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Abstract

The reported productivity gains while using models and model transformations to
develop entire systems, after almost a decade of experience applying model-driven ap-
proaches for system development, are already undeniable benefits of this approach. How-
ever, the slowness of higher-level, rule based model transformation languages hinders
the applicability of this approach to industrial scales. Lower-level, and efficient, lan-
guages can be used but productivity and easy maintenance seize to exist.

The abstraction penalty problem is not new, it also exists for high-level, object ori-
ented languages but everyone is using them now. Why is not everyone using rule based
model transformation languages then?

In this thesis, we propose a framework, comprised of a language and its respective
environment, designed to tackle the most performance critical operation of high-level
model transformation languages: the pattern matching. This framework shows that it is
possible to mitigate the performance penalty while still using high-level model transfor-

mation languages.

Keywords: Model Transformations, DSL, Language Design, Pattern Matching, Model
Transformation Optimization, Model-Driven Development
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Resumo

Os aumentos de produtividade reportados ao longo quase uma década de utilizagao
de modelos e transformagdes entre modelos para desenvolver sistemas complexos cons-
tituem uma prova irrefutavel dos beneficios desta abordagem. Conduto, a lentiddo na
execucdo de transformacdes expressas em linguagens de alto nivel, baseadas em regras,
prejudica muito a applicabilidade da abordagem. As linguagens de baixo nivel, que sdo
muito rdpidas, podem ser usadas mas nesse caso ndo se consegue produtividade e facil
manutensao das transformacoes.

Este problema da abstragdo ndo é novo. Também as linguagens orientadas por objec-
tos passaram pelo mesmo mas hoje em dia toda a gente as usa. Entdo porque é que ndo
acontece o mesmo com as linguagens de transformacdo? O que falta fazer?

Nesta tese, propomos uma linguagem de transformacgdo e respectivo ambiente de
suporte, concebida para contornar o maior obstdculo a aplicabilidade industrial das lin-
guagens de transformagdo de alto nivel: a captura de padroes. Com a nossa abordagem

demonstramos que é possivel mitigar o problema da abstragéo.

Palavras-chave: Transformacdes de Modelos, Linguagens de Dominio Especifico, Dese-
nho de Linguagens, Captura de Padrdes, Optimizagdo de Transformagdes, Desenvolvi-

mento baseado em Modelos
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Introduction

The immersion of computer technology in a wide range of domains leads to a situation
where the users’ needs become demanding and increasingly complex. Consequently, the
development of successful software systems also becomes increasingly complex.

Models are an important mechanism to deal with system complexity [Sch06; KBJV06].
In the context of software engineering, models can be used to describe and prescribe en-
tire systems. Therefore, a promising divide-and-conquer idea to break down this increasing
complexity in software engineering, is to intensively use models during all stages of soft-
ware development, as in the Model Driven Development (MDD) approach.

MDD is a software engineering approach that uses models and model transforma-
tions as first class citizens to create and evolve software systems [HT06]. Typically, several
different models of the same system are combined across multiple levels of abstraction
resulting in the implementation of that system. In MDD, both the design and develop-
ment of new software systems is done by having multiple levels of abstraction, where
each level deals only with a particular aspect of the system (therefore decreasing its com-
plexity), and assuring the consistency between them (e.g., translations, synchronisations,
etc.). In practice, each level of abstraction can be formalised by means of a domain spe-
cific modelling language (DSML), and materialised by its respective supporting tools (i.e.,
editors, simulators, interpreters, analysers and compilers).

Model-Driven Development (MDD) has already been applied to the development of
web applications (e.g.,[FP00] and [TMNAOHO04]), real-time systems (e.g., [BGHST05]),
role-playing games (e.g., [MBBB12]), and many more domains but its wide adoption de-
pends on how easily transformations between models can be specified and how fast those
transformations can be executed. Notice that the execution of model transformations is

typically slow.



1. INTRODUCTION 1.1. Problem Statement

1.1 Problem Statement

In order to effectively enable MDD, the consistency between models has to be ensured by
model transformations. These transformations have to be easy to specify, maintain and
quick to execute. However, as we will see in the following chapters, designing a model
transformation language that satisfies those three requirements is really difficult.

There are model transformation languages that are quick to execute, for instance,
any general purpose programming language equipped with a proper library such as
Java+EMF [Gro09]; and languages that promote productivity and maintainability, such
as AGG [Tae04], Atom3 [LVA04] or Viatra2 [VB07].

The former languages are typically imperative in the sense that the user of the lan-
guage specifies how the transformation is supposed to execute. The latter ones are declar-
ative, where the user specifies a set of rules that relate the input models to the output
models. The model transformation engine handles the other details. The rules are com-
prised of a left hand side graph-like pattern and right hand side graph-like pattern. Dur-
ing the transformation execution, the engine must search the input model for occurrences
of the left hand side pattern and, when a match is found, an instance of the right hand side
pattern is produced in the output model. Due to the graph-like representation of mod-
els, searching for occurrences of some graph-like pattern is known to be an NP-Complete
problem [Ziin96].

This shows that there is a price to pay for increased abstraction in model transforma-

tion languages. Taking that in consideration, our research question can be stated as:

How can we avoid the abstraction penalty in model transformation languages?

1.2 Expected Contributions

In this thesis we explore how to mitigate the abstraction penalty in model transformation
languages. We propose a framework, comprised of a language and its respective envi-
ronment, designed to tackle the most performance critical operation of high-level model

transformation languages: the pattern matching.

The language proposed, instead of following a rule based approach, like most of the
state of the art, represents the transformation as a network with explicit structures to
control the flow of information from the input model to the output model. This explicit
representation of the transformation allows for the application of several analysis and
optimizations.

Upon successful completion, we will show that it is possible to mitigate the abstrac-

tion penalty in high-level model transformation languages.

2



1. INTRODUCTION 1.3. Document Structure

1.3 Document Structure

This thesis” structure reflects the main development steps of our solution. Each chapter
is a step in achieving that solution.

The first four chapters represent our state of the art investigation. Then, Chapter 5
clarifies the problem we are trying to solve. Chapter 6 plans and explores our approach
to solve that problem and Chapters 7, 8 and 9 implements the solution to the problem.
Finally, Chapter 10 evaluates the implemented solution and Chapter 11 presents our con-

clusions.
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Model Driven Development

This chapter is intended to make the thesis as self-contained as possible. We present all
the necessary concepts to understand the context of this thesis. We start by conveying the
definition of the word model and introducing the example that will be used throughout
the chapter. We explain how models can be used to describe complex systems and the
role of model transformations in that process. We conclude with an overview of the most

used pattern matching and optimization techniques.

2.1 Models

It is by no means reasonable to build a map the same size as the city it represents. Ab-
straction, along with problem decomposition and separation of concerns is one of the
best ways to deal with complexity [Sch06; KBJV06]. A map of a city is an abstraction of
that area that addresses a particular concern. There are several types of maps: road maps
(the most widely used), economical maps, political maps, etc... A map is a model.

Given a system M, a model M; is (i) a representation based on the system M (ii)
reflecting only the relevant parts of M (iii) to serve a given purpose [Kuh06].

In the context of software engineering, models are often represented as graphs' be-
cause graphs can express complex structures and relations; they are intuitive, expressive
and suited for automatic manipulation [Ehr06]. We will be using the terms graphs and
models interchangeably. UML Class Diagrams are widely used to create models of the

static information in a software system.

"More precisely, models are often represented as typed and attributed graphs. For more details please
refer to [Ehr06].



2. MODEL DRIVEN DEVELOPMENT 2.2. Syntax and Semantics

Using models like the one shown in Figure 2.1, social scientists, without any program-
ming expertise, are able to deploy full featured web applications to conduct their studies.
In order to accomplish this, these scientists use applications such as eSurveysPro? or Line-

Service® to read and translate questionnaire models into web applications [ABDT10].

CrimeAndSatefySurvey: Questionnaire

title = "Crime And Safety Survey"
introduction = "Crime has decreased..."
logo = "./images/logo"

appreciation_text = "This survey..."
acknowledgements = "Department of Youth"

time = 10
formedByi

SchoolViolence: Block

title = "School Violence"
introduction = "Violence has increased..."

containsi

HighSchoolViolence: Block

title = "High School Violence"
introduction = "..."

asks

Y

svql: Question

text = "When was the last..."

offers i offers i

svqlol: Option svqlo2: Option
code = 1 code =2
text = "A week ago." text = "A year ago."

Figure 2.1: Questionnaire model. Taken from [ABDT10].

In technical terms, one of the ways to serialize a model is through the XML Metadata
Interchange (XMI) format [Om02]. XMI is a standard XML format created to enable both
human and machine readable representation of models.

How does one guarantee that social scientists will always build syntactically correct
questionnaire models? By syntactically correct we mean that they are suited for being
parsed by some application. Note that a successfully parsed questionnaire does not have
to make any sense. We will discuss syntax and semantics in the next section.

2.2 Syntax and Semantics

In order to better understand syntax and semantics consider the following example:

The expression

5
0

is syntactically correct with respect to integer arith-
metic because “5” and “0” are valid integers and the division is a binary op-

ubr

erator; but semantically incorrect since “3” does not mean anything or has

http://wwW.esurveyspro.com
*http://www.limeservice.org
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2. MODEL DRIVEN DEVELOPMENT 2.3. Metamodels

the wrong meaning. The expression “5 * 3” is syntactically and semantically
correct: it means “15”. The expression “5+" is syntactically incorrect because

the plus operator needs two operands.

A syntactically correct model has to respect some well-formedness rules. A semanti-
cally correct model can be interpreted to produce something with meaning.

Since models are to be automatically parsed and interpreted, there must be a way to
unambiguously specify well-formedness rules. That is were a metamodel comes in.

2.3 Metamodels

A metamodel is a set of rules that describes all possible syntactically correct models, i. e.,
given a model M; and a metamodel M, of Mj, it is easy to check if M; is syntactically
correct with respect to My [KBJV06]. When this happens, we say that M; conforms to
M. Moreover, given Mj, a computer is able to parse any M, that conforms to M, and
further do something useful with that information. This is analogue to what happens
between a program and its programming language. The program has to be parsed by
some compiler (or interpreter), hence the need for a set of rules dictating syntactically
correct programs.

