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Abstract 

In this thesis a semi-automated cell analysis system is described through image 

processing. To achieve this, an image processing algorithm was studied in order to segment 

cells in a semi-automatic way.  

The main goal of this analysis is to increase the performance of cell image segmentation 

process, without affecting the results in a significant way. Even though, a totally manual system 

has the ability of producing the best results, it has the disadvantage of taking too long and being 

repetitive, when a large number of images need to be processed. 

An active contour algorithm was tested in a sequence of images taken by a microscope. 

This algorithm, more commonly known as snakes, allowed the user to define an initial region in 

which the cell was incorporated. Then, the algorithm would run several times, making the initial 

region contours to converge to the cell boundaries. With the final contour, it was possible to 

extract region properties and produce statistical data. This data allowed to say that this 

algorithm produces similar results to a purely manual system but at a faster rate.  

On the other hand, it is slower than a purely automatic way but it allows the user to 

adjust the contour, making it more versatile and tolerant to image variations. 

Keywords: segmentation, active contour, snakes 
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Resumo 

Nesta dissertação, um sistema de análise de células semi-automático é descrito por 

processamento de imagem. Para desenvolver este sistema, um algoritmo de processamento de 

imagem foi estudado de modo a segmentar células de uma forma semi-automática. 

O objectivo principal desta análise é aumentar a performance do processo de 

segmentação de imagens, sem que os resultados sejam demasiadamente afectados. Mesmo que 

um sistema completamente manual consiga produzir os melhores resultados, tem como 

desvantagem tornar-se repetitivo e longo quando o número de imagens a serem processadas seja 

muito grande. 

Um algoritmo de contornos activos foi testado numa sequência de imagens tiradas por 

um microscópio. Este algoritmo, mais conhecido como snakes, permite ao utilizador definir 

uma região inicial que incorpora a célula. Depois, o algoritmo irá correr várias vezes fazendo 

com que o contorno da região inicial convergisse para os limites da célula. Com o resultado 

final, é possível extrair propriedades dessa região e produzir dados estatísticos. Estes dados 

permitiram dizer que este algoritmo apresenta resultados semelhantes a um sistema 

completamente manual mas a um ritmo mais elevado. 

Por outro lado, é mais lento que um sistema completamente automático, mas permite ao 

utilizador fazer ajustes dos resultados, tornando este sistema mais versátil e tolerante a variações 

de imagens. 

 

Palavras-Chave: segmentação, contornos activos, snakes 
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Chapter 1 

1. Introduction 

1.1. Overview of the problem 

The examination of cells by microscope has been the primary method for studying 

cellular function. Visual analysis can reveal biological mechanisms when cells are properly 

identified. In the meantime, advanced microscopes can now collect thousands of high resolution 

images of cells from time-lapse experiments. Even though several pioneering large screens have 

been scored through visual inspection by expert biologists, making the results to be very hard to 

replicate by a computer, for most applications, image cytometry (automated cell image analysis) 

is preferable to analysis by eye. The reasons will be discussed below. 

Image cytometry is much less labor-intensive. With the appropriate software it is 

possible to obtain reliable results from a large-scale experiment in hours, versus the visual 

inspection that can take months. This is a critical advance since the presence of human error is 

reduced drastically, because there is no need to conduct routine and repetitive experiments. 

 Human-scored image analysis is qualitative. On the other hand, image cytometry 

produces consistent, quantitative measures for every single image. The automated analysis is 

also able to uncover samples of interest, hidden from the human eye, as well as draw some 

conclusions based on the quantitative measures of each image. This has proven to be a plus in 

cytometry profiling, since the identification of similar genes is easier to observe, thanks to the 

measuring of a large number of features. 

The difference in feature scoring between human observers and image cytometry is 

huge. Human observers can typically score a few cellular features; image cytometry can obtain 

lots of informative measures of cells, such as intensity, localization, number, size, shape, etc. 

This is the reason why image-based analysis is high in information content, multiplexed and 

versatile. It is able to handle hundreds of thousands of distinct samples such as adherent cell 

types and time-lapse cell images. 

Image cytometry is able to detect some features that a human observer cannot. Small 

but biologically significant differences, for example, a 10% increase in nucleus size, are not 

detected by the human eye. Pathologists have known for years that small changes in DNA or 
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protein texture can indicate profound and undetectable changes in cell physiology. This is a fact 

used to diagnose diseases as well as reveal the disease rate. 

Quantitative image analysis measures each cell rather than the whole image. Since each 

cell’s response is inhomogeneous, single cell data from different types of instruments is much 

more significant than population data for clustering genes, classifying protein localization and 

diagnosing disease. On the other hand, the single cell treatment reveals slight differences in 

measures that would have been undetected by the whole-population measures. 

Many groups have benefited from automated cell image analysis, developing their own 

custom programs to attend their specific needs. Commercial software, such as Matlab, Java, etc. 

has been used to identify, measure, and track cells in images. However, most of the custom 

programs are not modular, making the routine of processing hundreds of thousands of images 

not practical, since the user has to interact directly with the code. 

Commercial software for the pharmaceutical market has also been developed. The high 

cost of this software makes it impractical to test several programs for a new project. On the 

other hand, the proprietary nature of the code prevents researchers from knowing the program 

structure as well as not being able to modify it to attend specific needs. 

High throughput analysis has been the main concern for the scientific community. It has 

been impractical unless someone develops a customized solution for a determined situation or 

the commercial packages are used for a limited set of cell types. The need for an open-source, 

flexible, powerful, high throughput cell image analysis platform has never been so high. 

1.2. Overview of the solution  

The mathematical description of object contours in an image (segmentation) has been 

target of investigation in the past few years. This kind of operation is significantly important to 

many image processing areas such as medical application, automatic surveillance and quality 

control. The mathematical description will allow the separation of the interest regions such as 

cells, objects or even people from the image and can be used to calculate shape factors of those 

regions such as area, perimeter and shape. 

The test images used in this application were taken by a microscope and saved has a 

sequence in order for posterior analysis. The images contain several cells that can be together or 

not, and the goal is to separate each cell from the background of the image. This will be done in 

a semi-automatic way, where the user will give the application an initial contour (deformable 
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surface) for each cell and the application will try to adjust this deformable surface to the image 

boundaries, through a series of parameters and factors that can be changed accordingly, in order 

to obtain the desired outcome. 

This technique has its disadvantages. The main one is that the initial contour is given by 

the user, subject to human error, making it difficult to reproduce and to compare results, as well 

as it can take a long time, depending on the number of images that have to be processed. 

