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RESUMO 

 

Interacção entre DNA e proteína: uma proteína regulatória responsiva associada 

com a homeostasia do Mo em Desulfovibrio alaskensis G20 

 

A transdução dos estímulos ambientais é fundamental para sobrevivência e 

adaptação bacteriana em diferentes habitats. O sistema de dois componentes é um 

mecanismo importante para a percepção e transdução de sinal bioquímico em bactérias. 

Esse sistema é composto, basicamente, por uma proteína histidina quinase e uma 

proteína reguladora responsiva que atuam em conjunto com a finalidade de fornecer a 

plasticidade bioquímica necessária para a sobrevivência e adaptação dos 

microorganismos. 

A descoberta de um sistema envolvido na regulação da homeostasia do Mo 

em Desulfovibrio alaskensis G20 abriu novos questionamentos sobre quais seriam os 

mecanismos responsáveis pela regulação desse metal em bactérias sulfato-redutoras. 

Nesse sentido, postulou-se que um sistema composto por três proteínas (MorP, MorR e 

MorS) seria capaz de realizar a homeostasia do Mo. MorP (“molybdenum response 

associated protein”) é uma proteína periplasmática multimérica composta por 16-18 

subunidades. Estudos de EXAFS juntamente com estudos de caracterização bioquímica 

mostraram que a MorP possui um centro metálico do tipo Mo-2S[2Fe-2S]-2S-Mo onde 

cada monómero possui um átomo de Mo e um átomo de Fe. As proteínas MorS e MorR 

constituiriam um sistema de dois componentes, onde a MorR actuaria como um factor 

54 de transcrição do gene morP (gene responsável pela codificação da proteína MorP). 

O objectivo geral desta tese é verificar se a proteína MorR interage com a 

região intergénica entre morP e morS, e analisar como ocorre esta interacção. 

Adicionalmente, pretende-se verificar qual a influência de moléculas doadores de 

radicais fosfato na estrutura conformacional da MorR. 

A presente dissertação está dividida em cinco capítulos. 

O capítulo I é formado por uma introdução geral sobre as bactérias sulfato 

redutoras e sobre a importância do molibdato para o género Desulfovibrio. Esse capítulo 

faz uma introdução sobre o sistema de dois componentes (TCS) e seus agentes. 

Adicionalmente, alguns mecanismos de expressão genica, regulação e exemplos de 

factores de transcrição envolvidos com o TCS também são apresentados. Finalmente, a 

hipótese do presente estudo é apresentada.  
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O capítulo II é constituído pelas metodologias e agentes usados para a 

clonagem do gene morR. As estratégias utilizadas permitiram que o gene da morR fosse 

clonado com sucesso e permitiram a expressão da proteína MorR tanto em pequena 

quanto em larga escala, resultando na forma solúvel da proteína. Adicionalmente, o 

contexto genómico do gene morR é avaliado e discutido.  

O capítulo III é constituído por uma introdução sobre estudos envolvendo a 

fosforilação de proteínas similares a MorR. Esse capítulo também mostra os resultados 

da purificação e caracterização da proteína MorR. A proteína purificada é um 

monómero, e a proteína MorR recombinante não contem nem metal (Zn
2+

, Mo, Cu
2+

 

and Mg
2+

)  nem phosphoamino ácidos e, portanto, não é isolada no seu estado 

fosforilado. A região intergenica entre morP e morS foi amplificada e purificada, e os 

ensaios de mobilidade por electroforese foram realizados para mostrar se a proteína 

MorR ligava a esta região. Os resultados obtidos revelaram que a MorR liga a região 

intergenica e os experimentos de DNase I footprinting identificaram o sítio de ligação 

específico. O acetylphosphato e o phosphoramidato foram usados para fosforilar a 

MorR, e os resultados obtidos não mostraram nenhuma oligomerização após a 

fosforilação da proteína. 

O capítulo IV é composto por uma breve introdução sobre os conceitos 

utilizados em espectroscopia de fluorescência e pelos resultados obtidos com o uso 

desta técnica. A forma prototópica de 6-FAM-67mer contendo a região intergénica alvo 

foi usada com a finalidade de definir qual a espécie de fluoresceína estaria presente sob 

as condições experimentais. Os resultados mostraram que a fluorescência de emissão da 

forma monoanionica predomina sob o pH 7.5 e que a fluorescência de emissão da forma 

dianionica começa a emergir a valores de pH acima de 8. A associação entre a MorR e 

duas regiões diferentes (em tamanho) foram identificadas por meio de estudos de 

anisotropia de  fluorescência e as análises revelaram a presença de dois sítios de ligação 

independentes. Os resultados identificaram duas constantes de associação: 15.5 M
-1 

para o primeiro sítio de ligação e de 0.02 M
-1 

para o segundo sítio de ligação. A 

mudança conformacional induzida por fosforilação foi investigada usando acetilfosfato 

e fosforamidato como pequenos doadores de fosfato. Os resultados mostraram que a e 

fluorescência de emissão do triptofano não altera durante os ensaios experimentais. Esse 

resultado corrobora com a ideia de que a MorR não altera sua estrutura após esse tipo de 

estímulo. O estudo computacional bioquímico identificou que a fosforilação da serina é 

cinética e termodinamicamente mais favorável com o phosphoramidato do que com o 
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acetylphosphato. 

O capítulo V é composto pelas conclusões do presente estudo e nós 

propomos um mecanismo que pretende explicar como a MorR actuaria como um 

regulador transcricional dos genes envolvidos na homeostase do Mo. Desse modo, 

nosso modelo propõe que na ausência do Mo, a MorR actuaria como um repressor da 

transcrição dos genes da morSR (via 70) e estaria inactiva para a transcrição do gene 

morP (via 54). Nesse contexto, MorP actuaria como um repressor da proteína MorS, 

sendo esta incapaz de realizar autofosforilação, e, consequentemente, todo o sistema 

estaria inactivo. Na presença do metal, MorP desreprimiria MorS a qual realizaria 

autofosforilação, e, consequentemente, fosforilaria MorR. A MorR fosforilada 

desligaria do promotor  70 e seria capaz de activar a transcrição da morP via promotor 

54. Desse modo, acredita-se também que a MorR possui um mecanismo de auto-

regulação. 

 

Termos chave: Sistema de dois componentes, Molibdénio, bactéria sulfato redutora, 

factores de transcrição, clonagem, purificação e caracterização bioquímica de proteína, 

footprinting, espectroscopia de fluorescência. 
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ABSTRACT 

 
DNA-Protein interaction: a response regulatory protein associated with Mo 

homeostasis in Desulfovibrio alaskensis G20 

 

The environmental signal transduction is fundamental for bacteria survival 

and adaptation to different habitats. The two component system is an important 

mechanism for the perception and transduction of the biochemical signal in bacteria. 

This system is composed by a histidine kinase and a responsive regulatory protein 

acting together in order to provide all the biochemical plasticity for the microorganism 

adaptation and survival. 

The discovery of a Mo responsive homeostasis system in Desulfovibrio 

alaskensis G20 opened new questions about the mechanisms involved in the regulation 

of this metal in sulfate reducing bacteria. In this way, it was postulated that three 

proteins (MorP, MorS, and MorR) could be involved in the homeostasis of Mo. The 

MorP (“molybdenum response associated protein”) is a periplasmic multimeric protein 

composed by 16-18 subunits. EXAFS studies together with biochemical 

characterization data showed the presence of a heterometallic center, Mo-2S[2Fe-2S]-

2S-Mo, shared by two subunits, where each monomer has one atom of Mo and one 

atom of Fe. The MorS and MorR might constitute a two component system where 

MorR might acts as a 54 transcriptional factor for morP gene (the gene responsible for 

the codification of MorP). 

The general objective of this thesis is to verify if MorR interacts with the 

intergenic region between morP and morS, and analyze how this interaction occurs. 

Additionally, it does intend to verify the influence of phosphodonors molecules on 

MorR oligomerization. 

The present thesis is divided into five chapters. 

The chapter I is formed by a general introduction about sulphate reducing 

bacteria and the importance of molybdate for Desulfovibrio genus. This chapter gives an 

introduction of Two Component System (TCS) and its components. Additionally, some 

mechanisms of prokaryotic gene expression, regulation and examples of transcriptional 

factors involved with TCS are also presented. Finally, the hypothesis of the present 

work is exposed. 
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The chapter II is constituted by the methodologies and agents used to clone 

the morR gene. Those strategies allowed the success of the morR cloning and permitted 

the expression of the MorR protein both in small and in large scale, resulting in a 

soluble form of the protein. Additionally, the genomic context of morR gene is 

evaluated and discussed. 

The chapter III gives an introduction about some studies of phosphorylation 

of proteins that shares similarities with MorR. This chapter shows the results of protein 

purification and biochemical characterization. The purified protein is a monomer, the 

purification yields is 0.5mg of pure protein per liter and the recombinant MorR does not 

contain neither metals (Zn
2+

, Mo, Cu
2+

 and Mg
2+

) nor phosphoamino acids and 

therefore is not isolated in a phosphorylated state. The intergenic region between morP 

and morS was amplified and purified and Electrophoretic Mobility Assay was 

performed in order to show if MorR binds to this region. The results obtained revealed 

that MorR is binding to the intergenic region and the DNase I footprinting experiments 

identified the specific binding sites. Acetylphosphate and phosphoramidate were used to 

phosphorylate MorR, and the results obtained did not show any oligomerization upon 

phosphorylation of MorR. 

The chapter IV is composed by a brief introduction about some fluorescence 

spectroscopy concepts and by the results obtained using this technique. The prototropic 

form of 6-FAM-67mer carrying the target intergenic region was determinate in order to 

define which fluorescein specie is present under experimental procedures. The results 

showed that the fluorescence emission of the monoanionic form predominates under pH 

7.5 and that the fluorescence emission of the dianionic form starts to emerge above a pH 

of 8. The association between MorR and two different (in length) target intergenic 

region was assessed by fluorescence anisotropy studies and the analysis revealed the 

presence of two independent binding sites. The result identified two association 

constants: 15.5 M
-1

 for the first binding site and 0.02M
-1

 for the second binding site. 

The MorR conformational change induced by phosphorylation was investigated using 

acetylphosphate and phosphoramidate as small phosphodonors. The results showed that 

MorR phosphorylates, but the fluorescence emission of tryptophan does not shift during 

the experiment. This result corroborate with the idea that MorR does not alter its 

structure upon this stimulus. A computational biochemical study identified that 

phosphorylation of serine residues is kinetic and thermodynamically more favorable 

with phosphoramidate than acetylphosphate. 
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The chapter V is composed by the conclusions of the present study and we 

propose a mechanism that hopes to explain how MorR acts as a transcriptional regulator 

of genes involved with Mo homeostasis. In this way, our model propose that, in the 

absence of Mo, the MorR acts as a repressor of the transcription of the morSR genes 

(via 70) and would be inactive for the transcription of the morP gene (via 54). In this 

context, MorP would acts as a repressor of the protein MorS, which might be incapable 

to perform autophosphorylation, and, consequently, all the system would be inactive. In 

the presence of the metal, MorR would derepress MorS which would be allowed to 

peform autophosphorylation, and, consequently, phosphorylate MorR. The 

phosphorylated form of MorR would disrupt the binding to the 70 promotor and would 

be allowed to activate the transcription of morP gene. Moreover, we believe that MorR 

has a mechanism of autoregulation. 

 

Keywords: Two component system, Molybdenum, sulfate reducing bacteria, 

transcriptional factors, cloning, purification and biochemical characterization of 

proteins, footprinting, fluorescence spectroscopy. 
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General Introduction 

Context 

The base of the present study is the bacterium Two Component System (TCS) that can be 

involved in Mo homeostasis. The prototypic TCS is formed by a histidine kinase (HK) 

sensor protein and a response regulator (RR). In the presence of an environmental stimuli, 

the sensor autophosphorylates and transfer the phosphoryl group to the cognate RR. The 

activated (i.e. phosphorylated) RR can participate in different metabolic circuits. Usually, 

RR acts as transcriptional activators that binds to DNA and interacts with RNA polymerase 

in order to orchestrate gene transcription. In Desulfovibrio genus, some proteins are 

regulated by molybdenum (Mo) or contain this metal in its structure. The genome analysis 

of Desulfovibrio alaskensis G20 predicts the presence of genes involved in Mo transport, 

but there is no report about the Mo uptake or regulation in this bacterium. The discovery of 

MorP (the molybdenum response associated protein) opened new insights about the 

molecular mechanism of molybdenum regulation in sulphate reducing bacteria (SRB).   In 

order to understand how Mo can influence in gene transcription in D. alaskensis G20, a 

general introduction about SRB and the importance of Mo to the bacterial proteins are 

presented. Moreover, the principal aspects of the TCS and gene transcription initiation are 

described with a special focus on transcriptional factors belonging to TCS and genetic 

regulation in bacteria. Finally, this introduction presents the hypothesis of the present study. 
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I.1. Sulphate reducing bacteria 

Microorganisms have a broad capacity to sense and rapidly respond to 

oscillations in the environment. This characteristic is vital to their adaptation and survival. 

Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae have been used as model 

for the primary comprehension of the gene expression profile in response to environmental 

changes. However, the prokaryotic phylogeny is diverse and the prediction of a universal 

code of stress response becomes difficult to follow. A primary mechanism involved in 

signal transduction includes histidine kinase (HK) proteins belonging to Two Component 

System (TCS). A comparative analysis of 5.000 HK from 207 sequenced prokaryotic 

genomes showed that many signaling events were recently developed in the course of 

evolution and that some regulatory systems are not found in the key model 

microorganisms
1,2

. 

Sulfate-reducing bacteria (SRB) are a diverse group of anaerobic, heterotrophic 

and mixotrophic bacteria. These bacteria can be found widespread in anoxic habitats and 

have in common the ability to use sulfate as a terminal electron acceptor in the respiratory 

process. They are capable of tolerating a relative wide range of environmental changes, 

such as: temperature, pH, chloride concentration and pressure
3
. Additionally, they show 

high plasticity in finding alternative metabolic routes in order to survive, such as the 

reduction of energy metabolism through downregulation of ATPase genes
4,5

; the 

osmoprotection by accumulating the glycine betaine (a cellular osmoprotectant) 

concentration
6
 and the defensive mechanisms against the reactive oxygen species (ROS). 

The ROS protection is an important feature of SRB since those microorganisms are 

anaerobes and need to control the oxidative stress and ROS production. This feature reflects 

in the increase diversity of proteins involved within this process, such as the rubredoxin 

oxidoreductase (Rbo)
7
and therubrerythrin (Rbr)

8
, all of them conserved among SRB and 

essential to scavenge ROS without regenerating O2.   SRB are important in biotechnology 

and engineering, since they can be used in heavy metal bioremediation and sulfur 

compound removal from waste materials. On the other hand these bacteria can cause 

serious problems in industry because of sulfide production, which is a major cause of 

corrosion and degradation of metallic equipment 
9
. 
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SRB can be divided into four groups based on rRNA sequence analysis: Gram-

negative mesophilic SRB, Gram-positive spore forming SRB, thermophilic bacterial SRB, 

and thermophilic archaeal SRB. Desulfovibrionaceae include a large family of Gram-

negative mesophilic SRB, which comprise the genera Desulfovibrio and 

Desulfomicrobium
10

. Until now, 26 Desulfovibrio genomes of SRB are available, and the 

genome of Desulfovibrio alaskensis G20 was recently updated
11

. 

The Desulfovibrio alaskensis G20 (formerly Desulfovibrio desulfuricans G20) 

is a gram-negative mesophilic SRB that belongs to the delta subdivision of the 

Proteobacteria. The genome of delta subdivision is characterized by the presence of 

multiple copies of detoxification genes like rubrerythrin and the presence of predicted 

highly expressed 54 activator proteins
12

. Moreover, this strain can growth syntrophically, 

but no conserved genome feature has been identified as the cause of this ecological 

ability
13

. The microbial syntrophy under methanogenic conditions requires a mutual 

cooperation in order to transfer H2 or formate for electrons transferring. This type of 

interaction occurs between Desulfovibrio alaskensis G20 and Methanospirillum hungatei 

(methanogen bacteria), which is capable to induce Desulfovibrio alaskensis G20 growth 

under lactate and to produce acetate and H2 (used by methanogen to produce CH4). The 

quinine reductase complex (Qrc) and the tetrahaem periplasmic cytochrome c3 (TpIc3) is a 

family of redox complex that participate specifically in this process (of H2 and formate 

metabolism) and that are required by Desulfovibrio alaskensis G20 to grow syntrophically 

with lactate
14

. 

 

I.1.1. Molybdate in Desulfovibrio genus 

Molybdenum (Mo) is a trace element naturally occurring in the earth's crust 

(0.05 to 40 g/g)
15–17

. In the group of transition metals is the most abundant in the ocean 

with residence time exceeding 800 thousand years
15,18

. It belongs to the fifth period of the 

periodic table, exists in the form of seven stable isotopes (Mo
92

, Mo
94

, Mo
95

, Mo
96

, Mo
97

, 

Mo
98

 and Mo
100

) with relative abundance of 9.2 to 24.2% and may be present in the 

oxidation state of -2 to +6. In rocks is mainly in the form of molybdenite (MoS2) and in the 

presence of iron oxides and organic matter, even under anoxic environmental conditions, 

readily oxidizes to form the oxyanion molybdate (    
  )

15,16,18
. Molybdenum is essential 
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for nearly all living organisms (from bacteria to animals) and it is important for enzymatic 

reactions and acts as co-factor of proteins that are responsible for electron transfer in the 

processes of nitrogen fixation
19–22

 

It is biologically available in the form of molybdate (MoO4
2−

)
20

. In bacteria, 

molybdate enters the cell through specific transporters that are coded and regulated by the 

modABCD operon
23

. Inside the cell, molybdate is integrated into metal cofactors, such as 

Moco in mononuclear Mo enzymes or FeMoco in nitrogenase
24

. 

The modABCD operon is composed by four genes that are transcribed into a 

single polycistronic mRNA that codify proteins involved in Mo and W cell uptake and 

transport
25

. The modA gene encodes a periplasmic molybdate binding protein ModA that is 

indispensable for high affinity of molybdate uptake by the bacteria cell 
26,27

. The modB 

gene encodes an integral membrane protein ModB which forms a twelve transmembrane 

helices of a membrane channel of the ModABC transportes. The modC encodes an ATPase 

(ModC) subunit of the ModABC complex that energizes molybdate transport. The interface 

between ModC and ModB induce conformational changes that allow ATP binding and 

hydrolysis and subsequent transport through the channel. The modD gene encodes a 

putative 231 amino acid residues protein of unknown function
28

. The crystallographic 

structure of the ModABC from Archeoglobus fulgidus shows a presumable pentameric 

ModAB2C2 quaternary structure and illustrates how the proteins are organized in order to 

perform the molybdate uptake
29

 (figure I.1). 
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Figure I. 1.Strucuture of ModAB2C2 transporter from Archaeoglobus fulgidus. The ModA with Mo is 

represented in blue, the ModBin yellow and green and ModC in red and magenta. Taken from Aguilar-

Barajas (2011) Biometals, 24, 687-707. 

modABCD genes are negatively controlled by ModE protein, which binds 

modA operator sequences. In the absence of molybdate ModE derepresses the modABCD 

operon allowing transcription. ModE controls its own transcriptional level through a 

divergent promoter (figure I.2) 
30,31

. 

 

 

Figure I. 2.The modABCD operon from E.coli. The arrows above the genes represent the transcriptional 

orientation mediated by ModE protein. 

The enzymes whose activity depends on Mo, such as sulfite oxidase, xanthine 

oxidase and nitrate reductase, incorporate this metal ion into a cofactor known as Moco
32

. 

Moco is a pyranopterin-dithiolene moiety where Mo ion is covalently bound to the 

dithiolate moiety. Moco is an instable molecule and it is believed that the dithiolate group 
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contributes to the lability. The cofactor has a tricyclic pyranopterin structure with 

pyrimidine , pyrazine and pyran rings forming the organic moiety of Moco (often called 

molybdopterin (MPT)) (figure I.3). The phosphomethyl group is also labeled in the pyran 

ring. The Mo and W are coordinated by two dithiolene sulfurs that are attached to the pyran 

ring
33

. 

 

 

Figure I. 3. Structure of molybdenum cofactor (Moco) in the tricyclic form. 1) Pyrimidine ring. 2) Pyrazine 

ring. 3) Pyran ring. 

Organisms from all kingdoms share a conserved pathway to synthesize Moco
34

. 

In bacteria, three major steps are necessary to synthesize Moco: 1- conversion of guanosine 

nucleotide (GTP) into cyclic pyranopterin monophosphate (cPMP); 2- Synthesis of MPT 

and 3- Molybdenum incorporation into MPT. The first step requires MoaA (belonging to S-

adenosylmethionine-dependent radical enzyme superfamily) and MoaC that uses 5-GTP to 

forms cPMP
35,36

 (figure I.4). The resulted cPMP molecule is similar to MPT but lacks the 

dithiolene group. The second step requires the incorporation of two sulfur atoms at the C1 

and C2 positions of cPMP. This reaction is performed by a heterotetramer MPT synthase 

complex that is formed by a central MoaE dimer and two MoaD subunit positioned at each 

MoaE side
37

. The last step is the incorporation of the metal into the MPT. This reaction 

requires the participation of the trimeric MogA protein which binds MPT with high affinity 

and mediates the ligation between MPT and Mo in vitro
38,39

. In humans, defects in the 

biosynthesis of Moco can leads to profound neurologic abnormalities in neonates
40

. 
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Figure I.4. The three steps of molybdenum cofactor biosynthesis 

 

In bacteria from Desulfovibrio genus the role of molybdate uptake via mod 

operon is not elucidated yet. However, the conserved genome characteristic of modABC 

transporter is present in Desulfovibrio species genome (NCBI Gene ID 2795627) whereas 

there is no report about the mechanisms of molybdate transport in SRB.  Conversely, it is 

known that some Mo proteins from D. gigas, D. africanus and D.salaxigens have been 
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isolated and characterized 
41,42,43,44

. Such an example is the Orange Protein (ORP) that 

presents a Mo-Cu-S cluster. Of the utmost importance was the recent characterization of the 

structural instability of the ORP cofactor and the gene transcriptional regulation of orp 

from D. vulgaris Hildenborough. In this context, the protein locus tag (called DVU2108) 

that shares 48% of identity with ORP was identified. DVU2108 is regulated by a 54 

transcriptional factor and, in conjunction with other enzymes, may play a role in cell 

division is SRB
45,46

. Additionally, some studies showed that Mo is an important metal in 

Desulfovibrio formate dehydrogenase (FHD) and mod gene expression
47,48

. In this way, Mo 

is capable to upregulate the Mo/W-fdh gene expression whereas downregulate the genes 

responsible for Mo transport. The Mo/W-fdh gene codifies a FDH that incorporate Mo or W 

in its structure. Moreover, isoforms of FDH, such as FdhABC3, present specific behavior 

and the incorporation of Mo ion into the active site of FDH is selective.  