Figure 2.2 shows a simplified metamodel for questionnaire models. This metamodel
can be used by applications that parse questionnaire models to check if they are syntac-
tically correct. As the questionnaire metamodel shows, a questionnaire is formed by a
forest of blocks. Each block contains a set of questions with zero or more options. Ques-
tions with zero options expect any textual answer. A questionnaire has attributes such
as title, introduction, logo, appreciation text, acknowledgements and an expected time
to complete. The information about the each particular metamodel element lies in its
attributes. Comparing the model shown in Figure 2.1 and the metamodel of Figure 2.2
one is able to determine to determine the correspondence between each model element
and metamodel element. For instance, the SchoolViolence element corresponds to a Block.
This relation between a model element and its corresponding metamodel elements is the
instance of relation. In our example, the SchoolViolence is an instance of the Block element.

Formally, a model M; conforms to a metamodel M5 iif it is possible to build a instanceo f
relation between the set of nodes and associations N; and A; of model M; and the set of

nodes and associations Ny and A of M» such that the following conditions hold:

Vaca, instanceof(src(a)) = sre(instanceof(a))

Vaeca,instanceof (trg(a)) = trg(instanceof(a))

where src(a) and trg(a) denote the source and target elements of the association a. For
more details, Hartmut Ehrig presents a formalization on type and attributed graphs in
[Ehr06].
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5 Questionnaire

= id : EString
H option = title : EString
_ ) = introduction : EString
= id : EString

= logo : EStrin
= code : EInt . 8

. O appreciation_text : EString
= text : EString

= acknowledgments : EString

= time : EInt
0..7
offers
formedBy $1..*"
Question . N
H L. H Block 0..*
o id : EString )

= id : EString contains

= text : EString asks

= title : EString

= introduction : EString

Figure 2.2: Questionnaire metamodel. Taken from [ABDT10].

Figure 2.3 shows the instanceof relation between the model of Figure 2.1 and the meta-
model of Figure 2.2.

There are tools called modelling environments that offer support to the creation of
metamodels and tools to manipulate models. For instance, a user can use a modelling
environment to create a questionnaire metamodel like the one shown in figure 2.2 and
automatically generate a set of editors that ease the manipulation of questionnaire mod-
els. Eclipse Modeling Framework (EMF) [Gro(09] is an example of a modelling environ-
ment but there are others such as Generic Modelling Environment (GME) [LBMVNSKO01]
or MetaEdit+ [TRO3].

How does the modelling environment guarantees that the created metamodels are
syntactically correct? Where are the set of rules that prescribe well formed metamodels?

2.4 Meta-metamodels

A metamodel M conforms to a meta-metamodel M3. A meta-metamodel represents the
set of all well formed metamodels. Note that this makes the metamodel a model M,
conforming to Mj3. Figure 2.4 shows a simplification of a meta-metamodel: the Ecore
meta-metamodel. The Ecore is the meta-metamodel used in the Eclipse Modelling Envi-
ronment (EMF).

The relation between a metamodel M5 and a meta-metamodel M; is the same as the
one between a model M; and My: M, is an instanceof Ms. The instanceof relation is
(partially) shown in Figure 2.5.

The meta-metamodel must also obey to some well formedness rules. It turns out
that the meta-metamodel is supposed to conform to itself, i.e., it is reflexive. This means
we don’t need a meta-meta-metamodel. Unfortunately, there are some issues about in-
terpreting a reflexive meta-metamodel from a pragmatic point of view as identified in

[Sei03]. Fortunately, in practice this limitation is negligible since most tools operate at
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CrimeAndSatefySurvey: Questionnaire ] Questionnaire
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title = "Crime And Safety Survey" | _ceemeal ] N nt'tl - EStri
introduction = "Crime has decreased..." ftle - £5tring
logo = "./images/logo" n introduction : EString
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time = 10 appreciation_text : EString
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title = "School Violence" T .
introduction = "Violence has increased..."|  The.__ Elslock 2-
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code = 1 code=2  |tteeeeeee B id : Estring
text = "A week ago." text = "A year ago." ____::» n code : EInt
ntext : EString

Figure 2.3: Questionnaire model and metamodel. Taken from [ABDT10].

the level of metamodels and below [Fav04]. Figure 2.6 summarizes the four levels of ab-
straction described until now. The M, denotes the system under study that needs and
abstraction; M; denotes the model of Mj; M is the metamodel to which M; conforms to;
and M3 is the meta-metamodel.

2.5 Model Driven Development

Model-Driven Development (MDD) is a software engineering approach that uses mod-
els as first class citizens to create and evolve software systems [HT06]. The software
code is generated from a set of models thus enabling massive reuse and “correct-by-
construction” software [Sch06].

The Model-Driven Architecture (MDA) is a set of guidelines proposed by the Object
Management Group* (OMG) on how to produce applications using MDD [Sol00]. These
guidelines suggest that when building a complex system, Platform Independent Models
(PIMs) should be used to describe that system. Then, PIMs are translated to Platform
Specific Models (PSMs). Furthermore, MDA proposes a meta-metamodel (M3) called
Meta Object Facility (MOF) and the four abstraction levels shown in Figure 2.6.

Platform Independent Models (PIMs) denote those models that don’t keep specific

‘nttp://www.omg.org/
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eReferenceType g ecClass
1 0‘.7\‘

0 eSuperTypes

0..* | eStructuralFeatures

H EStructuralFeature

TOT

| EReference H EAttribute

Figure 2.4: (Highly) Simplified Ecore Metamodel.

information about a system’s ultimate execution environment (operating system, pro-
gramming language, etc...) [AKO5]. The questionnaire model of Figure 2.1 does not
keep information about its execution environment, i.e., it is a PIM. Because of this, an
application like eSurveyPro can choose to generate a web application or a desktop appli-
cation, or even a mobile version, to evaluate the survey.

After a total or partial specification of the necessary PIMs to describe a system, a set of
Platform Specific Models (PSMs) is generated from those PIMs. PSMs carry information
about the system’s execution environment and are well suited for being used to generate
(automatically or semi-automatically) that system.

An application like eSurveyPro, capable of processing a questionnaire model to pro-

duce a web application, would operate in the following way:

1. A questionnaire model is given as input to the application;
2. The application checks if the model conforms to the questionnaire metamodel.

3. Assuming the model is syntactically correct, there are three equivalent alternatives:

(@) The application interprets the model and presents the user with a web page
containing the questions and choices declared in the model.

(b) The application translates the model to a set of Java classes that, when run,
present the user with a web page containing the questions and choices de-
clared in the model.

(c) the application translates the questionnaire model to a Enterprise JavaBeans
(EJB) model® and then the EJB model is translated to a set of classes imple-
menting the questionnaire. The classes generated include support for trans-
actions, remote and distributed execution, persistence, etc...This EJB-to-Java
translation is done by other application (e.g., AndroMDA?® is a tool capable of

Shttp://www.oracle.com/technetwork/java/javaee/ejb/index.html
®http://www.andromda.org
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Figure 2.5: (Partial) Relations of conformance between model, metamodel and meta-
metamodel.

performing the translation), specifically devised to translate EJB models to ex-
ecutable Java classes.

The alternatives 3a, 3b and 3c have the same purpose: they provide semantics (a
meaning) to the questionnaire model. The first alternative gives semantics in an opera-
tional manner. The second and third ones do this through a transformation into a model
that already has defined semantics (EJB is a model and code can also be seen as a model
[Béz05]).

The alternative 3c is the easiest to realize because the transformation we have to build
is one between models conforming to similar metamodels (Questionnaire and E]B) as
to building an interpreter or a compiler (options 3a and 3b). Option 3c is also the safest
alternative because the probability of introducing bug in the transformation process is
far smaller than in the other options. Figure 2.7 shows a possible (simplified) EJB model
produced with such a transformation applied to the questionnaire model of Figure 2.1.
By observing the EJB model, we can immediately come up with a set of heuristics on
how to perform the transformation: 1. Each questionnaire item is translated into a Session
Bean and a persisted Entity Bean. The Session Bean objects provide the necessary controls
to allow the user to answer the questionnaire. 2. Blocks, Questions and Options are all
translated into respective Entities as they need to be persisted after each session.

The keen reader will observe that the heuristics presented are applicable to any pos-
sible questionnaire model, not just the one shown in Figure 2.1.

here are at least two possible ways to implement the translation between question-
naire models and EJB models. One is to manually code a visitor that parses the XMI file
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Figure 2.6: System, Model, metamodel and meta-metamodel.
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QuestionnaireEntity : EntityBean
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save()
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title:string = "Crime And Safety Survey"
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innerblocks
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blocks L
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Block : EntityBean
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id:string = "svql"
text:string = "When was the last..."

next

first ;

Option : EntityBean
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id:string = "svqlol"

id:string = "svqlo2"
code:int = 2

text:string = "A week ago."

text:string = "A year ago."

Figure 2.7: Simplified EJB model generated from a questionnaire model.

of a questionnaire model and generates a XMI file representing the EJB model. This is the

visitor based approach [JUH10]. It is also possible to use templates to orchestrate the gen-

eration of the EJB model contents, i.e., following a template based approach. However,

these two alternative are more suited to perform model-to-code transformations as they

allow for easy code generation. In this case we are interested in performing a model-to-

model transformation. Model Transformations are the subject of the next chapter.
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Model Transformations

A model transformation is “the automatic generation of a target model from a source
model, according to a transformation definition” [KWB03].
The transformation definition is expressed in some language. The language can be a
general purpose language like Java or a more specific model transformation language.
Model transformation languages, together with their supporting model transforma-
tion tools provide an high-level and highly productive environment where transforma-
tion specifications consist of rules like the one shown in Figure 3.1.

Rule: match all the first choices and create the "first" reference.

LHS RHS
Question ——{-—-1 Question : EntityBean
offers first
A A
Option [—---—--1 Option : EntityBean
code=1

Figure 3.1: Example rule used to specify a model transformation.

3.1 Environment

Model transformation tools interpret a transformation specification the relates some in-

put model, conforming to metamodel, to some output model, conforming to some other

13
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metamodel. Typically, even the transformation itself is a model conforming to a meta-

model [Béz04] as is illustrated in Figure 3.2.

MMM

A

MM,

Figure 3.2: Overview of the model transformation process.

The MMM denotes the meta-metamodel (e.g. Ecore or MOF) and the MM, is the
metamodel of the transformation specification. This metamodel, MM;, is often called
the transformation language. Note that if n = m = 0 and MM, = MM we have a
transformation between models conforming to the same metamodel, i. e., an endogenous
transformation [MVGO06]. When the input and output metamodels are different we have
an exogenous transformation [MVGO06].