The main goal of this work is to use a contour mapping method, known as Snakes 

GVF[1]–[3], to identify semi-automatically cells in microscopic images. This algorithm was 

chosen because it is a simple and efficient solution to segment a region from an image, even 

though it depends from an initial contour. Other segmentation algorithms[4] are able to segment 

all image, however, it is very complicated to control the precision level, because of 

thresholdings. On the other hand this algorithm has its limitations, like the quality of the results, 

as well as when several regions are near each other, as you will be able to see further ahead. 

These limitations were attenuated with a more active interaction with the user, making it 

easier for him to perfect the segmentation results in a fast and simple way. This way, we can 

obtain a solution that is quicker than manual segmentation as well as more perfect than 

automatic methods. 

This thesis is organized in the following way; in chapter 2 the state of the art for 

automatic image contour segmentation is presented. In chapter 3, the methodologies used in the 

different stages of the system are described, giving a theoretical approach of the algorithms. In 

chapter 4, the system interface and functionalities are described. In chapter 5, the results 

obtained are shown and analyzed and in chapter 6 the conclusions and future work are 

presented. 
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Chapter 2 

2. The State of the Art 

The state of the art was studied considering the automatic detection of microscopic 

images contours. The automatic evaluation of micro-structures is a very specific area which 

makes the development of applications poorly documented and divulgated in the scientific 

world. 

2.1. Automated differential blood count system 

To evaluate the health of a patient, one of the most used medical exams is the 

Hemogram, which counts the blood particles (red blood cells, white blood cells and platelets). 

The hematologist needs two types of counts in order to make his diagnostic. The first 

one is a CBC (Complete Blood Count) and the second one is a DBC (Differential Blood Count). 

The CBC is made by a flux cytrometry medical instrument which gives raw information about 

cell composition. The DBC is done through manual procedure, making it a longer process but a 

more precise and reliable one. 

The automatic hemogram[5] is an application of automatic differential blood cell count 

that exists to ease the job of the hematologist. 

The most relevant phase of this application is the segmentation. The goal is to find the 

cells through their contours. The contour detection is achieved by an active contour algorithm or 

snakes[1], which consists in a list of 2D points that evolve from initial positions to the desired 

contour, taking in consideration the internal and external forces of the image. 

In figure 2.1 the segmentation steps of this model can be viewed. 
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Figure 2.1 - Segmentation stages. 

 

There are two major limitations to this algorithm. The first one is if the initial contour, 

made manually, is too far apart from the desired outcome. This will make the snake to not hold 

the desired contour. The second one is if the micro-structure has concavities. The snake does not 

adapt to this kind of regions. The latter does not influence this work since the cells are convex 

and elliptical. 

2.2. Hybrid System for Cell Detection in Digital Micrographs 

This system[6] emerged because of the need to surpass performance issues limited by 

singular approaches to the micro-structures contour detection problem, such as Artificial Neural 

Networks (ANN), morphologic operators and adjust algorithms based on models. As a result, a 

hybrid system was designed, that combines the Hough transform with the multi-layer perceptron 

neural networks (MLP) obtained through the back propagation algorithm. 

The Hough transform calculates the candidate cell positions, making a map of all points 

that belong to the contour of a single object. The more regular the object contour is, the bigger 
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the number of points mapped in the same position of the array is. The candidate positions are 

then inserted in the neural network trained by the MLP. 

 

Figure 2.2 - Hybrid system for cell detection. (a) Mapping of the contour pixels to cells. (b) Cell 

detection through the use of MLP. 

 

This approach made a significant improvement to the performance of micro-structure 

contour detection. However, this system still depends on a set of standard images for the neural 

network to learn. The other drawback of this system is that in order to get good results, the 

contours have to be somewhat regular, because of the Hough transform. 

2.3. Neural network architecture for automatic segmentation 

This architecture[7] was created for an automatic segmentation of fluorescence micro-

structures. In the first stage, the position of the fluorescence cells is detected by a neural 

network. Its visual knowledge is acquired through a set of images given by the user. In a later 

stage, the system detects the cells contours using a neural network model. 
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Figure 2.3 - Neural network architecture for automatic segmentation. 

 

The detection of the cells position is made through a neural classifier which is trained to 

calculate the evidence values for each point of the image. These values represent the probability 

of a point being occupied by a fluorescence cell. The contour of each cell is then calculated 

through the separation of the cell from its environment. This is possible using a figure-ground 

segmentation with a Competitive Layer Model (CLM)[8]. An example of this application in 

fluorescence micro-structures can be seen in figure 2.4. 
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Figure 2.4 - Example of segmentation. (a) Image sample. (b) Computation of the position of the 

cells. (c) Contour extraction from the focus points. 

 

According to this study, even though the micro-structures has a lot of noise and the 

fluorescence cells vary in shape and size, the system is able to detect a minimum of 95% of 

cells. However, this system depends on a set of examples to achieve a decent success rate. 

2.4. Contour detection of human kidney by Markov random fields 

This method[9] uses an automatic contour detection of the kidney through a probability 

model of Markov field deformation in relation to a standard model of the kidney contour. This 

model is adjusted, manually or automatically, to the image and is smoothly deformed following 

the borders of the ultra-sound image and guided by an empirical model of distribution of the 

echographical data. The level of smoothness is imposed by the spectrum of allowed deforming 

values and a standard distribution. 
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Figure 2.5 - Automatic contour detection through a probability model of Markov field deformation. 

 

The disadvantages of this application are the dependence of a standard kidney model 

design and the results only affecting the external structure of the kidney. It is not possible to 

analyze internal structures of the kidney, even though the external contour restricts the analysis 

to a smaller area. 

 

2.5. Tumor cell identification using feature rules 

The identification of tumor cells has been object of study for several years. One of the 

fundamental elements of this identification is the quantitative analysis of the tumor cells to 

evaluate the disease’s dissemination degree. In traditional pathology, carcinogenic cells are 

introduced in non-human test subjects in order to analyze tissues, counting the number of 

affected cells manually. This process turns out to be rather slow and counter-productive. 

There have been several tries to automate this process of counting carcinogenic cells, 

but all of them had limited success because of the rather complex nature of the images. This 

work[10] proposes a robust local adaptive thresholding and dynamic water immersion 

algorithms to segment regions of interest from background. 

However, because of the histological noise in the images, a large number of false positives is 

obtained. To enhance this identification of carcinogenic cells, meaningful features are extracted 

from the segmented regions. Three classifiers are used to generate a set of rules that allows 

differentiating carcinogenic cells from the histological noise. 
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2.6. High throughput, subpixel precision analysis of bacteria 

“Bacteria display various shapes and rely on complex spatial organization of their 

intracellular components for many cellular processes”[11]. It was with this in mind that 

MicrobeTracker was developed. This software is able to segment cells with subpixel precision 

and does cell lineage tracking.  