The discovery of a molybdenum response associated protein (MorP) led to the 

hypothesis that this protein could be involved in a Mo homeostasis. MorP is a periplasmic 

homomultidimer (16-18 subunit) of high molecular mass (260  13kDa). The authors 

suggested that each homodimer sharing a Mo-2S-[2Fe-2S]-2S-Mo cluster and therefore 

MorP can carry up to 16 Mo atoms per protein. The genomic analysis revealed a putative 

σ54 promoter, a putative sensor (Dde_0110), and putative regulator (Dde_0109), all located 

upstream of morP. A blast search showed that MorP exhibits 40% of similarity with ZraP, 

which is present in Desulfovibrio vulgaris Hildenborough genome. qRT-PCRshowed that 

expression of Dde_0109 was up-regulated when molybdenum was present during bacterial 

growth. Based on these results, a mechanism of Mo homeostasis was proposed. It predicts 

that, in the presence of Mo, the TCS present upstream of morP gene might be responsible 

for its transcriptional activation. In this way, the MorS (the putative sensor protein located 

at periplasmic membrane) senses the Mo present in the periplasmic space leading to MorS 

autophosphorylation. Then the phosphoryl group is transferred to MorR (the putative 

cognate response regulator) leading to its activation. Once MorR is activated, it is allowed 

to interact with 54 promoter sequence in order to activate the transcription of morP 

gene(figure I.5)
49
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Figure I. 5.Model for transcriptional activation of morP gene under control of a 54 two component system. 

 

The two component signaling proteins are among the most prevalent bacterial 

genes and are easily identified by sequence homology. Bacterial genomes analysis revealed 

that the total number of two component genes per genome is proportional to genome size 

and ecological niches preferences. Therefore, two component systems is one most abundant 

in genomes of gram-negative bacteria and cyanobacteria
50

. 

 

I.2. Introduction of TCS 

Bacteria have the ability to occupy a broad range of habitats, from soil to 

human intestine. Changes in osmolarity, nitrogen or carbon sources are some of the 

common environment fluctuations that bacteria face during development, as a response to 

these changes in the course of bacteria evolution; a mechanism of adaptation called TCS 

was selected. TCS allows the bacteria to sense and respond quickly to environmental 

stimuli in order to survive. In this way, a signal transduction system composed by a sensor 

and a response regulator represents a prototypical form of TCS
51

. 
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I.2.1. Sensor 

The sensor, a component of TCS, is a dimeric histidine kinase (HK) protein 

responsible for sensing the environmental stimuli. A prototypical HK consists of three 

domains: a membrane associated sensor domain which recognizes the extracellular signals 

(Sensor), a cytoplasmic transmitter domain responsible for dimerization and histidine 

phosphotransfer (DHp), and a catalytic and ATP binding (CA) domain
52

 (figure I.6). This 

prototype pursues the sensor domain as an extracellular loop located between two 

membrane-spanning segments. The DHp and CA domain forms the transmitter domain 

which is more conserved among bacterial response regulators and may reflect a common 

mechanism of output interection
53

. 

 

Figure I. 6.Prototypic form of two component system. The histidine kinase (HK) senses the environmental 

stimuli (input signal), autophosphorylates, then transfer the phosphoryl group to the cognate response 

regulator (RR). Adapted from Richard C. Stewart (2010) Curr. Pin. Microbiol, 13: 133-141 

 

In spite of the architecture similarities between HK, the sensor domain shows 

specific structural variability which relies on its capacity to undergoes a variable input 

signal perception
54

. The sensor domain can deviate from the prototypical extracellular 

profile to membrane-embedded or intracellular type. The extracellular model has as the 

main representative the proteins PhoQ, DcuS and CitA which sense divalent ions such as 

Mg
2+

, C4-dicarboxylates and citrate respectively (figure I.7 a). The triad is also called PDC 

sensors and is characterized by a long N-terminal α-helix region with a central five-strand 

antiparallel β-sheet scaffold. The central β-sheet share similarities with PAS domain, but 
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each one preserves its own functional characteristic
55–57

. As an example of a membrane-

embedded sensor, Rhodopsin II (SRII) lacks the prototypical extracellular domain and the 

transmembrane segment is involved in signal perception (figure I.7b). SRII is a retinylidene 

protein that forms a complex with the transducer HtrII (halobacterial transducer of 

rhodopsin II) in order to regulated cell flagelar motor response through binding and 

modulating the activity of the CheA (a chemotaxis HK)
58–60

. In this way, CheA controls the 

phosphorylation status of CheY, a cytoplasmic flagellar mortor switch regulator. The 

combination between SRII-HtrII complex and CheY-CheA avoid photo-oxidative damage 

under sunlight exposure in the presence of oxygen
61

. Some sensor proteins can be entirely 

cytoplasmic, such as NtrB (figure I.7c). Others are cytoplasmic but membrane anchored: 

the cytoplasmic sensor domain can be found at N-terminal before the first transmembrane 

domain or after the second transmembrane domain (figure I.7d)
52

. In spite of the 

cytoplasmic sensor domain localization, all of them adopt a PAS fold. PAS is a family of 

signaling proteins that exhibit five stranded anti-parallel β-sheet core flanked by α-helices. 

The intracellular sensor can be exemplified by FixL that exhibit a heme-binding-PAS 

domain that senses O2 in Rhizobium meliloti and participates in nitrogen fixation
62

.  

 

 

 

Figure I.7. The diversity of HK sensor proteins. a) PDC sensors where the extracellular domain senses the 

stimuli, b) HtrII-SrII where the sensor domain is membrane embedded, c) NtrB is a free cytoplasmic sensor 

domain, d) FixL is a membrane anchored that exhibit a cytoplasmic sensor domain with a PAS folding.  
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In bacteria, serine, tyrosine, threonine, histidine and aspartic acid residues are 

the preferable sites for phosphorylation
63–65

. However, the TCS pursue its own specificity 

for phosphorylation of the histidine residue in the sensor HK and for the acid aspartic 

residue in the RR. Upon activation, the HK undergoes phosphorylation of a conserved 

histidine residue at its DHp domain. This autokinase activity is a conserved characteristic of 

sensor proteins. After phosphorylation, the phosphoryl group is selectively transferred to an 

acid aspartic residue (D) localized in the cognate response regulator (RR). In this way, this 

system works in conjunction via specific protein-protein interaction between the HK and 

RR using three different strategies: the molecular recognition (the inborn capacity of the 

HK to recognize the cognate RR), the phosphatase activity (the HK dephosphorylate the 

cognate RR) and the substrate competition (the cognate RR competes for phosphorylated 

HK)
66

. Under the absence of an input stimulus, the HK is capable to drive in vitro 

dephosphorylation of its cognate RR, resetting or limiting the cross-talk
67

. 

 

I.2.2. Response regulator (RR) 

Once the sensor protein of the TCS is phosphorylated, the phosphoryl group is 

transferred to a conserved D residue, located at the receiver domain of cognate RR. The 

phosphorylation of the RR drives a conformational change that induces its output response. 

However, the N-terminal receiver domain is not an inert partner in phosphotransfer. In fact, 

it has enzymatic activity catalyzing the phospho transfer from phospho His of HK to its 

own D residue. The phosphotransfer mediated by HK is not mandatory, and small 

molecules containing high energy phosphoryl groups can serve as phosphodonors (e.g. 

acetyl phosphate, carbamoyl phosphate and phosphoramidate) in in vitro reactions. 

Moreover, the RR has autophosphatase activity and regulates its own dephosphorylation. 

The modulation of the C-terminal effector domain is so far the most important activity 

known of the N-terminal regulatory domain
68,69

 

All the RR proteins share a fundamentally similar strategy. They couple 

phosphorylation to regulation. Still, the mechanisms of regulation themselves are varied, 

and the diversity of effectors domains create a variety of output signals. 17% of prokaryotic 

RR exists as a single receiver regulator (REC) domain, as exemplified by CheY family. 

Members of the CheY family contain a conserved aspartic acid residue, corresponding to 
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D57 in CheY, and a conserved lysine residue, corresponding to L109
70

. Beyond the 

phosphorylation coupled to signal transduction, CheY lysine acetylation have been reported 

in vitro and in vivo and this post-translation modification inhibit the binding between CheY 

to CheA (the HK), CheZ (phosphatase) and FliM (flagellar motor switch protein)
71,72

. The 

majority of RR (63%) binds to DNA (e.g. OmpR, NarL, AgrA and NtrC) and the output 

response is associated with transcriptional activation or repression.  The remaining RR are 

diverse and can associated with several functions, such as protein/ligand binding (CheW), 

enzymatic activity (PleD), RNA binding (AmiR)
73

. 

 

I.2.2.1.TCS RR and DNA binding 

The majority of RRs contain a C-terminal tri-helical helix-turn-helix (HTH) 

DNA binding domain or a variation (e.g. winged helix-turn-helix (wHTH), four-helix helix-

turn-helix (4HTH), factor of inversion helix-turn-helix (Fis-HTH) and an atypical form 

called LytTR domain) (figure I.8)
74,75,76,77

. 

 

 

Figure I. 8.Diversity of the C-terminal domain between the DNA binding regions of examples of response 

regulators. In red: the REC is the common N-terminal receiver domain. In blue: the NtrC central AAA+ 

ATPase domain. In green: the C-terminal DNA binding domain. 

 

The tri-helical domain is a simple structure that is complementary to the 

structure of B-DNA. It has a conserved recognition region where the 2
nd

 and 3
rd

 helices 

form the HTH (figure I.9). The HTH was the first DNA-recognition motif discovered, and 

includes a great number of DNA binding proteins, such as: Catabolic Activation Protein 

(CAP), LacI, 434 repressor, Trp repressor and Fis protein
78,79

. 
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Figure I. 9.HTH motif and DNA interaction.Taken from Carl O. Pabo (1992) Annu. Rev. Biochem, 61, 1053-

1095. 

 

I.3. Prokaryotic gene expression and regulation 

In order to comprehend how RR protein acts, it’s important to understand some 

basic concepts of gene regulation in bacteria. Gene transcription begins with the copying of 

a segment of DNA into RNA, and in bacteria gene expression is frequently regulated at this 

level. The RNA polymerase (RNAP) is the enzyme responsible for gene transcription. The 

E.coli RNAP core is constituted by a complex (α2) that forms a stable complex in the 

presence or absence of DNA
80

. Bacteria contain just one form of RNAP. The structure of 

bacterial E.coli and Thermus aquaticus RNAP showed conserved features and both 

resembles as a “crab claw” where β and β subunits forms the two pincers, the α subunit 

forms a dimer and the  constitutes the smallest subunit that is associated primary with the 

β subunits (figure I.10). Moreover, RNAP requires Mg
2+

 for catalytic activity 
81,82

. RNAP 

is incapable of initiate transcription, but the α subunit can recognize promoter elements and 

participates in the initial steps of  RNAP assembly
83,84

. Additionally, the α subunit consist 

of two independent domains: an N-terminal domain (α-NTD) and a C-terminal domain (α-

CTD) that are connected by a flexible linker where the α-CTD is capable of dimerization 

and DNA binding
85,86

. 
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Figure I. 10 Structural organization of each subunit of bacterial core RNAP and the holoenzyme: β (magenta), 

β (yellow), α NTD (green/cyan),  (pink) and  (orange).Taken from Tamaswati Ghosh et al., (2010) FEBS 

Microbiol Rev, 34, 611-627. 

 

The specificity of RNAP is determined by a small key element called sigma () 

which carries the major determinant for promoter recognition
87

. The 70 and 54 are the 

main subunits used by RNAP for transcription initiation. The 70 is a large family of  

factors phylogenetically formed by fours groups
88,89

. The 70 in E.coli belongs to group 1 

(the housekeeping ) and in conjunction with RNAP binds at promoter DNA sequences
90

. 

The 70 is formed by fours structural domains (1.1, 2, 3 and 4) where 1.1 controls 

the DNA binding and 2, 3 and 4 recognize the -10 and -35 conserved boxes
82,91,92

.  

The term holoenzyme is used to identify the complex formed by the core RNAP 

and the  factor. Both holoenzymes form a stable closed complex, and the difference 

between them is that RNAP70 enables immediate transcription initiation, while the 

RNAP54  requires mechano-transcriptional activator proteins. The latter holoenzyme uses 
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ATP hydrolysis to drive a DNA conformational change essential for transcription 

initiation
93

. 

Transcription is divided into three steps: initiation, elongation and termination. 

The general aspects of transcription initiation involve the binding of the holoenzyme to a 

promoter sequence. This initial structure, named closed complex, is converted to an open 

complex in which a localized separation of the two DNA strands occurs. This exposes the 

bases of the coding strand, enabling the base pairing of the ribonucleoside triphosphates 

(NTP) for synthesis of the RNA. The first phosphodiester bound is formed and the  factor 

dissociates from the complex. From this point forward, the core enzyme alone is required 

for extension of the RNA strand until reaching a termination signal when the mRNA and 

the RNAP are released
93

. 

 

I.3.1.Housekeeping 70 and transcriptional factors 

The interaction between the housekeeping RNAP70 and transcriptional factors 

is the base for the discernment between transcription activation and repression. 

Transcriptional factors can be classified as activators or repressors according to their 

interaction with RNAP and promoters. In the next section, some examples illustrate the 

main factors involved in transcriptional regulation by activators and repressors proteins.  

 

I.3.1.1. Transcription activation 

A particular activator molecule binding at a bacterial target promoter constitutes 

the simplest state for RNAP70 transcription initiation. This mechanism acts by stabilizing 

the RNAP70-promoter complex or by accelerating the open complex formation
94

. 

The stability of RNAP70-promoter complex can be exemplified by the MerR 

protein that belongs to mercury-resistence transposon Tn501. The Tn501 contains the mer 

operon which is divergently transcribed and is formed by genes for Hg detection, transport, 

mobilization and enzymatic detoxification, such as merR, merD, merP, merT and merA, 

respectively
95,96

. The MerR protein exhibit transcriptional plasticity once negatively 

controls its own synthesis and also regulates either positively (in the presence of Hg) or 

negatively (in the absence of Hg) the mer genes
97

. The nonoptimal space (19bp) between -

10 and -35 promoter create a barrier for RNAP70 initialization, since the -10 element is 
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misplaced, hindering the interaction with the  subunit. The MerR transcriptional regulator 

causes a twist in the spacer producing a conformation change that allows transcription 

initiation by RNAP70 (figure I.11)
98–100

. 

 

Figure I. 11.Mechanism of RNAP complex stability mediated by an activator protein.Adapted from David J. 

Lee (2012) Annu. Rev. Microbiol, 66: 125-152 

The bacteriophage  cI protein is another example of how transcriptional 

regulators orchestrate its function in order to make efficient transition between the lytic and 

lysogenic cycles. The  cI is primary a homodimer transcriptional repressor of the lytic 

promoters. A cooperative binding between pair of dimers occurs through CTD contact 

when  cI is bound to DNA and this feature improves a strong repression
101–103

. During 

lysogen, preventing transcription of lytic genes and continuous maintenance of  cI are 

important. For constant  cI production, a direct contact between the  cI and 4 subunit of 

RNAP holoenzyme may occur and this interaction induces the  cI own transcriptional 

expression by the open complex formation
104–106

. The  cI binds to a target DNA, either 

upstream of or overlapping the -35 element and the residues E34 and D38 interact with the 

4 subunit. The studies involving  cI protein and RNAP70 showed that activation occurs 

when both partners are bound to DNA
105

 (figure I.12). 
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Figure I. 12. Mechanism of RNAP open complex formation mediated by an activator protein. Adapted from 

David J. Lee (2012) Annu. Rev. Microbiol, 66: 125-152 

 

I.3.2.The 54 regulation 

The 54 recognize promoter sequences usually located at position -24 and -12 

relative to the transcriptional +1 start site. The main characteristic of RNAP54 is the 

inability to open the double strand DNA to form the open complex required for 

transcription initiation given that they depend on activator proteins, ATPases, members of 

the AAA
+
 family. The ATP hydrolysis provide the energy needed to RNAP54 holoenzyme 

to isomerize from closed to open promoter complex.
107

 

 

I.3.2.1. NtrC 

The studies about NtrC (nitrogen regulatory protein C) provide a good source 

of information about how RNAP54 interacts with transcription factors. The well 

characterized promoter glnA of enteric bacteria is recognized by RNAP54 holoenzyme. 

The glnA gene encodes a Glutamine Synthetase (Glns) and the transcription from glnA 

promoter occurs by the activated NtrC in response to nitrogen starvation
108

. The NtrC from 

E. coli is one example of a transcriptional mechano-activator protein that interacts with 

RNAP54 to prompt gene transcription
109

. NtrC binds to DNA located ~80 to 150 

nucleotides upstream from the promoter they control (figure I.13, A) and, upon 

phosphorylation, it contacts RNAP54 by looping out the intermediary DNA (figure I.13, 

B). This process is facilitated by IHF (integration host factor) protein, which stimulates the 

DNA-bending
110

.  
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Figure I. 13.Mechanism of RNAP54 transcriptional activation mediated by NtrC protein. 

 

The NtrC is composed by three domains: a N-terminal receiver domain, a 

central AAA+ ATPase domain, and a C-terminal Fis DNA binding domain. The 

unphosphorylated inactive form of NtrC is a dimer in solution and is able to bind DNA and 

ATP. NtrC has a conserved aspartate (D54) residue at the receiver domain, which is 

phosphorylated by NtrB (HK). Upon phosphorylation, NtrC is active as an oligomer, 

coupling the ATP hydrolysis to the formation of open complexes with RNAP54
111

. The 

central domain of NtrC has two conserved sequences responsible for ATP binding and 

hydrolysis: the Walker A (GX4GKT/S) and Walker B (h4DE). Magnesium is essential to 

ATP binding and its absence results in fivefold decrease of affinity of NtrC to ATP
112

. The 

conserved GAFTGA motif senses the conformation adopted by the transcriptional 

activator. It interacts with the 54 in order to form the transcriptional open complex
113

. The 

conserved R-finger might be involved in the intersubunit catalysis and ATP sensing. The 

oligomerization status constitutes a modulatory manner for ATPase activity. The central 

AAA+ domain is fused to HTH, the last belonging to Fis family. As previous described, Fis 

proteins constitute the simplest architecture of DNA binding structure and are responsible 

for induction of DNA bending 
114

. 
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The bacterial TCS developed many strategies to maintain the abundance of 

proteins. RR have the ability to function as activators and/or repressors, and have the 

capacity to control their own transcriptional level. The self-control of transcription is well 

characterized among RR that participate in TCS circuit
115,116

.  

As stated above, the NtrC controls the glnA promoter in response to low levels 

of nitrogen in bacteria. The glnA codifies the Glutamine synthetase (GlnS) which is 

important during bacteria growth because it is capable to converting glutamate to glutamine 

in medium containing low concentration of ammonia
117,118

. The ntrB/ntrC constitutes the 

TCS circuit for nitrogen assimilation in bacteria
119,120

. Those genes are organized as operon 

as shown in figure I.14. The operon is formed by glnA, ntrB and ntrC loci and contains 

three promoters: glnAp1, glnAp2 and glnLP. The last is responsible for the unique 

autoregulation of TCS by NtrC. NtrC shows an ability to control the expression of the 

operon by interaction with RNAP70 and RNAP54. This interaction is not randomly 

organized and occurs according to nitrogen environmental oscillation. The glnAp1 and 

glnLP are weak promoters used by the RNAP70 for transcription initiation
108

. This 

mechanism is capable to maintain a basal level of transcription of glnA, ntrB and ntrC 

during bacteria growth in nitrogen favorable conditions. On the other hand, the glnAP2 

promoter is required in response to nitrogen deprivation. This promoter is recognized by 

RNAP54 which is considered an alternative way for transcription
121

. In the absence of 

nitrogen source, the activated (phosphorylated) form of NtrC binds to glnAP2 which is 

allowed to initiate transcription by RNAP54 to enhance gnlA, ntrB and ntrC transcription 

level
122

. The NtrB (the sensor) is responsible for NtrC activation. NtrB activity 

(phosphatase and kinase) is modulated by GlnB. GlnB is a protein regulated by small 

molecules that senses the nitrogen status. In the absence of nitrogen source, GlnB disinhibit 

the NtrB which is capable to autophosphorylate and transfer the phosphoryl group to NtrC. 

Then, the phosphorylated NtrC activates the transcription at glnAP2 promoter. The inactive 

state of NtrC binds to glnAP1 and glnLP and acts as a repressor deactivating the operon and 

returning to basal level of transcription
123

. 
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Figure I.14. ntrC/ntrB TCS regulating glnA transcription for nitrogen fixation in bacteria. 

 

I.3.2.2. CpxRA 

The CpxRA in E.coli constitute a typical TCS that display a variety of 

physiological roles (pilus biogenesis
124,125

, induction of expression of heat shock protein 

126,127
, iron transport

128
, virulence

129
 and biofilm formation

130
). Screening tests for 

identification of CpxR (the RR) action indicate that this protein regulates diverse 

physiological activities in bacteria, such as motility, pathogenesis, envelope protein folding 

and copper stress response
131,132

.However, the bacterial envelope stress response is the 

main function attributed to CpxRA
133,134

. The cpxRA operon is formed by cpxA and cpxR, 

consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator 

(CpxR). The CpxA autophosphorylate in response to envelope stress and transfer the 

phosphoryl group to CpxR
135

. Adjacent to cpxRA operon, the cpxP gene is divergently 

transcribed and is controlled by the activated (phosphorylated) form of CpxR
136

.This 

activated CpxR binds to the intergenic region between cpxP and cpxA (consensus sequence 

5GTAAN(6-7)GTAA) and, in conjunction with RpoS (a 38), controls its own promoter 

transcriptional level 
137

. Moreover, the genetic circuit adopted by cpxRA operon can be 

repressed by overproduction of CpxP leading to down regulation of the Cpx pathway.  This 
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repression is mediated by the CpxA sensor domain which is inhibited by CpxP in the 

absence of stress conditions
138,139

. CpxP is a periplasmic protein formed by 147 amino 

acids residues. The CpxP is involved in a variety of cell stress response, such as spheroplast 

formation, and might be involved in monitoring the periplasmic protein folding, acting as a 

chaperone
140–142

. Recently, the crystal structure of CpxP was solved and the protein 

presents as a positively charged α-helical dimer. CpxP contain a conserved LTXXQ motif 

which may be important for the protein function given that mutations at this site can cause 

structure perturbation and disrupt the Cpx inhibitory pathway
143

. A general mechanism of 

Cpx pathway is presented in figure I.15. 

 

Figure I.15. Mechanism of cpx regulation during envelope stress response. 