There is a great variety of MTTs, each unique in features provided, language used, and
approach followed to solve the model transformation problem [GGZVEVGV05]. Some
operate with just a set of transformation rules applying them in any order (declarative
approaches); others allow the user to control rule scheduling (or rule selection) (hybrid
approaches); others take this further by providing an imperative language with loop
constructs, branching instructions, composition mechanisms, etc... that allow the user to
program all the transformation process (imperative approaches). Czarnecki and Helsen
provided a classification of model transformation approaches in [CHO3] that captures

most of the MTTs’ features from a usability point of view.

3.2 DSLTrans - A Model Transformation Language

DSLTrans [BLAFS11] is a visual rule-based language for model transformations. It uses
layers to define an order to apply the rules to the input model. Figure 3.3 shows an
excerpt of a transformation that translates questionnaire models into EJB models as is

described in section 2.5.
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A transformation in DSLTrans is formed by a set of input model sources called file-
ports (“inputQuestionnaire” in Figure 3.3) and a list of layers. Input model sources are
typed by the input metamodel and layers are typed by the output metamodel. Each layer
is a set of rules that are executed in a non deterministic fashion. The top part of each rule
is called the “match” and the bottom is “apply”.

In the example presented in Figure 3.3, in the first layer, left rule, for each Question
instance found in the input model, a new EntityBean instance is created in the output
model, with the name “Question” and id equal to the id of the found Question instance.
In addition, a trace link is created internally identified by the “Q2E_Trace” string. These
trace links can be used in the subsequent layers to retrieve a Question instance and the
corresponding EntityBean instance created in the rule. In the right rule, a similar opera-
tion is performed to all the Option instances found in the input metamodel. In the rule
of the second layer, all the question and respective offered questions are being matched
in the input model, together with the corresponding previously created EntityBeans and
a new association called “first" is being created.

For more details about DSLTrans, please refer to section 6.2 in chapter 6.

3.3 State of Art

Off course DSLTrans is not the only model transformation language. There are many
others, each with it’s particular set of features, advantages and limitations. In our study;,
we tried to cover as much languages as possible, namely: (i) imperative tools such
as ATC [EPSR06] and T-Core [SV10]; (ii) declarative tools such as AGG [Tae04], Atom3
[LVA0O4] and Epsilon Flock [RKPP10a]; (iii) programmed graph rewriting approaches
such as GReAT [BNBKO07], GrGen.NET [KG07], PROGReS [Sch94], VMTS [LLMCO05] and
MoTif [SV11]; (iv) incremental approaches such as Beanbag [XHZSTMO09], Viatra2 [VB07]
and Tefkat [LS06]; (v) and bidirectional approaches such as BOTL [BM03a].

3.4 The Model Transformation Process

Based on our study of the state of the art tools, we built a general process that identifies
the main stages occurring in most model transformation executions.

Figure 3.4 identifies the main stages in two typical transformation execution modes:
interpretation (left) and compilation (right). The only difference between these two modes
is that, in the compilation, the execution of the transformation is separated from the trans-
formation load, parse and compile tasks and off course, the performance, as we will see
in chapter 10.

We stress the fact that the presented diagrams are not supposed to describe exactly
how model transformation tools operate, but to provide instead a clear overview of the
main stages in most model transformation executions. However, these diagrams are

general enough to describe even imperative tools (e.g., ATC [EPSR06]), where most of
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the transformation execution stages (in the Execute Transformation State) are manually
coded by the transformation programmer. We also assume that a transformation is com-
prised of a set of rules, each containing an Left-Hand Side (LHS) pattern, that needs to
be found in the input model, and a Right-Hand Side (RHS) pattern which represents the
output model. There is no loss of generality, since these rules (with the mentioned pat-
terns) do not need to be explicitly represented in the transformation language. They can
be implicit in the transformation programmer’s mind when coding the transformation.
For simplicity’s sake, we only consider one input model and one output model but it is
easy to see how the process can be adapted to multiple input/output models.

As is illustrated in Figure 3.4, an engine always starts by loading the transformation
and, in the case of interpretation, the input model. At this point, some existing engines
perform global optimizations, which will be explained and categorized in section 4.2.
Next, the engine executes the transformation by selecting each rule and optionally per-
forming some local optimizations (see section 4.2). After those optimizations, a search in
the input model must be performed in order to find where to apply the rule. In this task,
the engine has to find occurrences of the rule’s left-hand side pattern in the input model.
From a performance point of view, this operation is the most expensive, and usually all
the optimizations target the reduction of its cost (see chapter 4). The application of the
rule’s right hand side is performed for each occurrence found and, if there are more rules
to be applied, the transformation continues. Else, the transformation execution ends.

After that, the output model is stored.

3.5 Performance

In order to better understand how much the pattern matching operation (the Match LHS
State in Figure 3.4) costs, we picked a benchmark created for the Tool Transformation
Contest (TTC) 2010. For all details about the benchmark case study, input models and
tools used, please refer to chapter 10.

From the available submissions we selected transformations expressed in Epsilon
Flock, ATL and GrGen.NET tools. We also coded a transformation entirely in Java, using
the Eclipse Modelling Framework (EMF) library to load and store the models.

Running each transformation with increasingly larger input models yielded the re-
sults shown in Figure 3.5. Note the logarithmic scale in both axes. The vertical axis
denote the total transformation time, i.e., the input model load, transformation parse,
execution and output model storage tasks. The horizontal axis denotes the input model
size.

It is clear that, in terms of performance, there is a big gap between model transfor-
mation languages and a general purpose programming language like Java. In a sce-
nario where performance is very important, Java, or any other low-level general purpose
language, might be the only tool for the job. Off course, creating and maintaining a

transformation entirely written is Java is, at least compared with model transformation
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languages, a tiring, unproductive and error-prone task. Not to mention that the code is
tightly coupled to the EMF library to load and store models.

The three tools used have a very intuitive, compact and declarative syntax to specify
the transformation. Compared to Java, it is really easy and quick to create the transforma-
tion in all three languages. Also it should be straightforward to cope with any change to
the representation of models. The problem is that at industrial scales, any transformation
written in these languages becomes useless.

Only after high-level transformations are shown to run fast enough, people will use
them at industrial scales. Optimization techniques play an important role for that pur-
pose.

In the next chapter, we will see why the pattern matching process is the most critical in
terms of performance and a categorization of the state of the art optimization techniques

to mitigate this problem.
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Figure 3.3: Excerpt of a transformation expressed in DSLTrans.
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Pattern Matching Optimization
Techniques

In this chapter, we study the pattern matching process. Optimizing this NP-Complete
[Z1in96] problem is one of the most effective ways to reduce execution times and achieve
industrial applicability for model transformations. We identify and classify several pat-
tern matching optimization techniques and we present the categorization of the state of
the art tools.

In the following sections we provide a simple and general explanation for each opti-
mization technique with the help of some examples. The input model used, and corre-
sponding metamodel, are presented in Figure 4.1. The metamodel states that instances of
M are comprised of zero or more instances of A. A elements refer to zero or more elements
of type B or C. C elements may reference multiple C instances. All elements have an id
string attribute and C elements have an extra ccs integer attribute. Note that containment
associations (with the black diamond in the source) state that a child element (association
target) may only exist inside one parent element (association source). Later we will see
why this fact has an impact on the performance of the pattern matching operation.

4.1 The Pattern Matching Problem

Consider the pattern shown in Figure 4.2. The search for occurrences of that pattern in
some model is called the pattern matching. More specifically, for an occurrence to be
found, each element in the pattern, including the associations, has to be mapped to an
element of the input model. Figure 4.3 shows one such mapping for the input model

of figure 4.1a but there can be thousands of possible matches in large models. In this
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ab
” B
A id:String
id:String
P cc
ln : \N -
* C
M id:String
id:String ces:int
(a) Model used as input for the illustra-
tion of pattern matching techniques. (b) Metamodel.

Figure 4.1: Sample input model (left) and corresponding metamodel (right).

example, there are two: the first one is shown in the figure and the second one has the
mapping {(z, a3), (2, c3), (y,b3)}. Had we omitted the restriction ccs=2 and there would
be 6 possible mappings.

x:A ab

y:B

ac

z:.C

ccs=2

Figure 4.2: Sample pattern.

In order to find such mapping in any given input model, a transformation engine has
to follow an algorithm similar to Algorithm 1. A few remarks about the notation: 1. The
GetAlllnstances(Type) function returns the set of all elements from the input model that are
instances of Type; 2. element.association returns, all the model elements that are connected
to element by the association association as targets; 3. element.attribute returns the value of
the attribute attribute of the element element; 4. It should be clear by the context whether
we are navigating an association or accessing an attribute with these two last operations;
5. The BAC unique identifies the pattern in Figure 4.2;

The algorithm starts by finding all the instances of A and then, for each instance a,
navigates along the edges a.ab and a.ac to find the remaining elements.

For the worst case scenario, assume that GetAllInstances(T) has to search through the
entire model to find all elements of type T and assume that A elements are connected to
every B and every C elements in the model. The time complexity of the Algorithm 1, in
this scenario, is O(((| M|+ |A|+ |B|+|C|)+ (4| x |B| x |C|)) where |T'| denotes the size of
the GetAlllnstances(T) set. Note that this is just the cost of one particular pattern matching
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Figure 4.3: Example occurrence of the Left-Hand-Side (LHS) pattern of the rule in Fig-
ure 3.1.

Algorithm 1 An algorithm to find occurrences of the pattern shown in Figure 4.2.

function FINDALLOCCURRENCESBAC
occurrences < {}
for a € GetAlllnstances(A) do
forb c a.ab do
forc € a.ac do
if c.ccs = 2 then
occurrences <— occurrences U {(z,a), (y,b), (z,¢)}
end if
end for
end for
end for
return occurrences
end function

operation. In a whole transformation execution, several patterns need to be matched.

Most model transformation tools, when loading the input model (see the process in
figure 3.4), create an index to store elements organized by their type. Using this feature
the tool does not have to search the whole input model to find an element of a given
type'. This causes the GetAlllnstances(T) function to return immediately with the set of
all instances of T. So, the worst case, for most model transformation tools, of Algorithm 1
is O(|A| x |B| x |CY).

In general, given an arbitrary pattern with {nj, na,...,n,} matching elements, each
being instance of types {11,715, ..., Ty}, respectively, an algorithm to match those ele-
ments has a worst case time complexity of O(|T1| x |T2| x ... x |T;,|). Note that if T; = Tj
for all + and j, we have O(T™) meaning that the algorithm is exponential in the size of

the pattern.

IRecall that most pattern elements are syntactically typed
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4.2 Optimization Techniques

The good news is that, in the model transformation context, models are typically sparsely
connected, model elements are indexed by their type and patterns in rules are generally
small. Because of these facts, the average pattern matching process has a complexity
that can be “(...) overapproximated by a linear or quadratic function of the model size”

[VEVS08]. Also, there is lots of room for improvement in Algorithm 1.