The software is divided in two phases. The first one consists in separating the cells or 

cell clusters from the background, applying edge-detection algorithms and watershed transforms 

(fig. 2.6). In the second stage, a variant of active contour models is used in order to refine the 

cell outlines obtained in the first stage. The cell contour is adjusted smoothly through the action 

of image forces until it converges to the cell boundaries. 

On the other hand, when used to analyze time-lapse sequences of growing cells, it is 

even more powerful. This happens because it takes advantage of time-dependent information to 

resolve complicated images. Basically, for each time frame, the original shape for the next 

frame is taken from the previous one. This process ensures the identity of each cell over time, 

allowing the program to keep track of the history and genealogy of the cells. 

 

Figure 2.6 - MicrobeTracker operations. (A) Image preparation using inversion, thresholding and 

edge detection algorithms. (B) Active contour model. (C) Cell contour in image sequences. 
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2.7. Measuring single-cell gene expression dynamics in bacteria 

“Quantitative single-cell time-lapse microscopy is a powerful method for analyzing 

gene circuit dynamics and heterogeneous cell behavior”[12]. The implemented protocol 

involves seeding and growing bacteria and imaging the results, through an automated 

microscopy system. The images are then reviewed and analyzed using a custom Matlab analysis 

system named Schnitzcells.  

The Schnitzcells software allows users to perform analysis of time-lapse images of 

fluorescent proteins in living cells. Image analysis is done in four stages (fig. 2.7): 

 

Figure 2.7 - Schnitzcells data flow overview. 

 

 Preparing for analysis, specifying directories and parameters; 

 Segmenting each image to define cell boundaries, manually correcting the 

segmentation; 

 Tracking cells to obtain various cell data and to create a cell lineage tree, making cell 

division events possible to recognize; 

 Extracting fluorescence intensity data from cells. 

The segmentation of cells is a multi-stepped process. First, it applies edge detection to 

generate an initial segmentation, then splits long or clumped cells and finally identifies too 

small objects as false positives and discards them. 
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Figure 2.8 - Schnitzcells segmentation result. On the left, the phase image and on the right is the 

mask output of the automated cell-segmentation. 

2.8. CellProfiler – software for biological image analysis 

  CellProfiler is a modular image analysis software that is capable of handling hundreds 

of thousands of images[13]. The software contains methods for many cell types and is an open-

source program. This allows sharing, testing and development of new methods by image 

analysis experts. The platform has advanced algorithms for image analysis, flexible design in 

order to adapt to new phenotypes, and is open-source, making it easy to modify or improve. 

 The image analysis process is accomplished just by pointing and clicking using 

CellProfiler’s graphical user interface (fig. 2.9 (a)). The software uses the concept of a sequence 

of modules, where each module processes images in its own way, for example, image 

preparation, object segmentation and measurement. 
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Figure 2.9 - CellProfiler overview and features. 

 

In figure 2.9 it is possible to see the CellProfiler graphical user interface (a), in (b) a 

typical CellProfiler module sequence is displayed, in (c) it is possible to see the result of the 

illumination correction module, in (d) the impact of the previous correction is shown, because it 

reduces noise in quantitative measurements, and finally in (e) shows the identification of human 

HT29 (left) and Drosophila (right) cells. The cells in the image borders are intentionally 

excluded from the process. 
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Chapter 3 

3. Methodology 

To face the problems above, an automatic system was proposed to perform the 

segmentation of cell images. The system uses image processing algorithms to analyze a series of 

images and calculates the region properties of the cell, giving relevant information to the user. 

The main objective is to create an interface that makes the analysis of these images easier for 

the user. 

The segmentation process is achieved by using active contours[2], [3]. The user will be 

able to execute several iterations of the algorithm in order to obtain the most accurate contour. 

3.1. System Architecture 

The several stages of the system are represented in figure 3.1. 

 

Figure 3.1 - System architecture. 
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Image configuration 

This is the starting stage of the system. It is responsible for the noise reduction and 

preparation of the images for the segmentation phase. The pre-processing includes a conversion 

of the image to gray-scale, the use of a Gaussian Blur filter and calculation of the image 

gradient. 

Initial contour definition 

As the name indicates, in this stage a set of initial points will be established so that the 

algorithm can start operating. 

Segmentation 

In this stage, the contours of the cells are obtained using the Gradient Vector Flow[2] 

algorithm, with the help of the user. 

Contour properties 

After the segmentation has occurred, the user will be able to obtain some information, 

such as the area, perimeter, centroid, radius, from the region that was obtained. 

Contour adjustment 

In this final stage, the user will be able to make some adjustments to the contour in 

order to obtain a more accurate and precise result. 

All of these stages will be described in detail in the next sections. 

3.2. Image configuration 

In the image configuration stage, three operations are executed, gray-scale conversion 

of the image, contour calculations, needed for the algorithms used in this work and GVF field 

calculation, described in 3.5.2. These operations are made so that the algorithms can run more 

rapidly. 

To calculate the contours, a Gaussian Blur[14] filter was applied to reduce the noise of 

the images. The cell images are obtained through a microscope and are relatively low quality 

(low signal noise relation). This filter is used in programs such as Adobe Photoshop, Paint.NET 
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and Inkscape to clear the image noise and reduce the detail level. Applying a Gaussian blur 

filter is the same as doing a convolution of the image with a normal distribution. Since the 

Fourier transform of a Gaussian is another Gaussian, applying a Gaussian Blur filter as the same 

effect as applying a low-pass filter to the image. 

The next step is to obtain the gradient of the image, using a Sobel mask. This gives the 

intensity of the contour for the various pixels of the image. In vector calculus, the gradient of a 

scalar field is no more than a vector field whose direction is determined by the maximum grow 

rate of the scalar field and the amplitude is equal to the absolute value of the variation rate. 

3.3. Initial contour definition 

The initial contour definition can be done in two ways. The first one is manually, 

through a set of points that create a polygon that is similar to the boundary of the cell (figure 

3.2). The other way is to provide the set of points, previously calculated, loading them into the 

system, through the interface. 

 

 

Figure 3.2 - Initial contour definition. 

 

3.4. Segmentation 

The segmentation is a rather complex process that depends of the content and noise of 

the images. The classic methods of edge detection[15] or thresholding[16], based on local 

operations and image intensity, are unreliable when obtaining results in the majority of 
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situations. More complex algorithms are needed; ones that analyze the content of the image in a 

global manner. In this group, the active contour algorithms stand out and are used in several 

applications such as deformable models[17], segmentation[18] and tracking[19]. 

In this work, the segmentation process is done using active contours, applied to the 

filtered images. This process will also try to keep track of the cells since they are not stationary. 

