it is obvious that Hom (⇡1, G)g 6= ?.

Since the set Hom (⇡1, G)g is open on Hom (⇡1, G) (Prop.33, [Sik10]) it implies that

Hom (⇡1, G)g is dense on Hom (⇡1, G).
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Let us construct a good Schottky representation. In this way, we start by defining

one representation ⇢ = (⇢1, ⇢2) where ⇢1 : Fg ! G, ⇢2 : Fg ! Z and such that the

homomorphism ⇢2 is constant and equal to e the identity element of G. According to

Lemma 2.11, there always exists a good ⇢1 : Fg ! G since Fg is the free group with at

least g = 2 and since G is a connected reductive group. The representation ⇢ = (⇢1, ⇢2),

where ⇢1 and ⇢2 are above representations, is a good Schottky representation. In fact,

by Proposition 2.13, ⇢1 being good is equivalent to ⇢ being good. Now, since the set of

good Schottky representations is open in S (again Prop.33, [Sik10]), we can conclude

that it is dense on S. ⇤

Let us denote by Sg = Sg//G and by Gg = Homg (⇡1, G) //G the geometric quotients of

Sg and of Homg (⇡1, G) by G, respectively. If we take into consideration the following

Proposition due to Sikora, we will be able to guarantee that the geometric quotients

Gg and Sg are dense on the sets of irreducible representations Gi and Si, respectively.

Proposition 2.15. [Cor.50, [Sik10]] For every reductive group G and every surface

group or free group �, the geometric quotient of good representations Homg (�, G) //G is

an open subset of the categorical quotient of irreducible representations Homi (�, G) //G

and a smooth complex manifold.

Applying above Proposition to the cases Hom (⇡1 (X) , G) and Hom (Fg, G⇥ Z), we

obtain the following Theorem

Theorem 2.16. For every reductive group G and for a compact Riemann surface

of genus g � 2, the geometric quotients of good representations Sg := Sg//G and

Gg := Homg (⇡1 (X) , G) //G are nonempty open subsets of, respectively, Si and Gi.

Furthermore, they are smooth complex manifolds.

Proof. First, Lemma 2.14 assures that Homg (⇡1 (X) , G) and Sg are nonempty

and so they are dense in Homi (⇡1 (X) , G) and S i, respectively. The Theorem comes

directly by applying Proposition 2.15. ⇤
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2.3. Unitary representations

Narasimhan, Seshadri and Ramanathan found the interest in the study of unitary and

irreducible representations from a surface group to G. In the same context, it would

be of great interest to find unitary and good Schottky representations when G is a

connected reductive group over C and X is a compact Riemann surface with genus

g � 2 with fundamental group ⇡1 := ⇡1 (X).

To start, we need to remind two relevant properties related to compact groups. One of

them is, for a connected reductive algebraic group G over the complex numbers, there

always exists a maximal compact connected real Lie group K such that its complexi-

fication KC coincides with G. Another property is reminded in the following Theorem,

which states that any connected compact (real) Lie group can be generated by two

elements.

Theorem 2.17. [[H.34]] Let K be a connected compact Lie group. Then there ex-

ist two elements g, h 2 K such that hg, hi = K. Moreover, the set of pairs in K

� (K) :=
n

(g, h) : hg, hi = K
o

is dense in K ⇥K.

Now we are in conditions to establish the following Proposition.

Proposition 2.18. Let X denote a compact Riemann surface with genus g � 2 and

let G be a connected reductive algebraic group. Then there exist unitary Schottky rep-

resentations of ⇡1 into G, such that ⇢(⇡1) is dense in K, a maximal compact of G.

Proof. Let K be a maximal compact subgroup of G. Let us construct a Schottky

representation into K, such that ⇢ is unitary and irreducible, that is, ⇢ (⇡1) ⇢ K

and is not contained in any proper parabolic subgroup of G. We define the Schottky
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representation

(2.3.1)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

⇢ (↵i) = e, 8i = 1, · · · , g
⇢ (�1) = g

⇢ (�2) = h

⇢ (�i) = e, 8i = 3, · · · , g.

with g, h 2 K such that hg, hi = K, which is guaranteed by Theorem 2.17. It is

obvious that the homomorphism ⇢, constructed in (2.3.1), is Schottky (since all images

of ↵i by ⇢ are in the center). Moreover, ⇢ is unitary since ⇢ (⇡1) ⇢ hg, hi = K. ⇤

Proved the existence of unitary Schottky representations, we would like to be sure of

the existence of unitary and good Schottky representations when the compact Riemann

surface has genus g � 2. According to definition 2.10, a representation ⇢ 2 S is good if

it is good as an element of Hom (⇡1 (X) , G), now we want to translate this definition

thinking on ⇢ as a representation in Hom (Fg, G⇥ Z).

Proposition 2.19. Let X be a compact Riemann surface of genus g � 2 and let G be

a connected reductive algebraic group then there is always a good and unitary Schottky

representation of ⇡1 (X) in G.

Proof. Let us begin with a unitary Schottky representation ⇢ : ⇡1 (X) ! K ⇢ G

constructed as in Proposition 2.18 such that the closure of the subgroup generated by

g and h is K. So, ⇢(⇡1(X)) = K and since K is Zariski dense in G, this implies that

the Zariski closure of ⇢(⇡1(X)) is not contained in any proper parabolic subgroup of

G. In this way, we obtain a unitary and irreducible representation. In order to prove

that it is also good we have to prove that ZG (⇢) = Z (G).

First let us prove that ZG (⇢) coincides with the centraliser of K in G, ZG (K). The

stabiliser of ⇢ consists in all elements of a 2 G such that a · ⇢ = ⇢. If an element

a 2 ZG (⇢) then, by construction a commutes with h and g.

Let a 2 G denote an element such that it commutes with g and h, that is, ag = ga

and ah = ha. Now for any k 2 K we want to prove that ak = ka. As an element of
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K, k can be written as a limit of elements of hg, hi, k = limn kn, with each kn equals

to an expression of the type gj1hm1 · · · gjlhnl , thus

ak = a lim
n

gj1hm1 · · · gjlhnl = lim
n

agj1hm1 · · · gjlhnl

and since a commutes with g and h,

= lim
n

gj1hm1 · · · gjlhnla = ka.

In this way, a 2 ZG(K), namely, ZG (⇢) ⇢ ZG(K).

Now we want to show that ZG (K) = ZG. Clearly, ZG ⇢ ZG (K). Let us consider an

arbitrary element a in ZG (K) and let us consider the homomorphism

ca : G ! G

g 7! ca (g) = aga�1

This map ca defined over K coincides with the identity map since a 2 ZG (K).

Now, let us compute the differential of ca in the identity e of G.

d (ca)e : TeG ! Tca(e)G

k k
g ! g

Y 7! aY a�1.

Each element Y of g can be written as a sum

Y = Y1 + iY2

where Y1, Y2 2 k = Lie (K). The image of this element by the linear map d (ca)e

becomes

d (ca)e (Y ) = d (ca)e (Y1 + iY2) = d (ca)e (Y1) + i d (ca)e (Y2) = Y1 + iY2 = Y.

This means that d (ca)e = id.
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On the other hand, the linear map d (ca)e coincides with the adjoint map Ada. Addi-

tionally, if we consider the adjoint map as an action of G into GL (g), Ad : G ! GL (g),

we have that kerAd = ZG. Having all these into account, since d (ca)e = idg, we can

conclude that a 2 ZG. ⇤



CHAPTER 3

Schottky Principal Bundles

In this chapter we introduce the concept of Schottky principal G-bundle E over a

compact Riemann surface. We explain the relationship between E and its adjoint

bundle AdE, in particular, with regard to semistability, existence of a flat connection

and Schottky property.

In terms of notation, through this chapter X denotes a compact Riemann surface

(with genus g), ⇡1 = ⇡1 (X) its fundamental group, G represents a connected reductive

algebraic group and Z its center. Reminding the notation introduced in the previous

chapter, S ⌘ Hom (Fg, G⇥ Z) is the set of Schottky representations, S denote the

respective categorical quotient S//G and G = Hom (⇡1, G) //G.

3.1. Schottky bundles

Throughout this section we give the definitions of Schottky bundles and we prove some

results generalising others given by Florentino in [Flo01].

Let ⇡1 = ⇡1(X) denote the fundamental group of a compact Riemann surface X of

genus g � 2 with the following presentation

⇡1 (X) =

(

↵1, · · · ,↵g, �1, · · · , �g :
g
Y

i=1

[↵i, �i] = 1

)

and let FN denote the free group with N generators �1, · · · , �N .

Consider the sheaf of germs of holomorphic functions G from X to GL(n,C) and the

following maps
⌫ : H1(X,GL(n,C)) ! H1(X,G)

63
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that sends a flat GL(n,C)-bundle into the corresponding holomorphic vector bundle

of rank n over X and

(3.1.1)
V. : Gn ! H1 (X, GL (n,C))

⇢ 7! V⇢ := eX ⇥⇢ Cn

assigning to each representations ⇢ 2 Gn := Hom (⇡1, GL (n,C)) the corresponding

induced flat vector bundle V⇢. Florentino defines Schottky vector bundle as a bundle

that is isomorphic to V⇢ where ⇢ is a Schottky representation, that is, a representations

from the free group Fg to GL (n,C).

Similarly to above construction, given a representation of the fundamental group ⇡1(X)

into a complex algebraic group G, ⇢ : ⇡1(X) ! G, we can construct a principal G-

bundle E⇢ := eX⇥⇢G (see example 1.44) where each point is an equivalence class given

by the following relation

(x̃, g) ⇠ �x̃ · �, ⇢(�)�1 · g� , 8� 2 ⇡1.

The principal G-bundle E⇢ is said to be induced by the representation ⇢ : ⇡1 ! G.

Definition 3.1. A principal G-bundle EG over the Riemann surface X is a Schottky

principal G-bundle if EG is isomorphic to a bundle E⇢ where ⇢ : ⇡1 ! G is a Schottky

representation, that is, ⇢ (↵i) 2 Z for all i = 1, · · · , g.

Now, let us see some simple examples of Schottky principal bundles over a compact

Riemann surface with genus g > 1.

Example 3.2. If G = GL (n,C) then Z ⇠= C⇤ is the set of scalar matrices. We define

⇢ : ⇡1 ! GL (n, C) in the following way

⇢ (↵i) = �iIn, ⇢ (�i) 2 U (n)

where In is the identity n ⇥ n-matrix, �i 2 C⇤ for i = 1, · · · , g and U (n) denotes the

unitary group.
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Any � 2 ⇡1 (X) can be written as a combination of the generators elements (↵i’s and

�i’s). In this way, we can think in the equivalence class only in terms of the generators

of ⇡1 (X).

(x̃, g) ⇠ �x̃ · ↵i, ⇢(↵i)
�1 · g� = (x̃ · ↵i, g) and (x̃, g) ⇠ �x̃ · �i, ⇢(�i)�1 · g� .

In this case, the Schottky GL (n, C)-bundle is known as the frame bundle (the effect

of each element U (n) corresponds to changing basis).

Example 3.3. Consider G = SL (n,C), in this case, its center is Z = {�In : �n = 1}.
In a similar way, we define ⇢ : ⇡1 ! SL (n, C) in the following way

⇢ (↵i) = �iIn, ⇢ (�i) 2 SL (n, C)

�i 2 C⇤ and �ni = 1 for i = 1, · · · , g.

3.2. Associated Schottky bundles

We have treated the construction of bundles associated to initial ones (section 1.5)

since this able us to relate properties of one type of bundles to another one.

In the following we intend to describe in which manner the property of being a Schottky

bundle is transferred to associated bundles. Throughout this section, G and H denote

reductive algebraic groups, ZG and ZH denote the corresponding centres.

Let us start by seeing that the Schottky property is stable under the extension of the

structure group, this follows from Proposition 1.68.

Corollary 3.4. Let G and H be algebraic groups and ' : G ! H a group homomorph-

ism such that '(ZG) ⇢ ZH where ZG and ZH are the centres of G and H, respectively.

Let EH = (EG ⇥H)/G be the H-bundle obtained from the G-bundle EG extending the

structure group by '. If EG is a Schottky G-bundle then EH is a Schottky H-bundle .
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Proof. By definition, we have that EH = EG(H) = EG ⇥' H. Similarly to

Proposition 1.68 and performing similar constructions we can get the following diagram

G
'

// H

⇡1(X)

⇢

bb

⇢='�⇢

<<

and, accordingly, we obtain EH
⇠= E⇢. Schottky property of the representation ⇢ :

⇡1(X) ! H follows straightforward since by hypothesis '(ZG) ⇢ ZH , thus ⇢(↵i) =

' (⇢ (↵i)) 2 Z(H). ⇤

Important facts concerning to semistability criterion lead us to undertake a specific

construction: the adjoint bundle associated to a principal G-bundle. For example, this

help us to establish certain conditions relating the semistability property between both

of them.

In example 1.46 was done the construction of the adjoint vector bundle associated to a

G-bundle. It was established the notation Ad(EG) = EG⇥Adg (constructed on example

1.46) where the following points were identified

(y, v) ⇠ �y · g, Ad�1
g · v�

for all g 2 G, where y 2 EG and v 2 g. Now, we use this construction to prove that if

EG is Schottky then its associated vector bundle Ad (EG) is a Schottky vector bundle.

Later on we prove the converse statement restricted to certain conditions.

Proposition 3.5. Let X be a compact Riemann surface and G a connected reduct-

ive algebraic group. If EG is a Schottky G-bundle then the adjoint bundle Ad(EG),

associated to EG, is a Schottky vector bundle with fibre g.

Proof. As EG is a Schottky G-bundle , there is a representation ⇢ : ⇡1 ! G with

⇢ (↵i) 2 ZG for all i = 1, · · · , g such that EG
⇠= E⇢ = eX ⇥⇢ G. Each point of this

bundle is obtained by the following identification
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(x̃, g) ⇠ �x̃ · �, ⇢ (�)�1 · g� .