4.2.1 Indexing Techniques

For instance, the tool could be improved to, when loading the input model, create an
index with the inverse associations of the existing associations. This feature is so useful
that it is usually supported by the model management frameworks used by tools, such
as UDM [MBLPVAKO3] or EMF [Gro09]. It also means that, for each instance of an as-
sociation Ty 2% T, there would be an instance of the association 75 M T,. The
implications are clear: If there are only associations T} 25598 Ty in the model and we are
given an element ¢, instance of 75, it is still possible to obtain all the instances of 77 that
are connected to ¢, without having to search all instances of 7' in the model. We do that
with ¢2.assocInv. If an engine supports this indexing technique, then the Algorithm 1

could be improved to Algorithm 2.

Algorithm 2 An algorithm to find occurrences of the pattern shown in Figure 4.2 taking
advantage of inverse associations.

function FINDALLOCCURRENCESBAC
occurrences < {}
for ¢ € GetAlllnstances(C) do
if c.ccs = 2 then
for a € c.aclnv do
forb € a.ab do
occurrences <— occurrences U {(z,a), (y,b), (z,¢)}
end for
end for
end if
end for
return occurrences
end function

In Algorithm 2 we switched the order of the loops because, since we can only have
an occurrence if the z element satisfies the restriction z.ccs = 2, we might as well start by
looking for such z elements. Notice that we can only take advantage of this heuristic if
the engine has built inverse relations.

In the worst case, all the z elements satisfy the z.ccs = 2 restriction the complexity
remains at O(|C| x |A] x |B|). But, in the average case, it will be O((|C| x P(z.ccs =
2)) x |A] x |B|) where P(z.ccs = 2) is the probability of picking one instance z of C
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that satisfies the restriction z.ccs = 2. In Chapter 8 we will show how this probability can

be estimated. For now, if the input model shown in figure 4.1a is representative, then
P(z.ccs =2) = 3.

We can improve the indexing techniques of the tool to provide attribute indexes. This
way, if an element 7" with an attribute T.attr of type P is frequently accessed throughout
a transformation, then building an index T4, : P — T can yield a major speed up.
Algorithm 3 shows how this index can be used to fetch immediately all the instances
c of C satisfying the restriction c.ccs = 2. Note that since the index fetches the correct
instances there is no need for the verification of the restriction. Normally, the creation
of these indexes is controlled by the user so that only the most relevant attributes are
indexed but the tool can analyse all the transformation and determine which attributes
deserve to be indexed. In order to fill the index with the necessary instances, the tool,

when loading the input model, scans all C' instances and organize them in the index.

Algorithm 3 An algorithm to find occurrences of the pattern shown in Figure 4.2 taking
advantage of attribute indexes.

function FINDALLOCCURRENCESBAC
occurrences < {}
forc € C..5(2) do
fora € c.aclnv do
forb € a.ab do
occurrences <— occurrences U {(x, a), (y,b), (z,¢)}
end for
end for
end for
return occurrences
end function

We can take these indexing techniques one step further and implement structural
indexes. These allow for the storage of instances of whole patterns. For example, assume
that the pattern B &4 % 0, identified by BAC’ is frequently matched throughout the
transformation. By detecting this fact, the engine creates an index Ip4cr : B x A x C that,
when accessed, returns all the instances of that pattern. Algorithm 4 shows an example
match operation that uses the structural index that we gave as example. Similarly to the
previous indexing techniques, the engine has to fill the index after loading the model, and
particularly for this indexing technique, this operation can be costly. But the average cost
of Algorithm 4 lowers to O(|Ipac| x P(z.ccs = 2)). Normally, the creation of structural
indexes is controlled by the user (as in PROGRES [Z{in96; Sch94] ) but there are tools that
create indexes for all patterns in the transformation (such as Viatra2 [BORVV08; VBP06]).
These tools keep the transformation running and update the indexes whenever the input
model changes. In this way, retrieving the output model is extremely fast and there is no
need to perform pattern matching for all rules when a minor change occurs in the input
model [VVS06]. This technique is called incremental pattern matching.
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Algorithm 4 An algorithm to find occurrences of the pattern shown in Figure 4.2 taking
advantage of structural indexes.

function FINDALLOCCURRENCESBAC
occurrences < {}
for (b,ac) € Ipacr do
if c.ccs = 2 then
occurrences <— occurrences U {(z, a), (y,b), (z,¢)}
end if
end for
return occurrences
end function

Up until know we have seen three indexing techniques: Type, Attribute and Struc-
tural. These techniques are applied automatically by the engine, all the necessary struc-
tures are initialized in the “Perform Global Optimizations” stage of the transformation
process of Figure 3.4, and they impact more than one pattern matching operation. That
is why we call them global optimizations as opposed to local ones, in which the impact

is on the current pattern matching operation.

4.2.2 Caching

Yet another global optimization technique, similar to indexing, is to cache pattern match-
ing operations. This can be performed automatically by detecting which match opera-
tions” results can be reused in other operations. The Cache act as a map that returns all
instances of a given pattern identifier. For instance, consider Algorithm 5 that imple-
ments the look up for the pattern of Figure 4.4. Note how the cache is being accessed and
updated. If all the pattern matching algorithms used in the transformation behave the
same way with respect to the cache, then the matching of the pattern of Figure 4.4 could
be matched by Algorithm 6. If the engine matches the pattern of Figure 4.4 before match-
ing the one of Figure 4.2, then Algorithm 6 will always hit the cache and only iterates the
C instances. Note that AB is a unique identifier for the pattern in Figure 4.4 and that BAC
is a unique identifier for the pattern in Figure 4.2.

Caching techniques serve not only the purpose of storing patterns. For instance, they
can be used to store derived attributes? as is done in ATL [JABKO08]. Derived attributes

can be computed and stored when loading the input model.

X:A ab > y:B

Figure 4.4: Sample pattern.

2Derived attributes are attributes that are computed when they are accessed.
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Algorithm 5 An algorithm to find occurrences of the pattern shown in Figure 4.4 using
cache.
function FINDALLOCCURRENCESAB
if Cache[AB] = @ then
occurrences <— {}
fora € GetAllInstances(A) do
forb € a.abdo
occurrences <— occurrences U {(x, a), (y,b)}
end for
end for
Cache[AB] <+ occurrences
end if
return Cache[ AB]
end function

Algorithm 6 An algorithm to find occurrences of the pattern shown in Figure 4.2 using
cache.
function FINDALLOCCURRENCESBAC
if Cache[BAC] = & then
occurrences <— {}
for {(z,a), (y,b)} € Cache[AB] do
forc € a.acdo
occurrences <— occurrences U {(z,a), (y,b), (z,¢)}
end for
end for
Cache[BAC] <« occurrences
end if
return Cache[BAC]
end function
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4.2.3 Search Plan Optimization

Algorithm 2 presents a different loop order to take advantage of the z.ccs=2 restriction in
pattern of Figure 4.2. The argument is that the average cost of the whole pattern matching
operation is less than the cost of Algorithm 1. This is true but for an engine to reason
about such things there must be a notion of plan and cost.

Generically, a search plan [VFVS08; Ziin96] for a pattern is a representation of the al-
gorithm to be performed to find occurrences for that pattern. Changes to the search plan
imply changes to the algorithm. A search plan with a lower cost, implies that the algo-
rithm, in the average case, should have a lower cost. Search plan optimizations are local
because, each time they are applied, they attempt to reduce the cost of each individual
pattern matching optimization.

Each model transformation tool that implements search plan optimizations has its
own representation of a plan, and cost. But in the tools that we studied we were able to
identify three kinds of cost models, which we named according to the kind of information
they require. There are cost models that take into account a sample of representative in-
put models, the current (under transformation) input model, the input metamodel struc-
ture and even the cost of the underlying structures such as index look ups, disc access,

etc.

A cost model that only requires information about the metamodel is called metamodel
sensitive. It employs a set of heuristics that take into account the kind of restrictions in
the pattern, the type of associations between metamodel elements, etc... We have already
presented an example of one of these heuristics, which is also the most used one, the first-
fail principle: a good search plan should start the search in the most restricted pattern
element since it will have the fewest possible occurrences. The Algorithm 2 starts by
iterating all the C instances because of the attribute constrain. Algorithm 1 may have to
iterate several A and B instances before discovering that none of those form a pattern
occurrence because the few connected C' instances don’t satisfy the restriction. Other
heuristics, such as taking into account multiplicities in associations or the existence of
indexes, are presented in [Z{in96] and used in the PROGRES tool.

Cost models that, in addition to using information from the metamodel, also use
statistics and other relevant data from the model are called model-sensitive. As an ex-
ample, consider the cost model used in the Viatra2 [VFV06]. According to Varr6 et al.
[VFVS08], the cost of a search plan is given by the potential size of the search tree formed
by its execution. To estimate that cost, probabilities are calculated using statistics that
were collected from a sample of representative models. This is all performed at compile
time in Viatra2, so multiple alternative algorithms are generated to perform the same pat-
tern match. At run-time, the best alternative is selected taking into account the current
input model’s statistics.

An implementation sensitive cost model such as the one presented in [VBKGO08] and
implemented in the GrGen.NET [KGO07] tool takes not only the size of the search tree
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into account but also the cost of each individual operation such as the search for all the
elements given some type. This allows the tool to seamlessly consider the existence of
indexes and other characteristics of its own implementation in the cost model. This is
similar to the cost model used in database systems since they typically take the indexes,

hard-disc access and other implementation features into account [SKS10].

4.2.4 Pivoting

Contrarily to the previous techniques, that can be performed automatically by the tool,
Pivoting requires the user to interfere. In order to apply this technique, the tool has to
support rule parametrization and a way to instantiate those parameters with concrete
model elements; and the user has to identify which rules are suited to be parametrized
and forward previously matched model elements to those rules. As an example, assume
that the pattern shown in Figure 4.4 is matched before the pattern of Figure 4.2. A keen
transformation engineer parametrizes the second pattern with elements that are to be
matched in the first pattern. In that case, the Algorithm 7, that performs the match for
the pattern in Figure 4.2, could be invoked with all the occurrences of the sub pattern AB.