3.4.1. Active Contour 

An active contour is defined by a list of 2D points, given manually or automatically, 

designated control points. The control points evolve through a set of iterations over the image 

by the application of external forces (data dependent) and internal forces (contour dependent). 

The internal forces make the contour deformation level vary through a set of parameters of 

elasticity and flexion, and the external forces (calculated based on the image gradient) force the 

contour to the borders of the object. 

The traditional snake is a curve  ( )    ( )  ( )  defined to minimize the energy 

given by the equation 

  ∫  
 

 

 

 
( |  ( )|   |   ( )|      ( ( ))    (1) 

where α and β are weights that control the tension and the rigidity of the snake, respectively and 

are applied to the first and second derivative of x(s). 

The external energy is obtained from the image  (   ) and should have lower values in 

the points of interest. Our goal is to make the contours closer to each other. A good choice 

is    (   )   | (  (   )   (   ))| , where    (   ) is the Gauss function with standard 

deviation   and   is the gradient operator, because the contour points are the ones who present 

greater gradient value and less external energy value. 

A snake that minimizes (1) should satisfy the following Euler equation 

     ( )        ( )          (2)  

which can be view as a force equilibrium, where the internal force is responsible for shrinking 

and smoothing the snake and the external for pulling the snake to the contour points. 

To solve (2), the snake has to become dynamic, treating x like a t function. 

  (   )       (   )        (   )        (3) 
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A numeric solution can be found making it a discrete equation and solving it until 

 (   ) stabilizes. For more information, see[1]. 

However, the use of active contours poses two main difficulties[3]. The first one is that 

the initial contour as to be in the proximity of the object boundary, so that the snake can 

converge to the desired object. The other problem is the fact that active contours have problems 

when treating objects with concavities. 

In figure 3.3 there is an example of the traditional snake algorithm being applied onto 

concave objects. 

 

 

Figure 3.3 - Traditional snake algorithm applied to concave objects. 

 

The traditional snake needs the initial contour to be designed near the desired contour, 

because of the weak external forces intensity (see figure 3.4). On the other hand, the difficulty 

of snakes getting near concave contours is verified, because in these areas the external forces are 

pointed horizontally, making the contour near to the vertical contours and not progressing to the 

concavity. 
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Figure 3.4 - External forces in traditional snake algorithms. 

 

3.4.2. Gradient Vector Flow (GVF) 

The active contour algorithm used in this work, pretends to overcome, in a more 

satisfying form, these difficulties through the definition of a new force field. This algorithm 

makes the contour evolve over a non-irrotational field of external forces, calculated from the 

cell images, named Gradient Vector Flow(GVF)[2]. 

The GVF is a vector field whose elements (2D vectors) point towards the borders and 

its module is minimal in the homogeneous regions. In the neighbor points, the vectors are 

perpendicular to their boundary and its module is going to grow until it is near it. Another 

feature of the field is the large range spectrum. 

In homogeneous regions the vector module is reduced; however even in the farthest 

areas of the boundary, it continues to point towards it. 
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Figure 3.5 - GVF algorithm application. 

 

 As it can be seen in figure 3.5, the results are much better than the traditional snakes. 

The external forces have their intensity raised and point towards the concavity interior (figure 

3.6). 

 

Figure 3.6 - GVF algorithm external forces. 

 

To obtain the new external field, an edge map is defined for each image of the sequence. 

The edge map is calculated through the convolution of the image with a Gaussian 

filter, (   )  |  (   )   (   )|, with    , and is greater near the interest borders. This 

result is used to calculate the GVF field through the evolution of the active contours. It is 

important to notice that greater   values, makes the range of the active contours higher, 

however the borders of the image are less clear. 
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The new vector field  (   )    (   )  (   )  described looks to minimize the 

energy function 

  ∬ (  
    

    
    

 )  |  | |    |      (4) 

where    is the gradient of the edge map and is looking to smooth the outcome where there is 

no relevant data. This way, when    is lower, the energy is dominated by the partial derivatives 

of the field, resulting in a smoothing operation. On the other hand, when    is higher, the 

second part of the integration dominates the function and is minimized by     . The 

parameter   is a regularization factor of the GVF field and has to be adjusted accordingly to the 

present noise in the image. The GVF field can be calculated using Euler equations[20], 

     (    )(  
    

 )    (5) 

     (    )(  
    

 )    (6) 

where    is the Laplace operator. It is possible to notice that in the homogeneous region, where 

the edge map has fixed value, the second term of both equations disappears because the gradient 

of  (   ) is zero. This way, the regions   and   are determined by the Laplace equation. This 

produces the desired effect of “filling-in” the field with information given by the boundaries of 

the object. This fact explains the reason why vectors of the GVF field point towards the 

concavities of the object. 

The equations 5 and 6 can be solved treating   and   as time functions and solving the 

generalized diffusion equations[2]. 

Now let’s have a look to the mathematical description of the active contour. Being this 

described by the following curve  ( )    ( )  ( ) , where        , the optimal curve has to 

minimize the following energy function, 

            (7) 

where 

     
 

 
∫   |  ( )| 

 

 
  |   ( )|     (8) 

and   and   determine the tension and rigidity level of contour, respectively. The external 

energy      depends on the filtered image and is minimal near the boundaries. The stationary 

condition is obtained through the Euler equation, 

             (9) 
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where 

             (10) 

         ( )        ( ) (11) 

The internal force      prevents the snake from stretching and bending while the 

external force      pulls the snake to the image contour. 

The Euler equation is solved iteratively, starting from an initial contour  (   ) and 

evolves through time to  (   ), where t is a discrete time variable and gives the number of 

iterations. The final contour  ( ) depends from the initial contour  (   ). Mathematically, the 

snake is made dynamic, treating   as a time function. 

 (   )      (   )        (   )        (12) 

where the external force term is substituted by the new calculated GVF field, 

 (   )      (   )        (   )    (13) 

The equation is solved using discretization and the solution is found iteratively. 

3.4.3. Implementation 

The algorithm used in this work was created by Chenyang Xu e Jerry L. Prince [2], [3]. 

The main function of the algorithm was replaced by a C version, which allowed an increased 

speed in terms of processing. 

 

 

Figure 3.7 - Example of region obtained before applying the snake GVF. 
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In this work the initial contour is defined manually by the user, through a set of points 

that form a polygon and is near the cell boundaries (figure 3.7). From the first image, it is 

possible to obtain the initial contour for the next image, making the process much quicker. 

However, the images cannot vary too much because the snake will not converge to the right 

boundary. 

From the polygon, the snake GVF algorithm will make the contour evolve iteratively 

until the user is comfortable with its result (figure 3.8). 

 

Figure 3.8 - Snake GVF behavior. 

 

The values of attraction and elasticity are critical for this process. The default settings 

were obtained experimentally and are adjusted to this kind of images. However, it is possible to 

adapt them to other situations. 