 

I.3.2.3. ZraSR 

The ZraSR is another prototypical bacterial TCS formed by a sensor histidine 

kinase (ZraS) and a response regulator (ZraR) which activates the transcription of zraP 

gene in response to high concentration of Zn
2+

 and Pb
2+

.This system was previous related 

with the genes responsible for hydrogenase 3 formation, given that its location was 
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positioned upstream of hydL gene
144

. The genes zraSR and zraP are divergently transcribed 

(figure I.16). The ZraR is the transcriptional regulator that binds to the intergenic region 

between zraS and zraP. Their gene expression requires the presence of 54 in vivo and two 

possible 54 binding sites were identified for zraSR and zraP promoters regions. In the 

absence of metal, a basal level of transcription was verified for zraS gene suggesting the 

presence of a constitutive 70 promoter
145

. The zraSR TCS is not well comprehended but 

have been associated with Salmonella infection and its intrinsic Zn
2+

/ Pb
2+

 tolerance have 

been used to design cell based biosensors sensible to these metals
146,147

. The ZraP, also 

known as YJAI, is a predicted monomer with a molecular mass of 13.5kDa with affinity to 

zinc, cobalt and cadmium. However, ZraP exhibit more affinity to Zn
2+

and its 

transcriptional level is highly activated in the presence of this metal, characterizing ZraP as 

an essential protein involved in the bacterial zinc tolerance
148,149

.ZraP is a periplasmic 

protein that forms higher-order structure (15 ZraP monomers) in the presence of ZnCl2 and 

acts as a chaperone that suppresses the thermal aggregation of proteins in the presence of 

zinc. Moreover, ZraP is a member of bacterial Cpx family and acts as a repressor of ZraSR 

activity
150

.  

 

 

Figure I.16. zraP and zraRS genes involved in Zn
2+

 and Pb
2+

tolerance in bacteria. 

 

The ZraR follows the same domain architecture of NtrC: a REC, a central and a DNA 

binding domain. Until now, the full length structure of ZraR wasn’t solved. Nevertheless, the 

structure of the central and CTD was determinate by crystallography. The central domain of ZraR 

presented as a hexameric ring typical of AAA
+
 proteins and the DNA binding domain presented as 

a dimer (figure I.17). The hexameric structure was observed in the presence of different nucleotides 

implying that nucleotides play an important role for ZraR oligomerization. The GAFTGA motif was 

observed at the tip of the L1 loop, near to the hexameric pore and biochemical evidences showed 

that  mutations at this motif usually abolish the interaction between the transcriptional factors and 

54
151

.   
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Figure I.17. The crystal strucuture of ZraR. The central (C) and DNA binding domain (D) are highlighted. 

Adapted from Matheus Rappas et al., (2007) Curr. Opin. Struct. Biol., 17: 110-116 

 

I.3.2.4. torRTS system 

Negative autoregulation seems to be less common among TCS but can be 

represented by the torRTS system involved in the E.coli trimethylamine N-oxide (TMAO) 

respiratory circuit. E.coli is a facultative anaerobe microorganism that can use TMAO (an 

organic compound widespread in nature) as an alternative electron acceptor for bacterial 

anaerobic respiration
152

.The tor system is formed by two divergent operons: the torRTS and 

torCAD (figure I.18). The torRTS codifies a response regulator (TorR), a periplasmic 

protein (TorT) and a sensor histidine kinase (TorS) forming a phosphorelay cascade 

responsible for TMAO regulation 
153,154

. The torCAD codifies a c-type cytochrome (TorC), 

a TMAO-terminal reductase (TorA) and a TorA chaperone (TorD)
155

. The torCAD operon 

is under the control of the presence TMAO. TMAO binds to the TorT which induces its 

conformational change leading to TorT interaction with TorS. This action is accompanied 

by the TorS activation
156

. The TorS is formed by a N-terminal detector region anchored 

toward the periplasm, a transmitter cytoplasmic domain with three phosphorylation sites 

and by an alternative transmitter domain involved in phosphotransfer to the response 
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regulator TorR
157

. The TorR (active and inactive forms) binds to torR-torC intergenic 

region at four direct repeats called tor boxes dictating the action of the RR: as a negative 

autoregulator if TorR binds to box 1 and 2 and as a torCAD activator if binds to box 3 and 

4. The negative autoregulation occurs because TorR overlaps the -10 transcription start site 

thus inhibiting the access by the RNAP
158

. The active form of TorR enhances the 

transcriptional level of torCAD operon. Therefore, in the presence of TMAO the torCAD is 

codified. The pentahaemic c-type cytochrome TorC is involved in electron transfer to 

TorA. TorA is a periplasmic molybdopterin responsible for performing the reduction of 

TMAO in trimethyllamine (TMA), a volatile compound. The incorporation of molybdenum 

cofactor into TorA occurs at cytoplasm and is important to the translocation of TorA to the 

periplasm
159

. This maturation process involve the chaperone activity of TorD and the TorA 

translocation requires the Twin Arginin Translocation (TAT) system
160,161

. 

 
Figure I.18. The torRTS and torCAD system. 
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I.4. Hypothesis of the present study 

MorP is a protein that may be involved with molybdenum homeostasis in 

Desulfovibrio alaskensis G20
49

. In order to understand how morPRS genes are regulate, our 

study aims to elucidate if the putative regulator codified by Dde_0109 (morR) binds to the 

intergenic region between Dde_0110 (morS) and Dde_0111 (morP). This study comprises 

an application of some DNA-protein interactions techniques associated with genetic and 

protein bioinformatics analysis which tried to elucidate how MorR could act as a 

transcriptional regulatory protein involved in Mo homeostasis in D. alaskensis G20. 

Interaction with small phosphodonors as protein phosphorylate agents were also 

investigated. 
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morR gene, cloning and MorR expression 

 

Context 

In order to obtain the putative regulator MorR for biochemical characterization, the gene 

Dde_0109 was cloned using a pET system. Then, the recombinant plasmid was isolated and 

the competent cells BL21 (DE3) were transformed. This method provides advantages for 

protein purification toward native protein expression, such as: high growth rates of E.coli 

joined with high percentage of their total protein as the expressed gene product and control 

of the gene transcription. Finally, the protein was expressed as soluble form which enables 

subsequent protein purification. Moreover, the genetic context of morR gene is also present 

in this chapter. Therefore, the analysis revealed that this gene shares high similarities with 

other response regulators that belong to two component system that are present in Gram-

negative bacteria. Moreover, morR is located downstream of morS (a putative histidine 

kinase sensor) and morP gene (previously associated with Mo homeostasis). The 

bioinformatics analysis of the intergenic region between morS and morP revealed the 

presence of divergent conserved boxes that may be associated with the genetic control of 

the entire system via 70 and 54. 
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II.1. Methodology 

II.1.1 Molecular cloning of morR 

Genetic engineering techniques were applied in order to obtain a recombinant 

plasmid carrying the morR gene from D.alaskensis G20. The gene was amplified, cloned 

on pET expression-vector and transformed into different E.coli competent cells used first 

for plasmid multiplication (Nova Blue Giga Single Competent Cells, Novagen) and after 

for gene transcription induction (BL21 (DE3) Competent Cells, Nzytech).  

 

II.1.1.1 Cloning vector characteristic 

The pET system is a set of cloning vectors capable of maintaining a gene under 

the control of a strong bacteriophage T7 promoter. The gene transcription is induced by T7 

RNA polymerase. T7 RNA polymerase needs to be provided by the hosted cell, and the 

expression is induced by Isopropyl β-D-1-thiogalactopyranoside (IPTG)
1
. 

The pET-21c was chosen as cloning vector for this study, since it fulfills some 

principal prerequisites: it has the correct insert size and cloning sites, it is easy to handle 

and available in our laboratory. The map of pET-21c is presented in figure II.1.    

 

Figure II. 1. pET21C cloning vector. A: the cloning vector map. Ap: ampicillin resistance. Ori: origin of 

replication. lacI: lac repressor. T7 lac: 25bp lac operator sequence. f1 origin: bacteriophage origin of 

replication, and restriction sites are presented. B: The cloning/ expression region is evidenced. Adapted from 

Novagen pet-21-a-d (+) and Novagen 2002-2003 Catalog chapter 5. 
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II.1.1.2 DNA restriction mapping 

The morR gene is composed by 1401 nucleotides. A restriction map of morR 

was created using a bioinformatic tool available at NEBcutter V.2.0 

(http://tools.neb.com/NEBcutter2/). This online program compares the target DNA 

sequence with E.coli genetic code, and performs a screening for all NEB (New England 

Biolabs) restriction enzymes. The restriction map evaluation acts as an exclusion criterion, 

showing which restriction enzyme cut the target gene.  

For pET-21c, the NdeI is the preferable restriction enzyme to start the cloning 

procedure given that its restriction site is located immediately downstream of the ribosome 

binding site (rbs) (figure II.1). However, for experimental approaches, the use of NdeI was 

banished once the restriction map (Figure II.2) showed that this enzyme can also cut the 

morR gene sequence. For that reason, the NheI was selected as the first enzyme to start the 

cloning procedure. However, this experimental selection predicted the creation of three 

additional amino acids in the N-terminal of the MorR sequence: one methionine, one 

alanine and one serine. The evaluation of the possibilities of cloning using the pET21c 

allowed the selection of NheI and EcoRI as restriction enzymes for morR cloning.  

 

 

 

 

Figure II. 2. Restriction map for morR gene obtained from NEBcutter. The scale bar represents the number of 

nucleotides (1401bp) of morR from Desulfovibrio alaskensis G20, and on the top the correspondent number 

of aminoacids residues (466 aa). The display below the scale shows the single cutter restriction enzymes sites 

for this gene sequence. Sites show in red have blunt ends, blue have 5` extensions and green 3` extensions. 

Enzymes marked with * are susceptible to DNA methylation. 

http://tools.neb.com/NEBcutter2/
javascript:;
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II.1.1.3 DNA amplification 

A pair of oligonucleotides (table II.1) was designed based on morR DNA 

sequence. Flanking regions containing the restriction sites for NheI and EcoRI were added.  

 

Table II. 1. Primers designed for PCR reaction. Primer orientation, sequence and restriction endonuclease site 

are shown. Restriction sites are underlined in the primer sequence. 

 

The primers were resuspended in deionized water according to manufacturer`s 

instruction, and the PCR reaction was carried out using a High Fidelity PCR Enzyme Mix 

(Fermentas) with some modification to the manufacturer`s procedure (table II.2).  

 

Table II. 2. The PCR protocol for morR gene amplification. The PCR mixture was designed for a total 

reaction volume of 20 µl. 

Reagent Final concentration/or volume 

10X High Fidelity PCR buffer with 15mM MgCl2 1x/2.5μL 

DNTP mix, 1mM each 0.27mM each 

Forward primer 0.27μM 

Reverse primer 0.27μM 

Template genomic DNA 10pg – 1μg 

High Fidelity PCR Enzyme 0.5 units 

Deionized water up to 20 μL 

 

 

The PCR was performed using a MyCycler thermal cycling instrument 

(BioRad). The experimental conditions are schematically represented in figure II.3. 

 

 

Primer orientation Sequence Restriction 

enzyme 

Forward 5’ AGGAGCTAGCATGACAAACGCTCC3’ NheI 

Reverse 5’  GGCCGAATTCTTATTCCATGCCGT  3’ EcoRI 
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Figure II.3. Scheme of the PCR cycle conditions. PCR thermal and time cycling are schematically 

represented. 

 

II.1.1.4 Vector and fragment digestion with restriction enzymes 

The expression vector pET-21c and PCR fragment containing morR were used 

as template for digestion with NheI and EcoRI endonuclease enzymes in order to create 

cohesive flanking regions. The digestion was performed in 1X Buffer Tango™ 

(Fermentas), and 16 units of each restriction enzyme were added sequentially. The total 

reaction time was 4h (2 hours for each enzyme) at 37ºC (table II.3).  The product of 

reaction was then purified using NZY gel pure (Nzytech), and visualized in 1% agarose gel.  

 

Table II. 3. pET-21c and morR PCR fragment preparation with restriction enzymes. Amplified morR PCR 

product and pET-21c were digested with endonuclease enzymes NheI and EcoRI as follows. 

 

II.1.1.5 Vector and insert ligation 

The vector and insert ligation was performed using Rapid DNA Ligation Kit 

(Roche) according to the manufacturer’s instruction. The ratio of expression vector to insert 

was 1:3, e.g. 50 ng linearized plasmid plus 150 ng insert DNA. Vector and insert were 

mixed in 1X DNA Dilution Buffer, and then incubated with T4 DNA Ligation Buffer and 

T4 DNA Ligase for 30 minutes at room temperature.  

Reagent pET-21c  PCR fragment 

Nuclease- free water 5 μL  15 μL 

10X Buffer Tango 
TM

 4 μL  4 μL 

Sample 30μL (1μg/μl)  20μL (0.5 μg/μl) 

NheI 16 units  16 units 

 2 hoursat 37ºC 

EcoRI 16 units  16 units 

 2 hoursat 37ºC 



Chapter II 

 

51 

 

The Nova Blue Giga Single Competent cells were immediately transformed 

with the recombinant plasmid. According to a standard protocol, the cells were thawed on 

ice, and 1µL of the plasmidial DNA was added. The mixture was incubated on ice for 5 

min, heated during 30 sec in a 42ºC water bath and incubated on ice for 2 min more; and 

250 µL of Super Optimal Broth (SOC) medium were then added. The cells grew for 1 h, 

spread in Luria Broth (LB) agarose plate supplemented with ampicillin (100 µg/ml), and 

grew overnight at 37ºC. Five colonies were selected. They were used as DNA template for 

PCR using the primers that amplify for morR (table II.1). This procedure confirmed the 

presence of morR gene in the plasmid. 

The PCR positive colonies were isolated, and grown overnight in 5ml of LB 

medium supplemented with ampicillin (100 µg/ml). The plasmids were extracted from 

competent cells using a small-scale extraction kit from Nzytech. The 5ml of bacterial 

growth were centrifuged at 11.000 rpm, the pellet was lysed with buffer A1 (a Tris-EDTA 

Buffer, but the concentration is not provided by the manufacturer), centrifuged, the 

supernatant was then loaded into a spin column and centrifuged for 1 min at 11.000 rpm. 

The spin columns were washed with buffer AY (a mixture of guanidine hydrochloride with 

ethanol, but the concentration is not provided by the manufacturer), dried, and the plasmids 

were eluted with buffer AE (a solution of water). Finally, the plasmids were visualized in 

1% agarose gel. An aliquot of 20μl (100ng/µl) of each plasmid was analyzed by DNA 

sequencing reaction in order to evaluate if the cloning had succeed.  The sequencing was 

carried out using T7 promoter primer (5'-TAATACGACTCACTATAGGG-3') and T7 

terminator primer (5'-GCTAGTTATTGCTCAGCGG-3'), using the BigDye Terminator 3 

(Applied Biosystems) The reaction product was purified by gel filtration and resolved in an 

ABI 3730XL sequencer. The resulting sequences were analyzed in order to identify its 

correctness and the conserved nucleotide sequences from the vector that are important for 

protein expression , such as the ribosome binding site (rbs) and T7 promoter, that could 

result from the cloning process. The cloning and transformation steps are represented in 

figure II.4. 
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Figure II.4. Main principal steps of morR gene cloning. A) pET-21c (+) and PCR fragment containing morR 

gene with the recognition sites for NheI (in red) and EcoRI (in purple). B) pET-21c (+) and PCR fragment 

containing morR gene after digestion protocol exhibiting the cohesive overhangs produced. C)recombinant 

plasmid carrying morR gene after ligation, and subsequent plasmid transformation on Giga Blues competent 

cells. D)recombinant bacterial colonies in LB agar plate, isolation, and plasmid extraction and purification. 

 

II.1.2 Protein expression 

II.1.2.1 Small scale protein expression and optimization 

The Bl21 (DE3) competent cells (Nzytech) was transformed with the 

recombinant plasmid, pETMorR, according to the manufacturer`s protocol with some 

modifications. 1µL of the recombinant plasmid DNA (0.2 to 50ng DNA) was added to 25 

µL of competent cells, and the mixture was incubated on ice for 30 minutes. The cells were 

submitted to a heat shock treatment for 40 seconds at 42ºC in water bath, and subsequently 

incubated on ice for 2 minutes. 113µL of SOC Medium was added, and the cells grew for 1 

hour, at 37ºC, on an orbital shaker at 225 rpm. After this period, 50 µl of the transformed 
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cells were spread on LB agar plates containing 100µg/ml ampicillin, and incubated 

overnight at 37ºC. 

A well separated colony was selected, picked-up and submitted to growth in 

25ml of LB medium supplemented with 100 µg/ml ampicillin in order to obtain a pre-

inoculum. The pre-inoculum grew overnight at 37ºC, with agitation (225 rpm). 

The small scale protein expression was optimized taking into account three 

different parameters: the optical density at 600nm (OD600) (0.5 and 1.0), the IPTG 

concentration (0, 0.5 and 1 mM) and time of induction (zero hour, 4 hours and overnight). 

The log phase of bacterial cells growth is the ideal stage to induce protein expression, and 

OD600 around 0.5 to 1.5 is a good range of choice. The IPTG concentration should be also 

optimized, since its concentration needs to be maintained along the experiment. 

The experiment was performed by inoculating 1ml of the pre-inoculum in 100 

ml of LB medium (100 µg/ml ampicillin). After inoculation, the cells grew at 37ºC, in an 

orbital shaker at 225 rpm, until the OD600 reached 0.5. An aliquot of 5ml was collected 

immediately before induction (time zero hour). The cells were induced with 0, 0.5 and 1 

mM of IPTG. For each tested conditions, an aliquot of 5ml was collected and stored at 4ºC 

after 4 hours and overnight period. The same procedure was performed when cells reached 

an OD600 of 1.0 (figure II.5). 
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Figure II.5..Small scale MorR expression. The MorR expression was optimized according to the experimental 

conditions: the optical density at 600nm (OD600) (0.5 and 1.0), the IPTG concentration (0, 0.5 and 1 mM) and 

time (T) of induction (zero hours, 4 hours and overnight). 

 

In order to adjust the amount of bacterial cells present in each different aliquot, 

the values of OD600 were normalized for 1.2, and this procedure allowed protein expression 

visualization by Sodium Dodecyl Sulfate-Polyacrilamide Gel Electrophoresis (SDS-

PAGE). The cells were centrifuged at 14.000 rpm for 10 minutes; the pellet was 

resuspended in 40μl of SDS sample buffer, and boiled for 8 min. An aliquot of 5μl was then 

analyzed by SDS-PAGE in 12.5% acrylamide gels. 

 

II.1.2.2 Large scale protein expression 

In order to obtain amounts of protein enabling MorR purification the cells were 

grown in large scale. A single colony was selected from a plate containing the transformed 

BL21 (DE3) cells carrying the recombinant plasmid pETMorR, and placed in 80 ml of LB 

medium supplemented with 100µg/ml ampicillin to obtain a pre-inoculum. The pre-

inoculum grew overnight at 37ºC, in an orbital shaker at 225 rpm. A 10 ml sample of the 

pre-inoculum was added to each 1 L of LB medium supplemented with 100µg/ml 

ampicillin, until a total volume of 6 L. When cells reach an OD600nm of 1.0, 1 mM of IPTG 
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was added to induce heterologous morR transcription, and, consequently, protein 

expression. 

After an overnight growth period, the cells were harvested by centrifugation at 

8.000 rpm for 16 min at 4°C, and after resuspended in 10mM Tris-HCl, pH 7.6 (3ml/g of 

wet cells). The cells were thermally disrupted by rapid liquid nitrogen freezing and thawing 

processes, followed by mechanical lysis by French-press at 28,000 psi. Proteolytic activity 

was inhibited with EDTA-free Protease Inhibitor Cocktail (Roche), and DNase I from 

bovine pancreas (Roche) was added to remove (undesirable) single and double strand 

DNA. Unbroken cells and cell debris were removed by centrifugation at 8.000 rpm for 16 

min at 4ºC.The soluble extract was obtained by ultracentrifugation at 44.000 rpm for 1h at 

4ºC.  

 

II.2. Results and Discussion 

II.2.1 morR genomic context  

Genomic analysis of D. alaskensis G20 revealed the presence of a putative 

responsive regulatory protein codified by Dde_0109 gene, corresponding to morR, which is 

formed by 1401 nucleotides (GI: 3758851)
2
 and is annotated in the genome as zraR, zinc 

associated response regulator. A Blast search revealed that this gene shares common 

features with other transcriptional regulatory genes present in different gram negative 

bacteria (figure II.6).  

The main characteristic of this type of transcriptional regulatory genes is the 

genomic position and orientation which reveals the presence of surrounding genes 

classically involved in signal transduction, and the divergent gene regulation profile. The 

morR gene is conserved on Desulfovibrio genus, but also has a good similarity with other 

regulatory genes (zraR) present in some pathogenic bacteria. A megablast search revealed 

that morR shares 76% of sequence homology with transcriptional regulator zraR in 

Desulfovibrio vulgaris str. Hildenborough,  72% with fis transcriptional regulators in 

Desulfovibrio vulgaris str.`Miyazaki F` and 60% with three others zraR transcriptional 

regulator present in Escherichia coli O127:H6 str. E2348/69; Shigellaflexneri 2a str. 301 

and Salmonella entericaserovar Typhimurium LT2.   
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The similarity arises on the fact that all these bacterial species are Gram-

negative (containing a periplasmic space), and the zraR gene is located downstream of a 

sensor histidine kinase (zraS) and by a gene that codifies a periplasmic protein (zraP), 

characterizing a type of gene rearrangement classically involved in TCS. This architecture 

is in agreement with the idea that genes responsible for codifying regulatory proteins are 

often situated near their target genes
3
. The general conservation of this type of gene 

rearrangement among some gram negative bacteria could indicate ecological preferences 

and biochemical signaling capacity under stress conditions
4
. Members of zraRSP TCS are 

divergently transcribed from zraSP intergenic region, and are involved, primarily, with a 

zinc associated response. ZraP is a periplasmic protein involved in envelope stress 

response, metal homeostasis and acts as a chaperone
5,6,7

. 

 

Figure II.6. Genomic comparison and organization between morR and other similar response regulators in 

different types of gram negative bacteria. The genes are represented by arrows and the arrow direction shows 

the genomic orientation. The NCBI gene symbol is presented above and the description is inside the arrows. 

To facilitate the comprehension of this study, the morR, morS and morP nomenclature isn’t following the 

NCBI gene description. The scheme is organized according to megablast result taking into consideration the 

percentage of similarity (76% for zraR from D. vulgaris H, 72% for fis from D.vulgaris MF and 60% for zraR 

from E.coli O127:H6; Shigella F301 and S. Typhymurium LT2). 
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The morP gene (Dde_0111), annotated in the genome as zraP, was found to be 

involved in Mo regulatory mechanisms in D.alaskensis G20;it is composed by 519 

nucleotides
2
. According to NCBI datatabase, it codifies a putative zinc resistance-

associated protein composed by 172 amino acids residues (GI:78355158). This protein 

contains a conserved CpxP domain identified in the amino acid sequence from residue 65 to 

132. Proteins belonging to CpxP family have a periplasmic location, they are a part of TCS, 

and act as a global modulator of cell-envelope stress in gram-negative bacteria
8
. 

The morS gene (Dde_0110) is formed by 1779 nucleotides, and codifies a 

putative histidine kinase (NtrB) containing 592 amino acids residues (GI: 78355157). 

According to Simple Modular Architecture Research Tool (SMART, http://smart.embl-

heidelberg.de/), the translated sequence codifies a protein with five main conserved 

regions: two transmembrane domains, one signal sensor PAS domain (Per, Arnt, Sim 

superfamily), one HK A domain and one HK like ATPase domain.  Proteins displaying this 

type of secondary structure architecture may be acting as biological sensors, and are 

involved in phosphorelay processes
9
. 

DNA analysis of the intergenic region between morP and morS displayed the 

presence of four putative promoters clustered in a double manner. Each cluster is composed 

by two promoters sequences oriented in an opposite direction.  