Algorithm 7 An algorithm to find occurrences of the pattern shown in Figure 4.2 using
pivoting.

function FINDALLOCCURRENCESBAC(occurrencesAB)
occurrences < {}
for {(z,a), (y,b)} € occurrencesAB do
forc € a.ac do
occurrences <— occurrences U {(x, a), (y,b), (z,¢)}
end for
end for
return occurrences
end function

The specific mechanism that transports matched elements from one match operation
to other vary greatly with each tool. GReAT [BNBK07; VAS04] and MoTif [SV08b] al-
low for pivoting. A transformation specification expressed in these languages consists
of a network of rules with well defined input parameters (or input interface) and output
parameters (output interface). The input parameters declare the rule’s incoming occur-
rences that serve as a starting point for the pattern matching (just as in Algorithm 7. The
output interface represents those occurrences that will be transported to the following

rules in the network.

4.2.5 Overlapped Pattern Matching

Overlapped Pattern Matching is a technique where two or more patterns are factorized
in order to identify a common pattern that can be matched before them. The common

pattern occurrences are then passed as parameters to match the remaining patterns of
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the two rules [MMLI10]. This is very similar to pivoting but it is performed without user
intervention. The impact is that the overall number of pattern matching operations is
greatly reduced. For a example of application of this optimization and impact analysis
see section 9.6 in page 116.

As an example, consider the patterns shown in Figures 4.2 and 4.4. A tool support-
ing this technique computes the intersection between the two patterns and obtains the
common pattern B <a—b A, i.e., the pattern that is in Figure 4.4. The common pattern is
matched before the other two patterns and then its occurrences are passed as parameters
to both algorithms. VMTS [LLMCO05] applies this technique in pairs of similar rules.

There is a wide array of other pattern matching optimization techniques such as the
usage of lazy rules in ATL [JABKOS] or the user-specified strategies to solve systems of
equations in BOTL [BM03b] involving several attributes, etc... The ones the we presented
were are the most prominent and well documented.

4.3 State of the Art

In this section, we present a summary of the state of the art tools and optimization tech-
niques that they use. The tools we considered are: PROGRES [Ziin96; Sch94], BOTL
[BM03a; BM03b], AGG [Tae04; Rud00], Atom3 [LVA04], Great [BNBK07; VAS04], ATC
[EPSRO06], GrGen.NET [VBKGO08; KG07; JBK10], Motif [SV08b; SV08a], BeanBag [XHZSTM09],
VMTS [MML10; LLMCO06] and T-Core [SV10].

Table 4.1 shows the results of our study. Since model transformation tools evolve
very rapidly we have included the year next to the tool in which a paper was published
concerning the tool’s internal mechanisms to perform pattern matching.

It is important to note that there are tools, such as AGG and GrGen(PSQL) that use
a constraint satisfaction solver or a database management system as underlying pattern
matching engine. In this sense, a pattern matching process relying on a CSP solver or a
DBMS adopts the techniques employed in the underlying engine. CSP solvers perform
backtracking search, use heuristics such as the first-fail principle, leverage information
about the input model to determine the variables” domain, perform forward checking
and other optimization techniques [RN03]. That is why AGG is characterized as shown
in Table 4.1. DBMSs use query evaluation plans with sophisticated cost models that take
into account statistics about the relations, indexes on their columns and the individual
costs of operations [SKS10].

4.3.1 Discussion

There is a wide variety of approaches to the pattern matching optimization problem.
However, each approach is independent from the execution mode (interpretation or com-
pilation) so the optimization techniques identified can be applied in both modes. Also, as

said previously, techniques employed by tools that reduce the pattern matching problem
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to the CSP or DB domain also fit in the presented categorization. These facts allows us to
compare the different pattern matching approaches and the tools that support them with-
out having to consider other aspects such as their execution modes or if they perform a
reduction to other domain.

In terms of performance, the imperative languages (see Czarnecki’s categorization
[CHO3]) such as ATC [EPSRO06] or T-Core [SV10] or Java, despite not supporting many
optimizations techniques, can be extremely fast. This is because the user can choose to
directly code the optimizations. So it can apply virtually any optimization technique, as
long as the language is expressive enough, which is generally true.

Naturally, those optimization techniques that depend on user intervention are the
ones that contribute more to the performance but with an impact in the productivity and
maintenance. On the other hand, those techniques that can be applied automatically,
require less knowledge from the user and ease the creation and maintenance of the op-
timized transformation specifications. As shown in Table 4.1 tools that invest more in
optimization tend to combine manual and automatic techniques.

All the studied techniques, without exception, target the pattern matching operation.
This strengthens the fact that pattern matching is the most critical operation in a model
transformation.
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4. PATTERN MATCHING OPTIMIZATION TECHNIQUES

Table 4.1: State of art tools and the pattern matching techniques in use.

Manual Semi-Automatic Automatic
Local Global Local Global
Pivoting Backtracking Caching Indexing Overlapped
P.M.
Planned Unplanned Syntactic
Model Sensitive Metamodel Implementation Type Attribute Structural
Sensitive Sensitive
Tools Multiple Single
PROGRES (1996) X X X X X X
BOTL (2003) X X
AGG (2004) X X X ? X
Atom3 (2004) X X
Great (2004) X X
ATC (2006) X
Viatra2 (2006) X X X X X X X
Tefkat (2006) X X X ? X X
ATL (2008) X X X X
GrGen.NET (2008) X X X
Motif (2008) X X X
BeanBag (2009) X X X X
VMTS (2010) X X X X X
T-Core X
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Problem Definition

It is very clear by now that, in terms of performance, lower-level and imperative lan-
guages are much better than high-level, declarative languages. The problem is that, at a
lower level of abstraction, transformations written in imperative languages are hard to
create, read and maintain. However, only after transformations written at an high level
of abstraction are shown to run fast enough, people will use them at industrial scales.
Optimizations, and in particular those that target the pattern matching operation, play a
key role.

This trade-off between abstraction and performance is not new, it is at least as old as
the first high-level languages appeared.

5.1 Abstraction Penalty

There are plenty of sites, for example [Full3] and [Att], that compare different program-
ming languages with respect to their performance and, by observing one of the results
taken from [Att] and shown in figure 5.1, it is clear that higher-level languages are typ-
ically much slower than lower level ones. Another trivial conclusion is that compiled
code, shown in red, runs a lot faster than interpreted code, in black.

But if higher level languages are so slow when compared to lower level ones, why
are they so used? That is because, by applying well know optimization techniques, their
performance improved enough to be superseded by the productivity and maintainability

advantages. This is what must be done for model transformation languages.
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5.2. How to Avoid the Penalty
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Figure 5.1: Programming languages benchmark on sudoku solving. Taken from [Att].

5.2 How to Avoid the Penalty

In order to understand what is the best way to mitigate the abstraction penalty, we have
the study how General Purpose Programming Languages (GPLs) tackled that problem.

Assembly is a lot faster than C. Despite this, only a few people today code entirely
in assembly. This is mainly because of three things: the raising complexity of software
systems; the raising variety of processor architectures and, last but not least, performance
optimization in the C compiler. There has been a lot of research in compiler optimization
techniques and they have been applied to the C compiler [Aho08; SSO8]. As a result, the
C compiler has evolved to produce assembly code that is efficient enough to make coding
directly in assembly a bad investment, i.e., it mitigated, for the most cases, the abstraction
penalty.

As is shown in Figure 5.2, the optimizing C compiler does not produce assembly code
directly from C, it uses multiple intermediate representations of a program that serve
specific optimization techniques. The C programs are translated first through these rep-
resentations and after that, to assembly code. For the sake of simplicity we are skipping
several steps in the compilation process.

34



5. PROBLEM DEFINITION 5.2. How to Avoid the Penalty

Figure 5.2 illustrates one particular representation that is used for many optimiza-
tions: the Control Flow Graph (CFG). This representation supports many data-flow anal-
yses that, once performed, result in optimizations such as reaching definitions, live vari-
ables, available expressions [Aho08], etc... Note that we focused only on data flow anal-
yses because they are machine independent optimization techniques. There are other,
machine or architecture dependent but, since we are trying to solve the same (abstraction
penalty) problem for model transformation languages which by nature promote platform
independence, we are not interested in machine/platform dependent optimizations.

I

High L. Prograiit

C. E. Graph

Intermediate Rep. P

Assembly

Low L. Program

= %

Figure 5.2: C Compilation Overview.

Opt.

I

If we bring that architecture for the model transformation languages domain, we have
something similar to what is illustrated in Figure 5.3: an High-Level language, a process
that translates the high-level representation of transformations to an intermediate one
and then another that generates the final representation of the transformation. The high-
level transformation language has to promote productivity and maintenance while the
lower level language has to be fast. The intermediate representation has to promote anal-

ysis and optimization.

DSLtrans [BLAFS11] which we presented in section 3.2, page 14, is a good example
of high level transformation language and, since it was developed internally, we have a
much better understanding of its semantics than we have of other high-level transforma-

tion languages.

Java, which we have shown to be really fast in the chart of Figure 3.5 (section 3.5),
serves well enough to be our low-level transformation language. Other GPLs such as C
or C++ have better performances but Java has a complete model manipulation library

support from Eclipse Modelling Framework (EMF).

What is missing in Figure 5.3 is an appropriate intermediate representation.
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Figure 5.3: High level model transformation language compilation overview.

5.3 General Requirements

As we have seen in Chapter 4, the most performance-critical operation is the pattern
matching so it is only natural that this intermediate representation has to support natively
the representation of this operation. It also has to allow for a fine-grained control over
the how the operation will be executed. Off course, simplicity is always desirable when
we want to achieve analyzability.

Since we are in the context of model transformations and model driven development,
all the transformations in figure 5.3 should be model transformations and the intermedi-
ate representation should be a full fledged language: with syntax and semantics.

With these requirements in mind we set out to design a proper intermediate repre-
sentation together with its supporting analyses and optimizations. The next chapters tell

that story.
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Design

We need to find a language that links an high-level and productive transformation lan-
guage to a low-level, fast one. In this thesis we will be using DSLTrans as the high-level
language and Java as the low level language but we believe that the principles studied
here are applicable to other high-level transformation languages and are independent of
Java.

The main desirable traits of our language are: the ability to model the pattern match-
ing operation and both syntactic and the semantic simplicity.

Figure 6.1 shows the general architecture of the solution to the abstraction penalty.
The intermediate language is called TrNet (Transformation + Network) because it re-
sembles a network of channels where input model elements and patterns flow and are
transformed until they reach the output models. Analysis and optimizations operate as
model transformations, processing the network, rearranging channels, defining parame-
ters, etc...

In the following section we will the languages involved in this architecture, namely,
the intermediate languages (TrNet), the high-level language (DSLTrans) and the tech-
nologies used to design such languages.