In figure 3.9 it is possible to see examples of choosing incorrect settings for the 

algorithm. In this case, the external force weight was very low, on the left image, making the 

contour not to hold to the boundaries of the cell. On the right image, it is possible to see the 

opposite; the external force weight is too high, making the contour unstable and not converging 

to the cell boundary. 
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Figure 3.9 - Contours with wrong settings. 

3.5. Contour properties 

After the detection has occurred, a set of parameters is calculated to give some 

information about the obtained region. 

The parameters are: 

 Area (A); 

 Perimeter (P); 

 Centroid (Cx, Cy); 

 Horizontal and vertical radius (r1, r2); 

 Angle between the horizontal radius and vertical axis ( ). 

 

 

Figure 3.10 - Contour properties schematic. 
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A Matlab function from H. J. Sommer[21] was used to calculate geometric parameters 

of polygons through its moment of inertia. 

Being the polygon contour of n vertices with       coordinates, 

            

            

the area and perimeter can be calculated by these equations, 

  ∑(
(           )

 

 

   

 

  ∑√   
     

 

 

   

 

To obtain the centroid, it is necessary to calculate the first moment of area in both axis, 

    ∑
(            

        
    

     
    )

  

 

   

 

    ∑
(   

                    
        

 )

  

 

   

 

The moments of centroid are 

   
   

 
 

   
   

 
 

If    and    are the contour vertices media in each axis, it is possible to calculate the centroid 

for each axis with these equations, 
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Calculating    and    

Considering     and     the maximum set of points of the contour for the X and Y 

axis, and     and     the minimum set of points of the contour for the X and Y axis, the radius 

of each contour axis is given by these equations 

   √(      )  (      )  

 

   √(      )  (      )  

Calculating θ 

Considering     and   , as the radius projections obtained above, the angle is obtained 

through this equation 

       (
   

   
) 

 

3.6. Contour adjustment 

This part of the system is available to the user after the automatic detection has 

occurred. This will allow a more accurate drawing between the cell boundary and the contour 

obtained by the snake. 

This adjustment is done in two stages. The first one is defining the segment where the 

adjustment has to occur and the second one is the manipulation of that segment until the user is 

satisfied with the outcome. 
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Figure 3.11 - Example of contour adjustment. 

 

The definition of the segment is obtained by calculating the nearest contour point from 

the mouse cursor. This allows obtaining the initial and final contour point that define the 

segment that needs adjustment. The nearest contour point from the mouse cursor is determined 

by comparing the Euclidian distance[22] between the several points of the contour with the 

location of the mouse cursor. 

 Considering   (     ) and   (     ), the distance between these two points, in 

the Euclidian plane, is 

 (   )  √(     )
  (     )

  

 If this equation is applied to all contour points given by the mouse cursor location, the 

nearest point will be determined. 

 After defining the segment, all points within the segment are erased and a new set of 

points is created using a cubic Bézier curve[23]. 

 The cubic Bézier curve is a parametric curve defined by four points (see figure 3.12). 

The first (  ) and last (  ) control points are always the end points of the curve. However, the 

intermediate control points(     ) , the ones that define the shape of the curve, do not lie on the 

curve. 
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Figure 3.12 - Cubic Bézier curve. 

 

 The curve starts at    going towards   and arrives at    coming from the direction of 

  . Usually, the curve will not pass by    and   , since these points are just there to provide 

directional information for the curve. The distance between    and   , determines how long the 

curve takes to move in direction of    before going to   . 

The parametric form of the curve is 

 ( )  (   )     (   )      (   )                   

To make the adjustment easier, the intermediate points    and    are defined by the mouse 

cursor position as one. 
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Chapter 4 

4. System interface and functionalities 

 The application was developed in Matlab 8.0.0. The visual aspect of the interface can be 

seen in figure 4.1. 

 

 

Figure 4.1 - Graphic interface. 

 

This application is divided in 6 sections: 

 Image opening; 

 Snake parameters; 

 Segmentation; 

 Region properties; 

 Contrast and brightness adjustment; 

 Contour adjustment and image saving. 

 



32 

 

4.1. Image opening 

 In this section, the user has two options. The first one is to open a single image and the 

other is to open a sequence of images (see figure 4.2). 

 

Figure 4.2 - Image opening options. 

 

 The option Open Sequence is used when the user wants to analyze a sequence of images 

that represent the evolution of cells. This mode allows the user to make the initial contour on the 

first image and in the next images the contour is obtained automatically, through the result of 

the previous one. 

 Below the image, there are two buttons that allow the user to change between every 

image within the sequence, showing the contour and the shape factors. 

4.2. Snake parameters 

 To make the contour, a set of parameters have to be taken in consideration in order to 

obtain the best outcome possible. In this case, 7 parameters can be manipulated (see figure 4.3). 

 

 

Figure 4.3 - Snake Parameters configuration. 
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 Snake iterations: defines the number of iterations the snake algorithm is executed until 

the contour is obtained; 

 Min Resolution: defines the minimum distance between two points from the snake. If 

this distance is lower than the value of this parameter, one of those points is removed; 

 Max Resolution: defines the maximum distance between two points from the snake. If 

this distance is higher than the value of this parameter, one of those points is removed; 

 External Force Weight: defines the weight that the external forces have on the snake 

contour; 

 Viscosity: defines the viscosity degree of the snake contour; 

 Rigidity: defines the rigidity degree of the snake contour; 

 Elasticity: defines the elasticity degree of the snake contour. 

 These values can be changed to accommodate any kind of situation. 

4.3. Segmentation 

This section can be viewed in figure 4.4. 

 

 

Figure 4.4 - Segmentation section. 
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 The segmentation can be done in two ways, auto and semi-auto. In the auto section, the 

user can choose between the options with config or without config. The buttons and their 

functionalities are as follows: 

 Set Region: this allows the user to define the initial set of points from where the snake 

algorithm is going to start. The points that create the region should be as close as 

possible from the cell boundary to obtain better results. When the user is finished 

selecting points, use the button again (known as Finish Region) to create the region. 

 Draw Regions: this button is if the sequence has a pre-determined set of initial points; 

the user can load a config and the snake algorithm will be applied to all cells within the 

image. 

 Optimize Regions: this allows the user, after running the Draw Regions function, to run 

the snake algorithm in a single cell, in order to obtain better results. 

 Draw Contours: this button will, after obtaining the initial region through the Set 

Region function, execute the snake algorithm in a sequence of images, using the 

previous result to start the algorithm in the next image. 

 Draw Snake: this button allows the user to run the snake algorithm manually. This 

functionality is normally used in a single image or to make some adjustments to a 

determined region. 