The first cluster region, called σ54-P, contains – 24 (GGCACG) and -12 

(TTGC), (core consensus TGGCACG N4 TTGC)conserved promoters relative to the 

predictive morP transcriptional +1 start
2
. These conserved sequences might be responsible 

for σ54 binding. Likewise, a ribosome binding site (rbs) is present 4 nucleotides upstream of 

morP gene.  

The second cluster, called σ70-P, comprises -35 (TACACC) and -10 

(GTATAAA) conserved boxes (core consensus TTGACA N17 TATAAT), that are located 

upstream of the predictive morS transcriptional +1 start site. This second cluster was 

identified by the Prediction of Bacterial Promoters (BProm) software, and is a putative σ70 

binding site. Additionally, other conserved features compose this cluster, such as: a 

conserved rbs situated five nucleotides upstream of morS gene, and a conserved 16 bp 

spacer located between -35 and -10
10,11,12

. A schematic overview on the genomic context 

and intronic region between morP and morS is showed in figure II.7. 

http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
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CATTGCCGTCACCTTGCGTGTTCAATATTTGTACAGCGTCTATTTTTTATACAGTGCTTT 

GTAACGGCAGTGGAACGCACAAGTTATAAACATGTCGCAGATAAAAAATATGTCACGAAA 

 

TTCTCAAAGGTGTATGTTTTTTATACACTGACTTTCACTGTACTGTCCCGCTTCTGTGCA 

AAGAGTTTCCACATACAAAAAATATGTGACTGAAAGTGACATGACAGGGCGAAGACACGT 

 

TAACATGCCGGTTTGTTGTGCGATATTGCTTCATGTGCGTGTATGGCACGCCTGTTGCTC 

ATTGTACGGCCAAACAACACGCTATAACGAAGTACACGCACATACCGTGCGGACAACGAG 

 

TATCATGAGCAAATGCAAGCAACGCACCAGAAGGTGCACAAGGTAATCCGGAGGACATT 

ATAGTACTCGTTTACGTTCGTTGCGTGGTCTTCCACGTGTTCCATTAGGCCTCCTGTAA 

 

ATG 

TAC 

Figure II.7. Genomic context of morP, morS and morR. A) Genomic orientation. B) Intergenic region 

between morP and morS showing the conserved boxes, and ATG start codons. Arrows indicate the 

transcription direction. 

 

The genomic profile presented for morP, morS and morR indicates that those 

genes might be transcribed by divergent and non-overlapping promoters, and such a set of 

genes would be controlled by the cognitive response regulator: MorR. 

 

II.2.2 Cloning                                                                              

Classical genetic engineering tools were used as a strategy to obtain a 

recombinant plasmid carrying de morR gene.  The objective was to transform a competent 

cell with the recombinant plasmid, and control the morR transcriptional level and 

expression.  
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morP 
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The morR gene from D. alaskensis G20 was amplified by PCR and visualized 

in 1% agarose gel (figure II.8 [1]). The result shows the presence of a single band in 

agarose gel between 1000 and 1500 bp corresponding to the morR expected result 

(1401bp). 

The PCR product and pET-21c (+) were digested with NheI and EcoRI, and no 

star activity was visualized. Both were purified and visualized in 1% agarose gel before 

ligation (figure II.8 [2]). After ligation, the recombinant plasmid was transformed in Nova 

Blues Giga Blues Competent Cells. Following bacterial growth, five colonies were 

selected, and identified by PCR. Four of the colonies were positive (figure II.9 [3]), and the 

resulting plasmid, carrying the morR gene, was named as pETMorR. The plasmids were 

isolated from competent cells and purified (figure II.9 [4]). Then, they were submitted to 

DNA sequencing and the results showed no mutations and the gene was correctly oriented 

allowing induction of gene transcription and, subsequent, protein expression. 

 

 

 

Figure II.8. Different steps of molecular cloning process: PCR and pure insert and plasmid after digestion. A): 

a) 1kb molecular ladder, b) PCR of morR gene. B): a) 1kb molecular ladder, b) purified digested PCR 

product, c) purified digested pET-21c (+). Running was performed in 1% agarose gel, in buffer TAE 1X, 

during 25 minutes at 100 V. 
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Figure II.9. Different steps of molecular cloning process: colony PCR and plasmid extraction. A): a) 1kb 

molecular ladder, b-f) Colony PCR: each band corresponds to a single recombinant colony. B): a) 1kb 

molecular ladder, b-e) Isolated recombinant plasmids, each band correspond to a single recombinant plasmid. 

Running was performed in 1% agarose gel, in buffer TAE 1X, during 25 minutes at 100 V.  

The sequencing analysis of the recombinant plasmid revealed that morR was 

preceded by the rbs binding site, and that no DNA mutation was created during the cloning 

procedure. The presence of the T7 promoter was not possible to verify through sequencing 

reaction.  

 

II.2.3 Protein expression 

II.2.3.1. Small scale expression 

A small scale protein expression was performed in order to evaluate if morR 

was under T7 promoter control, and to optimize the growth and induction conditions. The 

control parameters evaluated were the OD600 (0.5 and 1.0), the IPTG concentration (0, 0.5 

and 1.0 mM), and the time of induction (4h and overnight).  

The results show that the transcription of morR is induced in all the conditions 

tested (figure II.10 and II.11). However, the majority of protein was obtained when bacteria 

was induced at OD600 of 1.0 with 1mM of IPTG and during an overnight period (figure 

II.11,[J]). Thus, this condition was chosen for the future experiments.  The control 

experiment, with no IPTG induction, revealed a significant degree of morR expression 

(figure II.10 [C, D] and figure II.11 [B, C]) indicating a misrule of the T7 RNA polymerase 

expression from lacUV5 promoter which represent a low degree of expression control. 

However, this same result suggests that MorR is a nontoxic product for E.coli, since the 

growth was not inhibited for this basal level of transcription.  
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Figure II. 10. Small scale protein expression at OD600 0.5. A 12.5% polyacrylamide SDS-PAGE showing the 

expression profile of transformed BL21 (DE3) competent cells induced at OD 0.5. A) Ladders. B) Cells with 

0 mM IPTG at zero hour. C) Cells with 0 mM IPTG after 4 hour. D) Cells with 0 mM IPTG after an overnight 

period. E) Cells induced with 0.5 mM IPTG at zero hour. F) Cells induced with 0.5 mM IPTG after 4 hours. 

G) Cells induced with 0.5 mM IPTG after an overnight period. H) Cells induced with 1 mM IPTG at zero 

hour. I) Cells induced with 1 mM IPTG after 4 hours. J) Cells induced with 1mM IPTG after an overnight 

period. 

 

Figure II. 11. Small scale protein expression at OD600 1.0. A 12.5% polyacrylamide SDS-PAGE showing the 

expression profile of transformed BL21 (DE3) competent cells induced at OD 1.0. A) Cells with 0 mM IPTG 

at zero hour. B) Cells with 0 mM IPTG after 4 hours. C) Cells with 0mm IPTG after an overnight period. D) 

Ladders (116, 66.2, 45, 35 and 25 kDa). E) Cells induced with 0.5 mM IPTG at zero hour. F) Cells induced 

with 0.5 mM IPTG after 4 hours. G) Cells induced with 0.5 mM IPTG after an overnight period. H) Cells 

induced with 1 mM IPTG at zero hour. I) Cells induced with 1 mM IPTG after 4 hours. J) Cells induced with 

1mM IPTG after an overnight period. 

The optimal condition chosen for protein expression was O.D600 of 1.0 with 

1mm of IPTG after an overnight period (figure II.11J) given that the results showed a high 

amount of MorR protein along this condition. 

 

II.2.3.2. Large scale expression 

The large scale protein expression was performed in order to evaluate where the 

expressed protein was localized in the cell and also as a preliminary step before protein 

purification. The experiment was performed in Bl21 (DE3) cells and following the 
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experimental conditions optimized in the small scale protein expression. This experiment is 

identify if the the protein is in the soluble fraction and not present as insoluble inclusion 

bodies or membrane protein. The heterologous protein was present in all cellular fractions 

with the highest amount existing as soluble form (figure II.12). 

 

Figure II. 12. 12.5% SDS-PAGE showing the cellular localization of MorR. A) Ladder. B) Cell debris 

fraction. C) Membrane fraction. D) Soluble fraction.  

 

The presence of a considerable amount of protein in the membrane fraction 

indicates an absence of an optimal condition during the cell lysis. Moreover, the presence 

of a high quantity of protein in the cell debris fraction may be related with an high 

percentage of protein expression which can block a correct protein folding and, therefore, 

part of the protein may be not available as soluble form. 
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MorR biochemical characterization and DNA binding 

 

Context 

The response regulatory proteins are mainly regulated by post-translational modifications, 

such as phosphorylation.  The phosphorylation status and effect have been studied in some 

RR proteins that belong to TCS. Usually, those proteins are activated by phosphorylation 

which induces protein conformational changes that enhance specific transcriptional 

regulatory networks, usually through DNA binding. The biochemical characterization is the 

first step to perform protein studies. In order to study MorR, the recombinant plasmid 

carrying the morR gene was induced to express the MorR protein. The protein was purified 

as soluble form and was characterized. MorR has an extinction coefficient of 280= 30823 

M
-1

 cm
-1 

and
 
the ICP-AES revealed the absence of Mg, Zn, Mo and Cu

. 
The MorR was 

purified as a monomer and does not contain any phospho amino acid in its structure.  In 

order to identify if MorR binds to DNA, the intergenic region between morS and morP was 

amplified and purified. The EMSA experiment revealed that MorR binds to the target 

intergenic region and the DNaseI footprinting experiment showed the site of binding. The 

interaction between phosphodonors and RR are reviewed given that RRs like MorR are 

susceptible to phosphorylation. In this way, the MorR was used in interaction studies with 

small phosphodonors in order to visualize possible conformational changes. The oligomeric 

status of MorR was not altered upon incubation with acetylphosphate and 

phosphoramidate.  
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III.1.Introduction 

III.1.1. Phosphorylation and response regulators (RR) 

Among RR proteins belonging to TCS, phosphorylation is the main post-

translational signal capable to induce conformational changes and protein output 

response.Acetylation of RR has been reported, but only few examples are available
1,2

. The 

oligomeric states of RR have hardly been investigated, and post-translational modifications 

(e.g., phosphorylation) have been associated with the transformation of inactive 

monomers/dimers to active oligomers. Small phosphodonors, such as acetylphosphate, 

ammonium hydrogen phosphoramidate, carbamoyl phosphate and beryllofluoride have 

been identified as RR oligomer`s inducers
3,4,5,6

. 

As previously mentioned in chapter II, the MorR shares sequence similarities 

with ZraR and NtrC. To date, the ZraR (also known as HydG) has been characterized as a 

zinc/lead responsive protein which binds in the intergenic region between zraP and hydH
7
. 

However, the ZraR mechanisms of DNA binding and post-translational modification are 

not well comprehended. On the other hand, research on the NtrC oligomerization coupled 

to phosphorylation progressed in recent years and can serve as an example for the present 

study.  

A variety of analytical tools have been applied in order to elucidate RR 

oligomerization upon phosphorylation, such as: gel filtration and reverse-phase 

chromatography, fluorescence spectroscopy, scanning force microscopy and analytical 

ultracentrifugation. Changes in oligomeric state were investigated in proteins belonging to 

OmpR family (OmpR, DrrB, MtrA and NblR). OmpR is a TCS transcriptional activator 

protein involved in the regulation of ompC and ompF genes, which codifies two major 

outer membrane porin (OmpC and OmpF) in E.coli
8
. The OmpR family is characterized by 

the presence of two distinct domains: a N-terminal receiver domain with a conserved 

phosphoacceptor D55, and a C-terminal DNA binding wHTH domain
9
. Thermotoga 

maritima DrrB is a RR which can serve as a model for structural comprehension of OmpR 

family. The crystal structure of the protein has been solved. The oligomeric state of DrrB 

changed after incubation with ammonium hydrogen phosphoramidate. A small amount (30 

µM) of DrrB was incubated with 100 mM of ammonium hydrogen phosphoramidate for 10 

min at 60ºC. The sample was injected in a Superdex 75 10/30, and the unphosphorylated 
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DrrB presented a molecular mass of 22.2 kDa, and the phosphorylated DrrB had a 

molecular mass of 42.1 kDa. The results showed that DrrB forms a dimer when 

phosphorylated
10

.  

The role of phosphorylation was also investigated for Corynebacterium 

glutamicum MtrA, a RR involved in transcriptional repression and activation of genes 

required during hyperosmotic stress and cell wall peptidase secretion
11,12

. A HiLoad 26/60 

Superdex 200 was used to monitor protein oligomerization, and ammonium hydrogen 

phosphoramidate (and not acetylphosphate) led to dimerization of MtrA (56.6 kDa). In both 

cases, the experimental concentration of phosphodonor was 50 mM. Moreover, the binding 

affinity between MtrA and DNA was also improved by ammonium hydrogen 

phosphoramidate
11

. 

The use of acetylphosphate as a protein conformational inducer was also 

investigated by analytical gel filtration for cyanobacteria Synechococcus sp NblR. NblR is a 

transcriptional activator of nblA gene that is involved in nutrient starvation response 

exhibiting a phosphorylation-independent activity
13,14

. Gel filtration was carried out using a 

Superdex 200 HR 10/30, and no significant alteration in elution profile was visualized 

when NblR was incubated with 12.5 mM of acetylphosphate for 1h at room temperature. It 

is important to mention that NblR is a non-canonical RR, but contains a conserved 

phosphorylate site at D57. Moreover, phosphorylation of D57 is not required for NblR 

function
15

.  

The NtrC protein is a dimer in solution; it should interact with RNAPσ54 in 

order to activate the transcription
16,17

. Scanning force microscopy was used as a tool to 

visualize NtrC oligomerization after carbamoyl phosphate and NtrB (the physiological 

phosphodonor) incubation. The results clearly showed that NtrC dimers must built large 

oligomers to activate transcription. Interestingly, the NtrC behavior is completely different 

from eukaryotic enhancer-binding proteins: NtrC binds solely by protein-protein interaction 

in contrast to eukaryotic enhancers that bind directly to DNA
18

. In what concerns the NtrC 

binding profile, analytical ultracentrifugation showed that the unphosphorylated form binds 

as a dimer to a single site in DNA. Moreover, the NtrC-DNA interaction occurs essentially 

without cooperativity and the phosphorylated protein forms a complex (oligomers) at the 

enhanced sequence in the DNA duplex
19

.The fluorescence anisotropy and fluorescence 
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correlation spectroscopy corroborate the previous assumption that NtrC binds with no 

cooperativity and that one dimer of NtrC forms two ion pairs (one per NtrC monomer) with 

the DNA backbone. In that way, one unphosphorylated NtrC dimer binds to one DNA 

binding site and two unphosphorylated dimers to two adjacent binding sites
20

. The 

phosphorylation is crucial to NtrC transcription initiation, which is coupled to the protein 

ATPase activity
21

. Thus, the phosphorylation status of the N-terminal REC domain 

regulates the activity of the central AAA
+
 domain and this intermolecular interaction might 

be mediated by the contact of a flexible helix-α4 of the phosphorylated REC domain with 

the adjacent partner subunit
5,22

. X ray solution scattering and electron microscopy studies 

corroborates that a binding mechanism between the both subunits occurs and that the 

phosphorylation has a direct contribution to hexamer stability
23

. 

The variety of analytical tools used in order to comprehend the effect of 

phosphorylation into oligomerization of RR varies dramatically. Moreover, some RR 

shows a preference for a phosphodonor agent than other. This preference is not 

comprehended but might be correlated with the structural characteristic of the RR and/or 

the experimental conditions used.  

 

III.2. Methodology 

 

III.2.1. Protein purification 

In order to obtain pure protein, the soluble fraction was dialyzed overnight 

against 10 mM Tris-HCl, pH 7.6 and loaded onto a DEAE Sepharose FF column (2.6 X 25 

cm) previously equilibrated with the same buffer using a flow rate of 3 ml/min. The protein 

was eluted using a two-step discontinuous gradient. The first gradient, from 10 to 150 mM 

Tris-HCl, pH 7.6, was performed with one bed volume. The MorR was eluted using a 

second gradient, from 150 to 300 mM Tris-HCl, pH 7.6, over the course of two bed 

volumes. The protein was dialyzed against 10 mM Tris-HCl, pH 7.6, and loaded onto a 

Source 15Q (2.6 X 24 cm) equilibrated with the same buffer at a flow rate of 1 ml/min. 

Again, a two-step discontinuous gradient was applied. The first gradient, from 10 to 150 

mM of Tris-HCl, pH 7.6, was performed over the course of one bed volume. The MorR 
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was then eluted using a gradient from 150 to 300 mM Tris-HCl, pH 7.6, over the course of 

four bed volumes.  

All the dialysis procedures were performed using a membrane with a molecular 

mass cut-off of 10 kDa, activated by boiling for 10 min (distillated water) with 1 mM of 

EDTA. After each chromatographic step, the protein purity was checked by SDS-PAGE 

electrophoresis, in 12.5% acrylamide gels stained with Coomassie Blue. 

An additional purification step using a Superdex 200 (2.6 X 66 cm) gel 

filtration column was performed. The column was equilibrated with 50 mM Tris-HCl, pH 

7.6, and 150 mM NaCl using a flow rate of 2 ml/min. The central part of the peak obtained 

in the chromatogram corresponded to MorR. The corresponded fractions were collected, 

concentrated and dialyzed using a concentrator (Millipore) with a molecular weight cut-off 

of 30kDa, and stored in 10 mM Tris-HCl, pH 7.6, at -80ºC.The overall protein purification 

protocol is presented in figure III.1. 
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Figure III. 1. Diagram of MorR purification 
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III.2.2. UV-VIS spectroscopy 

UV/VIS absorption data were recorded by Shimadzu UV-1800 

spectrophotometer in 1cm quartz cuvettes. 

 

III.2.3 Protein quantification 

Protein was quantified according to Miller et al., 1959
24

. This methodology 

applies some modification in the method described by Lowry (1951). A 200 µL of aliquots 

of alkaline copper reagent (composed of 10 parts of 10% sodium carbonate in 0.5% sodium 

hydroxide and 1 part of 0.5 % copper sulfate in 1% potassium tartrate) were added to 200 

µL of protein sample in eppendorfs tubes. The mixture was incubated for 10 min at room 

temperature, and a 600 µL aliquot of a 1 to 11 dilution of Folin Ciocalteau reagent was 

added to the sample, mixed and incubated for 10 min at 50ºC. The mixtures were cooled to 

room temperature, and absorbance was measured at 660 nm in a Shimadzu UV-1800 

spectrophotometer using a cuvette of 1 cm. The calibration curve was prepared with Bovine 

Serum Albumin (BSA) (stock 2 mg/ml) standards.  

 

III.2.4. N- terminal sequencing 

The N-terminal sequencing was performed by automated Edman degradation in 

an Applied Biosystem 120 analyser model 477, following the manufacture instructions. A 

total of 100 pmol of MorR was used. 

 

III.2.5. Peptide Mass Fingerprint 

The sample (100 pmol) was digested according to Santos et al., 2007 with some 

modification
25

. The modification was the substitution of urea to 50% acetonitrile to 

denature the protein sample. The sample was analyzed by MALDI-TOF-MS (model 

Voyager-DE PRO Workstation) using a positive reflector as ionization mode and the 

peptides were identified using the MASCOT 

(http://www.matrixscience.com/cgi/search_form.pl) applying the following parameters: 

Bank of data: NCBInr and SwissProt 

Fixed modification: Carbamidomethyl (C) 

Variable modification: Oxidation (M) 

http://www.matrixscience.com/cgi/search_form.pl
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Enzyme: Trypsin 

 

III.2.6. Protein metal analysis 

Protein metal content (Zn, Mg, Mo and Cu) was quantitatively determinate by 

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES) (Horiba Jobin-

Yvon, France), which uses a source of atomization temperature of 10000K to decompose 

sample components. A detection quantification limit of 1 ppb was attained for samples 

diluted in water, and 5 ppb for samples diluted in buffer. The Reagecom 23 ICP 

multielement was used for the calibration curve. 

 

III.2.7. Molecular mass determination 

The oligomeric state of the purified MorR was determined by two independent 

analytical gel filtration using the Superdex200 column (10/30 GL) equilibrated with 50 mM 

Tris-HCl (pH 7.6) and 150 mM NaCl using a flow rate of 0.4ml/min. The first calibration 

was performed at Faculdade de Ciência e Tecnologia at Universidade Nova de Lisboa using 

Ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (44 kDa) and 

ribonuclease A (13.7 kDa) (GE Healthcare Life Sciences) as protein standards. The second 

calibration was performed at Consejo Superior de Investigaciones Científicas (CSIC) using 

Thyroglobulin (670 kDa), Globulin (150 kDa), Ovalbumin (44 kDa) and Myoglobin (17 

kDa) (BioRad) as protein standards. The distribution coefficient (Kav) was calculated as 

follows: 

                  ⁄         Eq.3. 1 

Where: 

V0= void volume of the column 

Vr= retention (elution) volume of the protein 

Vc= the geometric bed volume in ml 
 

The molecular mass of MorR was determined by matrix-assisted laser 

desorption ionization time of flight (MALD TOF) mass spectrometry. The spectrometer 

was equipped with a nitrogen laser radiating at 337 nm (Applied Biosystems, Foster City, 

USA, model voyager DE-PRO biospectrometry workstation). A total of 100 pmol of MorR 

was used. 
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III.2.7.1 Molecular mass determination upon phosphorylation 

The oligomeric state of MorR was monitored after incubation with 

acetylphosphate (SIGMA A0262) or hydrogen phosphoramidate incubation. Both reactions 

were performed under the same experimental conditions:9 M of MorR was diluted in 10 

mM Tris-HCl, pH 7.6, with 2 mM MgCl2 and the sample was incubated with 50 mM of 

phosphodonor on ice for 30 min. Then, the sample was injected in Superdex 75 HR 10/30 

equilibrated in 50 mM Tris-HCl and 150 mM NaCl. The chromatography was monitored at 

280 nm. 

 

III.2.8.Nano LC-MS mass spectrometry 

III.2.8.1. In solution digest 

 For mass spectrometry analysis, approximately 1 pmol of the protein was 

dissolved in 4µL of 100mM ammonium bicarbonate (ABC) and submitted to disulfide 

bond reduction using 1µL of 1mM DTT in 100mM ABC for 45min at room temperature. 

Cysteine thiol groups were further blocked through alkylation using 1µL 5.5mM 

Iodacetamide in 100mM ABC for 1 hour at room temperature and dark environment. 

Sample volume was increased to 40µL with ABC, and 10µg of MS-grade modified trypsin 

(Promega) was added to the sample overnight at 37
o
C. Enzymatic reaction was quenched 

by acidification using Trifluoroacetic acid (TFA). Before injection into the mass 

spectrometer, the salts were removed from the peptide mixture through C18 resin (Empore 

3M) cleaning steps (STAGE-TIP method). 