6.1 TrNet

A transformation expressed in TrNet resembles a network of channels with a series of
filters and intersections. The input model is broken down into several pieces. These
pieces are distributed across the channels” entrances, where they are propagated deeper
and deeper into the network. In the intersections, elements are mixed together, forming

other elements, which continue to be propagated. Some elements are filtered. All the
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Figure 6.1: Proposed approach to solve the abstraction penalty.

pieces are propagated until they reach the other end of the network, were they combined
to form the output model.

What does this analogy have in common with model transformations? Well, if we
hard-code the behaviour of these channels, and if we input them the correct input model’s
elements, then we can get the expected output models” elements without having to re-
peatedly search the input model for certain patterns.

Traditionally, we look at model transformations with a computational mindset in
which there is an engine that actively searches the input model for specific patterns in
order to run some rules. Here, we try to invert that search: the input elements go meet
the rules that will handle them and the rules just passively wait for them to come. So
there is no explicit notion of indexing, search plan optimization, of overlapped pattern
matching. But these notions will emerge (some sooner than we thought) as we develop
the language and they will be intrinsic to the language and not creations of an optimizing

engine.

6.1.1 Transformations

Figure 6.2 shows a simplified version of TrNet’s metamodel main concepts and Figure 6.3
shows an example of concrete syntax with a few extra labels and callouts to allow for
easier reference. The metamodel is expressed in the Ecore! language and the concrete
syntax editor was built using Eugenia®.

A TrNetModel represents the transformation itself and contains Patterns, Operators,
Operands and Results. A Pattern, represented as the white outer rounded rectangles in
Figure 6.3, is an intermediate storage for pattern elements. A Combinator, represented

as a grey rounded rectangle in the concrete syntax, is an operation that manipulates the
grey ded rectangle in th te syntax, i peration that ipulates th

Mttp://www.eclipse.org/modeling/emft/?project=ecoretools
’http://www.eclipse.org/epsilon/doc/eugenia
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6. DESIGN

6.1. TrNet

pattern elements the exist inside Patterns. An External operator represents a source ou
a sink of pattern elements. In the concrete syntax, External operators are represented
as empty, white rounded rectangles. AnyOperands and AnyResults are represented as
arrows connecting patterns to operators and vice versa, respectively. The concrete syntax

example shows one AnyOperand and two AnyResults.

H Result

K op, AN 0.
ofhgogdrands o
resul re%l TcomingResult gomg \
o= operand
1 eratot ator 1 phttern

AnyResult

H operand

attern

E Operator

u E Pattern

*
: operato

\

H Combinator

patterhs

[ External

H TrNetModel

E AnyOperand

Figure 6.2: Excerpt of TrNet metamodel - top level elements (simplified).

As figure 6.4 shows, Patterns contain MandatoryNode elements and EdgePatterns that
connect those nodes. In Figure 6.3 there is one MandatoryNode named “Partition” in the
topmost Pattern and, in the bottommost Pattern, there are two MandatoryNodes and an
EdgePattern named “trace” connecting them. The graph formed by the MandatoryNodes
and EdgePatterns represents the “type” of the pattern. It means that, during run-time,

Calculation Call

Any Operand

Op1

Pat1 lr

< Partition

4 name
P
7

\

Pat2 l,

\
trace
<4 ActlityPartition ¢ Partition
name
¢/
//

—

Mandatory Node

Any Result

Keep Restriction

Figure 6.3: TrNet sample transformation labelled.
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the Pattern will store patterns that are instances of the graph represented inside that Pat-
tern. This will become more clear as we explore the language. NodePatterns also contain
AttributePatterns. These attributes serve as declarations that can be used to perform Cal-

culations or the evaluation of Conditions when executing Operators.

H Pattern

T id : EString

H Edgepattern

& name : EString

H AttributePattern

T name : EString

Q.*

agtribuggs «
od

outgoiyoM

rget

ourc 1.*
erNode

1 NodePattern

name : EString
id : EString

T

H MandatoryNode

]
1

]
1

Figure 6.4: Excerpt of TrNet metamodel - nodes and edges (simplified).

The blue rectangle in Figure 6.3 represents an External AttributeCalculationCall. In Fig-
ure 6.3, it means that the AttributePattern “name” of “Partition” will be used to calculate
the value of the “name” AttributePattern inside the “ActivityPartition” MandatoryNode.
Figure 6.5 represents the excerpt of the TrNet metamodel that is related to ExternalAt-
tributeCalculationCalls. An External AttributeCalculationCall is an AttributeCalculation char-
acterized by an id attribute and a qualified name. The qualified name represents the
operation, pertaining an external library, that will be responsible for performing the cal-
culation. An External AttributeCalculationCall can reference zero or more Parameters that
are given to the external operation when the calculation is performed. Both NodePatterns
and AttributePatterns can be used as Parameters. In the concrete syntax, the dashed arrow
connecting the blue rectangle to the “name” AttributePattern represents a ParameterRef
element and the full arrow pointing to the “name” AttributePattern of the “ActivityParti-
tion” NodePattern is were the result of the calculation is stored.

The last uncovered syntactic element of Figure 6.3 is a blue arrow that connects the
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Figure 6.5: Excerpt of TrNet metamodel - Attribute Calculations (simplified).

MandatoryNode “Partition” in the topmost Pattern to the MandatoryNode in the bottom-
most Pattern. It means that, when executing, the Combinator will not create new “Parti-
tion” elements but instead, will place the source “Partition” element inside the bottom-
most pattern. The blue arrow is called a Keep restriction. Figure 6.6 shows the part of the
metamodel where it appears.

Now that all syntactic elements of Figure 6.3 are introduced, we can see what the
transformation presented there means. For the sake of simplicity, we assume that the
input model exists, is valid, and is accessible to the transformation. In Chapter 7 we will
show how these mechanisms are implemented.

When the transformation is executed, each Operator is executed in turn, according to
a specific predefined order. For this example, assume that the order is: External (Opl)
and then Combinator (Op2). In Chapter 9 we explain how to come up with the best pos-
sible execution order. When an Operator gets executed, it reads elements from its inputs,
combines them and writes elements for its outputs. The inputs/outputs of an Operator
are Patterns. As said previously, Patterns are a storage mechanism. For now, assume that
each Pattern in Figure 6.3 is a set. So the topmost Pattern is the set Patl and the bottom-
most is Pat2.

In Figure 6.3, the External (Opl) operator represents a source of elements that come
from the input model. This External operator will filter all the input model elements and

store only those that are “Partition” instances in the topmost Pattern (Patl). For instance,

41



6. DESIGN 6.1. TrNet
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Figure 6.6: Excerpt of TrNet metamodel - Restrictions (simplified).

consider the sample model shown in figure 6.7 which has, among other elements, two
“Partition” instances: pl and p2. After executing, the External (Opl) operator will select
pl and p2 and place them inside the set Pat1, as shown in Figure 6.8.

ag: ActivityPartition

[pl : Partition] [pl : Partition]

Figure 6.7: Sample model with two Partition instances.

The next operator to be executed is the Combinator (Op2). In simple terms, it will read
each element existing in the set Patl, create a new compound element and add it to the
set Pat2. Suppose Op2 reads pl. It then creates a new instance of “ActivityPartition”
apl and sets its “name” attribute to the result of applying the “Copy” function to the
attribute pl.name. Then, the operator Op2 places the pair (pl, apl) inside the set Pat2.
Algorithm 8 summarizes Op2’s behaviour, where MAKENEWNODE is a generic function
that creates model elements of a given type and COPY is the function referred to by the
External Attribute Calculation Call.

Notice that the “trace” edge is not represented explicitly in Algorithm 8. That is be-
cause, since Patterns are strongly typed, we always know that each pair (pi, apj) € Pat2
has a “Partition” instance pi, an “ActivityPartition” instance apj, and a “trace” connec-

tion between pi and apj. There are many advantages in this approach:

e There is no need to represent and process associations throughout the transforma-
tion, which makes execution time independent of the number of associations man-
aged inside the transformation.
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Op1
Pat1
pl: Partition
4 Partiti
& name p2: Partition
7

/ op

<+ copy
Pat2
trace .
4 ActlityPartition ¢ Partition
4 name

Figure 6.8: Transformation configuration after the completion of Op1.

Algorithm 8 Algorithm showing the behaviour of Op2.

function EXECUTEOP2
for p € Patl do
ap < MAKENEWNODE(”ActivityPartition”)
ap.name <— COPY(p.name)
Pat2 <+ Pat2 U {(p,ap)}
end for
end function

e Since each Pattern is a set, it is necessary to avoid duplicates. Without strongly
typed Patterns, this operation would be a graph isomorphism but with strongly
typed Patterns it is simply a matter of comparing tuples of the same length: (z1,...,z,) =
(Wis.--yYn) © 21 =y1 A... ANz = yp. The comparison of individual elements is
performed by comparing a unique identifier, for instance, a memory address. More
details about this in Chapter 7.

But there is also a pitfall: it is possible to give the wrong name to an edge without provok-
ing an error in the transformation. Fortunately this can easily be solved with a validation
algorithm that searches the transformation for those errors and, even without validation,
if the wrong association makes the output model non conformant to the output meta-
model, it will not be created in that model.

There are more syntactic elements in TrNet. Consider Figure 6.9, which is the contin-

uation of the transformation that starts in Figure 6.3.
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Pat5
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Figure 6.9: TrNet sample transformation (continuation).

The green connection between the two “Partition” MandatoryNodes is called a Same
restriction. Figure 6.6 shows this construction in the metamodel. As an example, assume
that Pat2 = {(pl, apl), (p2,ap2)} and Pat3 = {(p1, s1), (p1, s2)}. The Algorithm 9 shows
the behaviour of Op3 when executed. You can see that the Combinator Op3 performs a
Cartesian product of the two Operands and that, according to the Same restriction, guar-
antees the two partition instances are the same. Only if that is true, an element will be
added to the output. If the Same restriction did not exist, a result for each element of the
Cartesian product would be produced.

Notice that, because of the Keep restrictions, no new elements are created. When an
operator does not create any new elements, we call it a matching operator since it is only
producing more complex patterns from simpler ones.

Figure 6.10 shows the whole transformation and also its final configuration, i.e., the
elements in each set after all operators have been executed. In case you are wondering

how the elements in the patterns that are connected to the output External operator are

44



6. DESIGN 6.1. TrNet

Algorithm 9 Algorithm showing the behaviour of Op3.

function EXECUTEOP3
for {(p,ap)} € Pat2 do
for {(p/,s)} € Pat3 do
if p =p’ then
Pat4 < Pat4 U {(ap,p, s)}
end if
end for
end for
end function

going to form the output model, that is explained in section 6.1.3.