4.4. Region properties 

 The region properties (figure 4.5) are calculated automatically every time a new contour 

is obtained. 

 

 

Figure 4.5 - Region properties. 
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These, explained in 3.6, are: 

 Area: gives the value of the area of the snake contour; 

 Perimeter: gives the value of the perimeter of the snake contour; 

 Centroid: gives the coordinates X and Y of the centroid of the snake contour; 

 R1: gives the length of the horizontal segment of the snake contour; 

 R2: gives the length of the vertical segment of the snake contour; 

 Theta: gives the angle between R1 and the horizontal axis. 

4.5. Contrast and brightness adjustment 

 

Figure 4.6 - Contrast and Brightness adjustment. 

 

 In this section it is possible, as the name indicates, to control the contrast and brightness 

of the current image in order to obtain better results than the original one. 

4.6. Contour adjustment and image saving 

 

 

Figure 4.7 - Contour adjustment and image saving. 

 

There are two possibilities in this section: 

 Snake adjustment: this button allows the user to adjust the contour through the variation 

of a cubic Bézier curve. This procedure begins by selecting two points, from the 

boundary of the contour, in order to obtain the segment to be adjusted. After that, the 

curve is drawn onto the image and can be manipulated by the mouse cursor. Once the 
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user is satisfied with the result, just click on the mouse in order to substitute the old 

contour with the new curve.  

 Image saving: this button allows the user to save the current image and its contour to a 

JPEG file. 
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Chapter 5 

5. Results analysis 

 The testing of this application occurred in two different ways. In the first test, 5 sets of 

12 images were analyzed, where the evolution of a cell can be seen along the set. The first one 

is the original image sequence, without any modifications (figure 5.1). 

 

Figure 5.1 - Cell image without modifications. 

 

The next two sequences are a result of contrast modification. 

 

Figure 5.2 - Cell images with contrast modification. 

 

The final two sequences are a result of brightness modification. 
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Figure 5.3 - Cell images with brightness modification. 
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5.1. First set – original image sequence 

In figure 5.4 it is possible to see the evolution of the cell in each frame. 

 

Figure 5.4 - First set of images. 
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In figure 5.5 it is possible to see the result of the snake algorithm. 

 

Figure 5.5 - First set of images with contours. 

 

In the first three images the contour is done perfectly; however, in the next images the 

contour does not converge to the cell boundary, near the edges. This happens because the edges 

of the cells are darker, introducing more noise to that zone. 
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After adjusting the contours manually the results in figure 5.6 are obtained. 

 

Figure 5.6 - First set of images with adjusted contours. 
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5.2. Second set – Cell image sequence with higher contrast 

In figure 5.7 it is possible to see another cell image sequence; however now the image 

has a higher level of contrast in comparison with the original sequence. 

 

Figure 5.7 - Second set of images. 
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In figure 5.8 it is possible to see the result from applying the snake algorithm. 

 

Figure 5.8 - Second set of images with contours. 

 

As it is possible to see in figure 5.8, the snake algorithm gives good results in the 

beginning, but as the frames advance, the contour starts to collapse, primarily in the edges of the 

cell. This happens because of the noise introduced by the high level of contrast of these images. 
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After adjusting manually the contour, it is possible to obtain the results in figure 5.9. 

 

Figure 5.9 - Second set of images with adjusted contours. 
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5.3. Third set – cell image with lower contrast 

In figure 5.10 it is possible to see another cell image sequence; however now the image 

has a lower level of contrast in comparison with the original sequence. 

 

Figure 5.10 - Third set of images. 



46 

 

In figure 5.11 it is possible to see the result from applying the snake algorithm. 

 

Figure 5.11 - Third set of images with contous. 

 

In this sequence, the snake algorithm has some problems regarding the position of the 

cell. Since the level of contrast is minimal, the boundary of the cell is harder to detect, making 

the snake algorithm to present results in different sizes. 
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After adjusting manually the contour, it is possible to obtain the results in figure 5.12. 

 

Figure 5.12 - Third set of images with adjusted contours. 
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5.4. Fourth set – cell image sequence with lower brightness 

In figure 5.12 it is possible to see another cell image sequence; however now the image 

has a lower level of brightness in comparison with the original sequence.

 

Figure 5.13 - Fourth set of images. 
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In figure 5.13 it is possible to see the result from applying the snake algorithm. 

 

Figure 5.14 - Fourth set of images with contours. 

 

This set gives better results than the previous ones, even though there are some 

deviations from the cell boundary. This happens because, since the brightness level is too low, 
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the cell membrane acts as a differentiator between the actual cell and the surrounding 

environment, making the contour to be easier to find. 

After adjusting manually the contour of some images, it is possible to obtain the results 

in figure 5.14. 

 

Figure 5.15 - Fourth set of images with adjusted contours. 
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5.5. Fifth set – cell image sequence with higher brightness 

In figure 5.15 it is possible to see another cell image sequence; however now the image 

has a higher level of brightness in comparison with the original sequence. 

 

Figure 5.16 - Fifth set of images. 
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In figure 5.16 it is possible to see the result from applying the snake algorithm. 

 

Figure 5.17 - Fifth set of images with contours. 

 

In this set, it is possible to see a limitation of this algorithm. The contour on the left part 

of the cell is always out of position. The reason this happens is that, as the frames pass, another 
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cell in the surrounding environment starts to get closer to the central one, which makes the 

snake algorithm not knowing whether it goes to one side or the other. Apart from that, the rest 

of the contour presents excellent results, thanks to the lighter background. 

After adjusting manually the contours, it is possible to obtain the results in figure 5.17. 

 

Figure 5.18 - Fifth set of images with adjusted contours. 
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5.6. Test results 

The second test consisted in analyzing 50 images, each one with one cell. The first stage 

of the test was made manually, and the results were considered has the perfect segmentation in 

order to test the algorithm. The second stage was running the algorithm through all the images. 

Finally, the results were compared and the summary of the test can be seen in table 5.1. 

 

Table 5.1 – Average error values. 

Region properties Difference (Pixels) Error Percentage (%) 

Area 6,7766 1,9845 

Perimeter 8,6368 10,6864 

Centroid X -0,3960 -1,9394 

Centroid Y -0,0212 -0,1497 

 

The 3 region properties taken in consideration were area, perimeter and the coordinates 

of the centroid. 

The difference column represents the difference between the contour made manually 

and the contour made by the algorithm. The percentage column gives us an idea what the 

average percentage error between those two measurements. 

In the appendix, all test values can be seen in tables 1 and 2. 
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Chapter 6 

6. Conclusions and future work 

The active contours have been one of the most used techniques to solve segmentation 

problems. The difficulty, in this kind of problems, resides in the size of the sample, in the 

complexity and various forms that the regions have, as well as the quality of the image where 

the regions are inserted. In these last years, various techniques have been proposed in order to 

surpass some of the limitations presented in older versions, such as autonomy, user interface 

and noise tolerance. 