 

III.2.8.2. LC-MS/MS 

 Peptides were separated by reversed-phase liquid chromatography using a 

Dionex Ultimate 3000 nanoLC (Thermo) coupled directly to a QExactive mass 

spectrometer (Thermo) equipped with a nanoelectrospray source (Thermo). The organic 

gradient used for separation was performed during a 60 minute run, starting at 5% solvent 

B up to 35% solvent B (solvent A is 0.1% formic acid in water, while solvent B is 90% 

acetonitrile 0.1% formic acid in water). The stationary phase was an Acclaim PepMap 100 

column (C18, 2 µm beads, 100 Å, 75 μm inner diameter). Flow used was 300nL/min. 
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 The QExactive was operated in data-dependent mode to automatically 

switch between MS and MS/MS acquisition. Survey full scan MS spectra were collected at 

resolution 70,000 (at m/z 200), with scan range between 300 to 1750 m/z, Automatic Gain 

Control (AGC) target of 1E6 and maximum injection time of 20ms. The Top 10 most 

abundant ions in each scan were selected for isolation and fragmentation. MS/MS scans 

were collected at 17,500 resolution (at 200 m/z), AGC target of 2E5, maximum injection 

time of 60ms, isolation width of 3 m/z, and collision energy of 25%. Unassigned and single 

charged ions were excluded. Once selected for MS/MS, ions were dynamically excluded 

for re-sequence for 45s. 

 

III.2.8.3. Protein identification 

 MS raw files were processed using the Proteome Discoverer software 

(Thermo). Sequence information was then submitted to an in-house Mascot server v2.2 

(Matrix Science) using the following search parameters: Enzyme: Trypsin without proline 

restrictions; two miscleavages allowed; MS mass accuracy of 5ppm; MS/MS mass 

accuracy of 0.05 Da; cysteine carbamidomethylation as fixed modification; N-terminal 

glutamine pyroglutamate, N-terminal glutamic acid pyroglutamate, methionine oxidation, 

lysine acetylation, serine/threonine phosphorylation and aspartic acid phosphorylation as 

variable modification. Sequenced were compared to an updated NCBInr database for 

bacteria.      

 

III.2.9.Electrophoretic mobility shift assay (EMSA) 

EMSA is a technique used to detect DNA binding protein. The principle of this 

technique is that DNA bound to a protein migrates slowly through a polyacrylamide gel. 

Usually, the target DNA is labeled with radioactive isotopes like 
32

P. An alternative to 

radioactive isotopes is the use SYBR Green I (Promega) in order to visualize the DNA 

shift. The use of SYBR Green I could be a good alternative to label DNA for EMSA 

experiment. It can serves as a screening method to detect DNA-protein interactions, but 

exhibit lower resolution when compared with isotopes methods. This feature limits the 

measurement of association constants using SYBR Green I in EMSA experiments. 
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 The intergenic region between morP and morS was amplified by PCR from 

D.alaskensis G20 cells using the primers forward (5'-TGCCGTCACCTTGCGT-3`) and 

reverse (5`-GTCCTCCGGATTACCTTGT-3`). The fragment was gel purified using the QI 

Aquick extraction kit (Qiagen), quantified at 260nm, and 0.078 μM of this fragment were 

mixed with 6 μM of purified MorR in a buffer containing 10 mM Tris-HCl, pH 7.6, 250 

mM KCl, 0.2 mM EDTA, 0.2 mM DTT and glycerol 10%. The mixture (total volume of 19 

μl) was incubated for 1 hour on ice. It was then applied in a native 7.5% polyacrylamide 

gel, running for 1h at 100 mV and stained with Syber green. 

 

III.2.10.DNAse I Footprinting assay 

The sequence-specific interaction of proteins to DNA can be studied using 

DNase I footprinting. In this technique an end-labeled DNA sequence is allowed to interact 

with a DNA-binding protein. Then the complex is digested with DNase I, where the bound 

protected region is intact from attack by the enzyme. The degraded DNA is submitted to 

electrophoresis, and the region of protection is detected as a gap in autoradiography. DNase 

I from Bovine pancreas has 29 kDa and approximately 40 Å in diameter. It binds in the 

minor groove of the DNA, and cleaves the phosphodiester bound of double and single 

strand DNA. The enzyme does not cleave the DNA indiscriminately, and the characteristics 

of DNase prevents it from cutting the DNA under and around a bound protein
26

. For 

footprinting experiment, the target DNA sequence should be labeled with a radioactive 

isotope. To construct the desired DNA molecule, a PCR reaction is performed using 

primers labeled with [-
32

P]. For molecular biology purposes, the oligonucleotide probes 

(primers) are dephosphorylated by Calf Intestinal Alkaline Phosphatase (CIAP) in order 

remove the 5` phosphate from DNA, which allow the subsequent end-labeled with a 

radioactive phosphate by T4 Polynucleotide Kinase (T4 PNK) (5). For end-label short 

oligonucleotides, the enzyme T4 PNK catalyzes the transfer and exchange of the terminal 

[-
32

P] of ATP to the 5`-hydroxyl terminus of DNA and RNA.  

The primers used for amplification of the intergenic region (section III. 2.8) 

were labeled with [γ-
32P

]ATP (4000 Ci mmol
−1

) using T4 PNK (New England Biolabs). 

The labeled primer was separated from unincorporated [γ-
32P

]ATP using the Nucleotide 

Removal Kit (Qiagen). The morS-morP intergenic region (233 bp) was PCR amplified 
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using D. alaskensis G20 chromosomal DNA as a template and with appropriate labeled and 

unlabeled primers. The footprint assays were performed as follows: the labeled DNA 

fragment was diluted to a concentration of ∼1 nM in 50 μl of binding mix (10 mM Tris–

HCl, pH 7.5, 50 mM NaCl, 2.5 mM MgCl2, 0.5mM dithiothreitol, 4% glycerol, and 40 ng 

μl−1 poly(dI–dC)·poly(dI–dC)) to which different amounts of purified MorR (2-10 µM) 

were added. After 30 min of incubation at room temperature, DNase I was added (1.2 unit, 

Promega), and the reaction was conducted for 1 min, then stopped by the addition of 140 μl 

of DNase Stop Solution (192 mM sodium acetate, 32 mM EDTA, 0.14% SDS, and 64 μg 

ml−1 yeast RNA). Following DNA ethanol-precipitation in the presence of a DNA carrier 

(Pellet Paint co-precipitant, Novagen), the pellets were resuspended in a loading dye 

solution (95% formamide, 10 mM EDTA, 0.3% bromophenol blue, 0.3% xylene cyanol) 

and loaded onto a 8% polyacrylamide/6 M urea electrophoresis gel. The locations of the 

protected nucleotides were deduced by running a ladder with products of the Sanger 

reaction (Thermo Sequenase Cycle Sequencing Kit, Affymetrix).  

 

III.2.11. Ammonium hydrogen phosphoramidate synthesis 

The phospho-donor ammonium hydrogen phosphoramidate (NH4HPO3NH2) 

was synthetized according to the method described by Sheridan et al., 1972
27

. 18.3 ml of 

Phosphoryl chloride (Merck) were added to 300 ml of ice cold 10% aqueous ammonia 

solution, and stirred for 15 min. The mixture was diluted with 1L of acetone, resulting in 

the formation of two layers. The bottom layer was separated, neutralized with 8ml of 

glacial acetic acid, and cooled to 4ºC to induce the crystallization of the target compound. 

After crystallization, the compound was filtered, washed with Isopropanol, and air dried. In 

this work, for nomenclature simplification, ammonium hydrogen phosphoramidate is called 

as phosphoramidate. 

 

III.2.11.1. Elemental Analysis of Carbon, Hydrogen, Nitrogen and Sulphur (CHNS) 

After phosphoramidate synthesis, the resulting product was characterized based 

on the presence of carbon, hydrogen, nitrogen and sulfur in order to confirm the presence of 

the desired compound. In this way, an aliquot of 2 mg of the synthetized NH4HPO3NH2 

was submitted to CHNS analysis which was performed in aFlashEA 1112 analyzer 
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(Thermo Finnigan). The procedure of CHNS determination is based on the combustion of 

the sample by a special furnace heated at 900 – 1000ºC with a small proportion of oxygen 

which burns the organic and inorganic material, and, consequently, converts the sample 

into elemental gases that are separated in a column. Athermal conductivity detector (TCD) 

permits the elements concentrations identification. 

 

III.2.11.2. Nuclear magnetic resonance (NMR) 

The synthetized compound was also identified by NMR using a BlunkerAvance 

III of 400 MHz.A 20 mg of phosphoramidate was diluted in 600 l of Deuterium Oxide 

(Sigma). The sample was analyzed by 1H and 31P. The data was collected using the 

Topspin 3.1 software. 

 

III.3.Results and Discussion 

III.3.1 Amino acid residues composition: MorR 

Analysis of translated morR nucleotide sequence indicated that this gene 

codifies a putative transcriptional regulatory protein belonging to Fis family, and shares 

76% of similarity with zraR from D. vulgaris Hildenborough. According to Protein Data 

Bank (PDB), the putative protein shares sequence similarity and conserved domains with 

structural well solved proteins like ZraR (S. typhimurium) and NtrC (S. typhimurium). 

Additionally, it is possible to observe domain similarities with other proteins involved in 

transcriptional regulation, as such as DctD (S.meliloti) and Ntrc1 (A.aeolicus). The amino 

acid sequences of the proteins cited above were aligned using the Jalview program (figure 

III.2). 

The putative protein MorR (GI: 78355156) is composed by 466 amino acids 

residues which combine the three domains: a N-terminal, a central and a C-terminal 

domain. The N-terminal domain constitutes the receiver part of the protein, and includes 

the amino acids residues from 7 to 118. This domain is responsible for stimulus recognition 

from cognate histidine kinase (HK), it contains a phosphoacceptor site at a conserved 

aspartic acid (D55), and a dimerization interface. The central domain might be involved in 

ATP binding and interaction with σ54 subunit. It is comprised of the amino acids residues 

from 167 to 310, and contains conserved features which classify MorR as a member of the 
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AAA+ superfamily due to the presence of a Walker A and Walker B motif, an arginine 

finger (R-finger) and a GAFTGA sequence. These conserved structures are involved in 

ATP binding/hydrolysis, and σ54 interaction. The C-terminal domain encompasses amino 

acids residues from 424 to 465 and forms a tri-helical helix-turn-helix (HTH) portion that 

controls the output response associated with DNA binding. This domain classifies MorR as 

a member of Fis family, and the HTH domain binds to the major groove of DNA being 

directly involved in transcriptional activation and/or repression.  

 

 

 

 

Figure III.2. Amino acids residues alignment of the D. alaskensis G20 MorR, S. typhimuriumZrar, S. 

Typhimurium NtrC, A. aeolicus NtrC1 and S. melilotiDctD. The three major conserved regions are 

represented as follows: receiver domain (red), ATPase domain (blue) and DNA binding domain (green). The 

Walker A 

Walker B 

R-finger 
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phosphoacceptor aspartic acid (D55), Walker A, Walker B, GAFTGA and arginine finger (R-finger) are 

detached.  

 

To date, the MorR structure is not available. The related crystallographic 

structure available refer to response regulators containing single receiver domain (NtrC4, 

PDB ID: 3DZD), single central domain (NtrC1, PDB ID: 1NY6), single ATPase domain 

(Ntrc1, PDB ID: 3M0E), regulatory and central domain (NtrC1, PDB ID: 1NY5), and 

central and C-terminal domain (Zrar, PDB ID: 1OJL). According to PDB data bank, the last 

one exhibits the highest similarity (57%) with MorR, and its structure, as a monomer, is 

presented in figure III.3.  

 

Figure III.3. Crystallographic structure of the central and C-terminal domains of ZraR from S. typhimurium 

(PDB ID:1OJL).The two major conserved regions with MorR are represented as follows: ATPase domain 

(blue) and DNA binding domain (green). In red (Walker A), in orange (Walker B), in magenta (GAFTGA) 

and the arginine finger (R-finger) are detached and shown in brown in the second plane.  

 

III.3.2. Protein purification 

The soluble fraction containing MorR was purified aerobically by three 

chromatographic steps: DEAE Sepharose FF, Source 15Q and Superdex 200 (figure III.4). 

The first chromatographic step (DEAE Sepharose FF) was very important given that 

removed the majority of the contaminants. The second chromatographic step used a strong 

anionic exchange matrix (Source 15Q that is based on a 15 m monosized, rigid 

polystyrene/divinyl benzene polymer matrix). The combination of the Source 15Q 

properties with the application of a discontinuous gradient became a good methodological 

step for MorR purification. In this step, the remaining contaminants were highly removed 

and the MorR was recovered efficiently. However, even applying three optimized 

http://www.rcsb.org/pdb/explore/explore.do?structureId=3DZD
http://www.rcsb.org/pdb/explore/explore.do?structureId=1NY6
http://www.rcsb.org/pdb/explore/explore.do?structureId=3M0E
http://www.rcsb.org/pdb/explore/explore.do?structureId=1NY5
http://www.rcsb.org/pdb/explore/explore.do?structureId=1OJL
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chromatographic steps, the SDS-PAGE showed a low degree of a remaining contaminant 

with a molecular weight of approximately 90 kDa.   After purification, 3 mg/ml of protein 

were obtained in a total volume of 10 ml. 

 

 

Figure III. 4. 12.5% SDS-PAGE of purified MorR after each purification step. A: ladders, B: after DEAE-FF 

column, C: after Source 15Q column, D: after Superdex 200 column. 

 

III.3.3. UV-VIS spectroscopy 

The electronic absorption spectrum of the pure MorR in 10 mM Tris-HCl, pH 

7.6 is show in figure III.5. The molar extinction coefficient was calculated using the 

maximum absorbance peak at 280 nm: 280 = 30823 M
-1

 cm
-1

. For comparison, the 

theoretical molar extinction coefficient was calculated according to protparam 

(http://web.expasy.org/protparam/) as 280 =27515M
-1

 cm
-1

. Our results indicate a similarity 

between the practical and the theoretical molar extinction coefficient for MorR. 

 

http://web.expasy.org/protparam/
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Figure III. 5. UV/VIS spectrum of purified MorR (20 M) in 10 mM Tris-HCl, pH 7.6. 

 

 

 

III.3.4. Sequencing 

The N-terminal sequence is an important tool to confirm the presence of a 

recombinant protein. The N-terminal was determined for purified heterologous MorR from 

D.alaskensis G20, A S M T N A P T I L I V D D D Q A H R T ,  and is in agreement with the 

nucleotide sequence produced by genetic engineering. As previously mentioned in the 

methodology (cloning section) the NheI restriction site created six additional nucleotides at 

5` end position. Analysis of the recombinant plasmid DNA sequence revealed the presence 

of an alternative ATG start codon, which is originated by the plasmid architecture. 

Consequently, three amino acids were added at N-terminal: methionine (M), Alanine (A) 

and Serine (S). However, the first methionine was absent in the N-terminal sequencing 

results, probably reflecting an alternative bacterial post-translational excision mechanism. 

The purified MorR was also identified using the Peptide mass fingerprint 

(PMF) approach, it corresponded to the target protein (GI: 78355156), showing a sequence 

coverage of 63% with a score of 176. The complete recombinant plasmid DNA sequencing 

results, and the corresponding amino acids obtained by N-terminal and PMF are displayed 

in figure III.6. 
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     atggctagcatgacaaacgctcctaccatattgatagtggatgatgatcaggcgcacaga 

1    ·M··A··S··M··T··N··A··P··T··I··L··I··V··D··D··D··Q··A··H··R· 

     accatgctgcgcaccatgctgcgcggctggcagtactcggcggaagaagccgacgacggt 

21   ·T··M··L··R··T··M··L··R··G··W··Q··Y··S··A··E··E··A··D··D··G· 

     tccgtggccgtgagcaaggtgcaggagcgcgcatatgacgccatcctgatggatatccgc 

41   ·S··V··A··V··S··K··V··Q··E··R··A··Y··D··A··I··L··M··D··I··R· 

     atggcccgcatgagcggcatagaagccctgcggcatatcatggcccacaatccggccatt 

61   ·M··A··R··M··S··G··I··E··A··L··R··H··I··M··A··H··N··P··A··I· 

     cccgtgcttatcatgacggcatattcttcggtgaatacagcggtggaagccctgaaaata 

81   ·P··V··L··I··M··T··A··Y··S··S··V··N··T··A··V··E··A··L··K··I· 

     ggtgcttatgactacctgacaaagccgcttgatttcgacgagctgaaactgacgctggag 

101  ·G··A··Y··D··Y··L··T··K··P··L··D··F··D··E··L··K··L··T··L··E· 

     cgcgcgcttgatcacacgcggctggcctcggaaaacagagagctgcgcagctctctgtcc 

121  ·R··A··L··D··H··T··R··L··A··S··E··N··R··E··L··R··S··S··L··S· 

     gcggggcaggctgcctcgcgcattatcggccgcagcgaggccgtgcgccggcttaccgag 

141  ·A··G··Q··A··A··S··R··I··I··G··R··S··E··A··V··R··R··L··T··E· 

     ctggtggccacagtggcgcccagcgacgccacggtactcatcaccggagaatcgggcaca 

161  ·L··V··A··T··V··A··P··S··D··A··T··V··L··I··T··G··E··S··G··T· 

     ggcaaagaactggtggccagagccatacacgaaggaagcagcagacgtgacagaccgctg 

181  ·G··K··E··L··V··A··R··A··I··H··E··G··S··S··R··R··D··R··P··L· 

     gtaaccgtcaactgcgccgcccttacggaatcgctgctggaatcagaactgttcggccac 

201  ·V··T··V··N··C··A··A··L··T··E··S··L··L··E··S··E··L··F··G··H· 

     gaaaaaggtgcttttaccggtgcggacaaaaaacgcgacgggcggtttgttcaggcggac 

221  ·E··K··G··A··F··T··G··A··D··K··K··R··D··G··R··F··V··Q··A··D· 

     ggcggtacgttgtttctggatgaactgggcgaaatgtctctggcactgcaggcaaagctg 

241  ·G··G··T··L··F··L··D··E··L··G··E··M··S··L··A··L··Q··A··K··L· 

     ctgcgtgcgctgcagcagggtgaaatccagagggtgggcagcgacaacccgctgagagtc 

261  ·L··R··A··L··Q··Q··G··E··I··Q··R··V··G··S··D··N··P··L··R··V· 

     gatgtacgcgtcatcgccgcaaccaaccgcaatctgaccgcagaggtgaccgcaggcagg 

281  ·D··V··R··V··I··A··A··T··N··R··N··L··T··A··E··V··T··A··G··R· 

     ttccgcgaagacctgttttaccggctcaacgtcatcggcatagcggtaccggcactgcgg 

301  ·F··R··E··D··L··F··Y··R··L··N··V··I··G··I··A··V··P··A··L··R· 

     gaacggcgcgacgacatccccctgctggccggacactttctgacccgctatgccgaacgt 

321  ·E··R··R··D··D··I··P··L··L··A··G··H··F··L··T··R··Y··A··E··R· 

     aaccgcaagatgctcaaaggattcaccccgcaggccatgaactgtctggtcaactatgac 

341  ·N··R··K··M··L··K··G··F··T··P··Q··A··M··N··C··L··V··N··Y··D· 

     tggccgggcaatgtgcgtgaactggaaaacgccgtggagcgcgccgttatcatgagcatg 

361  ·W··P··G··N··V··R··E··L··E··N··A··V··E··R··A··V··I··M··S··M· 

     ggcgaatatgtcaccggacgcgaactgccgccggacattgcagcggctgacggcgaaacg 

381  ·G··E··Y··V··T··G··R··E··L··P··P··D··I··A··A··A··D··G··E··T· 

     gatatcaccgcagcagtgcccgatacggacacaccgctgcccgacaccgtccatgacccc 

401  ·D··I··T··A··A··V··P··D··T··D··T··P··L··P··D··T··V··H··D··P· 

     tatgcggggctctcgctggaaaatctggaacgccgcgccattgaggcaacgctgcgcgaa 

421  ·Y··A··G··L··S··L··E··N··L··E··R··R··A··I··E··A··T··L··R··E· 

     tgtgccgacaataaaagcgaagccgcccgccggctgggcatcacccgcgcaacactgcac 

441  ·C··A··D··N··K··S··E··A··A··R··R··L··G··I··T··R··A··T··L··H· 

     aacaagctgaaaaaatacggcatggaataa 

461  ·N··K··L··K··K··Y··G··M··E··*· 

 

Figure III.6. N-terminal and amino acid residues sequencing of MorR with the corresponding nucleotide 

sequencing of pETMorR. Bold in yellow: N-terminal sequencing result. Bold in red: matched peptides by 

peptide mass fingerprint. 
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III.3.5. Protein metal content 

Metals are essential to maintain some functions that are associated with 

transcriptional regulatory proteins which shares conserved features with MorR. As an 

example, the conserved acid aspartic residue (D239) in the Walker B motif of NtrC is 

essential for ATP binding and this interaction requires the presence of Mg
2+

. The absence 

of Mg
2+

 results in five folds decrease in the affinity between NtrC and ATP
28

. Another 

example of a transcriptional regulatory protein that shares conserved characteristics with 

MorR and requires metal is the ZraR. The interaction between ZraR and Zn
2+

 is not 

completely understood, but the evidence supports the idea that ZraR is a Zn-responsive 

TCS given that its expression increases in the presence of this metal
7
. However, to date, 

there is no information if ZraR has a Zn
2+ 

binding site motif in its structure. 

In spite of the evidences suggesting that transcriptional regulators, like MorR, 

can incorporate metals in its structure, the metal content analysis of purified MorR 

performed by ICP-AES revealed the absence of Mg, Zn, Mo and Cu.  

 

III.3.6. Determination of the molecular mass 

MorR has a theoretical isoelectric point of 5.6 and a theoretical molecular mass 

of 51kDa according to protparam. SDS-PAGE of the purified MorR showed a retention 

factor (Rf) of 0.33 with a mobility corresponding to a molecular mass of 42 kDa (figure 

III.7).  
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Figure III.7. Rf of standards proteins and MorR in 12,5% SDS-PAGE. -galactosidase (-gal), bovine serum 

albumin (BSA), ovalbumin (Oval), lactate dehydrogenase (lac dehydro), REase Bsp981 (REase), -

lactoglobulin (-lacto), lysozyme (lyso) and MorR. Curve Equation: y=-1.0289x+5.0934. R
2
=0.9779. 

 

A molecular mass of 52 kDa ± 1.52 was estimated by MALD-TOF. This 

technique is more robust and shows a much smaller associated error when compared with 

the SDS-PAGE. An analytical Superdex 200 10/30 mm column was used in order to 

determine the oligomeric state of MorR. MorR presented a molecular mass of ~56 kDa ± 

2.8, indicating that it is present as a monomer in solution (figure III.8). 
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Figure III.8. Determination of the molecular mass by Superdex 200 10/30 mm gel filtration. The graphic 

shows the normalized values of distribution coefficient (Kav) and logarithm of molecular weight (Log MW). 

Standard proteins used for the calibration curve: Ribonuclease A (Ribo A), Ovalbumin (Oval), Conalbumin 

(Co), Aldolase (Aldo) and Ferritin (Fe). Curve Equation: y=-0.248x+1.5829. R
2
=0.9971. 
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Another calibration at Consejo Superior de Investigaciones Científicas (CSIC) 

using the same type of column with different standards determined a molecular mass of  

~60 kDa ± 3 for MorR, quite identical to the molecular mass determined previously.  