Op1
Pat1
4 pl: Part.

p2: Part. Pat2 \ Pat3

I (L pore. J stostoe
1: Part. s1: State
’ Op2 ¢Ac[ pl: Part. I apl: A.Part. ] A — :
o Traee Op3 [ pl: Part. I s2: State ]

’ % n[ p2: Part. I ap2: A.Part. ]

Pat4

+ apl: A.Part. }e [ pl: Part. 1 [ sl: State ]

[ apl: A.Part. ] [ pl: Part. ] [ s2: State ]e
IO

Op4 <= copy

Pat5

[ apl: A.Part. ] [ anl: A. Node

apl: A.Part. < ActivityPartition |nodes | 4+ ACUVID e
ap2: A.Part [ apl: A.Part. ] [ an2: A. Node ]

Opé6 /

anl: A. Node
an2: A. Node

Op7

Op5

Figure 6.10: TrNet sample transformation (final configuration).

There are a few more syntactic constructions which were not used in the previous
examples: ExternalConditionCalls, ExternalActionCalls and ExternalCalculationCall. They
are shown in the metamodel excerpt of Figure 6.11, 6.12 and 6.13 and there is an exam-
ple with ExternalConditionCalls and ExternalActionCalls in Figure 6.14. The main role of
ExternalCalculations is to allow for composition of expressions inside TrNet as they are
Parameters.

In the concrete syntax, ExternalConditionCalls are represented as a pink rectangle that
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Figure 6.11: Excerpt of TrNet metamodel - Conditions (simplified).

stays inside a Combinator. When executing, the Combinator will evaluate all its inner con-
ditions and if one of them yields false, then that combination of inputs is not passed to

the outputs.

External ActionCalls are represented as a green rectangle inside a Combinator and they

are evaluated for each output produced that Combinator.

In Figure 6.14 the two Combinators are using actions to count the number of “Pseu-
doState” elements that have the attribute “kind” equal to “join” and to “fork”. Algo-
rithm 10 shows the behaviour of the left Combinator.

Algorithm 10 Algorithm showing the behaviour of the left Combinator in Figure 6.14.

function EXECUTEOP1
for p € Patl do
if ISJOIN(p.kind) then
INCJOIN()

end if
end for
end function

There can be simple cycles in a transformation. Figure 6.15 shows a cycle that is used

to compute the transitive closure of the “extends” relation between “CClass” elements.
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Figure 6.12: Excerpt of TrNet metamodel - Actions (simplified).

H Parameter H ParameterRef

I index : EInt
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wyierNode wner
1
H Nodepattern H TrNetModel [ ExternalCalculationCall
T id : EString T id : EString
= qualifiedName : EString

Figure 6.13: Excerpt of TrNet metamodel - Calculations (simplified).

To see how the transformation is executed, let us assume that the transformation of Fig-
ure 6.15 has the following initial configuration:

Patl = {(c1,¢2),(c2,c3)}
Pat2 = {}
*" Pat3 = 0
Pat4 = {}

When executed, the Combinator Opl reads every element in Patl and adds it to Pat2,
so, after its execution we have the following configuration:

Patl = {(c1,¢2),(c2,c3)}

Pat2 = {(cl,c2),(c2,c3)}
Y pat3 = 0
Pat4 = {}
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Figure 6.14: TrNet sample transformation with external action and condition calls.

Now the Combinator Op2 combines every element from Patl and Pat2 and produces
only those that have a common “CClass”element into Pat3. In this case ((c1, ¢2), (¢2, ¢3))

is a valid combination while ((c1, ¢2), (c1, ¢2)) is not. So we get to the following configu-

ration:
Patl = {(cl,¢2),(c2,¢3)}
Pat2 = {(cl,c2),(c2,c3)}
"Pat3 = {(cl,e3)}
Patd = {}

Op3 just copies every element in Pat3 to Patl, thus, after its execution, we have the

configuration:
Patl = {(c1,¢2),(c2,¢3),(cl,c3)}
Pat2 = {(c1,¢2),(c2,¢3)}
° Pat3 = {(cl,¢3)}
Pat4 = {}

Now the first iteration of the cycle is completed. Opl executes again to produce the

configuration:
Patl = {(c1,¢2),(c2,¢3),(cl,c3)}
Pat2 = {(cl,c2),(c2,c3),(cl,e3)}
Y Pat3 = {(c1,¢3)}
Patd = {}

Now when Op2 executes, it won’t produce any new result to Pat3, so, having detected
that Op2 is at the beginning of a cycle, there will be no more changes in every pattern that
comprises the cycle. So the right thing to do is to select Op4 as the next operator to be
executed.
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Figure 6.15: TrNet sample transformation with a cycle.

After Op4 execution, we have the following, final configuration:

Patl = {(c1,¢2),(c2,¢3),(cl,c3)}
“Pat2 = {(cl,c2),(c2,c3),(cl,c3)}

° Pat3 = {(cl,¢3)}
Pat4 = {(c1,¢2),(c2,¢3),(cl,c3)}

It took five steps to complete the transitive closure computation but, since at compile
time we don’t have access to all the input models the transformation will be applied to,
we cannot estimate how many iterations are necessary for the completion of the transfor-
mations. In these cases, a proper operator execution order inference is very important. In

Chapter 9 we explore and explain how to get to that execution order.

Notice that, although a Combinator can have any number of patterns, in this thesis
and for performance reasons, we only use a maximum of two operands. A Combinator
of any number of operands is effectively equivalent to multiple Combinators, each with
two operands.

Until now we have presented how a TrNet transformation works and how model
elements are processed and propagated throughout the network. But we did not explain
how those model elements are read from the input model and how the processed ones
are aggregated to form the output model. In the following sections we explain how this
is done.
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6.1.2 Model Decomposition

In order for the transformation to work, we assume that the input External operator
selects the appropriate model elements and places them in the corresponding Patterns.
Consider the model and metamodel shown in Figure 6.16 and the transformation excerpt

shown in Figure 6.17.

t2
/\€- s A s6
t7

(a) Sample Model. (b) Metamodel.

Figure 6.16: Sample input model (left) and corresponding metamodel (right).

After the External operator is executed, we get to the following initial configuration:

Patl = {c4}
Pat2 = {(c4,s1)}
Pat3 = {s1, s5, 56}
Pat4 = {(s1,t2),(s5,t7)}
Co: Pats = {(sl,sb),(sb,s6)} (6.1)
Pat6 = (12,7}
Pat7 = {(s6,p3)}
Pat8 = {p3}
Pat9 = {(c4,p3)}

Before the External operator executes there is a process responsible for breaking down

the input model into the set’:
Minpur = {c4, (¢4, s1), 51, 55, 56, (s1,12), (s5,t7), (s1, s5), (s5, s6), 2,17, (56, p3), p3, (c4,p3)}

The External operator only copies the appropriate elements to the corresponding Patterns.

The model loading process loads the model and then, starting at the root element?,
visits the entire model. Algorithm 11 shows the set of functions that visit each type of el-
ement found in the input model and produce the M;,,,,: set. Each function is responsible
for decomposing the input model recursively starting with its parameter and they all are
mutually recursive. The input model is decomposed by calling the VISITCIRCLE function

with the root element and an empty set. Note that the process always terminates because

*The term “set” is used just to note the non-existent duplicate elements.

*We assume that input and output models have one root element. This is a fairly common assumption
and it is a good practice when creating a language. It there is a model with more than one root element, it is
easy to adapt the algorithms.
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Figure 6.17: Transformation excerpt - inputs.

only the containment relations are navigated recursively. Other relations, such as the one

between squares and pentagons, which can form cycles, are not visited recursively.

Notice that the model loading process only produces elements that are atomic, i.e.,
either an element (e.g., c4) or an association (e.g., (¢4, c1)). This means the transformation
can only begin with Patterns that correspond to either elements or associations. While
this can be seen as a limitation, there is no interest in allowing the model loading process
to build more complex patterns because that is the role of the transformation. And the

transformation is more efficient at that than the model loading process.

The Algorithm 11 depends solely on what is described in the metamodel. In Sec-
tion 7.1.2 we demonstrate the implementation of this process in more detail. Now how

can we build a model from a set of atomic elements?
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Algorithm 11 Functions that perform the decomposition process of all models conform-
ing to the metamodel of figure 6.16b.

function VISITCIRCLE( ¢, Minput)
Minput <~ Minput U {C}
for s € c.squares do
Minput — Minput U {(C7 3)}
VISITSQUARE(S, Minput)
end for
for p € c.pentagons do
Minput — Minput ) {(Cyp)}
VISITPENTAGON(p, Minput)
end for
end function
function VISITSQUARE(S, Minput)
Minput <~ Minput U {8}
for p € s.pentagons do
Minput — Minput U {(Sap)}
end for
for s’ € c.squares do
Minput — Minput U {(87 S/)}
VISITSQUARE(s", Minput)
end for
for t € s.triangles do
Minput < Minput U {(37 t)}
VISITTRIANGLE(t, Mnput)
end for
end function
function VISITTRIANGLE(t, Mjnput)
Minput < Minput U {t}
end function
function VISITPENTAGON(p, Minput)
Minput — Minput U {p}
end function
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6.1.3 Model Composition

Consider Figure 6.18 which shows the output of a transformation. Assuming the trans-
formation has already completed and we have the configuration C';;,;, how can we build

the output model? The metamodel of the output model is the one shown in Figure 6.16b.

Patl! = {cd}
Pat2" = {(cd,sa), (cd,sw)}
Pat3 = {sa, se,sf}
Patd = {(sa,td),(se,tg)}
Cfinal : Pats! = {(8a7 36)7 (367 Sf)} (62)
Pat6’ = {tb, tg}
Pat? = {(sf,pc), (sz,py)}
Pat8 = {pc}
Pat9 = {(Cd, pC), (Cd,p’l))}

Similarly to the model loading process, the model storage process performs a visit to
the output model, at each step collecting the model elements that ought to be there. This

information comes exclusively from the metamodel of Figure 6.16b.

Algorithm 12 shows the behaviour of the output model storage process. The output
model is built by calling the BuildModel with the final configuration of the transformation.
In this example we show how the output model is built starting in the circle but the
output model can be built from any element in the metamodel.

Apart from the BuildModel, each function corresponds to a relation in the metamodel
of figure 6.16b starting from an element given as parameter. It is responsible for materi-
alizing that relation in the output model. The most important step in this materialization
process is to find all elements that are connected to the parameter by the relation that the
function corresponds to. This is done by the GET<SOURCETYPE><RELATION> functions
which we do not show for brevity reasons but, as an example, consider the GETCIRC-
LESQUARES function shown in Algorithm 13. In simple terms, it selects all the squares
that are connected to the given circle and that must exist alone in M,,p.:. Notice that the
this last condition guaranties that there will be no dangling edges in the output model. For
instance, the relation element (cd, sw) does not appear in the final model because sw does
not exist by itself, only a relation exists. All the other GET<SOURCETYPE><RELATION>
function are very similar to GETCIRCLESQUARES.