By construction, the vector bundle associated to EG by the adjoint representation can

be seen as
Ad(EG) = EG ⇥Ad g ⇠= E⇢ ⇥Ad g

and since EG
⇠= E⇢, correspondingly we have that

Ad(EG) ⇠= eX ⇥⇢ G⇥Ad g ⇠= eX ⇥Ad⇢ g

where the equivalence relation is given by

(y, v) = ((x̃, g) , v) ⇠ ((x̃, g) , v) · � =
⇣

�

x̃ · �, ⇢ (�)�1 · g� , Ad�1
⇢(�) · v

⌘

.

for all � 2 ⇡1 (X).

The G-action relation on eX⇥g is given by (ex, v) ·g =
⇣

ex · �,Ad�1
⇢(�)v

⌘

, where g = ⇢ (�)

and Ad⇢ : ⇡1 (X) ! GL (g) are given by the composition of the representations Ad

and ⇢.

Attended to the fact that ⇢(↵i) 2 ZG and since ker (Ad) = ZG, we obtain Ad⇢(↵i) = 1

for all i = 1, · · · , g. Thus, we achieved to a representation Ad⇢ : ⇡1 ! GL(g) that

corresponds to a Schottky representation (in the sense of [Flo01]). In this way, we

conclude that Ad(EG) ⇠= VAd⇢ = eX ⇥Ad⇢ g is a Schottky vector bundle with fibres

isomorphic to the Lie algebra g . ⇤

At this time, it is natural that we ask ourselves if the reciprocal of Proposition 3.5

works. Starting from a Schottky vector bundle V⇢, do we obtain a Schottky principal

bundle associated to the first?

Let us begin by construct a particular type of principal bundle associated to V⇢. This

bundle is called frame bundle. The following proposition states that, in this particular

situation, the principal bundle obtained is Schottky.
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Proposition 3.6. Let X be a compact Riemann surface. If V is a Schottky vector

bundle then the associated frame bundle, GL (V ), is a Schottky principal GL (n,C)-

bundle.

Proof. Since V is a Schottky vector bundle, there is a representation ⇢ : ⇡1 (X) !
GL (n, C) such that V ⇠= V⇢ and that fulfils ⇢ (↵i) = 1 for all i = 1, · · · , g. We may

construct the frame bundle GL (V ) associated to V ⇠= eX ⇥⇢ Cn

GL (V ) := Isom (On
X , V )

consisted by all local isomorphisms between the trivial bundle On
X (of rank n) and V .

The bundle GL (V ) is a principal GL (n, C)-bundle associated to V . ⇤

In order to establish an analogue of the above proposition, for the case of the adjoint

bundle, we must add one condition, that is, the existence of a flat connection on the

principal G-bundle as we can see in the following Proposition.

Proposition 3.7. Let X be a compact Riemann surface and let G be a connected

reductive algebraic group. Suppose that the G-bundle EG admits a flat connection and

let Ad(EG) be the adjoint bundle associated to EG. If Ad(EG) is a Schottky vector

bundle then EG is a Schottky G-bundle.

Proof. First, if EG admits a flat connection then it is induced from the universal

cover of X by a homomorphism ⇢ : ⇡1(X) ! G, that is,

EG
⇠= eX ⇥⇢ G.

Consider the adjoint bundle Ad(EG) associated to EG by the adjoint representation

Ad : G ! GL(g). By Proposition 1.68, we have that Ad(EG) = EG(g) ⇠= EAd⇢ where

⇡1(X)
⇢

//

Ad⇢

$$

G

Ad||

GL(g)

.
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Since by hypothesis Ad(EG) is a Schottky vector bundle, this means that Ad⇢(↵i) =

1, 8i = 1, · · · , g. As ker(Ad) = Z(G) (Proposition 1.17), we may conclude that

⇢(↵i) 2 Z(G) for all i = 1, · · · , g, that is, EG
⇠= E⇢ where ⇢ is a Schottky representation.

⇤

If EG admits a flat connection then the statements of above Propositions can be refor-

mulated in the following manner.

Corollary 3.8. Consider a compact Riemann surface X, a connected reductive algeb-

raic group G and a principal G-bundle EG with a flat connection. Under this conditions,

EG is a Schottky G-bundle if and only if the adjoint bundle Ad(EG), associated to EG,

is a Schottky vector bundle with fibre g.

Analogously, if G is a connected semisimple algebraic group, Proposition 1.63 ensures

that EG admits a flat connection whenever Ad(EG) admits one too. Since this fact

actually happens whenever Ad(EG) is a Schottky vector bundle then the conditions of

Proposition 3.7 are fulfilled.

Corollary 3.9. Let X be a compact Riemann surface and G a connected semisimple

algebraic group. Then EG is a Schottky G-bundle if and only if the adjoint bundle

Ad(EG), associated to EG, is a Schottky vector bundle with fibre g.

We conclude that the fact of Ad (EG) being a Schottky vector bundle is not sufficient

to imply that the original principal bundle EG is Schottky. In fact, we can have a

principal G-bundle EG such that Ad (EG) = EG ⇥Ad g ⇠= V⇢ but this does not imply

that EG
⇠= E⇢ with ⇢ : ⇡1 (X) ! G. Let us see an example.

Example. Consider any principal G-bundle EG such that c1 (EG) 6= 0 and with the

corresponding adjoint bundle Ad (EG) a line bundle L = eX ⇥C. Since any line bundle

of degree 0 is Schottky, Ad (EG) is a Schottky vector bundle with the corresponding

principal bundle EG being non-Schottky.





CHAPTER 4

Schottky Map

In this chapter we intend to generalise the concept of Schottky map, constructed by

[Flo01], for the case of Schottky representations S ⇢ Hom (⇡, G) where G denotes a

connected reductive algebraic group. We want to obtain a relationship between the

set of equivalent Schottky representations and the set of isomorphic semistable flat

G-bundles over a compact Riemann surface doing a similar approach to Ramanathan’s

ideas.

Throughout this chapter, G denotes a connected reductive group, X and ⇡1 = ⇡1 (X)

stand for, respectively, a connected Riemann surface with genus g � 2 and its cor-

responding fundamental group, MG denotes the set of isomorphism classes of flat G-

bundles and MG the moduli space of semistable G-bundles.

4.1. Analytic equivalence

In [Flo01], Florentino defined the map V. : Gn ! H1 (X, GL (n,C)) that assigns

to each representation ⇢ the corresponding Schottky vector bundle V⇢ = eX ⇥⇢ Cn.

Through this section we want to give analogous definitions applied in the context of

principal bundles.

Let us start by defining the following map

(4.1.1)
E. : Hom (⇡1 (X) , G) ! MG

⇢ 7! E⇢

assigning each representation ⇢ : ⇡1 (X) ! G, where G is a connected reductive algeb-

raic group (over the complex numbers), to the corresponding G-bundle induced by the

representation ⇢, E⇢ = eX ⇥⇢ G.
71
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Definition 4.1. The map E. given by (4.1.1) assigning to each representation ⇢ the

induced principal G-bundle E⇢ = eX ⇥⇢ G, restricted to the set of Schottky represent-

ations
W. := E.|S : S ! MG

is called general Schottky map.

The map W. is obviously non injective since two different representations could induce

isomorphic flat G-bundles. Even if we consider the above map defined on the set S/G of

equivalence class of Schottky representations in the usual sense, namely, ⇢ is equivalent

to � when ⇢ = g�g�1 for an element g 2 G with ⇢, � 2 S, we obtain the following

correspondence
W : S/G ! MG

[⇢] 7! [E⇢]

which is still non-injective. In fact, we may have isomorphic G-bundles without the

corresponding representations being equivalent in the usual sense.

On the point of view of Schottky uniformization, there exists another concept of equi-

valence which gives us a better equivalence relation in this case. To introduce this

notion we need to consider the compact Riemann surface X written as a quotient of a

domain of discontinuity ⌦ by a group �, that is, X = ⌦/�.

Definition 4.2. Let ⇢, � 2 Hom (�, G). The representations ⇢ and � are analyt-

ically equivalent if there exists a complex analytic map  : ⌦ ! G such that

 (�z) � (�) = ⇢ (�) (z) for all � 2 �, z 2 ⌦.

Florentino established the way that analytic equivalence of representations in

Hom (⇡1, GL (n, C)) is translated in terms of relations between the corresponding in-

duced vector bundles. In the case of G-bundles, given two analytic equivalent Schot-

tky representations ⇢ and �, next Lemma establishes that the corresponding induced

bundles E⇢ and E� revels the same relationship.
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Lemma 4.3. Let G be a connected reductive algebraic group, ⇢, � 2 Hom(⇡1, G), ex0 2
eX and let ⌦1

X be the canonical line bundle of X. Then the following conditions are

equivalent:

(1) E⇢
⇠= E�;

(2) there exists a holomorphic function h : eX ! G such that

h(x̃�) = ⇢(�)�1h(x̃)�(�);

(3) there exists ! 2 H0(X,Ad(E⇢)⌦ ⌦1
X) such that

�(�) = h!(x̃)
�1⇢(�)h!(x̃ · �)

where h! is the unique solution of the differential equation h�1dh = ! with the

condition h(x̃0) = I.

Proof. Now let us prove that the above assertions are equivalent.

[(1) , (2) ] Since the G-bundles E⇢ and E� are obtained from eX by extending the

structure group by, respectively, ⇢ and � to G, an isomorphism of these G-bundles

corresponds to give a map between the trivial bundle eX ⇥ G with certain properties.

Let us observe the following diagram

eX ⇥⇢ G = E⇢

⇡⇢

��

 

⇠=
// E� = eX ⇥� G

⇡�

��
X

eX

p

OO

p⇤(E⇢) ⇠= eX ⇥G

99

 ̄
// eX ⇥G ⇠= p⇤(E�)

ee

Since both p⇤(E⇢) and p⇤(E�) are trivial over eX, we can apply Proposition 1.40 which

states that isomorphism between E⇢ and E� is equivalent to obtain equivalent factors
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of automorphy on eX ⇥ ⇡1 with values in G. Since ⇢ and � are equivalent factors of

automorphy, by definition (def. 1.38), there exists a holomorphic map h : eX ! G such

that �(�) = h(x̃)�1⇢(�)h(x̃ · �) and equivalently

h(x̃ · �) = ⇢(�)�1h(x̃)�(�).

[(2) , (3) ] To prove this equivalence, let us observe that the vector space

H0(X,Ad(E⇢) ⌦ ⌦1
X) is consisted by holomorphic 1-forms on eX with values in the

Lie algebra g of G,
n

! : eX ! g|!(�)�0 = � · !
o

= ⌦1
Ad(E⇢).

The action � · ! for � 2 ⇡1 (X) is performed via the adjoint action, that is, � · ! =

Ad�1
⇢(�)!. Given (2) we have

h(x̃ · �) = ⇢(�)�1h(x)�(�) , �(�) = h(x̃)�1⇢(�)h(x̃ · �).

If we differentiate in order the coordinate x̃, we get

0 = d� (�)

= �h(x̃)�2 dh⇢(�)h(x̃ · �) + h(x̃)�1⇢(�)�0dh(x̃ · �)

equivalently,

h(x̃)�2 dh ⇢(�)h (x̃ · �) = h(x̃)�1⇢(�)�0dh (x̃ · �)

, h(x̃)�1 dh ⇢(�)h (x̃ · �) = ⇢(�)�0dh (x̃ · �)

, (⇢ (�))�1 h(x̃)�1 dh ⇢ (�) = �0dh (x̃ · �) (h (x̃ · �))�1

Now putting ⌘ = h�1dh, the equation can be rewritten as

Ad�1
⇢(�)⌘ = ⌘(�)�0.

This means that ⌘ is a section of Ad(E⇢)⌦ ⌦1
X and we get (3).

Conversely, since the solution of differential equation h! = dh with the condition

!(x̃0) = I over the simply connected space eX is unique and satisfies the equality (3)

then, obviously it satisfies (2). ⇤
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This Lemma proves that analytic equivalence is the best way to relate representations

and corresponding principal bundles. In fact, it states that isomorphic induced G-

bundles corresponds to analytic equivalent representations and vice-versa. The usual

equivalence relation between representations (⇢ = g�g�1 where g 2 G) only guarantees

that the corresponding induced bundles are isomorphic and not the converse one.

4.2. Period map

Previously, we have mentioned how an isomorphism of flat G-bundles reflects in terms

of the corresponding representations (Lemma 4.3). These representations are related

in a particular way with a 1-form ! 2 H0(X,AdE⇢ ⌦ ⌦1
X). In this section, we want

to explore the idea that given an element ! 2 H0(X,AdE⇢ ⌦ ⌦1
X) we obtain the

corresponding representations in the context of Lemma 4.3. Actually, this remind us a

familiar map called Period map.

Definition 4.4. Let ! 2 H0(X,AdE⇢ ⌦ ⌦1
X) and x̃0 2 eX be a fixed point, the map

!x̃0 : ⇡1(X) ! g

� 7! !x̃0(�) =
´ x̃0·�
x̃0

!

is called period map and it is an element of the group of 1-cochain C1(⇡1,Ad⇢).

In the framework of our problem, in the next Proposition, we redefine the above map

and we show that the way we define this map is precise.

Proposition 4.5. The period map is a well defined correspondence

PAd⇢ : H
0
�

X,AdE⇢ ⌦ ⌦1
X

�! H1
�

⇡1(X), gAd⇢

�

that assigns to each ! the cohomological class PAd⇢(!) := [!] where for each � 2 ⇡1 (X) ,

!x̃(�) =
´ x̃·�
x̃

!.

Proof. Let us fix x̃0 2 eX and consider arbitrary elements �1, �2 2 ⇡1 (X). In order

to show that the map PAd⇢ is well defined we have to prove two things. First, we have
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to prove that PAd⇢ (!) is an element of the first cohomology group H1
�

⇡1(X), gAd⇢

�

.

Then, after, we have to prove that PAd⇢ (!) does not depend on the fixed base point

x̃0.