The association between structure and the monomeric state of MorR differs 

from the oligomeric state of the closer related proteins where the structures were solved, 

such as ZraR, NtrC and NtrC1. It is important to note that MorR was purified entirely, i.e. 

containing all the three major domains: R (the regulator), C (the AAA
+
 central) and D (C-

terminal DNA binding). For that reason, we can also call the purified protein of this work 

as MorR
RCD

. Crystal or NMR structural studies characterized several isolated domains or 

truncated construct, such as: ZraR
CD

 (hexamer), active and non-active NtrC
R
 (monomer), 

NtrC
D
 (homodimer), NtrC1

RC
 (inactive dimer) and NtrC1

C
 (active ring-shaped heptamer)

29–

34
.  The full length variant of NtrC was determined by Small and Wide Angle X-ray 

Scaterring (SAXS/WAXS) and Electron Microscopy (EM). This NtrC
RCD

 variant carried a 

S160F, R456A, N457A and R461A mutations that confers stability and prevents 

aggregation of the activated form. The studies support the idea that NtrC is an inactive 

homodimer where the unphosphorylated receiver subunit represses the formation of the 

assembly of the central AAA+ subunit. This inactive state is uncovered by phosphorylation 

which alleviates the repression status. The stability of the activated form of NtrC
RCD

 occurs 

by the intersubunit contact between the activated receiver domain of one subunit with the 

ATPase domain of a second non-identical subunit, forming the activated hexameric ring. 

Moreover, the C-terminal DNA binding domain contain a dimerization determinant and 

that oligomerization seems to be a prerequisite for ATPase activity, but not for ATP 

binding
23

. In this context, MorR
RCD 

shares
 
a high similarity with ZraR and NtrC variants, 

but the monomeric state of MorR
RCD

 shows that dimerization determinant might be 

structurally and/or functionally different from its counterparts.   
 
     

 

III.3.7.Phosphorylation status of the pure MorR 

Response regulatory proteins belonging to TCS are mainly characterized by an 

output response associated with post-translational modifications, such as phosphorylation. 

However, in heterologous protein expression, post-translational changes might occur, since 

host E.coli maintains this type of regulatory processes active. Taking into consideration, the 
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present study verified the existence of phosphoamino acid residues in heterologous MorR 

using nano liquid chromatography-tandem mass spectrometry. Two samples (in gel and 

lyophilized) were submitted for this analysis. The results identified, for both samples, the 

presence of a protein belonging to “two component Fis family transcriptional regulator” 

which matched with GI: 78355156 from D. alaskensis G20. The percentage of sequence 

coverage was 65% for gel sample, and 44% for lyophilized sample. No phosphoamino acid 

(serine, threonine and aspartic acid) were identified. The results showed that the purified 

monomeric form of MorR was not phosphorylated by the host bacteria. 

 

III.3.8.Electrophoretic Mobility Shift Assay (EMSA) 

In order to visualize if MorR binds to the intergenic region between morS and 

morP, a DNA-Protein interaction experiment was performed. A 233 bp comprising the 

entire intergenic region between morP and morS was amplified by PCR. A DNA mobility 

retardation was observed in the native PAGE when MorR was added in the reaction 

mixture (figure III.9). This results shows that MorR interacts with the intergenic region 

between morP and morS and might be involved in the gene regulation.  As an alternative, 

the same experiment could be visualized through Coomassie Brilliant Blue staining, with 

BSA (bovine serum albumin) used as a control (figure III.10).  These results show that the 

BSA do not interact with the intergenic region and shows that the interaction between the 

target DNA and MorR is specific. 

 

 

Figure III. 9. EMSA showing the DNA shift observed when MorR was mixed with the target DNA.  The 

interaction was visualized in 7,5 % Native PAGE. A) DNA + MorR. B) free DNA. 
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Figure III. 10. EMSA showing the protein shift observed when MorR was mixed with the 233 bp intergenic 

region between morP and morS in 7,5 % PAGE. A) Free MorR. B) MorR shift. C) Free BSA. D) BSA mixed 

with the intergenic region where no shift was observed. 

 

III.3.9.DNaseI footprinting 

In order to identify the specific DNA binding region, a DNaseI footprinting 

experiment was performed. The intergenic region between morP and morS was amplified 

using the same primers designed for EMSA studies. Radioactive labeling was used for 

DNA visualization, and different amounts of purified MorR were tested (0, 2, 6 and 10nM). 

The results showed that a region covered by 54 nucleotides was not subjected to DNaseI 

digestion. This indicates that the intergenic region between morS and morP is the specific 

binding region for MorR.  The protected region encompassed positions -145 up to -200 

relative to the morP ATG transcription start site. It also encompasses the predicted -10 and 

-35 conserved boxes that might be responsible for MorR autoregulation. Five protected hot 

spots were identified, including a palindromic region (TTTTTTATA) (figure III.11).  
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Figure III. 11. MorR DNaseI footprinting experiment using the intergenic region between morP and morS as 

DNA template. A 233bp labeled DNA fragment encompassing the intergenic region was digested with 

DNaseI. The MorR protected region are bolded in red.  G, A, T and C are sequencing ladders. 1) 10 nM, 2) 6 

nM, 3) 2 nM and 4) 0nM of heterologous MorR respectively. 

 

The footprinting result is in agreement with the gene regulation mediated by 54 

transcriptional activators that binds ~80 to 150 nt upstream from the promoter they control. 

This result can elucidate how morP gene transcription is enhanced when Mo is added to the 

medium. Probably, in the presence of Mo MorP incorporates this metal into its structure, 

and then derepress MorS (the HK sensor). The derepression hypothesis comes from the 

idea that MorP contains a Cpx domain, and might function as the CpxP (the envelope stress 
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chaperone) protein. Then, the MorS autophosphorylates and transfers the phosphoryl group 

to the cognate response regulator (MorR). The active form of MorR, can probably, interact 

with 54 and activate the transcription of morP gene. The activate form might be able to 

hydrolyze ATP and provide the mechanical force for RNAP54.The results show that 

phosphorylation is not a prerequisite for MorR-DNA binding. Moreover, MorR binds to the 

putative -10 and -35 boxes that might be involved in the morR autoregulation. The fact that 

MorR binds to the putative 70 promoter can open a new insight onto the self-regulatory 

mechanism of morS and morR genes. So, the inactive (not phosphorylated) form of MorR 

binds to DNA and it is plausible to consider that MorR could control its own transcriptional 

level by interaction with RNP70. Our hypothesis is that in the absence of Mo, MorR binds 

as a repressor to the intergenic region between morS and morP inhibiting the access of 

RNP70 but maintaining a basal level of transcription of those genes. In the presence of Mo, 

MorR acquires the active form;derepress its own promoter and acts as a transcriptional 

activator of morP gene. 

 

III.3.10. Ammonium hydrogen phosphoramidate synthesis 

The synthesis of ammonium hydrogen phosphoramidate (NH4HPO3NH2) 

produced 150mg of a crystal compound. The corresponding product was investigated by 

elemental analysis of carbon, hydrogen, nitrogen and sulphur which identified 22.65% of 

nitrogen, 0% of carbon and sulphur, and 5.93% of hydrogen. The results match the 

expected mass percentages of the compound: 24.56 % of nitrogen and 6.14% of hydrogen. 

Additionally, the resulting compound was identified by 1H and 32P NMR spectroscopy 

which confirmed its molecular structure. 

 

III.3.11.Acetylphosphate and phosphoramidate as MorR oligomeric inductors 

The oligomeric state of MorR was monitored after in situ phosphorylation using 

50 mM of acetylphosphate or phosphoramidate. After reactions were performed, each 

mixture was applied in an analytical gel filtration column. A control experiment, where no 

phosphodonors were used, was also monitored. No changes in elution volume profile were 

observable with acetylphosphate or ammonium hydrogen phosphoramidate compared with 

the control. The resulting chromatograms are presented in figure III.12. 
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Figure III. 12. Analytical gel filtration chromatography showing the elution profile of MorR with and without 

incubation with acetylphosphate or ammonium phosphoramidate (phosphoramidate). The intensity of UV280 

nm was normalized. 

 

The results showed that the oligomeric status of MorR is not altered upon 

incubation with phosphodonors. We believe that the shoulder presented in the 

chromatograms is not associated with oligomerization after phosphorylation given that it is 

also present in the control experiment without phosphorylation. Although we could not 

exclude the possibility that native MorR can be present as different oligomeric form or that 

the shoulder might be due to a contaminant of approximately 100kDa that is always 

observed in small amounts after purification on the SDS-PAGE gels (figure III.4). Future 
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studies, like mass spectrometry identification of the protein corresponding to the shoulder 

or analytical ultracentrifugation, can help to solve it.  However, MorR contains all the 

conserved features that support the idea that this protein has autophosphorylation capacity. 

We propose that MorR autophosphorylation activity could be very fast and, therefore, gel 

filtration is not properly accurate for MorR oligomer visualization. As a result, fluorescence 

spectroscopy and nano LC-MS were chosen in order to understand the real behavior of 

MorR upon phosphodonor incubation. 
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 MorR-DNA association and phosphorylation 

 

Context 

 

MorR interacts with the intergenic region between morS and morP. The 

knowledge about the association constant involved in this interaction could be useful to 

understand the real behavior between those two macromolecules given that it describes the 

strength of binding. Fluorescence anisotropy was applied in order to determine the 

association constant between MorR and the target DNA. To understand the parameters that 

need to be controlled in the interaction process and in order to obtain as accurate result for 

the association constant, the acid-base equilibria influence in the fluorescence of 6-

carboxyfluorescein (6-FAM) covalently attached to the DNA duplex was characterized and 

the binding conditions were optimized. This optimization was of paramount importance to 

guarantee that anisotropic variation of 6-FAM was a consequence of MorR-DNA binding 

and no other stimulus. 

The MorR oligomeric experiments using gel filtration chromatography have 

showed no apparent oligomerization of this protein upon its interaction with 

phosphodonors. However, the amino acid composition of MorR and its homology with 

other response regulators reinforce the idea that MorR could autophosphorylate and 

oligomerize in the presence of phosphodonors.  Because of that, fluorescence emission of 

MorR-tryptophan was monitored in the presence of phosphodonors in order to identify if 

those compounds caused a protein conformational change mediated by phosphorylation. 

Finally, nano-LC-MS was applied to identify which (if any) amino acid residue was 

phosphorylated and mathematical biochemistry calculations were applied in order to clarify 

the experimental results. 
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IV.1. Introduction 

Fluorescence spectroscopy has been widely used in biological sciences. It has a 

broad range of applications in DNA technology, e.g. in DNA sequencing, nucleic acid 

hybridization assay and DNA arrays for genetic analyses, and in biochemistry in what 

respects protein-ligand interaction, conformational changes and activity assays
1
. The 

present introduction shows the principal topics in fluorescence spectroscopy with a special 

focus in fluorescence emission and anisotropy. 

  

IV.1.1 Basic concepts of fluorescence 

When molecules are excited by the absorption of a photon, the passage from the 

singlet ground state S0 to an excited state Sn (n > 1) is induced. The excited molecules will 

return to S0 following successive steps. The Jablonski diagram (figure IV.1) is convenient 

for visualizing in a simple way the possible processes: internal conversion, fluorescence, 

intersystem crossing, phosphorescence, delayed fluorescence and triplet-triplet transition. 

In that way the singlet electronic states are denoted as S0, S1 and S2, and the triplet states. 

T1 and T2 
2
. The process represented in the diagram is described below: 

1. SnS1 (internal  conversion). The  molecule  Sn  returns to the lowest excited 

state S1 by dissipating a part of its energy. This process is followed by a vibrational 

relaxation toward the lowest vibrational level of the final electronic state. 

2. S1S0 (fluorescence). Emission   of   photon. It’s   the   transition   from   the 

excited singlet state S1 to lower vibrational level S0. The fluorescence intensity decreases 

exponentially with a characteristic time, reflecting the average lifetime of the molecule in 

the S1 excited state. 

3. S1T1 (intersystem    crossing).  Non-radiative    transition     between     two 

isoenergetic vibrational levels belonging to electronic states of different multiplicities. 

4. T1S0 (phosphorescence). In  solution  at  room   temperature,  non-radiative 

de-excitation from the triplet state T1, is predominant over radiative de-excitation. The 

radiative rate constant is very low, and this transition is forbidden. 

5. T1S1 (delayed  fluorescence).  A  reverse  intersystem  crossing  can   occur 

when the energy difference between S1 and T1 is small and when the lifetime of T1 is long 

enough. 
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Figure IV.1. Jablonski diagram and illustration of the relative positions of absorption, fluorescence and 

phosphorescence spectra. IC: internal conversion (i.e. direct return to the ground state without emission of 

fluorescence). Dashed arrows: vibrational relaxation. ISC: intersystem crossing (possibly followed by 

emission of phosphorescence). Adapted from Bernard Valeur in Molecular Fluorescence: Principles and 

Application, 2001. 

 

Absorption of photons allows a chromophore to reach an excited state. The 

absorption energy is higher than the emission energy. As observed by the Jablonski 

diagram, the energy absorbed by the molecule is released in the medium via different ways. 

Thus, the energy of the emitted photons is lower than the energy of the absorbed photons. 

A fluorophore is a chromophore that emits a photon, and this emission occurs from a 

population of n excited fluorophores with intensity I. The intensity, position of the emission 

wavelength, and lifetime are some of the recognizable parameters that will distinguish a 

fluorophore. The resulting fluorescence spectrum is the plot of the fluorescence intensity as 

a function of wavelength 
3
. 

The fluorescence quantum yield () is the fraction of excited molecules that 

return to S0 with emission of fluorescence photons. Upon external perturbation, the  is 

proportional to the lifetime (τ) of the excited state, as observed in dynamic quenching or 

during variation of temperature. The τ of the excited state is defined by the average time the 
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molecule spends in the excited state prior to its return to the ground state. The τ determines 

the time available for the fluorophore to interact with or diffuse in its environment, and 

hence collect the information available from its emission 
4
. 

  

IV.1.2. Types of fluorophore 

There are two types of fluorophore: intrinsic and extrinsic. An intrinsic 

fluorophore occurs naturally and is a small part of a molecule, while an extrinsic is when it 

is added to the molecule. Proteins display intrinsic fluorophores due to the presence of 

aromatic amino acids residues (phenylalanine, tyrosine and tryptophan). Extrinsic 

fluorophores, such as fluorescein and rhodamines, can be linked to different 

macromolecules. Those fluorophores are mainly used to bind covalently to lysines and 

cysteines of protein, and to 5` or 3` ends of DNA. Their fluorescence properties are 

dependent on their structure and on the surrounding environment 
3
. 

The fluorescence of phenylalanine (F) is not considerable in the presence of 

other aromatic groups. When excited at 280 nm wavelength, tyrosine (Y) contributes to 

protein fluorescence; however its fluorescence is detected in low yield in the presence of 

tryptophan (W). Moreover, proteins containing W display a fluorescence spectrum that can 

be attributed to this amino acid residue alone, even when Y predominate. Typically, W 

fluorescence is essentially selected when using an excitation of 295nm. At this wavelength, 

Y and F emission fluorescence are superimposed by W. The position of the maximum of 

the fluorescence spectrum of W in proteins varies from 307 to 352 nm, giving five 

possibilities to spectral forms (figure IV.2). 
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Figure IV.2. Normalized fluorescence spectra of W emission residues belonging to five spectral classes A, S, 

I, II and III. The variability of the emission of the indole fluorophore makes W fluorescence a sensitive toll in 

protein analysis. Taken from Alexey S. Lakoklin in Encyclopedia of Analytical Chemistry - Fluorescence 

spectroscopy in peptide and protein analysis, 2000. 

 

The form A is due to fluorescence emission of the indole chromophores in non-

polar environment. It can be exemplified by the azurin protein that display the shortest máx 

emission indicating that the W residue is located in a very strong hydrophobic region. The 

spectral form S (máx 307 to 317 nm) correspond to the emission of the indole located in the 

relatively nonpolar environment inside the protein globule forming 1:1 exciplex with 

neighboring polar groups. The spectral form I (máx 330 nm) correspond to the emission of 

indole located in polar but rigid environment inside the protein globule forming 2:1 

exciplex with neighboring polar groups. The form I can be exemplified by the emission 

spectra of actin, chrymotrypsin and tetrameric melitin under high salt conditions. The 

spectral form II (máx 340 nm) corresponds to the emission of the indole chromophores at 

the protein surface in contact with bound water.  The spectral form III (máx 350 nm) 

corresponds to the emission of indole located at the protein surface in contact with free 

water molecules.  For those reason, the spectral form and maximum intensity of W can be a 

good indicator of the local surroundings
5
. 

Fluorescein and rhodamine are extrinsic fluorophores examples that are widely 

used in biosciences because of their spectroscopic properties. These compounds have a 
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broad range of applications like labeling of antibodies for immunoassays, or 

oligonucleotides for hybridization assay or even in DNA-protein interaction studies. The 

reasons for selecting these probes include the high quantum yields and the long 

wavelengths of absorption and emission, which minimize the problems of background 

fluorescence of biological samples and eliminate the need for quartz optics. The lifetimes 

of these compounds are about 4 ns and their emission spectra are not significantly sensitive 

to solvent polarity 
4
.  

 

IV.1.2.1. Fluorescein 

The high fluorescence intensity of fluorescein allowed a wide application of 

this fluorophore in physics and biology. The protolytic forms of free fluorescein can vary 

according to acid-base equilibria, and its spectroscopic properties have been well studied. 

The fluorescence of fluorescein is stronger in alkaline solution than in acidic medium. 

According to acid-base equilibria there are seven prototropic species: cation, monoanion, 

dianion, and neutral that are present as quinonoid, lactone and zwitterion (figure IV.3), each 

of them having an associated fluorescence intensity, but the dianion form shows the 

strongest absorptivity. Particular species predominate along the pH range. The spectra at 

pH 0, 3.3, 5.5 and 12 are due to cation, the neutral, monoanion and the dianion, respectively 

6,7,8,9
.  

 

 

Figure IV.3. Six ionic forms of fluorescein after Zanker and Peter (1958). Taken from Smith and Pretorius 

(2002) Water SA, 28, 395-402. 
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In biochemistry, fluorescein has been used to label macromolecules and its 

acid-base properties can be modified upon conjugation 
10,11,12,13

. Oligonucleotides attached 

to fluorescein derivatives, like fluorescein isothiocyanate (FITC) and 6-carboxyfluorescein 

(6-FAM), have been used in biology to monitor oligonucleotide hybrid formation, DNA-

protein interactions, and as an alternative to the use of radiolabeled oligonucleotides 

14,15,16,17
.  

 

IV.1.3. Fluorescence quenching 

Fluorescence quenching is any process that depopulates an excited state of a 

molecule in a non-radiative away. A fluorescence quencher is a compound that participates 

in this process and leads to a decrease of the fluorescence quantum yield and lifetime. In 

protein biochemistry, the fluorescence quenching of W can be used to determine the 

fraction of protein fluorescence accessible to quenchers, the protein conformational 

changes and folding. It is important to consider that quenchers can also induce protein 

denaturation, and, consequently, take W from a buried to an exposed state. Acrylamide, 

disulfides, hydrogen peroxide and imidazole are some examples of W quenchers 
4
.  

Fluorescence quenching can be classified as static or dynamic (also called 

collisional). Both require molecular contact between the fluorophore and quencher. 

However, quenching mechanism can also occur by excited-state reactions, molecular 

rearrangements, energy transfer or ground-state complex formation 
4
. 

Quenching data is presented as plots of I0/I versus [Q], where I0 and I are the 

fluorescence intensities in the absence and presence, respectively, of a concentration of 

quencher [Q].  

In biochemistry, the fluorescence quenching data of proteins that contains two 

W (Wᴀ and Wʙ) can be calculated using the following equation: 

 

I=Iᴀfᴀ+Iʙ(1-fᴀ) Eq.4.1 

 

Where: I is the total intensity, Iᴀ is the intensity of Wᴀ, fᴀ is the fraction of Wᴀ and Iʙ is 

the intensity of Wʙ. 
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The equation 4.1 could be applied if a dynamic quenching results from a diffusive 

encounter between the fluorophore (W) and quencher during the lifetime of the excited 

state. 

Static quenching is characterized by the formation of a nonfluorescent ground 

state complex between the fluorophore and quencher. An important characteristic of static 

quenching is its decrease with increasing temperature, since the stability of the complex in 

the ground state is generally lower at higher temperatures. The principal difference between 

dynamic and static quenching refers to a decrease in the lifetime of fluorophore. Both 

mechanisms lead to a reduction in the fluorescence intensity, but a decrease in fluorescence 

lifetime is only observed if dynamic quenching occurs within the time-scale of the time-

resolved experiment 
4
.  

The fluorescence static quenching can be expressed in terms of quantum yields 

(). The  gives the efficiency of the fluorescence process since it is a ratio of photons 

emitted to photons absorbed. This parameter is useful to understand the quenching of W, by 

the following equation: 

 

      
 

   (   
 

) Eq.4.2 

 

Where 
N 

is the quantum frequency of the native protein, 𝜒N is the fraction of 

native protein and 
Q 

is the quantum frequency of the quenched protein. 

 

IV.1.4. Fluorescence Anisotropy 

The natural light is unpolarized; which means that it has no preferential 

direction.  Excite the fluorophores with a polarized light (definite orientation) and record 

the emitted light in a polarized system enables to study the molecules dynamics during the 

excited-state lifetime. When excitation is performed with polarized light, absorption of the 

fluorophore will depend on the orientation of its dipole in the ground state compared to the 

polarized excitation light 
3
 

Fluorescence anisotropy can be very useful in molecular biophysics. The 

anisotropy is defined as the ratio of the difference between the emission intensity parallel to 
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the polarization of the electric vector of the exciting light (I||) and that perpendicular to that 

vector (I) divided by the total intensity (IT) 
18

. 

 

    (       ) (        )⁄  Eq.4.3 

 

Because the anisotropy of emission (A) is related to the correlation time of the 

fluorophore (τc) through the Perrin equation: 

 

          ⁄    Eq.4.4 

 

where A  is the limiting anisotropy of the probe, which depends on the angle between the 

absorption and emission transition dipoles and τ is the fluorescence lifetime. These 

measurements can be used to obtain hydrodynamic information concerning 

macromolecules and macromolecular complexes 
18

.  

The anisotropy is based on the observation that when a small fluorescent 

molecule is excited with plane-polarized light, the emitted light is largely depolarized 

because molecules tumble in solution during its τ0. Nevertheless, if the small molecule is 

bound to a bigger molecule its effective molecular volume is increased. In that case, the 

molecular rotation of the fluorophore is slowed down so that the emitted light is in the same 

plane as the excitation energy. The bound and free states of the fluorophore each have an 

intrinsic polarization values: a high value for the bound state and a low value for the free 

state 
4
 (figure IV.4).  
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Figure IV.4. Scheme of fluorescence anisotropy of a fluorophore according to molecular motion upon 

interaction with a molecule (ligand). Adapted from Rossi A.M & Taylor C.W (2011) Nature Protocols, 6, 

365-387. 