In this work, an algorithm was presented in order to obtain better results in cell image 

segmentation, with the assistance of a human user. Even though a semi-automatic is not the 

perfect situation, it makes the application to be more tolerant to any kind of situation. On one 

hand, it allows to obtain results at a faster rate than a totally manual segmentation. On the other 

hand, it has the potential to give better results than purely automatic applications, since the user 

can alter the final result, adjusting the contour to the correct position with a quick and simple 

procedure. 

The results obtained shows that the snake GVF used, even though it is efficient, it 

presents some limitations, such as the manual adjustment of the contour in some cases. This 

happens because the boundary of the cell is not defined properly or the image has a lot of noise. 

However, the adjustment is done rapidly, and the results improved. 

Even though the active contours have evolved, it will be hard to develop a technique 

that will be completely tolerant to a great variety of images and regions, since these kinds of 

applications are developed to focus on a certain set of images. If the images introduced are 

significantly different from the default set, the technique will basically start behaving strangely. 

To address this problem, the use of different techniques is the best solution. It will make the 

application more “open” to other images, even though there will always exist certain kind of 

situations where it is impossible to obtain good results. 

As future work, it is recommended the study of this algorithm when applied in other 

circumstances, in order to grasp a greater variety of situations, as well as the integration with 

other techniques, reducing the need to do manual adjustments. Another particularity to be 

developed is the segmentation of two or more regions within one image. The algorithm used in 

this work presents a lot of limitations when these kinds of situations arise. Finally, the migration 
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of this application to another language, such as C++ or C#, would be a plus, in order to obtain a 

more powerful and quick application. 
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Appendix 

1. Test Results 

Image 
Area 

(manual) 
Perimeter 
(manual) 

Centroid X 
(manual) 

Centroid Y 
(manual) 

Area 
(snake) 

Perimeter 
(snake) 

Centroid X 
(snake) 

Centroid Y 
(snake) 

1 496,8938 109,0007 39,0371 26,3417 471,2897 97,8288 38,4634 26,6431 

2 332,446 81,6072 28,4094 25,1295 308,4493 70,7096 28,5224 24,8456 

3 334,2061 78,7897 28,056 21,6566 300,6625 71,0662 27,4648 20,8288 

4 379,2811 85,1232 18,038 28,5512 369,8856 77,8462 18,1582 28,2262 

5 346,6421 86,8131 21,723 30,456 321,0648 76,2087 21,9454 30,1662 

6 275,9238 74,1781 24,3367 20,8635 273,2487 66,3738 24,808 20,9273 

7 331,4858 82,5409 21,8702 22,6153 295,9779 71,7486 22,7723 22,1907 

8 424,1809 101,3395 32,2522 24,2601 424,8547 91,1638 32,7643 23,8822 

9 429,52 97,3895 22,7379 29,8923 429,6476 87,2046 22,9359 29,9675 

10 406,1666 96,8132 16,2697 30,5782 377,6461 82,8446 16,4578 30,2099 

11 362,9123 93,4716 23,0118 26,615 363,9411 84,2559 23,3593 26,3808 

12 337,4708 83,6575 22,8589 21,9173 336,3815 72,2698 23,6321 22,8094 

13 471,3944 101,689 28,892 28,8767 444,4065 90,1565 30,6114 28,8956 

14 202,0967 64,4997 19,7622 21,499 215,2277 59,3295 20,55 22,3621 

15 311,1371 83,4091 24,4773 22,2012 310,1116 75,0913 24,709 22,1218 

16 409,5046 102,4289 17,5455 31,3785 414,1815 93,5217 17,8488 31,8855 

17 170,7281 54,1497 16,335 21,8121 171,3667 50,2564 16,6138 21,1114 

18 205,8923 58,8387 14,6367 21,3413 200,0468 54,1146 15,29 21,571 

19 213,8904 58,9645 19,8904 20,3621 200,7646 52,9407 20,0297 19,8211 

20 266,2729 74,1075 24,9686 20,4283 243,7814 64,924 25,1388 20,6601 

21 189,6172 59,9395 18,2136 19,4662 187,2903 53,1386 18,3739 19,5223 

22 235,9074 74,4874 20,7505 21,5237 218,2373 64,3506 21,4782 21,189 

23 202,4298 63,9747 19,691 19,7681 193,8451 56,9251 20,4396 19,2247 
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24 292,0064 72,0584 17,6173 24,7143 278,063 65,1032 17,989 24,0595 

25 227,8184 65,438 15,7794 20,6922 221,6687 59,3727 16,2647 20,6334 

26 205,7565 57,9402 19,5831 17,0205 188,4174 53,4561 20,2868 17,0658 

27 149,2013 49,0347 17,3854 16,6007 131,6998 42,5307 17,7153 16,9993 

28 160,2525 50,9024 16,3882 19,224 152,9034 46,5852 17,0214 19,3154 

29 221,8877 68,7284 21,1166 21,7973 245,9952 63,4685 22,7237 21,7161 

30 371,46 97,1342 16,1303 27,6755 371,9084 85,7432 16,3851 27,4045 

31 379,5834 94,9165 24,2166 32,5202 380,6091 85,1449 24,6292 32,2482 

32 293,0804 86,5469 23,0532 26,3325 315,5564 79,0432 23,4604 26,5434 

33 202,478 62,564 19,5274 21,3909 204,0012 57,4137 20,1617 20,9964 

34 206,8015 67,188 20,0359 19,181 203,6904 58,3853 20,7559 19,6441 

35 304,3648 80,5292 24,0089 23,9275 304,8765 71,4798 24,4136 24,2448 

36 376,9027 97,5217 21,0391 31,0375 375,9198 88,8959 21,3471 31,7525 

37 346,272 96,0759 15,5057 31,0675 338,9723 86,3934 15,6136 32,5818 

38 141,0773 55,5086 23,1688 15,9678 172,0032 51,2782 22,8373 16,5829 

39 285,1444 85,3037 26,9131 21,5804 289,0085 76,0465 26,6601 22,1835 

40 243,0912 72,6939 24,6303 18,7565 223,3412 62,4511 25,1092 18,9445 

41 314,376 86,774 20,6849 26,6739 318,6947 77,606 20,3995 27,1431 

42 281,3865 77,814 22,1227 20,3032 274,3154 66,2632 23,0924 20,5537 

43 364,7989 91,9665 17,3448 28,3368 351,9175 80,1595 17,8364 28,8485 

44 311,7258 81,1433 19,4219 27,9577 307,3991 75,2279 20,3725 26,1284 

45 347,9205 93,0366 20,0559 28,2855 333,1445 78,923 20,6087 27,8595 

46 257,5188 87,8241 19,7435 27,1368 257,5631 77,0977 19,3786 27,3879 

47 353,6412 96,8736 33,8895 25,9652 347,7866 86,8802 34,1167 26,16 

48 301,2333 88,4465 24,4649 27,4059 301,3416 79,727 24,6739 27,1241 

49 446,085 106,1064 33,6364 17,1204 425,9588 94,2842 34,0305 18,192 

50 243,9358 69,0111 20,7302 18,8108 237,9051 61,2254 21,5055 18,3232 
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2. Differences between manual and semi-