Let us confirm that !x̃0 is an element of the set of 1-cocycles Z1
�

⇡1(X), gAd⇢

�

. By

definition !x̃0 (�0�1) =

ˆ x̃0·(�0�1)

x̃0

!. Since x̃0 · (�0�1) = (x̃0 · �0) · �1 we get

P �0�1
Ad⇢ (!) = !x̃0 (�0�1) =

ˆ x̃0·�0

x̃0

! +

ˆ (x̃0·�0)�1

x̃0·�0
!

= !x̃0(�0) +

ˆ x̃0�1

x̃0

!(�0)(�0)
0

Since elements of H0 (X,AdE⇢ ⌦K) verifies the property !(�)�0 = � · ! for all � 2
⇡1 (X), the previous is equal to

= !x̃0(�0) +

ˆ x̃0�1

x̃0

�0 · ! = !x̃0(�0) + �0 · !x̃0(�1).

then we obtain
P �0�1
Ad⇢ (!) = P �0

Ad⇢(!) + �0 · P �1
Ad⇢(!)

This means that PAd⇢(!) is a 1-cocycle, i.e., PAd⇢(!) 2 Z1
�

⇡1(X), gAd⇢

�

.

Now, we consider this map defined above another fixed base point x̃1 2 eX and we are

going to prove that the map PAd⇢ is independent of the base point. This means that we

want to prove the class of the images P �
Ad⇢,x̃1

and P �
Ad⇢,x̃0

in H1
�

⇡1(X), gAd⇢

�

coincides.

The image of P �
Ad⇢,x̃1

(!) is defined by

P �
Ad⇢,x̃1

(!) = !x̃1(�) =

ˆ x̃1·�

x̃1

!.

Since eX is simply connected, we put above integral in the following way

P �
Ad⇢,x̃1

(!) =

ˆ x̃0

x̃1

! +

ˆ x̃0·�

x̃0

! +

ˆ x̃1·�

x̃0·�
!

=

ˆ x̃0

x̃1

! + P �
Ad⇢,x̃0

(!) +

ˆ x̃1

x̃0

!(�)�0 = �
ˆ x̃1

x̃0

! + P �
Ad⇢,x̃0

(!) +

ˆ x̃1

x̃0

� · !
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Then we get

(4.2.1) P �
Ad⇢,x̃1

(!) = P �
Ad⇢,x̃0

(!) +

0

B

B

B

B

@

Ad�1
⇢(�)

ˆ x̃1

x̃0

! �
ˆ x̃1

x̃0

!

| {z }

2B1(⇡1(X),gAd⇢)

1

C

C

C

C

A

.

We conclude that PAd⇢,x̃1 and PAd⇢,x̃0 differs by a 1-coboundary, that is, the map PAd⇢

is well defined. ⇤

4.3. Schottky moduli map

We want to achieve to an analogous result of [NS65] or [Ram96] for vector and

principal bundles, respectively, which states that the set of analytic equivalence of

special representations gives an open subset of the space moduli. In this way, our main

goal is to define a map between the set of equivalent class of representations to the

moduli space of semistable principal bundles. In this section, we give our first step in

this direction.

Previously we defined the general Schottky map as the map W. : S ! MG where MG

represents the set of isomorphism class of flat G-bundles. Although, we could define this

map in order that its image is contained in the moduli space of semistable G-bundles

Mss
G , (introduced on subsection 1.8.2). With regard to obtain a well defined map let

us begin by setting the following notation, let ⇡1 := ⇡1 (X) denote the fundamental

group of X and

(4.3.1) S] = W�1 (Mss
G )

⇣

respectively Hom (⇡1, G)] = E�1 (Mss
G )
⌘

.

Proposition 4.6. The Schottky moduli map

(4.3.2) W :S] ! Mss
G

is well defined.

Proof. In order to prove that this map is well defined, we just have to show that

the set S] is nonempty. According to Proposition 2.18, there always exists unitary
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Schottky representations. By Ramanathan’s Proposition 1.77, we conclude that S] 6=
?. So, given ⇢ 2 S], the corresponding G-bundle E⇢ is semistable. In this way

and according to the definition, the map W. sending Schottky representations to the

corresponding semistable G-bundle is well defined. ⇤

If we consider the family F = {E�}�2I of holomorphic semistable G-bundles, where

I = {� 2 Hom (⇡1 (X) , G) : E� is semistable}, according to Theorem 1.80, the map

E. : I ! Mss
G is holomorphic. In this way, we establish the next Proposition.

Proposition 4.7. For G reductive and g � 2, the map

E : Hom (⇡1, G)] ! Mss
G ,

is holomorphic. Furthermore, its restriction to S is also holomorphic.

Considering that conjugate representations ⇢, � 2 S, induce isomorphic G-bundles

E⇢
⇠= E�(Proposition 1.67), the map

(4.3.3) W : S] ! Mss
G

where S] = S]//G is the categorical quotient of S] ( 6= ?), is well defined. The map W.

assigns to each element [⇢], of the quotient S], the corresponding equivalence class of

semistable G-bundles [E⇢]. In this context, we can establish the ensuing Proposition.

Proposition 4.8. The Schottky moduli map W : S] ! Mss
G is well defined.

Remark. It is possible to define the Schottky moduli map over the set of analytic

equivalence of representations (Lemma 4.3) but this set does not have a nice or known

structure.



CHAPTER 5

Topological Type

Ramanathan introduced, in his paper [Ram75], the notion of topological type related

to a principal G-bundle E over a compact Riemann surface X where G is a connected

reductive algebraic group over C. This notion allows us to consider the set of isomorph-

ism classes of flat G-bundles indexed by the elements of the fundamental group of G,

⇡1 (G),

MG =
G

�2⇡1(G)

M �
G.

In this chapter we are going to prove that the semistable Schottky G-bundles are in the

same connected component of MG, the one related to the identity element of ⇡1 (G).

Since each class in the variety Hom (⇡1(X), G) /G corresponds to an isomorphism class

of flat principal G-bundles, that is, principal bundles with flat connections and, since

in some cases, the number of connected components of Hom (⇡1(X), G) /G is given by

⇡1(G) (see for example[Li93], [Gol84a]) it turns out to be important to count the

number of elements of ⇡1 (G). Mainly, because this gives the number of connected

components of the moduli space of semistable flat G-bundles. ([Oli11, Gol84b]).

Throughout this chapter, X denotes a compact Riemann surface with genus g � 2 and

⇡1 = ⇡1 (X) represents its fundamental group with its usual presentation
*

↵1, · · · ,↵g, �1, · · · , �g :
g
Y

i=1

[↵i, �i] = 1

+

.

In general, G denotes a connected reductive algebraic group over the complex numbers

with identity element e and eG represents a universal cover of G.
79
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5.1. Topological type of a representation

Since the moduli space of semistable G-bundles over a Riemann surface is a disjoint

union of connected components indexed by elements of ⇡1 (G), we are going to analyse

⇡1 (G) and set some properties of this group. Inasmuch as one of the constructions of

⇡1 (G) results from universal cover, we are going to start with several definitions and

properties of the universal cover of G, denoted by eG.

Definition 5.1. A covering space p : eG ! G of a connected Lie group G is called a

universal cover if eG is a simply connected Lie group and p is a continuous surjective

homomorphism.

Theorem 5.2. [Thm. 61, [Pon46]] If G is a complex connected topological group

then there exists a universal cover p : eG ! G where p is a continuous surjective

homomorphism and ker p = ⇡1 (G) ⇢ Z eG is a discrete group.

The following proposition sets the existence of a universal cover eG in the category of

algebraic groups when G is a connected semisimple algebraic group.

Proposition 5.3. [[BT72], Prop. 2.24] If G is a connected semisimple algebraic

group, there exists a simply connected group eG and an isogeny p : eG ! G, that is, a

surjective homomorphism p with finite kernel. In this case eG is called the universal

cover of G and ker p = ⇡1(G) ⇢ ZG̃ is the fundamental group of G. Moreover, eG is a

simply connected semisimple algebraic group.

Remark 5.4. If G is a connected semisimple algebraic group then eG is a simply

connected algebraic group, p is an (central) isogeny and the identity element of eG, ẽ,

satisfies p(ẽ) = e. However, in general, the universal cover of an algebraic group is not

an algebraic group but eG has always a complex Lie group structure.

In some cases where G is a connected reductive algebraic group, it is usual to write G

as an almost direct product G = D(G)oZ�
G where D(G) is its derived group, which is
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semisimple, and Z�
G is the connected component of the identity of the centre of G, ZG.

In this way we can work with the universal cover eG = ]D(G)⇥ fZ�
G of G.

Since in the context of our work we are not forced to work in the category of algebraic

groups, we use Theorem 5.2 to guarantee the existence of a universal cover of G, this

means a Lie group eG with a projection p : eG ! G.

Let us now give some examples of some universal covers and respective fundamental

groups, in the category of classic Lie groups.

Examples 5.5.

• G = PSL (2,C), eG = SL (2,C) and ⇡1 (PSL (2,C)) = Z2 .

• G = GL (n,C) and ⇡1 (G) = Z, the universal cover eG is of the form Cr ⇥
SL(n,C), since SL(n, C) is simply connected.

• G = U (n) (classic compact Lie group) and ⇡1 (U (n)) = Z, the universal cover

of G is eG = R⇥ SU (n).

• G = SO (n,C) and ⇡1 (G) = Z2, the universal cover of G, for n � 3, is

eG = Spin (n), the spin group .

Given a connected reductive group G and a corresponding universal cover eG, we want to

analyse the lifts to eG of elements ai, bi in G such that
g
Y

i=1

[ai, bi] = e. We want to under-

stand how the lifts of ai’s and bi’s in eG behave when
g
Y

i=1

[ai, bi] =
g
Y

i=1

[⇢ (↵i) , ⇢ (�i)] = e

since any representation ⇢ : ⇡1 (X) ! G verifies this property.

Let us consider the following exact sequence (of Lie groups)

1 ! ker (p) ! eG
p! G ! 1

where ker p = ⇡1 (G) and every element p�1

 

g
Y

i=1

[ai, bi]

!

= p�1 (e) is obviously on

ker (p).
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When we lift the elements a1 = ⇢ (↵1) , b1 = ⇢ (�1) , · · · , ag = ⇢ (↵g) , bg = ⇢ (�g) 2 G

to elements of eG, in general, we get that
g
Y

i=1

h

ãi, b̃i
i

= � 6= ẽ

where ẽ is the identity of eG and ã1, b̃1, · · · , ãg, b̃g is a choice of the corresponding lifts

(ãi 2 p�1 (ai) and b̃i 2 p�1 (bi)). The element � belongs to p�1 (e) = ker p = ⇡1 (G)

and it measures the obstruction to lift any representation ⇢ to a representation ⇢̃ :

⇡1 (X) ! eG (for more details see for example [HL03]) .

Definition 5.6. Let eG be a universal cover of G with p : eG ! G the corresponding

homomorphism and let ⇢ : ⇡1 (X) ! G be a representation. Let ãi, b̃i 2 eG denote

corresponding (choice of) lifts by p of ⇢ (↵i) and ⇢ (�i), that is, ãi 2 p�1 (⇢ (↵i)) and

b̃i 2 p�1 (⇢ (�i)) for each i = 1, · · · , g. The type of the homomorphism ⇢ is defined to

be the element obtained by

� =
g
Y

i=1

h

ãi, b̃i
i

2 ker p ⇠= ⇡1 (G) .

Note that, in fact, the element � is on the kernel of p, since

p(�) = p(
g
Y

i=1

h

ãi, b̃i
i

) =

g
Y

i=1

h

p(ãi), p(b̃i)
i

=

g
Y

i=1

[⇢(↵i), ⇢(�i)] = ⇢(
g
Y

i=1

[↵i, �i]) = e.

As we know, the short exact sequence 1 ! ⇡1 (G) ! eG
p! G ! 1 induces the following

long exact sequence between the corresponding cohomology groups

1 ! H0 (X, ⇡1 (G)) ! H0
⇣

X, eG
⌘

! H0 (X, G)
�! H1 (X, ⇡1 (G))

! H1
⇣

X, eG
⌘

! H1 (X, G)
�! H2 (X, ⇡1 (G)) ⇠= ⇡1 (G) ! · · ·

where the map �⇤ : H⇤ (X, G) ! H⇤+1 (X, ⇡1 (G)) is called connecting homomorph-

ism. Equivalently, we may rewrite above sequence as

1 ! H1 (X, ⇡1 (G)) ! H1
⇣

X, eG
⌘

! H1 (X, G)
�! H2 (X, ⇡1 (G)) ⇠= ⇡1 (G) .

The map � : H1 (X, G) ! H2 (X, ⇡1 (G)) associates to each G-bundle E a cohomology

class � (E), called characteristic class of E. By the isomorphism H2 (X, ⇡1 (G)) ⇠=
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⇡1 (G) and the definition 5.6, the element � (E) 2 ⇡1 (G) coincides with the type of the

representation ⇢ when E ⇠= E⇢.

Definition 5.7. Given a flat principal G-bundle E over a compact Riemann surface

X, we assign to it the topological type given by the following characteristic class

� (E) 2 H2 (X, ⇡1(G)) ⇠= ⇡1(G),

where E ⇠= E⇢ for a representation ⇢ from ⇡1 (X) to G.

The following theorem due to Ramanathan states that the above topological invariants,

topological type of the G-bundle E⇢ and the type of the homomorphism of ⇢, coincides.

Theorem 5.8. [Ram75] The type of a representation ⇢ : ⇡1 (X) ! G corresponds

to the topological type of a principal G-bundle E⇢ over X. More precisely, ⇢ has type

� 2 ⇡1(G) if and only if E⇢ has topological type �.

Proof. Let us consider the exponential map exp : eZ� ! Z� where eZ� is a universal

cover of Z� and an element c 2 eZ� such that exp (c) = e. Ramanathan defined the

topological type of E⇢ as the element obtained by � (E⇢) = ��c and he remarked that

we can consider that c = 0 (rmk 6.2, [Ram75]) and, in this way, we obtain

� (E⇢) = �

where � is the element defined above, that is, the type of the representation ⇢. ⇤

Example 5.9. In the case of Schottky vector bundles, ai = ⇢ (↵i) = 1 2 GL (n,C) for

all i = 1, · · · , g. Let us consider the following universal covering of GL (n,C)

p : SL (n, C)⇥ C ! GL (n,C) .