The recursive process always terminates because only the functions that materialize
containment relations have recursive calls. For more details about the implementation of

the composition process, please refer to section 7.1.4.
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Algorithm 12 Functions that perform the composition process of all models conforming
to the metamodel of figure 6.16b.

function BUILDMODEL( Moytput)
output < {}
for c € GETCIRCLES(M putput) do
BUILDCIRCLEPENTAGONS(c, Moutput)
BUILDCIRCLESQUARES(c, Moutput)
output < output U {c}
end for
return output
end function
function BUILDCIRCLEPENTAGONS( ¢, Moutput)
for p € GETCIRCLEPENTAGONS(c , Myytput) do
c.pentagons < c.pentagons U {p}
end for
end function
function BUILDCIRCLESQUARES( ¢, Moytput)
for s € GETCIRCLESQUARES(c , Moyiput) do
BUILDSQUAREPENTAGONS(S, Moutput)
BUILDSQUARETRIANGLES(S, Moutput)
BUILDSQUARESQUARES(S, Moutput)
c.squares < c.squares U {s}
end for
end function
function BUILDSQUARESQUARES( S, Moutput)
for s’ € GETSQUAREPENTAGONS(S , Moytput) do
BUILDSQUAREPENTAGONS(S’, Moutput)
BUILDSQUARETRIANGLES(s", Moutput)
BUILDSQUARESQUARES(S’, Moutput)
s.squares < s.squares U {s'}
end for
end function
function BUILDSQUAREPENTAGONS( s, Moutput)
for p € GETSQUAREPENTAGONS(S , Moutput) do
s.pentagons < s.pentagons U {p}
end for
end function
function BUILDSQUARETRIANGLES( s, Moutput)
for t € GETSQUARETRIANGLES(S , Moutput) do
s.triangles < s.triangles U {t}
end for
end function

Algorithm 13 GETCIRCLESQUARES function.

function GETCIRCLESQUARES( ¢, Moyiput) return {s; € Moyiput|Se : Square A (¢, S¢) € Moutput N Sz € Mouim
end function
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Figure 6.19 shows the final output model produced by applying the function Build-
Model with the set

Moutpur = {cd, (cd, sa), (cd, sw), sa, se, sf, (sa, tb), (se, tg), (sa, se), (se,sf)} U
{tb,tg, (sf,pc), (sz,py), pec, (cd, pc), (cd, pv)}

, which comes from the final configuration C';y;.

Now we have the whole picture of a TrNet transformation execution: first the model
load process breaks down the input model into atomic elements; these elements are pub-
lished to the input External operator, which in turn places the appropriate elements in
the corresponding Patterns; the transformation executes, propagating the elements and
transforming them into other elements through the network onto the final patterns (con-
nected to the output External operator); the output External operator takes these atomic
elements and delivers them to the model storage process; the model storage process ag-
gregates the atomic elements into a full output model. In the next chapter we will explain

in more detail each of these processes and how they fit together.

TrNet is considered a low level language because elements have to be combined to
form more complex patterns and that combination has to be explicit in the transforma-
tion. While this hinders productivity and maintenance, analysis and optimizations can
be greatly simplified. More about this in Chapter 9.

6.2 DSLTrans

While TrNet is a low level model transformation language, DSLTrans [BLAFS11] is con-
sidered to be an high level one because transformations are comprised of a set of rules
that contain patterns of any complexity.

Figure 6.20 shows a transformation expressed in DSLTrans that is equivalent to the
one expressed in TrNet shown in figure 6.10. It is comprised of 2 layers and 3 simple rules.
The topmost rounded rectangle is a FilePort and represents an input model. The first
layer, represented by a blue rounded rectangle is executed first. Its rules state that each
Partition found in the input model is translated into an ActivityPartition in the output
model and that each State is translated into an ActivityNode. The “name” attribute of
both elements is copied to the corresponding ones.

DSLTrans transformations are formed by a set of FilePorts (in figure 6.20 we have only
one called “InputActivityDiagram”) and a list of Layers. Both FilePorts and Layer require
the identification of a metamodel. For FilePorts, this is the input model’s metamodel and
for Layer, this is the output model’s metamodel. Each Layer can produce an output
model, as long as its “OutputFilePathURI” attribute is properly filled.

A Layer is comprised of Rules and each Rule contains one or more MatchModels
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and an ApplyModel. Each MatchModel has one or more match elements and each Ap-
plyModel contains one or more apply elements. Match elements can be AnyMatch-
Class, PositiveMatchAssociation, BackwardLinks, etc. . . For the sake of simplicity, we will
mostly work with these elements. Apply elements can be ApplyClasses or ApplyAssoci-
ations.

In order to better understand how the DSLTrans engine processes transformations,
consider the model illustrated in figure 6.21 and the transformation shown in figure 6.20.

Each layer is executed sequentially according to its dependencies (expressed by the
arrows between Layers). The execution of a layer consists of executing each individual
rule in a non-deterministic order.

When executing the rule P2A, the engine will search for all Partition instances in
the input model and then translate each partition into an ActivityPartition. Thus, the
rule’s output is Rpaa = {(apl,pl)}. We represent each Partition in the output of the
rule because one traceability link has been created for each ActivityPartition generated
that leads to the corresponding Partition. The traceability link for rule P2A is identi-
tied by P2A_Trace. Next, Rule S2A gets executed. It takes each State instance in the
input model and produces one ActivityNode instance. The rule’s output is Rgoa =
{(s1,anl),(s2,an2)}. Again, in addition to the newly created ActivityNodes, we rep-
resent the States that originated them because of the traceability link being created.

When rule C2N, in layer Relations, executes, it searches for all Partitions instances
connected to State elements, and also the ActivityNode and ActivityPartition elements
that were used in the previous Layers’ execution. So the execution of a rule with back-
ward links not only searches for instances of the match pattern in the input model, but
also combines those results with the traceability links produced in the previous layers’
rules. This rule creates a new relation between the previously created ActivityPartitions
and ActivityNodes. The result is Rcony = {(apl,anl), (apl,an2)}. This rules does not
create traceability links because no name is given to them (as it is done in rules P2A and
S2A). The resulting output model is shown in Figure 6.22.

Transformations expressed in DSLTrans normally start by translating individual ele-
ments in the first layer, and creating the relevant traceability links between them. Then,
in the following layers the rules capture more complex patterns and create more relations
and elements in the output model.

During the transformation process, DSLTrans engine has to repeatedly perform pat-
tern matching in the input model and in all the traceability links. Once for each rule.

Currently, transformations expressed are executed using a Prolog engine: the input
models are translated into facts and, upon each rule’s execution, those facts are queried to
obtain the matches. Despite Prolog’s highly optimized engine, for large transformation,
this process is really slow. The output model is built throughout the transformation, after
each rule is applied.

In the next chapter we will show how DSLTrans transformations can be translated

into TrNet transformations.
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Figure 6.18: Transformation excerpt - outputs.
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Figure 6.19: Output model build with Algorithm 12..
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Figure 6.20: DSLTrans sample transformation equivalent to the one in figure 6.10.
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6.2. DSLTrans

pl: Partition

N

s1: State

s2: State

Figure 6.21: Sample activity diagram model (UML 1.4).

| apl: Activity Partition |

[ anl: Activity Node ] [ an2: Activity Node ]

Figure 6.22: Sample activity diagram model (UML 2.1).
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Implementation

7.1 TrNet Compilation

Transformations in TrNet are compiled to Java code and ran.

We decided to compile the transformations instead of interpret them for obvious per-
formance reasons.

We use Java as the target language because Java is really fast (see figure 3.5 in page
19) and has a great library for model management (EMF) which helps a lot when loading
and storing models.

When executed, a complete TrNet transformation has three phases: input model de-
composition, transformation and output model composition. Figure 7.1 illustrates these
three processes and the information used to generate the code that implements them.

Both composition and decomposition processes’ code depend only on metamodels.
They are completely independent of the transformation. The transformation code is gen-
erated entirely from the transformation specification, written in TrNet. To facilitate com-
munication between the processes, there is a common representation for model elements,
listeners and publishers.

7.1.1 Runtime

In order to keep the processes as loosely coupled as possible, the publisher/listener pat-
tern is used to pass information between them and there is a common representation for
model elements. Figure 7.2 shows the class diagram.

A ModelPattern is a generic representation of an arbitrary pattern composed of Mod-

elNodes and ModelEdges connecting those nodes. ModelNodes represent model nodes
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TrNet

Intermediate Rep.

Decompose Transform Compose

Figure 7.1: TrNet transformation execution process.

<<interface>> <<interface>>
ModelPatternPublisher ModelPatternListener
registerListener(ModelPatternListener ) i
ModelNode ModelEdge notifyListeners(ModelPattern element) notify(ModelPattern element)

Figure 7.2: TrNet common runtime.

and ModelEdges represent the associations in the model. ModelNodes have a set of types
which represents all types from which the actual model element inherits from, and a map
of attributes. A ModelEdge has a name, which is the name of the association it represents.
It is important to note that two ModelNodes are compared by comparing their memory
address (e.g., using the == operator in Java). No attributes are compared.

A ModelPattern publisher is an entity that can pass ModelPatterns to a set of listeners.

7.1.2 Decomposition

The decomposition process is responsible for loading the input model, visiting each ele-
ment and relation in the model, convert that element or relation to a ModelPattern, and
deliver the ModelPattern to the transformation’s input External operators.

It is implemented in Java and uses the generated classes from the metamodel to load
the model to memory. EMF takes a metamodel and generates a set of classes that al-
low the representation and manipulation of models, conforming to that metamodel, in
memory.

Most of the decomposition process is implemented in one single class: the InputVis-
itor class. Figure 7.3 shows the class and its relations to the common runtime classes.
The class is generated from a metamodel and the name of the class is the metamodel

name concatenated with InputVisitor. The InputVisitor is a ModelPatternPublisher and

62



10

11

12

13

14

15

7. IMPLEMENTATION 7.1. TrNet Compilation

depends on the ModelPattern, ModelNode and ModelEdge classes to represent the input

model elements.

<<interface>>
ModelPatternPublisher

registerListener(ModelPatternListener I)
ModelNode é | > ModelEdge notifyListeners(ModelPattern element)
B L

I
I