 

In spite of all the physic processes involved in molecular motion, the 

complexation between two macromolecules always leads to an increase in the steady-state 

fluorescence anisotropy. If no alteration in quantum yield occur upon complexation, the 

data can be fitted in terms of the equilibrium constant. The sensitivity of this approach has 

recently been significantly improved such that it is now applicable to the study of high-

affinity protein-nucleic acid interactions 
18

. 

 

IV.2. Methodology 

IV.2.1 dsDNA labelling with fluorescein  

The DNA sequences used in this section were selected based on the MorR 

binding sites identified by the DNaseI footprinting experiment. Purified complementary 

DNA oligonucleotides containing a 67 bp and 58 bp of the intergenic region between morP 

and morS were purchased from SIGMA. The 5 end of each duplex was labeled with 6-

carboxyfluorescein (6-FAM). The labeled oligonucleotide sequences are presented in table 

IV.1. 
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Table IV. 1. Oligonucleotide sequences which were labeled with 6-FAM at 5` end. 

Oligonucleotide name Oligonucleotide sequence 

6-FAM-67-mer 6-FAM-5GTACAGCGTCTATTTTTTATACAGTGCTTTTTCTCAAA 

GGTGTATGTTTTTTATACACTGACTTTCA-3 

6-FAM-58-mer 6-FAM-5CTATTTTTTATACAGTGCTTTTTCTCAAAGGTGTATGT 

TTTTTATACACTGACTTTCA-3 

  

 

For duplex DNA (dsDNA) formation, 10 μM of each complementary strand 

was mixed in a buffer consisting of 10 mM Tris-HCl, pH 7.6, 250 mM NaCl, 0.5mM 

EDTA. This mixture was annealed by heating at 95ºC for 5 min, cooled until 60ºC 

(1.5ºC/seg), and left cooling for 1 hour until reaching room temperature. The annealing was 

performed using MyCycler thermal cycling instrument (BioRad). 

The DNA absorbance measurements were performed on a Shimadzu UV-1800 

spectrophotometer using a transparent disposable cuvette (Sarstedt). The dsDNA quantity 

was determined according to equation 4.5: 

 

  (       ((     ) (     ))      ) (    )  Eq.4.5 

 

where: M is the molar concentration of the fluorescein-labeled strand, OD260 and OD495 are 

the absorbance values at 260 and 495 nm, ε 260 is the molar extinction coefficient of dsDNA  

at 260 nm and was obtained from IDT biophysics (http://biophysics.idtdna.com/), ε260F and 

ε495F are the molar extinction coefficients of 6-FAM  at 260 and 495 nm (26000 and 75000 

cm
-1

 M
-1

; pH 8.0) 
19

. 

 

IV.2.2. Tunning the pKa of dsDNA labeled with 6-FAM 

The 6-FAM dsDNA pKa determination assays were performed at 22ºC using a 

dsDNA concentration of 0.3 M. The titration experiment was performed in 10 mM 

MES/Tris-HCl (pH 9.2) buffer containing 250 mM KCl, 0.2 mM EDTA, 0.2 mM DTT and 

10% glycerol. HCl 0.1 M was used to obtain a pH range from 9.2 to 4.6. The pH 

measurements were performed using a 713 pH Meter (Metrohm). Fluorescence emission 

and anisotropy data were recorded for each pH value using a SPEX Fluorolog-3 (Horiba) 

spectrofluorometer equipped with a 450 W continuous Xenon lamp as excitation source. 

http://biophysics.idtdna.com/
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Suprasil quartz fluorescence cuvette, pathlength 10x10 mm with a chamber volume of 

500 μL was used during the experiment. 

The emission data were collected using an excitation wavelength of 475 nm and 

monitoring the emission from 490 to 650 nm. The band-pass was 5 nm for excitation and 

emission, and the integration time was 0.5 sec. All the emissions values were corrected for 

the respective dilution factors. 

The anisotropy data were recorded using an excitation wavelength of 475 nm 

and monitoring the emission from 505 to 535 nm. The band pass was 5 nm for excitation 

and emission, and the integration time was 2 sec. All the fluorescence measurements were 

made under magic angle conditions. 

The present study used a three pKa fluorescein model in order to evaluate the 

distribution of different species according to the ionic strength of the medium. The 

concentration of each species was determined according to the equilibrium equation (Eq. 

4.6) where “F” represents the deprotonated state of fluorescein molecule: 

 

F
2-

 + H
+
  FH

-
 + H

+
 FH + H

+ 
 FH

+  
Eq.4.6 

 

         (          )   Eq.4.7
 

        (          )   Eq.4.8
 

         (         )   Eq.4.9 

 

Rearrangement of equations 4.7, gives: 

 

                     Eq.4.10 

 

Replacing 4.10 on 4.8 and rearranging it gives, 

 

                      Eq.4.11 
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And replacing 4.11 on 4.9 gives, 

 

                         Eq.4.12 

 

The corresponding concentration fraction (α) of F
2-

 is given by:  

 

       
     

                      
   Eq. 4.13 

 

Substituting 4.10, 4.11 and 4.12 into 4.13, we obtain: 

 

       
 

                              
  Eq.4.14 

 

The same procedure was done for α[FH
-
] and α[FH]  

 

       
     

                      
  

       
      

                              
  Eq.4.15 

 

      
    

                      
  

       
         

                              
 Eq.4.16

 

 

       
     

                      
  

       
           

                              
  Eq.4.17 

 

IV.2.3 Protein-DNA binding 

Fluorescence anisotropy of the 6-FAM attached to the 5end of dsDNA was 

used to monitor the interaction between MorR and the intergenic region located between 

morP and morS. Two different DNA strand were used: one containing 67 and other 58 
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oligonucleotides. The 6-FAM was attached to 5 end of both molecules; however, it was 

covalently attached to guanine (purine) in 67-mer dsDNA, and to cytosine (pyrimidine) in 

58-mer dsDNA.  

The MorR-DNA binding reaction was performed identically for both 6-FAM 

labeled dsDNA. The reaction occurred in 10 mM Tris-HCl, pH 7.6, with 250 mM NaCl, 0.2 

mM of EDTA and DTT, and 10% glycerol. The MorR protein was also diluted in the same 

buffer. A fixed concentration of 6-FAM dsDNA, 8.3 nmol, was used, with MorR being 

titrated from 0 to 60 μΜ until a final volume of 3 ml in a Suprasil quartz fluorescence 

cuvette, pathlength 10x10 mm, with chamber volume of 3.5 ml. Fluorescence emission and 

anisotropy were recorded using a SPEX Fluorolog-3 (Horiba) spectrofluorimeter equipped 

with a 450 W continuous Xenon lamp as excitation source. 

The emission and anisotropy parameters were the same used for determination 

of pKa (unit IV.2.2) except for the integration time that was 0.5 sec.  

For MorR-DNA binding, a model consisting of two nucleotide binding sites 

was evaluated in order to determine the association constants (K1 and K2). This model 

contemplates the consecutive binding of two protein monomers to the DNA, according to 

equation 4.18.  

 

                        Eq.4.18 

 

          (             )  Eq.4.19 

                       Eq.4.20 

 

   (       ) (         )  Eq.4.21 

                      Eq.4.22 

 

And substituting the equation 4.20 into equation 4.22, we obtain: 

 

                              Eq.4.23 
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The total concentration of DNA (DNAT) is equal to: 

 

                                Eq.4.24 

 

And the fraction of DNAfree is equal to: 

 

           
         

(                        )
   Eq.4.25 

 

Substituting the equation 4.20 and 4.23 into 4.25 gives,  

 

           
 

(                )
   Eq.4.26 

 

The same procedure was done for α[DNAP] and α[DNAP2]  

 

        
      

(                        )
  Eq.4.27 

        
     

(                )
   Eq.4.28 

 

         
       

(                        )
  Eq.4.29 

         
        

(                )
   Eq.4.30 

 

The data were evaluated according to equations 4.26, 4.28 and 4.30 and fitted 

according to the nonlinear last square calculation. 

 

IV.2.4. MorR oligomerization 

The fluorescence emission of MorR was measured in the presence of the 

phosphodonors acetylphosphate and phosphoramidate. The reaction was performed with 2 

μM of MorR diluted in a buffer consisting of 10 mM Tris-HCl, pH 7.6, with 2 mM of 
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MgCl2 in a final volume of 3 ml. A Suprasil quartz fluorescence cuvette was used, 

pathlength 10x10 mm, with chamber volume of 3.5 ml.  

The fluorescence emission was recorded using a SPEX Fluorolog-3 

spectrofluorometer equipped with a 450 W continuous Xenon lamp as excitation source. 

The W was excited at 290 nm and emission was monitored from 300 to 550 nm. The band 

pass was 2 nm for excitation, and emission, and the integration time was 0.5 sec. All the 

emissions values were corrected for their respective dilution factors. 

The data were evaluated as Static Quenching according to equation 4.31: 

 

       (    )   Eq.4.31 

 

Where 
N
 is the quantum frequency of the Native protein (without quencher), 

𝜒N is the fraction of the native protein and 
Q
 is the quantum frequency of the quencher. 

Rearrangement of equation 4.31, gives: 

 

          (    )  Eq.4.32 

          (    )  Eq.4.33 

     (      )    Eq.4.34 

       (     )      Eq.4.35 

 



 
  

 

  
  

 

      
(  

 

 
)  

 

 
  Eq.4.36 

 

Where        = quenching efficiency 

Rearrangement of equation 4.36, gives: 

 

       (      )    (    (      )  Eq.4.37 

          (      )  (  )   Eq.4.38 
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where: I is the total intensity, I₀ is the intensity of tryptophan in the absence of 

quencher (Q) and K is the quenching constant. The data was fitted using nonlinear least 

square calculation. 

 

IV.2.5. Computational biochemistry 

All geometry optimizations were performed with Gaussian 09, applying density 

functional theory methods
20

. Becke’s three-parameter exchange functional was used 

together with the functional of Lee et al. (B3LYP) 
21,22,23

as implemented in Gaussian and 

the 6-31G(d) basis set. In all geometry optimizations, we first searched for the transition 

state starting from a structure similar to the reactants model. This was generally obtained 

with mono-dimensional scans where the reaction coordinate that we were interested in, was 

shortened or stretched. Once the transition state was located, the reactants and the products, 

associated with it, were determined through internal reaction coordinate (IRC) calculations. 

In all cases, the geometry optimizations and the stationary points were obtained with 

standard Gaussian convergence criteria. The transition state structures were all verified by 

vibrational frequency calculations, having exactly one imaginary frequency with the correct 

transition vector, even using frozen atoms, which shows that the frozen atoms are almost 

free from steric strain.  

 

IV.3. Results and Discussion 

IV.3.1. Fluorescein labeled oligonucleotide pKa determination 

In order to understand the fluorescence behavior of the fluorophore that was 

chosen for the DNA labeling, the fluorescence emission and anisotropy of 6-FAM-67-mer 

dsDNA were measured at different pHs. The raw and area normalized spectra obtained are 

present in figure IV.5. 
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Figure IV.5. Fluorescence emission and anisotropy of 6-FAM-67-mer dsDNA at different pH, ranging from 5 

to 9.2. A) Fluorescence emission raw spectra. B) Area normalized fluorescence emission spectra.  

 

The results showed that as the pH becomes more acidic, the total fluorescence 

emission decreases. However, the fluorescence shifted at 545 nm where the fluorescence 

intensity of 6-FAM increased in acidic conditions. Moreover, the decrease in fluorescence 

emission intensity is accompanied by an increase in anisotropy (figure IV.6). This result is 

important for protein-DNA interaction studies where oligonucleotides are labeled with 6-

FAM and when anisotropy is used to monitor the binding reaction. In those cases, the 

fluorescence emission should not vary during the experiment, and the anisotropy values 
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should be the only parameter allowed to change upon binding. Because of that, it is 

important to control the reaction in order to avoid variations of pH. 
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Figure IV.6. pH dependence of fluorescence intensity (circles) and steady-state anisotropy (squares) of 6-

FAM-67-mer dsDNA. Experimental fluorescence emission values were normalized. Lines represent the 

fitting of the data assuming acid-base equilibrium which allowed the determination of pKa’s. 

 

The 6-FAM-67-mer dsDNA diagram species was based on the three pKa 

fluorescein model (methodology section IV.2.2) that considers four types of fluorescein 

species: the cationic (FH
+
), neutral (FH), monoanionic (FH

-
), and dianionic (F

2-
). In acidic 

conditions, at pH 5.3, 71% of the fluorescein is FH
+
, and 29% is FH. Once the pH became 

more alkaline, the percentage of cationic species decreases and, at pH 7, only 3% is FH
+
, 

53% is FH, 45% is FH
-
 and no F

2-
 form is present. Under the experimental conditions used 

for the present study (pH 7.5), 72% is FH
-
 and 27% is FH. The FH

-
 is the predominant 

species from pH 7.5 to 9.2 (figure IV.7). It is known that the dianionic fluorescein has the 

highest fluorescence intensity over the other fluorescein species
9
. However, our results 

shows that this species starts to emerge above a pH 8 and its fluorescence intensity is 

modest even at pH 9 and therefore the use of reactional conditions to obtain a considerable 

amount of dianionic fluorescein are not suitable for protein stabilization. The presence of 

the monoanionic species under the pH used in this study does not invalid assays of MorR-

DNA interaction. The monoanionic species pursues a considerable degree of fluorescence 

that is capable to sense the interaction between two macromolecules. Moreover, the 
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anisotropy of 6-FAM does not changed significantly from pH 7 to 8. So any significant 

anisotropic change observed for MorR-DNA interaction in a future experiment using a 

buffer around this pH range would be a result of a reliable macromolecules association. 
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Figure IV.7. Diagram species of 6-FAM-67-mer dsDNA. At pH 7.5 the monoanioc specie is prevalent (72%), 

followed by neutral (26%), dianionic (1%), and cationic (0.4%).  

 

The fitting of both set of data (fluorescence emission and anisotropy) allowed 

the calculation of apparent pKa’s for the 6-FAM-67-mer dsDNA which were compared 

with those of fluorescein free in solution, and FITC-9-mer dsDNA as presented on the table 

IV.2. 

 

Table IV. 2. pKa values of free fluorescein, FITC-9-mer dsDNA and 6-FAM-67.mer dsDNA. 

 pKa1 pKa2 pKa3 

“free fluorescein”
a
 2.3 4.2 6.3 

FITC-9-mer dsDNA 
b
 - - 7.02 

6-FAM-67-mer dsDNA 5.7 7.1 9.3 

a – taken from H. Diehl (1989) Talanta, 36, 413-415 

b – taken from R. Sjöback (1998) Biopolymers, 46, 445-453 

 

The studies about the fluorescein attached to DNA are under constant 

evolution, and there is a debate concerning the influence of oligonucleotide length on any 

spectroscopic alterations, pKa and anisotropy values. However, the prevalence of the 

fluorescein monoanionic species under the experimental conditions of this study (pH 7.5) is 
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not in agreement with some previously published data. Sjöback et al., (1998) reported that 

at pH 7.46, 72% of fluorescein conjugated with DNA oligonucleotides was in the dianion 

form and 28% as monoanion 
24

. This study proved that the oligonucleotide length (ranging 

from 9 to 18 bp) did not significantly alter the fluorescein pKa values when compared with 

solution of free fluorescein (pKa of 6.43).  However, other studies regarding the 

characteristics of fluorescein-labeled oligonucleotides have shown that differences in the 

oligonucleotide length and base pair composition beside the fluorophore caused 

spectroscopic variations. Anderson et al., (2008) verified that smaller (17 pb) 

oligonucleotides had higher anisotropy upon protein binding than longer (22 bp) 

oligonucleotides 
25

. Moreover, changes in anisotropy and quantum yields have been 

identified after a single strand fluorescein-labeled oligonucleotide hybridizes to its 

complementary strand 
26,27

. The evaluation of the GC content of the oligonucleotides 

reported by Sjöback and Anderson showed no significant difference: 43.15% and 54.4%, 

respectively. However, the 6-FAM position differed between them. The oligonucleotides 

studied by Sjöback were linked at the 5 end of the duplex; on the contrary Anderson 

labeled the probes at 3 end. Moreover, based on the Sjöback work, some studies which 

used fluorescein labeled oligomers were carried out under the fundamental assumption that 

the dianionic form predominates or that a single fluorescein species was present under pH 7 

to 8  
28,29

. Our results show the absence of single fluorescein specie and a low degree of the 

dianionic species around pH 7 to 8. Around this pH at least 2 species predominated (FH- 

and FH).  

The present study evaluated the prototropic forms of 6-FAM attached to the 5 

end of a 67-mer oligonucleotide with 31% of GC content. The results indicate that 

fluorescein acid - base equilibrium changed upon conjugation to the nucleic acids. 

However, it is not possible to predict if this equilibrium is affected by DNA length, 

conformations or composition. 

The present study showed that the anisotropy values were affected by the 

protonation status of the fluorophore (figure IV.6). In this context, the acid base 

equilibrium of fluorescein-labeled oligonucleotide is an important tool to optimize binding 

assays. The variation in 6-FAM fluorescence emission was related with the emerging 

fluorescein species along the pH range (figure IV.7). Because of that, a constant 6-FAM 
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emission should be a prerequisite during studies that monitor DNA-protein binding using 

anisotropy as a tool to access the interaction. 

 

IV.3.2. MorR-DNA interaction 

Fluorescence anisotropy of MorR-DNA interaction was measured in order to 

determine the association constant between the target intergenic region and MorR. For this 

reason and considering the results obtained from the calculation of the apparent pKa, a 

constant fluorescence emission was made a prerequisite, and solely the anisotropy values 

varied. Moreover, two 6-FAM labeled dsDNA were constructed (figure IV.8). Both 

molecules contained the entire MorR binding sites identified by DNaseI footprinting. The 

first molecule is the 6-FAM-67-mer dsDNA where fluorescein is covalently attached to 

guanine (purine), and the second molecule is the 6-FAM-58-mer dsDNA where fluorescein 

is covalently attached to cytosine (pyrimidine). 

 

 
Figure IV.8. 6-FAM labeled dsDNA used for fluorescence anisotropy experiments. The MorR nucleotide 

binding sites identified by DNaseI footprinting are represented in red, and the position of 6-FAM is 

evidenced. A) 6-FAM-67-mer dsDNA. B) 6-FAM-58-mer dsDNA. 

 

In both experiments, a fixed concentration of 6-FAM dsDNA was used, and the 

MorR concentration varied from 0 to 60 µM. The results show that fluorescence emission 

was constant along the titration so that a single fluorescein species was present during the 

experiment (figure IV.9) and therefore the anisotropy values were a result of MorR-DNA 

interaction and are not due to protonation status of the fluorophore. 
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Figure IV.9. Area normalized fluorescence emission of 6-FAM-67-mer dsDNA and 6-FAM-58-mer dsDNA 

along the titrations experiments. 

 

The anisotropy values were enhanced with increasing concentrations of MorR, 

and the resulting binding curve was fitted to the proposed two steps model (see equation 

4.18) (figure IV.10). Furthermore, the anisotropy of 6-FAM-67-mer dsDNA was shown to 

vary from 0.071 to 0.107, and that of 6-FAM-58-mer dsDNA from 0.073 to 0.127.  
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Figure IV.10. Fluorescence anisotropy of 6-FAM-67-mer dsDNA and 6-FAM-58-mer dsDNA during the 

titrations experiments. The graphic shows the variation of anisotropy, where errors bars represent the standard 

deviation, and the squares and circles show the medium value obtained from seven anisotropy readings for 

each DNA strand. The equilibrium binding was analyzed according to equations 4.18, and the nonlinear least 

square mathematical model was applied and is presented as a straight line. The insert shows the anisotropy 

variation for 6-FAM-58-mer dsDNA from 0 to 3µM. 

The similarity of both experiment allowed the fitting of both data using 

nonlinear least square in order to determine the association constant  between MorR and 

DNA and also the anisotropy values (r) of the fluorophore according to the binding state 

(table IV.3). 

 

Table IV.3. Association constants determined for MorR binding to the intergenic region between morS and 

morP following the two step binding model. K1 is the association constant for the first binding site and K2 for 

the second binding site. The anisotropy value (r) of the fluorophore is also shown. 

 

dsDNA 

Association constants 

K1 (x10
5
 M

-1
) K2(x10

5
 M

-1
) 

15.5 0.02 

Anisotropy r1 r2 

0.074 0.127 

 

The observed data for 6-FAM-67-mer and 6-FAM-58-mer is presented in table 

IV.4 and figure IV.11. The interaction of MorR with 6-FAM-67-mer dsDNA reveals that 
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the protein binds highly to a first binding site and with lower affinity to a second binding 

site. Analysis of the data showed that when MorR reached a concentration of 8.78 µM, 

13% of the 6-FAM-67-mer DNA was free, 85% of the first binding site was bound, and 1% 

of the second binding site was occupied. As soon as MorR concentration increases, a 

greater fraction of first and second binding sites is bound. However, the first binding site 

reaches a plateau at 20 µM of MorR, with 90% of the site was occupied by the protein. This 

is followed by a slight decrease in the percentage of occupancy of this site. In an opposite 

way, there was no observable plateau for the second binding site. When MorR reached a 

final concentration of 60 µM, 2% of the DNA remained free, 88% of the first binding site 

was occupied, and 10% the second binding site was bound.  

The affinity of MorR to 6-FAM-58-mer dsDNA is similar to the one observed 

for 6-FAM-67-mer dsDNA, except for the fact that fluorescein position facilitated the 

visualization of the MorR binding to the second site. This result is in agreement with the 

DNaseI footprinting experiment given that, in this case, the fluorescein was positioned 

nearest of the binding site. When MorR reached a concentration of 8.78 µM, 0% of the 6-

FAM-58-mer dsDNA was free, while 84% was bound to the first binding site, and 16% of 

the second binding position. Increasing the concentration of MorR leads to increase in the 

number of occupied sites. At 20µM of MorR, 0% of the DNA was free, 70% of the first 

binding site was bound, and 30% of the second binding site was occupied. When MorR 

reached a final concentration of 60 µM, there was no (0%) free DNA, 44% of the first 

binding site was bound, and 56% of the second binding site was occupied.  

 

Table IV.4. MorR binding sites proposed occupancy according to the two binding sites model. 

Site of occupancy MorR (M) 
% of occupancy 

67mer 58mer 

free 8.78 13 0 

20 6 0 

60 2 0 

1st 8.78 85 84 

20 90 70 

60 88 44 

2nd 8.78 1 16 

20 3 30 

60 10 56 
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 (*) Multiple concentration scale in different orders of magnitude in order to better visualize the distribution of the MorR 

occupation sites. 

Figure IV.11. Occupation of the nucleotide binding sites of 6-FAM-67-mer and 6-FAM-58-mer dsDNA in 

response to MorR interaction. The free DNA where that is no interaction with MorR is presented as line and 

circles. The first binding site occupancy is represented by a line and square. The second binding site 

occupancy is represented as line and triangle. 
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The fluorescence anisotropy of both molecules followed the same profile, since 

increase in the concentration of MorR leads to enhanced anisotropy values. Moreover, a 

considerable increase in anisotropy was visualized above a MorR concentration of 8.78 

µM. At this point, the second binding site starts to be occupied (figure IV.12). The results 

showed that the anisotropy increases as soon as the second binding site was bound, even 

though with lower affinity, and this interaction could be visualized because of the 

proximity of the fluorophore to this site (figure IV.8, B). The data comparison between 6-

FAM-67-mer and 6-FAM-58-mer showed that changes in 6-FAM position influenced in the 

sensitivity of the assay for MorR interaction with the second binding site (figure IV.12, B). 