Since ãi 2 p�1 (1) = ker p = ⇡1 (GL (n,C)) = Z ⇢ Z
⇣

fGL (n,C)
⌘

, we get that

� =
g
Y

i=1

h

ãi, b̃i
i

= ẽ

This means that all Schottky vector bundles have trivial topological type.
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5.2. Topological triviality of Schottky G-bundles

In this section we want to prove that all Schottky principal G-bundle over a compact

Riemann surface, where G is a connected reductive algebraic group, has trivial topo-

logical type.

Let us start by proving that, when we consider a universal covering, we obtain the

following property on the respective centres.

Proposition 5.10. Let eG p�! G be a universal covering of a connected reductive Lie

group G then
p
�

Z eG
�

= ZG and Z eG = p�1 (ZG) .

Proof. Given any element z̃ 2 Z eG we have the following equality

z̃g̃ = g̃z̃, 8g̃ 2 eG.

Applying the map p and denoting p (z̃) by z we obtain
8

<

:

p(z̃g̃) = p (z̃) p (g̃) = zp (g̃)

p(g̃z̃) = p (g̃) p (z̃) = p (g̃) z
.

Thus, zp (g̃) = p (g̃) z for all g̃ 2 eG and since p is surjective this equality is verified for

every g 2 G. So, p (z̃) = z 2 Z (G).

Conversely, consider g 2 ZG this means that gh = hg, 8h 2 G, or equivalently,

ghg�1h�1 = e, 8h 2 G. For any g̃ 2 p�1 (g), the element given by

�h̃ = h̃g̃h̃�1g̃�1

for an arbitrary element h̃ 2 eG is such that �h̃ 2 ker p, since p is a homomorphism of

Lie groups. Thus
�h̃ 2 p�1

�

hgh�1g�1
�

= p�1 (e) .

Now, let us consider the following holomorphic map

 �h̃
: eG ! ker p

u 7! u�h̃u
�1
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This map is well defined for every u 2 eG, since p (u�h̃u
�1) = p (u) p (�h̃) p (u)

�1 =

p (u) ep (u)�1 = e.

Considering that ker p ⇠= ⇡1(G) ⇢ Z eG, by Theorem 5.2, ker p is a discrete subgroup of

eG, this implies that the image of the total space G̃ under  �h̃
is a single point in ker p.

A priori, this point depends on our choice of h̃. Although, since eG is simply connected,

there is a continuous path � : [0, 1] ! eG with �(0) = ẽ and �(1) = h̃, where ẽ is the

identity element of eG and such that the homotopy

 : eG⇥ [0, 1] ! ker p

(u, t) 7! u�(t)g̃�(t)�1g̃�1u�1

is also continuous. Thus, we conclude that  ( eG ⇥ [0, 1]) reduces to a single point.

But  (u, 0) = u�(0)g̃� (0)�1 g̃�1u�1 = uẽg̃ẽ�1g̃�1u�1 = ẽ. This means that  �h̃
(u) =

ẽ, 8u 2 eG. In particular, ẽ =  �h̃
(ẽ) = �h̃ = h̃g̃h̃�1g̃�1 for all h̃ 2 p�1 (h). Since h̃

was arbitrary, we conclude that g̃ 2 Z eG and so ZG ⇢ p
�

Z eG
�

.

It remains to prove the second equality, that is, Z eG = p�1 (ZG).

The inclusion Z eG ✓ p�1 (ZG) is obvious since Z eG ✓ p�1
�

p
�

Z eG
��

= p�1 (ZG) by above

equality.

Conversely, let z̃ 2 p�1 (ZG) then p (z̃) g = gp (z̃) for all g 2 G. Consider an arbitrary

element g̃ 2 p�1 (g) ⇢ eG and denote by � the element � = z̃g̃z̃�1g̃�1. Using the same

argument as above, the image  ( eG ⇥ [0, 1]) reduces to a single point, that is, � = ẽ.

Considering that the element g̃ 2 eG was arbitrary for all g 2 G, we can conclude that

z̃ 2 Z eG. ⇤

Theorem 5.11. If G is a connected reductive algebraic group then any Schottky G-

bundle E⇢ has trivial topological type.

Proof. Consider any Schottky G-bundle E, where G is a connected reductive

algebraic group. By definition there exists a Schottky representation ⇢ : ⇡1 (X) ! G

such that all ai = ⇢ (↵i) 2 ZG for all i = 1, · · · , g and E ⇠= E⇢ .
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By Ramanathan’s Theorem 5.8, the topological type of E⇢, is given by � 2 ⇡1(G),

where

� =
g
Y

i=1

h

ãi, b̃i
i

,

for an arbitrary choice of lifts ãi 2 p�1(ai) ⇢ p�1 (ZG) and b̃i 2 p�1(bi) of a universal

cover p : eG ! G. By Proposition 5.10, we have that ãi 2 p�1 (ZG) = Z eG, for all

i = 1, ..., g, and therefore

� =
g
Y

i=1

h

ãi, b̃i
i

=

g
Y

i=1

ẽ = ẽ,

where ẽ is the identity element of eG. In this way, we prove that a Schottky G-bundle

E⇢ , where G is a connected reductive algebraic group, has trivial topological type. ⇤

By Theorem 1.83 and by Proposition 1.82, the components of the moduli space of

semistable principal G-bundles MG are normal projective varieties and, moreover,

each one of these components is indexed by the topological type of the G-bundles over

X, that is, elements of ⇡1 (G). This means that we can write the moduli space MG as

the following disjoint union

MG =
G

�2⇡1(G)

M�
G.

Taking into consideration these facts and the above theorem, we are in conditions to

conclude the following Corollary.

Corollary 5.12. The moduli space of semistable Schottky G-bundles over a compact

Riemann surfaces with g � 2 is contained inside the connected component of the trivial

G-bundle Mss,0
G in Mss

G .

In the section 4.3, we defined the Schottky moduli map W : S] ! Mss
G where S]

represents the categorical quotient of the set of equivalence classes of Schottky repres-

entations such that the isomorphism classes of the induced bundles belongs to Mss
G .

According to Corollary 5.12 we can rewrite the Schottky moduli map in the following

way

W : S] ! Mss,0
G .



CHAPTER 6

Tangent Spaces

In chapter 4, we characterised the Schottky moduli map as the map defined by

W. : S] ! Mss
G

⇢ 7! [E⇢]

where S] = W�1 (Mss
G ). The corresponding map, defined over the categorical quotient

space S] = S]//G of the Schottky representations, is denoted by

W : S] ! Mss
G

[⇢] 7! [E⇢] .

Both maps are well defined as seen in chapter 4.

Since some properties of the derivative of this map induce special features in the original

one (like surjectivity), we are now interested in the computation of the local derivative

of the Schottky moduli map. In order to obtain this, we are going to characterise the

corresponding Zariski tangent spaces of the set of Schottky representations S and of

the moduli space of flat bundles over X.

Throughout this chapter, G denotes a connected reductive algebraic group, Z = ZG

its corresponding center and by Fg the free group generated by g elements. In order to

simplify the notation, we use ⇡1 instead of ⇡1 (X) when there is no risk of confusion.

6.1. Tangent spaces of representations spaces

In this section, we study tangent spaces of the categorical quotients of representations

G := Hom (⇡1 (X) , G) //G and of its subspace of Schottky representations S = S//G.

By a classic result, dimensions of G and S are given by the dimension of the corres-

ponding tangent space on smooth points. Additionally, Proposition 6.1 allows us to
87
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switch elements from the tangent space to elements of the first cohomology group.

Throughout this section, � denotes any finitely generated group (in particular, some-

times � will denote the fundamental group of a compact Riemann surface), Fg repres-

ents a free group with g elements and gAd⇢ the �-module induced by Ad⇢ : �! GL (g),

the adjoint representation composed with a representation ⇢ of Hom (�, G), with coef-

ficients in the Lie algebra of G, g.

Let us begin by recalling the following important relationship between the Zariski

tangent space of the character variety of representations at a good representation ⇢

and the first cohomology group H1
�

�, gAd⇢

�

. This result was proved by Weil [Wei38],

Lubotzky and Magid [LM85] and generalised by many authors, like Goldman [Gol84b]

and Martin [Mar00],

Proposition 6.1. Let � be a finitely generated group and let G be a connected reductive

algebraic group then for a good representation ⇢ 2 Hom (�, G) we have the following

isomorphism
T[⇢] (Hom (�, G) //G) ⇠= H1

�

�, gAd⇢

�

.

Remark. This proposition requires that G is connected, although, we will see that for

some particular cases, the isomorphism H1
�

�, gAd⇢

� ⇠= T[⇢] (Hom (�, G) //G) could also

be valid for G non connected.

According to Proposition 6.1, we can compute the dimension of the tangent space to

the character variety Hom (�, G) //G at an equivalence class of good representations

by computing the dimension of the corresponding first cohomology group. In order to

obtain the latter one, it will be important to remember concepts and examples related

with group cohomology that were given in section 1.3. In particular the example 1.27,

where we analysed the first cohomology groups of a finitely generated group, �, with

coefficients in the �-module gAd⇢ , H1
�

�, gAd⇢

�

= Z1
�

�, gAd⇢

�

/B1
�

�, gAd⇢

�

.

The following Lemma establishes the way to compute dimension of the first cohomology

group , H1
�

⇡1, gAd⇢

�

, of the fundamental group ⇡1 (X) with coefficients in gAd⇢ .
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Lemma 6.2. [Lemma 6.2,[Mar00]] Let G be a connected reductive algebraic group

with centre Z and X be a compact Riemann surface of genus g. For ⇢ 2 Hom (⇡1, G)

irreducible we have

dimZ1
�

⇡1, gAd⇢

�

= (2g � 1) dimG+ dimZ,

dimH1
�

⇡1, gAd⇢

�

= (2g � 2) dimG+ 2dimZ.

This allows us, according to Proposition 6.1, to figure out the corresponding dimen-

sion of the Zariski tangent space T[⇢]G. By definition 1.24(3), we know that a good

representation is irreducible and so, we can establish the following Proposition as a

consequence of Proposition6.1, for � = ⇡1 (X) and Lemma 6.2.

Proposition 6.3. If ⇢ is a good representation of Hom (⇡1, G) and let G be the cat-

egorical quotient of representations on Hom (⇡1, G) by G then

T[⇢]G ⇠= H1
�

⇡1, gAd⇢

�

and, moreover,
dimT[⇢]G = (2g � 2) dimG+ 2dimZ(G).

By Theorem 2.16, the set of good Schottky representations, Sg, is a nonempty open

variety and Sg is the corresponding geometric quotient. Using Lemma 2.5, where we

proved that S ⇠= Hom (Fg, G⇥ Z) //G, and Proposition 6.1, we are able to compute

the dimension of the tangent space of S over good Schottky representations and cor-

respondingly we calculate the dimension of S.

In order to use Proposition 6.1, we have to, first of all, compute the dimension of

the first cohomology group H1
�

Fg, Lie(G⇥ Z)Ad⇢

�

where Lie(G⇥Z)Ad⇢ = (g� z) Ad⇢

denotes the Fg module with coefficients in the Lie algebra Lie(G⇥ Z) = g� z.

Let us start by reminding a basic property of the first cohomology group that will help

us to compute the dimension of H1
�

Fg, Lie(G⇥ Z)Ad⇢

�

. In spite of the elementary

nature of this result, we give a proof for the convenience of the reader.
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Lemma 6.4. Given a finitely generated group �and two �-modules A and B, we have

the following isomorphism

H1 (�, A� B) ⇠= H1 (�, A)�H1 (�, B) .

Proof. The first cohomology group H1 (�, A� B) is given by the quotient of the

set of 1-cocycles

Z1 (�, A� B) = {' : �! A� B : ' (�1�2) = ' (�1) + �1 · ' (�2)}

by the set of 1coboundaries

B1 (�, A� B) = {' : �! A� B : ' (�) = � · v � v, for some v 2 A� B} .

Now for each 1-cocycle ', since ' : � ! A� B, we can consider ' as ('A,'B) where

'A : �! A and 'B : �! B. The map ', as an element of Z1 (�, A� B), verifies the

following equality

' (�1�2) = ' (�1) + �1 · ' (�2) = ('A (�1) ,'B (�1)) + �1 · ('A (�2) ,'B (�2)) .

Since A and B are �-modules, � acts on A� B over each component, that is,

�1 · ('A (�2) ,'B (�2)) = (�1 · 'A (�2) , �1 · 'B (�2)) .

In this way, we get a 1-cocycle relation in each component

('A (�1�2) ,'B (�1�2)) = ' (�1�2) = ('A (�1) + �1 · 'A (�2) , 'B (�1) + �1 · 'B (�2)) .

We conclude that Z1 (�, A� B) = Z1 (�, A)� Z1 (�, B).

Analogously, the 1-coboundaries are of the form

('A (�) ,'B (�)) = ' (�) = � · v � v

for some v 2 A� B, here v = (vA, vB), so we obtain

('A (�) ,'B (�)) = � · (vA, vB)� (vA, vB) = (� · vA � vA, � · vB � vB) .

With this, we prove that B1 (�, A� B) = B1 (�, A)� B1 (�, B).
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Returning to the first cohomology group

H1 (�, A� B) = Z1 (�, A)� Z1 (�, B)
�

B1 (�, A)� B1 (�, B) ,

let us consider two arbitrary elements of the same class ', in H1 (�, A� B). By

definition, ('�  ) is 1-coboundary, that is, ('�  ) (�) = � · v � v. This implies that

�.v � v = ' (�)�  (�) = ('A (�)�  A (�) ,'B (�)�  B (�)) ,

and this proves that 'A �  A and 'B �  B are 1-coboundaries of B1 (�, A) and

B1 (�, B), respectively.