automatic 

Image Diff Area Area % 
Diff 

Perimeter 
Perimeter

% 
Diff 

Centroid X 
Centroid X 

% 
Diff 

Centroid Y 
Centroid Y 

% 

1 25,6041 5,1528 11,1719 10,2494 0,5737 1,4696 -0,3014 -1,1442 

2 23,9967 7,2182 10,8976 13,3537 -0,1130 -0,3978 0,2839 1,1297 

3 33,5436 10,0368 7,7235 9,8027 0,5912 2,1072 0,8278 3,8224 

4 9,3955 2,4772 7,2770 8,5488 -0,1202 -0,6664 0,3250 1,1383 

5 25,5773 7,3786 10,6044 12,2152 -0,2224 -1,0238 0,2898 0,9515 

6 2,6751 0,9695 7,8043 10,5210 -0,4713 -1,9366 -0,0638 -0,3058 

7 35,5079 10,7117 10,7923 13,0751 -0,9021 -4,1248 0,4246 1,8775 

8 -0,6738 -0,1588 10,1757 10,0412 -0,5121 -1,5878 0,3779 1,5577 

9 -0,1276 -0,0297 10,1849 10,4579 -0,1980 -0,8708 -0,0752 -0,2516 

10 28,5205 7,0219 13,9686 14,4284 -0,1881 -1,1561 0,3683 1,2045 

11 -1,0288 -0,2835 9,2157 9,8594 -0,3475 -1,5101 0,2342 0,8800 

12 1,0893 0,3228 11,3877 13,6123 -0,7732 -3,3825 -0,8921 -4,0703 

13 26,9879 5,7251 11,5325 11,3410 -1,7194 -5,9511 -0,0189 -0,0655 

14 -13,1310 -6,4974 5,1702 8,0159 -0,7878 -3,9864 -0,8631 -4,0146 

15 1,0255 0,3296 8,3178 9,9723 -0,2317 -0,9466 0,0794 0,3576 

16 -4,6769 -1,1421 8,9072 8,6960 -0,3033 -1,7286 -0,5070 -1,6158 

17 -0,6386 -0,3740 3,8933 7,1899 -0,2788 -1,7068 0,7007 3,2124 

18 5,8455 2,8391 4,7241 8,0289 -0,6533 -4,4634 -0,2297 -1,0763 

19 13,1258 6,1367 6,0238 10,2160 -0,1393 -0,7003 0,5410 2,6569 

20 22,4915 8,4468 9,1835 12,3921 -0,1702 -0,6817 -0,2318 -1,1347 

21 2,3269 1,2272 6,8009 11,3463 -0,1603 -0,8801 -0,0561 -0,2882 

22 17,6701 7,4903 10,1368 13,6087 -0,7277 -3,5069 0,3347 1,5550 

23 8,5847 4,2408 7,0496 11,0194 -0,7486 -3,8017 0,5434 2,7489 

24 13,9434 4,7750 6,9552 9,6522 -0,3717 -2,1099 0,6548 2,6495 

25 6,1497 2,6994 6,0653 9,2688 -0,4853 -3,0755 0,0588 0,2842 

26 17,3391 8,4270 4,4841 7,7392 -0,7037 -3,5934 -0,0453 -0,2661 

27 17,5015 11,7301 6,5040 13,2641 -0,3299 -1,8976 -0,3986 -2,4011 

28 7,3491 4,5860 4,3172 8,4813 -0,6332 -3,8638 -0,0914 -0,4754 

29 -24,1075 -10,8647 5,2599 7,6532 -1,6071 -7,6106 0,0812 0,3725 

30 -0,4484 -0,1207 11,3910 11,7271 -0,2548 -1,5796 0,2710 0,9792 

31 -1,0257 -0,2702 9,7716 10,2949 -0,4126 -1,7038 0,2720 0,8364 

32 -22,4760 -7,6689 7,5037 8,6701 -0,4072 -1,7663 -0,2109 -0,8009 

33 -1,5232 -0,7523 5,1503 8,2321 -0,6343 -3,2483 0,3945 1,8442 

34 3,1111 1,5044 8,8027 13,1016 -0,7200 -3,5935 -0,4631 -2,4144 

35 -0,5117 -0,1681 9,0494 11,2374 -0,4047 -1,6856 -0,3173 -1,3261 

36 0,9829 0,2608 8,6258 8,8450 -0,3080 -1,4639 -0,7150 -2,3037 

37 7,2997 2,1081 9,6825 10,0780 -0,1079 -0,6959 -1,5143 -4,8742 

38 -30,9259 -21,9212 4,2304 7,6212 0,3315 1,4308 -0,6151 -3,8521 

39 -3,8641 -1,3551 9,2572 10,8520 0,2530 0,9401 -0,6031 -2,7947 

40 19,7500 8,1245 10,2428 14,0903 -0,4789 -1,9444 -0,1880 -1,0023 

41 -4,3187 -1,3737 9,1680 10,5654 0,2854 1,3798 -0,4692 -1,7590 

42 7,0711 2,5129 11,5508 14,8441 -0,9697 -4,3833 -0,2505 -1,2338 

43 12,8814 3,5311 11,8070 12,8384 -0,4916 -2,8343 -0,5117 -1,8058 
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44 4,3267 1,3880 5,9154 7,2901 -0,9506 -4,8945 1,8293 6,5431 

45 14,7760 4,2469 14,1136 15,1699 -0,5528 -2,7563 0,4260 1,5061 

46 -0,0443 -0,0172 10,7264 12,2135 0,3649 1,8482 -0,2511 -0,9253 

47 5,8546 1,6555 9,9934 10,3159 -0,2272 -0,6704 -0,1948 -0,7502 

48 -0,1083 -0,0360 8,7195 9,8585 -0,2090 -0,8543 0,2818 1,0282 

49 20,1262 4,5117 11,8222 11,1418 -0,3941 -1,1716 -1,0716 -6,2592 

50 6,0307 2,4722 7,7857 11,2818 -0,7753 -3,7400 0,4876 2,5921 

 

 