This assumption is based on the analysis of MorR binding profile to 6-FAM-58-mer. In that 

way, it is plausible to consider that MorR binds firstly to a site located far from 6-FAM 

(with high affinity giving rise to low anisotropy values), and subsequently the protein 

interacts to a second binding site positioned near to the fluorophore (figure IV.13). Those 

binding sites cover the predicted -35 (first site) and -10 (second site) promoters sequences 

(figure II.7). We cannot predict if this protein behavior occurs in vivo, but it indicates that 

MorR could acts as a repressor given that it occupies a binding site that might be used by 

RNA polymerase for transcription initiation.  
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Figure IV.12. Binding sites occupancy of 6-FAM-67-mer and 6-FAM-58-mer molecules with the 

fluorescence anisotropy enhancement. The first binding site occupancy is presented as line and square. The 

second binding site occupancy is presented as line and triangle, and the anisotropy is presented as line and 

asterisk. 
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Figure IV.13. Predict model for MorR-DNA interaction. The 6-FAM position is evidenced and the two DNA 

binding sites are delimitated by rectangles. The blue circles represents the MorR protein.  

 

Regarding the 6-FAM-58-mer interaction with MorR, the anisotropy shape of 

the fluorophore during the initial stage of the binding curve showed a decrease in the values 

ranging from 0.074 (no protein) to 0.069 (0.7M of protein) (figure IV.10, internal 

graphic). This result is not in line with the conjecture that the interaction between the 

protein and DNA increase the anisotropy values of the fluorophore. Additionally, this 

behavior was not observed for MorR interaction with 6-FAM-67-mer. So, any factor (pH or 

fluorescence lifetime) enhanced the fluorophore rotational capacity of 6-FAM-58-mer. 

There are two possible explanations for this result:  

1. or the addition of MorR changed the local acid condition around the fluorophore leading 

to emergence of other fluorescein species. 

2. or the interaction of MorR with 6-FAM-58-mer led to a DNA conformational change 

that facilitated the rotational capacity of the fluorophore. 

In other to solve this question, the fluorescence lifetime of the 6-FAM-58-mer 

dsDNA was evaluated under the same experimental conditions, and the results are 

presented in table IV.5 
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Table IV.5. Fluorescein-dsDNA single-photon counting analysis as a function of the MorR protein 

concentration. 

[MorR] /M  /ps 
2
 

0.0 3432 1.081 

0.9 3416 1.104 

4.4 3461 1.163 

4.1 3472 1.246 

8.0 3537 1.183 

 

The result shows a quite constant fluorescence lifetime of the fluorophore upon 

MorR interaction and a mono-exponential decay profile. Those evidences reinforce the 

assumption that a single fluorescein species was present during the experiment (excluding 

the pH variation hypothesis) and indicate that fluorescein became more available to rotate 

after MorR addition. Finally, we conclude that a conformational change of the 6-FAM-58-

mer DNA occurred upon MorR binding, which increased the fluorophore rotation. We 

propose that 6-FAM-58-mer dsDNA was coiled (with 6-FAM less available to rotate) and 

MorR binding straightened the molecule during the first interaction process enhancing the 

fluorophore rotational capacity. 

 

IV.3.3. Study of MorR phosphorylation by fluorescence spectroscopy 

The comprehension about the protein photochemical characteristics associated 

with phosphorylation by small phosphodonors is an important aspect to understand the real 

influence of its compounds in the oligomerization status of transcriptional regulatory 

protein belonging to two component systems. 

Analysis of the amino acid sequence of MorR revealed the presence of 2 W, 9 F 

and 11 Y. The first W is at position 29 and the second at 360, and they are part of the 

receiver and central domain, respectively. In order to study the MorR conformational 

change induced by small phosphodonors, the MorR fluorescence emission was excited 

during independent titration reactions using two different phosphodonors: acetylphosphate 

and phosphoramidate. The results showed that both phosphor-donors induced a decrease in 

W fluorescence intensity (figure IV.14). However, phosphoramidate caused a higher 

decrease in W emission but without any observed shift (figure IV.15). 
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Figure IV.14. Raw spectra of MorR tryptophan emission during a titration with phosphodonors. A) 

Acetylphosphate. B) Phosphoramidate. 
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Figure IV.15. Area normalized spectra of W emission during a titration with phosphoramidate. 

The data obtained using phosphoramidate were evaluated according to the 

dynamic quenching based on the equation 4.1 and fitted according to the nonlinear least 

square calculation. However, the result gives a kq (the bimolecular quenching constant) of 

5x10
10 

M
-1

 s
-1

 which is incompatible with a diffusion controlled quenching. The best result 

was obtained when the data was analyzed as static quenching, according to the equation 

4.31. 

The result for static quenching of W by phosphoramidate is present in figure 

IV.16. It gives a quenching constant of 0.079 mM
-1 

and indicates that 30% of the W 

emission was suppressed. 
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Figure IV.16. Static quenching for MorR titration with phosphoramidate. The line represents the fitting of the 

data using nonlinear least square and the squares represents the experimental data. 

 

The results show that MorR interaction with phosphoramidate, and not with 

acetylphosphate, caused a considerable decrease in fluorescence emission of W. This 

quenching probably is not followed by any conformational alteration in the protein 

structure since no wavelength shift was observed. This result is in agreement with the gel 

filtration chromatography where no MorR oligomerization was visualized in the presence 

of phosphodonors. The fluorescence quenching of W caused by the phosphodonor is not a 

direct prove that the protein was phosphorylated. In order to visualize phospho-amino acid 

(if existent), the samples that were submitted to titration with both phosphodonors were 

analyzed by nano-LC-MS. 

 

IV.3.4. Identification of MorR phospho-peptides 

In order to identify the presence of phospho-amino acid in the MorR that was 

submitted to phospho-donors titrations, the samples were analyzed by nano LC-MS tandem 

mass spectrometry. Phospho-peptides were identified in both samples, with coverage of 

89% and 95% for MorR with acetylphosphate, and phosphoramidate, respectively. The 

results showed the presence of common phospho peptides for the two phosphodonors, but 
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addition phosphorylated peptides were found for the sample treated with phosphoramidate 

(table IV.6).  

Table IV. 6. Post-translational modifications (phosphorylation) identified by nano LC-MS mass spectrometry. 

The modifications are highlighted; the phospho-amino acids are underlined. 

Sample Post-translational modification 

Common (acetylphosphate/phosphoramidate) VGSDNPLR 

NLTAEVTAGR 

SSLSAGQAASR 

AYDAILMDIR 

AVIMSMGEYVTGR 

DDIPLLAGHFLTR 

 

Exclusive for phosphoramidate 

 

GWQYSAEEADDGSVAVSK 

LTELVTAVAPSDATVLITGESGTGK 

DRPLVTVNCAALTESLLESELFGNEK 

 

The analysis of the primary structure of MorR revealed that the majority of 

phospho-amino acids residues are present in the central domain (figure IV.17). Both 

phosphodonors were capable to phosphorylate the conserved aspartic acid (D) located in 

the receiver domain. In addition to phosphorylation of D in the receiver domain, the 

phosphoramidate phosphorylated two serine residues (S) at positions 32 and 40. It is 

important to mention that both S are located nearby to the W 29. This physical proximity 

probably was one of the reasons that leaded to fluorescence quenching with 

phosphoramidate. Furthermore, no phosphoamino-acid was identified in the DNA binding 

domain. The mechanism involved in this process is not comprehended. However, the 

presence of a buried domain is excluded to answer this question, since the DNA binding 

domain is accessible (as proved by MorR-DNA binding experiments), and the receiver 

domain is characterized as a mobile and exposed domain.   
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Figure IV. 17. The MorR amino acid composition with conserved regions detached, and the phospho-amino 

acids identified by nano LC-MS. The amino acids are colored according to its domain localization: red for 

receiver domain, blue for ATPase domain and green for DNA binding domain. W are bolded in yellow. The 

phospho-amino acids identified in both samples are bolded in grey and highlighted with an asterisk (*). The  

phospho-amino acids identified solely in sample submitted to phosphoramidate are bolded in red and 

highlighted with an hashtag (#). 

 

Analysis of the alignment (figure III.2) shows that both tryptophan residues are 

conserved between MorR and ZraR. However, the ZraR crystal structure available (PDB 

code: 1OJL) lacks the receiver domain containing the W 29 residue. Moreover, the receiver 

domain of MorR shares similarities with the RR CheY (31.4%). However, the amino acid 

residue alignment between MorR and CheY revealed the absence of the conserved W 

(figure IV.18). As the inactive state of NtrC shows an intrinsic flexibility of the receiver 

domain 
30

. So, this characteristic is attributed to solvent exposed domains 
31

 we may expect 

that this can also occur for the MorR receiver domain. Hence, it is reasonable to predict that 

the MorR receiver domain has a similar characteristic and might be solvent exposed.  
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Figure IV. 18. Alignment between N-terminal receiver domain of MorR and E. coli CheY. The W are bolded 

in blue. Conservation is based on the physic-chemical properties of amino acids and the consensus is the 

percentage of the modal residue per column.  

 

In order to have a better idea about the phospho-aminoacids localization in the 

central domain and its proximity to W 360, figure IV.19 shows the phospho-amino acids 

sites in ZraR crystal structure.  The analysis revealed that W 360 is far from the phospho-

amino acids identified in both samples (figure IV.19, A). On the other hand, W 360 is 

surrounded by the phospho-amino acids identified solely in the MorR sample submitted to 

phosphorylation by phosphoramidate: phospho-aspartate 324, phospho-serine 177 and 

phospho-serine 378 (figure IV.19, B). This comparative analysis also shows that W 360 

might be not buried into ZraR structure. It is an indicative that the quenching observed 

during titration with phosphoramidate might be a consequence of phosphorylation of 

amino-acids residues located nearby W 360. Moreover, the present study indicates that 

exposure of the two W (29 and 360) might occur, and the phosphorylation of amino-acids 

residues located nearby might be the cause of the observed fluorescence quenching with 

phosphoramidate.  
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Figure IV.19. Comparison of MorR phospho-amino acids localization in the ZraR central domain crystal 

structure. A) Phospho-amino acids residues identified in sample submitted to phosphorylation with 

acetylphosphate and phosphoramidate. B) Phospho-amino acids residues identified solely in sample submitted 

to phosphorylation with phosphoramidate.  
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The results obtained by nano LC-MS corroborate the data observed during the 

fluorescence spectroscopy experiments. The data indicate that W emission is quenched 

when amino acids positioned around the fluorophore are phosphorylated. The first 

phospho-S (GWQYSAEEADDGSVAVSK) identified solely in the sample submitted to 

titration with phosphoramidate is positioned two amino acids away from W 29 (located at 

the receiver domain). Furthermore, the ZraR crystal structure comparison shows that the W 

360 residue might not be buried inside the protein structure, indicating that its fluorescence 

was affected by phosphorylation of amino-acids residues located near its position. So, these 

results show that the fluorescence quenching was not attributed to any oligomerization 

process. Moreover, no fluorescence shift was observed during the experiments (figure 

IV.15). Our results indicate that W fluorescence emission quenching reflected the 

phosphorylation process that occurred in amino acids located surrounding it.    

There are some works reporting the use of fluorescence W emission to monitor 

phosphorylation process in RR proteins
32,33,34

. A study evaluating the fluorescence 

spectrum of six different copies of CheY upon interaction with acetylphosphate showed 

that a conserved W
106

 emission was quenched in the presence of this phosphodonor. In 

spite of the highest similarity between the target proteins, the fluorescence profile was not 

the same among them. One of the proteins, the variant CheY1, does not present any W 

quenching upon interaction with acetylphosphate. In order to answer this unexpected result, 

the authors postulated that the conformational alteration of CheY1 mediated by 

acetylphosphate did not change the environment around the W
  35

. The fluorescence studies 

of W quenching in RR have the same principal focus: monitor the phosphorylation status of 

the adjacent phospho-accepting D residue upon phosphorylation. Our results show that 

other aminoacids, rather than D, are phosphorylated in the presence of phosphodonors. 

However, an open question remains. Why does phosphoramidate have an 

enhanced capacity to phosphorylate MorR when compared to acetylphosphate? To answer 

this question we have performed some theoretical calculations regarding the catalytic 

mechanism of the phosphorylation process using density functional theory and the 6-

31G(d) basis set. 

Regarding the total number of phospho-amino acids identified by nano-LC MS, 

most of them are serines, we have studied the catalytic mechanism of phosphorylation only 
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with serine. We believe that such mechanism can serve as a general example for the 

phosphorylation mechanism of any amino acid. 

 

 

 

Figure IV.20. First step of the phosphorylation process with hydrogen-phosphoamid and acethyl-phosphate. 

 

The theoretical calculations have shown that the phosphorylation process 

requires two sequential steps. The first step (figure IV.20) involves two concerted proton 

transfers involving serine as catalyst. In both cases, the proton of one of the hydroxyl 

groups of the phosphate groups is abstracted by the hydroxyl group of serine, at the same 

time that the proton some hydroxyl group of serine is transferred to the amino group or the 

acetate group of the phosphate compound depending on the phosphorylating agent. In the 

end of both reactions, two products are obtained: phosphenic acid and ammonia when the 

phosphorylating agent is phosphoramidate and phosphenic acid and acetic acid if the 

phosphorylating agent is acetylphosphate. 

Although the mechanism of the first step of both reactions is apparently similar, 

the energetic profile is very different. When the phosphorylating agent is phosphoramidate 

this reaction requires 10.1 kcal/mol and is endothermic in 3.6 kcal/mol. While when the 
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phosphorylating agent is acetylphosphate the reaction is less favorable requiring 19.6 

kcal/mol for the activation energy and 19.1 kcal/mol for the reaction energy.  The 

differences observed in the calculated energies are dependent on how easy the hydrogen 

atom transfer occurs between serine and the phosphorylating agent. The higher energies 

observed with acetylphosphate result from the bulkier nature of the groups attached to the 

oxygen atom that receives the proton and therefore difficulties the reaction. 

It must be mentioned that we have also tried to study the same reaction without 

the presence of serine as catalyst. In all the studied cases there was no reaction, a results 

that indicates that the phosphorylation process requires the presence of a catalyst. 

 

Figure IV.21. Second step of the phosphorylation process. 

 

The second step of both reactions (figure IV.21) is identical in both cases and 

involves the nucleophilic attack of serine to the phosphenic acid that resulted from the first 

step of both reactions. The theoretical calculations revealed that in the course of this 

process the proton from the hydroxyl group of serine is transferred to one of the keto 

groups of the phosphenic acid. This allowed the formation of phospho-serine in a single 

step without requiring additional steps. This reaction requires 11.0 kcal/mol and it is 

exothermic in -8.9 kcal/mol. 
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Figure IV. 22. Full energetic profile of the phosphorylation process. 

 

The full energetic profile of both reactions is displayed at figure IV.22. This 

figure shows that when the phosphorylating agent is phosphoramidate, the full energetic 

profile of the reaction is exothermic in -5.3 kal/mol, while when the phosphorylating agent 

is acetylphosphate it is endothermic in 10.2 kcal/mol. In addition the energies involved in 

the phosphorylation of serine by phosphoramidate are much lower when compared to the 

ones obtained with the acetylphosphate. These two facts reveal that the phosphorylation of 

serine is from the kinetic and thermodynamic point of view much more favorable when the 

phosphorylation takes place with phosphoramidate than with acetylphosphate. The reasons 

behind such behavior is dependent on the first step of the mechanism and how easy the 

concomitant hydrogen atom transfer occurs between serine and the phosphorylation agent 

that is required for the formation of the phosphenic acid. These data goes in line with the 

fluorescence and nano LC-MS results and explain why phosphoramidate phosphorylate 

more amino acids than acetylphosphate 

When looking into family of proteins, similar to MorR, the conserved D56 

present at the receiver domain is the amino acid residue that usually undergoes 

phosphorylation. This process leads to an effective output response associated with 

enhanced of DNA binding. In the present study the anisotropy of 6-FAM dsDNA was 

investigated in the presence of phospho-MorR. However, no changes in anisotropy values 

were observed relatively to control experiments (data not shown). However, we believe that 
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some experimental optimatimization should be performed to conclude any influence of 

MorR phosphorylation in DNA binding.  
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V. Conclusion 

Analysis of the intergenic region between morS and morP reveals the presence 

of two divergently transcribed promoters (54 and 70). The 54 promoter might be involved 

in gene transcription regulation of morP gene. The 70 might be involved in regulation of 

morS and morP genes.  

The morR gene was cloned on a pET expression vector and the expression 

conditions to obtain MorR protein were optimized. The expression profile reveals that 

morR is transcribed even in the absence of transcription inducer (IPTG). This evidence 

indicates a misrule of T7 RNA polymerase expression from lacUV5 promoter revealing the 

leaky nature of the pET expression systems, but also that MorR is a nontoxic product for 

E.coli. 

The MorR protein was expressed as soluble protein and purified. It is a 

monomer in solution, with a molecular mass of ~52kDa and a molar extinction coefficient 

at 280 nm of 30823M
-1

cm
-1

. 

EMSA determine that MorR protein binds the intergenic region between morP 

and morS and therefore might be involved in gene transcription regulation of those genes. 

This regulation might be mediated from the divergently 54 and 70 promoters. DNA 

footprinting assays have shown that MorR binds to a target 54 bp intergenic region. This 

protected region covers positions -145 to -200 relative to morP transcription start site +1.  

This result is in agreement with a transcription mediated via RNAP54, where 

transcriptional activators bind far from the promoter they control. The MorR protein also 

binds to the putative -10 and -35 promoters located upstream of morS gene. This result 

indicates that MorR could control morS transcriptional level and its own transcriptional by 

interaction with RNAP70 since both genes morR and morS might be are encoded by the 

same operon. 

MorR binds to a palindromic region (TTTTTTATA) located in the intergenic 

region between morS and morP. This evidence suggests that MorR has two distinct binding 

regions.  

The prototropic form of 6-FAM-67mer carrying the target intergenic region 

was determinate in order to define which fluorescein specie is present under experimental 

procedures. The fluorescence spectroscopy characterization of the 6-FAM revealed that 
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anisotropy varies according to the acid-base equilibrium of the medium. This is an 

important parameter to consider for biochemistry studies that wish to determine protein-

DNA interaction using fluorescein as a probe. For such studies, a constant fluorescein 

emission is a prerequisite to determine association constants between macromolecules. 

The fluorescence spectroscopy results confirmed that MorR binds to the target 

DNA at two different regions. The result identified two association constants: 15.5 M
-1

 for 

the first binding site and 0.02M
-1

 for the second binding site.  The results also 

demonstrated that MorR has different affinities for those two binding sites. In this way, 

MorR binds firstly and highly to the conserved DNA region that covers the putative -35 

box. Then, the protein binds with low affinity to the second binding site that covers the -10 

conserved box.  

The monoanionic specie of fluorescein covalently attached to 67-mer 

oligonucleotide was predominant under pH 7.5. 

The 6-FAM position near the protein binding site, rather than the 

oligonucleotide length, is the factor that influences in the anisotropy values. So, this 

proximity of the fluorophore to the protein binding site increased the sensitivity of the 

assay. The pka of fluorescein labeled with DNA is different from the pka of free 

fluorescein. This evaluation is important for optimization of techniques that use fluorescein 

conjugated with oligonucleotides.  

The nano-LC-MS revealed that MorR was purified without any phospho amino 

acid.  The MorR conformational change induced by phosphorylation was investigated using 

acetylphosphate and phosphoramidate as small phosphodonors. The phosphorylation status 

of MorR was determined by gel filtration and the experiments revealed that MorR do not 

oligomerize in the presence of those small phosphodonors.  

Phosphoramidate, rather than acetylphosphate, caused a static quenching in the 

MorR-tryptophan emission. The tryptophan emission is 30% suppressed in the presence of 

phosphoramidate. This quenching is not followed by a shift in the tryptophan emission. 

Therefore, the MorR oligomerization may not occur in the presence of phosphoramidate 

which corroborate with the gel filtration experiments. Additionally, the conserved acid 

aspartic residue (D55) was phosphorylated by both small phosphodonors.  
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The phosphorylation reaction of serine, mediated by phosphoramidate and 

acetylphosphate, requires two sequential steps. The first step is crucial to determine the 

reactivity of the reaction. In this way, the reaction is more favorable when the 

phosphorylating agent is phosphoramidate. Therefore, phosphorylation of serine residues is 

kinetic and thermodynamically more favorable with phosphoramidate than 

acetylphosphate. This result explains why phosphoramidate phosphorylated more amino 

acids than acetylphosphate. 

The quenching of MorR indicates that amino acids located near to the 

tryptophan were phosphorylated. As a perspective, it will important to determine if the 

phosphorylation alter the MorR binding affinity to the intergenic region between morS and 

morP. 

The present study proposes a new mechanism for morP, morS and morR 

transcription regulation (figure V.1). We postulate that the inactive form of MorR represses 

its own promoter by binding to the -35 conserved box, blocking the RNAP70 polymerase 

activity. This model considers that a basal level of transcription of morP, morS and morR 

exists. The inactive MorR (not phosphorylated) although bound to the target intergenic 

region is powerless to enhance the morP transcription through 54 promoter. We believe 

that the inactive form does not have all the potential to give the mechanical force that is 

necessary to RNAP54 activity.   
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Figure V. 1. Model for morSR and morP transcriptional regulation proposed by the present work.  
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In the presence of Mo in the medium (figure V.1, B), MorP incorporates this 

metal in its structure which leads to a protein conformation change. Then, the uninhibited 

MorS is capable to autophosphorylates and transfer the phosphoryl group to MorR. 

However, we believe that this route for MorR activation isn’t unique and the MorR 

autophosphorylation enhanced capacity should be considered. The active form of MorR 

might has an enhanced ATPase activity that allows the interaction with RNAP54 which 

leads to morP transcription activation. In this way, the activated form is not able anymore 

to binds to the putative -35 conserved sequence which allows the transcription of morSR 

genes by RNAP70. We believe that the MorR binding to the putative -10 conserved box 

(less preferable for MorR binding) could be an additional way for transcriptional regulation 

of morSR. This mechanism might be involved with an enhanced capacity for deactivation 

of the transcriptional apparatus that are necessary for Mo homeostasis.  

 

V.1. Future Perspectives 

 

 Perform crystallographic studies of MorR 

 Identify if the DNA binding constants are altered when MorR is phosphorylated 

 Perform transcriptional assay studies to address if the activated form of MorR 

enhance the transcription of the morP gene 

 Perform transcriptional assay studies to address if MorR acts as a negative self-

regulator of morR gene and morS and identify if the activated form derepress the 

morRS. 

 Identify if other post translational modifications, such as glycosylation, alters the 

conformational structure of MorR and if it has any influence on the function of the 

protein. 

 Perform ATPase activity experiments 