Conversely, given two 1-cocycles 'A and  A of the same equivalence class of H1 (�, A)

and two 1-cocycles 'B and  B of the same equivalence class of H1 (�, B), we can

construct two elements ' = ('A,'B) and  = ( A, B) of Z1 (�, A� B) where by

definition
('A �  A,'B �  B) 2 B1 (�, A� B) .

Immediately, we can conclude that H1 (�, A� B) = H1 (�, A)�H1 (�, B). ⇤

Lemma 6.5. Let Z denote the center of a reductive algebraic group G and suppose that

the free group Fg, with g elements, acts trivially on Z then the first cohomology group

of the Fg-module z = Lie (Z), H1 (Fg, z), is isomorphic to Cg dimZ.

Proof. Since Fg acts trivially on Z, H1 (Fg, z) ⇠= zg.

Given a reductive algebraic group G, its connected component of the center is an

algebraic torus, that is, Z� = (C⇤)dimZ�
. Then, Lie (Z) = Lie (Z�), Lie (C⇤) = C and

dimZ = dimZ� = dim z.

Consequently, we obtain H1 (Fg, z) ⇠= zg = (Lie (Z�))g ⇠= �CdimZ
�g. ⇤

Now we are in conditions to establish the following Lemma.

Theorem 6.6. Let G be a connected reductive algebraic group and let Z be its center.

As Fg-module Lie(G⇥Z)Ad⇢ coincides with gAd⇢1
�z where ⇢ = (⇢1, ⇢2) with ⇢1 : Fg ! G
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and ⇢2 : Fg ! Z homomorphisms. Then

H1
�

Fg, gAd⇢1
� z
� ⇠= H1

�

Fg, gAd⇢1

��H1 (Fg, z)

and, if ⇢ is good, its dimension is given by

dimH1
�

Fg, gAd⇢1
� z
�

= (g � 1) dimG+ (g + 1) dimZ.

Proof. Given a ⇢ 2 Hom (Fg, G⇥ Z(G)) it can be written as a pair of represent-

ations
Fg ! G⇥ Z(G)

Bi 7! ⇢(Bi) = (⇢1(Bi), ⇢2(Bi))

where ⇢1 : Fg ! G and ⇢2 : Fg ! Z are also homomorphisms. Since Lie (G⇥ Z) = g�z

we obtain the corresponding equality for Fg-modules Lie(G ⇥ Z)Ad⇢ = gAd⇢1
� zAd⇢2

and since Fg acts trivially on z, we achieve to Lie(G⇥ Z)Ad⇢ = gAd⇢1
� z.

If we use Lemma 6.4, we obtain

H1
�

Fg, gAd⇢1
� z
� ⇠= H1

�

Fg, gAd⇢1

��H1 (Fg, z) .

Now, by Lemma 6.5, the previous relation is equivalent to

H1
�

Fg, gAd⇢1
� z
� ⇠= H1

�

Fg, gAd⇢1

�� (Cg)dim z .

In this way, the dimension of cohomology group H1
�

Fg, gAd⇢1
� z
�

is given by

dimH1
�

Fg, gAd⇢1

�

+ dim (Cg)dim z = dimH1
�

Fg, gAd⇢1

�

+ g dim z.

We have reduced the computation of the dimension of H1
�

Fg, gAd⇢1
� z
�

to that of

H1
�

Fg, gAd⇢1

�

. By definition, the dimension of H1
�

Fg, gAd⇢1

�

is given by

dimZ1
�

Fg, gAd⇢1

�� dimB1
�

Fg, gAd⇢1

�

.

To compute the dimension of the group consisted by 1-cocycles of the Fg-module with

coefficients in gAd⇢1
, we begin by analysing the cocycle condition, that is,

Z1
�

Fg, gAd⇢1

�

=
�

� : Fg ! g| �(BiBj) = Ad�1
⇢ (Bi)�(Bj) + �(Bi), 8Bi, Bj 2 Fg

 

.
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Since Fg is the free group, any 1-cocycle � is completely defined by the image of its

generators, this means that there is no cocycle condition and that

dimZ1(Fg, gAd⇢1
) = g dim(g).

The set B1
�

Fg, gAd⇢1

�

is consisted by 1-coboundaries, that is,

B1
�

Fg, gAd⇢1
� zAd⇢2

�

= {� : Fg ! g� z| � (Bi) = Bi · a� a} .

In order to compute the dimension of this space, let us consider the following map

between vector spaces

 ⇢ : g ! (g)g

v 7! �

(⇢1 (B1))
�1 v⇢1(B1)� v, · · · , (⇢g (Bg))

�1 v⇢(Bg)� v
�

.

Thus, the dimension of the group of 1-coboundaries is given by

dimB1(Fg, gAd⇢1
� zAd⇢2 ) = dim Im ⇢

= dim g� dimker ⇢

= dim g� dimZ⇢1

where Z⇢1 = {v 2 g|v⇢1(Bi) = ⇢1(Bi)v, 8i = 1, · · · , g} is the stabiliser of ⇢1.

Subsequently, the dimension of the first cohomology group H1
�

Fg, gAd⇢1

�

is given by

dimH1
�

Fg, gAd⇢1

�

= g dim(g)� (dim g� dimZ⇢1) = g dimG� dimG+ dimZ⇢1 .

Since by hypothesis ⇢ = (⇢1, ⇢2) is good and according to Proposition 2.13, this is equi-

valent to ⇢1 being good, which implies that Z (⇢1) = Z. Thus the previous expression

is equal to
dimH1

�

Fg, gAd⇢1

�

= (g � 1) dimG+ dimZ.

In conclusion, we obtain dimH1
�

Fg, gAd⇢1
� z
�

= (g � 1) dimG+dimZ+g dimZ. ⇤

Corollary 6.7. Let G be a connected reductive algebraic group and suppose that the

center Z of G is also connected. Then the dimension of the categorical quotient of

Schottky representations S = S//G is given by (g � 1) dimG+ (g + 1) dimZ.
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Proof. Since good representations define smooth points of the quotient, the di-

mension of the categorical quotient is given by the dimension of the tangent space over

a smooth point

dimHom (Fg, G⇥ Z) //G = dimT[⇢] (Hom (Fg, G⇥ Z) //G) .

Using Proposition 6.1, this is equal to dimH1
�

Fg, gAd⇢1
� z
�

. Then by Theorem 6.6,

we obtain dimHom (Fg, G⇥ Z) //G = (g � 1) dimG+ (g + 1) dimZ. ⇤

In a more general setting, the reductive group G ⇥ Z could be non-connected, and in

this fashion, we are not in conditions of the Proposition 6.1. In spite of the categorical

quotient of the set of Schottky representations being non connected, Proposition 2.7

allows us to use the fact that each connected component of Hom (Fg, G⇥ Z) //G is

isomorphic to Hom (Fg, G⇥ Z�) //G ⇠= (Gg//G) ⇥ (Z�)g. Hence, we can compute the

dimension of each connected component using this isomorphism and we obtain the

following Theorem which is a generalisation of Corollary 6.7.

Theorem 6.8. Consider a connected reductive algebraic group G and its centre Z. Let

S� denote a connected component of the categorical quotient of Schottky representations.

Then the tangent space to S� at a good representation ⇢ satisfies the following

T[⇢]S� ⇠= H1
�

Fg, gAd⇢1

�� zg

where gAd⇢1
represents the Fg-module in the Lie algebra of G and z is the Lie algebra

of Z. Moreover, the dimension of S� is given by

dim S� = (g � 1) dimG+ (g + 1) dimZ.

Proof. Let us begin by noting that each connected component of S is isomorphic

to the identity component S�. So, without loss of generality, we denote by S� an

arbitrary connected component of S and by S� the corresponding categorical quotient,

S� := S�//G.

In each S� there exists a good representation since the set of good representations

is dense and nonempty in S i (Theorem 2.16). As it was mentioned previously, each
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(good) representations ⇢ 2 S ⇠= Hom (Fg, G⇥ Z) can be seen as ⇢ = (⇢1, ⇢2) where

⇢1 : Fg ! G (good) and ⇢2 : Fg ! Z are representations of Fg in G and in Z,

respectively. So, we obtain the following isomorphism of vector spaces

T[⇢]S� ⇠= T[⇢1] (Hom (Fg, G) //G)� T[⇢2] (Z
�)g .

If ⇢ is good then, by Proposition 2.13, ⇢1 is good. Then, applying Proposition 6.1, the

tangent space
T[⇢1] (Hom (Fg, G) //G) ⇠= H1

�

Fg, gAd⇢1

�

.

In addition T[⇢2] (Z
�)g ⇠= T[⇢2] (Hom (Fg, Z�)) ⇠= zg where z is the Lie algebra of the

center Z of the algebraic group G. Thus, we achieve to the following isomorphism of

vector spaces
T[⇢]S� ⇠= H1

�

Fg, gAd⇢1

�� zg.

In term of dimensions, we get

dimT[⇢]S� = dimH1
�

Fg, gAd⇢1

�

+ g dimZ

Applying the same ideas of Theorem 6.6, we compute the dimension of the first co-

homology group H1
�

Fg, gAd⇢1

�

dimH1
�

Fg, gAd⇢1

�

= dimZ1
�

Fg, gAd⇢1

�� dimB1
�

Fg, gAd⇢1

�

= g (dim g)� (dim g� dimZ (⇢1))

= (g � 1) dimG+ dimZ (⇢1) .

Since ⇢ is a good representation, this implies, by Proposition 2.13, that ⇢1 is also a

good representation, then Z (⇢1) = Z. Taking all this into account, we obtain

dimT[⇢]S� = (g � 1) dimG+ dimZ + g dimZ.

To finish, we just have to remind that a good representation ⇢ is such that [⇢] is a

smooth point of the corresponding connected component S� of the categorical quotient

S and hence dim S� = dimT[⇢]S�. ⇤
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Remark 6.9. According to the fact that S decomposes into a union of (connected)

varieties all isomorphic to S�, its tangent space over each element [⇢], where ⇢ is a good

representation, T[⇢]S coincides with T[⇢]S�.

Therefore, we can state the following Corollary.

Corollary 6.10. Let S be the categorical quotient of isomorphic Schottky represent-

ations then
dim S = (g � 1) dimG+ (g + 1) dimZ.

6.2. Smooth points of MG

In section 4.3, we have introduced the notion of Schottky moduli map as the map

W : S] ! Mss
G that assigns to each equivalence class [⇢] 2 S] = W�1 (Mss

G ) the

corresponding equivalence class of semistable G-bundles [E⇢].

Correspondingly, we can also consider the map

E : G] ! Mss
G

[⇢] 7! [E⇢]

where G denotes the categorical quotient Hom (⇡1 (X) , G) //G and G] = E�1 (Mss
G ).

Our main goal in this chapter is to compute the local derivatives of E and W. In this

way, we have to consider the restriction of the above maps to the subset of smooth

points. These points corresponds to principal G-bundles E with the smallest pos-

sible number of automorphisms Aut (E). There exists a type of G-bundles such that

corresponds to smooth points on the moduli space, this notion is defined as follows.

Definition 6.11. A stable principal G�bundle E over X is regularly stable if its

automorphism group and the centre of G, ZG, coincides.

Biswas and Hofmann (Lemma 2.2, [BH]) proved that if E⇢ is stable then Aut (E)

coincides with the stabiliser of ⇢, Z (⇢). If additionally, ⇢ is good then Z (⇢) = Z (G),

that is, E⇢ is a regularly stable.
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According to the following Proposition, the set of regularly stable bundles coincides

with the set of smooth points if these bundles are defined over a compact Riemann

surfaces with g � 3. In the remaining cases, the set of G-bundles that corresponds to

smooth points on Mss
G could be bigger.

Remark 6.12. Biswas and Hoffmann [BH] proved that the notion of regularly stable

is of extreme importance for the case where X is a compact Riemann surface of genus

g � 3 since the smooth locus of Mss
G consists precisely of the moduli points [E] 2 Mss

G

of regularly stable principal G-bundles E over X.

In spite of all that, there is an important theorem related with varieties that proves the

existence of smooth points. Moreover, the set of these points is an open (nonempty)

Zariski variety.

Proposition 6.13. [Thm. 5.3, [?]] Let Y be a variety. Then the set Sing Y of singular

points of Y is a proper closed subset of Y .

Remark 6.14. In this way, using Theorem 1.83, we have that Mss
G is a projective

variety then

(6.2.1) Msm
G := Mss

G\Msing
G

is a Zariski (non empty) open subset of Mss
G . In this way, the inverse image E�1 (Msm

G ) =

G] is non empty.

6.3. Derivative of the Schottky moduli map

Throughout this section, we want to analyse and study more properties of the Schottky

map. According to Lemma 4.3, we have that E�
⇠= E⇢ in Mss

G if and only if the cor-

responding representations ⇢ and � satisfy the analytic equivalence. This equivalence

is defined by the following relation

(6.3.1) � (�) = h! (x̃)
�1 ⇢ (�)h! (x̃ · �)
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where ! 2 H0 (X, AdE⇢ ⌦ ⌦1
X), h! : eX ! G is the unique solution of the differential

equation ! = h�1dh with h (x̃0) = e and x̃0 is a fixed point in eX. This means that the

map E is not injective since we may have non conjugate representations which have

the same image on Mss
G . However, we may cluster these representations in such a way

that the preimage by E of a point [E⇢] is represented by a special set. In this way, let

us begin by giving the following definition.

Definition 6.15. Given a representation ⇢ 2 Hom (⇡1, G)] = E�1 (Mss
G ) we define

the following correspondence

Q⇢ : H0 (X,AdE⇢ ⌦ ⌦1
X) ! G

! 7! Q⇢ (!) ,

where we define
Q⇢ (!) := [�] ,

where � 2 Hom (⇡1, G) is the representation given by (6.3.1) and the notation [�]

represents the equivalence class of � in the categorical quotient G.

As a consequence of Lemma 4.3 we can establish the following property for the map

Q⇢.

Lemma 6.16. The fibre E�1([E⇢]) coincides with the image Q⇢ (H0 (X,AdE⇢ ⌦ ⌦1
X)).

Proof. Since the map E : G] ! Mss
G is defined by E ([⇢]) = [E⇢] and according to

Lemma 4.3 we can write

E�1([E⇢]) =
�

� 2 Hom (⇡1, G) : �(�) = h�1
! (x̃)⇢(�)h!(x̃ · �) .

By definition 6.15, this is exactly Q⇢ (H0 (X,AdE⇢ ⌦ ⌦1
X)). ⇤

The Schottky map W is obtained by the composition

(6.3.2) S] i
,! G] E�! Mss

G .

In this way, we obtain an analogous result for the case of Schottky representations,

that is, W�1 ([E⇢]) = Q⇢ (H0 (X,AdE⇢ ⌦ ⌦1
X)) when ⇢ 2 S].
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Let us, now, compute the local derivative of W. According to (6.3.2), this derivative

can be obtained by the following composition

(6.3.3) T[⇢]S
i
,! T[⇢]G] dE⇢�! T[E⇢]Mss

G

where dE⇢ is the local derivative of E : G] ! Mss
G over a good representation ⇢.

If ⇢ = (⇢1, ⇢2) 2 Hom (Fg, G⇥ Z) ⇠= S is a good representation, by Proposition 6.3,

Theorem 6.8 and remark 6.9, we can rewrite (6.3.3) as

(6.3.4) H1
�

Fg, gAd⇢1

�� zg
i
,! H1

�

⇡1, gAd⇢

� dE⇢�! T[E⇢]Mss
G .

In section 4.2, we defined the period map as the correspondence given by

PAd⇢ : H
0
�

X,AdE⇢ ⌦ ⌦1
X

� ! H1
�

⇡1, gAd⇢

�

! 7! PAd⇢ (!)

where PAd⇢ (!) (�) =
´
�
!. In the following Lemma, we relate this map with Q⇢ and

subsequently, we connect the cohomology group H1
�

⇡1, gAd⇢

�

of the diagram (6.3.4)

to H0 (X,AdE⇢ ⌦ ⌦1
X) highlighting the relations of Lemma 4.3.

Lemma 6.17. For each good representation ⇢ on Hom (⇡1 (X) , G), the derivative of the

map Q⇢ at the identity, d(Q⇢)0, coincides with PAd⇢.

Proof. First we want to compute the local derivative of Q⇢ at 0, that is,

d (Q⇢)0 : H0 (X,AdE⇢ ⌦ ⌦1
X) ! T[⇢]G ⇠= H1

�

⇡1 (X) , gAd⇢

�

This derivative is defined by

d (Q⇢)0 (⌘) =
d

dt
Q⇢ (0 + ⌘t)

�

�

�

�

t=0

.

Since G is a connected reductive group over complex numbers, there exists a homo-

morphism � : G ! GL (n, C) such that to each representation ⇢ 2 Hom (⇡1 (X) , G)
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we obtain the corresponding representation � � ⇢ = ⇢̃ 2 Hom (⇡1 (X) , GL (n, C)).

Summarising, we have the following diagram

T[⇢]G
d[⇢]�̄

// T[�(⇢)]Gn

H0 (X,Ad(E⇢)⌦ ⌦1
X)

//

d(Q⇢)0

OO

H0 (X,End (E⇢̃)⌦ ⌦1
X)

d(Q⇢̃)
0

OO

For t small, we define ⇢t (�) = h�1
t⌘ (x̃)⇢(�)ht⌘(x̃ · �), where ht⌘ is the unique solution

of the diferential equation t⌘ = h�1dh with h (x̃0) = I. Recall that, by definition

Q⇢ (t⌘) = [⇢t] (similarly for Q⇢̃ (t⌘̃)).

Without loss of generality and in order to simplify notation, we denote ⇢̃t by the same

letters ⇢t. The benefit of this argument is that we can use matrix notation and simplify

all computations.

Now, let us return to our problem and consider the solution ht⌘ of the above differential

equation. We can write the solution ht⌘ of the differential equation t⌘ = h�1dh with

the initial condition h (x̃0) = I, as what is called a path ordered exponential

ht⌘ (x̃) = P exp

ˆ x̃

x̃0

t⌘.

However, the only properties that we need of this solution is the leading order terms,

as follows. Assume, without loss of generality, that G ⇢ GL (n, C) ⇢ Mn (C), for

some n. Then, we can write this solution using matrix notation and the corresponding

exponential expansion as

ht⌘ (x̃) = I + t

ˆ x̃

x̃0

⌘ +O
�

t2
�

and h�1
t⌘ (x̃) = I � t

ˆ x̃

x̃0

⌘ +O
�

t2
�

, x̃ 2 eX.

For t small, ⇢t 2 Q⇢ (t⌘) becomes

⇢t (�) =

✓

I � t

ˆ x̃

x̃0

⌘ +O
�

t2
�

◆

⇢(�)

✓

I + t

ˆ x̃·�

x̃0

⌘ +O
�

t2
�

◆

, � 2 ⇡1 (X)

= ⇢ (�) + t

✓

⇢ (�)

✓ˆ x̃·�

x̃0

⌘

◆

�
✓ˆ x̃

x̃0

⌘

◆

⇢ (�)

◆

+O
�

t2
�

.
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We want to compute the derivative
d

dt
Q⇢ (0 + ⌘t)

�

�

�

�

t=0

and, in some sense, this corres-

ponds to determine the derivative of a path of representations ⇢t. The derivative

⇢̇t (�) :=
d

dt
⇢t (�) = lim

t!0

⇢t (�)� ⇢ (�)

t
,

is a tangent vector to the group G at the point ⇢ (�). At the Lie algebra (tangent space

at the identity), this element corresponds to ⇢ (�)�1 ⇢̇t (�). Now, we can conclude that

the derivative
d

dt
Q⇢ (0 + ⌘t)

�

�

�

�

t=0

is equal to

⇢ (�)�1

✓

⇢ (�)

✓ˆ x̃·�

x̃0

⌘

◆

�
✓ˆ x̃

x̃0

⌘

◆

⇢ (�)

◆

=

ˆ x̃·�

x̃0

⌘ �
✓

⇢ (�)�1

ˆ x̃

x̃0

⌘⇢ (�)

◆

=

ˆ x̃·�

x̃0

⌘�
✓ˆ x̃

x̃0

⌘ (�) �0
◆

=

ˆ x̃·�

x̃0

⌘�
ˆ x̃·�

x̃0·�
⌘ =

ˆ x̃·�

x̃0

⌘+

ˆ x̃0·�

x̃·�
⌘ =

ˆ x̃0·�

x̃0

⌘ = PAd (⌘ (�)) .

With this, we have finished the proof that d (Q⇢)0 (⌘) coincides with PAd (⌘) in

H1
�

⇡1 (X) , gAd⇢

�

. ⇤

According to the above Lemma, the following sequence

(6.3.5) H0 (X,AdE⇢ ⌦ ⌦1
X)

d(Q⇢)0
// T[⇢]G

dE⇢
// T[E⇢]MG

is exact if Im
�

d (Q⇢)0
�

= ker (dE⇢).

Lemma 6.18. For each good representation ⇢ 2 Hom (⇡1 (X) , G), the image of d(Q⇢)0

coincides with the kernel of the map dE⇢.

Proof. First let us consider two representations � and ⇢ such that E�
⇠= E⇢. In

this way, we have that � 2 Q⇢ (H0 (X,Ad (E⇢)⌦ ⌦1
X)).

Given any ⌘ 2 H0 (X,AdE⇢ ⌦ ⌦1
X) and t 2 C, we have that

Q⇢ (t⌘) ⇢ E�1 ([E�]) , E (Q⇢ (t⌘)) ⇢ [E�]

and this means that the representation � satisfies �(�) = h�1
t⌘ (x̃) ⇢(�)ht⌘ (x̃ · �) for a

unique function ht⌘t⌘ = d(ht⌘) with ht⌘(x̃0) = I.
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Considering that the image of E (Q⇢ (0)) is the equivalence class [E⇢̂] where the repres-

entation ⇢̂ satisfies ⇢̂(�) = g�1⇢(�)g for a unique element g of G (solution of dh = 0).

Hence
�(�) = h�1

t⌘ (x̃) ⇢(�)ht⌘ (x̃ · �) = h�1
t⌘ (x̃) gg�1⇢(�)gg�1ht⌘ (x̃ · �) ,

If we denote by ĥ = g�1ht⌘, this new function ĥ is the unique solution of ĥt⌘ = dĥ

satisfying ĥ(x̃0) = g�1, then we obtain

(6.3.6) � (�) = ĥ�1 (x̃) ⇢̂ (�) ĥ (x̃ · �) .

By Lemma 4.3, we have founded one function ĥ : eX ! G satisfying (6.3.6) and this

implies that E�
⇠= E⇢̂. Equivalently, E (Q⇢ (t⌘)) = E (Q⇢ (0)) (as points in M) and, in

this isomorphism, taking t ! 0, we obtain the differential of E �Q⇢ at the origin

d (E �Q⇢)0 (⌘) = d (E)Q⇢(0) (⌘) � d(Q⇢)0(⌘) = 0

for ⌘ 2 T0H0 (X,Ad(E⇢)⌦ ⌦1
X)

⇠= H0 (X,Ad(E⇢)⌦ ⌦1
X). We have proved that d (Q⇢)0

belongs to the kernel of d (E⇢).

Conversely, let us consider � 2 ker dE⇢, this means that dE⇢ (�) = 0 then � is tangent

to the fibre of the map E at [⇢], which means, by Lemma 6.16, that it is tangent to the

image of Q⇢ at 0, so there is an ⌘ 2 H0 (X,AdE⇢ ⌦K) such that � = d(Q⇢)0(⌘). ⇤

If ⇢ is a good representation of Hom (⇡1 (X) , G), according to Lemma 6.17, we have

the ensuing diagram

(6.3.7) H0 (X,AdE⇢ ⌦ ⌦1
X)

d(Q⇢)0
//

PAd⇢ ))

T[⇢]G]

⇠=
✏✏

dE⇢
// T[E⇢]Mss

G

H1
�

⇡1(X), gAd⇢

�

.

Since we have the composition T[⇢]S
i
,! T[⇢]G

d(E⇢)0�! T[E⇢]MG, if ⇢ is also a Schottky

representation, we obtain the following diagram

(6.3.8) H0 (X,AdE⇢ ⌦ ⌦1
X)

d(Q⇢)0
//

**

T[⇢]S]

⇠=
✏✏

dW⇢
// T[E⇢]Mss

G

H1
�

⇡1(X), gAd⇢1

�� zg.
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Using above relations and previous results, we obtain the following Theorem which

establishes the way to determine the kernel of the Schottky moduli map.

Theorem 6.19. Let W. : S ! Mss
G be the Schottky moduli map and ⇢ a unitary and

good Schottky representation then we have the following isomorphism

(6.3.9) ker d (W⇢) ⇠= Im
�

H1
�

Fg, gAd⇢1

�� zg
�

\

Imd (Q⇢)0 .

Proof. The kernel of d (W⇢) is given by

ker d (W⇢) = Im
�

T[⇢]S
�

\

ker d (E⇢)

where Im
�

T[⇢]S
�

represents the image of T[⇢]S on T[⇢]G by the inclusion i.

Theorem 6.8 states that T[⇢]S ⇠= H1
�

Fg, gAd⇢1

�� zg, using this fact we get

ker d (W⇢) = Im
�

H1
�

Fg, gAd⇢1

�� zg
�

\

ker d (E⇢)

where Im
�

H1
�

Fg, gAd⇢1

�� zg
�

represents the image of

H1
�

Fg, gAd⇢1

�� zg on H1
�

⇡1 (X) , gAd⇢

�

.

Finally, we use Lemma 6.18 to conclude that ker d (W⇢) is given by

Im
�

H1
�

Fg, gAd⇢1

�� zg
�

T

Imd (Q⇢)0. ⇤

Latter, we will come back to the description of this kernel and we will see that, if we

consider that ⇢ is a unitary Schottky representation, the map d (W⇢) will have maximal

rank.

To finish this section, let us make a synopsis, using the following diagram, of what we

achieved until this moment.

H0 (X,AdE⇢ ⌦ ⌦1
X)
PAd⌘d(Q⇢)0

// H1
�

⇡1(X), gAd⇢

�

dE⇢
// T[E⇢]Mss

G

H1
�

Fg, gAd⇢1

�� zg

di

OO

dW⇢

77

.
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where we have computed the dimension of each one of the above sets. By Lemma 6.2,

we have that the dimension of H1
�

⇡1 (X) , gAd⇢

�

is given by

dimH1
�

⇡1 (X) , gAd⇢

�

= 2 (g � 1) dimG+ 2dimZ(G)

and by Theorem 6.8, the dimension of H1
�

Fg, gAd⇢

�� zg is obtained by

dim
�

H1
�

Fg, gAd⇢

�� zg
�

= (g � 1) dimG+ (g + 1) dimZ(G).

Thus, the dimension of the kernel of d (W⇢) is given by

dimker d (W⇢) = dim
⇣

�

H1
�

Fg, gAd⇢1

�� zg
�

\

Imd (Q⇢)0

⌘

(6.3.10)

dimker d (W⇢) = dim
�

Im
�

H1
�

Fg, gAd⇢1

�� zg
� \ Im

�

H0
�

X,AdE⇢ ⌦ ⌦1
X

���

If we prove, under certain conditions, that H0 (X,AdE⇢ ⌦ ⌦1
X) � H1

�

Fg, gAd⇢

�

gives

all H1
�

⇡1 (X) , gAd⇢

�

then the dimension of the above intersection will be exactly

dim zg = g dimZ. This will be our main goal in Chapter 7.



CHAPTER 7

Schottky Moduli Map

In previous chapters we have considered the Schottky moduli map

W. : S] ! Mss
G ,

from the categorical quotient of Schottky representations, more accurately, S] = W�1 (Mss
G ),

to the moduli space of semistable principal G-bundles.

In this chapter, we want to study better the nature of the image of the above map.

For this purpose, we return to the computing of the derivative of the Schottky moduli

map over a good (and sometimes unitary) Schottky representation ⇢, that is,

(7.0.11) d (W⇢)0 : T[⇢]S] ! T[E⇢]Mss
G .

Now, let us recall that there are two relevant subspaces of the tangent space T[⇢]G ⇠=
H1
�

⇡1, gAd⇢

�

(at a smooth point) where ⇡1 represents the fundamental group of a

compact Riemann surface X (g � 2). One of them is

Im
�

H1
�

Fg, gAd⇢1

�� zg
� ⇢ H1

�

⇡1, gAd⇢

�

where ⇢ = (⇢1, ⇢2) is a Schottky representation, written as an element of Hom (Fg, G⇥ Z),

and H1
�

Fg, gAd⇢1

�

is the first cohomology group of the free group with coefficients in

the Fg-module gAd⇢1
(introduced in section 1.3). The other is

Imd (Q⇢)0 ⇢ H1
�

⇡1, gAd⇢

�

where Q⇢ is the map Q⇢ : H0 (X,AdE⇢ ⌦ ⌦1
X) ! G sending each 1-form !, with

coefficients in the Lie algebra g of G, to an equivalence class of a representation (chapter

6).
105
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If G is a semisimple algebraic group, from the proof of Theorem 7.6 (7.2.1), since in

this case z = 0, we obtain

ker d (W⇢) ⇠= Im
�

H1 (Fg, gAd⇢1)
�

\

Imd (Q⇢)0 .

In this case, the categorical quotient of Schottky representations and the moduli space

have the same dimension: (g�1) dimG (recall Theorem 6.8). In this context, we want

to show that ker d (W⇢) = 0, at a class [⇢] 2 S, such that ⇢ : ⇡1(X) ! K is a Schottky

unitary representation (recall that K is a fixed maximal compact subgroup of G).

In order to simplify notation throughout this chapter, we denote by ⇡1 the fundamental

group ⇡1 (X) of a compact Riemann surface X of genus g � 2 and Z denotes the center

of the algebraic group G.

7.1. Bilinear relations

Consider a maximal compact subgroup K of a complex connected reductive algebraic

group G and let us fix an hermitian structure on the complex Lie algebra g of G which

is invariant under the adjoint action of K on g. Let us denote the corresponding non-

degenerate hermitian bilinear form on g by h , i : g⇥ g ! C. Under these conditions,

we are going to define the following hermitian inner product

(7.1.1) H0 (X,Ad (E⇢)⌦ ⌦1
X)⇥H0 (X,Ad (E⇢)⌦ ⌦1

X)
( , )
// C.

To obtain this, we use the Period map PAd⇢ : H0 (X, AdE⇢ ⌦ ⌦1
X) ! H1

�

⇡1, gAd⇢

�

(defined on section 4.2) to transport elements of the vector space H0 (X, AdE⇢ ⌦ ⌦1
X)

to H1
�

⇡1, gAd⇢

�

and after, we consider a pairing defined on the first cohomology group

H1
�

⇡1, gAd⇢

�⇥H1
�

⇡1, gAd⇢

�! C using the previous fixed bilinear form on g.

Example 7.1. If G = GL (n,C) then we can use hA, Bi = tr (AB⇤) , 8A, B 2 G

where ⇤ means conjugate transpose.
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Let us begin by consider a universal cover eX of the compact Riemann surface X of

genus g � 2 and let D denote a fundamental domain for the quotient X = eX
.

⇡1. In

concrete terms, we can consider eX as the upper half plane H and D a closed subset

bounded by 4g closed geodesic segments inside H.

In terms of these structures, we can give the following definition.

Definition 7.2. Given two arbitrary holomorphic 1-forms !1, !2 2 H0 (X,AdE⇢ ⌦ ⌦1
X),

we define the following hermitian inner product

(7.1.2) (!1, !2) :=

ˆ
X

h!1,!2i := i

ˆ
D

hh1 (z) , h2 (z)i dz ^ dz̄

where !i = hi (z) dz for z 2 eX and D is a fundamental domain for X = eX
.

⇡1 (X).

Remark. The above integral is independent of the choice of the fundamental domain

D and the corresponding local coordinates. On the other hand, it only depends on the

choice of the bilinear form on the Lie algebra g.

In order to define a pairing on H1
�

⇡1, gAd⇢

�

, we need to extend 1-cocycles � : ⇡1 ! gAd⇢

to the group ring Z [⇡1] (see [Flo01, Gol84b]). This allows us to use the ensuing Fox

calculus notation. Since the boundary @D can be considered as the boundary of a 4g

polygon, we can ordered its vertices in the following way

�

z0, z0↵1, z0↵1�1, z0↵1�1↵
�1
1 , z0R1, z0R1↵2, · · · , z0Rg = z0

 

where Rk =
Qk

i=1 ↵i�i↵
�1
i ��1

i . Now, consider the following notations

· @R

@↵i

:= Ri�1 �Ri�i · @R

@�i
:= Ri�1↵k �Ri

and an involution ] on Z [⇡1] defined by ] (
P

ni�i) =
P

ni�
�1
i .

According to the foregoing notations,

(7.1.3) ]
@R

@↵i

= R�1
i�1 � ��1

i R�1
i and ]

@R

@�i
= ↵�1

i R�1
i�1 �R�1

i .
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Definition 7.3. With the previous notation, we define the pairing on H1
�

⇡1 (X) , gAd⇢

�

by

hh�1, �2ii =
g
X

i=1

�
⌧⌧

�1

✓

]
@R

@↵i

◆

, �2 (↵i)

��

+

⌧⌧

�1

✓

]
@R

@�i

◆

, �2 (�i)

��

,

for any �1, �2 2 Z1
�

⇡1, gAd⇢

�

.

Remark. This pairing coincides with the composition of ensuing cup product followed

by contraction using the bilinear form h , i of g on the coefficients and the evaluation

on the fundamental 2-cycle

(7.1.4) H1
�

⇡1, gAd⇢

�⇥H1
�

⇡1, gAd⇢

� [
// H2

�

⇡1, gAd⇢

�

h , i
// H2 (⇡1, C) ⇠= C.

Moreover, we can see that this bilinear form defines a holomorphic sympletic form on

the complex manifold Gsm which consists of the smooth points of the algebraic variety

G = Hom (⇡1, G) //G (see [Gol84b]).

Let us establish the following Proposition, which gives us a way to compute the her-

mitian inner product defined on (7.1.2) considering the above pairing (for details about

cup product see for example [?] ).

Proposition 7.4. Let ⇢ : ⇡1 ! K ⇢ G be a unitary representation and let Ad denote

the adjoint action of G. Then, for all 1-forms !1, !2 2 H0 (X,Ad (E⇢)⌦ ⌦1
X), the

Hermitian inner product of these forms is given by

(!1,!2) =
⌦⌦

PAd⇢ (!1) , PAd⇢ (!2)
↵↵

where
⌦⌦

PAd⇢ (!1) , PAd⇢ (!2)
↵↵

=

g
X

i=1

�
DD

�1

⇣

] @R
@↵i

⌘

, �2 (↵i)
EE

+
DD

�1

⇣

] @R
@�i

⌘

, �2 (�i)
EE

.

Proof. First let us fix some notation. In terms of local coordinates z 2 eX, if we

consider the function fi : eX ! g defined by fi (z) =
´ z
z0
!i then !i = dfi. Observe that

fi (z�) =
´ z·�
z0

!i and, equivalently, fi (z�) =
´ z0·�
z0

!i +
´ z·�
z0·� !i. Considering �i (�) =
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´ z0·�
z0

!i a 1-cocycle representing P �
Ad⇢

(!i), we obtain

(7.1.5) fi (z�) = �i (�) +
´ z
z0
!i (�) �0 = �i (�) +

´ z
z0
� · !i = �i (�) + Ad�1

⇢(�)fi (z)

since !i (�) �0 = � ·!i and this corresponds to an adjoint action on fi, that is,
´ z
z0
� ·!i =

Ad�1
⇢(�)fi (z).

According to definition 7.2 and applying Stokes’ theorem to (7.1.2), we obtain the fol-

lowing expression for the hermitian inner product of two 1-forms !1, !2 2 H0 (X,AdE⇢ ⌦ ⌦1
X)

(7.1.6) (!1, !2) =

ˆ
@D

hf1 (z) , h2 (z)i dz̄.

Using the fact that the boundary @D can be considered as the boundary of a 4g

polygon and fixing z0 as a base point of eX, we write the previous expression (7.1.6) in

the following way

(7.1.7)

(!1, !2) =

ˆ z0↵1

z0

hf1 (z) , h2 (z)i dz +

ˆ z0↵1�1

z0↵1

hf1 (z) , h2 (z)i dz+

· · ·+
ˆ z0Rg

z0Rg�1↵g�g↵
�1
g

hf1 (z) , h2 (z)i dz.

In order to simplify the above expression, let us compute the integrals over the paths

↵i and ↵�1
i . ˆ z0Ri�1↵i

z0Ri�1

hf1 (z) , h2 (z)i dz +
ˆ z0Ri�1↵i�i↵

�1
i

z0Ri�1↵i�i

hf1 (z) , h2 (z)i dz =

=

ˆ z0↵i

z0

hf1 (zRi�1) , h2 (zRi�1)i (Ri�1)
0 dz +

ˆ z0Ri�i

z0Ri�i↵i

hf1 (zRi�i) , h2 (z)i dz

where z0Ri�1↵i�i↵
�1
i corresponds to z0Ri�i and doing change of variables in the first

integral. Doing the same thing on the second integral, we obtain

=

ˆ z0↵i

z0

hf1 (zRi�1) , h2 (zRi�1)i (Ri�1)
0 dz �

ˆ z0↵i

z0

hf1 (zRi�i) , h2 (zRi�i)i (Ri�i)
0 dz

=

ˆ z0↵i

z0

⌦

f1 (zRi�1) , h2

�

zR�1
i�1

�↵ �

R�1
i�1

�0 � hf1 (zRi�i) , h2 (zRi�i)i
�

R�1
i �i

�0
dz.
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Using property (7.1.5) of f1 and defining �i (�) =
´ z0·�
z0

!i a 1-cocycle representing

P �
Ad⇢

(!i), we obtain

=

ˆ z0↵i

z0

D

�1 (Ri�1) + Ad�1
⇢(Ri�1)

f1 (z) , h2 (zRi�1)
E

(Ri�1)
0

�
D

�1 (Ri�i) + Ad�1
⇢(Ri�i)

fi (z) , h2 (zRi�i)
E

(Ri�i)
0 dz

=

ˆ z0↵i

z0

h�1 (Ri�1) , h2 (zRi�1)i (Ri�1)
0 +
D

Ad�1
⇢(Ri�1)

f1 (z) , h2 (zRi�1)
E

(Ri�1)
0

� h�1 (Ri�i) , h2 (zRi�i)i (Ri�i)
0 �
D

Ad�1
⇢(Ri�i)

f1 (z) , h2 (zRi�i)
E

(Ri�i)
0 dz

Since the non-degenerate hermitian bilinear form h , i : g ⇥ g ! C is G-invariant,

namely, it is invariant for the adjoint action, the above expression can be simplify to

=

ˆ z0↵i

z0

h�1 (Ri�1) , h2 (zRi�1)i (Ri�1)
0 + hf1 (z) , h2 (z)i+

� h�1 (Ri�i) , h2 (zRi�i)i (Ri�i)
0 � hf1 (z) , h2 (z)i dz

=

ˆ z0↵i

z0

h�1 (Ri�1) , h2 (zRi�1)i (Ri�1)
0 � h�1 (Ri�i) , h2 (zRi�i)i (Ri�i)

0 dz

Now, we consider the product hh , ii defined over elements of Z1
�

⇡1 (X) , gAd⇢

�

(7.1.8) =
DD

�1 (Ri�1) , Ad
�1
⇢(Ri�1)

· �2 (↵i)
EE

�
DD

�1 (Ri�i) , Ad
�1
⇢(Ri�i)

· �2 (↵i)
EE

.

Simple computations lead us to the following equality �1 (Ri�1) = �Ad⇢(Ri�1)·�1

�

R�1
i�1

�

and according to the fact that the above inner product is invariant to the adjoint action,

(7.1.8) is equivalent to

(7.1.9)
= � ⌦⌦�1

�

R�1
i�1

�

, �2 (↵i)
↵↵

+
⌦⌦

�1

�

��1
i R�1

i

�

, �2 (↵i)
↵↵

= � ⌦⌦

�1

�

R�1
i�1

�� �1

�

��1
i R�1

i

�

, �2 (↵i)
↵↵

.
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Using the fact that �1 is linear as a Fox calculus notation, (see [Gol84b, Flo01]), since

] @R
@↵i

= R�1
i�1 � ��1

i R�1
i , the integrals over the paths ↵i and ↵�1

i become

(7.1.10)

ˆ z0Ri�1↵i

z0Ri�1

hf1 (z) , h2 (z)i dz +
ˆ z0Ri�1↵i�i↵

�1
i

z0Ri�1↵i�i

hf1 (z) , h2 (z)i dz =

= �
DD

�1

⇣

] @R
@↵i

⌘

, �2 (↵i)
EE

.

Doing analogous computations for the integrals over the paths �i and ��1
i on (7.1.7)

and using again Fox calculus notation
⇣

] @R
@�i

= ↵�1
i R.1

i�1 �R�1
i

⌘

, we obtain

(7.1.11)

ˆ z0Ri�1↵i�i

z0Ri�1↵i

hf1 (z) , h2 (z)i dz +
ˆ z0Ri

z0Ri�1↵i�i↵
�1
i

hf1 (z) , h2 (z)i dz =

=
DD

�1

⇣

] @R
@�i

⌘

, �2 (�i)
EE

.

To finish the proof of this proposition, we just have to use expressions (7.1.10) and

(7.1.11) on (7.1.7). ⇤

7.2. Local derivative at unitary representations

From Theorem 6.19, we know that the kernel of the local derivative of the Schottky

map at an unitary representation ⇢ 2 Hom (⇡1, G) is given by

ker d (W⇢) ⇠=
�

H1 (Fg, gAd⇢1)� zg
�

\

Imd (Q⇢)0

where the Schottky representation is written as ⇢ = (⇢1, ⇢2) : Fg ! G ⇥ Z such that

⇢1 (Bi) 2 G and ⇢2 (Bi) 2 Z. According to Lemma 6.17, since the derivative of the

map Q⇢ at the identity, d(Q⇢)0, coincides with PAd⇢ , we can write the kernel as the

following intersection

ker d (W⇢) ⇠=
�

H1 (Fg, gAd⇢1)� zg
�

\

ImPAd⇢ .

Note that we are identifying the cohomology space H1 (Fg, gAd⇢1) � zg with its image

under the natural inclusion

H1
�

Fg, gAd⇢1

�� zg ⇢ H1
�

⇡1, gAd⇢

�

.
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Let us remind that the period map PAd⇢ : H0 (X,Ad (E⇢)⌦ ⌦1
X) ! H1

�

⇡1, gAd⇢

�

is

given by PAd⇢ (!) := [!] with !z(�) =
´ z0·�
z0

! for each � 2 ⇡1 (X) and for a fixed point

z0 2 X̃.

Proposition 7.5. Let ⇢ be a Schottky unitary representation. Suppose that ! 2
H0 (X,Ad (E⇢)⌦ ⌦1

X) is such that PAd⇢ (!) 2 H1
�

Fg, gAd⇢1

�

(in particular, the com-

ponent of PAd⇢ (!) in zg vanishes). Then ! = 0.

Proof. By hypothesis, for any ! 2 H0 (X,Ad (E⇢)⌦ ⌦1
X) we have PAd⇢ (!) 2

H1
�

Fg, gAd⇢1

�

. According to Proposition 7.4, the hermitian inner product of ! is

defined by
(!, !) =

⌦⌦

PAd⇢ (!) , PAd⇢ (!)
↵↵

.

In this case the cup product of this class with itself is

PAd⇢ (!) [ PAd⇢ (!) 2 H2
�

Fg, gAd⇢1

�

Since for a free group Fg, H2
�

Fg, gAd⇢1

�

= 0, we obtain PAd⇢ (!) [ PAd⇢ (!) = 0 and

by proposition 7.4, ! = 0 since the Hermitian product is non-degenerate. ⇤

Theorem 7.6. For G a semisimple algebraic group and for any good and unitary

Schottky representation ⇢, the local derivative of the Schottky map d (W)⇢ : T[⇢]S ! Mss
G

is an isomorphism.

Proof. First of all notice that the dimension of both spaces is the same. Indeed,

since G is semisimple, dimZ = 0. Now, applying Theorem 6.8 to T[⇢]S and Theorem

1.83 to Mss
G we achieve to the following equalities

dimT[⇢]S = (g � 1) dimG

dimMss
G = (g � 1) dimG.

Thus, it is suffices to determine the kernel of d (W)⇢, that is,

(7.2.1) ker d (W⇢)0 = H1
�

Fg, gAd⇢1

�

\

Imd (Q⇢)0 = H1
�

Fg, gAd⇢1

�

\

ImPAd⇢
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and show that it is zero. Note that we are identifying the cohomology space H1
�

Fg, gAd⇢1

�

with its image under the natural inclusion

H1
�

Fg, gAd⇢1

� ⇢ H1
�

⇡1, gAd⇢

�

.

Let [�] 2 H1
�

⇡1, gAd⇢

�

be an element in ker d (W)⇢, by (7.2.1), we have that � 2
H1
�

Fg, gAd⇢1

�

and � 2 ImPAd⇢ . So, there is ! 2 H0 (X,Ad (E⇢)⌦ ⌦1
X) such that

� = PAd⇢(!) and by Proposition 7.5, we conclude that ! = 0. Then � = PAd⇢(0) = 0.

Since � 2 ker d (W)⇢ was arbitrary we have ker d (W)⇢ = 0 as intended. ⇤

We now consider the general case for reductive G.

Theorem 7.7. Let G be a connected reductive algebraic group and let ⇢ be a good and

unitary Schottky representation. Then, the derivative of the Schottky map d (W)⇢ :

T[⇢]S ! Mss
G has maximal rank. In particular, the Schottky map W : S] ! Mss

G is

a local submersion. This means that locally around ⇢, the map is a projection with

dim (W�1 ([E⇢])) = g dimZ�.

Proof. In section 6.3, we proved that

ker d (W⇢) =
�

H1
�

Fg, gAd⇢1

��H1 (Fg, z)
�

\

Im
�

PAd⇢

�

by an elementary result of linear algebra we obtain

ker d (W⇢) ⇠=
⇣

H1
�

Fg, gAd⇢1

�

\

Im
�

PAd⇢

�

⌘

�
⇣

H1 (Fg, z)
\

Im
�

PAd⇢

�

⌘

.

The left side of the direct sum is zero by the proof of Theorem 7.6. It is easy to see

that

H1 (Fg, z)
\

Im
�

PAd⇢

�

= H1 (Fg, z) .

So, we conclude that

dimker d (W⇢) = dimH1 (Fg, z) = g dim z.
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Since, by Theorem 6.8 dimT[⇢]S = (g � 1) dimG+(g + 1) dimZ and by Theorem 1.83,

dimMss
G = (g + 1) dimG+ dimZ, thus

dimT[⇢]S = dimMss
G + dimker d (W⇢) ,

and we conclude that d (W⇢) is a local submersion at ⇢. ⇤



CHAPTER 8

Particular Cases

Since in the previous chapters it has been excluded the case of compact Riemann

surfaces with g = 1, that is, elliptic curves, in this chapter our main purpose is to study

this case. Note that the case of P1 (g = 0) is not relevant for Schottky bundles, since

there are no Schottky representations (other than the trivial one) as its fundamental

group is trivial.

We begin by analysing another special case, when we have a principal Schottky C⇤-

bundles over a compact Riemann surface with g � 2. In this situation the group

G = C⇤ is abelian, so it is an elementary example but still interesting.

8.1. Principal C⇤-bundle

Let us fix the group G = GL (1,C) ⇠= C⇤ and let E denotes a principal C⇤-bundle over

a compact Riemann surface X. It is well known that C⇤-bundle are equivalent to line

bundles, i.e., vector bundles of rank one. According to [?, Flo01], every line bundle

with degree 0 is Schottky.

The following is the analogous result in the principal bundle setting.

Proposition 8.1. Given a principal C⇤-bundle E over a compact Riemann surface X

then E is Schottky if and only if it is flat.

Proof. If EG is Schottky then E ⇠= E⇢ where ⇢ : ⇡1 ! G (with ⇢ (↵i) = 1 as

usual), equivalently, EG is flat.

To prove the converse statement, suppose that EG is flat. Since C⇤ is an abelian group,

the conjugation is trivial, therefore the associated adjoint line bundle Ad (E) is, in fact,

a trivial line bundle over X. So, Ad (E) is a Schottky line bundle. We obtain the result
115
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applying Corollary 3.8 which states that if Ad (E) is Schottky and E is flat, then E is

Schottky. ⇤

Remark 8.2. In our context, the space of Schottky representations is

S = Hom (Fg, (C⇤ ⇥ C⇤))

since the center of C⇤ is itself. Moreover the conjugation action is trivial, so there is

no need to take the GIT quotient. Note that this is not the same space considered in

[Flo01] for the case of line bundles.

Remark 8.3. For G = C⇤, it is well known that all G-bundles are semistable. Thus,

the moduli space of semistable C⇤-bundles coincides with the space of all C⇤-bundles,

which is the first cohomology group H1(X,O⇤
X). So, we have

Mss
C⇤ ⇠= H1(X,O⇤

X).

It is well known that this sits in an exact sequence

H1(X,OX) ! H1(X,O⇤
X) ! Z,

whose last morphism is the degree, or first Chern class. So, the space of flat C⇤-bundles

coincides with the kernel of the degree map, that is, with

H1(X,O⇤
X)

0 ⇠= J(X),

where J(X) is the Jacobian of X.

In this context the Schottky map looks as follows

W : Hom
�

Fg, (C⇤)2
�! J(X).

Then, Proposition 8.1 implies that this map is onto. Also note that dim J (X) = g

whereas dim S = 2g, so this description in terms of principal bundles is not exactly the
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same as the description of the line bundle case in [Flo01], although, as we have seen,

the main results still hold.

8.2. Schottky G-bundles over elliptic curves

In spite of Ramanthan’s Theorem 1.83 requires that the genus of the compact Riemann

surface g � 2, it holds for the case of g = 1. In this section, we consider principal

Schottky bundles over an elliptic curve X since we have been excluding this case in the

previous chapters.

The methodology that we will use throughout this section is the following. First of all,

we consider the case of vector bundles over an elliptic curve and we remind some results

relating flatness, semistability and the Schottky property. Then, we relate principal

G-bundles with the corresponding adjoint bundle in order to translate some of the

previous properties to this case.

Let us begin by reminding the following theorem, due to Atiyah and Tu [Ati57, Tu93],

which relates semistability with the indecomposable property.

Theorem 8.4. [Tu93]] Every indecomposable vector bundle over an elliptic curve is

semistable; it is stable if and only if its rank and degree are relatively prime.

Using Weil’s Theorem (Thm. 1.60), we show in the next Proposition that, if we are

dealing with vector bundles over elliptic curves, flatness and semistability are related.

Proposition 8.5. Let V be a vector bundle over an elliptic curve X. Then V is flat

if and only if V is semistable of degree zero.

Proof. Let V be a flat vector bundle over X and consider the decomposition of

V in a direct sum of indecomposable subbundles

V =
M

Vi.

We can assure that this decomposition always exists by Krull-Remak-Schmidt The-

orem. Theorem 1.60 states that deg(Vi) = 0 and, by Theorem 8.4, each one of Vi’s are
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semistable. Since the sum of semistable vector bundles of the same slope (µ (Vi) = 0)

is a semistable one and with the same slope, we conclude that V is semistable and

deg(V ) = 0.

Conversely, let V be a semistable vector bundle with degree zero. If V is indecompos-

able then, by Corollary 1.61, V has a holomorphic connection, that is, V is flat. Oth-

erwise, let us, again, consider the direct sum of indecomposable subbundles V =
L

Vi.

We have that 0 = deg(V ) =
P

deg(Vi), thus, if there exists a Vi such that deg(Vi) < 0

then it must exists, at least, one Vj such that deg(Vj) > 0 = deg(V ). This contradicts

the hypothesis that V is semistable. Therefore, all of these Vi’s must have degree zero

which implies, by Theorem 1.60, that V is flat. ⇤

More recently, Florentino proved the following theorem which establishes that flat

vector bundles over elliptic curves are all Schottky.

Theorem 8.6. [Theorem 6,[Flo01]] Every flat vector bundle over a Riemann surface

of genus 1 is Schottky.

Now, we want to use the above results to establish similar conclusions for principal G-

bundle over an elliptic curve. In order to obtain this, we have to consider the associated

adjoint bundle. This purpose is achieved in the next Proposition.

Proposition 8.7. Let X be an elliptic curve, G a semisimple algebraic group and EG

a G-bundle over X. Then the following are equivalent:

(1) EG is semistable;

(2) Ad(EG) is semistable with degree zero;

(3) Ad(EG) admits a flat connection;

(4) EG admits a flat connection.

Proof. The proof is done by using several of the previous results. Proposition

1.53 states that EG is semistable if and only if Ad (EG) has also this property, thus we

obtain the equivalence between the two first assertions.



8.2. SCHOTTKY G-BUNDLES OVER ELLIPTIC CURVES 119

The statements (2) and (3) are equivalent by the above Proposition 8.5.

Finally, we can use Proposition 1.63, since G is semisimple, to conclude that EG admits

a flat connection if and only if AdEG admits one. ⇤

Remark 8.8. In the above Proposition, we may consider G reductive although the

equivalence (3) , (4) is not valid in this case. By Proposition 1.64, we may just

guarantee (3) (= (4).

According to the above results, we may conclude the following Theorem for the case

of a compact Riemann surface of genus g = 1.

Theorem 8.9. Let X be an elliptic curve and let G be a connected reductive algebraic

group. Then E is a flat principal G-bundle over X if and only if E is Schottky.

Proof. If the G-bundle E admits a flat connection then it induces a flat connection

in Ad (E). Using Theorem 8.6, Ad (E) is Schottky as it is a flat vector bundle with

degree 0. By Proposition 3.7, since Ad (E) is Schottky and E is flat we obtain that E

is a Schottky principal G-bundle.

The converse one is obvious since a Schottky G-bundles E is, by definition, induced by

a representations of ⇡1 ! G so E is flat. ⇤

The following Corollary follows straightforward by Proposition 8.7 and the above The-

orem.

Corollary 8.10. Let X be an elliptic curve and let G be a semisimple algebraic group.

Then every semistable principal G-bundle over X is Schottky.

Remark 8.11. (1) In the case of compact Riemann surface with genus g = 1,

the fundamental group is a free abelian group ⇡1 (X) = {↵, � : ↵� = �↵} .
Given any representation ⇢ : ⇡1 (X) ! G, if we denote by a = ⇢ (↵) 2 ZG and

b = ⇢ (�) 2 G, we obtain

ab = ⇢ (↵�) = ⇢ (�↵) = ba.
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This means that a and b are commutative elements, then ⇢ (⇡1 (X)) is abelian.

Consequently, if G is not abelian then there is no irreducible representations

(neither good representations).

(2) The fact of the nonexistence of irreducible representations does not imply that

there is no moduli space. In fact, Friedman et al. described, in [FMW98],

that the moduli space of semistable vector bundles over an elliptic curve is a

weighted projective space.

(3) Therefore, we can define the moduli Schottky map W : S ! Mss and, accord-

ing to Corollary 8.10, this is indeed (globally) surjective.
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